
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

6-12-2024 3:45 PM 

UTILIZING MACHINE LEARNING TECHNIQUES FOR DISPERSION UTILIZING MACHINE LEARNING TECHNIQUES FOR DISPERSION 

MEASURE ESTIMATION IN FAST RADIO BURSTS STUDIES MEASURE ESTIMATION IN FAST RADIO BURSTS STUDIES 

Hosein Rajabi, The University of Western Ontario 

Supervisor: Daley, Mark, The University of Western Ontario 

Joint Supervisor: Houde, Martin, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Hosein Rajabi 2024 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

Recommended Citation Recommended Citation 
Rajabi, Hosein, "UTILIZING MACHINE LEARNING TECHNIQUES FOR DISPERSION MEASURE ESTIMATION 
IN FAST RADIO BURSTS STUDIES" (2024). Electronic Thesis and Dissertation Repository. 10127. 
https://ir.lib.uwo.ca/etd/10127 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F10127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/10127?utm_source=ir.lib.uwo.ca%2Fetd%2F10127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract
Fast Radio Bursts (FRBs) are highly energetic, millisecond-duration bursts of energy of-

ten detected from extragalactic sources. Almost two decades after their initial discovery, the
sources and underlying physical mechanisms of FRBs remain unknown. As FRB signals prop-
agate through space, they interact with matter, resulting in a temporal dispersion with fre-
quency. The amount of dispersion is quantified through the Dispersion Measure (DM), which
specifies the time delay before the arrival of a pulse as a function of frequency. The DM plays
a crucial role in estimating the distance to the FRB source and can reveal information about
the physical conditions at the source. Furthermore, accurate DM estimations have far-reaching
implications beyond the direct study of FRBs. They can significantly impact other areas of
astrophysics, such as the study of the intergalactic medium, the mapping of cosmic structures,
and providing insights into the fundamental laws of physics. These aspects highlight the impor-
tance of precise DM measurements in advancing our understanding of the universe. However,
the accurate estimate of the DM is often complicated and subject to human error. Automating
and improving DM estimations has become an even more important task with the increasing
number of detected FRBs and the commissioning of new FRB experiments. In this thesis, we
explore various deep-learning models for estimating FRB DMs. To enhance the results of train-
ing models, we create a set of simulated FRB data, as real FRB data are often noisy, to develop
extensive training sets. We discuss the outcomes of different deep learning models and identify
the most promising ones. This research is crucial for understanding and analyzing future FRB
data, which are expected to grow exponentially by the commissioning of new experiments and
facilities such as the Square Kilometer Array (SKA).

Keywords: Fast Radio Bursts, Dispersion Measure Estimation, Machine Learning

ii



Lay Summary
Fast Radio Bursts (FRBs) are brief, intense radiation flashes from distant galaxies, last-

ing typically milliseconds. Discovered nearly two decades ago, their origins and mechanisms
remain unknown. Traveling vast distances, these bursts interact with matter, affecting their
arrival times at our telescopes. This interaction is measured by the Dispersion Measure (DM),
which helps determine the travel distance and conditions encountered. Measuring the DM is
essential not only for studying FRBs but also for insights into the universe’s structure and fun-
damental physics. Accurately measuring the DM is, however, challenging. This thesis focuses
on using advanced machine learning models to improve DM estimations. By training models
on simulated data, we aim to develop more accurate methods for analyzing FRB signals. This
is crucial for handling the surge in data from upcoming astronomical facilities like the Square
Kilometer Array (SKA), poised to enhance our understanding of the universe.

iii



Acknowledgements
I would like to express my profound gratitude to my thesis supervisors, Prof. Martin Houde

from the Department of Physics and Astronomy, and Prof. Mark Daley from the Department
of Computer Science. Their invaluable guidance and expertise have been fundamental to my
development and understanding in this interdisciplinary research, which bridges the complex
realms of astronomy and machine learning. Prof. Houde patiently taught me many aspects of
radio transients, their physics, and the properties of their signals, all of which were pivotal
to the development of this research. Prof. Daley’s critical insights into the machine learning
aspects of my project were particularly enriching, enhancing the methodology and execution
of my research. I am deeply thankful for the opportunity they provided me to explore these
fascinating fields, and their mentorship has been a cornerstone of my academic journey.

I am also thankful to all the staff in the main offices of both the Department of Physics and
Astronomy and the Department of Computer Science. Their administrative support was essen-
tial and greatly appreciated. Additionally, I would like to acknowledge my Master’s Advisory
Committee for their advice.

Special thanks are due to Dr. Mohammed Chamma from the Department of Physics and
Astronomy for his helpful discussions on handling Fast Radio Burst data and the conventional
dispersion measure estimation methods.

I greatly value the friendship and support of my Computer Science friends, Nima, Ghazal,
and Alireza, whose discussions about graduate student life have been both enlightening and
comforting.

I am fortunate to have worked alongside some brilliant group mates who have contributed
to a stimulating and productive research environment. I am particularly grateful to Aishwarya
Kumar, Katie Brown, and Ningyan (Louis) Fang, as well as all members of Prof. Daley’s group
in Computer Science, for their collaboration and shared enthusiasm.

A big thank you to my family for their unwavering support and love. To my mom and dad,
your encouragement has been the foundation of my hope and strength. Special thanks to my
sisters, Fereshteh and Farzaneh, and also to my brothers-in-law, Javad and Mehrdad, for their
support and encouragement. To Sanaz, my partner and long-time friend, thank you for all your
support and patience through the challenges and triumphs.

Finally, a delightful thank you to my nephew Alex, whose stories about his imaginary friend
Mr. Mouse have brought fun and laughter into my days, reminding me of the joy in the simple
things.

Thank you all for your support and encouragement, which have been pivotal to my aca-
demic journey.

iv



Contents

Abstract ii

Lay Summary iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Exploring FRB Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Dispersion Measure (DM) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Scintillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Pulse Width of an FRB . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 The sub-burst slope law . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Machine learning (ML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Tree-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Dimensionality Reduction Techniques . . . . . . . . . . . . . . . . . . 13

2.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



2.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.4 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Residual Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Vision Transformer (ViT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Related Work 30

4 Methodology 34
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Baseline CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 DM Estimation utilizing Transfer Learning . . . . . . . . . . . . . . . 42

4.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Results & Discussion 45
5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Baseline CNN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Resnet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion and Future Work 53
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55

Curriculum Vitae 61

vi



List of Tables

3.1 Average F2 scores and standard deviations of supervised models trained for
classifying FRBs as repeaters and non-repeaters [34]. . . . . . . . . . . . . . . 32

3.2 Performance of unsupervised algorithms trained for classifying FRBs as re-
peaters and non-repeaters [65]. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Number of Reported FRB Sources through various telescopes according to
FRBSTATS [53]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Telescope spectral information for data generation . . . . . . . . . . . . . . . . 36
4.3 Architecture of Baseline CNN Model. . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Results of the baseline CNN Model over five runs . . . . . . . . . . . . . . . . 46
5.2 Results of the ViT Model over five runs . . . . . . . . . . . . . . . . . . . . . 47
5.3 Results of the Resnet50 Model over five runs . . . . . . . . . . . . . . . . . . . 50

vii



List of Figures

1.1 Dispersed Arrival of FRB 110220 Signal . . . . . . . . . . . . . . . . . . . . . 2
1.2 Left: Two dedispersed FRBs from the source FRB121102A. Right: Verifica-

tion of the sub-burst slope law over nine distinct FRB sources . . . . . . . . . . 4

2.1 The framework of the TRDM of Rajabi et al. (2020) [46] . . . . . . . . . . . . 8
2.2 Illustration of a basic decision tree model to determine the tastiness of papayas

[50]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Illustration of a random forest model [29]. . . . . . . . . . . . . . . . . . . . . 12
2.4 Illustration of an MLP with two hidden layers and two outputs [30]. . . . . . . 16
2.5 Illustration of a simple two-dimensional convolution Operation [43]. . . . . . . 21
2.6 Illustration of max pooling and average pooling with their respective results [60]. 22
2.7 Illustration of data fellow through various layers—convolutional, pooling, and

fully connected—to produce final results in CNNs [26]. . . . . . . . . . . . . . 23
2.8 Illustration from the original Dropout publication [54] showcasing the concept . 24
2.9 Illustration of a residual block from the original paper [25]. . . . . . . . . . . . 26
2.10 ViT architecture. Taken from [18]. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Illustration of the dual-path network architecture by Agarwal et al. [2] employ-
ing both frequency-time and DM-time images as inputs . . . . . . . . . . . . . 31

4.1 Illustration of randomly generated background noise . . . . . . . . . . . . . . . 37
4.2 Illustration of the convolution process between a Gaussian profile and a scat-

tering profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Illustration of the effect of scintillation applied to a signal. . . . . . . . . . . . . 39
4.4 Illustration of the generated data . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Illustration of Resnet50 architecture . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Illustration of DM distribution for training and validation sets . . . . . . . . . . 46
5.2 Histogram of absolute differences for DM predictions by the baseline CNN

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Performance visualization of the fine-tuned ViT model . . . . . . . . . . . . . 48
5.4 Histogram of residuals for DM predictions by the ViT model. . . . . . . . . . . 49
5.5 Performance visualization of the fine-tuned ResNet50 model . . . . . . . . . . 50
5.6 Histogram of Residuals for DM Predictions.. . . . . . . . . . . . . . . . . . . . 51

viii



List of Abbreviations

ASKAP Australian Square Kilometre Array Pathfinder

BN Batch Normalization

CHIME Canadian Hydrogen Intensity Mapping Experiment

DM Dispersion Measure

DSA Deep Synoptic Array

FAST Five-hundred-meter Aperture Spherical Telescope

FC Fully Connected

FN False Negative

FP False Positive

FRB Fast Radio Burst

GBT Green Bank Telescope

GMRT Giant Metrewave Radio Telescope

LOFAR Low Frequency Array

LPA Large Phased Array

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-layer Perceptron

MSE Mean Squared Error

pc Parsec (1 pc ≃ 3.26 light years)

PCA Principal Component Analysis

RFI Radio Frequency Interference

ix



RMSE Root Mean Squared Error

SGD Stochastic Gradient Descent

SRT Sardinia Radio Telescope

SVM Support Vector Machine

TLU Threshold Logic Unit

TN True Negative

TP True Positive

TRDM Triggered Relativistic Dynamical Mode

UMAP Uniform Manifold Approximation and Projection

ViT Vision Transformer

VLA Very Large Array

x



Chapter 1

Introduction

Fast radio bursts (FRBs) are highly energetic bursts of energy detected at radio frequencies,
ranging from 100 MHz to 8 GHz [45, 21]. The typical duration of FRBs is on the order of
a few milliseconds (ms); however, durations as long as 3 seconds [13] and as short as a few
microseconds [52] have also been reported. The energy of FRBs typically varies from 1035 erg
to 1046 erg (1 erg = 10−7 J) [63]. To put this into perspective, the Sun releases the same amount
of energy over a few years as an FRB does in just a few milliseconds.

The majority of FRBs are one-off events, with some repeating. These repeating FRBs pro-
vide great opportunities for follow-up observations and more in-depth studies. However, since
their first discovery almost two decades ago, the origin and underlying physical mechanisms of
FRBs have remained unknown despite intense and sustained theoretical [63] and observational
efforts.

A key characteristic of FRBs is their broadband signal, which typically extends over an
average bandwidth of nearly 200 MHz at 1.4 GHz. With the exception of one potential FRB
originating from a galactic magnetar (SGR 1935+2154) [17], these bursts are predominantly
recognized as extragalactic phenomena. The signal from an FRB source travels vast distances
before being detected by radio telescopes on Earth. During this journey, the signal encounters
ionized matter, leading to dispersion and scattering effects that vary with frequency. Notably,
lower frequencies are more susceptible to these effects. For instance, an FRB that lasts only 1
ms at the source can be extended to several seconds upon detection due to these propagation
effects, as illustrated in Fig. 1.1. The dispersion measure (DM), which quantifies the dispersion
of an FRB signal, provides insights into the signal’s travel history and the types of environments
it has traversed. Furthermore, DM is instrumental in estimating the distance from Earth to the
FRB source. Crucially, distinguishing these propagation effects from the actual emission signal
is essential for revealing the true underlying physical mechanisms of FRBs. This separation
aids theoretical investigations into the conditions at the source and helps elucidate the formation
processes of FRBs.

Dedispersing recorded radio signals is a standard practice in radio astronomy, particularly
when dealing with short pulses like those from pulsars or FRBs. This technique serves not only
to distinguish genuine FRB signals from man-made radio interference, commonly referred to
as Radio Frequency Interference (RFI), but also provides valuable estimates of the radio signal
at the time of emission. The dedispersion process is currently performed using so-called co-
herent and incoherent techniques [5, 49, 62] as part of the FRB data cleansing and processing.

1



2 Chapter 1. Introduction

Figure 1.1: FRB 110220, as detected, is seen to stretch over approximately 1 s, while the
dedispersion at DM = 944.38 cm−3 pc shows the signal to last on the order of only a few ms
(see inset, in frequency bands of 25 MHz). FRB 110220 is estimated to be located at a distance
of 2.8 Gpc (1 pc = 3.26 light years). Taken from [55].

These techniques are susceptible to human errors, leading to potential under-dedispersion or
over-dedispersion. Such errors can obscure the true characteristics of the signal at emission.
Additionally, the challenge is compounded by the uncertainty of the exact amount of disper-
sion correction needed, necessitating the exploration of a broad range of DM values. This
requirement places a significant demand on computational resources.

Although autonomous dedispersion techniques exist, they still pose a significant challenge
for large-scale, real-time data processing of FRBs, owing to their limited effectiveness and high
computational demands. This issue will become increasingly critical with the commissioning
of new FRB experiments such as the Square Kilometer Array (SKA).

1.1 Motivation

In this thesis, we attempt to address some of the challenges associated with dedispersing FRBs
by using machine learning (ML) models. Such a model, capable of predicting the DM from the
observed changes in signals over time and frequency, would significantly refine this process.
Employed immediately after the RFI removal, the model enables a more precise selection of
DM values, optimizing subsequent analysis steps and potentially accelerating the detection of
FRBs from the extensive datasets gathered by telescopes. This independent assessment of DMs
by the model is instrumental in confirming the potential FRB signals. When the model’s DM
estimates align with those derived from traditional analysis, it significantly bolsters our confi-



1.1. Motivation 3

dence in the signal’s classification as a true FRB. This enhancement in the selection process not
only streamlines the identification of genuine FRBs but also ensures that our final list of can-
didates is more accurate and reliable. However, leveraging its ability to analyze signal patterns
– learned from extensive training on frequency-time images (i.e., the so-called “waterfalls”) –
the model provides an additional and significant advantage in the dedispersion process. The
value of the ML model in identifying FRBs indeed extends well beyond the initial dedispersion
phase.

After correcting candidate FRB signals to account for dispersion and converting them into
a format that is easier to handle (e.g., a time series), the data are subjected to further processing.
This includes manipulations like smoothing (i.e., filtering through down-sampling) to reduce
noise, normalization to adjust signal strength, and matched filtering to better distinguish FRBs
from other noise signals. These steps collectively refine the list of FRB candidates, setting the
stage for a crucial reassessment.

Because the large distances to FRBs make it impossible to directly identify them and
their environments using telescopes, the best one can do to discover signatures that provide
clues about their nature is to study their “spectro-temporal” characteristics. Accordingly,
researchers at Western have developed the so-called triggered-relativistic-dynamical-model
(TRDM), which is very general in nature and applicable to a wide range of physical mod-
els aimed at explaining FRBs [46]. The TRDM was shown to recover known spectro-temporal
characteristics such as the inverse scaling of a burst’s duration with frequency and the down-
ward drift in frequency of consecutive sub-bursts. Most importantly, and as we will see in
Sec. 2.1.5, the TRDM predicted the existence of a new relation now known as the “sub-burst
slope law,” an inverse relationship between the sub-burst slope and duration in the FRB water-
fall (the intensity as a function of frequency and time). This can be clearly visualized in the
left panel of Fig. 1.2, where the narrower Burst #3 has the steepest slope (i.e., frequency/time).
The most recent and wide-ranging verification of the sub-burst slope law over nine distinct FRB
sources, where the frequency normalized sub-burst slope is plotted against the burst duration,
is shown in the right panel of the figure [8]. The discovery of the sub-burst slope law and its
emergence from a simple physical model is important because it imposes stringent constraints
on any theory or model put forth to explain FRBs.

However, this type of analysis requires a precise dedispersion process, since many of the
parameters recovered are adversely affected by an imprecise estimate of the DM. For example,
an error in evaluating the DM will have a direct impact on the sub-burst slope (frequency/time)
measured on FRBs such as those shown in Fig. 1.2. That is, too high a DM will increase the
slope, and vice-versa. A lot of efforts were and are still put into developing robust de-dispersion
techniques which, invariably, result in a lengthy and painstaking process that must be done on
a “one-by-one” basis for each waterfall to ensure precise DM estimates. It is therefore highly
desirable to train ML networks to automate the dedispersion to greatly speed up this process,
as there is now a need to apply the TRDM analysis to the several thousands of available FRB
signals from a growing number of sources. Through this application, the ML model emerges
as a powerful tool, enriching the detection and analysis of FRBs with sophisticated data-driven
insights.

By integrating ML into the FRB analysis, past the detection workflow, we move beyond
traditional astrophysical approaches, embracing advanced data analysis techniques. This in-
novation not only facilitates the management of vast volumes of astronomical data but also



4 Chapter 1. Introduction

10 1 100 101

Duration tw (ms)

10 2

10 1

100

N
or

m
al

iz
ed

 S
lo

pe
 (m

s
1 )

 1 ob
s|d

ob
s

dt
D

|

Sub-bursts: (0.077 ± 0.003)t 1
w

Sub-bursts: (0.115 ± 0.002)t 0.80 ± 0.04
w

Multi-bursts: (0.076 ± 0.004)t 1
w

Multi-bursts: (0.078 ± 0.001)t 0.95 ± 0.08
w

20121102A (Green Bank)
20121102A (Arecibo, 1)
20121102A (Arecibo, 2)
20180916B (uGMRT)
20180916B (CHIME)
20180916B (LOFAR)
20180301A (FAST)
20201124A (Effelsberg)
20200929C (CHIME)
20190804E (CHIME)
20201130A (CHIME)
20190915D (CHIME)
20180814A (CHIME)

Figure 1.2: Left: Two dedispersed FRBs from the source FRB121102A; in these “waterfalls”
the intensity is shown (grey scale) as a function of frequency and time. We can see that the
narrower Burst #3 has the steepest slope (i.e., frequency/time). This behaviour was first the-
oretically predicted and verified in [46] and named the sub-burst slope law. Right: The most
recent and wide-ranging verification of the sub-burst slope law over nine distinct FRB sources.
The frequency normalized sub-burst slope is plotted against the burst duration, both covering
more than two orders of magnitude in extent. The broken black/orange line is the theoretical
prediction from the TRDM. Taken from [8].

improves our ability to identify and study these brief cosmic phenomena. The adoption of
sophisticated models underscores a significant advancement, illustrating how the fusion of
cutting-edge technology with space science is unlocking new realms of cosmic exploration.

1.2 Thesis Outline
The remaining of this thesis is structured as follows. In Chapter 2, we provide an in-depth
background on FRBs and their characteristics, as well as discussing various ML algorithms
and deep learning architectures utilized throughout this thesis. Chapter 3 delves into a sum-
mary of previously published works, covering research that applies ML to FRB data, offering
a comprehensive understanding of this field’s current state. The methodology used for our
work is presented in Chapter 4, detailing the data generation process and various approaches
employed for estimating DMs using different techniques. Chapter 5 covers the outcomes of
our trained models and an analysis of their performance, as well as a discussion on and an
assessment of our application of ML techniques to the problem of the dedispersion of FRBs.
Finally, the thesis ends in Chapter 6 with a summary, our concluding thoughts, and suggestions
for future directions for this line of research.



Chapter 2

Background

In this part of our study, we provide a more detailed look into the different components and
parameters that characterize FRBs, and play crucial roles in their detection and analysis. Un-
derstanding these characteristics is essential for interpreting FRB data accurately and lays the
foundation for the application of ML techniques.

Currently, the catalog of known FRB sources is limited, and the dataset is not large enough
to effectively train an ML algorithm. This necessitates the simulation of FRBs with accurate
properties to create a sufficiently large and representative dataset for training ML models for
our intended goal (see below). Thus, it is crucial to simulate FRBs accurately, requiring a deep
understanding of their intrinsic characteristics. Up to now, ML has been predominantly applied
to classification tasks, such as distinguishing between different types of FRBs. This focus on
classification provides valuable insights into how ML can be tailored for astrophysical data
analysis. Examining these applications allows us to better understand the potential of various
ML techniques, paving the way for their adaptation to our regression task: finding the optimal
DM for FRBs.

In this section, we will go over the necessary background needed to simulate an FRB,
setting the stage for a discussion on related works that showcase how previous research has
utilized ML to address challenges in FRB analysis, and drawing connections to how these
methods can be extended and applied to our specific objective of DM estimation.

2.1 Exploring FRB Characteristics
FRBs exhibit several defining characteristics that have intrigued astronomers since their dis-
covery. These features, along with other external factors, provide clues to the FRBs’ origins
and the nature of the cosmos.

2.1.1 Dispersion Measure (DM)

As previously mentioned, the journey of FRB signals through space is influenced by their in-
teraction with free electrons, leading to a phenomenon known as dispersion. Dispersion causes
signals at lower frequencies to arrive later than those at higher frequencies, which is a key
signature of FRBs. The DM quantifies the total column density of free electrons encountered

5



6 Chapter 2. Background

along the signal’s path (see equation 2.3 below) and is an important quantity for astronomers
trying to pinpoint the FRB’s origin. For instance, an FRB traveling from a distant galaxy will
accumulate a higher DM value than one originating within the Milky Way, due to encountering
a denser column of electrons.

The time delay ∆t (in ms) between two frequencies ν1 and ν2 (in GHz) of an FRB due to
dispersion is given by

∆t (ms) = a DM

 1
ν2

1

−
1
ν2

2

 (2.1)

with

a =
e2

2πmec
× 1 pc

= 4.148 806 4239(11) GHz2 cm3 pc−1 ms, (2.2)

where e,me, c are the electron charge and mass, and the speed of light, respectively, while the
DM is expressed in units cm−3 pc in equation (2.1) [31] (1 pc ≃ 3.26 light years). The first
relation highlights the inverse square relationship between frequency and time delay, which
is precisely verified through observations of FRBs and pulsars. It is, for example, readily
observed in the signal’s curvature in Fig. 1.1, with ∆t > 0 when ν1 < ν2 and vice-versa.

As previously mentioned, the definition of the DM is straightforward from the integration
of the electron density ne along the path of propagation of total length d

DM =
∫ d

0
ne(l) dl, (2.3)

thereby yielding a direct measure of the main component of the ionized medium’s column
density between the FRB source and Earth [44].

2.1.2 Scattering

Scattering is akin to the way light beams scatter when passing through a prism or a dense
fog, causing signals to take indirect paths and arrive at slightly different times. This effect is
particularly pronounced in FRBs due to their passage through the uneven interstellar medium.
The scattering timescale τs can be expressed as:

τs = τ0

(
νref

ν

)n
, (2.4)

where n = 4 or 4.4 is usually adopted, while νref is often set to 1 GHz and τ0 is therefore the
scattering time-scale at that frequency (usually on the order of a ms). This relation indicates
that the scattering’s impact on signal timing is strongly frequency dependent, offering insights
into the density and turbulence of the medium through which the FRB has traveled. As was the
case for the time delay due to the DM, we find that scattering is strongest at lower frequencies.



2.1. Exploring FRB Characteristics 7

2.1.3 Scintillation
Scintillation describes the rapid fluctuations in signal intensity, similar to the twinkling of stars
seen from Earth. This effect is more pronounced in FRBs due to their coherent, compact
nature. For example, an FRB signal passing near a dense stellar object might exhibit enhanced
scintillation due to the object’s gravitational field affecting the signal path. The amplitude of
scintillation A is modeled as

A = cos
[
2πNscint

(
νref

ν

)2
+ ϕscint

]
. (2.5)

Here, Nscint represents the number of scintillation events, and ϕscint introduces a phase shift,
together simulating the dynamic nature of signal intensity fluctuations due to scintillation.

2.1.4 Pulse Width of an FRB
The observed pulse width of an FRB, denoted as W, is determined by a combination of factors
that contribute to its broadening. These factors include the intrinsic properties of the signal
itself, the characteristics of the observing instrument and the effects of the interstellar medium
through which the signal propagates. To conceptualize this, one might consider the analogy
of a flashlight beam passing through varying densities of fog; the denser the fog, the more
dispersed or “spread out” the beam becomes. In the context of FRBs, this broadening of the
signal can be attributed to several key elements detailed in the equation [44]

W =
√

t2
w + t2

samp + ∆t2
DM + ∆t2

DMerr + τ
2
s , (2.6)

where

• tw stands for the intrinsic pulse width, which is the fundamental duration of the burst
as emitted from its source. This width is the purest representation of the signal’s initial
form, unaffected by external factors.

• tsamp corresponds to the sampling time, which is defined by the temporal resolution of
the data acquisition system. It reflects how frequently the observational data is collected
and can artificially broaden the signal if the sampling rate is not sufficiently high.

• ∆tDM represents the dispersive delay variance across the measurement bandwidth due to
the DM, illustrating how signals of different frequencies are delayed by varying amounts
as they pass through the ionized medium.

• ∆tDMerr accounts for the error in correcting the dispersive delay, highlighting the limita-
tions of de-dispersion techniques in perfectly reconstructing the original signal.

• τs is the scattering time scale, quantifying the broadening effect resulting from the scat-
tering of the signal’s components as they traverse the inhomogeneous interstellar medium.

Each term under the square root in this equation accounts for a distinct source of pulse
broadening, collectively forming a comprehensive model that elucidates the observed width of
an FRB pulse. Equation (2.6) underscores the multifaceted nature of FRB observations, where
both intrinsic and extrinsic factors play pivotal roles in shaping the detected signal.



8 Chapter 2. Background

Trigger

FRB Source

Observer

L

D

In
te

ns
ity

t ′
t ′0 t ′1 t ′2 t ′3

t ′ ′
D

′
w

Trigger

FRB

Figure 2.1: The framework of the TRDM of Rajabi et al. (2020) [46]. Left: The alignment of
the trigger source, the FRB source and the observer with the FRB source is potentially moving
at a relativistic speed v = βc ex relative to the observer. Right: Temporal sequence of the trigger
and FRB signals in the rest-frame of the FRB source. The trigger stimulates the emission of a
stronger FRB of duration τ′w after a delay of τ′D; amplitudes are not to scale. Taken from [46].

2.1.5 The sub-burst slope law
As mentioned earlier, the most important result stemming from the TRDM is the prediction,
and subsequent verification, of the sub-burst slope law of repeating FRBs [46]. Within the
framework of the TRDM the physical system producing an FRB is kept as simple and as
general as possible, but has the following three ingredients: i) a trigger source that emits a
short burst (e.g., a pulsar or a magnetar), ii) the FRB source, which is stimulated by the arrival
of the short burst from the trigger, and iii) an observer who detects the FRB. Also, these three
components are perfectly aligned while the FRB source is potentially moving at relativistic
speed relative to the observer; see the left panel of Fig. 2.1. As shown in the right panel of the
figure, the arrival of the trigger signal at the FRB source stimulates the emission of a stronger
FRB of duration τ′w after a delay of τ′D, which is then detected by the observer at a later time.

Considering the relativistic transformations between the frames of the trigger and FRB
sources, as well as the observer’s, one arrives at the sub-burst slope law

1
νobs

dνobs

dtD
= −

A
tw
, (2.7)

where A ≡ τ′w/τ
′
D is considered to be approximately constant for a given FRB source, while

νobs, tw and tD are respectively the FRB’s frequency, duration and delay before arrival, all in
the observer’s frame. The sub-burst slope dνobs/dtD is readily observed for the two dedispersed
FRB in the left panel of Fig. 1.2. The width of the burst tw (more generally W; see equation
2.6) is also a measurable quantity, which then leads to the mapping of equation (2.7), as shown
in the right panel of Fig. 1.2 for nine different FRB sources.

These elaborations provide a more tangible understanding of the complex phenomena as-
sociated with FRBs. Each characteristic offers a unique perspective on the astrophysical condi-



2.2. Machine learning (ML) 9

tions influencing FRBs, underscoring the importance of comprehensive analysis in unraveling
the mysteries of these cosmic events.

2.2 Machine learning (ML)

Over the past few decades, ML has rapidly advanced as a sub-field of artificial intelligence.
Primarily, it consists of developing algorithms that process input data gathered from past ex-
periences to predict target values. The predictions could be continuous variables, for example,
predicting real estate prices, or categorical values, for example, knowing whether a tumor is
benign or malignant. It is thus quite versatile, with a lot of variances and approaches tailored
to applications. There are four primary categories into which we can classify ML algorithms,
which we briefly describe here.

Supervised Learning

Supervised learning involves using labeled data, where each data point is associated with the
correct answer. The data is fed into a model, which uses optimization algorithms such as
gradient descent to modify its parameters iteratively, to find the optimal weights that minimize
the cost function J. A commonly used form of the cost function for regression tasks is the
Mean Squared Error (MSE), expressed as

J (θ) =
1

2m

m∑
i=1

[
hθ

(
xi
)
− yi

]2
. (2.8)

In this formula, m denotes the number of training examples, xi represents the input features of
the ith training example with yi its the true label, hθ

(
xi
)

is the model’s predicted value for the
ith input, and θ stands for the parameters of our model. This could alternatively be denoted as
follows, in more general terms, where L is a loss function, ŷi is the model predicted output and
N is the number of training samples

J (θ) = min
θ

1
N

N∑
i=1

L(yi, ŷi). (2.9)

This is exactly equivalent to the definition provided by Tom Mitchell [38], “A computer
program is said to learn from experience E with respect to some task T and some performance
measure P, if its performance on T, as measured by P, improves with experience E.” This defi-
nition outlines the main components of learning, including the task, performance measure, and
experience.

Once the model has been trained, it can be applied to new data. The model employs the
patterns and relationships it learned during the training phase to predict the labels for these new
data. The ability to generalize from the training data to new instances is the foundation of the
predictive power of supervised learning.



10 Chapter 2. Background

Unsupervised Learning

Unsupervised learning is a type of ML that deals with unlabeled data, in contrast to supervised
learning. Clustering and dimensionality reduction are the most commonly used algorithms in
unsupervised learning. The model discovers patterns in the provided unlabeled data. Principal
Component Analysis [1] and K-Means [33] are two popular algorithms in this family (see
below).

Semi-Supervised Learning

Semi-supervised learning stands between supervised and unsupervised learning, using a com-
bination of a small amount of labeled data and a large amount of unlabeled data. This approach
helps to improve learning accuracy when acquiring labeled data is costly or time-consuming.

Reinforcement Learning

Reinforcement learning is an algorithm that learns through an iterative process of trials and
feedback. Within a predefined space, with clear objectives and a range of actions it can take, the
algorithm tries different strategies, evaluating the outcomes to identify the most effective ones.
The approach is similar to learning through direct experience, where the algorithm adjusts its
strategy based on the consequences of its actions, progressively improving its decision-making
process to achieve the best result.

2.2.1 Tree-Based Models

Decision Trees are the main component of Tree-Based Models. A Decision Tree is a non-
parametric supervised ML algorithm that mimics the structure of a tree, starting from a parent
node commonly named the root node, and going down to the leaves; see Fig. 2.2. On each step,
based on different measures such as Mutual Information or Gini Impurity, a feature would be
placed in a node that expands the tree to sub-nodes [40]. Leaves are our interested values as the
outcome of our algorithm. Despite their simplicity, decision trees are the foundation for more
advanced techniques [50].

Random Forest

Random Forest is an ensemble learning algorithm that is used for a variety of tasks. The algo-
rithm constructs several decision trees during the training process known as the decision tree
ensemble method where each tree is constructed using a random subset of features and differ-
ent bootstrap samples of the data; see Fig. 2.3 [42]. This technique combines base models to
create a more accurate and robust predictive model. By aggregating the predictions of multiple
decision trees, the ensemble method can mitigate overfitting and enhance the overall accuracy
of the model [7].



2.2. Machine learning (ML) 11

Figure 2.2: Illustration of a basic decision tree model to determine the tastiness of papayas
[50].

AdaBoost

AdaBoost, or Adaptive Boosting, is another ensemble technique that combines multiple weak
learners into a strong learner to improve performance and accuracy [20]. A weak learner is
a model that is too simple to be used on its own. For example, decision trees with a single
split, known as decision stumps, are a popular choice for weak learners in AdaBoost due to
their effectiveness and simplicity. The process of training begins by assigning equal weights
to all instances in the training dataset. AdaBoost then goes through several rounds of training
weak learners, adjusting the weights of the instances that were misclassified by the previous
model. Each weak learner is assigned a weight proportional to its accuracy, and these learners
are combined into a weighted sum that constitutes the final model.

XGBoost

XGBoost (Extreme Gradient Boosting) is another ML algorithm well-known for its gradient-
boosted framework. It uses advanced regularization techniques to enhance the model’s gen-
eralization and combines multiple models’ capabilities into a single robust model using an
ensemble learning approach [11]. In regression tasks, XGBoost commonly utilizes a squared
error loss function or mean squared error as its objective. The algorithm improves the accuracy
by adding decision trees to the ensemble and fine-tuning each tree to minimize the cumulative
loss.

LightGBM

LightGBM is another member of the gradient-boosting family. It stands out because of its
unique approach to processing large datasets efficiently. Key characteristics of LightGBM are
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS
allows LightGBM to focus on the most informative data points, essentially prioritizing harder-
to-predict instances, which enhances learning efficiency. On the other hand, EFB reduces



12 Chapter 2. Background

Figure 2.3: Illustration of a random forest model [29].

the feature space of high-dimensional data by grouping features that are mutually exclusive,
resulting in faster training [28].

2.2.2 Support Vector Machines
Support Vector Machine (SVM) is a supervised ML algorithm [41]. As was previously dis-
cussed about supervised learning, such algorithms use labeled data to learn mapping input
features to output targets by fitting a hyperplane that maximizes the margin between different
categories in the case of a classification task. In an n-dimensional space, a hyperplane can
be described as a flat surface that extends infinitely in all directions and has one less dimen-
sion than the space itself, making it an (n − 1)-dimensional entity. This hyperplane provides a
boundary that can divide the space into two distinct parts. In the context of SVM, the hyper-
plane is defined by the equation w⊤x + b = 0, where:

• w represents the weight vector perpendicular to the hyperplane.

• x denotes the input feature vectors.

• b is the bias term.

The primal form of the SVM objective function for a training dataset S = {(xi, yi); i = 1, . . . ,m}
that is linearly separable is formulated as:

minimize
w,b

1
2
∥w∥2

subject to yi

(
w⊤xi + b

)
≥ 1, ∀i = 1, . . . ,m.

Where ∥w∥ is the Euclidean norm of vector w. The role of yi, which takes values from {−1,+1},
is to indicate the class of each input vector xi, thereby guiding the placement of the hyperplane



2.2. Machine learning (ML) 13

to ensure it separates the classes with a maximum margin [39]. When S is not linearly sepa-
rable, the method involves either projecting the input features into a higher-dimensional space
to achieve linear separability or maintaining the original feature space. In such cases, a slack
variable ξ is introduced to allow some degree of misclassification [57]. This leads to a modified
optimization formulation:

min
w,b,ξ

1
2
∥w∥2 +C

m∑
i=1

ξi

subject to

yi

(
w⊤xi + b

)
≥ 1 − ξi,

ξi ≥ 0, ∀i = 1, . . . ,m,

where C is a regularization parameter employed to balance the margin maximization with the
penalty for the misclassifications.

2.2.3 Clustering Algorithms

In the realm of ML, clustering algorithms play a pivotal role in unsupervised learning tasks.
Their primary objective is to group data points based on their similarities, without prior labeling
or categorization. This approach enables the discovery of inherent structures or patterns within
the data.

K-means

K-means is one of the simplest and most widely used clustering algorithms. It partitions the
dataset into K distinct clusters based on the distances between data points and the centroids
of the clusters. The algorithm iteratively updates the centroids until it minimizes the within-
cluster variance, often measured as the Euclidean distance between data points and their corre-
sponding cluster centroids [33].

HDBSCAN

HDBSCAN is an extension of DBSCAN, which is an algorithm that clusters data based on
density. HDBSCAN converts DBSCAN into a hierarchical clustering algorithm. It then uses a
technique to extract flat clusters based on the stability of clusters over the hierarchy [9].

2.2.4 Dimensionality Reduction Techniques

Dimensionality reduction plays a critical role in ML by simplifying high-dimensional datasets,
enhancing visualization, and sometimes improving algorithm performance by removing irrele-
vant features or noise. This section elaborates on three principal techniques: PCA, t-SNE, and
UMAP.



14 Chapter 2. Background

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a linear technique for reducing the dimensionality of
a dataset while maximizing variance. By identifying the principal components with the highest
variance, PCA summarizes the data with fewer features. This technique is particularly effective
for datasets where linear relationships are predominant [27].

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear, probabilistic technique
primarily used for the visualization of high-dimensional data in two or three dimensions. By
converting high-dimensional Euclidean distances into conditional probabilities that represent
similarities, t-SNE maintains local data structures and can reveal complex structures in the data
[56].

Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a relatively recent technique that
can be used for dimensionality reduction and as a non-linear visualization tool. UMAP main-
tains the global structure of the data more effectively than t-SNE, providing a comprehensive
view that balances both local and global data relationships. It is best suited for datasets where
both local and global structures are important. Due to its efficiency and scalability, UMAP is
advantageous for large datasets [37].

2.3 Artificial Neural Networks
Inspired by the brain’s architecture, which is composed of neurons communicating through
signals, the first mathematical model of this kind was proposed to mimic biological neurons.
This foundational model, capable of producing a binary output from binary inputs, introduced
the concept of computational units [36]. Building upon this, the Perceptron [47], the very first
artificial neural network, was introduced. It consisted of a single layer made up of multiple
threshold logic units (TLU). A TLU acts as a neuron that receives numerical inputs, each input
connection having an assigned weight, and it produces an output based on a linear combina-
tion of these inputs and weights, which is then passed through an activation function. In the
Perceptron, every TLU is connected to each input, forming a fully connected layer. The input
layer comprises the inputs, while the layer of TLUs generates the final outputs, thus referred
to as the output layer. The output of a fully connected layer can be mathematically represented
as:

y = ϕ (Wx + b) (2.10)

where:

• y is the output vector of the layer.

• ϕ denotes the activation function applied element-wise.

• W is the weight matrix of the layer.



2.3. Artificial Neural Networks 15

• x is the input vector to the layer.

• b is the bias vector.

The perceptron training algorithm enhances neural connections by modifying connection
weights to lower prediction errors. This approach processes each data point one by one, making
predictions and then changing the weights of neurons that got predictions wrong. This helps
the model get better at making correct predictions. The changes are made according to this rule
[23]:

w(new)
i, j = wi, j + η(y j − ŷ j)xi (2.11)

where:

• wi, j is the weight from the ith input to the jth neuron.

• xi is the ith input value for the current data point.

• ŷ j is the predicted output of the jth neuron for the current data point.

• y j is the actual target output for the jth neuron.

• η is the learning rate, controlling the update magnitude.

This rule guides the algorithm to reduce mistakes by repeatedly tweaking weights according to
the difference between what it predicts and the real results.

2.3.1 Multi Layer Perceptron
The primary limitation of a single perceptron is its inability to handle data that is not linearly
separable. To address this, multiple perceptrons are stacked together to form a multi-layer
perceptron (MLP) architecture, where each layer is connected to the following layer in the
network. This transition from single-layer perceptrons to multi-layer perceptron architecture
enables models to learn non-linear and complex patterns in data. However, this additional
capability requires a more sophisticated training approach [23].

For training MLPs, the network weights and biases are initialized randomly. However, it is
usually better to initialize these parameters using techniques such as Xavier [22] or He initial-
ization [24] for faster convergence and addressing gradient vanishing or exploding problems.
Following weights initialization, each input data is fed to the model, and the output of each
neuron is calculated. Calculating the output involves taking the weighted sum of the neuron
inputs and passing it through an activation function. The process of passing data through a
neural network in a forward direction is called a feedforward pass.

The predicted output of the model resulting from this feedforward operation is then com-
pared with the real output, and used to calculate the model’s prediction error with a loss func-
tion (or cost function), such as the mean squared error for a regression model, or the cross-
entropy loss for a classification model. The training objective then is to minimize this error,
and one approach is to use the Backpropagation algorithm. Backpropagation is an algorithm
used to minimize the error of the network by calculating the gradient of the cost function with
respect to each parameter in the network. This tells us how the error will change as each weight
in each neural network layer is adjusted [48].



16 Chapter 2. Background

Figure 2.4: Illustration of an MLP with two hidden layers and two outputs [30].

2.3.2 Activation Functions
Activation functions are a big part of the field of neural networks, as they help solve non-linear
problems. They get an input, the weighted sum from the previous layer, and compute a non-
linear output. Without non-linear activation functions, neural networks would be not much
different from basic single-layer perceptrons, with their problem-solving capabilities greatly
diminished [23]. While we could just use an activation function like the Identity function,
which just returns the input as is, it is most commonly used in the output layer in tasks like
regression. In this section, we provide a brief overview of activation functions commonly used
in modern neural network architectures.

Sigmoid

This function

σ (x) =
1

1 + e−x (2.12)

maps any input into a range between 0 and 1. This makes the Sigmoid function useful for
models where the output is interpreted as a probability. Despite it being commonly used in
binary classification problems and the output layers of neural networks, the Sigmoid function
can lead to vanishing gradients because it saturates for largely positive or negative values. This
leads to a point that updates to the weights become insignificantly small, potentially slowing
down or stopping the training process.

Softmax

The Softmax activation function plays a crucial role in the field of neural networks, especially
in multi-class classification problems. It is defined by the formula

Softmax(zi) =
ezi∑
j ez j

(2.13)



2.3. Artificial Neural Networks 17

where zi represents the input to the function for class i, and the denominator is the sum of the
exponential values of all inputs. This function converts logits, or raw predictions from a neu-
ral network, into probabilities by taking the exponential of each input value and normalizing
these values by dividing by the sum of all the exponentials. The result is a probability distri-
bution over all possible classes, with each value ranging between 0 and 1, and the sum of all
probabilities being 1. The Softmax function is typically used in the output layer of a neural
network model for multi-class classification, where it provides a clear and interpretable output
as probabilities for each class [6].

Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU) is one of the most widely used activation functions in deep neural
networks. Essentially, ReLU functions output the input directly if it is positive, and outputs zero
if it is negative. This allows it to alleviate the vanishing gradient problem (common in deep
networks), since its gradient is either zero (for negative inputs) or one (for positive inputs).
It also allows the network to model complex patterns using non-linearities while imposing no
extra computational burden.

2.3.3 Optimizers

The choice of an optimization algorithm is crucial for determining the efficiency with which the
model learns by finding the optimal values for its parameters (weights) that minimize the error
in mapping inputs to outputs. The choice of an optimizer not only influences the speed of con-
vergence and the accuracy of the model but also influences whether the model converges at all.
Various optimizers with distinct algorithms have been developed to address these challenges.
These include Gradient Descent (GD), Stochastic Gradient Descent (SGD), SGD with momen-
tum, Mini-Batch Gradient Descent, RMSProp (Root Mean Square Propagation), AdaDelta,
Adagrad (Adaptive Gradient Algorithm), Adam (Adaptive Moment Estimation), and more so-
phisticated methods like Conjugate Gradient, BFGS (Broyden–Fletcher–Goldfarb–Shanno al-
gorithm), and L-BFGS (Limited-memory BFGS). In this section, we discuss the theoretical
and practical nuances of a selection of these optimizers that are predominantly utilized in the
field.

Gradient Descent

The procedure of repeatedly evaluating the gradient and then performing a parameter update is
called Gradient Descent (GD). By calculating the gradient of the loss function with respect to
the parameters, GD iteratively adjusts the parameters in the direction that minimally decreases
the loss and provides the steepest direction to reach the local minimum of the loss function. It
starts with some coefficients, and searches for cost value smaller than what it is now. It moves
towards the lower weight and updates the value of the coefficients. The process repeats until
the local minimum is reached. A local minimum is a point beyond which it cannot proceed.

While GD works well for small datasets, its efficiency significantly diminishes for large
datasets due to the necessity of computing gradients across the entire dataset at each iteration.



18 Chapter 2. Background

Moreover, GD works well for convex functions, however, it struggles with non-convex func-
tions as it cannot guarantee global minimum discovery and may get stuck in local minima. GD
is guaranteed to converge to the global minimum for convex loss surfaces and to a local mini-
mum for non-convex surfaces. GD is a first-order iterative optimization algorithm for finding
a local minimum of a differentiable function. The update rule for the parameters in the vanilla
version of GD is given by:

θnew = θ − η · ∇θJ (θ) (2.14)

where θ represents the parameters of the model, η is the learning rate, ∇θJ (θ) is the gradient of
the loss function J with respect to the parameters θ.

Stochastic Gradient Descent (SGD)

This algorithm enhances the scalability of traditional Gradient Descent (GD) by updating the
model’s parameters using only a single example from the dataset at each iteration. This ap-
proach allows SGD to begin optimizing the cost function immediately with each example,
making it significantly faster and more suitable for large datasets. Unlike GD, which requires
the entire dataset to compute the gradient, SGD’s incremental updates significantly reduce the
computational burden.

However, these updates are based on a single example at a time, which introduces more
noise into the optimization process compared to GD. This noise can cause the convergence
path of SGD to be more erratic, often oscillating around the minimum rather than smoothly
converging towards it. As a result, while SGD is generally faster than GD, especially with
large datasets, its path to convergence can be less stable. The model may not settle precisely
at the minimum but in its vicinity, reflecting the trade-off between speed and the precision of
convergence.

The update rule for SGD can be represented as follows:

θnew = θ − η · ∇θJ
(
θ; x(i), y(i)

)
(2.15)

where θ represents the parameters of the model, η is the learning rate, ∇θJ
(
θ; x(i), y(i)

)
is the

gradient of the loss function J with respect to the parameters θ, evaluated at a single example(
x(i), y(i)

)
.

Stochastic Gradient descent with momentum

Momentum is an enhancement to Stochastic Gradient Descent (SGD) that accelerates con-
vergence by incorporating a fraction of the previous update vector into the current update.
While Momentum uses more memory for a given batch size than SGD, it requires less mem-
ory than the RMSprop and Adam algorithms. This method significantly reduces oscillation
and speeds up convergence, particularly in contexts where the loss function’s surface curva-
ture varies sharply. The momentum term is beneficial for navigating through flat regions and
dampening oscillations in steep directions. However, adding a fraction of the previous update
to the current one not only helps in faster convergence of the loss function by mitigating the



2.3. Artificial Neural Networks 19

slower computation times and the noisy path of SGD, which results in a higher number of it-
erations to reach the local minima, but it also necessitates careful management of the learning
rate and momentum hyperparameters. Improper settings can lead to overshooting the mini-
mum or instability in the convergence process. The learning rate should be decreased when a
high momentum term is used because as the momentum increases, so does the likelihood of
surpassing the optimal point, which might result in poor accuracy and even more oscillations.
The update rule for this algorithm is:

vt = αvt−1 + η∇θJ (θ)
θnew = θ − vt, (2.16)

where vt is the velocity at time t, α is the momentum coefficient, η is the learning rate, ∇θJ (θ)
is the gradient of the loss function J with respect to the parameters θ.

Mini-Batch Gradient Descent

This algorithm optimally balances the robustness of Gradient Descent (GD) with the efficiency
of Stochastic Gradient Descent (SGD). By updating parameters using a small, randomly se-
lected subset of the training data, termed a mini-batch, at each iteration, this method signifi-
cantly reduces the computational burden compared to GD, which uses the full dataset for each
update. Compared to SGD, which updates parameters using a single example at a time, Mini-
batch GD offers a more stable path to convergence by smoothing out the variance in parameter
updates. This approach strikes a good balance between speed and accuracy: the updates to the
cost function are noisier than with GD but smoother compared to the updates in SGD. This
balance allows Mini-batch GD to efficiently navigate the cost landscape, achieving faster con-
vergence than GD while maintaining a more consistent trajectory towards the minimum than
SGD. However, it introduces the additional hyperparameter of mini-batch size, which requires
careful tuning to achieve optimal performance. Generally, a mini-batch size of 32 is consid-
ered a good starting point, but the optimal size can vary depending on the specific problem and
dataset. This method’s main advantage lies in its ability to provide a good balance between
computational efficiency and convergence stability, making it a popular choice for training
neural networks and other ML models. The update rule for this algorithm is:

θnew = θ − η · ∇θJ (θ; Xmini,Ymini) , (2.17)

where θ represents the parameters of the model, η is the learning rate, ∇θJ (θ; Xmini,Ymini) is
the gradient of the loss function J with respect to the parameters θ, evaluated on a mini-batch
(Xmini,Ymini).

Adam (adaptive moment estimation)

Adam is a further extension of stochastic gradient descent to update network weights during
training. Unlike in SGD, which maintains a single learning rate for all updates, Adam updates
the learning rate for each network weight individually. It combines the advantages of two
other extensions of SGD, namely AdaGrad and RMSProp, by adapting the learning rate based
on the first and second moments of the gradients. The first moment represents the mean,



20 Chapter 2. Background

and the second moment represents the uncentered variance, meaning that the (square of the)
mean is not subtracted. This approach not only automates the adjustment of the learning rate
throughout training but also ensures a balance between fast convergence and stability, making it
particularly beneficial in settings with large datasets and/or high-dimensional parameter spaces.

Adam differentiates itself by focusing on faster computation times, in contrast to SGD,
which, despite potentially offering better generalization through its focus on individual data
points, does so at the cost of slower computation speeds. Adam’s formula incorporates decay
rates for the averages of the gradients (denoted as β1 and β2), which facilitate adaptive step-
sizes, effectively performing a form of learning rate annealing. Known for its popularity and
efficacy, Adam is often the default optimizer in ML frameworks, attributed to its ability to
handle sparse gradients and different scales of parameters efficiently.

However, it is noteworthy that Adam requires more memory for a given batch size com-
pared to other optimizers, due to maintaining separate learning rates for each parameter through
the storage of the first and second moments of the gradients. Despite this, its comprehensive
approach introduces several hyperparameters, such as the learning rate and exponential decay
rates for the moment estimates, which, while requiring tuning for optimal results, often perform
adequately well with default settings. This makes Adam a user-friendly and effective choice
for a wide range of deep learning applications. The formula for Adam optimizer is as follows:

mt = β1mt−1 +
(
1 − β1

)
∇θJ (θ)

vt = β2vt−1 +
(
1 − β2

) [
∇θJ (θ)

]2

m̂t =
mt

1 − βt
1

v̂t =
vt

1 − βt
2

θnew = θ −
η

√
v̂t + ϵ

m̂t, (2.18)

where mt is the first moment vector (mean) which represents the average of the gradients, vt is
the second moment vector (uncentered variance) which represents the average of the squared
gradients, β1 and β2 are the exponential decay rates for the moment estimates, typically set
close to 1 (e.g., 0.9 and 0.999), η is the learning rate, ϵ is a small scalar (e.g., 10−8) to prevent
division by zero, ∇θJ (θ) is the gradient of the loss function J with respect to the parameters θ,
m̂t and v̂t are bias-corrected versions of mt and vt, ensuring they are unbiased at initialization.
βt

1 and βt
2 are biased corrected versions of β1 and beta2.

2.4 Convolutional Neural Networks
MLPs are powerful algorithms. However, when the input size gets very large as in the case
of images and videos, they may perform poorly due to the high number of required parame-
ters for training and slower convergence. This challenge has led to the transition from MLPs
to Convolutional Neural Networks (CNN), showing proven and effective results in handling
such tasks. CNN are deep learning algorithms well-suited for Computer Vision tasks because
of their innovative building blocks, inspired by how the human visual cortex processes data.



2.4. Convolutional Neural Networks 21

Figure 2.5: Illustration of a simple two-dimensional convolution Operation [43].

Focusing on pattern recognition and spatial hierarchies, their architecture is built around three
key components: convolutional layers, pooling layers, and fully connected layers [32].

2.4.1 Convolutional Layer
Convolutional layers are necessary for processing visual information. Using this layer, the
input image is scanned over a set of filters or kernels. Each filter can detect a specific feature
by performing element-wise multiplication of the filter elements and the segment of the input
that the kernel covers, known as the receptive field. The result of this operation is a feature
map that represents the presence of the detected feature across different locations of the input.
The two-dimensional convolution operation in CNN could be formulated as:

S
(
i, j

)
= (K ∗ I)

(
i, j

)
=

∑
m

∑
n

I
(
i − m, j − n

)
K (m, n) , (2.19)

where:

• S (i, j): The output of the convolution at position
(
i, j

)
.

• K: The horizontally and vertically flipped kernel applied during the convolution.

• I: The input image or matrix to which the convolution is applied.

• m, n: Indices used to navigate through the kernel K.

• i, j: Indices used to navigate through the input image I.

This operation is performed for every element in the output matrix, effectively capturing lo-
cal patterns within the input image. However, in most ML libraries convolution operation is
implemented using the cross-correlation formula:

S
(
i, j

)
= (K ∗ I)

(
i, j

)
=

∑
m

∑
n

I
(
i + m, j + n

)
K (m, n) . (2.20)

The formula for cross-correlation is more straightforward to implement and easier to grasp
while achieving the same result. The key differences are that it does not involve flipping the
kernel and it changes the indexing approach for the image [23].



22 Chapter 2. Background

Figure 2.6: Illustration of max pooling and average pooling with their respective results [60].

2.4.2 Pooling Layer

One of the reasons that CNN is computationally efficient for computer vision tasks is due to
the use of the pooling layers. These layers reduce spatial dimensions of feature maps, which
in turn lowers computational costs while helping prevent overfitting by decreasing the number
of model parameters. On top of that, networks are more robust against minor changes in input
images by only focusing on the patterns. There are two commonly used pooling types: max
pooling and average pooling. Max pooling selects the maximum value from the receptive field,
keeping only the most prominent feature. In contrast, average pooling calculates the mean
value within the window, maintaining a generalized representation of features. These two
categories are shown in Figure 2.6. Stride is a user-defined hyperparameter that determines the
movement step size of the pooling layer across the input image.

Building on the architectural fundamentals of CNNs, we go over the data flow within a
CNN as depicted in Fig. 2.7. By understanding this pathway, we can appreciate how CNNs
can capture and interpret the complex patterns found in visual data for tasks such as image
recognition and classification. Initially, as each data point is passed to the network, convolu-
tional layers apply filters to the input image to detect features (e.g., edges, textures). These
filters are initially randomly initialized and then gradually adjusted during the training process
to capture more complex and relevant patterns within the data. A pooling layer follows each
convolutional layer, and the feature maps are passed through the pooling layers, reducing the
spatial dimensions of the feature maps.

As the data progresses, it may go through additional convolutional and pooling layers,
each time abstracting higher-level features. Eventually, the processed data (feature maps) are
flattened and reach the fully connected layers. The fully connected layers, using these high-
level features, predict an output. Afterward, the training process is similar to the training of
MLPs, where the loss is calculated, and the weights are adjusted according to gradients using



2.4. Convolutional Neural Networks 23

Figure 2.7: Illustration of data fellow through various layers—convolutional, pooling, and fully
connected—to produce final results in CNNs [26].

an optimizer. This process is repeated for each batch of data until the loss is minimized. Now,
this trained model could be used for different tasks; it will work seamlessly to predict new
outputs because it has learned patterns in the data. However, there are some implementation
details related to network generalization that we will discuss in the next section.

2.4.3 Dropout
Dropout is a regularization technique used to prevent overfitting in neural networks, particu-
larly beneficial for large networks or training sessions that extend over long periods. These
conditions typically increase the risk of the model fitting too closely to the training data, thus
failing to generalize well to unseen data. By randomly omitting a subset of neurons along
with their connections in every training iteration, dropout introduces variability in the network
architecture. This variability forces the network to learn more robust features that are not
dependent on a specific set of neurons, essentially simulating a form of model averaging or
ensemble learning. Ensemble methods are known for their superior performance over single
models, as they capture a broader range of data patterns by combining the predictions from
multiple models. Similarly, dropout enhances model performance by emulating the training of
numerous neural networks with different architectures.

The core principle behind dropout, as depicted in Fig. 2.8, involves randomly setting a
portion of activations in the network to zero during the training phase. Typically, 50% of ac-
tivations in a layer are dropped, though this rate is adjustable based on the specific needs of
the network and is considered a hyperparameter of the dropout function. This process of se-
lective activation nullification compels the network to distribute its learning over a wider range
of neurons, thereby reducing the model’s reliance on any individual neuron. It’s akin to train-
ing the network to achieve redundancy and ensure that informative signals are captured by
multiple pathways within the network architecture. Despite its effectiveness in enhancing gen-
eralization, one notable downside of using dropout is the substantial increase in training time.
The introduction of randomness through dropout means that each iteration trains a somewhat
different network configuration, leading to noisier updates and, consequently, a longer conver-
gence time. This is because the network effectively explores a larger architecture space during
training.



24 Chapter 2. Background

Figure 2.8: Illustration from the original Dropout publication [54] showcasing the concept.
In the training phase, Dropout is akin to randomly selecting a subset of the network from the
broader network architecture, updating only this subset’s parameters in response to the input
data. In the testing phase, Dropout is not utilized, embodying the process as an ensemble
average prediction over the extensive collective of possible sub-networks.

To accommodate the changes introduced by dropout during training, adjustments are made
during the test and inference phases to maintain consistency in the network’s behavior. One
approach is to scale the activations by their retention probability, ensuring that the expected
sum of activations remains the same as it would without dropout. This method, known as
“inverted dropout,” scales activations during training, which simplifies the transition to test
time by eliminating the need for additional scaling. At test time, instead of randomly omitting
neurons, the activations are adjusted to reflect the average outcome of the dropout process.
If the dropout probability is set to 0.5, for example, the activations are multiplied by 0.5 to
compensate for the halved number of active neurons on average during training.

2.4.4 Batch Normalization
Normalization is a technique for speeding up and stabilizing the training of deep neural net-
works. It is considered a best practice to always employ normalization when training deep
neural networks due to its numerous benefits. By normalizing each feature to have zero mean
and unit variance, all features contribute equally to the training process. This is crucial because
some features may have higher numerical values than others, leading to a biased network that
favours features with larger values. Normalization, applied after the activation function step,
addresses this issue by maintaining an unbiased environment for all features.

Another key advantage of normalization is its ability to reduce Internal Covariate Shift. In-
ternal Covariate Shift refers to the change in the distribution of network activations that occurs
as the network parameters are updated during training. By mitigating this shift, normalization
significantly improves the training process. Additionally, techniques like Batch Normalization
smooth out the loss surface, tightly bounding the magnitude of gradients and thereby enhancing
the stability of the training process.

The impact of normalization extends to the efficiency of the training as well. It considerably



2.4. Convolutional Neural Networks 25

decreases training time by facilitating faster optimization. This is achieved because normaliza-
tion prevents the weights from becoming too large or exploding, keeping them within a specific
range. Furthermore, although not its primary intention, normalization slightly contributes to
the regularization of the network, providing a modest boost in preventing overfitting. Overall,
the implementation of normalization in deep neural network training offers a combination of
improved speed, stability, and performance, making it an indispensable technique in the field
of deep learning.

Batch normalization is a technique to normalize activations across a mini-batch, stabilizing
and expediting the learning process in neural networks. During training, it computes the mean
and variance for each feature, adjusting the features to have zero mean and unit variance. The
normalization step is integrated into the backpropagation algorithm. Learnable parameters
gamma γ and beta β are introduced to allow the model to scale and shift the normalized output
and enhance performance. The steps for applying batch normalization are as follows:

To centre the data, the mean activation across the mini-batch is computed using:

µB =
1
m

m∑
i=1

xi. (2.21)

The variance of the activations is calculated to understand the spread of the data as follows:

σ2
B =

1
m

m∑
i=1

(
xi − µB

)2 . (2.22)

Each feature is normalized to have zero mean and unit variance. The normalized feature is
computed using:

x̂i =
xi − µB√
σ2

B + ϵ
. (2.23)

Finally, to allow the network to learn an identity transformation if it is beneficial, two
learnable parameters, γ (scale) and β (shift), are used to scale and shift the normalized feature,
using the equation:

yi = γx̂i + β. (2.24)

In these formulas:

• xi is the input value for feature i in the mini-batch

• m is the number of examples in the mini-batch

• µB is the mini-batch mean

• σ2
B is the mini-batch variance

• x̂i is the normalized input



26 Chapter 2. Background

Figure 2.9: Illustration of a residual block from the original paper [25].

• yi is the final output of the batch normalization layer

• γ and β are parameters learned during training that scale and shift the normalized value

• ϵ is a small constant for numerical stability.

During test time, the model utilizes global statistics rather than mini-batch-specific values
to maintain consistency in predictions. The approach faces challenges with variable batch
sizes, where a batch size of one leads to a variance of zero, thereby affecting normalization.
Similarly, in distributed training, inconsistent batch sizes across different machines can result
in varying γ and β values, compromising model performance.

In Recurrent Neural Networks (RNNs), the dynamic nature of recurrent activations requires
potentially fitting a separate batch normalization layer for each time-step, which complicates
the model and increases memory demands. This is due to each time-step’s recurrent activations
having distinct statistics, necessitating storage of these statistics throughout training.

Alternatives to batch normalization such as weight normalization, layer normalization, in-
stance normalization, and group normalization, address some of these challenges, offering ben-
efits in terms of training stability and performance across varying architectures and contexts.

2.5 Residual Neural Network
Residual Networks, or ResNets, represent a significant advancement in the design of deep
neural networks. Introduced by He et al. in their 2016 paper [25], ResNets effectively address
the challenges associated with training very deep networks. The key feature of ResNet is the
introduction of ‘skip connections’ that allow inputs to skip over some layers and be added
directly to the outputs of deeper layers. This is illustrated in Fig. 2.9, which shows a residual
block.

A residual block employs the function F (x) + x, where x is the input and F (x) represents
the changes the network needs to learn, known as residual mapping. Adding x directly into



2.6. Vision Transformer (ViT) 27

the output using a skip connection is the key idea. This method preserves the input throughout
the network’s layers without changing it. The network then can focus on learning only the
necessary adjustments, rather than reconstructing the input from scratch. One major benefit of
the F (x) + x setup is the enhancement of gradient flow. Skip connections help to directly pass
gradients through several layers, mitigating the issue of vanishing gradients in deep networks.
This strategy not only aids in stabilizing and speeding up the convergence during training but
also improves the model’s ability to generalize to new data. Furthermore, it allows the deeper
layers to utilize features processed by earlier layers without the risk of feature degradation.

The original implementation of ResNets by He et al. introduced several variants, each with
a different number of layers, to accommodate various depths needed for different tasks. The
most common variants include ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-
152. The numbers denote the layers in each model, with ResNet-18 being the shallowest and
ResNet-152 being the deepest.

These different variants have their layers organized into blocks, each containing multiple
convolutional layers. The simpler models like ResNet-18 use basic blocks made up of two
layers each. In contrast, larger models like ResNet-50 employ bottleneck blocks designed to
enhance efficiency. These bottleneck blocks work by first compressing the input’s dimensions
through a 1 × 1 convolution, then performing deeper processing with a 3 × 3 convolution, and
finally expanding the dimensions back to their original size with another 1 × 1 convolution.
This structure helps to reduce the computational load while preserving the depth and capability
of the network.

2.6 Vision Transformer (ViT)
Vision Transformers (ViTs) mark a significant development in the field of image processing,
bringing the power of transformer architectures to computer vision. The introduction of ViTs
was a groundbreaking moment, showcasing that the reliance on convolutional neural networks
(CNNs) is not strictly necessary for achieving state-of-the-art results in image classification
tasks.

Transformers, primarily known for their success in natural language processing, are based
on self-attention mechanisms. These mechanisms allow models to weigh different parts of the
input data differently, focusing on what is important. Vision Transformers apply this concept
to image classification by dividing images into a sequence of patches, treating each patch as a
‘word.’ A critical element of ViTs is the addition of a [CLS] token that serves as the represen-
tation of an entire image, useful for classification tasks. Alongside, positional embeddings are
added to maintain the spatial relationship between patches.

The ViT architecture consists of a sequence of transformer blocks that include multi-head
self-attention and feed-forward neural networks. It differs from CNNs by not using convolution
operations and pooling layers but rather relies on self-attention to capture global dependencies
within an image. This mechanism allows ViTs to dynamically prioritize different parts of
the image across different layers, adapting to the complexity of the image data without the
constraints of CNNs’ local receptive fields.

To elaborate on this, the ViT architecture, as depicted in Fig. 2.10, starts with the trans-
formation of an input image into a sequence of fixed-size patches. These patches are then



28 Chapter 2. Background

Figure 2.10: ViT architecture. Taken from [18].

linearly projected, akin to word embeddings in language models, and processed in a series of
transformer blocks, each composed of multi-head self-attention and feed-forward neural net-
work modules. The architecture abstains from utilizing traditional convolution operations and
pooling layers, distinctive of CNNs, and instead employs self-attention mechanisms to ascer-
tain global dependencies across the image. This paradigm enables ViTs to adaptively focus
on various parts of the image within different layers of the architecture, adjusting to the image
data’s intricacies. It incorporates learned positional embeddings to retain spatial information,
a step that is crucial due to the lack of inherent sequential data processing in the transformer
model. Furthermore, the addition of a [CLS] token at the beginning of the sequence provides
a global image representation after propagating through the transformer encoder, subsequently
feeding into an MLP Head for the final classification output. The structural design of ViTs,
leveraging the self-attention mechanism, allows for a dynamic prioritization of salient image
features across multiple layers, thus offering an adaptable and scalable approach to image anal-
ysis without the limitations of CNNs’ localized receptive fields.

One notable strength of ViTs is their scalability. Pre-trained on large datasets, ViTs can be
transferred to various image recognition tasks with less computational resources than CNNs
would typically require. This has been demonstrated on multiple benchmarks where ViTs
attained excellent results, making them a highly efficient alternative to conventional CNNs.

Following the initial introduction of ViTs, further improvements have been proposed in the
literature. Models such as Data-efficient Image Transformers (DeiT) show that transformers
can also be made more data-efficient through techniques like distillation. BERT pre-training
of Image Transformers (BEiT) demonstrates the power of self-supervised pre-training in im-
proving ViT performance without reliance on labeled data. Moreover, models trained with
self-supervised methods like DINO and MAE exhibit intriguing properties like object segmen-
tation capability without explicit training for the task.

The diverse applications of ViTs include image classification, object detection, semantic



2.6. Vision Transformer (ViT) 29

segmentation, and image generation, extending to more complex scenarios such as video deep-
fake detection, anomaly detection, and even autonomous driving systems. For instance, in
autonomous driving, dense prediction capabilities of ViTs are essential for tasks like depth
estimation and understanding scene dynamics, which are crucial for safe navigation.

However, ViTs come with their own set of challenges. They generally require large amounts
of data for training, which might not always be available. Moreover, their self-attention mech-
anisms can lead to high computational demands, especially for longer sequences of patches.
Despite these challenges, the ViT model represents a significant milestone in the AI commu-
nity’s endeavor to develop models that can efficiently and effectively process and understand
visual data.



Chapter 3

Related Work

In the field of FRB research, the majority of ML applications have primarily focused on clas-
sification problems. These fall into two main groups: distinguishing between RFI (Radio Fre-
quency Interference) and genuine FRB signals, and differentiating between repeating and non-
repeating FRBs. Since around 2016, interest in applying ML for FRB analysis has increased,
but the development of more complex models has been restricted by the limited data available.
To address this issue, it is common practice to generate synthetic data through various simula-
tion methods, providing a practical solution to expand the training dataset. Despite this, some
studies have successfully used ML algorithms, like Random Forest, with the relatively small
number of observed FRB events. This section explores the research at the intersection of FRB
studies and ML, reviewing key contributions and highlighting the approaches used in the field.

Wagstaff et al. [58] focuses on using a ML classifier, specifically Random Forests, to en-
hance the detection of FRBs within the VLBA’s V-FASTR project [59]. The classifier aims to
identify potential FRBs by categorizing events as known pulsar pulses, RFI artifacts, or possi-
bly new discoveries. They set a 90% confidence threshold to ensure greater reliability in their
classifications. It successfully filtered out 80%–90% of events, drastically cutting down the
number of events that needed manual analysis. This made the process faster and improved how
accurately real FRB events were spotted, highlighting how useful ML can be in astronomy.

The work by Foster et al. [19] expands on similar methodologies to Wagstaff et al., us-
ing random forest classifiers for differentiating FRBs from RFI. Their approach involved a
detailed analysis of around 15,000 events, resulting in a training set for their model, which
utilized about 400 features extracted from the events’ characteristics, such as signal statistics
from the dynamic spectrum (i.e., waterfalls) and time series. This enriched dataset and the
applied features allowed for effective screening of data, significantly improving the efficiency
in identifying genuine FRB candidates.

Liam Connor and Joeri van Leeuwen tackled the challenge of classifying FRBs using deep
neural networks [14]. They designed a CNN that takes multiple types of input data such as
dynamic spectra, pulse profiles, and DM-time data. The method mainly uses simulated FRBs
added to actual survey data for training the network, covering a wide range of potential FRB
characteristics. The researchers prepared two main datasets for training: one derived from
CHIME Pathfinder observations [3] and another from Apertif data. Their results underscore
the high efficiency of this multi-input CNN model in classifying FRB candidates, demonstrat-
ing the feasibility of using GPUs for real-time automated classification. Although initially

30



31

Figure 3.1: Illustration of the dual-path network architecture by Agarwal et al. employing
both frequency-time and DM-time images as inputs. Key features include convolutional lay-
ers (marked in yellow) with specified output sizes, ReLU activation functions (highlighted by
brown edges), and pooling layers (in orange). The architecture also integrates dense layers (in
violet) and a fusion technique represented by the green circle, where the outputs of two dense
layers are merged element-wise. This is followed by additional trainable layers (indicated by
unlock symbols), with the initial frozen layers (lock symbols), emphasizing the layers’ training
status [2].

exploring the possibility of replacing traditional dedispersion methods with CNN classifiers,
they noted the challenge of low signal-to-noise ratios per pixel, which might limit the effec-
tiveness of such a substitution in current setups. However, they also highlighted the potential
for future improvements as telescope technologies evolve.

In the study conducted by Agarwal et al. [2], the authors applied an innovative approach
using CNNs and transfer learning to enhance the detection of FRBs. They used pre-trained
CNN architectures like VGG16 [51], ResNet50 [25], and Xception [12], fine-tuning these on
a dataset including simulated FRBs, real RFI instances from the Green Bank Observatory, and
actual pulsar data. This process involved training two models: one using frequency-time rep-
resentations to learn specto-temporal patterns of FRBs, and another using DM-time images to
highlight their dispersion. The training strategy was characterized by its use of transfer learn-
ing, where the convolutional base of each model was initially frozen to prevent weights from
updating, allowing only the top layers to update their weights for the new task. A key advance-
ment in their approach was the “multiplicative fusion” technique, which merged features from
both frequency-time and DM-time trained models (see Fig. 3.1). By multiplying the top layer
outputs of these models element-wise, they combined extracted features of FRBs’ spectro-
temporal and dispersion data into a more comprehensive feature set. This step was followed
by training a new set of layers for the final classification task, utilizing the combined features
to more accurately identify FRBs from other types of signals. The efficacy of this approach
was evident in the models’ performance, which boasted accuracy and recall rates exceeding



32 Chapter 3. RelatedWork

Table 3.1: Average F2 scores and standard deviations of supervised models trained for classi-
fying FRBs as repeaters and non-repeaters [34].

Model F2 Mean F2 SD

Decision tree (all features) 0.7351 0.0632
Decision tree (TB and ν) 0.7369 0.0499
Random forest 0.7821 0.0643
AdaBoost 0.7666 0.0617
LightGBM 0.7832 0.0647
XGBoost 0.7843 0.0631
SVM 0.8180 0.0483
Nearest centroid 0.7147 0.0614

99.5% on a test dataset that included real FRB events alongside RFI and noise. The models
demonstrated their robustness and generalization capability by maintaining high performance
across data from various telescopes and observational setups, underscoring the potential of ML
in revolutionizing FRB detection.

The research “Machine learning classification of CHIME fast radio bursts – I. Supervised
methods” by Lue et al. [34], employs supervised ML algorithms to analyze data from the
CHIME/FRB catalogue [3], featuring 536 Fast Radio Bursts. To prepare these data, six FRBs
with zero values for fluence were excluded, and each sub-burst was treated as an independent
event, resulting in a total of 594 individual bursts. The algorithms, including Decision Trees,
Random Forests, AdaBoost, LightGBM, XGBoost, SVM, and the Nearest Centroid Method,
were trained to classify data into two groups of repeating and non-repeating events using fea-
tures like fluence, peak frequency, and derived metrics such as brightness temperature and burst
energy. The research further identified numerous FRBs initially categorized as non-repeaters,
which the models flagged as potential repeaters. The results for each model, trained 1,000
times to ensure robustness, are summarized in Table 3.1, showing the mean and standard de-
viation of the F2 score across these iterations. This work underscores the power of supervised
ML in enhancing our understanding of FRB origins and classifications, paving the way for
more focused observational strategies.

Continuing their work on FRBs, Zhu, Ge et al. in their subsequent research, “Machine
learning classification of CHIME fast radio bursts – II. Unsupervised methods” [65] used two
primary categories of unsupervised ML methods: clustering and dimensionality reduction. Di-
mensionality reduction techniques, both linear and manifold-based, were used to transform the
high-dimensional FRB data into a lower-dimensional space. For dimensionality reduction, they
utilized principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-
SNE), and Uniform Manifold Approximation and Projection (UMAP). For clustering, the study
employed hierarchical density-based spatial clustering of applications with noise (HDBSCAN)
and K-means clustering to group the data points based on their similarities. The research fo-
cused on identifying as many true repeater FRBs as possible, allowing misclassifications of
non-repeaters as repeaters to ensure no actual repeaters were missed. Recall, measuring how
many actual repeaters the model accurately identifies, was considered more important than pre-



33

Table 3.2: Performance of unsupervised algorithms trained for classifying FRBs as repeaters
and non-repeaters [65].

Method TP FN FP TN Recall Precision F2
PCA + K-means 85 9 127 373 0.9042 0.4009 0.7227
t-SNE + HDBSCAN 81 13 117 383 0.8617 0.4091 0.7056
UMAP + HDBSCAN 81 13 117 383 0.8617 0.4041 0.7056

cision, which assesses the accuracy of repeater predictions. The results of their trained models
are shown in Table 3.2.

In their study, Zhang et al. [64] developed a CNN designed to analyze FRB spectrogram
data. The architecture they used addresses the challenges of FRB data, which are different
from common computer vision datasets like MNIST [16] or ImageNet [15]. The study states
that FRBs have simpler shapes than complex objects like cars or people, allowing their basic
characteristics to be detected by the early layers of the neural network. However, the network
needs to be complex enough to deal with a lot of pixel noise, as the goal is to identify very
weak signals, sometimes even weaker than the surrounding noise. To address these challenges,
they employed a residual network structure for their deep learning model. By having skip con-
nections in the architecture, the model can bypass certain layers, which helps process simple
and complex features effectively, ensuring that FRB patterns are detectable even with lots of
background noise. The model also integrates batch normalization and dropout layers, which is
essential for more stable training and avoiding overfitting.

For training this model, they utilized filterbank data from the Breakthrough Listen digital
back-end [35], covering 4 GHz to 8 GHz, to create their dataset. They segmented these data
into frames, standardized each by subtracting the mean and dividing by the standard deviation
per channel to achieve zero mean and unit variance. For training and testing, they used five
hours of observation data to generate around 400,000 images, half populated with simulated
FRB pulses and the other half with noise and RFI. Their model achieved an accuracy of 93%,
with a recall of 88% and a precision of 98% on the test set. Furthermore, They discovered 72
new pulses of FRB 121102 from the five-hour observation session.



Chapter 4

Methodology

In this section, we offer an in-depth examination of our approach to address our problem and
the specific methods we utilized to develop our solutions. This begins with the process of
data generation and continues with the introduction of two novel approaches for accurately
estimating the DM of FRBs. Additionally, we will detail the evaluation metrics employed to
measure the performance of our models.

4.1 Data
In the realm of FRB research, the data collected through telescopes serve as a crucial foun-
dation for understanding these cosmic phenomena. Although the volume of data is currently
limited due to the restricted number of known FRB sources, as shown in Table 4.1, it is steadily
growing as our observational capabilities expand. However, a significant challenge in utilizing
these data effectively is their inherently noisy nature. Noise, primarily from RFI, can mask the
subtle signals of FRBs, necessitating sophisticated RFI mitigation techniques. Despite these
efforts, complete noise elimination remains elusive, and a certain degree of background noise
persists.

Additionally, a portion of the FRB data available to researchers comes pre-processed in a
dedispersed form, which, under specific circumstances, might not be suitable for all analytical
methods. While it is technically practical to re-disperse this data for our training purposes,
the dual challenges of persistent noise and the limited dataset size prevent the development of
robust models. Given these challenges, we have decided to employ synthetic data generation
techniques for our ML models.

4.1.1 Data Generation
In this part, we go over the challenge of generating FRB data, a task complicated by numerous
influencing factors. To generate synthetic data, we have expanded upon a software package
available on GitHub1, which is distributed under the GPL-2.0 license. Our enhancements and
additional features substantially improve its functionality, aiming for simulations that closely
approximate real observations. Although our customized software now facilitates simulations

1See: https://github.com/liamconnor/single_pulse_ml

34

https://github.com/liamconnor/single_pulse_ml


4.1. Data 35

Telescope Number of Reported FRB Sources
CHIME 633
ASKAP 60
Parkes 40
UTMOST 18
GBT 15
Arecibo 14
LPA 11
VLA 4
FAST 5
GMRT 4
MeerKAT 3
SRT 3
EFFELSBERG 3
DSA 3
APERTIF 6
STOCKERT 1
TIANLAI 1
Total 813

Table 4.1: Number of Reported FRB Sources through various telescopes according to FRB-
STATS [53].

across a variety of telescopes used for the collection of FRB data, as detailed in Table 4.2,
the simulated data set used in this thesis is in the format and frequency range of the CHIME
telescope. That is, our synthetic FRBs have a bandwidth of 400 MHz centered at 600 MHz.

To begin with, we initialize several variables randomly, such as the DM, scattering timescale,
and fluence, according to probability distributions to emulate the randomness observed in real
FRB data. This approach ensures that our synthetic data closely mirrors the diverse character-
istics of actual observations. To further align our synthetic FRB data with the observational
capabilities of various telescopes, we calculate the operational time resolution and the maxi-
mum DM that can be represented within the constraints of our simulations. The operational
time resolution of the telescope, tsamp (in ms), is computed as follows:

tsamp (ms) =
[

1.5
νref (GHz)

] (
νmax − νmin

νref

)
(4.1)

indicating the resolution at which the telescope operates, and where νmin, νmax and νref are, re-
spectively, minimum, maximum, and centre frequencies of the telescope’s receiver bandwidth
(in GHz for this equation; see Table 4.2). On the other hand, the maximum DM, DMmax, that
our synthetic data can accommodate, utilizing Ntime time bins, is determined by the equation:

DMmax = Ntime

(
tsamp

a

)  1
ν2

min

−
1
ν2

max

−1

(4.2)

with a defined in equation (2.2). This enables us to simulate FRBs with dispersion measures up
to DMmax, determined by the use of Ntime time bins. This choice establishes a balance between



36 Chapter 4. Methodology

Telescope νmin (MHz) νmax (MHz) νref (MHz)
CHIME 400 800 600
Arecibo (ALFA) 1225 1525 1375
Arecibo (L-Wide) 1150 1730 1440
GMRT (Band 3) 550 850 700
Effelsberg 1200 1740 1470
GBT (Prime) 290 396 343
GBT (L-Band) 1150 1730 1440
GBT (S-Band) 1730 2600 2165
GBT (C-Band) 3950 7800 5075
GBT (X-Band) 7800 11600 9700
FAST 1050 1450 1250
LOFAR 110 240 175

Table 4.2: Telescope spectral information for data generation with νmin, νmax and νref are, re-
spectively, minimum, maximum, and centre frequencies of the telescope’s receiver bandwidth.
Our synthetic data are generated in the CHIME format.

capturing detailed features and maintaining computational efficiency in our synthetic dataset.
For our simulated CHIME-like dataset we have tsamp = 1.67 ms, from equation (4.1), and
0 ≤ DM ≤ 87 cm−3 pc, from equation (4.2) using 512 × 1024 data arrays (i.e., Nfreq × Ntime).

Following this initialization, we focus on the generation of a background noise array that
has the same dimensions of the signal, represented by Nfreq, for the number of frequency bins,
and Ntime (see Fig. 4.1). This foundational step is pivotal for simulating a realistic observational
background, which is later combined with the signal to simulate a more realistic burst. The
noise matrix is populated with values drawn from a Gaussian distribution characterized by a
mean of zero and a standard deviation of one. Concurrently, we create a list of frequencies that
starts at vmin and ends at vmax, with Nfreq evenly spaced frequencies in between to simulate the
signal across the frequency range we are studying.

The next phase of the simulation involves the calculation of the pulse’s effective width,
which helps us understand how much the signal spreads out and gets wider. Initially, the
scattering timescale is set to zero, but in later steps we incorporate scattering dynamics. For
determining the effective width, dispersion smearing is computed as follows:

∆tDM (ms) = 2a DM

∆νν3
ref

 , (4.3)

where ∆ν is the frequency resolution. This expression is a derivative of the general disper-
sion relation (see equation 2.1) that quantifies the temporal delay induced by signal dispersion
within the interstellar medium. Also, it should be mentioned that the DM is chosen from a
uniform distribution within the specified range. The effective width of the pulse, however,
encompasses more than just dispersion smearing; it also includes the intrinsic width of the
signal which is drawn from a Gaussian distribution and the resolution of the observing instru-
ment. Having all these values, the effective width is calculated using equation (2.6). We next
determine when the signal arrives at the current frequency channel compared to the reference



4.1. Data 37

Figure 4.1: Illustration of randomly generated background noise .

frequency νref , i.e., at the centre of the bandwidth, using equation (2.1) while also incorporating
the further delay caused by the sub-burst slope law given in equation (2.7). We then have for
the arrival time (in ms) at frequency ν

tarrival (ν) = a DM

 1
ν2 −

1
ν2

ref

 − tw

(
ν − νmax

A νref

)
, (4.4)

where we set A = 0.1 for our simulations. By dividing both the arrival time and the pulse’s
effective width by the time resolution, we can pinpoint exactly when and for how long the burst
appears in this channel.

Moving to the next step in the simulation process, after determining the arrival time index
denoted as tarrival index and the effective width index as tw index for the pulse based on the time
resolution, we focus on the creation of the pulse profile. The Gaussian profile serves as the
basic shape for our pulse due to its prevalent use in modeling various physical phenomena,
including signal shapes in astrophysical simulations. We thus use:

g (t) = exp

− (t − tarrival index)2

2 t2
w index

 , (4.5)

for the temporal shape of the pulse. In this formula, tarrival index is when the pulse reaches its
peak, and tw index determines the spread of the pulse; a larger tw index results in a broader and
flatter pulse.

Building on the previously discussed scattering and propagation effects (see Sec. 2.1), the
simulation progresses to integrate these effects into the signal’s overall profile. For the scatter-
ing effect, the timescale τs is a function of the signal’s frequency, as outlined in equation (2.4)



38 Chapter 4. Methodology

Figure 4.2: Illustration of the convolution process between a Gaussian profile and a scattering
profile. Please note the different scale of the time axis for the last plot.

(setting n = 4 in it), where τ0 is drawn from a log-uniform distribution. The frequency depen-
dency implies that lower frequencies experience a more pronounced scattering. The scattering
kernel is modeled through an exponential decay:

h (t) =
1
τs

exp
(
−

t
τs

)
(4.6)

with the time t extends from 0 to Ntime/2. The integral of h (t) over this interval is then normal-
ized to unity, since the effect of scattering is the result of the convolution of h (t) with g (t). This
ensures a uniform treatment of scattering effects across the simulated signal bandwidth. The
convolution process mathematically combines the two profiles to produce a composite signal
that embodies both the natural shape of the astrophysical source and the effects of scattering,
as shown in Fig. 4.2.

Another effect we need to take into account is scintillation. Incorporating scintillation into
the simulation of FRB signals involves creating an amplitude modulation across the frequency
band to reflect the natural fluctuations caused by the interstellar medium. The mathematical
formulation in equation (2.5) is used for the scintillation envelope in the simulation process.
The parameter Nscint sets the scale or intensity of the scintillation effect. To capture the wide
range of scintillation scales observed in nature, Nscint is generated through a log-uniform distri-
bution between 0.001 and 7. This approach ensures the simulation spans a broad spectrum of
scintillation intensities, from very subtle to significantly pronounced, favoring milder effects
to reflect their more frequent occurrence in natural scintillation patterns. In equation (2.5) ν
represents the frequencies at which the FRB signal is being simulated, and νref is the reference
frequency used to normalize the frequency dependence of the scintillation effect. A random
phase ϕscint is introduced to ensure variability in the scintillation pattern across different simu-
lations, enhancing the realism of the modeled effect.

The formula employs a cosine function to model the amplitude fluctuations caused by scin-
tillation. The frequency functionality (νref/ν)2 implies that the scintillation effect decreases
with increasing frequency, aligning with observational data that suggest scintillation is more
pronounced at lower frequencies. The choice of a cosine function, along with the specific for-
mulation for the frequency dependence and the inclusion of a random phase, allows for the



4.1. Data 39

Figure 4.3: Illustration of the effect of scintillation applied to a signal.

simulation of complex, naturally occurring scintillation patterns in a computationally efficient
manner. The Nscint value, chosen from a log-uniform distribution, controls the strength of the
twinkling effect is – higher values make the signal vary more dramatically across different
frequencies, while the method of selection ensures a bias towards more commonly observed,
milder scintillation effects. This mathematical model captures the essence of scintillation, al-
lowing for the realistic portrayal of its impact on simulated FRB signals (see Fig. 4.3).

As the last steps in our simulation process, we perform several adjustments and refine the
pulse profiles further, ensuring they accurately represent the complex nature of FRB signals
as detected by radio telescopes. We normalize the pulse profile against its maximum ampli-
tude and the standard deviation of the noise data, aligning the signal strength with ambient
noise levels and maintaining realistic signal-to-noise ratios. This normalization is crucial for
ensuring the pulse does not overwhelmingly dominate the background noise, similar to real ob-
servational data. Next, we scale the normalized profile by the fluence of the pulse, representing
the total energy distributed across the frequency band. The fluence is picked randomly from a
uniform distribution. This step adjusts the overall intensity of the signal, reflecting the different
energy levels.

Finally, we incorporate adjustments for frequency-dependent amplitude variations using
a spectral index which is also chosen from a uniform distribution. This step simulates how
the pulse’s strength varies across different frequencies with respect to a reference frequency,
capturing the frequency-dependent behavior of FRB signals. These adjustments based on fre-
quency are crucial for accurately simulating how the pulse’s strength changes because of its
spectral characteristics and the properties of the space it travels through. Once all the steps are
completed, the pulse profiles are merged with the background noise to create synthetic FRB
data ready for our project as shown in Fig. 4.4.



40 Chapter 4. Methodology

Figure 4.4: An illustration of the generated data from the described process is shown here, with
the noise level intentionally amplified for clearer visualization.

4.2 Model Training
In this section, we outline the development of two new approaches for estimating DM values.
Model training was conducted on the Narval cluster available through the Digital Research
Alliance of Canada, equipped with an A100 GPU, 128 GB of RAM, and an AMD Milan 7413
CPU. We used a 3070Ti GPU, 32 GB RAM, and an Intel 12700k CPU for the analyses after
training.

4.2.1 Baseline CNN Model
The baseline model is designed as a CNN featuring a series of convolutional layers followed
by fully connected layers. At the core of the architecture are seven convolutional layers, each
equipped with batch normalization to stabilize learning and improve convergence times. Ad-
ditionally, the ReLU activation function is applied after each convolutional layer, introducing
non-linearity and allowing the model to learn complex patterns more effectively. The convo-
lutional layers progressively increase in depth, starting from 32 filters in the first layer and
doubling in number through successive layers, culminating in 2048 filters in the final convolu-
tional layer. This design allows the model to capture a wide range of features from the input
data, from simple patterns in the early layers to more complex structures in the deeper layers.

Between each convolutional layer, except for the 3rd and 6th, max pooling operations are
applied to reduce the spatial dimensions of the feature maps. This decreases the computational
load and enhances the model’s ability to generalize. After the convolutional layers, the model
employs fully connected layers. These layers integrate the high-level features identified by the
convolutional layers to produce an output. This output quantifies the estimated DM. The se-
quence of fully connected layers begins with 16,384 neurons in the first layer and progressively
halves in size.

During the hyper-parameter tuning process, we experimented with various network archi-
tectures, starting with a baseline configuration of four convolutional layers and three fully
connected layers, each comprising 512 nodes. Our objective was to optimize the architecture
to achieve the best possible performance without overfitting the data. To further refine our
model, we incorporated batch normalization layers, which significantly sped up the training
process—achieving comparable results in just 40 epochs as opposed to the initial 60 epochs
required without these layers.



4.2. Model Training 41

Layer (Type) Configuration
Conv2D-1 + BN-1 + ReLU 1 input, 32 outputs, kernel=3x3, stride=1, padding=1
MaxPool2d-1 kernel size=2, stride=2
Conv2D-2 + BN-2 + ReLU 32 inputs, 64 outputs, kernel=3x3, stride=1, padding=1
MaxPool2d-2 kernel size=2, stride=2
Conv2D-3 + BN-3 + ReLU 64 inputs, 128 outputs, kernel=3x3, stride=1, padding=1
Conv2D-4 + BN-4 + ReLU 128 inputs, 256 outputs, kernel=3x3, stride=1, padding=1
MaxPool2d-3 kernel size=2, stride=2
Conv2D-5 + BN-5 + ReLU 256 inputs, 512 outputs, kernel=3x3, stride=1, padding=1
MaxPool2d-4 kernel size=2, stride=2
Conv2D-6 + BN-6 + ReLU 512 inputs, 1024 outputs, kernel=3x3, stride=1, padding=1
Conv2D-7 + BN-7 + ReLU 1024 inputs, 2048 outputs, kernel=3x3, stride=1, padding=1
MaxPool2d-5 kernel size=2, stride=2
Flatten 7 x 7 x 2048 = 100,352
FC-1 100,352 inputs, 16384 outputs
FC-2 16384 inputs, 8192 outputs
FC-3 8192 inputs, 4096 outputs
FC-4 4096 inputs, 2048 outputs
FC-5 2048 inputs, 1 output

Table 4.3: Architecture of Baseline CNN Model.

The role of dropout layers in our experiments presented a trade-off between model gen-
eralization and the accuracy of DM estimations. Initially, we tested dropout probabilities of
0, 0.05, 0.1, and 0.2 to assess their impact on the model’s learning capability and generaliza-
tion. Although higher dropout rates improved generalization, they also reduced the model’s
ability to learn intricate patterns effectively, as evidenced by a decrease in estimation accu-
racy. Additionally, in our data, each pixel value does not carry meaning by itself, and there
exists a significant spatial dependency between pixels [64]. This inherent characteristic of our
data further discouraged the use of dropout, as removing pixels randomly could disrupt these
critical spatial relationships, undermining the learning process. Given these observations, we
decided against employing dropout layers within the fully connected segments of our archi-
tecture. This decision was informed by the analysis of model performance across the various
dropout configurations and the specific nature of our input data.

Furthermore, When loading each pulse profile for training, we generate a noise matrix
matching the dimensions of the pulse profile. Elements of this matrix are randomly drawn from
a uniform distribution between 0 and 1. Incorporating this noise directly into the pulse profiles
helps our model become more robust to noise and aids in mitigating overfitting, enhancing the
model’s generalization capability. This technique ensures that even though the underlying pulse
profile remains the same across epochs, the noise overlay is different each time. Afterward, we
normalize the data and scale the images to a range of 0–255.

Finally, we focused on minimizing the Mean Absolute Error (MAE) loss function, where
accurate numeric prediction is the goal of training. To minimize this loss function, we utilized
the Adam optimizer because of its efficiency in handling large datasets and complex architec-



42 Chapter 4. Methodology

tures. The combination of MAE loss and Adam optimizer allowed us to iteratively adjust our
model parameters to reduce prediction errors, aiming to achieve the lowest possible cost across
our training dataset. In this process, we conducted experiments to identify the optimal learning
rate from a range of values, including 0.01, 0.001, 0.0001, 0.00001, 0.000001, and 0.0000001.
Our findings revealed that the smallest learning rate of 0.0000001 yielded the best results. This
is because larger learning rates tended to cause the model to diverge from finding the opti-
mal solution. The smaller learning rate enabled more gradual and precise adjustments to the
model’s parameters, having a smoother convergence to the optimal solution and significantly
improving the accuracy of our estimations.

4.2.2 DM Estimation utilizing Transfer Learning

Transfer Learning has proven to be a powerful method in ML tasks, especially when there are
limitations such as insufficient data for training models from scratch, or constraints on time and
computational resources. This approach allows a pre-trained model to be adapted for a more
specific, related task. This adaptation generally involves fine-tuning the model’s deeper layers
responsible for capturing more specific features while retaining and utilizing the early layers
that extract general features. By fine-tuning pre-trained models, researchers and practitioners
can achieve better results with fewer data, lower computational resources, and a shorter amount
of time.

This is particularly effective with CNNs because they are designed to recognize basic fea-
tures like edges in their early layers and gradually identify more complex patterns such as
textures in deeper layers [61]. Considering that FRBs have relatively simple shapes, these ba-
sic and intermediate learned features by large pre-trained models could be significantly useful
for our estimation task. These facts, coupled with the success of residual networks in classi-
fying FRBs as discussed in related works, led us to select ResNet50 for our task. Originally
trained on the ImageNet dataset to classify images into 1,000 categories, ResNet50 has learned
to recognize a broad range of basic image features [25]. By fine-tuning ResNet50 for DM
estimation, we leverage its capability to detect essential features relevant to our specific task.

Furthermore, the emergence of transformer models and self-attention mechanisms has shown
promising results across various domains, including Natural Language Processing (NLP) and
Computer Vision tasks. Their ability to capture long-range dependencies and complex pat-
terns makes them an interesting choice for FRB analysis. Thus, we also decided to explore
the potential of ViT for DM estimation. By fine-tuning ViT, which has been pre-trained on
the ImageNet dataset also, we aim to understand the advantages and potential limitations of
applying transformer architectures to the domain of FRBs.

Both models were fine-tuned with the same dataset as the baseline model with a different
preprocessing approach. The preprocessing of spectrogram data involves several steps, making
the data ready for training with ResNet50 and ViT. After reading the data from generated files,
we introduce a new noise matrix to the data in each iteration or epoch to increase the robustness
of our models. This training phase approach helps the model identify signals even with varying
levels and patterns of noise. After adding noise, we scale the data values between 0 and 1 using



4.2. Model Training 43

Figure 4.5: An illustration of Resnet50 architecture [10].

min-max normalization through

Xscaled =
X − Xmin

Xmax − Xmin
. (4.7)

This step ensures that all data points are within a consistent range, essential for the neural
network to process them effectively. The data are then converted to a 0–255 scale, making them
compatible with additional image processing libraries. Depending on the model we are fine-
tuning, the images are resized to match the input requirements: 224 × 224 pixels for ResNet50
and 384 × 384 pixels for ViT. Since both models were originally designed for three-channel
(RGB) input, we replicate the grayscale image across three channels. Finally, the images are
normalized using specific mean and standard deviation values ([0.485, 0.456, 0.406] for the
mean and [0.229, 0.224, 0.225] for the standard deviation). This normalization aligns our data
with the distribution expected by the pre-trained models.

For fine-tuning the pre-trained ResNet50 model for DM estimation, we customized it to fit
our regression task rather than its original classification objective. Specifically, the model’s fi-
nal classification layer including 1000 neurons corresponding to different classes was replaced
with a linear layer having only one neuron to output a continuous DM value. This modification
aligns the model’s output with the requirements of our regression task. We particularly focused
on the model’s last convolution layers, identified as Layer 4 and Layer 5. In Fig. 4.5, Layer 4 is
indicated by the gray color and consists of 6 Residual Networks, each with three layers, while
Layer 5, highlighted in yellow, comprises 3 Residual Networks, also with three layers each.
This segment of the model was made trainable, enabling it to learn FRB-specific features from
our dataset. In contrast, the earlier layers, which are trained to capture basic image character-
istics such as edges and textures, were kept frozen meaning their weights were not changed
during the training process. The fine-tuning process took 40 epochs, utilizing a learning rate
of 0.0001. This chosen learning rate facilitates gradual and precise adjustments, ensuring the
model converges to optimal performance without overshooting. Through this fine-tuning pro-
cess, the ResNet50 model was effectively repurposed for DM estimation, leveraging its deep
learning capabilities to extract meaningful insights from FRB spectrogram data.

As we mentioned earlier, the second model that we fine-tuned for our task was ViT. To
align the model architecture with our regression goal we replaced its classification head with
a linear layer, enabling it to predict continuous DM values. The ViT encoder, highlighted in
gray in Fig. 2.10, has 12 layers, as shown on the right side of the figure. This encoder serves
as the core component of the model. It processes patched images to generate a feature map



44 Chapter 4. Methodology

that encapsulates the image’s characteristics. We unfroze the last 7 layers to allow the model
to adjust its weights to learn FRB-specific features, while the earlier layers remained frozen to
preserve learned generic features. The fine-tuning process is performed over 40 epochs with a
10−5 learning rate.

For both the ResNet50 and ViT models, we employed the L1 Loss function from the Py-
torch framework, also known as Mean Absolute Error (MAE), as our cost function. This choice
is motivated by the nature of our task which is a regression problem where we try to predict
the exact target value.

4.3 Model Evaluation
For evaluating the performance of our models on the test dataset, we employ two commonly
used metrics: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). These
metrics provide a comprehensive view of how well our models predict DM values compared
to actual observations. These are defined with

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2 (4.8)

MAE =
1
n

n∑
i=1

|yi − ŷi|, (4.9)

where yi is the actual DM, ŷi is the predicted DM, and n is the number of observations in the
test dataset.

RMSE is especially valuable for emphasizing larger errors in predictions due to its calcula-
tion method, which involves squaring the differences before calculating the average and taking
the square root of the result. This sensitivity to larger errors makes RMSE crucial for appli-
cations like FRB analysis where accuracy can be critical. A lower RMSE indicates that the
model’s predictions are not only close on average to the true DM values but also that extreme
deviations are uncommon. On the other hand, MAE provides a straightforward measure of
the average magnitude of errors, treating all deviations equally without giving undue weight to
larger errors. This metric quantifies the typical deviation of our model’s predictions from the
actual values, offering an intuitive understanding of prediction accuracy.

Employing both RMSE and MAE for evaluation provides a balanced understanding of our
model’s performance in estimating DM on new data. This dual metric approach ensures that
our estimations are not only precise on average but also robust, minimizing large deviations
that could affect the reliability of FRB dispersion measure predictions.



Chapter 5

Results & Discussion

In this section, we present the results of our trained models for the task of DM estimation from
two-dimensional frequency-time images of FRBs (i.e., waterfalls). Each model – ResNet50,
ViT, and a baseline CNN – was trained or fine-tuned through extensive trial and error to op-
timize performance. To ensure robustness in our findings, we report outcomes from the top
five training iterations for each model, including their average performance. We employed
RMSE and MAE as our key metrics to evaluate and compare the effectiveness of the models in
predicting DM values.

5.1 Dataset

The models were trained on a synthetic dataset consisting of 79,000 samples generated in
the manner described in Sec. 4.1.1. This dataset was split into training and validation sets,
with 30% of the data reserved for validation and the remaining 70% used for training. The
validation set was used for hyper-parameter tuning during model development. Additionally,
to evaluate the models’ performance on new, unseen data, we generated 8,000 additional data
points using the same parameters that defined the original train and validation sets. These
new data points serve as a test set to evaluate and ensure the models’ robustness in predicting
dispersion measures. Both the training and validation sets follow a similar distribution, as
illustrated in Figure 5.1. This figure displays the distribution of DM value, which is the target
value our models aim to predict. Consistent data distribution across training and validation
phases is important to ensure that the models learn to generalize well from the training data to
unseen data.

5.2 Baseline CNN Model

The performance of our baseline CNN model serves as a reference point for evaluating the
advanced capabilities of ViT and ResNet50 models. This model incorporates standard con-
volutional layers without the architectural innovations found in ResNet or ViT. To ensure a
comprehensive evaluation, we report the results of five training iterations, each accomplished
over 40 epochs.

45



46 Chapter 5. Results & Discussion

Figure 5.1: Illustration of DM distribution (i.e., 0 ≤ DM ≤ 87 cm−3 pc) for training and
validation sets.

The performance of the baseline CNN model can also be assessed through the distribution
of absolute differences between the predicted and actual DM values. For example, for Run 4
in Table 5.1, which has the lowest MAE and RMSE on the test data, the maximum observed
difference was 2.682 cm−3 pc, while the average difference was approximately 0.1815 cm−3 pc
and the standard deviation was 0.1666 cm−3 pc, suggesting a generally tight clustering around
the mean value. To visually and statistically depict these differences, we constructed a his-
togram (shown in Figure 5.2) that categorizes the differences into several bins with intervals of
0.5 cm−3 pc, starting from 0 and extending up to the maximum difference observed.

The histogram illustrates that a significant majority of the predictions (7,655 out of 8,000)
fall within a 0.5 cm−3 pc difference, underscoring the model’s accuracy. As the difference range
increases, the frequency of larger differences declines, with only 316 predictions differing by
0.5 to 1.0 cm−3 pc, and even fewer for higher intervals – 21 predictions in the 1.0 to 1.5 cm−3 pc
range, 7 in the 1.5 to 2.0 cm−3 pc range, and 1 prediction in the 2.5 to 3.0 cm−3 pc range. There
were no predictions within the 2.0 to 2.5 cm−3 pc. This distribution confirms the baseline CNN
model’s competent performance in DM estimation, as most predictions align closely with the

Table 5.1: Results of the baseline CNN Model over five runs. Shown are the MAE on the
training, validation, and test data sets, as well as the RMSE on the test data with averages over
the five runs.

Run Train MAE Validation MAE Test Loss MAE Test Loss RMSE
(cm−3 pc) (cm−3 pc) (cm−3 pc) (cm−3 pc)

1 0.1894 0.1922 0.1924 0.2562
2 0.2276 0.1747 0.2057 0.2688
3 0.2371 0.2162 0.2181 0.2971
4 0.2126 0.1860 0.1815 0.2464
5 0.2207 0.1989 0.2021 0.2837

Average 0.2174 0.1936 0.1999 0.2704



5.3. Vision Transformers 47

Figure 5.2: Histogram of absolute differences for DM predictions by the baseline CNN model.

actual data, demonstrating its effectiveness and reliability.

5.3 Vision Transformers

The performance of the ViT model specifically fine-tuned for DM estimation was evaluated
over five training runs. The primary goal was to assess the model’s ability to accurately predict
continuous DM values. The results of this evaluation are summarized in Table 5.2. Each
training run of the ViT model showcases the robustness of the fine-tuning strategy, with the
model consistently achieving a low MAE across training, validation and test datasets.

In Figure 5.3, we present two visualizations to illustrate the performance of the ViT model.

Table 5.2: Results of the ViT Model over five runs. Shown are the MAE on the training,
validation, and test data sets, as well as the RMSE on the test data with averages over the five
runs.

Run Train MAE Validation MAE Test Loss MAE Test Loss RMSE
(cm−3 pc) (cm−3 pc) (cm−3 pc) (cm−3 pc)

1 0.2036 0.2350 0.2346 0.3131
2 0.2247 0.2349 0.2365 0.3212
3 0.1966 0.2390 0.2394 0.3284
4 0.2158 0.2302 0.2315 0.3107
5 0.2299 0.2176 0.2153 0.3099

Average 0.21412 0.23134 0.23146 0.3166



48 Chapter 5. Results & Discussion

Figure 5.3: Performance visualization of the fine-tuned ViT model. Left: Histogram showing
the distribution of actual versus predicted DM values. Right: Scatter plot with a fitted line
(y = x + 0.05).

The left panel displays a histogram comparing the actual versus predicted DM values, high-
lighting the distributional alignment and frequency of predictions across predefined value bins.
This histogram serves as a robust measure of the model’s ability to capture the overall trend
and variance in the DM values. The right panel shows a scatter plot with a fitted line of best fit
(y = x + 0.05), which indicates a nearly ideal proportional relationship between the predicted
and actual values, albeit with a slight overestimation of 0.05 cm−3 pc. This positive intercept
suggests a systematic bias where the model, on average, predicts slightly higher DM values
than the actual ones.

To quantify the prediction errors, we calculated the absolute differences between predicted
and actual DM values for Run 5 in Table 5.2 and plotted these differences in Fig. 5.4. This
histogram provides insight into the error distribution, revealing the frequency of various error
magnitudes. Smaller bars at higher difference values indicate that the model generally predicts
with high accuracy, with most discrepancies being relatively minor. The majority of predic-
tions (7,383 out of 8,000) exhibit a difference of 0.0 to 0.5 cm−3 pc, indicating that the model
is highly accurate for the bulk of its predictions. As the difference increases, the frequency
of occurrences significantly drops, with 524 predictions showing differences between 0.5 to
1.0 cm−3 pc, and smaller counts as the difference further widens. Only a minimal number of
predictions (93) exhibit differences greater than 1.0 unit, with the occurrences tapering off to
nearly none as the difference approaches and exceeds 3.0 cm−3 pc. This demonstrates that the
model’s predictions are generally quite close to the actual values, with very few large errors.
The maximum observed difference is approximately 4.64 cm−3 pc, indicating the largest error
in the predictions. The average difference across all predictions stands at approximately 0.22
cm−3 pc, which signifies that, on average, the model’s predictions are closely aligned with the
actual values. Additionally, the standard deviation of the differences is about 0.22 cm−3 pc,
reflecting a moderate spread of errors around the mean.

Furthermore, It should be mentioned that we encountered significant challenges in our ex-
periments to fine-tune the ViT huge-size model. Despite the theoretical advantages offered by
this large-scale pre-trained model, practical limitations became evident during the fine-tuning
process. The extensive computational resources required resulted in each epoch consuming ap-



5.4. Resnet50 49

Figure 5.4: Histogram of residuals for DM predictions by the ViT model.

proximately six hours, making the training process prohibitively time-consuming given our re-
source constraints. Also, initially designed to perform optimally with vast and diverse datasets,
the model did not adapt well to the relatively smaller dataset specific to our task. The best
performance achieved was a MAE of 1.7 cm−3 pc on the training and 1.9 cm−3 pc on the test
sets. These results fell short of expectations considering the model’s capabilities and the com-
putational effort involved. Recognizing these limitations, we opted to switch to a smaller,
more manageable base model, which was better suited to our data’s scale and computational
resources. This transition allowed us to continue refining our approach while aligning more
closely with the practical realities of our dataset and computational framework.

5.4 Resnet50
In this section, we detail the performance of the fine-tuned ResNet50 model. As with the
ViT model, the ResNet50 model underwent a series of optimizations through trial and error
to ensure peak performance. The ResNet50 model’s adaptation for DM estimation involved
replacing its final classification layer with a linear regression layer to directly predict contin-
uous DM values. This adjustment allows the model to leverage its deep, residual learning
framework effectively for our regression problem. Over the course of five training runs, the
ResNet50 demonstrated strong performance across both the validation and test datasets. A
summary of these results is presented in Table 5.3, highlighting its robustness and precision in
DM estimation.

Figures similar to those presented for the ViT model are used to visually represent the
ResNet50’s performance. Figure 5.5 illustrates the distribution of actual versus predicted DM
values and their correlation, providing a visual assessment of the model’s accuracy and sys-
tematic biases.



50 Chapter 5. Results & Discussion

Table 5.3: Results of the Resnet50 Model over five runs. Shown are the MAE on the training,
validation, and test data sets, as well as the RMSE on the test data with averages over the five
runs.

Run Train MAE Validation MAE Test Loss MAE Test Loss RMSE
(cm−3 pc) (cm−3 pc) (cm−3 pc) (cm−3 pc)

1 0.2535 0.1822 0.1793 0.2599
2 0.1905 0.1607 0.1600 0.2088
3 0.1918 0.1767 0.1782 0.2267
4 0.2354 0.1700 0.1715 0.2348
5 0.1835 0.1769 0.1753 0.2258

Average 0.2109 0.1733 0.1728 0.2312

Figure 5.5: Performance visualization of the fine-tuned ResNet50 model. Left: Histogram
showing the distribution of actual versus predicted DM values. Right: Scatter plot illustrating
the relationship between actual and predicted values, fitted with a line (y = x + 0.01).

The performance of the fine-tuned ResNet50 model also could be quantified through the
distribution of absolute differences between predicted and actual DM values. For Run 2 in
Table 5.3, the maximum observed difference is 2.110 cm−3 pc, while the average difference
is 0.1600 cm−3 pc, with a standard deviation of 0.1341 cm−3 pc, indicating a generally tight
clustering around the mean value. To provide a visual and statistical understanding of these
differences, we constructed a histogram (shown in Figure 5.6) that categorizes the differences
into several bins with intervals of 0.5 cm−3 pc, starting from 0 up to the maximum difference.
The results show that a significant majority of the predictions (7,826 out of 8,000) fall within
a 0.5 cm−3 pc difference. As the range increases, the frequency of larger differences sharply
decreases, with only 165 predictions differing by 0.5 to 1.0 cm−3 pc, and a further decrease for
higher intervals–7 predictions in the 1.0 to 1.5 cm−3 pc range, 1 in the 1.5 to 2.0 cm−3 pc range,
and 1 prediction in the 2.0 to 2.5 cm−3 pc range. This histogram analysis demonstrates that the
fine-tuned ResNet50 model performs well in estimating DM values, with the vast majority of
predictions closely aligning with the actual data.



5.5. Discussion 51

Figure 5.6: Histogram of Residuals for DM Predictions..

5.5 Discussion
It is essential to highlight the inference times and practicality of integrating these models into a
real-time streaming framework. We measured the inference speed of our models on an NVIDIA
GTX–3070Ti, evaluating them with a test dataset of 8000 images using a batch size of 128.
The time resolution of the generated images is 0.0016 seconds over 1024 bins, totaling 1.634
seconds.

The fastest model, ResNet50, processed images at a remarkable rate, capable of handling
approximately 72 images per second, translating to one image every 0.013 seconds. This speed
allows for covering roughly 118 seconds of observation time. In contrast, our baseline CNN
model required 811 seconds, and the Vision Transformer took 616.2 seconds for the same
dataset, significantly slower than ResNet50.

When compared to traditional dedispersion methods like those employed by HEIMDALL
[4], which scales with the number of DM trials – processing about 3 seconds of observation
per second with 1200 DM trials [64] – our network’s inference capability is faster. This signif-
icant acceleration in processing speed underlines the feasibility of deploying our deep learning
models, particularly the fine-tuned ResNet50, in real-time FRB analysis pipelines, potentially
transforming how we handle the streaming of astronomical data.

The accuracy of our models is another critical factor. The fine-tuned ResNet50 model
showed the best performance with averages of 0.1728 cm−3 pc for MAE and 0.2312 cm−3 pc
for RMSE, indicating its effectiveness in accurately predicting DM values. In comparison,
the ViT recorded an MAE of 0.23146 cm−3 pc and an RMSE of 0.3166 cm−3 pc, while the
baseline CNN model achieved an MAE of 0.1999 cm−3 pc and an RMSE of 0.2704 cm−3 pc.
Surprisingly, the baseline CNN model also performs well in terms of accuracy, exceeding
expectations for such a straightforward architecture.

The performance of the ViT might be further enhanced with additional training data or



52 Chapter 5. Results & Discussion

by exploring different variations of the ViT architecture. Although its current accuracy and
inference speed are the least optimal among the three, the adaptability of the ViT framework
suggests that with proper tuning and scaling, its performance could significantly improve, po-
tentially matching or surpassing the other models. This adaptability makes it a promising
candidate for future enhancements.

It is also important to verify if our current accuracy in DM estimation is sufficient for
effectively studying the spectro-temporal characteristics of FRBs, especially through the mea-
surement of the sub-burst slope law. We can do so by considering equation (4.4) for the arrival
time of an FRB as a function of frequency. More precisely, since the two terms on the right-
hand side of this equation are, respectively, for the delay due to dispersion and that related to
the sub-burst slope law [46] we must ensure that the latter dominates after dedispersion. In
other words, the error in DM estimate ∆DM must be such that

∆DM <
ν2

reftw

2aA
, (5.1)

where we approximated |ν − νref | ≪ νref. However, it is found that on average νreftw ≈ 1.5 ms GHz
[8] such that

∆DM ≲ 0.75
νref

aA
. (5.2)

Using a scaling A ≈ 0.08 [8], we find the constraint ∆DM ≲ 1.4 at 600 MHz, which eases
considerably at higher frequency (e.g., ∆DM ≲ 9 at 4 GHz). Our stated performance, evaluated
through the MAE and RMSE metrics, therefore readily meets the requirements needed for the
study of the spectro-temporal characteristics of FRBs.



Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis, we investigated the application of ML, particularly deep learning, for estimating
the DM of FRBs. We developed three distinct models for this regression task, each demon-
strating impressive results. While serving as a proof of concept, our work substantiates that
ML can effectively handle a limited range of DM values, yielding excellent outcomes.

Our analysis confirmed that all three models fall under the error threshold discussed earlier,
illustrating their high reliability. The fine-tuned ResNet50 model, in particular, achieved an
inference speed 60 times faster than the traditional brute-force methods currently employed,
showcasing the potential of deep learning models to revolutionize real-time astronomical data
analysis.

We discussed related works, highlighting various ML approaches applied to the classifi-
cation of FRBs. Inspired by these studies, our baseline model and the fine-tuned ResNet50
were adapted from methodologies originally developed for classification tasks. Additionally,
we explored the potential of the ViT for this regression problem. Although ViTs typically re-
quire more data than ResNets and CNNs, our results indicate promising directions for further
refinement with increased data availability.

Significant enhancements were made to the data generation package used in previous stud-
ies by Connor et al. [14], modifying it to our specific needs. Modifications included the imple-
mentation of a sub-burst slope law, adjustments to the distribution of random variables to better
reflect realistic scenarios, corrections of previously unnoticed errors, and expanded support for
different telescopes and resolutions.

Put all these together, the advancements demonstrated in this thesis highlight the substantial
benefits of applying ML to the analysis of FRBs, in terms of both performance and accuracy.
These findings pave the way for future research that could eventually lead to deployable models
capable of handling a broader range of conditions in real-world settings.

6.2 Future Work
The models developed in this thesis currently cover a DM range of 0 − 87 cm−3 pc. Although
this range is limited, our results demonstrate that deep learning models are capable of learning

53



54 Chapter 6. Conclusion and FutureWork

FRB characteristics to predict DMs accurately. To make these models more applicable to real-
world scenarios, future work should expand the range of DM values in the training data.

Further research could explore the use of more complex models such as ResNet101 and
ResNet152, which are designed to capture intricate patterns and might perform well over ex-
tended ranges. However, before progressing to these larger models, it is advisable to maximize
the potential of the current models through extensive fine-tuning.

The ViT base variant showed promising results even with limited data. Expanding the
dataset could improve its performance, and exploring other variants such as ViT-B\32, ViT-L\16,
and ViT-L\32 might yield further improvements. These models could be fine-tuned to employ
their capabilities to the specific challenges of DM estimation.

Addressing the detection and mitigation of Radio Frequency Interference (RFI) and noise
in the received data is crucial. Developing a model to effectively filter out the RFI could
significantly improve the subsequent DM estimation steps and enhance overall data quality for
further analysis.

With advancements in ML models for image generation, which are capable of producing
detailed and varied outputs, there is potential to adapt these tools for generating synthetic FRB
data. This approach could help overcome the issue of data scarcity in FRB research.

Finally, expanding the scope of DM estimation to accommodate data from multiple tele-
scopes could be beneficial for comprehensive offline analyses. However, for real-time stream-
ing data analysis, optimizing a single model to deliver accurate DM estimates for each tele-
scope separately might prove more practical. This focused approach could streamline the pro-
cessing pipeline, enhancing the responsiveness and accuracy of live data analysis systems.

By addressing these areas, future research can significantly advance the application of ML
in the field of FRBs, pushing the boundaries of what is currently achievable with automated
analysis techniques.



Bibliography

[1] Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(4):433–459, 2010.

[2] Devansh Agarwal, Kshitij Aggarwal, Sarah Burke-Spolaor, Duncan R Lorimer, and
Nathaniel Garver-Daniels. Towards deeper neural networks for fast radio burst detec-
tion. arXiv preprint arXiv:1902.06343, 2019.

[3] Mandana Amiri, Bridget C Andersen, Kevin Bandura, Sabrina Berger, Mohit Bhardwaj,
Michelle M Boyce, PJ Boyle, Charanjot Brar, Daniela Breitman, Tomas Cassanelli, et al.
Erratum:“the first chime/frb fast radio burst catalog”(2021, apjs, 257, 59). The Astrophys-
ical Journal Supplement Series, 264(2):53, 2023.

[4] B. R. Barsdell, M. Bailes, D. G. Barnes, and C. J. Fluke. Accelerating incoherent dedis-
persion: Accelerating incoherent dedispersion. Monthly Notices of the Royal Astronomi-
cal Society, 422(1):379–392, March 2012.

[5] Benjamin R Barsdell, Matthew Bailes, David G Barnes, and Christopher J Fluke. Ac-
celerating incoherent dedispersion. Monthly Notices of the Royal Astronomical Society,
422(1):379–392, 2012.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[7] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[8] Katie Brown, Mohammed A. Chamma, Fereshteh Rajabi, Aishwarya Kumar, Hosein Ra-
jabi, and Martin Houde. Validating the sub-burst slope law: a comprehensive multi-
source spectro-temporal analysis of repeating fast radio bursts. Mon. Not. R. Astron. Soc.,
529(1):L152–L158, March 2024.

[9] Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering
based on hierarchical density estimates. Proceedings of the 17th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2013), pages 160–172, 2013.

[10] Anthony Ashwin Peter Chazhoor, Edmond S. L. Ho, Bin Gao, and Wai Lok Woo. A
review and benchmark on state-of-the-art steel defects detection. SN Computer Science,
5(1):114, Dec 2023.

[11] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, 2016.

55



56 BIBLIOGRAPHY

[12] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[13] Chime/Frb Collaboration, Bridget C Andersen, Kevin Bandura, Mohit Bhardwaj,
PJ Boyle, Charanjot Brar, Daniela Breitman, Tomas Cassanelli, Shami Chatterjee, Pragya
Chawla, et al. Sub-second periodicity in a fast radio burst. Nature, 607(7918):256–259,
2022.

[14] Liam Connor and Joeri van Leeuwen. Applying deep learning to fast radio burst classifi-
cation. The Astronomical Journal, 156(6):256, 2018.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[16] Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[17] Fengqiu Adam Dong, Chime/Frb Collaboration, et al. Chime/frb detection of a bright
radio burst from sgr 1935+ 2154. The Astronomer’s Telegram, 15681:1, 2022.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale, 2021.

[19] Griffin Foster, Aris Karastergiou, Golnoosh Golpayegani, Mayuresh Surnis, Duncan R
Lorimer, Jayanth Chennamangalam, Maura McLaughlin, Wes Armour, Jeff Cobb, David
H E MacMahon, Xin Pei, Kaustubh Rajwade, Andrew P V Siemion, Dan Werthimer, and
Chris J Williams. ALFABURST: a commensal search for fast radio bursts with Arecibo.
Monthly Notices of the Royal Astronomical Society, 474(3):3847–3856, 11 2017.

[20] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences, 55(1):119–
139, 1997.

[21] V Gajjar, APV Siemion, DC Price, CJ Law, D Michilli, JWT Hessels, S Chatterjee,
AM Archibald, GC Bower, C Brinkman, et al. Highest frequency detection of frb 121102
at 4–8 ghz using the breakthrough listen digital backend at the green bank telescope. The
Astrophysical Journal, 863(1):2, 2018.

[22] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256, 2010.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.



BIBLIOGRAPHY 57

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[26] Muhammad Tausif Irshad, Muhammad Adeel Nisar, Xinyu Huang, Jana Hartz, Olaf Flak,
Frédéric Li, Philip Gouverneur, Artur Piet, Kerstin M. Oltmanns, and Marcin Grzegorzek.
Sensehunger: Machine learning approach to hunger detection using wearable sensors.
Sensors, 22(20), 2022.

[27] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag New York, 2nd edition,
2002.

[28] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

[29] Muhammad Yaseen Khan, Abdul Qayoom, Muhammad Nizami, Muhammad Shoaib Sid-
diqui, Shaukat Wasi, and Khaliq-Ur-Rahman Raazi Syed. Automated prediction of good
dictionary examples (gdex): A comprehensive experiment with distant supervision, ma-
chine learning, and word embedding-based deep learning techniques. Complexity, 09
2021.

[30] Petros Pavlakis Konstantinos Topouzelis, Vassilia Karathanassi and Demetrius Rokos.
Potentiality of feed-forward neural networks for classifying dark formations to oil spills
and look-alikes. Geocarto International, 24(3):179–191, 2009.

[31] S. R. Kulkarni. Dispersion measure: Confusion, Constants & Clarity. arXiv e-prints,
page arXiv:2007.02886, July 2020.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[34] Jia-Wei Luo, Jia-Ming Zhu-Ge, and Bing Zhang. Machine learning classification of chime
fast radio bursts – i. supervised methods. Monthly Notices of the Royal Astronomical
Society, 518(2):1629–1641, November 2022.

[35] David H. E. MacMahon, Danny C. Price, Matthew Lebofsky, Andrew P. V. Siemion, Steve
Croft, David DeBoer, J. Emilio Enriquez, Vishal Gajjar, Gregory Hellbourg, Howard
Isaacson, Dan Werthimer, Zuhra Abdurashidova, Marty Bloss, Joe Brandt, Ramon Crea-
ger, John Ford, Ryan S. Lynch, Ronald J. Maddalena, Randy McCullough, Jason Ray,



58 BIBLIOGRAPHY

Mark Whitehead, and Dave Woody. The breakthrough listen search for intelligent life: A
wideband data recorder system for the robert c. byrd green bank telescope. Publications
of the Astronomical Society of the Pacific, 130(986):044502, feb 2018.

[36] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in ner-
vous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[37] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approxima-
tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[38] Tom M Mitchell. Machine learning, 1997.

[39] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, 2
edition, 2018.

[40] Anthony J. Myles, Robert N. Feudale, Yang Liu, Nathaniel Woody, and Steven D. Brown.
An introduction to decision tree modeling. Journal of Chemometrics, 18, 2004.

[41] W. S. Noble. What is a support vector machine? Nature Biotechnology, 24(12):1565–
1567, 2006.

[42] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. How many
trees in a random forest? In IAPR International Conference on Machine Learning and
Data Mining in Pattern Recognition, 2012.

[43] Tayyip Ozcan and Alper Basturk. Transfer learning-based convolutional neural networks
with heuristic optimization for hand gesture recognition. Neural Computing and Appli-
cations, 31(12):8955–8970, Dec 2019.

[44] Emily Petroff, JWT Hessels, and DR Lorimer. Fast radio bursts. The Astronomy and
Astrophysics Review, 27(1):4, 2019.

[45] Z Pleunis, Daniele Michilli, CG Bassa, JWT Hessels, A Naidu, BC Andersen, P Chawla,
E Fonseca, A Gopinath, VM Kaspi, et al. Lofar detection of 110–188 mhz emission and
frequency-dependent activity from frb 20180916b. The Astrophysical Journal Letters,
911(1):L3, 2021.

[46] Fereshteh Rajabi, Mohammed A. Chamma, Christopher M. Wyenberg, Abhilash Math-
ews, and Martin Houde. A simple relationship for the spectro-temporal structure of bursts
from FRB 121102. Mon. Not. R. Astron. Soc., 498(4):4936–4942, November 2020.

[47] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

[48] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, 1986.



BIBLIOGRAPHY 59

[49] Alessio Sclocco, Joeri van Leeuwen, Henri E Bal, and Rob V van Nieuwpoort. Real-time
dedispersion for fast radio transient surveys, using auto tuning on many-core accelerators.
Astronomy and computing, 14:1–7, 2016.

[50] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From The-
ory to Algorithms. Cambridge University Press, 2014.

[51] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings. International Conference on Learning Rep-
resentations, ICLR, 2015.

[52] MP Snelders, K Nimmo, JWT Hessels, Z Bensellam, LP Zwaan, P Chawla, OS Ould-
Boukattine, F Kirsten, JT Faber, and V Gajjar. Detection of ultra-fast radio bursts from
frb 20121102a. Nature Astronomy, 7(12):1486–1496, 2023.

[53] Apostolos Spanakis-Misirlis and Cameron L. Van Eck. Frbstats: A web-based platform
for visualization of fast radio burst properties. The Open Journal of Astrophysics, 6,
February 2023.

[54] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research, 15(1):1929–1958, 2014.

[55] D. Thornton, B. Stappers, M. Bailes, B. Barsdell, S. Bates, N. D. R. Bhat, M. Burgay,
S. Burke-Spolaor, D. J. Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston,
M. Keith, M. Kramer, L. Levin, S. Milia, C. Ng, A. Possenti, and W. van Straten. A
Population of Fast Radio Bursts at Cosmological Distances. Science, 341(6141):53–56,
July 2013.

[56] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[57] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., 1995.

[58] Kiri L. Wagstaff, Benyang Tang, David R. Thompson, Shakeh Khudikyan, Jane Wyn-
gaard, Adam T. Deller, Divya Palaniswamy, Steven J. Tingay, and Randall B. Wayth. A
machine learning classifier for fast radio burst detection at the vlba. Publications of the
Astronomical Society of the Pacific, 128(966):084503, jun 2016.

[59] Randall B. Wayth, Walter F. Brisken, Adam T. Deller, Walid A. Majid, David R. Thomp-
son, Steven J. Tingay, and Kiri L. Wagstaff. V-fastr: The vlba fast radio transients exper-
iment. The Astrophysical Journal, 735(2):97, June 2011.

[60] Huo Yingge, Imran Ali, and Kang-Yoon Lee. Deep neural networks on chip - a survey.
In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp),
pages 589–592, 2020.



60 BIBLIOGRAPHY

[61] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization, 2015.

[62] Barak Zackay and Eran O Ofek. An accurate and efficient algorithm for detection of radio
bursts with an unknown dispersion measure, for single-dish telescopes and interferome-
ters. The Astrophysical Journal, 835(1):11, 2017.

[63] Bing Zhang. The physical mechanisms of fast radio bursts. Nature, 587(7832):45–53,
2020.

[64] Yunfan Gerry Zhang, Vishal Gajjar, Griffin Foster, Andrew Siemion, James Cordes,
Casey Law, and Yu Wang. Fast radio burst 121102 pulse detection and periodicity: a
machine learning approach. The Astrophysical Journal, 866(2):149, 2018.

[65] Jia-Ming Zhu-Ge, Jia-Wei Luo, and Bing Zhang. Machine learning classification of chime
fast radio bursts – ii. unsupervised methods. Monthly Notices of the Royal Astronomical
Society, 519(2):1823–1836, December 2022.



Curriculum Vitae

Name: Hosein Rajabi

Education: University of Tabriz
Tabriz
2016 - 2021 B.Sc.

University of Western Ontario
London, ON
2022 - 2024 M.Sc.

Related Work Teaching Assistant

Experience: The University of Western Ontario
2022 - 2024

Publication: Katie Brown, Mohammed A. Chamma, Fereshteh Rajabi, Aishwarya Kumar,
Hosein Rajabi, Martin Houde, ”Validating the sub-burst slope law: a comprehensive
multisource spectro-temporal analysis of repeating fast radio bursts,”
Monthly Notices of the Royal Astronomical Society, 529(1), pp. 152–158, March 2024.

61


	UTILIZING MACHINE LEARNING TECHNIQUES FOR DISPERSION MEASURE ESTIMATION IN FAST RADIO BURSTS STUDIES
	Recommended Citation

	Abstract
	Lay Summary
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Thesis Outline

	Background
	Exploring FRB Characteristics
	Dispersion Measure (DM)
	Scattering
	Scintillation
	Pulse Width of an FRB
	The sub-burst slope law

	Machine learning (ML)
	Tree-Based Models
	Support Vector Machines
	Clustering Algorithms
	Dimensionality Reduction Techniques

	Artificial Neural Networks
	Multi Layer Perceptron
	Activation Functions
	Optimizers

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Dropout
	Batch Normalization

	Residual Neural Network
	Vision Transformer (ViT)

	Related Work
	Methodology
	Data
	Data Generation

	Model Training
	Baseline CNN Model
	DM Estimation utilizing Transfer Learning

	Model Evaluation

	Results & Discussion
	Dataset
	Baseline CNN Model
	Vision Transformers
	Resnet50
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Curriculum Vitae

