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Abstract

Vibration-Based Condition Monitoring (VBCM) is commonly utilized in Prognostics and

Health Management (PHM) due to its non-destructive nature and inherent advantages over

alternative forms of condition monitoring. Furthermore, the rapid evolution of sensor fab-

rication and the rise of the Internet of Things (IoT) have facilitated large-scale VBCM

systems across diverse domains, including industry, transportation, healthcare, agriculture,

and wildlife monitoring. The recent advancements in computing technologies have signif-

icantly expanded the potential for VBCM by leveraging the synergy between signal pro-

cessing and Machine Learning (ML). Accordingly, data-driven VBCM has emerged as a

paradigm shift, improving the performance and reliability of VBCM systems. To this end,

addressing various attributes of data-driven VBCM becomes increasingly important since it

represents the core of current and future VBCM systems. The work presented in this thesis

addresses the main aspects of VBCM, including signal processing fundamentals, feature

extraction, availability of labeled data, computational complexity, and power efficiency.

The methods employed in this thesis span the fields of Digital Signal Processing (DSP)

and ML techniques (supervised, Deep Learning (DL)), including signal preprocessing, sig-

nal denoising, signal frequency-domain analysis, signal time-frequency domain analysis,

feature extraction, signal companding (compression-expansion), and 1-dimensional (1D)

convolutional reconstruction autoencoders. These methods address extraction of effective

condition-related features, limited availability of labeled data, noise removal, complex-

ity considerations in VBCM systems, and power efficiency of power-constrained sensor

nodes in remote VBCM. By addressing the aforementioned problems, the end-to-end per-

formance of VBCM systems can be improved in terms of the size of training data, the

reliability of the monitoring process, system delay, memory requirements, and power con-

sumption. To ensure the explainability of the extracted features, the developed methods

for the extraction of condition-related features are based on signal processing since feature

engineering using signal processing creates explainable features that link meaningfully to
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signal conditions or classes compared to DL-based features. The thesis also contributes

to the VBCM literature by providing a comprehensive tutorial on signal processing funda-

mentals, an overview of a typical signal-based ML pipeline, and an application-independent

review of feature extraction techniques. The work presented in this thesis presents efficient

solutions to the main challenges that face the practical deployment of real-world VBCM

systems.

Keywords Prognostics and health management, vibration-based condition moni-

toring, predictive maintenance, digital signal processing, feature extraction, signal de-

noising, system delay, signal companding, power efficiency, vibration analysis, peak-to-

average power ratio, nonlinear power amplification, wireless sensor networks, machine

learning
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Summary for Lay Audience

The ongoing technological transformation of data-driven Vibration-Based Condition Moni-

toring (VBCM) has enormous potential for consumers and businesses. This transformation

is centered around integrating Digital Signal Processing (DSP) with Machine Learning

(ML) models to facilitate reliable and efficient automated VBCM applications. VBCM uti-

lizes vibration signals generated by various systems to monitor their integrity and predict

any abnormal behavior within these systems. For instance, VBCM is commonly adopted

in industrial environments where maintenance requirements are predicted based on the ma-

chine’s or equipment’s current condition, ensuring a safe working environment, enhancing

productivity, and eliminating costly corrective and preventive maintenance actions. Data-

driven VBCM is achieved by training ML models on historical vibration measurement data

to learn healthy and abnormal operational conditions. However, despite its advantages,

the practical deployment of data-driven VBCM systems faces significant challenges, such

as the availability of proper historical data, computational complexity, presence of mea-

surement noise, and high power consumption in vibration sensor nodes. Motivated by the

need to develop effective solutions to overcome these challenges, the work presented in

this thesis addresses each of the above-mentioned challenges in an effort to accelerate the

deployment of data-driven VBCM across various fields and enhance their performance.

Accordingly, the work presented in this thesis leverages the advancements of DSP and

ML to facilitate reliable and practical data-driven VBCM applications. Specifically, the

thesis introduces a similarity-based algorithm along with its open-source software imple-

mentation that performs VBCM of rotating machinery using very limited labeled historical

vibration data. The software offers a practical solution compatible with other open-source

libraries, making it ready for integration within various applications. Additionally, the the-

sis addresses computational burden and monitoring delay in VBCM systems. These two

aspects are crucial for the real-world deployment of VBCM and directly impact safety and

financial costs. Specifically, a higher computation burden increases the memory require-
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ments, and a long delay in condition prediction could not prevent costly catastrophic fail-

ures. Furthermore, the thesis introduces a framework to facilitate power-efficient VBCM

in power-constrained Wireless Sensor Networks (WSN). The framework proposes an in-

novative method to realize various signal processing operations in the framework using

lightweight ML models that can be efficiently implemented on microcontrollers. Addition-

ally, the thesis introduces a comprehensive tutorial on the fundamentals of signal process-

ing, as well as a review of signal-based ML pipeline and feature extraction techniques. The

aim is to highlight the crucial role of signal processing in VBCM and to bridge the gap

between the two interdisciplinary fields of signal processing and ML by enhancing existing

knowledge.
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Chapter 1

1 Introduction

Vibration-Based Condition Monitoring (VBCM) is a widely utilized method in Prognos-

tics and Health Management (PHM) due to its non-invasive nature and apparent advantages

compared to other types of condition monitoring. The advancements in sensor technology

and the growth of the Internet of Things (IoT) have facilitated large-scale VBCM systems

in various fields such as industry, transportation, healthcare, agriculture, and wildlife mon-

itoring. Furthermore, the rapid advancements in computing technologies have significantly

expanded the potential for VBCM by leveraging the synergy between Digital Signal Pro-

cessing (DSP) and Machine Learning (ML). Accordingly, data-driven VBCM has emerged

as a paradigm shift, improving the performance and reliability of VBCM systems. To this

end, addressing various attributes of data-driven VBCM and the major challenges involved

in the practical deployment of data-driven VBCM systems has become increasingly impor-

tant.

This thesis presents four research problems that address fundamental aspects, practical de-

ployment, and performance improvements of data-driven VBCM systems. The research

tackles these problems from a signal-processing perspective, leveraging the synergy be-

tween DSP and ML fields to facilitate reliable and efficient solutions. Hence, the thesis,

through the first research problem, starts with an attempt to bridge the existing knowl-

edge gap between these two interdisciplinary fields. Despite many attempts in the existing

literature to address this gap, the majority are limited to specific applications and mainly

focus on feature extraction, often assuming extensive prior knowledge in signal processing.

This assumption creates a significant obstacle for a wide range of professionals in the field,

hindering the large-scale deployments of data-driven VBCM systems. To overcome these

challenges, an integrated approach is adopted that begins by providing a detailed tutorial on

the fundamentals of signal processing, thereby giving professionals in the field the neces-
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sary background knowledge. Following this, the presented work explores the key stages of

a typical signal processing-based ML pipeline and provides an in-depth review of feature

extraction techniques. Differing from existing literature, this work offers an application-

independent review and introduces a novel classification taxonomy for feature extraction

techniques. Furthermore, the presented work encourages a collaborative research culture

by making available a public repository containing relevant Python and MATLAB codes

for various signal-processing techniques. This effort aims to support collaborative research

endeavors and ensure the reproducibility of the results presented.

The second research problem addresses the limited availability of labeled training samples

in real-world scenarios. In supervised data-driven VBCM, labeled samples that are large

in size and diverse—in terms of class representation— should be available to serve the

training purpose. In real-world situations, the available labeled samples are usually limited

in their size due to expensive and time-consuming labeling processes. Moreover, faulty or

abnormal samples are not abundant since abnormal events, such as faults or anomalies, are

infrequent, making it challenging to gather substantial abnormal signal data. As a result,

real-world abnormal samples are usually insufficient to represent the corresponding classes

during the training phase. This problem is tackled by addressing the classification task

as a similarity measure to a reference sample rather than a supervised classification task.

Similarity-based approaches require a limited amount of labeled data, meeting real-world

industrial applications’ requirements. Accordingly, the thesis introduces a similarity-based

framework for Predictive Maintenance (PdM) of rotating machinery. A reference vibra-

tion signal is generated and labeled according to the machine’s operational condition for

each operational state of the machine. Consequently, statistical time analysis, Fast Fourier

Transform (FFT), Short-Time Fourier Transform (STFT), and Wavelet Packet Transform

(WPT) are used to extract features from the captured vibration signals. For each feature

type, three similarity metrics, namely Structural Similarity Measure (SSM), cosine similar-

ity, and Euclidean distance, are used to measure the similarity between test signals and ref-
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erence signals in the feature space. Hence, nine settings in terms of feature type-similarity

measure combinations are evaluated. Experimental results confirm the effectiveness of

similarity-based approaches in achieving very high accuracy with moderate computational

requirements compared to ML-based methods.

The third research problem addresses the computational complexity of data-driven VBCM

in terms of memory requirements and system monitoring delay. Generally, accuracy, mon-

itoring delay, and memory requirements represent the main performance requirements in

VBCM. Achieving high accuracy with low delay and relaxed memory requirements im-

proves system reliability, prevents catastrophic failures, and reduces computational costs.

Furthermore, delay is crucial to remote condition monitoring and time-sensitive applica-

tions. While most existing methods focus on accuracy, slight attention has been paid

to addressing the delay introduced in the condition monitoring process and memory re-

quirements. Aiming to bridge this gap, the thesis proposes two methods to facilitate low-

complexity VBCM. The first method proposes a hybrid method for VBCM of rolling bear-

ings that outperforms existing methods in accuracy, system delay, and memory require-

ments. Specifically, the work addresses the overall delay in VBCM systems and intro-

duces the concept of system delay to assess it. Consequently, Wavelet Packet Transform

(WPT) and Fourier analysis are used to decompose short-duration input segments of the

vibration signal into elementary waveforms and obtain their spectral contents, respectively.

Accordingly, energy concentration in the spectral components—caused by defect-induced

transient vibrations—is utilized to extract a small number of features with high discrimi-

native capabilities. The experimental results show that the proposed method can achieve

high accuracy with low system delay and moderate memory requirements. The second

proposed method is based on envelope analysis of vibration signals. Specifically, the in-

stantaneous amplitude “envelope” and instantaneous frequency of the vibration signal are

jointly utilized to facilitate three novel envelope representations: Instantaneous Amplitude-

Frequency Mapping (IAFM), Instantaneous Amplitude-Frequency Correlation (IAFC), and
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Instantaneous Energy-Frequency Distribution (IEFD). Maintaining temporal information,

these representations effectively capture energy-frequency variations that are unique to the

condition of the bearing, thereby enabling the extraction of discriminative features with

high sensitivity to variations in operational conditions. Accordingly, a set of six new highly

discriminative features are engineered from these representations, capturing and character-

izing their shapes. The experimental results demonstrate the effectiveness of the proposed

method in detecting and diagnosing various fault types. Moreover, the proposed method

has moderate computational complexity, meeting the requirements of real-time applica-

tions.

The fourth research problem pertains to the power consumption in sensor nodes and the

presence of noise in Wireless Sensor Networks (WSN). These sensor nodes are typically

constrained by limited power resources, necessitating control over the Peak-to-Average

Power Ratio (PAPR) of the acquired vibration signal. Effective PAPR control is essential

to prevent nonlinear distortion and reduce power consumption within the node. Further,

preserving the vibration signal’s waveform and mitigating the impact of noise are crucial

for reliable condition monitoring. The work presented in this thesis addresses this prob-

lem through two aspects: First, it provides an in-depth analysis of the PAPR of vibration

signals in VBCM systems and evaluates, in the presence of nonlinear power amplification,

the impact of PAPR and nonlinear distortion on power efficiency and system performance.

Secondly, a lightweight autoencoder-based signal companding scheme aimed at enhancing

power efficiency and improving performance is proposed to control the PAPR and miti-

gate the impact of nonlinear distortion. In the sensor node, the proposed method employs

a lightweight reconstruction autoencoder with a compression-based activation function to

compress the acquired vibration signal without increasing its average power. In the pro-

cessing center, a denoising-expansion autoencoder expands the compressed signal while

minimizing noise enhancement. Thus, the framework proposes an innovative method to re-

alize various signal processing operations in the framework using lightweight ML models
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that can be efficiently implemented on microcontrollers for practical deployment. Exper-

imental results demonstrate the effectiveness of the proposed companding scheme in pre-

venting nonlinear distortion, enhancing power amplification efficiency in the sensor node,

improving performance, and restoring PAPR characteristics in the processing center while

avoiding noise expansion.

The feature extraction methods developed in the thesis are based on signal processing since

feature engineering using signal processing creates interpretable features that link meaning-

fully to signal conditions or classes, unlike the black-box features of Deep Learning (DL)

models. Additionally, in the case of DL features, the performance is highly dependent

on the model’s architecture, parameters, and training. In contrast, signal processing-based

features offer more consistent and interpretable performance.

The remainder of this thesis is structured as follows: Chapter 2 provides background on

the topic of VBCM and the research motivation. The tutorial on the fundamentals of signal

processing and the review of feature extraction methods are introduced in Chapter 3. Chap-

ter 4 presents the similarity-based framework for PdM of rotating machinery, addressing

the limited availability of labeled training samples in real-world scenarios. Chapters 5 and

6 address memory considerations and system monitoring delay and present the proposed

low-complexity VBCM methods. Chapter 7 carries out the analysis of the PAPR of vibra-

tion signals and introduces the lightweight autoencoder-based signal companding scheme

for the effect of remote VBCM. The thesis conclusions and future research directions are

presented in Chapter 8.

The contributions of this thesis are summarized as follows:

• Comprehensive tutorial on the fundamentals of signal processing for a diverse read-

ership. Followed by an end-to-end overview of a typical signal processing pipeline

and an exhaustive review of feature extraction techniques through a novel taxonomy.

• Introducing a similarity-based framework for condition monitoring of rotating ma-
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chinery. The main aspects of the framework are feature extraction and similarity-

based classification.

• Analyzing the overall delay in vibration-based condition monitoring and introducing

the concept of system delay to assess it and, accordingly, proposing a hybrid wavelet-

based method with reduced system delay for VBCM of rotating machinery. The

proposed method is highly sensitive to fault-related transients with relatively short

durations of input vibration segments.

• Introducing a low-complexity new method for VBCM of rolling bearings based

on vibration’s envelope analysis, facilitating three novel envelope representations.

Maintaining temporal information, these representations effectively capture energy-

frequency variations that are unique to the condition of the bearing, thereby enabling

the extraction of discriminative features with high sensitivity to variations in op-

erational conditions. Accordingly, a set of six new highly discriminative features

are extracted from these representations. The proposed method facilitates a low-

complexity VBCM since it utilizes input vibration segments of very short durations

and produces six features only. Thus, relaxing memory requirements and reduc-

ing monitoring delays which in turn, helps reduce memory costs and prevent costly

catastrophic failures.

• To the best of the author’s knowledge, this thesis contains the first contribution to

the VBCM literature that addresses the PAPR of generated vibration waveform, ex-

amines its impact in the presence of nonlinear power amplifications, and proposes

controlling the PAPR to enhance power efficiency, mitigate nonlinear distortion,

and improve the reliability of condition monitoring in remote VBCM applications.

This is achieved by introducing a lightweight autoencoder-based signal companding

framework. The presented work uses an innovative method to realize various signal

processing operations in the framework using lightweight ML models that can be
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efficiently implemented on microcontrollers for practical deployment.
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Chapter 2

2 Background and Motivation

This chapter provides a background on data-driven Vibration-Based Condition Monitor-

ing (VBCM) and discusses the motivation behind the research problems addressed in this

thesis. Section 1 provides a brief background on data-driven VBCM and identifies the

challenges addressed in this thesis. Section 2 briefly introduces the corresponding pros-

pered solutions. Section 3 explains the motivation behind the selection of the experimental

vibration datasets used throughout the thesis to implement and evaluate the proposed solu-

tions,

2.1 Background

VBCM can be defined as a sophisticated signal-based methodology for assessing a sys-

tem condition based on its inherent vibration patterns. By monitoring changes in vibra-

tion signatures, which reflect a change in the system’s current state, VBCM provides a

non-invasive, real-time approach to continuously monitor the system’s condition. From a

historical point of view, the origin of VBCM is connected to condition monitoring of ma-

chinery when the relationship between vibration signals and machine condition was first

recognized in 1939 [1]. This opened the door for developing effective Predictive Mainte-

nance (PdM) strategies for identifying potential malfunctions and predicting maintenance

actions before catastrophic failures occur. Thus, from a historical perspective, the word

“system” in the aforementioned definition originally referred to “machinery.” Besides PdM

of machinery, VBCM has been widely used in Structural Health Monitoring (SHM) as

a damage identification strategy in aerospace, civil, and mechanical engineering infras-

tructure [2]. VBCM-SHM techniques involve the analysis of vibration patterns collected

from different sensors placed across a structure to locate and determine the severity of any
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structural damage. This, in turn, helps evaluate the structure’s safety and make informed

decisions about maintenance strategies [3]. The main advantages of VBCM over alternative

forms of condition monitoring include [4][1]:

• Vibration sensors are non-intrusive and can be contactless, facilitating non-destructive

condition monitoring.

• Real-time acquisition of vibration signals can be conducted in situ, allowing for on-

line local condition monitoring.

• Trending vibration analysis can be utilized to identify relevant conditions and con-

duct comparative analysis across diverse conditions or objects.

• Vibration sensors are cost-effective and widely available, offering various specifica-

tions to suit various requirements.

• Vibration waveform responds instantly to changes in the monitored condition and,

therefore, is suitable for continuous and intermittent monitoring applications.

• Signal processing techniques can be applied to vibration signals to mitigate corrupt-

ing noise and extract weak condition indications from other masking signals.

These advantages, along with the advancements in sensor fabrication and the rise of the

Internet of Things (IoT), have extended the use of VBCM to include various domains

spanning a diverse range of applications such as wildlife, agriculture, transportation, and

healthcare [5–12].

The process of VBCM involves the application of various signal processing methods to an-

alyze vibration signatures and extract relevant features that reflect condition changes in the

system’s condition. Such signatures often manifest through sudden changes in amplitude,

frequency, and phase characteristics of the generated vibration pattern. The advancements

in Machine Learning (ML) and computing technologies have significantly expanded the

potential of VBCM where data-driven VBCM has emerged as a paradigm shift. The core
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of data-driven VBCM is centered around leveraging DSP and ML capabilities, improving

the performance and reliability of VBCM systems. Fig. 2.1 shows a process flowchart of

Figure 2.1: Data-driven VBCM.

a typical data-driven VBCM system; the process involves two tasks: offline training of a

proper ML model on historical measurement vibration data and online inferencing of the

system’s current condition. The main aspects of the process can be summarized under three

major stages:

• Signal Preprocessing: preprocessing involves signal smoothing, signal denoising,

and signal segmentation.

• Feature Extraction: This stage involves processing the resultant segments to extract

appropriate features that serve as inputs to the ML model.

• Training of ML Model: In this stage, an appropriate ML model is trained on the

extracted features to learn dependencies between various system conditions in the

feature space for a specific condition monitoring task, such as signal classification,

clustering, or anomaly detection.

• Condition Monitoring: In this stage, real-time vibration patterns are acquired and
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preprocessed. Accordingly, features are extracted and fed into the trained ML model

to predict the system’s current condition.

2.2 Motivation

While bringing significant advantages, the practical implementation of data-driven VBCM

encounters main challenges, limiting larger-scale deployment and impacting the reliability

of the monitoring process. These challenges include:

• Challenge 1: Extensive prior knowledge in signal processing is required.

• Challenge 2: Limited availability of labeled training data since vibration samples of

abnormal conditions are often not abundant.

• Challenge 3: Computational complexity in terms of high memory requirements and

long monitoring time delay.

• Challenge 4: The Presence of noise in the collected vibration signals affects the

reliability of the monitoring process.

• Challenge 5: High power consumption in vibration sensor nodes reduces sensor life-

time.

Accordingly, the work presented in this thesis proposes the following solutions to address

these challenges. These solutions are briefly introduced, while further elaboration and

implementation details are presented in subsequent chapters.

2.2.1 Challenge 1

Implementing an efficient data-driven VBCM for a specific application requires proper

knowledge of signal processing to analyze generated vibration signals and consequently

implement effective signal preprocessing and feature extraction methods. The lack of such
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knowledge creates a significant obstacle for a wide range of professionals in the interdisci-

plinary field of data-driven VBCM. Addressing this challenge, Chapter 3 attempts to bridge

this knowledge gap through a two-fold approach. First, it introduces a comprehensive tuto-

rial on the fundamentals of signal processing, thereby giving professionals in the field the

necessary background knowledge. Second, it conducts a comprehensive review addressing

the main stages of a typical signal processing-based ML pipeline and exploring various

feature extraction techniques, as illustrated in Fig. 2.2 and Fig. 3.29, which shows the typi-

cal signal processing pipeline and taxonomy of feature extraction techniques, respectively.

Furthermore, the presented work encourages a collaborative research culture by making

Figure 2.2: Typical signal processing-based ML pipeline.

available a public repository containing relevant Python and MATLAB codes for various

signal-processing techniques.

2.2.2 Challenge 2

Utilizing supervised machine learning models in data-driven VBCM requires a substantial

and diverse set of labeled samples to train these models effectively. However, in practical

scenarios, the quantity of available labeled samples is often limited due to the costly and

time-consuming labeling process. Additionally, samples of faults or abnormalities are par-
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Figure 2.3: Taxonomy of feature extraction techniques.

ticularly not abundant, as such abnormal events occur infrequently. This scarcity makes

it challenging to collect a sufficient amount of abnormal signal data. Consequently, real-

world samples of abnormal conditions are typically inadequate for accurately representing

the respective condition classes during the model training phase. Chapter 4 introduces a

similarity-based framework as an alternative solution to perform condition monitoring us-

ing limited labeled data by measuring the similarity between an acquired vibration sample

and labeled reference samples. In the proposed framework, features are extracted from

available labeled reference samples. Accordingly, condition monitoring is achieved by as-

sessing the similarity between the acquired sample and the reference samples in the feature

space as illustrated in Fig. 2.4

2.2.3 Challenge 3

Memory requirements and monitoring delay play pivotal roles in the deployment of VBCM,

directly influencing monitoring reliability and associated financial expenses. Specifically,

an increase in memory demand elevates financial costs, while prolonged delays in condi-

tion prediction may fail to prevent costly catastrophic failures. Addressing this challenge,
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Figure 2.4: Similarity-based framework for VBCM using limited labeled data.

chapters 5 and 6 introduce two methods to facilitate low-complexity VBCM. Chapter 5 pro-

poses a hybrid method that combines wavelet decomposition and Fourier Transform (FT),

as shown in Fig. 2.5, to conduct wavelet spectral-energy analysis and extract a few features

with high sensitivity to condition changes. The proposed method allows the use of short du-

rations of the generated vibration signal and produces a feature vector of controllable size,

thereby relaxing memory requirements and reducing monitoring delay. Chapter 6 intro-

duces a low-complexity method for VBCM of rolling bearings based on envelope analysis

of the generated vibration signal. Specifically, the proposed method employs the Hilbert

transform (HT) to obtain and then jointly analyze the instantaneous amplitude “envelope”

and instantaneous frequency of vibration signals to facilitate three novel envelope represen-

tations: Instantaneous Amplitude-Frequency Mapping (IAFM), Instantaneous Amplitude-

Frequency Correlation (IAFC), and Instantaneous Energy-Frequency Distribution (IEFD)

as illustrated in Fig. 2.6. Accordingly, a set of six new fault-sensitive features are engi-

neered from these representations. Further, the proposed method uses very short durations

of the generated vibration signal for condition monitoring, thereby relaxing memory re-
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Figure 2.5: Proposed wavelet spectral energy for VBCM with low computational complex-
ity.

Figure 2.6: Proposed envelop-based analysis for VBCM with low computational complex-
ity.
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quirements and reducing monitoring delay.

2.2.4 Challenges 4 and 5

The rapid evolution of sensor fabrication, coupled with advancements in the IoT, has en-

abled the deployment of large-scale Wireless Sensor Networks (WSNs), facilitating re-

mote VBCM systems comprising distributed sensor nodes as depicted in Fig. 2.7. In

Figure 2.7: remote VBCM-WSN.

such systems, sensor nodes are deployed across various locations, either embedded in ob-

jects, placed beneath surfaces, or attached to mobile or airborne objects. These nodes are

typically power-constrained, which places the need to maintain low power consumption,

thereby extending the lifetime of the sensor node. Additionally, given the noisy environ-

ments in which these sensors operate, it is necessary to employ an effective signal de-

noising mechanism to mitigate the impact of noise accumulated in the acquired signals.

The work presented in Chapter 6 tackles these challenges through an innovative approach,

as illustrated in Fig. 2.8. Specifically, a lightweight reconstruction autoencoder with a

compression-based activation function is used in the sensor node to compress the acquired

vibration signal without increasing its average power. The compression operation reduces
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Figure 2.8: Proposed framework of autoencoder-based signal companding and denoising.

the Peak-to-Average Power Ratio (PAPR) to mitigate the impacts of nonlinear power am-

plification, thereby enhancing power efficiency in the sensor node. In the processing center,

a denoising-expansion autoencoder that simultaneously expands and denoises the received,

compressed signal is adapted.

2.3 Experimental Vibration Datasets

Throughout this thesis, various public vibration datasets are utilized to implement and eval-

uate the proposed solutions. These datasets include vibration data of rolling bearings ac-

quired through normal operational conditions and real-life accelerated and simulated faulty

conditions. The choice of rolling bearing vibrations over other types of vibrations is moti-

vated by the following reasons:

• Unlike other types of vibration, such as structural vibrations, which are often char-

acterized by simpler dynamics, the vibrations of rolling bearings embody complex

vibration patterns due to the intricate interactions between the various components

within the bearing assembly, such as balls, raceways, and cages.
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• Defects in rolling bearings, such as the inner raceway, outer raceway, or ball defects,

produce distinct vibration signatures. These signatures are modulated by varying

rotating speed and load conditions, adding layers of complexity to the generated

vibration signal.

• The operational behavior of rolling bearings includes nonlinearities due to varying

contact forces and load conditions. These nonlinearities influence the vibration pat-

terns, making them more complex compared to structural dynamics.

• Rolling bearing vibrations consist of a broad spectrum of frequency components,

including characteristic frequencies related to the bearing geometry and operational

speed, as well as harmonic and sideband frequencies caused by various operational

conditions.

These complex dynamics in rolling bearings provide rich vibration patterns, making them

more suitable for evaluating the proposed data-driven VBCM solutions compared to other

types of vibrations.
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Chapter 3

3 On the Intersection of Signal Processing and Machine

Learning: A Use Case-Driven Analysis Approach

Addressing the first research problem, this chapter1 presents an integrated article that com-

prehensively covers the merger between signal processing and Machine Learning (ML).

The work presented in this chapter is entitled “On the Intersection of Signal Processing and

Machine Learning: A Use Case-Driven Analysis Approach” and is currently in the review

stage at the Proceeding of the IEEE.

3.1 Introduction

Recent advancements in sensing, measurement, and computing technologies have signif-

icantly expanded the potential for signal-based applications, leveraging the synergy be-

tween signal processing and ML to improve both performance and reliability. This fusion

represents a critical point in the evolution of signal-based systems, highlighting the need to

bridge the existing knowledge gap between these two interdisciplinary fields. Despite many

attempts in the existing literature to bridge this gap, most are limited to specific applica-

tions and focus mainly on feature extraction, often assuming extensive prior knowledge in

signal processing. This assumption creates a significant obstacle for a wide range of read-

ers. To address these challenges, this chapter takes an integrated article approach. It begins

with a detailed tutorial on the fundamentals of signal processing, providing the reader with

the necessary background knowledge. Following this, it explores the key stages of a stan-

dard signal processing-based ML pipeline, offering an in-depth review of feature extraction

techniques, their inherent challenges, and solutions. Differing from existing literature, this

1A version of this chapter has been submitted for publication in Proceeding of the IEEE.
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work offers an application-independent review and introduces a novel classification tax-

onomy for feature extraction techniques. Furthermore, it aims at linking theoretical con-

cepts with practical applications, and demonstrates this through two specific use cases: a

spectral-based method for condition monitoring of rolling bearings and a wavelet energy

analysis for epilepsy detection using Electroencephalogram (EEG) signals. In addition to

theoretical contributions, this work promotes a collaborative research culture by providing

a public repository of relevant Python and MATLAB signal processing codes. This effort

is intended to support collaborative research efforts and ensure the reproducibility of the

results presented.

The rapid advancements in sensing and measurement represent a paradigm shift in how

data is collected, processed, and interpreted. This opens the door for a wide range of

signal-based applications, marking a transformative phase across various fields. Moreover,

the development of computing technologies and the rise of the Internet of Things (IoT) have

paved the way to leverage ML within signal-based applications, offering new insights and

achieving unprecedented levels of accuracy and efficiency. This merge between signal pro-

cessing and ML is expected to play a major role in the next generations of sensor-enabled

systems across various areas [13]. The integration of signal processing pipelines into ML

models forms the fundamental core of these systems. Further, it represents a critical in-

tersection in their advancement, motivating the research community to address the role of

signal processing in ML. However, the diverse landscape of signal types and application

requirements shapes the scope of the existing body of work to be application-centric, lim-

iting their scopes to specific applications. For instance, The role of feature extraction in

ML has been extensively reviewed within the context of vibration-based Predictive Main-

tenance (PdM). The work in [14] presents a review that focuses on transforming traditional

methods to ML techniques in applying vibration-based damage detection in civil struc-

tures. The article highlights traditional methods and presents a comprehensive review of

the latest applications of ML algorithms used for this purpose. In [15], a systematic re-
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view is conducted on adopting ML for failure prediction in industrial maintenance. The

review covers the used datasets, preprocessing, and the training and evaluation of predic-

tion models. In [16], a comprehensive review is presented on signal processing techniques

for vibration-based feature extraction in Structural Health Monitoring (SHM). The work

in [17] addresses the application of vibration-based condition monitoring techniques for

the PdM of rotating Machinery. It provides a comprehensive review of vibration data ac-

quisition and analysis, as well as the methods used for fault interpretation and diagnosis,

including data acquisition, data transmission, signal processing, and fault detection. The

work in [18] introduces a tutorial on the same topic that describes relevant signal process-

ing methods in this field. Furthermore, the tutorial provides Python and MATLAB code

examples to demonstrate these methods alongside explanatory videos.

In the biomedical field, the topic of signal processing in ML is an active area of research.

For instance, the work in [19] provides an end-to-end review of biomedical signal pro-

cessing for health monitoring applications. It introduces a flow for developing biomed-

ical signal processing systems. Further, it covers recent applications, types of low-cost,

non-invasive biomedical sensors, signal processing techniques, and future perspectives for

building reliable systems. The application of MI-based Brain-Computer Interfaces (BCIs)

in controlling external devices through EEG signal processing is addressed in [20]. The

article reviews recent ML models, identifies major challenges, and suggests potential so-

lutions by focusing on feature extraction and classification methods. The work in [21]

reviews various feature extraction techniques for Electrocardiogram (ECG) Signal analy-

sis. In [22], the main steps in detecting and classifying EEG epileptic seizure activities

are addressed, along with a review of related feature extraction techniques. The studies in

[23] and [24] deal with the application of emotion recognition using EEG signals, where

different existing feature extraction methods are analyzed and compared in terms of classi-

fication performance. A comprehensive review of methods and techniques that covers the

entire process of EEG signal processing is presented in [25]. The study analyzed numer-



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 22

ous articles related to EEG signal processing, identified limitations, and analyzed future

development trends. Besides biomedical and BdM fields, the role of signal processing in

ML has been addressed in various fields such as audio analysis and recognition [26–32],

seismic signal analysis [32–34], and telecommunications[35–42].

Despite this diverse spectrum of articles addressing the role of signal processing within

ML, there remains a noticeable gap in the literature, characterized by the following four

main limitations in the existing studies:

• Application-Specific Focus: The discussions are often confined to specific applica-

tions, which narrows the coverage and depth with which the subject is addressed.

• Limited Audience Reach: Many articles assume a substantial background in signal

processing, which restricts accessibility to a broader audience.

• Task-Centric Approach: The exploration of signal processing in ML tends to focus

on particular tasks, such as signal preprocessing or feature extraction. This focus ne-

glects other critical tasks like signal segmentation, smoothing, and denoising, which

are vital components of a comprehensive signal processing-ML pipeline.

This chapter attempts to bridge this gap by implementing an integrated-article approach that

addresses the aforementioned shortcomings through the following contributions:

• Comprehensive Tutorial for Diverse Readership: The chapter starts with a compre-

hensive tutorial on signal processing fundamentals that caters to readers across vari-

ous domains, offering the interested reader an opportunity to develop a proper back-

ground before delving into the review.

• Application-Independent Approach: The chapter adopts a broad, application-independent

review, providing a comprehensive overview of signal processing in ML that is not

shaped to a specific use case.
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• End-to-End Overview of signal processing workflow: The chapter thoroughly dis-

cusses the key tasks in a typical signal processing pipeline, grouping them under

three main categories: preprocessing, processing, and application.

• Exhaustive Review with Novel Taxonomy: The chapter conducts a detailed review

of feature extraction techniques, presented and categorized through a new taxonomy

that presents new insights and enriches the reader’s understanding.

• Public Repository of Signal Processing: The chapter presents a public repository of

the Python codes used throughout the chapter, along with additional codes pertinent

to signal processing, thereby encouraging a collaborative research environment and

ensuring work reproducibility.

Figure 3.1: Visual representation of chapter contents.

With these contributions, the chapter aims to become a foundational reference on the topic

of signal processing in ML, serving a wide range of readers and offering new perspectives

on the intersection of signal processing and ML. The chapter allocates a separate section

for each of these contributions. The sections are logically grouped under four parts. For the

sake of reader convenience, a visual representation that shows the various sections grouped
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under each part is depicted in Fig. 3.1. Although these parts are organized sequentially to

progressively build knowledge, they are written in a self-contained manner, allowing for

selective reading based on interest or need.

The chapter is structured as follows: The tutorial is carried out in Sections 3.2 and 3.3.

The typical signal-processing pipeline for signal-based ML applications and the review of

feature extraction techniques are presented in sections 3.4 and 4.4, respectively.

3.2 Introduction to Signals

This tutorial provides an in-depth- introduction to signal processing, highlighting concepts,

mathematical formulation, applications, advantages, and limitations of common signal

processing tools. Additionally, the tutorial offers insights into implementation consid-

erations and highlights programming libraries that offer functionalities for implementing

these tools. Throughout the tutorial, illustrative examples are generated using Python and

MATLAB codes. These codes are publicly available on the Github site of the Optimized

Computing and Communications (OC2) Laboratory.1

3.2.1 Signal Characteristics

A signal is a function of time; it represents the value of a physical entity or phenomenon as it

evolves over time, such as voltage, current, acceleration, etc. Depending on the field, there

are more definite definitions of the term “signal”. For instance, within a signal processing

context, a signal can be defined as a function that conveys information about the behavior

of a system or attributes of some phenomenon [43]. In manufacturing, the term “signal”

refers to a physical quantity that carries a certain type of information and serves as a means

for communication [44]. Examples of such signals include a vibration signal generated

by an accelerometer attached to the rolling-bearing element of a rotating machinery and

1https://github.com/Western-OC2-Lab/Signal-Processing-for-Machine-Learning

https://github.com/Western-OC2-Lab/Signal-Processing-for-Machine-Learning
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a torque signal generated by a torque Sensor in a Computer Numerical Control (CNC)

milling machine. The changes in these signals are directly related to the operation of the

machine and can therefore be used to communicate the operating status of the machine to

the machine operator [44].

Signals are typically represented by their time waveforms; Fig. 3.2. displays the waveform

of a given x(t) as it evolves over time t. Amplitude, frequency, and phase are the main

Figure 3.2: Waveform of a signal, x(t), as it evolves over time t.

characteristics of a signal. Amplitude measures the amount and direction of change in the

signal with respect to a reference value, as shown in Fig. 3.2. Frequency is the number of

cycles or oscillations that occur in a given unit of time. It represents the rate at which the

signal oscillates. Frequency is measured in Hertz (Hz) where 1 Hz is equal to 1 cycle per

second. The phase of a signal refers to the position of a point (time instant) on the signal’s

waveform cycle. The phase of a wave refers to its position within its cycle and is measured



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 26

in either degrees (0 − 360) or radians (0 − 2π). It helps describe the relative position and

timing of two signals at a given moment. The concept of frequency of a signal is closely

related to the rate at which its phase changes. Specifically, the frequency at a particular

moment in time indicates the speed at which the phase is changing at that moment. A

higher frequency indicates a faster rate of phase change. Therefore, frequency and phase

are mathematically linked through the concept of the derivative. By knowing the phase

information of a signal, the frequency can be calculated as the first derivative of the phase

with respect to time. The period of a waveform refers to the time it takes to complete one

cycle. A periodic signal is a signal that repeats its pattern or the sequence of values exactly

after a fixed duration time, known as the period T . This can be expressed mathematically

as:

x(t) = x(t + T ) (3.1)

Since the period is the time duration a signal takes to complete one cycle, it is related

to the signal’s frequency, which represents the number of cycles per second, through the

following relation:

T =
1
f

(seconds) (3.2)

While purely periodic signals do not exist in practice [45], they represent an essential the-

oretical concept in signals theory [46]. A sinusoidal wave, s(t), represents the basic form

of a periodic signal; it is expressed mathematically as:

s(t) = A sin(2π f t + ϕ) (3.3)

Where A is the signal’s peak amplitude, f is frequency, and ϕ is the phase. With respect

to zero, signal amplitude can be either positive or negative, as shown in Fig.3.3. On the

other hand, the magnitude of the signal |s(t)|, shown in Fig. 3.4, is the absolute value of

the amplitude, it shows the change in the signal regardless of its direction since it is always
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Figure 3.3: Sinusoidal waveform s(t).
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Figure 3.4: Magnitude of the sinusoidal waveform s(t).
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a positive quantity. Amplitude values indicate the strength of the signal, reflecting the

intensity of the measured physical phenomenon.

As explained earlier, a signal represents a physical entity or phenomenon that changes over

time. A signal that remains unchanged over time when measured again under the same

conditions is referred to as a deterministic signal. Such a signal has no uncertainty about its

value at any given point in time and can be modeled using mathematical expressions. The

sinusoidal function is an example of a deterministic function. However, signals that are

completely free of unknown and uncontrollable factors and have true deterministic prop-

erties are extremely rare [47]. In practical scenarios, signals are non-deterministic as they

are random in nature and exhibit various degrees of uncertainty. Since non-deterministic

signals are stochastic, they are described in terms of their statistical properties. From this

perspective, random signals can be classified into two categories: stationary and nonstation-

ary. Stationary signals generally maintain constant statistical properties over time, while

nonstationary signals exhibit changing statistical properties over time.

From the preceding discussion, it is apparent that signal variation describes the changes

in the measured physical entity or phenomenon as it evolves over time. This variation is

subject to the influence of uncontrollable factors during the measurement period, which

manifest themselves as noise or outliers in the signal. Other influencing factors include

subsequent processing and operations imposed on the signal, commonly referred to as “sys-

tems” in the context of signal processing. Specifically, a system in signal processing is any

process or operation that produces an output signal in response to an input signal. In prac-

tical situations, real-world systems exhibit mostly nonlinear behaviors2 and operate under

transient, nonstationary conditions [48]. Therefore, real-world signals in practical situa-

tions exhibit nonlinear, time-varying, and nonstationary characteristics. Understanding the

2A linear system in signal theory is defined by two key properties: homogeneity and additivity. Homo-
geneity means if an input signal x(t) results in an output y(t), then any scaled input ax(t) leads to a scaled
output ay(t). Additivity implies that the response to a sum of input signals x1(t) + x2(t) is the sum of their
responses, y1(t) + y2(t).
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unique characteristics of a signal holds significant importance, as it directly influences the

selection of the proper signal processing tool, ensuring precise and effective analysis of the

signal and, consequently, extracting discriminative features.

Another fundamental aspect of signal processing is signal acquisition and the time repre-

sentation of the signal. From a time perspective, signals are classified as continuous or

discrete-time signals. The continuous-time signal x(t) is the signal that has a continuous

value over the observation time range, as depicted in Fig. 3.2. A discrete-time version of

the signal x(t) is displayed in Fig. 3.5, denoted by x[n]. In the discrete-time representation,

the independent variable n is discrete in type and takes integer values only. That’s it; in

contrast to a continuous-time signal, the discrete signal is defined only over discrete time

intervals. The discrete-time representation x[n] is obtained by sampling the continuous-

Figure 3.5: x[n], a discrete-time version of signal x(t).
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time signal x(t) at time instants separated by Ts. i.e.

x[n] = x(nTs), n = 0, 1, 2, . . . (3.4)

where Ts represents the sampling interval or sampling period in seconds. Accordingly, the

sampling frequency or sampling rate fs is the number of samples obtained in 1 second; it is

given by:

fs =
1
Ts

(3.5)

The unit of fs is samples per second or hertz. In practice, a measured signal is a sampled

version of the actual physical signal since it is acquired by recording a specific number

of measurements (samples) every second. The sampling rate plays a crucial role in sig-

nal measurement and processing. A higher sampling rate means more measured samples

per second and, hence, a higher signal resolution. However, processing time and mem-

ory requirements increase as the sampling rate increases. A fundamental concept in signal

sampling is the Nyquist theorem [49], which states that a signal can be correctly recon-

structed from its sampled discrete-time sequence provided that the sampling rate is equal

to or greater than twice the highest frequency (effective bandwidth) of the signal. This im-

plies that the highest frequency, represented as fmax, that can be represented accurately in

an acquired signal is one-half of its sampling rate fs; i.e.

fs = 2 fmax (3.6)

This formula is called the Nyquist rate; it provides a lower bound on the sampling rate

that is required to reconstruct a signal from its sampled version accurately. Accordingly,

a sampled signal is categorized as either undersampled, critically sampled, or oversam-

pled:

• Undersampled signal: is one where the sampling rate is below the Nyquist sampling
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rate. Undersampling leads to a distortion in the signal known as aliasing, causing

signal components at higher frequencies than the sampling frequency to appear at a

lower, aliased frequency [50].

• Critically sampled signal: is one where the sampling rate equals the Nyquist sam-

pling rate. In this case, the signal is sampled at the lowest rate, which still allows for

a complete reconstruction of the continuous-time signal, assuming the signal band-

width is limited to half of the sampling frequency. While perfect reconstruction is

theoretically still possible, it is less common in practical applications.

• Oversampled signal: is one where the sampling rate exceeds the Nyquist rate. Over-

sampling is widely used in signal measurements because it improves the resolution

of the acquired signal. Additionally, with oversampling, the quantization noise (an

error that represents the difference between the value of the measured sample and

the closest mapped digital value) is spread over a broader frequency range compared

to the effective bandwidth of the signal. Accordingly, filtering out high frequencies

outside the effective bandwidth effectively reduces noise in the signal, improving the

signal-to-noise ratio (SNR).

3.2.2 Signal Energy and Power

As noted above, signal amplitude reflects the intensity of the measured physical phe-

nomenon, making it significant in identifying critical features of the signal, such as energy

and power. Energy quantifies the total “work” done by the signal; mathematically, the en-

ergy of a signal is the area under the squared magnitude of the signal over a given time

interval. for a continuous-time signal x(t), its energy E is defined as:

E =
∫ ∞

−∞

|x(t)|2 dt (3.7)
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For a discrete-time signal x[n], the energy is given by:

E =
∞∑

n=−∞

|x[n]|2 (3.8)

This definition assumes the signal is energy-limited, meaning that its energy is finite over

the entire time domain. Signal power measures the average rate at which the signal trans-

mits energy. It is calculated as the average power over a period of time. For a continuous-

time signal, its average power P is defined as:

P = lim
T→∞

1
2T

∫ T

−T
|x(t)|2 dt (3.9)

Similarly, for discrete signals:

P = lim
N→∞

1
2N + 1

N∑
n=−N

|x[n]|2 (3.10)

If the signals’ energy E converges to a finite but non-zero value, the signal is classified

as an energy signal. Examples include non-zero signals over a limited period but zero

elsewhere, such as pulse signals. The average power of an energy signal is zero because

the calculation of power involves averaging the finite energy over an infinite period of time.

Power signals, on the other hand, are signals that have finite, non-zero average power. A

common example is a periodic sinusoidal signal that continues indefinitely; such signals

have infinite energy. For signals of finite duration, energy and power can be evaluated over

their active time intervals. For periodic signals, due to the repetitive nature of the signal,

the computation is simplified by considering one single period T as follows:

P =
1
T

∫ T
2

− T
2

|x(t)|2dt (3.11)
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For a discrete-time periodic signal x[n] with period N, the power is:

P =
1
N

N−1∑
n=0

|x[n]|2 (3.12)

Instantaneous power refers to the power of a signal at a specific moment in time. Unlike

average power, which is calculated over a period of time, instantaneous power gives a

moment-to-moment view of the power level of the signal. For a continuous-time signal

x(t), the instantaneous power P(t) at time t is defined as the square of the signal’s magnitude

at that particular time. Mathematically, it is expressed as:

P(t) = |x(t)|2 (3.13)

For a discrete signal x[n], where n represents discrete time indices, the instantaneous power

P[n] at point n is defined as the square of the magnitude of the signal at that point. Mathe-

matically, this is expressed as:

P[n] = |x[n]|2 (3.14)

For a given discrete time signal x[n], represented by N samples, the total energy E is the

sum of its instantaneous power values over its discrete time interval:

E =
N−1∑
n=0

|x[n]|2 (3.15)

Accordingly, the average power P is obtained by dividing the energy E by the number of

samples N:

P =
∑N−1

n=0 |x[n]|2

N
(3.16)

along with power and energy, statistical properties of the signal, such as mean and vari-

ance, represent important aspects of signal characteristics and play a major role in signal
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processing. For the discrete time signal x[n], its mean µ is equal to:

µ =
1
N

N−1∑
n=0

x[n] (3.17)

The mean represents the central tendency or the average value of the signal over its time

period. The signal’s variance σ2 is given by:

σ2 =
1
N

N−1∑
n=0

(x[n] − µ)2 (3.18)

The variance measures the spread of the signal’s amplitude around its mean value, quanti-

fying the deviation of the signal’s samples from its mean. Note that for a zero-mean signal,

The variance equals the signal’s average power. For such signals, the root-mean-square

(RMS) is a useful measure that represents the effective value of the signal because it pro-

vides a meaningful measure of the average magnitude of the signal, even though its mean

is zero. The RMS is expressed as:

xRMS =

√√
1
N

N−1∑
n=0

[x[n]]2 (3.19)

3.2.3 Signal Correlation

Correlation can be viewed as a similarity measure; it quantifies the similarity or the degree

of dependence between two signals, providing insights into their common characteristics

and patterns. Auto-correlation refers to the correlation of a signal with a delayed version

of itself. It represents the degree of similarity between a signal and a time-shifted “lagged”

version of itself over a given time interval. Auto-correlation helps to detect repeating pat-

terns in the signal and assess its stability or predictability over time. For a continuous-time
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signal x(t), the auto-correlation function is expressed as:

Rxx(τ) =
∫ ∞

−∞

x(t)x(t − τ)dt (3.20)

where τ represents time shift. For a discrete-time signal x[n], autocorrelation Rxx[k], at a

lag k is given by defined as:

Rxx[k] =
+∞∑

n=−∞

x[n]x[n − k], k = 0,±1,±2, . . . (3.21)

Note that for zero lag, there is no time shift; hence, the autocorrelation Rxx will be at its

maximum value,— which equals the signal’s total energy— representing the maximum

similarity as depicted in Fig. 3.6 which shows the autocorrelation of the signal x(t).

Figure 3.6: Signal x(t) and its autocorrelation.
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Cross-correlation extends the concept of auto-correlation to two different signals, mea-

suring the degree of similarity or dependence between them. It quantifies the degree of

similarity between one signal and a time-shifted “lagged” version of another signal over a

given time interval. For two continuous-time signals x(t) and y(t), their cross-correlation is

expressed as:

Rxy(τ) =
∫ ∞

−∞

x(t)y(t − τ)dt (3.22)

For discrete-time signals x[n] and y[n], the cross-correlation Rxy at a given time lag k is

defined as:

Rxy[k] =
+∞∑

n=−∞

x[n]y[n − k], k = 0,±1,±2, . . . (3.23)

The value of Rxy[k] indicates how much of one signal is present in the other signal at a given

delay k. Hence, it describes the mutual relationship between the two signals as a function

of the displacement of one relative to the other. Cross-correlation is often used to search

for desired features or patterns within a signal.

The correlation coefficient between two signals is a statistical measure that quantifies the

degree to which the two signals are linearly related. It is a normalized form of the cross-

correlation function and is widely used in signal processing and statistics to assess the

strength of the linear relationship between two signals [51]. For discrete-time signals x[n]

and y[n], each of length N, the correlation coefficient ρxy is defined as:

ρxy =

∑N−1
n=0 (x[n] − µx)(y[n] − µy)√∑N−1

n=0 (x[n] − µx)2 ∑N−1
n=0 (y[n] − µy)2

(3.24)

where µx and µy are the means of the signals x[n] and y[n], respectively.

The correlation coefficient lies between −1 and +1. Values close to +1 indicate a strong

positive linear relationship, i.e. as one signal increases, so does the other. Values close to

−1 indicate a strong negative linear relationship, where one signal increases as the other

decreases. Values close to 0 suggest a weak or no linear relationship between the sig-
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nals.

3.2.4 Signal Convolution

Convolution is an integral operation on two signals that produces a third signal; it expresses

the amount of overlap of one signal as it is shifted over another signal. The convolution of

two continuous-time signals x(t) and h(t) is given by:

x(t) ∗ h(t) =
∫ ∞

−∞

x(τ)h(t − τ)dτ (3.25)

where ∗ denotes the convolution operator, which is defined as the integral of the product of

x(t) with a time-reversed and shifted version of h(t). The time reversal of h(τ), represented

by h(−τ), involves reflecting the signal about the vertical axis that represents time origin

(τ = 0). Accordingly, the integral is evaluated for all shift values t, producing the convolu-

tion signal x(t) ∗ h(t). For discrete-time signals x[n] and h[n] the convolution is expressed

as:

x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n − k] (3.26)

The convolution process can be visualized as one signal sliding over the other signal, com-

puting the area of overlap as a function of the degree of overlap. In contrast to correlation,

which measures the similarity between two signals as a function of the displacement of one

relative to the other, the convolution represents the amount of overlap between two signals

as one is inverted and shifted over the other signal. Therefore, while correlation measures

the similarity between two signals, convolution can be viewed as a measure of the effect of

one signal on the other.

Convolution is particularly useful for describing how a Linear Time-Invariant (LTI) system

or filter responds over time to an input signal since the output of an LTI system or a filter

for any arbitrary input can be determined by convolving the input signal with the system’s
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impulse response. LTI Systems are systems that are characterized by linearity and time-

invariance. Linearity, as explained earlier, implies that the response (output) to a weighted

sum of inputs is the weighted sum of the responses to each input. Time-invariance means

the system’s response to a given input does not change over time. In signal theory, the

impulse response of an LTI system or a filter, denoted as h(t) for continuous-time repre-

sentation or h[n] in discrete-time case, represents the system’s output when subjected to

an impulse function. In continuous-time representation, the impulse function is denoted

as δ(t) and is defined as a function that is zero at all times except at t = 0, where it is

infinitely high in such a way that its integral over time is 1. In discrete time, the impulse

function is denoted as δ[n] and is defined as a sequence that is zero at all samples except

at n = 0, where its value is 1. The impulse response fully characterizes the system’s or

filter’s behavior. Hence, given the impulse response of an LTI system or a filter for any ar-

bitrary input, its output can be determined by convolving the input signal with the impulse

response.

3.2.5 Signal Entropy

Entropy is an important concept that originated in information theory as a measure of “in-

formation” in a random variable. In signal processing, entropy quantifies the degree of

unpredictability or randomness in a signal, thereby reflecting its structure and offering a

quantitative measure of various signal characteristics. The fundamental concept of entropy-

based applications in signal processing is to treat the signal as a random stochastic process.

In this context, the signal samples represent a collection of possible outcomes of the pro-

cess; each outcome is associated with a probability of occurrence. Hence, for a discrete

signal where its samples are represented as a set of possible outcomes x1, x2, . . . , xn with

associated probabilities p(x1), p(x2), . . . , p(xn), the Shannon entropy is calculated as fol-

lows:

H(X) = −
n∑

i=1

p(xi) log p(xi) (3.27)
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This formula calculates the average “information, “surprise,” or “uncertainty” inherent in

the signal’s possible outcomes. In information theory, high entropy suggests that a signal

contains a wide range of information. In signal processing, high entropy values are as-

sociated with high degrees of unpredictability, uncertainty, irregularity, and randomness,

indicating a complex signal with more varying structures compared to predictable or repet-

itive patterns within the signal. On the other hand, low entropy values often imply a high

degree of uniformity and predictability within a signal. This is illustrated in Fig. 3.7,

which compares the entropy values of two signals: the random vibration signal v(t) and

a square wave. Each signal contains 12800 samples. The signals are segmented into 128

segments so that each segment contains 100 samples. Accordingly, the Shannon entropy

(H) is calculated for each segment to quantify uncertainty within each segment and to as-

sess signal irregularity in terms of the variation in entropy values between signal segments.

The comparison shows that segments of the random vibration have higher entropy values

than those of the square wave, indicating a higher degree of uncertainty. Moreover, the

high variation of entropy values among different segments of the random vibration reflects

the complex and irregular patterns in the signal. These concepts find useful applications in

signal processing, including but not limited to:

• Measurement of complexity: Entropy serves as a metric for signal complexity, with

higher entropy values indicating more complex signals. Such signals are typically

characterized by their low compressibility.

• Uncertainty Quantification: Entropy is a direct measure of the uncertainty in a signal.

A signal with high entropy suggests less predictability and greater uncertainty about

its current state or future values.

• Regularity Analysis: Lower entropy values indicate a higher degree of regularity in

the signal, which could indicate a fault or abnormal behavior in applications such as

condition monitoring and fault detection.
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Figure 3.7: A comparison between Shannon entropy values of a random vibration v(t), and
a square wave.
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• Randomness Evaluation: The degree of randomness in a signal can be assessed us-

ing entropy. High entropy signals have a high degree of randomness, whereas low

entropy signals involve minimal randomness.

The Shannon entropy formula in (3.27), introduced by Claude Shannon in 1948 [52], is

the fundamental form of entropy that is widely used in signal processing. Spectral En-

tropy is another type of entropy that applies Shannon entropy to the power spectrum of a

signal, providing insight into its spectral characteristics. Other types of entropy include ap-

proximate entropy and sample entropy, commonly used in time-series analysis to measure

the regularity and unpredictability of fluctuations in data series. More information on the

different types of entropy can be found in [53].

3.3 Signal Transformation and Analysis

Signal transformation is a fundamental concept in signal theory; it plays an important role

in many signal processing applications, such as signal analysis, filtering, denoising, com-

pression, and feature extraction. Transforming signals from their time-domain representa-

tions into other-domain representations allows the signal to be analyzed in a new paradigm,

revealing new aspects of the signal that are not apparent in the time domain. The process of

signal transformation involves mapping a signal from its original domain (usually time) to

a new domain. This is achieved by computing the inner product of the signal with a set of

basic functions “kernels” that serve as the building blocks for representing the signal in the

new domain. These functions are chosen based on the properties desired in the transformed

domain, for example, sinusoidals in Fourier transforms and wavelets in wavelet transforms.

The inner product measures how much of the base function is present in the signal. A large

value of the inner product indicates a high degree of similarity or a strong presence of the

characteristics represented by the base function in the signal. This section reviews com-

mon frequency-domain and time-frequency domain transformations widely used in signal
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processing.

3.3.1 Fourier Transform

The Fourier Transform (FT) is one of the most widely used transforms in signal processing.

It provides a frequency-domain representation of the signal, revealing its spectral contents

and enabling frequency-based analysis. The basic principle underlying the FT is that any

waveform can be expressed as a combination of sinusoidal components with different am-

plitudes, frequencies, and phases. Accordingly, FT attempts to decompose signals into

their constituent sinusoidal components. FT is mathematically expressed as:

F(ω) =
∫ ∞

−∞

f (t)e− jωt dt (3.28)

where,

F(ω) represents the FT the function f(t),

f (t) is the original time-domain signal,

and e− jωt is the complex exponential function used in the transform.

The Discrete Fourier Transform (DFT) is the discrete version of the continuous FT, which

is used for analyzing discrete signals; it is defined as:

X[k] =
N−1∑
n=0

x[n]e−
j2π
N kn (3.29)

where,

X[k] represents the DFT of the discrete time-domain signal, x[n],

N is the total number of samples in x[n],

k = 0, 1, ...,N − 1, is the index in the frequency domain,

and n = 0, 1, ...,N − 1, is the index in the time domain.

Both the FT and the DFT are reversible operations where the frequency domain represen-

tation of a signal can be transformed back into its original time-domain form by applying
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the inverse transform operation. This property is fundamental in signal processing and has

various applications, such as signal compression, filtering, and noise reduction.

The Fast Fourier Transform (FFT) and its inverse, IFFT, are computational algorithms that

efficiently implement the DFT and its inverse, IDFT. The key advantage of FFT and IFFT

is their high computational efficiency. NumPy and SciPy Python libraries offer reliable

functions for FFT and IFFT computation. When computing the FFT of a signal, two critical

parameters need to be considered: the sampling rate, fs, and the FFT length, n. The values

of these parameters determine the frequency range and frequency resolution of the resulting

spectrum. It is essential to choose an appropriate FFT length, usually a power of two (e.g.,

256, 512, 1024), as the FFT algorithm performs efficiently when the number of points

is a power of two. The FFT length also determines the number of frequency bins in the

spectrum, where each bin corresponds to a specific range of frequencies within the total

frequency spectrum analyzed by the FFT. The number of unique frequency bins in the FFT

output is:
n
2
+ 1 (3.30)

The bin width defines the frequency resolution, ∆ f , of the FFT representing the smallest

distinguishable frequency in the spectrum. It is defined as:

∆ f =
fs

N
(3.31)

Frequency resolution is critical in frequency analysis because it affects the accuracy with

which closely spaced frequency components can be resolved in the resulting spectrum. If

the FFT length is set equal to the number of samples N in the input signal, the FFT operates

directly on the signal as it is. If the FFT length is set greater than N, the signal is typically

zero-padded to the desired length. Zero padding does not alter the actual frequency con-

tent of the signal but increases the number of frequency bins in the FFT result, leading to

a finer frequency resolution in the spectrum. On the other hand, setting the FFT length
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to less than N truncates the signal, resulting in loss of information and reduced frequency

resolution. The maximum frequency that can be accurately represented in the spectrum is

the Nyquist frequency of the signal ( fs
2 , which equals half of the sampling rate. Frequencies

higher than the Nyquist frequency will not be correctly resolved in the spectrum. The out-

put of the FFT function is an array that contains complex Fourier coefficients representing

the amplitude and phase information of each frequency bin. The function fftfreq in Python

can be used to obtain the frequency bins; it takes two inputs, the FFT length n and the

sampling period, Ts =
1
fs

, and returns an array containing frequency bins. Accordingly,

the frequency spectrum is constructed by mapping the coefficients to the x-axis and the

corresponding frequency bins to the y-axis. Since Fourier coefficients are complex num-

bers, each bin is expressed either by the magnitude or power of the corresponding Fourier

coefficients, resulting in amplitude spectrum or power spectrum, respectively. This gives

a two-sided frequency spectrum symmetric around the y axis, showing positive and “neg-

ative” frequencies. The negative frequency spectrum is inherent to the Fourier analysis of

signals; it is a mirror of the positive “real” spectrum around the y-axis. Thus, it represents

redundant frequency information. Reconstructing a positive spectrum involves discarding

the second half of coefficients and frequency bins arrays. Thus, to accurately represent

the signal’s energy in the frequency domain, it’s necessary to multiply the magnitudes of

Fourier coefficients by 2 to restore the energy distribution in the positive frequency since

the signal’s energy was equally divided between the positive and negative frequencies. It

is worth noting that the number of Fourier coefficients is directly proportional to the length

of the input signal, as stated in (3.30). Consequently, the magnitude of the FFT coefficients

increases with the length of the signal. Therefore, when longer signal segments are used,

the frequency spectrum displays larger values as more components contribute to the sum.

Therefore, to reflect the true amplitudes of the signal components, the magnitudes of the

Fourier coefficients are usually normalised by the signal length.

To demonstrate the concept of FT in resolving various frequency components, a sinusoidal
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signal, denoted as s3(t) composed of three components, is created as shown in Fig. 3.8. The

Figure 3.8: Composite sinusoidal signal s3(t).

used sampling rate is 1600 Hz, and the length of the signal is 1536 data points; accordingly,

this corresponds to 0.96 seconds of the signal’s time duration. The signal consists of three

sinusoidal components with different durations, amplitudes and frequencies. The first com-

ponent consists of 960 data points and oscillates at 100 Hz with an amplitude of 10. The

second component contains 64 data points with a frequency of 400 Hz and an amplitude

of 5. The third component consists of 512 data points oscillating at a dominant frequency

of 200 Hz and an amplitude of 20. Consequently, the time duration which corresponds

to each of the components are 0.6 seconds, 0.04 seconds, and 0.32 seconds, respectively.

Compared to the first and third components, the second component represents weak, rapid

oscillations of very short duration, simulating a transient component of particular impor-
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tance in the composite sinusoidal. The frequency spectrum of the signal is displayed in

Fig. 3.9, which clearly shows that the three components in the composite signal at 100 Hz,

200 Hz, and 400 Hz are accurately resolved and represented in the spectrum. The peaks

correspond to the amplitudes of the components and therefore convey how much energy is

being dissipated within each component. In practical terms, the presence of a high peak

in the spectrum indicates the presence of a dominant (energetic) oscillatory component in

the time domain signal. The frequency value associated with this peak reflects the oscil-

lation rate of the component. While the FT can identify the three frequency components

Figure 3.9: Frequency spectrum of s3(t).

within the signal, its analysis spans the signal’s entire duration, which is evident from the

infinite integral in the transform equation (3.28). Thus, although it accurately distinguishes

between different frequency components, it cannot provide temporal information about the
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timing of the occurrence of these frequencies within the signal. This lack of time resolution

in the FT limits its applications to pure-frequency analysis only. Additionally, the FT is not

ideal for analyzing signals with highly time-localized components, like short bursts with

high energy concentration. Such components produce a broad range of frequencies in the

frequency spectrum of the signal due to the inherent uncertainty principle associated with

Fourier analysis [54], which states that a signal cannot simultaneously have an arbitrarily

small duration in time and an arbitrarily narrow bandwidth in frequency. This means that if

a signal is highly localized in time, it must spread widely in the frequency domain and vice

versa. This concept is demonstrated in Fig. 3.10 and Fig. 3.11, which show a composite

sinusoidal signal, denoted as sm3(t), and its frequency spectrum, respectively. The signal

sm3(t) is a modified version of the sinusoidal signal s3(t) where the duration of the second

component is reduced to 0.05 (The duration of the first component is increased accord-

ingly), and its amplitude is increased to 30 to simulate localized oscillations of high energy

concentration. As depicted in Fig. 3.11, the frequency of the localized component in sm3(t)

is broadly spread across the frequency spectrum, which poses a challenge in distinguishing

subtle frequency components in practical applications.

3.3.2 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) bridges the gap between time-domain and frequency-

domain analysis, making it particularly useful for analyzing nonstationary signals whose

spectral characteristics evolve over time. Unlike FT, which spans the signal’s entire du-

ration for frequency analysis, STFT analyzes the signal over finite, overlapping time win-

dows, thereby preserving temporal information. The computation of the STFT involves

dividing the time-domain signal into segments of equal time length, which is achieved by

multiplying the signal with a sliding window function. The FFT is then computed for

each segment, providing frequency bins and corresponding Fourier coefficients for each
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Figure 3.10: Composite sinusoidal signal sm3(t).
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Figure 3.11: Frequency spectrum of sm3(t).
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segment. For a continuous signal, x(t), the STFT is mathematically defined as:

S T FT {x(t)}(τ, ω) =
∫

x(t)w(t − τ)e− jωt dt (3.32)

where w(t − τ) is the window function centered at time τ, and ω is the angular frequency.

For discrete signal x[n], the discrete STFT is defined as:

DS T FT [n, k] =
N−1∑
m=0

x[n + m]w[m]e− j2π km
N (3.33)

where,

N is the size of the window, defining the number of signal samples included in each signal’s

segment for analysis,

n is the time index around which the window is centered,

k is the frequency bin index,

w[n + m] represents the signal samples within the window,

w[m] is the window function of size N,

and e− j2π km
N is is the DFT kernel.

The SciPy Python library provides an efficient implementation of SFTF and its inverse

transformation. The output of the STFT function contains three sets:

• The temporal set contains the duration of each segment in seconds. Its size equals

the number of segments.

• The frequency set that contains groups of frequency bins corresponding to each time

segment. The size of the set is equal to n
2 + 1.

• Coefficients set: A matrix containing Fourier coefficients in each frequency bin for

every segment. Thus, its size is d1 × d2, where d1 and d2 are sizes of frequency and

temporal sets, respectively. STFT features are usually obtained by examining the

coefficients matrix. However, since Fourier coefficients are complex numbers, ex-
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tracting features in the STFT commonly involves analyzing the magnitudes of these

coefficients.

Heatmaps serve as an effective tool for visualizing the STFT output, providing a clear

representation of the variations in the frequency content of the signal over time. These

heatmaps, commonly referred to as spectrograms, are generated by mapping the temporal

set to the x-axis and frequency set to the y-axis. The “intensity” of each time-frequency

pair in the x − y plane is represented by the magnitude of the corresponding Fourier coef-

ficients. Fig. 3.12 shows the STFT of the composite signal s3(t) introduced earlier. The

signal is segmented into ten segments using a Hamming window with an overlap of 50% of

the segment length. The Fourier coefficients are computed for each segment using an FFT

length of 2048. Compared to the signal’s frequency spectrum depicted in 3.9, the STFT

spectrogram shows the spectral contents and reveals their temporal characteristics simulta-

neously, providing time-frequency analysis of various frequency components in the signal.

Specifically, The duration of each frequency component in the signal is clearly shown over

the timeline (X-axis). Furthermore, the temporal edges, represented by the start and end

times of each component, are well-defined, thereby reflecting high temporal resolution that

allows the identification of the transient component at 400 Hz. In real-world scenarios, the

efficiency of the STFT in time-frequency analysis is significantly influenced by the choice

of its parameters, particularly the segment length and the percentage of overlap between

adjacent segments. Segment overlap provides continuity and reduces information loss be-

tween adjacent segments. A high degree of overlap introduces more redundancy into the

segments and improves time resolution, which is particularly useful when a large segment

length is used. The segment length determines the resolution of the time-frequency anal-

ysis. A smaller segment length enables better time resolution, which helps identify rapid

transient patterns in the signal, as demonstrated in Figure 3.12. On the other hand, a larger

segment length enhances frequency resolution by allowing more frequency cycles to fit

within the segment. However, this comes at the cost of reduced temporal resolution, as
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Figure 3.12: STFT spectrogram of the composite sinusoidal signal s3(t).
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transient changes in the signal over short time durations may be overlooked. Therefore,

there is a trade-off between time and frequency resolutions in the STFT analysis. This con-

cept is demonstrated in Fig. 3.13, which shows the STFT spectrogram of s3(t) re-computed

by dividing the signal into three segments only instead of ten segments. The frequency

resolution is represented by the “thickness” of the timeline. A thinner timeline— reflecting

a finer frequency resolution— allows precise identification of the corresponding frequency

bin on the y-axis compared to a thick timeline that spans several frequency bins. A compar-

ison of the two spectrograms shows that the use of a longer segment improves the frequency

resolution but reduces the temporal resolution, resulting in overlapping temporal edges that

obscure the identification of the transient component. The fixed segment length is a major

Figure 3.13: STFT spectrogram of the composite sinusoidal signal s3(t).

limitation in STFT that results in a uniform resolution analysis of the signal and, hence,
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leads to an inherent compromise between time and frequency resolutions when applying

STFT for time-frequency analysis.

3.3.3 Power Sepctral Density

Power Spectral Density (PSD) describes how the power of a signal is distributed across

different frequencies, providing a measure of the power per unit frequency. This is achieved

through the normalization of the power spectrum by frequency resolution (frequency bin

width), converting the power spectrum into a power spectral density that shows the power

distribution per unit frequency. Mathematically, the PSD S xx( f ) of a continuous-time signal

x(t) is defined as the FT of the autocorrelation function Rxx(τ); it is expressed as:

S xx( f ) =
∫ ∞

−∞

Rxx(τ)e− j2π f τ dτ (3.34)

where,

Rxx(τ) = E[x(t)x(t + τ)] (3.35)

and E[] denotes the expected value. For discrete signals, the discrete PSD (DPSD) is

utilized, involving the DFT of the autocorrelation sequence. The DPSD S xx[k] of a discrete-

time signal x[n] is given by:

S xx[k] =
∞∑

n=−∞

rxx[n]e− j 2π
N kn (3.36)

where rxx[n] is the autocorrelation sequence of x[n].

The SciPy Python library provides two methods for PSD estimation: the periodogram

method (scipy.signal.periodogram) and the Welsh method scipy.signal.welch [55]. The pe-

riodogram estimation involves obtaining the spectral power of the signal by applying FFT

and squaring the magnitude of the resultant FFT coefficients. The PSD estimate is obtained

by normalizing the spectral power by the frequency resolution of the FFT. One of the limi-
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tations of the periodogram method is its high variance, especially when the number of sam-

ples in the signal is limited. The Welsh method overcomes this limitation by segmenting

the signal into overlapping segments using a sliding window, computing the periodogram

for each segment, and averaging the periodograms to obtain the PSD estimate. This ef-

fectively reduces noise and provides a smoother estimate than the periodogram method.

Fig. 3.14 compares the two methods in estimating PSD of the random vibration signal v(t)

introduced earlier. In the Welsh method, the signal is divided into four segments with 50%

of overlap. It is evident that averaging the estimate over several segments greatly reduces

the variance of the estimate, resulting in a smoother PSD. The smoothness of the PSD is

of significant importance in power spectral analysis and feature extraction since high es-

timation variance can hinder major characteristics in the PSD, such as peaks. A smooth

PSD allows precise identification of such characteristics, improving the sensitivity of the

extracted features.

Figure 3.14: Periodogram and Welsh’s PSD estimations of vibration signal v(t).

Similar to the STFT, the choice of parameters in the Welch method, such as window type,
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segment length and overlap, has a significant effect on the PSD estimate. While STFT and

the PSD possess similar aspects, they serve different purposes and are based on distinct

theoretical foundations. Understanding their differences is crucial, especially in ML and

feature extraction applications. Table 3.1 compares STFT and PSD and summarises their

main characteristics.

Table 3.1: Comparison between STFT and PSD
Properties STFT PSD
Purpose and Concept STFT is used for time-frequency analysis

of signals, especially nonstationary sig-
nals where frequency components vary
over time

PSD is used to describe the power dis-
tribution of a signal across frequency.
It is particularly useful in understanding
the energy content of different frequency
components of a signal

Representation The result of STFT is a two-dimensional
representation of the signal, showing both
time and frequency dimensions. This is
crucial in analyzing signals whose spec-
tral properties evolve over time

PSD provides a one-dimensional fre-
quency domain representation, indicating
how power is distributed across frequen-
cies. Unlike STFT, it does not offer time-
domain information

Characteristics STFT involves a trade-off between time
and frequency resolution controlled by
the window size. A larger window offers
better frequency resolution but poorer
time resolution, and vice versa

PSD assumes signal stationary, making
it less suitable for analyzing signals with
time-varying characteristics

Application STFT is used to analyze signals with
time-varying spectral properties

PSD is more suited for stationary signals
or for assessing overall frequency content

3.3.4 Wavelet Transform

The accuracy of time-frequency analysis depends heavily on the localization of the base

function in time and frequency domains. In Fourier analysis, the basis functions are sinu-

soidals (complex exponentials) that are perfectly localized in the frequency domain since

each corresponds to a single frequency component with no frequency spread. In the time

domain, these sinusoidal functions extend infinitely, lacking time localization due to their

infinite duration. In the context of wavelets, signal analysis is based on a family of wavelets

that are localized in both time and frequency domains. These wavelets are generated from

a single mother wavelet through scaling and translation, facilitating signal analysis at dif-

ferent frequencies and time intervals. A wavelet is a mathematical function that satisfies

certain conditions, such as finite energy and a zero mean. The term “wavelet” itself means

a small wave, which captures the essence of these functions and how they behave. The
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main characteristics of a wavelet function include the following:

• Zero Mean: This ensures the wavelet oscillates around the zero level; this is crucial

for detecting changes in the signal since it allows it to capture both positive and

negative variations in the signal effectively.

• Finite Energy: This implies that the total energy of a wavelet is finite, ensuring in-

tegrability and existence of the inner product with the signal. The energy of a given

wavelet function is calculated by integrating the squared amplitude of the wavelet

over its entire duration. Mathematically, the total energy of a wavelet function, ψ(t),

is expressed as: ∫ ∞

−∞

|ψ(t)|2 dt < ∞ (3.37)

A wavelet with finite energy is inherently localized in time and has compact support,

meaning it is non-zero only over a limited range, and its oscillations are confined to

a small region. This time localization allows wavelets to effectively represent signals

that have nonstationary or transient components. A wavelet’s integrability implies

that it won’t produce infinite results when integrated over its domain. This is crucial

for signal analysis since it is essentially carried out by computing the inner product

of the signal with scaled and transformed versions of the wavelet.

Wavelet analysis is conducted through two operations, scaling and translation:

• Scaling “Dilation”: This involves stretching or compressing the wavelet. Scaling

changes the frequency content of the wavelet, allowing the signal to be analysed

in different frequency bands. Specifically, the oscillation frequency of a wavelet is

directly affected by the scale. At lower scales, the wavelet compresses and oscillates

more rapidly, which allows it to detect high-frequency components or rapid changes

in the signal. On the other hand, at higher scales, the wavelet is stretched, resulting

in fewer oscillations for the same amount of time, making it more sensitive to low-
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frequency components or slow-changing features in the signal.

• Translation “Shifting”: This refers to moving the wavelet along the time axis, en-

abling the wavelet to analyze different signal parts at a given scale.

These aspects allow high time-frequency localization and provide a multi-resolution anal-

ysis through varying scales and translations. The choice of the mother wavelet and scale

values is derived by signal characteristics and application-specific requirements. Attributes

such as orthogonality, compact support, vanishing moments, and the ability to capture sig-

nal discontinuities and singularities play a crucial role in this choice. The wavelet family

includes various mother wavelets; each with unique properties that cater to various sig-

nal types and application requirements. Fig. 3.15 displays the time-domain waveforms of

some of the commonly used wavelet functions.

Figure 3.15: Some of the commonly used wavelet functions.
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The Continuous Wavelet Transform (CWT)

The CWT of a signal x(t) can be expressed mathematically as follows:

CWTx(a, b) =
1
√
|a|

∫ ∞

−∞

x(t)ψ∗
(
t − b

a

)
dt (3.38)

where,

a is the scale parameter, b is the translation parameter,

CWTx(a, b) represents the wavelet coefficient at scale a and translation b,

ψ(t) is is the mother wavelet, and ψ∗(t) is its complex conjugate.

The output of CWT is a matrix of wavelet coefficients, where each row contains the coeffi-

cients of the corresponding scale. These coefficients represent the correlation between the

signal and a scaled and translated wavelet, indicating how closely the signal matches the

wavelet at those specific scales and translations. This emphasizes the importance of select-

ing a proper wavelet function for signal analysis. The CWT output is commonly visualized

through 2D heatmaps, known as scalograms, where the x-axis and y-axis represent time

and scale, respectively. The intensity of the heatmap is represented by the magnitude of the

wavelet coefficients, which reflect the signal wavelet energy at different scales and transla-

tions. The scale parameter inversely relates to the signal’s frequency content. High scales

correspond to low frequencies, capturing the slower-varying components of the signal. On

the other hand, low scales, corresponding to high frequencies, capture rapidly changing

components within the signals. Hence, scalograms show how the spectral content varies

over time, enabling the identification of transient or nonstationary components within the

signal. Fig.3.16 displays the scalogram of the composite signal s3(t) using a scale range

from 1 to 135. The fbsp, displayed in the bottom right corner of Fig. 3.15, is employed

in the analysis; fbsp is a spline wavelet constructed using a spline function. The selec-

tion of this wavelet is based on its sinusoidal-like waveform, resembling the waveform of

the composite signal s3(t). The scalogram demonstrates a multi-resolution signal analysis
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at various scale values. In particular, scales greater than 120 effectively capture the slowly

varying components (components 1 and 3) of the signal. On the other hand, the raid change

in the signal, represented by component 2, can only be detected at small-scale values (scales

between 30 and 40).

Figure 3.16: CWT “scalogram” of the composite signal s3(t).

Discrete Wavelet Transform (DWT)

DWT is a wavelet-based signal decompression tool that uses discrete values for scale and

translation, reducing redundancy and computational complexity. In DWT, wavelet multi-

resolution analysis is achieved by decomposing the signal into high and low-frequency

components, commonly known as elementary modes, using digital filter banks and down-

sampling operations. The Key parameters include the type of mother wavelet and the de-
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gree of decomposition. Mathematically, the DWT of a discrete signal x[n] can be expressed

as:

DWTx[ j, k] =
∞∑

n=−∞

x[n]ψ jk[n] (3.39)

where,

DWTx[ j, k] represents the wavelet coefficient at the j-th level of decomposition and the k-th

position,

ψ jk[n] are the discrete wavelets, defined as scaled and shifted versions of the mother wavelet.

In the decomposition process, the signal undergoes convolution with consecutive low-pass

and high-pass filters followed by down-sampling. The main aspects and steps of the de-

composition process include:

Mother Wavelet: The first step involves selecting an appropriate wavelet base function, of-

ten called the “mother wavelet.”

Scaling and Translation: The decomposition process starts by scaling and translating the

mother wavelet to generate a family of wavelet functions that serve as bases to decompose

the signal. In the DWT, the mother wavelet is used in a discretized form where scaling and

translation are done in discrete steps, typically in powers of two for scaling and integer mul-

tiples of that scale for translations. For each level of decomposition, the wavelet is scaled

by a factor of 2 j, where j indicates the level of decomposition. This scaling effectively

compresses the wavelet to capture signal features at different frequencies. Consequently,

the wavelet is translated along the signal in steps that are multiples of the current scale

factor 2 j. This stepwise translation allows the wavelet to cover the entire signal, ensuring

that all signal parts are analyzed.

High-Pass Filter: This filter represents the mother wavelet since its coefficients are es-

sentially a discrete representation of the mother wavelet. As a high-pass filter, it extracts

high-frequency detail components from the signal, capturing rapid changes within the sig-

nal.

Low-Pass Filter: This filter represents the scaling function, as its coefficients are derived



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 63

from the scaled wavelets. As a low-pass frequency filter, it extracts low-frequency approx-

imate components that vary slowly over time.

Down-Sampling: After separating the signal into high and low-frequency components,

each component is down-sampled by a factor of two. Down-sampling involves keeping

every second sample of the filtered signals. This process reduces the sample rate by half,

effectively decreasing the data size and ensuring the transform is computationally efficient.

Approximate and Detail Coefficients: Approximation and detail coefficients are outputs of

down-sampling operations performed on approximate and detail components, respectively.

The approximate coefficients represent a smoothed and down-scaled version of the original

signal, while the detail coefficients describe high-frequency content in the signal.

Iterative Analysis: The process of high and low pass filtering followed by down-sampling

is performed iteratively on the resultant approximation coefficients only until reaching the

specified number of levels ( j) or until reaching maximum decomposition constrained by

signal length. This process creates a j-level tree structure of wavelet coefficients, shown in

Fig.3.17.

Signal reconstruction: The original signal can be perfectly reconstructed by applying the

inverse DWT, which processes the resultant coefficients through reconstruction filters in an

inverse manner to the decomposition process.

Elementary modes: These modes are obtained through the individual reconstruction of the

resultant coefficients “coefficients cD1 to cDj and cAj as shown in Fig. 3.17”, allowing the

processing of the composite signal at the level of its constituent modes. Since these modes

form the underlying structure that constitutes the original signal, perfect reconstruction of

the original signal is possible through direct summation of these modes.

Fig. 3.18 displays elementary modes of the random vibration signal v(t) along with their

corresponding spectra. These modes are obtained through 7-level DWT decomposition of

the signal using Daubechies db4 wavelet (shown in the top right corner of Fig. 3.15). The

Daubechies family of wavelets, especially those with higher orders (e.g., db4, db5), are
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Figure 3.17: 7-level DWT decomposition tree.
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Figure 3.18: 7-level DWT decomposition of random vibration signal v(t): Elementary
modes and their corresponding frequency spectra.
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compactly supported and well-localized in time, making them highly effective for analyz-

ing signals that contain transient patterns or nonstationary components. This is particularly

useful in vibration analysis [56], where detecting sudden changes or faults is essential for

condition monitoring and diagnostics. The DWT decomposition of v(t) iteratively extracts

slowly varying modes of the signal, corresponding to lower frequencies in the signal at each

level. This progressively reduces the resolution of high-frequency details with each level

of decomposition, making DWT well-suited for signals where the information of interest

is concentrated in lower frequencies.

Stationary Wavelet Transform (SWT)

A major limitation of the DWT is the lack of time invariance, which stems primarily from

the down-sampling process. The down-sampling performed at each level makes the output

of DWT sensitive to shifts in the input signal. Even small shifts can cause significant

changes in the resulting wavelet coefficients, which is problematic in applications where

the precise timing of signal features is essential. Furthermore, down-sampling reduces

the signal length by half at each level of decomposition, which may lead to the loss of

specific signal details, especially at higher decomposition levels. SWT is an extension

of the DWT that addresses these limitations by omitting the down-sampling step, thus

maintaining the original size of the signal throughout the decomposition levels. Unlike

DWT, which provides a critically sampled (non-redundant) representation, SWT provides a

more detailed but redundant representation of the signal. SWT is implemented by applying

high-pass and low-pass filters without downsampling the filtered signals. Instead, the filters

are up-sampled at each level to match the size of the original signal. The up-sampling of

filters is done by inserting zeros between the filter coefficients, effectively increasing the

size of the filters as the decomposition level increases. This leads to an overcomplete signal

representation and increases computational burden compared to DWT.
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Wavelet Packet Transform (WPT)

The WPT extends the capabilities of classical wavelet-based decomposition. Unlike the

DWT, which limits its decomposition to approximation coefficients, the WPT performs a

full decomposition at each level by processing detail and approximation coefficients, as de-

picted in Fig. 3.19, thereby capturing both low-frequency and high-frequency components.

While this process is more computationally intensive, it enhances frequency resolution in

the analysis, enabling the detection of subtle signal features that DWT may overlook. Fig.

Figure 3.19: 3-level WPT decomposition tree.

3.20 displays elementary modes of the vibration signal v(t), obtained through 3-level WPT

decomposition using the db4 wavelet, along with their corresponding spectral contents. In

contrast to DWT, which offers a hierarchical frequency decomposition with good frequency

resolution at lower frequencies, WPT provides a more uniform time-frequency localization

across the spectrum due to its symmetric decomposition of detail and approximation coef-

ficients at each level. Hence, it maintains a balance between time and frequency resolution

throughout the frequency spectrum, allowing for a more precise localization across a wider

range of frequencies. Additionally, the spectrum in DWT is skewed towards lower fre-
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Figure 3.20: 3-level WPT decomposition of random vibration signal v(t): Elementary
modes and their corresponding frequency spectra.
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quencies with each successive level of decomposition. While this can be advantageous for

analyzing signals characterized by low-frequency components, it inadequately represents

higher-frequency details. WPT, on the other hand, provides a balanced spectrum with a

more equitable representation of both high and low-frequency components.

Wavelet decomposition offers an effective tool for analyzing complex real-world signals

that involve transit and nonstationary components, opening the door for a wide range of

applications such as:

• Multi-resolution analysis: Wavelet decomposition methods attempt to decompose the

signal into elementary modes characterized by their high time-frequency localization,

offering the capacity for conducting a multi-resolution analysis of the original signal.

• Feature Extraction: The obtained modes encompass meaningful information as they

exhibit distinct amplitude and frequency characteristics. Accordingly, distinctive fea-

tures directly related to the inherent structure of the signal can be extracted from these

modes or their corresponding coefficients.

• Noise Reduction: Noise and signal components often have different characteristics

in the wavelet domain. By thresholding certain wavelet coefficients before signal

reconstruction [57], noise can be effectively reduced or eliminated.

• Signal Enhancement: Wavelet reconstruction can be utilized to enhance signals,

where certain characteristics can be amplified or smoothed out as required, improv-

ing the quality of the reconstructed signal.

• Signal Compression: By keeping only the most significant wavelet coefficients for

reconstruction, signals can be compactly represented with minimal loss of quality.

As previously stated, selecting the appropriate mother wavelet and decomposition level

are crucial steps in wavelet analysis. Different wavelets have different shapes and prop-

erties, such as smoothness, symmetry, and the number of vanishing moments, making the



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 70

selection mainly dependent on application requirements and the shape similarity between

the wavelet and the signal. The decomposition level determines the resolution at which the

signal is analyzed. Higher decomposition levels allow for the analysis of lower-frequency

components but also increase computational complexity and could dilute the significance

of higher-frequency components. The maximum level of decomposition in DWT and WPT

is typically limited by the length of the signal, N. Generally, each level of decomposition

reduces the number of data points by half. Thus, the number of maximum possible decom-

position levels equals log2(N). In SWT, the maximum decomposition level is determined

by the signal’s length and the filters’ length at each decomposition level, which increases

with each level due to the up-sampling operation. Further decomposition becomes imprac-

tical when the filters become too long relative to the signal.

The Python PyWavelets package provides comprehensive modules for wavelet analysis.

It supports custom wavelets and provides various wavelet functions such as CWT, DWT,

SWT, WPT and over 100 built-in wavelet filters. Other libraries supporting wavelet analysis

include PyCWT, a Python module for continuous wavelet spectral analysis, and scipy.signal,

which provides CWT and other wavelet functions, particularly for signal filtering.

3.3.5 Hilbert Transfrom

The Hilbert Transform (HT) is a fundamental operator in signal theory; it is particularly

useful in obtaining the analytic signal representation of real-valued signals. An analytic

signal is a complex-valued representation of the signal that provides a comprehensive way

to describe both its amplitude and phase characteristics. The HT of a signal x(t) is defined

as:

H{x(t)} =
1
π

∫ ∞

−∞

x(τ)
t − τ

dτ (3.40)

The transform essentially modifies the phase of each frequency component of the signal

by ±90◦. The Xa(t) of x(t) is formed by augmenting the signal with its HT H{x(t)} as the
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imaginary part. Mathematically, it is expressed as:

Xa(t) = x(t) + jH{x(t)} (3.41)

Represented in its polar form, the analytical is expressed as:

xa(t) = A(t)e jθ(t) (3.42)

where, A(t) is the instantaneous amplitude (also known as the amplitude envelope), it is

given by:

A(t) = |xa(t)| =
√

x(t)2 + H{x(t)}2, (3.43)

and θ(t) is the instantaneous phase; given by:

θ(t) = arctan
(

H{x(t)}
x(t)

)
(3.44)

Accordingly, the instantaneous frequency f (t) can be obtained by taking the derivative of

the instantaneous phase θ(t):

f (t) =
1

2π
dθ(t)

dt
(3.45)

The instantaneous amplitude of a signal shows how the signal strength varies with time.

The instantaneous phase provides the phase angle of the signal as a function of time. The

instantaneous frequency reveals how the frequency content of a signal evolves over time,

providing a dynamic view of the signal’s spectral properties. By obtaining instantaneous

amplitude, phase, and frequency information, the HT serves as an effective tool to identify

distinct characteristics, such as common patterns and sudden changes in phase and fre-

quency where relevant features can be extracted accordingly. For instance, HT can be used

to obtain instantaneous amplitudes of amplitude-modulated signals such as fault vibration
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signals. In these signals, vibrations of damaged bearings are manifested as modulations in

the amplitude of the generated vibration signal. Hence, obtaining the signal envelope pro-

vides an efficient approach for extracting fault signature frequencies from the envelope’s

spectrum. Fig. 3.21 displays a composite signal, c(t), that has a time duration of 1 second.

The signal is composed of various components so that it exhibits four sudden changes as

follows:

• Rapid oscillations of 50 Hz from 0.3 time instant to 0.5 time instant.

• Rapid oscillations of 100 Hz from 0.7 time instant to 0.9 time instant.

• Abrupt phase change of 180 degrees at 0.4 time instant.

• Abrupt phase change of 90 degrees at 0.6 time instant.

Figure 3.21: Composite signal c(t).

The function scipy.signal.hilbert in the scipy.signal library is used to compute the HT of

c(t). The function returns the analytical signal ca(t) as an output. The instantaneous am-

plitude, phase, and frequency are calculated accordingly and displayed in Fig. 3.22. As

shown in the plots, the obtained instantaneous information provides critical insights into

the signal’s behavior, highlighting common patterns and sudden changes. Specifically, the

envelope shows the main pattern of the signal, reflecting its energy content over time. The
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Figure 3.22: Hilbert Transform of the signal c(t).
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abrupt phase changes at the 0.4 and 0.6 time instants are manifested as small step changes

at these time instants in the instantaneous phase. Moreover, the phase is directly impacted

by temporal changes in the signal frequency, as shown in the plot. The instantaneous fre-

quency provides vital information about frequency variations and sudden changes in the

signal. Particularly, the instantaneous frequency plot shows the rapid oscillations of 50 Hz

and 100 Hz between 0.3 − 0.5 and 0.7 − 0.9 time instants, respectively. Additionally, the

sudden changes in frequency and phase are manifested as a spike at the corresponding time

instant in the plot. In real-world applications, such spikes represent significant features in

the signal that would be of particular interest.

3.3.6 Hilbert–Huang Transform

The Hilbert–Huang Transform (HHT) [58] is a well-known adaptive method for analyzing

nonlinear and nonstationary signals. Unlike traditional transforms, HHT does not impose

a fixed basis function in signal analysis. Instead, it utilizes an adaptive approach to analyze

the signal, making it highly responsive to variations in signal. The HHT is a two-stage

process that involves Empirical Mode Decomposition (EMD) of the signal followed by the

Hilbert Spectral Analysis (HSA).

Empirical Mode Decomposition (EMD)

EMD is an adaptive decomposition method that decomposes the signal into a set of simpler

functions known as Intrinsic Mode Functions (IMFs). EMD forms the basis of Adaptive

Mode Decomposition (AMD) methods introduced over the last three decades. In contrast

to wavelet-based decomposition, AMD uses adaptive approaches rather than priori basis

functions to decompose the signal. Hence, the obtained IMFs are not influenced by a priori

basis function [59]. This makes AMD particularly effective when dealing with nonlinear

and nonstationary signals due to its ability to adapt to varying signal characteristics. How-
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ever, this adaptability comes at the cost of higher computational complexity. The EMD

algorithm, introduced in 1998 as part of the HHT, represents the core of all AMD methods.

The process of EMD, commonly known as sifting, involves the following steps:

1. Identification of Extrema: Start by identifying all the local maxima and minima of

the original signal.

2. Envelope Creation: Construct the upper and lower envelopes of the signal by in-

terpolation between the local maxima and minima, respectively. These envelopes

essentially outline the signal’s oscillatory amplitude.

3. Mean Envelope Calculation: Compute the mean of the upper and lower envelopes.

4. Extraction of Detail: Subtract the mean envelope from the original signal. This step

isolates a component of the signal that potentially qualifies as an IMF.

5. IMF Check: Verify if the extracted component meets the criteria for being an IMF:

• The number of extrema “local maxima and minima” and the number of zero

crossings in the component must either be equal or differ at most by one. This

condition ensures that the IMF captures a well-defined oscillatory mode without

bias toward upward or downward trends.

• The mean value of the envelope defined by the local maxima and the envelope

defined by the local minima must be zero at any point in the component. This

condition guarantees that the IMFs have well-balanced oscillations around zero,

reflecting true oscillatory modes rather than trends or biases in the signal.

If the component doesn’t qualify for an IMF, return to step 2 and use this component

as the new signal.

6. Completion of one IMF: Once an IMF is identified, subtract it from the original

signal. This leaves a residue signal.
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7. Repetition: Repeat steps 1-6 on the residue signal. This process is iterated, yielding

a new IMF at each iteration, and the residual becomes the input for the next iteration.

8. Stopping Criterion: The process terminates when the residual signal becomes a

monotonic function from which no more IMFs can be extracted or it becomes suffi-

ciently small in amplitude based on a predefined threshold.

The output of the EMD process of the random vibration signal v(t) is displayed in Fig. 3.23,

including IMFs, residual, and their respective spectra. As shown, the EMD adaptively

decomposed the signal into ten IMFs of distinct frequency spectra where the frequency

contents of IMFs decrease with each successive IMF. While EMD is well-known to be

effective in analyzing complex signals, the decomposition process is sensitive to noise since

it works directly on the signal’s extrema and minima. Additionally, the process requires a

complete envelope to decompose the signal into IMFs accurately, which can be difficult

to define at the boundaries due to the absence of neighboring data points. This can lead

to distortions of IMFs near the ends of the signal, commonly known as the end effect

[60], impacting the accuracy and reliability of EMD for signal analysis, particularly when

the signal’s behavior at the boundaries is critical. Another challenge in EMD is mode

mixing [61]; ideally, each IMF should represent a unique frequency component. However,

in signals with close spectral proximity or exhibit intermittency characteristics such as

abrupt amplitude and frequency changes, the standard EMD algorithm may not be able to

separate these features accurately. As a result, a single IMF may contain information from

multiple modes, which can lead to a loss of significant physical interpretation of the IMFs.

Further improvements to the standard EMD algorithm have been introduced to address

these limitations. For example, the Ensemble Empirical Mode Decomposition (EEMD)

algorithm [62] was developed by incorporating an ensemble approach and adding finite

amplitude white noise to alleviate problems of mode mixing and end effects. Accordingly,

the natural oscillatory modes are obtained by averaging the corresponding IMFs obtained
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Figure 3.23: EMD of the random vibration signal v(t): IMFs, residual, and their respective
frequency spectra.
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from an ensemble of the signal and the added noise. Other common AMD algorithms

include Variational Mode Decomposition (VMD)[63], local mean decomposition [64], and

Empirical Wavelet Transform (EWT) [65]. More details on AMD techniques and their

applications can be found in [66][67][68][69].

Hilbert Spectral Analysis

The second step of HHT involves applying the HT to each IMF to obtain its analytic signal

and, accordingly, its insinuations amplitude, phase, and frequency. An IMF, due to its

defining conditions, ensures that its HT is well-behaved and meaningful for signal analysis

[70]. Specifically, due to the equal number of extrema and zero crossings, an IMF exhibits

a consistent oscillatory pattern, which is essential for a coherent HT. Further, the symmetry

of the IMF’s envelope about the zero line guarantees that the IMF doesn’t have a bias

towards positive or negative values, facilitating a more accurate HT.

Mathematically, the HSA can be expressed as follows: Given a signal x(t), decomposed

into n IMFs ci(t), where i = 1, 2, , n, the analytic signal Zi(t) for each IMF is formed as

follows:

Zi(t) = ci(t) + jH{ci(t)} (3.46)

where H{ci(t)} is the HT of ci(t). The analytical signal in the polar form is expressed

as:

Zi(t) = Ai(t)e jθi(t) (3.47)

Accordingly, the instantaneous amplitude Ai(t) is:

Ai(t) = |Zi(t)| =
√

ci(t)2 + H{ci(t)}2, (3.48)

and the instantaneous phase θi(t) is:

θi(t) = arctan
(

H{ci(t)}
ci(t)

)
(3.49)
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Accordingly, the instantaneous frequency fi(t) is obtained by taking the derivative of θi(t):

fi(t) =
1

2π
dθi(t)

dt
(3.50)

The instantaneous frequencies and amplitudes obtained from the HT can be used to con-

struct a time-frequency distribution of the signal. This is accomplished by plotting the

instantaneous amplitude or energy against the instantaneous frequencies of the IMFs for

each point in time. The result is a distribution that shows how the signal’s frequencies

evolve over time, highlighting the signal’s nonlinear and nonstationary characteristics. The

time-frequency-energy distribution is commonly visualized as a 2D heatmap, where the

x-axis represents time, the y-axis represents frequency, and the color intensity represents

the amplitude or energy level of the signal at each time-frequency point. Considering the

composite sinusoidal signal s3(t), Fig. 3.24 displays the resulting IMFs and residuals from

the EMD process, as well as their spectral contents. Consequently, Fig. 3.25 shows the

2D heatmap visualization of the output from the HHT. These results are obtained using

textitemd, vmd, and hht built-in MATLAB functions, which, in contrast to Python, provide

a mature and user-friendly environment for EMD, VMD, and HHT computations and visu-

alization. It is evident that both EMD and HSA accurately capture all signal components,

including the transit oscillations of 400 Hz at 0.6 seconds. They also effectively display

the temporal energy distribution of the signal at different frequencies. This highlights the

advantage of HHT in adapting to nonlinear and nonstationary signals.

However, the performance of the HHT is tied to the choice of the AMD method, which is

fundamental to the accurate decomposition of the signal into its IMFs. Furthermore, the

employed stopping criterion for the sifting process [71] and the used interpolation method

for envelope estimation [72] have direct impacts on the effectiveness of the HHT. A proper

stopping criterion ensures that the decomposition process neither overfits nor underfits the

signal, thereby preserving the signal’s essential characteristics without introducing arti-
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Figure 3.24: EMD of the composite sinusoidal signal s3(t): IMFs and residual alongside
with their respective frequency spectra.

Figure 3.25: 2D heatmap visualization of the HTT of s3(t).
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facts. The interpolation method for envelope estimation influences the HHT’s performance

since it determines how well the upper and lower envelopes capture the true oscillatory

modes of the signal.

3.3.7 Wigner–Ville Distribution

The Wigner–Ville distribution (WVD), as a time-frequency analysis tool, is characterized

by its ability to provide highly resolved energy-time-frequency representations of signals.

The WVD of a continuous-time signal x(t) is expressed as:

WVD(t, f ) =
∫ ∞

−∞

x(t +
τ

2
)x∗(t −

τ

2
)e− j2π f τ dτ (3.51)

where, x∗(t) is the complex conjugate of x(t), τ and f are variables representing time-shift

and frequency, respectively.

According to this expression, the kernel function of WVD is given by:

x(t +
τ

2
)x∗(t −

τ

2
), (3.52)

which is essentially the Instantaneous Autocorrelation Function (IACF) of x(t), commonly

known as Wigner auto-correlation function [73]. The use of the complex conjugate of

the signal in the autocorrelation accounts for the magnitude and phase parts of the signal.

Note that the traditional autocorrelation function of (3.20) integrates the autocorrelation

over time t, providing a global measure of the correlation. In contrast, the IACF provides

a local measure of the correlation, which is better suited to reflect local and time-varying

features of the signal. Thus, facilitating a more accurate representation of the signal’s

characteristics [74]. The Fourier kernel e− j2π f τ in the WVD expression transforms the IACF

into the frequency domain with respect to the time-shift variable τ, thereby providing a joint

time-frequency representation of the signal. For a discrete signal x[n] with N samples, the
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discrete WVD is given by:

WVD[n, k] =
N∑

m=−N

x[n +
m
2

]x∗[n −
m
2

]e− j2π km
N (3.53)

Here, x∗[n]is the complex conjugate of x[n], and k represents the discrete frequency index.

The term,

x[n +
m
2

]x∗[n −
m
2

], (3.54)

captures the auto-correlation of the signal at different lags.

The output of WVD, WVD(t, f ), is essentially a 2D function of time and frequency that

is commonly visualized as a 2D heatmap where the value of WVD(t, f ) at any point (t, f )

reflects signal’s energy at that particular time and frequency. The high energy concentration

of WVD results from its inherent quadratic (nonlinear) structure since the energy itself is

a quadratic representation of the signal [75]. In contrast to FT, STFT, and CWT, which

are liner transforms3, the WVD is nonlinear since it involves a product of the signal with

a time-shifted version of itself (correlation). This energetic and correlative nature of the

WVD [75] makes it a unique tool for energy-time-frequency analysis compared to other

transforms, however, the quadratic nature of the WVD presents a major challenge when

analyzing multi-component signals due to the high level of cross-term interference [76]

that appears in the time-frequency representations. Cross-terms are caused by undesired

cross-correlation between various signal components, leading to a false indication of signal

components between the desired auto-correlation terms in the WVD representation of the

signal. To overcome this problem, window-based approaches [77, 78] and kernel-based

approaches [79, 80], such as the Pseudo-Wigner-Ville Distribution (PWVD), are commonly

3In signal theory, a linear transform satisfies the superposition or linearity condition, which states that if
the input signal x(t) is a linear combination of some signal components, then, the transom of x(t) is also a
linear combination of the transforms of each signal component.
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utilized to suppress cross-terms. PWVD is a windowed version of the WVD that applies a

smoothing kernel to WVD in either time-domain or frequency domain to reduce the cross-

terms at the cost of a certain loss in resolution. The PWVD of a signal x(t) can be expressed

as:

PWVD(t, f ) =
∫ ∞

−∞

h(τ)x
(
t +

τ

2

)
x∗

(
t −

τ

2

)
e− j2π f τdτ (3.55)

where h(τ) is the smoothing kernel in the time domain. In the frequency domain, the

smoothing operation becomes the convolution operation between the smoothing kernel and

the WVD. The smoothing operation essentially averages the signal’s energy over the time

and/or frequency domains, reducing the presence of cross-terms arising from the quadratic

nature of the WVD. However, this comes at the cost of blurring the signal’s time-frequency

representation. The limitation of WVD resulting from undesired cross-correlation and the

advantage of PWVD are demonstrated by comparing the WVD and PWVD of the compos-

ite signal, c(t), which, as illustrated earlier, comprises multiple time-varying components.

The MATLAB function wvd is used to compute WVD and PWVD and visualize the outputs

as 2D heatmaps. This built-in function provides straightforward computations and visual-

izations of various WVD types. The WVD and PWVD results are displayed in Fig.3.26

and Fig.3.27, respectively. The comparison reveals that the WVD representation is im-

paired by false indications of non-existent signal components due to the cross-correlation

between the actual signal components. In contrast, the PWVD, through its smoothing

operation, eliminated the interference of cross-terms and accurately resolved all the time-

varying frequency components. However, it can be seen that the improvement achieved

with the PWVD led to a reduction in frequency resolution, manifested as wider lines in the

PWVD’s heatmap compared to the WVD’s heatmap, thereby affecting the precise estima-

tion of the corresponding frequency values.
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Figure 3.26: WVD of the composite sinusoidal signal c(t).

Figure 3.27: PWVD of the composite sinusoidal signal c(t).
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3.3.8 Conclusive Comparison

Aimed at providing interested readers a thorough understanding of signal processing fun-

damentals, this tutorial offered a comprehensive introduction to signal characteristics with

an in-depth discussion of prevalent signal transformation and analysis tools. The discussion

focused on elucidating the main concepts, mathematical foundations, essential character-

istics, advantages, and limitations. Additionally, the tutorial addressed implementation

considerations by underscoring the use of programming libraries and built-in functions to

facilitate efficient implementations of these tools. Furthermore, the codes employed for

generating the illustrative plots throughout this section have been made publicly accessible

as previously mentioned.

Throughout the section, it became evident that selecting the proper tool depends entirely

on signal nature, application-specific requirements, and available computational resources.

For stationary signals, where the primary interest lies in frequency analysis, The FT effi-

ciently obtains the frequency spectrum, thereby enabling the identification of predominant

frequency components in the signal. The PSD is particularly advantageous in scenarios

involving comparative spectral analysis of multiple signals varying in length and/or band-

width. It provides a normalized spectral density measure that facilitates effective compari-

son. The HT is particularly effective in applications where the signal envelope is of primary

importance. Moreover, instantaneous phase and frequency information can be efficiently

obtained from the analytical signal of the HT.

For signals with time-varying spectral characteristics, the STFT provides a computationally

efficient tool for the time-frequency representation of the signal. However, its fixed win-

dow size results in a uniform resolution across all frequencies, reducing its effectiveness

for applications requiring variable-resolution analysis. In such contexts, Wavelet analysis

presents a viable solution due to its ability to perform multi-resolution analysis through

scaled and shifted versions of a wavelet base function.
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For the analysis of nonstationary and nonlinear signals characterized by rapidly chang-

ing components, the HHT provides an adaptive and more robust approach than CWT but

with more computational requirements. The WVD offers a powerful method for providing

a joint energy-time-frequency representation of the signal, although it is more computa-

tionally intensive than the other tools. It is particularly useful in high-resolution analysis

scenarios or where energy concentration is a focal requirement.

Signal decomposition techniques allow the analysis of the elementary components of a

signal. This makes it possible to extract unique manageable-sized features closely related to

the signal’s inherent structure. Regarding wavelet decomposition, its performance is highly

dependent on the base wavelet function and the level of decomposition. In contrast, AMD

methods use an adaptive mechanism rather than an a priori basis function to decompose

the signal, thereby generating elementary modes that are not influenced by an a priori basis

function. Moreover, AMD methods dynamically adapt to varying signal characteristics,

making them effective for analyzing nonlinear and nonstationary signals. However, AMD

methods are more computationally intensive than wavelet decomposition. Additionally,

AMD methods are sensitive to noise and their efficiency highly depends on the employed

stopping criterion and the used interpolation method for envelope estimation. Table 3.2

summarizes the comparison, highlighting the main aspects of each tool regarding signal

nature, application requirements, and computational complexity.

3.4 A Typical Signal-Based ML Pipeline

In signal-based Machine Learning (ML) applications, the pipeline of signal processing

is typically divided into three core stages: preprocessing, processing, and application, as

illustrated in Fig. 3.28. This section addresses each stage, highlighting its purpose and

main aspects.
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Table 3.2: Comparison between common signal analysis and transformation tools
Tool Signal Nature Application Computational Complexity
Fourier Transform (FT) Stationary Frequency analysis Low
Power Spectral Density (PSD) Stationary Spectral analysis low
Hilbert Transform (HT) Stationary Envelope and instantaneous

phase/frequency analysis
low

Short-Time-Frequency Trans-
form (STFT)

Nonstationary Fixed-resolution time-
frequency analysis

moderate

Wavelet Transform (WT) nonstationary Multi-resolution time-
frequency analysis

moderate

Hilbert-Huang Transform
(HHT)

Nonstationary and nonlinear Adaptive time-frequency
analysis

High

Wigner-Ville Distribution
(WVD)

Nonstationary High-resolution energy-time-
frequency analysis

High

Wavelet Decomposition
(WD)

Nonstationary Signal decomposition moderate

Adaptive Mode Decomposi-
tion (AMD)

nonstationary and nonlinear Signal decomposition High

Figure 3.28: Overview of a typical signal-based ML framework.
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3.4.1 Preprocessing

The first stage encompasses the preprocessing of acquired signals. Here, it is essential to

distinguish between data preprocessing techniques[81], commonly used in ML models, and

signal preprocessing, which involves the tasks of signal smoothing, signal denoising, and

signal segmentation. Signal preprocessing is performed on the raw signals, whereas data

preprocessing techniques, such as normalization and scaling, are applied to the extracted

features.

Signal Smoothing

The acquired signal may exhibit rapid amplitude changes between successive samples.

Such random changes in amplitude can negatively impact application-level performance.

Furthermore, during measurements, the signal is susceptible to outlier samples caused by

external factors such as instrument malfunction [82]. Signal smoothing attempts to remove

such impairments in the signal by adjusting the amplitudes of individual samples with re-

spect to the amplitudes of adjacent samples. Smoothing acts as an approximation filter

that works on N-successive samples at a time and outputs N smoothed samples. Com-

mon smoothing methods involve the well-known Moving Average Filter (MAF) filter and

the Savitzky–Golay Filter (SGF) [83]. MAF offers a simple method to smooth the signal

by averaging neighboring data points while preserving the signal’s shape. It operates by

averaging a set of signal data points (window ) and sliding this window across the signal

to smooth out short-term fluctuations. The SGF uses a different approach to smoothing

the signal by performing a local polynomial regression on the signal data points present in

the moving window to provide more nuanced smoothing that preserves the original shape

and characteristics of the signal. The design of an SGF involves properly selecting the

window size and the order of the polynomial [84–87]. Signal smoothing helps refine the

signal’s waveform shape and captures its main patterns, which is particularly useful in
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many signals-based applications. However, as a lossy operation, smoothing could cause a

notable distortion in applications where peak-related features are of main interest. More

information on signal smoothing can be found in [88–91].

Signal Denoising

Denoising refers to the process of removing noise from the acquired signal or, in other

words, reconstructing the desired signal from its acquired noisy representation. This can

be expressed mathematically as follows:

w (t) = s (t) + n (t) (3.56)

where w (t) denotes the noisy signal, s (t) is the desired signal, and n (t) is the noise com-

ponent, Noise can be defined as any unwanted signal present in the measurement process

other than the desired signal [92]. Signal denoising and signal smoothing are often treated

synonymously in the literature [93], as both aim to refine the signal’s waveform while pre-

serving meaningful patterns within the signal. However, they have different impacts on

the noise and frequency contents of the signal. Smoothing is typically applied in the time

domain on a sample-by-sample basis while denoising attempts to remove the whole noise

component, n (t).

Furthermore, in smoothing, the rapid fluctuations can be viewed as highly oscillating com-

ponents of small amplitudes compared to the whole signal over a relatively long duration.

From a frequency point of view, such oscillations represent high-frequency components of

low amplitudes in the signal’s spectrum. Smoothing, therefore, acts as a low-pass filter

that removes these high-frequency components from the signal. On the other hand, signal

denoising typically involves the use of various signal processing methods to develop more

advanced noise filtering techniques.
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Signal Segmentation

Depending on the length of the acquired signal, expressed in terms of the number of sam-

ples, it might be necessary to divide the signal into smaller segments for the following

practical considerations:

• Online deployment: Online applications require working on a pre-defined length of

the input signal.

• Real-time and delay-sensitive applications: Given the sampling frequency, fs in sam-

ples per second, the time duration, ts, of the segment, expressed in seconds equals:

ts =
No

fs
(3.57)

Hence, in real-time and delay-sensitive applications, the number of samples, No, in

the input segment is of paramount importance since time delay increases as a function

of No [56].

• Computation burden: The computational complexity of signal-based ML systems

increases as a function of No [56].

• Effectiveness of extracted features: The number of samples, No, in the input seg-

ment, significantly shapes the discriminative characteristics of the extracted features.

Shorter segments may not provide an adequate representation of the signal’s char-

acteristics, reducing the reliability of extracted features. Conversely, very long seg-

ments could incorporate a high redundancy level, weakening the discriminative ca-

pability of the extracted features.

Constant segmentation is commonly used in various applications where the segment length,

No, is kept constant. Consequently, signals are divided into smaller segments of equal

lengths. Determining the value of No is application-specific and typically relies on achiev-



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 91

ing good trade-offs among the aforementioned practical considerations. Constant segmen-

tation is commonly implemented using a sliding window of size No. Another aspect of

constant segmentation is the percentage of overlap between successive segments. Intro-

ducing overlap between segments increases the number of segments extracted from the

signal. The more overlap, the more segments are extracted. However, increasing the over-

lap increases correlation or dependence among adjunct segments. In general, the extent to

which overlap can be used and its percentage depends on the nature of the application and

the signal processing techniques used [94–96].

In some applications, the acquired signal exhibits random intervals of activity and inac-

tivity, as observed in various sound and biomedical signals. In such scenarios, constant

segmentation becomes unreliable, as it does not count for these inherent intervals. In such

situations, adaptive segmentation [97–103] is commonly utilized to dynamically adjust the

segment length, No. Adaptive segmentation exploits the underlying characteristics of the

signal and adapts No accordingly. Unlike fixed length segments, adaptive length segments

are more discriminative because the signal’s characteristics and inherent patterns change

from segment to segment, allowing more discriminative features to be extracted. However,

adaptive segmentation involves more computational burden compared to constant segmen-

tation.

3.4.2 Processing

The processing stage involves processing the resultant segments to extract appropriate fea-

tures that serve as inputs to ML models. The methods and algorithms available in the litera-

ture can be broadly categorized into two main approaches: feature extraction and signal-to-

image conversion. In feature extraction, signal processing or Deep Learning (DL) can be

used to extract relevant features from the input segment. The next section comprehensively

covers the topic of feature extraction. Signal-to-image conversion approaches [104–113]

transform 1-dimensional (1D) signal segments into 2-dimensional (2D) spatial representa-
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tions, allowing to leverage DL models in signal-based applications. Gramian Angular Field

(GAF) and Markov Transition Field (MTF) [104] are two well-known techniques that are

commonly used to transform time series into images. Advanced techniques involve the use

of signal processing to generate 2D time-frequency representations of the signal segments.

The essence of these techniques is to represent time-frequency-energy characteristics of

the signal and features as width-height-color intensity, mimicking image features. How-

ever, to serve training and testing purposes of DL models, a large number of transformed

images should be available. Nevertheless, signal-to-image conversion is especially feasible

in integrated systems such as Unmanned Aerial Vehicles (UAVs) and Autonomous Vehi-

cles (AVs) [114]. In these systems, computer vision applications, such as object detection

and navigation, and signal-based applications are deployed within the same environment.

Therefore, it is deemed computationally efficient to convert signals into images and use

transfer learning approaches that utilize the trained deep-learning infrastructure for infer-

ence tasks of signal-based applications. Moreover, signal-to-image conversion and transfer

learning offer a practical solution when the size and type of available signal data are insuf-

ficient to fulfill training and testing requirements.

3.4.3 Application

The application is the final stage of a typical signal-based ML pipeline. As a task-specific

stage, it uses appropriate ML models [115–117] to address tasks, including classification,

clustering, and anomaly detection. Feature preprocessing, hyperparameter tuning, and rel-

evant metrics [118, 119] are often used to improve and evaluate model performance. Table

3.3 serves as a high-level overview of a typical signal-based ML framework, highlighting

each stage’s purpose, inputs, functions, and outputs.
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Table 3.3: Inputs, functions, and outputs of each stage of typical signal-based ML frame-
work

Stage Inputs Functions Outputs
Preprocessing Acquired signal+impairments

(noise / outliers)
Smoothing / Denoising / Seg-
mentation

Segmented signal

Processing Segmented signal Feature extraction / Signal-to-
image conversion

Features/ Images

Application Features/ Images Classification / Clustering /
Anomaly detection

Results

Figure 3.29: Taxonomy of feature extraction techniques.
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3.5 Feature Extraction Methods

This section provides a comprehensive review of existing feature extraction methods. The

review utilizes a new hierarchical taxonomy, depicted in Fig. 3.29, to categorize and struc-

ture various methods that exist in the literature. The taxonomy starts by grouping the

existing methods under two main categories: DL-based and signal processing-based. This

categorization distinguishes between two mechanisms that exist for feature extraction: fea-

ture learning and feature engineering. The first mechanism relies on DL models— such

as Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and auto-

encoders— to learn high-level feature representations from signal data [120–129]. The

second mechanism, on the other hand, employs signal processing to extract distinctive fea-

tures from the signal, deliberately engineered to emphasize specific attributes and reveal

certain characteristics. This deliberate engineering allows meaningful connections to be

made between the resulting features and various conditions or classes that exist within the

signals. In contrast, DL features are not interpretable since DL models are black-box mod-

els, making establishing such meaningful connections impossible. In addition, features

extracted by DL models are model-dependent, whereas features based on signal process-

ing are solely signal-dependent. This implies that variations in the model’s architecture,

parameters, training, or tuning lead to different feature representations and, consequently,

inconsistent performance results. Thus, it can be deduced that in DL-based approaches, per-

formance is model-dependent, while in signal processing-based approaches, performance is

mainly feature-dependent. Moreover, DL features would exhibit higher dimensionality and

redundancy than signal processing-based features. This requires the use of appropriate di-

mensionality reduction and feature selection techniques[123, 130, 131], thereby increasing

the online processing time and computational burden. Table 3.4 summarizes the aforemen-

tioned comparison between signal processing-based and DL-based approaches. A consid-

erable amount of work in the literature uses hybrid approaches where signal processing-
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Table 3.4: A comparison between deep learning-based and signal processing-based feature
extraction

Aspect Deep Learning Approaches Signal Processing Approaches
Feature Extraction Mechanism Feature learning Feature engineering
Interpretability of Extracted Features Not interpretabile Interpretabile
Size of Required Dataset Large Small-to-medium
Data Dimensionality and Redundancy
in Extracted Features

High, depends on DL model Low-to-medium

Computational Cost High Moderate

based features are fed into DL models to further extract highly distinctive representations

from these features [41, 132–144]. Compared to DL-based and signal processing-based

features, hybrid features have higher discriminative power, which generally leads to better

performance. However, employing hybrid approaches involves increased online process-

ing time and higher computational complexity, making practical deployment subject to

trade-offs between system complexity and performance requirements. In general, hybrid

approaches prove feasible in applications that involve complex signals, such as radio mod-

ulation recognition [41, 140–144]. In these applications, signals are randomly modulated,

corrupted with high noise levels, and subject to various types of interference.

Focusing on signal processing-based feature extraction, the taxonomy of Fig. 3.29, from

a computational point-of-view, divides the existing methods into four main categories:

time domain-based methods, transform-based methods, decomposition-based methods, and

envelope-based methods. Time domain-based methods extract features directly from time

domain waveforms of the signal without further processing. On the other hand, transform-

based, decomposition-based, and envelope-based methods use additional steps to process

the signal and, consequently, additional computations to extract features. The remainder of

this section reviews common methods that exist within each category.

3.5.1 Time Domain-Based Methods

In time-domain-based methods, features are calculated from the signal’s amplitude, rep-

resenting specific aspects of the signal’s dynamics over its time period. This allows for
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the quantification of amplitude variations from one period to another. Conventional meth-

ods [145–160] involve extricating shape characteristics— such as maximum, peak-to-peak

value, and crest factor— and statistical properties of the input signal. Statistical features

describe characteristics of the probability distribution of the input signal; common statis-

tical features involve mean, Root-Mean-Square (RMS) value, variance, and High-Order

Statistics (HOS), such as skewness and kurtosis. Compared to first and second-order statis-

tics (mean and variance), HOS features have more distinguishable characteristics as they

can identify more complex aspects of the input signal, such as the shape of its distribution.

Furthermore, HOS are less sensitive to noise. Besides shape-based and statistical methods,

time-domain entropy methods [53, 161–163] are commonly utilized for feature extraction.

Entropy methods rely on the observation that signals belonging to different classes or con-

ditions typically exhibit different levels of irregularity or dynamic changes depending on

the underlying state. Hence, different entropy measures can be utilized to quantify the ir-

regularity of the input signal. In contrast to statistical features, entropy-based features are

more sensitive to changes and complexities that arise within the signal. Thus, they can cap-

ture variations and irregularities in the signal that may be difficult to detect using traditional

statistical measures. Additionally, entropy-based features are resilient to noise and outliers.

In general, time-domain feature extraction approaches work directly on input signals, mak-

ing them conceptually straightforward and relatively easy to implement. Further, they are

computationally efficient since no further processing steps are required, making them ad-

vantageous in applications where real-time processing is crucial, especially with limited

computational resources. However, time-domain analysis is highly susceptible to noise

since noise in the signal would alter its amplitude and mask the dynamic characteristics of

the signal. Furthermore, to achieve reliable performance, input segments of relatively long

duration are usually required to capture the changes and complexities that evolve within

the signal over time.
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3.5.2 Transform-Based Methods

Transform-based approaches use advanced techniques to convert signals from the time do-

main to the frequency domain or time-frequency domain. This allows for the identification

of frequency and frequency-temporal information, facilitating robust signal analysis and

feature extraction.

Frequency-Based Methods

Frequency-based approaches represent signals in terms of their frequency content, reveal-

ing details that are not apparent in the time-domain waveform. Further, in contrast to time-

domain analysis, frequency-based analysis allows the isolation and removal of noise or

unwanted components by applying appropriate frequency filtering mechanisms to improve

the signal-to-noise ratio and improve the reliability of the extracted features. Frequency-

based approaches involve the application of the Fourier Transform (FT) to the input signal

to compute its frequency content, which can be broadly categorized into two main cat-

egories: spectrum-based [24, 146, 164–177] and spectral density-based [174, 178–182].

Spectrum-based approaches use the frequency spectrum of the signal for feature extrac-

tion. Specifically, some approaches directly use resultant Fourier coefficients of the input

segment as input features [164–168] since these coefficients describe the distribution of the

signal’s energy over the range of frequencies contained in the signal. Here, dimensionality

reduction and feature selection techniques are often used to reduce the size of coefficients

and select the most discriminative coefficients.

Other approaches involve the extraction of various frequency-domain features from the fre-

quency spectrum, such as statistical properties, energy, entropy, and correlation coefficients[24,

146, 169–177]. Spectral density-based approaches, on the other hand, utilize the Power

Spectral Density (PSD) of the input signal to extract the features [174, 178–182] since it

provides a normalized measure of the power per unit frequency compared to the frequency



Chapter 3 – On the Intersection of Signal Processing and Machine Learning: A Use
Case-Driven Analysis Approach 98

spectrum. Entropy is frequently utilized in PSD analysis to calculate Spectral Entropy (SE)

[179, 180]. SE is a very useful spectral feature that measures the irregularity or random-

ness of power distribution across signal frequencies and, hence, can be used to quantify

the spectral complexity of the input signal. Other methods utilize Mel-Frequency Cep-

stral Coefficients (MFCCs) as input features [183–192] because they effectively capture

the shape of the power spectrum. MFCCs are originally developed for audio signals [193]

and are gaining attraction in other various applications as well. A thorough explanation

of MFCCs, including computational steps and usage scenarios, can be found in [193].

Higher-order spectra [194–197] are commonly used in frequency-domain analysis to con-

duct a more comprehensive spectral analysis compared to second-order spectral analysis.

Common higher-order spectra include bispectrum and trispectrum [195, 198–207], which

correspond to the FT of the signal’s third-order cumulant and the fourth-order cumulant,

respectively.

A key advantage of higher-order spectra over power spectrum is their ability to retain

phase information [208]. Specifically, the power spectrum, representing the second-order

spectrum or the FT of the autocorrelation function, captures the magnitude of frequencies

present in a signal but discards phase information. This limitation makes it challenging

to identify phase-related properties of the signal, such as frequency coupling or interac-

tions between different frequency components. In contrast, higher-order spectra provide

insight into the phase relationships among frequency components by examining moments

or cumulants of the signal beyond the second order, enabling the detection of nonlinear-

ities, phase coupling, and other characteristics that are invisible in the power spectrum.

However, higher order spectra are more complex to calculate and interpret than traditional

power spectral analysis because they require more data for reliable estimation and involve

more sophisticated mathematical and computational methods. Furthermore, due to their

multi-dimensional nature, visualisation and interpretation of higher order spectra can be

challenging. Because of this complexity, specific cross sections or slices of the bispectrum
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or trispectrum are often analysed to extract meaningful information. This approach simpli-

fies the analysis by reducing the dimensionality of the data, making it easier to visualise

and interpret.

While frequency analysis accurately distinguishes between different frequency components

in the signal, the analysis spans the signal’s entire duration, lacking the ability to provide

temporal information about the timing of occurrence of these frequencies within the signal.

Additionally, the FT is not ideal for analyzing signals that contain highly time-localized

components, such as short bursts with high energy concentrations, because the components

produce a wide range of frequencies in the frequency spectrum due to the inherent uncer-

tainty principle associated with Fourier analysis [54].

Time-Frequency-Based Methods

In contrast to frequency-domain analysis, which lacks time resolution, time-frequency

transforms produce representations that map the signal’s energy across both time and fre-

quency, allowing for a localized analysis in the time-frequency domain. This approach

allows the identification of transient oscillatory components within the signal, providing a

more complete understanding of its dynamics. Time-frequency transforms that are com-

monly used in the literature for feature extraction include Short-Time Fourier Transform

(STFT), [209–221] Hilbert-Huang transform (HHT) [222–232], Wigner-Ville Distribution

(WVD) [233–241], and Continuous Wavelet Transform (CWT) [213, 239, 242–252]. STFT

is efficient in analyzing nonstationary signals whose spectral properties vary over time.

However, it uses a fixed segment length in analyzing the signal, imposing a trade-off be-

tween time-domain and frequency-domain resolutions. In CWT, on the other hand, time-

frequency analysis is based on a family of wavelets generated from a single mother wavelet

through scaling and translation, offering a multi-resolution analysis of the signal at differ-

ent frequencies (scales) and time intervals (translations). Moreover, in contrast to STFT,

which uses complex exponentials as basis functions— that extend infinitely in the time
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domain—, wavelet base functions are localized in time and frequency, making them more

suitable for signals with transient or highly localized components. The HHT uses an adap-

tive approach for time-frequency analysis. Unlike STF and CWT, HHT does not impose a

fixed basis function on the signal analysis but instead uses an adaptive approach to analyze

the signal. This adaptivity makes it highly responsive to variations in the signal, facilitat-

ing very effective analysis of nonlinear and nonstationary signals. However, as an adaptive

analysis method, its performance depends heavily on two factors: the stopping criterion for

the sifting process [71] and the choice of the interpolation method for envelope estimation

[72].

A proper stopping criterion ensures that the decomposition process neither overfits nor

underfits the signal, thereby preserving the signal’s essential characteristics without in-

troducing artifacts. On the other hand, the interpolation method for envelope estimation

determines how well the upper and lower envelopes capture the actual oscillatory modes of

the signal, heavily influencing the HHT’s performance. The WVD offers a time-frequency

representation with high energy concentration, facilitating detailed analysis of a signal’s

energy distribution over both time and frequency domains. The high concentration of en-

ergy arises from the quadratic nonlinear structure of WVD compared to STFt and CWT.

This energetic and correlative nature of the WVD [75] makes it very useful in analyzing

single-component signals. However, the quadratic nature of the WVD represents a ma-

jor challenge when analyzing multi-component signals due to high cross-term interference

[76] caused by undesired cross-correlation between various signal components, leading to a

false indication of non-existent signal components in the resultant time-frequency represen-

tations of the signal. Window-based WVD [77, 78] and kernel-based approaches [79, 80]

are commonly used to reduce the cross-terms at the cost of some loss in resolution.

From a feature extraction perspective, time-frequency-based methods can be grouped under

three main approaches in which the generated energy-time-frequency mappings are treated
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differently:

1. Transformation coefficients as input features: In these approaches, the generated

transform energy coefficients, representing signals’ energy distribution across time-

frequency instants, are used directly as input features for the ML model [209, 210,

222, 227, 230, 231, 242, 251]. Feature selection techniques are commonly used here

to select the most distinctive representations, which helps reduce redundancy and

relaxes computational requirements for training and inference.

2. Energy-time-frequency 2D heatmaps as imagery data: The generated energy-time-

frequency representations are used to visualize 2D heatmaps that map the signal’s

energy across time-frequency instants. Accordingly, computer vision and DL tech-

niques are leveraged where these heatmaps serve as input images [211–219, 223,

228, 233, 234, 238, 239, 241, 243, 244, 249, 250, 252].

3. Transformation coefficients as signal representations: In these approaches, the gener-

ated mappings are treated as transformed representations of the signal. Subsequently,

these representations are subjected to further signal-processing techniques to extract

features of interest, such as entropy, energy, and statistical properties [220, 221, 224–

226, 229, 232, 235–237, 240, 245–248]. Compared to the other two approaches,

these methods generally result in a smaller number of features, making them more

suitable for applications with low computational requirements.

Spectral Kurtosis (SK) [253, 254] is a popular time-frequency analysis tool in signal pro-

cessing that is commonly used to locate harmonics, transients, and repetitive impulses in

the frequency domain. SK is based on computing the normalized fourth-order moment

(kurtosis) of the STFT of the signal at each frequency bin, providing a statistical measure

of the signal’s characteristics at each time-frequency instant. Essentially, SK quantifies the

“peakedness” or impulsiveness of the distribution of the power at each frequency bin. One

of its primary applications is the detection of transient components in signals. Transients,
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due to their short and sharp nature, create distinct, non-Gaussian patterns in the signal’s

frequency content. When these features are present, the kurtosis values in the affected fre-

quency bins will be significantly higher than those of normal behavior. Accordingly, high

SK values can indicate the presence of impulses or bursts, as they cause a deviation from the

Gaussian distribution typically observed in stable operating conditions. This is particularly

useful in condition monitoring and fault diagnosis of rotating machinery and mechanical

systems [255–257], where transient vibrations often indicate faults. Additionally, SK is

an effective tool for distinguishing between harmonic components— which often manifest

as consistent, periodic components— and noise in the signal. These harmonics will often

show higher kurtosis values, indicating a non-Gaussian distribution, possibly due to the

periodic and repetitive nature of the harmonics. In contrast, Gaussian noise tends to have a

kurtosis value close to 0, indicating a Gaussian distribution.

3.5.3 Signal Decomposition-Based Methods

Signals generated by physical systems typically consist of multiple components or modes

of time-varying nature in amplitude, phase, and frequency. These components contain

meaningful information about the underlying structure of the signal. Decomposition tech-

niques attempt to decompose the signal into elementary modes, enabling signal analysis at

the level of its constituent components. This, in turn, allows for the extraction of highly

distinctive features, that are closely related to the inherent structure of the signal. Common

decomposition approaches include wavelet-based decomposition and Adaptive Mode De-

composition (AMD) methods. In wavelet-base decomposition methods [56, 251, 258–278],

Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), and Wavelet

Packet Transform (WPT) are commonly used to decompose the signal into elementary

modes of high and low-frequency components using digital filter banks. The performance

of wavelet decomposition is highly dependent on the base wavelet function and the level

of decomposition. AMD methods [260, 265, 279–294] utilize an empirical decomposition
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approach where the signal is adaptively decomposed into a set of simpler functions known

as Intrinsic Mode Functions (IMFs). Hence, in contrast to wavelet-based methods, AMD

methods use an adaptive mechanism rather than a priori basis function to decompose the

signal, leading to more “natural” modes that are not influenced by a priori basis function

[59]. Moreover, the ability of AMD methods to adapt to varying signal characteristics

makes them effective when dealing with nonlinear and nonstationary signals. However,

this adaptability comes at the cost of higher computational complexity. Furthermore, AMD

methods are generally sensitive to noise because they rely on the extrema and minima of

the signal for signal decomposition. Additionally, they suffer from inherent limitations,

such as end effect [60] and mode mixing [61]. Various methods have been introduced to

address these limitations, such as Ensemble Empirical Mode Decomposition (EEMD) [62]

and Variational Mode Decomposition (VMD)[63], local mean decomposition [64], and

Empirical Wavelet Transform (EWT) [65].

In the existing literature, signal decomposition is utilized through two approaches for fea-

ture extraction; each approach serves a distinct objective:

1. Extraction of highly discriminative features: In these methods, features are extracted

from elementary modes resulting from the decomposition process. Accordingly,

feature extraction methods can be generally grouped under four main categories:

entropy-based [273, 274, 278, 284, 285, 294], energy-based [262, 268, 275, 276],

spectral-based [56, 263, 277, 283, 286, 291, 293, 294], and statistical-based [258,

260–262, 264, 265, 271, 272, 286, 294]. Entropy as a measure of uncertainty, is

used to quantify the irregularity within the decomposed modes. Energy-based ap-

proaches utilize the changes in energy content of the decomposed modes to extract

the features. Spectral-based approaches use spectral characteristics of the elemen-

tary modes to extract the features. Statistical-based approaches rely on time-domain

properties of the modes such as skewness, kurtosis, Root-Mean-Square (RMS), and
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crest factor for feature extraction.

2. Obtaining a low-redundancy (highly informative) version of the composite signal

[251, 259, 266, 267, 269, 270, 279–282, 287–290, 292]: This is accomplished by

decomposing the signal into elementary modes and applying further processing to

examine these modes based on predefined ranking criteria. The highest-ranked mode

is thus selected and various feature extraction techniques can be applied to the se-

lected mode accordingly. Here, the selected mode represents a low-redundancy and

high-informativeness version of the original signal.

An important aspect of the first approach is that it provides a convenient way to construct a

feature vector of controllable size and highly discriminative nature [56], which is particu-

larly helpful in applications with limited computational resources. This is facilitated by de-

composing the signal into a finite number of modes and extracting a few features from each

mode. For instance, decomposing the input segment of a signal into 8 modes and taking the

energy or entropy of each mode as a feature leads to a feature vector with a size of 1×8 dis-

tinctive features. It is also less computationally intensive than the second approach, making

it more suitable for real-time processing and applications with limited processing capabil-

ities. However, by focusing on the highest-ranked mode, the second method ensures that

the extracted features are highly informative and less redundant. Moreover, the capability

to rank and select modes based on predefined criteria allows for dynamic screening that can

be automatically adapted according to the nature of the input signal, which becomes par-

ticularly useful in applications that involve multiple signals from various sources, such as

advanced diagnostic systems and integrated condition monitoring applications. Addition-

ally, selecting the most informative mode can result in more accurate and relevant feature

extraction, potentially improving the performance.
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3.5.4 Envelope-Based Methods

Envelope-based feature extraction methods [295–306] primarily focus on analyzing the en-

velope of the signal to reveal essential characteristics of its amplitude, such as statistical

properties, peak frequency, energy, and entropy. In these methods, The HT is commonly

used to obtain the signal’s envelope, which is then subjected to various feature extraction

techniques. Envelope-based feature extraction is particularly useful in applications where

Amplitude Modulation (AM) is a key characteristic of the signal; that’s it, the amplitude of

the signal is varied or altered in response to specific factors that are of interest, for instance,

impacts generated by defects in rolling bearings [307]; in such situations, envelope-based

analysis can effectively extract meaningful features. Generally speaking, as an amplitude-

focused approach, envelope analysis offers limited frequency information about the signal.

Furthermore, its effectiveness can vary significantly depending on the nature of the signal,

as not all signal types are amenable to envelope-based analysis. Additionally, it is highly

susceptible to noise that contaminates the signal’s amplitude such as impulsive noise, mak-

ing it difficult to extract effective features from the envelope [306].

The selection of an appropriate feature extraction method for a given signal depends on

several factors, including the nature of the signal, the specific requirements of the applica-

tion, and the available computational resources. For stationary signals, where the primary

interest lies in frequency analysis, Fourier analysis provides a highly efficient approach to

identifying dominant frequency components within the signal. In scenarios involving com-

parative spectral analysis of multiple signals that vary in length and/or bandwidth, PSD is

particularly advantageous since it provides a normalized spectral density measure, facil-

itating effective comparison. On the other hand, signals exhibiting time-varying spectral

characteristics necessitate the use of proper time-frequency analysis for effective feature

extraction. The STFT offers a computationally efficient tool for time-frequency analysis

of the signal. However, its fixed resolution across all frequencies reduces its effectiveness
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for applications requiring variable-resolution analysis. In such contexts, wavelet analysis

presents a practical solution due to its ability to perform multi-resolution analysis through

scaled and shifted versions of a wavelet base function. For analyzing nonstationary and

nonlinear signals characterized by rapidly changing components, the HHT provides an

adaptive and more robust approach than Wavelet analysis but with more computational

requirements. The WVD provides a practical approach for achieving a joint energy-time-

frequency representation of the signal, although it is computationally intensive compared

to the other transforms. It is particularly useful in high-resolution analysis scenarios or

where energy concentration is a focal requirement. Signal decomposition techniques en-

able signal analysis at the level of its constituent components. This, in turn, allows for

the extraction of highly distinctive features of a controllable size that are closely associated

with the inherent structure of the signal. The envelope-based analysis is especially effective

in applications where the envelope characteristics are of primary interest.

3.6 Conclusion

Addressing the existing gaps related to the role of signal processing in ML, this chapter has

undertaken a comprehensive, integrated-article approach to present several contributions

that aim to enrich the existing literature. First, the chapter made a solid foundation on

the topic through a comprehensive tutorial on signal processing fundamentals. Written for

a diverse readership, the tutorial allows interested readers to grasp essential concepts and

develop a proper background in signal processing.

Furthermore, the chapter provided a comprehensive overview of a typical signal-processing

pipeline, introducing a structured workflow for signal-based ML applications by categoriz-

ing tasks into preprocessing, processing, and application phases. Additionally, the chapter

introduced an exhaustive review of feature extraction methods through a new taxonomy

that clearly distinguishes between two main concepts in feature extraction: feature learning
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and feature engineering, thereby offering new insights into the topic of feature extraction.

Focused on signal processing-based feature extraction, the chapter reviewed various avail-

able techniques in terms of their main aspects, advantages, and limitations. Moreover, this

work contributes to the research community by introducing a public repository of relevant

Python and MATLAB codes for various signal-processing techniques.
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Chapter 4

4 Similarity-Based Framework for VBCM using Limited

Labeled Data

In this chapter1, the second research problem of the thesis is presented, which is related

to the limited availability of labeled training data needed for supervised learning-based

Vibration-Based Condition Monitoring (VBCM). Classical VBCM methods depend on su-

pervised learning, where a classifier is trained on a labeled dataset to determine the current

state of the system. In practical scenarios, the amount and type of labeled data available for

training classification models are restricted, which can make it challenging to use.

The first work in this chapter is entitled “Similarity-Based Predictive Maintenance Frame-

work for Rotating Machinery” (Section 4.1). It is published as a technical paper in the

5th International Conference on Communications, Signal Processing, and their Applica-

tions (ICCSPA). The presented work at the conference was recognized with the Best Paper

Award, highlighting its significance and potential. In this work, the research problem is

tackled by addressing the classification task as a similarity measure to a reference sample

rather than a supervised classification task. Accordingly, a similarity-based framework for

VBCM is proposed and applied to the fault detection and diagnosis of rotating machinery.

This work tackles the research problem by addressing the classification task as a similarity

measure to a reference sample rather than a supervised classification task. The work in-

troduces a similarity-based framework for VBCM and applies it to the fault detection and

diagnosis of rotating machinery.

The second work in this chapter is entitled “SB-PdM: a tool for predictive maintenance of

rolling bearings based on limited labeled data” (Section 4.2) and was published as an invited

paper in the Software Impacts journal. This work presents an open-source implementation

1A version of this chapter has been published in [308] and [278].



Chapter 4 – Similarity-Based Framework for VBCM using Limited Labeled Data 109

of the similarity-based framework. The SB-PdM software is written in Python and released

under the MIT license.

4.1 Similarity-Based Predictive Maintenance Framework

for Rotating Machinery

Data-driven techniques are commonly adopted for VBCM in smart manufacturing. Clas-

sical approaches use supervised learning, where a classifier is trained on labeled data to

predict or classify different operational states of the machine. However, in most industrial

applications, labeled data is limited in terms of its size and type. Hence, it cannot serve the

training purpose. In this section, this problem is tackled by addressing the classification

task as a similarity measure to a reference sample rather than a supervised classification

task. Similarity-based approaches require a limited amount of labeled data and, hence,

meet the requirements of real-world industrial applications. Accordingly, the section intro-

duces a similarity-based framework for VBCM and applies it to detect and diagnose faults

in rotating machinery. For each operational state of the machine, a reference vibration

signal is generated and labeled according to the machine’s operational condition. Conse-

quentially, statistical time analysis, Fast Fourier Transform (FFT), and Short-Time Fourier

Transform (STFT) are used to extract features from the captured vibration signals. For

each feature type, three similarity metrics, namely Structural Similarity Measure (SSM),

cosine similarity, and Euclidean distance, are used to measure the similarity between test

signals and reference signals in the feature space. Hence, nine settings in terms of feature

type-similarity measure combinations are evaluated. Experimental results confirm the ef-

fectiveness of similarity-based approaches in achieving very high accuracy with moderate

computational requirements compared to Machine Learning (ML)-based methods. Fur-

ther, the results indicate that using FFT features with cosine similarity would lead to better

performance compared to the other settings.
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4.1.1 Introduction

Predictive Maintenance (PdM) approaches have been widely adopted in recent years for

maintenance management in rotating machinery. PdM relies on continuously monitoring

the equipment’s condition, and actions for maintenance are predicted based on the equip-

ment’s actual condition. PdM involves two main tasks: First, extracting useful features

from equipment-related data—such as vibration signals generated by rolling bearings of

the rotating machinery— that can describe the process integrity well with high sensitiv-

ity to any changes within the process. The second task involves utilizing the extracted

features to classify or predict normal and abnormal operational conditions with high accu-

racy. Common feature extraction methods include time domain analysis, frequency domain

analysis, and time-frequency domain analysis [309][146]. In time-domain analysis, com-

mon statistical properties of the signal, such as kurtosis, skewness, crest factor, and peak,

are used as features. Although time domain analysis is considered a simple approach to

extract features, it has low sensitivity to process variations. Frequency domain analysis,

such as FFT, allows the extraction of spectral-related features that are sensitive to varia-

tions in operational conditions. However, frequency domain analysis has no resolution in

the time domain. Moreover, its application is limited to stationary signals. On the other

hand, time-frequency domain analysis has better temporal and frequency localization com-

pared with the Fourier analysis. Common time-frequency domain analysis methods include

STFT, wavelet transform, and Hilbert–Huang Transform (HHT). Regarding the classifica-

tion task, classical methods utilize supervised learning techniques to train a classifier on

the extracted features. These methods usually require large-sized labeled data to fulfill

training requirements. However, in most real-world situations, the available labeled data

is limited in its size. Moreover, it is difficult to have labeled data that can model all pos-

sible classes or operational conditions sufficiently. For example, it is possible to obtain

sufficient samples that can model standard or normal conditions. On the other hand, sam-
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ples of abnormal conditions are usually not abundant and insufficient to model all possible

abnormal operational conditions. Similarity-based approaches [309][310]–[311] offer an

alternative solution to perform classification tasks with limited labeled data. In contrast to

supervised learning, similarity-based techniques achieve classification tasks by measuring

the similarity between a given test sample and a labeled reference sample, which can be

achieved using very limited labeled data. This chapter introduces a similarity-based PdM

framework for rotating machinery. The monitoring of process integrity is achieved by con-

tinuously analyzing the vibration signal generated by the rolling-element bearing. For each

operational condition, a reference signal is generated and labeled according to the current

operational condition. Then, signal processing-based methods are used to extract features

from captured vibration signals. Accordingly, the similarity between test signals and refer-

ence signals is measured in the feature space to predict different operational conditions of

test signals. The main contributions of the section are summarized as follows:

• Introducing a similarity-based framework for condition monitoring of rotating ma-

chinery. The main aspects of the framework are feature extraction and similarity-

based classification.

• Three types of features, namely, time, frequency, and time-frequency features, are

extracted from vibration signals.

• For each feature type, three similarity metrics are used for similarity-based classifi-

cation. The three metrics are SSM, cosine similarity, and Euclidean distance.

The section is outlined as follows: The next section provides a review of related work.

The methodology and framework are introduced in Section 4.1.3 and Section 4.1.4, re-

spectively. Section 4.1.5 presents the dataset and the experimental setup for performance

evaluation, while Section 4.1.6 discusses the results. The section is finally concluded in

Section 4.1.7.



Chapter 4 – Similarity-Based Framework for VBCM using Limited Labeled Data 112

4.1.2 Related Work

Data-driven techniques are commonly adapted to perform PdM of rotating machinery us-

ing the vibration signals of rolling bearings [56]. However, the majority of the proposed

techniques in the literature rely on ML-based classification, and less attention is paid to

similarity-based approaches. In [146], a comparative study to evaluate the effectiveness of

statistical time domain features with several classifiers is attempted. Results show that the

extracted features are effective in identifying bearing faults. Further, it was found that the

accuracy of classification increases as the length of the captured signal increases. How-

ever, increasing the length of captured signals would increase computational requirements.

Moreover, it could delay triggering the faults. In [309], [310], and [312], frequency domain

features and time-frequency domain features, along with similarity-based classification ap-

proaches, are utilized for rolling bearing condition monitoring. In [309], a labeled reference

signal from each operation condition is generated in the first place. Consequentially, FFT

is used to extract the features from the signals, and different operational conditions are de-

termined by applying a proposed statistical similarity measure between test samples and

reference samples. In [310], a similar approach is used. However, in contrast to [309],

SSM [313] is adapted to measure the similarity. Further, Wavelet Packet Decomposition

(WPD) is used to improve system robustness against noise and at the same time, increase

its sensitivity to local differences in vibration signals. Consequentially, STFT is used to

extract features from reconstructed signals. In [312], the spectrogram images of the test vi-

bration signals are compared with spectrogram images of normal baseline vibration signals

using SSM. Consequentially, normal and faulty vibration signals are classified by setting a

threshold on the resulting SSM scores. The main aspect in [309], [310], and [312] is the

use of signal processing for feature extraction along with similarity-based classification,

which eliminates the need for machine learning-based trained classifiers. This chapter in-

troduces a framework for similarity-based condition monitoring of rotating machinery and
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uses statistical time properties, FFT, and STFT to extract the features from variation signals.

Further, in contrast to [309], [310], and [312] where statistical and structural similarities

are used, This work uses cosine similarity and Euclidean distance—which are less complex

compared to SSM—to measure the similarity between reference and test samples.

4.1.3 Methodology

Figure 4.1: similarity-based classification framework

Fig.4.1 shows a flowchart of the similarity-based classification framework. In the first stage,

discriminative features are extracted from labeled reference samples and test samples. Con-

sequentially, the similarity between reference samples and test samples is measured in the

feature space. Finally, the classification of different operational conditions is achieved

by evaluating the resulting similarity scores. In contrast to machine learning-based ap-

proaches, the framework utilizes similarity scores to determine operational conditions in-

stead of a trained classifier. The main aspects of the framework are feature extraction and

similarity measures. Extracted features should be selected so that they satisfy two main

conditions:

• Describe the inherent characteristics of all operational conditions “classes” in the

data.

• Have a high discrimination degree between the different operational conditions in the
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data.

Once features are extracted, the similarity measure is applied to quantify the similarity be-

tween reference samples and test samples in the feature space. To perform the similarity

measure, a reference sample from each operational condition “class” should be available.

Since the similarity measure provides a quantitative value, it can be used to assess the prob-

ability that the reference sample and test sample belong to the same operational condition.

The higher the similarity, the higher the probability they belong to the same condition. This

can be expressed mathematically as follows: For a given test sample Xn, n = 1, ..,N and a

reference sample Yi, i = 1, ..,m, the similarity score sni can be defined as:

sn,i = S (F(Xn), F(Yi)) (4.1)

where N is number of test samples, m is number of operational conditions or classes, i is the

class of the reference sample, S is the applied similarity measure, and F denotes the feature

extraction function. The operational condition CXn of Xn can be determined according to

the below equation;

CXn = i if sn,i = M(S ) (4.2)

where,

M(S ) = M{sn,1, sn,2, ..., sn,m}, (4.3)

M {·} denotes the “maximum” or “minimum” operation depending on the similarity mea-

sure type.

4.1.4 Predictive Maintenance Framework for Condition Monitoring

of Rotating Machinery

In this section, the similarity-based framework is presented in detail. The framework per-

forms PdM by continuously analyzing the vibration signal of the rolling-element bear-
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ing. To simulate a noisy environment, vibration signals are corrupted with Additive White

Gaussian Noise (AWGN) at different Signal-to-Noise Ratio (SNR) levels. To increase the

system’s robustness against the noise, the signals are denoised using WPD. For each op-

erational condition, a labeled reference signal is generated. Its label represents the class

to which the signal belongs in terms of operational condition. To simulate the effects of a

noisy environment, reference, and test signals are corrupted by AWGN at the desired SNR.

In the next step, signal denoising is applied. Consequently, features are extracted from de-

noised signals. In the final stage, similarity in the feature space is measured between each

test signal and all labeled reference signals. Accordingly, for a given test signal, its deter-

mined class will be the class of the reference signal with the highest similarity score.

Signal Denoising

Generally, noise presence in the signal is characterized by high-frequency components.

Thus, signal denoising can be accomplished by decomposing the signal using the WPD

technique and filtering out detail coefficients associated with higher frequency sub-bands.

This can be achieved by thresholding the detail coefficients so that coefficients below the

threshold are set to zero. The denoised signal is then reconstructed using the approximation

and the thresholded detail coefficients. In this chapter, Daubechies 4 (db4) wavelet is used

to decompose the noisy signals, and the soft thresholding function [314] is applied to the

details coefficients. The threshold value is determined according to the below formulas

[315]:

threshold = σ
√

2 log(N)/N, (4.4)

σ =
median(|wk|)

0.6745
, (4.5)

where N is signal length, and |wk| are wavelet coefficients.
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Feature Extraction

Time domain analysis, frequency domain analysis, and time-frequency domain analysis are

used to extract features from vibration signals. The aim here is to evaluate and compare the

performance of time, frequency, and time-frequency features in a noisy environment. The

statistical proprieties of vibration signals will be used as time-domain features. FFT will

be used to obtain spectral components of the signals, and the positive part of the spectrum

will be used as frequency domain features. For time-frequency domain analysis, STFT

will be used. Fig. 4.2 shows FFT and STFT contents of the bearing’s vibration signal

of a normal operational condition along with a faulty operational condition. As shown,

frequency components of the vibration signal are very sensitive to changes in operational

conditions. Thus, in contrast to time-domain features, STFT and FFT provide very useful

features with a high discrimination degree for the classification of different operational

conditions.

Figure 4.2: (a) STFT and (b) FFT of normal (healthy) operational condition and a faulty
operational condition (ball fault of 0.07 inches in diameter)

Similarity Measure

To evaluate the similarity between test signals and reference signals in the feature space,

three different similarity measures are used and compared in terms of classification accu-

racy. The three measures are cosine similarly, Euclidean distance, and SSM [313]. The
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cosine similarity Cs between two vectors X and Y of length N is;

Cs(X,Y) =
∑N

n=1 Xn · Yn√∑N
n=1 X2

n ·

√∑N
n=1 Y2

n

(4.6)

For a given test signal Xn and m reference signals Yi, i = 1, ..m, the class of Xn is determined

as follows:

Class of Xn = i if Cs(F(Xn), F(Yi)) = max{D} (4.7)

where,

D = {Cs(F(Xn), F(Y1)),

Cs(F(Xn), F(Y2)), ..,Cs(F(Xn), F(Ym))}.
(4.8)

The Euclidean distance between two vectors X and Y of length N is:

d (X,Y) =

√√
N∑

n=1

(Xn − Yn)2, n = 1, . . . ,N (4.9)

For a given test signal Xn and m reference signals Yi, i = 1, ..m, the class of Xn is determined

as follows:

Class of Xn = i if d(F(Xn), F(Yi)) = min{D} (4.10)

where,

D = {d(F(Xn), F(Y1)),

d(F(Xn), F(Y2)), .., d(F(Xn), F(Ym))}.
(4.11)

The SSM algorithm [313] is an image quality assessment metric; it provides a perceptual

metric to quantify the degradation in image quality caused by image processing such as

compression, transmission, etc. The algorithm requires two input images, a processed
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image, and its reference image. The structural similarity between the input images is then

evaluated by comparing the luminance, contrast, and structure of the two input images. The

output is a value between 0 and 1 that quantifies the quality of the processed image with

respect to the reference image. The higher the value, the higher the quality. Accordingly,

SSM is defined as [313]:

S S M(X,Y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

(4.12)

where, σxy, µx, µy, σx, σy are covariance, means and standard deviations of vectors X and

Y; calculated over a window of size w, in this chapter, the window size is set to 7. C1,2

are arbitrary constants to avoid unstable output when either (µ2
x + µ

2
y+) or (σ2

x + σ
2
y) is very

close to zero. For a given test signal Xn and m reference signals Yi, i = 1, ..m, the class of

Xn is determined as follows:

Class of Xn = i if S S M(F(Xn), F(Yi)) = max{D} (4.13)

where,

D = {S S M(F(Xn), F(Y1)),

S S M(F(Xn), F(Y2)), .., S S M(F(Xn), F(Ym))}.
(4.14)

In this section, SSM is used to measure the similarity between reference samples and test

samples in the feature space where X and Y represent the extracted features of test samples

and reference samples, respectively.

4.1.5 Performance Evaluation

The Case Western Reserve University (CWRU) bearing test data [316] is used to evaluate

the performance of the framework. The framework is implemented in Python program-
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Table 4.1: Bearing test data

ming language using Numpy [317], Pandas [318], Scikit-learn [319], SciPy [320], and

scikit-image [321], libraries. The CWRU bearing test data consists of vibration signals of

normal and faulty bearings. Faults ranging from 0.007 inches in diameter to 0.040 inches in

diameter were introduced separately at the inner raceway, the ball, and the outer raceway.

Faulted bearings were reinstalled into the test motor, and vibration data was recorded for

motor loads of 0 to 3 horsepower (motor speeds of 1797 to 1720 RPM), and digital data

was collected at 12,000 samples per second. Table 5.1 shows the operational condition,

fault diameter, and motor speed of these vibration signals. According to the operational

condition and fault diameter, abnormal operational conditions are classified into 9 classes,

as shown in the table. Thus, the dataset consists of 10 operational conditions or classes,

one normal operational class, and nine faulty operational classes.

Before processing the signals, each vibration signal is divided into samples of 2000 data

points each. With a sampling rate of 12000 KHz, this gives a sampled vibration signal of

0.166 seconds interval [310], which would be short enough to serve the purpose of con-

dition monitoring and reduce computational requirements. The resultant sampled dataset

consists of 3019 vibration signals. For each class, one reference signal is selected for each

motor speed. This yields a total of 40 reference signals, with 4 reference signals for each

class and a total of 2979 test signals.
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The next step involves corrupting reference and test signals with AWGN according to the

desired SNR. Consequently, signals are denoised using WPD. After the denoising opera-

tion, reference and test signals are fed into the feature extraction stage. Time domain fea-

tures are extracted as proposed in [146]. Frequency domain features and time-frequency

domain features are extracted according to settings in [309] and [310], respectively. After

the feature extraction stage, reference signals of the same class are combined into one ref-

erence signal by taking their mean. This will reduce computational requirements during the

next stages. Also, it is found that averaging same-class reference signals at this stage im-

proves the accuracy compared to averaging them before the feature extraction stage. This

improvement in accuracy can be justified as follows: Averaging same-class reference sig-

nals into one signal after the feature extraction stage will maintain feature-related character-

istics of each averaged signal and will reduce the probability of error in the similarity-based

classification.

4.1.6 Results and Discussion

The performance of the framework is evaluated in terms of classification accuracy, which

quantifies the correctly classified test samples as a percentage of total test samples. Table

5.4 shows accuracy performance under different SNR conditions. As shown, the classifica-

tion accuracy of the three similarity measures with time-domain, FFT, and STFT features

is evaluated at SNR levels of 2 dB, 4 dB, 6 dB, 8 dB, 10 dB, and 20 dB. The aim is to

evaluate the effectiveness of the extracted features and the employed similarity measures

under extreme, moderate, and low noisy conditions.

The first observation in the results is that STFT and FFT features have similar performance;

both achieved very high accuracy (> 98%) under all noisy conditions. It is noticeable that

even though FFT has no time resolution compared to STFT, it achieved slightly better

performance. From Fig.4.2.a, it is clear that the STFT spectrogram does not reveal any

obvious transitions in the frequency within the captured signal’s length of 0.166 seconds.
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Table 4.2: Accuracy results of time, frequency, and time-frequency features

Thus, the time resolution aspect of STFT didn’t add more discriminative characteristics to

the STFT features compared to the FFT features. Instead, it may cause slight redundancy

in the extracted features.

The second observation is that time-domain features have lower performance compared to

STFT and FFT. In contrast to frequency contents, the statistical time properties extracted

from the vibration signal’s waveform have low sensitivity to the variations in operational

conditions, especially with small lengths of captured signal [146]. Fig.4.3 demonstrates

the effectiveness of FFT and STFT features in similarity-based classification for vibration-

based condition monitoring. The figure shows two-dimensional scatter plots of test samples

with time-domain, FFT, and STFT features. For each feature type, the samples are repre-

sented on the X − Y plane by their scores of the two best-performing similarity measures.

Specifically, for FFT and STFT features, cosine similarity along with Euclidean distance

are used to plot the test samples on the X − Y plane. For time-domain features, SSM

score and Euclidean distance are used. The sample colors represent the operational classes,

showing how well the samples cluster in the feature space. As shown, unlike time-domain

features, FFT and STFT features have large difference margins in terms of similarity scores

between the operational classes, which is reflected by the large distance between inter-class

samples compared to intra-class samples. This clearly shows that FFT and STFT features

can effectively differentiate between classes, which, in turn, demonstrates the high discrim-
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Figure 4.3: scatter plot shows (a) all classes and (b) normal and inner race faulty classes
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inative capabilities of FFT and STFT features between the different operational classes

compared to time-domain features.

Regarding the effectiveness of the applied similarity measures, all three measures are effec-

tive in classifying different operational conditions with FFT and STFT features. While the

three similarity measures have very similar performance, the cosine similarity with FFT

features achieved the best performance compared to SSM and Euclidean distance with an

average accuracy of 99.57%. Table 5.4 also compares the obtained results with recent re-

lated work [309][310]. As shown in the table, the obtained FFT results are in conformance

with the results of [309] where FFT is used to extract the features. However, the obtained

STFT results are better than the results of [310] even though STFT with the same settings is

used in this section. In contrast to the signal denoising approach that is used in this section,

the signals in [310] are decomposed using WPD and reconstructed using only character-

istic fault frequencies and the most impulsive frequency bands. As a result, some of the

useful frequency components could be filtered out, which would explain the performance

gap between the two approaches.

4.1.7 Conclusion

In this section, a data-driven PdM framework using similarity-based classification is intro-

duced for condition monitoring of rotating machinery. The framework addresses real-world

situations of limited availability of labeled data by applying a similarity-based classifica-

tion where one labeled sample for each operational condition is enough to carry out the

classification task. The performance was investigated under different noisy conditions,

and WPD was employed to denoise the signals and increase system robustness against the

noise. Nine settings of feature type-similarity measure combinations were evaluated un-

der different SNR levels. Experimental results corroborate the effectiveness of similarity-

based approaches in vibration-based condition monitoring. Further, results demonstrate the

capability of similarity-based approaches in achieving very high accuracy with moderate
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computational requirements compared to machine learning-based methods. Moreover, the

results indicate that using FFT features with cosine similarity would lead to better perfor-

mance compared to the other settings.

4.2 SB-PdM: a Tool for Predictive Maintenance of Rolling

Bearings Based on Limited Labeled Data

Most of the existing code repositories of condition monitoring software are based on tra-

ditional ML-supervised algorithms that require labeled datasets to function. The SB-PdM

software has been developed and released publicly to address this limitation with the aim

that researchers and professionals in the industry can use and replicate the code in their

research and projects and advance the field of VBCM.

Classical PdM methods of rolling bearings rely on supervised learning, which involves

training a classifier on a labeled dataset to classify the current state of the bearings. In prac-

tical situations, labeled data may be limited in terms of its size and type, which can make it

difficult to use for training predictive maintenance models. The proposed Similarity-Based

PdM (SB-PdM) software addresses the challenge of limited labeled data by approaching

the classification task as a similarity measure to a reference sample rather than using super-

vised classification. Experimental results have confirmed the effectiveness of the proposed

SB-PdM software in achieving very high accuracy while requiring only moderate compu-

tational resources compared to traditional ML-based methods.

4.2.1 Introduction

PdM approaches have been widely adopted for the maintenance management of rolling

bearings. The main concept of PdM is to continuously monitor the condition of the bear-

ings and predict maintenance actions based on their actual condition. PdM typically in-
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volves two main tasks. The first task is to extract useful features from bearing-related data,

such as vibration signals, using various signal processing techniques. The second task is

to utilize the extracted features to classify or predict normal and abnormal operational con-

ditions, such as identifying potential faults or predicting remaining useful life. Classical

methods for PdM typically use supervised learning techniques [322] to train a classifier on

the extracted features. However, these methods can be limited by the requirement for large

amounts of labeled data to achieve optimal performance. In many real-world industrial sit-

uations, labeled data may be limited in size, making it difficult to train accurate predictive

models using supervised learning alone. Moreover, it can be challenging to obtain labeled

data that can effectively model all possible classes or operational conditions, particularly

for abnormal conditions, which may be rare or unpredictable. For example, while it may be

possible to obtain sufficient samples that can model standard or normal conditions, samples

of abnormal conditions may be insufficient or unavailable to model all possible abnormal

operational conditions accurately. Similarity-based approaches [309] [310][312][323] offer

an alternative solution to perform classification tasks with limited labeled data. In contrast

to supervised learning, similarity-based techniques perform the classification task by 1)

measuring the similarity between a given test sample and class-labeled reference samples

and 2) utilizing the resultant similarity scores to determine the class to which the test sam-

ple belongs. With respect to the availability of open-source software, most existing code

repositories for PdM applications are built on ML-supervised classification and assume

wide accessibility to labeled datasets. Therefore, the practical situations of data unavail-

ability, such as in the early stages of PdM solution deployment and specialized applications,

are often overlooked in this regard. The proposed SB-PdM software aims to address these

practical situations and fill the existing gap in the availability of open-source software for

PdM applications.

The remainder of this section is organized as follows: Section 4.2.1 highlights the concepts

of similarity-based classification and presents details of the SB-PdM software. Section
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4.2.2 evaluates the software’s performance using a real-world dataset. Section 4.2.3 high-

lights the Software’s impacts, and the conclusion is presented in Section 4.2.4.

4.2.2 SB-PdM Key Aspects and code functionalities

Figure 4.4: A high-level overview of the SB-PdM software

A high-level overview of SB-PdM is illustrated in Fig. 4.4. To perform similarity-based

classification, a labeled reference vibration segment should be available for each opera-

tional condition “class” as shown in the figure. The monitoring of process integrity is then

achieved by continuously measuring the similarity in the feature space between generated

vibration segments and the labeled reference vibration segments. Accordingly, the SB-

PdM software achieves the classification of different operational conditions by evaluating

the resulting similarity scores. The higher the similarity between a vibration segment and a

specific labeled reference segment, the higher the probability that they belong to the same

condition “class”. It is worth noting that in similarity-based classification, the reference

sample represents its corresponding class, and as such, it should sufficiently describe all
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variations or patterns within the class [323]. For instance, in a rotating machinery appli-

cation where the motor speed can vary, it is important to have a reference sample for each

speed profile to better model the different operational conditions of the machine.

Key Aspects of SB-PdM Software

The SB-PdM software involves two main stages: feature extraction and similarity mea-

sure. The main highlights of each stage are provided below.

Feature Extraction: The main aspect of the extracted features is that they should be di-

rectly related to the operational process with high integrity and sensitivity to any changes

within the process. Common feature extraction methods include time domain analysis

[146], frequency domain analysis [309], and time-frequency domain analysis [310][56]. In

time-domain analysis, statistical properties of the signal, such as kurtosis, skewness, crest

factor, and peak value are used as features. Although time-domain analysis is a simple ap-

proach for extracting features, it may have low sensitivity to process variations, particularly

with short durations of vibration segments. Furthermore, time-domain analysis is generally

not effective for use in high-noise environments. Frequency domain analysis, such as FFT,

allows for the extraction of spectral-related features that are sensitive to variations in oper-

ational conditions. However, frequency domain analysis can capture the frequency content

of the signals, but it cannot provide information about the temporal variations in the signals.

On the other hand, time-frequency domain analysis, such as wavelet analysis, can provide

better temporal and frequency localization compared to Fourier analysis. Common time-

frequency domain analysis methods include the STFT, Wavelet Packet Transform (WPT),

and Hilbert-Huang transform (HHT). In the SB-PdM software, features are engineered so

that they fulfill two main requirements:

• Describe the inherent characteristics of all operational conditions “classes” in the

data.
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• Have a high discrimination degree between the different operational conditions in the

data.

These requirements are fulfilled by utilizing frequency domain analysis and time-frequency

domain analysis to extract the features. Specifically, FFT, STFT, and WPT are used to

extract features from vibration segments.

Similarity Measure: Regarding the similarity measure, it should provide a quantitative

value that represents the similarity score between the two inputs. This similarity score can

be used to assess the probability that the two inputs belong to the same class. The higher the

similarity score, the higher the probability that they belong to the same class. In SB-PdM,

the similarity measure is applied to the extracted features to quantify the similarity between

the labeled reference vibration segments and the generated vibration segment in the feature

space. Hence, it works as a similarity-based classifier. In contrast to supervised classifica-

tion, where a labeled dataset is required for training, similarity-based classification requires

one labeled reference vibration segment for each operational condition “class”. The SB-

PdM uses the SSM [313], cosine similarity, and Euclidean distance to perform similarity

measures between the extracted features of labeled reference segments and generated vi-

bration segments.

SB-PdM code functionalities

This section describes the functionalities of the code repository on GitHub [324]. The

software is developed in Python programming language and utilizes Numpy [317], Pandas

[318], Scikit-learn [319], SciPy [320], scikit-image [321], and PyWavelets [325] packages.

The GitHub repository includes the following files.

Reference Samples.csv and Test Samples.rar: These are .csv files that contain reference-

labeled vibration segments and test segments. The vibration segments are extracted from
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the Case Western Reserve University (CWRU) bearing data [316]. The data consists of vi-

bration signals of normal and faulty bearings. Faults ranging from 0.007 inches in diameter

to 0.040 inches in diameter were introduced separately at the inner raceway, the ball, and

the outer raceway to simulate different types of faults. The faulted bearings were reinstalled

into the test motor, and vibration data was recorded for motor loads ranging from 0 to 3

horsepower, corresponding to motor speeds of 1730, 1750, 1772, and 1797 RPM. Digital

data was collected at a rate of 12,000 samples per second to capture the vibration signals.

Based on the operational condition and fault diameter, abnormal operational conditions

are classified into nine classes. Thus, vibration data consists of 10 operational conditions

or classes, including one normal operational class and nine faulty operational classes that

represent different types of faults. Each vibration signal is divided into segments of 2,000

data points each. With a sampling rate of 12000 KHz, this results in a vibration segment of

0.166 seconds interval, which is short enough to serve the purpose of condition monitoring

and reduce the computational requirements. The resultant segmented vibration data con-

sists of 3,019 vibration segments. For each class, one reference segment is selected from

each of the four motor speed profiles, resulting in a total of 40 reference segments, with

four reference segments for each class. In total, there are 2979 test segments, which can be

used to evaluate the performance of the SB-PdM software.

SB PdM Tool.ipynb: This is Jupiter notebook that contains the SB-PdM code. It in-

cludes five functions:

1. apply fft: This Function applies FFT to the input vibration segment “x” to obtain

its spectral contents. The positive part of the spectrum “freq values” is used as fre-

quency domain features. The parameters “fs” and “num samples” provide the sam-

pling frequency of vibrating segments and the number of data points in the input

segment, respectively.

2. apply stft: Function to perform STFT to the input vibration segment. STFT pro-
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vides time-domain analysis of the input vibration segment, which allows extraction

of time-frequency features since STFT determines the frequency contents of the seg-

ment as it changes over time. This is achieved by dividing the input time-domain

vibration segment “x” into local sub-segments of equal time lengths “seg length”,

which is typically performed by multiplying the signal with a sliding window func-

tion “window”. The percentage of overlap between seb-segments is controlled by

the parameter “num overlaps”. The spectrum of each segment is then obtained by

computing its Fourier transform with a length equal to “fft length”. This results in a

matrix consisting of the power spectral density (PSD) “s” of each sub-segment. This

matrix represents the vibration segment’s spectrogram, which is a two-dimensional

representation of the segment spectrum in the time-frequency domain. Hence, the

spectrogram shows the resolution of the segment in the time-frequency domain. The

STFT features are obtained by taking the absolute value “abs(s)” of the resulting

PSD matrix of vibration segments. In the software, the STFT parameters are set as

follows.

• seg length = num samples/2.

• window = Hamming window.

• num overlaps = 95% of num samples.

• fft length = 1028.

3. wpt entropy: This function extracts WPT features from input vibration segment “x”.

WPT decomposes the input vibration segment using scaled versions of a base wavelet

function into elementary waveforms with high localization in time and frequency.

The first step in the function involves decomposing the input vibration segment us-

ing num levels-level WPT decomposition. The parameter wavelet function specifies

the wavelet base function to be used for the decomposition. In SB-PdM software,

the Daubechies4 (dp4) wavelet is used. More details on the selection of the proper
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wavelet can be found in [56]. Accordingly, in the second step, 2num levels elemen-

tary waveforms of lower and higher frequency sub-bands are reconstructed from

individual wavelet coefficients. In the third step, Shannon entropy is applied to

each resultant waveform to obtain its entropy. Hence, a WPT-entropy feature vec-

tor “wpt entropy features” is constructed for each input vibration segment. In the

software, num levels is set to 5.

4. similarity measures: Function to perform similarity measures. It applies similarity

measures between features of reference segments “baselines features” and features

of test segments “test samples features”. The applied similarity measures are SSM,

cosine similarity, and Euclidean distance. For each similarity measure, a record that

contains similarity scores between a given test segment and all labeled reference

segments is created (ssim record: SSM scores, dist record: cosine similarity scores,

and dist2 record: Euclidean distance scores). Hence, the length of the score record

equals to number of reference segments. The first value in the record represents the

similarity score between the given test segment and first reference segment, and the

second value represents the similarity between the second reference segment and so

on. Accordingly, the function finds the highest similarity score in the record and

utilizes the labels vector of the reference segments “baseline labels” to obtain the

corresponding label/class which will be the determined class of the test segment.

The function returns the following items:

• y ssim: Predicted classes using cosine similarity scores of test vibration seg-

ments.

• y cos: Predicted classes using SSM scores of test vibrations segments.

• y Ecl: Predicted classes using Euclidean distance scores of test vibration seg-

ments.

5. similarity based classification: This function recalls similarity measures function



Chapter 4 – Similarity-Based Framework for VBCM using Limited Labeled Data 132

has the same inputs, and provides the same outputs. The parameter “baselines no avg”

is a Boolean type and specifies whether the features of reference segments belonging

to the same class should be averaged or not. The default is False (i.e. averaging

the features). It found that averaging reference segments of the same class after

the feature extraction stage and prior to applying similarity-based classification im-

proves the accuracy compared to averaging them before the feature extraction stage.

Further, averaging reference segments of the same class will reduce computational

complexity during the next stages. The archived results confirm the effectiveness of

the software in detecting and diagnosing faults in the rolling bearings.

4.2.3 Performance Evaluation

The performance of the SB-PdM software is evaluated in terms of classification accuracy,

which quantifies the correctly classified test samples as a percentage of total test samples.

By using FFT features, the achieved accuracy results are 99.4%, 99.6%, and 99.4% with

SSM, cosine similarity, and Euclidean distance, respectively. With WPT entropy features,

the achieved results are 98.52%, 93.52%, and 95.50% with SSM, cosine similarity, and

Euclidean distance, respectively. Lastly, using STFT features, the achieved results are

99.33%, 98.76%, and 99.36% with SSM, cosine similarity, and Euclidean distance, re-

spectively. These results confirm the effectiveness of the SB-PdM software in detecting

and diagnosing different faults of rolling bearings. Regarding memory requirements, while

WPT entropy achieved a slightly lower performance compared to FFT and STFT, it is more

memory-efficient since it results in the lowest size of features compared to the two other

methods. Specifically, with 5-levels of decomposition, the WPT entropy extracts 1×32 fea-

tures from the input vibration segment. On the other hand, FFT and STFT extract 1× 1000

features and 515 × 41 features, respectively.
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4.2.4 Software impacts

Building a reliable and comprehensive dataset for the condition monitoring and fault di-

agnosis of rolling bearings is a time-consuming process that requires costly dedicated re-

sources. Moreover, selecting and tuning an appropriate ML model is a challenging task

[326]. Further to add, samples of vibration signals under abnormal conditions are often

not as abundant as samples of vibration signals under normal conditions. The SB-PdM

software offers a practical solution in such situations because it requires one labeled refer-

ence vibration sample for each operational condition “class”, instead of a complete labeled

dataset. This flexibility in data availability meets the requirements of many real-world in-

dustrial applications, especially in the early phases of solution deployment where only a

limited amount of labeled data is available. Moreover, most of the existing code reposito-

ries of condition monitoring software are based on traditional ML-supervised classification

and require labeled datasets to be available. From this perspective, the SB-PdM is con-

sidered an innovative and practical software that fills this gap in the availability of open

software that can work with limited labeled datasets. In addition to these advantages, re-

producibility and transparency are two other benefits of the SB-PdM software. With the

SB-PdM software’s source code publicly available, researchers and professionals in the in-

dustry can use and replicate the code in their research and projects and advance the field

of VBCM. The SB-PdM software is written entirely in Python, which is an advantage as

Python is an easy-to-understand language. Additionally, the software’s compatibility with

other libraries and projects, due to Python’s flexibility and widespread use in related appli-

cations, makes it easy to integrate into other projects.

Finally, the similarity-based classification method used in the SB-PdM software can be

applied as a general approach to solving similar classification problems in other fields, such

as anomaly detection, image classification, disease diagnostics, and pattern recognition. As

a result, a broader community of researchers and data analysts can benefit from it.
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4.2.5 Conclusion

The SB-PdM software, a data-driven PdM tool based on similarity-based classification,

is introduced for condition monitoring of rolling bearings. This software tackles the lim-

ited availability of labeled data by utilizing a similarity-based classification, requiring only

one labeled sample for each operational condition. The software has demonstrated high

accuracy with moderate computational requirements compared to machine learning-based

methods, as shown in experimental results. These results highlight the effectiveness of the

software for vibration-based condition monitoring of rolling bearings.

Possible future research directions for the SB-PdM software include developing more ef-

fective signal denoising methods, exploring more efficient techniques for feature extraction,

and designing customized similarity measures. Rolling bearings often operate in noisy en-

vironments with multiple sources of noise, resulting in corrupted vibration signals. There-

fore, understanding noise characteristics and how they affect vibration signals is crucial in

developing effective signal-denoising techniques.

Regarding feature extraction, the SB-PdM transforms vibration segments into feature repre-

sentations with high-discriminative capabilities compared to time-domain representations

and measures the similarity between reference and input vibration segments in the feature

space. The software currently uses FFT, STFT, and WPT for feature extraction. However,

future research directions could explore other methods for extracting more discriminative

features with less computational requirements.

A third research direction could investigate the possibility and feasibility, from both ac-

curacy and computational complexity perspectives, of developing a customized similarity

measure to be applied directly to the time-domain representations of the vibration segments.

The goal here is to simplify the software and reduce memory requirements and processing

time by eliminating the feature extraction stage.
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Chapter 5

5 A Hybrid Method for Condition Monitoring and Fault

Diagnosis of Rolling Bearings With Low System Delay

Addressing the third research problem, this chapter1 introduces the first contribution re-

lated to the computational complexity of Vibration-Based Condition Monitoring (VBCM).

Computational complexity, in terms of memory requirements and monitoring delay, plays

a pivotal role in the deployment of Vibration-Based Condition Monitoring (VBCM). The

presented work introduces a low-complexity hybrid method that combines wavelet decom-

position and Fourier transforms to conduct wavelet spectral-energy analysis and extract a

few features with high sensitivity to condition changes. The work is published as a regular

paper in the IEEE Transactions on Instrumentation and Measurement under the title “A

Hybrid Method for Condition Monitoring and Fault Diagnosis of Rolling Bearings With

Low System Delay”.

5.1 Introduction

VBCM techniques are commonly used to detect and diagnose failures of rolling bearings.

Accuracy and delay in detecting and diagnosing different types of failures are the main per-

formance measures in condition monitoring. Achieving high accuracy with low delay im-

proves system reliability and prevents catastrophic equipment failure. Further, delay is cru-

cial to remote condition monitoring and time-sensitive industrial applications. While most

of the proposed methods focus on accuracy, slight attention has been paid to addressing the

delay introduced in the condition monitoring process. This chapter attempts to bridge this

gap and propose a hybrid method for vibration-based condition monitoring and fault diag-

1A version of this chapter has been been published in [56].
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nosis of rolling bearings that outperforms previous methods in terms of accuracy and delay.

In the first place, the concept of system delay is introduced to assess the overall delay in

vibration-based condition monitoring systems. Then, a hybrid method for low-complexity

condition monitoring is proposed. It uses Wavelet Packet Transform (WPT) and Fourier

analysis to decompose short-duration input segments of the vibration signal into elemen-

tary waveforms and obtain their spectral contents. Accordingly, energy concentration in the

spectral components—caused by defect-induced transient vibrations—is utilized to extract

a small number of features with high discriminative capabilities. Consequently, Bayesian

optimization-based Random Forest (RF) algorithm is used to classify healthy and faulty

operating conditions under varying motor speeds. The experimental results show that the

proposed method can achieve high accuracy with low system delay.

The ongoing automation of industrial manufacturing “commonly referred to as Industry

4.0, smart manufacturing, or Industrial Internet of Things (IIoT)” has many potential ben-

efits for industry and consumers. Managing maintenance is essential in smart manufac-

turing; effective and efficient maintenance sustains equipment availability and reliability,

which, in turn, ensures safety, productivity, quality, and on-time delivery. Maintenance

management strategies are generally categorized into three main categories: Corrective

maintenance (CM), Preventive Maintenance (PvM), and Predictive Maintenance (PdM). In

CM, corrective actions take place after equipment failure. Despite its simplicity, CM is

very costly as it involves shutting down the production process and replacing parts. PvM is

a time-based scheduled strategy where maintenance is regularly performed. It is an effec-

tive strategy as it prevents equipment failure. However, PvM involves unnecessary routine

preventive actions, which increases maintenance costs. PdM is based on the continuous

monitoring of the equipment’s condition, and actions for maintenance are predicted based

on the equipment’s actual condition. This is achieved by adopting predictive approaches to

monitor the equipment’s functional-process integrity continuously.
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Data-driven-based approaches have been widely adopted in recent years for PdM appli-

cations. Generally, data-driven-based PdM can be summarized under two main steps:

The first step involves feature extraction, where discriminative features are extracted from

equipment-related data. The second step involves utilizing the extracted features to classify

or predict normal and abnormal operational conditions accurately. Hence, it is essential to

extract features that can represent the integrity of the operational process with high sensi-

tivity to any changes within the process.

In terms of performance evaluation, accuracy, and complexity are commonly used to eval-

uate the performance of a PdM system. Higher accuracy improves system reliability and

less complexity—in terms of memory and processing time—relaxes the computational re-

quirements of the system. Besides accuracy and complexity, delay in predicting the current

condition of the running equipment is another important aspect of system performance.

Delay is crucial to time-sensitive industrial applications and remote condition monitoring

in IIoT as it directly influences the end-to-end latency. Further, it is a critical factor for the

early detection of failures. As a real-life example, in one case [327], the failure of a large

gearbox caused a three-week shutdown, and extensive repair costs are typically €50,000

to €100,000. After implementing a condition-monitoring system, early detection of the

gearbox failure resulted in a repair cost of €5000, saving the customer at least €27,000.

Moreover, the company avoided lost production, amounting to around €6000/hour. Such

real-life cases demonstrate the important role of early failure detection in condition moni-

toring systems as it helps to detect the failure in its early stages and prevents catastrophic

equipment failure. Hence, it ensures workplace safety and productivity, and reduces main-

tenance costs. While most of the proposed work in the literature focuses on accuracy and

complexity in assessing the performance of condition monitoring systems, little attention

has been paid to addressing the overall delay in the condition monitoring process.

This chapter attempts to bridge this gap and introduces a base for overall delay analy-
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sis in vibration-based condition monitoring systems. Specifically, the chapter defines and

analyzes the overall delay in vibration-based condition monitoring and proposes a hy-

brid wavelet-based method for vibration-based condition monitoring and fault diagnosis

of rolling bearings with low delay. The following are the main contributions of the chap-

ter:

• Analyzes the overall delay in vibration-based condition monitoring and introduces

the concept of system delay to assess it.

• Proposes a hybrid wavelet-based method with reduced system delay for vibration-

based condition monitoring and fault diagnosis of rolling bearings under varying

motor speeds. The proposed method has a high sensitivity to fault-related transients

with relatively short durations of input vibration segments.

• The proposed method combines WPT and Fast Fourier Transform (FFT) to decom-

pose the input vibration segment into elementary waveforms with high time-frequency

localization and obtain spectral components of these waveforms to achieve high sen-

sitivity with short durations of the vibration signal.

• Accordingly, the proposed method introduces a new technique to extract fault-sensitive

features from spectral components of the elementary waveforms. Specifically, the

proposed method utilizes high concentration in the spectral energy caused by defect-

induced transient vibrations to select the most dominant frequency components (i.e.,

frequencies with the highest power levels).

• The proposed method allows controlling the size of extracted features through the

selection of the number of decomposition levels and the number of selected dominant

frequencies, which helps to reduce redundancy in the extracted features. Moreover,

this flexibility allows to design and adapt the proposed method according to various

operational situations to meet specific application requirements in terms of accuracy

and complexity.
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Figure 5.1: System delay of vibration-based condition monitoring.

The rest of the chapter is outlined as follows: The next section provides the theoretical foun-

dation. Section 5.3 presents a literature review on the application of wavelets in condition

monitoring and summarizes related work. Section 5.4 introduces the proposed method for

vibration-based condition monitoring and fault diagnosis of rolling bearings. Section 5.5

presents the datasets and the experimental setup for performance evaluation, while Section

5.6 discusses the results. The chapter is finally concluded in Section 5.7.

5.2 Theoretical Background

5.2.1 System Delay

The system delay τd of a vibration-based condition monitoring system can be defined

as the time the system takes to acquire input vibration segment and classify or predict

the operational condition of the current state S c of the equipment. In vibration-based

monitoring, the current state S c is represented by the input segment vin of the generated

vibration signal as illustrated in Fig.5.1. Accordingly, the system delay is the sum of the

time duration of input segment Tvin and the online processing time Tp. The system delay τd

can be formulated mathematically as follows;

τd = Tvin + Tp (5.1)
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The time duration Tvin of the input segment vin depends on number of data points in the

segment. It can be expressed as:

Tvin =
No

f s
(seconds) (5.2)

where No is number of data points in vin and fs is the sampling frequency in samples per

second. Online processing time Tp is algorithm-dependent; it involves two tasks, feature

extraction (including pre-processing) and condition prediction/classification. Hence, online

processing time Tp can be generally viewed as a function of the number of data points No

in the input segment vin, the size of extracted features S , and available computing resources

Rcomp, i.e.,

Tp = f (No, S ,Rcomp) (5.3)

Based on the above formulation, designing a condition-monitoring system with low system

delay τd involves three main requirements:

1. Extracting features of high sensitivity to fault-related transients to improve system

accuracy.

2. Extracting features of small size S .

3. Utilizing input vibration segments of relatively short time duration Tvin or equiva-

lently, of small number of data points No.

Accordingly, considering fixed computing resources Rcomp, a reliable design of vibration-

based condition monitoring systems with low system delay would address the following

two conditions:

minimize(No, S ) (5.4)

and

maximize(Accuracy). (5.5)
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For a given vibration-based condition monitoring system, its parameters can be tuned em-

pirically to achieve a good trade-off between Eq. (5.4) and Eq. (5.5). Furthermore, the

optimal parameters may be obtained by formulating a multi-objective optimization prob-

lem and using Eq. (5.4) and Eq. (5.5) as objective functions.

5.2.2 Wavelet Packet Transform

Wavelet Packet Transform (WPT) offers a reliable approach to engineering a few features

from vibration signals with a high discriminative degree. Specifically, WPT is very useful

in decomposing the input signal using scaled versions of a base wavelet function into ele-

mentary waveforms with high localization in time and frequency. Thus, WPT has a high

time-frequency resolution, allowing it to capture of high-frequency transient components

in the signal. Fig. 5.2.(a) shows the flowchart of a 3-level wavelet-packet decomposition

process. The input signal is decomposed into lower and higher frequency sub-bands at each

level. The output of the decomposition process in each level is either the approximation

wavelet coefficients “A” associated with lower frequency bands or detail wavelet coeffi-

cients “D” associated with higher frequency bands. Accordingly, the elementary wave-

forms of the signal can be reconstructed using the individual wavelet coefficients. Hence, a

highly discriminative feature can be extracted from each reconstructed waveform or its cor-

responding wavelet coefficients. Numerically, WPT is implemented through the iterative

decomposition of the signal by a series of low-pass filters h(k) and high-pass filters g(k) as

follows [276]:

w2s
i+1(t) =

∑
k

h(k)ws
i (2t − k), (5.6)

w2s+1
i+1 (t) =

∑
k

g(k)ws+1
i (2t − k), (5.7)

where k = 1, 2, .. is decomposition level. The raw signal x(t) is w1
0(k) and ws

i (k) is the

wavelet decomposition coefficients of node s at level i. w2s
i+1(k) and w2s+1

i+1 (k) are the wavelet

coefficients of nodes 2s and 2s + 1 at level i + 1, respectively, which correspond to the
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Figure 5.2: (a) Proposed feature extraction using 3-level WPT. (b) From top to bottom,
vibration signal and its WPT-based elementary waveforms “on the left” and corresponding
signal spectrum “on the right”.

approximation coefficients and detail coefficients. h(k) and g(k) are low pass and high pass

filters which are related to the base wavelet function.

5.3 Literature Review And Related Work

Wavelet-based decomposition has been widely adopted in many applications as it offers

a flexible tool for analyzing signals with a high time-frequency resolution. During the

last two decades, wavelet-based approaches gained high popularity among researchers in

the field of machinery diagnostics. Most of the proposed wavelet-based approaches in the

literature are combined with other techniques to enhance the discriminative power of the

extracted features. Accordingly, wavelet-based approaches can be generally grouped under

four main categories: entropy-based [163], energy-based [276][275], spectral-based [328]-

[329], and statistical based[330]. Spectral and statistical approaches are commonly applied

to the elementary waveforms reconstructed from wavelet decomposition coefficients; en-

tropy and energy approaches are either applied to the wavelet decomposition coefficients

or to the reconstructed elementary waveforms. In [331], it was shown that using the re-

constructed waveforms leads to a better fault diagnosis than wavelet packet coefficients,

especially with a low Signal-to-Noise Ratio (SNR). Entropy is a measure of uncertainty;
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it is used to measure the irregularity of time-series data. It is known that vibration sig-

nals of healthy bearings have high irregularity compared to faulty bearings [332]. Hence,

combining wavelet decomposition and entropy measures helps quantify the degree of ir-

regularity of a vibration signal with a high time-frequency localization. Energy-based

approaches utilize the changes in energy contents of wavelet sub-bands to extract fault-

related features. However, energy content has low sensitivity to incipient faults since the

change in energy content is not significant at the early stages of the fault [333]. This low

sensitivity to the incipient faults can be improved by integrating entropy measures with

wavelet energy-based approaches [334]. This approach—commonly known as wavelet en-

ergy entropy—is based on applying entropy measures to wavelet energy contents. Spectral-

based approaches use spectral characteristics of the reconstructed elementary waveforms

to extract the features; common techniques to extract the fault-related spectral characteris-

tics from wavelet-decomposed vibration signals involve Fourier transform [328], envelope

spectrum [335][336], spectral kurtosis [337], and spectral entropy [329]. Statistical-based

approaches rely on time-domain properties of reconstructed waveforms such as skewness,

kurtosis, Root-Mean-Square (RMS), and crest factor for feature creation. Time-domain

properties have low robustness to noise compared to the other approaches. Moreover, they

generally have low sensitivity to defect-induced transient, which requires relativity long

input segments of the vibration signal.

Recently, deep learning has been widely used in fault diagnosis and condition monitoring

applications. The application of wavelet-based approaches within deep learning-based fault

diagnosis falls mainly under two areas: 1) Transforming 1-D vibration signals into 2-D

time-frequency input data [338][339]. 2) Utilizing the wavelet concept to design network

elements such as activation function [340] and convolution kernel [122]. The main idea

of deep learning-wavelet-based approaches is based on utilizing wavelets’ powerful time-

frequency localization characteristics to extract highly disseminative features and improve

the learning process.
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As mentioned earlier, most of the proposed vibration-based condition monitoring approaches

focus on the accuracy of fault detection and system complexity, while less attention has

been paid to addressing the delay of the system in terms of input signal length and size of

features vector. In [279], Empirical Mode Decomposition (EMD) was used to decompose

the vibration signals. Accordingly, an energy-based analysis is performed to select the most

energized components. Further, a statistical analysis was conducted to remove redundant

data. In [341], a combined compressive sampling feature ranking method is proposed to

learn fewer features from vibration data optimally. In [259], kurtosis value and Fisher dis-

crimination criterion were used to screen wavelet coefficients and extract fault-transient fea-

tures to enhance the discriminative capability. In [163], an entropy-wavelet-based approach

was proposed to extract the features from vibration signals, and the Laplacian score method

was used to rank and select the features. In these approaches, attention is paid to reducing

feature size only without considering the duration of the input signal or the processing time.

In other words, in these approaches, the system is designed to reduce the dimensionality of

the extracted features rather than extracting a small number of features. Although dimen-

sionality reduction helps reduce memory requirements and improve the training process, it

increases online processing time, increasing system delay. In [132], a deep learning-based

method for condition monitoring is proposed, and an input length sensitivity analysis was

performed. It was shown that 100% accuracy could be achieved with shorter input lengths

compared to other approaches. However, the feature engineering process utilizes vibration

signals from two accelerometer sensors and involves FFT, Continuous Wavelet Transform

(CWT), and statistical proprieties of the raw signals to construct the features. Thus, re-

sulting in a large-size feature vector. This chapter addresses the system delay from both

aspects: the input signal’s duration and the extracted features’ size. Accordingly, a hybrid

WPT-FFT method with low system delay is proposed for vibration-based condition mon-

itoring and fault diagnosis of rolling bearings. The next section introduces the proposed

method.
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5.4 Proposed method for WPT-FFT Features Extraction

As mentioned earlier, the design of a condition-monitoring system with low delay has three

main requirements:

1. Extracting features of high sensitivity to fault-related transients.

2. Extracting features of a small and controllable size.

3. Utilizing input vibration segments of short time durations.

In rolling bearings, the contact between the rolling elements and the defective spot results

in repetitive impulse periods. These repetitive impulses appear as a dominant frequency

in the spectrum of the vibration signal [342]. Fourier-based analysis such as FFT provides

an effective way to transform the vibration signal to the frequency domain and reveal its

spectral contents. However, these contents have no time resolution, and hence, Fourier

analysis provides a poor representation of signals that are highly localized in time. On

the other hand, WPT provides a very efficient time-frequency analysis of vibration signals

with a good capture of fault-related transients [343]. Based on this concept, a hybrid WPT-

FFT method is proposed to fulfill the aforementioned requirements and extract a small

number of highly discriminative features from short-duration vibration signals. The first

step involves decomposing the input vibration segment using k-level WPT. Accordingly,

2k elementary waveforms of lower and higher frequency sub-bands are reconstructed from

individual wavelet coefficients. In the second step, FFT is applied to the resultant wave-

forms to obtain the spectral contents of each waveform. Hence, a feature vector of size

S = 1 × (m × 2k) can be reconstructed by utilizing the first m dominant frequency compo-

nents in the spectrum of each waveform. Fig.5.2 illustrates the proposed method with k = 3

and m = 1. Specifically, Fig. 5.2.(a) shows the flowchart of obtaining approximation and

detail coefficients of a given vibration signal using the 3-level wavelet-packet decomposi-

tion process. Accordingly, Fig. 5.2.(b) shows the vibration signal (the topmost signal) and
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the reconstructed elementary waveforms, along with their spectral contents obtained via

FFT. The first dominant frequency in each spectrum is shown as a red dot. After selecting

the first dominant frequency, the feature of each waveform is calculated according to the

below formula:

Fi = Amaxi × FAmaxi
, (5.8)

where, i = 1, 2, ...2k, Amaxi , and FAmaxi
are the spectral maximum amplitude of the ith wave-

form and its corresponding frequency, respectively. For m > 1, the first m dominant spec-

tral amplitudes of each waveform and their corresponding frequencies are selected, and the

feature of each waveform is calculated according to the below formula:

Fi = A1maxi × FA1maxi
, ..., Ammaxi × FAmmaxi

. (5.9)

Algorithm 2 shows the pseudo-code of the proposed method. By decomposing the vi-

Algorithm 1 Proposed WPT-FFT Features Extraction
Input: x : input segment of vibration signal of length No data points
Parameters: k = WPT decomposition level, m = number of most dominant frequency
components to be selected.
Output: F [s], s = 1, ..., S : features vector of size S = 1 × (m × 2k)
Start:
Set k and m
s = 1
Obtain 2k elementary waveforms w[i], i = 1, ..., 2k of x using k-level WPT.
for i = 1, . . . , 2k do

Compute FFT of w[i] and obtain:
AFFT : vector of FFT spectrum amplitudes
FAFFT : vector of FFT spectrum frequencies
for ii = 1, . . . ,m do

Amax = max[AFFT ]: max. spectrum’s amplitude
FAmax = FAFFT [index(Amax)]: Freq. of max. spectrum’s amplitude
Compute feature f = Amax × FAmax

F [s] = f
s = s + 1
Remove Amax from AFFT

Remove FAmax from FAFFT

End
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bration signal into elementary waveforms and obtaining the dominant frequencies of each

waveform, features with high sensitivity to fault-related transients can be calculated from

these frequencies according to Eq. (5.8) or Eq. (5.9). This has the effect of applying

frequency-selective filters to the spectrum of each waveform so that only dominant fre-

quencies are selected and then scaled by their amplitude values to increase their discrim-

inative capabilities. This way, the remaining ineffectual spectral contents are filtered out,

the redundancy is reduced, and the sensitivity to faults is improved. Moreover, since the

size S of the features vector equals 1 × (m × 2k), the proposed method allows controlling

the size of the extracted features by choosing the number of WPT decomposition levels k

and the number of selected dominant frequency components m. This, in turn, provides high

flexibility and scalability in the proposed method when addressing various operational sit-

uations. Moreover, it helps reduce redundancy and meet specific application requirements

in terms of accuracy and complexity through proper tuning of (k,m) parameters.

5.4.1 Selection of Base Wavelet and Decomposition Level

For vibration-based condition monitoring, the proper base wavelet is the wavelet that is

highly correlated with defect-induced transient vibrations. This leads to high energy con-

centrated at the corresponding wavelet coefficients only. Due to this high energy concen-

tration, the entropy of the energy distribution of the wavelet coefficients will be minimized.

The same concept can be used to determine the appropriate decomposition level k since

the proper decomposition level will have the highest energy concentration and minimum

entropy. Accordingly, the proper base wavelet and decomposition level can be selected

by evaluating the energy and entropy values of the wavelet coefficients for different base

wavelets and decomposition levels. The energy of wavelet coefficients at decomposition

level i can be expressed as:

Ei =

L∑
k=1

|wi(k)|2 , (5.10)
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where wi(k) are the wavelet coefficients at level i and L is the total number of the coefficients

in that level. The entropy of the energy distribution of the wavelet coefficients can be

obtained by the Shannon entropy formula:

Entropyi =

L∑
k=1

pilog2 pi, (5.11)

pi =
|wi(k)|2

Ei
(5.12)

where pi is the energy probability distribution of the wavelet coefficients. The energy-to-

entropy ratio proposed in [334] relates energy and entropy values of the wavelet coefficients

and provides a useful quantitative measure to select the appropriate base wavelet and de-

composition level. The energy-to-entropy ratio is expressed as [334]:

R(s) =
Ei

Entropyi
(5.13)

Thus, the higher R(s), the more appropriate base wavelet and/or decomposition level to

select.

5.4.2 Complexity Analysis

Considering fixed computational resources, the system delay τd of vibration-based condi-

tion monitoring depends entirely on three factors:

• duration of the input segment Tvin ,

• algorithm-based computations,

• and size of features vector S .

For the proposed algorithm, these factors include: the number of data points No in the input

segment vin, decomposition level k, WPT transform, reconstruction of 2k elementary wave-
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forms, 2k FFT transforms, and number of selected dominant frequencies m. Accordingly,

the complexity of the proposed algorithm can be analyzed as follows:

• Complexity of WPT is O(No log No).

• Let c represent the complexity of reconstructing one elementary waveform, then the

complexity of reconstructing 2k elementary waveforms is O(2kc).

• Complexity of FFT computations is O(2kNo log No).

• Complexity of feature vector computations is O(m2k).

Thus, the system delay and complexity grow as a function of (No, 2k,m).

5.5 Performance Evaluation

Performance of the proposed method is evaluated on the Case Western Reserve Univer-

sity (CWRU) bearing dataset [316], the Paderborn University (PU) bearing dataset [344],

and the University of Ottawa (uOttawa) bearing dataset [345]. These datasets are selected

to simulate various practical situations regarding defect types, rotational speed conditions,

and data sampling rates. Specifically, the CWRU dataset is very useful in benchmarking as

it is widely used in the literature. However, it doesn’t include combined defects and lacks

real damages since faults were artificially generated in the bearings. Vibration signals of

CWRU have a sampling rate of 12 KHz. In contrast to CWRU, the PU dataset has real bear-

ing damages with combined defects. Vibration signals were sampled at 64 KHz. uOttawa

dataset was released in 2019; experiments were conducted using a machinery fault simula-

tor. The main aspect of this dataset is that it has different healthy and faulty conditions with

combined defects and under time-varying rotational speed conditions. Thus, in contrast to

CWRU and PU datasets, this dataset has time-varying rotational speeds within the same

measurement. Further, vibration signals have a high sampling rate of 200 KHz.
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5.5.1 Experimental Setup

CWRU Bearing Dataset

In the CWRU dataset, experiments are conducted using a 2 hp (horse power) Reliance

Electric motor and vibration data was collected using accelerometers. Faults ranging from

0.007 to 0.040 inches in diameter were introduced separately at the Inner Raceway (IR),

ball, and Outer Raceway (OR). Faulted bearings were reinstalled into the test motor, and

vibration data was recorded at motor loads of 0 to 3 horsepower (motor speeds of 1,720

to 1,797 rpm). Digital data was collected at 12,000 samples per second. The dataset used

in this chapter consists of vibration signals generated by the accelerometers placed at the

drive end of the motor housing. Table 5.1 shows operational condition, fault diameter,

and motor speed (rpm) of these vibration signals. According to operational conditions and

fault diameter, faulty operational conditions are classified into nine classes. Hence, the

dataset consists of ten classes, one healthy operational class, and nine faulty operational

classes. Vibration signals are divided into input segments of 300, 600, 1,200, and 2,400

data points to evaluate the proposed method at different time durations of input segments.

With a sampling rate of 12,000 samples per second, this gives input segments with Tvin

values of 0.025 seconds, 0.5 seconds, 0.1 seconds, and 0.2 seconds, respectively. For each

time duration, values of k = 2, 3, 5 and m = 1, 2, 3 are used to decompose the input segment

and construct feature vectors. The aim here is to examine the impact of systems parameters

(k,m) on the performance and to assess the proposed method at different sizes of features

vector.

PU Bearing Dataset

In the PU dataset, experiments are conducted using a 425 W Permanent Magnet Syn-

chronous Motor (PMSM). The dataset used in this chapter is based on measurements con-

ducted at n = 1,500 rpm with a load torque of M = 0.7 Nm and a radial force on the bearing
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of F = 1,000 N. Vibration signals were recorded with a sampling rate of 64,000 samples per

second by measuring the acceleration of the bearing housing at the adapter at the top end of

the rolling bearing module. Regarding bearing defects, the PU dataset includes artificially

generated and accelerated-lifetime defects. In this chapter, only accelerated-lifetime de-

fects are used. Accordingly, the dataset has four classes: one healthy class and three faulty

classes according to fault type, as shown in Table 5.1. To evaluate the proposed method at

different time durations of input segments, each vibration signal is divided into input seg-

ments of 1,600 and 12,800 data points. With a sampling rate of 64,000 samples per second,

this gives input segments with Tvin values of 0.025 seconds and 0.2 seconds, respectively.

For each time duration, values of k = 3, 5 and m = 3, 5, 7 are used to decompose the input

segment and construct feature vectors.

University of Ottawa Bearing Dataset

In the uOttawa dataset, experiments are performed on a SpectraQuest machinery fault sim-

ulator (MFS-PK5M). The accelerometer was placed on the housing of the experimental

bearing to collect the vibration data with a sampling rate of 200,000 samples per second.

The measurements have two experimental settings: bearing health condition and varying

speed condition. The health conditions of the bearing include healthy, faulty with an IR de-

fect, faulty with an OR defect, faulty with a ball defect, and faulty with combined defects

on the IR, the OR, and the ball. The operating rotational speed conditions are increasing

speed, decreasing speed, increasing then decreasing speed, and decreasing then increasing

speed. Hence, there are twenty different settings in the measurements. Accordingly, the

dataset used in this chapter is arranged under one healthy class and four faulty classes so

that each class includes all the five varying speed conditions as shown in Table 5.1. To

evaluate the proposed method at different time durations of input segments, each vibration

signal is divided into input segments of 5,000 and 40,000 data points. With a sampling rate

of 200,000 samples per second, this gives input segments with Tvin values of 0.025 seconds
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and 0.2 seconds, respectively. For each time duration, values of k = 5, 7 and m = 5, 7, 9 are

used to decompose the input segment and construct feature vectors.

The Daubechies 4 (dp4) base wavelet is selected to decompose input vibration segments

and reconstruct the elementary waveforms. After the feature extraction stage, the resultant

datasets of features are divided into 80% training samples and 20% test samples. Accord-

ingly, classifiers are trained on these datasets, and Bayesian Optimization with Gaussian

Processes [118] is used to tune the hyperparameters. Finally, test samples are used to eval-

uate the performance of the proposed method. In order to select a suitable classifier, the

performances of three classifiers are compared on the CWRU dataset, and the classifier of

best performance is selected to evaluate the performance on the three datasets. The three

classifiers are Support-Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost),

and Random Forest (RF). Python programming language, PyWavelets, and SciPy libraries

are used to build the models1. Results and related discussion are presented in the next

section.

5.6 Results and Discussion

5.6.1 Classifier Selection

As mentioned earlier, the performances of SVM, XGBoost, and RF classifiers are com-

pared on the CWRU dataset, and the classifier of best performance is selected to evaluate

the performance of the proposed method on the three datasets. SVM creates a hyperplane

that splits the input feature space. For inputs belonging to N classes, their feature space

is an N-dimensional space representing these inputs and their associated classes. Hence,

SVM attempts to create a hyperplane that achieves the best separation between input fea-

tures according to their classes. XGBoost and RF are decision trees-based classifiers. They

1Code is available at: https://github.com/Western-OC2-Lab/

Vibration-Based-Fault-Diagnosis-with-Low-Delay

https://github.com/Western-OC2-Lab/Vibration-Based-Fault-Diagnosis-with-Low-Delay
https://github.com/Western-OC2-Lab/Vibration-Based-Fault-Diagnosis-with-Low-Delay
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Table 5.1: Experimental Datasets

CWRU dataset

Class Health
condition

Fault
diameter

Motor speed (rpm)

1 Healthy NA 1730 1750 1772 1797
2

IR faults
0.07” 1730 1750 1772 1797

3 0.014” 1730 1750 1772 1797
4 0.021” 1730 1750 1772 1797
5

Ball faults
0.07” 1730 1750 1772 1797

6 0.014” 1730 1750 1772 1797
7 0.021” 1730 1750 1772 1797
8

OR faults
0.07” 1730 1750 1772 1797

9 0.014” 1730 1750 1772 1797
10 0.021” 1730 1750 1772 1797

PU dataset

Class Health
condition

Fault type Motor speed (rpm)

1 Healthy NA

1500
2 Combined

IR and OR
faults

Multiple
damages

3 IR faults Single,
repeti-
tive, and
multiple
damages

4 OR faults Single and
repetitive
damages

uOttawa
dataset

Class Health condition Speed conditions
1 Healthy Increasing speed, decreasing speed,

increasing then decreasing speed,
and decreasing then increasing
speed

2 IR faults
3 OR faults
4 Ball faults
5 Combined IR, OR, and ball faults
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Figure 5.3: Feature sample from each class of CWRU dataset with Tvin = 0.05 seconds,
k = 3 and m = 1.

Table 5.2: Performance comparison of SVM, XGBoost, and RF classifiers on CWRU
dataset: Input segment duration = 0.05 seconds (600 samples), (k = 3,m = 1)

Performance Metric Support Vector Machines
(SVM)

eXtreme Gradient Boosting
(XGBoost)

Random Forest (RF)

ROC-AUC Score 1.000 1.000 1.000
Accuracy (%) 98.013 98.344 99.172

Table 5.3: Performance comparison between proposed features and other features on
CWRU dataset: Input segment duration = 0.05 seconds (600 samples)

Performance Met-
ric

Mean Crest Factor Kurtosis Shannon Entropy Proposed (k =

3,m = 1)

ROC-AUC Score 0.999 0.937 0.963 1.000 1.000

Accuracy (%) 96.689 64.073 74.834 98.510 99.172

both utilize ensemble learning techniques and attempt to predict the target class by com-

bining the estimates from individual decision trees. However, XGBoost builds a single de-

cision tree at a time; each new tree predicts the residuals or errors of the previously trained

decision tree. In contrast to XGBoost, RF fits several decision tree classifiers on various

subsets of training datasets using different subsets of features. Accordingly, the decisions

of individual classifiers are aggregated to obtain a final decision and predict the target class.

Table. 5.2 compares performances of the three classifiers on the CWRU dataset in terms
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Table 5.4: Performance results of the proposed method on CWRU dataset

Table 5.5: Mean Accuracy (%) on CWRU dataset

Figure 5.4: Average system delay τd as a function of (a) duration of input segment Tvin and
(b) size of features vector S .
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Table 5.6: Performance comparison between the proposed method and other methods on
CWRU dataset

Reference Approach No. of data points
in input vibration seg-
ment

Size of features vector Achieved accuracy
(%)

Proposed WPD-FFT with k =5,
m=1

300 1×32 99.63%

Proposed WPD-FFT with k =3,
m=1

600 1×8 99.17%

Proposed WPD-FFT with k =3,
m=1

1200 1×8 100.00%

Proposed WPD-FFT with k =3,
m=1

2400 1×8 100.00%

[132] Convolutional Long
Short-Term Memory
(CLSTM)

500

1×(((D(K+3) )×L)+2D),
D = no. of accelerometer
sensors, L = length of in-
put segment, K = first K
components of the raw sig-
nal acquired by CWT

100.00%

[122] Convolutional Neural
Network (CNN) with
wavelet convolution
and deep transfer
learning

2048 1×2048 99.73%

[346] Recurrent Neural Net-
work (RNN) +CNN

4096 1×4096 100.00%

[133] CNN with Scaled Ex-
ponential Linear Unit
(SELU) and hierarchi-
cal regularization

512 64×64 100.00%

[341] Compressive sam-
pling and feature
ranking with ANN
classifier

2000 1×50 100.00%

Table 5.7: Performance results of the proposed method on the PU dataset
Input Segment

Metric
k = 3 k = 5

No Tvin (sec)
m = 3 m = 5 m = 7 m = 3 m = 5 m = 7

Size of
feature
vector S

1 × 24 1 × 40 1 × 56 1 × 96 1 × 160 1 × 224

1,600 0.025

ROC-AUC
Score

0.979 0.979 0.977 0.994 0.993 0.992

Accuracy
(%)

86.55% 86.53% 85.99% 91.91% 91.32% 90.29%

12,800 0.2

ROC-AUC
Score

0.998 0.998 0.999 1.000 1.000 1.000

Accuracy
(%)

96.88% 96.44% 97.19% 99.56% 100.00% 99.69%
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Table 5.8: Performance comparison between the proposed method and other methods on
PU dataset

Reference Approach Achieved accuracy (%)

Proposed WPD-FFT with k = 5, m = 5, length of
input segments = 12800 data points

100.00%

[347] Attention-based Multi-Dimensional Con-
catenated CNN (AMDC-CNN)

99.80%

[348] Deep Neural Network (DNN) with
Net2Net transformation and domain
adaptation

96.24%

[349] Input Feature Mappings (IFMs)-based
Deep Residual Network (ResNet)

99.70%

Table 5.9: Performance results of the proposed method on the uOttawa dataset
Input Segment

Metric
k = 5 k = 7

No Tvin (sec)
m = 5 m = 7 m = 9 m = 5 m = 7 m = 9

Size of
feature
vector S

1 × 160 1 × 224 1 × 288 1 × 640 1 × 896 1 × 1152

5,000 0.025

ROC-AUC
Score

0.996 0.995 0.994 0.998 0.997 0.997

Accuracy
(%)

94.31% 93.94% 93.54% 96.40% 95.81% 95.50%

40,000 0.2

ROC-AUC
Score

0.997 0.997 0.997 1.000 0.999 0.999

Accuracy
(%)

96.83% 95.67% 94.67% 98.83% 98.17% 97.83%

of ROC-AUC score and accuracy. Vibration input segments have 600 data points which

corresponds to 0.05 seconds. While the three classifiers achieved high and comparable

performance levels, tree-based classifiers (XGBoost and RF) have slightly better perfor-

mance than SVM. However, the RF classifier has a slightly better performance compared

to XGBoost. The main advantage of RF over XGBoost is that RF fits several decision trees

and trains each tree independently using a random subset of the data. This increases ran-

domness and reduces bias in the training phase, allowing for better generalization. Hence,

RF is more robust to overfitting compared to single decision tree-based algorithms such as

XGBoost. Accordingly, RF will be used from now onwards to evaluate the performance of

the proposed method on the three datasets.
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Table 5.10: Performance comparison between the proposed method and other methods on
uOttawa dataset

Reference Approach Achieved accuracy (%)

Proposed WPD-FFT with k = 7, m = 5, length of
input segments = 40000 data points

98.83%

[350] Generalized Broadband Mode Decompo-
sition (GBMD) with Distance Evaluation
Technology (DET) for feature screening

96.67%

[351] Convolutional denoising auto-encoder
with Convolutional Long Short-Term
Memory (CLSTM)

97.68%

[352] Long short-term memory (LSTM) 77.00%

5.6.2 Effectiveness of Proposed Features

As mentioned earlier, the proposed method utilizes high energy concentration caused by

defect-induced transient vibrations to extract the features according to Eq. (5.8) or Eq.

(5.9). For each elementary waveform i, the features are extracted by firstly selecting the

first m dominant frequencies from its corresponding vectors of FFT spectrum amplitudes

AFFTi and FFT spectrum frequencies FAFFTi
where i = 1, ..., 2k. Then, each frequency is

multiplied by its amplitude value to increase the discriminative capabilities of the extracted

features. Fig.5.3 shows a sample from the features vector for each class of the CWRU

dataset with Tvin = 0.05 seconds (corresponds to 600 data points), k = 3, and m = 1.

As shown, the features have distinct patterns, which reflect the high discriminative degree

of the extracted features. Performance comparison on the CWRU dataset is conducted

between the proposed features with k = 3 and m = 1 and other features extracted from

vectors of FFT spectrum amplitudes AFFTi to demonstrate the effectiveness of the proposed

features. These features include mean, crest factor, kurtosis, and Shannon entropy. Per-

formance comparison is shown in Table 5.3. Results demonstrate the effectiveness of the

proposed features as they achieved the best performance among other features.
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5.6.3 Experimental Results on CWRU Dataset

Table 5.4 shows performance results of the proposed method on the CWRU dataset where

accuracy, ROC-AUC score, system delay, and complexity–in terms of online processing

time and memory requirements– are used to evaluate the performance. In terms of accu-

racy and ROC-AUC score, the proposed method achieved very high performance (accuracy

> 99%, ROC-AUC score = 1.00) with all durations of the input vibration segment. More-

over, it reached 100% accuracy using an input duration of 0.1 seconds (1,200 data points)

with 8 features only. These results reflect the high sensitivity of the proposed method to

fault-related transients. In terms of the duration of the input segment, it significantly im-

pacts the accuracy. For fixed parameters setting (k,m), the higher the duration, the higher

the accuracy and the higher the delay. However, proper setting of the system parameters

(k,m) improves the system sensitivity and achieves a good trade-off between the input du-

ration and the system accuracy. For instance, as shown in the table, with an input duration

of 0.025 seconds (300 data points), setting (k = 5,m = 1) brought more than 11% improve-

ment in the accuracy compared to (k = 2,m = 1). On the other hand, with 0.2 seconds

(2,400 data points) of input duration, increasing the k value from 3 to 5 has slightly affected

the system accuracy. Similarly, with 0.025 seconds (300 data points) of input duration, in-

creasing the m value from 1 to 3 with k = 3 slightly affected the accuracy. This slight

degradation in the accuracy can be explained by increased redundancy in the extracted fea-

tures. Extracting more features from vibration signals could either increase redundancy or

improve sensitivity to faults in the extracted features. This generally depends on the length

of the input vibration segment and fault severity. The results demonstrate that the proposed

method can address this issue with high flexibility through k and m parameters.

Regarding the influence of system parameters on system accuracy, Table 5.5 shows mean

accuracy and mean ROC-AUC score as a function of system parameters (k,m). As results

generally indicate, the decomposing level parameter k has a considerable impact on system
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accuracy compared to the number of selected dominant frequencies m. More specifically,

increasing the value of k with fixed m, brought more improvement compared to increasing

the value of m with fixed k.

Regarding system delay τd, the proposed method achieved excellent performance (accuracy

> 99%, ROC-AUC score = 1.00) with a minimum system delay τd of 0.042 seconds. As

mentioned earlier, with fixed computational resources, the system delay τd is a function

of input segment duration Tvin and size of features vector S . Fig. 5.4 shows empirical

sensitivity analysis of average system delay as a function of (a) duration of input segment

Tvin and (b) size of features vector S . Here, the average system delay at each value of

Tvin /(S ) is calculated by averaging individual system delays at corresponding values of

S /(Tvin). The results reveal that τd is heavily influenced by Tvin compared to S . For instance,

increasing the input duration from Tvin = 0.025 seconds to Tvin = 0.2 seconds (700%

increase in input segment duration), increased the average system delay by 424.5%. On the

other hand, increasing the size of features vector from S = 1 × 4 to S = 1 × 96 (2300%

increase in features size), increased the average system delay by 15.9% only.

According to the analysis in the Theoretical Background Section, for a given condition

monitoring system and considering fixed computational resources, the system delay is in-

fluenced by the time duration of the input vibration signal (or equivalently, the number

of datapoint samples in the input vibration signal) and the size of the extracted features.

Hence, as mentioned earlier, a reliable design of a vibration-based condition monitoring

system with low system delay would minimize the number of data points in the input vi-

bration signal, minimize the size of extracted features, and maximize accuracy. Thus, to

demonstrate the efficiency of the proposed method in this regard, a comparison between

the proposed method and other methods is conducted in terms of the number of data points

in the input vibration segment, size of the features vector, and achieved accuracy. Table

5.6 shows the comparison results. The length of the input segment and the size of the
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feature vector are used to assess the system delay since the chapter establishes the direct

relationship between the system delay and the length of the input vibration segment and

the resultant feature size, as formulated in the Theoretical Background Section. As shown

in the table, the proposed method reached 100% accuracy using an input segment of 1,200

data points with eight features only. On the other hand, other methods require either longer

segments of the input signal [346] or use more features [341][132][346][133] compared to

our proposed method to reach 100% accuracy. Moreover, the proposed method does not

involve extra computations for feature ranking or dimensionality reduction compared to

other methods.

5.6.4 Experimental Results on PU Dataset

The performance of the proposed method is further validated on the PU dataset, which in-

cludes real accelerated-lifetime damages. Performance results are shown in Table 5.7. As

shown, the proposed method achieved an excellent accuracy of 99.56% by extracting 96

(k = 5, k = 3) features from input vibration segments of 0.1 seconds duration (12,800 data

points). Furthermore, it reached 100% accuracy and a 1.00 ROC-AUC score by extracting

160 features (k = 5,m = 5) only. On the other hand, extracting more features (224 features

using k = 5 and m = 7) led to a slight degradation in the accuracy. These results demon-

strate the flexibility of the proposed method in tuning the size of extracted features which,

in turn, lessens feature redundancy, improves the accuracy, and reduces the complexity.

Table 5.8 provides a comparison between the proposed method and some recent works

[347]-[349] on the PU dataset of healthy bearings and accelerated-lifetime damages. Re-

sults show the superiority of the proposed method in terms of achieved accuracy. Regarding

the used approach, the proposed method relies completely on signal processing (WPT and

FFT) to extract the features, while other methods utilize Deep neural networks for feature

extraction. Hence, the proposed method involves less training and tuning complexity than

the other methods.
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5.6.5 Experimental Results on uOttawa Dataset

To further validate the effectiveness of the proposed method under varying motor speeds,

its performance is evaluated on the uOttawa dataset. Table 5.9 shows performance re-

sults where the proposed method achieved excellent performance of 98.83% accuracy and

0.999 ROC-AUC score with input vibration durations of 0.1 seconds (40,000 data points)

and 640 features (k = 7,m = 5). Table 5.10 shows a comparison between the proposed

method and some of the recent works [350]-[352] on the uOttawa dataset. The proposed

method achieved the best accuracy among other methods, as shown in the table. These re-

sults, along with the previous results obtained on CWRU and PU datasets, demonstrate the

effectiveness of the proposed method and affirm its capability of achieving performance

requirements under actual operational conditions. Furthermore, the results confirm the

flexibility of the proposed method in adapting the size of extracted features according to

specific application requirements.

5.7 Conclusion

The work presented in this chapter defined and analyzed the end-to-end delay of vibration-

based condition monitoring systems and introduced the concept of system delay to assess

it. With fixed computational resources, the system delay depends entirely on the duration of

the input vibration segment, computation steps of the used algorithm/s, and the size of the

features vector. Accordingly, a low-system delay method is introduced for vibration-based

condition monitoring and fault diagnosis of rolling bearings. The proposed method uses

a hybrid WPT-FFT approach where it decomposes small durations of the input vibration

signal using k-level WPT into 2k elementary waveforms with high time-frequency localiza-

tion. Then it obtains the spectral components of these waveforms using FFT. Accordingly,

the proposed method utilizes the first m dominant frequency components in the spectrum of

each waveform to construct a small number of features with high sensitivity to fault-related
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transients. Hence, the proposed method has a high sensitivity to fault-related transients

with relatively short durations of input vibration segments. Moreover, it allows controlling

the size of extracted features through (k,m) settings, which helps to reduce redundancy

and provides high flexibility to customize the proposed method according to specific ap-

plication requirements. The proposed method has been evaluated on three datasets using

different durations of input vibration segments and with different parameter settings. The

experimental results show that the proposed method can achieve excellent accuracy in fault

diagnosis with low system delay even with combined defects and under varying motor

speeds.



164

Chapter 6

6 Joint Instantaneous Amplitude-Frequency Analysis of

Vibration Signals for Vibration-Based Condition

Monitoring

Addressing the third research problem, this chapter1 introduces the second contribution re-

lated to the computational complexity of Vibration-Based Condition Monitoring (VBCM).

The chapter introduces a low-complexity method for VBCM of rolling bearings based

on envelope analysis of the generated vibration signal. The proposed method employs

the Hilbert Transform (HT) to obtain and then jointly analyze the instantaneous ampli-

tude “envelope” and instantaneous frequency of vibration signals to facilitate three novel

envelope representations. Accordingly, new highly discriminative features are extracted

from these representations. The content of this chapter is submitted to the IEEE Transac-

tions on Instrumentation and Measurement as a regular paper entitled “Joint Instantaneous

Amplitude-Frequency Analysis of Vibration Signals for Vibration-Based Condition Moni-

toring of Rolling Bearings”. The paper is currently in the review stage.

6.1 Introduction

Vibrations of damaged bearings are manifested as modulations in the amplitude of the gen-

erated vibration signal, making envelope analysis an effective approach for discriminating

between healthy and abnormal vibration patterns. Motivated by this, the work presented in

this chapter introduces a low-complexity method for VBCM of rolling bearings based on

envelope analysis. In the prospered method, the instantaneous amplitude “envelope” and

1A version of this chapter has been submitted for publication in IEEE Transactions on Instrumentation
and Measurement.
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instantaneous frequency of the vibration signal are jointly utilized to facilitate three novel

envelope representations: Instantaneous Amplitude-Frequency Mapping (IAFM), Instan-

taneous Amplitude-Frequency Correlation (IAFC), and Instantaneous Energy-Frequency

Distribution (IEFD). Maintaining temporal information, these representations effectively

capture energy-frequency variations that are unique to the condition of the bearing, thereby

enabling the extraction of discriminative features with high sensitivity to variations in op-

erational conditions. Accordingly, a set of six new highly discriminative features are en-

gineered from these representations, capturing and characterizing their shapes. The ex-

perimental results show outstanding performance in detecting and diagnosing various fault

types, demonstrating the effectiveness of the proposed method in capturing unique varia-

tions in energy and frequency between healthy and faulty bearings. Moreover, the proposed

method has moderate computational complexity, meeting the requirements of real-time ap-

plications. Further, the Python code of the proposed method is made public to support

collaborative research efforts and ensure the reproducibility of the presented work.

Vibration-based condition monitoring (VBCM) can be defined as a signal-based method-

ology for assessing a system condition based on its inherent vibration patterns. By moni-

toring changes in vibration signatures, which reflect a change in the system’s current state,

VBCM provides a non-invasive, real-time approach to continuously monitor the system’s

condition. The main advantages of VBCM over alternative forms of condition monitoring

include [4] [1]:

• Vibration sensors are non-intrusive and can be contactless, facilitating non-destructive

condition monitoring.

• Real-time acquisition of vibration signals can be conducted in situ, allowing for on-

line local condition monitoring.

• Trending vibration analysis can be utilized to identify relevant conditions and con-

duct comparative analysis across diverse conditions or objects.
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• Vibration sensors are cost-effective and widely available, offering various specifica-

tions to suit various requirements.

• Vibration waveform responds instantly to changes in the monitored condition and,

therefore, is suitable for continuous and intermittent monitoring applications.

• Signal processing techniques can be applied to vibration signals to mitigate corrupt-

ing noise and extract weak condition indications from other masking signals.

The process of VBCM involves two main aspects: feature extraction and condition moni-

toring. Feature extraction involves the application of various methods to analyze vibration

signatures and extract relevant features that reflect condition changes in the system’s con-

dition. Such signatures often manifest through sudden changes in amplitude, frequency,

and phase characteristics of the generated vibration pattern. Existing feature extraction

methods include time-domain, frequency-domain, and time-frequency-domain methods.

In time-domain-based methods [145, 146, 148, 153, 159, 162, 163], features are calculated

from the signal’s amplitude, representing specific aspects of the signal’s dynamics over

its time period. Common time-domain feature types include shape features and statistical

features. Shape features include maximum, minimum, peak-to-peak value, and crest fac-

tor. Statistical features describe characteristics of the probability distribution of the signal,

such as mean, standard deviation, variance, skewness, and kurtosis. Time-domain feature

extraction approaches are generally simple to implement. Further, they are computation-

ally efficient since signal transformation is not required, making them advantageous in

applications where real-time processing is crucial, especially with limited computational

resources. However, time-domain analysis is highly susceptible to noise since noise pres-

ence would mask the dynamic characteristics of the signal. Furthermore, to achieve reliable

performance, input vibration segments of relatively large durations are usually required to

precisely capture evolving changes and complexities within the segment. Frequency-based

methods [168, 171, 174, 178–181, 309] represent the signal in terms of its spectral con-
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tents, revealing details that are not apparent in the time-domain waveform. Accordingly,

discriminative spectral features can be extracted from the signals’ spectrum. In contrast

to time-domain analysis, frequency-based analysis allows the identification and removal of

noise or unwanted components by applying appropriate frequency filtering mechanisms.

In the context of VBCM of rolling bearings, the generated vibration pattern spans a broad

spectrum of frequency components, including characteristic frequencies related to the bear-

ing geometry and operational speed, as well as harmonic and sideband frequencies caused

by various operational conditions. This makes spectral analysis particularly effective in

discriminating between healthy and abnormal vibration patterns. However, in frequency-

domain methods, the analysis spans the signal’s entire duration, lacking the ability to pro-

vide temporal information about the timing of these patterns within the signal. In contrast,

time-frequency methods [56, 218, 225, 228, 231, 244, 248, 250, 310] transform the sig-

nal into energy-time-frequency representations where the signal’s energy is mapped across

both time and frequency. This, in turn, allows the identification of time-varying spectral

characteristics within the signal. Common time-frequency transforms include short-time

Fourier transform (STFT), Hilbert-Huang transform (HHT), and wavelet transform (WT).

Despite their effectiveness, especially when handling nonstationary and nonlinear signals,

time-frequency methods involve higher computational complexity— in terms of online pro-

cessing time and memory usage— compared to pure spectral analysis. These factors di-

rectly influence the reliability of the monitoring process and associated financial expenses.

Specifically, an increase in memory demand increases financial costs, while lengthy delays

in condition prediction may fail to prevent costly catastrophic failures. In the context of

VBCM of rolling bearings, vibrations of damaged bearings are manifested as modulations

in the amplitude of the generated vibration signal [307]. This makes envelope-based anal-

ysis [295, 297, 298, 306, 307] an effective approach to facilitate efficient condition moni-

toring. In envelope-based analysis, the Hilbert transform (HT) is commonly employed to

obtain Instantaneous Amplitude (IA) “envelope”, Instantaneous Phase (IP), and Instanta-
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neous Frequency (IF). Accordingly, various feature extraction techniques can be used to

extract relevant features from obtained instantaneous information.

To this end, this chapter introduces a low-complexity method for VBCM of rolling bearings

based on joint analysis of IA and IF information of the generated vibration signal. Specif-

ically, the proposed method employs the HT to obtain and then jointly analyze IA and

IF information, facilitating new joint instantaneous amplitude-frequency representations of

the vibration signal. Accordingly, a set of six new fault-sensitive features are engineered

from these representations. Further, the proposed method uses very short durations of the

generated vibration signal for condition monitoring, thereby relaxing memory requirements

and reducing monitoring delay. The main contributions of the chapter include:

• Introducing a low-complexity new method for VBCM of rolling bearings based on

envelope analysis.

• In the proposed method, instantaneous amplitude “envelope” and instantaneous fre-

quency of the vibration signals are jointly analyzed to facilitate three novel en-

velope representations: Instantaneous Amplitude-Frequency Mapping (IAFM), In-

stantaneous Amplitude-Frequency Correlation (IAFC), and Instantaneous Energy-

Frequency Distribution (IEFD).

• Maintaining temporal information, the introduced representations effectively capture

energy-frequency variations that are unique to the condition of the bearing, thereby

enabling the extraction of discriminative features with high sensitivity to variations

in operational conditions.

• Accordingly, new highly discriminative features are extracted from these representa-

tions.

• The extracted features are engineered to characterize shapes of the proposed instan-

taneous representations, thereby capturing instantaneous energy-frequency dynamics
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of the signal’s envelope.

• The proposed method facilitates a low-complexity VBCM since it utilizes input vi-

bration segments of very short durations (0.1 seconds) and produces only six features.

Thus, relaxing memory requirements and reducing monitoring delays, which, in turn,

helps reduce memory costs and prevent costly catastrophic failures.

The remainder of the chapter is structured as follows: Related work is presented in the next

section. Section 6.3 introduces the proposed method. Section 6.4 addresses performance

evaluation in terms of the dataset used and experimental setup. Section 6.5 introduces and

discusses the obtained results. The chapter is finally concluded in Section 6.6.

6.2 Related Work

The HT is commonly employed in VBCM applications to obtain instantaneous informa-

tion (IA, IP, and IF) of generated vibration patterns and, consequently, extract distinctive

fault-related features [225, 228, 231, 295, 297, 298, 306, 353–372]. The existing HT-based

approaches for feature extraction can be generally grouped into three broad categories:

Envelope-based spectral analysis [297, 354, 358, 362, 366–369], signal decomposition and

envelope reconstruction [298, 353, 355, 357, 360, 361, 363, 364], and time-frequency anal-

ysis [225, 228, 231, 306, 356, 359, 362, 365, 370–372]. Envelope-based spectral analy-

sis involves analyzing the spectrum of the obtained envelope (IA) to extract fault-related

features. While pure frequency analysis of the signal envelope is effective under steady-

state conditions, it falls short in capturing the complexity of bearing vibrations under time-

varying speed and load conditions, which is essential for real-time applications.

Signal decomposition and envelope reconstruction approaches utilize signal decomposition

techniques such as wavelet decomposition and Adaptive Mode Decomposition (AMD) to

decompose the time-domain envelope into elementary modes. A screening process is then
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conducted to identify fault-informative modes. Finally, the signal is reconstructed using the

identified modes only, and the envelope spectrum is obtained accordingly for fault analysis.

The main advantage of decomposition-based approaches is that they attempt to reconstruct

a low-redundancy and highly fault-sensitive envelope through decomposition, screening,

and reconstruction processes. Additionally, selecting fault-related modes and discarding

the remaining modes reduces noise presence in the reconstructed signal, thereby improv-

ing the signal-to-noise ratio (SNR) of the obtained envelope compared to the original sig-

nal. However, such approaches involve high computational burdens due to decomposition,

screening, and reconstruction processes. Further, proper mode screening criteria should be

applied to avoid losing useful information.

Time-frequency analysis is particularly useful in analyzing nonstationary vibration patterns

whose spectral properties change over time. In the context of HT-based VBCM, HHT and

STFT are commonly adapted to perform time-frequency analysis of the signal envelope.

Unlike envelope spectral analysis, which utilizes the Fourier Transform (FT) to analyze

the spectral contents of the envelope over its entire duration, STFT-based approaches ana-

lyze the spectral contents of the envelope over finite short-duration time windows, thereby

preserving temporal information. A major limitation in STFT is its fixed segment length,

which results in a uniform resolution analysis of the envelope, leading to an inherent com-

promise between time and frequency resolutions when setting the duration of the time win-

dow. HHT employs an alternative approach for time-frequency analysis through two steps:

signal decomposition and Hilbert Spectral Analysis (HSA). In contrast to STFT, which re-

lies on fixed-time durations and sinusoidal kernel functions for envelope analysis, HHT

utilizes an adaptive approach to analyze the vibration signal, making it highly responsive

to variations in vibration patterns. Specifically, HHT uses AMD techniques to decompose

the signal into a set of simpler modes known as Intrinsic Mode Functions (IMFs), repre-

senting different frequency components of the signal. After the decomposition process,

HSA is conducted, where the HT is applied to each mode to obtain its IA and IF infor-
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mation, providing a detailed energy-time-frequency representation of the original signal

commonly known as the Hilbert spectrum. The adaptive mechanism of HHT and the use

of HSA makes it very effective in analyzing complex vibration patterns. The performance

of the HHT, however, is highly dependent on the reliability of the decomposition process

and its parameters, such as the stopping criterion for the decomposition process and the in-

terpolation method for envelope estimation. Moreover, HTT involves high computational

complexity due to its adaptive decomposition mechanisms, which makes it unsuitable for

real-time VBCM applications.

This chapter introduces a low-complexity method for VBCM of rolling bearings based on

envelope analysis. The proposed method jointly utilizes the IA and IF of the vibration

signal to facilitate three novel envelope representations that maintain temporal information

to effectively capture energy-frequency variations in the signal envelope. The following

section introduces the theoretical background and details of the proposed method.

6.3 Joint Instantaneous Time-Frequency Analysis of Vi-

bration Signals

6.3.1 The Hilbert Transform

The Hilbert transform (HT) is a fundamental operator in signal processing since it provides

an efficient way to obtain analytic signal representations of real-valued signals. An analytic

signal is a complex-valued representation of a signal that describes its amplitude and phase

characteristics. Given signal x(t), its HT is defined as:

H{x(t)} =
1
π

∫ ∞

−∞

x(τ)
t − τ

dτ (6.1)
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The transform essentially modifies the phase of each frequency component of the signal by

±90◦. Accordingly, the analytical signal xa(t) of x(t) is formed by augmenting the signal

with its HT H{x(t)} as the imaginary part:

xa(t) = x(t) + jH{x(t)} (6.2)

Accordingly, the IA or envelope, A(t) of the signal is given by:

A(t) = |xa(t)| =
√

x(t)2 + H{x(t)}2, (6.3)

and the IP, θ(t) is expressed as:

θ(t) = arctan
(

H{x(t)}
x(t)

)
(6.4)

Hence, the IF, F(t) can be calculated by taking the derivative of the instantaneous phase

θ(t):

F(t) =
1

2π
dθ(t)

dt
(6.5)

6.3.2 Proposed Joint Instantaneous Time-Frequency Analysis

Fig. 6.1 shows IA and IF information, obtained through the HT, of a real-world vibration

signal of a rolling bearing, denoted as vh(t). The signal is extracted from the Paderborn

University (PU) bearing dataset [344]. vh(t) represents a healthy vibration pattern and con-

tains 6, 400 datapoints that were acquired at a sampling rate of 64, 000 Hz; thus, the signal

spans a 0.1 seconds of time duration. As shown, the IA and IF information show how the

signal’s amplitude and frequency evolve over time, respectively. Hence, they separately de-

scribe the signal’s time-energy and time-frequency characteristics, which are of paramount

importance since faults often manifest as changes in the vibration signal’s energy and/or

frequency content. Accordingly, in this chapter, IA and IF of the vibration signal are jointly
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Figure 6.1: Instantaneous amplitude (IA) and Instantaneous frequency (IF) of a rolling
bearing vibration signal, vh(t).

utilized to conduct an efficient instantaneous amplitude-frequency analysis of the signal en-

velope. The joint instantaneous time-frequency analysis is facilitated through three novel

envelope representations: Instantaneous amplitude-frequency mapping (IAFM), Instan-

taneous Amplitude-Frequency Correlation (IAFC), and Instantaneous Energy-Frequency

Distribution (IEFD). Accordingly, highly discriminative features are extracted from these

representations, characterizing the shapes of the proposed representations and capturing

instantaneous energy-frequency dynamics of the signal’s envelope.
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Figure 6.2: Instantaneous amplitude-frequency mapping (IAFM), Envelope PSD, and en-
velope spectrum of the healthy vibration pattern, vh(t).

Instantaneous Amplitude-Frequency Mapping

Given IA and IF information, the Instantaneous Amplitude-Frequency Mapping (IAFM) is

reconstructed by mapping IA and IF information together where the x-axis represents the

IF, and the y-axis represents the IA as depicted in Fig. 6.2. The figure also displays the

PSD and frequency spectrum of the envelope. A comparison among the three spectral rep-

resentations reveals that the proposed IAFM effectively captures the spectral shape of the

envelope. In PSD and frequency spectrum, each x − y pair represents a unique frequency-

energy value across the spectral representation, which is helpful in precisely identifying

dominant frequency components. In contrast, as an instantaneous mapping, the IAFM

shows how signal amplitude (energy) values are allocated through various frequencies over
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the signal’s time duration, thereby providing an energy-frequency density representation of

the envelope with high energy resolution. This makes IAFM particularly useful in char-

acterizing energy-frequency behaviors of healthy and faulty vibration patterns through the

spread and concentration of energy (amplitude) values across various frequencies. Ac-

cordingly, the following features are extracted from IAFM that capture and characterize its

shape:

• Spectral Centroid (SC): The SC represents the center of gravity of the IAFM and

quantifies the average frequency at which the energy is concentrated. It describes the

spectral position of dominant oscillations in the generated vibration, thereby identi-

fying various vibration patterns. Given that IA and IF information are represented in

the discrete forms A[n] and F[n], respectively, SC is calculated through the following

formula:

S C =
∑N−1

n=0 F[n] · A[n]∑N−1
n=0 A[n]

Hz (6.6)

where N is the number of total datapoints in A[n] and F[n].

• Spectral Spread (SS): It describes the deviation of instantaneous amplitude-frequency

points in the IAFM with respect to the SC. Hence, it provides a measure to assess

the variance of the IAFM. SS is obtained by calculating the standard deviation with

respect to SC:

S S =

√∑N−1
n=0 (F[n] − S C)2 · A[n]∑N−1

n=0 A[n]
Hz (6.7)

• Coefficient of Variation (CoV): This metric provides insights into the dispersion of

the envelope’s energy across its frequency components. CoV is expressed as the ratio

of the SC to the CC:

CoV =
S S
S C
× 100 (%) (6.8)

CoV quantifies the dispersion of the IAFM with respect to SC, indicating how spread

out the energy is in relation to the mean frequency. A higher CoV implies a wider



Chapter 6 – Joint Instantaneous Amplitude-Frequency Analysis of Vibration Signals for
Vibration-Based Condition Monitoring 176

Figure 6.3: IAFC of the healthy vibration pattern, vh(t)

distribution of the envelope’s energy across its instantaneous spectrum, suggesting a

more dispersed frequency content. Conversely, a lower CoV indicates a more con-

centrated distribution of frequencies around the SC, implying that the envelope’s

energy is more narrowly focused around a central frequency.

Instantaneous Amplitude-Frequency Correlation

The second proposed representation is the Instantaneous Amplitude-Frequency Correla-

tion(IAFC), which represents the cross-correlation of IA and IF:

IAFC = RAF[k] =
N−1∑
n=0

A[n] · F[n − k], k = 0,±1, . . . ,±N − 1 (6.9)

As instantaneous quantities, IA and IF maintain the same temporal dependencies among

their values. Accordingly, the IAFC would capture the mutual dynamics between IA and

IF that are unique to the system’s health state since changes in operational conditions often
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manifest as variations in amplitude and frequency. Hence, the IAFC can be interpreted as

an envelope representation that describes the relationship between the envelope’s energy

and frequency variations over time. Since IA and IF are both positive quantities, the IAFC

would possess common characteristics as well as condition-specific features. Specifically,

given the IAFC of the healthy vibration pattern, vh(t) depicted in Fig.6.3, the following

observations are made:

1. The IAFC is a positive function since IA and IF are positive quantities.

2. The IAFC has an increasing trend until it reaches its peak, after which it shows a

decreasing trend.

3. The peak, representing the maximum cross-correlation, typically occurs at full over-

lap between IA and IF (zero lag). Otherwise, it reflects very high excitements in

either amplitude, frequency, or both, which would indicate abnormal behavior.

Accordingly, the following features are extracted from the IAFC to quantify the aforemen-

tioned characteristics, thereby capturing various operation conditions:

• Correlation Peak (CP): It represents the maximum value of IAFC, quantifying the

maximum cross-correlation. CP is expressed mathematically as follows:

CP = max {RAF[k]} , k = 0,±1, . . . ,±N − 1 (6.10)

• Peak Lag (PL): PL is the lag at which the RAF[k] has its maximum value. In other

words, it is the lag value corresponding to the CP.

The values of CP and PL characterize the maximum cross-correlation in the IAFC, which

would be a discriminative indicator between healthy and faulty conditions, as explained

above.
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Figure 6.4: Joint time-energy-frequency representation of the healthy vibration pattern,
vh(t)

Instantaneous Energy-Frequency Distribution

As previously mentioned, IA and IF information separately show how the envelope’s en-

ergy and spectral content evolve over time. Specifically, while IA shows how the energy

is distributed over the time period, the IF shows how the frequency changes over that time

period. Accordingly, a joint time-energy-frequency representation of the signal can be vi-

sualized by mapping the intensity of each time-frequency pair in the IF to its corresponding

value of the IA, as demonstrated in Fig. 6.4 for the healthy vibration pattern, vh(t). This

visual heatmap is an effective tool for visualizing the instantaneous components since it
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clearly represents the variations in the envelope’s energy and frequency over time. To facil-

itate this visualization efficiently, the third proposed representation is introduced. Namely,

Instantaneous Energy-Frequency Distribution (IEFD), which is the product of normalized

instantaneous energy (IEnorm) and normalized IF (IFnorm). The IEnorm is obtained by squar-

ing and normalizing the instantaneous amplitude A[n]:

IEnorm[n] =
A[n]2∑N−1

n=0 A[n]2
(6.11)

The squaring and normalization processes emphasize larger values of IA more than smaller

ones and transform the instantaneous amplitude values into values that represent their pro-

portion of the envelope’s total energy over the given time period. Thus, IEnorm is more

sensitive to points in time where the energy is significantly higher, as these points will

contribute disproportionately to the sum. The IFnorm is obtained by normalizing the instan-

taneous frequency F[n]:

IFnorm[n] =
F[n]∑N−1

n=0 F[n]
(6.12)

Normalizing IF makes the representation more sensitive to changes in the frequency con-

tent of the envelope. Specifically, the normalization process provides a measure of the

relative contribution of each instant’s frequency to the overall envelope’s spectrum, thereby

amplifying the impact of large frequency values in fault analysis. Accordingly, the IEFD is

expressed as follows:

IEFD[n] = IEnorm[n] × IFnorm[n]

=
A[n]2∑N−1

n=0 A[n]2
×

F[n]∑N−1
n=0 F[n]

(6.13)

By combining the normalized instantaneous energy and frequency information, the IEFD

provides a comprehensive representation that captures crucial dynamics of the generated vi-

bration. Hence, IEFD allows for a localized analysis in the time-energy-frequency domain,
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Figure 6.5: IEFD along with the joint time-energy-frequency visualization of the healthy
vibration pattern, vh(t).

enhancing the detection of changes or shifts in operational behavior indicative of faults.

Fig. 6.5 shows and compares the IEFD with the joint time-energy-frequency heatmap of

the healthy vibration pattern, vh(t). The heatmap visualization is obtained by mapping

the intensity of each time-frequency pair in the IF to its corresponding value of the IA as

previously explained. The comparison shows that the IEFD effectively captures the time-

varying energy-frequency characteristics of the signal’s envelope since its peaks correspond

to the most intense time-frequency pairs in the heatmap. These characteristics are highly

influenced by changes in the operational conditions since the presence of a fault is often

characterized by a high level of regularity in the generated vibration due to the emergence
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Table 6.1: Proposed envelope representations and extracted features

of highly energetic frequency components associated with the fault. Conversely, normal

operation conditions would generate more complex and highly irregular vibration patterns.

The Mean-to-Entropy Ratio (MER) of the IEFD is used to quantify these characteristics

and extract a feature that is sensitive to such changes in operational conditions. The MER

represents the ratio between the mean and Shannon entropy of IEFD; it is expressed math-

ematically as follows:

MER =

∑N−1
n=0 IEFD[n]

N

−
∑M−1

i=0 xi log2 P(xi)
(6.14)

where i = 0, 1, · · ·M − 1, M is the number of unique values in the IEFD, and P(xi) is the

probability of each unique value xi. The mean value of the IEFD quantifies its average

concentration in terms of joint energy-frequency content across the observed time period,

while entropy quantifies irregularity within the IEFD.

To this end, instantaneous amplitude and frequency information of vibration signals are

jointly utilized to facilitate three novel envelope representations. Accordingly, six highly

discriminative features are extracted from these representations as summarised in Table

6.1.

Complexity Analysis

Algorithm 2 shows the pseudo-code and computation steps of the proposed method. Ac-

cordingly, the complexity of the proposed method can be analyzed as follows:

• Complexity of the HT is O(N log N) since it is commonly implemented using the fast
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Algorithm 2 Proposed Joint Instantaneous Time-Frequency Analysis
Input: vibration signal x[n] of length N data points
Parameters: fs = sampling frequency (samples/second).
Output: F [s], s = 0, ..., S − 1 : features vector of size S = 6
Start:
Compute Hilbert Transform (HT) of x[n]: H {x[n]} = HT (x[n], f s).
Compute instantaneous amplitude A[n] and instantaneous frequency F[n], n =

0, 1, · · ·N.
% 1- Instantaneous Amplitude-Frequency Mapping (IAFM):
Calculate SS, F [0]← S S
Calculate SC, F [1]← S C
Calculate CoV, F [2]← CoV
% 2- Instantaneous Amplitude-Frequency Correlation (IAFC):
Calculate CP, F [3]← CP
Calculate PL, F [4]← PL
% 3- Instantaneous Energy-Frequency Distribution (IEFD):
Calculate MER, F [5]← MER
End

Fourier transform (FFT) [373, 374], which is the case in both MATLAB and Python

SciPy implementations of the HT.

• Complexity of the cross-correlation function IAFC is O(N log N) considering FFT-

based cross-correlation.

• Complexity of the other computations are in the order of O(N).

Thus, the most computationally intensive steps are those involving the HT and the IAFC,

each with a complexity of O(N log N). Therefore, the overall complexity of the proposed

method is dominated by these steps, leading to an overall computational complexity of

O(N log N).
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Table 6.2: Experimental dataset

PU dataset

Class Health condition Fault type Motor speed (rpm)

1 Healthy NA

1500
2 Combined IR and OR

faults
Multiple damages

3 IR faults Single, repetitive, and
multiple damages

4 OR faults Single and repetitive
damages

6.4 Performance Evaluation

6.4.1 Experimental Dataset

The performance of the proposed method is evaluated on the Paderborn University (PU)

bearing dataset [344]. In contrast to other datasets, the PU dataset has real bearing damages

with combined defects. The experiments are conducted using 425 W Permanent Magnet

Synchronous Motor (PMSM). The dataset used in this chapter is based on measurements

conducted at n = 1,500 rpm with a load torque of M = 0.7 Nm and a radial force on the

bearing of F = 1,000 N. Vibration signals are recorded with a sampling rate of 64,000

Hz by measuring the acceleration of the bearing housing at the adapter at the top end of

the rolling bearing module. Regarding bearing defects, the PU dataset includes artificially

generated and accelerated-lifetime defects. In this chapter, only accelerated-lifetime de-

fects are used. Accordingly, the dataset has four classes: one healthy class and three faulty

classes according to fault type, as shown in Table 6.2.

6.4.2 Experimental Setup

In the preprocessing stage, vibration signals of the dataset are segmented into non-overlapping

segments of N = 6, 400 samples. Accordingly, the resultant segment duration is 0.1 sec-

onds, given that the vibration signals are acquired at 64, 000 Hz. The segment duration

of 0.1 seconds is precise enough to facilitate real-time monitoring with moderate compu-
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tational requirements. The segmentation process results in a dataset of 16, 005 vibration

segments in total. After extracting the features, the resulting dataset is divided into two

parts: 11, 203 samples for training (70%) and 4, 802 samples for testing (30%). A random

forest (RF) classifier is then trained on the training dataset. The selection of RF is driven by

its better performance compared to other classifiers, as reported in [56]. The performance

of the proposed method is compared with two common time-frequency methods: the short-

time-Fourier transform (STFT) of the signal envelope and The Hilbert-Huang transform

(HHT) of the signal. In the STFT-based method, the envelope of the vibration signal is seg-

mented into three segments using the Hamming window with 50% overlap. The FFT is then

computed for each segment with the number of FFT points (NFFT) set equal to 4, 096. The

proposed features are calculated accordingly, considering that A[n] represents aggregated

STFT power coefficients and F[n] represents frequency bins. In the HHT-based method,

the obtained IA and IF information of the resulting intrinsic mode functions (IMFs) are

aggregated, and the proposed features are calculated accordingly. The following metrics

are used to evaluate the performance:

• Prediction accuracy (%) and ROC-AUC score to evaluate the reliability and effec-

tiveness of the proposed method in condition monitoring.

• Online processing time and memory usage to assess computational complexity of the

proposed method.

Python programming language, along with SciPy and emd libraries, are used to build the

models. The code is available publicly on the Github site of the Optimized Computing

and Communications (OC2) Laboratory1. The achieved results and related discussion are

presented in the next section.

1https://github.com/Western-OC2-Lab/Joint-Instantaneous-Amplitude-Frequency-Analysis-for-
Vibration-Based-Condition-Monitoring
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Figure 6.6: IAFMs of healthy, inner race (IR) defect, outer race (OR) defect, and combined
IR and OR defect vibration patterns.

6.5 Results and Discussion

Fig. 6.6, Fig. 6.7, and Fig. 6.8 compare between IAFMs, IAFCs, and IEFDs, respectively,

across healthy and faulty vibration patterns from the PU dataset. It is evident that the

proposed representations of vibration signal envelope distinctly capture the unique varia-

tions between healthy and faulty bearing conditions by emphasizing the contrast in energy

and frequency among various operational conditions. Thus, improving the discriminative

characteristics of the extracted features is crucial for effective condition monitoring.

Table 6.3 shows the achieved performance results of the proposed method along with re-

sults of HHT-based features and STFT-based features. In terms of accuracy and ROC-AUC

score, the proposed method achieved superior performance (accuracy > 99.6%, ROC-AUC

score = 1.00), reflecting its reliability and effectiveness in the detection and diagnosis of

various fault types. Further, the results demonstrate the effectiveness of the proposed in-
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Figure 6.7: IAFCs of healthy, inner race (IR) defect, outer race (OR) defect, and combined
IR and OR defect vibration patterns.

Figure 6.8: IEFDs of healthy, inner race (IR) defect, outer race (OR) defect, and combined
IR and OR defect vibration patterns.
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Table 6.3: Performance comparison among the proposed method, the STFT-based method,
and the HHT-based method

Method Accuracy (%) ROC-AUC score Online processing time
(seconds)

Memory usage (MB)

Proposed 99.60% 1.00 0.16 1.1

STFT-based 95.20% 0.997 0.16 0.9

HHT-based 91.46% 0.989 0.24 2.5

stantaneous amplitude-frequency representations in extracting highly fault-sensitive fea-

tures compared to the other two methods. In contrast to the STFT-based method, which fa-

cilitates time-varying spectral representation of the signal envelope, the prospered method

effectively utilizes instantaneous frequency, along with the envelope, to jointly facilitate

instantaneous amplitude-frequency representations. As the results show, the proposed

method outperforms the STFT-based method, indicating that the proposed presentations

effectively capture more unique variations in energy and frequency between healthy and

faulty bearings compared to the STFT-based representation. This could be explained by

the limitation of fixed segment length in STFT, which results in an inherent compromise

between time and frequency resolutions in the time-energy-frequency representation. Re-

garding HHT, although it utilizes instantaneous amplitude and frequency information to fa-

cilitate time-energy-frequency analysis, it results in lower accuracy compared to the other

two methods. This gap in performance can be justified by impairment caused by the EMD

process, such as mode mixing, end effects, and over-sifting. Regarding computational com-

plexity, both the proposed method and the STFT-based methods demonstrate comparable

and moderate computational requirements compared to the HHT-based method. This is

expected since the iterative sifting process used in EMD to extract the IMFs is computa-

tionally intensive, especially for long vibration segments. In contrast, the proposed method

uses vibration segments of 0.1 seconds of duration and results in six features only, reducing

the processing time and relaxing memory requirements.

Table 6.4 presents a comparison, in terms of achieved prediction accuracy (%), with recent



Chapter 6 – Joint Instantaneous Amplitude-Frequency Analysis of Vibration Signals for
Vibration-Based Condition Monitoring 188

Table 6.4: Performance comparison between the proposed method and other DL-based
methods on the PU dataset

Method Approach Achieved accuracy (%)

Proposed Signal processing-based 99.60%

Y. Kim et al., 2024 [375] DL-based 99.44%

L. Cui et al., 2024 [376] DL-based 97.05%

Z. Zhang et al., 2024 [377] DL-based 96.51%

Y. Xue et al., 2024 [378] DL-based 99.50%

H. Geng et al., 2022 [350] DL-based 96.67%

K. Zhang et al., 2022 [351] DL-based 97.68%

A. Sharma et al., 2022 [348] DL-based 96.24%

D. Wang et al., 2021 [347] DL-based 99.80%

L. Hou et al., 2020 [349] DL-based 99.70%

deep learning (DL)-based methods on the PU dataset. The results demonstrate the effec-

tiveness of the proposed method in achieving excellent performance compared to DL-based

methods. Moreover, the proposed method is more computationally efficient than DL-based

approaches since it utilizes a very short duration of the acquired vibration signal (only 0.1

seconds) and produces six features that are sufficient for fault detection and diagnosis. On

the other hand, DL-based approaches usually require extensive training and result in sub-

stantial sizes of deep-learned features that necessitate the use of dimensionality reduction

feature ranking techniques, which would further increase the computational burden.

6.6 Conclusion

In this chapter, a new method is proposed for vibration-based condition monitoring of

rolling bearings that effectively utilizes instantaneous frequency along with the envelope of

generated vibration patterns to jointly facilitate three newly introduced envelope represen-

tations: Instantaneous Amplitude-Frequency Mapping (IAFM), Instantaneous Amplitude-

Frequency Correlation (IAFC), and Instantaneous Energy-Frequency Distribution (IEFD).

The introduced representations effectively capture unique variations in energy and fre-

quency between healthy and faulty bearings, thereby enabling the extraction of discrim-
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inative features with high sensitivity to variations in operational conditions. Accordingly,

a set of six new highly discriminative features are extracted from these representations.

The experimental results demonstrated excellent performance in detecting and diagnosing

various fault types, marking the effectiveness of the proposed method in capturing unique

variations in energy and frequency between healthy and faulty bearings. Moreover, the

proposed method has comparable performance to DL-based methods but with more mod-

erate computational requirements attributed to the short duration of the utilized vibration

segments, efficient feature extraction, and the small set of resulting features.
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Chapter 7

7 Signal-Companding AutoEncoder with

Compression-Based Activation for an Efficient

Vibration-Based Remote Condition Monitoring

This chapter1 introduces the fourth research problem within the thesis, focusing on the en-

hancement of power efficiency and reliability of remote VBCM systems. Specifically, the

chapter tackles the problem of power efficiency from a signal’s waveform perspective and

suggests the control of the Peak-to-Average Power Ratio (PAPR) of the acquired vibration

signal in the sensor node to reduce the power consumption. Further, an autoencoder-based

method for signal denoising is proposed to improve the reliability of the condition monitor-

ing process. The content of this chapter is submitted to the IEEE Transactions on Reliabil-

ity as a regular paper entitled “Signal-Companding AutoEncoder with Compression-Based

Activation for a Power-Efficient Vibration-Based Remote Condition Monitoring”. The pa-

per is currently in the review stage.

7.1 Introduction

In remote Vibration-Based Condition Monitoring (VBCM) systems, sensor nodes are con-

strained by limited power resources, necessitating efficient power management to reduce

power consumption within the node. Further, maintaining signal’s waveform undistorted is

crucial for achieving reliable performance in condition monitoring. This chapter analyzes

the PAPR in VBCM systems and evaluates its effects in the presence of nonlinear power

amplification on system performance and power efficiency. Aiming to enhance power ef-

ficiency and improve performance, the chapter proposes a lightweight autoencoder-based

1A version of this chapter has been submitted for publication in IEEE Transactions on Reliability.
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signal companding scheme to control the PAPR and avoid nonlinear distortion. In the sen-

sor node, a lightweight reconstruction autoencoder with a compression-based activation

function compresses the acquired vibration signal without increasing its average power.

In the processing center, a denoising-expansion autoencoder simultaneously denoises and

expands the compressed signal, avoiding noise expansion. Experimental results show this

approach effectively prevents distortion, enhances power efficiency, and improves overall

system performance.

The rapid evolution of sensor fabrication, coupled with advancements in the Internet of

Things (IoT) and computing technologies, has enabled the facilitation of large-scale remote

VBCM systems comprising distributed sensor nodes. In these systems, sensor nodes are

typically battery-powered and, therefore, have limited power resources [379–383]. Hence,

efficient power utilization in key node components, such as signal acquisition, amplifica-

tion, and transmission, is paramount to maintaining low power consumption. Aiming to

reduce power consumption, current research efforts are mainly dedicated to developing

power-efficient signal acquisition techniques. Specifically, compressive sensing [384–389]

is being adopted to acquire the signal in a compressed form by performing fewer mea-

surements and collecting fewer samples. The ultimate objective is to achieve more power-

efficient signal acquisition with less power consumption. Compressive sensing allows the

reconstruction of the signal from a few acquired samples. Relying on the sparsity of the

acquired signal, reconstruction algorithms utilize sparse optimization to reconstruct the

signal from the acquired samples. As a result, the practical use of compressive sensing is

limited by the assumption of signal sparsity and costly reconstruction processes [388] that

involve time and power-consuming algorithms, making compressive sensing unsuitable for

real-time condition monitoring [389].

This chapter tackles the problem of power efficiency from a signal waveform perspective.

Specifically, the chapter suggests reducing the power consumption in the sensor nodes by
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controlling the PAPR of the acquired vibration signal. The PAPR is the ratio of the peak

power to the signal’s average power. It directly affects the node’s power consumption since

it determines the required resolution for analog-digital conversions [390]. Additionally, it

determines the required linear range of the power amplification circuit [391], which ac-

counts for the major part of the total power consumption in many systems [392, 393]. To

the best of our knowledge, this chapter is the first work that addresses the issue of PAPR

in vibration signals and tackles the related problem of nonlinear power amplification in

VBCM systems. Specifically, the chapter statistically investigates the PAPR characteristics

of vibration signals, evaluates the impact of nonlinear power amplification on the system,

and proposes a lightweight framework based on signal companding to reduce the PAPR and

ensure linear power amplification of the signals. Companding1 is a well-known technique

in signal processing; it involves signal compression at the source and subsequent expan-

sion at the destination. Signal companding has demonstrated its effectiveness in controlling

the PAPR of multi-carrier communication signals, such as Orthogonal Frequency-Division

Multiplexing (OFDM). Nevertheless, conventional companding techniques encounter two

significant limitations. Firstly, the compression mechanism increases the average power of

the compressed signal. Secondly, the expansion operation amplifies the accumulated noise

in the compressed signal. To effectively control the PAPR and address these limitations, the

proposed framework adopts a two-fold approach. Firstly, it smoothes and compresses the

signal using a reconstruction autoencoder with a compression-based activation function.

Secondly, it employs a denoising-expanding autoencoder to simultaneously denoise and

expand the compressed noisy signal at the destination. This combined approach ensures

efficient PAPR control while mitigating the aforementioned limitations. Additionally, the

proposed autoencoder structure facilitates an efficient, end-to-end, Deep Learning (DL)-

based implementation of the signal processing pipeline in the framework. Specifically,

at the source, the smoothing and compression operations are carried out simultaneously

1The name COMPANDING is a composite of the words COMPressing and expANDING.
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using a smoothing autoencoder with a compression-based activation function. The simul-

taneous denoising-expansion of the compressed noisy signal at the destination is achieved

through a denoising-reconstruction autoencoder. The main contributions of the chapter

include:

• To the best of our knowledge, this chapter is the first contribution to the VBCM

literature that addresses the PAPR of generated vibration waveform and examines its

impact in the presence of nonlinear power amplification. Accordingly, it proposes

controlling the PAPR to enhance power efficiency, mitigate nonlinear distortion, and

improve the reliability of condition monitoring.

• Statistically analyzes the PAPR of vibration signals and introduces a closed-form

formula that accurately models the statistical distribution of the PAPR.

• Introduces a framework based on signal companding to effectively reduce the PAPR

of vibration signals and mitigate the impact of nonlinear power amplification.

• In the sensor node “source”, before the power amplification stage, the framework

employs a lightweight reconstruction autoencoder that utilizes a compression-based

activation function. The autoencoder function facilitates the simultaneous smoothing

and compression of the vibration signal without causing an increase in the average

power of the compressed signal.

• In the processing center “destination”, the proposed framework utilizes a denoising-

expansion autoencoder to simultaneously denoise and expand the compressed signal

while avoiding enhancement “expansion” of the accumulated noise by the expansion

operation.

• The proposed architecture, based on reconstruction autoencoders and compression-

based activation, allows for simultaneous signal processing, facilitating an efficient

end-to-end implementation of the framework.
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• Comprehensively evaluates the performance of the proposed framework in the pres-

ence of nonlinear power amplification and Additive White Gaussian Noise (AWGN),

employing a real-world vibration dataset.

• Adapts new metrics to quantify nonlinear distortion caused by nonlinear power am-

plification and evaluate power efficiency.

The remainder of the chapter is structured as follows: The next section provides back-

ground information and motivation for the problem. Section 7.3 presents the statistical

analysis of the PAPR of vibration signals. Section 7.4 reviews signal companding tech-

niques that have been proposed in the OFDM literature. Section 7.5 introduces the pro-

posed autoencoder-based companding framework. Section 7.6 presents the model of non-

linear power amplification used in the experimentation. The experimental setup and per-

formance evaluation metrics are introduced in Section 7.7, while Section 7.8 discusses the

obtained results. The chapter is finally concluded in Section 7.9.

7.2 Background and Motivation

Fig. 7.1 shows a high-level architecture of a typical remote VBCM system where sensor

nodes are deployed across various locations, either embedded in objects, placed beneath

surfaces, attached to mobile or airborne objects and connected to a cloud or a processing

center. Typically, sensor nodes employ wireless connections, utilizing existing cellular net-

works or using dedicated wireless links to aggregator nodes in scenarios where cellular

coverage is unavailable or unstable [8, 379, 380, 394–397]. Subsequently, the aggrega-

tor node transmits the accumulated signals to the cloud or the processing center via the

cellular network. As mentioned earlier, these nodes are typically power-constrained, and

hence, efficient power utilization in key components of the node, such as signal accusation,

amplification, and transmission, is critical to maintaining low power consumption in these

nodes. The PAPR is crucial in determining how much power the system needs to operate
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Figure 7.1: Overview of a typical remote VBCM system.

effectively. A smaller PAPR value requires fewer bits and allows the High Power Ampli-

fier (HPA) to operate more efficiently, saving the battery in the system [398]. To achieve

maximum power efficiency, the HPA’s operating point should be positioned as close as

possible to HPA’s saturation point [399] as illustrated in Fig 7.2. When peaks of the input

signal exceed this designated operating point, the HPA becomes prone to saturation, lead-

ing to power wastage, nonlinear amplitude distortion, and spectral spreading induced by

abrupt fluctuations in the distorted amplitudes. To prevent these consequences, the HPA

circuit must be designed to operate linearly over the PAPR range of the input signal, which

tends to be a costly and inefficient solution [400]. Alternatively, a significant Input Power

Backoff (IBO) from the HPA’s operating point should be applied to restrict the HPA’s in-

put power level, ensuring that the entire signal falls within the HPA’s linear region. While

this approach mitigates nonlinear distortion, it significantly reduces power efficiency, as the

HPA operates in a lower-power region. Therefore, it has a high cost in terms of energy ef-

ficiency, particularly in battery-power applications [399] such as remotely deployed sensor
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Figure 7.2: HPA range curve.

nodes.

In VBCM systems, the amplitude of the acquired vibration waveform fluctuates according

to the monitored condition. Hence, the waveform is anticipated to exhibit a high PAPR due

to these fluctuations, which can reach significant magnitudes depending on the monitored

condition [8, 394]. To this end, the remainder of the chapter attempts to facilitate power-

efficient remote VBCM by addressing the following key aspects:

1. Analyse PAPR characteristics of acquired vibration signals,

2. evaluate the impact of uncontrolled PAPR on the VBCM performance in the presence

of nonlinear power amplification,

3. and, accordingly, propose an appropriate remedy solution to control the PAPR.
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7.3 PAPR of Vibration Signals

The PAPR quantifies the power ratio between the peak and average amplitudes of a signal.

For a given vibration signal x(t), its PAPR can be expressed as:

PAPRx(t) =
Max |x(t)|2

E
{
|x(t)|2

} (7.1)

where E {·} denotes the expectation operator. For the finite sampled signal x[n], the PAPR

is:

PAPRx[n] =
Maxnϵ[0,N] |x[n]|2

1
N

∑N−1
0 |x[n]|2

(7.2)

where N is the number of samples in the vibration signal x[n]. The PAPR is usually ex-

pressed in dB:

PAPR (dB) = 10 × log (PAPR) dB (7.3)

Crest Factor (CF) is another common signal parameter that quantifies a signal’s peak am-

plitude to its Root-Mean-Square (RMS) value. It equals the square root of the PAPR.

However, expressed in dB, the CF is equal to the PAPR since:

CF (dB) = 10 × log
(
CF2

)
dB = 10 × log (PAPR) dB (7.4)

A signal with constant power, such as a square wave, has a PAPR of 1 (0 dB). The PAPR

of a sinusoidal wave equals 2 dB or 3.01 dB. Determining the PAPR of a random vibration

depends on its instantaneous value, which is not predictable. Nevertheless, it is possible to

describe the PAPR statistically.

7.3.1 Statistical Distribution of Vibration Signals

The statistical distribution of the vibration samples generated by a VBCM system depends

on the characteristics of the monitored condition and is influenced by the surrounding envi-
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Figure 7.3: Histograms of sample vibration signals: (a) Gaussian random vibration, (b) ac-
celeration of a flying aircraft, (c) acceleration measurements of a flying UAV, (d) vibration
from an SHM setup, (e) vibration generated by a wind turbine gearbox, and (f) vibration
generated by rolling bearings.

ronment. However, when the number of vibration samples N in the signal is large, the signal

will approach the Gaussian distribution with a zero mean and a variance ofσ2 “central-limit

theorem.” Therefore, a Gaussian random process can accurately model the vibration signal.

Accordingly, the signal’s envelope |x[n]| follows the one-sided Gaussian distribution. Fig.

7.3 shows histograms of vibration signals generated from (a) Gaussian random vibration,

(b) exterior of a flying aircraft [401], (c) a flying Unmanned Aerial Vehicle (UAV) [402],

(d) a Structural Health Monitoring (SHM) setup [403], (e) a wind turbine gearbox [404],

and (f) rolling bearings of a rotating machinery[405]. These vibration sets are chosen to re-

semble the vibration patterns found in various VBCM applications. They represent healthy

or normal vibrations, except vibrations of the rolling bearings (Fig. 7.3.f), which include

normal and faulty vibrations. It is worth mentioning that an abnormal operation or a failure

influences the instantaneous vibration, and hence, it would alter the amplitude distributions

of the generated vibration. Although generalizing the aforesaid assumption of Gaussian

nature may not be entirely accurate, the histograms presented in Fig. 7.3 show that this

assumption would be valid for a broad range of vibration patterns.
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7.3.2 Statistical Analysis of the PAPR

Following the assumption that a vibration signal x[n] follows a Gaussian distribution, its

Probability Density Function (PDF) can be expressed as:

p(x, σ) =
1

σ
√

2π
× exp

(
−

x2

2σ2

)
(7.5)

Accordingly. the signal’s envelope |x[n]| has a one-sided Gaussian distribution; its PDF is

given by:

pe(x, σ) =

√
2
πσ2 × exp

(
−

x2

2σ2

)
, x ≥ 0 (7.6)

The Cumulative Distribution Function (CDF) of the signal’s envelope is then obtained

by:

Fe(x, σ) =
∫ x

0

√
2

σ
√
π
× exp

(
−

u2

2σ2

)
du (7.7)

using

t =

√
u2

2σ2 , (7.8)

the CDF can be written as:

Fe(x, σ) =
2
√
π

∫ √x2/2σ2

exp
(
−t2

)
dt

= er f


√

x2

2σ2


(7.9)

where er f (·) is the error function. Accordingly, the probability that the signal’s power

ratio P = x2

σ2 is above a given PAPR threshold Po can be obtained using the Complementary

Cumulative Distribution Function (CCDF):

Prob(P > Po) = CCDF = 1 − (CDF)N

= 1 − er f

√Po

2

N (7.10)
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where N is the number of samples in the vibration signal x[n]. The analytical formula

of the CCDF in (7.10) is helpful in studying the PAPR of vibration generated in various

Figure 7.4: Theoretical CCDF and its closed-form approximation for different values of N.

Figure 7.5: Analytical and simulated CCDFs of (a) Gaussian random vibration (N = 5000),
(b) acceleration of a flying aircraft (N = 5000), (c) acceleration measurements of a flying
UAV (N = 50), (d) vibration from an SHM setup (N = 5000), (e) vibration generated
by a wind turbine gearbox (N = 5000), and (f) vibration generated by rolling bearings
(N = 5000).
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VBCM systems. Furthermore, the CCDF is a useful metric for evaluating the effective-

ness of the employed PAPR reduction method. Typically, a simulated CCDF is obtained

using PAPR-reduced signals and compared to a simulated CCDF of the original signals

to evaluate the reduction achieved in the PAPR. A closed-form approximation of (7.10)

can be obtained using the asymptotic series expansion of the complementary error function

er f c (·):

Since,

er f (·) = 1 − er f c (·) , (7.11)

(7.10) can be expressed in terms of er f c (·) as follows:

Prob(P > Po) = CCDF = 1 −

1 − er f c

√Po

2

N

(7.12)

For large values of
√

Po/2, the complementary error function may be approximated by the

asymptotic series expansion:

er f c

√Po

2

 ≈ e−Po/2√
Poπ

2

×

(
1 −

1
Po
+

1 · 3
P2

o
− · · · + (−1)n (2n − 1)!!

Pn
o

+ · · ·

) (7.13)

For Po ≫ 1,

er f c

√Po

2

 ≈ e−Po/2√
Poπ

2

(7.14)

Accordingly, a closed-form approximation of the CCDF can be obtained by substituting

(7.14) into (7.12):

Prob(P > Po) = CCDF = 1 −

1 − e−Po/2√
Poπ

2


N

(7.15)

Fig. 7.4 shows plots of the CCDF in (7.10) and its closed-form approximation in (7.15) for
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different values of N. The plotted CCDF curves show an exact match between the CCDF

and its closed-form approximation. Fig. 7.5 shows simulated CCDFs of the aforementioned

vibration sets (refer to Fig. 7.3) along with theoretical CCDFs (7.15). It is evident that

the simulated CCDFs align with their corresponding theoretical CCDFs, except for the

rotating machinery. The mismatch in the case of rotating machinery could be due to the

rotating nature of the bearings and speed fluctuations [394][406]. Additionally, the graphs

depicted in Fig. 7.4 and Fig. 7.5 demonstrate that as the number of samples N increases,

the likelihood of experiencing a high PAPR increases. Specifically, with the number of

samples N ≥ 500, a PAPR in the range of 10 dB-13 dB is likely to occur. Thus, it can be

concluded that vibration signals generally tend to have high PAPR, where peak vibrations

that are 10–20 times higher than the average vibrations occur commonly.

7.4 Review of PAPR reduction techniques

To the best of our knowledge, the PAPR of vibration singles and the associated problem of

nonlinear power amplification have not been addressed yet in the literature. Nevertheless,

the problem of PAPR in multi-carrier communications, particularly in OFDM systems, has

been extensively studied since OFDM signals exhibit a high PAPR. The existing techniques

can be broadly categorized into three main categories: Symbol structure modification, peak

clipping, and signal companding. Structure modification techniques include block coding

[407], Selective Mapping (SLM) [408], Partial Transmission Sequence (PTS) [408], and

tone reservation [409]. These techniques reduce the PAPR by modifying the structure of

the transmitted OFDM symbol. They generally impose restrictions on its parameters and

require transmitting side information to reconstruct the symbol at the destination. There-

fore, the reduction in PAPR comes at the cost of increased complexity and reduced data

rates due to the transmission of side information. Clipping [410] offers a simple approach

to reducing the PAPR by hard-limiting the peaks to a pre-defined threshold. Despite its
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simplicity, clipping introduces amplitude distortion and spectral spreading. While ampli-

tude distortion is unrecoverable, filtering would reduce spectral spreading. However, the

peaks of the filtered-clipped signal could exceed the clipping threshold due to peak power

regrowth after filtering. Alternative solutions that help to reduce the clipping distortion

involve repeated or iterative clipping [410] and peak windowing [411]. In contrast to clip-

ping, peak windowing applies soft-limiting to the peaks by multiplying the signal with a

window-weighting function. As a result, distortion is reduced since the peaks are smoothly

and softly limited.

Signal companding is a well-known method in signal processing that involves two steps.

First, the signal is transformed into a compressed form at the source. Second, the inverse

transform expands the compressed signal at the destination. The compression reduces the

signal’s dynamic range and allows for efficient signal processing. µ-law and A-law [412]

are the most common companding transforms typically applied to speech signals to reduce

quantization noise and optimize the required number of bits per sample for analog-to digi-

tal conversion. In µ-law and A-law transforms, signal compression is achieved by applying

a logarithmic-based transform to enlarge small amplitudes in the signal. Companding has

no restrictions on the symbol’s parameters and does not require the transmission of side

information. Further, it has better error performance compared to clipping. Using signal

companding to reduce the PAPR of OFDM signals was first introduced in [375]. How-

ever, the scope of analysis was limited to addressing the effect of µ-law companding on

the quantization noise. Reducing the PAPR of the signal by applying µ-law companding

will increase the signal’s average power. This, in turn, improves the signal-to-quantization

noise ratio since the small amplitudes are enlarged. However, considering the nonlinearity

of the HPA, reducing the PAPR by increasing the signal’s average power will not prevent

the nonlinear distortion since the large peaks are not reduced. In fact, it would lead to

more distortion in the signal. The main attention of the ongoing research is directed to-

ward addressing this problem by designing the companding function so that the increase
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in the signal’s average power is avoided [350, 351, 376–378, 413]. The published work

in this area can be grouped under two main approaches. The first approach involves using

additional transforms and/or optimization algorithms, which obviously increases computa-

tional complexity. The second approach involves introducing inflexion points in the signal.

This allows for independent scaling of large peaks and small amplitudes, which helps to

maintain the signal’s average power. However, this approach reduces the data rate since

the signal’s indexes must be transmitted to apply the inverse operations at the destination.

A considerable amount of the recent work focuses on utilizing DL to tackle the problem of

PAPR in OFDM [121–123, 414–418]. DL-based approaches are centered around design-

ing and training the DL models to optimally, sub-optimally, or efficiently learn the function

of the corresponding conventional PAPR reduction scheme while mitigating the associated

drawbacks.

Choosing the appropriate technique among the options mentioned above for reducing the

PAPR of vibration signals starts by understanding the distinctions between OFDM and

vibration signals. Regarding structure modification approaches, vibration signals are gen-

erated by sensors as raw data, unlike OFDM symbols, which are formed based on a pre-

determined structure. Therefore, such techniques are not applicable to vibration signals.

Clipping introduces unrecoverable distortion in the clipped signal; this can be tolerated in

the OFDM signal due to the error correction mechanisms. In VBCM systems, the charac-

teristics of the monitored condition are described by the waveform and the spectrum of the

generated vibration signal. This makes clipping distortion critical and intolerable since it

introduces distortion in the generated waveform and alters its spectral contents. Compared

to structure modification and clipping, signal companding presents a practical solution for

reducing the PAPR of vibration signals without impacting the condition monitoring pro-

cess. However, in order to be adopted for VBCM applications, the companding transform

should fulfill the following three requirements:
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1. Avoiding the increase in the signal’s average power.

2. Denoising the compressed signal to avoid expanding the noise during the expansion

of the compressed signal.

3. Avoiding transmission of side information as this will increase the amount of the

transmitted data, resulting in more power consumption in the sensor node.

Considering these requirements, the upcoming section introduces the proposed autoencoder-

based companding framework.

7.5 Signal Companding for Reduction of PAPR

This section introduces the lightweight companding-based framework proposed for reduc-

ing the PAPR of vibration signals. However, it is convenient first to provide a brief overview

of conventional signal companding.

7.5.1 Conventional Signal Companding

The most commonly used type of signal companding is the µ-law companding. its com-

pression function C(x) can be expressed as:

y = C(x) = A sgn(x)
ln(1 + µ| xA |)

ln(1 + µ)
(7.16)

where, x is the input signal, sgn(·) is the sign function, A is a normalization constant such

that 0 < | xA | < 1, and µ is the compression parameter. The expansion (inverse) function is

expressed as:

x′ = C−1(y)

= A

exp
{
|y|

A sgn(y) ln(1 + µ)
}
− 1

µ sgn(y)

 (7.17)
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Fig. 7.6.a displays the compression profile of µ-law for different values of compression pa-

Figure 7.6: µ-law: (a) compression profile with different values of µ, and (b) peak and
average powers as a function of µ .

rameter µ. Increasing the µ value leads to more enlargements of small amplitudes, resulting

in a higher average power of the signal. Hence, the signal’s average power increases as a

function of µ as illustrated in Fig. 7.6.b. Since the signal’s peaks are maintained unchanged

in µ-law companding, the reduction in the PAPR of the signal is achieved solely by increas-

ing its average power. However, to avoid nonlinear distortion in the vibration signal and

improve the power efficiency of the HPA, it is required to reduce the PAPR by reducing the

signal’s peaks instead of increasing its small amplitudes. In other words, it is required to

reduce the PAPR of the signal while avoiding any increase in its average power. Another

issue with conventional companding is the undesired effect of enhancing the accumulated

noise at the destination due to expansion operation [375]-[351]. Thus, it is crucial to reduce

the effects of noise enhancement by applying effective denoising to the compressed signal

prior to expanding it.

Figure 7.7: Proposed framework for autoencoder-based companding of vibration signals.
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7.5.2 Proposed Signal Companding

The main aspects of the proposed framework are illustrated in Fig. 7.7. Specifically, sig-

nal compression at the source is achieved using a lightweight reconstruction autoencoder

with a compression-based activation function. At the destination, signal denoising and

expansion operations are combined in one process by using a denoising-reconstruction au-

toencoder.

Signal Compression at the Source

In the first place, the raw vibration signals are smoothed to remove measurement noise.

Then, a reconstruction autoencoder is trained to learn the smoothing function and recon-

struct these smoothed signals “target signals”. By using a compression-based activation

function in the autoencoder layers, the autoencoder will learn how to reconstruct the input

signals based on the target signal and, at the same time, compress the learned presentations

of the input signal. As a result, the output of the trained autoencoder is a smoothed and

compressed version of the input signal.

Average power of the compressed signal: During the training process, the autoencoder

compresses the signal’s representations in each layer while, at the same time, it learns

to minimize the loss between the input signal and the target signal. Here, the average

power of the target signal represents an upper bound on the average power of the recon-

structed signal. This will avoid any increase in the average power of the output recon-

structed (smoothed-compressed) signal. Further, the joint mechanism of reconstruction-

compression will maintain the average power of the output signal as close as possible to

the average power of the target signal.

Compression loss as a lower bound on the validation loss: To efficiently train the source

autoencoder, it is important to consider the following factors:

• The training objective of the source autoencoder is to reconstruct a smoothed and
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compressed version of the input signal rather than reconstructing the signal in its

original form.

• The compression-based activation function in the autoencoder layers implies that

there will be a compression loss or a minimum error floor between the output signal

and the target signal caused by the compression mechanism.

Considering these factors, it is not required to minimize the loss until maximum conver-

gence. Instead, it is desirable to train the autoencoder until reaching this error floor, which

is determined by compression loss. Theoretically, the compression loss can be defined

as the difference between the signal and its “perfectly reconstructed” compressed form.

Mathematically, the Compression Loss (CL) can be calculated as the difference between a

vibration signal x and its compressed and power-preserved form xpc:

CL = error(x, xpc),

xpc = P (AF(x)) ,
(7.18)

where AF is the compress-based activation function, and P is the power scaling operation.

The error function can be either the Mean Absolute Error (MAE) or the Mean Squared

Error (MSE). To efficiently train the autoencoder, the compression loss can be utilized to

set a baseline for the validation loss during the training. It can be empirically determined

using the training signals to obtain the average CL according to (7.18). Generally, the

effect of compressing a signal and preserving its average power can be approximated by

applying a limiter to the signal with a peak-limiting threshold equal to the maximum peak

of its compressed form. Accordingly, the clipping noise, which is the power of the clipped

portion, can be used as an estimate of the compression loss. Given a target PARR (PAPRt),

the maximum peak Peakc of the compressed and power preserved signal x equals to:

Peakc =
√

PAPRt × Pin, (7.19)
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where Pin is average power of the signal. Following the assumption of the Gaussian nature

of x, it can be modeled as a Gaussian random process with a zero mean and a variance

σ2 = Pin. Thus, the probability that, at any given time, the signal x takes the value Peakc is

given by:

Prob {x(t) = Peakc}

= p(x) =
1

√
2πPin

× exp
(
−

x2

2Pin

) (7.20)

Since maximum peak of the signal is limited to Peakc, the clipping noise (CN) is given

by:

CN = 2
∫ ∞

Peakc

(x − Peakc)2 p(x)dx (7.21)

Using the analysis presented in [391], CN can be approximated as:

CN � 2

√
2
π
× σ2 × (

√
PAPRt)−3 × exp

(
−

PAPRt

2

)
(7.22)

In contrast to other companding techniques [350, 351, 376–378, 413] that utilize complex

signal processing to compress the signal while preserving its average power, the proposed

compression method streamlines compression and power-preserving processes, in addition

to signal smoothing, into a single online inference task. Furthermore, bounded by the

Table 7.1: Comparison between the proposed method and conventional training
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compression loss, the proposed method requires less training time compared to traditional

minimum-error training, making it more efficient than other autoencoder-based compand-

ing methods [122, 414–417] that employ conventional training methods. Table 7.1 pro-

vides a high-level comparison between the proposed method and both conventional signal

processing-based companding and conventional autoencoder-based companding. Conven-

tional autoencoder-based companding methods use traditional activation functions and in-

volve training the autoencoder to minimize the loss between reconstructed output signals

and training target signals that are smoothed, compressed, and power-scaled versions of the

input training signals. The comparison demonstrates the lightweight nature of the proposed

method, which requires fewer computations and reduced signal processing, making it more

power-efficient and less complex than conventional methods.

Signal Denoising and Expansion at the Destination

In contrast to the source autoencoder, the training objective of the destination autoencoder

is minimizing the validation loss until maximum convergence. The destination autoencoder

is trained in reverse order compared to the source autoencoder. First, the training targets of

the destination autoencoder are used as inputs to the trained source autoencoder. Accord-

ingly, the output compressed-smoothed signals obtained from the source autoencoder are

corrupted with AWGN noise at a desired Signal-to-Noise Ratio (SNR) and used as the train-

ing inputs for the destination autoencoder. The autoencoder is then trained using the input

and target signals to minimize the validation loss. This way, the autoencoder will learn the

expansion mechanism. Additionally, its weights will be tuned to remove the noise. Hence,

the autoencoder simultaneously acts as an expanding function and a denoising filter.
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Figure 7.8: AM-AM and AM-PM conversions of the Rapp SSPA model.

Figure 7.9: Structures of the reconstruction autoencoders used in the proposed framework.
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7.6 Modeling Nonlinear Power Amplification

A practical HPA has a limited linear range and exhibits a nonlinear behavior at its satu-

ration point, as deposited in Fig. 7.2. Reliable modeling of the HPA is crucial for the

accurate evaluation of nonlinear power amplification effects on the signal. A power ampli-

fier is typically modeled by its amplitude-to-amplitude (AM/AM) and amplitude-to-phase

(AM/PM) conversion functions. The (AM/AM) conversion is used to characterize the am-

plitude distortion, which is the relationship between the input power (amplitude) and the

output power (amplitude). (AM/PM) conversion is used to characterize phase deviation

(distortion) caused by amplitude variations. A widely accepted Solid-State Power Ampli-

fier (SSPA) model is the Rapp model [419]. It has a frequency-nonselective response with a

smooth transition from linearity to saturation as input amplitude approaches the saturation

level. Its (AM/AM) conversion function is:

Aout = a
Ain(

1 +
[(

aAin
Asat

)2
]p)1/2p

with, Asat ≥ 0, a ≥ 0, and p ≥ 0

(7.23)

where Ain is the input amplitude, Asat is the saturation level, a is the gain, and p is a positive

number to control the nonlinearity characteristics of the HPA. The (AM/PM) conversion

of the SSPA is small enough and can be neglected [419]. Fig. 7.8 shows the (AM/AM)

conversion curve of the model with different values of p. As it is shown, as the value of

p increases, the model converges to a hard limiting amplifier. For large values, the model

becomes precisely linear until it reaches its output saturation level. A good approximation

of existing amplifiers is obtained by choosing p to be in the range of 2 to 3 [420]. In this

chapter, the Rapp model with p = 2 and a = 1 is used to simulate the nonlinear power

amplification of vibration signals.
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7.7 Performance Evaluation

The vibration signals of the Paderborn University (PU) bearing dataset [405] (Vibration set

(f) in Section 7.3.1) are used to demonstrate the effectiveness of the proposed framework in

reducing the PAPR, mitigating the effects of HPA nonlinearity, and improving the reliabil-

ity of the condition monitoring process. This dataset is selected because it includes actual

vibration signals from a real system during both healthy and faulty operations. The fault

types include Inner Race (IR) defects, Outer Race (OR) defects, and combined defects. To

create the training and testing sets, the vibration measurements of the PU dataset are seg-

mented into segments of 6, 400 samples. This results in 16, 005 vibration signals in total.

Accordingly, the dataset is split into 11, 202 samples for training (70%), and 4, 803 samples

for testing (30%), and Adam optimizer (learning rate = 0.001) is used to train the autoen-

coders. The framework is implemented using Python, Keras library [421], TensorFlow

[422], and SciPy library [320].

7.7.1 Experimental Setup

One-dimensional convolutional (Conv1D) layers are used to implement the autoencoders.

The structures and the parameters of the autoencoders are shown in Fig. 7.9. The activa-

tion function (AF) used in the source autoencoder is based on the µ-law compression and

expressed as:

AF = sgn(x)
ln(1 + 255 × |x|)

ln(1 + 255)
(7.24)

The value of the compression parameter µ in the activation function is set to 255 to achieve

a target PAPR of 8 dB according to the µ-PAPR curve depicted in Fig.7.6.b.
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Training the Source Autoencoder

To train the source activation-based autoencoder, the raw signals of the training set are

smoothed in the first place. Then, the autoencoder is trained using (7.24) as the activation

function, with the raw signals as the input and the smoothed signals as the target. The train-

ing objective is to minimize the MSE validation loss until it reaches the target compression

loss of 0.045, which is calculated empirically using the formula of (7.18) as explained in

Section 7.5.2.

Training the Destination Autoencoder

In contrast to the source autoencoder, the training objective of the destination autoencoder

is minimizing the MSE validation loss until maximum convergence. Two training scenarios

that address the absence and the presence of noise are considered:

Noise-free scenario The destination autoencoder is trained in reverse order compared

to the source autoencoder. First, the signals of the training set (training targets of the

destination autoencoder) are used as inputs to the source autoencoder that has already

been trained. Subsequently, the compressed-smoothed signals obtained from the source

autoencoder are employed as the training input for the destination autoencoder.

Noisy scenario To count for the accumulated noise in practical situations, the obtained

(smoothed-compressed) signals from the source autoencoder are randomly and equally cor-

rupted with a zero-mean AWGN of −5 dB and 0 dB SNR levels, and the destination autoen-

coder is trained accordingly.

7.7.2 Performance Metrics

To show the effectiveness of the proposed framework, its performance is evaluated in the

presence of nonlinear power amplification and AWGN against the cases of µ-law compand-
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Figure 7.10: Signal’s amplitude constellation of the PU dataset.

ing and no companding. The saturation level (Asat) of the HPA is set to the mean average

power of the original “uncompressed” vibration signals. The performance of the proposed

framework is evaluated in terms of the following aspects:

PAPR Reduction

The CCDF is used to measure the PAPR reduction capability of the proposed frame-

work.

Average Power of the Compressed Signal

This will assess the increase in the average power resulting from the compression.

Nonlinear Distortion

Quantifying the nonlinear distortion caused by nonlinear power amplification is essential

to assess the impact of nonlinear power amplification and evaluate the effectiveness of the



Chapter 7 – Signal-Companding AutoEncoder with Compression-Based Activation for an
Efficient Vibration-Based Remote Condition Monitoring 216

employed signal companding. To achieve this, a proper metric M, needs to be used to

measure the distortion D as follows:

D = M
(
x, x′

)
(7.25)

where x is the original vibration signal, and x′ is the proposed-expanded/µ-law-expanded/uncompanded

signal “processed signal” at the destination. While error metrics such as MSE and MAE can

be used directly to measure the error, they are not aligned with the performance objective

of restoring the PAPR characteristics in the processing center. This requires the develop-

ment of a proper metric that is directly mapped to the PAPR characteristics of the signal.

Accordingly, a new metric is introduced based on concepts of amplitude constellation and

Error Vector Magnitude (EVM). These concepts are widely used in telecommunications

systems to represent modulated signals and evaluate system-level performance.

Amplitude Constellation of Vibration Signals: To obtain the amplitude constellation of

a given set of vibration signals, each signal xi is expressed in terms of its peak and mean

values of its magnitude amplitude, which represent its PAPR characteristics. This can be

expressed mathematically as follows:

xi = (Aip , Aim), i = 0, ....,V − 1, (7.26)

where;

Aip = max {|xi|} is the signal’s peak amplitude,

Aim = mean {|xi|} is the signal’s, mean amplitude,

V is the number of vibration signals in the set.

Accordingly, the constellation can be displayed as a scatter plot on the x − y plane where

x and y represent the signal peak amplitudes Aip and average amplitudes Aim , respectively.

Fig. 7.10 displays the amplitude constellation of the PU dataset; the points are color-coded

according to their health conditions so that the signals of the same health condition share
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the same color. The position of a given signal in the constellation indicates both its peak and

average amplitude and the distance— in terms of these amplitudes— between the signal

and the other signals in the constellation. As mentioned previously, amplitudes of vibration

signals are directly related to the monitored condition. Therefore, the constellation can

offer crucial information and insight into the health of the monitored system. Further, as

the distortion impacts the amplitude of the signal, its position in the constellation will be

altered accordingly. This offers the opportunity to visually evaluate the nonlinear distortion

by comparing the amplitude constellation, denoted as conamp, of the processed test vibration

signals x′i at the destination to the reference constellation, denoted as conre f , of the original

test signals xi.

Error Vector Magnitude (EVM): While amplitude constellation offers a useful metric to

visualize the distortion, The EVM can be utilized to quantify this distortion and evaluate

the effectiveness of the signal companding scheme. To obtain the EVM, the error vectors

of the processed signals x′i with respect to their reference test signals xi are first calculated

from the corresponding constellations conamp and conre f . The error vector errorv between

two points xi = (Aip , Aim) and x′i = (A′ip
, A′im) on the constellation is given by:

errorv = [errp, errm],

errp = Aip − A′ip
,

errm = Aim − A′im

(7.27)

Accordingly, the EVM can be calculated as the mean or the RMS value of the magnitudes

of these obtained error vectors. It can be expressed as:

EV M =

√
1
V

∑V−1
i=0 |errorv[i]|2

EVM Normalization Reference
× 100 (7.28)

where V is the number of vibration signals in the test set and |errorv[i]| is the magnitude of

the i-th error vector. In the above equation, EVM is normalized by EVM Normalization Reference,
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which equals the maximum magnitude in the reference constellation conre f . Hence, the

EVM quantifies the amplitude distortion caused by HPA nonlinearity. In practical situa-

tions, the EVM quantifies the combined impact of all signal impairments within a VBCM

system (such as distortion and noise effects), enabling measuring the overall system degra-

dation using a single value.

Power Efficiency

The Power efficiency of a given HPA is specific to its type. Nevertheless, the problem of

PAPR and its impact on efficiency is common among different HPA types. In this chapter,

the efficiency η of class B HPA is utilized to evaluate the power efficiency of the proposed

framework. η is defined as [423]:

η (%) =
π

4
√

IBO
× 100 (7.29)

The efficiency is expressed in terms of applied IBO, which is defined as:

IBO =
A2

sat

Pin
, (7.30)

where Asat is the saturation level of the HPA and Pin is the average power of the input signal

to the HPA. Expressed in dB, the IBO equals to:

IBO (dB) = 10 × log10

(
A2

sat

Pin

)
(7.31)

According to (7.29), a maximum efficiency of 78.5 % is achieved when the input power Pin

equals the saturation level, Asat (IBO = 0 dB). To apply a given IBO to a signal prior to

power amplification, the average power Pin of the signal is scaled according to:

Pin =
A2

sat

IBO
(7.32)
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As IBO increases, more signal peaks accumulate within the linear range of the HPA, which

results in a reduction of nonlinear distortion. This, in turn, improves the EVM and, on the

other hand, reduces the HPA efficiency. Accordingly, the performance is evaluated in terms

of applied IBO, achieved EVM, and resultant HPA efficiency η.

Spectral Spreading

Spectral spreading or spectral broadening refers to situations when a signal’s spectrum

becomes wider due to nonlinear processing, such as logarithmic-based compression and

nonlinear power amplification. Nonlinearity imposed on the signal’s envelope causes an

undesirable increase in the power of the side lopes of the Power Spectral Density (PSD).

This makes PSD an appropriate measure of spectral regrowth. Accordingly, the mean PSD

to is used to evaluate the compressed-amplified signals’ spectral spreading. Welch’s over-

lapped segment averaging method [55] is used to estimate the PSD. The method involves

segmenting the signal using a moving window and computing each segment’s Fast Fourier

Transform (FFT). The PSD is then estimated as the average of the computed FFTs over all

segments. The following settings are used for Welch’s PSD estimation:

• Window: Hamming window of a length equals to N/2, where N is the length of the

vibration signal. This length is selected to obtain a PSD with a good resolution since

reducing the window length would affect the resolution.

• Overlap between segments: 50% overlap. With a window length of N/2, an overlap

of 50% results in a total of 3 segments, reducing the averaging-error variance com-

pared to using two segments only and, simultaneously, avoiding introducing a high

correlation between the segments.

• Number of Discrete Fourier Transform points (NFFT): NFFT = 8192. This is cal-

culated using the conventional method where NFFT is set to be equal to 2P, where P

is the smallest power of 2 that is greater than or equal to N, which in this case equals
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13.

Figure 7.11: (a) Original and compressed vibration signals and (b) CCDFs of original and
compressed signals.

Signal Denoising

The SNR of the vibration signals after denoising, denoted as S NRd is used to assess the

effectiveness of the proposed framework in reducing noise. S NRd is expressed as:

S NRd (dB) = 10 × log10

( ∑N−1
n=0 |x[n]|2∑N−1

n=0 (|x[n] − x′(n)|2)

)
(7.33)

where,

x: is the original vibration signal,

x′: is the denoised signal,

N: is the length of the vibration signal.

7.8 Results and Discussion

This section introduces and discusses the obtained performance results. It also addresses

the reliability of the proposed framework in condition monitoring and demonstrates the

lightweight nature of the proposed activation-based compression autoencoder.
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Figure 7.12: Average power ratios of original and compressed signals with respect to nor-
malized average power of original signals.

Figure 7.13: Constellations of uncompressed and compressed signals along with HPA re-
sponse curve.
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Figure 7.14: Original and expanded vibration signals after passing through HPA.

7.8.1 Performance Results

Before presenting and discussing the obtained results, it is convenient to demonstrate the

important role of proper signal companding in mitigating the effects of nonlinear power am-

plification. In Fig. 7.11.a, it can be seen that the uncompressed vibration signal experiences

high-amplitude excitations between the signal’s indices 350 and 550. These amplitude ex-

citations exceed the HPA saturation level, plotted as a dashed horizontal line in the Figure.

In the absence of a proper signal companding mechanism, such excitations in the signal’s

waveform— directly related to the monitored system and would carry vital information

about its current condition— are subject to the nonlinear distortion of the HPA.

PAPR Reduction

As shown in Fig. 7.11.b, µ-law compression and the proposed compression are effective

in reducing the PAPR of the test vibration signals. Specifically, the proposed compression
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Figure 7.15: Amplitude constellations after passing through the HPA: (a) uncompanded
signals, b) µ-law companded, (c) proposed-companded signals, and (d) original signals of
the PU dataset along with uncompressed and expanded signals.

and µ-law compression have reduced the probability of exhibiting a PAPR of 8 dB in the

test vibration signals from 1.0 to 0.0. However, as previously mentioned, µ-law compres-

sion relies on preserving the signal’s peak amplitude while increasing its small amplitudes.

Consequently, all amplitudes in the µ-law compressed form of the vibration signal surpass

the HPA saturation level, as illustrated in Fig. 7.11.a, leading to significant distortion in

the compressed signal, as shown later. In contrast, in the proposed compression, the source

autoencoder learns how to reconstruct and compress the signal while avoiding the increase

in its average power as explained earlier. This is demonstrated in Fig. 7.11.a, which shows

that the majority of the amplitudes of the proposed-compressed signals are compressed and

maintained below the saturation level.
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Figure 7.16: EVM values of uncompressed and expanded signals.

Figure 7.17: Applied IBO, achieved EVM, and resultant HPA efficiency η in proposed-
companding, µ-law companding, and no companding.
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Figure 7.18: Normalized mean PSD plots of original signals, proposed-compressed signals,
and µ-law compressed signals after passing through the HPA.

Figure 7.19: (a) a Denoised-expanded signal and its reference original signal. (b) Average
S NRd of denoised-expanded signals.

Average Power of the Compressed Signal

Fig. 7.12 depicts ratios of the mean average power of the compressed test signals with

respect to the normalized average power of the original signals. As shown, the µ-law com-

pressed form of the vibration signal, on average, exhibits more than a 13-fold increment in

its average power due to the enlargement of its small amplitudes. While this would reduce

the quantization noise in analog-to-digital conversion, it would cause severe nonlinear dis-
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tortion in the signal when passing through the HPA. Regarding the proposed compression,

it slightly reduces the average power of the compressed ignal. In terms of HPA nonlinearity,

the slight decrease in average power shifts the input power of the compressed signals to-

wards the linear region of the HPA. This is demonstrated in Fig. 7.13, where the amplitude

constellations of both the original and compressed test signals are displayed alongside the

HPA’s response curve. The HPA saturation level is also indicated as a dashed line on both

axes. This visual setup provides useful insights into PAPR characteristics of the generated

vibration signals, the behavior of the HPA, and companding design requirements. Specif-

ically, considering the peak amplitudes in the plot, it is obvious that all uncompressed

signals and their µ-law compressed forms will experience peak distortion after passing

through the HPA since their peaks exceed the saturation level of the HPA. As for the mean

amplitudes, all of the µ-law compressed forms will experience significant and frequent am-

plitude distortion after passing through the HPA since their mean amplitudes exceed the

saturation level. This is also the case for a considerable part of the uncompressed signals.

On the contrary, the proposed framework compressed all the test signals so that their peaks

and mean amplitudes fall below the saturation level. As a result, the compressed forms of

the vibration signals are not subject to nonlinear distortion of the HPA. However, a slight

amplitude distortion is still expected due to the soft limiting nature of the HPA and the

imperfect reconstruction of the autoencoders. It is worth mentioning that the visual setup

of Fig. 7.13 can be adapted to various systems to gain more insights into the PAPR charac-

teristics, nonlinear behavior, and requirements for PAPR reduction.

Nonlinear Distortion

Fig. 7.14 shows an uncompanded vibration signal before and after the HPA, its µ-law

companded form (the word companded is used here to refer to the signal that is com-

pressed, passed through the HPA at the source, and expanded at the destination), and its

proposed-companded form. As shown, the uncompanded signal and its µ-law companded
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form experienced a significant nonlinear distortion as their peak values are restricted to the

HPA saturation level. While on the other hand, the amplitudes of its proposed-companded

form are free of nonlinear distortion. Since the proposed framework compresses the sig-

nal so that its amplitudes fall in the linear region of the HPA, all amplitudes— even the

ones that exceed the HPA saturation level— are restored after the expansion. The am-

plitude consultations of the uncompanded test signals, their µ-law companded forms, and

proposed-companded forms are displayed in Fig. 7.15. By co-locating these constellations

with the reference constellation as shown in Fig. 7.15.d, a convenient visual comparison to

asses the nonlinear distortion can be made. The comparison clearly shows that the uncom-

panded signals and their µ-law companded forms experience severe nonlinear distortion at

the destination while, on the other hand, the proposed companding framework avoids non-

linear distortion and successfully restores the reference constellation—to a large extent— at

the destination. A comparison among the obtained EVM values is shown in Fig. 7.16. The

comparison demonstrates, in a quantified manner, the effectiveness of the proposed frame-

work in mitigating the effects of nonlinear distortion. Specifically, while the uncompanded

vibration signals and their µ-law companded forms suffered from a very high distortion

(> 50% EVM), the proposed-companded forms experienced very low distortion (< 4.5%

EVM). As previously stated, the EVM quantifies the total system degradation experienced

by the signals. For the uncompanded vibration signals and their µ-law companded forms,

the exhibited distortion is exclusively caused by the nonlinear power amplification. Regard-

ing the proposed framework, the resulting EVM represents a floor value that is not related

to nonlinear distortion. Specifically, the factors that contributed to EVM of the proposed

framework are:

• Soft limiting nature of the HPA: with p = 2, the used SSPA model acts as a soft

limiter.

• Autoencoder error: due to imperfect signal reconstruction of the autoencoders during
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compression/expansion stages. This error can be reduced by conducting more fine-

tuning for hyperparameters of the autoencoders.

• Noise presence and channel effects: While these impairments are not considered in

the evaluation setup related to the obtained EVM results, they have a strong influence

on the total system degradation in practical situations.

The obtained results from the EVM evaluation show that in the presence of nonlinear de-

vices and the absence of a proper mechanism to reduce the PAPR, VBCM systems could

suffer from severe nonlinear distortion. The results also confirm the effectiveness of the

proposed framework in mitigating the effects of such distortion.

Power Efficiency

Fig. 7.17 plots applied IBO, corresponding achieved EVM, and the resulting HPA effi-

ciency η. As previously explained, the proposed companding technique allows the com-

pression mechanism to bring the peaks of input signals within the linear range of the HPA

(i.e. below the defined saturation level, Asat). This avoids nonlinear distortion and elim-

inates the need for IBO, thereby maximizing the HPA efficiency, as shown in the figure.

In contrast, in cases where µ-law companding and no companding are used, enormous

IBO values are required to accommodate signal peaks within the linear range of the HPA,

which in turn reduces power efficiency significantly. It is worth noting that the shown EVM

value of the proposed companding in the figure represents the floor EVM as explained ear-

lier.

Spectral Spreading

Fig. 7.18 shows the mean PSD plots of the test vibration signals, their µ-law-compressed

forms, and their proposed-compressed forms. The mean PSD of each of these three sets is

calculated by estimating the individual PSD of each signal in the set after passing through

the HPA. Accordingly, the mean PSD is obtained by averaging the estimated PSDs. As
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shown, the µ-law-compressed forms experienced higher spectral broadening than the proposed-

compressed forms. This regrowth in the spectrum is attributed mainly to the nonlinear dis-

tortion caused by the HPA. However, it should be mentioned that the logarithmic-based

nature of the compression mechanism leads to spectral regrowth in the spectrum of the

compressed signal.

Signal Denoising

To evaluate the denoising capability of the proposed framework, the test vibration signals

are first compressed using the proposed compression, passed through the HPA, and then

corrupted with the AWGN. Consequentially, at the destination, the compressed-amplified-

noisy forms of the test signals are passed throughout the trained denoising-expanding au-

toencoder (trained according to the Noisy scenario in Section 7.7.1) to recover the original

test signals. The plot in Fig. 7.19.a shows a recovered “denoised and expanded” signal

alongside the reference original signal. By comparing both signals in the plot, it can be

seen that the proposed framework is effective in removing the corrupted noise, expanding

the compressed form, and restoring the original signal. The average S NRd values of the

recovered signals are shown in Fig. 7.19.b. These values quantify the improvement in the

recovered signals’ SNR levels and confirm the capability of the proposed framework to

remove noise and mitigate the effects of noise expansion. Specifically, considering noisy,

compressed signals with 0 dB and −5 dB NR levels, the improvement in the SNR after

denoising and expending these signals are 3.1 dB and 6.9 dB, respectively.

7.8.2 Reliability of Condition Monitoring

To assess the proposed framework’s reliability in condition monitoring, time and frequency

features are extracted at the destination from the uncompanded, µ-law companded, and

proposed-companded signals of the test PU dataset, considering both the noise-free and

noisy scenarios. The dataset comprises four classes of operational conditions: 1- healthy,
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Table 7.2: Extracted features from expanded vibration signals
S.N Feature Formula

1 Peak power Maxnϵ[0,N] |x[n]|2

2 Mean power 1
N

∑N−1
n=0 |x[n]|2

3 Shannon entropy H [x[n]] = −
∑m

i=1 p (xi) log (p (xi)), p =
probability, xi =m different values in x[n]

4 Peak spectral power Max {PS D (x[n])}

5 Freq. of peak spectral power

6 Spectral entropy H [PS D]

Table 7.3: Classification results of the operational conditions of the PU dataset
Accuracy (%)

SNR Proposed µ-law No Companding

No noise 96.04% 87.6% 93.5%

0 dB 93.6% 55.3% 85.8%

−5 dB 91.1% 47.4% 79.2%

Table 7.4: Results of the different training scenarios
Proposed Training Conventional Autoencoder

Metrics Target val. loss: 0.045 (com-
pression loss)

Target val. loss: 0.015 Achieved val. loss: 0.008

Training epochs 5 25 33

Training time (seconds) 423.58 2171.3 2793.16

EVM (%) 4.58 10.91 23.016

Increment percentage in the
average power (%)

No increase No increase 351.000

Probability of target PAPR
(8 dB)

0.0 0.861 0.0
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2- IR faults, 3- OR faults, and 4- combined IR and OR faults. The vibration signals in the

PU dataset are acquired at a rate of 64,000 samples per second. In the proposed frame-

work, the input vibration segment consists of 6,400 samples. Therefore, with this sampling

rate, the duration of the input vibration segment is 0.1 seconds, which is precise enough

to enable real-time monitoring. The features extracted from the signals are listed in Table

7.2. The first three features are time-domain features obtained directly from the signal’s

waveform. The first feature represents the signal’s peak power, while the second feature

represents its mean power. The third feature is the Shannon entropy of the time-domain

waveform, which is used to assess the signal’s irregularity under different operating con-

ditions. The last three features are frequency-domain features extracted from the signal’s

PSD. These features include the peak spectral power, the corresponding frequency, and

the spectral entropy. The dataset of resulting features is divided into a 70% training set

and a 30% testing set, and a Random Forest (RF) classifier is trained accordingly. Table

7.3 displays the accuracy results in percentage for various scenarios, including noise-free,

0 dB SNR, and −5 dB SNR conditions. In comparison to both µ-law companding and no

companding cases, our proposed companding technique achieved superior performance in

condition monitoring and fault detection. This superiority arises from its ability to mitigate

nonlinear distortion. Obviously, in noisy scenarios, the presence of noise has a negative im-

pact on the accuracy of fault detection. Furthermore, expanding compressed noisy signals

without employing effective denoising techniques, as is the case with µ-law companding,

heavily degrades the performance due to the undesired effect of noise expansion. In con-

trast, the proposed method’s denoising capabilities effectively mitigate the impact of noise,

consequently enhancing the reliability of the condition monitoring process.
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7.8.3 The Lightweight Nature of the Proposed Activation-Based Com-

pression Autoencoder

Ensuring computational efficiency during both the training and inference phases is an es-

sential requirement for the proposed activation-based compression autoencoder in the sen-

sor node. The shallow structure of the proposed autoencoder results in a small number

of trainable parameters and, hence, less inference time and less computational complex-

ity compared to other deep structures. Particularly, the proposed model involves a total

of 19, 297 parameters, including 19, 105 trainable parameters. Moreover, the compression

loss stemming from the compression-based activation serves the purpose of predefining the

target validation loss. This, in turn, reduces the training time and enhances performance,

as explained earlier. This is demonstrated in Table 7.4, where a comparison between train-

ing with target compression loss, training with a target loss of 0.015, and conventional

autoencoder-based companding is conducted. In the conventional companding, the Rec-

tified Linear Unit (ReLU) activation function is used. The training procedure involves

minimizing the loss between reconstructed output signals and training target signals that

are smoothed, compressed, and power-scaled versions of the input training signals. Ac-

cordingly, the model is trained to minimize the validation loss until the maximum con-

vergence, considering early stopping criteria with patience of 7. As shown in the table,

using the compression loss as a minimum bound for the target validation loss maintains

the desired compression characteristics in the compressed signal. This leads to reduced

distortion, better PAPR reduction, and prevents any increase in the average power of the

signal. Furthermore, it reduces the number of training iterations, resulting in less training

time compared to other methods.
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7.9 Conclusion

The chapter addressed the issue of PAPR in vibration signals and investigated its effects,

in the presence of nonlinear power amplification, on both power efficiency and system per-

formance. Consequently, it introduced a novel compression-based activation autoencoder

companding framework designed to control the PAPR. The proposed framework enhances

power efficiency and improves system performance significantly. To the authors’ knowl-

edge, this chapter represents the first attempt to address this problem in the context of

VBCM literature. First, the chapter conducted statistical analysis on the amplitude distri-

bution of vibration signals and presented a closed-form formula to model the CCDF of the

PAPR. Accordingly, analytical analysis and empirical investigation of the PAPR were con-

ducted using various vibration datasets. The outcomes confirmed the occurrence of high

PAPR values in vibration signals, particularly between 10 dB to 13 dB, when the number

of samples exceeded 500 in the acquired vibration segments. Further, the chapter exam-

ined the impact of the high PAPR in the presence of nonlinear power amplification on

power efficiency and system performance, where new metrics are adapted to quantify the

resulting nonlinear distortion. The findings revealed that in the case of uncontrolled PAPR,

HPA nonlinearity induces severe nonlinear distortion, resulting in reduced power efficiency

and degraded performance. Accordingly, the chapter proposed a signal-companding-based

framework to reduce the PAPR and mitigate the impacts of HPA nonlinearity, which in turn

enhances power efficiency and improves performance. In the sensor node, the framework

employed a lightweight reconstruction autoencoder with a compression-based activation

function that simultaneously smooths and compresses the vibration signal while avoiding

any increase in the average power of the compressed signal. Consequently, in the process-

ing center, the proposed framework used an expansion autoencoder that acts as a denoising

filter to denoise the compressed signals before the expansion operation, thereby prevent-

ing the enhancement of the accumulated noise during signal expansion. Additionally, the
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proposed architecture, which incorporates reconstruction autoencoders with compression-

based activation, carries out various signal-processing tasks simultaneously. Therefore,

it facilitates an efficient end-to-end implementation of the framework. Regarding perfor-

mance, The experimental results demonstrate that the proposed framework brought sub-

stantial enhancement in power efficiency, along with improvements in the performance of

condition monitoring. In conclusion, the chapter underscores the importance of imple-

menting an appropriate signal companding mechanism in VBCM systems to mitigate the

effects of nonlinear devices, ensuring efficient power consumption and reliable monitoring

processes.
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Chapter 8

8 Conclusion and Future Work

The work presented in this thesis addressed the main aspects of Vibration-Based Condition

Monitoring (VBCM), including signal processing fundamentals, feature extraction, avail-

ability of labeled data, computational complexity, the presence of noise in the acquired vi-

bration signals, and power consumption in vibration sensor nodes. The methods employed

in this thesis spanned the fields of Digital Signal Processing (DSP) and ML techniques

(supervised, Deep Learning (DL)), including signal preprocessing, signal denoising, sig-

nal frequency-domain analysis, signal time-frequency domain analysis, signal companding

(compression-expansion).

In the first part of the presented work, a data-driven VBCM framework using limited la-

beled data is developed. The framework addresses real-world situations of limited avail-

ability of labeled data by applying a similarity-based classification where one labeled sam-

ple for each operational condition is enough to facilitate effective condition monitoring. In

the second part, the end-to-end delay of VBCM systems is analyzed. With fixed compu-

tational resources, the system delay depends entirely on the duration of the input vibration

segment, the computation steps of the used algorithm/s, and the size of the features vector.

Accordingly, a low-complexity method is introduced for vibration-based condition moni-

toring and fault diagnosis of rolling bearings. The proposed method allows the use of short

durations of the generated vibration signal and produces a feature vector of controllable

size, thereby relaxing memory requirements and reducing monitoring delay. The third part

of the thesis addressed the PAPR in vibration signals and investigated its effects, in the pres-

ence of nonlinear power amplification, on both power efficiency and system performance.

The findings revealed that in the case of uncontrolled PAPR, HPA nonlinearity induces se-

vere nonlinear distortion, resulting in reduced power efficiency and degraded performance.

Accordingly, a novel autoencoder-based framework for signal companding and denoising
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is designed to control the PAPR and mitigate noise effects, enhancing power efficiency and

improving performance.

The experiential evaluation of the introduced solutions underscored their efficiency, evi-

denced by improved overall performance in monitoring, reduced monitoring delay, relaxed

memory requirements, and enhanced power efficiency in sensor nodes. Furthermore, the

thesis contributed to the VBCM literature by providing a comprehensive tutorial on signal

processing fundamentals and application-independent review of a typical signal-based ML

pipeline and feature extraction techniques. As a result, the work presented in this thesis

makes available efficient solutions to the main challenges facing the practical deployment

of real-world VBCM systems.

The proposed solutions presented throughout the thesis used signal processing-centric ap-

proaches for feature extraction and similarity-based VBCM, making them more compu-

tationally efficient compared to DL-based approaches. Additionally, feature engineering

through signal processing produces explainable features that meaningfully connect to sig-

nal conditions or classes, unlike the black-box features generated by DL models. Further,

the performance of DL features is influenced by the model’s architecture, parameters, and

training, resulting in inconsistent performance. Conversely, signal processing-based fea-

tures provide more consistent and interpretable performance. Moreover, DL Features often

result in higher dimensionality and redundancy, necessitating additional dimensionality re-

duction and feature selection, thus increasing the computational burden. Nevertheless, for

similarity-based VBCM, future research directions would explore the feasibility of DL-

based approaches. Specifically, the powerful synthesizing capabilities of Generative Ad-

versarial Networks (GANs) could explored to generate synthetic vibration samples with

reliable characteristics to overcome the limitation of labeled training data. The advance-

ment in computational capabilities enables the feasible implementation of these approaches

despite their intensive computational requirements. Further, as an offline operation, syn-
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thesizing new samples does not impact online inferencing tasks. For feature extraction,

future research directions would consider integrating DL models such as Long Short-Term

Memory (LSTM) and Recurrent Neural Network (RNN) within data-driven VBCM to learn

highly discriminative features from acquired vibration signals. Moreover, future research

would consider developing efficient signal-to-image transformation approaches, allowing

the adaptation of pretrained Convolutional Neural Network (CNN) models as powerful

feature extractors. Signal-to-image conversion becomes particularly feasible in integrated

systems such as Unmanned Aerial Vehicles (UAVs) and Autonomous Vehicles (AVs). In

these systems, computer vision applications, such as object detection and navigation, and

VBCM applications are commonly deployed within the same environment. Therefore,

it is deemed computationally efficient to convert the acquired vibration signals into im-

ages and use transfer learning to utilize pretrained DL infrastructure for inference tasks in

VBCM.

The use of DL for signal-denoising applications is an active research field. In this thesis, an

effective signal denoising scheme was facilitated through an autoencoder-based structure.

From a signal-processing perspective, This approach can be centered around the concept of

tunable denoising filters, where the trained autoencoder is viewed as a tuned denoising filter

whose coefficients, represented by model weights, are tuned through the training phase to

remove noise from the signal. DL-based approaches are approved to be highly effective in

noise removal due to their ability to learn complex, noisy patterns and related dependencies

within the signal. Moreover, they can be designed to implement various operations on

signal simultaneously, facilitating an efficient end-to-end implementation of various signal-

processing pipelines, as demonstrated in Chapter 7. However, the effectiveness of DL-

based denoising approaches, in general, is limited to noise profiles that are present in the

training set. Thus, future research directions would explore the use of Adaptive Noise

Cancellation (ANC) filters as they can adapt to varying noise patterns, thereby meeting the

requirements of real-time applications that involve varying noise characteristics.
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Another promising research topic is the exploration of Tiny Machine Learning (TinyML) to

improve the practical implementation of the proposed solutions within resource-constrained

environments. TinyML is characterized by its ability to deploy ML models on microcon-

trollers and other resource-constrained devices, which are typically limited in computa-

tional power and memory. Hence, integrating TinyML with these solutions presents a

promising opportunity for enhancing their feasibility and efficiency in real-world applica-

tions.
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