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Abstract
This thesis comprises three chapters examining firms’ and markets’ responses to regulation
within the context of climate change.

In Chapter 2, I analyze how steel firms in India would respond to counterfactual carbon pricing,
revealing a 70% emissions reduction for a carbon tax equivalent to 2,000 INR/ton (25 USD/ton)
of carbon dioxide equivalent (CO2e). By developing and estimating a rich production model, I
find that only 18% of this reduction stems from fuel-switching within firms, while the majority
comes from output reallocation across firms. This is because firms are differentially exposed
to the tax, which increases the competitiveness of cleaner firms at the expense of dirtier firms.
Chapter 3 investigates how firms adjust production in response to asymmetric carbon pricing
across Canadian provinces. Using Canadian plant-level pollution release data, I find evidence
that carbon leakage mitigated 45% of emissions reduction efforts in British Columbia and Que-
bec, following two carbon taxes implemented in 2008 and 2007, respectively. Regulated firms
became less competitive, and output shifted to unregulated firms in other Canadian provinces.
In Chapter 4, I assess the efficiency of the U.S. natural gas pipeline network in responding to
climate-induced demand and supply shocks. Analysis of the February 2021 cold wave in Texas
reveals that an unregulated secondary market effectively reallocates capacity to alleviate supply
and demand imbalances. However, concerns arise regarding market power on both sides of the
market, potentially reducing efficiency gains from this secondary market.

Keywords Climate change, firm dynamics, input choice, fuel efficiency, production func-
tion, carbon leakage, pipeline networks
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Summary for Lay Audience

This thesis explores the interplay between firms and climate change. Specifically, I study how
firms can reduce greenhouse gas emissions in response to environmental policy and investigate
some of the unintended consequences of these policies. I also study the consequences of climate
change on energy markets.

In Chapter 2, I study how firms respond to carbon pricing in a context where firms with very
different technologies make decisions about which fuels to use and how much of each fuel to
burn. I build a novel model to recover these fuel choices and quantify the impact of carbon
pricing in the Indian steel industry using detailed plant-level data. I find that implementing a
carbon tax equivalent to 2,000 INR/ton (25 USD/ton) of carbon dioxide leads to a 70% reduction
in emissions. But only 18% of this reduction comes from fuel-switching within existing firms.
I find that the larger reductions come from the reallocation of output across firms (58%) and the
reduction in aggregate output (24%).

While firms compete with each other across geographical regions, carbon policy is not always
uniform across regions. This can lead to carbon leakage, shifting emissions from regulated to
unregulated regions. In Chapter 3, I build a model that allows for region-specific carbon taxes.
I estimate the model with publicly available data on a wide range of pollutants to quantify the
effect of the British-Columbia (B.C.) carbon tax implemented in 2008. I find strong evidence
of carbon leakage in other Canadian provinces, mitigating 45% of emissions reduction efforts
in B.C. and Quebec.

In Chapter 4, I study the efficiency of the U.S. natural gas pipeline network in allocating pipeline
capacity in response to unexpected weather shocks, increasingly common with climate change.
I find that an unregulated secondary market, where contract holders can lease capacity to other
shippers, reacts to significant regional demand fluctuations induced by these weather events, and
alleviates the imbalance between supply and demand. However, a largely unregulated secondary
market within a heavily regulated primary market raises concerns about market power.
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Chapter 1

Introduction

This thesis explores the interplay between firms and climate change. Specifically, I study how
firms can reduce greenhouse gas emissions in response to market-based environmental policy
and investigate some of the unintended consequences of these policies. I also study the re-
silience of energy markets to challenges posed by climate change, such as the increasing advent
of extreme weather events.

In Chapter 2, I study firms’ heterogeneous and dynamic responses to carbon pricing. The eco-
nomic cost of carbon pricing depends on the ability and incentives of firms to switch towards
cleaner fuels. Yet, many fundamental economic forces that drive firms’ decisions to use different
fuels are unobserved, causing significant uncertainty over the effectiveness of carbon policies.
I propose a new dynamic production model with multidimensional unobserved heterogeneity
that underly technology differences across firms and captures how firms’ fuel choices respond
to price changes. These differences create heterogeneity in abatement costs, which generates
heterogeneous responses to carbon pricing. Leveraging minimal assumptions about optimal
input choice and the technology frontier, I quantify the model from a detailed panel of Indian
steel establishments. Based on these estimates, implementing a carbon tax equivalent to 2,000
INR/ton (25 USD/ton) of CO2e leads to a 70% reduction in emissions. However, only 18% of
this reduction comes from fuel-switching within existing firms. I find that the larger reductions
come from the reallocation of output across firms (58%) and the reduction in aggregate output
(24%).

Motivated by firms’s responses to carbon pricing in the previous Chapter, I study how firms
reorganize their production when faced with asymmetric carbon pricing in Chapter 3. While
firms compete with each other across geographical regions, some regions may put a tax on
carbon while others do not. This can lead to carbon leakage, shifting emissions from regulated
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to unregulated regions. I build a model of imperfect competition with multiple fuels as energy
inputs, which allows for region-specific carbon taxes. I estimate the structural model with
publicly available Canadian plant-level data on a wide range of pollutants emitted in the air
to quantify the effect of the British-Columbia (B.C.) and Quebec carbon taxes implemented
in 2008 and 2007, respectively. I find strong evidence of carbon leakage in other Canadian
provinces, which mitigated 45% of emissions reduction efforts from the policies in B.C. and
Quebec. Similarly to the finding in Chapter 2, I show that Canadian plants did not find it
profitable to switch between fuels. As a result, regulated firms became less competitive, and
output was reallocated towards unregulated firms.

In Chapter 4, I transition from studying how markets can mitigate climate change to studying
challenges posed by climate change and how these challenges affect markets’ resilience. Specif-
ically, I assess the efficiency of the U.S. natural gas pipeline network in allocating pipeline ca-
pacity in response to unexpected demand and supply shocks, which are increasingly common
with climate change. Long-term contracts, the main mechanisms to allocate capacity, can create
an imbalance between supply and demand because they reserve capacity for contract holders
prior to shocks. Utilizing daily transaction data from 2005 to 2023, I find that an unregulated
secondary market, where contract holders can lease capacity to other shippers, reacts to signif-
icant regional demand fluctuations and alleviates the imbalance between supply and demand.
I also find evidence that forming long-term relationships between buyers and sellers reduces
search costs in the secondary market. However, a largely unregulated secondary market within
a heavily regulated primary market raises concerns about market power. Evidence shows that
buyer and sellers’ market shares influence prices, reducing the secondary market’s efficiency
gains. This secondary market is a rare, real-world example of a market for legal entitlements,
and my study is the first to examine it empirically. I provide some evidence that generalizes to
similar heavily regulated markets with large sunk investment costs, and I provide guidance for
the organization of pipeline networks beyond the U.S.
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Chapter 2

Balancing Production and Carbon
Emissions with Fuel Substitution

2.1 Introduction

The reliance on fossil fuels in many manufacturing processes has profound environmental reper-
cussions. The release of greenhouse gases from fossil fuel combustion is the largest contributor
to climate change, accounting for 75% of total greenhouse gas emissions (UN Climate, 2023).
Market-based policies such as carbon taxes and tradable permit systems have been proposed to
induce firms to internalize the social cost of fuel combustion. One of the main objectives of
these policies is to incentivize firms to adopt cleaner fuels, thereby reducing emissions while
maintaining stable levels of production. The economic costs of such policies, such as loss of
output and higher consumer prices, thus crucially depend on the ability and incentives of firms
to substitute cleaner fuels for dirtier fuels.

Fundamental economic forces that drive firms’ decisions to use different fuels are ubiqui-
tous. They reflect disparities in prices, technology, and access to critical infrastructures like
transportation networks, all of which vary across space and over time (Collard-Wexler and
De Loecker, 2015, Scott, 2021). Yet, little is known about how these forces interact with each
other, partly because they reflect unobserved heterogeneity and forward-looking considerations
that are difficult to quantify. The incentives of firms to adopt a new fuel in response to a policy
may vary substantially based on private information about how efficiently they expect to use
this new fuel. Similarly, the ability of firms to substitute between existing fuels may be limited
or enabled by specific manufacturing processes.
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This paper proposes a new dynamic production model that combines multiple fundamental
forces to understand how firms make fuel choices and how these choices respond to price
changes. This model differs from existing production models of interfuel substitution in that
it captures plants’ multidimensional fuel choices, fuel productivity heterogeneity due to unob-
served technology differences, and dynamic switching between fuel sets subject to fixed switch-
ing costs.1 Leveraging the approach pioneered by Carlson, Burtraw, Cropper and Palmer (2000)
and Atkinson and Luo (2023), I show that these factors provide a microfoundation for abate-
ment costs heterogeneity that reflects the ability of firms to substitute cleaner fuels for dirtier
fuels in the short and long run. Combined together, these factors thus generate heterogeneous
and dynamic responses to price changes that have important implications for carbon policy.

While there is a significant body of work estimating production functions, understanding the
heterogeneity and dynamics underlying firms’ input selection when they can choose from mul-
tiple input combinations poses new challenges.2 One of these challenges is quantifying input-
specific productivity for an input a firm has never used. Leveraging minimal assumptions about
optimal input choices and the technology frontier along with a detailed panel of Indian steel
plants between 2009 and 2016, I quantify the rich heterogeneity in plants’ incentives and ability
to substitute between fuels. The panel features detailed information about plant-specific in-
put prices and quantities along with location within 775 districts, allowing me to interpret this
heterogeneity in the context of plants’ proximity to key infrastructures such as coal mines and
natural gas pipeline networks.

I then use the model to predict how Indian steel plants would respond to various carbon taxes
over a horizon of 40 years. India is the second largest steel producer, and steel is one of India’s
most polluting industries, with coal accounting for nearly 70% of its energy sources. I perform
counterfactual policy simulations by imposing a carbon tax levied on fossil fuels, varying the
level of the tax. I find that cutting emissions by 50% relative to a no-tax scenario entails a
reduction of output by 6.5%. In contrast, under an economy in which all fuels are assumed
to be equally productive across firms, as is standard in the production function and abatement
costs literature (Atkinson and Luo, 2023, Carlson, Burtraw, Cropper and Palmer, 2000, Fowlie,
Reguant and Ryan, 2016, Hawkins-Pierot and Wagner, 2022, Shapiro and Walker, 2018), I find
that obtaining the same 50% reduction in emissions leads to a 12% reduction in output, thus
overestimating the output costs of such a policy by almost 100%.

1The vast majority of papers on interfuel substitution consider firms’ fuel sets to be fixed in time and do not
account for fuel-specific productivity. See Cho, Nam and Pagan (2004), Ganapati, Shapiro and Walker (2020),
Hyland and Haller (2018), Ma, Oxley, Gibson and Kim (2008), Pindyck (1979), Wang and Lin (2017)

2See Ackerberg, Caves and Frazer (2015), Blundell and Bond (2000), Demirer (2020), Gandhi, Navarro and
Rivers (2020), Grieco, Li and Zhang (2016), Levinsohn and Petrin (2003), Olley and Pakes (1996), Zhang (2019).
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Multidimensional heterogeneity significantly reduces the predicted economic cost associated
with reducing emissions because it improves the ability of the carbon price to target high-
emission plants. Plants that are more productive at dirty fuels relative to cleaner fuels have
a higher marginal abatement cost because they are less willing to substitute away from their
most productive fuels. Consequently, they face a larger increase in their marginal cost, pass a
larger portion of the tax to consumers, and become less competitive relative to plants that are
more productive at using cleaner fuels. My results thus provide quantitative support for the
long-established idea in environmental economics that firm-level heterogeneity in abatement
costs improves the effectiveness of market-based mechanisms relative to command-and-control
regulation (Goulder and Parry, 2008).

In the Indian steel context, the carbon tax generates a significant reallocation of output from
plants using large coal-powered blast furnaces in Eastern India to cleaner plants in Western
India. This reallocation of output is the main channel for reducing emissions. With a carbon
price equivalent to $25 U.S. dollars per ton of carbon, 58% of emissions reduction comes from
output reallocation, 24% from an aggregate reduction in output, and only 18% from plant-level
fuel substitution. Large degrees of fuel specialization due to fuel productivity and high fuel
switching costs explain the lack of fuel substitution, capturing significant technology lock-in.
To tackle this technological lock-in, I study a subsidy that reduces the fixed cost of natural
gas adoption, and I find that it is not a cost-effective tool for reducing emissions. I find that
90% of subsidy beneficiaries are inframarginal plants that would have switched to natural gas
regardless, significantly increasing the cost of incentivizing a meaningful change in natural gas
adoption. I estimate the cost to increase natural gas adoption by five percentage points at the
equivalent of $2.793 billion U.S. dollars over 40 years, amounting to 12% of the industry’s
profits over the same period.

Quantifying the role of fossil fuels in production in this context requires overcoming two im-
portant measurement issues. First, the energy plants use in production is unobserved because
it depends on how plants use fuels. The energy service a plant receives differs from the quan-
tity of fuels it uses, measured in common heating potential units. The wedge between a fuel’s
heating potential and the energy service it provides reflects the fuel’s productivity. Second,
plants choose fuel sets on the basis of unobserved heterogeneity, such as how productive they
would be at using alternative fuel combinations. For instance, a plant can choose to use coal
because it anticipates high coal productivity and low gas productivity. However, the plant’s gas
productivity remains unobserved to the researcher.

I address these measurement issues in three steps. First, I identify the latent quantity and price
of energy services by adapting the methods of Ganapati, Shapiro and Walker (2020), Grieco,



Chapter 2 – Balancing Production and Carbon Emissions with Fuel Substitution 6

Li and Zhang (2016). This method relies on optimality conditions from profit maximization
to map observed relative input spending to unobserved relative input quantities. Second, I
estimate the function that maps fuels to energy services following Zhang (2019) and Blundell
and Bond (1998, 2000). This allows me to recover the distribution of fuel productivity across
plants. Third, I adapt Arcidiacono and Jones (2003) to jointly estimate fixed switching costs
and the distribution of fuel productivity for unused fuels. Using this three-step approach, I
recover all production function parameters, the distribution of fuel productivity, and switching
costs between fuel sets. Lastly, I estimate the elasticity of substitution between output varieties
following Ganapati et al. (2020). These estimates allow me to conduct policy counterfactuals
that affect plants’ fuel choices.

The production model is consistent with recent evidence suggesting heterogeneity in fuel pro-
ductivity and high fixed costs of fuel adoption. Lyubich, Shapiro and Walker (2018) finds
that firms vary substantially in energy and CO2 productivity. These disparities in productivity
are due to varying heat efficiency that different fuel-burning technologies provide (Allcott and
Greenstone, 2012), energy retrofit efforts to curb energy waste (Christensen, Francisco and My-
ers, 2022), unobserved fuel quality (e.g., anthracite vs. bituminous coal), and intangible factors
such as the ability of workers to use different fuels and management practices (Gosnell, List and
Metcalfe, 2020). As in Scott (2021), I find significant fixed costs and time commitments associ-
ated with adopting natural gas. These costs encompass technological adaptations, new storage
facilities, and transportation infrastructure, all microfoundations that my approach captures.

Moreover, I show that fuel-specific productivity that underlies technology differences across
plants directly connects to marginal abatement cost heterogeneity. I thus contribute to a long-
standing literature that estimates marginal abatement costs(Atkinson and Luo, 2023, Carlson,
Burtraw, Cropper and Palmer, 2000, Culler and Mansur, 2017, Shapiro and Walker, 2018).
These fuel-specific productivity differences, along with dynamic switching between fuel sets,
also provide a cautionary tale against an aggregate production function to study fuel substitu-
tion, common in the integrated assessment literature (Golosov, Hassler, Krusell and Tsyvinsky,
2014, Miftakhova and Renoir, 2021), because such a production function will not be invariant
to policy changes.

The production model also reflects important channels of firm responses to changes in fuel
prices. Numerous empirical studies have shown that firms respond to changes in fuel cost by
substituting across fuels (Ahmadi and Yamazaki, 2020, Alpino, Citino and Frigo, 2023, An-
dersson, 2019), but also by passing on the cost increase to consumers, thereby reducing out-
put (Fontagné, Martin and Orefice, 2023, Ganapati, Shapiro and Walker, 2020, Gittens, 2020).
While both types of responses can reduce emissions, their welfare implications are unequal,
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and my model provides a cohesive framework to aggregate these responses and relate them to
marginal abatement costs.

To estimate this model, I contribute to the literature on production function estimation in in-
dustrial organization3. I make a methodological contribution by showing how to identify and
estimate a dynamic production function with input-augmenting productivity and dynamic input
selection. I solve this problem by drawing from the dynamic discrete choice literature with
unobserved heterogeneity (Arcidiacono and Jones, 2003, Arcidiacono and Miller, 2011).

Within the production function estimation literature, my paper most closely relates to Collard-
Wexler and De Loecker (2015), who studies technological change in the U.S. Steel Industry
(particularly the introduction of electric arc furnaces), and Hawkins-Pierot and Wagner (2022),
who estimates the energy productivity of manufacturing plants and its implication for technol-
ogy lock-in. I complement the former by emphasizing the role of fuels and emissions as part of
this technological change. I complement the latter by decomposing energy productivity into the
relative productivity of different fuels. I show that this distinction is crucial to understanding
the heterogeneous impact of a carbon tax.

The rest of the paper is structured as follows: Section 2.2 presents an overview of the Indian
steel dataset. Section 2.3 presents some key evidence of plant-level decisions that motivate
modeling choices. Section 2.4 presents the model in detail. Section 2.5 presents identification
results for the production function. Section 2.6 presents identification results for the dynamic
discrete choice model. Section 2.7 presents the main estimation results. Finally, Section 2.8
presents the results of the counterfactual experiments.

2.2 Data

I use longitudinal data on prices and quantities of all inputs and outputs from Indian steel estab-
lishments, which I link to data on India’s natural gas pipeline network. The panel comes from
the Indian Survey of Industries (ASI) and covers 2009-2016. It is a restricted-use dataset that
covers all manufacturing establishments with at least 100 workers and a representative sample
of establishments with fewer than 100 workers. The sample is stratified at various levels, in-
cluding number of workers and location. More details on sampling rules, including changes
over time, can be found in Appendix A.1. The ASI contains information on prices and quanti-
ties of Coal, Oil, Electricity, and Natural Gas, which I convert to million British thermal units
(mmBtu) using standard scientific calculations from the U.S. Environmental Protection Agency

3See footnote2 for details on this literature.
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(EPA, 2022). I follow standard practices by removing the 1% left and right tails of plant-level
inputs and output by industry.4

To convert nominal into real units, I follow Harrison, Hyman, Martin and Nataraj (2016) by
deflating output with industry-specific wholesale price indices (WPI), labor with the consumer
price index (CPI), intermediate materials with the aggregate wholesale price index, labor with
the consumer price index (CPI), and capital stock with an India-specific capital deflator from
the Penn World Table (Feenstra, Inklaar and Timmer, 2015).

Emissions To get establishment-level measures of greenhouse gas emissions, I convert units
of potential energy (mmBtu) of each fuel into metric tons of carbon dioxide equivalent (CO2e).
During combustion, each mmBtu of fuel releases some quantity of carbon dioxide CO2, methane
CH4, and nitrous oxide N2O into the atmosphere, which varies by industry based on standard
practices in India (Gupta, Biswas, Janakiraman and Ganesan, 2019, Annexure 3). I then con-
vert emissions of these three chemicals into carbon dioxide equivalent (CO2e) using the Global
Warming Potential method (GWP, see Appendix A.2).

2.3 Facts About Emissions and Fuels in India

Using this data, I highlight facts about fuel usage and carbon emissions that motivate my choice
of India’s Steel sector to conduct this analysis and influence modeling decisions.

Fact 1: High Pollution Levels from Indian Steel Establishments
In Table 2.1, I show that total annual greenhouse gas emissions from Indian Steel plants aver-

age 25 million tons of CO2e, accounting for 31% of annual emissions in Indian manufacturing
(Dhar, Pathak and Shukla, 2020). This high emission level is attributed to the sizeable aggre-
gate share of coal as part of the energy mix, averaging 70%. This share is significantly larger
than in other Indian manufacturing industries and larger than in Steel manufacturing abroad.
Indeed, switching from coal to gas has contributed significantly to the manufacturing clean-up
in developed economies (Rehfeldt, Fleiter, Herbst and Eidelloth, 2020).

Fact 2: Indian Steel Establishments Use Different Fuel Sets
Steel-producing plants use different fuel sets, and most fuel sets include oil and electricity.

Most of the variation in fuel sets thus comes from whether plants use coal, natural gas, neither,

4Such outliers are typically due to reporting errors and are inconsistent with a wide range of official statistics
(Bollard, Klenow and Sharma, 2013).
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Annual Average Average Annual Revenue Annual Average Emissions Aggregate Aggregate
Industry Number of Plants by Plant (Million USD) (Thousand tons CO2e) Energy Input Share Coal Fuel Share
Steel 1,077 19.41 29.34 0.13 0.72
Other 33,726 6.18 8.52 0.13 0.37

Table 2.1: Descriptive Statistics for Steel Manufacturing (2009-2016)

Note: The energy input share is calculated as the aggregate spending on energy by industry as a fraction of total
spending on labor, materials, and energy. It is then averaged across years. Similarly, the coal fuel share is calculated
as the aggregate share of coal (in mmBtu) relative to other fuels in each industry, averaged across years.

or both. see Table 2.2. There are multiple reasons for this heterogeneity. For example, plants
can use different furnaces to turn iron ore into steel. Blast furnaces combined with basic oxygen
furnaces rely on coke (coal) as a primary fuel; electric arc furnaces can use any fuel combination
to generate high-power electricity, which is discharged through an electric arc to melt either
steel scrap or sponge iron. Sponge iron is created from iron ore in direct reduced iron furnaces
powered by natural gas.

Percentage of Plants Output Share
Oil, Electricity 51.3 44.9
Oil, Electricity, Coal 19.3 21.2
Oil, Electricity, Gas 10.8 25.7
Oil, Electricity, Coal, Gas 7.4 3.4
Other 11.1 4.8

Table 2.2: Distribution of Fuel Sets Across Steel Plants

Notes: This table shows the distribution of fuel sets across plants. The “Other” category comprises any other
combinations of the same four fuels. Variation in fuel sets is not driven by variation in the variety of steel produced.
In Appendix A.3, I show that a similar distribution exists within different varieties of steel produced.

Many reasons explain why plants use different fuel sets, some of which have geographical
underpinnings. In Figure 2.1, I document a concentration of coal usage in Eastern and Southern
India. Many states in Eastern India form a region colloquially known as the “Steel Belt” due to
the prevalence of coal and iron ore mines. Plants with coal-powered Blast furnaces tend to be
located near these mines. Moreover, this region lacks critical infrastructure, such as natural gas
pipelines for plants to adopt technologies that rely on cleaner fuels.

This heterogeneity in fuel sets has two other noteworthy implications. First, burning coal re-
leases more CO2e than burning natural gas. Second, plants with more fuels have access to
additional margins of substitution, which is relevant because many fossil fuels are susceptible
to price volatility owing to global supply and demand fluctuations. For instance, oil and natu-
ral gas prices fell due to booming U.S. shale oil production and excess supply from emerging
market economies (EMEs) such as Saudi Arabia in 2014. See Figure 2.5.
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(a) Coal Consumption by District (b) Natural Gas Pipeline Network (2016)

Figure 2.1: Spatial Variation in Fuel Usage and Key Infrastructures

Notes: The map on the left shows the distribution of coal usage across Indian districts. Darker areas correspond to
districts with more coal consumption. The map on the right shows the distribution of access to natural gas pipelines
across districts. Natural gas pipeline transportation tariffs are organized by zones, where each zone corresponds to
250km segments along a pipeline. Zone 1 is the closest to the source of the pipeline. Moreover, at the beginning
of the sample period, the natural gas pipeline network was not developed in the South, and it was less developed
in the Delhi area.

0

500

1000

1500

2000

M
ed

ia
n 

pr
ic

e 
(ru

pe
e 

pe
r m

m
Bt

u)

2009 2010 2011 2012 2013 2014 2015 2016
Year

Natural gas Coal Oil Electricity

Figure 2.2: Median Fuel Prices (rupees/mmBtu)

Fuel substitution can serve as a means of adjustment for plants to insure themselves against fuel
price variation. Both the quantity and fuel share of coal increased prior to 2014. However, coal
usage started to decline after 2014 following the crash in the price of oil and natural gas. See
Figure 2.3 and 2.4. Electricity prices have been steadily increasing in India, and the share of
electricity in steel plants’ energy mix has been steadily decreasing.
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Figure 2.3: Average (log) Fuel Quantities
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Figure 2.4: Average Fuel Shares

Notes: These figures show the average quantities of each fuel (in logs) and the average within-plant fuel share,
respectively. Fuel quantities are measured in mmBtu for each fuel, and these figures are constructed from steel-
producing plants only.

Fact 3: Indian Steel Establishments Often Switch Between Fuel Sets
Not only is there heterogeneity in fuel sets but also a significant prevalence of switching

between fuel sets, which I define as occurring when a plant uses a different combination of
fuels between two years (e.g., from oil and electricity to oil, electricity, and gas). On average,
15% of plants add a new fuel, and 15% drop an existing fuel from their set every year. Moreover,
40% of unique plants add and drop fuel at least once in the sample. There are many reasons
why plants switch between fuel sets. The development of new technologies may increase the
productivity of some fuels. Electric arc furnaces are more efficient at using the heating potential
of underlying fuels than blast furnaces (Worrell, Bernstein, Roy, Price and Harnisch, 2009).
Large and persistent fuel price shocks incentivize plants to readjust their input mix. Expanding
transportation infrastructures, particularly pipeline networks, decreases fixed costs and eases
access to new fuels (Scott, 2021).

Adds New Fuel Drop Existing Fuel Both Add and Drop

Yes (%) 39.4 39.6 26.0

Table 2.3: Fraction of Unique Plants That Add and Drop a Fuel at Least Once

Notes: This table shows the fraction of unique plants that add a fuel at least once in the sample, and similarly for
plants that drop a fuel at least once. This underestimates the prevalence of fuel switching because plants are only
observed between 2009 and 2016.

Fact 4: Larger Fuel Set Is Associated With Higher Productivity
Adopting a new fuel is associated with substantial fixed costs: acquiring and installing new

equipment such as furnaces, transportation infrastructure, and storage facilities. With fixed
costs, it is natural to expect larger and more productive plants to use more fuels because they
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Figure 2.5: Fuel Set Switching Across Years

Notes: This figure shows the fraction of plants that add a new fuel or drop an existing fuel between year t and t−1,
starting from 2010 all the way until 2016.

have marginally more to gain from fixed investments. This is what I find. As plants produce
more output per worker, which can be interpreted as a proxy for productivity, they tend to have
a larger fuel set. See Figure 2.6
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Figure 2.6: Number of Fuels, by Revenue per Worker

Notes: This figure reports the average number of fuels across percentiles of the residualized revenue per worker
distribution. Revenue per worker is residualized by taking out year-fixed effects.

In Table 2.4, I show that a 1% increase in Revenue per Worker decreases the probability of
having one or two fuels and increases the probability of having 3 or 4 fuels. A positive gradient
between the number of fuels and productivity coupled with high fixed costs of new fuel adoption
may lock unproductive plants into their current fuel set. A similar technological lock-in has been
previously documented in manufacturing by Hawkins-Pierot and Wagner (2022) and decreases
policy effectiveness at incentivizing switching to cleaner fuels.
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Increasing Revenue/Worker by 1%
1 Fuel -0.009∗∗∗ (0.001)
2 Fuels -0.025∗∗∗ (0.004)
3 Fuels 0.023∗∗∗ (0.004)
4 Fuels 0.010∗∗∗ (0.002)
Year Fixed Effects Yes
N 8,583

Table 2.4: Relationship Between Revenue/Worker and Number of Fuels

Notes: This table reports marginal effects of an ordered logit regression of the number of fuels against
log(Revenue/Productivity). The point estimates are the percentage increase (decrease) in the probability of having
each number of fuels for a 1% increase in Revenue per Worker.

2.4 Model

Consistent with these facts, I develop and estimate a rich dynamic production model to quantify
establishments’ fuel choices. Each period, plants have access to a set of fuels from a combina-
tion of oil, natural gas, coal, and electricity. Fuels are combined to produce energy that goes
into the outer nest of production. Plants can choose to change fuel sets across periods in a dy-
namic discrete choice framework. There are fixed costs for adding new fuels and salvage values
from dropping existing ones. I first present the production structure for a given plant in a static
setting and then consider inter-temporal decisions. Throughout the exposition, subscript i refers
to a plant, and t refers to a year.

2.4.1 Production Model

There are two levels of production, which correspond to two nests. The outer nest is a standard
CES production function and features Hicks-neutral productivity zit, labor Lit, capital Kit, inter-
mediate inputs Mit, and energy Eit. Following Grieco et al. (2016), the production function is

explicitly normalized around the geometric mean of each variable X =
(∏n

i=1
∏T

t=1 Xit

) 1
nT .5

Yit

Y
= zit

(
αk

(Kit

K

)σ−1
σ
+ αL

(Lit

L

)σ−1
σ
+ αM

(Mit

M

)σ−1
σ
+ αE

(Eit

E

)σ−1
σ

) ησ
σ−1

s.t. αL + αK + αM + αE = 1

(2.1)

5All CES functions are either implicitly or explicitly normalized around a point (León-Ledesma, McAdam and
Willman, 2010). I chose the geometric mean as a normalization point to be consistent with the literature.
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Where σ ≥ 0 is the elasticity of substitution between inputs, and η > 0 is the returns to scale.
In the outer nest, plants choose input quantities given input prices, which include energy, Eit.
Given the current fuel set Fit ⊆ F = {oil, gas, coal, elec}, plants combine all fuels available to
produce a quantity of energy Eit in the inner nest of production:

Eit

E
=

( ∑
f∈Fit

(
ψ f it

e f it

e f

) λ−1
λ

) λ
λ−1

(2.2)

e f it refers to the quantity of fuel f for plant i in year t. p f it and ψ f it are the corresponding fuel
price and productivity, respectively. The fuel-specific productivity terms are novel; they allow
for flexible variation in input usage and heterogeneity in fuel substitution. Plants specialize in
fuels that they can use more efficiently, which means that different plants are affected differently
by changes in fuel prices. This heterogeneity is especially relevant in the context of a carbon
tax, which raises the price of dirty fuels more than clean fuels. For example, plants special-
izing in dirty fuels such as coal will bear a disproportionate share of the tax burden. While
initially unobserved, I recover fuel productivity for each plant each year by exploiting profit
maximization.

Moreover, allowing plants to have different fuel sets Fit and allowing plants to switch between
them is novel; plants with a larger fuel set have more substitution possibilities when facing
changes in fuel prices. This option value creates another layer of heterogeneity in response to
carbon taxation. Larger and more productive plants with a larger fuel set will have an easier
time substituting out of a carbon tax than smaller plants with smaller fuel sets.

These two novel features are a significant departure from the literature, where most previous
papers that estimate a production function with fuels do not allow for fuel-specific produc-
tivity and do not allow for fuel sets to vary within the same production function (Atkinson and
Halvorsen, 1976, Hyland and Haller, 2018, Joskow and Mishkin, 1977, Ma et al., 2008, Pindyck,
1979). More recently, Hawkins-Pierot and Wagner (2022) allowed for the productivity of the
total energy bundle to vary across plants. While this allows for heterogeneity in the substitution
between energy and other inputs, it does not capture salient features of fuel consumption and
differential responses to fuel price changes.

The elasticity of substitution between fuels λ plays a crucial role in this model. It determines
the option value a plant would get by expanding its fuel set Fit. As long as fuels are gross
substitutes (λ > 1), there is an option value (gains from variety) from having more fuels due to
the additional substitution margin each fuel provides. However, the lower λ is, the larger the
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option value. A lower λ implies that marginal products from a given fuel decrease faster with
quantity, so there are larger marginal gains from adding a new fuel6. Next, I show how plants
compete and set prices.

2.4.2 Static Decisions

Plants produce different output varieties and engage in monopolistic competition.

I make this assumption for two reasons. First, the Indian steel industry features the most plants
out of all Indian heavy manufacturing industries, and the industry faces fierce competition from
China, the world’s largest steel producer. It is thus likely to be more competitive than typi-
cal oligopolistic industries like Cement. Second, steel plants produce a wide variety of steel
products. There are 404 varieties produced by plants in the ASI. Ferrous products from direct

reduction of iron ore are the most common variety with a 5.5% market share.

On the demand side, there is a representative consumer with quasi-linear utility over the total
output produced in a given period Yt and an outside good Y0t. Steel consumption is widespread
in India, and most demand comes from housing construction, infrastructure, and automobiles.
Total output is produced by aggregating all the varieties with standard Dixit-Stiglitz preferences
across varieties. Given a mass of Nt operating plants, income It, and an aggregate demand shock
eΓt , the representative consumer solves:

max
{Yit}

Nt
i=1,Y0t

U = Y0t +
eΓt

θ

(
1
Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) θρ
ρ−1

s.t. Y0t +

∫
Ωi

PitYitdi ≤ It

(2.3)

Where ρ > 1 is the elasticity of substitution between varieties, and θ ∈ (0, 1) indexes the sub-
stitution between consumption of the differentiated varieties and the outside good. Following
Helpman and Itskhoki (2010), I restrict θ < ρ−1

ρ
, which ensures that output varieties are more

substitutable between each other than with the outside good. These quasi-linear CES prefer-
ences were first proposed by Helpman and Itskhoki (2010) and provide analytical convenience
for welfare evaluation. Quasi-linear preferences are standard in the literature on externality tax-
ation (Fowlie et al., 2016) and allow researchers to use the social cost of carbon (SCC), which

6This option value is similar to the concept of gains from variety in the trade literature investigating the com-
position of intermediate inputs (Broda and Weinstein, 2006, Ethier, 1982, Goldberg, Khandelwal, Pavcnik and
Topalova, 2010, Kasahara and Rodrigue, 2008, Ramanarayanan, 2020, Romer, 1990)
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expresses the net present value of expected future damages from carbon emissions in dollars.7

Externality damages thus affect consumption of the outside good by varying aggregate income
and thus directly affect consumer surplus. Solving the representative consumer’s problem in
(2.3) yields the following downward-sloping demand for each variety Yit, which I augment with
an ex-post idiosyncratic demand shock eϵit :

Yit =
eΓ̃t

Nt
P−ρit P

ρ(1−θ)−1
1−θ

t eϵit (2.4)

Where eΓ̃t = eΓt
1

1−θ and Pt =
(

1
Nt

∫
P1−ρ

it di
) 1

1−ρ is the CES aggregate price index across all varieties.
Detailed derivations can be found in Appendix B.1.

Plants choose inputs to maximize static profits

Given a set of fuels Fit ⊆ F, technological constraints, inverse demand, and all input prices,
the plant’s problem is static.8 To avoid notation clutter, I will define X̃it ≡

Xit

X
for normalized

quantities and p̃xit ≡ pxitX for normalized prices from now on.

max
Kit ,Mit ,Lit ,{e f it} f∈Fit

{
Pit(Yit)Yit − wtLit − rktKit − pmitMit −

∑
f∈Fit

p f ite f it

}
s.t. Ỹit = zit

[
αK K̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αM M̃
σ−1
σ

it + αE

( ∑
f∈Fit

(ψ f itẽ f it)
λ−1
λ

) λ
λ−1

σ−1
σ

] ησ
σ−1

Pit(Yit) =
(

eΓ̃t

NtYit

) 1
ρ

P
1+ρ(θ−1)

(θ−1)ρ
t

The nested structure of production is such that it can be expressed in two stages:

1. Plants choose fuel quantities to minimize the cost of producing energy (inner nest):

Given a fuel set Fit and fuel prices, plants find the combination of fuels that minimizes the cost

7This is the approach typically taken in applied microeconomics. However, an alternative approach in macroe-
conomics relies on integrated assessment models (IAM) to explicitly study the dynamic relationship between ag-
gregate emissions and the concentration of CO2 in the atmosphere, which affects future aggregate output in various
ways. See Golosov et al. (2014), Hassler et al. (2019, 2020), Nordhaus (2008).

8I derive the decision of plants under the assumption that plants flexibly rent capital with a unit cost of capital
rkt. While I use this assumption to reduce the computational burden in the dynamic discrete choice model of fuel
sets, I do not need nor use this assumption to estimate the production function.
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of producing a given unit of energy. Fuel prices in mmBtu are observed and vary across plants
and year:

min
{e f it} f∈Fit

{ ∑
f∈Fit

p f ite f it

}
s.t. Ẽit =

( ∑
f∈Fit

(ψ f itẽ f it)
λ−1
λ

) λ
λ−1 (2.5)

The achieved minimum of this problem is an energy cost function C(Ẽit) that satisfies:

C(Ẽit) =
( ∑

f∈Fit

( p̃ f it

ψ f it

)1−λ
) 1

1−λ Ẽit

= pẼit
Ẽit =

∑
f∈Fit

p f ite f it

Where the unobserved price of realized energy p̃Eit corresponds to a CES price index in fuel
prices over productivity. Constant returns in the energy production function imply that the
marginal cost of realized energy is the price of realized energy and is constant MC(Ẽit) = pẼit

.

2. Plants choose inputs other than fuels to maximize profit (outer nest):

Given a cost-minimizing allocation of fuels that produce a quantity of energy, plants pay a
price pEit for each unit of energy. They take this price as given when choosing the quantity
of energy because pEit is only a function of the optimal relative allocation of fuels, not the
scale of energy. Then, at the beginning of each period, plants start with a set of fuels Fit ⊆ F,
observe their Hicks-neutral productivity zit, productivity for each fuel {ψ f it} f∈Fit , and all input
prices {wit, rkit, pmit, {p f it} f∈Fit}. Together with the years of production, these form a set of state
variables sit. Given these state variables, plants maximize profits, which yield a period profit
function π(sit,Fit).

π(sit,Fit) = max
Kit ,Mit ,Lit ,Eit

{(eΓt

Nt

) 1
ρ P

1+ρ(θ−1)
(θ−1)ρ

t Y
ρ−1
ρ

it − wtLit − rktKit − pmitMit − pEitEit

}
s.t. Ỹit = zit

[
αK K̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αM M̃
σ−1
σ

it + αE Ẽ
σ−1
σ

] ησ
σ−1

(2.6)
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2.4.3 Inter-Temporal Fuel Set Choices

Every period, plants take expectations over the evolution of state variables and choose a fuel set
for the next period F ′ to maximize expected discounted lifetime profits:

V(sit,Fit ∈ F) = max
F ′

{
π(sit,Fit)︸    ︷︷    ︸
static profits

−K(F ′ | Fit, sit) + σϵϵF ′it︸                         ︷︷                         ︸
fixed switching costs

+ βE[V(sit+1,F
′) | sit]︸                   ︷︷                   ︸

continuation value

}

Where K(F ′ | Fit, sit) is the net cost of switching from fuel set F to F ′, and ϵF ′it captures
idiosyncratic shocks to these switching costs. I allow fuel set switching costs to vary by plant
size (proxied by Hicks-neutral productivity zit) and whether a plant is in a district d that has
access to natural gas pipelines9:

K(F ′ | Fit, sit) = k(F ′ | Fit, dit) + γ ln zit

The switching cost function k(F ′ | Fit, dit) is composed of two types of arguments. First, there
are fixed costs of adding a fuel κ f . Second, there are salvage values of dropping a fuel γ f that
plants obtain by selling old capital. Since 90% of plants in the dataset always use electricity and
oil, I assume that the choice set of plants is as follows, where e = electricity, o = oil, g = gas, c

= coal: F =
{
(oe); (oge); (oce); (ogce)

}
and restrict the sample accordingly. In the next section,

I show how this model can be estimated.

2.5 Identification of the Production Function

The model is estimated in four steps using a novel combination of methods. First, I estimate
the demand elasticity by using the shift-share instrument of Ganapati et al. (2020) as a cost-
shifter. Second, I adapt the method of Grieco et al. (2016) in order to estimate the outer pro-
duction function in the presence of an unobserved input (energy). Third, I estimate the en-
ergy production function following recent developments in production function estimation with
input-augmenting productivity (Demirer, 2020, Zhang, 2019), combined with dynamic panel

9Plant size is endogenous, but a Ceteris paribus increase in zit increases the scale of a plant’s operation. Scott
(2021) shows that proximity to the natural gas pipeline network decreases the fixed cost of adding natural gas.
Plants too far from the pipeline network can use liquified natural gas (LNG) but need access to a gasification
terminal, which can be very costly.
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techniques (Blundell and Bond, 1998, 2000, 2023). Fourth, I estimate fixed costs in a dynamic
discrete choice framework in the presence of unobserved heterogeneity following Arcidiacono
and Jones (2003), which allows me to capture systematic differences in fuel productivity for
fuels that plants are not currently using.

2.5.1 Identification of Outer Production Function

In the outer nest, the main unobserved quantity that departs from standard models is realized
energy Ẽit. In contrast to the heating potential of fuels, energy is the output of combining
different fuels, which is unobserved. I adapt the estimation method proposed by Grieco et
al. (2016) to uniquely recover the price and quantity of energy when other flexible inputs are
observed under the assumption that plants are price-takers in the input market.10 The key to
this method relies on using relative first-order conditions to map observed expenditure shares to
unobserved input quantity shares. To see this, one can look at the ratio of first-order conditions
for labor and energy from profit maximization in equation 2.6 and rearranging:

witLit

pEit Eit︸ ︷︷ ︸
Expenditure ratio

=
αL

αE

( Lit/L

Eit/E︸︷︷︸
Quantity ratio

)(σ−1)/σ
(2.7)

Given production function parameters, Eit

E
can be recovered from (2.7) because I observe ex-

10The assumption of price-taking in the input market allows for unobserved variation in input prices (the main
motivation underlying the Grieco et al. (2016) paper), which could be related to plant size, productivity, location,
and any other state variables. However, this assumption rules out quantity discounts.

F oe oge oce ogce

oe 0 κg κc κg + κc

oge −γg 0 −γg + κc κc

oce −γc −γc + κg 0 κg

ogce −γg−γc −γc −γg 0

Table 2.5: Fixed Switching Cost Matrix — k(F ′ | F )

Notes: Rows correspond to fuel sets today F , whereas columns correspond to fuel sets next period F ′. I assume
that fixed costs and salvage values for coal are the same across districts. However, fixed costs and salvage values
for natural gas vary by plants’ proximity to the natural gas pipeline network in a binary fashion. I define d = 0 if
plants have no access to pipelines and d = 1 if plants have access to pipelines. Then κg = κg1 if d = 1 and κg = κg0
if d = 0, and likewise for γg. I define plants as having access to pipelines if they are located in a district in which a
pipeline directly passes or in a district immediately adjacent to a district in which a pipeline passes.
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penditures for both inputs (recalling that energy expenditure is the sum of fuel expenditures
from the energy production function: pEit Eit =

∑
f∈Fit

p f ite f it) and I observe the quantity of la-
bor. Identification of Ẽit comes from variation in the relative price of labor to energy, which
induces variation in the expenditure ratio that isn’t one-for-one with relative prices. For a given
σ, observed variation in spending on energy S Eit , spending on labor S Lit and the quantity in
labor Lit implies a unique quantity of realized energy by the optimality condition between both
inputs. Only when σ = 1 (Cobb-Douglas), the percentage change in relative prices is always
offset by an equivalent percentage change in expenditure shares, such that expenditure shares
are constant.

Eit

E
=

( peitEit

witLit

) σ
σ−1

(αL

αE

) σ
σ−1 Lit

L
(2.8)

Thus, in this setting, one can identify production parameters by replacing Ẽit for (2.8) in the
production function and exploiting first-order conditions to control for the transmission bias
from unobserved hicks-neutral productivity zit to observed inputs. This method is also used by
Doraszelski and Jaumandreu (2013, 2018). I also use the same method to control for unobserved
price dispersion in the bundle of material inputs:

Mit

M
=

( pmitMit

witLit

) σ
σ−1

( αL

αM

) σ
σ−1 Lit

L

The main dependent variable is revenues, where euit is an unobserved iid shock that is meant to
capture measurement error and unanticipated demand & productivity shocks to the plant (Klette
and Griliches, 1996). Detailed derivations of the estimating equation can be found in Appendix
C.1. Taking logs of revenues yields the main estimating equation:

ln Rit = ln
ρ

ρ − 1
+ ln

1
η
+ ln

[
witLit

(
1 +

αK

αL

(Kit/K

Lit/L

)σ−1
σ

)
+ pmitMit + peitEit

]
+ uit (2.9)

The main parameters of interest are the elasticity of substitution (σ), the elasticity of demand
(ρ), and the returns to scale (η) in (2.9). While the elasticity of substitution is identified from
observed variation in the capital-to-labor ratio, the elasticity of demand/markup is not sepa-
rately identified from the returns to scale. This is a standard problem with revenue production
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functions, whereby the curvature in the revenue function is driven by both technology (returns
to scale) and market power (markup). Fortunately, I observe output prices and quantities, and I
use exogenous cost shifters to recover the elasticity of demand ρ in Section 2.5.1. Lastly, since
Ẽit and M̃it were factored out of the production function, the main estimating equation (2.9) does
not recover αE and αM. To recover αE and αM, I take the geometric mean of relative first-order
conditions in equation (2.7) for labor relative to energy and for labor relative to intermediate
materials.11

wL/pEE =
αL

αE
; wL/pmM =

αM

αE

αK + αL + αM + αE = 1
(2.10)

Then, I estimate (2.9) subject to (2.10) with non-linear least squares.12

Estimating Elasticity of Demand

To separate the demand elasticity ρ from the returns to scale η in the estimating equation (2.9),
I estimate demand from observed output prices and quantities using the demand equation (2.4).

ln Yit = Λt − ρ ln Pit + ϵit, (2.11)

where Λt = Γ̃t+ ln
(

1
Nt

)
+

ρ(1−θ)−1
1−θ ln Pt contains both the unobserved aggregate output price index

Pt and aggregate demand shocks Γ̃t. Due to standard simultaneity bias, the elasticity of demand
ρ is not identified from price and quantity data alone. To solve this issue, I instrument output
prices with a Barktik style shift-share cost shifter proposed by Ganapati et al. (2020) and used
by Hawkins-Pierot and Wagner (2022). The instruments have two components: an exogenous
shock to aggregate fuel prices (the shift) and a pre-shock variation in exposure to aggregate fuel
prices by Indian States (the share):

11This is the convenience given by the geometric mean normalization of the CES. However, any other normal-
ization would work but would require more algebra to recover the distribution parameters.

12Consistency of the parameters is shown by Grieco et al. (2016) using the first-order conditions of the NLLS
objective function as moment conditions.
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zs,t =
[
p−s,t, f ∗ σs,2008, f

]
, f ∈ {coal, gas, oil}

p−s,t, f is the average price (leaving out state s) of fuel f in year t and acts as an exogenous
shock to production cost. This is because much of aggregate fuel price variation stems from
worldwide demand and supply variation induced by geopolitical turmoil, aggregate technolog-
ical evolution, and growth. σs,2008, f is the pre-sample aggregate share of fuel f used to generate
electricity in state s. Any variation in the price of a fuel will induce more variation in elec-
tricity prices in states that use more of that fuel to generate electricity. This creates exogenous
variation in exposure to aggregate fuel price shocks since all plants use electricity as an input.
Moreover, the shares are taken in 2008 (before the sample starts) and are thus unaffected by
shocks to fuel prices.

For the remaining parts of the demand equation, the aggregate output price index Pt is part
of the year-fixed effect in equation (2.11). It is endogenously determined by the elasticity of
demand ρ. I first estimate demand using year dummies Λt and then solve for the price index
ex-post given the estimate of ρ̂, observed output prices Pit and the number of plants Nt, Pt =(

1
Nt

∑
i=1:Nt

P1−ρ̂
it

)1/(1−ρ̂)
. I then separately recover the elasticity of the outside good θ from the

aggregate demand shifter Γ̃t in a simple time series regression of the year dummies Λt on the
output price index and a constant.

2.5.2 Identification of Inner Production Function for Energy

The energy production function in equation (2.2) can be rewritten by factoring out the produc-
tivity of a fuel that plants always use, such as electricity, and redefining the productivity of all
other fuels relative to electricity, ψ̃ f it =

ψ f it

ψeit
:

Ẽit = ψeit

( ∑
f∈Fit

(
ψ̃ f it

e f it

e f

) λ−1
λ

) λ
λ−1

(2.12)

At this point, I have an estimate of the quantity and price of energy, (Êit, pÊit
) from the previous

step, fuel quantities, {e f it} f∈Fit , and fuel prices: pÊit
= S Eit

Êit
, {p f it =

s f it

e f it
} f∈Fit . I show how to recover

the elasticity of substitution λ and all productivity terms ψ f it. To do so, I rely on optimality
conditions from the energy cost-minimization problem coupled with a Markovian assumption
on electricity productivity. This effectively combines the dynamic panel approach of Blundell
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and Bond (1998, 2000) with the method proposed by Zhang (2019). As a reminder, the energy
cost-minimization problem of the plant is as follows:

min
{e f it} f∈Fit

∑
f∈Fit

p f ite f it s.t. Ẽit = ψeit

( ∑
f∈Fit

(
ψ̃ f it

e f it

e f

) λ−1
λ

) λ
λ−1

Relative first-order conditions identify the relative productivity of fuel f as a function of ob-
servables up to parameter values:

ψ̃ f it =
( p f it

peit

) λ
λ−1

(e f it

eeit

) 1
λ−1 e f

ee
(2.13)

The intuition underlying equation (2.13) is that relative fuel productivities equate relative fuel
prices to relative marginal products p f it

peit
= ψ̃

λ−1
λ

f it

( eeit
e f it

) 1
λ . I then exploit these optimality condi-

tions by substituting back the implied relative fuel productivity terms (2.13) into the energy
production function (2.12) and rearranging:

Ẽit

ẽeit
= ψeit

( ∑
f∈Fit

s f it

seit

) λ
λ−1

(2.14)

Where s f it ≡ p f ite f it is spending on fuel f . The intuition underlying equation 2.14 is fairly
straightforward. The left-hand side is the value added of an additional unit of electricity in
terms of energy. In contrast, the right-hand side is the contribution of electricity productivity and
relative spending on other fuels to that value added. Naturally, higher electricity productivity
increases the value added of electricity, and higher spending on other fuels also increases the
quantity of energy produced for a given unit of electricity.

The only unobservable left in the energy production function is the productivity of electricity,
which is correlated with current period quantities and spending on fuels since it is assumed to be
known to plants when choosing fuel quantities. To deal with this issue, I assume that electricity
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productivity follows an AR(1) Markov process with year and plant-fixed effects.13 Moreover, I
allow for plant-specific fixed effects in the productivity of electricity µψe

i

lnψeit = (1 − ρψe)(µ
ψe
0 + µ

ψe
r + µ

ψe
i ) + µψe

t − ρψeµ
ψe
t−1 + ρψe lnψeit−1 + ϵ

ψe
it (2.15)

I then take the log of equation (2.14) and use the Markov process above to get an estimating
equation:

ln ˆ̃Eit − ln ẽeit = Γt + ρψe(ln Ẽit−1 − ln ẽeit−1) +
λ

λ − 1

(
ln

∑
f∈Fit

s f it

seit
− ρψe ln

∑
f∈Fit−1

s f it−1

seit−1

)
+ µ∗i + ϵ

ψe
it

(2.16)

Where Γt = µ
ψe
0 (1 − ρψe) + µ

ψe
t − ρψeµ

ψe
t−1 is a year fixed-effect and µ∗i = (1 − ρψe)µ

ψe
i is the

normalized plant fixed effect. Since ϵψe
it is a shock to the productivity of electricity at time t, it

is uncorrelated with choices made at time t − 1:

E(ϵψe
it | Iit−1) = 0

There are two main endogeneity concerns in this model. First, the lagged value added of elec-
tricity and the lagged relative spending on other fuels are correlated with the plant fixed effect
µ∗i , which biases the persistence of electricity productivity ρψe . This is the standard concern in
the dynamic panel literature. Second, contemporaneous relative spending on other fuels is cor-
related with both the fixed effect µ∗i and the innovation term ϵ

ψe
it to electricity productivity, which

biases the estimate of the elasticity of substitution λ. Blundell and Bond (1998, 2000), and many
others show that these concerns can be addressed with properly specified moment conditions. I
use the system GMM approach, which combines both level and difference moment conditions
as follows:

13The choice of these modified AR(1) processes, where the mean is normalized by the persistence, are standard
in the dynamic panel literature with short panels (Blundell and Bond, 2023). It ensures that the average of each
state variable observed in the data corresponds to the unconditional average of this process. This means that even
though the model is estimated from a short panel (between 2 and 8 years), forward simulations multiple years
ahead will match the support of the data. It is equivalent to the assumption that the residuals of the productivity
distribution follow an AR(1) process rather than electricity productivity itself.
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E(∆Xi,t−1(µ∗i + ϵ
ψe
it )) = 0

E(Xi,t−1∆ϵ
ψe
it ) = 0

For Xi,t−1 ∈ {ln Ẽi,t−1 − ln ẽe,i,t−1, ln
∑

f∈Fi,t−1

s f it−1

seit−1
} and likewise for ∆Xi,t−1. Moreover, these mo-

ment conditions yield a consistent estimate of the elasticity of substitution λ under the assump-
tion that shocks affecting relative fuel spending are persistent. This assumption is consistent
with many geopolitical shocks persistently affecting fuel prices in the market. Lastly, I get
standard errors on the elasticity of substitution using the delta method.

2.6 Identification and Estimation of Fixed Fuel Switching Costs

Each plant has access to a set of fuels Fit and is considering all alternative fuel sets for the next
period: F ′ ≡ Fit+1 ⊆ F ≡ {oe,oge,oce,ogce}. Since all state variables sit are assumed to follow
a Markovian process, I start from the recursive formulation of the problem. The plant chooses
a fuel set next period F ′ to maximize the net present value of lifetime profits:

V(sit, ϵit,Fit) = max
F ′⊆F

{
π(sit,Fit)/σϵ − K(F ′ | Fit, sit)/σϵ + ϵF ′it + βE(V(sit+1, ϵit+1,F

′) | sit)
}

(2.17)

Where the fuel set switching cost function, K(F ′ | Fit, sit), was defined in Table 2.5. It is a
function of productivity zit and access to natural gas pipelines. σϵ is a parameter that maps units
of profits (dollars) to units of the fixed cost shocks.14 From now on, I define the parameters
governing the switching cost function θ1 = {κg1, κg0, κc, γg1, γg0, γc} for coal c and gas g, and θ2

the parameters underlying the evolution of state variables. I use κg1 to denote the fixed cost of
adding natural gas for plants located in a district near the pipeline network and κg0 for plants
located in a district that isn’t immediately adjacent to the pipeline network, and likewise for
salvage values. I make the assumption that cost shocks are iid and come from a standardized
Type 1 Extreme value ϵF ′it ∼ Gumbel(0, 1). This allows me to analytically integrate these
shocks and work with the expected value function, W(sit,Fit) = E(V(sit, ϵit,Fit)):

14An equivalent approach would be to map units of the fixed cost shocks to units of profits (dollars). Once σϵ is
known, I can always switch between dollars and units of the Gumbel distribution.
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W(sit,Fit) = γ + ln
( ∑
F ′∈F

exp
(
π(sit,Fit)/σϵ − K(F ′ | Fit, sit)/σϵ + β

∫
W(sit+1,F

′) f (sit+1 | sit)dsit+1︸                                                                                        ︷︷                                                                                        ︸
υF ′ (sit ,Fit)

))

Where γ ≈ 0.5772 is the Euler–Mascheroni constant and υF ′(sit,Fit) is the choice-specific
value function. Then, the probability of choosing fuel F ′ has a logit formulation, simplifying
the likelihood. Note that this probability is implicitly a function of both θ1 and θ2. Next, I
discuss the evolution of each state variable.

Pr(F ′ | Fit, sit; θ1, θ2) =
exp

(
υF ′(sit,Fit; θ1, θ2)

)
∑
F ∈F exp

(
υF (sit,Fit; θ1, θ2)

)
Plants take expectation over all productivity terms, fuel prices, and material prices, which I
separate into two categories. Non-selected state variables, which I observe for every plant in
every year (ψoit, ψeit, pot, peit, zit, pmit), and selected state variables, which I only observe when
plants are using the relevant fuel (ψcit, ψgit, pcit, pgit). I assume that plants do not take expectation
over the rental rate of capital and aggregate wages to reduce the computational burden of this
problem.

2.6.1 Evolution of State Variables

All state variables follow a persistent AR(1) process with time (t) and region (r) fixed effects.
To reduce the state space, I assume that the persistence for fuel prices and productivity is the
same ρp f = ρψ f = ρ f . This assumption allows me to define fuel productivity over prices as a
single state variable, which always enters together in plants’ profit function p f it/ψ f it through
the energy price index. I allow for systematic differences in the productivity/price of each fuel
across plants, µ f

i , which I call fuel comparative advantage. ∀ f ,

E
[
ln(ψ f it+1/p f it+1) | Iit

]
= (1 − ρ f )(µ

f
0 + µ

f
r + µ

f
t + µ

f
i ) + ρ f ln(ψ f it/p f it) (2.18)

In this context, A positive (log) fuel price shock is isomorphic to a negative (log) fuel produc-
tivity shock and vice versa. The region dummies µ f

r (Northern, North-East, Eastern, Center,
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Western, Southern) capture the bulk of the spatial variation in fuel prices and technology. I also
assume a similar process for hicks-neutral productivity ln zit and for the (log) price of materials
ln pmit. These two state variables and the price/productivity of oil and electricity were recov-
ered in previous sections for all plants in all years. As such, these Markovian processes can
be estimated directly using the system GMM approach of Blundell and Bond (2000). Follow-
ing Bonhomme and Manresa (2015), I reduce the dimension of oil and electricity comparative
advantages µ f

i by grouping plants into clusters of unobserved heterogeneity using K-means
clustering.

However, not every plant uses gas and coal. When plants are not using gas or coal in year t,
the price/productivity process starts at the initial condition (equivalent to t = 0), and plants take
expectation over idiosyncratic shocks. ∀ f ∈ {coal, gas}:

E
[
ln(ψ f it+1/p f it+1) | f < Fit

]
= µ

f
0 + µ

f
t + µ

f
r + µ

f
i

Estimating the distribution of plant-specific comparative advantages for coal and gas only from
plants that currently use gas or coal is likely to be biased due to selection. Recovering the
distribution of µ f

i from selected plants may not reflect the distribution across all plants, which
would bias fixed cost estimates. In the next section, I show how to recover the distribution
of these fuel comparative advantages for plants that are not currently using gas or coal jointly
with fixed costs following the approach of Arcidiacono and Jones (2003). Using this approach, I
recover the distribution of fuel comparative advantages that is most likely to rationalize observed
fuel set choices under the assumption that plants know their comparative advantage and use that
information to make decisions. Lastly, I allow all shocks to state variables to be arbitrarily
correlated in a multivariate normal distribution with mean zero and a positive semi-definite
covariance matrix Σ. I discretize the entire state space following Farmer and Akira Toda (2017).

(
ϵo

it, ϵ
e
it, ϵ

g
it, ϵ

c
it, ϵzit, ϵmit

)
≡ ϵit ∼ N(0,Σ)

2.6.2 Identification of Fixed Costs and Fuel Comparative Advantages

To learn about the extent to which the distribution of comparative advantage for natural gas and
coal is selected, I follow the algorithm proposed by Arcidiacono and Jones (2003). I assume
that the distribution of comparative advantages comes from finite mixtures with K = 3 points
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of support for each fuel. I parameterize the initial guess of the mean and variance of the finite
mixture to the mean and variance of the empirical (selected) distribution (µ̃ f , σ̃

2
µ f

):

K∑
k

π0
f kµ f k = µ̃ f

K∑
k

(µ f k − µ̃ f )2π0
f k = σ̃

2
µ f

Where π0
f k = Pr(µ f k) is the unconditional probability of being type k, where types refer to

support points of the fuel comparative advantage distribution, and
∑

k π
0
f k = 1. In this context,

external estimation of parameters governing the distribution of random effects from a selected
sample of plants that use these fuels leads to biased estimates of µ̃g, µ̃c, σ̃

2
µg
, σ̃2

µc
. Indeed, plants

with a larger comparative advantage for coal are more likely to use coal, and likewise for gas.
Thus, I expect to get upward biases in both the mean of coal and gas. Using the law of total
probability, I can integrate the unconditional distribution of comparative advantages using the
full information (log) likelihood. Assuming there is only one finite mixture over both coal
and gas for notation convenience, and where the distribution of comparative advantages are
independent across fuels such that πk ∈ Π = vec(Πg ⊗ Πc), where πkg ∈ Πg and πkc ∈ Πc:

lnL(F , s | θ1, θ2) =
n∑

i=1

ln
[∑

k

πk

[ T∏
t=1

Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ2)
]]
+

n∑
i=1

T∑
t=1

ln f (sit | sit−1; θ2)

(2.19)

In particular, the likelihood in (2.19) assumes that the state transitions are independent of the
distribution of comparative advantages for coal and gas.15 This is possible if the parameter es-
timates θ̂2 are unbiased from selected data. Initially, the true probability weights πk over the
support of the finite mixture are unknown due to selection, but Arcidiacono and Jones (2003),
Arcidiacono and Miller (2011) provides a method to recover the unselected distribution by
sequentially iterating over the fixed costs to maximize the likelihood and updating the proba-
bility weights π0

k , π
1
k , π

2
k , ... using an EM algorithm. Following Bayes’ law, one can show that

the solution to this maximum likelihood problem is the same as the solution to a sequential
EM algorithm that uses the posterior conditional probabilities that plant i is of type k given all
observables, including choices made:

15This assumption isn’t necessary, but it simplifies the computation of the model in the presence of these com-
parative advantages.
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θ̂1 = arg max
θ1,θ2,π

n∑
i=1

ln
[∑

k

πk

[ T∏
t=1

Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ2)
]]

≡ arg max
θ1

N∑
i=1

T∑
t=1

∑
k

ρ(µk | Fi, si; θ̂1, θ̂2, π̂) ln Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ̂2)

Where Fi is the sequence of fuel set choices I observe establishment i making. Using Bayes’
rule, the conditional probability that plant i is of type k is given by the current guess of the
unconditional probability π̂k weighted by the probability that the plant makes the observed se-
quence of fuel set choices conditional being type k:

ρ(µk | Fi, si; θ1, θ2, π̂) =
π̂k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ1, θ2)

]I(Fit=F )
]]

∑
k π̂k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ1, θ2)

]I(Fit=F )
]] (2.20)

The idea underlying the EM algorithm is to iteratively estimate fixed cost parameters θ1 given
some guess of the distribution of comparative advantages {πk}k – M step, draw new compar-
ative advantages using Baye’s law from (2.20), which are used to update the unconditional
distribution of comparative – E step, and repeat this procedure until the likelihood in (2.19) is
minimized. Details of the algorithm can be found in Appendix C.3.

2.7 Estimation Results – Steel Manufacturing

Outer Production Function Estimation Results

Estimates of the outer production function parameters can be found in Table 2.6. The average
output and revenue elasticities with respect to intermediate materials are much larger than those
with respect to other inputs and are consistent with the literature (Doraszelski and Jaumandreu,
2013, 2018, Gandhi et al., 2020, Grieco et al., 2016). This is primarily due to the importance
of iron ore in steel production. Average output and revenue elasticities are considerably larger
for energy than labor and capital due to the large quantities of fuels required to produce steel.
The estimated demand elasticity is also consistent with estimates by Zhang (2019), who finds
a demand elasticity of around 4 in the Chinese Steel industry. Using these estimates, I can
construct estimates of the price pÊit

and quantity of the energy bundle for each plant Êit from
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the relation first-order conditions in equation 2.8, which I use to estimate the energy production
function.

Production and Demand
Parameters Average Output Elasticities

Average Revenue
Elasticities

Elasticity of substitution σ̂
1.80
[1.374,3.054]

Labor
0.040
[0.037,0.048]

0.030
[0.029,0.030]

Returns to scale η̂
1.23
[1.137,1.444]

Capital
0.023
[0.014,0.035]

0.017
[0.010,0.025]

Elasticity of demand ρ̂
3.84
[2.695,4.914]

Materials
1.008
[0.935,1.185]

0.745
[0.741,0.749]

Elasticity of outside good θ̂
0.63
[0.552,0.683]

Energy
0.155
[0.144,0.182]

0.115
[0.113,0.117]

Observations 8,547
Bootstrap 95% confidence interval in brackets (499 reps)

Table 2.6: Estimates of Outer Production Function

Notes: The average output (revenue) elasticities are defined as the average of the individual output (revenue)
elasticity, where the output elasticity is ∂yit

∂x jit

x jit

yit
for yit ∈ {Yit,Rit} and x jit ∈ {Lit,Kit,Mit, Eit}

Energy production function estimation results

Steel

Elasticity of substitution λ̂ 2.224∗∗∗

(0.231)
Persistence of electricity productivity ρ̂ψe 0.649∗∗∗

(0.118)

Observations 3,459
Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2.7: Estimates of Energy Production Function

Notes: I use the delta method to recover the standard error of λ̂ where σ̂λ = (λ̂ − 1)σ̂γ. Moreover, the number of
observations in the energy production function (3,459) is lower than in the outer production function (8,547). This
is because the method to estimate the energy production function constructs moments that require at least 3 years
of observation per plant to yield consistent estimates (Blundell and Bond, 1998, 2000).

Turning to the energy production function, results indicate that the elasticity of substitution be-
tween fuels λ̂ is larger than the elasticity of substitution between energy and non-energy inputs
σ̂ from Table 2.6. This is important because the larger the elasticity of substitution between
fuels, the larger the aggregate gains from carbon taxation (Acemoglu, Aghion, Bursztyn and
Hemous, 2012). More substitution possibilities mean more emission reduction can be achieved
by substituting away from polluting fuels rather than by reducing output, which is a key trade-
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off in evaluating carbon policy. Next, I construct estimates of the fuel-specific productivity for
each plant in each year ψ̂ f it and discuss its implications.

Heterogeneity in fuel productivity across fuel sets

Results are summarized in Figure 2.9. There are a few takeaways. First, electricity is by far
the most productive fuel, averaging between two and three times the productivity of other fuels.
When comparing coal and natural gas, one mmBtu of coal is, on average, 30% more productive
than one mmBtu of gas. However, this gap expands to 185% when looking at productivity per
dollar because coal is significantly cheaper – averaging one-fifth of the price of natural gas.
This can explain the prevalence of coal in the Indian steel industry.
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Figure 2.7: Mean (Log) Fuel Productivity Among Plants Using Different Fuel Sets

Notes: The figure is created by taking the sample average of the estimated log productivity for all four fuels by fuel
sets. Fuel set labels are created as follows: oe = oil and electricity, oge = oil, gas, and electricity. oce = oil, coal,
and electricity. ogce = oil, gas, coal, and electricity. I divide by the geometric mean of fuel quantities e f because
fuel productivity is originally in normalized units due to the normalization in estimation.

Estimation of Fixed Costs

Fixed cost estimates are reported in Table 2.8. These estimates encompass the tangible expenses
related to new fuel-burning technologies and intangible costs associated with fuel adoption.
This includes logistical challenges, new contractual agreements for transportation and storage,
as well as potential opportunity costs from diverting labor away from production. These costs
are substantial, ranging from 28 to 40 million dollars, and align well with the upper echelon of
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existing accounting estimates.16

Fixed Costs
(Million USD)

Salvage Values
(Million USD)

Natural Gas
Pipeline Access 28.83

15.12
No Pipeline Access 40.46

Coal 28.82 8.33
Total Factor Productivity (100 % increase) 0.82 0.25

Observations 2,393

Table 2.8: Estimates of Fuel Set Fixed Costs and Salvage Values

Notes: This table shows the fixed cost and salvage value estimates for each fuel in million U.S. dollars. For natural
gas, these costs vary based on whether plants are in a district with access to a natural gas pipeline. The parameter
in front of ”Total Factor Productivity” is the effect of doubling productivity on the fixed costs and salvage values
of any fuel and is meant to capture how these costs vary with plant size. The sample size is lower than the
energy production function because I removed the last year of observation since I don’t observe subsequent fuel
set choices.

Coal adoption tends to be 30% cheaper than gas adoption. Moreover, plants without access
to high-pressure natural gas pipelines incur 40% higher adoption costs due to the need for
alternative transportation methods, such as liquefied natural gas (LNG), which can be costly.
This effect of pipeline accessibility is consistent with findings from Scott (2021) in his study of
U.S. power plants. The observed salvage values for coal and natural gas are significantly lower,
ranging from 57% to 71% below the fixed costs. While fixed costs are nominally very large,
the role of plant size is relatively small, as raising productivity by 1% only leads to an $8, 200
increase in fixed costs and a $2, 500 increase in salvage values. Importantly, the combination
of substantial fixed costs and relatively low salvage values likely contributes to situations of
technology lock-in, which I discuss in the next section.

2.7.1 Selection Bias in Fuel Productivity – Evidence of Technology Lock-
in

The problem of technology lock-in is pervasive, as the Indian Ministry of Steel reports that
inefficient plants face difficulties in transitioning out of old technologies:

“The higher rate of energy consumption is mainly due to obsolete technologies

16While recent comprehensive accounting estimates of switching costs are hard to find, a single electric arc
furnace may cost between a few hundred thousand dollars and a few million dollars (Source: Alibaba’s list-
ings https://www.alibaba.com/product-detail/WONDERY-Custom-Made-Siemens-PLC-Industrial_
1600732474634.html), whereas switching from pig iron, typically produced with a coal-powered blast furnace,
to direct reduced iron, typically produced with gas-powered oxygen furnaces would historically cost upwards of
USD 70 millions Miller (1976).

https://www.alibaba.com/product-detail/WONDERY-Custom-Made-Siemens-PLC-Industrial_1600732474634.html
https://www.alibaba.com/product-detail/WONDERY-Custom-Made-Siemens-PLC-Industrial_1600732474634.html
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including problems in retrofitting modern technologies in old plants, old shop floor

& operating practices” Indian Ministry of Steel (2023)

To understand factors that prevent this transition, I revisit the distribution of fuel productivity by
considering selection bias in the distribution of fuel comparative advantages. I find significant
evidence of selection bias for both coal and natural gas. Indeed, plants that do not use natural
gas would be 30% less productive at using natural gas than plants that do, whereas this effect
goes up to 80% for coal. Combined with high fixed costs, this productivity gap undermines
switching from coal to natural gas and exacerbates technology lock-in. This is because plants
that do not currently use natural gas have less to gain from paying the fixed costs, whereas plants
that currently use coal have little to gain from dropping coal.
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Figure 2.8: Distribution of Fuel Productivity – Including Counterfactual Fuel Sets

Notes: This figure shows the distribution of fuel productivity per mmBtu (lnψ f it/e f ) with 95% confidence intervals
for coal and natural gas and includes counterfactual productivity for plants with fuel sets that exclude gas and/or
coal. The distribution of fuel productivity for counterfactual fuel sets was computed by simulating draws from
the estimated distribution of unobserved heterogeneity (comparative advantages) in the dynamic discrete choice
model, using the conditional probability distribution ρ(µk | Fi, si; θ̂1, θ̂2, π̂).

I further strengthen this argument by showing that plants with more fuel tend to face a lower
marginal cost of energy in Table 2.9. This difference is largely explained by existing variation
in fuel productivity rather than the additional substitution margin that a new fuel provides. In
such a context, plants have little incentive to pay the large fixed costs required to add natural
gas.

Spatial differences also explain much of the technological lock-in in the industry. As discussed
previously with Figure 2.1, many plants using large coal-powered blast furnaces are located in
the “Steel Belt” near coal and iron ore mines, as part of Eastern India. At the same time, the
natural gas pipeline network is developed in Western India but undedeveloped in Eastern India.
While Table 2.8 showed that the direct cost of natural gas increases by 50% without pipeline
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OCE OGE OGCE

Total Difference Percent (%) Difference with OE -65.65 -71.54 -86.97

Option Value
Percent (%) of Total

36.14 5.42 6.3
Fuel Productivity 62.6 97.75 94.84
Fuel Prices 1.25 -3.18 -1.14

Table 2.9: Shapley Decomposition — Difference in Average Marginal Cost of Energy Between
Fuel Sets

Notes: I compare the observed differences in the average (across plants) marginal cost of realized energy between
plants who use coal and/or gas on top of oil and electricity (oce, oge, ogce) relative to plants who only use oil and
electricity (oe).

access, Figure 2.9 suggests that the opportunity cost for large coal users in Eastern India would
also be very large due to their high comparative advantage at using coal relative to other fuels.

(a) Coal (b) Natural Gas

Figure 2.9: Spatial Distribution of Estimated Fuel Productivity

Notes: The figures plot the distribution of productivity for coal and natural gas across Indian States. Each shade
corresponds to a quantile. Darker shades of red are regions where plants are more productive at using the given
fuel.

Model fit

Overall, the estimates of switching costs allow the model to predict quite well the empirical
distribution of fuel set choices and the observed transition patterns between fuel sets. The
model does slightly worse at predicting the transitions for plants that start with all four fuels
because it only represents 8% of the sample. The blue bars (model) are constructed in all
figures below by adding the predicted probability that each plant uses each fuel set, integrated
over the conditional distribution of comparative advantages.
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Figure 2.10: Unconditional Distribution of Fuel Sets, Model vs. Data (N = 2, 393)

From Oil, Coal, Electricity (OCE) – N = 572 From Oil, Gas, Electricity (OGE) – N = 280

From Oil, Electricity (OE) – N = 1, 342 From Oil, Gas, Coal, Electricity (OGCE) – N = 199

Figure 2.11: Conditional Distribution of Fuel Sets (Transition), Model vs. Data
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Furthermore, I look at the relationship between plant size (proxied by Hicks-neutral productiv-
ity) and fuel switching and find a positive relationship between the probability that a plant adds
a new fuel at t + 1 and its productivity at t, both in the data and the model. See Figure 2.12.
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Figure 2.12: Adding a Fuel at T + 1 Against Hicks-Neutral Productivity at T

This figure is a binned scatter plot projecting fuel switching t + 1 against Hicks-neutral productivity at t. For the
data, I make a linear projection of whether plants added a fuel between t and t + 1 against productivity. I do the
same for the model, replacing choices made by the predicted choice probability. I control for both year fixed effects
and input prices in the model and in the data.

2.8 Externality Mitigation Policies

In this section, I study the effectiveness of various policies in mitigating externality damages
from fuel combustion to improve social welfare. I detail how externality damages are con-
structed and perform two counterfactual policy experiments. First, I quantify the trade-off be-
tween emission reduction and output for various levels of fossil fuel taxes, where the tax rate
is proportional to each fuel’s emission intensity (carbon tax). I compare this trade-off with an
economy without heterogeneity in fuel productivity. Second, I discuss the pervasiveness of
technology lock-in in this economy and evaluate a potential solution that uses proceeds from
the carbon tax to finance a subsidy that reduces the fixed cost of natural gas adoption.

Externality Damages

Externality comes from the release of pollutants in the air by the combustion of fuels. All pollu-
tants are converted into carbon dioxide equivalent (CO2e) using standard scientific calculations
from the U.S. EPA. Then, each unit of fuel f ’s potential energy contributes to contemporaneous
greenhouse gas emissions as follows: 1 mmBtu of e f releases γ f short tons of CO2e. γ f are
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fuel-specific emission intensities calculated using the global warming potential (GWP) method
detailed in Appendix A.2. For example, 1 mmBtu of coal releases roughly twice as much carbon
dioxide equivalent in the air as 1 mmBtu of natural gas γc

γg
≈ 2. Fuel-specific emission intensities

define the relative tax rate between different fuels. See table 2.10.

Fuel
Average Price

(Rupees)
Emission Factor

(Kg CO2e/mmBtu)

Coal 262 100
Oil 665 82
Electricity 1,681 65
Natural Gas 1,307 60

Table 2.10: Example of Average Fuel Prices With and Without Carbon Tax

Notes: These prices are averaged across all sample years. At the baseline, they reflect the average prices that plants
pay for each fuel within a year. Natural gas is slightly less polluting than electricity. This is because the vast
majority of Indian electricity is generated with either coal or renewables such as hydro.

Since the carbon tax is a per-unit tax on fossil fuels p f it + τ f , I separate the evolution of fuel
prices/productivity of Equation 2.18 into two separate processes: one for prices and one for pro-
ductivity separately. In practice, from the discrete grid that forms the Markov chain describing
the evolution of fuel price/productivity, I construct two separate grids, one for prices and another
for productivity. Grid points are found by matching moments of the discrete Markov chain for
fuel prices and productivity with moments from observed fuel prices in the data and estimated
fuel productivity. Details can be found in Appendix D.1. Intuitively, this is akin to decomposing
the shocks to fuel prices/productivity into a shock to fuel prices and a fuel productivity shock.

2.8.1 The Equimarginal Principle With Multidimensional Heterogeneity

While both multidimensional heterogeneity in fuel productivity and dynamic fuel switching
complicate the graphical analysis of the equilibrium under a carbon tax, the equimarginal prin-
ciple still holds. A carbon tax levied on fossil fuels not only equalizes marginal abatement
costs (expressed in forgone profit) across plants, it also equalizes marginal abatement costs
across fuels within a plant. This can be seen by rearranging first-order conditions of the
plant’s static profit maximization, where the carbon tax τ is levied on firms’ total emissions
CO2e,it =

∑
f∈Fit

γ f e f it:

[
∂Yit

∂e f it

(
P(Yit) + YitP′(Yit)

)
− p f it

]/
γ f = τ ∀ f ∈ Fit (2.21)
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The left-hand side is plant i’s marginal cost of abating one ton of CO2e using fuel f (in terms
of forgone profits), whereas the right-hand side is the carbon tax rate. This equation is key be-
cause it provides a microfoundation for marginal abatement costs. In this highly heterogeneous
context, firms have multiple ways to equalize their marginal abatement costs. In the short run,
they can vary the quantity of each fuel in their set or their output. In the long run, they can pay
fixed switching costs to adopt new fuels or drop existing ones. Critically, because fuel marginal
products ∂Yit

∂e f it
vary across fuels and across plants, plants will make different decisions to equal-

ize their marginal abatement costs. This is the benefit of a market-based policy. Despite facing
the same tax schedule, plants may be more or less targeted by the tax based on input prices
they face, their fuel sets, how productive they are overall, and how productive they are at using
different fuels.

2.8.2 Carbon Tax and the Trade-off Between Output and Emission Re-
duction

In Figure 2.13, I trace the trade-off between output and emission reduction for various carbon
tax rates. Each point on the curve corresponds to a different level of the carbon tax, and together,
they form a production frontier in output and emission reduction. I simulate the economy with
and without the carbon tax for 40 years starting from 2016 and look at the net present value
(NPV) of outcomes along the entire path. For X = {aggregate output, aggregate emissions} and
a given carbon tax rate τ:

E(X(τ)) ≈
1
S

S∑
s=1

40∑
t=0

βtXts(τ)

As the level of the tax approaches zero, the model converges to the no-tax economy with 100%
of output and 0% of emission reduction. As the tax level increases, emissions decrease but so
does aggregate output. The production frontier is concave because of the increasing marginal
cost of reducing aggregate emissions, consistent with previous findings by Fowlie et al. (2016).
Fuel substitution (and more generally input substitution) is more effective initially, where much
emission reduction can be achieved by substituting coal with cleaner fuels such as natural gas
and electricity. However, as the carbon tax rate increases, more emission reduction comes at
the cost of plants scaling down their operation, decreasing aggregate output because marginal
plants have already substituted cleaner fuels for dirtier fuels.
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Higher Tax Rate

Lower Tax Rate

(a) Trade-off between Output and Emission Reduc-
tion

(b) Emission Reduction and Output Across Tax Lev-
els

Figure 2.13: Production Frontier in Output and Emission Reduction for Various Carbon Tax
Rates

Notes: This production frontier was constructed by simulating the economy under 21 different carbon tax levels,
ranging from 0 (no tax) to approximately infinity. Linear interpolation is assumed for the trade-off between each
tax level. As the level of the tax approaches infinity, the aggregate output does not reach 0. This is a feature of the
CES production function. Indeed, as fuel prices are extremely high, fuel consumption approaches zero, but plants
always use some positive amount of fuel.

The Role of Heterogeneity in Fuel Productivity – Intensive Margin

I compare in Figure 2.14 what happens when removing heterogeneity in fuel productivity from
the economy to highlight its role in the trade-off. To do so, I re-estimate an energy production
function in which plants have heterogeneous energy productivity ψEit but have the same average
fuel productivity. Details on the estimation of this production function are in Appendix D.3, and
follow the dynamic panel approach, similar to the energy production function with heterogene-
ity in fuel productivity. Estimating this production function matches average fuel quantities and
aggregate emissions levels but misses the heterogeneity in fuel shares across plants.

Eit = ψEit

( ∑
f∈Fit

β f e
λ−1
λ

f it

) λ
λ−1

The blue production frontier in figure 2.14 corresponds to this economy and shrinks inwards
compared to the baseline economy. The restricted economy operates at 88% of no-tax output
when reducing emissions by 50%, with an implied elasticity between emission reduction and
output of 4.17 – compared to 93.5% of no-tax output in the flexible economy, with an implied
elasticity of 7.7. Allowing for heterogeneity in fuel productivity diminishes how much output



Chapter 2 – Balancing Production and Carbon Emissions with Fuel Substitution 40

93.588

Figure 2.14: Comparison of Trade-off Across Model Specification

Notes: This production frontier highlights the role of the intensive margin only. It compares the trade-off across
contemporaneous taxes, excluding forward simulations and switching between fuel sets (extensive margin). The
comparison of trade-offs is the same when allowing for the extensive margin to adjust in a forward simulation
because heterogeneity in fuel productivity affects contemporaneous reallocation across plants.

must decrease to achieve any reduction in emissions because it increases the aggregate elasticity
of substitution between fuels by reallocating output from dirty to clean plants. Two channels
explain this reallocation.

First, conditional on fuel prices and fuel sets, the elasticity of the marginal cost of energy with
respect to relative fuel prices is not constant across plants. For example, as the price of coal
increases relative to the price of gas, plants that are more productive at using coal relative to gas
face a larger percentage increase in their cost of energy. This is because larger coal productivity
induces specialization in coal, making them more exposed to the relative price increase, as long
as fuels are gross substitutes λ > 1. Since the carbon tax effectively increases the relative price
of polluting fuels, plants that are more productive at using polluting fuels are especially hurt by
the carbon tax. To see this, let p̃cit = pcit/pgit be the price of coal relative to gas and likewise for
relative fuel productivity ψ̃cit = ψcit/ψgit. Then,

∂ ln pEit

∂ ln p̃cit
=

(
p̃cit/ψ̃cit

)1−λ

∑
f∈Fit

(
p̃ f it/ψ̃ f it

)1−λ =
pcitecit∑

f∈Fit
p f ite f it

(2.22)

Under cost-minimization, the elasticity of the marginal cost of energy with respect to the relative
price of any fuel (e.g., coal relative to gas) is just the plant-specific spending share of that fuel
relative to all fuels. This is an application of the Envelope Theorem. Details in Appendix
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D.3. Most importantly, this elasticity is increasing in relative fuel productivity. This means that
conditional on fuel prices and fuel set, plants that are more productive at using coal spend more
on coal and are more sensitive to relative changes in the price of coal:

∂2 ln pEit

∂ ln p̃cit∂ψ̃cit
=

(λ − 1)ψλ−2
cit p̃1−λ

cit

[∑
f∈Fit\c

(
p̃ f it/ψ̃ f it

)](∑
f∈Fit

( p̃ f it/ψ̃ f it)1−λ)2 > 0 if λ > 1

In contrast, in the economy without fuel-specific productivity, the elasticity of the price of
energy with respect to relative fuel prices is constant up to fuel prices and fuel sets.

Second, this heterogeneous increase in marginal energy costs makes polluting plants less com-
petitive than cleaner plants, consistent with the aggregation result by Oberfield and Raval
(2021). The tax thus induces a reallocation of output from more polluting to less polluting
plants, which increases aggregate fuel substitution and diminishes how much aggregate output
must be reduced to achieve any emission reduction target17. Moreover, this reallocation channel
is a function of the elasticity of demand and returns to scale. Indeed, as the elasticity of demand
increases and different output varieties become more substitutable with each other, any variation
in relative marginal costs across plants will lead to a larger reallocation of output. In Appendix
D.5, I confirm this intuition by showing that the difference between both production frontiers
expands as the elasticity of demand increases. In summary, not allowing for this rich hetero-
geneity between fuel productivity shuts down the reallocation of output from high-emission to
low-emission plants and decreases the effectiveness of a carbon tax.

This result can be summarized in Figure 2.15, where I decompose emissions reduction along
different levels of the carbon tax. Following the decomposition method proposed by Levinson
(2015), I decompose emissions reduction into a technique, composition, and scale effect. The
technique effect corresponds to plant-level fuel substitution, whereas the composition effect
corresponds to output reallocation across firms, and the scale effect corresponds to variation in
aggregate output.

Relative to a model in which all fuels are equally productive, I find that a much larger por-
tion of emissions reduction comes from output reallocation and much less from plant-level fuel
substitution when allowing for heterogeneity in fuel productivity. For a carbon tax of 40 USD

17Note that the correlation between fuel productivity and total factor productivity (TFP) also matters for this
result. Indeed, if plants more affected by the carbon tax were also initially more productive overall, this reallocation
effect may reduce aggregate TFP and aggregate output. However, I show in Appendix D.4 that the opposite is true.
Plants with higher fuel productivity tend to be less productive overall.
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Figure 2.15: Decomposition of Emissions Reduction Under Different Levels of Carbon Tax

Notes: This figure decomposes emissions reduction into three channels following the decomposition method of
Levinson (2015) for different levels of the carbon tax. While the level of the carbon tax is expressed in U.S. dollars,
they do not account for purchase power parity (PPP) differences between India and the United States. For example,
the 40 USD carbon tax is closer to 150 when accounting for PPP differences.

per ton of CO2e (equivalent to 150 USD when adjusted for purchasing power parity ). Het-
erogeneity in fuel productivity induces plants to specialize in different fuels, which then face a
higher opportunity cost for switching away from their most productive fuels. As a result, this
leads to technology lock-in (less fuel switching) and more variation in exposure to the tax (more
reallocation of output).

To benchmark this result with the literature, I do two exercises. First, I compare the aggregate
trade-off between output and emissions with Fowlie et al. (2016), who conduct similar policy
exercises for U.S. cement plants. Crucially, their interest margin is establishment entry/exit and
dynamic investments in output capacity. However, they do not allow for input substitution. I
show in Table 2.12 that a version of my model without input substitution yields an average
elasticity between emission reduction and output more than half as large as in the full model,
and closer to Fowlie et al. (2016).18 Comparing this to the more flexible economy in which
plants can substitute at both margins in Figure 2.11 sheds light on the critical role that input
substitution plays in mitigating the loss of output for any emission reduction target.

Second, I show that heterogeneity in fuel productivity and inter-temporal switching between
fuel sets also serve as a cautionary tale for larger-scale climate models in which an aggregate

18Note that a gap remains and the production frontier is still concave without input substitution at the plant level.
This is for two reasons. First, even without input substitution, plants are differently affected by the tax based on
their fuel sets, which affects aggregate input substitution due to the reallocation of output across plants. Second,
the difference between the two elasticities is also attributed to the entry/exit margin in Fowlie et al. (2016), which
decreases output and emissions through plants exiting in the aftermath of carbon policy.
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Table 2.11: Comparison of Trade-off Including
No Input Substitution

Average Elasticity
%∆CO2e

%∆Y

Full Model 5.46
No Fuel Productivity Heterogeneity 3.89
No Input Substitution 2.48
Fowlie et al. (2016) – U.S. Cement 1.04

Table 2.12: Comparison of Average Elasticity

Notes: The average elasticity of U.S. Cement plants
is constructed by approximating Figure 2.A (aggre-
gate output capacity) and 2.C (aggregate emissions) in
Fowlie et al. (2016). They do various carbon policy ex-
ercises across different carbon prices. I specifically ap-
proximate their Auctioning policy, which is isomorphic
to a carbon tax.

production function in different fossil fuels is typically assumed as part of a larger integrated
assessment model (IAM). Such models study the relationship between climate change and eco-
nomic growth. For example, Golosov et al. (2014) and Miftakhova and Renoir (2021) postulate
an aggregate CES production for composite energy that combines different fuels. Such a pro-
duction function may understate the extent of fuel substitution as a response to policy because it
does not capture the reallocation mechanism induced by heterogeneity in fuel productivity and
the inter-temporal substitution between fuel sets.

Technology Lock-in – Ineffectiveness of Carbon Tax at the Extensive Margin

While a carbon tax can cost-effectively reduce emissions by affecting fuel substitution at the
intensive margin and reallocating output from high-emission to low-emission plants, its effect
on the transition from coal to natural gas at the extensive margin is more limited. Indeed, any
level of the carbon tax leads to a net decrease in the fraction of plants using coal or natural gas.
The reduction in coal is relatively small, as it would take a carbon tax that raises the price of
coal by 400% to incentivize a 10% decrease in the fraction of plants that use coal. Aside from
coal being initially cheap relative to other fuels, this effect is primarily due to the option value
that coal provides. Plants would rather reduce their coal consumption at the intensive margin
but keep the option of using coal for the additional substitution margin it provides.

The lack of natural gas adoption indicates that the carbon tax is ineffective at incentivizing
plants to overcome technology lock-in. This can be partially explained by a combination of
the facts that the carbon tax also raises the price of natural gas, fixed costs of adoption are
economically high – especially for plants away from the pipeline network, and plants who are
not currently using natural gas would be on average 30% less productive at using natural gas
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(a) Aggregate Share of Gas Users (b) Aggregate Share of Coal Users

Figure 2.16: Natural Gas and Coal Take-up Across Levels of Carbon Tax

compared to those who already use it. In the next section, I explore the effectiveness of a subsidy
to incentivize natural gas take-up.

2.8.3 Alleviating Technology Lock-in - Combining the Carbon Tax With
Natural Gas Subsidy

To complement the carbon tax, I investigate how proceeds from the tax can be used to finance a
subsidy to the fixed cost of natural gas to alleviate technology lock-in and increase natural gas
take-up. Below, I show results for various permanent subsidies, ranging from 0% to 100% of
the average fixed cost of natural gas. I do these experiments jointly with a carbon tax. To choose
a representative social cost of carbon (SCC), I first set the social discount rate to 3% (β = 0.97)
to match India’s average real interest rate during the sampled period. Then, following the most
recent estimates from the Inter-agency Working Group on the Social Cost of Carbon (IWG,
2021), I set the SCC to the 2020 estimates for a social discount rate of 3% at USD 51/tCO2e.
This SCC corresponds to a mid-range estimate in the literature. In Figure 2.17, I show what
happens to carbon tax revenues/externality damages and total subsidy paid out as the subsidy
rate increases

First, up to 10% of the subsidy can be fully financed by a carbon tax in expectation. More
importantly, carbon tax revenues monotonically increase as the subsidy rate increases. I show
this more clearly in Figure 2.18, where I compare the evolution of the tax revenues with the
fraction of plants that use natural gas and coal.

These results are important. As the subsidy rate increases, more plants add natural gas, but the
fraction of plants that use coal remains almost the same. This isn’t surprising because coal is
still significantly cheaper than gas, and the salvage value of coal is much lower than gas. In
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Figure 2.17: Carbon Tax Revenue and Subsidy Paid Out Along Subsidy Rate

Notes: This figure was calculated by simulating the expected total tax revenues and subsidies paid to plants for
40 years. Note that carbon tax revenues correspond to externality damages since carbon tax rates on each fuel are
equal to marginal externality damages. As such, the evolution of the carbon tax revenues is indicative of emissions.

(a) Carbon Tax Revenues/Externality Damages (b) Fraction of Plants who use Natural Gas/Coal

Figure 2.18: Comparison of Selected Outcomes Along Subsidy Rate

Notes: Carbon tax revenues correspond to externality damages since relative fuel tax rates are equal to relative
fuel marginal externality damages. As such, the evolution of the carbon tax revenues is indicative of aggregate
emissions.

this context, it makes more sense for plants to keep coal for the option value it provides. These
results create two countervailing effects on carbon tax revenues/externality damages. On the
one hand, plants that add natural gas substitute away from more polluting fuels such as oil,
electricity, and coal. This substitution effect reduces tax revenues and externality damages. On
the other hand, as plants add natural gas, they have more fuels available, increasing their option
value and decreasing the price of energy. The net effect is a decrease in marginal production
costs and an increase in output, which increases all input demand. Thus, even with substitution
towards natural gas, the input demand for other fuels such as coal, oil, and electricity increases,
increasing tax revenues and externality damages. In Figure 2.20, I do a full Shapley decompo-
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sition of the change in tax revenues as the subsidy rate increases between these two channels.
Details of the Shapley decomposition can be found in Appendix D.2.

Figure 2.20: Shapley Decomposition of Changes in Tax Revenues

Unsurprisingly, the scale effect dominates. From a welfare perspective, it is unclear whether the
subsidy is preferable to an economy with only a carbon tax. While both profits and consumer
surplus increase, this comes at the cost of more externality damages and considerable investment
subsidies, which could be allocated towards more profitable ventures. For this reason, I do a
formal welfare analysis of this policy in the next section.

Welfare Analysis of a 10% Subsidy

I choose to narrow the focus on a 10% subsidy because it can be fully financed by the carbon
tax, satisfying the government’s budget constraint. With such a policy, per-period welfare is
standard and features four components: consumer surplus, producer surplus, net government
revenues, and externality damages (Fowlie et al., 2016):

wt(τ, s) = νt(τ, s)︸ ︷︷ ︸
consumer surplus

+ Π(τ, s)︸ ︷︷ ︸
producer surplus

+ G(τ, s)︸ ︷︷ ︸
net gov. revenue

−
∑

f

∑
i

γ f e f it(τ, s)︸                ︷︷                ︸
externality damages

Where consumer surplus is decreasing in the aggregate output price index Pt. This is due to
quasi-linear aggregate utility: νt(τ, s) = θ

1−θPt(τ, s)−
θ

1−θ . As such, we can think of the remaining
three parts of this welfare function as shifting the aggregate income of the consumers if it
owns all plants and gets aggregate profits net of fixed costs, government revenues as lump-
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sum transfers, and suffers externality damages from pollution in dollars from the social cost of
carbon. To include a subsidy towards natural gas adoption, I assume that the subsidy is financed
by government revenue from the carbon tax and that every plant faces the same permanent
subsidy amount of s. In this context, producer surplus is the sum of total profits net of subsidized
fixed costs, and net government revenue is total tax revenues minus subsidy paid out.

Π(τ, s) =
N∑

i=1

(
πit(τ, s)︸  ︷︷  ︸

variable profits

−
∑
F ′⊆F

[
K(F ′ | Fit) − sI(gas ∈ F ′ \ Fit)

]
I(Fit+1 = F

′ | τ, s)︸                                                              ︷︷                                                              ︸
subsidized fixed costs

)

G(τ, s) =
N∑

i=1

(∑
f

τ f e f it(τ, s)︸           ︷︷           ︸
tax revenue

−
∑
F ′⊆F

sI(gas ∈ Fit+1 \ Fit)I(Fit+1 = F
′ | τ, s)︸                                            ︷︷                                            ︸

subsidy

)

Note that externality damages cancel out with tax revenue, and the subsidy cancels out because
it is a transfer from G(τ, s) toΠ(τ, s). As a result, period welfare is effectively equal to consumer
surplus plus variable profits minus total fixed costs:

wt(τ, s) = νt(τ, s)︸ ︷︷ ︸
consumer surplus

+

N∑
i=1

πit(τ, s)︸       ︷︷       ︸
variable profits

−

N∑
i

( ∑
F ′⊆F

K(F ′ | Fit)I(Fit+1 = F
′ | τ, s)

)
︸                                               ︷︷                                               ︸

total fixed costs

(2.23)

Total welfare is then defined as the net present value of expected period welfare. I approximate
total welfare by averaging multiple Monte-Carlo simulations of the economy (indexed by k)
over a 40-year horizon. Lastly, the subsidy rate of s was chosen to keep the expected net
government revenues weakly positive.

W(τ, s) = E0

( ∞∑
t=0

βtwt(τ, s)
)

E0(G(τ, s)) ≥ 0

≈
1
K

∑
k

40∑
t=0

βtωtk(τ, s)

Below are the welfare results. In net, there is a small but positive welfare effect from the subsidy
relative to a regime with only a carbon tax, which means using carbon tax revenues to subsidize
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the adoption of natural gas is slightly better than rebating it as a lump sum transfer to consumers.
This welfare effect is explained by two countervailing effects. On one hand, variable profits and
consumer surplus increased by 19 and 13 million dollars, respectively. This is because more
plants add natural gas, but the fraction of plants using coal remains constant. This leads to a
decrease in the average price of energy, a decrease in average marginal costs, and a decrease in
output prices. Thus, more steel is produced at a lower cost, which benefits producers, and sold
at a lower price, which benefits consumers. On the other hand, there is an increase in externality
damages and an increase in total fixed costs paid in the economy by 10 and 31 million dollars,
respectively. While externality damages cancel out with tax revenue, total fixed costs do not.

Carbon Tax Carbon Tax
+ 10% Subsidy Difference

Billion U.S Dollars Billion U.S Dollars Million U.S. Dollars

Total Welfare 63.415 63.417 1.18

Variable Profit 22.58 22.60 19.18
Consumer Surplus 22.21 22.22 13.62

Total Fixed Costs (Paid by plants + subsidy) -18.633 -18.601 31.61
Externality Damages/Tax Revenue 2.64 2.65 9.78

Table 2.13: Decomposition of Welfare Effects – Carbon Tax With and Without Subsidy

Notes: All welfare components are reported by their net present value (NPV) over a horizon of 40 years from the
last year of observation in the data (2016) with a social discount rate of 3%. Also, externality damages and tax
revenue cancel out in the welfare function. The subsidy also cancels out because it is simply a transfer from net
government revenue towards producer surplus. As a result, variable profits, consumer surplus, and total fixed costs
are the remaining components in the welfare function such that Wel f are = ConsumerS urplus+VariablePro f it−
TotalFixedCost

To understand how small the welfare effects are, I compare in Table 2.14 how much of the total
fixed costs are financed by the subsidy. While 2.7 billion dollars go towards adopting natural
gas, the fraction of plants that use natural gas only goes up by 20% from 0.18 to 0.24, while
variable profits and consumer surplus jointly increase by 31 million dollars. Hence, private
gains from the subsidy are only 1.1% of the policy’s cost.

Carbon Tax Carbon Tax
+ 10% Subsidy Difference

Fraction of Gas Users 0.19 0.24 0.05
Total Subsidy paid (Billion U.S. Dollars) 0.0 2.793 2.793

Table 2.14: Total Subsidy paid

Notes: This table reports the long-run fraction of plants that use natural gas after the policy and the net present
value of the expected total subsidy paid to plants.
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There are a few reasons explaining this small effect. First, by virtue of being a universal subsidy,
the government effectively finances the adoption of natural gas for inframarginal plants that
would have still adopted natural gas in the absence of the subsidy. This can be seen from the
increase in total fixed costs paid in the economy by 31.61 million dollars in Table 2.13 after the
policy, which is considerably lower than the total amount paid by the subsidy (2.7 billion). In
practice, I find that over 90% of natural gas adopters are inframarginal. Second, plants at the
margin that are incentivized to adopt natural gas in the aftermath of the policy are, on average,
30% less productive at using natural gas than plants that already use natural gas. See Figure
2.8. At the same time, natural gas is, on average, less productive per dollar invested into it than
any other fuel. See Figure 2.15b.

This small welfare effect raises the question of whether the government could find more prof-
itable avenues to invest proceeds from the carbon tax to alleviate technology lock-in. For exam-
ple, it could invest in energy efficiency training programs to increase energy and fuel produc-
tivity or carbon capture technologies that reduce emissions ex-post. While outside the scope of
this paper, this is an interesting avenue for future research.

2.9 Conclusion

In conclusion, I develop a rich dynamic production model to study fuel substitution from man-
ufacturing establishments. It includes switching between fuel sets at a cost and heterogeneity in
fuel productivity. By combining various methods from the production function estimation and
the dynamic discrete choice literature, I show how this model can be estimated with a panel of
plant-level data that features output and input prices/quantities. I then apply this model to the
Indian Steel industry, which is high in energy and emission intensity due to the prevalence of
coal usage. I then perform various counterfactual policy experiments to reduce emissions at the
lowest cost possible, including a carbon tax and a carbon tax with a subsidy towards adopting
cleaner fuels.

Moreover, I show that novel features of this model have important quantitative implications
for the scope of these policies. Indeed, carbon taxation is much more targeted towards high-
emission plants than previously thought due to multiple layers of heterogeneity. As a re-
sult, high-emission plants become relatively less competitive, reallocating output towards low-
emission plants. This considerably reduces the overall economic cost of reducing emissions.
However, more than a carbon tax is needed to increase adoption of cleaner fuels such as natural
gas. For this reason, I show how proceeds from the carbon tax can be used to subsidize the fixed
cost of natural gas adoption. There is a small but positive welfare effect, unexpectedly through
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a larger private surplus (producer and consumer) at the expense of higher emissions. This is due
to the option value that an additional fuel provides, which lowers production costs. However,
the welfare effects of the subsidy are minor compared to its cost. Overall, these results high-
light the importance of producer heterogeneity and inter-temporal decisions when quantifying
the impact of carbon policy.

Bibliography

Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous, “The Envi-
ronment and Directed Technological Change,” American Economic Review, 2012, 102 (1),
131–166.

Ackerberg, Daniel A., Kevin Caves, and Garth Frazer, “Identification Properties of Recent
Production Function Estimators,” Econometrica, 2015, 83 (6), 2411–2451.

Ahmadi, Younes and Akio Yamazaki, “The Effectiveness of Revenue-Neutral Carbon Taxes,”
2020.

Allcott, Hunt and Michael Greenstone, “Is There an Energy Efficiency Gap?,” Journal of

Economic Perspectives, 2012, 26 (1), 3–28.

Alpino, Matteo, Luca Citino, and Annalisa Frigo, “The effects of the 2021 energy crisis
on medium-sized and large industrial firms: evidence from Italy,” Questioni di Economia e
Finanza (Occasional Papers) 776, Bank of Italy, Economic Research and International Rela-
tions Area June 2023.

Andersson, Julius J., “Carbon Taxes and CO2 Emissions: Sweden as a Case Study,” American

Economic Journal: Economic Policy, 2019, 11 (4), 1–30.

Arcidiacono, Peter and John Bailey Jones, “Finite mixture distributions, sequential likelihood
and the EM algorithm,” Econometrica, 2003, 71 (3), 933–946.

and Robert Miller, “Conditional Choice Probability Estimation of Dynamic Discrete
Choice Models With Unobserved Heterogeneity,” Econometrica, 2011, 79 (6), 1823–1867.

Atkinson, Scott E and Robert Halvorsen, “Interfuel Substitution in Steam Electric Power
Generation,” Journal of Political Economy, 1976, 84 (5), 959–978.

Atkinson, Scott E. and Rong Luo, “Estimation of Production Technologies with Output and
Environmental Constraints,” International Economic Review, 2023, 65.



Chapter 2 – Balancing Production and Carbon Emissions with Fuel Substitution 51

Blundell, Richard and Stephen Bond, “Initial conditions and moment restrictions in dynamic
panel data models,” Journal of Econometrics, 1998, 87, 115–143.

and , “GMM Estimation with persistent panel data: an application to production func-
tions,” Econometric Reviews, 2000, 19 (3), 321–340.

and , “Initial conditions and Blundell-Bond estimators,” Journal of Econometrics, 2023,
234, 101–110.

Bollard, Albert, Peter J. Klenow, and Gunjan Sharma, “Indias mysterious manufacturing
miracle,” Review of Economic Dynamics, 2013, 16, 59–85.
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Chapter 3

Asymmetric Carbon Pricing, Fuel
Substitution and Carbon Leakage

3.1 Introduction

Many countries are implementing regulations to combat pollution and its associated environ-
mental challenges. As a result, there is an increasing interest in assessing the effectiveness of
these policies in reducing pollution. The combustion of fossil fuels, a major contributor to pol-
lution, creates a negative externality through the emission of greenhouse gases that contribute
to global warming. Under Pigouvian theory, the optimal policy for addressing this externality
is a carbon tax equal to the marginal social damages of GHG emissions. Although many coun-
tries and regions have implemented carbon taxes, the limited jurisdictional scope of regulation
is such that even the most ambitious pollution reduction programs, such as the Kyoto Proto-
col and the Paris Agreement, are voluntary, and their effectiveness depends on the goodwill
of governments. In this context, there is a risk of “carbon leakage”, where emissions shift to
unregulated regions as a result of asymmetric regulation.

This risk of carbon leakage is particularly relevant in the context of manufacturing activity be-
cause firms are known to compete across regions (Smith and Ocampo, 2020). Moreover, man-
ufacturing activity contributes to 37% of global greenhouse gas emission (Worrell, Bernstein,
Roy, Price and Harnisch, 2009) and is one of the main targets of carbon taxes.

Concerns about carbon leakage are accentuated in the case of sub-national and even sub-union
regulation because production is more likely to shift across borders within a country/union
due to limited trade barriers. Moreover, while carbon leakage is by itself an interesting phe-
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nomenon, its presence biases empirical studies that estimate the direct effect of carbon taxes.
Indeed, the competitive nature of firms across regions makes it more difficult to exploit the
jurisdictional boundaries of policies as natural experiments to form counterfactuals because it
implies that the policy also treats unregulated firms. To use standard policy evaluation tools
such as Difference-in-Difference to recover the effect of a policy, one must then make strong
independence assumptions that rule out carbon leakage.

In this paper, I study carbon leakage in the context of the British Columbia (B.C.) and Quebec
carbon taxes implemented in 2007 and 2008, respectively. I build a model of monopolistic com-
petition with heterogeneous firms and multiple regions similar to Shapiro and Walker (2018) and
Aichele and Felbermayr (2015). In the model, a carbon tax increases regulated firms’ marginal
costs, making them less competitive than unregulated firms. The increase in marginal costs
depends on firms’ capacity to substitute cleaner fuels for dirty fuels, and the extent of carbon
leakage depends on how consumers are willing to substitute across firms. The model allows me
to study both the direct effects of the carbon tax in regulated regions and the leakage effect in
unregulated regions. Most importantly, I provide restrictions to quantify this model—and, by
extension, carbon leakage–using publicly available emissions data/remote sensing data only.

Using publicly available Canadian data on a wide range of pollutants emitted in the air by
manufacturing establishments, I estimate the model’s parameters to quantify the impact of the
British Columbia (B.C.) and Quebec carbon taxes on greenhouse gas (GHG) emissions across
Canada prior to the uniform Canadian carbon tax implemented in 2018. Both carbon taxes
were implemented in 2007 and 2008, respectively. I find strong evidence of carbon leakage to
other Canadian provinces. Indeed, I find that the carbon taxes caused a decrease in aggregate
emissions from Quebec and B.C. firms by 150 megatons of carbon dioxide equivalent (CO2e)
from 2007 to 2015. However, these carbon taxes caused an increase in emissions from firms in
unregulated provinces by 67 megatons of CO2e, mitigating 45% of emissions reduction efforts
as output reallocated towards unregulated firms.

I find very little evidence of fuel substitution in response to the tax. Most firms use a dominant
fuel and do not find substitution profitable. Moreover, the dominant fuel tends to be natural gas,
whereas alternative fuels such as oil and coal are even more emission-intensive. As a result, B.C.
firms pass on the cost increase to consumers and reduce output. This cost pass-through makes
firms in unregulated provinces relatively more competitive, increasing their market share.1

1However, I do not observe electricity consumption by firms, which could mitigate this leakage effect if reg-
ulated firms can substitute electricity for fossil fuels, especially in provinces such as Quebec, where electricity is
“clean” as it comes mostly from hydro plants.
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The counterfactual introduction of a uniform carbon tax across all provinces dramatically re-
duces aggregate emissions2. Extending the carbon tax to all provinces reduces aggregate emis-
sions by 21% relative to a 2.15% reduction in aggregate emissions from the B.C. and Quebec
carbon taxes.

The model features monopolistic competition in the spirit of Melitz (2003) and multiple regions.
In a nontrivial extension of Copeland and Taylor (2004), I allow multiple fossil fuels to be
used in production and specify pollution as a byproduct of fossil fuel combustion. Fossil fuel
combustion generates energy for production but also releases greenhouse gases (GHG) into the
atmosphere. This production function directly maps to emissions and carbon tax data. Indeed, I
calculate quantities of fossil fuels from emissions data based on underlying chemical reactions.
Carbon taxes are then levied with a different per-unit tax rate on different fuels, reflecting the
emission intensity of each fuel, which affects firms’ cost of using different fuels3.

This extension allows me to identify and estimate the model’s parameters and provide novel
empirical evidence on carbon leakage using only publicly available pollution release data, fuel
price data, and industry aggregates, all commonly available. The key to my method is that,
under a standard set of assumptions about firms’ production process and profit maximization,
pollution data contains information about which fuels firms use, how much of each fuel they
use, and how productive they are relative to other firms in the same industry.

My method applies to contexts with abundant remote sensing data but where plant-level data
is difficult to access or hardly even exists. It is also one of the first papers to empirically study
carbon leakage at a granular level in a literature that has a longstanding theoretical foundation
(Garella and Trentinaglia, 2019, Hoel, 1991, Holland, 2012) and computational general equi-
librium (CGE) applications (Böhringer, Carbone and Rutherford, 2016, Felder and Rutherford,
1993). Moreover, since carbon tax rates are heterogeneous by fuel types, I allow firms to sub-
stitute across different fuels. Similar to the approaches of Atkinson and Luo (2023), Ganapati,
Shapiro and Walker (2020), and Carlson, Burtraw, Cropper and Palmer (2000), fuel substitution
provides an endogenous margin of pollution intensity adjustment. Interestingly, I find very little
evidence of fuel substitution induced by the B.C. and Quebec carbon taxes.

I exploit carbon taxes and plausibly exogenous variation in world fuel prices to identify the
model’s parameters. I assume that the production technology features constant elasticity of
substitution (CES), and I separate identification into two parts. The first part comes from firms’
cost minimization problem of choosing relative fuel shares to form a composite fuel index. To

2Such as tax was implemented in 2018 by the Federal Government.
3This is how many carbon taxes are implemented in practices, including the B.C. carbon tax.
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this end, I show closed-form identification of reduced-form parameters that directly map into
structural technology parameters: fuel-specific efficiency parameters that vary across industries
and the elasticity of substitution across fuels. The second part comes from firms’ profit maxi-
mization problem, in which they choose output quantity subject to a given level of the composite
fuel index. I now observe an estimate of firms’ fuel composite input, which contains informa-
tion about their productivity. Under parametric assumptions about the productivity distribution,
I use maximum likelihood to estimate the elasticity of substitution across firms, directly lever-
aging variation in the B.C. and Quebec carbon tax.

The data I use is the National Pollutant Release Inventory (NPRI) combined with industry-level
aggregates. The former contains all pollutants released by manufacturing plants in Canada.
I specifically use pollutants released in the air that are known to come from the combustion
of specific fossil fuels. I invert each fuel’s chemical reaction to recover an estimate of fuel
quantities from a range of pollutants. This procedure is key because the model relies on fuel
quantities to identify the effect of carbon taxes.

Section 3.2 presents the intuition underlying carbon leakage. Section 3.3 presents the model in
all its details. Section 3.4 presents the data. Section 3.5 presents identification and details on es-
timation. Section 3.6 presents the results on estimation. Section 3.7 presents the counterfactual
of interests and decomposes the effect of carbon taxes.

3.2 Carbon Leakage Mechanisms

In this section, I explain intuitively the different mechanisms through which an asymmetric
carbon tax can lead to carbon leakage. Theoretically, there are two mechanisms at the intensive
margins (within-firm adjustments) and one at the extensive margins (through entry and exit).
First, the carbon tax increases the marginal cost of regulated firms, which leads to an increase
in their output price and a reallocation of production across regions due to demand shifting
from regulated to unregulated firms. Second, the increase in marginal costs can increase the
productivity threshold required for a firm to be profitable, forcing some regulated firms to exit
the market and vice versa in unregulated regions with firms entering the market. Third, the
carbon tax also increases the relative price of most polluting fuels, and regulated firms will
increase their demand for cleaner fuels. In general equilibrium, such variation in fuel demand
will increase the relative gross price of cleaner fuels. Unregulated firms now face lower relative
prices of polluting fuels, inducing substitution towards these polluting fuels.

I highlight the last two channels in red In Figure 3.1, indicating that these channels are not a
priori relevant for Canadian firms in response to the B.C. and Quebec carbon taxes. Canadian
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Figure 3.1: Channels for Carbon Leakage

firms are too small relative to the rest of the world to significantly impact aggregate fuel demand
and induce change in world fuel prices. Moreover, I abstract from the entry/exit margin of
adjustment as preliminary evidence suggests against it. Indeed, difference-in-difference (DiD)
estimation on the number of firms operating in each province due to the B.C. and Quebec
carbon taxes suggests an increase in the number of firms operating in both regulated provinces,
which is at odds with theoretical predictions. A decomposition of this DiD estimator indicates
a significant decrease in the number of firms operating in unregulated regions in the post-tax
periods (see Appendix for details). For these reasons, I only look at the channel highlighted in
blue, even though the model allows for all three mechanisms.

3.3 Model

3.3.1 Structure of the Economy

The economy is characterized by firms who engage in monopolistic competition across multiple
regions and industries and share similarities with Shapiro and Walker (2018) and Melitz and
Redding (2014). I augment this framework with firm-specific production functions that take
different fuels as inputs and allow for inter-fuel substitution. I introduce an asymmetric carbon
tax that only affects firms in specific regions to this economy. I first present the main framework
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for a single region and will give details on multiple regions when introducing the carbon tax
and carbon leakage. A Cobb Douglas production function takes the output of J industries and
aggregates them into a final good:

Y =
J∏

j=1

Yβ j

j with
∑

j

β j = 1

Where β j is the share of industry j’s production allocated to final consumption. The final good
producer chooses how much of each industry’s aggregate is needed to maximize some fixed
amount of final consumption subject to a standard budget constraint:

∑
j P jY j = C where C

denotes aggregate income. Throughout the paper, I assume that aggregate income is in dollar
units and that firms take it as given. The solution to this problem is standard and yields the share
of total consumption produced by each industry, Y j:

Y j =
β j

P j
C (3.1)

Where P j is the industry price index. Next, within each industry, firms sell differentiated goods,
Y j(A), indexed by productivity A, which can be substituted at rate ρ > 1 to form the CES
composite industry output Y j. ρ will be a crucial parameter to study carbon leakage as it defines
the degree of competitivity across firms and how easily consumers can switch between firms.

Y j ≡

( ∫
Ω j

Y j(A)(ρ−1)/ρdA
)ρ/(ρ−1)

The difference in integrating regions Ω j represents the idea that different industries have differ-
ent masses of operating firms indexed by N j. From this, I can solve for the share of each firm’s
output Y j(A) as a fraction of the industry aggregate Y j, which is easily found by choosing the
cost-minimizing bundle of {Y j(A)} that produces a given amount of Y j taking firm-level prices
as given:

Y j(A) =
(P j(A)

P j

)−ρ
Y j (3.2)

Where P j ≡
( ∫
Ω j

P j(A)(1−ρ)dA
)1/(1−ρ)

is the industry-specific CES price index. Moving forward,
I assume that firms compete in monopolistic competition.
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3.3.2 Technology and Emissions

To the standard framework above, I add a CES technology that takes multiple fuels {qℓ}Lℓ=1 in-
dexed by ℓ as inputs which form a fuel composite index F j. This composite fuel represents the
total quantity of energy service received from fuel combustion, which also emits greenhouse
gases in the air. This technology is similar to the aggregate production function in Hassler,
Olovsson and Reiter (2019), who study multiple energy sources in an integrated assessment
model of climate change. Fuels have varying degrees of emission intensity, and firms can sub-
stitute between them at a rate σ > 1. Each industry j has baseline fuel-specific efficiency terms,
λℓ j, where

∑
ℓ λℓ j = 1. Each firm has a productivity level A drawn from a distribution g j(A). Pro-

ductivity should be considered energy-augmenting rather than total factor productivity because
it contains unobserved factors of production like labor and capital.

Y j(A) = A
(∑

ℓ

λℓ j(qℓj)
(σ−1)/σ

)σ/(σ−1)

︸                          ︷︷                          ︸
F j

(3.3)

Let γℓ be the coefficient that maps one unit of fuel ℓ to tons of carbon dioxide equivalent (CO2e)
equivalent, the measure for GHG emissions commonly used in the literature. Then, GHG emis-
sions of firm i in industry j is the sum of all fuels used times their emission factor, which I
decompose into the product of emission intensity and output quantity:

GHG j(A) =
∑
ℓ

γℓqℓj(A) ≡ E j(A) =
E j(A)
Y j(A)

× Y j(A)

= e j(A)︸︷︷︸
emission intensity (process factor)

× Y j(A)︸︷︷︸
output quantity (scale factor)

It is useful to compare my technology to the canonical technological framework for pollution in
the literature (Levinson and Taylor, 2008, Shapiro and Walker, 2018). I define pollution through
a composite fuel index F j, which is the CES aggregate of multiple fuels, whereas they define
an implicit pollution function:

My model: Y j(A) = AF j

Canonical model: Y j(A) = (Al j)1−α j(z j)α j
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In the canonical model, l j is labor, and z j is total pollution such that one unit of z j always pollute
the same amount. However, firms can have varying emission intensity through investments in
pollution abatement technologies, making pollution less intensive relative to labor (lower α j).
By contrast, I define pollution abatement endogenously through fuel substitution. One unit of
F j can emit different levels of GHG emissions depending on the underlying bundle of fuels
that compose it, and that will create variation in emission intensity. A specification that maps
variation in energy intensity to fuel substitution is desirable in the context of greenhouse gas
emissions, where most emissions reductions come from substituting cleaner fuels for dirty fuels
rather than the end-of-pipe solutions. Moreover, I can exploit the mapping between the inputs
(fossil fuels) and emissions to study emissions reduction efforts.

This technology also has another important implication. By introducing fuel-specific efficiency
terms λℓ j, firms in different industries face different realized fuel prices in terms of energy
service per dollar. I call these prices “effective prices”, even though underlying observed fuel
prices (in units of fuel quantity per dollar) may be the same. This heterogeneity in effective
prices implies that a firm with higher relative efficiency in a specific fuel perceives it as cheaper
than other fuels because it can use it better. This is motivated by the empirical fact that firms in
different industries purchase very different relative fuel quantities even though they often face
the same fuel prices.

Observed:

pℓ
p

 =
 pℓs(∑

ℓ p1−σ
ℓ

)1/(1−σ)

−→ Effective:
p̃ℓ j

p̃ j

 =
 pℓ

λℓ j(∑
ℓ λ

σ
ℓ j p

1−σ
ℓ

)1/(1−σ)


Moreover, due to the constant returns assumption, individual effective fuel prices can be ag-
gregated into an effective fuel price index p̃ j that buys quantities of the composite fuel index
Fi j, which is akin to labor as a single input in Melitz (2003)4. This makes the analysis of
firms’ scale decisions separate from the analysis of relative input choices. These features have
important theoretical implications and will greatly simplify the model estimation.

Asymmetric carbon tax

4I assume constant returns to scale in the production of the fuel composite. However, this does not require
constant returns in other inputs such as labor, capital, and intermediate materials. Here, other inputs get absorbed
by productivity A because they are unobserved. If these inputs were observed, the constant returns fuel production
function could be nested into another production function that takes the fuel composite along with labor, capital,
and intermediate materials as inputs. This is the approach typically taken in the fuel substitution literature (Atkin-
son and Luo, 2023, Cho et al., 2004, Hyland and Haller, 2018, Ma et al., 2008, Pindyck, 1979, Wang and Lin,
2017).
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I now introduce the main object of analysis to this framework: a carbon tax that affects a fraction
Ñr

j of firms within each industry. Regulated firms are indexed by s = r and face an additional
per-unit tax rate {τℓ}Lℓ=1 which is added to gross fuel prices pℓr = pℓ +τℓ ∀ℓ, while the remaining
fraction Ñu

j unregulated firms are indexed by status s = u and face same gross fuel price as
before. Since this is a carbon tax, the fuel-specific tax rate is weakly increasing in fuel pollution
intensity:

γℓ ≥ γk → τℓ ≥ τk ∀k , ℓ

The rationale behind this framework is that implementing a uniform tax rate on GHG emissions
is typically achieved with a different tax rate across fuels due to varying fuel emission intensity
γℓ. This is exactly how B.C. introduced its carbon tax. For example, coal combustion emits, on
average, twice as much CO2e in the air as natural gas, and its tax rate is twice as high.

3.3.3 Firms’ Optimal Decisions

Output Quantity and Price

By the constant returns to scale assumption, marginal costs are constant, and I can solve firms’
problems in two parts which correspond to the scale factor and the process factor of GHG
emissions. This is important because it allows me to quantify the model using pollution release
data only. First, I solve the profit-maximizing amount of output quantity Y js(A) that a firm
with productivity A in industry j and regulation regime s wants to produce from purchasing the
composite fuel good F js(A), taking as given the composite effective fuel price index p̃ js. From
this, I can know the equilibrium output of each firm Y js(A), the share of output allocated to
fuels F js(A), and the output price P js(A), which will all be reflected in the scale factor of GHG
emission. In the second part, I can solve the cost-minimizing bundle of fuels that will form
F js(A). As such, I map the relative share of each fuel bought to the emission intensity of each
firm, which forms the process factor of GHG emission.

I assume that firms compete over quantity and face an inverse demand derived from Equations
3.1 and 3.2. To avoid notational clutter, I will do the exposition for a single industry and remove
the j subscript. Then, taking as given industry aggregates P and Y , a firm with productivity A

in regulation status s solves:
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max
Ys(A)

{
Ps(Ys(A))Ys(A) − p̃sFs(A)

}
s.t. Ps(Ys(A)) =

(
Ys(A)
βC

)−1/ρ

P(ρ−1)/ρ

Since Fs(A) = Ys
A , each firm’s marginal cost is the ratio of input price index to productivity:

cs(A) = p̃s
A . This marginal cost leads to a standard monopolistic competition equilibrium pricing

equation of a constant markup over marginal costs:

P(p̃s, A) =
ρ

ρ − 1
p̃s

A
(3.4)

Aggregate Productivity

This individual pricing equation can be aggregated into an industry price index as in Melitz
(2003). To do so, I assume that productivity comes from a known distribution with density g(A).
In principle, this productivity distribution could be used to derive the productivity distribution of
active firms in each region, µs(A), which would depend on a productivity threshold that defines
which firms operate in the market. This threshold would depend on regulation status since the
carbon tax raises the relative marginal cost of regulated firms, thus increasing the productivity
required for the marginal regulated firm to operate and decreasing the productivity required for
the marginal unregulated firm. However, in the Appendix, I show that entry/exit does not appear
to be an empirically relevant margin of adjustment in the context of the B.C./Quebec carbon
taxes, which is why I shall assume for the remainder of this exposition that the productivity
threshold is the same across regulation status µs(A) = µ(A) and I assume an interior solution for
all firms such that the distribution of productivity for active firms is the same as the distribution
of productivity for all firms, µ(A) = g(A). Then,

Ã =
( ∫ ∞

0
Aρ−1g(A)dA

)1/(ρ−1)
(3.5)

With a share Ñr = Nr/N of regulated firms and Ñu = Nu/N of unregulated firms, the equilibrium
industry price index will be a CES aggregate of regulated and unregulated individual firm prices.
Moreover, when gs(A) = g(A), this price index has the same structure as firm-level output
prices, where aggregate marginal cost is a combination of regulated and unregulated input prices
weighted by the respective mass of firms in each status over aggregate productivity:
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P =
(∑

s

Ñ s
∫ ∞

0
Ps(A)1−ρg(A)dA

)1/(1−ρ)

=
ρ

ρ − 1
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p̃1−ρ

r Ñr + p̃1−ρ
u Ñu

)1/(1−ρ)( ∫ ∞

0
Aρ−1g(A)dA

)1/(1−ρ)

=
ρ

ρ − 1

(
p̃1−ρ

r Ñr + p̃1−ρ
u Ñu
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Ã

(3.6)

Note that absent of the carbon tax, this price index collapses to the price index in Melitz (2003)
where labor is replaced by the composite fuel index: P = ρ

ρ−1
p̃
Ã . Putting everything together,

I can now find the quantity of the composite fuel purchased by a firm with productivity A and
regulation status s:

Fs(A) =
ρ − 1
ρ

p̃−ρs

( p̃1−ρ
r Nr + p̃1−ρ

u Nu)
βC

(A
Ã

)ρ−1
(3.7)

The amount of composite fuel a firm wants decreases in the fuel price index and increases in
productivity due to a competitive effect that gives productive firms a larger sales share due to
their cost advantage. Since I assume that aggregate consumption is Cobb-Douglas across in-
dustries, there is no substitution across industries (net of the income effect), and only individual
productivity relative to the industry average matters for firms’ decisions.

relative fuel share and input price index

To choose the cost-minimizing share of each fuel that composes Fs(A), firms face the tech-
nology defined in equation 3.3, and their relative fuel choice will only be a function of the
interior parameters of the technology, namely interfuel substitutability σ and fuel efficiencies
λℓ. Productivity will not matter for relative fuel quantities because it augments the composite
fuel index rather than specific fuels. Moreover, I assume that firms take input prices as given
and cannot affect such prices with their decisions because they are too small relative to the
population of firms that make up global fuel demand. This is motivated by the idea that the
set of Canadian manufacturing firms is small relative to the set of all firms and consumers that
buy fuels around the world. Additionally, supply-side shocks such as new technologies (e.g.,
fracking) and geopolitical events that shift fuel supply in specific regions often drive fuel prices.
Therefore, taking input prices and F as given, a firm in regulation status s solves the following:
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min
{qℓs}Lℓ=1

{∑
ℓ

pℓsqℓs
}

s.t. F =
(∑

ℓ

λℓ(qℓs)
(σ−1)/σ

)σ/(σ−1)

The solution to this problem gives rise to the perceived input price index that varies across
regulation status and fuel-specific perceived prices, whose implications were discussed earlier:
p̃s =

pℓs
λℓ

:

p̃s =
(∑

ℓ

λσℓ p1−σ
ℓs

)1/(1−σ)

This perceived price index is higher for regulated firms because pℓr = pℓ + τℓ while pℓur = pℓ
and σ > 1. With this, I can define the share of fuel ℓ that makes up the composite fuel F, which
is a simple function of relative perceived input prices. Indeed, as the perceived price of a fuel
increases, the relative quantity of that fuel decreases at rate σ due to substitution towards other
fuels.

qℓs(F) =
( p̃ℓs

p̃s

)−σ
F (3.8)

Emission intensity

Emission intensity is the amount of GHG emissions as a fraction of output that a firm produces
and can be endogenously determined by the conditional input demand of each fuel times its
emission factor γℓ; over the firm’s output quantity:

es(A) =
∑
ℓ γℓqℓs(Fs)
Ys(A)

=
1
A

∑
ℓ

γℓ

(
p̃ℓs

p̃s

)−σ

As in Shapiro and Walker (2018), emission intensity is locally decreasing in productivity. More-
over, while there is no capital and labor in the technology, if a firm is highly intensive in capital
and/or labor relative to fuel, this model will capture this as higher productivity (less fuel re-
quired to produce a unit of output), hence a lower emission intensity, which is precisely what
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would happen if capital and labor were in the model5.

When a firm gets regulated, it faces higher prices to purchase fuels that pollute more relative
to other fuels. Due to possible substitution, it will change its optimal combination of fuels
that make up F, and the distribution will shift towards fuels with lower emission factors, and
emission intensity will decrease. For a set of fixed input prices, no carbon leakage is induced by
emission intensity variation because unregulated firms still face the same gross price as before
and will choose the same optimal bundle. Formally, it can be shown that for each fuel k, there
is a threshold emission intensity, γ∗k such that for each fuel more intensive than γ∗k, increasing
its prices will lead to a decrease in emission intensity in that industry (∂es(A)

∂pk

∣∣∣
γk>γ

∗
k
< 0) while the

opposite is true for each fuel bellow γ∗k, where

γ∗k = pk

∑
ℓ,k γℓ(λℓ/pℓ)−σ∑

ℓ,k pσ−1
ℓ λσℓ

(3.9)

For example, an increase in the relative price of fuels that pollute above γ∗k will lead to substi-
tution towards less polluting fuels and a decrease in emission intensity, which is exactly what
happens when firms face a carbon tax.

GHG emission and carbon leakage

Now that I have characterized the production structure in this economy, I can define equilibrium
GHG emissions for a firm with productivity A, which is, by definition, the product of output
quantity and emission intensity:

GHGs(A) = Ys(A)/A × es(A)A

GHGs(A,No tax) =
(ρ − 1

ρ

)1
p̃

(A
Ã

)ρ−1
βC ×

∑
ℓ γℓ p̃−σℓ
p̃−σ

GHGs(A,Asymmetric tax) =
(ρ − 1

ρ

) p̃−ρs(
p̃1−ρ

r Nr + p̃1−ρ
u Nu)(A

Ã

)ρ−1
βC︸                                          ︷︷                                          ︸

scale factor

×

∑
ℓ γℓ p̃−σℓs

p̃−σs︸     ︷︷     ︸
process factor

First, the scale factor is defined by macro parameters and relative perceived input price indices
between regions. In contrast, the process factor is defined by relative input prices between
different fuels that compose the input price index. As such, firms that are regulated face a higher

5For this to be valid, however, I assume that fuel taxes/prices do not affect the price of unobserved inputs like
capital and labor.
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relative perceived input price index and will produce less than before (scale effect). Moreover,
regulated firms see a greater increase in the input price of the most polluting fuels, and they
will switch towards cleaner fuels, which will decrease emission intensity (process effect). From
the perspective of unregulated firms, the increase in the perceived price index of regulated firms
will increase their residual demand, and they will increase output. However, unregulated firms
do not see any variation in relative fuel prices, and their emission intensity remains the same.
The combination of higher output but unchanged emission intensity creates carbon leakage.

3.4 Data

The empirical application of this model will be a study of the BC carbon tax. I am initially
considering three main fuel types: Natural Gas, Oil, and Coal. Since this is a closed-economy
model, I only look at competition between Canadian manufacturing firms.

3.4.1 Pollution and Fuel Data

The primary dataset used for plant-level pollution is the National Pollutant Inventory Release
(NPRI), which records each pollutant emitted by most Canadian plants since 2000. This dataset
records 280 pollutants, but I will only look at five of the most relevant pollutants to differentiate
different fuels (see the identification section for more details): Carbon Monoxide (CO), Mercury
(Hg), Sulphur Dioxide (S O2), Nitrogen Oxides (NOx) and Particulate Matters (PM). Keeping
only manufacturing plants, I get between 700 and 900 plants annually between 2002 and 2015.6

To recover fuel quantities in mmBtu at the plant level, I invert each fuel’s chemical reaction
under standard stationary combustion practices7. Thus, I get five equations (pollutants) with
three unknowns (fuels) that I solve by least squares minimization subject to a non-negativity
constraint, and I do this procedure for each plant each year.

6I chose this time frame because most firms did not report to the NPRI before 2002 and because many other
Canadian provinces introduced carbon taxes and other environmental regulations in 2016.

7There can be heterogeneity in the quantity of each pollutant released by each fuel primarily due to combustion
efficiency, which will contribute to measurement error. However, heterogeneity in pollutants across fuels tends to
be much larger.
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COit = (Coalit ×COc) + (Natgasit ×COc) + (Oilit ×COo)

Hg,it = (Coalit × Hg,c) + (Natgasit × Hg,ng) + (Oilit × Hg,o)

S O2,it = (Coalit × S O2,c) + (Natgasit × S O2,ng) + (Oilit × S O2,o)

NOx,it = (Coalit × NOx,c) + (Natgasit × NOx,ng) + (Oilit × NOx,o)

PMit = (Coalit × PMc) + (Natgasit × PMc) + (Oilit × PMo)

Below is a table created from information provided by the U.S. Environmental Protection
Agency (EPA) of the mapping between one mmBtu of each fuel and quantities (in pounds)
of each pollutant released in the atmosphere:

Pollutant (mmBtu/lb) Natual Gas Oil Coal

Carbon monoxide (CO) 0.04 0.033 0.208
Mercury (Hg) 0.001 1.122 2.591
Sulfur dioxide (S O2) 0092 0.448 0.457
Nitrogen oxides (NOx) 0.007 0.084 2.744
Particulate Matters (PM) 0 0.000007 0.000016

Table 3.1: Comparison of Emission Factors From Natural Gas, Oil, and Coal Combustion

Source: EPA — AP-42 (2024). Notes: This table is constructed by averaging different measures of stationary emis-
sions from the EPA’s Compilation of Stationary Emission Factors (AP-42). Natural gas is a more homogeneous
fuel than coal and oil. The emissions factors for coal are created by averaging emissions for different coal grades
(anthracite, bituminous, and subbituminous). Similarly, the emissions factors for oil are the average emission fac-
tors for different types of fuel oils used in manufacturing, referring to different types of distillate and residual oils.

To validate this procedure, I compare an aggregate of estimated fuel shares from each plant
to aggregate fuel shares available in the following Statistics Canada database: Manufacturing
industries, total annual energy fuel consumption in gigajoules (Table: 25-10-0025-01). I also
cross-checked this procedure with another dataset of U.S. firms that contained both plant-level
fuel quantities and pollutants.

My estimation procedures recover oil shares quite well, but coal shares are underestimated
relative to natural gas shares. This is partly because only a few firms use coal in Canada, with
aggregate shares nearing 1%, potentially leading to unstable estimates.

Greenhouse gases

Lastly, these pollutants are not greenhouse gases contributing to climate change (e.g., carbon
dioxide CO2, methane CH4, and nitrous oxide N2O) because the NPRI does not report green-
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Figure 3.2: Aggregate fuel shares

house gases. Once I back out fuel quantities, I then use another conversion table from the EPA
to convert fuel quantities to greenhouse gases. Using the GHG emission factors from Table
3.1, I then create a single measure of carbon dioxide equivalent CO2e using the global warming
potential method (EPA — GHG Emission Factors, 2024). This is the final measure I use in the
paper to construct emissions.

Carbon dioxide
kg CO2/mmBtu

Methane
g CH4/mmBtu

Nitrous Oxide
g N2O/mmBtu

Carbon dioxide equivalent
kg CO2e/mmBtu
(100-Year GWP)

Coal 98.2 11 1.6 98.9
Oil 70.5 3 0.6 70.7
Natural Gas 56.1 1 0.1 56.2

Table 3.2: GHG Emission Factors

Source: EPA — GHG Emission Factors (2024). Notes: The last column is the final measure of GHG emissions.

While I use this procedure for only three fuels and five pollutants, it can be extended to include
many more fuels and pollutants to improve accuracy. It can also be extended to study fuel usage
by geolocated plants from remote sensing data. This approach may be interesting in regions
that lack the regulatory body necessary to compile a dataset such as the NPRI.

3.4.2 Other Data

Fuel price data

Although there may be regional differences in fuel prices depending on the plant’s location, I
only look at global fuel prices to ensure the validity of the homogeneity assumption. Global
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fuel prices come from the World Bank database and are denominated in different units. To get
around this issue, researchers usually convert fuel quantities into million British thermal units
(mmBtu), which will be the unit of measure going forward. I use an average of crude oil prices
across different sources of oil. For natural gas, I use the average price in the U.S.; for coal, I use
the price of Australian coal as it is the most commonly used. Since prices are in USD, I convert
them to nominal CAD prices.
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Figure 3.3: Fuel Prices in Unregulated Provinces ($CAD/mmBtu)

Carbon tax

To construct the fuel-specific tax rates, I map one mmBtu of each fuel in tons of CO2e equivalent
using γℓ which is calculated in Table 3.2, and I multiply this by the level of the carbon tax, which
started at 10$/ton in 2008 and increased by 5$/ton every year until reaching 35$/ton in 2013.
Additionally, a much smaller carbon tax was introduced in 2008 in Quebec at 3.5$/ton:

British Columbia Quebec

2008 2009 2010 2011 2012 2013-2015 2008-2015

Natural Gas ($/mmBtu) 0.53 0.8 1.06 1.33 1.59 1.86 0.19
Oil ($/mmBtu) 0.72 1.08 1.43 1.79 2.15 2.51 0.25
Coal ($/mmBtu) 0.99 1.48 1.98 2.47 2.97 3.44 0.35

CO2e ($/ton) 10 15 20 25 30 35 3.5

Table 3.3: Carbon Tax Rates

Aggregate data

To get aggregate consumption over time, Ct, I use the share of Canadian nominal GDP from
manufacturing. Then, I can get β jt, the shares of Canadian manufacturing GDP that come from
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each 3-digit NAICS manufacturing industry. Since GDP is in dollar amount, this is going to be
the share of manufacturing consumption associated with each industry: β jt =

Y jtP jt

C j
. Through

period-by-period variation in Ct and β jt, I allow for industry-specific demand shocks. To see
this, if there is a one-time positive demand shock to industry j, this will increase aggregate
demand Ct while simultaneously increasing β jt and decreasing βkt ∀k , j such that the amount
of consumption going to all other industries remains unchanged and

∑
j β jt = 1 is still satisfied.

Additionally, since there is only one big market in the model, a region-specific demand shock
would effectively affect all firms regardless of their location. It would be captured by variation
in Ct without changing relative industry shares.

3.5 Identification

Since the empirical application of this model is the B.C. and Quebec carbon taxes, I am only
considering the universe of Canadian manufacturing firms under the plausible assumption that
those firms take input prices as given and cannot affect global input prices with their individual
decisions. As such, there will be no variation in aggregate fuel demand induced by carbon regu-
lation that would affect equilibrium fuel prices, commonly referred to as the fossil-fuel channel
of carbon leakage in the literature (Fowlie and Reguant, 2018). This means that I can exploit
observed fuel price variation to identify parameters in the model. In the data, such fuel price
variation is due to global shocks such as the fracking boom that massively decreased natural gas
prices during the sample period and variation in the supply of oil-producing countries. Added
to these global shocks is the carbon tax that creates spatial variation in fuel prices and will be
critical to identifying the elasticity of substitution across firms.

There are two sets of parameters in the model: parameters related to the production technol-
ogy, such as baseline fuel shares, and interfuel substitutability:

{
{λℓ j}

L
=1

}L
j=1, σ} and parameters

about firm-level output decisions (macro parameters), such as the elasticity of demand and the
distribution of productivity: {ρ, σ2

A} and parameters of the productivity distribution. Ideally, if
I had data on firm-level output and emission intensity, I could separately identify both sets of
parameters like Shapiro and Walker (2018), Ganapati et al. (2020), and Aichele and Felbermayr
(2015) since technology parameters only appear in emission intensity and other parameters only
appear in firm-level output.

However, I only observe plant-level pollutants released along with aggregate industry statistics.
An important contribution of this paper is to show how to identify the direct and leakage effects
of a counterfactual carbon policy on emissions under such flexible data requirements. To see
this, I show in the following section how I can separate the estimation into two stages. The first
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stage relies on relative fuel quantities within plants to identify both technology and interfuel
substitution parameters in a closed form using a linear, seemingly unrelated regression model
(SUR). In the second stage, I use the fuel quantities in level net of a fuel-specific component
to measure the common scale component across fuels. This common scale component contains
information about firm productivity and industry aggregates, which I use to identify macro
parameters, such as the distribution of productivity and the elasticity of demand.

Before showing identification results, it is also to show some key equilibrium equations when I
reintroduce the industry subscript j and year subscript t into the model:

Composite fuel (scale): Fi jst =
ρ − 1
ρ

p̃−ρjst

( p̃1−ρ
jrt Nr

jt + p̃1−ρ
jut Nu

jt)
β jtCt

(A jst

Ã jt

)ρ−1

Individual fuel quantities: qℓi jst =
( p̃ℓ jst

p̃ jst

)−σ
Fi jst

3.5.1 Stage 1: Identification of Technology Parameters

With estimated fuel quantities, I can use optimality conditions from the model to estimate in-
terfuel substitution and fuel efficiency parameters in a seemingly unrelated regression model.
Indeed, each fuel contains a fuel-specific factor driven by its “perceived price” and a common
factor to all fuels that is proportional to the output of a given firm:

qℓi jst =
( p̃ℓ jst

p̃ jst

)−σ
Fi jst

= p̃−σℓ jstXi jst

=
( pℓst

λℓ j

)−σ
︸   ︷︷   ︸
fuel-specific

Xi jst︸︷︷︸
common scale

Where Fi jst is the factor common to all fuels. Since there are more than three fuels in reality,
and since the pollutant factor to fuel conversion approximates chemical reactions under average
conditions, it is likely that there is some measurement error in implied fuel quantities, exp(uℓi jst).
Measurement error comes from unobservables such as heat at which combustion happens, the
type of coal or oil product used, and the technology used for combustion, which I assume to be
iid across time and firms:
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q̂ℓi jst =
( pℓst

λℓi j

)−σ
Xi jst exp (uℓi jst)

Taking logs,

ln qℓi jst = −σ ln pℓst + σ ln λℓ j + ln Xi jst + uℓi jst

Since all fuels contain the common factor, I can eliminate it by subtracting each fuel ℓ = 2, 3
by the first fuel, which is what allows me to identify technology parameters separately form the
rest.

ln q2
i jst − ln q1

i jst = σ(ln p1st − ln p2st) + σ(ln λ j2 − ln λ j1) + (u2
i jst − u1

i jst)

ln q3
i jst − ln q1

i jst = σ(ln p1st − ln p3st) + σ(ln λ j3 − ln λ j1) + (u3
i jst − u1

i jst)

Intuitively, if the price of the first fuel increases, firms will switch towards fuels 2 and 3, which
will depend on the elasticity of substitution σ. I can rewrite this system of equations in matrix
form:

ln q2
i jst − ln q1

i jst

ln q3
i jst − ln q1

i jst

 = σ ln p1st − ln p2st

ln p1st − ln p3st

 + Γ2 j

Γ3 j

 + ϵ2
i jst

ϵ3
i jst


∆ ln qijst = σ∆ ln pst + Γj + ϵi jst

Where Γℓ j = σ(ln λ jℓ − ln λ j1) and ϵℓi jst = uℓi jst − u1
i jst. this is a SUR model because ϵ2

i jst is
correlated with ϵ3

i jst but uncorrelated across firms and across time. Identification of the elasticity
of substitution comes from variations in aggregate fuel prices over time, along with the carbon
taxes that were implemented in B.C. and Quebec. Estimating {σ,Γ2 j,Γ3 j} is a reduced form that
will recover all technology parameters as follows:
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exp(Γ2 j/σ) =
λ2 j

λ1 j

exp(Γ3 j/σ) =
λ3 j

λ1 j

λ1 j = 1 − λ2 j − λ3 j]

λ1 j, λ2 j, λ3 j will then be the solution to the above system of three equations. Since I am only
keeping oil and natural gas in the model, the fuel-specific efficiency terms can be recovered in
closed form:

λ̂ng, j =
exp(Γ̂ j/σ̂)

exp(Γ̂ j/σ̂) + 1

λ̂oil, j =
1

exp(Γ̂ j/σ̂) + 1

3.5.2 Stage 2: Identification of Macro Parameters

Upon estimating technology parameters, I can use the levels of log fuel quantities subtracted
from a substitution term to recover the common scale component, Fi jst plus fuel-specific mea-
surement error:8

ln qℓi jst + σ̂(ln p̃ℓ jst − ln p̃ jst) = ln Fi jst + uℓi jst ∀ℓ ∈ {oil, gas, coal} (3.10)

I can open up this expression in equilibrium because Fi jst is just an industry and time-augmented
version of equation 3.7. It is a function of the elasticity of demand, ρ, unobserved aggregate
productivity Ã jt, unobserved firm-specific productivity Ai jst, unobserved fuels-specific measure-
ment error uℓi jst, and many quantities that are now observed (input price indices p̃ jst, share of
firms in different regions Ñ s

jt, industry output share β jt, and aggregate output Ct). Hence, in
matrix form, we can write this as a system of estimating equations:

8Note that Fi jst differs from the “true” scale component Xi jst because I also subtract input price index in equation
3.10, which is common to all fuels.
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ln qℓijst + σ̂(ln p̃ℓjst − ln p̃ jst)︸                             ︷︷                             ︸
yi jst

= ln
(ρ − 1

ρ

)
+ ln β jt + ln Ct − ρ ln p̃ jst − ln( p̃1−ρ

jrt Ñr
jt + p̃1−ρ

jut Ñu
jt)︸                                                                         ︷︷                                                                         ︸

Xi jst(ρ)

+ (ρ − 1)(ln Ai jst − ln Ã jt) + uℓijst︸                                ︷︷                                ︸
ϵi jst

(3.11)

Where aggregate productivity in each industry was defined as:

Ã jt =
( ∫ ∞

0
Aρ−1g jt(A)dA

)1/(ρ−1)

I now assume a distribution for productivity and fuel-specific measurement error, allowing me
to estimate this system with maximum likelihood. I assume that productivity is distributed
log-normal with mean and variance common to all firms in all years Ã jt = Ã, and that measure-
ment error is normally distributed with mean zero and fuel-specific variance. I also allow for
measurement error to be correlated across fuels. The marginal distributions are then:

Ai jst ∼ LN(µ, σ2
A) ⇐⇒ ln Ai jst ∼ N(µ, σ2

A)

uℓi jst ∼ N(0, σ2
ℓ)

Using the moment generating function for a log-normal distribution, I can get a closed-form
solution for Ã jt = Ã (see appendix for details):

Ã =
(

exp
(
µ(ρ − 1) + (ρ − 1)2σ2

A/2
))1/(ρ−1)

(3.12)

With that in mind, the relative log productivity term will be normally distributed, such that the
vector of fuel-specific error terms in estimating equation 3.11, ϵi jst, will be jointly normal (see
appendix for details):
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(ρ − 1)(ln Ai jst − ln Ã) ∼ N
(
− (ρ − 1)2σ2

A
/
2, (ρ − 1)2σ2

A

)

ϵng
i jst

ϵo
i jst

 ∼ N
( −(ρ − 1)2σ2

A
/
2

−(ρ − 1)2σ2
A
/
2

 ,  (ρ − 1)2σ2
A + σ

2
ng (ρ − 1)2σ2

A + σng,o

(ρ − 1)2σ2
A + σng,o (ρ − 1)2σ2

A + σ
2
o

 )

From this, I can construct the likelihood as the product of n bivariate normal density, take the
natural logarithm, and estimate all the parameters:

(
ρ, σ2

ng, σ
2
o, σ

2
A, σng,o

)
.

To get a bit of intuition behind estimating the within-industry elasticity of substitution across
firms ρ, note that input price variation only identifies ρ when it is spatially differentiated, in this
case through the asymmetric carbon tax. To see this, if input prices are the same everywhere in
a given period (p̃ jrt = p̃ jurt = p̃ jt), then firms’ choice of the composite fuel index collapses to:

ln Fi jst = ln
(ρ − 1

ρ

)
+ ln β jt + ln Ct − ln p̃ jt

Intuitively, this happens because variation in input prices is the same for all firms in the industry,
hence there is no incentive for consumers to substitute across firms. With the introduction of
a tax, consumers will switch towards unregulated firms at rate ρ > 1 because the tax raises
the marginal costs of regulated firms, which raises their output prices due to the monopolistic
competition pricing rule.

3.6 Results

Technology parameters

Below are estimates of technology parameters. Since quantities of estimated coal are very low
and only represent 1% of fuel consumption, I only keep natural gas and oil in the analysis.
The standard error for the interfuel substitution parameter σ̂ is an OLS standard error, and the
standard errors for the fuel shares parameters are derived using the Delta Method (see appendix
for details). I also construct 95% bootstrap confidence intervals.

Many firms often consume a dominant fuel; the model captures these quasi-corner solutions
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Baseline Natural Gas share: λ̂ng, j

Industry 311 312 314 315 321 322 323 324 325
Estimate 0.984 0.871 0.007 0.000 1.000 1.000 1.000 0.983 1.000
S.E. (0.023) (0.176) (0.104) (0.001) (0.000) (0.002) (0.000) (0.022) (0.001)
95 % CI lb 0.931 0.444 0.000 0.000 1.000 0.995 1.000 0.936 0.996
95 % CI ub 0.999 0.993 0.224 0.000 1.000 1.000 1.000 0.999 1.000∑2015

t=2003 N jt 1,005 145 40 16 2,669 1,305 24 1,036 1,378
Baseline oil share λ̂oil, j

Industry 311 312 314 315 321 322 323 324 325
Estimate 0.016 0.129 0.993 1.000 0.000 0.000 0.000 0.017 0.000
S.E. (0.023) (0.176) (0.104) (0.001) (0.000) (0.002) (0.000) (0.022) (0.001)
95 % CI lb 0.001 0.007 0.776 1.000 0.000 0.000 0.000 0.001 0.000
95 % CI ub 0.069 0.556 1.000 1.000 0.000 0.005 0.000 0.064 0.004∑2015

t=2003 N jt 1,005 145 40 16 2,669 1,305 24 1,036 1,378
Baseline Natural Gas share: λ̂ng, j

Industry 326 327 331 332 333 335 336 337 339
Estimate 0.960 0.994 0.997 1.000 1.000 0.821 1.000 1.000 0.519
S.E. (0.068) (0.011) (0.008) (0.001) (0.000) (0.314) (0.000) (0.002) (0.301)
95 % CI lb 0.792 0.967 0.979 0.998 1.000 0.069 1.000 0.995 0.050
95 % CI ub 0.998 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.961∑2015

t=2003 N jt 195 903 980 189 57 42 328 99 121
Baseline oil share λ̂oil, j

Industry 326 327 331 332 333 335 336 337 339
Estimate 0.040 0.006 0.003 0.000 0.000 0.179 0.000 0.000 0.481
S.E. (0.068) (0.011) (0.008) (0.001) (0.000) (0.314) (0.000) (0.002) (0.301)
95 % CI lb 0.002 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.039
95 % CI ub 0.208 0.033 0.021 0.002 0.000 0.931 0.000 0.005 0.950∑2015

t=2003 N jt 195 903 980 189 57 42 328 99 121
Interfuel elasticity of substitution: σ̂

Estimate 1.856
S.E. 0.416
95 % CI lb 1.040
95 % CI ub 2.671
Ntotal 10,532

Table 3.4: Estimates of Technology Parameters
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by λ̂ j,ℓ close to either one or zero. Since natural gas is by far the most prominent fuel, λ̂ j,oil is
often close to zero, which leads to a perceived price distribution that is much larger for oil than
natural gas such that firms in most industries would never want to purchase oil:

N Mean Std. Deviation Min Max

p̃oil 10,532 1.62e+08 2.86e+08 6.957819 9.32e+08
p̃natgas 10,532 645.9813 17690.24 2.752033 797652.4

Table 3.5: Summary statistics, perceived prices
(
p̃ℓ jt =

pℓt
λ jℓ

)
Macro parameters

To get standard errors, I bootstrapped the entire dataset by blocks of individual firms, each
sample being every year a firm operates. This allows for within-firm correlation across years,
which is to be expected.

Within-industry
elasticity of substitution

across firms

Variance of
productivity

Variance of
measurement
error, natgas

Variance of
measurement

error, oil

Covariance between
measurement error

ρ̂ σ̂2
A σ̂2

ng σ̂2
o σ̂ng,o

Estimate 2.242 1.623 71.5 188.184 -39.86
S.E. (0.7837) (1.909) (2.77) (4.68) (3.28)
95 % C.I. [1.155, 3.57] [0.46,6.27] [67.72,77.79] [182.11,196.56] [-44.16,33.98]
Observations 10,532 10,532 10,532 10,532 10,532

Table 3.6: Estimates of macro parameters

3.7 Counterfactuals

3.7.1 Causal Effects of the B.C. And Quebec Carbon Taxes

I now have everything needed to recover counterfactual GHG emissions levels had the carbon
tax not been introduced in B.C. and Quebec. In this counterfactual, regulated firms are always
subject to unregulated input prices, and firms in other provinces do not get competitive gains
from the input taxes raising input prices in B.C. and Quebec. Doing this exercise for regulated
and unregulated firms separately will recover the tax’s direct effect and the tax’s carbon leakage
effect separately. Let Tτ be the year the tax was implemented. GHG emissions then refer to
the sum of GHG across firms for a given industry and year post-treatment (inner sum), the sum
over all industries in a given year (middle sum), and the sum over all years post-treatment (outer
sum). I do this for regulated and unregulated firms separately. I compare total GHG emissions



Chapter 3 – Asymmetric Carbon Pricing, Fuel Substitution and Carbon Leakage 82

generated by the model when prices include the tax (in red) subtracted to GHG emissions when
prices exclude the tax (in blue) to get the effect of the carbon taxes.

Direct effect (BC firms):
(∑

t≥Tτ

∑
j

∑
i:r

ĜHGi jt(p̃ jrt, p̃ jut)
)
−

(∑
t≥Tτ

∑
j

∑
i:r

ĜHGi jt(p̃ jrt = p̃ jut, p̃ jut)
)
=

=
∑
t≥Tτ

∑
j

∑
i:r

ρ̂ − 1
ρ̂

β jtCt

(Ai jrt

Ã

)ρ̂−1
( p̃−ρ̂jrt

( p̃1−ρ̂
jrt + p̃1−ρ̂

jut )︸          ︷︷          ︸
scale channel

∑
ℓ γℓ p̃−σ̂ℓ jrt

p̃−σ̂jrt︸      ︷︷      ︸
process channel

−
1

p̃ jut︸︷︷︸
scale channel

∑
ℓ γℓ p̃−σ̂ℓ jut

p̃−σ̂jut︸      ︷︷      ︸
process channel

)

Carbon leakage (Other firms):
(∑

t≥Tτ

∑
j

∑
i:u

ĜHGi jt(p̃ jrt, p̃ jut)
)
−

(∑
t≥Tτ

∑
j

∑
i:u

ĜHGi jt(p̃ jrt = p̃ jut, p̃ jut)
)
=

=
∑
t≥Tτ

∑
j

∑
i:u

ρ̂ − 1
ρ̂

β jtCt

(Ai jut

Ã

)ρ̂−1
∑
ℓ γℓ p̃−σ̂ℓ jut

p̃−σ̂jut

( p̃−ρ̂jrt

( p̃1−ρ̂
jrt + p̃1−ρ̂

jut )
−

1
p̃ jurt︸                     ︷︷                     ︸

scale channel

)

Moreover, I can decompose both the direct and carbon leakage effects into a scale channel
(change in aggregate output) and a process/technique channel (change in aggregate emission
intensity due to interfuel substitution). There is no process effect for unregulated firms because
they do not face the carbon tax, and relative fuel prices stay constant. I also did this exercise for
Quebec firms that faced a smaller carbon tax around the same period. Hence, the effect of the
carbon tax on unregulated firms will be calculated by setting both the Quebec and B.C. carbon
taxes to zero. I estimate an overall decrease in GHG emissions of 37.6 % in BC and 4.87 %
in Quebec and an increase in GHG emissions of 2.6 % in unregulated provinces, which can be
attributed to carbon leakage.

While aggregate percentage changes in emissions are suggestive that emissions decreased much
more in British Columbia than they increased in unregulated provinces, this is misleading be-
cause the level of emissions in unregulated provinces is much larger at the baseline. There are
many more firms in unregulated provinces, and those firms tend to concentrate on more pollut-
ing industries. As a result, significant leakage mitigates 45% of emissions reduction efforts.

In the next section, I document which effect drives most of this variation in GHG emissions.
I also show what happens under a uniform carbon tax across all provinces, which the federal
government introduced in 2018 with the Greenhouse Gas Pollution Pricing Act.
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(c) Unregulated Provinces

Figure 3.4: Estimated and Counterfactual GHG Emissions (Kilotons CO2e)

Aggregate Emissions
(kilotons CO2e)

(2003-2015)
No Tax

Aggregate Emissions
(kilotons CO2e)

(2003-2015)
Carbon Tax

Level Difference
(Carbon Tax - No Tax)

Percentage Difference
(Carbon Tax - No Tax)

British Columbia 265 165 -100 -37.6%
Quebec 1,055 1,004 -51.4 -4.87%
Unregulated Provinces 2,575 2,643 67.4 2.6%

Table 3.7: Effect of Carbon Taxes on Emissions of Regulated and Unregulated Firms
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Role of Fuel Substitution

The introduction of multiple fuels allows firms to substitute across fuels, which determines
the GHG emissions process channel. Indeed, absent fuel substitution, firms only choose how
much of the composite fuel they want to purchase, forming their output (scale) decisions. By
including the tax only in the perceived price of composite fuel p̃s jt and keeping the fuel-specific
perceived prices without the tax p̃ℓ jt (and vice versa), I am able to decompose the overall effect
of the carbon tax into the scaling factor and the fuel substitution factor.

My results suggest that almost all changes in GHG emissions (98.51% for B.C., 96.1% in Que-
bec, and 100% in unregulated provinces) are due to firms adjusting output, and only a tiny
fraction is due to fuel substitution. In unregulated provinces, this is expected because unreg-
ulated firms did not face the tax directly, so there is no scope for fuel substitution. However,
this is the case in B.C. and Quebec because most firms are consuming a dominant fuel, with the
perceived price of other fuels being extremely high. Most dominant fuels tend to be natural gas,
and the carbon tax raised the price of oil more than it raised the price of natural gas because the
former releases more CO2e/mmBtu. Thus, there is a limited role for substituting towards the
newly relatively cheaper fuel (natural gas) because most firms already use large quantities of
natural gas. The lack of a cleaner alternative to natural gas partly explains why carbon leakage
is so large.

Effect of carbon tax on GHG emissions (%)
British Columbia Quebec Unregulated Provinces

Scale -37.1 -4.68 2.62
Fuel substitution -1.2 -0.2 0
Scale and fuel substitution -37.66 -4.87 2.62

Table 3.8: Difference in GHG Emissions With Counterfactual No Policy, Percentage

3.7.2 Uniform Policy

An interesting aspect of this model is that I can impose a uniform carbon tax on all firms in
all provinces such that there is no risk of carbon leakage, and I can see how it compares with
the actual policy. I find that the reduction in GHG emissions would be between 19% and 22%
depending on the province, which is lower than the 37.66% decrease of the actual policy in
British Columbia

Interestingly, this happens because as all firms face the same tax rate, there is no competitive
hedge from being in one province versus another. All the production that would have shifted to
unregulated provinces due to the asymmetry of the carbon tax stays in the province of origin.
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Change in GHG emissions (%)
British Columbia -23.77
Quebec -22.82
Unregulated Provinces -19.90

Table 3.9: Effect on GHG Emissions of Introducing a Uniform Carbon Tax Across Canada With a Tax
Rate Equivalent to the B.C. Carbon Tax (Percentage)

The aggregate emission decrease is simply due to a uniform increase in marginal costs. Overall,
a uniform carbon tax is much better at reducing aggregate GHG emissions, estimated at 21%
relative to a total decrease of 2.15% in the case of the asymmetric tax.

Total change in GHG emissions (%)
BC carbon tax -2.15
Uniform carbon tax -21.15

Table 3.10: Total Effect of Implementing a Uniform Carbon Tax Across Canada Relative to Total Effect
of B.C. Carbon Tax (Percentage)

3.8 Conclusion

In this paper, I build a production model where manufacturing firms can substitute between fuels
and compete across different regions. Using a panel of publicly available emissions data from
Canadian plants, I can recover counterfactual emissions of regulated and unregulated plants
following British and Quebec carbon taxes implemented in 2007 and 2008, respectively. I find
that carbon leakage increased GHG emissions by 2.62 % in unregulated provinces relative to a
decrease in emissions by 37.6% in British Columbia and 4.87% in Quebec and that most of the
decrease in emissions by regulated plants was due to variation in output rather than substitution
towards cleaner fuels.

However, these percentage differences hide a much larger effect of carbon leakage when looking
at the level of emissions. Indeed, both carbon taxes accounted for a decrease in emissions by
150 kilotons of CO2e by regulated firms relative to an increase in emissions of 67 kilotons of
CO2e by unregulated firms. Carbon leakage thus mitigated 45% of emissions reduction efforts
in B.C. and Quebec. Introducing a uniform carbon tax across Canada, as was legislated in
the Greenhouse Gas Pollution Pricing Act of 2018, reduces total Canadian greenhouse gas
emissions by 21 %. Relative to a net Canadian-wide emissions decrease of 2.15% if the carbon
tax was only implemented in B.C. and Quebec, the uniform carbon tax significantly mitigates
leakage concerns.
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Chapter 4

Long-Term Contracts and Secondary
Markets: Theory and Evidence from
Natural Gas Pipelines

4.1 Introduction

In North America, pipelines are the dominant method for transporting natural gas. They are
extremely costly to build, averaging $5 million/km with 10 to 20 years for the pipeline to break
even on its investment. To share the risk associated with large sunk investment costs, pipelines
must sign long-term contracts (typically ten years or more) with customers prior to the pipeline’s
construction, which entitles the customer to reserved capacity. Long-term contracts in the pri-
mary market can create situations of artificial constraint in which physical capacity is available,
but contracting frictions impede the flow of natural gas. For these reasons, there is a secondary
market unique to the U.S. where shippers can lease capacity to other shippers for any length of
time. The secondary market is much less regulated than the primary market, with the aim of
fostering a competitive environment between shippers.

In this project, we evaluate the efficiency of the U.S. natural gas pipeline network at inter-
temporally allocating pipeline capacity in response to demand and supply shocks through its
secondary market. We study trade-offs associated with the secondary market and provide guid-
ance for deregulation efforts in similar industries. We study shocks to large weather fluctuations
that affect the supply and demand for energy, increasingly common with the advent of climate
change (Bathiany et al., 2018, Wang, Biasutti, Byrne, Castro, Chang, Cook, Fu, MGrimm, Jaha,
Hendon et al., 2021). Through the lens of the secondary market for capacity release, we con-
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tribute to a growing literature studying the resilience of energy systems and markets in response
to such atmospheric conditions (Gonçalves, Costoya, Nieto and Liberato, 2024, Jasiūnas, Lund
and Mikkola, 2021, Waseem and Manshadi, 2020).

Using novel daily transaction data for selected U.S. natural gas pipelines between 2005 and
2023, we find that the secondary market responds to large regional fluctuations in demand for
natural gas. We narrow down our study to the extreme cold wave of February 2021. This cold
wave significantly increased natural gas demand, particularly demand for residential heating
and electricity generation in the Deep South. Notably, natural gas prices at hubs in Texas and
southeastern California rose substantially during this period. In contrast, prices at hubs outside
the cold wave’s radius, such as in Northwestern California, did not rise.

We leverage this spatial variation in natural gas prices to identify control and treated pipelines.
We choose Gas Transmission Northwest (GTN) as a control, which carries natural gas from
Western Canada to Northwestern California. We chose the El Paso pipeline as a treatment,
which carries natural gas to major hubs in Texas and Southeastern California. In a difference-in-
difference event study framework similar to Miller (2023) and Freyaldenhoven, Hansen, Pérez
and Shapiro (2024), we find that the cold wave caused a 50% increase in capacity released from
buyers (replacers) to sellers (releasers) in the secondary market. We also find that the secondary
market facilitates a reduction in search costs between replacers and releasers but fosters an
anti-competitive environment where both sides of the market influence prices.

This secondary market is one of the only real examples of a Coasian market in which partici-
pants trade legal entitlement to natural gas pipeline capacity. Our paper is the first to study such
a secondary market empirically. We aim to provide some evidence that generalizes to other
similar heavily regulated markets with large sunk investment costs and to provide guidance for
the organization of pipeline networks outside of the U.S.

To understand the aforementioned trade-offs better, we show that the vast majority of shippers
that release capacity are end-consumers (power plants, local distribution companies that serve
specific urban areas, and industrial plants) who have long-term contracts with pipelines and
must pay the large reservation fees even if they do not utilize their capacity. The vast majority
of replacers are marketers. Marketers are intermediaries that engage in arbitrage opportunities,
buying gas in cheap hubs and selling gas in expensive hubs to consumers.

In this context, we provide empirical evidence for long-term relationships between market par-
ticipants in the capacity release market and propose potential hypotheses for why such relation-
ships exist. We show that over 95% of contracts signed are private arrangements made between
shippers. Many of these arrangements recur between shippers that meet multiple times over
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the sample period, which we call long-term relationships. This is similar to the U.S. trucking
industry, where 80% of the shipping contracts are signed through existing relationships between
shippers (analogous to the replacement shippers) and carriers (analogous to releasing shippers),
and only 20% of the contracts are signed via a spot market (Harris and Nguyen, 2023).

Considering the unique aspects of this market, search costs are the key factor influencing the
formation of long-term relationships. This is attributed to the frequent requirement to secure
capacity at various delivery and receipt locations, along with other customary contractual obli-
gations such as the option for a releaser to be able to recall its capacity at any time, making
each contract a highly differentiated product. Thus, when releasers do not need their capacity,
they search for replacers to avoid paying reservation fees, whereas replacers search for releasers
when facing an arbitrage opportunity. Using event studies, we find that contracts are much more
likely to be signed between long-term partners during the cold wave. This suggests that the op-
portunity cost of searching is higher in periods of high demand and that long-term relationships
reduce search costs.

Moreover, the secondary market facilitates the formation of long-term relationships. While
contracts are mostly private arrangements, the Federal Energy Regulatory Commission (FERC)
mandates that pipelines publicly post transaction details from the secondary market on public
data-sharing platforms. We argue that this regulatory constraint is what facilitates the formation
of long-term relationships.

However, the quasi-lack of regulation on the price charged for pipeline capacity in the secondary
market fosters an anti-competitive environment.1 To show this, we leverage variation in market
concentration across different pipelines and regions, where some pipeline zones have dominant
releasers, some have dominant replacers, and some have both. We find that a 1% increase in
releaser market share is associated with a 0.1% increase in capacity prices. In contrast, a 1%
increase in replacer market share is associated with a 0.04% decrease in capacity prices. The
welfare implications of these price-setting behaviors are uncertain, and we plan to study them
using a search model with two-sided market power in future research.

Related Literature

This paper contributes to three broad strands of literature on (i) supply-chain and energy market
resilience, (i) the effectiveness of secondary markets, and (iii) the pipeline industry.

1There are some constraints on capacity prices in the secondary markets based on how long capacity is expected
to be released. See Section 4.2 for details.



Chapter 4 – Long-Term Contracts and Secondary Markets: Theory and Evidence from Natural
Gas Pipelines 92

Chen (2023) shows that mergers among those networks result in significant cost reductions and
a notable rise in markups. Nonetheless, there is still a cost pass-through to customers, leading
to a reduction in shipment prices. Based on the findings of Chen (2023), we investigate the
effects of decreased shipping costs resulting from the consolidation of transport networks on
downstream firms. However, transport companies and their downstream customers typically
establish long-term relationships, and our knowledge of these relationships is limited. To shed
light on these issues, we examine how these relationships are formed and how demand and
supply shocks affect the formation of such relationships. One challenge in examining these
relationships is that, typically, the specifics of such contracts are not observed. However, the
U.S. natural gas pipeline industry is an exception, as all contract details are observable. This in-
cludes information on the ownership of transmission capacity in the primary market and details
of transactions related to capacity release in the secondary market. By examining the formation
of long-term relationships in the natural gas pipeline industry, we offer insights that could be
applied to other similar transport markets with substantial sunk investment costs.

Our study of the secondary market in the natural gas pipeline industry also contributes to a
literature investigating the effect of capacity constraints, bottleneck, and congestion on market
efficiency measures such as price integration across hubs (Avalos, Fitzgerald and Rucker, 2016,
Brown and Yücel, 2008, Marmer, Shapiro and MacAvoy, 2007, Oliver, Mason and Finnoff,
2014). This literature studies physical constraints and how regulation interacts with these phys-
ical constraints in preventing spatial price integration. By contrast, we study the role of artificial
capacity constraints created by long-term contractual agreements that reserve capacity, which
has not been studied before. Our findings on the effectiveness of the secondary market suggest
that these constraints are important and should be considered along with physical constraints
when studying market efficiency.

Lastly, our findings on the exercise of market power in the secondary markets relate to the lit-
erature on intermediation in search markets and monopsony power (Berger, Herkenhoff, Kostøl
and Mongey, 2023, Gehrig, 1993, Salz, 2022, Spulber, 1996). Our results are consistent with
some of these results in contexts where intermediaries (marketers) have market power.

4.2 Industry Background

Natural gas transmission pipelines provide for the bulk of natural gas transportation within
North America, often transporting commodities hundreds or thousands of kilometers from pro-
duction locations to three main demand markets: electricity generation, local distribution com-
panies (LDCs) primarily used for space heating and industrial consumption. In comparison to
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other modes of domestic freight, pipelines transport the most tonnes-kilometers. Natural gas
transportation in anything other than pipelines is complicated and often unprofitable.

Within the U.S., there are more than 120 major natural gas transmission pipelines whose tolls/rates
are directly regulated by the Federal Energy Regulatory Commission (FERC). Most of these
pipelines facilitate the transmission of natural gas from production areas, concentrated in re-
gions such as Texas, Pennsylvania, and Canada, to demand areas such as major metropolitan
areas, major export interconnections, and natural gas storage facilities. The major interstate
transmission pipelines are shown in the map below in Figure 4.1.

Figure 4.1: Natural Gas Pipelines in the U.S.

Transmission pipelines are extremely costly to build, averaging $5 million/km with 10 to 20
years for the pipeline to break even on its investment. To share the risk associated with large
sunk investment costs, the pipelines are required to sign long-term contracts (typically ten years
or more) with customers prior to the pipeline construction, which entitles the customer to re-
served capacity. The requirements for long-term contracts come from both sides of the market.
Pipeline companies are required to sign these contracts to obtain funding. Large customers,
such as power plants and local distribution companies (LDCs), are required by regulatory agen-
cies to have enough available capacity to sustain through unexpected demand shocks. Smaller
natural gas users do not contract capacity with pipelines directly and typically get gas from
marketers.

Long-term contracts in the natural gas transmission pipeline industry primarily focus on ship-
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ment capacity,2 as shipment pricing is often heavily regulated. Pipeline rates are often set to
enable pipelines to recover all prudently incurred expenses associated with service delivery
while also earning a reasonable profit. Regulators usually establish this by determining the rev-
enue requirement for pipelines — the yearly revenue needed to maintain service and secure a
fair return.3 In Appendix I, we provide further details on rate regulation within the pipeline
industry.

While long-term contracts in the primary market help reduce investment risks, they can intro-
duce substantial frictions in capacity allocation amidst fluctuations in the natural gas supply
and demand, thereby obstructing gas delivery to customers in need. The secondary market has
emerged to address these frictions. In this market, service requesters who hold long-term con-
tracts in the primary market can trade their contractual rights. This process, known as “Capacity
Release,” allows for the sale of all or part of a contract holder’s rights for varying durations,
ranging from less than a month up to the entire contract length.

Figure 4.2 illustrates the interactions between the primary and secondary markets. Within the
capacity release market, those holding primary contracts are known as releasers, and their coun-
terparts are referred to as replacers.

Figure 4.2: Relationships of the Primary and the Secondary Market

2A firm transportation contract grants capacity to a service requester at one or more points along a pipeline.
Capacity is either specific as to both location (point) and quantity or is general as to location and specific as
to quantity. A firm transportation contract gives a service requester the right to cause a TSP to receive a specific
quantity of gas from that service requester at a point and/or deliver a specific quantity of gas to that service requester
at a point over a specific time period.

3A typical revenue requirement will be comprised of the following:

Operations&Maintenance Costs + Taxes + Depreciation + Return = Revenue Requirement

Looking more specifically at the “fair” return for a pipeline in the cost of service regulation terminology, the return
is typically determined through a rate base. A rate base is defined as a pipeline’s gross plant in service less its
accumulated depreciation. You then earn a return based on an assumed capital structure the regulator sets. Those
portions of debt and equity then earn a return based on your cost of debt and cost of equity, both of which are
determined by the regulator. The cost of debt is typically based on a pipeline’s outstanding debt. In contrast, the
cost of capital is determined through regulatory proceedings utilizing various financial models to determine an
appropriate cost of equity for the pipeline based on similarly risky assets (mainly other pipeline systems).
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For primary contract holders, the value of transportation tends to rise when there are substantial
price differentials between natural gas trading hubs. Consequently, we expect to observe in-
creased capacity releases from these customers when such differentials widen. Additionally, it
is important to note that many natural gas end-users either do not possess transportation capac-
ity on interstate pipeline systems or are not connected to natural gas distribution utilities. These
customers are often industrial facilities, agricultural operations, smaller power generation facil-
ities, and natural gas retailers. Thus, many of these natural gas end users rely on natural gas
marketers to meet their gas needs in terms of supply and transportation.

These end users lack pipeline transportation capacity mainly due to concerns about creditwor-
thiness and balance sheet obligations. The credit obligations necessary for a company to hold
pipeline transportation services are often steep, and most companies cannot meet them. For
example, a typical credit evaluation criterion for firm service on a natural gas pipeline is to
provide security guarantees for three months of firm service at the maximum tariff rate for the
entire volume of your contract. This requires companies to have large amounts of cash on hand
(in the form of an advance deposit), a strong standing letter of credit from a financial institution,
an acceptable security interest in collateral, or a guarantee from a more credit-worthy parent
company. As for the balance sheet obligations, given the take-or-pay nature of natural gas
transportation firm service contracts, financial institutions view these transportation contracts
as debt obligations. If a company were to take out large amounts of transportation capacity, this
would result in a large liability on their balance sheet, which may impact their credit metrics,
impacting their ability to secure their own financing and financial obligations.

Given these restrictive requirements, many of these end users rely on marketers to arrange for
the supply and transportation of their gas needs. This comes at an increased cost to the end user,
as marketers often require a service fee or markup for arranging the supply and transportation
of natural gas.

Since these end users rely on marketers to provide them service when unexpected shocks in
demand happen, either to end-use residential, commercial, and industrial demand (increased
demand for natural gas retailers) or unexpected shocks in their various industries that do not
impact demand for gas utilities/retailers (for example an increase in demand for steel produc-
tion) they often turn to marketers to supply them with additional natural gas. While the primary
market for natural gas transportation is mainly held by utilities to meet their regulatory obli-
gations, they do not require the full use of their transportation capacity for most periods of the
year. They would prefer to release that capacity to a marketer who will ultimately provide the
transportation services to another end user.
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4.3 Data

We utilize four datasets in our analysis—first, the index of customer data. An index of cus-
tomers provides each specific contract on a pipeline system, including which shipper holds that
contract, the start and end dates of the contract, the type and path of the service, the amount of
pipeline capacity the shipper can utilize, and the contract rate. In the United States, pipelines
regulated by the Federal Energy Regulatory Commission (FERC) are required to publish an
index of customers from which we obtain our data. Second, the capacity release data from each
pipeline system, which includes details such as the transaction date, type of contract, duration
of the contract, rate, and options associated with the contract (such as recall or reput informa-
tion).4 Third, the daily spot prices of natural gas at all US-based hubs, which Capital IQ Pro
compiles. We obtained the first three datasets from 2004 to 2023.5 Last, we use geographic data
from the U.S. Energy Information Administration (EIA) to gather information about the entire
U.S. interstate natural gas pipeline system and the locations of major natural gas gateways and
hubs.

4.3.1 Descriptives for the Primary Market

We first provide summary statistics for the long-term contracts in the primary market for se-
lected pipelines. Across our sample, the average duration of a contract is approximately nine
years.

Table 4.1: Contract Duration (In Months)

Pipeline p5 p25 p50 p75 Mean Max
El Paso Natural 9 57 115 180 122 475
Natural Gas Pipe 12 36 60 120 84 432
Texas Eastern 13 48 105 184 118 612
Transwestern 4 12 36 101 65 361
All Sample 12 36 72 154 100 612

Next, we provide insight into the competitive landscape of the industry. Table 4.2 shows the
overview of market concentration in U.S. Interstate Pipelines.

4With the advent of the capacity release market, the FERC required pipelines to openly post the deals that their
service requesters were seeking to transact (FERC Order No. 636, et al.).

5While all of this data is technically public information, most pipelines periodically delete information from
past transactions, such as contracts signed in the capacity release market. We purchase the entire history of the
capacity release market and spot prices at hubs between 2004 and 2023 from the Capital IQ Pro database to access
historical data.
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Table 4.2: U.S. Market Share: Top 5 Interstate Pipelines by Capacity (2022)

Pipeline Market Share

Transcontinental Gas P L Co .1
Texas Eastern Trans Corp .08
Tennessee Gas Pipeline Co .08
ANR Pipeline Co .05
Rockies Express Pipeline .04

Mean .006
N 170

Table 4.3 shows the major contract holders in the primary market. The data indicate that the
top 5 companies own 75% of interstate pipeline capacity. The market power observed in the
primary market will significantly impact who can participate in the capacity release market
(the secondary market) and will affect shippers’ decisions to release capacity during demand or
supply shocks.

Table 4.3: Top 10 Contract Holders by Capacity in the Primary Market (2022)

Primary Owner Market Share

Kinder Morgan .195
TC Energy .192
Enbridge .151
The Williams Companies .12
Energy Transfer .1
Tallgrass Energy .05
Boardwalk Pipeline .035
Berkshire Hathaway .032
Boardwalk Pipelines .024
Dominion Energy .024

Mean .013
N 76

4.3.2 Descriptives for the Secondary Market

Regarding the capacity release market, we first demonstrate its importance. Table 4.4 shows the
amount released in the secondary market compared to the primary market. The percentage of
the amount released is calculated at the Pipeline-Shipper-Quarterly level, using the Max Daily
Transport quantity as a basis. The result shows that in any quarter, on average 30% of capacity
is being treaded on the secondary market.
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Table 4.4: Amount Released in Comparison to IOC Data (Quarterly)

p25 p50 p75 Mean Max

Proportion of quantity released 2.3% 6.8% 25.0% 32.4% 4212.7%

Next, we examine the percentage of shippers participating in the capacity release market at any
point during the contract period. Table 4.5 reveals that 40% of shippers holding long-term con-
tracts participate in the capacity release market. This underscores the significant importance
and active usage of the secondary market in this industry. The data therein highlights substan-
tial variations in both the number of capacity releases and the number of participants in the
secondary market across different pipeline systems every quarter.

Table 4.5: Number of Shippers That Are Within the Secondary Market

Not in the Capacity Release Market 555 60%

In the market 373 40%

Total 928 100%

Table 4.6 shows the average duration of a contract in the capacity release market. Most contracts
last a month, with some lasting half a year or a whole year. It is rare for a contract in the
secondary market to last for more than a year. Figure 4.3 illustrates the distribution of contract
durations.

Table 4.6: Contract Durations in the Capacity Release Market (Days)

Mean p5 p50 p95 Min Max
Contract Duration 85.17 27 30 364 1 1000

In the capacity release market, there are several options that a contract might include: recallable,
reputable, capacity resale allowed, affiliation of the counterparty with the contracting party, and
inclusion of previously released capacity. Table 4.7 shows the percentage of contracts that
feature these options.

We then present data descriptives to illustrate the interactions between releasers and replacers
in the secondary market. The selected pipelines are “El Paso Texas Pipeline”, “Texas Eastern
Transmission”, “Natural Gas Pipeline Company of America” (NGPL), and the Transwestern
Pipeline. We observe data between 2006 and 2023. Using the points identifiers for the contracts,
we were able to separate capacity release between different categories:
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Table 4.7: Percentage of Contracts With Different Options

Year Recallable Reputable
Resale
Allowed Affiliate

Previously
Released

2006 72% 58% 72% 0% 13%
2011 93% 65% 92% 1% 12%
2016 97% 78% 97% 0% 6%
2021 98% 78% 96% 0% 18%

Table 4.8: Distribution of sub-contracts by category—Selected pipelines

Number of sub-contracts Percentage
Compressor 984 0.7
Delivery to End User 3,057 2.1
Delivery to an LDC 58,877 40.3
Exchange 59 0.0
Gas Processing Plant 458 0.3
Gathering 278 0.2
Interconnect 53,146 36.4
LNG 36 0.0
Park and Loan 1 0.0
Pool 3,662 2.5
Power Plant 93 0.1
Receipt by LDC 79 0.1
Segment 313 0.2
Stand Alone Meter 3,033 2.1
Storage Injection 264 0.2
Storage Quantity 19,093 13.1
Storage Withdrawal 352 0.2
Unknown 973 0.7
Wellhead 1,265 0.9
Total 146,023 100.0
Notes: A sub-contract is defined as an agreement on capacity release at a specific
point, as part of larger capacity release contracts.
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Figure 4.3: Distribution of Contract Durations

We aggregate these categories into local distribution companies (LDC), storage, and others
(where others are mostly comprised of transmission between pipelines). Additionally, we sep-
arated contracts into two types based on the frequency of contracts between the same shippers
on a pipeline: (1) Met < 5 times and (2) Met ≥ 5 times.

We refer to shippers that met more than five times as engaged in long-term relationships. These
categories will help us understand the results of the event studies.

4.4 Emprical Model and Results

4.4.1 Event Study — Investigation of a Cold Wave

February 2021 Cold Wave

In February 2021, an extraordinary cold wave, driven by a polar vortex’s southward shift fol-
lowing a sudden stratospheric warming, swept across Canada, the United States, and northern
Mexico. This rare meteorological event led to severe winter storms, unprecedented snow, and
cold temperatures in states forming the deep south, such as Texas, Oklahoma, and Arkansas.

This cold wave led to an unexpected demand increase for home heating, affecting demand for
natural gas as a direct heat source for homes and indirectly through electricity generation. In
states such as Texas, natural gas directly heats 35% of homes, and electricity heats the remaining
65%. Meanwhile, natural gas is responsible for over 50% of electricity generation.6 We expect
this cold wave to have led to unprecedented pressure on natural gas pipelines, not only due to

6Texas uses natural gas for electricity generation and home heating.

https://www.eia.gov/todayinenergy/detail.php?id=47116
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Figure 4.4: Temperature Deviation From Historical Average – February 2021

Notes: Temperatures are expressed as deviation (in Fahrenheit) from average temperatures during the 20th century
across 5km grid points. Source: National Center for Environmental Information (NCEI).

the unexpected rise in demand but also as some pipeline segments froze and burst, disrupting
some of the supply.7

In this section, we investigate the secondary market’s role in allocating natural gas capacity
during the cold wave, some of the mechanisms underlying this effect, and potential trade-offs
associated with the secondary market. We first investigate a simple difference-in-difference
event study that allows us to compare outcomes between treated and control pipelines through-
out the cold wave. Outcomes such as contracted quantity may have persisted in the weeks
following the shock because the end date was not known ex-ante.

Defining Control and Treatment Pipelines

To define control and treatment pipelines, we looked at interstate pipelines with a similar activity
ratio in the secondary market relative to the pipeline’s total capacity and location. We chose
El Paso Natural Gas Company as a treated pipeline, which transports gas from the San Juan,
Permian, and Anadarko basins to selected states, including Texas and Oklahoma. The El Paso
pipeline is a good candidate because it covers most hubs that saw massive hikes in natural
gas prices relative to prices at Henry Hub during the cold wave. Prices in southwestern Texas
and southeastern California rose between 10 and 25 times the national benchmark due to the
unprecedented uptake in demand. Panel (b) of Figure 4.5 shows the map of the treated pipeline
with selected hubs.

As a control, we chose the Gas Transmission Northwest pipeline (GTN), which takes gas from

7February 2021 North American cold wave.

https://en.wikipedia.org/wiki/February_2021_North_American_cold_wave
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Figure 4.5: Treated and Control Pipeline Maps With Selected Hubs

Western Canada and takes it to Northern California—in contrast to abnormal weather variation
in Texas, Figure 4.4 indicates that Northern California was not affected by the cold wave because
temperatures did not deviate from historical averages. Panel (a) of Figure 4.5 shows the control
pipeline map.

To further validate the categorization of treated and control groups, we calculate the price of
natural gas at selected hubs served by treated and control pipelines relative to the Henry Hub
benchmark. Figure 4.6 shows the prices. We can see that during and after the cold wave, the
relative prices at control hubs are quite stable. However, for treated hubs, there is a spike in gas
prices during the cold wave.
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Figure 4.6: Prices Relative to Henry Hub

Notes: This figure plots the price of natural gas at selected hubs served by treated pipelines relative to the Henry
Hub benchmark. The dotted red lines correspond to the official beginning of the cold wave (February 6th, 2021)
and the end of the cold wave (February 22nd, 2021).

As discussed by Marmer, Shapiro and MacAvoy (2007), the possibility for arbitrage could imply
that the entire pipeline network is treated as intermediaries buy gas from unaffected regions
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(here, the West Coast) and sell it in affected regions (the Deep South). However, such arbitrage
would increase demand at unaffected hubs and raise gas prices. We do not see a large price
rise at unaffected hubs such as Malin and PG&E Citygate (which serves San Francisco). Just
as Marmer et al. (2007) found, there are likely important bottlenecks in the system preventing
arbitrage between regions far away from each other. While the El Paso pipeline is a larger
pipeline system than the GTN pipeline, the average percentage of capacity from the capacity
release market is similar across both pipelines.

4.4.2 Difference-In-Difference Analysis

We perform a difference-in-difference event study with a single treated pipeline and a single
control pipeline, allowing us to investigate the effect using a parsimonious two-way fixed-effects
specification. We cannot rule out anticipation as shippers try to predict adverse weather events.
Such extreme events may be correlated with temperature patterns over an extended period, such
as an abnormally cold winter. We also cannot rule out persistent effects because shippers make
decisions on capacity release without knowing the end date of the demand shock and may want
to air on the side of caution in the aftermath of the cold wave. Polar vortices can last from a few
days to multiple months.

We allow for anticipation and persistence by investigating the effect in a larger window around
the cold wave. As Figure 4.7 suggests, capacity released in the secondary market during the
cold wave significantly increased in the El Paso pipeline (by 30% immediately following the
beginning of the cold wave). It did not increase in the GTN pipeline. However, there was also a
significant increase in capacity release for El Paso relative to GTN one month prior to the cold
wave, which persisted up to one month after the cold wave.

We also need to account for important seasonal variations across both pipelines. A careful look
at the time series of capacity released in the secondary market outside of the window around the
cold wave suggests a very distinct time series across pipelines. Much of the variation around the
cold wave may obfuscate important seasonal patterns. Much of this variation can be attributed
to pipeline-specific seasonal variation, in which different shippers make recurring contracts
with each other. For example, utilities may lease some of their capacity to power plants every
summer.

As shown in the main specification below, we allow for heterogeneous seasonal variation across
pipelines to account for this rich heterogeneity. To study the causal effect of the 2021 cold wave
on capacity released, we then propose the following two-way fixed effects specification:
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Figure 4.7: Total Capacity in Secondary Market by Pipeline

Notes: The outcome variation displayed in this figure is the total capacity available in the secondary market each
week. It is constructed by aggregating all contracts signed on previous dates with contracted capacity released
during the current week. In the time axis, each month’s tick corresponds to the end of the month. The dashed black
lines correspond to the cold wave’s beginning and end.

yit = αi + αt + qT
itδ +

10∑
m=−5

βmDi,t−m + ϵit (4.1)

Where i indexes pipeline, t indexes weeks. yit is the log of capacity available in week t from the
secondary market. qit are pipeline-specific seasonality controls. These include week of the year
(1-52) and year of observation. Di,t−m is a treatment indicator defined as follows:

Di,t−m =

1 if i is treated and we are t − m weeks relative to start of cold wave

0 otherwise

The outcome variable yit aggregates all contracts signed at previous dates t − k that have con-
tracted capacity to be released at t. Since most contracts are signed for one month, there is
mechanically a lot of auto-correlation in yit. We cluster standard errors at the monthly level to
conduct autocorrelation-robust inference within 30-day periods.

To visualize the results, we follow the approach of Freyaldenhoven, Hansen and Shapiro (2019)
by normalizing the treatment effect one week before the shock, plotting the cumulative treat-
ment effect in a window around treatment. Under a null hypothesis that the cold wave was
not anticipated, lasted throughout February (4 weeks), and did not have persistent effects, the
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cumulative treatment effect would be defined as:

γk =


0 for k < 0∑k

m=0 βm for 1 ≤ k ≤ 4

0 for k > 4

However, as discussed earlier, shippers may anticipate an abnormally cold winter as they predict
natural gas requirements before the winter starts. As discussed previously, there is likely much
persistence in these treatment effects since contracts are signed without knowing when the cold
wave will end. For these reasons, we plot an estimate of the cumulative effect up to five weeks
before and ten weeks after the beginning of the cold wave, along with 95% confidence intervals.
We then define estimates of the cumulative event path as follows:

γ̂k =


∑−1

m=−k β̂m for −5 ≤ k < 0∑k
m=0 β̂m for 0 ≤ k ≤ 10

(4.2)

To investigate anticipation and persistence more formally, we also present the results from a
specification that aggregates the effect up to 2 months prior to the cold wave and two months
after the cold wave using the following specification:

yit = αi + αt + qT
itδ + βdDi,t∈dec20 + β jDi,t∈ jan21︸                        ︷︷                        ︸

Treated pipeline two months before

+β f Di,t∈ f eb21

+ βmDi,t∈mar21 + βaDi,t∈apr21︸                          ︷︷                          ︸
Treated pipeline two months after

+ϵit (4.3)

4.4.3 Results — El Paso (Treatment) and GTN (Control)

Figure 4.8 shows the estimated cumulative event path from the main specification in Equation
4.1. While we do not find statistically significant violations of the pre-trend assumption, these
results do not suggest a lack of anticipation. Rather, it should be interpreted as a lack of antic-
ipation that the cold wave would start earlier than planned. Anticipation is directly embedded
in the outcome variables, aggregating previously signed contracts. On the other hand, we find
large and significant persistent effects many weeks after the cold wave, suggesting that shippers
did not know when the demand shock would end. Overall, the cold wave caused an increase in
capacity release by an average of 50% across the duration of the cold wave. See Table 4.9.
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Figure 4.8: Baseline Cumulative Event Path

Notes: This figure plots the event path specified in equation 4.2 along with 95% confidence intervals. Specifically,
we plot the cumulative effect of the February 2021 cold wave on the quantity of pipeline capacity contracted in
the secondary market. Specifically, this quantity is defined as the total quantity released in the current week,
aggregating all contracts signed prior to and up to the current week. We do so because many contracts are often
signed weeks before the capacity is released. We exclude contracts that are signed for periods of one year or more.

To further validate these findings, we performed a robustness check by imposing a placebo cold
wave one year before, in 2020, and found no evidence of a placebo treatment effect.
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Figure 4.9: Placebo Cold Wave (One Year Before)

Secondary Market and Search Costs

To investigate trade-offs associated with a deregulated secondary market, we first provide ev-
idence that the cold wave, interpreted as a demand shock, increased the search cost between
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Table 4.9: Main Results — Average Effect of Cold Wave on Capacity Release

Real cold wave Placebo cold wave
(log) Capacity (log) Capacity

I(Two Months Before x Treated) 0.251 0.349
(0.376) (0.405)

I(One Month Before x Treated) 0.215 -0.112
(0.336) (0.331)

I(During x Treated) 0.579∗∗ -0.203
(0.237) (0.242)

I(One Month After x Treated) 0.674∗∗ -0.130
(0.280) (0.278)

I(Two Months After x Treated) -0.266 0.624∗∗

(0.338) (0.294)
N 1,278 1,278
adj. R2 0.784 0.782
Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: these results are exactly as specified in Equation 4.3. As such, they are not the cumulative treatment effects
but the average treatment effect across the specified period. The first column presents results of the real cold wave,
whereas the second column presents results for the placebo cold wave (one year earlier), including two months
before and after this placebo cold wave.

a releasing and a replacement shipper. As argued previously, the secondary market provides a
mechanism to reduce these search costs by fostering the formation of long-term relationships.
Indeed, more than 95% of contracts in the secondary market are private arrangements between
shippers, and shippers often use these private arrangements to form long-term relationships. We
now argue that these long-term relationships are crucial when shippers face large unexpected
demand shocks such as the cold wave of 2021.

To be consistent with our classification in Section 4.3, we group all contracts from the secondary
market into two categories: contracts between shippers that met less than five times in the past
(which we call new relationships) and contracts between shippers that met more than five times
in the past (which we call long-term relationships). Below is the distribution of relationship
frequency between shippers:

We then re-estimate the two-way fixed effects regression of equation 4.1 separately by groups.
When grouping the contracts by relationship frequency in Figure 4.10, we find that the effect of
the cold wave on capacity released is overwhelmingly driven by long-term partners. Moreover,
the effect nearly doubles when narrowing down on long-term partners. On average, we find
that the cold wave caused an increase in capacity between long-term partners by approximately
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Table 4.10: Distribution of Relationship Frequency by Pipeline

Frequency of Identical Shippers
Signing Contracts

El Paso (Treatment)
Percentage (%) of Contracts

GTN (Control)
Percentage (%) of Contracts

Never met 1 2
Met > 0 but ≤ 5 times 22 9
Met > 5 but ≤ 10 times 18 16
Met > 10 but ≤ 15 times 15 10
Met > 15 but ≤ 20 times 8 5
Met > 20 but ≤ 25 times 9 25
Met > 25 but ≤ 30 times 7 5
Met > 30 times 20 28

Total 100 100

Notes: The distribution corresponds to the percentage of unique contracts signed between shippers.

90%.

EndBeginning-10

-5

5

10

15

0 (4)

(lo
g)

 T
ho

us
an

d 
D

th
/d

ay

-5+ -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10+
Weeks Relative to Begining Cold Wave

(a) Shippers Met < 5 Times

EndBeginning-5

5

10

15

0 (5.817)

(lo
g)

 T
ho

us
an

d 
D

th
/d

ay

-5+ -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10+
Weeks Relative to Begining Cold Wave

(b) Shippers Met ≥ 5 Times

Figure 4.10: Cumulative Event Path by Relationship Length

Finding new partners has a high search cost, and the opportunity cost of searching is high
in times of unexpected shock. For this reason, shippers reduce the search cost by leveraging
their existing relationships. Moreover, the secondary market provides a platform for shippers
to form new relationships during normal times, which can be leveraged during shocks. In
this context, the secondary market provides a mechanism to reduce the search cost. Due to
the FERC regulation, which mandates that all contracts be posted on public platforms, the
secondary market fosters the formation of long-term relationships by providing shippers with
daily information on the key players in each market.

We further substantiate this narrative that the cold wave is associated with a higher opportunity
cost of searching by looking at the characteristics of contracts during the cold wave. Indeed,
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what drives the main result is not an increase in the number of contracts, which would be costly,
but rather an increase in the average quantity released by contract.
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Figure 4.11: Event Path — Number of Contracts and Quantity per Contract

Table 4.11: Average Effect of Cold Wave — Extensive and Intensive Marigns

(log) Number of Contracts (log) Average Quantity per Contract
I(Two Months Before x Treated) 1.146∗∗∗ -0.895∗∗∗

(0.141) (0.290)

I(One Month Before x Treated) -0.194 0.409∗

(0.125) (0.229)

I(During x Treated) 0.003 0.577∗∗∗

(0.126) (0.166)

I(One Month After x Treated) 0.084 0.589∗∗∗

(0.152) (0.174)

I(Two Months After x Treated) -0.229 -0.037
(0.160) (0.210)

N 1,278 1,278
adj. R2 0.726 0.860
Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

While this narrative on search costs is broadly consistent with the literature, there is one key
difference. In the literature on intermediation with search costs (Gehrig, 1993, Spulber, 1996),
it is often assumed that parties on two sides of a market can either engage in search or go
through an intermediary to avoid search costs. In our case, the margin to reduce search cost
is forming relationships between an intermediary (the replacer) and a releaser. This means
that the presence of an intermediary does not eliminate search costs. We also argue that both
releasers and replacers engage in search. The replacers search for available capacity when they
face arbitrage opportunities between hubs. Releasers search for buyers when they do not need
capacity to avoid paying reservation fees for unused capacity.
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Market Power

While the secondary market provides a platform for shippers to reduce search costs of releasing
capacity, it is also largely unregulated. For the majority of contracts signed, releasing and
replacement shippers can freely negotiate a contract rate, which can be below, equal, or above
what the releaser pays to the pipeline.8 Deregulation can incentivize market participants to
engage in the secondary market but can also introduce market power, causing friction. We now
investigate market concentration across different pipelines and zones. We find evidence that
some markets have more concentrated releasers, while some have more concentrated replacers,
and some have both. We relate this variation in market concentration to capacity release prices
and find that releasers (replacers) with a higher market share tend to charge higher (lower)
prices.

Table 4.12: Summary Statistics — Market Power and Prices (Secondary Market)

Replacer HHI Releaser HHI P < Max Price = Max P > Max P = 0
El Paso 1,660 4,821 0.81 0.15 0.04 0.21
GTN 1,723 4,746 0.21 0.75 0.04 0.03
GL 5,366 5,491 0.48 0.51 0.01 0.33
NGPL 1,529 1,769 0.68 0.24 0.08 0.09
Texas Eastern 2,708 1,586 0.50 0.42 0.08 0.32
Transwestern 1,889 2,685 0.95 0.03 0.02 0.15

Notes: In this Table, P refers to the tariff charged for a specific section of a contract in the secondary market, and
always has two parts: a reservation fee and a volumetric charge based on gas flown. For example, a shipper can
release capacity between delivery point A and receipt point B and between delivery point B and receipt point C.
In this case, there would be four prices. Max corresponds to the maximum tariff set by the FERC for those four
prices. HHI refers to the Herfindahl–Hirschman index.

Table 4.12 summarizes market concentration across selected pipelines with considerable activ-
ity on the secondary market. We find substantial variation in market power across pipelines.
For example, the Great Lakes (GL) pipeline has a high concentration of replacers and releasers,
whereas El Paso has a low concentration of replacers but a high concentration of releasers. We
also find lots of variation in average tariffs relative to the tariffs. Since the FERC sets these
maximum tariffs specific to delivery and receipt points, they vary widely across contracts and
provide a benchmark for comparing tariffs. However, Table 4.12 does not suggest a monotonic-
ity between releaser/replacer market power and prices. For example, both El Paso and GTN

8There are some exceptions. Certain contracts cannot have a rate above some maximum threshold the FERC
sets. This constraint is based on the contract duration. Tariffs on capacity released for 31 days or less or one year
or more can vary freely. Tariffs on capacity released between 31 days and one year cannot exceed the maximum
tariffs. As Figure 4.3 suggests, the vast majority of contracts fall within the fully deregulated time constraints.
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have a high concentration of releasers relative to replacers, and tariffs are significantly more
likely to be below the maximum in El Paso.

To understand this point better, we also show in Figure 4.12 that the cumulative distribution
of market power in releasing shippers tends to be highly correlated with the cumulative distri-
bution of market power for replacement shippers, which is likely to be correlated with market
thickness. Great Lakes is the most concentrated in both releasers and replacers, whereas NGPL
is the least concentrated. GTN and Transwestern are more concentrated in releasers and re-
placers than El Paso and Texas Eastern. For this reason, only looking at variation in market
concentration may not provide enough variation to investigate its effect on tariffs.
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Figure 4.12: Market Concentration Across Pipelines

Next, we investigate the role of releaser and replacer market power on tariffs in more detail.
Specifically, we investigate variation in market power at the individual releaser/replacer level.
We specified the following regression model, where we consider both the log of tariffs and the
log of tariffs relative to maximum tariffs as outcome variables:

ln Ypcit = αt + αp + XT
it β + zT

cpitγ + β
rep ln S rep,it + β

rel ln S rel,it + ϵcpit

Where p indexes a delivery and receipt point pair, c indexes a contract, i indexes a pipeline, and
t indexes days. The main independent variables of interest are the market share of releasing and
replacement shippers signing the contract, ln S rep,it and ln S rel,it respectively. For robustness, I
consider various specifications for this market share: (1) total pipeline market share (constant
across all years); (2) annual pipeline market share; (3) total market share in pipeline-specific
zones (constant across all years); and (4) annual market share in pipeline-specific zones.
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Xit are seasonal adjustments that vary by pipelines, and Zit are control variables and include
relationship length between shippers and other contract characteristics such as contract dura-
tion. αp are pipeline-specific delivery-receipt point fixed effects, so they absorb pipeline fixed
effects, and αt are week fixed effects. Here, βrep and βrel capture variation in market share across
shippers and within shippers over time because we omit shipper fixed effects.9 All the results
are robust to the inclusion/exclusion of all control variables, fixed effects, and seasonality.

Table 4.13: Estimation Results — Log Tarrifs

(1) (2) (3) (4)
Releaser share 0.088∗∗∗

(0.003)

Replacer share -0.040∗∗∗

(0.001)

Annual releaser share 0.063∗∗∗

(0.003)

Annual replacer share -0.042∗∗∗

(0.001)

Zone releaser share 0.113∗∗∗

(0.003)

Zone replacer share -0.037∗∗∗

(0.001)

Annual zone releaser share 0.103∗∗∗

(0.003)

Annual zone releaser share -0.040∗∗∗

(0.001)

Time FE Yes Yes Yes Yes
Pipeline FE Yes Yes Yes Yes
Delivery and Receipt point FE Yes Yes Yes Yes
N 86,112 86,082 78,778 78,657
adj. R2 0.777 0.773 0.726 0.721
Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results in Table 4.13 suggest a strong relationship between market share and tariffs charged,
both for replacers and releasers, suggestive of price-setting behavior. Moreover, this relationship
is twice as large for releasers. Remembering that releasers benefit from higher tariffs (supply)
and replacers benefit from lower tariffs (demand), a 1% increase in releaser market share is
associated with a 0.09% increase in tariffs, whereas a 1% increase in replacer market share is

9We also tried including shipper fixed effects, but there is not enough remaining variation (e.g., only over time
within shippers) because market shares tend to be fairly consistent over time.
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associated with a 0.04% decrease in tariffs.

These results suggest two-sided market power. In such a context, it is unclear what the welfare
implications of partially deregulating the natural gas transportation industry through its sec-
ondary market are. On the one hand, the secondary market allows tariffs to vary over time and
respond to fluctuations in supply and demand. These tariffs are otherwise constant and set by
long-term contracts in the primary market, which may prevent the efficient allocation of capac-
ity, particularly during shocks. On the other hand, Deregulation of pipeline capacity implies that
market participants influence tariffs based on their market share, as seen in Table 4.13, which
may restrict the allocation of capacity. Thus, the aggregate implications are unclear, and there
may be significant variation across pipelines and regions. We plan to investigate these welfare
implications in future research.

4.5 Conclusion

This paper investigates a major deregulation effort in a highly regulated industry characterized
by natural monopolies: the secondary market for natural gas capacity release. It is one of the
first empirical investigations of a real Coasian market in which market participants can trade
legal entitlements, allowing us to shed light on the resilience of supply chains, particularly
on the supply of natural gas during periods of high demand. Our results highlight that the
secondary market is an important market constituent during shocks, as evidenced by the large
and persistent increase in capacity released in that market during the February 2021 cold wave
in Texas. We argue that the secondary market improves the efficiency of capacity allocation
by deregulating transportation tariffs and providing information to market participants, which
fosters the formation of long-term relationships between releasers and replacers. However,
deregulation comes at a cost, and we find evidence of market power that reflects price-setting
behavior from both releasers and replacers.
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Appendices

Appendix to Chapter 2

A Data

A.1 Details on Sampling Rules

In the ASI, Manufacturing plants are surveyed either as part of a census or as part of a sample.
All plants who qualify for the census are required to fill out the survey by the Government of
India’s Central Statistics Office. The remaining plants are surveyed based on stratified sampling
rules. The definition of census vs. sample and the sampling rules went through some changes
over the years. In 2008, all plants with more than 100 workers and multi-plant firms, as well as
plants in the lesser industrialized states (Manipur, Meghalaya, Nagaland, Tripura, Sikkim, and
Andaman Nicobar Islands), were part of the census. Strata were constructed by state/industry
pairs for the remaining plants, and 20% of plants were sampled within each stratum.

By 2016, the rules for a plant to be considered in the census expanded. Plants in the following
states with more than 75 workers were part of the census: Jammu Kashmir, Himachal Pradesh,
Rajasthan, Bihar, Chhattisgarh, and Kerala. Plants in the following states with more than 50
workers were part of the census: Chandigarh, Delhi, and Puducherry. Plants in the seven less
industrialized states were part of the census: Arunachal Pradesh, Manipur, Meghalaya, Naga-
land, Sikkim, Tripura, and Andaman Nicobar Islands. Lastly, the census included plants with
more than 100 workers in all other states.

A.2 Calculating Emissions

To get establishment-level measures of greenhouse gas emissions, I convert units of potential
energy (mmBtu) of each fuel into metric tons of carbon dioxide equivalent (CO2e) as a result of
combustion. Each mmBtu of fuel releases some quantity of carbon dioxide CO2, methane CH4,
and nitrous oxide N2O in the air, which may vary by industry based on standard practices and
technology. Emissions of chemical k for a plant in industry j can be calculated as follows:

emissions jk =
∑

f

∑
k

ζ f k j ∗ e f

∀ k = {CO2,CH4,N2O} ∀ f = {Natural Gas, Coal, Oil, Electricity}
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The fuel-by-industry emission factors of each chemical ζ f k j are found in the database provided
by GHG Platform India and come from two main sources: India’s Second Biennial Update
Report (BUR) to United Nations Framework Convention on Climate Change (UNFCCC) and
IPCC Guidelines. Quantities in mmBtu of each fuel e f are observed for each establishment in
each year. Then, quantities of each chemical are converted into carbon dioxide equivalent CO2e

using the Global Warming Potential (GWP) method as follows:

CO2e = GWPCO2︸    ︷︷    ︸
=1

∗CO2 +GWPch4 ∗CH4 +GWPn2o ∗ N2O

From the calculations above, I can define fuel-specific emission factors that will be used to
directly convert fuels to CO2e (or GHG). For fuel f in industry j (excluding electricity),

γ f j = GWPco2 ∗ ζ f ,co2, j +GWPch4 ∗ ζ f ,ch4, j +GWPn2o ∗ ζ f ,n2o, j

Calculations of emissions from electricity are done slightly differently than from fossil fuels
because emissions come from production rather than end usage of electricity. Figure A.1 shows
that coal is used to consistently generate above 60% of total electricity in India, which increased
in 2010 and started to decrease after 2012.
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Figure A.1: Annual Indian Electricity Generation by Source (% of Total)
Source: International Energy Agency (IEA)

To construct measures of emissions from electricity, I take the distribution of emissions from
different fuels used to produce electricity, averaged across years for the entire grid. Let ωe f ∈
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[0, 1] ∀ f ∈ {Coal,Gas} be the share of fuel f used to generate electricity across the country,
then

γe j =
∑

f∈{coal,gas}

ωe f ∗ γ f j

Where γ f j is the emission intensity of fuel f and was defined above.Total GHG emissions for
plant i in industry j and year t is then defined as:

GHGi jt = γe ∗ eei jt +
∑

f∈{natgas,coal,oil}

γ f j ∗ e f i jt

Below are the tables detailing emissions factors. Note that for oil, I take the average over all
petroleum fuels. The dispersion between oil types is much lower than the dispersion between
the average of oil and coal/gas.

Emission factors (kg CO2e/mmBtu)

Fuel Industry CO2 CH4 N2O Total (γ f j)

Coal

Cement 100.90 0.03 0.42 101.34
Non-ferrous metals 101.67 0.03 0.42 102.11
Pulp and paper 101.59 0.03 0.42 102.04
Electricity generation 102.09 0.03 0.42 102.54
Other 98.84 0.03 0.42 99.29

Oil All 77.34 0.09 0.17 77.59
Natural Gas All 50.64 0.03 0.03 50.70

Table A.1: Emission Factors From Fuels to Carbon Dioxide Equivalent

Notes: Emission factors are defined as ζ f k j ∗GWPk (kg CO2e/mmBtu). Source: (?, Annexure 3)

Share of Electricity Generated by Source
Natural Gas Coal Hydro Other Emission factor (kg CO2e/mmBtu)
0.052 0.68 0.046 0.23 72.05

Table A.2: Emission Factors From Electricity
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Steel ProductFuel Set oil, elec oil, elec, coal oil, elec, gas oil, elec, gas, coal other Total
Pig iron 50.46 23.39 8.29 5.71 12.15 100
Direct reduced iron 62.42 22.53 4.89 2.31 7.85 100
Ingots 54.12 17.51 9.23 6.76 12.38 100
Ferro-alloy 51.42 24.05 4.91 4.11 15.51 100
Hot and cold-rolled steel 38.32 21.14 15.00 14.80 10.75 100
Tubes 67.97 4.74 15.32 4.46 7.52 100
Wires 70.04 4.61 9.93 1.42 14.01 100
Other 47.59 19.79 10.35 9.96 12.30 100

Table A.3: Distribution of Fuels Sets by Steel Variety

A.3 Additional Evidence

B Model

B.1 Closing the Model: Aggregation Details

Given a mass of Nt operating plants, income It and aggregate demand shock eΓt , the representa-
tive consumer solves:

max
{Yit}

Nt
i=1,Y0t

U = Y0t +
eΓt

θ

(
1
Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) θρ
ρ−1

s.t. Y0t +

∫
Ωi

PitYitdi ≤ It

(4)

Following ?, this can be separated into two problems. First, the consumers choose consumption
of the aggregate final good Yt, given some aggregate price index Pt and aggregate demand shock
eΓt :

max
Y0t ,Yt

Y0t +
eΓt

θ
Yθ

t

s.t. Y0t + PtYt ≤ It

The optimal consumption of the aggregate final good is given by Yt(Pt) =
(

Pt
eΓt

) −1
1−θ , and con-

sumption of the outside good is given by Y0t(Pt) = It = PtYt(Pt) = It − eΓt
1

1−θ P
−θ

1−θ
t . Putting the

two together yields the indirect utility V, which corresponds to the consumer surplus due to
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quasi-linear preferences:

V = It +
( 1
1 − θ

)
Γ

1
1−θ
t P

−θ
1−θ
t

This is the same indirect utility function as in ?, augmented with an aggregate demand shock.
Consumer surplus is decreasing in the aggregate price index, keeping income constant. Then,
the representative consumer chooses which varieties to allocate for a given quantity of good Yt

by minimizing the cost of different varieties:

min
{Yit}

Nt
i=1

∫
Ωi

PitYit s.t. Yt =

(
1
Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) ρ
ρ−1

Solving this cost-minimization problem yields the following conditional demand for each vari-
ety:

Yit(Yt) =
Yt

Nt

(Pit

Pt

)−ρ
(5)

Combining both steps together yields the demand for each variety, corresponding to equation
2.4 in the main text:

Yit =
eΓt

1
1−θ

Nt
P

ρ(1−θ)−1
1−θ

t P−ρit

Where the aggregate price index is such that
∫
Ωt

PitYitdi = PtYt and is given by Pt =
(

1
Nt

∫
Ωi

P1−ρ
it

) 1
1−ρ .

C Identification

C.1 Derivation of Estimating Equation for Outer Production Function

Production function:
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Yit

Y
= eωit

(
αk

(Kit

K

)σ−1
σ
+ αl

(Lit

L

)σ−1
σ
+ αm

(Mit

M

)σ−1
σ
+ αe

(Eit

E

)σ−1
σ

) ησ
σ−1

(6)

= eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) ησ
σ−1 (7)

Where I define Xit

X
= X̃it

Lit,Mit, Eit are flexible inputs

I observe the quantity for Lit and Kit but only spending for materials and energy: S Mit , S Eit

Profit-maximization subject to technology and demand constraint:

max
Lit ,Mit ,Eit

{
Pit(Yit)Yit − pMitMit − pEitEit − wtLit

}
s.t. Yit = Yeωit

(
αK K̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αM M̃
σ−1
σ

it + αE Ẽ
σ−1
σ

it

) ησ
σ−1

Pit(Yit) =
(

eΓt

NtYit

) 1
ρ

P
1+ρ(θ−1)

(θ−1)ρ
t

First-order conditions:

Mit/Lit:

Mit

M
=

( αL

αM

S Mit

S Lit

) σ
σ−1 Lit

L
(8)

Eit/Lit:

Eit

E
=

(αL

αE

S Eit

S Lit

) σ
σ−1 Lit

L
(9)

Lit:
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(eΓt

Nt

) 1
ρ P

ρ(1−θ)−1
(1−θ)ρ

t
ρ − 1
ρ

η(eωitY)
ρ−1
ρ αLL

σ−1
σ

it ces
ρ[σ(η−1)+1]−ησ

(σ−1)ρ

it = S Lit

Where cesit =
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

)
Using the FOC for labor, I can solve for total factor productivity eωit :

eωit
ρ−1
ρ = Y

ρ−1
ρ ρ

ρ − 1
1
η

( Nt

eΓt

) 1
ρ P

1−ρ(1−θ)
(1−θ)ρ

t
S Lit

αLL
σ−1
σ

it

ces
ησ−ρ[σ(η−1)+1]

(σ−1)ρ

it (10)

Plug (10) into revenue equation:

Rit = Pit(Yit)Yiteuit

=
(eΓt

Nt

) 1
ρ P

1+ρ(θ−1)
(θ−1)ρ

t Y
ρ−1
ρ

it euit

=
(eΓt

Nt

) 1
ρ P

1+ρ(θ−1)
(θ−1)ρ

t

(
eωit

(
αK K̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αM M̃
σ−1
σ

it + αE Ẽ
σ−1
σ

it

) ησ
σ−1

) ρ−1
ρ

euit

=
ρ

ρ − 1
1
η

(
αK K̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αM M̃
σ−1
σ

it + αE Ẽ
σ−1
σ

it

)
euit

Plug ratio of FOCs (8) and (9) into the previous equation:

Rit =
ρ

ρ − 1
1
η

S Lit

(
αk

αL

( K̃it

Lit

)σ−1
σ
+ 1 +

S Mit

S Lit
+

S Eit

S Lit

)
euit

=
ρ

ρ − 1
1
η

(
S Lit

(
1 +

αk

αL

( K̃it

L̃it

)σ−1
σ

)
+ S Mit + S Eit

)
euit

Estimating Equation:

ln Rit = ln
ρ

ρ − 1
+ ln

1
η
+ ln

(
S Lit

(
1 +

αk

αL

( K̃it

L̃it

)σ−1
σ

)
+ S Mit + S Eit

)
+ uit (11)
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C.2 Computational Details on Solving the Dynamic Discrete Choice Model

I show how to iterate over the expected value function W⃗ until || W⃗n+1 − W⃗n || is small enough
with a very large state space, where for any set of states today s,F .

Wn(s,F ) = γ + log
( ∑
F ′∈F

exp
(
π(s,F ) + Φ(F ′ | F ) + β

∫
Wn(s′,F ′)dF(s′ | s)

))

To evaluate the expected value function, note that there are originally 12 state variables: prices
and productivity of all four fuels, hicks neutral productivity, the price of material inputs, year
of observation, and whether a plan is located near a pipeline. I can reduce the dimension of the
state space to 8 state variables, 2 of which are deterministic and 6 of which follow a Markov
process. The 6 Markovian state variables are hicks-neutral productivity z, price of materials pm,
price/productivity of electricity pe/ψe, price/productivity of oil po/ψo, price/productivity of gas
pg/ψg, and price/productivity of coal pc/ψc, which are allowed to be correlated. Then,

∫
Wn+1(s′,F ′)dF(s′ | s) =

∫
z

∫
pm

∫
pe
ψe

∫
po
ψo

∫
pg
ψg

∫
pc
ψc

Wn

(
z′, p′m

p′e
ψ′e
,

p′o
ψ′o
,

p′g
ψ′g
,

p′c
ψ′c
,F ′, t, d

)
×

f
z′,p′m,

p′e
ψ′e
,

p′o
ψ′o
,

p′g
ψ′g
,

p′c
ψ′c

(
z′, p′m,

p′e
ψ′e
,

p′o
ψ′o
,

p′g
ψ′g
,

p′c
ψ′c

∣∣∣∣∣∣z, pm,
pe

ψe
,

po

ψo
,

pg

ψg
,

pc

ψc

)
dzdpmd pe

ψe
d po
ψo

d pg
ψg

d pc
ψc

Where t corresponds to the year of observation and d is an indicator of access to a natural gas
pipeline. I approximate this high dimensional expected value function by discretizing the state
space and the underlying Markov process. Since most state variables are highly persistent AR(1)
processes, I use Rouwenhorst (1995) to discretize the process. Let M be the number of points on
each grid. I am currently using M = 4, which gives me 46 = 4, 096 grid points for the Markovian
state variables. When adding the six years of observations between 2010 and 2015 as well as the
access to the pipeline indicator, I get (46)∗6∗2 = 49, 152. However, the curse of dimensionality
starts to kick in when I add the distribution of comparative advantages for gas and coal (see later
sections). With three possible values for gas and coal, this gives me nine possible combinations
of comparative advantages. Ultimately, I am left with (46) ∗ 6 ∗ 2 ∗ 9 = 442, 368 grid points.
Using this discretization process, I can then represent the value function as a block matrix W⃗n

containing all state combinations. Let S be the set of all state variable combinations, Γ(s′ | s) be
the vector of all state transition probabilities when starting at state s (in vectorized form), Π be
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the vector of all possible profit combinations, K⃗ be the vector of all possible fuel set switching
costs. Then

W⃗ ≈ γ + log
( ∑
F ′∈F

exp
(
Π + K⃗(F ′) + β

[⊗
s∈S

Γ(s′ | s)
]T

W⃗
))

(12)

Lastly, to reduce the computational burden, I iterate over equation (12) by parallelizing across
all possible combinations of starting states using graphics processing units (GPU) Arrays with
CUDA. Computational gains using GPU Arrays are significant over standard CPU paralleliza-
tion. Detailed Julia code is available on my GitHub10.

C.3 Details of Em Algorithm to Recover Distribution of Fixed Costs and
Comparative Advantages

The procedure to estimate the fixed costs parameters θ1 and the unselected, unconditional dis-
tribution of fuel-specific random effects is explained below. I experimented with both the ?
version that relies on a nested fixed point algorithm to update the value function and the ? that
uses the conditional choice probabilities (CCP) and forward simulations to update the value
function. In the main version of the paper, I am using the nested fixed point version with a large
grid for the state space as discussed in Appendix C.2.

lnL(F , s | θ1, θ2) =
n∑

i=1

ln
[∑

k

πk

[ T∏
t=1

Pr(Fit+1 | Fit, sit, µ f i = µk; θ1, θ2)
]]
+

n∑
i=1

T∑
t=1

ln f (sit | sit−1; θ2)

=

n∑
i=1

ln
[∑

k

πk

( T∏
t=1

eυFit+1 (Fit ,sit ,µi=µk;θ1,θ2)∑
F⊆F eυF (Fit ,sit ,µi=µk;θ1,θ2)

)]
+

n∑
i=1

T∑
t=1

ln f (sit | sit−1; θ2)

In principle, one can directly estimate both the fixed costs θ1 and the distribution of comparative
advantages from the full information likelihood above. However, this is computationally very
expensive and rarely used in practice. For this reason, ? use Baye’s law to show that the first-
order conditions of the full information likelihood with respect to all parameters are the same
as the first-order conditions of the posterior likelihood with respect to fixed costs θ1 given some
prior guess of the distribution of unobserved heterogeneity. This is the key result that allows me

10https://github.com/emmanuelmurrayleclair/JMP

https://github.com/emmanuelmurrayleclair/JMP
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to use the EM algorithm.

θ̂1 = arg max
θ1,θ2,π

n∑
i=1

ln
[∑

k

πk

[ T∏
t=1

Pr(Fit+1 | Fitsit, µi = µk; θ1, θ2)
]]

≡ arg max
θ1

N∑
i=1

T∑
t=1

∑
k

ρ(µk | Fi, si; θ̂1, θ̂2, π̂) ln Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ̂2)

Estimation is iterative and proceeds as follows:

1. Estimate the distribution of state variables externally θ̂2. These stay fixed throughout the
procedure.

2. Initialize fixed cost parameters θ0
1 and guess some initial probabilities {π0

f 1, π
0
2, ..., π

0
K}. I

use the distribution of selected random effects to initialize this distribution.

3. Do value function iteration (VFI) to update the expected value function W for all combi-
nations of state variables conditional on these guesses, where different realizations of the
random effects µk are just another state variable that is fixed over time.

W(s,F ,µk; θ0
1, θ̂2) = γ

+ log
( ∑
F ′∈F

exp
(
π(s,F ) +K(F ′ | F , s; θ0

1) + β
∫

W(s′,F ′, µk; θ0
1, θ̂2)dF(s′ | s; θ̂2)

))

4. Get posterior conditional probabilities that plant i is of type k, ρ1(µk | Fi, si; θ0
1, θ̂2, π

0),
according to Baye’s law:

ρ1(µk | Fi, si; θ0
1, θ̂2, π

0) =
π0

f k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ0

1, θ̂2)
]I(Fit=F )

]]
∑

k π
0
k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ0

1, θ̂2)
]I(Fit=F )

]]

5. E-step: Update the unconditional comparative advantage probabilities as follows:

π1
k =

∑n
i=1 ρ

1(µk | Fi, si; θ0
1, θ̂2, π

0)
n

∀k
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6. M-step: Find fixed cost parameters θ1
1 that maximize the (log)-likelihood conditional on

current guess of unconditional and conditional probabilities π1
k , ρ

1(µk | .)

7. Repeat 3-6 until the full information likelihood is minimized.

D Counterfactuals

D.1 Discretizing the Process for Fuel Prices and Productivity Separately

The problem to solve is that I need to separate fuel prices from fuel productivity when studying
the impact of a per-unit carbon tax levied on fossil fuels (p f it + τ f ) because p f it+τ f

ψ f it
=

p f it

ψ f it
+

τ f

ψ f it

Initially, the model is estimated with a process for the log of fuel prices/productivity from
Equation 2.18, which I discretize into a Markov Chain. The Markov chain is a sequence of fuel
prices/productivity realizations ln p f 1

ψ f 1
, ln p f 2

ψ f 2
, ln p f 3

ψ f 3
, ... such that,

Pr
(

ln
p f k+1

ψ f k+1

∣∣∣∣ ln p f k

ψ f k
, ln

p f k−1

ψ f k−1
, ln

p f k−2

ψ f k−2
, ...

)
= Pr

(
ln

p f k+1

ψ f k+1

∣∣∣∣ ln p f k

ψ f k

)
Pr

(
ln

p f k+1

ψ f k+1

∣∣∣∣ ln p f k

ψ f k

)
> 0 ∀ k

From this Markov chain for fuel price/productivity, I create two Markov Chains: one for prices
ln p f 1, ln p f 2, ... and one for productivity lnψ f 1, lnψ f 2, ... such that,

ln p f k = ln
p f k

ψ f k
+ lnψ f k

Pr
(

ln p f k+1 | ln p f k

)
= Pr

(
lnψ f k+1 | lnψ f k

)
= Pr

(
ln

p f k+1

ψ f k+1

∣∣∣∣ ln p f k

ψ f k

)
To find the grid points for fuel prices and fuel productivity, I match the moments of the newly
constructed Markov chains with moments from the distribution of fuel prices, fuel productivity,
and other state variables in the data. All the moments I use include the variance of fuel prices,
the variance of fuel productivity, the covariance between fuel prices and fuel productivity, the
covariance between fuel prices and all other states, and the covariance between fuel productivity
and all other states.
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D.2 Shapley-Owen-Shorrocks Decomposition of the Carbon Tax Revenues
Along Subsidy Rate

Given a subsidy rate s ∈ [0, 1] towards the fixed costs of natural gas, the function of interest
is the change in tax revenues/externality damages between the economy with subsidy s and the
economy with no subsidy:

∆T (s) = T (s) − T (0)

= E0

(∑
t=0

βt
∑

i

τ f e f it(s)
)
− E0

(∑
t=0

βt
∑

i

τ f e f it(0)
)

Note that this function is implicitly a function of all state variables and the carbon tax rate. As
such, it can be decomposed into multiple arguments. The two arguments of interest here are
the total quantity of energy E, which corresponds to the scale effect (higher quantity of energy
equals higher quantities of all fuels), and the distribution of fuel sets in the economy F , which
corresponds to the substitution effect. Then, expected tax revenues can be rewritten as:

∆T ( E(s)︸︷︷︸
scale

, F (s)︸︷︷︸
substitution

) = T (E(s),F (s)) − T (E(0),F (0))

= E0

(∑
t=0

βt
∑

i

τ f e f it
(
Eit(s),Fit(s)

))
− E0

(∑
t=0

βt
∑

i

τ f e f it
(
Eit(0),Fit(0)

))

Here, I define the null case for both scale ∅E and substitution ∅F arguments as the case with no
substitute, such that the function is well defined, satisfying the criteria laid out in ?.

∆T (∅E, ∅F ) = T (E(0),F (0)) − T (E(0),F (0)) = 0

Since there are two arguments, there will always be only two submodels that can exclude each
argument: when the other argument is present and when it is not, with an associated probability
of 1

2 for each submodel. It is then quite easy to show that the total partial effect of adding the
scale and substitution effect, respectively, is as follows:
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Cscale =
1
2

(
∆T (E(s),F (s)) − ∆T (∅E,F (s))

)︸                                       ︷︷                                       ︸
adding scale with substitution

+
1
2

(
∆T (E(s), ∅F ) − ∆T (∅E, ∅F )

)︸                                 ︷︷                                 ︸
adding scale without substitution

=
1
2

(
∆T (s) − ∆T (∅E,F (s))

)
+

1
2

(
∆T (E(s), ∅F )

)

Csubstitution =
1
2

(
∆T (E(s),F (s)) − ∆T (E(s), ∅F )

)︸                                       ︷︷                                       ︸
adding substitution with scale

+
1
2

(
∆T (∅E,F (s)) − ∆T (∅E, ∅F )

)︸                                 ︷︷                                 ︸
adding substitution without scale

=
1
2

(
∆T (s) − ∆T (E(s), ∅F

)
+

1
2

(
∆T (∅E,F (s))

)
Lastly, it can be seen that this decomposition satisfies the additive criteria laid out by ?:

Cscale + Csubstitution = ∆T (s) −
1
2
∆T (∅E,F (s)) +

1
2
∆T (∅E,F (s)) +

1
2
∆T (E(s), ∅F ) −

1
2
∆T (E(s), ∅F )

= ∆T (s)

D.3 Energy Production Function with Energy Productivity – Identifica-
tion and Results

The energy production function is as follows:

Eit = ψEit

( ∑
f∈Fit

β f e
λ−1
λ

f it

) λ
λ−1

∑
f∈{o,g,c,e}

β f = 1

Assuming that the log of energy productivity follows and AR(1) process with year dummies
lnψEit = µ

ψE
0 + µ

ψE
t + ρψE lnψEit−1 + ϵ

ψE
it , the production function can be written in log as

ln Eit = µ
ψE
0 + µ

ψE
t +

λ

λ − 1

( ∑
f∈Fit

β f e
λ−1
λ

f it

)
+ ρψE ln Eit−1 − ρψE

λ

λ − 1
ln

( ∑
f∈Fit

β f e
λ−1
λ

f it−1

)
+ ϵ

ψE
it
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This is very similar to the estimating equation for the fully flexible energy production function
in the main text, where ϵψE

it is the innovation to energy productivity between t−1 and t. As such,
it is independent of period t − 1 decisions:

E(ϵψE
it | Iit−1) = 0

However, this innovation is correlated with fuel choices at t. I instrument fuel choices at t

with aggregate variation in fuel prices due to exogenous reasons such as geopolitical events,
which I interact with the share of each fuel to generate electricity by Indian States. These
shift-share instruments are the same instruments proposed by ?, which I also use to estimate
demand in the main model. Together, these instruments and fuel choices at t − 1 form a set
of moment conditions that satisfy conditional independence of the error term and identify the
relevant parameters of the production function: λ, βo, βg, βc, βe. Below are the estimates of the
production function:

Table D.1: Estimates of Energy Production Function with Energy Productivity

Steel

Elasticity of substitution λ̂ 2.173∗∗∗ (0.240)
Relative productivity of oil β̂o 0.099∗∗∗ (0.011)
Relative productivity of gas β̂g 0.049∗∗∗ (0.012)
Relative productivity of coal β̂c 0.426∗∗∗ (0.033)

Observations 3459
Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table D.2: Estimates of the Restricted Energy Production Function

Elasticity of the Price of Energy With Respect to Relative Fuel Prices

The price of energy in the fully flexible model is as follows:

pEit =
( ∑

f∈Fit

(
p f it/ψ f it

)1−λ
) 1

1−λ

and can be written in terms of price ratios for a given fuel (say gas), where p̃ f it = p f it/pgit and
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likewise for ψ̃ f it

pEit = pgit

( ∑
f∈Fit

(
p̃ f it/ψ̃ f it

)1−λ
) 1

1−λ

The the elasticity of this price of energy with respect to relative fuel prices (say coal relative to
gas) is as follows:

∂ ln pEit

∂ ln(pcit/pgit)
=

1
pEit

[
pgit

1 − λ

( ∑
f∈Fit

( p̃ f it/ψ̃ f it)
) λ
λ−1 ∂ exp((1 − λ)(ln p̃cit − ln ψ̃cit))

∂ ln p f it

]

=
1

pEit

[
pgit

( ∑
f∈Fit

(p̃ f it/ψ̃ f it)
) λ
λ−1 ( p̃cit/ψ̃cit)1−λ

]
=

( p̃cit/ψ̃cit)1−λ∑
f∈Fit

( p̃ f it/ψ̃ f it)1−λ
=

(pcit/ψcit)1−λ∑
f∈Fit

(p f it/ψ f it)1−λ

Moreover, this elasticity is equal to the spending share of coal relative to all other fuels. To see
this, relative first-order conditions of the cost-minimization problem in (2.5) for two fuels (c, g)
are:

pcit

pgit
=

(ψcitecit

ψgitegit

)− 1
λ ψcit

ψgit

ecit

egit
=

( pgit

pcit

)λ(ψcit

ψgit

)λ−1

Multiplying both sides by relative prices, this yields:

pcitecit

pgitegit
=

(pcit/ψcit)1−λ

(pgit/ψgit)1−λ

Summing across all relative fuel spending shares yields the elasticity:
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pcitψcit∑
f∈Fit

p f ite f it
=

(pcit/ψcit)1−λ∑
f∈Fit

(p f it/ψ f it)1−λ

D.4 Correlation Between Fuel Productivity and Hicks-Neutral Productiv-
ity

Total Factors Gas Coal Oil Elec

Total Factors 1
Gas -0.19 1
Coal -0.11 0.14 1
Oil -0.24 0.02 0.02 1
elec -0.56 0.13 0.07 0.06 1

Table D.3: Correlation Matrix of Fuel Productivity and Total Factor Productivity

D.5 Trade-off Across Values of Demand Elasticity

Below, I show the trade-off between aggregate output and emissions for different carbon tax
levels, comparing how much better the economy fairs when allowing for heterogeneity in fuel
productivity rather than just energy productivity. I do this exercise by varying the elasticity
of demand, which affects the extent of output reallocation across plants. Consistent with ?, I
find that more elastic demand increases output reallocation across plants when allowing for fuel
productivity, which increases the gap between the two production frontiers. This confirms the
importance of the output reallocation channel in explaining the aggregate trade-off in the main
text.
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(a) Perfect Complement Output Varieties (b) Elasticity of Demand = 8

(c) Elasticity of Demand = 10 (d) Elasticity of Demand = 12

Figure D.1: Aggregate Trade-off Between Emission Reduction and Output, Across Different
Elasticities of Demand

Notes: Figure (a) corresponds to perfect complement output varieties and refers to a representative consumer
who has Leontief preferences across different varieties. While both production frontiers are closest to each other
with such preferences, there is still a gap due to initial differences in fuel concentration. The economy with
heterogeneity in fuel productivity allows for more concentration of fuels across plants, particularly coal. It thus
yields more substitution away from coal in level, even though the elasticity is the same.
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Figure D.2: Comparison of the Gap Between the Economy With Fuel Productivity and the
Economy With Energy Productivity
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Appendix to Chapter 3

E Preliminary Evidence for Entry/Exit

To investigate entry/exit as a result of the carbon tax, I run a simple difference-in-difference
regression with the number of firms as the dependent variable. In both B.C. and Quebec, the
control group comprises firms in all other provinces, and the treated period is from 2008 on-
wards for both regulated provinces. As the asymmetric carbon tax raises the marginal cost of
regulated firms relative to the marginal cost of unregulated firms, standard Melitz theory sug-
gests that the minimum productivity required to operate in regulated provinces would increase,
decreasing the number of operating firms, and vice versa for unregulated provinces. Hence, the
DiD coefficients should be negative. Here, it is positive and I cannot reconcile this finding with
the theory, which is why I assume that the distribution of productivity remains the same after
the tax.

(1) (2)
British Columbia Quebec

time -100.0∗∗∗ -100.0∗∗∗

(2.57) (2.43)

treated -97.24∗∗∗ -21.74∗∗∗

(4.19) (3.38)

DiD 79.40∗∗∗ 71.66∗∗∗

(5.55) (4.47)

constant 242.7∗∗∗ 242.7∗∗∗

(1.89) (1.79)
N 7,888 8,813
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table E.1: Effect of Carbon Tax on Firm Entry and Exit

F Derivation Perceived Prices and Relative Fuel Quantities

Starting from the firm’s cost minimization problem:
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min
{qℓs}Lℓ=1

{∑
ℓ

pℓsqℓs
}

s.t. F =
(∑

ℓ

λℓ(qℓs)
(σ−1)/σ

)σ/(σ−1)

L =
∑
ℓ=1

pℓsqℓs + µ
(
F −

(∑
ℓ

λℓ(qℓs)
(σ−1)/σ

)σ/(σ−1)
)

FOC:

pℓs = µ

(
λℓ

qℓs1/σ

(∑
ℓ

λℓqℓs
(σ−1)/σ

)1/(σ−1)
)
∀ ℓ

I can divide fuel ℓ’s FOC by fuel k’s FOC:

pℓs

pks
=

(qk
s

qℓs

)1/σλℓ
λk

Then,

qℓs =
( pks

pℓs

λℓ
λk

)σ
qk

s

I can plug qℓs(q
k
s) into the technology:

F =
(∑

ℓ

[( pks

pℓs

λℓ
λk

)σ
qk

s

](σ−1)/σ
)σ/(σ−1)

= qk
s

( pks

λk

)σ(∑
ℓ

λσℓ p1−σ
ℓs

)σ/(σ−1)

Now I can define perceived prices:



Appendix G – 137

p̃ks =
pks

λk

p̃s =
(∑

ℓ

λσℓ p1−σ
ℓs

)1/(1−σ)

Then, I get the optimal quantity of each fuel consumed, for a given output quantity F.

F = qk
s

( p̃ks

p̃s

)σ
qk

s =
( p̃ks

p̃s

)−σ
F

G Derivation of the Log-Likelihood for Estimation of Macro
Parameters

Recall the main estimating equation (eq. 10 in the paper):

ln qi jst + σ̂(ln p̃ℓjst − ln p̃jst)︸                             ︷︷                             ︸
yijst

= ln
(ρ − 1

ρ

)
+ ln β jt + ln Ct − ρ ln p̃ jst − ln(p̃1−ρ

jrt Nr
jt + p̃1−ρ

jurtN
ur
jt )︸                                                                          ︷︷                                                                          ︸

Xi jst(ρ)

+ (ρ − 1)(ln Ai jst − ln Ã jt) + uijst︸                                ︷︷                                ︸
ϵi jst

Assuming that g jt(A) = g(A), then Ã jt = Ã. I now assume a normal distribution for the distribu-
tion of log-productivity and both measurement errors:

Ai jst ∼ LN(µ, σ2
A)

⇐⇒ ln Ai jst ∼ N(µ, σ2
A)

uℓi jst ∼ N(0, σ2
ℓ)

Recall the definition of aggregate productivity:
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Ã =
( ∫ ∞

0
Aρ−1g(A)dA

)1/(ρ−1)

Using the moment-generating function for a log-normal distribution, I know that,

E[Aρ−1] = exp
(
(ρ − 1)µ + (ρ − 1)2σ2

A/2
)

I also know that Ã = E[Aρ−1]1/(ρ−1). Then,

Ã =
(

exp
(
µ(ρ − 1) + (ρ − 1)2σ2

A/2
))1/(ρ−1)

I now have everything to derive the distribution of the relative log-productivity term where ln Ã

is just a constant that gets added to the mean but does not change the variance:

(ρ − 1)(ln Ai jst − ln Ã) ∼ N
(
− (ρ − 1)2σ2

A
/
2, (ρ − 1)2σ2

A

)
I can now write the joint distribution for the composite error term ϵi jst, which will be used to
form the log-likelihood:

ϵng
i jst

ϵo
i jst

 ∼ N
( −(ρ − 1)2σ2

A
/
2

−(ρ − 1)2σ2
A
/
2

 ,  (ρ − 1)2σ2
A + σ

2
ng (ρ − 1)2σ2

A + σng,o

(ρ − 1)2σ2
A + σng,o (ρ − 1)2σ2

A + σ
2
o

 )

H Derivation of Variance for Fuel Efficiency Parameters

Recalling the relative fuel equation to estimate technology parameters when I only have two
fuels:
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ln qng
i jst − ln qo

i jst = σ(ln po,st − ln png,st) + Γ j + ϵi jst

Where,

Γ j = σ(ln λ j,ng − ln λ j,o)

To estimate these reduced-form industry fixed effects, I redefine them as a constant plus an
industry-specific term: Γ j = γ + δ j. To get the variance of λ j,o, λ j,ng, I first need to derive the
variance of Γ j = γ + δ j where γ and δ j are the estimated parameters:

√
n(γ̂ + δ̂ j − (γ + δ j)) ∼ N(0, σ2

γ + σ
2
δ j

) ∀ j

σ̂2
Γ j
= σ̂2

γ + σ̂
2
δ j

Next, I can use the delta method to recover the variance of structural parameters, λng, j, λoil, j ∀ j,
where I showed in the paper that those are functions of the interfuel elasticity of substitution, σ
and reduced-form parameters Γ j.

λ̂ng, j =
exp(Γ̂ j/σ̂)

exp(Γ̂ j/σ̂) + 1

λ̂oil, j =
1

exp(Γ̂ j/σ̂) + 1

By the delta method,

√
n

(λ̂ng, j − λng, j)
(λ̂oil, j − λoil, j)

 ∼  ∂λng, j

∂Γ

∂λng, j

∂σ
∂λoil, j

∂Γ

∂λoil, j

∂σ

 N(0, σ2
Γ j

)

N(0, σ2
σ)


Where the gradients are as follows:
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 ∂λng, j

∂Γ

∂λng, j

∂σ
∂λoil, j

∂Γ

∂λoil, j

∂σ

 =
 exp(Γ j/σ)
σ(exp(Γ j/σ)+1)2

−Γ j exp(Γ j/σ)
σ2(exp(Γ j/σ)+1)2

− exp(Γ j/σ)
σ(exp(Γ j/σ)+1)2

Γ j exp(Γ j/σ)
σ2(exp(Γ j/σ)+1)2


Hence, the asymptotic variance of structural fuel shares by industry is as follows:

σ2
λng, j
=

( exp(Γ j/σ)
σ(exp(Γ j/σ) + 1)2

)2
σ2
Γ j
+

( Γ j exp(Γ j/σ)
σ2(exp(Γ j/σ) + 1)2

)2
σ2
σ

= σ2
λoil, j

And I can use sample estimates of all those quantities to get the sample variance of fuel shares.
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Appendix to Chapter 4

I Rate Regulation in the US Pipeline Industry

The United States pipeline regulatory authority, the Federal Energy Regulatory Commission
(FERC), has an established framework and legislation allowing it to approve pipelines charging
market-based rates. Much of this framework and legislation was developed in the late 80s and
early 90s, and today, a handful of pipelines charge market-based rates, mostly oil pipelines.
While the FERC grants oil and natural gas pipelines market-based rate authority under two
separate pieces of legislation, the following must be included by a pipeline as evidence to move
towards market-based rates:

• Describe the proposed service.

• Define relevant product and geographic markets.

• Provide the applicant’s ownership and list affiliated energy companies, services provided,
and their location. If an affiliate operates in the same geographic market, the market
shares of the applicant and the affiliate should be combined.

• Identify good alternatives to the proposed service - which parties provide similar services
within the same geographic market. List the applicant’s competitors and location.

• Include market share and Herfindahl-Hirschman Index (HHI) calculations to measure
market concentration. The Commission’s traditional HHI threshold is 1,800.

• Discuss other relevant competitive factors, such as ease of entry and excess capacity held
by competitors.

• Describe how the applicant’s rates compare to the competitors.

In addition to the evidence above, some pipelines have also provided econometric analysis to
show that their shippers have a relatively high elasticity of demand as a means to quantify
the competitive position these pipelines face. It has also been required that pipelines provide
cross-price elasticities for different products transported in their pipeline or by competitors. For
example, a liquids pipeline may be constructed to ship various types of petroleum products
(heavy crude, light crude, condensate, refined products, etc.) vs. another pipeline within the
same area only capable of transporting a single type of petroleum product. In that case, the
regulator does not see the product transported through the pipeline as homogenous and may
review cross-price elasticities.
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The FERC also has the authority to determine if only a certain portion of a system may be
granted market-based rate authority. For example, the origin market for pipelines is often con-
sidered as the production areas, which often could be considered not sufficiently concentrated
and may result in the pipeline having market power in the origin market. However, before reach-
ing their ultimate destination, many pipelines pass through storage hubs. These storage hubs
often have many pipelines entering them and are seen as a more competitive market. Therefore,
a pipeline may not be granted market-based rates for its entire system but only a portion of its
system, say, from these storage hubs to its destination market.

As is evident, the United States has a much more established framework for determining market-
based rate authority. This is largely due to the more competitive nature of the pipeline industry in
the United States compared to Canada. While this framework is established, it is also important
to note that it represents a relatively steep bar to cross, and very few pipelines are granted this
authority.

J Capacity Release Market

J.1 How Does Capacity Release Market Work?

We first explain in more detail the capacity release programs:

1. Capacity releases can be put forward by the pipeline or requested from shippers. Both get
posted on the pipeline’s website.

2. There are generally two types of capacity releases: biddable and non-biddable. Biddable
capacity releases are subject to an open season (bidding process) where the highest bid
gets the capacity. Non-biddable capacity releases are generally agreements that are en-
tered into before posting on the regulatory website and are only eligible for releases with
contract lengths of 31 days or less or more than one year. This is why we see most of
the releases at 31 days in length or one year. Furthermore, capacity releases less than one
year can be above the tariff-specified firm toll, while those above a year cannot exceed
the firm Tariff rate.

3. We discussed another important feature: recall and reput options. Suppose recall and
reput conditions are included in a capacity release transaction. In that case, the original
entitlement holder can at any time (within nomination window deadlines) “recall” that
capacity and utilize it if they need it. This waives any tolls for the shipper that purchased
the capacity release when it was recalled. Once the capacity is recalled, the original
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entitlement holder can decide to “reput” that capacity if it no longer needs it and give it
back to the shipper that originally purchased the capacity release. Recalls and reputs have
to happen on separate days. This is a very common provision.

4. Capacity release above the maximum tariff rate (releases less than or equal to 31 days,
greater than or equal to 1 year, or bidded on).

5. The pipeline receives the same reservation charge, whether it be from the releaser or the
replacement shipper. However, it could potentially benefit from the volumetric charge if
more capacity is used from the capacity release market.

Below, we outline the timelines detailing the processes for conducting open-season auctions for
short-term and long-term capacity releases, respectively.

Short Term Release (Less than one year)

1. The capacity release request is posted by 9:00 am on a business day (the specific timing
of which will vary depending on the pipeline to meet their nomination windows.

2. The open season/auction period is held between 9:00 and 10:00 am. This is a silent
auction; no parties can see what others bid, and bids can be withdrawn during this period.

3. The pipeline company begins evaluation of the bids at 10:00 am, contingencies are cleared,
and a determination of the best bid is made based on the process specified by the re-
leaser/requester.

4. Both parties are notified by 11:00 am and confirmed by 12:00 pm. The capacity release
contract is awarded within an hour.

Long Term Release (More than one year)

1. The capacity release request is posted by 9:00 am on a business day.

2. The open season/auction period is held for three consecutive business days, such that
the open season process ends at 10:00 am three business days after the capacity release
posting.

3. The pipeline company begins evaluating the bids at 10:00 am three days later, clear-
ing contingencies and determining the best bid based on the process specified by the
releaser/requester.

4. Both parties are notified by 11:00 am and confirmed by 12:00 pm. The capacity release
contract is awarded within an hour.
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J.2 Interviews With Practitioners

Below, we document our interviews with practitioners who participate in the capacity release
market:

• Q: Why would someone not be incentivized to just nominate 100% of their firm contract?

A: This is due to a certain amount of variable costs associated with transportation. For
example, pipeline abandonment surcharges or fuel costs for shipping on the pipeline. If
you nominate a particular level of gas for that nomination window, it is assumed you
use up to 100% of the gas you nominated. Therefore, you incur variable costs on a
volumetric basis equal to your nomination. While these are small in comparison to the
overall demand charges (fixed costs), there is little to no incentive for certain types of
customers (industrial users or local distribution companies) to incur those costs if they do
not require the gas. Whereas marketers/natural gas traders will only choose to nominate
the full amount of their contract if the contract path is “in the money”: the price of natural
gas at the destination plus the variable cost of transportation is greater than the price of
natural gas at the origin.

• Q: How often do people choose biddable agreements?

A: In terms of biddable or non-biddable, he would be surprised if more than 1% of the
capacity releases resulted from a biddable process. Most are prearranged deals that you
have negotiated before posting them on the pipeline’s website. In particular, even in the
US, many relationships are established, and many players are aware of who to call if they
need a capacity release.

• Q: What is the difference between a natural gas utility, marketer, and retailer?

A: A natural gas utility is a regulated entity that distributes natural gas, sometimes known
as a local distribution company (LDC), to end-use customers such as residential, com-
mercial, and industrial customers. LDCs will often have an exclusive franchise area of a
city or region, and in turn, the rates charged for their services are regulated by state reg-
ulatory authorities. Utilities source their gas transportation from interstate and intrastate
pipelines, which are regulated by federal or state regulatory authorities. These utilities
are required by their regulators to hold a certain percentage of their peak day demand
requirements in long-term contracts on these pipeline systems. Utilities’ average day
demand requirements are often much lower than their peak day requirements, and there-
fore, utilities hold excess transportation capacity on the interstate and intrastate pipeline
systems.
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Natural gas marketers are unregulated companies that arrange to purchase and sell natural
gas. Marketers typically arrange for gas supply agreements with natural gas producers or
purchase gas at trading hubs. They then sell this gas to end users or at other market
hubs to earn profit based on the spreads between different prices of natural gas hubs. To
transport natural gas marketers must also hold capacity on natural gas pipelines but are
not required to hold any typical amount of capacity and often choose to be nimble in the
amount of capacity they hold on pipeline systems. When arranging the supply of gas for
an end user marketers will typically charge for the cost of gas, cost of transportation, and
then a service fee for arranging the transactions.

Natural gas retailers are also unregulated companies that arrange to purchase and sell
natural gas. However, the main distinction between them and marketers is that retailers
typically hold capacity on natural gas distribution systems and sell to end users such
as residential, commercial, and industrial customers. The distinction between retailers
and LDCs is that the provision of natural gas distribution (the responsibility of LDCs)
is regulated, but the retail sales of natural gas are often competitive. End-use consumers
can choose to purchase gas directly from the LDC, which offers a regulated rate, or from
natural gas retailers, which have competitive rates. Natural gas retailers typically source
their natural gas from natural gas marketers or, in certain circumstances, are vertically
integrated with a marketing company.

Since marketers and retailers are unregulated entities, they do not require supply obliga-
tions and typically hold transportation or distribution capacity that is more in line with
the average daily demand for natural gas, in contrast to peak-day demand for utilities.

• Q: Why do we see a large portion of end users of natural gas utilize marketer’s services
instead of contracting for their own service on interstate natural gas pipelines?

A: A significant portion of end users of natural gas do not actually hold transportation ca-
pacity on interstate pipeline systems, or they are not connected to natural gas distribution
utilities. These customers are often industrial facilities, agricultural operations, smaller
power generation facilities, and natural gas retailers. Thus, many of these natural gas end
users rely on natural gas marketers to meet their gas needs, both in terms of supply and
transportation. These end users do not hold transportation capacity on pipelines for two
primary reasons: creditworthiness and balance sheet obligations.

The credit obligations that are necessary for a company to hold pipeline transportation
services are often quite steep, and most companies cannot meet them. For example, a
typical credit evaluation criterion for firm service on a natural gas pipeline is to provide
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security guarantees for three months of firm service at the maximum tariff rate for the
entire volume of your contract. This requires companies to have large amounts of cash
on hand (in the form of an advance deposit), a strong standing letter of credit from a
financial institution, an acceptable security interest in collateral, or a guarantee from a
more credit-worthy parent company.

As for the balance sheet obligations, given the take-or-pay nature of natural gas trans-
portation firm service contracts, financial institutions view these transportation contracts
as debt obligations. If a company were to take out large amounts of transportation ca-
pacity, this would result in a large liability appearing on their balance sheet, which may
impact their own credit metrics, impacting their ability to secure their own financing and
financial obligations.

Given these restrictive requirements, many end users rely on marketers’ services to ar-
range for the supply and transportation of their gas needs since marketers require lower
levels of credit requirements and less restrictive outcomes on their balance sheet obliga-
tions. This comes at an increased cost to the end user, as marketers often require a service
fee or markup for arranging the supply and transportation of natural gas.

• Q: Why do we see natural gas marketers as replacers in the capacity release market?

A: Since these end users rely on marketers to provide them service when unexpected
shocks in demand happen either to end-use residential, commercial, and industrial de-
mand (increased demand for natural gas retailers) or unexpected shocks in their various
industries that do not impact demand for gas utilities/retailers (for example an increase in
demand for steel production) they often turn to marketers to supply them with additional
natural gas. While the primary market for natural gas transportation is held largely by
utilities to meet their regulatory obligations, most periods of the year, they do not require
the full use of their transportation contracts. They would prefer releasing that capacity to
a marketer that will ultimately provide the transportation services to an end user.

K Additional Data Descriptives

K.1 Summary Statistics Regarding IOC and Capacity Release

Here, we show the quarterly proportion of shippers participating in the capacity release market.
The data is structured by pipeline, shipper, and quarterly level.

Next, we examine the percentage of shippers who participate in the capacity release market at
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Table K.1: Number of Shippers That Are Within the Secondary Market (Quarterly)

Not in the Capacity Release Market 26,388 89%

In the market 3,108 11%

Total 29,496 100%

Table K.2: Number of Shippers that Are Within the Secondary Market (Quarterly, by Pipeline)

Pipeline Not in the Capacity
Release Market In the Market Proportion

El Paso 5,854 359 5.78%

Natural Gas 7,479 754 9.16%

Texas 9,681 1,728 15.15%

Transwestern 3,374 267 7.33%

Total 26,388 3,108 10.54%

any point during the contract period.

Table K.3: Number of Shippers That Are Within the Secondary Market

Not in the Capacity Release Market 555 60%

In the market 373 40%

Total 928 100%

Table K.4: Number of Shippers That Are Within the Secondary Market, by Pipeline

Pipeline Not in the Capacity
Release Market In the Market Proportion

El Paso 144 66 31.43%

Natural Gas 164 123 42.86%

Texas 144 150 51.02%

Transwestern 103 34 24.82%

Total 555 373 40.19%
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Table K.5: Percentage of Contracts With Different Options

Year Recallable Reputable
Resale
Allowed Affiliate

Previously
Released

2006 72% 58% 72% 0% 13%
2007 75% 63% 81% 0% 5%
2008 79% 67% 85% 0% 8%
2009 94% 72% 93% 0% 9%
2010 94% 66% 92% 0% 10%
2011 93% 65% 92% 1% 12%
2012 94% 70% 94% 1% 12%
2013 95% 68% 94% 0% 9%
2014 95% 61% 94% 0% 7%
2015 95% 65% 94% 0% 7%
2016 97% 78% 97% 0% 6%
2017 96% 81% 97% 0% 6%
2018 96% 80% 98% 0% 5%
2019 97% 80% 97% 0% 6%
2020 97% 79% 96% 0% 10%
2021 98% 78% 96% 0% 18%
2022 98% 79% 96% 0% 20%
2023 99% 80% 96% 0% 20%
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Table K.6: List of Pipelines in the Capacity Release Market

Pipeline
Number of
Unique Contracts

Number of
Unique Releasers

Number of
Unique Replacers

ANR Pipeline Company 34,745 164 217
Algonquin Gas Transmission, LLC 93,631 118 240
Colorado Interstate Gas Company, L.L.C. 5,000 84 80
Columbia Gas Transmission, LLC 224,606 344 470
Columbia Gulf Transmission, LLC 47,827 166 303
Crossroads Pipeline Company 4,523 26 71
East Tennessee Natural Gas, LLC 4,740 92 72
Eastern Gas Transmission and Storage, Inc 159,787 241 372
El Paso Natural Gas Company, L.L.C. 5,476 98 161
Enable Gas Transmission, LLC 1,569 156 161
Enable Mississippi River Transmission, LLC 729 16 22
Florida Gas Transmission Company, LLC 26,145 82 111
Gas Transmission Northwest LLC 370 22 34
Great Lakes Gas Transmission Limited Partnership 2,005 39 55
Guardian Pipeline, L.L.C. 359 14 14
Gulf Crossing Pipeline Company LLC 54 3 8
Kern River Gas Transmission Company 2,595 54 86
Midcontinent Express Pipeline LLC 524 18 28
Midwestern Gas Transmission Company 801 36 41
MountainWest Pipeline, LLC 1,483 44 57
Natural Gas Pipeline Company of America LLC 5,616 113 129
Northern Border Pipeline Company 1,510 64 57
Northern Natural Gas Company 15,448 202 190
Northwest Pipeline LLC 4,487 67 80
Panhandle Eastern Pipe Line Company, LP 58,290 116 243
Sea Robin Pipeline Company, LLC 2 1 1
Southern Natural Gas Company, L.L.C. 50,135 264 148
Southern Star Central Gas Pipeline, Inc. 30,154 83 99
Tallgrass Interstate Gas Transmission LLC 85 13 12
Tennessee Gas Pipeline Company, L.L.C. 201,954 334 448
Texas Eastern Transmission, LP 68,795 240 359
Trailblazer Pipeline Company LLC 22 6 8
TransColorado Gas Transmission Company LLC 82 6 7
Transcontinental Gas Pipe Line Company, LLC 159,835 253 350
Transwestern Pipeline Company, LLC 819 31 50
Trunkline Gas Company, LLC 13,428 69 202
Viking Gas Transmission Company 2,665 47 38
Wyoming Interstate Company, L.L.C. 2,657 44 73
Total 1,232,953 3,770 5,097
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K.2 Amount Released in Comparison to IOC Data

Table K.7: Amount Released in Comparison to IOC Data (Quarterly)

p25 p50 p75 Mean Max

Proportion of quantity released 2.3% 6.8% 25.0% 32.4% 4212.7%

The percentage of the amount released is calculated at the Pipeline-Shipper-Quarterly level,
using the Max Daily Transport quantity as a basis.

Table K.8: Amount Released in Comparison to IOC Data (Quarterly)

Pipeline p25 p50 p75 Mean
El Paso 5.2% 14.2% 25.0% 23.6%

Natural Gas 2.2% 8.2% 25.0% 25.8%

Texas 1.6% 5.3% 13.1% 30.5%

Transwestern 15.2% 25.0% 59.1% 75.4%

Total 2.3% 6.8% 25.0% 32.4%

100

200

300

400

500

C
ap

ac
ity

 in
 S

ec
on

da
ry

 M
ar

ke
t (

th
ou

sa
nd

 D
th

/d
ay

)

January-20 July-20 January-21 June-21 January-22 June-22
Month-Year

(a) El Paso

50

100

150

200

C
ap

ac
ity

 in
 S

ec
on

da
ry

 M
ar

ke
t (

th
ou

sa
nd

 D
th

/d
ay

)

January-20 July-20 January-21 June-21 January-22 June-22
Month-Year

(b) GTN

Figure K.1: Weekly Capacity Available from Secondary Market

Notes: This figure plots capacity available in the secondary market for each pipeline up to one year before and
after the cold wave. Capacity available in the secondary market is defined as capacity contracted from a releasing
to a replacement shipper in the secondary market which is available in the current week. The dashed red lines
correspond to the official beginning and end of the cold wave.
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