
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

5-31-2024 10:00 AM 

Improving Fused Filament Fabrication Additive Manufacturing Improving Fused Filament Fabrication Additive Manufacturing 

through Computer Vision Analysis and Fabrication Optimization through Computer Vision Analysis and Fabrication Optimization 

Aliaksei Petsiuk, Western University 

Supervisor: Pearce, Joshua M., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Aliaksei Petsiuk 2024 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Computer Engineering Commons, Other Electrical and Computer Engineering 

Commons, and the Signal Processing Commons 

Recommended Citation Recommended Citation 
Petsiuk, Aliaksei, "Improving Fused Filament Fabrication Additive Manufacturing through Computer Vision 
Analysis and Fabrication Optimization" (2024). Electronic Thesis and Dissertation Repository. 10147. 
https://ir.lib.uwo.ca/etd/10147 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/10147?utm_source=ir.lib.uwo.ca%2Fetd%2F10147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

 

ii 

 

Abstract 

Additive manufacturing (AM), also known as 3-D printing, is one of the fundamental 

elements of Industry 4.0. According to ASTM standards, AM can be classified by 

production principles, types of raw materials, energy sources, and fabrication volumes. 

Fused filament fabrication (FFF) is one of the most accessible technologies that offers 

independent manufacturers great opportunities due to its simplicity, scalability, and low 

cost. 

Modern 3-D printing is moving from single-material prototyping to complex multi-

material product creation. It is firmly established in a wide range of applications, 

significantly expanding manufacturing horizons, providing innovative design capabilities, 

and improving product quality through the optimal combination of properties often 

impossible to achieve with traditional methods. 

Despite the great potential and current exponential growth in production, AM, however, 

faces challenges that affect its adoption, efficiency, and product quality. An analysis of 

user databases shows the average failure rate is about 20 percent. The likelihood of 

manufacturing defects grows with the size of the object and the time required to print it, 

which can lead to increased material waste resulting from even a small failure rate. The 

ability to automatically detect anomalies in AM will greatly help reduce the wastage of 

material and time spent reproducing failed prints. 

To strengthen the capabilities of AM technology, it is necessary to optimize the process of 

preparing a part for 3-D printing (slicing) and provide analysis systems that can detect and 

minimize the impact of emerging defects. The increasing complexity of geometric shapes 

and the number of materials used require optimization of fabrication processes and layer-

by-layer monitoring of production processes for timely response.  

This work presents several conceptually new approaches to FFF AM 3-D printer work 

volume monitoring and anomaly detection and localization based on monocular computer 

vision, machine learning, and synthetic data, as well as to increasing efficiency and 
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reducing production waste in multi-color fabrication. Thus, a system for automatically 

creating a labeled G-code-based synthetic 3-D printing dataset was developed, providing 

layer-by-layer semantic segmentation of a printing part and its structural elements during 

the manufacturing process. A method has been developed for the procedural simulation of 

ideal fabrication by generating layer-wise photorealistic images of the manufactured part 

for further use as references for visual analysis at each manufacturing stage. To monitor 

the height, external contour, and internal structure of the manufactured object, a multi-stage 

approach based on computer vision has been developed, which allows analyzing images of 

each printed layer for compliance with the source 3-D model. A new fabrication method 

has been developed for multi-color printing to reduce energy and material costs for single-

nozzle systems. The presented developments formed the basis for the concept of 

multifaceted visual analysis of 3-D printing processes. This will help improve FFF AM 

technology and reduce the amount of time, materials, and energy required to fabricate 

physical objects. 

 

Keywords 

3-D printing, additive manufacturing, anomaly detection, computer vision, fused filament 

fabrication, quality assurance 
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Summary for Lay Audience 

Additive manufacturing (AM), or 3-D printing, is the cornerstone of the next-generation 

industry. Modern 3-D printing is moving beyond single-material prototyping to the 

creation of complex, multi-material products, expanding manufacturing capabilities across 

multiple fields, unlocking innovative design potential, and enhancing product quality 

through unique combinations of properties and geometries unachievable by traditional 

methods. 

Exponential production growth, however, demonstrates a significant increase in plastic 

waste, which is also exacerbated by a high failure rate averaging 20%. This highlights the 

need for automatic failure detection systems in AM processes to reduce material, time, and 

energy losses. 

This work demonstrates approaches to detecting and localizing 3-D printing defects based 

on computer vision, machine learning, and synthetic data, as well as to increasing 

efficiency and reducing production waste in multi-color fabrication. The presented 

methods will help improve additive manufacturing technology and reduce the amount of 

time, materials, and energy required to fabricate three-dimensional objects. 
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Chapter 1  

1 Introduction 

1.1 FFF AM Technology 

Additive manufacturing (AM) [1], or 3-D printing, stands as one of the foundational 

elements within the framework of Industry 4.0 [2,3]. Since the original inventions in 1970-

80s [4,5], the primary emphasis of the technology has revolved around single-material 

rapid prototyping, a generation of a draft part representation to find the optimal shape 

before its final release. Subsequent advances in AM technology and materials 

development, as well as market demand for enhanced functionality and high geometric 

complexity, however, have shifted the focus towards the direct production of final products 

and the simultaneous use of multiple materials. Modern additive manufacturing is firmly 

established in diverse areas such as medicine, food industry, robotics, automotive, 

aerospace, and many others [6-18]. 

According to the ISO/ASTM 529000-21 standard [21], AM can be categorized based on 

fabrication principles, feedstock types, energy sources, and fabrication volumes. Each of 

the various processing techniques has its own advantages and challenges [22,23]. Fused 

filament fabrication (FFF), however, is one of the most popular technologies and offers 

great opportunities for general users to become producing consumers (prosumers) [24–26] 

due to its simplicity and availability [27,28]. 

FFF AM involves a series of steps to convert a digital design file into a physical object: 1) 

creating a 3-D model, 2) exporting the design file, 3) preparing the model for printing, 4) 

slicing the model, 5) configuring the 3-D Printer, 6) printing the model, 7) post-processing. 

The key steps are illustrated in Figure 1.1. 

During the creation step, a 3-D object model represents a Computer-aided design (CAD) 

hierarchy implemented in software (OpenSCAD, FreeCAD, Blender, etc.). Later, the 

model is converted into a tessellated mesh (STL, OBJ, or 3MF file format) containing its 

vertices and normals to represent the spatial volume of the object design. The tessellated 
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mesh is then imported into slicing software (PrusaSlicer, Cura, Simplify3D, etc.), which 

allows scaling and positioning the developed virtual object onto a building plane, as well 

as setting up the required fabrication parameters. Next, the slicing represents a process 

where the spatial model mesh is converted into a G-code, a set of instructions for a 3-D 

printer. The post-processing step consists of removing the printed object from the building 

platform (print bed) and removing the support material. 

  
a) b) 

  

c) d) 

Figure 1.1: Key steps to transform a digital design into a physical object: a) – tessellated 

mesh of an object model, b) – slicing the object before 3-D printing (green – support, red 

– internal infill, yellow – internal perimeter, orange – external perimeter, and purple – solid 

infill), c) – part of an object's tessellated mesh file, representing information about its 

vertices and normals, d) – part of an object's G-code file that represents information about 

the nozzle's trajectory and the amount of material being extruded. 

The tessellated mesh of a model contains only information about the external boundaries 

of the object, while the G-code adds geometric structures both inside and outside the object 

to enable physical fabrication. 
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During slicing, each extruded segment (a set of G-code lines) for each fabrication layer has 

its own characteristic (Figure 1.1), such as type (external and internal perimeters, internal, 

solid, and bridge infills, support material and interface, skirt/brim, wipe tower, and others) 

and tool (material, color). Each segment type can be assigned a specific print speed and 

temperature mode. Further, during 3-D printing, the printer nozzle sequentially fills the 

inner and outer areas of the layer with material and moves on to a new layer only after the 

current one is completed. 

Multi-color and multi-material FFF 3-D printing greatly expand the horizons of 

manufacturing, providing innovative design opportunities and enhancing the quality of 

products through the optimal combination of properties, which is often impossible to 

achieve with traditional methods [19]. The main fabrication materials are polymers, metals, 

ceramics, and biological substances. The integration of electrically functional elements and 

shape memory polymers, in turn, marked the beginning of 3-D printing of smart devices 

and 4-D printing, respectively [20]. 

The G-code is thus a complete set of instructions for the 3-D printer to create a physical 

object. The main disadvantage of the traditional approach to manufacturing, however, is 

the fact that after slicing, the G-code is loaded onto the printer’s memory card without the 

possibility of further modification in the event of abnormal conditions. 

1.2 FFF AM Challenges 

Despite its great potential, FFF AM faces technical, economic, and regulatory challenges 

that affect its adoption, efficiency, and product quality. The technical side includes material 

limitations, accuracy, fault tolerance, manufacturing speed, scalability, post-processing 

requirements, etc. Overcoming these challenges requires advances in materials science, 

improvements in printing technology, and the development of comprehensive standards 

and regulations. By addressing these problems, the industry can improve the reliability and 

efficiency of FFF AM technologies. 

The focus of this work is on an approach to detecting defects in polymer 3-D printing to 

improve production reliability. With the current exponential manufacturing growth, the 
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amount of plastic waste produced could reach 250 billion tons by 2050 [29], significant 

quantities of which cause pollution of the natural environment on land and in the ocean 

[30]. This is not only caused by additional plastic products but also by disturbing failure 

rates. Early work on self-built RepRaps estimated an average 20% failure rate [31] and 

more recent values of about 10% [32], which is in the range (1–20%) of polling of the 

Reddit “r/3Dprinting” community [33]. Although the cost of printing with an FFF-based 

3-D printer is trivial compared to the other AM techniques, printing errors are substantial 

enough to impact the economic and environmental merits of the approach.  

   
a) b) c) 

   
d) e) f) 

Figure 1.2: Example of common 3-D printing failures a) – blocked nozzle, b) – under-

extrusion, c) – over-extrusion, d) – adhesion problem, e) – displacement of individual 

layers of the printing part, f) – separation and shift of the printing part from the printing 

surface (“spaghetti problem”). 

The probability of a manufacturing defect increases with the size and print time of the 

object (e.g., using large-scale fused filament printers [34] or products [35,36], or fused 

granule printers [37,38]), which can magnify the waste materials created from even a small 

percentage of failures. Despite evidence that AM in distributed manufacturing may reduce 
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environmental impacts [39–43], both economic and environmental aftermaths largely 

depend on manufacturing success rate. 

The most common failures in 3-D printing are nozzle clogging, filament run-out, under- 

and over-extrusion (reducing or increasing the flow of material, respectively, leading to 

object deformations), adhesion problems, displacement of individual layers or the entire 

part, etc. (Figure 1.2). All of these problems require the attention of the 3-D printer operator 

and when they occur, the manufactured object is usually reprinted with new settings. 

Many defects can occur in combination and also influence the appearance of other failures. 

3-D printing communities actively discuss manufacturing defects and possible ways to 

their elimination [44–46], based on previous accumulated experience. Due to the variety 

of available polymer materials and printing parameters, as well as object designs and 3-D 

printers produced, eliminating such defects is difficult to automate. 

1.3 Research Objectives 

To strengthen the position of AM and ensure the proper quality of the final product, 

developments are needed in the field of continuous intelligent monitoring of fabrication 

processes, as well as methods of adaptive control.  

The objectives of this work are summarized as follows: 

1. Creation of a basis for an integrated approach to layer-wise vision-based analysis 

of FFF AM processes and adaptive 3-D printing control that allows updating the 

G-code during manufacturing. 

2. Development of a physics-based simulation system to utilize synthetic visual data 

and compare real images with photorealistic renders. 

3. Creation of a system for semantic segmentation of a manufactured part and its 

structural elements to reduce the requirements for rigid linking of the camera to 

visual markers for monitoring tasks. 

4. Development of a fabrication optimization approach for multi-color 3-D printing 

in order to reduce material and time costs. 



6 

 

 

Having a way to automatically detect critical errors will significantly reduce material 

waste, as well as energy and time spent on remanufacturing failed prints. In order to mature 

the FFF-based 3-D printing quality control, this study introduces various computer vision 

systems that enable layer-wise analysis of 3-D printing processes to segment structural 

elements and track manufacturing errors. Regarding multi-color printing, this study 

introduces an interlayer tool clustering (ITC) method that optimizes the slicing procedure 

to achieve significant savings in time and materials. This approach also reduces the 

likelihood of technical failures by minimizing the number of tool changes (material 

transitions). 

The presented developments formed the basis for the concept of multifaceted visual 

analysis of 3-D printing processes. This will help improve FFF AM technology and reduce 

the amount of time, materials, and energy required to fabricate physical objects. 

1.4 Thesis Outline and Contributions 

This research develops a computer-vision-based algorithmic framework for layer-wise 

monitoring and analysis of 3-D printing processes. This dissertation presents conceptual 

approaches to semantic segmentation of structural elements of manufactured objects, layer-

wise detection of printing errors, and fabrication optimization to reduce the likelihood of 

failure in multi-color 3-D printing. The main contributions of each chapter are summarized 

as follows: 

Chapter 2. Computer Vision-based Layer-wise 3-D Printing Analysis: An open source 

computer vision-based hardware structure and software algorithm, which analyzes layer-

wise the 3-D printing processes, tracks printing errors, and generates appropriate printer 

actions to improve reliability. This approach is built upon multiple stage monocular image 

examination, which allows monitoring both the external shape of the printed object and 

internal structure of its layers. Starting with the side-view height validation, the developed 

program analyzes the virtual top view for outer shell contour correspondence using the 

multi-template matching and iterative closest point algorithms, as well as inner layer 

texture quality clustering the spatial-frequency filter responses with Gaussian mixture 

models and segmenting structural anomalies with the agglomerative hierarchical clustering 
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algorithm. This allows evaluation of both global and local parameters of the printing 

modes. The experimentally verified analysis time per layer is less than one minute, which 

can be considered a quasi-real-time process for large prints. The systems can work as an 

intelligent printing suspension tool designed to save time and material. The highlighted 

contributions are presented in the following list: 

• Visual servoing platform with a monocular multi-stage image analysis; 

• Control algorithm preventing critical failures during 3-D printing; 

• Tracking printing errors on the interior and exterior parts of manufactured objects. 

Chapter 3. Interlayer Anomaly Detection Based on HOG-features and Synthetic 

Images: A method for detecting 3-D printing anomalies by comparing images of printed 

layers from a stationary monocular camera with G-code-based reference images of ideal 3-

D printing processes generated with a physics-based rendering engine. Recognition of 

visual deviations was accomplished by analyzing the similarity of histograms of oriented 

gradients (HOG) of local image areas. The developed technique requires preliminary 

modeling of the working environment to achieve the best match for orientation, color 

rendering, lighting, and other parameters of the printed part. The output parameter is a level 

of mismatch between printed and synthetic reference layers. Twelve similarity measures 

were implemented and compared for their effectiveness at detecting 3-D printing errors on 

six different representative failure types (local infill defects, presence of a foreign body in 

the layer, spaghetti problem, separation and shift of the printing part from the working 

surface, defects in thin walls, and layer shift) and their control error-free print images. The 

highlighted contributions are presented in the following list: 

• Automated G-code-based system for generating layer-wise synthetic images; 

• Anomaly detection in layer-wise 3-D printing based on synthetic references and 

similarity metrics of local histograms of oriented gradients; 

• Detection of critical errors in the early stages of their occurrence. 

Chapter 4. Synthetic-to-real Composite Semantic Segmentation in AM: A method of 

using physics-based rendering for automated labeled image dataset generation for real 

image segmentation in AM. Multi-class semantic segmentation experiments were carried 
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out based on the U-Net model and the cycle generative adversarial network. The test results 

demonstrated the capacity of this method to detect such structural elements of 3-D-printed 

parts as a top (last printed) layer, infill, shell, and support. A basis for further segmentation 

system enhancement by utilizing image-to-image style transfer and domain adaptation 

techniques was also considered. The application of computer vision and machine learning 

for semantic segmentation of the structural elements of 3-D-printed products can improve 

real-time failure analysis systems and potentially reduce the number of defects by 

providing additional tools for in situ corrections. The highlighted contributions are 

presented in the following list: 

• Analysis of 3-D printer users’ activity over 2.3 years (5.6 million print jobs with a 

24% failure rate); 

• Automated G-code-based labeled synthetic dataset generation; 

• Semantic segmentation of background, printed part, top (last printed) layer, infill, 

shell, and support categories; 

• Analysis of image-to-image style transfer capabilities. 

Chapter 5. Tool change Reduction in Multi-color 3-D Printing: An alternative 

fabrication approach based on interlayer tool clustering (ITC) is presented here for the first 

time, which is compatible with any commercial 3-D printer without the need for hardware 

modifications. The theoretical time, mass and energy savings are calculated and validated 

with a series of experiments to evaluate the proposed algorithm qualitatively and 

quantitatively. The results show the novel ITC method can significantly increase the 

efficiency of multi-material printing, with an average 1.7-fold reduction in material used, 

and an average 1.4-fold reduction in both time and 3-D printing energy use. In addition, 

this approach reduces the likelihood of technical failures in the manufacturing of the entire 

part by reducing the number of tool changes, or material transitions, on average by 2.4 

times. 

• Novel fabrication method (interlayer tool clustering) for multi-material 3-D 

printing implemented in the open source PrusaSlicer; 
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• Average 1.7-fold reduction in material use, 1.4-fold reduction in both time and 

energy use; 

• Number of tool changes can be reduced by an average of 2.4 times. 
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Chapter 2  

2 Computer Vision-based Layer-wise 3-D Printing 
Analysis 

This chapter1 is adapted from the “Open Source Computer Vision-based Layer-wise 3-D 

Printing Analysis” with minor modifications to the version published in Additive 

Manufacturing, vol. 36, 101473, 2020, DOI:10.1016/j.addma.2020.101473. 

2.1 Abstract 

The paper describes an open source computer vision-based hardware structure and software 

algorithm, which analyzes layer-wise 3-D printing processes, tracks printing errors, and 

generates appropriate printer actions to improve reliability. This approach is built upon 

multiple-stage monocular image examination, which allows monitoring both the external 

shape of the printed object and internal structure of its layers. Starting with the side-view 

height validation, the developed program analyzes the virtual top view for outer shell 

contour correspondence using the multi-template matching and iterative closest point 

algorithms, as well as inner layer texture quality clustering the spatial-frequency filter 

responses with Gaussian mixture models and segmenting structural anomalies with the 

agglomerative hierarchical clustering algorithm. This allows evaluation of both global and 

local parameters of the printing modes. The experimentally verified analysis time per layer 

is less than one minute, which can be considered a quasi-real-time process for large prints. 

The systems can work as an intelligent printing suspension tool designed to save time and 

material. However, the results show that the algorithm provides a means to systematize in 

situ printing data as a first step in a fully open source failure correction algorithm for 

additive manufacturing. 

 

1
A version of this chapter has been published in Additive Manufacturing journal. A. Petsiuk, J.M. Pearce, 

Open source computer vision-based layer-wise 3D printing analysis. Additive Manufacturing, vol. 36, no. 

101473, 2020, doi:10.1016/j.addma.2020.101473. 
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2.2 Introduction 

Despite a long evolution of additive manufacturing (AM), starting from the first patent in 

1971 [1], 3-D printing technology has only recently exploded in popularity due to the 

radical decreases in costs brought on by the introduction of the self-replicating rapid 

prototyper (RepRap) 3-D printer [2-4]. With the generalized material extrusion printing 

process called fused filament fabrication (FFF) technology gaining prominence in the field 

with the expiration of fused deposition modeling (FDM) patents, FFF now dominates the 

3-D printing market for printers in use [5]. Making AM accessible to the masses of 

consumers has enabled the emergence of a distributed manufacturing paradigm [6-14], 

where 3-D printing can be used to manufacture open source products for the consumer and 

by the consumer directly for less (in many cases more than an order of magnitude less) 

money than purchasing of mass-manufactured proprietary products [10,15-18]. The 

downloaded substitution values [19, 20] for digital manufacturing with AM of even 

sophisticated high-end products [21-24] provides a high return on investment [25]. In 

addition, there is some evidence that AM distributed manufacturing reduces the impact on 

the environment [26-30]. However, both the economics and environmental impact of 

distributed manufacturing is heavily impacted by success rate. Early work on self-built 

RepRaps estimated a 20% failure rate [9] and more recent values of about 10% [31], which 

is in the range (1–20%) of recent polling of the Reddit “r/3Dprinting” community [32].  

Although the cost of printing with an FFF-based 3-D printer is trivial compared to the other 

AM techniques, printing errors are substantial enough to impact the economic and 

environmental merits of the approach. To this end, several studies and techniques have 

been attempted to reduce failure rates. Nuchitprasitchai et al. [33] were able to detect the 

“blocked nozzle” and “incomplete print” failures for six different objects in five colors. 

The printed objects have been tested in a single- and double-camera experiments to 

determine critical 5% deviations in shape and size at every 50th layer. In the subsequent 

work [34], the authors used three pairs of cameras 120 degrees apart to reconstruct the 3-

D surface points of the printed objects at every 30th layer to detect critical 10% size 

deviations. Garanger et al. [35] implemented a closed-loop control system for a certain 

additive manufacturing process to reach the acceptable stiffness for leaf spring-like objects. 
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Delli and Chang [36] proposed a binary (failed/not failed) 3-D printing error classification 

approach based on a supervised machine learning technique, where the quality check is 

being performed at critical stages during the printing process. Fastowicz and Okarma [37] 

developed a quality assessment method based on texture analysis using the gray-level co-

occurrence matrix [38-40] and selected Haralick features [41]. In [42], Cummings et al., 

developed a closed-loop control framework that detects and corrects filament bonding 

failures by using the ultrasonic sensor and manipulating the print bed temperature during 

the printing process. Rao et al. [43] developed a heterogeneous sensor framework for real-

time surface roughness analysis based on such printing parameters as extruder temperature, 

layer thickness on build quality, and feed to flow ratio. Jin et al. [44] introduced a system 

of automatic correction of extrusion defects based on machine learning. The method, 

however, assumes the presence of a large image database (the order of hundreds of 

thousands) and performs the analysis of only rectangular print fragments for over- and 

under extrusion [44]. He et al. [45] developed a layer-wise vision-based system for 

monitoring the external geometric profile of FFF fabricated parts. This method covers 

simple geometric shapes and does not take into account the internal structure of the printed 

layers. Finally, the authors of “The Spaghetti Detective” project [46] utilize the webcam to 

detect critical “spaghetti” failures based on machine learning techniques. This method 

allows stopping the printing process and notifying the user in case of fatal errors such as 

model detachment and nozzle positioning failure. However, this does not cover a wide 

range of possible malfunctions and does not allow implementing any correction algorithms. 

In the more mature areas of AM with higher-priced materials and 3-D printers, various 

methods of quality control have been instituted to minimize print failure. Scime and Beth 

[47] introduced an in-situ anomaly detection approach based on the unsupervised machine 

learning technique for laser powder bed fusion (LPBF) additive manufacturing. The 

developed method [47] determines the possible causes for partial fusion failures and 

provides potential strategies to build quality enhancement in the future. Xiong et al. [48] 

developed a camera-based system in gas metal arc welding to monitor and control the 

distance between the nozzle and the top surface by compensating such parameters as the 

deposition rate and working flat level. Nassar et al. [49] developed a temperature-based 

inner layer control strategy and analyzed its effects on the hardness and microstructure of 
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the metal printed component. In both [48] and [49], the authors developed closed-loop 

control capabilities, but the methods, however, focus on microscopic properties without 

considering the global macrostructure of the object being built. Okaro et al. [50] introduced 

a semi-supervised machine learning algorithm based on large sets of photodiode data for 

automatic “faulty” and “acceptable” tensile strength assessment in laser power bed fusion 

additive manufacturing. Garanger et al. [51] suggested a number of semantic rules within 

3-D printing files, which provide desired specifications and, based on material properties, 

real-time topology and finite element analysis, generate feedback laws for the control 

system. Yuan et al. [52] developed a two-step machine learning approach to real-time laser 

track welds assessment in LPBF processes. Sitthi-Amorn et al. [53] introduced a layer-wise 

correction technique for multi-material 3-D printing. Razaviarab et al. [54] proposed a 

closed-loop machine learning algorithm to detect layer defects in metal printing. 

The key point of the previous works is addressing a limited number of specific cases of 

local defects without taking into account the global parameters of the printed parts (such 

as full-scale shift or deformation, deviation of the dimensions of the parts from the 

calculated ones, etc.). Most of the methods described also do not imply an on-the-fly 

algorithm for compensating, correcting or eliminating manufacturing failures. 

In order to mature the FFF-based 3-D printing quality control to reach that of the more 

expensive AM technologies, this study presents a free and open source software algorithm 

and hardware structure based on computer vision, which allows layer-wise analysis of 3-D 

printing processes to segment and track manufacturing errors, and repairing procedures to 

generate appropriate printer actions during fabrication. These repair-based actions are 

designed to minimize the waste of printing material and printing time caused by erroneous 

printing attempts. The approach is based on monocular multiple-stage image processing 

that monitors the external shape of the printed object and internal structure of the layers. 

The developed framework analyzes both global (deformation of overall dimensions) and 

local (deformation of filling) deviations of print modes, it restores the level of scale and 

displacement of the deformed layer and introduces a potential opportunity of repairing 

internal defects in printed layers. The analysis time as a function of layers is quantified and 

the results are discussed. 
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2.3 Visual Platform Design 

FFF/FDM 3-D printing is the simplest and most common form of additive manufacturing 

[55]. Increasing the resiliency and quality of FFF printing will thus provide a significant 

benefit to makers' communities around the world. 

Table 2.1, created by the authors, summarizes FFF 3-D printing errors and methods for 

their elimination guided by makers’ experience with low-cost desktop 3-D printers [56-

58]. As can be seen from Table 2.1, print options that affect the possibility of an error can 

be divided into three categories: 

1. Mechanical parameters of the 3-D printer and its environment; 

2. Temperature parameters of the fan/nozzle and the printing bed; 

3. Algorithm for converting a standard tessellation language (STL) model to G-

code instructions (i.e., slicer parameters). 

The described three sources [56-58] are the most popular and frequently visited Internet 

platforms of the makers' community for 3-D printing. These sources already provide the 

most complete and detailed information about the causes and possible solutions for each 

printing defect based on previous cumulative experience. 

The temperature conditions, feed rate, traveling speed of the extruder, as well as some 

parameters of the slicing algorithm (such as height of the printed layer, thickness of lines 

and percentage of their overlapping, etc.) can be controlled by the G-code commands. 

Thus, by adapting the G-code parameters during printing, it is possible to indirectly 

compensate for the shortcomings of the temperature regime and slicer parameters. The 

mechanical parameters of the printer (stability of assembly, the presence of grease in 

moving parts, belt tension, the electrical voltage of stepper motor drivers, etc.), as well as 

flaws of the model design, are practically impossible to compensate for during printing. 

However, having the ability to vary certain 3-D printing options, a computer algorithm can 

be written to eliminate or reduce the likelihood of failures from the former root causes, the 

latter need to be addressed by physically fixing the machine.  
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The existing market for FFF 3-D printers is very diverse and is represented by models of 

various shapes with both moving and stationary working surfaces (printing beds). To test 

the developed method, a delta-type RepRap printer was chosen [59], which is an open 

source development with a fixed working surface, which simplifies the synchronization of 

the camera with printing processes. 

Table 2.1: 3-D printing parameters that may cause failures. 

 

A Michigan Tech Open Sustainability Technology (MOST) Delta RepRap FFF-based 3-D 

printer [59] with a 250 mm diameter and 240 mm high cylindrical working volume was 
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used (Figure 2.1). It fuses 1.75 mm polylactic acid (PLA) plastic filament under a 

temperature of 200 °C from a nozzle with a 0.4 mm diameter. The printer operates by 

RAMPS 1.4 printer controller with an integrated card reader. The MOST Delta operates 

with 12-tooth T5 belts at 53.33 steps/mm for a Z precision of about 19 microns. The 

resolution of the printer in an XY plane is a function of distance from apexes, so it changes 

with distance from the center of the build platform [60]. 

 

Figure 2.1: Visual platform: working area (left), printer assembly (right): a) – camera;       

b) – 3-D printer frame; c) – visual marker plate on top of the printing bed; d) – extruder;   

e) – movable lighting frame; f) –printed part. 

The camera is based on 1/2.9 inch (6.23 mm in diagonal) Sony IMX322 CMOS Image 

Sensor [61]. This sensor consists of 2.24M square 2.8x2.8 μm pixels, 2000 pixels per 

horizontal line and 1121 pixels per vertical line. IMX322 has a Bayer RGBG color filter 

pattern (50% green, 25% red, and 25% blue) with 0.46÷0.61 red-to-green and 0.34÷0.49 

blue-to-green sensitivity ratios. In operating mode, the camera captures 1280×720 pixel 

frames at a frequency of 30 Hz. The camera was calibrated on a widely used asymmetric 

circular grid pattern [62]. The circle grid pattern can provide more accuracy and stability 

since the calibration technique is based on the detection of the center of gravity of each 

circle [63, 64]. 
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The printing area is under monocular surveillance (Figure 2.1), where the single camera 

provides a rectified top view and pseudo-side-view of the printed part (Figure 2.3). 

A developed visual marker plate located on top of the printing bed (Figure 2.1) enables the 

determination of the spatial position of the working area relative to the camera. The plate 

has a 88×88 mm printing area where seven contrast square markers (15×15 mm and 10×10 

mm) build a reference frame for the camera. A computed camera pose in homogeneous 

coordinates allows the computation of a one-to-one relationship between the Euclidean 

world points ℝn  recorded in the G-code or in the STL model and the planar image points 

captured by the camera by applying projective transformations (Figure  2.2). In computer 

vision problems, projective transformations are used as a convenient way of representing 

the real 3-D world by extending it to the three-dimensional projective space ℙn, where its 

points are homogeneous vectors [65,66]. 

 

Figure 2.2: Projective transformation of the G-code and STL model applied to the source 

image frame: a) – camera position relative to the STL model; b) – G-code trajectories 

projected on the source image frame. This and the following slides illustrate the printing 

analysis for a low polygonal fox model [67]. 

The image pixel positions correspond to their three-dimensional spatial locations in 

accordance with the following equation (2-1), where the index 𝑝 means “picture plane”, 

and the index 𝑤 means “world space”: 
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where 𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] is the intrinsic camera parameters obtained during calibration, 𝑓𝑥  

and 𝑓𝑦 are the focal lengths in image coordinates, 𝑐𝑥 and 𝑐𝑦 are the  coordinates of the 

optical center in image coordinates (the principal point), 𝑹 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] is the 

rotation matrix, and 𝒕 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇 is the translation vector. The camera position 

parameters (𝑹, 𝒕) are determined using the known coordinates of visual markers. Thus, 

having the position of the camera and its intrinsic parameters, it is possible to determine 

the correspondence between the spatial coordinates of the working space (𝑋𝑊, 𝑌𝑊, 𝑍𝑊) and 

image pixels (𝑥𝑝, 𝑦𝑝). 

Applying projective transformations to rectified frames of the observed printing area, it is 

possible to obtain a virtual top-view as if the camera is mounted parallel to the normal 

vector of the printing bed [47] and a pseudo-side-view as if the camera is mounted 

perpendicular to the normal vector of the printing bed (Figure 2.3). Observing the printed 

layer through the camera lens, a slice of the material is viewed as a set of pixels, or a tuple 

of numbers, characterizing the local areas of the layer. Therefore, analyzing a two-

dimensional image provides an understanding of the nature of the texture of the object. 

 

Figure 2.3: Frames obtained from the monocular vision control system: a) – rectified 

source image frame; b) – unwrapped virtual top-view;  c) – unwrapped pseudo-side-view. 
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After each layer, based on the 3-D printed layer height, an analytical projective plane in 

the image shifts accordingly with the layer number, so the rectified image frame remains 

orthogonal to the optical axis of the virtual top-camera. Thus, by utilizing a rich group of 

image processing techniques, it becomes possible to segment meaningful contour and 

texture regions based on images and known parameters of the STL model and the G-code 

of the printing object. At the end of the printing process, a layered set of images provides 

additional data for volumetric analysis of the printed object in the future (Figure 2.4). 

 

Figure 2.4: Volumetric analysis of the printed part: a) – STL model with the orthogonal 

scan planes; b) – vertical XZ slice; c) – vertical YZ slice. 

A movable circle-shaped lighting frame was installed above the bed surface. The motor 

and mechanical system for tensioning the cables are mounted on top of the printer. The 

motor is connected to the stepper motor driver in the RAMPS printer control system and 

drives a lighting frame, which rises with each newly printed layer to a distance equal to 

this layer height, which ensures constant and uniform illumination of the printed part. The 

lighting frame, in turn, is a circular set of 56 2.8×3.5 mm light emitting diodes with a 

glowing temperature of 6000 K (cool white light spectrum), a total luminous flux of 280 

lumens, a power of 18 watts, and a supply voltage of 12 volts [68]. 

The software developed in Python-language environment parses the source G-code, 

dividing it into layers and segmenting the extruder paths into categories such as a skirt, 

infill, outer and inner walls, support, etc. (Figure 2.5). The impact of environmental factors 

was minimized: applying blur and median filtration to grayscale images reduces the 

influence of color and print material while using a moving light frame minimizes the effect 

of extraneous illumination. 
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The categories of the G-code paths depend on the software algorithm used to slice the STL 

model. The developed program synchronized with the printer uses RAMPS 1.4 3-D printer 

control system and the open source firmware Marlin [69] as an intermediate driver. The 

source code is available: https://osf.io/8ubgn/ under the open source license GPLv3. 

 

Figure 2.5: Layer-wise G-code segmentation: a) – an STL layer outline (black dashed line) 

overlay with the segmented layer of the source G-code with such trajectory categories as 

outer (blue) and inner walls (red), infill (green), and support (yellow); b) – possible 

inconsistency of STL and G-code; c) – unwrapped virtual top-view overlay with the outer 

wall (blue), infill (green), and support (yellow) extruder trajectories obtained from the G-

code. 

Using the reference layer-by-layer paths of the extruder obtained by the G-code analysis, 

in addition to the virtual top view, it is also possible to generate a pseudo-side-view. This 

approach does not allow for the creation of a full scan of the entire side surface of the 

model, however, this provides an opportunity to assess the divergence in the vertical size 

of the part with the reference height obtained from the G-code. The use of one camera 

instead of two (the main and a secondary camera for a side view) reduces the computational 

load and eliminates the need to synchronize the processing of two images. 

The temperature parameters, the coordinates of the trajectories and the traveling speed of 

the extruder, the feed rate of the material, as well as thickness of the printed lines and the 

height of the layer are stored in the program memory for each layer. Print commands, 

pauses, image analysis, and decision-making algorithms are carried out by the developed 

software, giving a control over the state of the printing process. Therefore, in case of critical 
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deviations, printing can be suspended, and if it is possible to repair the part, a sequence of 

corrective G-code commands will be launched. 

2.4 Algorithm Development 

The image processing pipeline could be divided into three branches and presented in Figure 

2.6. Each branch of the pipeline will be described further in this paper. 

 

Figure 2.6: Image processing pipeline. During the analysis stage, two auxiliary images (a 

virtual top view and a pseudo-side-view) are created from the main captured frame. Next, 

the pseudo-side-view is used to validate the height of the layer, while the virtual top view 

is used to analyze the outline of the layer and its interior. These three processes occur 

independently of each other. 

Starting with the side-view height validation, the algorithm analyzes the virtual top view 

for global trajectory matching and local texture examination. This allows taking into 

account both global and local parameters of printing processes. 

The proposed algorithm (Figure 2.7) for detecting printing failures assumes the presence 

of one camera located at an angle to the working surface of the 3-D printer. An angled 

camera allows us to observe both the active printable layer and part of the printing model 
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from the side. Thus, one source frame can be divided into a virtual top view from above 

and a pseudo-view from the side. 

 

Figure 2.7: 3-D printing control algorithm. After completing each layer, a virtual top view 

and a pseudo side view are obtained from the source image frame and used to 

independently analyze the height of the layer, as well as its external and internal 

parameters. Depending on the deviations found, certain error elimination procedures are 

launched and the cycle is repeated. If the deviation cannot be corrected, the printing process 

pauses and awaits corrective actions from the user. 
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Such criteria as bed leveling, dimensionality lost, and non-circularity are dependent on a 

specific printer model and are manually calibrated by the user at the time of the first run. 

It is possible to create calibration tables to determine the correction factors for G-code 

trajectories. However, at this stage, the above parameters are checked only for 

compliance/non-compliance with the specified values. In case of non-compliance in bed 

leveling, dimensionality, and circularity, printing is suspended. This method does not 

eliminate these errors during the printing process, but it can save time and material. 

2.4.1 Side View Height Validation 

Knowing the camera position and G-code trajectories for a given layer, it is possible to 

analyze the visibility of the side area of the printed part by solving the system of equations 

(2-2) that provides slope and shift coefficients for a linear visibility delimiter.  

{
𝑦𝑝

(1)
= 𝑚 ∙ 𝑥𝑝

(𝑚𝑖𝑛)
+ 𝑏

𝑦𝑝
(2)

= 𝑚 ∙ 𝑥𝑝
(𝑚𝑎𝑥)

+ 𝑏
 ,    (2-2) 

where 𝑚 and 𝑏  – are the coefficients of the linear visibility delimiter, 𝑥𝑝
(𝑚𝑖𝑛)

 and 𝑥𝑝
(𝑚𝑎𝑥)

 

obtained from the extreme contour points of the projection of the G-code outline on the 

picture plane, 𝑦𝑝
(1)

 and 𝑦𝑝
(2)

 – are the y coordinates of the corresponding extreme points on 

the picture plane. 

The visibility analysis is necessary to determine the boundaries of the source frame, the 

area within which must be transformed to obtain a pseudo-side-view. Next, the height of 

the printed layer is determined by detecting its contrasting vertical edge in the pseudo-side-

view image. A deviation of the height of the detected edge from the corresponding values 

in the g-code will indicate a mismatch between the printed model and its source g-code. 

The pseudo-side-view, therefore, allows monitoring the height of the printed part and 

detect critical failures such as blocked nozzle, lack of material, major deformations, etc. 

2.4.2 Global Trajectory Correction 

After checking the vertical size, a virtual top view is used for the subsequent two-stage 

analysis of the external contour and infill of the printed layer. Having data on the 
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corresponding extruder trajectories from the G-code and the resulting contour obtained 

from image analysis, it is possible to determine if there is a mismatch between the real 

outline and the reference borders using the multi-template matching (MTM) [70] and the 

iterative closest point (ICP) [71,72] algorithms. MTM allows to track significant horizontal 

and vertical displacements of the printed part based on the binary layer template obtained 

from the G-code trajectories, and the ICP algorithm determines fine rotation and translation 

within the small deviation range. As a result, we obtain a transformation matrix, which 

multiplied by the spatial coordinates of the extruder trajectories, eliminates small linear 

shifts and scale distortions of the printed layer. 

The MTM method computes a correlation map between the reference layer outline and 

binary edge image of the virtual top view based on the “match Template” OpenCV 

function [73] and predicts the template (G-code outline) position within the image. Since 

the algorithm performs the search by sliding the template over the image, it detects the 

object with a similar orientation as the template and may not be sensitive to rotations. 

The ICP algorithm aimed at finding the transformation matrix between two point clouds 

by minimizing the squared error (2-3) between the corresponding surfaces using the 

gradient descent method. The iterative algorithm converges when the starting positions are 

close to each other. 

Given two corresponding point sets {𝑚1, 𝑚2, … , 𝑚𝑛} and {𝑝1, 𝑝2, … , 𝑝𝑛} we can find 

translation 𝒕 , rotation 𝑹, and scaling 𝑠 that minimize the sum of the squared error: 

𝐸(𝑹, 𝒕, 𝑠) =
1

𝑁𝑝
∑ ‖𝑚𝑖 − 𝑠𝑹(𝑝𝑖) − 𝒕‖2𝑁𝑝

𝑖=1
 ,   (2-3) 

where 𝑹, 𝒕, and 𝑠 – are rotation, translation, and scaling respectively. Since the scaling 

operation can also translate an object, the center of the G-code layer projection should be 

placed at the origin. 

Based on rotation, scaling and translation obtained from the ICP algorithm and assuming 

that the z-level was found during the vertical size check, the G-code trajectories for the 
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next (𝑘 + 1)𝑡ℎ layer [
𝐺𝑥

(𝑘+1) ′

𝐺𝑦
(𝑘+1) ′] = [

𝑥1
(𝑘+1)′ 𝑥2

(𝑘+1)′

𝑦1
(𝑘+1)′ 𝑦2

(𝑘+1)′

… 𝑥𝑛
(𝑘+1)′

… 𝑦𝑛
(𝑘+1)′

]  will be transformed 

from the initial trajectories of the next layer  [
𝐺𝑥

(𝑘+1)

𝐺𝑦
(𝑘+1)] = [

𝑥1
(𝑘+1)

𝑥2
(𝑘+1)

𝑦1
(𝑘+1)

𝑦2
(𝑘+1)

… 𝑥𝑛
(𝑘+1)

… 𝑦𝑛
(𝑘+1)

] in 

accordance with the following equation (2-4): 

[
𝐺𝑥

(𝑘+1) ′

𝐺𝑦
(𝑘+1) ′] = [

𝑠 0
0 𝑠

] ∙ [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] ([
1 0 𝑡𝑥

0 1 𝑡𝑦
] ∙ [

𝐺𝑥
(𝑘+1)

𝐺𝑦
(𝑘+1)

1

])   (2-4) 

Rotation and scaling operations must be performed after the defective layer path is shifted 

to the origin by [𝑡𝑥 𝑡𝑦]𝑇 calculated by the ICP algorithm. Thus, the new coordinates of 

the next, (k+1)th, layer can be written in the following way (2-5): 

{
𝑥𝑛

(𝑘+1)′ = 𝑠 [(𝑥𝑛
(𝑘+1)

+ 𝑡𝑥) cos 𝜃 − (𝑦𝑛
(𝑘+1)

+ 𝑡𝑦) sin 𝜃]

𝑦𝑛
(𝑘+1)′ = 𝑠 [(𝑥𝑛

(𝑘+1)
+ 𝑡𝑥) sin 𝜃 + (𝑦𝑛

(𝑘+1)
+ 𝑡𝑦) cos 𝜃]

  (2-5) 

Figure 2.8 shows the operation of the ICP algorithm for an example of a defective 

dumbbell-shaped layer. The reference layer path was rotated by 𝜃 = 20 degrees, scaled by 

𝑠 = 0.85, and shifted by 𝑡𝑥 = 9.0 𝑚𝑚 horizontally and 𝑡𝑦 = 6.0 𝑚𝑚 vertically. After 

several iterations, the algorithm detected a geometric mismatch with the following 

parameters: rotation of 18 degrees, scale 0.88, horizontal offset of 8.1 mm, and vertical 

offset of 6.6 mm, which is close to the true values. Then the coordinates of the defective 

layer were transformed based on the parameters found. 

It is worth noting that this method works with a “delay” of one layer. Thus, if a mismatch 

is found in the coordinates of the current printed layer, the adjustment can only be made 

for the next layer. Therefore, a 3-D model of a complex geometric shape with significant 

differences between successive layers may not be adjusted in all of cases. 
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Figure 2.8: Defective layer recovery using the ICP algorithm. After the fabrication of the 

k-th layer, its contour is detected by visual analysis (red points) and compared with the 

reference contour obtained from the G-code (blue points). If there is a discrepancy, the 

transformation parameters (scale, translation, and rotation) are determined to return the 

layer to its initial position according to the G-code. These transformations are then applied 

to all of the subsequent layers to prevent geometric distortions caused by mechanical 

defects or part movement during manufacturing. 

2.4.3 Local Texture Analysis 

After analyzing the contour, a check is made to the layer filled with the material. The 

purpose of this step is to identify irregular sections of the texture within the layer infill. At 

this stage, it is assumed that the vertical dimension of the part corresponds to the specified 

one, and the correct location of the real boundaries of the part is determined. Thus, only 

irregularities of the texture in the region bounded by the outer shell of the layer are 

considered. 

The textural features based on local probabilistic similarity measures are simple, have a 

low computational load, and could serve well for a small number of specific cases, but may 

not be efficient for a wide range of real-world problems [74-76]. Because of the complex 

surface topology, textural variations may not be explicitly expressed as a histogram 

comparison [77]. 

In this work, the texton-based approach to texture segmentation was implemented, since 

the given method has repeatedly demonstrated its effectiveness and scalability [77-81]. The 
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texton-based segmentation utilizes Leung-Malik (LM) filters [77,82] (Figure 2.9) that work 

as visual cortex cells and allow the segmentation of an image into channels of coherent 

brightness and texture in a natural manner, where the texture originates from the spatial 

variation of surface normal and reflectance. The LM filter bank consists of 48 filter kernels, 

which is a mix of 36 elongated filters, 8 difference of Gaussians, and 4 low-pass Gaussian 

filters [77]. 

 

Figure 2.9: The Leung-Malik orientation and spatial-frequency selective filter bank: 36 

Gaussian derivative filters (top three rows), 8 difference of Gaussians and 4 Gaussian filters 

(bottom row). 

After the convolution of an image with the filter kernels, each pixel is transformed into a 

multidimensional vector of filter responses. After clustering, these vectors form a set of 

texton channels, or appearance vectors, that define the image partitioning. 

In both plastic and metal additive manufacturing the lighting effects and mutual reflectance 

create a non-Lambertian environment, where similar surfaces may look significantly 

different under varying viewing angles [77,81,83], which narrows the set of possible image 

processing techniques. According to [78,84-86], filter responses encode appearance 

information over a broad-scale range and can serve as a preprocessing method that can be 

combined with dense descriptors for efficient texture classification with varying 

illumination conditions.  

Without prior texture information, a suitable approach for clustering the obtained filter 

responses, and, therefore, for texture segmentation, is an unsupervised machine learning 

method, which is a widely used technique in object recognition. Unsupervised machine 
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learning is used to draw derivations from data consisting of input information with no 

labeled responses. 

Clustering, being the most common unsupervised learning method, aimed at finding hidden 

patterns in the source data set and grouping them accordingly to their salient features and 

the number of clusters k specified by the user. The majority of previous works in texture 

segmentation are based on k-means clustering [78], but the non-probabilistic nature, hard 

cluster boundaries and lack of flexibility in cluster shape in k-means clustering leads to 

practical challenges and may not perform well in real-world applications. The Gaussian 

mixture model (GMM) clustering, implemented in this work, considers both cluster centers 

and covariances describing the location and shape of clusters [78]. 

The GMM clustering is based on filter responses, and attempts to partition an unlabeled 

input layer texture as a mixture of multidimensional Gaussian probability distributions in 

regions that share common characteristics. The Gaussian mixture model for 𝑘 unknown 

clusters can be written as a superposition of Gaussians [87]: 

𝑓𝐺𝑀𝑀(𝑥) = ∑ 𝑤𝑗𝑓𝒩(𝜇𝑗,𝛴𝑗)(𝑥)𝑘
𝑗=1  , where ∑ 𝑤𝑗

𝑘
𝑗=1 = 1,  (2-5) 

which is a combination of weighted 𝑤𝑗 normal probability density functions 𝑓𝒩(𝜇𝑗,𝛴𝑗) with 

mean vector 𝜇𝑗 and covariance matrix 𝛴𝑗. 

The GMM-based clustering determines the maximum likelihood for Gaussian models with 

latent variables by utilizing the expectation-maximization (EM) algorithm [88, 89], which 

iteratively estimates the means, covariances, and weighting coefficients in a way that each 

cluster is associated with a smooth Gaussian model. However, despite the effectiveness of 

the described method, the exact number of clusters k should be specified in advance, which 

is a critical decision and determines the success of texture segmentation. 

Using the infill mask obtained from the G-code paths, GMM segmentation and failure 

analysis are performed only within the layer infill texture region. Since the result of 

segmentation is not completely predictable and one anomalous region can consist of 

several segments, the agglomerative hierarchical clustering (AHC) [90] is launched after 
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the GMM partitioning. The AHC, being an unsupervised technique, recursively merges 

pairs of individual clusters based on their location within the segmented area, which 

provides a consistent failure map for the analyzed infill region. 

2.4.4 Targeted Failures and Corrective Actions 

Using the above-mentioned techniques, it is possible to approach a considerable number 

of the failures listed in Table 2.1. The main target failures along with the proposed 

corrective actions are introduced in Table 2.2. These printing errors can be detected and/or 

eliminated by using the appropriate G-code commands without adjusting the mechanical 

parameters of the printer and slicing modes. This is an algorithmic concept for eliminating 

critical and most common failures, since there can be a multilevel branching causal 

relationship behind each printing failure, which makes identifying the causes of failure 

difficult even for a user. The developed method allows determining the initial vector for a 

global solution to the problems posed since it is hard to create a universal method for 

solving all of possible printing issues at once. 

Table 2.2: Target failures and corrective actions. 

 Failure type Detection strategy Printer action 

1 
Out of filament Vertical level + MTM 

& ICP algorithms 

Pause / Report 

2 

Blocked nozzle Vertical level + MTM 

& ICP algorithms 

Increase nozzle temperature; 

Repeat the previous layer a finite 

number of times 

3 
Missing layer Vertical level + MTM 

& ICP algorithms 

Repeat the previous layer a finite 

number of times 

4 
Lost dimensional 

accuracy 

MTM & ICP 

algorithms 

Update G-code coordinates 
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5 
Bed leveling issue Texture segmentation Pause / Report; Manual level 

recalibration 

6 

Adhesion problem 

(warping) 

Tracking vertical level 

of the initial layer 

Increase bed temperature; Pause / 

Report in case of critical vertical 

deviation 

7 
Print is not 

sticking to the bed 

Vertical level + MTM 

& ICP algorithms 

Increase bed temperature; Pause / 

Report 

8 
Print offset / 

bending 

Vertical level + MTM 

& ICP algorithms 

Update G-code coordinates 

9 
Weak or under-

extruded infill 

Texture segmentation Increase nozzle temperature and 

feed rate 

10 
Deformed infill Texture segmentation Change nozzle temperature and 

feed rate 

11 

Burnt filament 

blobs 

Texture segmentation Smooth out irregularities by 

moving the hot nozzle over the 

surface without material extrusion 

(ironing procedure) 

12 Incomplete infill Texture segmentation Patch replacement procedure 

13 

Poor surface 

quality above 

supports 

Texture segmentation Change feed rate 

14 
Gaps between 

infill and shell 

Texture segmentation Change feed rate 
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A simplified pseudo-code in accordance with the basic algorithm (Figure 2.7) for a layer 

processing is shown in Figure 2.10. 

 

Figure 2.10: Example of failure correction. If defects are detected on the current layer, the 

G-code coordinates for the next layer can be updated.  

2.5 Experimental Results 

The algorithm was tested during regular printing without failures of the 42×51×70 mm 

low-polygonal fox model [67] with the following printing parameters: 1.75 mm PLA, 0.4 

mm layer height, 0.4 mm line width, 30% grid infill, and 3.2 mm wall thickness. The entire 
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model consists of 175 layers, but the tests were carried out for the first 96 layers since part 

of the model was located outside of the visible area.  

Bed leveling and dimensionality checks were calibrated in advance before printing. The 

visual analysis of the vertical level, deformation of the outer shell, and infill texture was 

performed for each printing layer on a 2.5 GHz processor with 8 GB of RAM. These 

experiments for the case of a normal printing mode without deviations allow determining 

the accuracy and tolerance of the adaptive algorithm. 

2.5.1 Height Validation Results 

Starting with the vertical level validation (Figure 2.6), the algorithm analyzes the virtual 

top view for global trajectory matching and local texture examination. This allows taking 

into account both global and local parameters of printing processes. Based on the G-code 

reference contour and the system of equations (2-2), the calculated visual separator is used 

to generate a pseudo-side-view projection where the curved part of the model is shown as 

a straight line (Figure 2.11). 

 

Figure 2.11: Pseudo-side-view generation: a) – computed linear visibility delimiter (white 

dashed line), the edge for the visible side region (blue) and invisible side region (red) of 

the printed part; b) – designated visible area for unwrapping; c) – unwrapped region with 

the reference vertical level (yellow) and the maximum double-layer errors in both 

directions (red); d) – detected vertical edge error (blue) with the reference layer height 

(yellow) and maximum double-layer errors in both directions (red). 

Due to uniform all-round lighting, the contrast between adjacent faces of the part is enough 

to find a clear edge. Thus, comparing the pixel-wise deviation of the detected edge from 
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the reference contour becomes possible to obtain the distribution and total vertical level 

error for each layer (Figure 2.12). 

 

Figure 2.12: Results of vertical level validation. The maximum amount of detected layer 

edge displacement (total vertical level error) depends on the observed part's geometry at 

each stage of its completion. Under normal printing conditions, however, the median error 

of the detected edge for each layer does not exceed the maximum deviations for one layer. 

Based on the camera resolution, the relationship between the linear dimensions of the part 

and the number of pixels in the image, which is 5 pixels per 1 mm, was calculated. Thus, 

knowing the height of one layer (0.4 mm) and the length of the visible side region (that 

may have a different value for each layer), it is possible to calculate the maximum single- 

and double-layer mismatch between the detected contour and the calculated one, which is 

equal to the height of two layers: 

𝐸𝑡𝑜𝑡𝑎𝑙 =
𝐿∙ℎ

𝑚
 ,     (2-7) 

where 𝐸𝑡𝑜𝑡𝑎𝑙 – is the maximum total layer error in pixels∙mm, 𝐿 – is the length of the visible 

side region in pixels, ℎ = 2 – is the layer height in pixels, and 𝑚 = 5 – is the scaling factor 

for the side view in pixels per millimeter. For the 7th layer, for example, having the length 

of the visible side region of 𝐿 = 235 pixels, the maximum total double-layer error would 

be 𝐸𝑡𝑜𝑡𝑎𝑙 = 235 ∙ 4/5 = 188 pixels∙mm (Figure 2.12). 



37 

 

 

As can be seen from the experimental results, in the normal printing mode, both the average 

and total error values do not exceed the maximum deviation equal to the height of the two 

layers. For each individual layer, however, the vertical level error may exceed the 

maximum error value equal to the value of one layer. The discriminative power of the 

failure detection depends on the resolution of the camera, the distance to the print area, the 

size of the part, and can be taken into account in the algorithm in such a way that a one-

time deviation exceeding the height of one layer will be ignored, while multiple 

consecutive excesses of the level of one layer will be taken as a true error. 

At this stage of development, a defect on the backside of the part will be unnoticed during 

the side view height validation, however, it can be recognized in the virtual top view if this 

failure affects the inner portion of the layer. It should be noted that the optimal location of 

the part on the printing bed, where the most critical areas of the part are oriented in the 

direction of the camera, reduces the likelihood of skipping printing defects. 

2.5.2 Results of the Global Trajectory Analysis 

The global outline analysis uses a virtual top view and a combination of MTM and ICP 

algorithms. It is currently assumed that the manufactured part does not contain numerous 

through holes, and, also, that the grayscale gradient on the faces of the printed object is 

sufficient to identify the outline. In addition, an STL-based restrictive mask is used to limit 

the search for the layer contour within the expected region. At the first stage, the MTM 

algorithm detects significant horizontal and vertical shifts (Figure 2.13), after which the 

ICP algorithm provides more accurate information about the rotation and displacement in 

a small range within the area detected by the MTM algorithm (Figure 2.14). 
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Figure 2.13: Global displacement detection based on MTM algorithm: a) – contour-based 

binary template; b) – printed part shifted due to failure; c) – computed shift distance and 

direction. 

To ensure the reliability of the ICP algorithm, a restrictive mask based on the STL layer 

outline is used that limits the number of detected edge points used in the calculations of 

displacement and rotation relative to the G-code reference contour (Figure 2.14, a). 

 

Figure 2.14: Global G-code trajectory matching for a single layer based on ICP algorithm: 

a) – reference outline (green) mismatched with the detected contour points (red), the 

saturated region around the reference outline illustrates the restrictive mask obtained from 

the STL layer outline, which constrains the point cloud correspondence search for the ICP 

algorithm within the given area; b) – initial ICP iteration; c) – final ICP iteration. 

The figures above show an instance of an exemplary error in positioning a printed layer. A 

large initial displacement of 15 mm horizontally and 7 mm vertically (Figure 2.13) may not 

be detected using the ICP algorithm, since this requires an initial guess about the real 
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coordinates of the layer. However, without information on the nature and magnitude of the 

displacement, the MTM algorithm can be used as an intermediate step to obtain an initial 

assumption of the shifted coordinates. Then, using the initial guess about real layer 

location, the ICP algorithm allows detecting minor displacement and rotation of the printed 

layer within a few millimeters and degrees, respectively. In this example (Figure 2.14), a 

layer rotation of 0.2 degrees was determined, as well as an offset of 3.2 mm horizontally 

and 0.9 mm vertically. 

Figure 2.15 shows the results of the ICP algorithm. It was revealed during the experiments 

that the restrictive mask with a width of 30 pixels (this corresponds to 5.7 mm for the given 

setup, or about 10% of the horizontal size of the printed part) allows to obtain a stable result 

and to identify the maximum displacement and rotation of 8 mm and 10 degrees, 

respectively. 

 

Figure 2.15: Results of the global trajectory matching analysis. Under normal printing 

conditions, in this case, the maximum detected displacement does not exceed 1.8 mm, and 

the layer rotation is 2.5 degrees. Here the upper layers are smaller in size relative to the 

lower ones. This affects the number of detected contour points used as input data for the 

global trajectory analysis procedures and, in turn, can introduce errors in the detected 

rotation, shift, and scale parameters. 

In the nominal printing mode, rotation errors of up to 2 degrees and displacement errors of 

up to 1.7 mm were observed. 
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2.5.3 Results of the Local Texture Analysis 

According to [91], the dimensions of the filter should correlate with the size of prevailing 

image structures to reduce the noise effect during image processing. Varma and Zisserman 

in [92,93] also presented a detailed analysis of the effect of filter size on classification 

efficiency for a number of filter banks and filter sizes. 

Taking into account the facts that to accelerate the clustering operation, the original image 

can be reduced in size, and that a larger filter can better suppress visual noise, it was 

experimentally determined that the filter dimension of 1/3 of the input image allows to 

effectively segment the layer texture with high speed. Thus, the dimensions of the input 

image and the Leung-Malik filters are 150×150 pixels and 49×49 pixels, respectively. 

In addition to the filter size, the number of expected texture clusters is also an equally 

important parameter. During the experiments was found that six clusters (six expected 

textures in the input image) can provide an effective ratio of speed and quality of 

segmentation. 

Figure 2.16 shows the result of the GMM segmentation of the test image with 18 various 

texture samples, where the size of each texture patch is equal to the size of the filter and is 

49×49 pixels. 

The textons, appearance vectors, or the corresponding filter response vectors, capture 

characteristic shapes of different materials and features at various viewing angles and 

lighting conditions. In Figure 2.16 the 18 clusters correspond to the prevalent features in 

the image [77], where each of the cluster centers visualized by a pseudo-inverse that codes 

geometric features such as grooves, bumps, ridges, and hollows into an image icon [94]. 
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Figure 2.16: Partitioning an image into texture channels (textons): a) – test image with 18 

various texture samples (modified image from https://all3dp.com/2/infill-3d-printing-

what-it-means-and-how-to-use-it); b) – segmented textures; c) – obtained texture channels. 

The texture areas shown in Figure 2.16 represent common types of infill patterns with 

different filling densities. As can be seen, not all of the areas are labeled correctly. This 

may be due to the dimensions of the source frame, the level of image processing required 

to suppress visual noise, as well as the ratio of the LM filter size to the image dimensions, 

and the proportions of the characteristic infill areas relative to the surrounding texture. For 

example, three fill areas in the upper right corner have the same label, which may be due 

to the similarity of these areas after scaling and processing of the input image, as well as 

the large size of the filters in relation to the characteristic areas of the fill pattern. Other 

segmentation errors in the upper left and lower right corners may be caused by significant 

geometric variability in the infill pattern and its large size relative to the LM filters. The 

developed method for analyzing the texture of infill areas therefore requires further 

research and adaptation for a wide range of possible texture patterns. 

After segmentation of the input image, labeling of the textures regions inside the infill mask 

occurs. Figure 2.17 shows an example of a failed layer with two defective regions injected 

to demonstrate the texture segmentation and clustering processes. Texture regions other 

than the main infill texture are considered abnormal and, subject to a certain shape and 
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size, are taken into account in further analysis. If the total area of the considered anomalous 

regions exceeds a critical value of 15% of the total area of the layer infill region, the layer 

is considered defective, and further unsupervised agglomerative hierarchical clustering 

occurs. 

 

Figure 2.17: Defective layer segmentation results: a) – source virtual top view;                       

b) – segmented image with the with infill mask (green), infill textures (blue regions), 

outside textures (red regions); c) – segmented failures (red and blue regions) inside the 

infill area (green). 

Since after a GMM segmentation a defective part of a texture can consist of several 

segments (blue regions in Figure 2.17), it is necessary to determine their belonging to one 

or another defective group. For the AHC algorithm, the clustering parameters were 

experimentally selected based on the centroid locations of the anomalous regions and the 

distance between them. The algorithm assumes one or two defective infill sections and 

determines whether the segmented anomalies belong to one or the other section. 

Figure 2.18 shows the results of the infill texture analysis for the specified printed layers. 

During the experiments, the entire total area of anomalous regions was considered without 

taking into account their shapes. 
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Figure 2.18: Results of the texture analysis during the regular printing. The method can 

falsely detect anomalies of up to 15 percent of the total layer area or higher in normal 

printing mode, indicating the need for additional measures to prevent false positives. 

As can be seen from the figure above, the total area of the anomalous regions can reach 10 

or more percent of the infill region. This fact is due to the ingress of the outer wall texture 

inside the infill mask, which is a false alarm and can be eliminated by analyzing its shape. 

2.5.4 Runtime Analysis 

The total analysis time can be divided into the following components (Figure 2.18): 

1. Side view height validation; 

2. Global outline correction; 

3. Local texture analysis. 

The side view height validation algorithm consists of G-Code parsing and image 

processing parts. The computational complexity of the parsing stage is linear (O(n), where 

n represents the size of the input data) with respect to the number of lines of the G-Code 

file. The image processing stage consists of OpenCV functions such as “projectPoints”, 

“polylines”, “findContours”, and “drawContours”, as well as Canny edge detection and 

median filtering, applied sequentially to a fixed-size image. Since the number of G-Code 

lines for all of the layers is approximately the same, and image processing operations are 

applied to image frames of the same size, the runtime remains practically unchanged 

throughout the print cycle. 
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Figure 2.19: Runtime distribution: a) – time decomposition of layer-wise visual analysis; 

b) – distribution of the total analysis time for all of the layers. 

The global texture correction step consists of MTM and ICP algorithms. The MTM 

algorithm is based on the OpenCV “matchTemplate” function, which, in turn, is based on 

the Fourier transform with the computational complexity O(n∙log(n)) [64,95,96]. The ICP 

algorithm has O(n2) complexity [97,98] which may imply long processing time when using 

high-resolution images. Thus, a significant reduction in the analysis time is observed due 

to a decrease in the geometrical dimensions of the part when approaching the upper printing 

layers, which, in turn, leads to a reduction in the number of data points involved in the 

contour transformation computations. 

The final stage, local texture analysis, includes GMM clustering based on the EM algorithm 

with the computational complexity of O(n) [99,100], and failure segmentation based on the 

AHC algorithm with O(n3) complexity [90,101], which makes it relatively slow. The AHC 

algorithm, however, does not introduce a significant time delay due to the small number of 

texture centroids that make up the hierarchy. Due to the sporadic initialization of the center 

clusters during the GMM segmentation, however, the execution time of the expectation-

maximization part may vary over a wide range. 

Regular printing time (without using the visual analysis) of the model [67] is 2 hours and 

14 minutes (8,040 seconds). The total analysis time varies between 15 and 30 seconds with 

an average of 21.4 seconds. Thus, introducing the visual analysis in the printing process of 

the given part increases the total time of the production process by an amount of the order 

of 50% (2-6): 
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𝐿𝑡∙𝑁

𝑃𝑟
∙ 100% =  

21.4∙175

8040
∙ 100% = 46.6% ,   (2-8) 

where 𝐿𝑡 – is the average layer analysis time, 𝑁 – is the total number of layers, 𝑃𝑟 – is the 

regular printing time. 

Manufacturing one layer of a large part may take several minutes, which is considerably 

longer than the processing time, and thus, the total production time may increase 

insignificantly. In a real-world scenario, an immediate suspension of the printing process 

in the event of a fatal error can be possible only in the case of constant monitoring by a 

human operator, which is difficult due to the time duration of the printing process (hours, 

or even days, per one part). Thus, despite the latency, delayed failure detection has an 

advantage over printing without error detection. Additionally, the printing process can be 

aborted immediately after the detection of a critical side-view level mismatch (since large 

deformations most probably will lead to significant distortions on the side view), which, in 

this case, takes several seconds. 

Applying the above analysis to selective layers reflecting pivotal changes in the geometry 

of the part or in the temperature conditions of printing can offset the time costs and bring 

the analytical cycle closer to the real-time mode. 

2.5.5 Failures Database and Future Development 

Examples of segmentation of artificially created print defects are presented in Figure 2.20. 

One of the proposed methods for eliminating defects is the operation of ironing (smoothing 

out irregularities by moving the hot nozzle over the surface without material extrusion), 

followed by repeated segmentation and texture analysis. If the defective area is preserved, 

this area must be melted and filled with 100% material. A protocol for this procedure is 

under development. 
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Figure 2.20: Detected regions with abnormal texture: (a–d) – segmented textures; (e–h) –

detected failures; (i–l) – cropped regions of interest with failures (not to scale). 

At this stage of texture analysis, in addition to direct segmentation, images of defective 

areas are saved in the database for subsequent labeling and classification. In the future, 

appropriate correction procedures will be developed individually for each type of defect.  

It should also be noted some of the limitations present in this paper, which could be 

resolved in future works: 

1. The considered algorithm can ambiguously interpret the layer contours of parts with 

complex geometric shapes. In the future, experiments will be conducted to 

determine effects of local geometry on the accuracy of determining the contours of 

the printed layers. 

2. At this stage of development, a defect on the backside of the part will be unnoticed 

during the side view height validation. In the future, it is necessary to analyze the 

possibilities of solving this problem (e.g., the use of mirrors, moving the printed 

part with respect to the camera, or the use of multiple cameras). 
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3. The impact of environmental factors was minimized by utilizing the movable light 

frame and applying image processing techniques to the source images. However, 

further tests will be carried out under various environmental conditions in order to 

obtain quantitative characteristics of the reliability of the algorithm. 

4. It is also necessary to conduct a series of tests to take into account the influence of 

the size of the printing part, since a large-sized model may be out of focus of the 

camera, and linear projection distortions should be considered. 

5. Additional detailed experiments are needed on a large number of 3-D models to 

fully analyze the effectiveness of the developed method and accurately determine 

the boundaries between nominal and defective printing. 

6. Mechanical tests on manufactured parts are required to analyze the correlation of 

pauses between each layer and mechanical strength. 

2.6 Conclusions 

The development of an adaptive 3-D printing control that allows updating the G-code 

during the fabrication process is a comprehensive and complex problem, because it is 

challenging to (1) uniquely visually determine the type of error, (2) establish a direct causal 

relationship between the type of error and the printing parameter involved, and (3) declare 

in advance what parameter value (scaling coefficients, feed rate, temperature, traveling 

speed, etc.) should be used to correct the failure. 

This work introduces a conceptually new approach to comprehensive monocular layer-

wise analysis of extrusion-based FFF AM processes. The developed method was tested on 

one part in normal printing mode without manufacturing defects. Several individual case 

studies were studied to demonstrate the detection of contour deviations and anomalies 

within the printed layer. However, additional studies are required for a detailed analysis of 

the performance of the developed method in the production of various parts under different 

3-D printing conditions. 

The experiments above are based on the assumption that the mechanical parameters 

(stability of assembly, the presence of grease in moving parts, belt tension, the electrical 

voltage of stepper motor drivers, etc.) of the printer are configured and calibrated 
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optimally. The experimental results obtained for the case of the nominal printing mode 

without deviations allow determining the accuracy and tolerance of the adaptive algorithm. 

Thus, at this stage of the research, the presented work is more an intelligent printing 

suspension tool designed to save time and material rather than a full failure correction 

algorithm for printing enhancement. However, this work will allow users to systematize 

knowledge about failure mechanisms and will serve as a starting point for deep study in 

the future and a full failure correction system for open source additive manufacturing. 
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Chapter 3  

3 Interlayer Anomaly Detection Based on HOG-features 
and Synthetic Images 

This chapter2 is adapted from the “Towards Smart Monitored AM: Open Source In Situ 

Layer-wise 3-D Printing Image Anomaly Detection Using Histograms of Oriented 

Gradients and a Physics-based Rendering Engine” with minor modifications to the version 

published in Additive Manufacturing, vol. 52, 102690, 2022, 

DOI:10.1016/j.addma.2022.102690. 

3.1 Abstract 

This study presents an open source method for detecting 3-D printing anomalies by 

comparing images of printed layers from a stationary monocular camera with synthetic G-

code-based reference images of an ideal process generated with Blender, an open source 

free physics-based rendering engine. Recognition of visual deviations was accomplished 

by analyzing the similarity of histograms of oriented gradients (HOG) of local image areas. 

The developed technique requires preliminary modeling of the working environment to 

achieve the best match for orientation, color rendering, lighting, and other parameters of 

the printed part. The output parameter of the developed visual analysis method is a 

similarity measure for each area of the printed layer image with an analogous area of its 

synthetic render, representing an ideal print. Twelve similarity and distance measures were 

implemented and compared for their effectiveness at detecting 3-D printing errors on six 

different representative failure types (local infill defects, presence of a foreign body in the 

layer, spaghetti problem, separation and shift of the printing part from the working surface, 

defects in thin walls, and layer shift) and their control error-free print images. The results 

show that although Kendall’s tau, Jaccard, and Sorensen similarities are the most sensitive, 

 

2
A version of this chapter has been published in Additive Manufacturing journal. A. Petsiuk, J.M. Pearce, 

Towards smart monitored AM: open source in situ layer-wise 3D printing image anomaly detection using 

histograms of oriented gradients and a physics-based rendering engine. Additive Manufacturing, vol. 52, 

no. 102690, 2022, doi:10.1016/j.addma.2022.102690. 
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Pearson's r, Spearman's rho, cosine, and Dice similarities produce the more distinguishable 

results. This open source method allows the program to notice critical errors in the early 

stages of their occurrence and either pause manufacturing processes for further 

investigation by an operator or in the future intelligent automatic error correction. The 

implementation of this novel method does not require preliminary data for training, and the 

greatest efficiency can be achieved with the mass production of parts by either additive or 

subtractive manufacturing of the same geometric shape. This open source method has the 

potential means of enabling smart distributed recycling for additive manufacturing in 

challenging environments. 

3.2 Introduction 

Over the past decades, additive manufacturing (AM) has become a widespread technology 

that has found application in various fields of science and technology. AM allows the 

fabrication of high-performance components with complex geometries and continues to 

attract research interest. Extrusion-based 3-D printing, widely spread with the open source 

release of the self-replicating rapid prototyper (RepRap) [1-3], remains prevailing 

manufacturing technology due to its low cost [4], availability of components, and a wide 

variety of printing materials [5,6] including waste plastics [7-10]. Despite its affordability 

and relative ease of use, however, this technology is not free from fabrication failures, 

which reduces economic impact [11,12], environmental merits [13], and limits the 

prospects for industrialization [14,15]. 

According to a recent comprehensive state-of-the-art review of monitoring techniques for 

material extrusion AM [16], the number of publications in the field of anomaly analysis 

grows steadily as this is a major impediment to widespread deployment. This phenomenon 

can be explained by the fact that the fused filament fabrication (FFF) technology dominates 

the 3-D printing market for printers in use [17]. 

Analysis of extrusion-based AM processes can consist of examining parameters such as 

temperature [18,19], vibration [20,21], acoustic emissions [22,23], electrical characteristics 

[24,25], and others [26-29]. The main source of information, however, remains 2-D and 3-

D image data obtained from single or multiple camera systems [16]. Since 3-D printed 
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parts are mostly fabricated in layers, most of the developed failure detection methods 

analyze manufacturing processes after a certain number of layers have been printed. 

Nuchitprasitchai et al. [30], Johnson et al. [31], and Hurd [32] proposed the concepts of 

failure analysis based on comparison with Standard Tessellation Language (STL) files. 

Jeong et al. [33] and Wasserfall et al. [34] employed information obtained from G-code 

files of printing parts. Ceruti et al. [35] utilized data from computer-aided design (CAD) 

files. Researchers also use comparison with reference data [36,37] or ideal printing 

processes [38,39]. Malik et al. [40] presented a 3-D reconstruction-based scanning method 

for real-time monitoring of AM processes. 

Having a way to automatically detect critical errors will significantly reduce material waste 

and time spent on failed prints. In order to reach this goal, this study reports on a developed 

monocular system for the analysis of plastic FFF processes that monitors contour 

deviations and infill distortions for each layer. This work expands on previous 

developments of the authors [41] by using an open source physics rendering engine to 

generate G-code-based synthetic reference images for each printing stage. With certain 

rendering parameters, a synthetic image can represent a real captured layer under ideal 

printing conditions. It is hypothesized that further comparative texture analysis based on 

image processing techniques can reveal the location and the degree of structural deviations. 

To this end a material extrusion-based 3-D printer was monitored with a stationary 

monocular camera. Synthetic reference images for the setup were created with Blender. 

Images were compared based on the similarity degree of the feature descriptors, 

represented by histograms of oriented gradients. Twelve similarity and distance measures 

were implemented and compared for their effectiveness at detecting 3-D printing errors on 

six different representative failure types (local infill defects, presence of a foreign body in 

the layer, spaghetti problem, separation and shift of the printing part from the working 

surface, defects in thin walls, and layer shift) and their control error-free print images. The 

sensitivities of the measures are quantified and the results are discussed in the context of 

creating intelligent manufacturing devices. 
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3.3 Method 

3.3.1 Experimental Apparatus 

For experimental tests, an open source delta-style FFF-based 3-D printer [42] was used, 

which represents a derivative of the self-replicating rapid prototype (RepRap) printer [1-

3]. The device operates in Cartesian coordinates under the control of a RepRap Arduino 

Mega Polulu Shield (RAMPS) system [43]. It has a cylindrical volume of Ø240×250 mm 

and an extruder with a 0.4 mm nozzle diameter. The main feedstock material is 1.75 mm 

polylactic acid (PLA) plastic filament. 

A stationary monocular camera was mounted on a tripod near the printing bed at an angle 

of ~45 degrees. The camera is based on a 2-megapixel 1/2.9-inch Sony IMX322 CMOS 

sensor [44] and has manual focus and aperture control. As shown in Figure 3.1, the four 

white dots on the printing surface are visual markers for the camera position and orientation 

determination. The markers indicate the active 90×90 mm observation area with the origin 

in the center of the square. 

  

a) b) 

Figure 3.1: Experimental apparatus: a) – 3-D printer schematic, b) – 3-D printing area.       

1 – 3-D printer, 2 – extruder, 3 – printing bed, 4 – movable circular lighting platform, 5 – 

lighting platform drive system, 6 – camera, 7 – visual markers. 

A movable circular lighting platform [41], controlled through G-code, is located above the 

working surface. The light frame consists of 56 light-emitting diodes with a color 
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temperature of 6000 K (cool white light spectrum) and a total power of 18 watts. The 

stepper motor driving the mechanical structure is located on top of the printer and is 

connected to the RAMPS controller as an additional extruder. 

Table 3.1 shows a set of G-code commands that are placed after the printing instructions 

for each layer. This pauses the fabrication process, moves the extruder out of the video 

surveillance area, and raises the lighting platform to a height equal to the thickness of the 

printed layer. Thus, the active print area is evenly lit around the perimeter, regardless of 

the current layer and the working level of the extruder nozzle. This allows capturing 2-D 

images of each completed layer with uniform illumination and applying unified image 

processing techniques to each image frame. 

Table 3.1: Interlayer G-code commands. 

G-code command Description 

M400 

G91 

G1 E-20 F1000 

G1 Z80 

G1 X20 Y20 

T1 

G1 E-0.25 F600 

M400 

M42 P57 S200 

Wait for moves to finish 

Switch to relative coordinates 

Retract the filament 10 mm before lifting the nozzle 

Move the nozzle 80 mm up 

Move the nozzle 20 mm aside 

Set the active extruder to 1 (lighting platform) 

Move the lighting platform one layer height up 

Wait for moves to finish 

Indicator ON (optional) 

Create layer snapshot 

G1 X-20 Y-20 

G1 Z-80 

G4 P500 

T0 

G90 

M42 P57 S0 

Move the nozzle 20 mm back 

Move the nozzle 80 mm down 

Wait 500ms for the nozzle vibration to stabilize 

Set the active extruder to 0 (extruder nozzle) 

Switch to absolute coordinates 

Indicator OFF (optional) 
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3.3.2 Creation of Synthetic Reference Images 

Synthetic reference images represent the ideal 3-D printed model fabricated in optimal 

conditions. The Blender [45] software was used to create images for each layer during the 

printing process. It is a multifunctional software environment for 3-D graphics. The set of 

Blender tools includes 3-D modeling, lighting and animation control, texture editing, and 

photorealistic rendering. There is also a Python scripting interface for customizing and 

automating the entire production pipeline. 

Figure 3.2 depicts a virtual model of the key parts of the Delta printer in use. 

  

a) b) 

Figure 3.2: Virtual workspace: a) – main elements of the Delta printer modeled in Blender, 

b) – virtual camera view area. 1 – printing bed, 2 – movable lighting platform, 3 – camera, 

4 – rendered G-code, 5 – visual markers. 

Previous research has repeatedly shown that Blender can be used as a reliable and flexible 

physics simulating environment for solving scientific and engineering problems. Kent [46] 

utilized Blender to visualize astronomical data, Gschwandtner et al. [47] and Romulo 

Fernandes et al. [48] performed range sensor testing and radar simulations, respectively. 

Flaischlen and Wehinger [49] performed particle-resolved computational fluid dynamics 

modelling for chemical industry, Ilba [50] estimated solar irradiation on buildings, Rohe 

[51] created an optical test simulator, and, finally, Reitmann et al. [52] developed an add-

on to generate semantically labeled depth-sensing data in Blender. 
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To create realistic images of the ideal printing process, the main components of the Delta 

printer have been modeled while maintaining relative proportions (Figure 3.2). Based on 

the authors' experiments and experience of professional 3-D computer graphics 

communities [53,54], a shader graph was developed for the procedural generation of 

realistic plastic textures (Figure 3.3). 

 
 

a) b) 

Figure 3.3: Shader graph for procedural texture generation: a) – shader nodes,                        

b) – procedural texture samples. The output material is a combination of Principled and 

Translucent BSDFs. The Principled node is responsible for surface parameters such as 

color, roughness, and reflection. Texture nodes create realistic surface irregularities. 

Adding Color ramp nodes is used to limit texture irregularities and truncate differences in 

surface height created by the Bump node. 

The main nodes are the Principled and Translucent bidirectional scattering distribution 

functions (BSDFs). The Principled BSDF shader includes multiple material properties 

(roughness, reflection, transmission, sheen, etc.) as layers to create a wide variety of 

materials, and the Translucent BSDF adds Lambertian diffuse transmission [55]. The 

texture shaders, in turn, add natural surface irregularities. Changing the parameters of the 

nodes allows maximizing similarity with the real printed parts. The given graph (Figure 

3.3, a) was used to visualize the photorealistic textures of the printed parts (Figure 3.4). In 

addition, a single material node with emissive characteristics was used to model the 

lighting frame. 

Several G-code exporters [56-59] were used as references in this work. An open source 

software toolchain has the G-code of the printing part to be loaded into the Blender 

programming interface and parsed layer by layer, where the extruder path is converted into 
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a set of curves with an adjustable thickness parameter and preset material settings [60]. 

Therefore, each cross-section of the object can be represented as a G-code-based extruder 

path and an STL-based mask of the filled regions (Figure 3.5). 

    

a) b) c) d) 

Figure 3.4: Texture matching examples: a) – synthetic image of the centrifuge part (layer 

18 of 24), b) – real image of the centrifuge part (layer 18 of 24), c) – synthetic image of the 

slot die (layer 24 out of 35), d) – real image of the slot die (layer 24 out of 35). 

   

a) b) c) 

Figure 3.5: Printing object: a) – STL file of the whole part, b) – G-code of a layer cross-

section, c) – STL-based layer cross-section mask. 

In the programmed 3-D printing animation, a new printing layer is added with each 

consecutive frame, and the lighting platform is raised to the corresponding height until the 

synthetic print in Blender is complete. Each frame is rendered with Blender Cycles [61], a 

physics-based path tracer, and saved as a separate image – a “quality standard” for 

comparison with the actual camera image of the printed layer. This is shown in a 

supplemental video found in [60]. 
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3.3.3 Comparison of the Printed Layer with the Reference Image 

To compare real and synthetic data, images must be captured at a similar angle to match 

the printed objects. Both the real and virtual cameras in this work were located at an angle 

to the working area, which, however, made it possible to visually rotate the active printing 

surface (Figure 3.6) using a perspective projection (3-1) [62,63].  

 

a) b) 

Figure 3.6: Spatial position of the active printing area: a) – real image, b) – rendered 

image. 1 – active printing plane, 2 – print surface plane. 

Thus, despite minor variations in the position and orientation of both cameras, virtual top 

views are used to analyze AM processes, as if both cameras were mounted directly above 

the print bed (Figure 3.7). 

[
𝑡𝑥′

𝑡𝑦′

𝑡
] = 𝑴 [

𝑥𝑝

𝑦𝑝

1
] = [

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

] ∙ [

𝑥𝑝

𝑦𝑝

1
]   (3-1) 

where [𝑥𝑝 𝑦𝑝 1]𝑇 is the active area of the printed layer, 𝑴 is a projective transformation 

matrix, and [𝑡𝑥′ 𝑡𝑦′ 𝑡]𝑇 is the virtual top view. Each pixel of the virtual top view can 

be calculated based on the following equation (3-2): 

(𝑡𝑥′, 𝑡𝑦′) = (
𝑚11𝑥𝑝+𝑚12𝑦𝑝+𝑚13

𝑚31𝑥𝑝+𝑚32𝑦𝑝+𝑚33
,

𝑚21𝑥𝑝+𝑚22𝑦𝑝+𝑚23

𝑚31𝑥𝑝+𝑚32𝑦𝑝+𝑚33
)  (3-2) 
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It should be noted, however, that the video surveillance area is shifting upwards by the 

corresponding height with the printing of each new layer, so the unwrapped top view will 

remain orthogonal to the optical axis of the virtual top camera. Thus, after calculating the 

vertical shift, the 3-D coordinates of the active printing plane [𝑋 𝑌 𝑍 1]𝑇 are 

projected onto the image frame to define the 2-D boundaries [𝑥𝑝 𝑦𝑝 1]𝑇 for unwrapping 

(3-3): 

[

𝑥𝑝

𝑦𝑝

1
] = 𝑲 [

1 0 0 0
0 1 0 0
0 0 1 0

] [
𝑹3𝑥3 𝒕3𝑥1

𝟎1𝑥3 1
] [

𝑋
𝑌
𝑍
1

]    (3-3) 

where [𝑥𝑝 𝑦𝑝 1]𝑇 is the active area projection onto the image plane, 𝑲 is the intrinsic 

camera parameters obtained during calibration, 𝑹 is the rotation matrix, 𝒕 is the translation 

vector, and [𝑋 𝑌 𝑍 1]𝑇 is the 3-D coordinates of the active printing area. The camera 

position parameters, 𝑹3𝑥3 and 𝒕3𝑥1, are determined using the known coordinates of visual 

markers. Thus, having the position of the camera and its intrinsic parameters, it is possible 

to determine the correspondence between the spatial coordinates of the working space 

[𝑋 𝑌 𝑍 1]𝑇 and image pixels [𝑥𝑝 𝑦𝑝 1]𝑇. 

A G-code-based layer mask is necessary to segment the object within the layer and remove 

the background portion of the image from further analysis. Thus, knowing the camera 

location and the G-code coordinates, it is possible to rotate the printing area perpendicular 

to the camera axis, maintaining its origin in the center of the image (Figure 3.8). 

After virtual rotation of the active printing plane, the real image is compared with the 

reference “ideal” one to analyze its texture and detect any possible defects inside the printed 

region. Image comparison is based on the similarity degree of the feature descriptors, 

represented by Histograms of Oriented Gradients (HOG) [64]. The descriptor analyzes 

local image areas, determines the orientation of the shaded gradients, and expresses this 

information as a histogram of direction channels. 
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a) b) c) 

   

d) e) f) 

Figure 3.7: Virtual top view: a) – camera frame, b) – unwrapped virtual top view,                   

c) – masked printing area, d) – Blender scene frame, e) – unwrapped synthetic image,           

f) – masked rendered region. 

HOG-based image analysis is widely applied in areas such as pattern recognition, template 

matching, and similarity determination. For example, Firuzi et al. [65] employed HOG 

features to recognize defects in electrical transformers, Malik et al. [66] presented a HOG-

based landscape similarity analysis, Banerji et al. [67] enhanced HOG features with Fisher 

Model to extract geo-localization information from large-scale image datasets. Akila and 

Pavithra [68] developed an object detection algorithm based on scale invariant HOG 

descriptors, Joshi et al. [69] developed a sign language recognition system, and Supeng et 

al. [70] presented a HOG-based template matching algorithm. 
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Figure 3.8: Consecutive set of unwrapped layers combined into a volumetric view. This 

property allows overlaying detected anomalies on a volumetric view for subsequent 

analysis. 

Figures 3.9 and 3.10 illustrate the HOG-based detection of the dominant gradient 

orientation in local image areas and possible characteristic infill patterns with their feature 

descriptors, respectively. Each bar of the histogram (horizontal axis) corresponds to the tilt 

angle of the image gradient in the range from 0° to 180°. The vertical axis represents the 

normalized magnitude of the grayscale gradient and ranges from 0 to 100%. Thus, each 

individual gradient contributes to the overall histogram, where the peaks represent the 

prevailing tilt angles of the contrasting edges within the image area. This allows capturing 

basic geometric structures by detecting the directions of contrasting edges and creating a 

unique histogram pattern for each image area. As can be seen from Figure 3.9, the dominant 

orientation of the gradient continues to be determined in the presence of visual noise. 

As can be seen in Figure 3.10, changing the direction of light and shadow does not affect 

the determination of the dominant gradient orientation. The presence of noise, however, 

lowers the contrast, thereby limiting the capabilities of this method. 
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Figure 3.9: Detection of the dominant gradient orientation in local image areas (top) using 

histograms of oriented gradients (bottom). Each bar of the histogram corresponds to the tilt 

angle of the image gradient in the range from 0° to 180°. The N parameter reflects the noise 

level in the source image. 

a) 

 

b) 

c) 

d) 

Figure 3.10: Characteristic infill patterns (a, c) and their feature descriptors (b, d). The 

HOG method captures the underlying geometric structures representing different infill 

areas by identifying the directions of contrasting edges and creating a unique histogram 

pattern for each image region. 
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Figure 3.11 shows the stages of comparative image analysis. The image of the printed layer 

is divided into small sections, square cells, each of which is converted into a feature vector, 

represented by a nine-channel histogram of oriented gradients, ranging from 0° to 180° 

with 20-degree intervals. The feature vectors are then combined into normalized 2×2 

blocks (sliding window) in such a way that each feature vector simultaneously contributes 

to several adjacent blocks, which increases the robustness of texture analysis. The same 

procedure is carried out for the reference synthetic image, after that the obtained histograms 

are compared. After comparing a 2×2 block of cells, the sliding window is shifted by the 

size of one cell, and a similar comparison is repeated. The sliding window moves from left 

to right and top to bottom until the entire image is covered. This method assumes that 

possible alignment deviations are negligible and can be ignored. The result of this 

comparison is expressed in the form of a similarity map, where each section of the original 

camera image is assigned a numerical value of the degree of proximity to the “ideal” 

printing process. These values are then color coded to indicate ideal and non-ideal 3-D 

printing. 

 

Figure 3.11: Stages of comparative image analysis: a) – splitting the original camera image 

into local areas, b) – separate regions of the source image, c) – converting image areas to 

feature vectors, d) – comparison of normalized feature vectors of the original and reference 

images, e) – resulting similarity map. 
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Thus, every unit section of the real image stores unique information from the corresponding 

area of the printed layer as a collection of features 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑘 ]. A single printed 

layer, in this way, can be represented as a tensor 𝑭 with dimensions 𝑵 × 𝑴 × 𝒌, where 

𝑵 × 𝑴 is the total number of image blocks, and 𝒌 is the number of orientation channels of 

adjacent block cells. The tensor 𝑭 is then transformed into an 𝑵 × 𝑴 similarity matrix 𝑫, 

each element 𝑑𝑖𝑗 of which represents a similarity function 𝑓(𝒑, 𝒒), where 𝒒 =

[𝑞1, 𝑞2, … , 𝑞𝑘 ] is a collection of features of the corresponding reference image block. 

Considering the camera parameters and the size of the working area, the scale of the 

captured images is 6.67 pixels per millimeter. The size of the minimum area of similarity 

analysis (2×2 block of 8-pixel cells) is therefore 4.8×4.8 mm, which lies in the range of 5–

10% of the entire area of observation. This parameter can potentially be improved by using 

a high-definition camera. 

Comparison of histograms is done by determining the similarity 𝑠(𝒑, 𝒒) between the 

corresponding vectors, 𝒑 and 𝒒. A number of similarity metrics were selected based on the 

comprehensive survey on similarity measures [71], a high-throughput X-ray diffraction 

pattern analysis [72], and in-depth quantitative analysis in the context of two real problems 

of image comparison and pattern location [73]. 

Hernandez–Rivera et al. [72] utilized a set of 49 similarity metrics to analyze and quantify 

similarities between different Gaussian-based peak responses, as a surrogate for different 

characteristics in X-ray diffraction patterns. Research has not found universal metrics for 

all of vector features. It was also found that the behavior of the metric response is not 

uniform for members of a given similarity family. It was determined, however, that the 

Clark metric yields a good balance between sensitivity and smooth changes. 

Goshtasby et al. [73] found that Pearson correlation coefficient, Spearman’s rho, Kendall’s 

tau, Jaccard measure, 𝐿1 norm, and squared 𝐿2 norm overall perform better than other 

measures. Cosine similarity is also widely used in conjunction with HOG features in 

various pattern recognition tasks [70,74,75]. 

In this work, the twelve metrics shown in Table 3.2 were implemented. 
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Table 3.2: Similarity and distance measures. 

Metric Equation 

Initial 

output 

range 

Normalized 

output 

range 

Cosine similarity 
𝑠(𝒑, 𝒒) =

∑ 𝑝𝑖𝑞𝑖

√∑ 𝑝𝑖
2 ∑ 𝑞𝑖

2

 
[1, 0] [1, 0] 

Squared L2 norm 𝑑(𝒑, 𝒒) = ∑(𝑝𝑖 − 𝑞𝑖)2 [0, 2] [1, 0] 

Pearson’s r 
𝑟(𝒑, 𝒒) =

∑(𝑝𝑖 − 𝜇𝑝)(𝑞𝑖 − 𝜇𝑞)

√∑(𝑝𝑖 − 𝜇𝑝)
2

∙ √∑(𝑞𝑖 − 𝜇𝑞)
2
 

Where 𝜇𝑝 =
1

𝑛
∑ 𝑝𝑖

𝑛
𝑖=1   

and 𝜇𝑞 =
1

𝑛
∑ 𝑞𝑖

𝑛
𝑖=1  

[-1, 1] [1, 0] 

Spearman’s rho 
𝜌(𝒑, 𝒒) = 1 −

6 ∑ 𝑑𝑖
2

𝑛(𝑛2 − 1)
 

Where 𝑑𝑖 is the difference between 

the two ranks of each observation, 

𝑛 is the number of vector elements 

[-1, 1] [1, 0] 

Kendall’s tau 
𝜏(𝒑, 𝒒) =

𝑁𝑐 − 𝑁𝑑

𝑛(𝑛 − 1)/2
 

Where 𝑁𝑐 and 𝑁𝑑 are the numbers 

of concordant and discordant pairs 

of vector elements, respectively 

[-1, 1] [1, 0] 

Jaccard 
𝑠(𝒑, 𝒒) =

∑ 𝑝𝑖𝑞𝑖

√∑(𝑝𝑖
2 + 𝑞𝑖

2 − 𝑝𝑖𝑞𝑖)

 
[1, 0] [1, 0] 
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Dice 
𝑠(𝒑, 𝒒) =

2 ∙ ∑ 𝑝𝑖𝑞𝑖

√∑(𝑝𝑖
2 + 𝑞𝑖

2)

 
[1, 0] [1, 0] 

L1 norm 𝑑(𝒑, 𝒒) = ∑|𝑝𝑖 − 𝑞𝑖| [0, 2] [1, 0] 

Euclidean 

distance 
𝑑(𝒑, 𝒒) = √∑(𝑝𝑖 − 𝑞𝑖)2 

[0, √2] [1, 0] 

Hellinger distance 
𝑑(𝒑, 𝒒) = √2 ∑(𝑝𝑖 − 𝑞𝑖)2 

[0, 2] [1, 0] 

Sorensen distance 
𝑑(𝒑, 𝒒) =

∑|𝑝𝑖 − 𝑞𝑖|

∑(𝑝𝑖 + 𝑞𝑖)
 

[0, 1] [1, 0] 

Clark distance 
𝑑(𝒑, 𝒒) = √∑ (|

|𝑝𝑖 − 𝑞𝑖|

𝑝𝑖 + 𝑞𝑖
|

2

) 
[0, √2] [1, 0] 

Similarity metrics 𝑠(𝒑, 𝒒) are expected to satisfy the following properties [73,76]: limited 

range, 𝑠 ≤ 𝑠0; reflexivity, 𝑠(𝒑, 𝒒) = 𝑠0 if 𝒑 = 𝒒; symmetry, 𝑠(𝒑, 𝒒) = 𝑠(𝒒, 𝒑), triangle 

inequality, 𝑠(𝒑, 𝒒) ≤ 𝑠(𝒑, 𝒛) + 𝑠(𝒒, 𝒛), where 𝑠0 is the largest measure between all of 

possible vector inputs. 

The input parameters 𝒑 and 𝒒 of the metrics shown in Table 3.2 are normalized vectors. 

The output range of similarity values is reduced to [1, 0], where “1” means the identity 

(overlap) of the input vectors, and “0” means a complete mismatch (no overlap). If a 

measure represents a distance between two inputs, 𝑑(𝒑, 𝒒), then the corresponding 

similarity is determined according to the following equation (3-4) [72]: 

𝑠(𝒑, 𝒒) = 1 −
𝑑(𝒑,𝒒)

𝑑𝑚𝑎𝑥(𝒑,𝒒)
     (3-4) 

Where 𝑑𝑚𝑎𝑥(𝒑, 𝒒) is the absolute maximum possible distance between two input vectors 

for a particular measure. This method allows comparing all of the metrics, reducing them 

to the same scale. 
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To evaluate the given metrics, the authors created five test cases in the form of 9-bin 

histogram pairs, reflecting the possible deviations of printed layer sections relative to the 

reference ones. Figure 3.12 shows the degrees of similarity of the test inputs expressed as 

a percentage of coincidence. To achieve maximum efficiency, it is necessary to obtain high 

similarity values for the first three cases, a), b), and c), and low similarity values for the 

latter cases, d) and e). This allows visualizing the efficacy of various similarity measures 

for specific analytical cases but does not reveal the capabilities of the metrics as applied to 

real-world problems. From Figure 3.12, however, it can be concluded that 𝐿1 and 𝐿2
2  norms, 

as well as Euclidean and Hellinger distances, produce results that are far from expected. 

 

Figure 3.12: Normalized similarity measures, expressed as a percentage of coincidence, 

for the following cases: a) – complete match, b) – similar histograms with small deviations, 

c) – similar histograms with differences in levels (represents alike image areas with varying 

illumination parameters), d) – histograms with significant shifts, e) – non-overlapping 

histograms. 

After the initial assessment of the effectiveness of the selected metrics, Pearson's r, 

Spearman's rho, Kendall's tau, as well as cosine, Jaccard, Dice, and Sorensen similarities 

were chosen to test the method for detecting printing errors. 
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3.4 Results 

3.4.1 Test Print Modes for Selecting Optimal Similarity Measures 

To select the optimal similarity metrics, real-life test images were used, reflecting the 

typical problems of 3-D printing. Figure 3.13 shows the selected test images of erroneous 

layers for analyzing print mode abnormalities including a) local infill defects, b) presence 

of a foreign body in the layer, c) spaghetti problem, d) separation and shift of the printing 

part from the working surface, e) defects in thin walls, and f) layer shift. A regular printed 

layer is provided for each failed case, which allows comparing the outputs for various 

printing regimes and calculating the discriminative power for the selected metrics. In 

addition to different types of defects, the selected parts have geometries of varying degrees 

of complexity. 

 

Figure 3.13: Test images of regular and failed printed layers: a) – local infill defects,           

b) –presence of a foreign body in the layer, c) – spaghetti problem, d) – separation and shift 

of the printing part from the working surface, e) – defects in thin walls, f) – layer shift. 
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In addition to continuous similarity for each local area of the image, an experimental failure 

threshold was also introduced. This is the main criterion for manufacturing defects, which 

allows varying sensitivity of the selected metrics and unequivocally segmenting the 

erroneous regions within the printed layers. Thus, an image area is considered defective if 

its match with the corresponding reference image is less than the chosen threshold. 

3.4.2 Comparing HOG-based Similarity Measures 

Figure 3.14 depicts the similarities of test images in the form of heatmaps within the unit 

range. Each of the metrics can be used to analyze additive manufacturing processes. As 

can be seen from the heatmaps, Kendall's tau, Jaccard, and Sorensen similarities are more 

sensitive to minor deviations in texture (have noticeably more green and blue areas on the 

heatmaps), in contrast to Pearson's r, Spearman's rho, cosine, and Dice similarities. 

To determine the discriminative power of the selected metrics (Figure 3.15), an arbitrary 

70% failure threshold (𝑇𝑆) was applied to the calculated heatmaps (H). A layer region is 

considered normal if its similarity index is greater than or equal to 𝑇𝑆. Thus, the overall 

ratio of anomalous areas (𝑎%) for each layer is calculated using the following expression 

(3-5): 

𝑎% =
(𝐻 ≤ 𝑇𝑆)

𝑆𝑃
∙ 100%     (3-5) 

where 𝑆𝑃 is the area of the entire printed layer, H is the layer similarity, and 𝑇𝑆 is the 70% 

failure threshold. 

The bottom portions of each bar in Figure 3.15 represent the similarity for each metric 

between the real image and the synthetic reference during normal printing, while the top 

portions of the bars represent the similarities during the introduced failures. It is difficult 

to print an ideal layer in real conditions, and almost every regular printing stage will deviate 

from a similar virtual one, which represents the ideal printing process. This is the reason 

for the high rates of defective areas for regular printing modes. Discriminatory power is a 

characteristic of each metric that allows one to distinguish between different states of 

objects during their production. Metrics with high discriminatory power (longer bars in 
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Figure 3.15) allow more accurate classification of the defect levels when fabricating layers 

of a part. 
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Figure 3.14: Heat maps of the regular and failed prints for the example components. 

Defective areas of the image have a lower similarity value (green and blue colors), while 

areas with high similarity values (yellow, orange, and red colors) are most consistent with 

the “ideal” synthetic prints (reference synthetic images). 
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Figure 3.15: Discriminative power of the selected metrics after applying the 70% failure 

threshold. Vertical color bars represent the difference between the regular (bottoms) and 

failed (tops) prints: local infill defects (blue), presence of a foreign body in the layer 

(orange), spaghetti problem (green), separation and shift of the printing part from the 

working surface (red), defects in thin walls (purple), layer shift (brown). 

Figure 3.16 illustrates the same area of the printed part with different print modes and 

overlaid similarity masks.  

 

Figure 3.16: Areas of a printed part with different print modes and overlaid similarity 

masks. Jaccard-based failure masks cover most of both prints, considering them as failed 

due to high sensitivity to minor texture deviations, while cosine-based masks allow to 

distinguish two different print modes by the size of the covered areas. 

In this example, Jaccard-based failure masks cover most of both prints, considering them 

as failed due to high sensitivity to minor texture deviations, while cosine-based masks 

distinguish two different print modes by the size of the covered areas. Introducing an 
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experimental sensitivity threshold individually for each printing task can improve the 

performance of this method. This feature is especially relevant in the serial production of 

parts with similar geometry. 

Figure 3.17 shows an example of failure detection and segmentation for the case of cosine 

similarity.  

 

Figure 3.17: Example of failure detection based on HOG features and cosine similarity:   

a) – local infill defects, b) – presence of a foreign body in the layer, c) – spaghetti problem, 

d) – separation and shift of the printing part from the working surface, e) – defects in thin 

walls, f) – layer shift. 

As can be seen from Figure 3.17, the blue and green shades on the heatmaps reflect 

defective areas discovered when comparing real images with synthetic renders. When the 

entire layer is displaced (Figure 3.17, f), defects appear mainly along the contour of the 

part. In this case, this is due to the grid infill pattern used, where the pattern inside the layer 

are subject to less visual distortion compared to areas along the contour. 

3.5 Discussion 

The proposed method makes it possible to analyze 3-D printed parts for each layer and 

segment of anomalous regions with a size of 5 mm or more. The main limiting factor for 

the developed technique is the time-consuming preliminary rendering. Generating a single 

image with optimized render settings can take up to several minutes on an Intel Core i7 
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2.60 GHz system with a dedicated NVIDIA GeForce RTX 2060 GPU. The large size and 

complex geometric shape of the part increase visualization time. Since the image 

acquisition and analysis take less than 5 seconds, most of the time spent on in situ 

monitoring can be attributed to the pause and nozzle retraction during the image capturing, 

which can consume more than 20 seconds of time. 

Given the variety of possible printed parts and 3-D printing settings, it is difficult to create 

a generalized algorithm that can uniquely identify defective regions, so the choice of metric 

and similarity threshold used depends on the user. 

There are several previously used approaches to analyze additive manufacturing processes 

based on information from 3-D models (G-code, CAD, or STL) and reference images. 

Johnson et al. [31] proposed a method using an STL file to generate a binary cross-sectional 

image of a part corresponding to the layer being inspected. Malik et al. [40] implemented 

a method for real-time layer-by-layer monitoring of AM processes using G-code-based 

masking, 3-D reconstruction, and augmented reality. Lyngby et al. [77] introduced a real-

time vision system for non-nominal AM operation detection employing references from 

CAD models and color-based image segmentation. Wasserfall et al. [34] proposed a dual 

camera setup for in-situ layer-wise verification of 3-D printed electronics based on known 

G-code geometry. Hurd et al. [32] presented an approach using a phone camera to validate 

layers quality by comparing AM process images with 2-D images obtained from an STL 

file. Nuchitprasitchai et al. [30] developed single- and double-camera systems for detecting 

5% deviations at every 50th layer utilizing shape and size data from STL files. Delli and 

Chang [78] proposed a binary 3-D printing error classification technique based on 

supervised machine learning, where the quality check is being performed at critical printing 

stages based on available images of an ideal printing process. The methods listed above, 

however, do not employ a physics-based rendering engine and, therefore, do not allow 

using the rich set of image processing techniques. This prevents using all of the information 

provided by the G-code and limits the process of comparing the physical creation of an 

object with its original model. 
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The presented method is not limited to the use only in the field of 3-D printing. This 

technique can be applied to compare parts produced by subtractive manufacturing and to 

reject defective printed circuit boards. The considered rendering system can be suitable for 

non-expert users to select parameters such as percentage and type of infill, wall thickness, 

and color of the material at the preprinting stage. Another application is 3-D printing in a 

humanitarian context [79-83] where the work environment has unreliable power supplies 

or air quality issues such as pollution/debris in the processing environment. This also 

includes distributed recycling for additive manufacturing (DRAM) [7-10] with non-

uniform and heavily contaminated filament. In addition, these methods can also be applied 

to pellet extrusion 3-D printing [84-88] or fused particle fabrication (FPF) [89-93], where 

particles are direct 3-D printed (sometimes as simply shredded waste), as such conditions 

are more likely to cause critical errors. 

The described technique can be applied to FFF 3-D printers of all of sizes that can be 

imaged. The additional movable lighting platform used in this work is not necessary 

equipment since the fundamental factor is the coincidence of physical and virtual printing 

systems, regardless of lighting conditions. The original 3-D model of the physical 

equipment can be easily customized to match the actual printing conditions for any type of 

3-D printer. In the future, the failure detection method can be improved by integrating a 

physics-based rendering system into the printing pipeline to enable an intelligent monitored 

manufacturing process capable of correction anomalies from digital designs. 

To assess the limits of the possibilities, however, additional tests are needed to verify the 

operation of the method under industrial conditions, as well as under various printing 

modes and materials. To fully quantify the considered metrics, the Intersection over Union 

(IoU = Area of overlap / Area of the union) index must be introduced, which, in turn, 

requires ground-truth hand-labeled masks. Unlike other segmentation tasks, creating a 

valid ground-truth failure mask for a 3-D printed layer is not a trivial process, as multiple 

human operators developing pixel-precise ground-truth failure masks may have different 

results based on their subjective perspectives. Thus, a thorough analysis of quantification 

approaches for a given task may constitute a separate study. 
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3.6 Conclusions 

This study describes the conceptual capabilities of monocular layer-wise in situ monitoring 

and analysis of additive manufacturing processes using projective transformations and 

image processing techniques. The developed method can be applied to material extrusion 

3-D printers of any size with a resolution of detecting anomalous regions of 5–10% of the 

overall observation area. The minimum area of similarity analysis can potentially be 

decreased by using a high-definition camera. 

The results show that HOG-based similarity comparison does not introduce significant 

delays in the monitoring process. The processing time is a matter of seconds, which is 

negligible compared to the time required to fabricate a layer. The described method, 

however, requires time resources when preparing the virtual environment and rendering 

the reference images. Using different similarity metrics and failure thresholds provides 

flexibility and allows for varying sensitivity in printing anomalies segmentation. Of the 

twelve similarity and distance measures implemented and compared for their effectiveness 

at detecting 3-D printing errors, the results show that although Kendall’s tau, Jaccard, and 

Sorensen similarities are the most sensitive, Pearson's r, Spearman's rho, cosine, and Dice 

similarities produce the more distinguishable results. Thus, combining image cell size for 

HOG comparison and multi-stage application of various metrics can provide effective tools 

for more accurate detection and localization of production anomalies. The greatest 

efficiency of the given technique can be achieved with the mass production of parts of the 

same geometric shape as the open source Blender rendering only needs to occur once. 

Although this technique was tested here for additive manufacturing, it can be applied to 

compare parts produced by subtractive manufacturing and printed circuit boards. 
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Chapter 4  

4 Synthetic-to-real Composite Semantic Segmentation in 
Additive Manufacturing 

This chapter3 is adapted from the “Synthetic-to-Real Composite Semantic Segmentation in 

Additive Manufacturing” with minor modifications to the version published in Journal of 

Manufacturing and Materials Processing (MDPI), vol. 8, issue 2, 66, 2024, 

DOI:10.3390/jmmp8020066. 

4.1 Abstract 

The application of computer vision and machine learning methods for semantic 

segmentation of the structural elements of 3-D-printed products in the field of additive 

manufacturing (AM) can improve real-time failure analysis systems and potentially reduce 

the number of defects by providing additional tools for in situ corrections. This work 

demonstrates the possibilities of using physics-based rendering for labeled image dataset 

generation, as well as image-to-image style transfer capabilities to improve the accuracy 

of real image segmentation for AM systems. Multi-class semantic segmentation 

experiments were carried out based on the U-Net model and the cycle generative 

adversarial network. The test results demonstrated the capacity of this method to detect 

such structural elements of 3-D-printed parts as a top (last printed) layer, infill, shell, and 

support. A basis for further segmentation system enhancement by utilizing image-to-image 

style transfer and domain adaptation technologies was also considered. The results indicate 

that using style transfer as a precursor to domain adaptation can improve real 3-D printing 

image segmentation in situations where a model trained on synthetic data is the only tool 

available. The mean intersection over union (mIoU) scores for synthetic test datasets 

included 94.90% for the entire 3-D-printed part, 73.33% for the top layer, 78.93% for the 

infill, 55.31% for the shell, and 69.45% for supports. 

 

3
A version of this chapter has been published in Journal of Manufacturing and Materials Processing.        

A. Petsiuk, H. Singh, H. Dadhwal, J.M. Pearce, Synthetic-to-real composite semantic segmentation in 

additive manufacturing. J. Manuf. Mater. Process., vol. 8(2), no. 66, 2024, doi:10.3390/jmmp8020066. 



91 

 

 

4.2 Introduction 

With its current exponential growth, the amount of plastic waste produced could reach 250 

billion tons by 2050 [1], vast quantities of which cause pollution of the natural environment 

on land and in the ocean [2]. Distributed manufacturing using additive manufacturing (AM) 

is reforming global value chains as its usage increases rapidly [3], because there are 

millions of free 3-D printable consumer product designs and 3-D printing them results in 

substantial cost savings compared to conventionally manufactured commercial products 

[4,5]. 

The growing popularity of 3-D printing is playing a notable role in the problem of recycling 

as 3-D-printed products rarely have recycling symbols [6], use uncommon polymers [7], 

and are increasing the overall market of plastic materials [8]. This is not only caused by 

additional plastic products, but also from disturbing failure rates. Inexperienced 3-D printer 

users are estimated to have failure rates of 20% [9]. Even experienced professionals 

working in 3-D print farms, however, have failure rates of at least 2% [10]. The probability 

of a manufacturing defect increases with the size and print time of the object (e.g., using 

large-scale fused filament printers [11] or products [12,13], or fused granule printers 

[14,15]), which can magnify the waste materials created from even a small percentage of 

failures. It is clear that the ability to automatically detect deviations in AM will 

significantly help to reduce material waste and the time spent on reproducing failed prints. 

As recent studies [16] show, computer vision is becoming increasingly popular in 

analyzing AM and extrusion-based 3-D printing processes. For example, Ceruti et al. [17] 

utilized data from computer-aided design (CAD) files that are used in the first step of the 

design of a 3-D-printed component. Then, further down the software toolchain, 

Nuchitprasitchai et al. [18], Johnson et al. [19], and Hurd [20] developed failure analysis 

based on comparisons with the Standard Tessellation Language (STL) files used at the 

slicing step in most 3-D printing processes. Further still, both Jeong et al. [21] and 

Wasserfall et al. [22] used, instead, the G-code files that provide the 3-D printer with spatial 

toolpath instructions for printing parts. The 3-D printing software toolchain does not need 

to be used at all, as several approaches use comparisons with reference data [23,24] or ideal 

3-D printing processes [25,26]. In addition, a 3-D reconstruction-based scanning method 
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for real-time monitoring of AM processes is also possible [27]. In previous works, the 

authors considered the possibilities of detecting critical manufacturing errors using 

classical image-processing methods [28], as well as employing synthetic reference images 

rendered with a physics-based graphics engine [29]. The proposed methods, however, do 

not fully utilize the available information and are limited in determining the location-based 

categories of production deviations. 

The popular open source Spaghetti Detective application [30,31] is also a direct 

confirmation of the effectiveness of visual monitoring. An analysis of Spaghetti 

Detective’s [30] user performance database, collected over 2.3 years, showed that 24% of 

all of the 5.6 million print jobs were canceled, which can be represented as 456 wasted 

hours of continuous printing compared to 5232 h of printing where all of the print jobs 

were finished (Figure 4.1). 

 

Figure 4.1: Analysis of 3-D printer users’ activity for 2.3 years. The runtime distribution 

shows a 24% failure rate for all of the 5.6 million printing tasks longer than 5 minutes. 

This statistic, however, does not include over a million canceled print jobs less than 5 min 

long, which are assumed to be due to initial bed-leveling issues and cannot, therefore, 

indicate manufacturing failures. It also does not consider the working time of human 

operators spent on starting later-canceled printing tasks. 

Semantic segmentation [32] of both the entire manufactured part and its separate structural 

regions at the stage of production of each layer will expand the capacity of the visual 

analysis of AM processes and can make it possible to more accurately determine the nature 

of individual production errors depending on their localization. This can provide advanced 
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tools for correcting printing defects in situ, where each successive layer can be modified 

depending on the deviations found in the previous stage, thus improving both the 

mechanical and aesthetic characteristics of the entire object. It may also reduce the 

requirements for camera positioning accuracy and calibration, eliminating the need for 

visual markers and rigid holders. 

In the previous work [29], the authors demonstrated the ability of Blender [33], a free and 

open source physics rendering engine, to generate photorealistic images of ideal 3-D 

printing processes based on existing G-code files. This work served as a milestone in the 

development of a deep learning-based approach, presented in this paper, to the semantic 

segmentation of structural elements in 3-D printing environments. 

Using a synthetic dataset, however, comes at the cost of a domain shift, which is often 

strongly associated with appearance changes [34]. When the source (synthetic images) and 

target (real images) domains are semantically related, but are different in visual 

representation, direct propagation of learned knowledge about one domain to another can 

adversely affect segmentation performance in the latter domain. Therefore, domain 

adaptation (DA) is needed in order to learn generalized segmentation rules in the presence 

of a gap between the source and target dataset distributions [34,35]. 

There are examples in the literature of successful synthetic-to-real (sim-to-real) DA 

applications. Imbusch, Schwarz, and Behnke [36] proposed an unsupervised Generative 

Adversarial Network (GAN)-based DA approach to a robotics environment image dataset 

that provides a performance close to those trained on real data and does not require 

annotations of real robotic setups. Li et al. [37] presented a semantically aware GAN-based 

neural network model for virtual-to-real urban scene adaptation with the ability to store 

important semantic information. Lee et al. [38] introduced a sim-to-real vehicle 

identification technique consisting of DA and semi-supervised learning methods. 

Domain adaptation, however, is a separate area of research and is not covered in this article. 

The possibility of applying a cycle-consistent adversarial network (CycleGAN) [39] – an 

image-to-image style transfer method—was considered for segmentation improvement, as 
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generative adversarial networks can perform a significant role in domain adaptation 

techniques and be used in future research. 

The proposed method is a novel approach to segmenting key regions of manufactured parts 

during their fabrication using G-code information and synthetic data. Revealing this system 

to end users will allow constant expansion of the synthetic image database for subsequent 

neural network training. The presented contributions, therefore, can be summarized as 

follows: 

• A technique for generating synthetic image-mask pairs of layer-by-layer ideal 3-D 

printing processes has been developed for subsequent neural network training; 

• Three independent labeled synthetic image datasets for (a) the entire part, (b) the 

top (last printed) layer, and (c) the infill, shell, and supports for 3-D-printed objects 

have been created; 

• A neural network was trained for the semantic segmentation of the entire printed 

part, as well as its last printed top layer and internal structure; 

• Image-to-image style transfer approaches to improve segmentation results have 

been explored. 

All of the above steps are sequentially described in this article after first reviewing related 

works in detail. The Results section will discuss the potential for the localization of 3-D-

printed parts in the image frame, as well as the application of image processing methods to 

the parts’ structural elements for subsequent detection of manufacturing deviations. 

4.3 Background 

Semantic image segmentation problems represent an actively developing area of research 

in deep machine learning [32,40]. The main limiting factor, however, is the difficulty of 

obtaining annotated databases for the training of machine learning architectures. This 

approach requires thousands of images with labeled masked regions, which is a difficult 

and time-consuming task – manual annotation of a single image with pixel-by-pixel 

semantic labels can take more than 1.5 h [41]. 



95 

 

 

The use of synthetic images, in turn, allows the procurement of a segmented training 

database conditionally ”free of charge”, since masked regions of interest can be 

automatically annotated when creating virtual physics-based renders. In addition, advances 

in computer graphics make it possible to generate an almost unlimited amount of labeled 

data by varying environmental parameters in ranges that are difficult to obtain in real 

conditions [34]. The success of simulated labeled data is clearly illustrated in the already 

classic GTA5 [42] and Synthia [43] image sets. 

There are many examples of applying synthetic datasets to solve real-world practical 

problems. Nikolenko [44] presented an up-to-date technological slice of the use of 

synthetic data in a wide variety of deep learning tasks. Melo et al. [45] outlined the most 

promising approaches to integrating synthesized data into deep learning pipelines. Ward, 

Moghadam, and Hudson [46] used a real plant leaf dataset augmented with rendered 

images—for instance, leaf segmentation—to measure complex phenotypic traits in 

agricultural sustainability problems. Boikov et al. [47] presented a methodology for steel 

defect recognition in automated production control systems based on synthesized image 

data. 

Several researchers introduced artificial intelligence (AI)-based methods into the AM field 

to classify the quality of manufacturing regions, as well as to segment failed areas in 3-D 

printing processes. Valizadeh and Wolff [48] provided a comprehensive overview of neural 

network applications to several aspects of AM processes. Banadaki et al. [49] proposed a 

convolutional neural network (CNN)-based automated system for assessing surface quality 

and internal defects in AM processes. The model is trained on captured images during 

material layering at various speeds and temperatures, and demonstrates 94% accuracy in 

five failure gradations in real time. Saluja et al. [50] utilized deep learning algorithms to 

develop a warping detection system. Their method extracts the layered corners of printed 

components and identifies warpage with 99.3% accuracy. Jin et al. [51] presented a novel 

CNN-based method incorporating strain to measure and predict four levels of delamination 

conditions. These works solve a set of specific production problems. The developed 

algorithms, however, are difficult to generalize and scale. Brion and Pattison [52] 

introduced an error detection and correction system based on visual and neural network 
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analyses of extruded segments. This study demonstrates promising results; however, it is 

limited in providing general information about the whole working volume. 

Analysis based on semantic segmentation, in turn, has significant potential for detecting 

and evaluating a wide range of manufacturing defects. Wong et al. [53] have demonstrated 

U-Net CNN 3-D volumetric segmentation in AM using medical imaging techniques to 

automatically detect defects in X-ray-computed tomography images of specimens. 

Cannizzaro et al. [54] proposed an AI in-situ emerging defects monitoring system utilizing 

automatic GAN-based synthetic image generation to augment the training dataset. These 

functions are built into a holistic distributed AM platform that allows storage and 

integration of data at all of manufacturing stages. Davtalab et al. [55] presented a neural 

network-automated system of semantic pixel-wise segmentation, based on one million 

images, to detect defects in 3-D-printed layers. 

Combining various analysis techniques with the segmentation of characteristic areas of 

fabricated parts will make a significant contribution to the field of AM. Having an open-

structure annotated database for additive manufacturing will create considerable 

opportunities for the development of failure detection systems in the future. Segmentation 

and localization of the individual structural elements of manufactured objects can make it 

easier to detect and track erroneous regions when they occur. 

4.4 Methods 

Preparation for 3-D printing involves layer-by-layer slicing of the model, where each 

extruded segment corresponds to a certain set of characteristics, such as fan speed, 

temperature, plastic flow rate, line type (internal, external, and overhang perimeters; 

support and its interface; solid and internal infill; etc.), reflected in the G-code. By using 

this information as input to the developed visual processing pipeline, it is possible to create 

an individual pixel-perfect mask for each section of the manufactured part. 

Based on the most common words in 3-D print filenames stored in the Spaghetti Detective 

database [30], sets of labeled images of printed products at various stages of their 

production were generated in the physics-based graphics engine [29]. These image–mask 
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pairs were further used to train neural networks for the tasks of visual segmentation of 

manufactured parts and their structural elements. Additionally, the possibilities of image-

to-image style translation were also explored, to reduce the domain gap and increase the 

segmentation precision. The segmentation efficiency was tested both on synthetic renders 

outside of training sets and on real images. Data and source code for this project can be 

obtained from the Open Science Framework (OSF) repository [56]. 

4.4.1 Creation of Synthetic Image Datasets 

1) Selecting CAD designs for rendering: More than 5.6 million filenames were partitioned 

into meaningful lexical parts and processed in Spaghetti Detective’s user performance 

database [30] analysis to create a dictionary of the most frequently used words (Figure 4.2). 

These print jobs were performed by 49,000 unique users on 57,000 different 3-D printers. 

The average print time was 3.6 hours. 

 

Figure 4.2: Distribution of the 25 most frequently used words in file names for 3-D 

printing. A detailed analysis of the users’ print tasks database is given in the source file 

repository [56]. 

Based on the compiled dictionary, a set of random Standard Tessellation Language (STL) 

files was collected from Thingiverse [57]—an open catalog of widely used computer-aided 

designs (CADs) for 3-D printing—for further processing. These files formed the basis for 

generating a database of synthetic images. A complete list of the used CAD designs is in 

the OSF repository [56]. Knowing the most frequently used words in file names for 3-D 

printing does not provide an accurate idea of the size and complexity of the shapes of the 

produced parts. This, however, limits the initial selection of available models to the topic 
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of household and technical items and excludes categories such as toys, jewelry, organic 

elements, multi-color designs, etc. 

(2) Graphics rendering pipeline: All of the selected STL files were converted into G-codes 

in free MatterControl software [58], maintaining the same slicing parameters: 0.3 mm layer 

height, 0.4 mm nozzle diameter, 4 perimeters, and 30% grid infill. The resulting G-codes 

were further parsed layer by layer in the Blender [33] programming interface, where the 

extruder trajectory is converted into a set of curves with a controllable thickness parameter 

and preset material settings. Each G-code layer is thus transformed into an independent 3-

D object. The whole rendering process is illustrated in the following diagram (Figure 4.3). 

 

Figure 4.3: Synthetic AM database creation pipeline. Each 3-D part in the form of an STL 

(green) file is converted into a set of printer tool head trajectories (G-code, blue), which is 

the input parameter of the automated scripted section (gray). Blender environment 

(textures, camera, lights) and compositing settings can also be automated in the future. The 

image-mask pairs (red) are the result of a frame-by-frame animation rendering for each 

individual G-code file. 

The functional component of the repository [59] was used as a basis for importing G-code 

files into the graphics engine. To create photorealistic renders, scenes similar to real 

physical environments were created in Blender. The position of the camera, as well as the 

degree of illumination and the location of light sources, were chosen to closely match the 

actual workspace. (Figure 4.4). 

The whole scene, in addition to the printed part, includes components such as point light 

sources to create diverse heterogeneous all-round illumination; the “Sun”, to create 
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uniform background lighting; a flat printing surface with realistic texture and reflectivity; 

and a plane with a superimposed blurred background image to create an illusion of a 

defocused ambient environment. Figure 4.5 illustrates several examples of realistic textures 

for the printing bed/ground surface plane. 

 

Figure 4.4: Blender scene: user window (left) and the virtual camera viewport (right). 1 – 

printing bed/ground surface texture, 2 – background image plane simulating ambient 

environment, 3 – rendered manufactured part, 4 – light sources with variable locations, 5 

– camera with variable location. 

The color of the plastic material and the surface characteristics of the printed part were 

created and adjusted empirically using a rich library of Blender shaders [60]. When 

simulating surface irregularities, the Noise Texture [61] and Voronoi Texture [62] nodes 

were used to add Perlin and Worley noises, respectively, while the “Bump” node was added 

to adjust the overall roughness. The Mix node was used to balance the Voronoi and Noise 

textures to create the desired roughness characteristics. Photorealistic color, transparency, 

and reflection parameters were obtained through the combination of Principled [63] (adds 

multiple layers to vary color, reflection, sheen, transmission, and other parameters), Glossy 

[64] (adds reflection with microfacet distribution), Diffuse [65] (adds Lambertian and 

Oren–Nayar diffuse reflections), and Transparent [66] (adds transparency without 

refraction) Bidirectional Scattering Distribution Functions (BSDFs) (Figure 4.6). Mix 

shaders 1 to 3 were used to adjust the strength of each BSDF component in the material 

output. 
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Figure 4.5: Texture samples for the printing bed/ground surface. More than 15 

photographs of surfaces such as wood, metal, paper, stone, and others were superimposed 

onto the virtual working area. Variations in lighting, cropping, scaling, and image 

orientation during animation allow the creation of unique backgrounds. 

 

Figure 4.6: The shading node network has been experimentally developed to achieve 

maximum realism of generated renders. The creation of all of the connections and node 

settings is fully automated in the code, which provides the flexibility to adjust the color, 

transparency, reflectivity, and other characteristics of the output material (red). 

A detailed example of the creation of such a texture is shown in Figure 4.7. The Principled 

BSDF node represents an elementary material. Adding Diffuse, Glossy, and Transparent 

shaders allows material variations to create a desirable effect. Adding different types of 

noise can simulate realistic unevenness and deviations in elevation in a surface map. The 
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provided selection and hierarchy of BSDF shaders were chosen experimentally, and the 

desired result may be achieved in multiple alternative ways. 

 

Figure 4.7: Detailed example of texture creation: (a) single Principled BSDF node; (b) 

Principled BSDF node mixed with Glossy, Diffuse, and Transparent BSDFs; (c) combined 

BSDF material with Noise and Voronoi textures; (d) final output with added color ramp 

nodes to truncate the Bump heights and create transmission anisotropy in the Principled 

BSDF. 

The developed shading node network does not reflect all of possible and constantly 

expanding varieties of available 3-D printing materials, but provides end users with an 

initial set of tools to change color, texture, and transparency parameters to achieve the 

required effects. The developed materials are available in the open source file repository 

[56]. 

The G-code parsing procedure utilizes the functionality of the Blender application 

programming interface [67], which provides access to the properties of all of the shader 

nodes used in the scene. The entire animation process is scripted with randomized locations 

of the camera, light sources, and printing bed/ground surface plane in timeline keyframes, 

while the graphics engine adds intermediate frames by interpolation. Most of the G-codes 

were used twice with different levels of part completion, material color, print surface 

texture, light source locations, and camera orientations. 

The built-in compositing interface [68] was used to create pixel-perfect ground truth masks 

for each frame (Figure 4.8). During the slicing procedure, each extruder path acquires its 

own type, which can be visualized in pseudo colors in the slicing environment (Figure 4.9). 

In this work, the outer and inner walls were combined into one structural element “shell”. 
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For visual segregation (masking) of individual scene elements (background, top layer at 

each manufacturing stage, infill, shell, and support), different values of the object pass 

index parameter [69] were set at the G-code parsing stage. This allows each selected 

element to be rendered as a region filled with a certain grayscale level. 

 

Figure 4.8: The composite node network (for internal structure segmentation, in this 

example) assigns user-defined color labels to each pixel in the output image, depending on 

whether it belongs to a particular area (infill, shell, or support) of the rendered part. This 

creates a pixel-precise ground truth mask (red) for each output image frame (red) in the 

animation. 

The internal physics-based path tracer Cycles [70] was used to render each frame of the 

animation. To reduce rendering time, the number of samples was set to 64, the total number 

of light path reflections was reduced to 8, and the Reflective and Refractive Caustics 

features were disabled. This rendering optimization may restrict the quality of the images 

produced but can greatly reduce the computational load. Cycles’ performance depends on 

the system’s computational power. An 8 GB GPU setup with a 256×256 render tile size 

and an output image size of 1024×1024 pixels takes up to one minute to process a single 

frame, depending on the scale and geometric complexity of the scene within the camera 

viewport. Rendering an entire 50-frame animation this way can take up to one hour. 
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Figure 4.9: 3-D model slicing procedure. (a) Whole part in STL format. (b) Internal 

structure of sliced layers (red – outer shell, green – inner shell, yellow – infill, blue – 

support). (c) Side view illustrates current printing layer (top layer at each manufacturing 

stage). 

3) Synthetic image datasets: For the further task of semantic segmentation, three separate 

datasets were created.  Examples of image-mask pairs included in the created datasets are 

presented in Figure 4.10.. A total of 5763 1024×1024 pixel image–mask pairs were 

generated for the segmentation of the entire 3-D-printed part; 3570 – for the top layer 

segmentation; and 1140 – for the infill, shell, and support (internal layer structure) 

segmentation. 

 

Figure 4.10: Image-mask pair samples for each AM synthetic dataset: (a) whole part 

segmentation, (b) newly fabricated top layer segmentation, (c) internal layer segmentation. 
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The training database for segmenting the whole part and image background included 21 

models containing words in the names such as “holder”, “mount”, “base”, “clamp”, 

“stand”, “chassis”, “bracket”, “block”, etc. After slicing, 3-5 scenes were created for each 

model with various lighting parameters, material color, and background texture in the 

rendering engine. Next, in each scene, 50 to 80 keyframes were created showing the part 

at various stages of its fabrication. Each keyframe was then rendered to produce a unique 

image-mask pair. Similarly, 34 unique models were selected to create a training database 

for segmenting the top layer, and 11 models – for segmenting the internal structure of the 

parts. 

4.4.2 Semantic Image Segmentation 

Minaee et al. [32], as well as Ulku and Akagunduz [40], presented a comprehensive 

overview of the modern research state in the field of semantic segmentation. As can be 

seen from the works [71,72,73], the U-Net family of neural network architectures has 

demonstrated high segmentation efficiency with small amounts of training data. The 

DeepLab architecture, in turn, is one of the basic architectures for subsequent domain 

adaptation [74,75,76]. This work employs the U-Net architecture [77] and its multi-class 

adaptation [78] due to its efficiency and simplicity.  

The intersection over union (IoU) quantifies the degree of overlap (from 0 to 100%) 

between the ground truth mask (a pixel-perfect grayscale image created in Blender as a 

mask in image-mask pairs) and the segmented pixel area of its predicted version, where a 

larger value indicates a more accurate segmentation, and the mIoU is the mean IoU value 

across the correspondent classes in the dataset. The calculation of mIoU scores for the real 

images was carried out only for the segmentation of the entire part, since obtaining 

manually-labeled ground truth masks for the top layer and the internal structure of the part 

is a nontrivial task, considering the geometric complexity of the filling elements. 

4.4.3 Image-to-image Translation 

To potentially improve the efficiency of semantic segmentation, the application of the 

unpaired image-to-image translation method based on the CycleGAN network [39] was 

considered. The given DA method learns the mapping between the source domain (real 
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images) and the target domain (synthetic images) by minimizing the cycle consistency loss 

LC (Figure 4.11) in the absence of paired data samples. This minimizes the domain gap by 

changing the appearance of the images, making the test data more similar to the training 

data. 

 

Figure 4.11: Unpaired image-to-image translation using the cycle-consistent adversarial 

network. Handpicked images of real and virtual printed parts were loaded into CycleGAN, 

which learns to map real domain images to their synthetic counterparts and vice versa, 

minimizing the cycle consistency loss LC. Here, the red and blue circles represent the same 

image presented in different domains. 

For this task, we manually selected 589 synthetic renders and 794 real images of 3-D-

printed parts. The learning result is two generators that convert the original images of the 

real domain into their synthetic counterparts, and vice versa (Figure 4.12). 
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Figure 4.12: Image-to-image style translation example. Translating a real image into its 

synthetic version reduces the contrast and saturation of the reflections and incidental 

filament strings. 

As can be seen from Figure 4.12, translating a synthetic render into a real image makes 

colors more natural, while translating a real image into a synthetic one also reduces the 

contrast and saturation of both reflections on the printing bed/ground surface and incidental 

filament strings. This characteristic can improve segmentation in mediocre images. 

4.5 Results 

The results of the semantic segmentation are presented using several real images, presented 

in Figure 4.13. The training of the neural network was carried out on synthetic renders 

without using the style translation technique. 
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Figure 4.13: The results of semantic segmentation, presented using several real images. 

The neural network was trained on similar synthetic 3-D models. The color, printing 

surface texture, and slicing parameters, however, differ from those used in the training 

dataset. 

Quantitative results are shown in Table 4.1. Test datasets include synthetic renders of STL 

models, both those included in the training dataset and those not included in it. The color, 

view angle, and environmental parameters of the 3-D models included in the test datasets 

were changed to avoid matching the training data. 

As can be seen from Table 4.1, the segmentation accuracy on real images (78.16%) is 

inferior to that of the synthetic data (94.90%), which indicates the need for additional 

research on domain adaptation. Detecting the top layer is a more complex task for the 

neural network compared to segmenting the entire part, which is clearly noticeable in the 

results within the same dataset (mIoU 73.33% for the top layer, versus 99.74% for the 
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background). Shell segmentation has the lowest score (mIoU 55.31%). This, apparently, is 

due to the variety of geometric shapes and the lack of a characteristic texture that the infill 

and support areas have. Relatively low mIoU values for shell, support, and infill 

segmentation are due to the more complex geometry of these structural elements and the 

presence of a large number of thin lines in images. These scores can be improved by 

creating more images in the training dataset. The segmentation efficiency of individual part 

elements depends on their geometric complexity and the key factor for effective semantic 

segmentation is the number of image–mask pairs. With the developed open source 

methodology, this database can be significantly expanded by end users, which will lead to 

increased segmentation accuracy among all of available categories. 

Table 4.1: Segmentation results for synthetic test datasets (mIoU scores, %). 

No. of images Test dataset Background Top layer Shell Support Infill 

89 Whole part segmentation (real images) 78.16 — — — — 

101 Whole part segmentation (synthetic renders 

images) 

94.90 — — — — 

68 Top layer segmentation (synthetic renders) 99.74 73.33 — — — 

57 Internal structure segmentation (synthetic 

renders) 

94.52 — 55.31 69.45 78.93 

To analyze the influence of style transfer (ST) on semantic segmentation, separate CNN 

training of three datasets of one part was carried out (Figure 4.14). Synthetic and real 

datasets consist of 49 and 36 image–mask pairs, respectively. 

To compare the domains, we used t-distributed stochastic neighbor embedding (t-SNE) 

[79,80] projections of the normalized bottleneck layers of trained U-Net models (Figure 

4.14). The nonlinear dimensionality reduction technique was applied to 512-dimensional 

normalized vectors in the narrowest parts of the trained models to visualize the affinity of 

the domains in latent feature space. As can be seen from Figure 4.15a, the feature space of 

the real domain (orange) is getting closer to synthetic data (blue) after the image-to-image 

style translation (black). 
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Figure 4.14: Datasets for the style transfer influence analysis: (a) synthetic data, (b) real 

data, (c) real data after style transfer. The upper row shows sample images and the lower 

row illustrates the corresponding ground truth masks. 

 

Figure 4.15: Domain comparison via t-SNE projections (a), and segmentation 

performance before and after style translation (b).  

In addition to t-SNE projections, the segmentation performance of the real image data after 

ST was also analyzed (Figure 4.15b). The heatmap columns represent the data on which 

the neural network model was trained, and the rows stand for the input data to which 

segmentation was applied. The highest mIoU, as expected, was observed in those datasets 

on which the model was trained. When converting the real input data into ST using image-

to-image translation, however, the segmentation score increased from 61.10% to 75.19% 
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for the model trained solely on synthetic data. This parameter is the most valuable, since 

in real conditions, training a convolutional network on real data may not be possible due 

to the lack of ground truth masks. This indicates that the ST method as a precursor to 

domain adaptation can significantly improve real 3-D printing image segmentation in 

situations where a model trained on synthetic data may be the only tool available. The 

sample results of image segmentation before and after style translation are shown in Figure 

4.16. 

 

Figure 4.16: The results of image segmentation before and after style translation. Real-to-

synthetic style transfer reduces the saturation of the incidental filament strings and 

reflections on the printing platform, which, in turn, affects the results of semantic 

segmentation. 

As can be seen from Figure 4.16, real-to-synthetic style transferring reduces the saturation 

of the incidental filament strings and reflections on the printing platform, which, in turn, 
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affects the results of semantic segmentation. Image-to-image translation, therefore, could 

be a powerful tool in further improving segmentation performance through domain 

adaptation techniques. 

This work continues the previous authors’ research on the use of physical rendering and 

demonstrates the significant potential of using synthetic data and machine learning in the 

field of additive manufacturing. Due to the relative simplicity of virtual printing and 

training data generation, segmentation of the contours of a manufactured part can be 

performed at every stage of its creation using a single camera in an arbitrary position. This 

reduces the requirements for camera calibration and eliminates the need to use visual 

markers to tightly bind the image frame to the coordinate system of the 3-D printing space. 

It also offers the flexibility to be used on any type of 3-D printing system with the addition 

of an after-market camera. 

The limitations of the developed method are the need to create synthetic images and 

increase the training dataset for each new manufactured part, as well as the implementation 

of transfer learning to improve the segmentation accuracy. Additional research is also 

required in the field of domain adaptation applications based on existing state-of-the-art 

techniques [81,82,83]. 

Together with edge-based markerless tracking [84,85], the developed technique can 

become an integral part of a 3-D printing control and monitoring system such as OctoPrint 

[86]. In the future, this will make it possible to implement an inline comprehensive system 

for recognizing the type of part being produced and determining its location and orientation 

in the workspace, as well as for tracking its manufacturing deviations. 

4.6 Discussion and Conclusions 

The proposed method is a novel approach to segmenting key regions of a part during its 

fabrication utilizing the information in the G-code and synthetic image data.  

In most cases, localization of detected anomalies is based on linking the camera position 

to reference visual markers. This allows image coordinates to be converted into 3-D 

coordinates on the workspace, which, however, requires precise calibration and a rigid, 
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permanent camera mount that can be difficult for users. When using the developed 

semantic segmentation method, the need for precise camera positioning is eliminated, since 

the part and its structural elements can be segmented from almost any viewing angle. The 

semantic segmentation framework for additive manufacturing can enhance the visual 

analysis of manufacturing processes and allow the detection of individual manufacturing 

errors, while significantly reducing the requirements for positioning accuracy and camera 

calibration. 

The results of this work will allow the localization of 3-D-printed parts in captured image 

frames, as well as the application of image processing techniques to the parts’ structural 

elements to follow the tracking of manufacturing deviations. The use of image style 

transfer is of significant value for further research in the field of adapting the domain of 

synthetic renders to real images of 3-D-printed products. 

The methodology demonstrated achieved the following mIoU scores for the synthetic test 

datasets: entire printed part, 94.90%; top layer, 73.33%; infill, 78.93%; shell, 55.31%; 

support, 69.45%. Increasing the number of image–mask pairs used for training neural 

networks will improve segmentation accuracy. The results illustrate the effectiveness of 

the developed method, but also indicate the need for additional experiments to eliminate 

the synthetic-to-real domain gap. Additional research is also required to expand the training 

database, as well as introduce production errors to analyze their impact on segmentation. 

This research presents ways to expand the number of segmentation categories by using the 

information in the G-code about the characteristics of separate extruded sections. Further 

study, however, is required to analyze the impacts of material and texture shaders, as well 

as lighting and rendering parameters, on segmentation efficiency. 

Revealing this system to end users will allow constant expansion of the synthetic image 

database for subsequent neural network training and improvement of segmentation results. 

Integrating it with web-based 3-D printing control systems can help to perform layer-wise 

analysis of manufactured parts, and also help to classify and track failures based on their 

bonding to a particular area of the model. In the case of small 3-D printing deviations, 

without significant deformation of the part, this method will be able to determine whether 
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a manufacturing defect belongs to a particular structural element of the part. This, in turn, 

can facilitate the creation of procedures for correcting manufacturing defects. 
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Chapter 5  

5 Tool change Reduction in Multi-color 3-D Printing 

This chapter4 is adapted from the “Tool change Reduction for Multi-color Fused Filament 

Fabrication Through Interlayer Tool Clustering Implemented in PrusaSlicer” with minor 

modifications to the version submitted in Rapid Prototyping Journal (Emerald Publishing), 

2024. 

5.1 Abstract 

The most popular type of 3-D printing globally fuses plastic filament into a 3-D printed 

object. Historically, this has been done with only a single polymer. Advanced 3-D printer 

manufacturers now allow multiple materials and/or colors to be part of a single print. 

Presently in multi-material fused filament-based 3-D printing, significant amounts of waste 

material is produced. Each time a change from one material to another occurs, waste is 

produced through nozzle priming and/or purging. 3-D printing software (slicers) that 

prepare the G-code for multi-material 3-D printing typically change the material on each 

layer meaning that every layer, waste is generated often resulting in wipe towers with 

greater mass than the 3-D printed target object. An alternative fabrication approach based 

on interlayer tool clustering (ITC) is presented here for the first time, which is compatible 

with any commercial 3-D printer without the need for hardware modifications. The 

theoretical time, mass and energy savings are calculated and validated with a series of 

experiments to evaluate the proposed algorithm qualitatively and quantitatively. The 

results show the novel ITC method can significantly increase the efficiency of multi-

material printing, with an average 1.7-fold reduction in material used, and an average 1.4-

fold reduction in both time and 3-D printing energy use. In addition, this approach reduces 

the likelihood of technical failures in the manufacturing of the entire part by reducing the 

 

4
A version of this chapter has accepted in Rapid Prototyping Journal. A. Petsiuk, B. Bloch, D. Vogt, M. 

Debora, J.M. Pearce (in press), Tool change Reduction for Multi-color Fused Filament Fabrication Through 

Interlayer Tool Clustering Implemented in PrusaSlicer. Rapid Prototyping Journal, 2024. A preprint is 

available at SSRN, http://dx.doi.org/10.2139/ssrn.4655383. 
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number of tool changes, or material transitions, on average by 2.4 times. These savings all 

support distributed recycling and additive manufacturing, which has both environmental 

and economic benefits, and increasing the number of colors in a 3-D print increases the 

savings and benefits. 

5.2 Introduction 

Additive manufacturing (AM), or 3-D printing, stands as one of the foundational elements 

within the framework of Industry 4.0 [1,2]. Since the original inventions in 1970–80s [3,4], 

the primary emphasis of the technology has revolved around single-material rapid 

prototyping, a generation of a draft part representation to find the optimal shape before its 

final release. Subsequent advances in AM technology and materials development, as well 

as market demand for enhanced functionality and high geometric complexity, however, 

have shifted the focus towards the direct production of final products and the simultaneous 

use of multiple materials. Modern additive manufacturing is firmly established in such 

diverse areas as education [5], medicine [6], fitness [7], fashion [8], food industry [9], low-

cost customized scientific equipment [10], architecture and construction industry [11], 

optics [12,13], electronics and robotics [14], automotive [15], aerospace [16], and 

completely new areas [17]. 

Multi-material 3-D printing greatly expands the horizons of manufacturing, providing 

innovative design opportunities and enhancing the quality of products through the optimal 

combination of properties, which is often impossible to achieve with traditional methods 

[18]. The main fabrication materials are polymers, metals, ceramics, and biological 

substances. The integration of electrically functional elements and shape memory 

polymers, in turn, marked the beginning of 3-D printing of smart devices and 4-D printing, 

respectively [19]. 

According to the ISO/ASTM 529000-21 standard [20], AM can be categorized based on 

fabrication principles, feedstock types, energy sources, and build volumes. Each of the 

various processing techniques has its own advantages and challenges [21,22]. Fused 

filament fabrication (FFF), however, is one of the most popular technologies and offers 

great opportunities for general users to become producing consumers (prosumers) [23–25] 
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due to its simplicity and low cost [26,27]. Due to the increasing variety of filament 

materials with a wide range of physical properties, interest in multi-material and multi-

color AM is constantly growing [21]. 

Multi-color FFF 3-D printing is a great way to create a wide range of consumer products 

including artistic and ornamental objects, such as figurines, avatars, reproductions of 

historical objects or buildings or famous characters. It also allows creating at a low cost 

and with a much-simplified process (manual part painting is removed from the steps) proof 

of concepts and industrial prototypes. Many 3-D printers on the market positioned as multi-

color (FlashForge Creator [28], Sovol SV04 [29], Geeetech A30T [30], and others) have 

several extruders for individual materials, which limits the number of colors that can be 

used and has drawbacks like oozing, nozzle clogging and trajectory alignment, and others 

[21]. Prusa MMU [31] and Mosaic Palette [32] modules, in turn, allow to convert most of 

the commercial 3-D printers into 5-to-8-color fabrication stations utilizing a single-nozzle 

architecture. This opens a possibility for a general audience to create multi-color models 

for education, fashion, architectural concepts and so forth.  

Most of the modern slicing software (slicers), however, utilize the traditional flat horizontal 

layer-based approach remaining from the single-material concept, where in the process of 

preparing a model, a part is sliced into multiple flat horizontal polygons. Traditional FFF 

3-D printing is a fabrication technique that involves dividing a 3-D model into successive 

layers and sequentially adding (extruding) each layer to construct the final object. The 

printer nozzle moves along a flat plane while depositing a polymer to form each layer. Only 

once a layer is finished does the printer shift in the Z direction to commence the subsequent 

layer, and this process is repeated iteratively. Each time a change happens from one 

material to another, waste is produced through nozzle priming and/or purging. This 

disadvantage creates a large amount of waste and requires a lot of printing time and wasted 

energy [33]. Software that prepares the G-code for multi-material fabrication typically 

changes the material on each layer meaning that every layer, material waste is generated 

unlike in single material printing. For 3-D printing to maintain its environmentally-friendly 

reputation [34,35] and contribute to a low-waste circular economy [36,37], it must solve 

this multi-material waste problem. 
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Such popular free and open source slicers as PrusaSlicer [38], SuperSlicer [39], Bambu 

Studio [40], OrcaSlicer [41] and others, are based on Slic3r toolbox [42], which has this 

fundamental disadvantage described above. Increasing the number of colors will only 

increase the problem. 

In this study, an enhanced technique known as interlayer tool clustering (ITC) method is 

introduced and applied to the open source PrusaSlicer [38]. The paper details a novel ITC 

upgrade [43] with a focus on optimizing multi-layer slicing to achieve substantial 

reductions in time and material waste. In addition, this approach reduces the chance of 

technical errors by minimizing the number of tool changes (material transitions). The 

presented approach is validated using a diverse set of models from areas such as biomedical 

education, architectural and landscape design, and product development. Material 

consumption, energy usage and print times are quantified and compared to the conventional 

layer-by-layer technique. The implications of widespread adoption of this technique are 

discussed in the context of distributed manufacturing and recycling. 

Similar changes may also be applied to other slicing software based on the core “libslic3r” 

library: newer versions of PrusaSlicer, Bambu Studio, OrcaSlicer, SuperSlicer, etc., with 

appropriate individual modifications. Given the wide support for native and third-party 3-

D printer profiles, these slicers can be used to prepare models for single-nozzle printers 

from vendors such as Prusa, BambuLab, Creality, Lulzbot, Ultimaker, Voron, and others. 

This significantly expands the capabilities of the presented ITC method. 

5.3 Background: Traditional Slicing Approach and Related 
Works 

A multi-material model, as a rule, consists of several stereolithography (STL) files, each 

corresponding to a specific color/material preset in the slicing program. The user can also 

manually recolor individual areas of the entire model using internal painting tools. After 

slicing, each flat vertical slice of the model represents a set of regions, each corresponding 

to a specific material. 



124 

 

 

In multiple-input, single-extruder prints with technologies like Mosaic Palette [32] and 

Prusa MMU [31], current slicing demands that 1) the transition between inputs must be 

purged externally from the desired printed part, to ensure a clean separation of different 

colors or materials, 2) toolpaths within the layer are grouped by input to minimize the 

number of transitions needed per layer, by avoiding switching back and forth more than 

necessary, and 3) because of the monotonically-increasing order of the heights in the 

toolpath, the input being printed must change back and forth on essentially a per-layer 

basis, and all of these transitions must be purged. This creates a substantial amount of waste 

material for the purge (i.e., wipe tower [33]) as well as the time and energy for 

manufacturing. This traditional fabrication approach is presented in Figure 5.1. The nozzle 

sequentially fills the inner and outer regions of the layer with material and moves to a new 

layer only after the completion of the current one. 

 

Figure 5.1: Traditional slicing approach. The nozzle sequentially fills the inner and outer 

regions of the layer (kidney model [44]) with material and moves to a new layer only after 

the completion of the current one. If the layer consists of several colored regions – the 

nozzle performs additional material extrusion (purging) for each transition between colors. 

This removes the remaining melted plastic in the nozzle and ensures sharp color transitions 

and stable filament flow. 

It should also be noted that there are “purge into infill” and “purge into object” options, 

where the transition material section is used to fabricate an infill or another object, 

respectively. This approach, however, can compromise the material purity and aesthetic 
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properties of the object, as well as increase the idle traveling time of the nozzle without 

extrusion due to changes in manufacturing order. 

During slicing, each extruded segment (G-code line) for each fabrication layer has its own 

characteristic (Figure 5.2), such as type (external and internal perimeters, internal, solid, 

and bridge infills, support material and interface, skirt/brim, wipe tower, and others) and 

tool (material, color). Each line type can be assigned a specific print speed and temperature 

mode. This allows varying fabrication modes depending on the material used. 

  

a) b) 

Figure 5.2: Color coding of different types of extruded segments. During the slicing 

process, each extruded segment is assigned a series of specific properties that determine 

line length and type, material color, print temperature, fan speed, etc.: a) – sliced multi-

color model with support, where each color represents a different material, b) – color coded 

extruded segments (green – support, red – internal infill, yellow – internal perimeter, 

orange – external perimeter, and purple – solid infill). 

The extruded segments, however, are grouped according to their affiliation with a specific 

material within the layer, and it is not currently supported to assign individual materials to 

different types of segments (perimeter, infill, bridge, etc.). Only supports and support 

interfaces can belong to a separate material when manufacturing parts using soluble 

supports. 

There are several approaches in the literature that attempt to solve the toolpath optimization 

problem to increase efficiency and quality of 3-D printing, as well as to reduce 

manufacturing time and minimize the number of nozzle transitions. Kaplan et al. [45] 
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presented a work on modifying the nozzle and creating a toolpath optimization algorithm 

that allows a vertical shift between layers during printing and maximizes the number of 

successively printed vertical layers for a single material. This improves print quality while 

reducing production time and overall nozzle travel. Wang et al. [46] presented an adaptive 

slicing algorithm that minimizes fabrication time and preserves salient features of a model. 

Ahlers et al. [47] presented a Slic3r-based curved layer fused deposition modeling 

implementation[48], which reduces the “staircase effect” of curved surfaces and shells. 

Similar works have been proposed by Etienne et al. [49] and Huang & Singamneni [50]. 

Molloy and Miller [51], Mueller et al. [52], and Gleadall [53] implemented alternative 

fabrication approaches utilizing direct freeform three-dimensional movement. Alexa et al. 

[54] introduced an adaptive discrete slicing algorithm that generates optimal slice heights 

and minimizes volumetric errors. Hergel et al. [55] developed a method that eliminates 

travel moves by generating continuous deposition paths across all of model layers. Zhong 

et al. [56] introduced a toolpath optimization framework for continuous extrusion of 

surface models. Liu et al. [57] proposed a minimization of the number of nozzle transitions 

within each layer using a traveling-salesman-problem approach. Similar approaches were 

presented by Fok et al. [58] and Aguilar-Duque et al. [59], utilizing the ant colony 

optimization technique and a genetic algorithm, respectively. 

The developed method preserves the original layer-based slicing approach, but minimizes 

the material transitions by maximizing the batch of sequentially fabricated vertical layers. 

The developed ITC, or layer batching, is a variation of sequential printing where multiple 

layers of the same input can be printed successively, the input is switched and a transition 

is performed, multiple layers of the new input are printed successively, and so on. In 

multiple-input, single extruder prints, ITC presents a major opportunity for reducing the 

amount of material needed for all of the input transitions in the print, as well as the amount 

of time spent performing such transitions. The method described in this article allows 

printing the sliced layers out of order, where a part of a lower layer can be printed after a 

higher layer has already been fabricated. 

The proposed algorithm can be applied to most of the commercial printers for the general 

audience. It allows using any stock nozzle without hardware modifications and slicing 3-
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D models in a regular way using an open source upgrade for the widely used slicing library. 

This can improve the speed, material consumption, and energy usage of the resulting 

printed parts. 

5.4 Theory and Application: Proposed Tool Clustering 

The developed fabrication method uses the original slicing approach implemented by the 

“libslic3r” library [60] integrated in PrusaSlicer. The novelty in the approach is the 

interlayer clustering algorithm for reordering sliced planar regions of the same 

material/color to decrease the number of tool changes (material transitions) during 

manufacturing. Accounting for parts of the model that have already been printed and 

avoiding collisions are major challenges, as each completed material/color area makes the 

areas immediately below it no longer accessible. 

Consider the example in Figure 5.3. The part to be produced contains three colors (color 

regions R0–R2) and consists of four layers (L0–L3). The traditional default printing order 

starts from a specific region and consists of sequentially bypassing all of the colored areas 

from layer to layer (Figure 5.3, c).  

 
 

  

a) b) c) d) 

Figure 5.3: Fabrication order of a multi-color part: a) – source model, consisting of three 

colors (color regions R0–R2) and four layers (L0–L3), b) – schematic side view of the 

source model, c) – traditional (default) fabrication order with 8 tool changes (marked as 

red arrows), d) – fabrication order produced by the proposed tool clustering method (4 tool 

changes, marked as red arrows). 

The proposed algorithm analyzes the possibility of printing the next region of the same 

color, moving through the layers. The main criteria for the range of nozzle movement are 

the maximum permissible height and the presence of intersections with other colored 
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regions, making it impossible to further jump down (Figure 5.3, d). In this way, the overall 

structure of the manufactured part is maintained, where each material region is fabricated 

only once without printability violations, but the number of tool changes (marked as red 

arrows) is reduced. A step-by-step procedure for the same source model (Figure 5.3) is 

illustrated in Figure 5.4. 

 

Figure 5.4: Tool clustering algorithm. The developed algorithm in action on the example 

of a simple part in the shape of a rectangular parallelepiped. The part is shown in the side 

view and each of the four layers (L0...L3) consists of three different colored regions 

(R0...R2). Starting from the first region, the program analyzes the possibility of printing a 

candidate region (the top layer of the same color as the previously selected region) 

according to two criteria: the allowable safe height and the presence of intersections in the 

unfinished underlying regions of other colors. If it is possible to print a candidate region – 

the region is added to a linked list (print map) and marked as processed (red crosshair). If 

printing is not possible, the candidate is discarded, and the pointer moves to the next 

unprocessed region. 

As a result of the analysis, the initial printing map in the form of a linked list, based on 

the default slicing parameters, is transformed into a tool clustered batched map (Figure 



129 

 

 

5.5). As seen from the figure above (e.g., steps 4 to 5 and 8 to 9), the hot-end traversal 

may lead to inevitable damage to previously fabricated areas, described in detail further 

in the article. In many cases, however, this may have little effect on the cosmetic 

characteristics of the part being manufactured and is compensated for by a significant 

reduction in the resources used. 

 

Figure 5.5: Converting the initial printing map into a clustered sequence. As a result of the 

analysis, the initial printing map in the form of a linked list, based on the default slicing 

parameters, is transformed into a tool clustered batched map. 

The given algorithm is easily scalable into a large number of colors/materials and 

inherently supports the variable layer height fabrication according to the source PrusaSlicer 

approach. The open source modification is licensed under AGPL-3.0 [61] and is available 

on GitHub [43]. 

5.4.1 Material, Time, and Energy Savings 

Given the huge variety of possible 3-D models and color/material distributions throughout 

their heights, it is hard to derive precise equations that describe all of the possible savings 

based on the applied tool clustering properties. Therefore, below is an analysis of the 

generic case, where each layer contains all of the materials used in the model, and a 

generalized equation is derived that allows estimating the potential savings in material, 

time, and energy. 
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Figure 5.6 depicts an example of a printing process of a three-color and three-layers part 

(side view) with object layers, wiping layers, and travel moves. 

 

 

a) b) 

Figure 5.6: Conventional (a) vs clustered (b) fabrication approaches. A cross section of a 

rectangular piece consisting of three layers, each containing three different materials 

(yellow, red, and blue colors) is shown. Gradient regions represent wiping layers with 

material transitions. The black arrows indicate travel nozzle moves without extruding 

material, while the white arrows within the layers illustrate nozzle movements with 

material extrusion. 

The total time T, needed for the whole part fabrication, can be represented in the following 

way: 

𝑇 = 𝑇𝐿 + 𝑇𝑇 + 𝑇𝑤 + 𝑇𝐶 + 𝑇𝑀 = 𝑁𝑅
𝑃𝐿

𝑆𝐿
+

𝑁(𝑅+1)

𝐵
∙

𝑃𝑇

𝑆𝑇
+

𝑁(𝑅−1)

𝐵
∙

𝑃𝑊

𝑆𝑊
+

𝑁(𝑅−1)

𝐵
∙ 𝑡𝐶 +

𝑁(𝑅−1)

𝐵
∙ 𝑡𝑀    (5-1) 

where 𝑇𝐿 is the total time for all of the object layers fabrication, 𝑇𝑇 is the total traveling 

time for the whole object fabrication, 𝑇𝑊 is the total time required for wiping tower 

fabrication, 𝑇𝐶 is the total time for all of the tool changes, 𝑇𝑀 is the total waiting time for 

material properties (temperature, fan speed, etc.) adjustments for all of the material changes 

(equals to zero in case of using different colors of the same material), 𝑁 is the number of 

layers, 𝑅 is the number of material/color regions in the whole part, 𝐵 is the batch size in 

number of layers, 𝑃𝐿  is the average extruded path length within each layer (useful material), 

𝑃𝑇  is the average travel path length between object and wipe tower, 𝑃𝑊  is the wiping path 

length (wasted material) for a single tool change, 𝑆𝐿  is the average object layer printing 

speed, 𝑆𝑇  is the travel speed, 𝑆𝑊  is the wiping speed, 𝑡𝐶 is the waiting time for a single tool 

change, 𝑡𝑀 is the waiting time for material properties (temperature, fan speed, etc.) 
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adjustments for a single material change (𝑡𝑀 = 0 for a multi-color print with the same 

material). 

All of the time parameters are measured in minutes, lengths – in meters, speeds – in m/min, 

𝑁(𝑅 − 1)/𝐵 represents the number of tool changes during the fabrication of all of a part 

layers, 𝑁(𝑅 + 1)/𝐵 represents the number of travels to and from wipe tower during the 

part fabrication. 

As it can be seen from the equation above, the useful time consists of 𝑇𝐿 value only, all of 

the rest of the T-parameters are considered as wasted time and must be reduced. Therefore, 

the time loss equation can be expressed as follows: 

𝐿𝑜𝑠𝑠𝑇
% =

𝑇𝑇+𝑇𝑊+𝑇𝐶+𝑇𝑀

𝑇𝐿
=

𝑆𝐿

𝐵𝑅𝑃𝐿
[

(𝑅+1)𝑃𝑇

𝑆𝑇
+

(𝑅−1)𝑃𝑊

𝑆𝑊
+ (𝑅 − 1)𝑡𝐶 + (𝑅 − 1)𝑡𝑀] ∙ 100%, 𝑅 ≥ 2  (5-2) 

A similar approach is also applied to energy (5-3) and material (5-4) consumption. 

{
𝐸 = 𝐸𝐿 + 𝐸𝑇 + 𝐸𝑤 + 𝐸𝐶 + 𝐸𝑀 = 𝑁 ∙ 𝑒𝐿 +

𝑁(𝑅+1)

𝐵
∙ 𝑒𝑇 +

𝑁(𝑅−1)

𝐵
∙ 𝑒𝑊 +

𝑁(𝑅−1)

𝐵
∙ 𝑒𝐶 +

𝑁(𝑅−1)

𝐵
∙ 𝑒𝑀

𝐿𝑜𝑠𝑠𝐸
% =

𝐸𝑇+𝐸𝑊+𝐸𝐶+𝐸𝑀

𝐸𝐿

=
(𝑅+1)𝑒𝑇+(𝑅−1)𝑒𝑊+(𝑅−1)𝑒𝐶+(𝑅−1)𝑒𝑀

𝐵∙𝑒𝐿

∙ 100%, 𝑅 ≥ 2 

  (5-3) 

where 𝐸 is the total amount of energy, required for part fabrication, 𝑒𝐿 is the average 

amount of energy required for a single object layer fabrication, 𝑒𝑇 is the energy for a single 

travel move, 𝑒𝑊 is the energy for a single region fabrication of a transition tower required 

for a tool change, 𝑒𝐶 is a single tool change energy required for a tool change device 

(Mosaic Palette, Prusa MMU, or similar), 𝑒𝑀 is the nozzle and bed heating energy, 

respectively, wasted during the transition period for switching different materials (𝑒𝑀 = 0 

for a multi-color print with the same material). All of the the energy parameters have kWh 

units. 

{
𝑀 = 𝑁𝑃𝐿 +

𝑁(𝑅−1)

𝐵
𝑃𝑊

𝐿𝑜𝑠𝑠𝑀
% =

𝑁(𝑅−1)𝑃𝑊

𝑁𝐵𝑃𝐿

=
(𝑅−1)𝑃𝑊

𝐵𝑃𝐿

∙ 100% , R ≥ 1 

    (5-4) 

where 𝑀 is the total amount of filament material in meters required for a whole part 

fabrication. The remaining parameters are described above. 
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Since the exact calculation of energy parameters is quite complex and can be rather 

inaccurate, energy losses can be further considered proportional to the time losses 

(𝐿𝑜𝑠𝑠𝐸
% ∝ 𝐿𝑜𝑠𝑠𝑇

%), since the printer consumes electrical power during operation, as well as 

when moving its parts and heating the bed platform, chamber and nozzle. 

Figure 5.7 illustrates the graphical representation of the time (5-2) and material (5-4) loss 

functions. The colored surfaces are the default losses without layer batching depending on 

number of materials used and the fabrication part size, while the lines projected onto the 

orthogonal planes represent the losses after applying layer batching (𝐵 = 2 … 10). The 

parameters for the plots were used as follows: 𝑡𝐶 = 0.3 (𝑚𝑖𝑛) is the time to change the 

tool, 𝑆𝐿 = 3.6 (𝑚/𝑚𝑖𝑛) is the average printing speed, 𝑆𝑇 = 4.2 (𝑚/𝑚𝑖𝑛) is the average 

travel speed, 𝑆𝑊 = 3.6 (𝑚/𝑚𝑖𝑛) is the average wiping speed, 𝑃𝑊 = 0.066 (𝑚) is the 

average wiping length, 𝑃𝑇 = 0.05 (𝑚) is the average travel length. 

  

a) b) 

Figure 5.7: Time (a) and material (b) losses. The colored surfaces are the default losses 

without layer batching depending on number of materials used and the fabrication part size, 

while the lines projected onto the orthogonal planes represent the losses after applying 

layer batching (𝑩 = 𝟐 … 𝟏𝟎). 

Also worth noting is the reduction in the overall manufacturing failure probability due to 

frequent tool changes (5-5). 

𝑄 = 1 − 𝑝
𝑁(𝑅−1)

𝐵       (5-5) 
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where 𝑄 is the overall manufacturing failure probability, 𝑝 is the probability of a single 

successful tool change, and 𝑁(𝑅 − 1)/𝐵 is the number of tool changes. 

5.4.2 Implementation: PrusaSlicer Upgrade 

PrusaSlicer is now one of the most popular open source slicers for the general audience 

around the world and is the successor of Slic3r developed by Alessandro Ranellucci in 

2011 [62], which, in turn, replaced SkeinForge [63], a Python-based toolchain developed 

by Enrique Perez that converts 3-D models into G-code instructions for self-replicating 

rapid prototypers (RepRap) [64–66] class 3-D printers.  

PrusaSlicer consists of several libraries, the main one being “libslic3r” [60], which 

processes geometric data and performs slicing directly. A high-level data flow is depicted 

in Figure 5.8. The process begins by loading a 3-D model and generating a printing object 

consisting of a set of resulting object and support layers. The data are further used to create 

a material transition tower and is converted into a set of corresponding layer-by-layer 

instructions for moving the extrusion tool. The fabrication speeds and cooling parameters 

for each material region, as well as region boundaries and the last position of the tool on 

the previous layer are considered. 

 

Figure 5.8: Internal data flow of the slicing process in the PrusaSlicer “libslic3r” library. 

The process begins by loading a 3-D model and generating a printing object consisting of 

a set of resulting object and support layers. The data are further used to create a material 

transition tower and is converted into a set of corresponding layer-by-layer instructions for 

moving the extrusion tool. 
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By manipulating the order of the material regions, it is possible to disrupt the conventional 

layered mode of object fabrication and change the order of the material regions by stepping 

over the layers. The proposed ITC algorithm is based on this feature and is injected into 

the main slicing pipeline as shown in Figure 5.9. 

 

Figure 5.9: High-level slicing pipeline of the developed PrusaSlicer upgrade. The main 

functionality of the developed ITC algorithm is integrated in the G-code generation 

process. 

The developed ITC algorithm is implemented in PrusaSlicer version 2.6.0, mainly affecting 

the “libslic3r” library. From a user's perspective, the above modifications represent an 

additional feature tab in the graphical user interface (GUI), where a maker can specify the 

desired layer batching parameters (Figure 5.10). The main control variables are the 
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allowable height of a stack of layers processed within one material transition (“Safe batch 

height”) and the maximum acceptable intersection with underlying regions of other colors 

(“Max color intersection area”). The “Clipper” library [67] integrated into “libslic3r” is 

used to calculate the intersections of sliced regions. The “Interregional Z-lift” sets the 

extruder to rise during retraction, which occurs throughout every material change. This 

avoids intersections with already fabricated areas. 

 

Figure 5.10: Tool clustering control panel in the PrusaSlicer GUI. The main control 

variables are the allowable height of a stack of layers processed within one material 

transition and the maximum acceptable intersection with underlying regions of other 

colors. 

 

a) b) c) 

Figure 5.11: Colormap visualization of the clustered sliced model in the PrusaSlicer GUI: 

a) – five-color source model, b) – sliced material regions grouped into layer clusters, c) – 

critical region intersections. 
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Figure 5.11 shows a colormap visualization of the clustered layer batches and critical 

region intersections implemented in the PrusaSlicer GUI for a sample multi-material source 

model [68]. This feature allows more efficient process debugging and the tool clustering 

potential analysis of source models with varying geometric complexity. 

Tool clustering imposes certain limitations on the manufacturing process, since most 

available 3-D printers are designed for conventional single-layer slicing. The typical FFF 

3-D printing nozzle system and its clearance are shown in Figure 5.12.  

Regardless of the nozzle design, the current approach results in some deformation of the 

previous layers. The maximum damage volume, 𝑉𝐷 (in mm3), equals the volume of the 

intersection with the nozzle that can be represented as a cone with volume (equation 5-6). 

These deformations, however, are not critical in most cases. 

𝑉𝐷 = 𝜋𝑟2 ℎ

3
      (5-6) 

Where ℎ is the batch height in mm, and 𝑟 is the nozzle radius (in mm) at a given height ℎ. 

 

a) b) 

Figure 5.12: Nozzle system and its clearance. The extrusion system of each printer has a 

certain gap and filled space in the immediate vicinity of the nozzle, which prevents free 

movement in non-planar printing (a). When printing batched layers, subsequent 

surrounding regions are damaged in most cases. The maximum damage volume (b) is equal 

to the volume of the intersection with the nozzle, which can be represented in equation (5-

6). Here, the parameters P1, P2 and P3 define the physical constraints imposed by the 

dimensions of the print head system, 𝒉 is the batch height, and 𝒓 is the nozzle radius at a 

given height 𝒉. 
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An important part of a good tool clustering implementation is to ensure that the print head 

will not collide with paths that have already been printed. The ideal implementation is one 

where, given reasonably accurate information about the printer’s print head geometry, the 

user does not need to perform any manual work to ensure neither the 3-D prints nor the 

printer is damaged. Automatic avoidance checks when planning the order of these paths 

should consider avoidance of paths in the XY plane that will have already been printed 

(i.e., not running into them from the side) as well as the fact that the nozzle itself needs to 

be able to reach the points of a path from above (i.e., the nozzle geometry fits sufficiently 

into any space where a path is being printed, and has direct access from above). While 

certain optimizations can be performed automatically before slicing (such as adjusting the 

layout of objects on the build plate to increase spacing as needed), most parameters 

affecting the ability to batch layers should be considered fixed at the time of slicing (e.g., 

build plate layout, layer height) and should not be automatically adjusted for layer batching. 

The paths that are generated in the XY plane should be the same as without any layer 

batching; this algorithm is simply concerned with the order in which these paths are printed. 

In the proposed algorithm, the goal is to batch as many layers as possible, up to the point 

where it is physically not possible to include more layers because the inclusion of another 

layer would mean that a different input would no longer reach some path that has not yet 

been printed. 

Even with automatic collision avoidance, the ideal solution should allow for a configurable 

maximum Z differential (that is, the maximum height difference between the current layer 

being printed and the lowest layer that still needs to be printed). There are a few reasons 

such a configuration is beneficial or even necessary:  

1) If too much time passes between a batch of layers with a given input and the next batch 

with that input, the hot material extruded along the paths of this input may have cooled 

sufficiently that inter-layer bonding is adversely affected [69], reducing the print quality 

and/or strength of the finished part, and thus preventing the use of the feature in practical 

settings like production of end-user products (where surface finish is a major factor) or 

engineering-grade parts (where dimension accuracy and strength are major factors).  
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2) Many common printer gantries will have an inherent Z differential limit because at a 

certain point, moving back down will cause the already-printed paths to collide with the 

printer’s gantry itself even if print head avoidance is calculated correctly. 

Even sequential printing as implemented in most slicers today does not have such a 

configuration, meaning the burden for ensuring printability is once again put on the user. 

The ideal implementation would instead take this configuration and account for it 

automatically and reliably. 

5.5 Experimental Methods 

For all of the experiments on the interlayer tool clustering proposed here a Prusa MK3S 

FFF RepRap-class 3-D printer was used with an MMU2S [70] filament changing system. 

The time consumption and the amount of material (filament length) were quantified based 

on PrusaSlicer internal calculations, energy was monitored with a digital power meter EZ 

P4460 (±0.005kWh).  

In the experiments carried out, a model of a multi-color rectangular parallelepiped with 

dimensions of 48×24 mm was used. The height of the model was gradually increased from 

10 to 20 mm to analyze material, time and energy consumption depending on the number 

of fabricated layers (Figure 5.13). The same slicing parameters were chosen for each part, 

namely 2 perimeters, 2 top and bottom layers, 0.2 mm layer height with 0.4 mm nozzle 

diameter and 30% rectilinear infill. The temperature parameters are 205°C for the nozzle 

and 60°C for the bed. Polylactic acid (PLA) was used for all of the experiments. 

 

Figure 5.13: Multi-color experimental model. The height of the model was gradually 

increased from 10 mm (solid color parts) to 20 mm (semitransparent gray volumes) to 
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analyze material, time and energy consumption depending on the number of fabricated 

layers. 

In addition to the experimental parallelepipeds, a comparative slicing of a random set of 

models [71] was also carried out.  All of the models were sliced with the same parameters: 

material – PLA filament of 1.75 mm diameter, 2 perimeters, 2 top and bottom layers, 0.2 

mm layer height with 0.4 mm nozzle diameter and 15% gyroid infill, default wiping 

volume (15 mm3) for each color transition, interregional lift Z=0.4 mm for the default 

slicing and Z=1.2 mm for batching (1.00 mm batch height). The temperature parameters 

are 205°C for the nozzle and 60°C for the bed. When analyzing material consumption, the 

contribution of the object layer extrusion was calculated in comparison to the extrusion 

amount of the wiping tower, without considering the individual contribution of materials 

of different colors. 

5.6 Results and Discussion 

Figure 5.14 shows the results of the time and material consumption analysis for the multi-

color rectangular parallelepiped fabrication. 

  

a) b) 

Figure 5.14: Analysis of time (a) and material (b) consumption during the manufacturing 

of the experimental models depending on the layer batch size. 
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During the experiments, the average energy consumption was 0.11 kWh per hour. Figure 

5.15 shows the dependence of energy consumption, fabrication time and the number of tool 

changes on the height of the parts manufactured using variable layer batch size. The shaded 

areas demonstrate the degree of reduction in resource consumption when using the ITC 

fabrication approach. 

As can be seen from the graphs, printing models in batches of 4 layers leads to a reduction 

in material consumption by three or more times due to a significant reduction in the wipe 

tower caused by the number of tool changes, or transitions from one material to another. 

The total fabrication time can be reduced by 3 or more times by reducing the travel 

movements and time required to form the wipe tower. 

 

Figure 5.15: Dependence of energy consumption, fabrication time, and number of tool 

changes on the height of the parts manufactured using variable layer batch size. Batch size 

B=1 corresponds to conventional layer-wise manufacturing, and batch sizes B=4 and B=6 

correspond to the developed ITC method with grouping of fabricated layers of the same 

material into batches of 4 and 6 layers, respectively. 

Reducing production costs, however, is reflected in the quality of the resulting products. 

An increase in the number of layers processed in one batch leads to the appearance of a 

zigzag gap at the material boundaries, as well as a wave pattern that reflects the contours 

of the nozzle in the immediate vicinity of these boundaries (Figure 5.16). This feature may 

not be suitable for some models, but the effect can be significantly reduced by using a 

thinner and longer nozzle. Future work is needed to determine if a change in slicing 

parameters could be used to eliminate this effect. 
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Figure 5.16: The boundaries of the material of adjacent batches. The layer thickness is 0.2 

mm, and the B-parameter indicates the number of layers in a single batch. 

The use of the ITC was tested on a set of models, characterized by a wide variety of shapes 

and summarized in Table 5.1. The number of colors and the dimensions of each part are 

presented in the table. Comparative consumptions of time and materials are illustrated in 

Figures 5.17 and 5.18, respectively. In this case, the energy parameters were not measured, 

but were calculated theoretically based on the coefficient obtained earlier (0.11 kWh per 

hour). 

Table 5.1: Comparison of time and material allocation for different fabrication techniques 

of a selected set of 3-D models [71]. 

Model Slicing 

Printing time, h 
Tool 

changes 

Filament length, m Energy, 

kWh Total Wipe 

tower 

Travel Total Wipe 

tower 

Citrus coaster 

3 colors, 100x100x3 mm 

ITC 2.37 0.15 0.2 8 9.05 1.13 0.26 

Default 2.85 0.43 0.23 30 11.98 4.06 0.31 

Plant cell 

8 colors, 87x95x26 mm 

ITC 3.98 0.53 0.50 32 15.60 4.34 0.44 

Default 6.62 2.38 0.80 112 31.00 19.75 0.73 

Kidney 

4 colors, 85x80x34 mm 

ITC 5.73 0.85 0.93 63 20.37 8.30 0.63 

Default 7.82 2.37 1.20 135 33.00 21.15 0.86 

Computer mouse, 

3 colors, 100x58x37 mm 

ITC 7.90 1.78 1.10 134 34.04 17.93 0.87 

Default 9.97 3.12 1.28 221 46.46 30.35 1.10 

Parrot, 

4 colors, 49x73x60 mm 

ITC 7.82 2.35 1.53 172 31.88 22.19 0.86 

Default 13.81 6.10 2.23 429 67.06 57.38 1.52 

Mandala, 

3 colors, 120x120x50 mm 

ITC 13.57 1.23 2.43 91 45.39 12.2 1.49 

Default 17.03 3.52 2.52 245 67.04 33.85 1.87 

Earth, 

4 colors, 75x75x80 mm 

ITC 18.03 3.57 3.57 277 65.77 36.15 1.98 

Default 20.47 5.52 3.22 389 82.68 53.05 2.25 
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Toronto CN tower, 

8 colors, 104x104x150 mm 

ITC 21.33 5.07 5.38 336 65.39 38.06 2.35 

Default 33.28 13.40 6.50 820 142.92 115.60 3.66 

Hourglass, 

4 colors, 80x80x125 mm 

ITC 15.85 4.42 3.43 328 63.02 43.81 1.74 

Default 33.92 14.95 5.18 1118 170.04 150.82 3.73 

Integumentary system 

7 colors, 67x95x94 mm 

ITC 30.48 5.63 7.37 429 108.40 56.25 3.35 

Default 39.98 12.43 7.37 880 172.5 120.55 4.40 

Leaf tissue, 

5 colors, 83x102x67 mm 

ITC 40.52 5.22 9.50 377 127.42 49.73 4.46 

Default 44.73 8.98 8.15 634 164.08 86.53 4.92 

Coffee shop, 

7 colors, 100x160x49 mm 

ITC 37.35 6.73 6.45 494 144.72 65.53 4.11 

Default 53.43 17.32 8.83 1204 241.92 162.73 5.88 

Bike helmet, 

4 colors, 129x166x93 mm 

ITC 41.27 3.73 7.08 274 133.39 36.22 4.54 

Default 54.55 12.20 8.00 898 217.46 121.20 6.00 

Tooth model, 

5 colors, 100x52x160 mm 

ITC 46.72 10.05 8.53 768 184.62 102.19 5.14 

Default 78.30 28.95 11.20 2206 378.04 295.60 8.61 

Total 
ITC 292.92 51.31 58.00 3783 1049.06 494.03 32.22 

Default 416.76 131.67 66.71 9321 1826.18 1272.62 45.84 

Savings, %  29.71 61.03 13.06 59.41 42.55 61.18 29.71 

As can be seen from Table 5.1, the total production time of models has been reduced by 

more than 1.4 times, material consumption has been reduced by 1.7 times, and the number 

of tool changes – by 2.4 times. In addition, the energy use was decreased by about 30%, 

which given a constant energy source would have substantive impacts on the greenhouse 

gas emissions and other environmental impacts of AM from energy consumption [72]. The 

minimum gain occurs during travel movement, as when using the tool clustering method, 

the interregional lift Z parameter is increased, resulting in longer overall travels per each 

region. 

 

Figure 5.17: Comparative time consumption when fabricating a random set of models. 

Figure 5.19 shows an example of the printed mandala model with different slicing 

parameters (default slicing vs ITC method with a batch height of 1.0 mm, or 5 layers of 0.2 

mm). A total of 48.50 meters of plastic were used to print the mandala, of which 27.77 
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meters were used to produce the wipe tower. Using the developed ITC method, the filament 

consumption was reduced to 30.86 meters, 10.13 of which are needed for the wipe tower. 

The total production time is 13.5 hours when printing with default parameters and 10.0 

hours using the tool clustering method. Savings in energy costs amount to 0.39 kWh (1.10 

vs 1.49 kWh with the default slicing). The experimental data obtained thus supports the 

theoretical findings, however, caution is needed in overgeneralizing the results found here 

as the results for individual models may differ due to geometric features. 

 

Figure 5.18: Comparative material consumption when fabricating a random set of models. 

The advantages of ITC for multi-material 3-D printer users are clear from an efficiency 

standpoint in both time savings and economic savings from reduced material use and 

energy consumption. From a wider societal perspective as the cost advantages of 

distributed digital manufacturing [25] cause greater adoption rates, ITC savings will 

expand to have a substantiative environmental impact. This can be done with both virgin 

materials as well facilitating the use of recycled materials. For example, to reduce the 

embodied energy of transportation needed for centralized recycling [73], while at the same 

time potentially improving the financial situation of waste pickers a distributed recycling 

paradigm has been proposed [73–76]. If a two-material print can use high-quality filament 

(virgin or recycled) on the exterior and lower-quality recycled filament for the infill a large 

amount of waste plastic can be used in more solid 3-D prints, which may not be economic 

otherwise. The ITC reduces the time and energy to leverage the ‘fill with waste’ approach, 

which further enhances the economics of distributed recycling and additive manufacturing 

(DRAM) [77–79]. One method of DRAM is to upcycle plastic waste into 3-D printing 

filament with a recyclebot, which is an open source waste plastic extruder [80,81]. Previous 

research on the life cycle analysis (LCA) of the recyclebot process using post-consumer 
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plastics instead of raw materials, showed a 90% decrease in the embodied energy of the 

filament from the mining, processing of natural resources and synthesizing compared to 

traditional manufacturing [82,83]. The ITC further improves the potential for recycled 

filament to be used by prosumers to recycle plastic to save money by offsetting purchased 

filament [77,82,83]. 

 

a) b) 

Figure 5.19: Default (a) vs tool clustering (b) fabrication of the multi-color mandala 

model. With the default method, tool changes occur on each layer, while with the ITC 

method, tool changes occur after each batch (1.0 mm, or 5 layers of 0.2 mm) is printed. 

Future work is needed to adjust the slicing settings using the interlayer tool clustering to 

allow printing of several different types of materials by changing the 3-D printing 

parameters like temperature and print speed for individual extrusion sections. Additional 

work is also needed to eliminate the boundary issues with layer batching shown in Figure 

5.16 by perhaps using changes in slicer settings at the transition. More research is also 

needed on the use of wiping into infill option, which would eliminate the waste of a wipe 

tower all together for some prints. Finally, future work is needed to quantify the aesthetic 
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quality as well as the potential impacts on strength or other mechanical properties of 

finished prints using the ITC vs conventional multi-material slicing. 

5.7 Conclusions 

In this study, a novel technique known as interlayer tool clustering is introduced and 

applied to the open source PrusaSlicer. The theoretical as well as experimental toolpath 

optimization in multi-material slicing has been shown to achieve substantial reductions in 

time, energy, and material waste. The presented approach allows fabricating material 

regions out of sequential layer order and is validated using a diverse set of models from 

areas such as biomedical education, architectural and landscape design, and product 

development. These improvements will directly assist in the UN Sustainable Development 

Goals 9 (Build resilient infrastructure, promote inclusive and sustainable industrialization 

and foster innovation) and 12 (Ensure sustainable consumption and production patterns).  

The results show the novel method can significantly increase the efficiency of multi-

material printing, which is expressed in an average 1.7-fold reduction in material used, and 

an average 1.4-fold reduction in both time and 3-D printing energy use. In addition, this 

approach reduces the likelihood of technical failures in the manufacturing of the entire part 

by reducing the number of tool changes, or material transitions, on average by 2.4 times. 

These savings all support distributed recycling and additive manufacturing, which has both 

environmental and economic benefits. Increasing the number of colors in fabrication leads 

to an increase in savings and thus the benefits.  

The proposed open source additions are adapted to PrusaSlicer version 2.6.0 and presented 

under the AGPL-3.0 license. Similar changes can also be applied to other slicing software 

based on the core “libslic3r” library: newer versions of PrusaSlicer, Bambu Studio, 

OrcaSlicer, SuperSlicer, etc., with appropriate individual modifications. With the wide 

support for native and third-party 3-D printer profiles, these slicers can be used to prepare 

models for single-nozzle printers from vendors such as Prusa, BambuLab, Creality, 

Lulzbot, Ultimaker, Voron, and others. This significantly expands the capabilities of the 

developed method. The same ITC can be used for multi-material 3-D printing and 
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additional work is required to enable variants of slicing parameters for each of the 

materials. 

As future work, it is important to note the necessity for extensive economic analysis and 

systematic study on multi-color polymer 3-D printing applications in academia and 

industry from a joint perspective of hardware, materials, and slicing algorithms. Additional 

experimental research is required to adjust the batched support structure generation and 

variable layer height implementation. More studies are also needed to analyze the impact 

of auxiliary inter-batch waiting time on layer adhesion and mechanical properties of 

manufactured parts. 
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Chapter 6  

6 Conclusion 

6.1 Summary 

The presented research demonstrates novel approaches to layer-wise monitoring and 

analysis of FFF AM processes based on computer vision, as well as an alternative 

fabrication method for multicolor 3-D printing. 

Revealing these methods to end users as open source techniques will provide research 

motivation and allow constant expansion of the information base for subsequent continuous 

improvement. Integrating the discussed approaches with web-based 3-D printing control 

systems can help to perform layer-wise analysis of manufactured parts, and classify and 

track manufacturing deviations based on their bonding to a particular area of the model. 

These studies all support distributed and additive manufacturing, which has both 

environmental and economic benefits. 

6.2 Contributions 

The developments presented in this dissertation formed the basis for the concept of 

multifaceted visual analysis of 3-D printing processes. This will help improve FFF AM 

technology in quality control and reduce the amount of time, materials, and energy required 

to manufacture physical objects. The contributions of the work presented in this 

dissertation are as follows: 

1. Presented a conceptually new approach to comprehensive monocular layer-wise 

visual analysis of extrusion-based FFF AM processes. This approach is built upon 

multi-stage image examination, allowing control of the height, the external shape 

of the printed object, and the internal structure of its layers. 

2. Introduced a basis for adaptive 3-D printing control, allowing G-code updates 

during fabrication. 

3. Developed a novel method for detecting 3-D printing anomalies by comparing 

images of printed layers from a stationary monocular camera with photorealistic 
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synthetic G-code-based reference images of an ideal process generated in a physics-

based rendering engine. Recognition of visual deviations was accomplished by 

analyzing the similarity of histograms of oriented gradients (HOG) of local image 

areas. The developed method can be applied to material extrusion 3-D printers of 

any size with a resolution of detecting anomalous regions of 5–10% of the overall 

observation area. 

4. Developed a novel approach to segment key regions of a part during manufacturing 

utilizing the information in the G-code and synthetic image data. The following 

mIoU scores were achieved for synthetic test data sets: entire printed part, 94.90%; 

top layer, 73.33%; infill, 78.93%; shell, 55.31%; support, 69.45%. The developed 

segmentation framework can enhance visual analysis of manufacturing processes 

and enable the detection of fabrication errors, while significantly reducing camera 

positioning accuracy and calibration requirements. Revealing this system to end 

users will allow constant expansion of the synthetic image database for subsequent 

neural network training and improvement of segmentation results. Integrating it 

with web-based 3-D printing control systems can help to perform layer-wise 

analysis of manufactured parts, and also help to classify and track failures based on 

their bonding to a particular area of the model. 

5. Developed and applied to the open source PrusaSlicer software a novel interlayer 

tool clustering method for multi-color 3-D printing. The given experimental 

toolpath optimization in multi-material slicing has been shown to achieve 

substantial reductions in time, energy, and material waste. The results show the 

method can significantly increase the efficiency of multi-material printing, which 

is expressed in an average 1.7-fold reduction in material used, and an average 1.4-

fold reduction in both time and 3-D printing energy use. In addition, this approach 

reduces the likelihood of technical failures in the manufacturing of the entire part 

by reducing the number of tool changes, or material transitions, on average by 2.4 

times. 
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6.3 Limitations and Future Work 

The development of adaptive control algorithms is a comprehensive and complex problem 

since it is challenging to (1) uniquely visually determine the type of failure, (2) establish a 

direct causal relationship between the type of failure and the fabrication setting involved, 

and (3) declare in advance what parameter value (scaling coefficients, feed rate, 

temperature, traveling speed, etc.) should be used to correct the failure. 

The presented study does not cover all of possible manufacturing anomalies and requires 

additional research in the future, utilizing constantly evolving machine learning and 

computer vision technologies. It is necessary to supplement the introduced developments 

with feedback systems that will allow adaptive control and toolpath generation based on 

image analysis results. 

In the application of semantic segmentation in AM, more research is needed on the use of 

image style transfer and domain adaptation to bridge the gap between synthetic and real 

domains. 

In the field of multi-color 3-D printing, it is necessary to implement general toolpath 

optimization based on the geometry and materials of local areas of manufactured models. 

Integration of the presented methods with existing web-based 3-D printing control systems 

will attract a considerable number of users to supplement a centralized database of 

manufacturing deviations. This will stimulate the development of advanced data-driven 

additive manufacturing and enable performing continuous analysis of manufactured parts, 

classifying and tracking anomalies based on their bonding to a specific region of the model. 

In conclusion, recommended future projects can be listed as follows: 

• Implementation of precise contour-based tracking of the produced part layers; 

• Development of image style transfer and domain adaptation systems for the 

effective use of labeled synthetic data; 

• Development of a real-time semantic segmentation system for all of structured 

areas of manufactured layers; 
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• Development of a global labeled image dataset of 3-D printing errors; 

• Development of a system for classifying manufacturing errors based on a 

centralized global image dataset; 

• Development of adaptive G-code generation systems to correct localized 3-D 

printing defects; 

• Implementation of the above developments in web-based 3-D printing control 

systems; 

• Graph-based advanced fabrication algorithms for multi-color 3-D printing. 
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