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Abstract

Elastic distances, e.g. dynamic time warping (DTW), evaluate the similarity between query

and reference sequences by dynamic programming. The 1-Nearest-Neighbor predictor with

DTW is one benchmark in time series classification. However, DTW is less e�cient in

astronomical time series because of ignorance of the information in time stamps and its de-

pendence on the shape and magnitude between query and reference sequences. We apply

two elastic distances which integrate the information in the time domain, time warp editing

distance (TWED) and Skorohod distance, which is calculated by using Fréchet distance,

to three astronomical datasets to compare with DTW and Euclidean distance. The first

dataset aims to classify signals emitted from various astronomical sources with multiple

bandpasses from the Large Synoptic Survey Telescope (LSST). The TWED shows the op-

timal 1-NN classification performance with a 0.74 loose accuracy. In the second dataset,

we explore the possibility of shrinking the size of the gravitational wave (GW) template

banks to reduce the computational waste of matching data with similar templates. With

the threshold of 5%, similar templates can be removed without losing the e↵ectualness of

the template bank. In the final dataset from LIGO and Virgo detections, we establish an

early warning process of GW by locating the coincident period between detectors. Though

DTW distance outperforms others, TWED achieves a 0.72 detection ratio and a 0.47 aver-

age significant ratio. These results of three astrophysical datasets reveal the applicability

of elastic distances in the astrophysical domain, especially TWED.

Keywords
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Summary for Lay Audience

Elastic distances, e.g. dynamic time warping (DTW), evaluate the similarity between query

and reference sequences by dynamic programming. Unlike Euclidean distance, elastic

distances allow misalignment between indices. With minimal matching by misalignment,

the traditional DTW distance embedded in the 1-Nearest Neighbor predictor (1-NN) is one

benchmark used in time series classification. But DTW is less e�cient in astrophysical time

series because DTW distance focuses only on shape and magnitude between sequences and

ignores the information in distortion in time stamps. To overcome this, in this thesis, we

introduce two elastic distances which integrate the misalignment in the time domain: time

warp editing distance (TWED) and Skorohod distance, which is calculated by using Fréchet

distance. Then we apply two elastic distances in three astrophysical datasets and compare

them with Euclidean and DTW distances, to explore the applicability of elastic distances

in the astrophysical field. The first dataset aims to classify signals emitted from various

astronomical sources with multiple bandpasses from the Large Synoptic Survey Telescope

(LSST). The TWED shows the optimal 1-NN classification performance with the highest

accuracy. We also have experiments on gravitational wave datasets. In 2015, LIGO and

Virgo Collaborations generated multiple template banks and detected the first GW signal

by matched filtering. In the second dataset, we simulate GW from the merger of binary

black holes and construct a toy template bank. By evaluating the elastic distance between

templates, we shrink the size of the template bank to reduce the computational waste of

matching data with similar templates. With the threshold of 5%, similar templates can be

removed without losing the e↵ectualness of the template bank. In the final dataset with raw

data from GW detections, we establish an early warning process of GW by locating the

coincident period between detectors, where coincidence is measured by elastic distance.

Though DTW distance outperforms others, TWED achieves a 0.72 detection ratio and a

0.47 average significant ratio. These results reveal the applicability of elastic distances in

the astrophysical domain, especially TWED.
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Chapter 1

1 Introduction

To modelling the similarity between two time series is widely applied in speech recogni-

tion, neural science and other areas of research. The dynamic time warping (DTW) [50],

which measures the similarity between two time series by recursively computing the near-

est matching point between two time series, is well-known for its robustness in dealing

with a time o↵set. It is applied to recognize human actions [52], optimize the retrieval of

similar time series [60], and reconstruct gravitational wave core-collapse supernova sig-

nals [56]. Inspired by DTW, a few more algorithms are developed following the dynamic

programming approach in comparing similarities between two series. Modifications are

applied to traditional DTW, such as sparse time series [44], uniform scaling with DTW

[30], EventDTW [35], FastDTW [51], GDTW [25], Time-weighted DTW [34], Soft-DTW

[22], shapeDTW [61], DDTW [36] and so on. A discussion on several myths about DTW

[49] can be taken into consideration when constructing a new algorithm. In general, there

are several desired properties of the elastic distance in general when constructing a novel

distance from the known [32].

• Ability to compare time series of di↵erent lengths.

• Being robust to spikes, dropouts, wandering baseline and missing values, and other

issues that are common outside of benchmark datasets.

• The invariances in amplitude and o↵set o↵ered by DTW and Euclidean distance,

as well as additional invariances, including phase invariance, order invariance, liner

trend invariance and stutter invariance.

• Ability to be computed very e�ciently, allowing great scalability.

When dealing with astrophysical time series, we have to modify or find the optimal elastic
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distance, in dealing with common issues from the datasets, which is characterized as the

unevenly spaced time series with missing value, e.g. distortion in amplitude and phase of

red-shift when light travels [38] and glitches contaminate the data with gravitational wave

signals of interest [21]. Usually, combined with prior knowledge of physics and problem-

oriented mathematical derivation, most abnormal or mismatches in data can be explained.

However, with a giant amount of data collected from observatories and detectors, [1, 20],

it is hard to distinguish useful information when there is no prior knowledge related.

One popular astrophysical dataset comes from the LIGO-Virgo-KAGRA (LVK) Collabo-

ration with on-going continuous detection operations [6]. After 30 years of preparation

in both theoretically and instrumentally, they made the first detection of the gravitational

waves (GW) event [13] on September 14, 2015, with the event name GW150914. Pre-

dicted by Einstein’s theory of General Relativity, gravitational waves are waves generated

by the motion of massive accelerating objects, such as colliding black holes and neutron

stars [42]. Considered as the ripples in the spacetime curvature by analogy with that of wa-

ter waves, gravitational waves travel through the cosmos at the speed of light, stretching in

one direction while compressing in a perpendicular direction when passing. By measuring

the stretching in spacetime, multiple laser interferometer gravitational wave detectors were

built during the last few decades. These detectors measure the changes in the light-travel

time between photons inside two arms of detectors, led by LIGO and Virgo [28]. These de-

tectors which are located far from each other, alleviate the false alarms of non-gravitational

wave oscillation caused by earthquakes or other local vibrations by searching only for sim-

ilar signals. Besides there are at least two detectors available and with proper functioning,

e.g. LIGO Hanford and LIGO Livingston in USA, and Virgo near Pisa, Italy. It is possible

that we can find the ‘coincident’ signals with similar waveforms from the same source by

excluding those unlike episodes or similar signals with too large time-shift [28].

In this thesis, we study the characteristics of the astrophysical datasets and the requirements
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of ideal elastic distance. We apply DTW, TWED [41] and Skorohod distance [53] in our

application to several datasets to explore the potential application of elastic distance in

an astrophysical dataset without the preliminary knowledge of templates. In Chapter 2,

we discuss the collection mechanism of astrophysical time series data and several features

of the data. After that, we introduce the DTW, TWED, Skorohod distance and Fréchet

distance in detail in the following Chapter 3, with comparison between each other both

theoretically and numerically. All of our experiments are described in Chapter 4 which

includes three applications: classifying signals from the Large Synoptic Survey Telescope

(LSST) [20] in Section 4.1.2, shrinking the size of template bank containing waveform

from binary black holes simulated by Python module PyCBC [58] in Section 4.2.1, and

early warning of the possible detection of event data from Gravitational Wave Transient

Catalog - 1 (GWTC-1) [27] in Section 4.2.2. In each section, we compares the pros and

cons of the application and the proposals to improve the performance. The conclusions are

presented in Chapter 5.
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Chapter 2

2 Features of Astrophysical Data

This chapter introduces a few typical features in astronomical time series data sets based on

two major surveys of detection, photometry and spectroscopy. Following the observation

mechanisms of both approaches, a general time series which emphasizes the timestamp

of each observed value is defined in a convenient framework for further discussion on the

incorporation of temporal domain information. We formulate the typical features with

visualization on both simulated and real-time series.

2.1 Astronomical Survey Mechanisms

Spectroscopy and photometry are two important techniques in measuring the radiative en-

ergy from astronomical objects, e.g., light emitted from stars. Both techniques employ

charged-couple detectors to record the signal passing through the pre-processing instru-

ment which is the major di↵erence between them.

The astronomical survey based on spectroscopy applies the refractive properties of light

by using a prism or grating to separate a beam of light into a rainbow of colours [57],

e.g., the visible light of a star. The electromagnetic energy is then recorded as the spectral

distribution of wavelength, which reveals the properties of astronomical objects, such as

their mass, density, distance, composition and luminosity.

In contrast, the photometric approach applies the coloured band-pass filter to capture and

measure the energy in specific wavelength, such as ultraviolet, visible and infrared wave-

lengths. After taking photos with extremely high resolution in each band-pass, the intensity

of light, or so-called flux, is measured for each luminous object in one sky range. The pho-

tometry has the advantage of a broader observation range and sensitivity to a fainter object

compared to spectroscopy [57]. Typically, the Large Synoptic Survey Telescope (LSST)
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survey aims to explore the unknown astronomical variability with decay time from 0 to 1

second and -4 to -20 negative logarithm of the flux [39]. The LSST survey is naturally

inherent with the classification modelling idea. The di�culty is to distinguish the unknown

flux trajectory by the trajectories from those of known stars, in other words, discover new

astronomical objects. An example of visualizing the measured light flux is shown in Figure

2.1[38]. The shaded distribution is the light flux transmitted by each band-pass filter. The

measured flux in each band-pass is a sum of the photons within given wavelength range,

denoted as ugrizy which correspond to ultraviolet, green, red, infrared (izy).

Figure 2.1: The influence of redshift on the distribution of detected wavelength. The ugrizy
is the filter corresponding to di↵erent wavelength range on the abscissa. The ordinate is
the fraction of light transmitted by the filter. The solid black curves are the spectra for a
nearby Type Ia supernova at redshift z = 0.01, while the dashed curve is at redshift z = 0.5,
corresponding to a longer distance [38].

Besides these, the gravitational waves, which are the ripples of space-time curvature in

the universe, are another source of astronomical events, e.g., the collapse of binary black

holes. The Laser Interferometer Gravitational-Wave Observatory (LIGO) has two Michel-

son interferometers which measure the interfered laser beam reflected by the beam splitter

after passing through two long arms (4 km) which are aligned at right angles to each other.

The longer arm is more sensitive to detect the length changes by the squeezing and stretch-
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ing e↵ect of the gravitational wave. When the gravitational wave passes two arms, the

di↵erence between the two arm lengths is proportional to the strength of the passing grav-

itational wave, referred to as the gravitational-wave strain [7]. The strain data is published

in the LIGO open data center recorded with 16384 Hz or down-sampled 4096 Hz[15]. An

example of strain event time series is shown in Figure 2.2 which is 1024 seconds of data

with a down-sampled recording rate 4096 Hz. The timestamp is near the observation of the

first detection of gravitational waves emitted from compact binary coalescence, named as

GW150914 [13].

In this thesis, in order to test the time series similarity with the inclusion of temporal in-

formation in the astronomical data sets, we are focusing on two data sets, the simulated

photometric light flux curve observed in LSST survey published as a Kaggle competi-

tion [8, 38], and the event strain time series from Gravitational-Wave Transient Catalog,

GWTC-1[27], observed during the first and second operation run O1 and O2 from LIGO &

VIRGO Gravitational Wave Open Science Center [15]. We focus on both ‘extracted’ data

from extremely large databases: at least 85-petabytes resultant data set of LSST during its

entire 10-year survey [20], and almost 780 GBs for the whole O1 run of LIGO-Hanford

over nearly 6 months of operation with 16384 Hz of data [1].
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2.2 Features of Astronomical Time Series

The measured values and timestamp values are two components of astronomical time se-

ries. In modeling astronomical time series data, the flux value is measured commonly in

both spectroscopy and photometry. The astronomer usually obtains decades of observa-

tion for one source object to fully understand its features. The extensively large types of

traditional observations are detected and classified by their flux pattern, such as periodic

variation, quasi-periodic variation, outburst events and transient events [39].

Another non-negligible component of the astronomical Time Series is the timestamp value.

The traditional time series modelling or classification considers only the observed value xi,

which is accurate enough to model the pattern. Also, the sampling procedure is consis-

tent in default without any irregularity while irregularity has been discussed in the domain

of time series [48]. Conversely, in modelling astronomical time series, the timestamp se-

quence is non-negligible: observed time for each observed value is used to estimate param-

eters, such as mass, rotational frequency, location and so on.

Therefore, we are introducing the definition of astronomical time series which emphasizes

the timestamp. The time series is one realization, or a sample trajectory of a stochastic

process {X·(!)|! 2 ⌦}, denoted as {Xt|t 2 T } [16].

Definition A Stochastic Process is a family of random variables {Xt, t 2 T } defined on a

probability space (⌦,F ,P), denoted as {X·(!)|! 2 ⌦}.

Each observation Xt 2 {Xt} is measured at a specified time t 2 T0, in which T0 ⇢ T ⇢ R

[16]. There are two types of time series, the discrete-time series and continuous-time series

in which the timestamps are recorded discretely, e.g., T0 = {1, 2, . . . }, or continuously,

e.g., T0 = [0, 1]. To incorporate the time indices t in the elastic distance of discrete-time

series, we align the observation Xt by its timestamps t with increasing order. Then each

observation Xt becomes a paired tuple, (xi, ti), in which xi 2 Rp, ti 2 T0 and ti  ti+1.
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Definition The time series X is defined as a set of paired tuple (xi, ti) 2 Rp ⇥ T, which is

X = {Xi = (xi, ti)|xi 2 Rp, ti 2 T, ti  ti+1, i = 1, . . . ,m}. (2.1)

The emphasis of ordered timestamps ti in the above definition promotes the introduction on

the features of astronomical data sets. The following classification scheme is data-oriented

based on simulated data from the LSST survey and gravitational wave strain data from

LIGO. For both simulated and real astrophysics data, there are a few issues that require

investigation in the classification model:

• Distorted observed value:

xo = f (xe, po,e), which means observed value xo is transformed from emitted value

xe by a function f (·) with parameters po,e. The subscript o stands for observation and

e stands for emission.

The Doppler shift influences the observed value; e.g., for a distant star outside of

the Milky Way, the cosmological redshift z influences the rate of arrival of the pho-

tons compared to its emission rate. This phenomenon is called cosmological time-

dilation, resulting in a fainter and redder observed light flux when the star is more

distant from the observatory. The relationship between observed wavelength �o and

emitted wavelength �e is �o = (1 + z)�e. From this formula, we observe that the

higher redshift shifts the spectrum to longer wavelength, which means redder. Also,

higher redshift reduces the light flux value, which means it is much fainter when ob-

served. The Doppler shift leads to the fact that the further the object is, the fewer

and more redshifts are observed, leading to less light flux and redshifted, wavelength

distribution. As a result, the light flux data received from the observatory requires

a transform to counteract the redshift e↵ect. A simulation example is shown in the

curves of Figure 2.1[38].
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• Uneven sampling:

�ti , �t j, in which �ti = ti � ti�1.

Generally, in most data collection procedures, the time series is usually observed

at a synchronized frequency. For example, the LIGO group publishes the gravita-

tional wave strain data which has the 16384 Hz sample rate, which means the beam

detector receives signal emitted from every 6.1 ⇥ 10�5 seconds in the interferome-

ter. The observed strain time series is then approximated as a continuous trajectory

sampled from the overall gravitational wave stochastic process. In other cases, it is

hard to guarantee the synchronized sampling rate; e.g., the simulated data set, photo-

metric LSST time series, have various observation timestamps because of its survey

mechanism. The observatory has a 3 billion pixel camera which collects photos each

30 seconds in di↵erent grid regions of the sky. Two objects from di↵erent types

in separate searching regions have intermittent timestamps of observation as shown

in Figure 2.3. The object 29252 from class 4 has a denser observation timestamp

compared to the object 11742403 from class 8.

• Missing value:

�ti = ti � ti�1 � C, where C is a normal sampling time rate.

It’s di�cult to guarantee complete data collected during the scheduled observation

range in the observatory. As an example, in the simulated data set, photometric LSST

time series, large gaps are shown because the light flux from the object is not visible

during night in the observatory. Instead of using the missing data mechanism, such

as missing at random (MAR) or missing at completely random (MACR), we interpret

the missing value by the large gap between two consecutive observing timestamps,

which exceeds some threshold, denoted as a constant C. Applying this simplified

version of modelling for missing data is due to the property of the observatory. In

Figure 2.3, there are visible gaps between consecutive observations, which means
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that the camera is taking pictures in another region of sky to complete a periodic task

cycle. However, the variation of the light flux of one star is a stochastic process de-

termined by its own mass, age, location, chemical composition and other significant

feature parameters. These physical parameters are usually fixed except for an event,

such as collapse and implosion, e.g., the stars usually locate at fixed point, which

means the observed flux has the same influence from the Doppler shift. Thus, the

observing time range is independent of the star’s evolution process. As a result, the

missing pattern can be modeled by a threshold C. Modelling this missing pattern

is indispensable. The simplified situation takes the di↵erence between consecutive

timestamps as the feature of missing pattern.

• Noise:

xo,i = xe,i + ✏o,e,i, in which ✏o,e,i � xe,i and ✏o,e,i is independent of xe,i.

Apart from the intrinsic physical mechanism, the observations usually include large

amount of background noise during the decades of observation because the obser-

vational experiments in astronomy are mostly triggered by rare events. Taking Ad-

vanced LIGO strain data as an example, the background GW noise is dominant. The

GW signal from the binary black holes merger is extremely small, hidden among

background noise with large amplitude. The sources of the noise include quan-

tum sensing noise, seismic noise, suspension thermal noise, mirror coating thermal

noise, gravity gradient noise, transient noise from anthropogenic sources or weather

or equipment malfunctions, and noise with spectral lines in certain high frequencies

which is generated from electrical and mechanical devices or resonances [28]. Take

the noise in the stadium as an example, the di�culty of detecting a GW signal is that

of distinguishing one voice among the 100,000 people in the middle of the stadium

during a football game. To interpret it, a basic additive noise model is given in terms

of the observed measurement xo,i, the emitted value from the target source xe,i and
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error term ✏o,e,i. An example is shown in Figure 2.2. The signal from binary black

holes merger is revealed after filtering with a 35–350 Hz Butterworth band-pass filter

to suppress large fluctuations outside the detectors’ most sensitive frequency band

[13].

• Discontinuity:

xt�(!) = lims"t xs(!) , xt(!), xt+(!) = lims#t xs(!) = xt(!).

The stellar evolution is not completely observed by human sight due to its extremely

long lifetime. Though the stars are evolving at a slow pace, the vast universe contains

numerous stars. This trade-o↵ allows humans to observe multiple transient events of

the stars, such as explosions and collapses before the stars turn into black holes. So,

it is possible to see the abnormal jump and then the decaying duration in the data,

e.g., in Figure 2.3, as a type II supernova, the object 29252 experiences core collapse

at the beginning of the observation, emitting a large amount of energy due to the

fusion of its core. Another object 11742403 is the kilonova, which is modelled by an

explosive event from the merger of two neutron stars [37]. A kilonova event is rare,

dim and with short decay duration compared to the supernova. The horizontal line in

both time series indicates the discontinuity, and we model it by the right-continuous

with left limits from the decaying light intensity.

To deal with the above features in an astronomical dataset, the idea of warping time will

help us transform the time series. As we are focusing on the time-domain distance-based

classifiers, we are introducing several distances in the following chapters while embedding

the solution of the above issues.
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Figure 2.2: The GW150914 event data starts from timestamp 1126257414. The first panel
labelled with ‘Hanford Data’ is the original strain data. The second panel labelled with
‘Windowed Data’ applies a tapered cosine window, or so-called Tukey window, at the
beginning and end of the original data. The third panel labelled with ‘Whitened Data’ is
the whitened strain data given the power spectral density calculated from full samples. The
last panel labelled with ‘Bandpass Data’ is applying a Butterworth filter to the original
strain data, with maximally flat frequency response in the band-pass, revealing the event
hidden in the noise.
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Figure 2.3: Light flux of two objects from di↵erent classes in six di↵erent astronomical
filters.
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Chapter 3

3 Quantify Similarity between Time Series

To estimate the similarity between object is a common task in the area of data mining,

especially crucial for computer vision and pattern recognition. A few measures and al-

gorithms have been developed and upgraded during the last few decades in dealing with

finding patterns from meteorological observation, stock prices, astronomical signals and so

on. To deal with the astronomical time series with the five issues we analyzed in the pre-

vious chapter, we are introducing four approaches to quantifying similarity between time

series.

An algorithm-based approach is dynamic time warping (DTW) [50], which is the most

reliable and practical method of all situations where estimating similarity is required. The

DTW distance is usually considered as the most fundamental method, such as applying

k-nearest neighbour using DTW as distance. The classic DTW is embedded with dynamic

programming. The objective function of DTW is the overall minimum cumulative distance

D, defined as the summation over the least distance cost among all matched pairs under

certain warping criteria �(·, ·).

Inspired by DTW, Time Warp Edit Distance (TWED) includes the timestamp information

in its loss function[41]. TWED reaches the balance between the so-called ’infinite-sti↵’ Lp

distance and ’no-sti↵ness’ DTW measure by defining a sti↵ness parameter �. It borrows

the ideas of Editing distance by defining the warping criteria � by delete, match and add

edit operations. Also, it adds the penalty to the timestamp di↵erence between paired ob-

servations. So, the penalty loss function is defined by l(Xi,Yj) = |ti � s j| + �. The distance

function d(·, ·) is defined in Lp space.

In the last, to complete the whole story, a measure is included, Skorohod distance [53]. It

was first invented by A.V. Skorokhod to study the convergence in distribution of stochas-
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tic processes with jumps. It might be useful in dealing with discontinuous astronomical

signals. Meanwhile, Fréchet distance is applied to calculate the abstract Skorohod dis-

tance.

3.1 Dynamic Time Warping

Dynamic time warping (DTW) is a recursive method used to compare pattern similarity

between two time series by dynamic programming. A warping curve is defined by select-

ing matching points with minimum distance cost between pairs of observed values from

query and reference series. Besides the cumulative minimum distance between the query

and reference time series, the warping curve permits the important property of DTW: the

distortion in timestamps or series indices in pattern similarity matching.

The DTW distance was first introduced to deal with the nonlinear fluctuation in a speech

pattern time axis [50]. In comparison to the Euclidean distance, the DTW distance has the

property of elasticity, which allows a ‘mismatch’ in the time axis. So, it deals with a few

common issues in real-time series problems:

• The sampling frequency is not synchronized.

• The sampling procedure is not consistent. A few intervals are missing.

• The intrinsic generation mechanism varies between observed series.

Two time series, query and reference, are denoted as follows

X = {Xi = (xi, ti)|xi 2 Rp, ti 2 T, i = 1, . . . ,m} (3.1)

Y = {Yj = (y j, s j)|y j 2 Rp, si 2 T, j = 1, . . . , n} (3.2)

in which, ti and s j are timestamps correspondingly. The subsequence up to k�th observation
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is denoted as

X(k) = {Xi = (xi, ti)|i  k},

Y(k) = {Yj = (y j, s j)| j  k}.

For each pair of the observations, the cost of matching (Xi,Yj) is defined by the distance

between two observations, denoted as d(·, ·). To match two observations, a warping func-

tion �(·) is defined in the timestamp domain, from query to reference timestamp series,

{ti|i = 1, . . . ,m} ! {s j| j = 1, . . . , n}. For example, �(ti) = s j represents the query obser-

vation time ti is matched with the reference observation time point s j. The observed value

Xi = (xi, ti) is then shifted to s j and then evaluated the distance to Yj rather than Yi.

Compared to the Euclidean distance, which is defined to measure the distance between two

sequences, X and Y , with the same length (m = n), the warping path of Euclidean distance

is the identical function �(i) = i defined on the index of the observation i  m = n. This

identical warping path is also the diagonal of the distance matrix M(xi, y j)n⇥m = d(xi, y j)

when n = m. The introduction of the warping function allows the warping path deviation

from the diagonal of the distance matrix M. The warping path is the series of matched

timestamps pair of the warping function, which is defined as

�(X,Y) =
n
(ti, s j)|�(ti) = s j, i = 1, . . . ,m, j = 1, . . . , n

o
(3.3)

=
�
(t1, s⇤1), (t2, s⇤2), . . . , (tK , s⇤K), |�(tk) = s⇤k, 1  k  K = max(m, n)

 
. (3.4)

From the symmetry of the DTW distance, DTW(X,Y) = DTW(Y, X), which will be proved

later, the warping path is based on the timestamp tk in the query sequence without loss

of generality, which is denoted as �(tk) = s⇤k in Eq.(3.4). The warping index is defined

by the length of the longer time series, K = max(m, n). In other words, the key feature

of DTW is permitting the wiggling in reference time series Y in order to achieve the best
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alignment with query reference X. The DTW distance is then defined as the summation

of the local distance between the matched pair
⇣
Xk = (xk, tk),Y⇤k = (y⇤k, s

⇤
k)
⌘
, in the warping

path �(X,Y):

DTW(X,Y) = min
�(X,Y)

KX

k=1

d
�
Xk,Y⇤k

�
= min
�(X,Y)

KX

k=1

d
�
(xk, tk), (y⇤k, s

⇤
k)
�
, in which �(tk) = s⇤k

(3.5)

Here the summation index k is based on the query sequence X = {(xi, ti)} by the warping

relation �(tk) = s⇤k. The local distance d(·, ·) is usually chosen as the Euclidean distance.

Compared to the identical warping function in Euclidean distance, the warping function

of DTW is an injective function when the query sequence is shorter than the reference

sequence (m < n), and vice versa, a surjective function when m > n.

To find the optimal warping function �, the dynamic programming is applied by evalu-

ating the distance cost d(Xi,Yj) for each observation in the query sequence ti. The se-

quential optimization framework is available for dynamic programming. To achieve the

overall minimum of the objective function D(X,Y), for each query sequence index, sk,

k = 1, . . . ,K(= max{m, n}), we find the minimum of the DTW distance of the previous

subsequence. In general, the DTW distance DTW(X,Y) is calculated recursively by the

following function.

D(X(k),Y⇤(k)) = d(Xk,Yk) +min

8>>>>>>>>>>><
>>>>>>>>>>>:

D(X(k),Y⇤(k � 1))

D(X(k � 1),Y⇤(k))

D(X(k � 1),Y⇤(k � 1)).

(3.6)

The optimal value of the global warped distance, DTW(X,Y), is dependent on the shape

of the warping function. In the original DTW, there are a few conditions [50] for a valid
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warping path�. Taking one warped pair �(tk) = s⇤k from the warping path� as an example,

we have tk = ti and s⇤k = s j and the following conditions:

• Monotonocity:

tk�1  tk and s⇤k�1  s⇤k;

• Continuity:

tk � tk�1  ti � ti�1 and s⇤k � s⇤k�1  s j � s j�1;

• Boundary:

�(t1) = s1, �(tm) = sn.

The monotonic warping path matches the order of the observation in the time-warped query

sequence, indicating the monotonic trend in the time domain. A continuous warping path

eliminates the jumping between matched points in the time axis. The allowable warping

path is then restricted to the adjacent cells in the distance matrix M. The boundary condition

exploits all information contained in both query and reference sequences by matching the

head and tail of sequences. It also matched the range of the warping path, K = max(m, n)

in Eq.(3.4).

The algorithm to calculate the DTW distance is in Algorithm 1. It has the time complexity

O(m ⇥ n). The other generalized DTW distances follow a similar dynamic programming

scheme.

An example of DTW is shown in Fig 3.1. Here we use the following two time series, with

the Uniform distribution Unif(�0.5, 0.5) as the fluctuation,

X = {(xi, ti)|ti = {1, . . . , 10}, xi = 2ti + Unif(�0.5, 0.5), x5 = 2t5 + Unif(�0.5, 0.5) � 2} ,

(3.7)

Y =
n
(y j, s j)|s j = {1, . . . , 10}, y j = 2s j + 1

o
. (3.8)
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The DTW distance is 8.978 based on the Euclidean distance as the local distance d(·, ·).

After the calculation of the local distance matrix M, the warping path is found by the

step pattern denoted in Eq.(3.6). An artificial noise is added to the reference time series,

x5 = 2t5 +Unif(0, 1)� 4, which leads to a pathetic alignment in both time series: Y3 and X6

match two points each. This phenomenon is the so-called singularity [36], which leads to

a further discussion on the modification of DTW.

Figure 3.1: The example of DTW local distance matrix M, warping path �(X,Y) and its
alignment �(ti) = s⇤j. We use the ’symmetric1’ step pattern which is in the middle of the
left plot.

Algorithm 1: Original Dynamic Time Warping
Data: Query X = {Xi = (xi, ti)|i = 1, . . . ,m}, Reference Y = {Yj = (yi, s j)|i = 1, . . . , n}
Input: Warping function, �(·, ·), Local distance metric, d(·, ·)
Output: Distance, D(X,Y) = Mm,n.
// Initialization

1 Generate cumulative distance matrix M(n+1,m+1) with Mi, j = 0 for i, j  1;
2 M0, j = Mi,0 = 1, for i 2 {1, . . . ,m}, j 2 {1, . . . , n};
3 for i = 1 to n do
4 for j = 1 to m do
5 cost = d(xi, y j);

// Update the cumulative distance matrix M.
6 Mi, j = cost +min

n
Mi, j�1,Mi�1, j,Mi�1,k�1

o
;
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3.1.1 Window Size and Slope Constraint

In practice, the original DTW is having the problem of singularity, especially when ref-

erence series X has di↵erent length compared to query series Y . When X has fewer ob-

servations than Y (m < n), there is at least one observed value pair, Xi = (xi, ti), distorted

to multiple observations in query series by warping function, and vice versa when m > n.

Another case is when m = n, it is possible to have a noisy data point which leads to a

similar pathetic matching shown in Fig 3.1. One approach to solve it is by introducing the

constraint of the warping window and the slope constraint which restricts the path of the

warping function:

• Adjustment window with window size w:
���t⇤k � s⇤k

���  w

• Slope constraint:

The path � should not be too steep or too shallow.

The adjustment window condition was first introduced in [50] to avoid a too excessive

matched timing di↵erence. When w = 0, the DTW degrades to the Euclidean distance

when choosing w = 0 and the boundary condition. An algorithm which implements the

Sakoe-Chiba band [50], i.e. the warping window is a band around the main diagonal (see

Fig 3.3), is shown as follows in Algorithm 2. The time complexity of Algorithm 2 is

O(mw).

An example is given to show the advantages and disadvantages of the warping window [33].

The reference time series is a cosine function, Y = cos(s j) in [0, 2⇡] while the query series

is X = sin(ti) + ✏i, ✏i ⇠ Unif(0,0.1). The global DTW result is shown in Fig 3.2. Most of

the query sequence have an ideal strictly increasing alignment with the reference sequence,

except for the beginning and the end of the sequence. Both the beginning sample of the

reference sequence (red, dashed line) and the last sample of the query sequence (black,
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Algorithm 2: DTW with Window w.
Data: Query X = {Xi = (xi, ti)|i = 1, . . . ,m}, Reference Y = {Yj = (yi, s j)|i = 1, . . . , n}
Input: Local distance metric, d(·, ·), window size, w
Output: Distance, D(X,Y) = Mm,n.
// Initialization

1 Generate cumulative distance matrix M(n+1,m+1) with Mi, j = 0 for i, j  1;
2 M0, j = Mi,0 = 1, for i 2 {1, . . . ,m}, j 2 {1, . . . , n};
3 w = max {w, |m � n|} . // When m , n, w � |m � n|.
4 for i = 1 to m do
5 for j = max{1, i � w} to min{n, i + w} do

// Constrained distance matrix.
6 cost = d(xi, y j);

// Update the cumulative distance matrix M.
7 Mi, j = cost +min

n
Mi, j�1,Mi�1, j,Mi�1,k�1

o
;

solid line) have multiple matches correspondingly. When changing the window size w

from 0 to 35, the number of samples with multiple matches increases. When w = 35, the

DTW distance with window w is the same as the global DTW in Fig 3.2. In DTW with

window size w, the increasing window size promotes the higher conformity of the warping

path of the global DTW. By this approach, there is no need to update the whole cumulative

distance matrix M, which improves the computation e�ciency dramatically.

The slope constraint restricts the slope of the warping path by the step pattern. The clas-

sic symmetic1 pattern is shown in Fig 3.1 and Eq.(3.6). This constraint prevents short

sequences from matching too long ones [50]. The condition is expressed as a ratio p/q

where p is the number of steps allowed in either the horizontal or vertical direction, q is

the number of steps allowed in a diagonal direction. Given p/q of a warping path, after p

steps in the same direction (horizontal or vertical), one is not allowed to step further in the

same direction without stepping at least q steps in the diagonal direction. One extreme case

is that p/q = 1, q = 0 indicates no diagonal steps are allowed, which means the warping

path is the identical function in the diagonal. In general, if two sequences are aligned away

from the diagonal too much, which means only a small amount of points are matched, the

overall slope will be large in order to achieve the global minimum of the distance. In prac-
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Figure 3.2: The local distance density plot and two-way time series matching plot. X and
Y have the same sampling frequency and timestamp.

Figure 3.3: Window size restricts the number of singularities. The warping path is wiggled
in the warping window boundary before reaching the global dtw optimal alignment.
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tice, the extreme o↵-diagonal warping path represents the visible discrepancy between the

query and reference sequence. So, the slope constraint makes little di↵erence in the error

of classification.

3.2 Time Warp Edit Distance

Before introducing Time Warp Edit Distance (TWED), we need to have a brief introduction

of the Editing Distance with Real Penalty (ERP) distance first. The ERP distance aims to

fix the non-metric property of elastic distance measures, such as DTW. Before introducing

the Editing distance with Real Penalty(ERP), we need to introduce the properties of the

metric. The metric d(·, ·) is a non-negative function which requires three properties:

• Symmetry:

d(x, y) = d(y, x);

• Identity of indiscernibles:

d(x, y) = 0 () x = y;

• Triangular inequality:

d(x, z)  d(x, y) + d(y, z).

The DTW distance satisfies the first property due to the warping function constraints. How-

ever, it violates the identity of indiscernibles and the triangular inequality with the following

examples [41]:

1. X = {1, 2, 2}, Y = {1, 2}, DTW(X,Y) = 0 but X , Y .

2. X = {1, 2, 2}, Y = {1, 2}, Z = {1}, DTW(X,Z) = 2 > DTW(X,Y) + DTW(Y,Z) = 1.

The edit distance was proposed to evaluate the dissimilarity between two strings accord-

ing to the minimum number of transforms required to change into another string. The

string edit distance is a metric which satisfies the triangular inequality [59]. The dynamic
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programming ideas are embedded according to di↵erent types of edit distance. The Leven-

shtein distance is the prototype of ERP distance, which allows three transforms, insertion,

deletion and substitution. Inspired by the idea of editing pattern, ERP distance is a gen-

eralization of Levenshtein distance to compare the dissimilarity between time series by

defining the local distance for editing transform, dERP [19].

dERP(Xk,Y⇤k ) =

8>>>>>>>>>>><
>>>>>>>>>>>:

|xk � y⇤k|, if xk, y⇤k are not gaps

|xk � g|, if y⇤k is a gap

|y⇤k � g|, if xk is a gap,

(3.9)

where g is a constant, which is usually fixed as 0. The ‘gap’ in Eq.(3.9) corresponds

to the insertion and deletion transforms defined in Levenshtein distance. Specifically,

to generalize the string editing transform, when we delete the Xk in reference sequence

X = {. . . , Xk�1, Xk, Xk+1, . . . }, there is a gap between Xk and Xk+1, which means X =

{. . . , Xk�1, Xk+1, . . . } then. In other words, if the query sequence is denoted as Y = {. . . ,Yk�1,Yk, . . . },

we are adding Xk to query sequence Y , which means Y = {. . . ,Yk�1, Xk,Yk, . . . } in order to

match X = {. . . , Xk�1, Xk, Xk+1, . . . }. So the deletion in the reference sequence X is equiv-

alent to the addition in the query sequence Y , and vice versa. Denote that the addition

element is regarded as the gap element. A penalty of filling the gap is defined by the L1-

norm from xk/y⇤k to the constant g. The ERP distance is the L1-norm in Rp which allows

local time shifting in essence [19]. Following the notation of subsequence, X(k) and Y(k),

the dynamic programming updating function is shown in Eq. (3.10).
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DERP(X(k),Y⇤(k)) = dERP(Xk,Y⇤k ) +min

8>>>>>>>>>>><
>>>>>>>>>>>:

DERP(X(k � 1),Y⇤(k � 1)), if xk, yk are not gaps

DERP(X(k � 1),Y⇤(k)), if yk is a gap

DERP(X(k � 1),Y⇤(k � 1)), if xk is a gap.
(3.10)

The ERP distance defined from the above equation satisfies the triangle inequality from the

definition of the above local distance in Eq. (3.9) [59]. Notice that the ERP distance is not

defined to include timestamp space T in Eq. (3.10). The Time Warp Edit Distance (TWED)

exploits timestamp in order to control the elasticity of the measure [41]. TWED uses the

maximum timestamp di↵erence threshold � to decide whether a pair of samples, (Xi,Yj) is

matched. If the time indices di↵erence between Xi and Yj, |i � j|, is larger than �, then Xi

and Yj are not ’matched’, which requires deletion transform in either X or Y and a penalty

�. The local cost distance of the TWED dTWED is then defined in Eq. (3.11)

dTWED(Xk,Y⇤k ) =

8>>>>>>>>>>><
>>>>>>>>>>>:

d(xk, xk�1) + ⌫d(tk, tk�1) + �, delete Xk

d(xk, y⇤k) + ⌫d(tk, s⇤k) + d(xk�1, y⇤k�1) + ⌫d(tk�1, s⇤k�1), match Xk and Y⇤k

d(y⇤k, y
⇤
k�1) + ⌫d(s⇤k, s

⇤
k�1) + �, delete Y⇤k .

(3.11)

Following the notation of subsequences, X(k) and Y(k), the dynamic programming updating

function of TWED is
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DTWED(X(k),Y⇤(k)) = dTWED(Xk,Y⇤k )+min

8>>>>>>>>>>><
>>>>>>>>>>>:

DTWED(X(k � 1),Y⇤(k)), delete Xk

DTWED(X(k � 1),Y⇤(k � 1)), match Xk and Y⇤k

DTWED(X(k),Y⇤(k � 1)), delete Y⇤k .
(3.12)

⌫ in Eq.(3.11) is the sti↵ness parameter which is a non-negative constant to control the

penalty of the time di↵erence between the pair of elements from query and reference time

series. It is common to use the absolute di↵erence, L1 norm, in timestamp space T .

Algorithm 3: Time Warp Edit Distance
Data: Query X = {Xi = (xi, ti)|i = 1, . . . ,m}, Reference Y = {Yj = (yi, s j)|i = 1, . . . , n}

Input: Warping function, �(·, ·), Local distance metric, d(·, ·)

Output: Distance, D(X,Y) = Mm,n.

// Initialization

1 Generate cumulative distance matrix M(n+1,m+1) with Mi, j = 0 for i, j  1;

2 M0, j = Mi,0 = 1, for i 2 {1, . . . ,m}, j 2 {1, . . . , n};

3 for i = 1 to n do

4 for j = 1 to m do

5 cost = dTWED(Xi,Yj);

// Update the cumulative distance matrix M.

6 Mi, j = cost +min
n
Mi, j�1,Mi�1, j,Mi�1,k�1

o
;

Similar to DTW, two toy time series defined in Eq.(3.8) are tested by TWED with parameter

� = ⌫ = 1. Calculated from Eq.(3.11) and Eq.(3.12), the TWED is 22.02. From the local

distance matrix in Figure 3.4, we recognize that there is no singularity shown in the warping

path, which is exactly the Euclidean distance. In this approach, the TWED reveals its

potential to detect the abnormality by choosing suitable parameters. A simulation of TWED

performance with di↵erent sets of parameters is included in the following section.
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Figure 3.4: The example of TWED local distance matrix M, warping path �(X,Y) and its
alignment �(ti) = s⇤j. We use the ’symmetric1’ step pattern which is in the middle of the
left plot.

3.3 Simulation Test

Before applying the DTW and TWED to the astrophysics dataset, a simulation pretest is

performed. The first part is about the distance distribution of two Gaussian white noises.

The theoretical distributions are derived for both Euclidean distance and DTW distance.

Then, a few experiments are conducted to test how TWED distance alleviates the impact of

distortion in amplitude, uneven sampling, missing value, noise and discontinuity compared

to DTW distance.

3.3.1 The Distribution of Distance

We list a preliminary test on the performance of Euclidean distance and DTW on Gaussian

white noise, N(0, 1). We denote that both query and reference time series, X and Y in

Eq.(3.2), follow the Gaussian white noise independently, X ⇠ N(0, 1), Y ⇠ N(0, 1).

From the definition of the Euclidean distance, the Euclidean distance is calculating the
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square root of the summation of the squared di↵erence between X and Y . Denote that

X,Y ⇠ N(0, 1) independently, then we have (X � Y)2/2 ⇠ �2(1). Notice that �2(1) is also a

Gamma distribution with shape k = 1
2 and scale ✓ = 2, denoted as �( 1

2 , 2). The Euclidean

distance between two Gaussian white noises is then distributed as a chi distribution.

1
p

2
dEuclidean(X,Y) =

vt
nX

i=1

(xi � yi)2

2
⇠ �(n), (3.13)

in which n = m are the lengths of X and Y correspondingly. A simulated result is shown in

the left plot of Figure 3.5, indicating a perfect fit of Eq.(3.13) and the distance distribution

under the Euclidean distance.

The situation for DTW distance is complicated due to the property of the warping path and

step pattern shape. We use the squared Euclidean distance d(x, y) = (x � y)2 as the local

distance metric for simplicity and generality. The step pattern of DTW is ’symmetric1’ as

shown in Figure 3.1.

From Algorithm 1 and Eq.(3.6), each matched pair of observations in the warping path

is the pair with the minimal distance among three pairs according to the step pattern,

e.g., min{d(xi, y j�1), d(xi�1, y j), d(xi�1, y j�1)} for ’symmetric1’ step pattern. Notice that each

distance value is the squared Euclidean distance between two independently distributed

normal random variables, which are Chi-square random variables with coe�cient 2, e.g.,

(xi � y j)2 ⇠ 2�2(1), which also means (xi � y j)2 ⇠ Gamma(↵ = 1
2 , ✓ = 4). Then for each

increment in the global DTW distance, the distance between matched pairs (xi, y⇤i ) is the

minimum of three correlated Chi-square (Gamma) random variables. Take d(xi�1, y j�1) and

d(xi, y j�1) as an example, the Pearson correlation coe�cient between them is
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Figure 3.5: The histogram of the Euclidean distance and DTW distance between two se-
quences of independent Gaussian white noise. There are 106 times trials. The query and
reference sequences have the same length (m = n = 100). The histogram in both plots are
the simulated distances. The left plot has the histogram of the Euclidean distance distribu-
tion. The red curve is the probability density of �(n) distribution derived from Eq.(3.13).
The right plot has the histogram of the DTW distance distribution. The blue curve is the
probability density curve of Eq.(3.15). It is estimated from the simulated sample by the
Monte Carlo method with a Gaussian kernel.
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Similarly, the Pearson correlation coe�cient of d(xi�1, y j) and d(xi�1, y j�1) is also 1
4 . d(xi, y j�1)

and d(xi�1, y j) are independently distributed. The covariance matrix will be useful in later
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simulation of the probability density function of DTW distance. Due to the fact that the

theoretical distribution of the minimum of three correlated Chi-square random variables

has no explicit expression, we use the Monte Carlo method to simulate it by Multivariate

Normal random vector as shown in the following equation. Denote D1, D2, D3 as the three

distance components, we have the minimum among these three, D(1) = min{D1,D2,D3} ,

simulated as follows

0
BBBBBBBBBBBBBBBBBB@

(xi�1 � yi�1)2

(xi�1 � yi)2

(xi � yi�1)2

1
CCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBB@

D2
1

D2
2

D2
3

1
CCCCCCCCCCCCCCCCCCA

, in which

0
BBBBBBBBBBBBBBBBBB@

D1

D2

D3

1
CCCCCCCCCCCCCCCCCCA

⇠ N

0
BBBBBBBBBBBBBBBBBB@

0
BBBBBBBBBBBBBBBBBB@

0

0

0

1
CCCCCCCCCCCCCCCCCCA

,

0
BBBBBBBBBBBBBBBBBB@

1 0.5 0.5

0.5 1 0

0.5 0 1

1
CCCCCCCCCCCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCA

. (3.14)

Then we analyze the composition of the DTW distance by its local distance increment.

Recall the definition of singularity in the warping path, which means there are the repeated

matched observations in either query or reference time series, e.g., the warping path with

the pattern {. . . , (s, j), (s + 1, j), . . . , (s + ks, j), . . . } has a consecutive singularity chunk

of length ks with repeated Yj from the reference series Y , starting from Xs and ending at

Xs+ks . The starting point of the singularity chunk is defined as canonical singularity with

index s. The length of a consecutive singularity chunk is denoted ks corresponding to each

canonical singularity index s. Then the warping path of the DTW distance consists of

uniquely matched pairs, {(i, i⇤)|i = 1, . . . ,NI}, and singularity chunks with the canonical

singularities {(s, s⇤)|s = 1, . . . ,NS }. Furthermore, for the singularity chunks with the same

length ks, e.g., {. . . , (s, j), . . . , (s + ks, j), . . . , (l, i), . . . , (l + kl, i), } in which ks = kl, the

canonical singularity chunks are independently distributed between each other. Then the

dependent distance part can be rearranged by the length of singularity chunks, ks. The set

of canonical singularities is then simplified as {(sk, s⇤k)|k = 1, . . . ,KD}, in which the sk is the

time index of the canonical singularities with a chunk of length k and KD is the maximum

length among all singularity chunks. We denote the number of singularity chunks of length

k as nk. Considering the boundary of DTW distance, the beginning and end of the warping
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k 1 2 3 4 5 6
n̂k 66 18 7 3 1 1

Table 3.1: Parameters used for Monte Carlo simulation of distribution defined in Eq.(3.15).
It is estimated from 106 times simulation of DTW distance of two Gaussian white noise
series of length 100.

path derives the local distance is D0 ⇠ 2�2(1), the DTW distance is then decomposed

as

dDTW(X,Y) =
KX

i=1

d(xi, y⇤i )

= d(x1, y1) + d(xn, yn) +
NIX

i=1

d(xi, y⇤i ) +
NDX

s=1

ksX

j=1

d(x j, y⇤s)

= (x1 � y1)2 + (xn � yn)2 +

NIX

i=1

(xi � y⇤i )2 +

NDX

s=1

ksX

j=1

(x j � y⇤s)
2

= (x1 � y1)2 + (xn � yn)2 +

NIX

i=1

(xi � y⇤i )2 +

KDX

k=1

nk

kX

j=1

(xsk+ j � y⇤sk
)2

= 2D0,1 + 2D0,n + 2
NIX

i=1

D(1),i +

KDX

k=1

k
nkX

j=1

D(1), j. (3.15)

In the above decomposition, the first summation includes all independent minimums among

three correlated Chi-square random variables, denoted as D(1),i with length NI. The second

part consists of the repeated observations which are arranged by their length k up to max-

imal singularity chunk length KD, in which D(1), j is independent of each other. Here, the

simplification is replacing the local distance (xsk+ j � y⇤sk
)2 with repeated matched element

y⇤sk
by the local distance (xsk�y⇤sk

)2 with it canonical singularity xsk . Then there is a constant

k indicating the duplicates.

To simulate the above distribution in Eq.(3.15), for 106 warping paths of DTW distance,

we record the average number n̄k of each canonical singularity with the same length k,
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including the number of independent non-singular local distance NI. We take the k into

consideration when parameter n̄k � 1 as shown in Table 3.1, which means relatively long

singularity chunks are removed in Monte Carlo simulation.Then we replace the distance in

Eq.(3.15) by the minimum distance D(1) defined from Eq.(3.14). In the right plot of Figure

3.5, the probability density curve derived from Eq.(3.14) with Gaussian kernel has a good

fit of the distribution of DTW distance of Gaussian white noise. In practice the long series

when only a tiny shift is observed, e.g., n̄1 in Table 3.1 is very large, we claim that DTW

distance follows a Gaussian distribution for simplicity.

The distribution of TWED distance is more complicated comparing to DTW because it

contains the information in time domain, which controls the deletion or matching operation

for both query and reference series. However, similar to DTW, we consider that TWED

distance follows a Gaussian distribution in the case of long series with tiny shifts. Besides

the distribution, the following subsection analyzes the sensitivity of TWED with respect to

its parameters.

3.3.2 TWED Parameter Choices

Recall the local distance of TWED in Eq. (3.11), we have two parameters, sti↵ness coe�-

cient ⌫ of time cost and penalty constant � of deletion, undetermined due to the relationship

of parameter magnitude is unknown to most situations. To reveal the performance of pa-

rameter combination, we apply the TWED with various sets of parameters, (�, ⌫), to two

white noises, Gaussian and Poisson. We then focus on the proportional contribution to the

TWED distance by the decomposition of the local distance defined in Eq. (3.11), which is

decomposed as
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(a) Gaussian white noise defined in Eq.(3.17)

(b) Poisson white noise defined in Eq.(3.18)

Figure 3.6: The TWED distance variation against parameters � and ⌫. The TWED is evalu-
ated between two sequences of independent Gaussian white noise and Poisson white noise.
The query and reference sequences have the same length (m = n = 100). The black curves
in both plots are the total distance of TWED. The dashed curves are distance contribu-
tions proportional to the total TWED distance, which is defined in Eq.(3.16). All curves
are smoothing curve modelled by a generalized additive model with a shrinkage of cubic
spline basis. The sti↵ness parameter is transformed by logarithm for a clear visualization
of the changes in distance and each component proportion.



Chapter 3 – Quantify Similarity between Time Series 34

(a) Gaussian white noise defined in Eq.(3.17) (b) Poisson white noise defined in Eq.(3.18)

Figure 3.7: The TWED distance surface of variation against the combination of parameters
� and ⌫. The TWED is evaluated between two sequences of independent Gaussian white
noise and Poisson white noise. The query and reference sequences have the same length
(m = n = 100). The red curves in both plots are the fitted trend between the distance of
TWED and parameter �, while the purple curves represent the relationship of parameter
ln(⌫) for a clear visualization. All marginal curves are smoothing curves modelled by a
generalized additive model with shrinkage of cubic spline basis.

dTWED(Xk,Y⇤k ) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

d(xk, xk�1) + ⌫d(tk, tk�1) + �|{z}
Cost of deletion penalty

, delete Xk

d(xk, y⇤k) + d(xk�1, y⇤k�1)|                       {z                       }
Cost in observed value

+ ⌫d(tk, s⇤k) + ⌫d(tk�1, s⇤k�1)|                         {z                         }
Sti↵ness cost controlled by time

, match Xk and Y⇤k

d(y⇤k, y
⇤
k�1) + ⌫d(s⇤k, s

⇤
k�1) + �, delete Y⇤k .

(3.16)

The cost in observed value, the sti↵ness cost controlled by time and the cost of deletion

penalty are corresponding to terms related to observed value xk, yk, time stamps, tk, sk and

penalty �. The relationships of distance proportion of each components are evaluated for

parameter grids in ⌫ 2 [10�3, 1] and � 2 [0, 10](Poisson), � 2 [0, 2](Gaussian), as shown in

Figure 3.6. From Figure 3.6a, the Gaussian white noise is generated from standard Gaus-

sian distribution in Eq.(3.17). The query sequence is added by 3 in each simulated value.
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The Gaussian white noise series are scaled in order to erase the e↵ect of magnitude di↵er-

ences. As a comparison, the Poisson white noise series remain their original magnitude in

Eq.(3.18).

X = {(xi, ti)|xi ⇠ N(3, 1)} , Y =
n
(y j, s j)|y j ⇠ N(0, 1)

o
. (3.17)

X = {(xi, ti)|xi ⇠ Poisson(10) + 3} , Y =
n
(y j, s j)|y j ⇠ Poisson(10)

o
, (3.18)

in which ti, s j 2 {1, . . . , 100}.

From Figures 3.6 and 3.7, there is a similar increasing trend of TWED distance when

� and ⌫ converge to a certain upper bound when both parameters, penalty parameter �

and sti↵ness parameter ⌫ increase. The values have a decreasing oscillation, indicating

the convergence with decreasing variance. Two parameters contribute to the TWED total

distance in two approaches.

• Penalty parameter �: indicates the proportion trend of match and deletion.

In the left plot of Figure 3.6a, the main e↵ect of penalty � in Gaussian white noise is

on the penalty cost of deletion: when � increases, the contribution of the penalty of

deletion increases first and then decreases with peak at about � ⇡ 0.7. As a trade-o↵,

the cost in observed value decreases first then increases to compensate the penalty

cost of deletion. When � > 1.5, the total distance is converging to the maximum,

accompanied by decreasing converged penalty cost of deletion.

A similar behaviour of � is shown in the left plot of Figure 3.6b. The peak point

of the proportion of deletion penalty is achieved when � ⇡ 3. As � is only shown

in the deletion operation, the range of penalty proportion indicates the proportion of

deletion operation.
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An ideal value of penalty parameter � is constrained by the tolerance of deletion

operation.

• Sti↵ness parameter ⌫: provide control on the matching operation.

In the right plot for sti↵ness parameter in Figure 3.6a, the increasing ln(⌫) has a de-

pression e↵ect on the distance proportion of deletion penalty, while sti↵ness distance

proportion of time increases first and then diminishes. The magnitude of oscillation

converges to 0 when ln(⌫) > 0, which is ⌫ > 1. The sti↵ness cost of time has an visi-

ble influence from ln(⌫) when �2  ln ⌫  0, which is 0.01  ⌫  1. This range can

be roughly estimated by the relative magnitude ratio between a range of observed

values and the range of time stamps in the scaled Gaussian white noise, which is

about 6/100 = 0.06. In order to contribute sti↵ness controlled by time, the sti↵ness

parameter ⌫ should be larger than 0.06, which is ln(⌫) � �1.22, as a compensation of

magnitude di↵erence between the observed value and time stamp.

In Poisson white noise in Figure 3.6a, the magnitude ratio between a range of ob-

served values and a range of timestamps is about 20/100 = 0.2. In order to contribute

sti↵ness controlled by time, the sti↵ness parameter ⌫ should be larger than 0.2, which

is ln(⌫) � �0.70.

The sti↵ness parameter is ⌫, which constrains the deletion operation by enlarging

the penalty in di↵erences in the time stamp. Though the proportion of sti↵ness cost

contributes little to the total distance, it has a non-negligible influence on the total

TWED distance when properly chosen by checking the magnitude ratio between a

range of observed values and a range of time stamps.

In practice, k-fold cross-validation is used to find the optimal �̂ and ⌫̂. We can choose

the best parameters by evaluating the average score, e.g., accuracy in classification model,

among the k splits of test data with a classification model trained by the corresponding

training data. Except for the traditional tuning methods, the grid search or randomized
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search of parameters, Bayesian optimization [54] can be used with the help of the distance

variation as shown in Figures 3.6 and 3.7.

3.4 Skorohod Distance

The Skorohod topology is a powerful tool to investigate stochastic process limits, which

allows a uniformly small deformation of the time scale. This is in close analogy to the

uncertainty principle [14], which reveals a fundamental lower bound of the precision in

measuring the position and momentum of a particle simultaneously. The distortion in time

naturally embodies the idea that the timestamp ti cannot be perfectly measured given that

the measured value of the position xi is accurate enough in one observation.

The Skorohod topology is defined on the Space D, which includes all real functions x on

[0,1] that are right continuous and have left-hand limits. These functions are called càdlàg

functions [14].

1. For 0  t < 1, x(t+) = lims#t x(s) exists and x(t+) = x(t).

2. For 0  t < 1, x(t�) = lims"t x(s) exists.

To evaluate the discontinuity, we introduce the uniform norm, ||x||. ||x|| is bounded in Space

D due to the property that there can be at most finitely many points t at which the jump

|x(t) � x(t�)| exceeds a given positive number [14].

||x|| = sup
t
|x(t)| < 1.

When x is the real function from [0, 1] to the vector space Rp, |x(t)| is the norm defined on

the vector space Rp, with notation kx(t)kp. Denote that x, y 2 D. The Skorohod distance

measures the uniform metric ||x � y�|| allowing small perturbations � in abscissa. Denote

that ⇤ is the set of strictly increasing, continuous mappings of [0, 1] onto itself. If � 2 ⇤,
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then �0 = 0 and �1 = 1. Let x and y be in the Space D. Denote d(x, y) as Skorohod distance

defined as the infimum of those positive ✏ for which there exists a � 2 ⇤ satisfying

sup
t
|�t � t| = sup

t
|t � ��1t| < ✏

sup
t
|x(t) � y(�t)| = sup

t
|x(��1t) � y(t)| < ✏.

By the uniform metric || · || and identity map I on [0, 1], a concise form of Skorohod distance

is defined as

dSkorohod(x, y) = inf
�
{||� � I|| _ ||x � y�||}. (3.19)

The Skorohod distance is a metric, and this is proved in Th.A.1. A modified Skorohod

distance, which is also a metric, is also defined, and this is proved in Th.A.2.

d⇤Skorohod(x, y) = inf
�
{||� � I|| + ||x � y�||}. (3.20)

3.4.1 Fréchet distance

To compute the Skorohod distance between two time series, we need to apply the discrete

Fréchet distance, which is defined on the polygonal curve of univariate time series [26].

The Fréchet distance is a measure of similarity between two curves mapping to vector

space Rp. Denote that these two curves are f : [af , bf ] �! Rp and g : [ag, bg] �! Rp.

dF( f , g) = inf
� f ,�g

max
0t1
|| f (� f (t)) � g(�g(t))||p, (3.21)

where || · ||p is the norm on vector space Rp, and where � f and �g are continuous and

strictly increasing bijective functions onto [af , bf ] and [ag, bg] [26]. A similar construction
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of Skorohod distance and Fréchet distance is shown in Eq.(3.19) and (3.21). In fact, the

two distances are exactly the same when choosing a proper norm on a generalized mapping

space of curve, Rp ⇥ T . Inspired by the work [26], from the definition of the generalized

Skorohod distance, we define a distance on ( f , t) = ( f (t), t) 2 Rp ⇥ T ,

k( f , t)k = || f (t)||p + |t|, (3.22)

where f : [af , bf ] �! Rp and || · ||p is the norm on vector space Rp. This is a norm which is

proved by Th.A.3. Notice that this norm k(·, ·)k is di↵erent from the uniform norm k · k due

to its domain. Then we have the following theorem which proves the equivalence between

Skorohod distance and Fréchet distance.

Theorem 3.4.1 Let x : [ax, bx] �! Rp and y : [ay, by] �! Rp be two polygonal curves. Then

we have

d⇤Skorohod(x, y) = dF(x, y).

Proof Firstly, notice that x and y are functions defined from [0, 1] to Rp, the norm of

x(t) and y(s) is kx(t)kp and ky(s)kp correspondingly. Then, we prove that d⇤Skorohod(x, y) 

dF(x, y), and dF(x, y)  d⇤Skorohod(x, y).

1. d⇤Skorohod(x, y)  dF(x, y). The time distortion is defined as �x, �y in Eq.(3.21). Then,
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we use the � : [ax, bx] �! [ay, by] defined as �(t) = �y(��1
x (t)). Then,

||� � I|| + ||x � y�|| = sup
t

�����y

⇣
��1

x (t)
⌘
� t

���� + sup
t

����x(t) � y
⇣
�y(��1

x (t))
⌘����

p

= max
✓

����y(✓) � �x(✓)
��� +max

✓

����x (�x(✓)) � y
⇣
�y(✓)

⌘����
p

where ��1
x (t) is denoted as ✓.

= max
✓

✓����x (�x(✓)) � y
⇣
�y(✓)

⌘����
p
+ |�x(✓) � �u(✓)|

◆

= max
✓

����
⇣
x, �y(✓)

⌘
�

⇣
y, �y(✓)

⌘����

= max
✓

����x (�x(✓)) � y
⇣
�y(✓)

⌘���� .

Thus, for every �x, �y, it is naturally to have a warping function that such that ||� �

I|| + ||x � y�|| = max✓
����x (�x(✓)) � y

⇣
�y(✓)

⌘����. Hence d⇤Skorohod(x, y)  dF(x, y).

2. dF(x, y)  d⇤Skorohod(x, y). The time warping function is defined as � : [ax, bx] �!

[ay, by]. Let �x : [0, 1] �! [ax, bx] defined as �x(✓) = (1 � ✓)ax + ✓bx. Let �y : [0, 1] �!

[ay, by] defined as �y(✓) = � ((1 � ✓)ax + ✓bx). We have �y(✓) = � (�x(✓)). Both �x

and �y satisfy the condition of a warping function in generalized Skorohod distance.

Then,

max
✓

����x (�x(✓)) � y
⇣
�y(✓)

⌘���� = max
✓

����
⇣
x, �y(✓)

⌘
�

⇣
y, �y(✓)

⌘����

= max
✓

✓����y(✓) � �x(✓)
��� +

����x (�x(✓)) � y
⇣
�y(✓)

⌘����
p

◆

= max
✓

����y(✓) � �x(✓)
��� +max

✓

����x (�x(✓)) � y
⇣
�y(✓)

⌘����
p

where �x(✓) is denoted as t.

= sup
t

�����y

⇣
��1

x (t)
⌘
� t

���� + sup
t

����x(t) � y
⇣
�y(��1

x (t))
⌘����

p

= k� � Ik + kx � y�k.

Thus, for every warping function �, it is naturally to have �x, �y such that
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max
✓

����x (�x(✓)) � y
⇣
�y(✓)

⌘���� = ||� � I|| + ||x � y�||.

Hence dF(x, y)  d⇤Skorohod(x, y).

As a result, in order to compute the generalized Skorohod distance, we can use Fréchet

distance by taking the norm defined in Eq.(3.22). To fit into the discrete situation, we are

using the discrete Fréchet distance derived from Eq.(3.21) to estimate dF(·, ·). Let X and

Y be two time series defined in Eq.(2.1), then the discrete Fréchet distance d⇤dF is defined

as

d⇤dF(X,Y) = min
�
{max

i

���X � Y⇤, ti � s⇤i
���} = min

�
{max

i
(kxi � y⇤i kp + |ti � s⇤i |)} (3.23)

Here the time warping function � is defined as �(ti) = s⇤i , and with conditions that ti 

ti+1 and s⇤i  s⇤i+1. The discrete Fréchet distance is selecting the minimum between all

alignments of pairs. An algorithm for computing the above discrete Fréchet distance is

also in a dynamic programming scheme [26].
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Algorithm 4: Discrete Fréchet distance
Data: Query X = {Xi = (xi, ti)|i = 1, . . . ,m}, Reference Y = {Yj = (yi, s j)|i = 1, . . . , n}

Input: Local distance metric, d(X,Y) = kX � Y, t � sk in Eq.(3.22)

Output: Distance, d⇤dF(X,Y) = ca(m, n), in which ca is the local distance matrix.

1 Function c(i, j):

2 if c(i, j) > �1 then

3 return ca(i, j);

4 else if i = 1 and j = 1 then

5 ca(i, j) := d(X1,Y1)

6 else if i > 1 and j = 1 then

7 ca(i, j) := max{c(i � 1, 1), d(Xi,Y1)}

8 else if i = 1 and j > 1 then

9 ca(i, j) := max{c(1, j � 1), d(X1,Yj)}

10 else if i > 1 and j > 1 then

11 ca(i, j) := max{min{c(i � 1, 1), c(i � 1, j � 1), c(i, j � 1)}, d(Xi,Y1)}

12 else

13 ca(i, j) := 1

14 return ca(i, j)

15

16 for i = 1 to n do

17 for j = 1 to m do

18 ca(i, j) := 1

19 return c(m, n)
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3.4.2 Comparison with TWED

In this section, we will be discussing the relationship between TWED and the generalized

Skorohod distance in a special case. The objective of the elastic distance based on a dy-

namic programming scheme is to find the optimal discrete alignment between two time

series, X = {Xi = (xi, ti)} and Y = {Yj = (y j, s j)}, by minimizing the cost of the matching

function �(·, ·),

X

i

d(Xi,Y⇤i ).

Here the Y⇤i = (y⇤i , s
⇤
i ) is a sequence aligned from the optimal path. That is to say the

following mapping �(ti) = s⇤i in the warping path �. The local distance matrix is usually

L1 and L2 norm. In order to compare with Skorohod distance, we use the L1 norm for the

univariate situation in the following analysis, e.g., d(x, y) = |x � y| and kxkp = |x| when

p = 1. Besides, it is natural to generalize the TWED to the multivariate time series by

choosing proper local distance d(·, ·) defined for elements in vector space Rp.

Notice both TWED and the generalized Skorohod distance have the timestamp information

included. A special case for TWED is matching every component by its diagonal when

choosing � = 0 and ⌫ = 1. By adding the timestamp di↵erence penalty to the absolute

distance, the distance cost of TWED becomes

X

i

|xi � y⇤i | + |ti � s⇤i | =
max(m,n)X

i=1

|x(ti) � y(�(ti))| + |ti � �(ti)|.

We can apply the generalized Skorohod distance, d⇤Skorohod(·, ·), to the time series with a

timestamp, which is the discretization of an intrinsic stochastic process. The modified

version of distance becomes:
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inf
�
{sup

i
|ti � �(ti)| + sup

i
|x(ti) � y(�(ti))|}.

Then we have the following inequality,

1
max(m, n)

max(m,n)X

i=1

|x(ti) � y(�(ti))| + |ti � �(ti)| 
 
sup

i
|x(ti) � y(�(ti))| + |ti � �(ti)|

!


 
sup

i
|x(ti) � y(�(ti))| + sup

i
|ti � �(ti)|

!
.

So, the ’average’ TWED distance with time penalty is a lower bound of the summation of

the uniform norm in both time and sample value spaces, which means

1
max(m, n)

max(m,n)X

i=1

|x(ti) � y(�(ti))| + |ti � �(ti)|  inf
�

 
sup

i
|x(ti) � y(�(ti))| + sup

i
|ti � �(ti)|

!
.

The generalized Skorohod distance is the infimum, which is the largest lower bound among
�
supi |x(ti) � y(�(ti))| + supi |ti � �(ti)|

�
. The TWED will provide a more dense grid when

mapping the time series information in Rp ⇥ T to R+.

3.5 Summary

This chapter introduces the definition, calculation and their relationship with each other.

Three types of elastic distance are introduced in this chapter, which are DTW, DTW with

window and TWED. Also, taking the time information into consideration, the Skorohod

distance are also introduced, which can be calculated by discrete Fréchet distance. Both

theoretical analysis and empirical simulations are conducted to all of these distances. They

will be applied to the real data for a thorough comparison.
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Chapter 4

4 Experiments and Discussion

This chapter lists the comparison between the elastic distance performance in UCR time

series database and two astrophysics datasets, photometric LSST light flux observations

and Gravitational Wave (GW) strain time series of each event observed in LIGO Hanford

detector’s Operation Run 1 and 2. In Section 4.1.1, the UCR dataset is used to compare the

performance between discrete Fréchet distance and the TWED distance in general cases in

order to check their performance. Then we apply the TWED in LSST datasets, with Eu-

clidean and DTW distance for a comparison in classification results in section 4.1.2.

For the data related to the GW detection, we introduce the relevant ideas and detection

mechanism in LIGO, Virgo and KAGRA Collaboration at the beginning of Section 4.2,

including a direct application of DTW distance to the real data. For the strain time series

of events in LIGO Hanford detectors, we establish a new pipeline in Section 4.2.2 which

gives an early warning of the arrival of the detection by giving the time region including

possible GW waveform by the idea of coincidence. The pros and cons of this early warning

pipeline are listed with the discussion on the non-detected events.

Apart from the published dataset, a simulated dataset of template bank of GW detection is

also generated to compare the performance of the elastics distance in shrinking the size of

the template bank, which is discussed in Section 4.2.1. We discuss the potential of applying

the shrunk template bank to the hierarchical detection pipeline, which requires our work in

the future.
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4.1 Application in Classification

As we already know, 1-Nearest Neighbor (1-NN) classification with DTW achieves state-

of-art performance. We apply the 1-NN approach to test the performance of the distance.

Let {Xn|1  n  N} be the test dataset and {Ym|1  m  M} be the training dataset.

The class for each object is denoted as C(Xn). The evaluation pipeline is divided into two

parts.

Firstly, we calculate the distance between samples. For distance without any parameter,

such as Euclidean distance, DTW and Fréchet distance, we directly calculate the distance

between samples from test and training datasets, d(Xn,Ym). For distance with parameters,

which are DTW with window and TWED, we follow the leave-one-out cross-validation

(LOOCV) in the training datasets to find the optimal parameters corresponding to minimal

classification error. Then we calculate the distance between samples from test and training

datasets given the optimal parameters.

Secondly, we list the nearest neighbour for each query time series. When there is a tie

of the minimal distance between multiple reference time series objects, e.g., d(Xn,Ym1) =

d(Xn,Ym2) which are both minimal distance, we randomly choose one among those refer-

ence time series for simplicity and generality. Predicted by comparing with the training

set, the predicted class is denoted as C⇤(Xn). The accuracy is computed by the indicator

function (·) as follows,

Accuracy =
NX

n=1

(C⇤(Xn) = C(Xn)) . (4.1)

For a specific distance measure, the larger accuracy provides evidence of a better perfor-

mance in similarity comparison between two time series in one dataset. We implement one

package dtwCpp including the distance algorithm written in Cpp in order to parallelize the
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classification pipeline for faster speed.

4.1.1 Baseline: UCR Database

The UEA & UCR Time Series Classification repository is an important database in the do-

main of Time Series data mining due to its abundance, diversity and authenticity [23].

When comparing the performance of each classifier over all datasets in UCR, we rank the

accuracy of each classifier for each dataset in descending order and compare it with the

critical di↵erence, CD, defined as follows

CD = q↵

r
k(k + 1)

6N
, (4.2)

where k is the number of classifiers, N is the number of datasets, and critical values q↵

are based on the Studentized range statistic divided by
p

2 as show in Table 5(a) of [24].

We draw the critical di↵erence diagram [24] according to the classification accuracy with

significance level ↵ = 0.05 to visualize the performance between distance metric perfor-

mance in 1-NN in Figure 4.1. In the case of 69 datasets from the UCR database, the CD is

0.69.

A lower average rank in descending order means better accuracy among all classifiers. The

black solid bars indicate cliques, within which there is no significant di↵erence in rank.

Tests are performed with the sign rank test using the Holm correction [24]. The TWED has

the leading rank compared with the other four. It outperforms DTW with optimal window

w and has an insignificant di↵erence compared with DTW with full window. Though the

discrete Fréchet distance has the biggest average accuracy rank, it still outperforms others

on a few datasets, such as Co↵ee, ECG200, MoteStrain, OliveOil, and so on. According to

the analysis among these datasets [2, 23], it might be because of the sensitivity of Fréchet

distance to the local features, e.g, the sudden changes in the slope, taking ECG200 and
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MoteStrain as examples shown in Figure 4.2. These outstanding accuracy ranks indicate the

potential of discrete Fréchet distance in certain patterns, e.g., curves showing discontinuity.

We will apply these elastic distances in the following astrophysical datasets.

Figure 4.1: The critical di↵erence plot to compare the average accuracy rank in descending
order between distance metrics.

(a) ECG200 (b) MoteStrain

Figure 4.2: Examples from two datasets, ECG200 and MoteStrain, from UCR database [2].
In ECG200, Class 1 shows the frequent change in slope with a bumpy curve while Class
-1 is relatively smooth. In MoteStrain, both classes show a sudden decrease but at di↵erent
location.
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Table 4.1: Table of accuracy by 1-NN on each test dataset. Four distance evaluation meth-
ods are applied. DTW with window and TWED are using trained best parameters in eval-
uating the test datasets. The first row lists the average of the accuracy rank in descending
order.

Euclidean DTW(w) DTW full Fréchet TWED

Average Accuracy

Rank (Descending)
3.32 2.62 3.10 3.42 2.54

Adiac 0.61 0.61 0.60 0.58 0.62

ArrowHead 0.80 0.80 0.70 0.69 0.79

Beef 0.67 0.67 0.63 0.63 0.67

BeetleFly 0.75 0.70 0.70 0.70 0.75

BirdChicken 0.55 0.70 0.75 0.75 0.8

BME 0.83 0.97 0.89 0.84 0.82

Car 0.73 0.77 0.73 0.65 0.85

CBF 0.85 0.99 1.00 0.97 1.00

Chinatown 0.95 0.95 0.97 0.95 0.94

Co↵ee 0.65 0.65 0.65 0.96 0.63

DiatomSizeReduction 1 1 1 0.98 0.96

DistalPhalanxOutlineAgeGroup 0.94 0.94 0.97 0.71 0.93

DistalPhalanxOutlineCorrect 0.63 0.63 0.77 0.71 0.73

DistalPhalanxTW 0.72 0.73 0.72 0.60 0.73

ECG200 0.63 0.63 0.59 0.75 0.60

ECGFiveDays 0.50 0.49 1 0.72 0.56

FaceAll 0.78 0.78 1 0.77 0.72

FaceFour 0.83 0.83 1 0.56 0.98

FacesUCR 0.88 0.88 0.77 0.73 0.89

Fish 0.93 0.92 0.92 0.69 0.93
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GunPoint 0.80 0.80 0.77 0.79 0.84

Ham 0.71 0.81 0.81 0.48 0.81

Herring 0.78 0.89 0.83 0.53 0.97

ItalyPowerDemand 0.77 0.91 0.91 0.91 0.97

Lightning2 0.78 0.84 0.82 0.72 0.91

Lightning7 0.68 0.68 0.76 0.48 0.71

Meat 0.84 0.84 0.80 0.88 0.92

MedicalImages 0.91 0.91 0.91 0.68 0.96

MiddlePhalanx-

OutlineAgeGroup
0.97 1.00 0.98 0.52 0.98

MiddlePhalanx-

OutlineCorrect
0.99 0.99 0.98 0.70 1.00

MiddlePhalanxTW 1.00 1.00 1.00 0.46 1.00

MoteStrain 0.60 0.60 0.47 0.76 0.51

OliveOil 0.52 0.53 0.53 0.77 0.48

OSULeaf 0.68 0.84 0.84 0.52 0.79

Plane 1.00 1.00 1.00 1.00 1.00

ProximalPhalanx-

OutlineAgeGroup
1.00 1.00 1.00 0.78 1.00

ProximalPhalanxOutlineCorrect 0.56 0.59 0.36 0.79 0.57

ProximalPhalanxTW 0.96 0.96 0.95 0.71 0.95

ShapeletSim 0.75 0.87 0.87 0.57 0.83

SonyAIBORobotSurface1 0.58 0.71 0.73 0.68 0.74

SonyAIBORobotSurface2 0.93 0.93 0.93 0.77 0.93

SwedishLeaf 0.68 0.75 0.74 0.75 0.746

Symbols 0.95 0.92 0.88 0.89 0.90

SyntheticControl 0.52 0.52 0.50 0.97 0.51
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ToeSegmentation1 0.77 0.77 0.70 0.69 0.77

ToeSegmentation2 0.51 0.51 0.51 0.74 0.52

Trace 0.88 0.87 0.84 1.00 0.87

TwoLeadECG 0.87 0.87 0.83 0.91 0.83

Wine 0.52 0.61 0.59 0.54 0.79

WordSynonyms 0.96 1.00 1.00 0.53 1.00

DodgerLoopDay 0.41 0.40 0.39 0.29 0.96

DodgerLoopGame 0.79 0.79 0.81 0.80 0.79

DodgerLoopWeekend 0.81 0.79 0.78 0.87 0.78

FreezerSmallTrain 0.71 0.76 0.76 0.81 0.70

Fungi 0.64 0.64 0.54 0.57 0.62

GunPointAgeSpan 0.54 0.70 0.65 0.98 0.87

GunPointMaleVersusFemale 0.95 0.97 0.83 0.96 1.00

GunPointOldVersusYoung 0.70 0.70 0.73 1.00 0.69

HouseTwenty 0.86 0.86 0.83 0.54 0.87

InsectEPGRegularTrain 0.79 0.85 0.79 1.00 0.89

InsectEPGSmallTrain 0.90 0.94 0.95 1.00 0.84

MelbournePedestrian 0.88 0.98 0.993 0.84 0.98

PowerCons 0.68 0.75 0.77 0.85 0.81

Rock 0.81 0.91 0.84 0.50 0.95

SmoothSubspace 0.76 0.99 1.00 0.63 0.89

UMD 0.75 0.87 0.90 0.88 0.93

ChlorineConcentration 0.79 0.92 0.85 0.64 0.76

ECG5000 0.61 0.61 0.57 0.91 0.65

InsectWingbeatSound 0.62 0.74 0.65 0.21 0.77
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4.1.2 LSST Light Flux Time Series Classification

The LSST light flux time series dataset is a simulated dataset [37] which was included in a

Kaggle competition [57] as a rehearsal of the observations from the Large Synoptic Survey

Telescope (LSST). One sample of the time series data with multiple channels is shown in

Figure 2.3 in Chapter 2. The objective is to classify astronomical objects by their variation

in brightness in multiple passbands. In this particular dataset, a time series object is denoted

as Xn = {X1,n,X2,n, . . . ,X6,n}, corresponding to a. collection of the univariate time series

Xk,n in each passband, where k = 1, . . . , 6. Here passband index k matches the wavelength

range ugrizy of the filter passband.

To deal with the multivariate time series shown as the light flux from multiple filtering

passbands, a loosely univariate classification scheme is applied. For each pair of the ob-

jects, (Xn,Ym), we compute the classification error in each dimension of the time series,

e.g., compute the distance d(X1,n,Y1,m) between two univariate time series. Then we apply

the 1-NN to find the nearest neighbour class C⇤(Xn) in each passband dimension, denoted

as {C⇤(X1,n), . . . ,C⇤(X6,n)}. Notice that the query time series has various patterns among

the passband, resulting in a multiple label in the predicted class tuple. E.g., C⇤(X1,n) = 16

means X1,n has a similar time series pattern matched with one object of eclipsing binary

stars in passband u, while C⇤(X2,n) = 88 means X2,n has a similar time series pattern

matched with one object of active galactic nuclei in passband u. As a tuple of 6 dimen-

sions, two approaches are raised to derive the class. The first approach is to using the mode

of {C⇤(X1,n), . . . ,C⇤(X6,n)},

C⇤Mode(Xn) = Mode({C⇤(X1,n), . . . ,C⇤(X6,n)}).

Then we compute the accuracy defined in Eq.(4.1) by C⇤Mode(Xn).



Chapter 4 – Experiments and Discussion 53

Distance Loose Accuracy Mode Accuracy
Euclidean 0.73 0.42
DTW full 0.72 0.42
DTW(w) 0.73 0.41
TWED 0.74 0.43

Table 4.2: Accuracy comparison between four distances with 1-NN.

Mode Accuracy =
NX

n=1

�
C⇤Mode(Xn) = C(Xn)

�
. (4.3)

Another approach is that of loosely matching. As long as one of the predicted classes

among {C⇤(X1,n), . . . ,C⇤(X6,n)} matches the real class, we mark this as corrected classified.

Then the loose accuracy rate becomes

Loose Accuracy =
NX

n=1

�
C(Xn) 2 {C⇤(X1,n), . . . ,C⇤(X6,n)}� . (4.4)

Notice that the mode accuracy has a more strict matching condition than loose accuracy,

leading to a small accuracy. Both of the loose accuracy and mode accuracy are listed in the

following table.

From the result shown above, we notice that TWED outperform others in both loose ac-

curacy and mode accuracy. Another observation is that both DTW methods, full window

or optimal window, are less accurate than Euclidean distance. This is because the query

and reference time series in the dataset have di↵erent lengths in the observation. The ne-

glect of the timestamp information leads to multiple singularities in the warping path by

DTW. Apart from that, the calculation of discrete Fréchet distance is limited by the prob-

lem of out-of-memory. So we exclude Fréchet distance from the LSST dataset at this

moment.
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4.2 Application in GW Detection

Aiming to discover the application of DTW and its variants in GW detection, this section

make numerical experiments of all distances mentioned in Chapter 3 to simulated template

data and the open-source GW observatory data [15]. Our application is based on one search

pipeline, PyCBC [47, 58], which established the foundation of the first gravitational-wave

signal detection by the LIGO-Virgo Scientific Group, event name GW150914, on Septem-

ber 14 2015 [13] during their first observing run (O1). We will first introduce the fundamen-

tal components and mechanisms of a standard and valid search pipeline of the gravitational

wave.

Each LIGO detector collects the strain data time series d from the interferometer, which is

written as the sum of the GW signal h and the noise n, such that

d = h + n (4.5)

The GW signal h is usually numerically simulated under the result of the solutions of Ein-

stein’s equations with parameter ✓, denoted as h(✓), e.g., the Taylor family of the waveform

for the spinning coalescing binaries. For most numerical models, the parameter set ✓ con-

tains signal amplitude A in the detector, phase � of the sinusoidally-varying signal, masses

m and spins of the components, and the arrival time t of the signal [28].

An ideal assumption on the noise n can be considered as independent, stationary and Gaus-

sian noise between each independent detector. Denote the S n( f ) as the power spectral

density of noise n, which can only be estimated from data among every detector, LIGO

and Virgo applied matched-filtering analyses to find the optimal parameterized GW signal

h(✓̂). The matched filter is the optimal filter for detecting a known waveform in stationary

Gaussian noise [28], defined as the following noise-weighted inner product:
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(d | h(✓)) = 2
Z 1

0

d̃( f ) ˜h(✓)⇤( f ) + d̃⇤( f ) ˜h(✓)( f )
S n( f )

d f (4.6)

This notation of noise-weighted inner product is the core of the hypothesis testing to

identify candidate signals in LIGO-Virgo data, comparing null hypothesis, H0, that data

contains noise only, to the signal hypothesis, H1, that data contains both noise and a

gravitational-wave signal h(✓) parameterized by ✓. For simplicity, under the null and

alternative hypothesis, the probability of the observed strain data d can be written as

p(d | H0) = p0(d) and p(d | H1) = p1(d).

According to Baye’s theorem, the probability of a detection H1 given the observed strain

data d, the posterior probability, is

p(H1 | d) =
p(H1)p1(d)

p(H0)p0(d) + p(H1)p1(d)
=

p1(d)
p0(d)

"
p1(d)
p0(d)

+
p(H0)
p(H1)

#�1

, (4.7)

where p(H0) and p(H1) are prior beliefs of whether the data includes or excludes a sig-

nal. The posterior probability is monotonic in the likelihood ratio when fixing the ratio of

⇤(d|✓) = p(H0)/p(H1). Under the ideal assumption of Gaussian noise, with the noise-

weighted inner product notation, the log of the likelihood ratio is split into two parts

log⇤(d|✓) = (d | h(✓)) � 1
2

(h(✓) | h(✓)) (4.8)

The maximum value of ⇤(d|✓) over unknown parameters ✓ corresponds to the optimal

parameters ✓̂ for the template h(✓). As the linearity between the term of matched-filter

(d | h(✓)) and the log of the likelihood ratio log⇤(d|✓), the inner product (d | h(✓)) will be

maximized if the optimal GW signal h(✓̂) exists. Based on the above derivations, a basic

procedure for the detection of a signal in LIGO and Virgo can be summarized as follows

[28]:
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• Establish template bank with the template waveform h(✓) by a multiple selection

among the parameter set {✓}.

• Apply the matched filter to each chunk of the strain data for each template.

• Determine the optimal parameter ✓̂, including the detection time t̂ from matched

filter.

Besides the simplified pipeline above, there are more sophisticated methodologies and in-

sightful analyses spreading in the numerous details of GW pipeline. For example, informa-

tion between detectors is also applied in the confirmation of detection, e.g., the coincidence

check which limits the time di↵erence between possible signals in each detector to guaran-

tee the time-shift and exclude the non-GW glitches [58]. In this section we will introduce

the aspects of templates and detection, exploring the application of DTW and its variants

in the GW domain by starting with a first example.

At first, we concentrate on constructing a DTW-based ‘inner-product’ like matched-filtering.

As the first experiment of the DTW directly to the data, we found that the hidden signal

from background noise in the observatory GW data is the major obstacle to applying DTW

to the direct detection of a gravitational-wave signal, as shown in Figure 4.3, taking the first

detected event of gravitational wave GW150914 [13] as an example. The sampling fre-

quency of the strain data is 4096 Hz and the strain data has a duration of 4 seconds around

the detection time, indicated in the red vertical line. The calculation of the DTW distance

Applying sliding window of window size = 0.25 second and forward size = 0.03125 sec-

ond, the DTW distance within each window is calculated between LIGO-Hanford(H1) and

LIGO-Livingston(L1). The window size is chosen to cover the whole length of the signal,

which is approximately 200ms [3]. The 95% confidence interval is inside two grey lines

in the plot. Only a few of the data points are outside of the 95% of the confidence inter-

val, none of them near the middle line of the detection. Indicated from the strain series

from Figure 4.3, DTW and its variants are quite sensitive to the shape of both reference and
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query sequences, which means a detection purely from the shape information is not enough

to capture a GW signal. This first experiment also enlightens us to find in each component,

signal model template h(✓), and noise n, instead of finding a similar ‘inner-product’ directly

to the strain data d.

The noise-free signal template h(✓) purely depends on the shape of the template without

the randomness of the background noise, leading us to apply the DTW and its variants to

shrink the size of the template banks by excluding similar templates. A simple experiment

is done in Section 4.2.1 by DTW distance. We can also compromise on the false alarm rate

to construct the pipeline of template-free early warning of detection without the knowledge

of the templates model, including the idea of ‘coincidence’ only, with details in Section

4.2.2.

Figure 4.3: The lower graph shows the original strain data from observatory Hanford(H1)
and Livingston(L1). The upper graph shows the DTW distance calculated between two
strain series.

4.2.1 Shrinking the Template Bank

In this section, we will introduce the application of elastic distance in shrinking the size

of the template bank, with the idea of similarity between GW signal h, starting with the
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background introduction of the generation of templates used by LIGO and Virgo in the

detection of the coalescence of compact binary objects, e.g., the merger of binary black

holes.

In solving Einstein’s field equation of general relativity, Post-Newtonian (PN) approxima-

tion is a perturbative expansion to approximate the metric tensor around a weak gravita-

tional field with increasing accuracy beyond the Newtonian limit [42], e.g., TaylorF2 and

SpinTaylorT2 used in our simulated toy dataset. When the waveform propagates to the

detectors, the strain data will show a sinusoidally-varying signal [28], expressed by the fol-

lowing equation with time in the detector t, signal amplitude A, the phase � and physical

parameters ✓,

h(t, ✓) = Ap(t, ✓) cos � + Aq(t, ✓) sin �, (4.9)

where p(t, ✓) and q(t, ✓) are in-phase (cosine) and quadrature-phase (sine) waveform.

The process of binary black hole merger has multiple physical parameters which expands

into a 17-dimensional parameter space [18], denoted as⇥. the component masses (m1, m2),

the component spin vectors (S1, S2), the eccentricity e and phase of perihelion �, the right

ascension and declination of the source (↵, �), the distance r, the inclination angle ⌘, the

polarization phase �, the orbital phase at coalescence �c and the time at coalescence tc.

When emitting as a gravitational wave under certain assumptions, e.g., non-precessing and

spin-weighted spherical-harmonic mode, physicists simplify the parameters further to de-

tect GW signals, with only remaining intrinsic parameters by mathematical simplification

in maximizing the log-likelihood ratio.

As the linearity between matched-filter (d | h(✓)) and the log likelihood in Eq.(4.8), the pa-

rameter ✓̂ is estimated with the largest matched-filter (✓̂|d) by filtering all candidate wave-

form against the real data d = h + n. As the detection of GW is achieved by trial and



Chapter 4 – Experiments and Discussion 59

error, we need a so-called template bank, {✓} ⇢ ⇥, which is a set of template waves with

various parameters inside the parameter space of interest. To cover the possible GW events

as much as possible, the template bank should obtain the sensitivity over the complete pa-

rameter space ⇥. We can evaluate the ‘completeness’ of a template bank against a putative

simulation of waveform h(✓sim) with parameter ✓sim 2 ⇥ before the real detection in order

to find a complete and e↵ectual template bank.

For any parameter in template bank, ✓ 2 {✓}, we define the overlap O(✓|✓sim) between the

template h(✓) against the putative simulation h(✓sim),

O(✓|✓sim) ⌘ ⇢(✓|✓sim)
⇢opt(✓sim)

, (4.10)

where ⇢(· | ·) is the matched-filter signal-to-noise ratio (SNR) defined as follows

⇢(✓1 | ✓2) ⌘ |(h(✓1) | h(✓2))|
p

(h(✓1) | h(✓1))
, (4.11)

and ⇢opt is optimal SNR when ✓ = ✓sim, meaning ⇢opt(✓sim) =
p

(h(✓sim) | h(✓sim)). A larger

overlap O(✓|✓sim) 2 [0, 1] means the template is closer to the simulated waveform. As

a criterion of the ‘completeness’ of a template bank, the ‘e↵ectualness’ for any putative

simulated waveform h(✓sim) is defined as the largest overlap between the signal against all

templates

E({✓}) = max
✓
O(✓|✓sim). (4.12)

Due to the computational cost, a template bank with size n✓ should have enough templates.

From a first check of one pair in a toy dataset of template bank as shown in Figure 4.4,

we found that the template with maximal DTW distance is quite di↵erent compared to the

other one in both shape and magnitude. In order to shrink the size of the template bank, we
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(a) Two templates with minimal DTW (b) Two templates with maximal DTW

Figure 4.4: Two pairs of templates with the minimal and maximal DTW distance among all
pairs of templates from a template bank. The reference sequence is in blue line while the
query sequence is in green. There are large di↵erences between the templates generated.

apply DTW and its variants to the similarity between templates to shrink the size n✓ of the

template bank. The procedures are:

Data Preparation Construct the template bank {✓}, simulated signals {✓sim} and the back-

ground noise from any power spectral density.

Template Evaluation For each pair of simulated signal and template, calculate the overlap

O(✓|✓sim) and E↵ectualness E({✓}).

Elastic Distance Calculate the elastic distance D(h(✓i),h(✓ j)) between each pair of tem-

plates and the total distance D(h(✓i)) =
P

j,i D(h(✓i),h(✓ j)) of one template with

other rest of templates.

Shrinking Template Bank Set a threshold, e.g., 0.05, to remove those with the smallest

ascending rank. Compute the E↵ectualness E({✓}shrunk) of the shrunk template bank

{✓}shrunk.

For simplicity, in the toy dataset for the experiment, we consider only the one pair of

intrinsic parameters of the gravitational wave to form a 2-dimensional parameter space

⇥ = {m1,m2}, which are component mass for the simulation and the component mass

m1,m2 2 [2M�, 3M�] and total masses Mtotal 2 [4M�, 5M�] with solar mass M�. The
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parameter of interest is placed in a globally flat coordinate system at 3.5 PN order [9]. With

the usage of the hexagonal lattice algorithm with the ⇠i coordinate system [17] inherited in

the code of non spinning bank placement, pycbc_geom_nonspinbank from PyCBC [9],

the size of the template bank n✓ = 479.

For the choice of templates, the PN model we used is TaylorF2, which is derived by ex-

panding the phase of the gravitational waveform in terms of post-Newtonian corrections

[40]. For the simulated waveform, which is desired to be as precise as possible to simulate

the real waveform, we choose SpinTaylorT4. It implements the spin-orbit and spin-spin in-

teractions to higher post-Newtonian orders [40], meaning a higher precision compared with

TaylorF2. Two models have the same setting in phase order=3 and spin order=3.

The 10 putative simulations of the waveform are uniformly injected into the 10 seconds of

background noise. We generate the background noise from a PSD curve, which is labelled

as aLIGOAdVO4T1800545 from PyCBC module [10]. This PSD curve shows the signal’s

power distribution versus the frequency of the background noise for multiple localization

areas [5], during the operation run O4 of Advanced LIGO and Advanced Virgo, which

has its first period O4a done from 15:00 UTC 24 May 2023, and ended at 16:00 UTC 16

January 2024 [6, 29].

We list the distribution of m1 and m2 with di↵erent sizes indicating the value of overlap,

the distribution of overlap against chirp massM = Mtotal(m1m2/M2
total)

3/5 and the distance

for the templates to be removed with three distance, Euclidean, DTW and TWED. TWED

distance has the default setting of penalty � = 0.1 and sti↵ness ⌫ = 0.1. The total distance of

the template is 20 seconds with a sampling frequency of 4096 Hz. Due to the computational

complexity of DTW and TWED distance, we compute the elastic distance on the last 1

second of data, with 4096 data points, which includes the part of the inspiral and merger

phase when parameters only vary in component masses.

According to our simulation result, by setting the threshold of 5% size of shrinkage, the
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e↵ectualness of the shrunk template doesn’t change for each simulated signal for TWED

and Euclidean distance as shown in Figure 4.5 and Figure 4.7. However, there are two

issues require further discussion in the application of DTW distance.

For DTW distance in Figure 4.6, the template with parameters {m1 = 2.857M�,m2 =

2.104M�} has the smallest total distance against all other templates but also has a high level

of overlap and achieves the largest overlap or the e↵ectualness for one simulated template.

One possible reason for this contradiction for this template is due to the inverse exponential

relationship between overlap and total DTW distance shown in the right corner graph of

Figure 4.6. A small total distance has large varying values of overlap, which cannot be

perfectly distinguished inside them. Besides that, another possible reason is the closely

distributed simulated waveform as shown in Figure 4.8: two simulation waveforms with

dark cyan have similar shapes and magnitudes which both match the template with high

overlap values. This corresponds to the cluster of the e↵ectualness pair of template and

simulation waveform in Figure 4.6.

Another interesting phenomenon is about the TWED distance shown in Figure 4.7: the

distribution of overlap against total TWED distance and against the chirp mass M are

vertically mirror-flipped. This might be because of adding the time domain information

in TWED, which adds the phase information between each template. TWED distance

has better separation of templates among the group of low total distance and the group of

largest overlap compared with DTW. This requires further simulation on a larger template

bank and properly distributed simulated waveform.

Other criteria are also available for the discussion of the e↵ectualness of template bank, e.g.,

minimal match, which requires that a template bank such that any simulated waveform has

an e↵ectualness bigger than the minimal match [18], ending up with an e↵ectual template

bank. In the practice of LIGO and Virgo templates for detecting GW signals, the minimal

match is usually set as 97%. Applying this idea to our experiment, most of the excluded
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templates are located in this region, which again reveals the e↵ectiveness of similarity

comparison in shrinking the template bank. However, due to the toy template bank we are

using, this requires further verification in large-scale simulation.

As shown above, this elastic distance idea is valid in describing the internal structure inside

the template bank, which can also be applied in the detection pipeline in a hierarchical

approach. As the distance information reveals partially the property of the template, we

first compare the signal with those templates with higher total elastic distance and go to the

rest of the templates with less total elastic distance, until we find the desired optimal signals

or iterate over all templates inside an e↵ectual template bank. The possible drawbacks of

this hierarchical model are the usage of shape information in the time domain, the high

computational complexity of DTW/TWED as the element-by-element comparison in time

series [45], and the lack of physical domain knowledge. It is promising to apply other

elastic distance, e.g., fastDTW with almost linear complexity [51], and combining with the

physical mechanism of templates, e.g., two-stage hierarchical search pipeline by searching

on a smaller and coarser template bank first and then search over a finer parameter space

from the first stage search [43, 55] to overcome those drawbacks.
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Figure 4.5: Application of Euclidean distance to the template bank and comparison with
matched-filter overlap. In the above two distribution graphs, each point represents the
matched-filter overlap between one template and one simulated wave. Those templates to
be excluded gather around the tail of the larger chirp distribution. The templates which
have the largest overlap, the e↵ectualness E({✓}), are in blue and the templates which have
the closest total distance inside the bank are in red. In the lower right corner, the graph
shows the distribution between the overlap value and the total Euclidean distance, which is
Gaussian-like distributed.
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Figure 4.6: Application of DTW distance to the template bank and comparison with
matched-filter overlap. There is an overlapping in the templates to be excluded (red) and
the templates to have the largest overlap (blue), which is abnormal. The parameter of this
template is labelled in the following graphs which have a quite small total distance. The
graph in the lower right corner shows the distribution between the overlap value and the
total Euclidean distance, which shows an inverse exponential of the total DTW distance
against the overlap value.
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Figure 4.7: Application of TWED distance to the template bank and comparison with
matched-filter overlap. A similar vertically mirror-flipped shape can be found in the distri-
bution of overlap against chirp mass and the total TWED distance.

Figure 4.8: The strain trend of the abnormal template shown in Figure 4.6 against 10 sim-
ulated waveform in the last 0.005 seconds. There are two possible injections with high
overlap values shown as two darker cyan-blue lines. Though there are time lags between
them and the template which can be eliminated by estimating detection time, the higher
overlap between the abnormal template and these two simulated waveforms is due to the
similar shape at the end of the waveform, representing the merger phase.
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4.2.2 Early Warning of a Detection

Due to the obstacle of direct detection of GW by DTW, we establish an early warning

pipeline of the detection without the prior knowledge of the waveform based on the co-

incidence signal among the network of detectors. For example, the distance of 3,002 km

between LIGO Hanford and LIGO Livingston gives the estimation of the longest time of

gravitational wave signal arrival between two sites, which is about 10 milliseconds. In the

practice of detection pipeline, PyCBC, any similar episodes larger than 10 15 milliseconds

should be ignored for further analysis: 10 milliseconds travel time between LIGO Hanford

and LIGO Livingston and 5ms bu↵er left for timing errors [13, 58]. As assumed Gaus-

sian background noise, the distance of DTW and its variants D(X,Y) follow the Gaussian

distribution approximately according to Chapter 3 Section 3.3.1.

We apply Euclidean distance, DTW distance without window, Fréchet distance and TWED

distance to the centralized data of the original strain data from two detectors on the first

category of confident detection of GW signals during the O1, Gravitational-Wave Transient

Catalog-1 (GWTC-1) [27]. This dataset includes an overlapped time period between the

first two LIGO’s interferometer detectors located at Hanford and Livingston. In the GWTC-

1, 11 episodes of data were recorded 4096 seconds near the coincident observations from

2015 September to 2017 August. The early warning pipeline conducted the following

procedures:

Data Aggregation Split and centralize the strain data in each 60s chunk from overlapped

time period among multiple detectors.

Elastic Distance Apply each distance to the pair of detectors within 4 seconds chunk with

a fixed size of sliding window and forward size. Also, calculate each distance of the

nearby 30-second data as baseline distribution.

Hypothesis Test Apply the two-sided t-test with significance level ↵ = 0.0001 to each
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chunk of DTW, e.g. 20 distance D(X,Y). Record the consecutive significant time

region which lasts for 1 second.

Performance Evaluation For any random period, we evaluate the significant duration ra-

tio. For GWTC-1 data with confident detection, we evaluate the detection ratio of

whether the signal is included inside a significant time region.

Hypothesis testing is applied to determine which period of time contains possible signals.

Null hypothesis H0 is given when there is only noise included in the window period so

the distance D(X,Y) follows a Gaussian distribution. This is a simplified condition from

Chapter 3 Section 3.3.1 under the assumption that noise follows a Gaussian distribution

and tiny shift when calculating DTW distance. Alternative hypothesis H1 means that there

is a ‘coincident’ signal included in the data, D(X,Y) be deviated from the mean of the

noise-based distance distribution. So we need the baseline distribution of the 30 seconds

data adjacent to the 4 seconds chunk for detection. This baseline distribution also excludes

the outliers based on the rule of 1.5 inter-quartile range because of a high false-alarm rate

when only shape information is considered.
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Figure 4.9: The result of the pipeline to the GW event GW170104. The top two plots show
the DTW distance calculated from centralized strain data from H1 and L1 shown in the
strain plot. The middle plot shows the trend of log p-values with blue points indicating that
this time period includes the timestamp of the detected signal, coloured with a red vertical
line. The last two plots show the Gaussian distribution of the nearby 30 seconds of data
excluding the outliers.
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As an example, the result of DTW distance of the GW event GW170104 in GWTC-1 is

shown in Figure 4.9. The centralization of the original strain data reduces the magnitude

di↵erence between two time series, increasing the sensitivity of the result. Besides that, the

baseline distribution of noise is almost Gaussian distributed. It also contains the detection

time (red vertical line) inside the significant time period. The period with a steeper log of

p-value before the detection also shows the drawbacks of the DTW distance, depending on

the shape information only.

The detection result among each distance is listed in Table 4.3. The most powerful distance

here is the DTW distance with a higher detection ratio, including 9 out of 11 events’ detec-

tion time inside the significant region. TWED and Euclidean distance both have 7 out of 11

events detected inside the significant region. The Fréchet distance is not as powerful as the

other three distances, with only 6 out of 11 events inside the significant region. Adding the

time information reduces the significant ratio in Table 4.4 as shown in the Fréchet distance.

The TWED distance has a wider significant range due to a dense grid provided compared

with Fréchet distance in Chapter 3 Section 3.4.2.

To further look into the non-detected signals, we take GW event GW170818 as an example

shown in Figure 4.10. Though the baseline distribution of the nearby period is almost

Gaussian, the p-value of the periods which include the detected timestamp is not smaller

than the significance level of 0.0001. This might be because of the magnitude between

two time series as shown in the top strain plot: the magnitude of LIGO Livingston (L1)

is 10 times less than that of LIGO Hansford (H1). All of four distances cannot claim a

significant detection in this region, revealing the shape-only approach is not strong enough

because of the shortage of prior information, e.g., a template. Another reason for the non-

detected signals might because of the disturbance of the background noise. According to

the reconstructed signal of GW170818 in Figure 4.11, an oscillation with large magnitude

is hidden behind the whitened reconstructed strain data in the Hanford detector compared
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to that in Livingston [4]. So the comparison of the coincidence still requires whitening of

the data or filtering of a certain frequency in future practice.

Regard to whitening or filtering, the power spectral density is estimated from each detector

in the time of no detection. Though similar to the idea of GW signal-free range, in our

procedures of early detection, the assumption of Gaussian noise distribution is an ideal-

ized case of the data, of which the original data deviates from this assumption as shown in

the graph of Q-Q plot of DTW distribution from Figure 4.9. In practice, LIGO and Virgo

Collaboration handle noise with more care, considering all possibilities of inevitable instru-

mental noise, e.g., quantum sensing noise and gravity gradient noise [11], and searching

the source transient disturbances which cause spectral lines, e.g., human activity and earth-

quake [12]. With all meticulous classification of GW signals and glitches, the LIGO-Virgo

strain data in each detector is approximated as Gaussian and stationary in the whitened data

[28]. A comparison between whitened data and the original sinusoidally-varying wave is

also shown in Figure 2.2, indicating a stationary and Gaussian noise after whitening.

Apart from the pipeline, the experiments and simulation reveal the potential of elastic dis-

tance D(x, y) as a metric in the detection of GW signal in the Deep Learning approach, e.g.,

convolutional neural networks (CNN) with binary cross entropy as the loss function to clas-

sify signal from noise [31]. Our experiment of DTW in LIGO data reveals the potential of

the loss function including the idea of similarity and coincidence, which can be combined

with other auxiliary and environmental channels to establish a pipeline which distinguishes

signals from noise [46]. Considering the first experiment shown in Figure 4.3, there are

two possibilities of the elastic distance, taking DTW as an example:

• An extremely small DTW distance shows the synchronized shape shown in two de-

tectors, indicating the coincidence of the GW detection from the same source, or

glitches.

• An extremely large DTW distance shows the mismatch between two detectors, in-
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dicating the mismatch between signal compared to noise, in which signal might be

hidden from the signal.

Either situation cannot rule out the possibility of detection. Due to that, the minimum

between the distance and its reciprocal value, min{D(x, y), 1/D(x,y)}, which finds a balance

between the minimal and maximal value of a statistic D(x, y). Implementing this kind of

shape information and time shift will be beneficial to Deep Learning in representing a

more sophisticated loss function to increase the classification accuracy of signals from

glitches. Besides, with the new value min{D(x, y), 1/D(x,y)}, it is worthy of deriving new

statistics for the one-sided hypothesis test with higher accuracy and power for the further

improvement and upgrade of the procedures of early warning.

Still, as mentioned the sacrifice in the false-alarm rate, we can still apply this method as a

preliminary early warning before the standard searching pipeline, e.g., PyCBC [47], which

reduces the calculation of the matched filter over the whole series. If DTW is applied, we

only need to search over 40% of data for the detection given the low significance level. To

guarantee the detection of a signal, a higher significance level should be applied, resulting

in a larger false alarm rate and a wider period of the standard searching pipeline.
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Event Detection Time DTW Euclidean Fréchet TWED
GW150914 1126259462.40 [-0.18,1.07] [-0.21,1.16] [-0.21,1.16] [-0.21,1.19]
GW151012 1128678900.40 [-0.78,0.29] [-0.78,0.32] [-0.78,0.41] [-0.78,0.32]
GW151226 1135136350.60 [-0.38,0.49] - [-0.38,0.53] -
GW170104 1167559936.60 [-0.73,0.46] [-0.98,0.34] [-0.82,0.28] [-0.85,0.34]
GW170608 1180922494.50 [-0.88,0.50] [-0.66,0.69] [-0.72,0.44] [-0.66,0.72]
GW170729 1185389807.30 [-0.24,0.83] [-0.43,0.45] - [-0.46,0.51]
GW170809 1186302519.80 - - - -
GW170814 1186741861.50 [-0.84,0.50] [-0.72,0.63] [-0.72,0.38] [-0.719,0.59]
GW170817 1187008882.40 [-0.24,0.76] [-0.18,0.73] - [-0.18,0.73]
GW170818 1187058327.10 - - - -
GW170823 1187529256.50 [-0.88,1.13] [-0.88,0.38] [-0.84,0.47] [-0.88,1.06]

Detection Ratio 81.82 72.73 63.64 72.73

Table 4.3: The possible detection time range around the true detection timestamp for all 11
GW events in GWTC-1. A null value means no detection is made according to our early
warning pipeline.

Event File Start Time DTW Euclidean Fréchet TWED

GW150914 1126257415 45.24 43.68 38.93 43.18

GW151012 1128676853 48.50 51.77 51.18 53.55

GW151226 1135134303 31.43 34.49 34.65 33.93

GW170104 1167557889 58.68 59.05 31.93 58.24

GW170608 1180920447 45.34 57.05 27.15 56.71

GW170729 1185387760 32.15 37.27 23.37 39.21

GW170809 1186300472 31.31 36.90 12.84 36.68

GW170814 1186739814 35.31 47.21 30.99 48.43

GW170817 1187006835 26.34 37.49 22.62 39.65

GW170818 1187056280 48.12 46.40 19.31 48.21

GW170823 1187527209 40.68 49.09 27.31 53.71

Average Significant Ratio (%) 40.28 45.49 29.12 46.50

Table 4.4: The shrink ratio (%) of each confident event in GWTC-1. Each file stores 4096
seconds of strain data. Each value indicates the significant duration ratio among the 4096
seconds.
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Figure 4.10: The result of the pipeline to the GW event GW170818. The top two plots
show the DTW distance calculated from centralized strain data from H1 and L1 shown in
the strain plot. The middle plot shows the trend of log p-values with blue points indicating
that this time period includes the timestamp of the detected signal, coloured with a red
vertical line. The last two plots show the Gaussian distribution of the nearby 30 seconds of
data excluding the outliers.
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Figure 4.11: The reconstruction of the GW170818 in Livingston and Hanford detectors
from cWB [4]. The whitened response in the Livingston detector is a perfect match with the
signal, while there are large oscillations before the detection time in the Hanford detector.
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5 Conclusion

In this thesis, we examined the elastic distance and its application in astrophysical data,

either the simulated dataset or the real detection, leveraging the information in shape and

time information from time series. Except for DTW and TWED distance, as a similar

distance measure which allows distortion in time, the Skorohod distance is also added in the

comparison by its equivalent discrete distance, discrete Fréchet distance. The comparison

between Euclidean distance, DTW, TWED and Fréchet distance reveals the applicability

of the idea of similarity in astrophysical time series, and the drawbacks of elastic distance

in practice.

Firstly, all three elastic distances are capable of classification shown in the UCR dataset

in Section 4.1.1 and simulated LSST dataset by feeding the distance metric into the 1-

NN classifier in Section 4.1.2 of Chapter 4. TWED distance outperforms the state-of-the-

art DTW distance and other distances because of the inclusion of warping in the times-

tamp. However, a 1-NN classifier with elastic distance only is not enough to have an

overall optimal classification accuracy, which requires better time series classification mod-

els, such as Long short-term memory (LSTM) networks or convolutional neural networks

(CNN).

Recalling the matched-filtering of templates versus strain data in Gravitational-Wave (GW)

detection, the elastic distance shows the potential for optimizing the template bank by

shrinking its size in Section 4.2.1, and the early warning for a possible GW signal by the

idea of coincidence in the LIGO, Virgo and KAGRA collaboration network of detectors in

Section 4.2.2. We make a few experiments with the Python module, PyCBC [47].

Specifically in shrinking template bank, we shrink the size of a toy template bank with

mass-only parameters of interest. Without the loss of the e↵ectualness E of the template
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bank, TWED shows the similar parameter space distribution of the chirp mass in a toy

dataset of template bank which simulates the merger of binary black holes as shown in

Figure 4.7. This knowledge shall be applied to a larger template bank with e↵ectual tem-

plates, faster algorithms and a hierarchical detection framework for thorough verification.

However, DTW distance shows an abnormal template in Figure 4.6 which represents both

the e↵ectualness with the largest overlap and the removal one with a small overall DTW

distance, requiring a further test over a wider range of time period and more simulated

signals to determine whether it is an inherent lack of discrimination or by an accidental

outlier.

In the early warning of detection by the idea of coincidence, we reduced the size of the

strain data by DTW for a second-stage matched-filtering into 40% to guarantee a better

detection rate or accuracy in the GWTC-1 confident events strain data, shown in Table 4.4.

However, in Table 4.3, the defect of low accuracy and high false-alarm rate is obvious due

to the noise-dominated data which requires pre-processing of the data, e.g., whitening by

strains power spectral density to exaggerate the magnitude ratio between signal and noise.

Because DTW and other elastic distances are quite sensitive to the shape. Furthermore,

with slight modification into min{D(x, y), 1/D(x,y)}, the DTW distance has the potential to

become a novel metric in detecting GW signals by Deep Learning, which shall be discussed

in the future work.

About the computational cost, one R package dtwCpp is developed for a fast implemen-

tation in parallel computing to accelerate the computation. Though the complexity of dy-

namic programming prevents DTW and its variants from becoming the first choice in the

previous practice in LIGO data [45], we still explore the several applications of elastic

distance.

To sum up, the elastic distance, which allows time distortion in matching, provides a quick

and data-oriented similarity metric for astronomical time series data without preliminary
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knowledge. In the four datasets of experiments, we conclude that Time Warping Edit Dis-

tance (TWED) outperforms other elastic distances with results in Table 5.1. TWED only

fails to find one detection compared to DTW distance in early warning of a GW signal

detection as shown in Table 4.3. Nevertheless, domain knowledge is always required for

fine-tuning and integration in the current pipeline to exploit strengths and avoid weaknesses

of these elastic distance ‘metrics’.

Application Evaluation Criteria DTW-full Euclidean Fréchet TWED

UCR Database
Average Accuracy

Rank (Descending)
3.10 3.32 3.42 2.54

LSST Dataset
Loose Accuracy 0.72 0.73 - 0.74

Mode Accuracy 0.42 0.42 - 0.43

GW Template Bank E↵ectualness
The shrinkage doesn’t a↵ect e↵ectualness,

but decreases one e↵ectualness in DTW.

GW Early Warning
Detection Ratio 81.82 72.73 63.64 72.73

Average Significant

Ratio
40.28 45.49 29.12 46.50

Table 5.1: The overall comparison between elastic distances we choose, DTW, Fréchet
distance and TWED. We take the Euclidean distance as a reference. TWED outperforms
other distance. Fréchet distance is used to calculate the Skorohod distance in discrete time
series. LSST dataset doesn’t include Fréchet distance due to its poor performance in UCR
database and high computational complexity.
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Lluı́s Galbany, Renée Hložek, Emille E. O. Ishida, Saurabh W. Jha, David O. Jones,

Richard Kessler, Michelle Lochner, Ashish A. Mahabal, Alex I. Malz, Kaisey S. Man-

del, Juan Rafael Martı́nez-Galarza, Jason D. McEwen, Daniel Muthukrishna, Gau-

tham Narayan, Hiranya Peiris, Christina M. Peters, Kara Ponder, Christian N. Setzer,

The LSST Dark Energy Science Collaboration, The LSST Transients, and Variable

Stars Science Collaboration. The photometric LSST astronomical time-series classi-

fication challenge (PLAsTiCC): Data set.

[58] Samantha A Usman, Alexander H Nitz, Ian W Harry, Christopher M Biwer, Dun-

can A Brown, Miriam Cabero, Collin D Capano, Tito Dal Canton, Thomas Dent,



Appendix – Conclusion 86

Stephen Fairhurst, Marcel S Kehl, Drew Keppel, Badri Krishnan, Amber Lenon, An-

drew Lundgren, Alex B Nielsen, Larne P Pekowsky, Harald P Pfei↵er, Peter R Saul-

son, Matthew West, and Joshua L Willis. The pycbc search for gravitational waves

from compact binary coalescence. Classical and Quantum Gravity, 33(21):215004,

oct 2016.

[59] M.S Waterman, T.F Smith, and W.A Beyer. Some biological sequence metrics.

20(3):367–387.

[60] Byoung-Kee Yi, Hosagrahar V Jagadish, and Christos Faloutsos. E�cient retrieval

of similar time sequences under time warping. In Proceedings 14th International

Conference on Data Engineering, pages 201–208. IEEE, 1998.

[61] Jiaping Zhao and Laurent Itti. shapeDTW: shape dynamic time warping.



87

Appendices

A Proof of Theorems

The Skorohod topology [14] is a powerful tool to investigate stochastic process limits.

The Skorohod topology is defined in the Space D, which includes all real functions x on

[0,1] that are right continuous and have left-hand-limits. These functions are called càdlàg

functions [14].

1. For 0  t < 1, x(t+) = lims#t x(s) exists and x(t+) = x(t).

2. For 0  t < 1, x(t�) = lims"t x(s) exists.

Theorem A.1 The Skorohod distance is a metric. [14].

Proof There are four conditions to be satisfied for a metric.

1. Non-negativity: d(x, y) � 0 due to that the infimum of positive ✏ is non-negative.

2. Symmetry: d(x, y) = d(y, x) is derived from the definition of �. As � is strictly

increasing, continuous mapping onto itself in [0,1], the inverse of �, ��1 exists. From

the definition, there are intrinsic symmetry in d(x, y).

3. Identity of indiscernibles: d(x, y) = 0, x = y.

First, assume x = y, then |x(t) � y(�t)| = 0 when �t = t, which is � = I. Then the

infimum of the max between ||� � I|| and ||x � y�|| is always 0 when � = I.

Secondly, assume d(x, y) = inf�{supt |�t � t| _ supt |x(t) � y(�t)|} = 0. Then 8✏0,

9�0, such that supt |�0t � t| < ✏0 and supt |x(t) � y(�0t)| < ✏0. From the definition of

supremum , |�0t � t|  ✏0 and |x(t) � y(�0t)|  ✏0 for any t. When � = I, x(t) = y(t)(=

y(t+)). When � , I, say �(t0) = t0 � ✏0 at t = t0. Then |x(t0)� y(t0 � ✏0)|  ✏0 indicates

that x(t0) = y(t0�). Then for any such t0 which is the jump points at y, we all have

y(t0�) = x(t0) = y(t0). This also implies that x(t) = y(t) in Space D.
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4. Triangular inequality: d(x, z)  d(x, y) + d(z, y).

Two lemmas are necessary here. The first is ||�1�2 � I||  ||�1 � I|| + ||�2 � I||.

||�1�2 � I|| = sup
t
|�1�2t � t|

= sup
t
|�1�2t � �2t + �2t � t|

 sup
t
|�1�2t � �2t| + sup

t
|�2t � t|

= sup
s
|�1s � s| + sup

t
|�2t � t|

= ||�1 � I|| + ||�2 � I||

The second lemma is ||x � z�1�2||  ||x � y�2|| + ||y � z�1||.

||x � z�1�2|| = sup
t
|x(t) � z(�1�2t)|

= sup
t
|x(t) � y(�2t) + y(�2t) � z(�1�2t)|

 sup
t
|x(t) � y(�2t)| + sup

t
|y(�2t) � z(�1�2t)|

= sup
t
|x(t) � y(�2t)| + sup

s
|y(s) � z(�1s)|

= ||x � y�2|| + ||y � z�1||

Combine the above two equation together for given �1 and �2, we have

max{||�1�2 � I||, ||x � z�1�2||}  inf
�1
{max{||�1 � I||, ||x � y�1||}} + inf

�2
{max{||�2 � I||, ||x � z�2||}}

Then, from the definition of the d(x, z), we have d(x, z)  max{||�1�2�I||, ||x�z�1�2||},

which derives the triangular inequality,

d(x, z)  d(x, y) + d(y, z)
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A novel modification on Skorohod distance is replacing maximum by addition of time

perturbation and the di↵erence between two stochastic processes, x(t) and y(t),

d⇤(x, y) = inf
�
{||� � I|| + ||x � y�||}

Theorem A.2 d⇤(x, y) is a metric defined in Space D.

Proof There are four conditions to be satisfied for a metric.

1. Non-negativity: d⇤(x, y) � 0 due to that the infimum of positive ✏ is non-negative.

2. Symmetry: d⇤(x, y) = d⇤(y, x) is derived from the symmetric of d(x, y).

3. Identity of indiscernibles: d⇤(x, y) = 0, x = y.

First, assume x = y, then |x(t) � y(�t)| = 0 when �t = t, which is � = I. Then the

summation, ||� � I|| + ||x � y�|| is always 0 when � = I.

Secondly, assume d⇤(x, y) = inf�{||� � I|| + ||x � y�||} = 0. Then 8✏0, 9�0, such that

supt |�0t� t|+ supt |x(t)�y(�0t)| < ✏0, which indicates that |�0t� t|+ |x(t)�y(�0t)|  ✏0

for any t. From the non-negativity of || · ||, we have the same small enough values

for |�0t � t|  ✏0/2 and |x(t) � y(�0t)|  ✏0/2. When � = I, x(t) = y(t)(= y(t+)).

When � , I, say �(t0) = t0 � ✏0/2 at t = t0. Then |x(t0) � y(t0 � ✏0)|  ✏0 indicates

that x(t0) = y(t0�). Then for any such t0 which is the jump points at y, we all have

y(t0�) = x(t0) = y(t0). This also implies that x(t) = y(t) in Space D.

4. Triangular inequality: d⇤(x, y)  d⇤(x, z) + d⇤(z, y).

The same two lemmas are required, which is proved in the previous proof. Add the

both sides of the inequality, we have

||�1�2 � I|| + ||x � z�1�2||  inf
�1
{||�1 � I|| + ||x � y�1||} + inf

�2
{||�2 � I|| + ||x � z�2||}
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Then, we derive the triangular inequality,

d(x, z)  d(x, y) + d(y, z)

Theorem A.3 Let f : [af , bf ] �! Rp, the distance ||( f , t)|| = || f (t)||p + |t| defined in Rp ⇥ T

is a norm.

Proof There are three conditions to be satisfied for a norm.

1. Zero vector: If ||( f , t)|| = 0, either || f (t)||p + |t| = 0 or |t|  || f (t)||p = 0, which means

f (t) = ~0 and t = 0.

2. Absolutely scalable: ||(|a|· f , |a|·t)|| = |a|·|| f (t)||p+|a|·|t| = |a|·(|| f (t)||p+|t|) = |a|·||( f , t)||.

3. Triangular inequality:

||( f , t)|| + ||(g, s)|| = (|| f (t)||p + |t|) + (||g(s)||p + |s|)

= (k f (t)kp + kg(s)kp) + (|t| + |s|)

� k( f (t), t) + (g(s), s)k

� k( f , t) + (g, s)k.
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