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Abstract 

Mild traumatic brain injury (mTBI), also called concussion, has become a significant 

public health concern. Current clinical neuroimaging techniques lack the sensitivity and 

specificity required to reliably detect signs of concussion, as large-scale changes are absent. 

Diffusion magnetic resonance imaging (dMRI) has arguably had the greatest influence to-

date of neuroimaging modalities in mTBI, but previous studies have reported inconsistent 

findings, as standard dMRI lacks specificity and provides a limited model of neuroanatomy. 

This thesis explores the application of microstructural MR methods, that go beyond standard 

dMRI to improve sensitivity and specificity, to a preclinical model of mTBI and adult brain 

maturation. These methods include: frequency-dependent dMRI, which can probe smaller 

spatial scales than standard dMRI; tensor-valued dMRI, which removes the confound of fiber 

orientation dispersion on the diffusion measurement; and magnetization transfer saturation 

(MTsat) MRI, which provides specificity to myelin content.  

We first characterize the reproducibility of the microstructural MR metrics applied and 

provide preclinical sample sizes required to detect relevant effect sizes. Given feasible 

sample sizes (10-15), tensor-valued and frequency-dependent dMRI metrics may provide 

sensitivity to subtle microstructural changes (4-8%) and moderate changes (>6%), 

respectively, while MTsat could detect small changes (<10%) with sample sizes of 15-20. 

Our investigation of brain maturation reinforces that there are continuing microstructural 

changes in the brain after 3 months of age, when mice are considered adults. We observe for 

the first time that total diffusional kurtosis increases over time are driven by increases in 

isotropic kurtosis during brain maturation, which may be related to glial cell diversification. 
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For studies that only calculate total kurtosis, we suggest caution in attributing 

neurobiological changes to changes in total kurtosis as we show constant anisotropic kurtosis 

in the presence of increasing myelin content. Finally, we provide for the first time, in vivo 

evidence of changes post-mTBI detectable with microstructural MR methods in subacute and 

chronic stages, while the standard dMRI metrics did not show changes. The sexually 

dimorphic patterns observed here, both during brain maturation and concussion recovery, 

may motivate more sex-dependent mTBI research, as females remain underrepresented in 

mTBI research.  

Keywords 

Diffusion magnetic resonance imaging, frequency-dependent, oscillating gradient spin echo, 

tensor-valued, microscopic fractional anisotropy, diffusion kurtosis, isotropic kurtosis, 

anisotropic kurtosis, magnetization transfer saturation, mild traumatic brain injury, 

concussion, brain maturation, brain aging 
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Summary for Lay Audience 

Concussion, also known as mild traumatic brain injury (mTBI), has become a 

significant public health concern, with 200,000 new concussion cases in Canada every year. 

Many concussion patients develop long-term impairments, and the underlying brain changes 

remain largely unknown. Unfortunately, current clinical computed tomography (CT) and 

magnetic resonance imaging (MRI) techniques are unable to detect mTBI, as large-scale 

changes, such as hemorrhages, are absent. The changes that occur after an mTBI are on the 

cellular scale and include changes to cell shape and size, loss of myelin (electrical insulator 

that helps with brain signal transmission), and damage to cells, to name a few. As the 

presence and resolution of these subtle “microstructural” changes to cells cannot be detected, 

this results in an inability to predict who will recover completely, who will have long-term 

impairments, or when it is safe to return to play in contact sports. The microstructure refers to 

brain tissue components on the micrometer scale, such as cells and axon fibers, through 

which information is transmitted. 

MRI is a good candidate to identify brain microstructural changes due to its strong 

soft tissue contrast. Conventional MRI techniques lack the specificity and sensitivity required 

to inform about the distinct pathological changes post-concussion. This thesis explores the 

capabilities of microstructural MRI methods, which focus on identifying cellular changes, in 

a mouse model of mTBI and healthy brain maturation. The microstructural MRI methods 

applied here (1) probe smaller length scales (<5 µm) than conventionally possible, providing 

sensitivity to cellular length scales; (2) remove the confounds that can happen when cells are 

not neatly aligned with each other; (3) provide specificity to myelin content. 
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During healthy brain maturation, continuing microstructural changes are observed, 

even after 3 months of age, when mice are considered adults. Overall, the trends observed in 

conventional metrics are comparable to previous brain maturation studies, while the 

trajectories of the more advanced metrics provide novel insight. We provide for the first time, 

in vivo evidence of changes post-mTBI detectable with microstructural MR methods 1-5 

months post-mTBI, while the standard metrics did not show changes. This thesis indicates 

that these microstructural MR techniques have potential to be further optimized to better 

understand concussion neuropathology and its time-course, and to be applied in clinical 

settings to study human mTBI. 
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Chapter 1  

1 Introduction 

1.1 Overview 

The development of in vivo brain imaging methods has provided a basis for studying 

the anatomy and physiology of the normal and the diseased central nervous system 

(CNS), helping to elucidate the underlying mechanisms of neurological diseases. High 

sensitivity, specificity, and spatial resolution are hallmarks of ideal brain imaging 

techniques, to allow the study of cellular structures underlying mechanisms of brain 

processes. These in vivo techniques include computed tomography (CT) and magnetic 

resonance imaging (MRI) (for structural imaging); positron emission tomography (PET), 

single-photon emission CT (SPECT), and functional MRI (for functional imaging); and 

optical imaging (for both structural and functional imaging) (1,2). Among these 

techniques, MRI is highly versatile and unique as it provides high soft-tissue contrast; is 

capable of imaging at any depth in the body without the use of potentially harmful ionizing 

radiation; and has customizable contrast mechanisms to reflect structural, functional, water 

diffusion, and perfusion contrasts (to name a few).  

 Quantitative magnetic resonance imaging (qMRI) goes beyond conventional MRI, as 

it provides specific physical parameters which carry information about the local 

microstructural environment of protons (3), in addition to qualitative images. Examples 

include (but are not limited to) magnetization transfer, diffusion MRI, quantitative 

susceptibility mapping, and perfusion MRI. Compared to conventional MRI, qMRI can 

provide more sensitive measures of pathology and more specific information regarding 
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which tissue component (such as myelin, axons, and glia) has been damaged (4). Thus, 

qMRI has the potential to make great clinical impact on diagnostics by enabling earlier 

detection of disease, complementing or replacing biopsy, providing clear numeric 

differentiation of disease states, and increasing the quality of information available to 

artificial intelligence algorithms. However, the incredible amount of variability in 

clinically used image acquisition and post-processing techniques hinders current efforts 

to extract reliable, consistent, and accurate quantitative information from routine MRI 

exams (5). Current qMRI research aims to develop methods that are reliable, repeatable, 

further our understanding of the normal brain development and diseased brain pathology, 

and may have an impact on the decision-making process for patient care. For many 

neurological conditions, the gold standard method of diagnosis is through histological 

assessment of microstructure, which is only possible through biopsies or post-mortem 

(6). However, biopsies are invasive, not typically done for the brain, and do not provide a 

complete picture of the lesion/injury site. Thus, imaging brain tissue microstructure in 

vivo to uncover micrometer-scale tissue features, using qMRI, is of great interest to the 

clinical and MRI community. As there are a myriad of diseases which are challenging to 

detect via clinical imaging in their early stages, there is a need to develop techniques that 

are more sensitive to microstructural changes in the brain. 

Diffusion MRI (dMRI), a key modality for microstructure imaging, probes tissue 

microstructure by quantifying the diffusion of water molecules (7). However, standard 

dMRI lacks the specificity to identify unique microstructural environments (e.g., cannot 

distinguish between loss of structural integrity and fiber orientation), and leads to an 

inherently vague and limited model of neuroanatomy (8). Thus, more sophisticated dMRI 
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acquisition and reconstruction techniques have been developed to overcome the 

limitations of standard dMRI. 

1.2 Scope of Thesis 

To enable the specificity required to characterize microstructure, we are implementing 

multimodal microstructural MRI, wherein each technique will be sensitive to microstructure 

in complementary ways. The techniques include: frequency-dependent dMRI; tensor-valued 

dMRI; and magnetization transfer saturation (MTsat) MRI. Frequency-dependent dMRI 

(9,10) can modify the sensitivity to cellular length scales to probe smaller length scales 

than possible by conventional dMRI; tensor-valued dMRI (11–13) varies the sensitivity 

to diffusion anisotropy, reducing fiber orientation dispersion effects on diffusion 

measurements; magnetization transfer saturation (MTsat) MRI provides increased 

specificity to changes in myelin content compared to the conventional magnetization 

transfer ratio (MTR) method (14,15).  

These advanced microstructural MRI metrics have been applied to a select number of 

diseases so far, including multiple sclerosis (16–18), ischemic stroke (19,20), and brain 

tumour differentiation (16,21). This thesis aims to characterize the reproducibility of 

these advanced metrics at ultra-high field strength and explore their applications to 

healthy rodent brain maturation and concussion recovery. Although concussion has 

become a significant public health concern, current clinical neuroimaging techniques lack 

the sensitivity and specificity required to reliably detect signs of concussion, as large-

scale changes such as hemorrhages are absent (22). This results in an inability to predict 

who will recover completely, who will have long-term impairments, or when it is safe to 

return to play in contact sports. 
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The goals of this thesis were threefold: (a) to implement microstructural MRI 

protocols at 9.4 Tesla and characterize the test-retest reproducibility of the MR metrics to 

provide estimates of sample sizes required for future investigations; (b) to further our 

understanding of the contrast mechanisms of these advanced MR metrics; (c) to explore 

the evolution of these metrics during adult mouse brain maturation and concussion 

recovery and disentangle what changes in these metrics may indicate on a 

neurobiological level. We hypothesized that through this work, we will uncover novel 

contrast mechanisms of these microstructural MR metrics and gain a better understanding 

of the time course of both adult mouse brain maturation and concussion recovery, as this 

is the first time that these advanced metrics are being applied to mouse brain maturation 

and concussion recovery.  

Chapters 2 and 3 present test-retest reproducibility studies of advanced diffusion 

MRI and magnetization transfer MRI metrics, respectively. Both chapters describe the 

implementation of the MRI protocols used in this thesis, characterize both region-of-

interest based and voxelwise test-retest reproducibility of the in vivo MRI metrics, and 

report sample sizes required to detect a variety of effect sizes. As no test-retest 

assessment of these advanced MR protocols have been done at ultra-high field strength, 

there is a need to establish the reproducibility of these metrics, which is essential in 

planning future preclinical neuroimaging studies involving models of disease/injury. 

Although rodent models are a predominant study model in basic neuroscience 

research, research investigating healthy rodent brain maturation remains limited. This 

motivates further study of normal brain maturation in rodents to exclude confounds of 

developmental changes from interpretations of disease mechanisms. Chapter 4 
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investigates healthy rodent brain maturation in mice scanned longitudinally at 3, 4, 5, and 

8 months of age, and provides a discussion of what the evolution of MR metrics suggests 

on a neurobiological level. We hypothesized that we would see microstructural changes 

in the brain, even after 3 months of age, at which stage a steady state condition of 

adulthood is assumed in many neuroimaging studies (23). Furthermore, we hypothesized 

that the evolution of conventional MR metrics in mice would be comparable to healthy 

brain maturation studies in the literature (23,24), while the advanced MR metrics would 

reveal novel insight. Notably, this is the first time that the evolution of these advanced 

MR metrics is explored during healthy brain maturation. 

Chapter 5 explores the evolution of the MR metrics in a mouse model of concussion. 

Previous dMRI studies in rodent models of mTBI reported no significant changes in 

metrics (25) or inconsistent findings across studies (22). Thus, we hypothesized that the 

more advanced dMRI metrics would be more sensitive to microstructural changes post 

concussion, compared to the conventional dMRI metrics. Importantly, this is the first 

time that these advanced metrics are applied to a model of concussion. 

 The rest of this chapter provides background information regarding the brain, 

adult brain maturation, concussion pathophysiology, MRI, and diffusion and 

magnetization transfer MRI.  

1.3 The Brain 

A brief overview of brain microstructure and macrostructure is given below. For a more 

detailed description, the reader is referred to Clinical Neuroanatomy by Waxman (26) 

and Neuroanatomy: An Illustrated Colour Text by Crossman & Neary (27). 
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1.3.1 Brain Microstructure 

The functional unit of the nervous system is the nerve cell or neuron. These cells 

are highly specialized for the encoding, conduction, and transmission of information. 

Glial cells, or glia, are support cells of the nervous system and crucial for normal neural 

function. Approximately 50% of the volume of the brain is occupied by neurons, while 

the other half of the volume consists of glial cells (28,29). 

Neurons: 

The function of the neuron is to receive and integrate information from sensory 

receptors and other neurons and to transmit information to other neurons and other parts 

of the body, like muscles and glands. Neuronal architecture is highly specialized with 

each neuron being a separate entity with information passed at specialized regions called 

synapses. The neuron has a single cell body, also called soma, from which a variable 

number of branching process emerge, which are called the axon and dendrites (as shown 

in Figure 1.1). Most neurons have a single axon, to transmit signals, and many dendrites, 

to receive signals.   
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Figure 1.1 – The structure of a typical neuron, with dendrites, which receive information 

from other neurons or from sensory receptors, and the axon, which transmits signals to 

the synapses, extending from the soma (cell body). An oligodendrocyte wraps its 

processes around the axon, forming myelin. The myelin sheath is separated by small 

gaps, called the nodes of Ranvier, where myelin is absent. Image adapted from Salas et 

al. (30) (no permission required). 

Axons: 

The axon is a cylindrical tube of cytoplasm covered by a membrane, the 

axolemma. A cytoskeleton consisting of neurofilaments and microtubules runs through 
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the axon. In addition to conducting action potentials, axons transport material to and from 

the synaptic terminals and soma, with the microtubules providing a framework for fast 

axonal transport. 

Communication between neurons usually occurs from the axon terminal of the 

transmitting neuron (presynaptic terminal) to the receiving region of another neuron 

(postsynaptic terminal), which together form a complex called a synapse, or synaptic 

junction. Impulse transmission at synapses is either chemical (involving the release of 

neurotransmitters) or electrical, where current passes through synapses called gap 

junctions. Chemical transmission involves the release of neurotransmitters from the 

presynaptic terminal, which can depolarize (more likely to fire an action potential) or 

hyperpolarize the postsynaptic neuron, depending on the ions involved. 

Myelin: 

Myelin is a lipid-rich material produced by oligodendrocytes (in the central 

nervous system) and by Schwann cells (in the peripheral nervous system). Myelin 

functions as an electrical insulator by covering axons in concentric layers. The myelin 

sheath is separated by small gaps, called the nodes of Ranvier, where myelin is absent (as 

shown in Figure 1.1). This serves to increase the speed of action potentials through 

axons, as electrical impulses “jump” between the nodes of Ranvier. 

Astrocytes: 

Astrocytes are star-shaped cells and have small cell bodies with long processes 

radiating in all directions. They provide structural support to nervous tissue, maintain an 
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appropriate concentration of ions such as potassium (K+) within the extracellular space, 

and have many other supportive roles.  

Microglia: 

Microglia are scavengers of the central nervous system, constantly surveying the 

brain to detect and destroy invaders. When an area of the brain is damaged or infected, 

microglia activate and migrate to the site of injury to remove cellular debris. Some 

microglia are always present in the brain, but when injury or infection occurs, others can 

enter the brain from blood vessels. 

Oligodendrocytes: 

Oligodendrocytes wrap their processes around axons, forming myelin. A single 

oligodendrocyte can wrap myelin around many (up to 30 – 40) axons. Oligodendrocyte 

precursor cells (OPCs) proliferate and differentiate to produce myelinating 

oligodendrocytes (OLs) throughout postnatal and adult life (31). 

1.3.2 Brain Macrostructure 

The major components of the brain are gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF). Gray matter contains neuronal and glial cell bodies, axons, 

dendrites and synapses; white matter contains myelinated axons and glial cells; CSF is a 

clear fluid that contains glucose, proteins, electrolytes, and other materials providing 

essential central nervous system (CNS) nutrition and immune function. Gray matter is 

comprised of cortical gray matter, which lines the outer surface of the brain, and deep 

gray matter, which contains GM brain regions such as the hippocampus, thalamus, and 
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amygdala, segmented based on their function. White matter consists of axonal fiber 

bundles that facilitate communication between and within different gray matter regions. 

CSF is made in ventricles, which are fluid-filled cavities in the brain, and surrounds the 

brain and spinal cord, acting as a shock absorber and maintaining homeostasis by 

regulating the chemical environment. 

1.4 Adult Brain Maturation 

Changes in the ageing brain and in the developing brain are well documented in 

clinically healthy individuals, that is, in humans aged 35–65 years, and from birth to 

adolescent years (32,33). In rodents, this coincides with ages from 12–24 months, and 

from birth to 2 months of age. Despite numerous studies on the microstructural changes 

of the human brain throughout life, we have little knowledge about the changes from 

early to mid-adulthood. There is increasing evidence that there are ongoing 

microstructural changes during the brain maturation phase, primarily due to brain 

plasticity, from early to mid-adulthood. 

The term “plasticity” refers to the possible significant neuronal changes that occur in 

the acquisition of new skills (32,34–36). Neuronal proliferation, rewiring, dendritic 

pruning, and environmental exposure are important components of brain plasticity during 

adolescence. Following neuronal proliferation, the brain rewires itself from the onset of 

puberty up until 24 years old, especially in the prefrontal cortex. The rewiring is 

accomplished by dendritic pruning and myelination. Dendritic pruning eradicates unused 

synapses and is generally considered a beneficial process, and myelination increases the 

speed of impulse conduction across the brain’s region-specific neurocircuitry, thus 
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optimizing communication throughout the CNS and improving information processing 

speed. 

Diffusion MRI study in adults (from young to middle-aged) have provided 

convincing evidence that considerable microstructural changes of the human brain occur 

from early to mid-adulthood (33), with regional age-related cortical thinning, white 

matter volume increases, and changes in diffusion parameters during healthy brain 

maturation (37). In a lifespan study of healthy subjects aged 5-83 years, Lebel et al. (38) 

found age-related changes with diffusion MR changes following a U-shaped or inverted 

U-shaped trajectory, demonstrating rates and timing of development and degradation that 

vary regionally in the brain. Postmortem studies have also provided valuable insight into 

white matter development, demonstrating continued myelination of white matter tracts 

into the second and third decades of human life (39,40). 

Glial cells (microglia, astrocytes, and oligodendrocytes) play significant roles in 

circuit formation, maturation, and maintenance and are key regulators of neuronal 

plasticity (41,42). There is a strong homeostatic mechanism that matches myelinating 

OLs to the requirements of neural circuitry and axonal activity (31). This activity-

dependent OL plasticity is called “adaptive myelination”, implying that it can modify the 

neuronal circuitry to provide a survival advantage (43–45). In rodents, OPCs are capable 

of undergoing bursts of rapid proliferation after 6 months of age, resulting in clonal 

expansion (46). 
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1.5 Concussion 

Concussions are a significant public health concern, with approximately 200,000 

cases reported annually in Canada (47). Despite being among the most challenging 

injuries to diagnose and manage in sports medicine, sports-related concussions remain 

underreported due to a lack of public awareness about their consequences (48). Traumatic 

brain injury (TBI) is typically categorized by severity into mild, moderate, and severe 

forms, with mild TBI (mTBI or concussion) being the most common (49). While 

structural MRI and CT show sensitivity to TBIs, they often show normal findings in 

mTBI cases (50,51). Additionally, CT and MR findings are poor indicators of persistent 

symptoms in patients with mTBI (52). Biomarkers for diagnosing and assessing the 

severity of mTBI are not yet established, although techniques like diffusion tensor 

imaging (DTI), described in Section 1.6.5, and magnetic resonance spectroscopy (MRS) 

are promising (53,54).  

Mild TBI is defined as acute neurophysiologic brain dysfunction resulting from 

impact contact forces or sudden acceleration/deceleration causing a transient alteration of 

consciousness and/or a period of anterograde (and possibly retrograde) amnesia (55). 

Symptoms of mTBI include headaches, fatigue, depression, anxiety, confusion, dizziness, 

visual disturbances, and cognitive impairments, with some individuals experiencing long-

term cognitive deficits. Diagnosis of mTBI relies on the symptomatology mentioned 

above, but this subjective assessment can be imprecise and unreliable.While symptom 

resolution in most concussion patients occur within 3 months post-injury, 15 % of 

individuals with a single mTBI demonstrate long-term cognitive impairment (56–58). A 

more recent review by McInnes et al. (49) found that the 15 % estimate is an 



13 

 

underestimation, and approximately half of individuals with a single mTBI demonstrate 

long-term cognitive impairment. The pathological mechanisms underlying this 

incongruence remain largely unknown, presenting a need to continue efforts to better 

understand the transition from early phase to late phase disorder after mTBI. 

1.5.1 Concussion Diagnosis, Imaging, and Treatment in the 

Clinic 

There are a variety of clinical approaches that medical sports physicians use to 

diagnose and monitor concussed individuals. These protocols involve a battery of 

neurocognitive tests that measure functional capacity across a wide range of tasks that 

assess memory, balance, decision-making, and cognition (59). They also provide a way 

for physicians to monitor a wide range of possible symptoms and the patient’s self-

reported severity of those symptoms. Sports medicine physicians will first enquire about 

the injury itself (information like mechanism of injury, direction, acute symptoms such as 

loss of consciousness or memory) and then, with the help of standard clinical protocols 

like the Sports Concussion Assessment Tool (SCAT) and Immediate Post-Concussion 

Assessment and Cognitive Testing (ImPACT), they will assess the patient for symptoms, 

monitor their recovery, and make decisions about return to play. 

The SCAT involves a series of subtests (60), including the Glasgow coma scale 

(GCS) that assesses eye, verbal, and motor response on a total scale of 15 to objectively 

record a patient’s state of consciousness, where generally an mTBI would be rated greater 

than or equal to 13 and severe injuries are less than 8 or 9. The Maddocks score is 

obtained though it is designated for sideline diagnosis of concussion and involves more 

specific questions targeting orientation and memory such as “did your team win the game 
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last week?”. The physician will enquire about the number and severity (on a scale of 0 

[none] to 6 [severe] for a total possible score of 132) of symptoms from a list of 22 

possible symptoms including headache, neck pain, nausea, confusion, difficulty 

remembering, concentrating or sleeping, light and sound sensitivity, and emotional 

instability or changes. The ImPACT is an online tool that also involves assessing 22 

symptoms and their severity as well as neurocognitive tests that evaluate attention, verbal 

recognition and visual working memory, visual processing speed, reaction time, and 

impulse control (61). 

Impaired reaction time has been shown to be one of the most sensitive indicators 

of persistent deficit after injury (59). Reaction time has traditionally been measured by 

computerized testing, usually assessed by pushing a key in response to a prompt. 

Considerable research has shown that reaction time is prolonged immediately after injury 

and improves gradually until returning to baseline. Reaction time may even persist 

beyond resolution of symptoms, thus making it a useful tool in objectively assessing 

recovery to be used in conjunction with a patient’s self-reported symptoms. 

However, results from neuropsychological tests may be difficult to interpret when 

an intrapatient baseline comparison is not available (59). With concussed athletes and 

military personnel, return to baseline neuropsychological state is important. In the general 

population, baseline data may not be available. Additional issues with 

neuropsychological testing include premorbid learning disabilities that are not 

discernable with testing, underreporting of prior concussions, language issues, 

administration of testing in a suboptimal environment (including an unsupervised 

condition, such as computerized testing), and appropriateness of the test for the age of the 
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injured individual (62). Another challenge is that some individuals may perform 

perfectly, suggesting a ceiling effect, which limits the ability of the test to detect minor 

changes, especially in those who perform at the top (63). Similarly, a floor effect may 

also limit the usefulness of a test for determining changes in an individual who already 

performs poorly at baseline (64). All current evidence- and consensus-based sports 

concussion recommendations advise against having a single test to diagnose or manage 

concussion, and that these tests should be used in conjunction with other evaluation 

modalities to make diagnostic and management decisions (59). Although symptom 

recovery can be monitored, it is unknown exactly how and when the brain physically 

recovers. Non-invasive imaging could aid in understanding the neurophysiology 

underlying concussion acutely and during the recovery period. 

While medical imaging is not the standard of care for assessment of a concussed 

patient, in some cases the physician may recommend a CT or a structural MRI image to 

ensure that there is no pathology consistent with a more serious injury or trauma (59). CT 

has been historically used as the standard of care for assessment of TBI in emergency 

department settings, but radiation exposure may present its own risks, particularly in 

children. Previous studies using CT showed a correlation between intracranial 

hemorrhage and long-term deficits (65). MRI is more sensitive for elucidating small, 

focal intracranial lesions, and thus may be more sensitive in determining those 

individuals at risk for prolonged recovery. The TRACK-TBI group studied mTBI patients 

presenting to the emergency department with CT and MRI, and found the presence of 

intracranial findings (cortical contusion or four or more microhemorrhages on MRI) 

predicted 3-month outcome, specifically for determining which patients may be those to 
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develop persistent dysfunction (66). Clinical MR sequences are sensitive to fluid where 

excessive liquid (e.g. microbleeds) will produce a hyperintense signal, as well as 

subcortical white matter lesions that may appear hyper-intense and could indicate a more 

severe diffuse axonal injury (67). Importantly, these white matter hyper-intensities are 

not sufficient clinical diagnostic tools because they are only present in a fraction of TBI 

patients and may appear in healthy individuals at 3T or could be related to other 

independent pathology, especially in older patients. This demonstrates the clinical 

difficulty with diagnosis and monitoring mTBI patients and the need for more advanced 

sequences that can probe subtle brain changes that are not visible on clinical anatomical 

CT and MR scans.  

Concussion management begins with removal from risk if a concussion is 

suspected, and once diagnosis is made, education and reassurance is provided (59). 

Management of acute symptoms are addressed individually, such as traditional over-the-

counter medication for headaches, antianxiety or antidepressants for mood disorders, 

melatonin for sleep, and psychotherapy or cognitive-behavioral therapy for various 

cognitive or behavioral issues. Once symptoms have resolved after a period of rest, a 

graded return-to-play protocol can be implemented with close supervision and 

observation for return of symptoms. However, there is no consensus period for which rest 

should be prescribed, and the exact recommendations of “rest” are not clear (68). 

Management should be tailored to the individual, and if symptoms are prolonged, further 

diagnostic evaluation may be necessary. A special consideration in the pediatric and 

collegiate populations is return-to-learn prior to return-to-play. With these student-
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athletes, Choe et al recommend that they should be back to full schoolwork without 

accommodations before returning to full physical activity (59). 

1.5.2 Acute Neurometabolic Cascade 

As post-concussive deficits are characterized by minimal observable anatomical 

damage that typically resolves over time, they are believed to stem from transient 

neuronal dysfunction rather than cell death (69,70). This dysfunction can result from 

various factors such as ionic shifts, altered metabolism, impaired connectivity, or changes 

in neurotransmission. The understanding of concussion necessitates a comprehensive 

grasp of its underlying pathophysiology.  

Immediately after biomechanical injury to the brain, there is disruption of 

neuronal membranes, axonal stretching, and opening of potassium (K+) channels, which 

leads to an increase in extracellular K+ (69,70). As extracellular K+ increases, neuronal 

depolarization is triggered, leading to release of excitatory amino acids (EAAs), such as 

glutamate, and opening of EAA receptor channels, and still greater K+ flux. Efforts to 

restore ionic balance prompt activation of sodium-potassium pumps which require 

adenosine triphosphate (ATP) (71), and thus lead to an increase in glucose utilization, 

initiating a period of hyperglycolysis. Calcium (Ca2+) influx follows, contributing to 

mitochondrial dysfunction and decreased oxidative metabolism, ultimately leading to 

energy failure. This increase in glucose use occurs almost immediately after fluid 

percussion injury in rats and persists for up to 30 minutes in the hippocampus (72). 

Calcium accumulation is seen within hours of experimental concussion and may persist 

for 2 to 4 days (73). Increased axonal Ca2+ levels have been shown to lead to microtubule 
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breakdown from 6 to 24 hours after the initial injury, which can lead to secondary axonal 

injury, discussed in the next section. 

After the initial period of hyperglycolysis, cerebral glucose use is diminished by 

24 hours post-injury and remains low for 5 to 10 days in preclinical studies (72). Positron 

emission tomography (PET) in humans shows similar decreases in global cerebral 

glucose metabolism that may last 2 to 4 weeks post-TBI (74). In experimental TBI, 

cerebral blood flow (CBF) may be reduced to 50% of normal (75). The increased glucose 

use (hyperglycolysis) coupled with lower CBF represents a mismatch in supply and 

demand, which results in a potentially damaging energy crisis. Injured cells may be 

capable of recovering after an initial injury, but a second concussion during this energy 

crisis can lead to cell death (69). Thus, repeated injury within a particular time frame can 

lead to a much larger anatomical and behavioral impairment. 

1.5.3 Subacute Pathophysiology 

Subacute pathophysiology caused by the initial neurometabolic cascade include 

axonal injury, impaired synaptic plasticity, neuroinflammation, blood-brain barrier 

dysfunction, possible cell death, and demyelination (69,70,76). Each of these aspects are 

described in detail below.  

Axonal Injury: 

Diffuse axonal injury (DAI) is a common feature of mTBI, involving axonal 

stretching, mitochondrial swelling, and disrupted axonal transport mechanisms, often 

leading to hyperphosphorylation of tau protein and subsequent neurodegenerative 

processes. This is partly because the anisotropically arranged axonal fibers in white 
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matter tracts are highly susceptible to compression, tension, and torsion forces during 

rapid acceleration or deceleration (77,78). Hyperphosphorylation of tau, a protein crucial 

for stabilizing neuronal microtubules, occurs in TBI, causing reduced microtubule 

binding and disassembly, ultimately impairing axonal transport and compromising 

neuronal and synaptic function (79). Moreover, this leads to tau aggregation, which has 

been linked to subsequent neurodegenerative disease (80). There is an accumulation of 

other proteins as well, particularly amyloid precursor protein (APP), which leads to the 

formation of multiple axonal swellings (also referred to as ‘axonal beads’ and the process 

of ‘axonal beading’) hindering axonal transport (81). Figure 1.2 depicts the axonal 

beading process. This protein buildup can trigger secondary processes that result in the 

disconnection of axons. While the detached distal segment of the axon undergoes 

Wallerian degeneration, the proximal segment and its neuronal soma often swell but may 

not necessarily die (82). 
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Figure 1.2 – Mechanism of axonal beading following mTBI. (a) Two microtubules within 

an intact axon (pre-injury). (b) Following injury, mechanical breaking occurs at different 
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sites in both microtubule 1 and microtubule 2. Misalignment of broken microtubules 

causes deformation of the axon observed as two discrete undulations. (c) Shortly 

afterward, depolymerization from the broken ends of the microtubules allows the 

undulations to collapse and the axon recovers its linear morphology. (d) Microtubule 

breakage leads to impairment of axonal transport and subsequent accumulation of 

transported cargos near the microtubule breaking point. By contrast, axon transport on 

the intact microtubules remains normal. This ‘partial transport impairment’ may account 

for the formation of serial swellings or axonal beading following mTBI. Image adapted 

from Tang-Schomer et al. (83) with copyright permission from Elsevier. 

Impaired Synaptic Plasticity: 

During normal development, the reorganization of dendritic spines results in 

synaptic remodeling (84). An in vivo rat model demonstrated that mTBI induces 

alterations in glutamate receptors and release of the inhibitory neurotransmitter GABA. 

These changes subsequently disrupt normal developmental plasticity and memory in rats 

(85). 

Neuroinflammation: 

Neuroinflammation, characterized by activation of astrocytes, microglia, 

macrophages, and inflammatory cytokines (a type of cell-signaling molecule), exhibits 

both neuroprotective and neurotoxic effects, impacting the progression of injury and 

recovery (70,76). Figure 1.3 shows activated forms of astrocytes and microglia. 



22 

 

Astrocytes act as key responders to changes in the extracellular environment 

following mTBI (86), becoming reactive through hypertrophy and proliferation. 

Astrocytes play a pivotal role in regulating the inflammatory process and limit the extent 

of damage through reactive astrogliosis (87). Reactive astrogliosis can be defined as a 

finely graded continuum of multiple potential changes that range from reversible 

alterations in gene expression and cell hypertrophy, to scar formation that involves 

substantial cell proliferation and permanent rearrangement of tissue structure. Astrocytes 

can produce immunomodulatory molecules, such as cytokines, and inflammatory 

mediators to promote clearance of cytotoxic cellular debris and decrease inflammation. In 

response to focal tissue damage or inflammation, reactive astrocytes form scar borders 

that segregate damaged tissue from adjacent healthy tissue. However, reactive astrocytes 

can also release free radicals and proinflammatory cytokines, which can trigger the 

activation of microglia. The outcome of these dual responses — neuroprotective and 

neurotoxic — is observed in preclinical models of TBI, with the balance influenced by 

the nature and severity of the injury (88,89). 

Microglia and macrophages are primary contributors to tissue inflammation 

beyond the core injury site (90). Microglia are highly specialized macrophages that are 

distributed throughout the brain parenchyma and serve as the primary immune effector 

cells in the CNS (91). Microglial proliferation is detectable within 24 hours post-injury 

(92). Peripheral macrophage infiltration is detectable within a few days post-injury, as 

monocytes infiltrate the blood-brain barrier and are converted into macrophages. 

Following injury, microglia and macrophages migrate towards the site of damage, 

engulfing necrotic tissue, cellular debris, and harmful substances (93). As prolonged 
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microglial activation contributes to the spread of secondary degeneration (94), sustained 

inflammation plays a critical role in long-term axonal injury, neurodegeneration, and 

subsequent neurological deficits (93,95,96). 

 

Figure 1.3 – Astrocyte reactivity and microglial activation post-concussion. In their 

reactive state, astrocytes have a ramified appearance, and microglia have an ameboid 

appearance. Image adapted from Freire et al. (97) (open access). 

Blood-Brain Barrier Dysfunction: 

The blood-brain barrier (BBB) is a complex network of capillaries responsible for 

maintaining a stable extracellular environment by regulating the passage of blood 

substances into the brain (70). BBB dysfunction following mTBI exacerbates 
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neuroinflammation, with disruptions in BBB integrity allowing infiltration of other 

inflammatory cells, such as neutrophils, monocytes, and lymphocytes. Neuroimaging 

reveals evidence of BBB disruption following both mild and moderate TBIs, with the 

BBB typically recovering its integrity within days to weeks (98). BBB disruption has also 

been observed in American football players due to exposure to subconcussive head 

impacts (99). 

Cell Death: 

While cell death is prominent in moderate and severe TBI, preclinical mTBI 

models have indicated limited cell death (70). One study revealed that patients with 

recent mTBI exhibit significantly smaller volumes in key brain regions two months after 

injury, but brain tissue volume is recovered one year post injury (100). 

Demyelination: 

 Demyelination (a loss of myelin with relative preservation of axons) can arise 

from various mechanisms, including primary axonal injury leading to Wallerian 

degeneration or the death of myelin-producing cells (oligodendrocytes) (76). Rodent 

models have demonstrated subacute loss of myelinated axons and changes in myelin 

structure following moderate TBI (101,102). Oligodendrocytes, which produce 

significant amounts of reactive oxygen species (ROS), are particularly vulnerable to 

oxidative stress that occurs after mTBI. Additionally, myelin debris can trigger 

inflammation, leading to the activation of microglia and astrocytes, which further 

promote myelin breakdown (103) and the recruitment of oligodendrocyte progenitor cells 

(OPCs) to damaged brain regions (104). Despite an acute regenerative response observed 
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with OPC localization to injured areas, dysmyelination (which is atypical myelinogenesis 

that results in abnormal or delayed myelination) and demyelination can persist and 

progress for up to one year post-injury (105). This coincides with prolonged microglial 

and astrocytic activation suggesting sustained myelin debris-induced stimulation 

(106,107).   

1.6 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is arguably one of the most versatile in vivo 

imaging techniques because the measured signal can be sensitized to a variety of features 

of the tissue and thus yield a very broad range of contrasts and information. This section 

provides a brief overview of classical MR physics, contrast mechanisms, as well as 

diffusion and magnetization transfer MRI. For more detail, the reader is referred to the 

following references, which provide in-depth discussions of MR physics and pulse 

sequences: 

• Nishimura, Dwight G. Principles of Magnetic Resonance Imaging. Lulu, 2010. 

• Bernstein, Matt A., Kevin F. King, and Xiaohong Joe Zhou. Handbook of MRI 

pulse sequences. Elsevier, 2004. 

1.6.1 Nuclear Magnetic Resonance 

Any nucleus with an odd number of protons and/or an odd number of neutrons 

possesses a nuclear spin angular momentum (108). These MR-relevant nuclei give rise to 

a small magnetic moment and are referred to as “spins”. In biological tissue, hydrogen 

(1H), with a single proton, is the most abundant nucleus, and thus most MR research is 
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based on proton (1H) imaging. In 1H MRI, the signal originates primarily from water 

molecules in tissue. 

In the absence of an external magnetic field, the spins are oriented randomly, and 

the net macroscopic magnetic moment is zero. However, in the presence of an external 

magnetic field, 𝐵0, (a) individual magnetic moments have a slight tendency to align in the 

direction of 𝐵0 (referred to as the z-axis or longitudinal direction, by convention) to 

create a net magnetization and (b) exhibit precession about the z-axis at a well-defined 

frequency called the Larmor frequency (𝜔0). The Larmor frequency relates to 𝐵0 by: 

𝜔0 =  𝛾𝐵0    (1.1) 

Where 𝛾 is the gyromagnetic ratio, a known constant unique for each type of atom. For 

1H, 𝛾 = 42.58 MHz/T. To generate a signal for MRI, the net magnetization within a 

sample is first tipped into the transverse plane to generate a nonzero transverse 

magnetization, as described in Section 1.6.2. This is achieved by applying a 

radiofrequency (RF) magnetic field oscillating at the Larmor frequency and is often 

referred to as “excitation.” The transverse magnetization will oscillate, producing a signal 

based on the Larmor frequency, in a process known as nuclear magnetic resonance 

(NMR).  

1.6.2 T1, T2, and T2* Contrast 

Macroscopically, the 𝐵0 field polarizes the sample, inducing a net magnetization 

vector along the z-direction of strength 𝑀0. To obtain an MR signal, an RF magnetic 

pulse (𝐵1) tuned to the resonant frequency of the spins is applied in the xy (transverse) 
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plane to excite the spins out of equilibrium. 𝐵1 applies a torque which rotates the 

magnetization vector away from the z-axis, by a prescribed angle (the flip angle, α) 

dependent on the strength and duration of 𝐵1, as the magnetization vector continues to 

precess about the z-axis at the resonant frequency. 

Following an excitation, relaxation back to equilibrium occurs as the transverse 

component of magnetization decays while the longitudinal component returns to its 

equilibrium state. The time constant characterizing the return of the magnetization vector 

along the z-axis (longitudinal axis) is called T1 or the spin-lattice time constant, while the 

time constant characterizing the decay of the vector in the xy (transverse) plane is called 

T2 or the spin-spin time constant. T1 relaxation arises from the loss of thermal exchange 

of the nuclei to surrounding lattice, while T2 relaxation arises from the dephasing of 

individual spins due to interactions with the magnetic moments of surrounding atoms. 

Due to inhomogeneities in the main magnetic field (𝐵0), a spatially varying phase 

accumulates which causes the net transverse magnetization to decrease due to destructive 

interference between spins. Thus, the observed T2 decays much faster than the “true” T2 

and is denoted T2*. T1, T2, and T2* depend on the chemical environment and the MR 

signal can be sensitized to either contrast. T1 and T2 relaxation are characterized by 

exponential functions: 

𝑀𝑧(𝑡) =  𝑀0 + (𝑀𝑧(0) −  𝑀0)𝑒−𝑡
𝑇1⁄    (1.2) 

𝑀𝑥𝑦(𝑡) =  𝑀𝑥𝑦(0)𝑒−𝑡
𝑇2⁄      (1.3) 
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Where 𝑀𝑧 is the net longitudinal magnetization along the z-axis, and 𝑀𝑥𝑦 is the net 

transverse magnetization along the xy-plane. The observed T2 decreases to T2* via: 

𝑇2
∗ =  (

1

𝑇2
+  

1

𝑇2
′)

−1     (1.4) 

Where 𝑇2
′ is the contribution to dephasing due to susceptibility. 

1.6.3 Diffusion-weighted MRI 

The MRI contrast can also be manipulated to reflect the displacement of water 

molecules as a result of the diffusion process (109,110), in a technique referred to as 

diffusion-weighted or diffusion MRI. The diffusion process is also known as random 

walk, thermal agitation, or Brownian motion, as it was first described by Robert Brown in 

1827 (111). Later, in 1855, Adolf Fick first described how solute particles are distributed 

over time due to nonuniform concentration, via Fick’s second law of diffusion: 

𝜕𝜑(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝜑(𝑥,𝑡)

𝜕2𝑡
     (1.5) 

Where 𝜑 is the concentration of a particular particle at time 𝑡 and position 𝑥, and 𝐷 is the 

diffusivity in units of 𝑙𝑒𝑛𝑔𝑡ℎ2 𝑡𝑖𝑚𝑒−1. Half a century later, Albert Einstein demonstrated 

that in the absence of a concentration gradient, the above equation can be used to describe 

the stochastic nature of Brownian motion and 𝜑(𝑥, 𝑡) can be interpreted as the probability 

density function of a particular particle’s location, 𝑥, after a time, 𝑡 (112). In a free 

medium, such as a glass of water, where displacement is not limited by any external 

barriers, a particle’s displacement is governed by a Gaussian probability distribution: 

𝜑(𝑥, 𝑡) =  
1

√4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡     (1.6) 
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The variance of this distribution represents the mean squared displacement of the particle: 

〈𝑥2〉 = 2𝐷𝑡     (1.7) 

In biological tissue, Gaussian diffusion alone cannot fully characterize diffusion, 

due to the presence of barriers such as membranes, molecules, boundaries, and various 

structures. Molecules in biological tissue can be described as undergoing a) restricted 

diffusion, b) hindered diffusion, or c) free or Gaussian diffusion, as shown in Figure 1.4. 

Molecules constrained by the presence of an impermeable barrier, such as within axons 

and cells, are experiencing restricted diffusion, while molecules impeded by semi-

permeable barriers and other obstacles which do not completely restrict their movement, 

such as in the extracellular space, are experiencing hindered diffusion. Molecules in the 

cerebrospinal fluid (CSF) pool, which are not encountering barriers, are undergoing free 

or Gaussian diffusion. 

Figure 1.4 - Visual representation of the diffusion trajectory of a water molecule for the 
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following diffusion regimes: restricted diffusion (within impermeable boundaries such as 

axons and cells), hindered diffusion (impeded by semi-permeable boundaries and other 

obstacles such as in the extracellular space), free diffusion (not encountering any 

barriers such as in CSF). 

1.6.4 Conventional Diffusion Encoding 

The first MRI pulse sequence for diffusion-weighted image contrast, the pulsed 

gradient spin echo (PGSE) technique, was developed by Stejskal and Tanner in 1965 

(113). PGSE resembles a spin echo sequence with the addition of two (usually) identical 

gradient waveforms inserted before and after the 180° refocusing RF pulse, as depicted in 

Figure 1.5. In a spin echo (SE) sequence, the 180° refocusing RF pulse rotates the 

dispersing spins 180° about the transverse plane so that the spins will refocus at a later 

time; this refocused magnetization is known as the spin echo (114). Thus, the SE 

sequence compensates for magnetic field inhomogeneities and results in signal that is T2-

weighted (not T2*-weighted). In the PGSE sequence, the pulsed gradients (also called the 

diffusion gradients) first dephase and then, after some time, rephase spins. The phases of 

stationary spins are unaffected by the diffusion gradients since any phase accumulation 

from the first gradient lobe is reversed by the second. However, spins diffusing along the 

direction of the gradients move into different locations between the first and second 

lobes, acquiring a net phase that accelerates the decay of the transverse magnetization due 

to phase dispersion. Thus, the diffusion-weighted signal acquired from moving spins is 

lower than that of stationary spins, due to phase incoherence that arises from motion. 
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Figure 1.5 - Pulsed gradient spin echo (PGSE) diffusion encoding sequence. Static spins 

experience dephasing due to gradients alone which is reverted by the second gradient. 

Diffusing spins experience additional dephasing due to displacements which is not 

reverted by the second diffusion gradient resulting in signal loss. Image reprinted from 

Patterson et al. (115) with permission from Springer Nature. 

 According to the work of Le Bihan et al., the diffusion-attenuated signal can be 

expressed as: 

𝑆(𝑏) =  𝑆0𝑒−𝑏𝐷     (1.8) 

Where 𝑆(𝑏) is the diffusion weighted signal; 𝑆0 is the signal with no diffusion gradients 

applied; 𝐷 is the diffusivity in units of 𝑙𝑒𝑛𝑔𝑡ℎ2 𝑡𝑖𝑚𝑒−1; 𝑏 is the b-value, which 

quantifies the degree of diffusion weighting, in units of 𝑡𝑖𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ−2 to preserve 
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dimensionality. The b-value gives an indication of the amount of signal attenuation that 

will occur in an image due to diffusion and includes all variables related to the diffusion 

gradients: 

𝑏 =  𝛾2𝐺2𝛿2(𝛥 −
𝛿

3
)     (1.9) 

Where 𝛾 is the gyromagnetic ratio; 𝐺 is the gradient amplitude of the diffusion gradients, 

each of which has a duration 𝛿, and a delay of 𝛥 between them, as depicted in Figure 1.5. 

As Equation (1.8) assumes Gaussian diffusion, which is usually not true for biological 

tissue (as discussed in Section 1.6.3), the terms ‘apparent diffusion coefficient’ (ADC) or 

‘mean diffusivity’ (MD) are used interchangeably in the field to indicate an 

approximation of diffusivity, rather than true diffusivity (𝐷). For simplicity, this thesis 

will use the terminology ‘mean diffusivity’ (MD). 

 The most successful application of dMRI has been in acute brain ischemia, 

applying conventional diffusion weighted imaging. dMRI is now the imaging modality of 

choice for the management of stroke patients, as there is a decrease in water diffusion 

immediately after ischemic injury (7). 

1.6.5 Echo Planar Imaging 

A consequence of sensitizing the MR signal to the motion of water molecules is 

that dMRI is inherently susceptible to patient movement. To reduce the confounding 

effects of gross head motion and physiological motion on signal measurements, dMRI 

often uses an acquisition technique called echo planar imaging (EPI), which is one the 

fastest MRI pulse sequences capable of producing a 2D image within tens of milliseconds 
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(116,117). MRI collects data in “k-space,” which is the frequency content of the object, 

and the image can be recovered after an inverse Fourier transform to k-space data (Figure 

1.6). A typical single shot EPI sequence acquires an entire 2D k-space grid after a single 

RF excitation, as depicted in Figure 1.7. 

 

Figure 1.6 – Raw data in k-space (a) and corresponding image data in image space (b). 

To acquire image data, an inverse Fourier transform is applied to k-space data. Image 

adapted from Paschal & Morris (118) (open access). 
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Figure 1.7 - Simplified pulse sequence diagram for a diffusion-weighted echo planar 

imaging (EPI) acquisition. The slice selection gradient (blue, (a)) limits excitation from 

the initial 90° radiofrequency (RF) pulse to a single slice in the z-direction. On either 

side of the refocusing 180° RF pulse are dephasing and rephasing diffusion-sensitizing 

gradients (gray, (b)). The gradients applied during acquisition traverse k-space: each 

rectangular gradient in the x-direction (orange, (c)) moves the k-space sampling 

trajectory through a line in the x-direction in k-space (frequency-encoding direction), 

while each “blip” gradient in the y-direction (green, (d)) shifts the sampling trajectory to 

a new line in the y-direction of k-space (phase-encoding direction). This results in a “zig-

zag” traversal of k-space, with alternating lines of k-space sampled in reverse directions 

(e). Gradient echoes are collected with each lobe of the frequency-encoding gradient. 

The spin-echo at TE (echo time) occurs at the center of k-space. 
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Compared to conventional spin-echo and gradient-echo imaging, EPI is prone to a 

variety of artifacts (109). A common EPI artifact is Nyquist ghosting along the phase-

encoded direction, which appears as “ghost” images displaced from the original image by 

half the field of view in the phase-encoding direction. Nyquist ghosts can result from 

many possible sources including gradient coil heating, patient motion, and susceptibility. 

The most common cause, however, is the induction of eddy currents in the coils and 

magnet housing in response to the rapidly changing gradients in EPI. These eddy 

currents, in turn, produce local fields that distort 𝐵0 and add phase shifts to the data. On 

modern systems, Nyquist ghosting is rare as they can be reduced/removed using 

calibration or reconstruction techniques. Off-resonance effects arising from magnetic 

susceptibility variations (e.g., from tissue-air interfaces), 𝐵0-field inhomogeneities, and 

eddy currents can severely distort echo planar images and lead to signal loss. These 

effects can be largely mitigated using post-processing techniques that will be noted in the 

methods section of later chapters. 𝑇2
∗-induced image blurring along the phase-encoded 

direction is also possible, as the k-space lines in EPI are acquired at different times 

leading to different 𝑇2
∗ weightings.  

1.6.6 Diffusion Tensor Imaging 

Signal representation refers to a class of data analysis methods where the MRI 

signal is fit by a mathematical model that captures its features without making any 

assumption about the underlying tissue or microstructure (110). The most popular signal 

representation is diffusion tensor imaging (DTI), which describes diffusion using a 

Gaussian model (119) based on Equation (1.8). At low diffusion weighting, 𝑏 up to 
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1000s/mm2, the natural log of the diffusion signal is well represented by a linear function 

of the b-value, where the slope yields the mean diffusivity (MD): 

ln (
𝑆(𝑏)

𝑆0
) =  −𝑏𝐷     (1.10) 

Because biological tissues such as white matter are anisotropic, MD needs to be 

measured along at least six noncollinear directions of space, from which the diffusion 

tensor can be calculated as a 3x3 symmetric matrix: D = [Dxx Dxy Dxz; Dyx Dyy Dyz; Dzx Dzy 

Dzz]. The diffusion tensor is usually visualized by an ellipsoid, with three principal axes 

defined by the eigenvectors of the diffusion tensor (ʋ1, ʋ2, ʋ3) and their corresponding 

eigenvalues (𝜆1, 𝜆2, 𝜆3), as shown in Figure 1.8. From the tensor, one can derive measures 

of diffusion magnitude and diffusion anisotropy, including: 

• Mean diffusivity (MD), averaged across all directions of space (average of all 

eigenvalues).  

• Axial diffusivity (AD), in the direction diffusion is least impeded (i.e., eigenvalue 

corresponding to the largest eigenvector, 𝜆1), such as parallel to the fibers in a 

white matter bundle. 

• Radial diffusivity (RD), averaged over all directions in the plane perpendicular to 

the axial diffusivity, such as perpendicular to the fibers in a white matter bundle 

(average of 𝜆2 and 𝜆3). 

• Fractional anisotropy (FA), describing the anisotropy of the diffusion tensor. FA 

is a normalized value between 0 and 1, with 1 being highly anisotropic and 0 

being completely isotropic. 
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DTI is mostly used to visualize white matter anisotropy and has been applied 

extensively in animal models, such as models of Alzheimer’s Disease (120) and 

traumatic brain injury (121).. Although DTI is not used widely in the clinic, its 

application provides new insights. For example, in stroke, MD and FA in white matter 

have different time courses, enhancing the potential for the use of dMRI in accurate 

diagnosis and prognosis of stroke (122). 

Figure 1.8 – Diffusion tensor ellipsoids with corresponding eigenvalues (𝜆1, 𝜆2, 𝜆3) 

illustrated for various environments within a voxel. For a healthy axon bundle (top left 

panel), water diffusion is highly anisotropic and directional, resulting in an elongated 

ellipsoid, with 𝜆1 in the direction diffusion is least impeded, parallel to the axons. For a 

demyelinated axon bundle (top right panel), water diffusion within a voxel is less 

anisotropic in comparison with a healthy axon bundle, resulting in a wider ellipsoid. The 

diffusion tensor ellipsoid is more spherical for a group of cells in a healthy brain region 

(bottom left panel). Infiltration of inflammatory cells after injury (bottom right panel) 

results in a smaller ellipsoid, as diffusion is more hindered in the extracellular space. 
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1.6.7 Diffusion Kurtosis Imaging 

The deviation from Gaussian diffusion in biological tissues can be quantified 

using a dimensionless metric called the excess kurtosis. Since the deviation from 

Gaussian behavior depends on the complexity of the tissue in which water is diffusing, a 

high diffusion kurtosis suggests a high degree of diffusional heterogeneity and/or 

microstructural complexity. Complex biological tissues have a positive kurtosis, with the 

probability distribution having fatter tails, as shown in Figure 1.9, and is associated with 

restricted diffusion through the reduction of the mean squared displacement. 

 

Figure 1.9 – Gaussian versus non-Gaussian diffusion. Free or uniform water diffusion 

(top panel) can be modelled by Gaussian diffusion (DTI) and there is no kurtosis (K = 0). 
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Complex biological tissue (bottom panel) results in a non-Gaussian probability 

distribution for any given particle, with positive kurtosis (K > 0). Diffusion in this 

environment is better modelled by Diffusion Kurtosis Imaging (DKI). Image reprinted 

from Zhuo & Gullapalli (123) with permission from Springer Nature. 

Jensen et al. (124) developed a method to estimate diffusion kurtosis, called 

Diffusion Kurtosis Imaging (DKI), which is based on the PGSE sequence, but requires 

higher b-values, as kurtosis is only apparent for high diffusion weighting (b > 1000 

s/mm2). DKI extends the DTI formalism through a series expansion of the signal S(b) 

and results in an additional second order term added to equation 1.7:  

ln (
𝑆(𝑏)

𝑆0
) =  −𝑏𝐷 +

𝑏2𝐷2𝐾

6
     (1.11) 

where 𝐾 denotes the dimensionless kurtosis and all other parameters remain the same as 

in equation 1.10. The kurtosis tensor has 15 unique elements and thus requires at least 15 

different directions to estimate and requires at least 3 b-values (since the method involves 

a two-parameter quadratic fit) to determine both diffusion and kurtosis from the acquired 

data. Figure 1.10 depicts DTI and DKI fits to dMRI data, illustrating the inaccuracy 

associated with the Gaussian diffusion assumption in DTI at b-values greater than 1000 

s/mm2. 

 DKI is translatable to clinical protocols and has been shown to provide 

complementary information to DTI, as well as more subtle changes in tissue 

microstructure resulting from pathological processes (123,125–127). 
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Figure 1.10 - DTI versus DKI fit to diffusion data. Note that when the b-values exceed 

1000 s/mm2, the data fits the DKI model significantly better than the DTI model. Image 

reprinted from Zhuo et al. (123) with permission from Elsevier. 

1.6.8 DTI and DKI in Neurological Pathology 
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This section discusses the temporal evolution of DTI and DKI metrics in models 

of systemic inflammation, demyelination, traumatic brain injury, and stroke. Table 1-1 

summarizes the interpretations from literature in terms of how DTI and DKI metrics may 

be changing due to different cellular processes, as informed by human and animal 

studies. 

Low-dose lipopolysaccharide (LPS) has been used to evaluate the sensitivity of 

dMRI to systemic inflammation (128). After LPS injection into rat brains, several studies 

have shown an initially more restricted environment, characterized by decreased MD 

(129) and increased mean kurtosis (MK) (130), which is explained by increasing size and 

number of microglia, astrocytes, and macrophage aggregates as observed with histology. 

The initial higher degree of diffusion restriction observed can be followed by a reduced 

restriction, characterized by increased MD 4 days after LPS injection (129), which 

coincides with an increase in T2 relaxation time indicative of vasogenic edema. Such 

biphasic changes observed in diffusion metrics and reflecting acute, subacute, and 

chronic inflammatory processes are hallmarks of dMRI studies.  

The cuprizone mouse model of CNS demyelination has also been used to assess 

the temporal evolution of DTI and DKI metrics following acute inflammatory 

demyelination and spontaneous remyelination (131–134). Within the first 3 weeks of 

cuprizone intoxication, MD decreases and MK increases, which is explained 

histologically by increased cellularity and membrane barriers due to infiltration and 

proliferation of macrophages and microglia. In addition to microgliosis, quantitative 

histology also demonstrated extensive demyelination after 3 weeks, which is typically 

expected to lower diffusion restriction, resulting in higher MD and reduced MK (132). 
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During the acute phase of cuprizone intoxication, demyelination and microgliosis have 

competing effects on diffusion, although the observed dMRI changes at 3 weeks 

correspond to acute inflammation rather than demyelination. Decreasing MD and 

increasing MK between 6 and 12 weeks are consistent with spontaneous remyelination, 

confirmed by histology. In addition to microgliosis and demyelination followed by 

remyelination, quantitative histology detected astrogliosis at 6 weeks, as well as edema 

reported on T2-weighted MRI. However, the sensitivity of diffusion to astrogliosis and 

edema was not evident in the cuprizone animal model due to the presence of other 

cellular processes simultaneously affecting the microstructure. 

Another well-studied model that exhibits various microstructural changes is 

traumatic brain injury (TBI). For TBI as well, biphasic changes are observed over time, 

with an initial higher diffusion restriction in the acute phase, followed by a lower 

diffusion restriction in the chronic phase (123,135–138). However, trends in DTI and 

DKI metrics may not exactly mirror each other when tracking these longitudinal changes. 

For example, an increase in MK was associated with increased reactive astrogliosis, 

confirmed by immunohistochemistry, in a mild controlled cortical impact injury rat 

model by Zhuo et al (123). Increased MK continued during the subacute phase when the 

DTI metrics already returned to baseline, supporting that DKI provides additional 

information that is not available through standard DTI. 

Biphasic changes in DTI and DKI metrics are also observed in stroke models 

during the acute, subacute, and chronic stages (139). The acute stage typically presents 

with more restricted diffusion due to axonal beading and cytotoxic edema (140), followed 

by pseudonormalization of dMRI metrics due to vasogenic edema (as observed on T2) 
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during the subacute phase, and subsequent less restricted diffusion due to neuronal and 

axonal loss in the chronic phase. 

These studies illustrate how competing cellular processes reduce the overall net 

effect of pathology on diffusion and highlight the need to develop and apply dMRI 

methods with improved sensitivity and specificity.  

Table 1-1: Overview of how different cellular processes may affect DTI and DKI 

parameters 

Pathology FA MD AD RD MK 

Axonal swelling or beading    ≈  

Vasogenic edema     ≈ 

Cytotoxic edema (cell swelling)      

Demyelination   ≈   

Remyelination   ≈   

Microgliosis and macrophages      

Astrogliosis      

FA – fractional anisotropy; MD – mean diffusivity; AD – axial diffusivity; RD – radial 

diffusivity; MK – mean kurtosis 
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1.6.9 Limitations of DTI and DKI 

Despite their widespread use in both animal and human studies, DTI and DKI have 

some limitations, which reduce their sensitivity and specificity and lead to inaccurate 

representations of neuroanatomy. Here, four major limitations are discussed: 1) DTI 

assumes Gaussian diffusion; 2) Both DTI and DKI are dependent on fiber orientation 

dispersion; 3) Both DTI and DKI cannot differentiate between isotropic and anisotropic 

sources of diffusion or kurtosis; 4) Both DTI and DKI do not consider time-dependent 

diffusion. 

1) DTI assumes Gaussian diffusion: 

This limitation was briefly mentioned in Section 1.6.3 but is described in greater 

detail here for completeness. DTI assumes Gaussian (free) diffusion, which cannot fully 

characterize complex biological tissue, which includes cells, axons, and other 

compartments of various sizes. Free diffusion is an oversimplification, because the 

diffusivity within a voxel represents the sum of diffusivities of all water molecules from 

multiple water-containing compartments (i.e. axons, soma, extracellular water, etc.) and 

over multiple directions. Water molecules in different compartments within the voxel 

may be diffusing at different rates, and the signal would be better characterized by a 

multiexponential decay function. The logarithm of the dMRI signal should decrease 

linearly with increasing b-value, based on Equation 1.10, assuming Gaussian diffusion. 

However, at higher b-values, the signal vs. b-value deviates from this straight line due to 

the variance in diffusivity (Figure 1.10), and more advanced signal representations that 

can accurately quantify this deviation may provide more insight about the underlying 

tissue (124,141). 
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2) Both DTI and DKI are dependent on fiber orientation dispersion: 

Both DTI and DKI are unable to distinguish between microstructural changes and 

neuron fiber orientation dispersion (8,21), reducing their specificity to microstructural 

changes in brain regions with crossing fibers. While the mean parameters (mean 

diffusivity and mean kurtosis) are not sensitive to orientation dispersion, the direction 

dependent measures (axial and radial diffusivity and kurtosis) are sensitive to this 

confounding factor, which consequently impacts fractional anisotropy (FA). FA is a 

parameter related to microstructural features such as axon density, diameter, and 

myelination, and can act as a metric for neurodegeneration for a bundle of fibers aligned 

coherently within a voxel, as shown in Figure 1.11. However, the interpretation of FA in 

terms of microstructure becomes ambiguous when there is a distribution of axon 

orientations within the image voxel (141). A voxel with crossing fibers will be modelled 

as having lower macroscopic diffusion anisotropy (a rounder diffusion ellipsoid), 

resulting in lower FA, while a voxel with parallel fibers will have higher FA, assuming 

that both voxels have healthy fibers with the same degree of structural integrity and 

microscopic diffusion anisotropy. This confounding effect of axon orientation limits the 

specificity of FA to white matter neurodegeneration. 
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Figure 1.11 - The effects of various tissue geometries on fractional anisotropy (FA), 

acquired from DTI. The cylinders (top panel) approximate neuronal axons, while the 

spheres represent non-neuronal, spherical cells. Though columns 1-3 all depict intact 

axons, the decreasing orientational coherence from left to right leads to decreasing 

values of FA. Moreover, the DTI signal representation cannot distinguish between 

incoherently arranged axons (column 3) and spherical cells (column 4), as diffusion 

appears isotropic in both cases. Image adapted from Lasic et al. (141) (open access). 

This could lead to circumstances in which voxelwise anisotropy increases while 

microscopic anisotropy decreases (142). For example, FA was found to increase in a 

region containing crossing axons when axons along one direction were preferentially 

damaged compared to those in a perpendicular tract (143). Calculating diffusion MRI 

metrics without the confounding influence of orientation dispersion will provide a more 

accurate representation of neuroanatomy. 
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3) Both DTI and DKI cannot differentiate between isotropic and anisotropic sources 

of diffusion or kurtosis: 

The reason for the previous limitation, in which diffusion anisotropy is confounded 

by fiber orientation dispersion, is that the DTI and DKI signal representations model both 

isotropic and anisotropic sources of diffusion together and are unable to disentangle the 

two, which results in vague interpretations of neuroanatomy. Isotropic diffusion arises 

from compartments with equal diffusion in all directions, such as round cells, while 

anisotropic diffusion arises from compartments with highly directional diffusion, such as 

axons and elongated cells. These concepts are further explored in Section 1.7.1. 

Disentangling isotropic and anisotropic diffusion sources will result in more specific 

interpretations of microstructural changes. 

4) Both DTI and DKI do not consider time-dependent diffusion: 

In the Gaussian diffusion scheme, the diffusivity remains constant regardless of the 

diffusion time (defined primarily by the delay (𝛥) between the diffusion gradients). 

However, in biological tissue the diffusivity exhibits diffusion time-dependence due to 

the presence of boundaries. If the diffusion time is short enough that most water 

molecules do not reach any restricting or hindering boundaries within the tissue, the 

measured MD will be equal to the diffusivity of free water (144). However, if the 

diffusion time is long enough that most molecules will encounter barriers, the measured 

MD will decrease to an asymptotic value called the steady state diffusivity (145). 

Standard DTI experiments, using the PGSE sequence, probe long enough diffusion times 

to acquire steady-state MD measurements. Given hardware constraints, diffusion times 

achievable in PGSE can probe displacements on the order of 10 – 30 μm, which is much 
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larger than typical axonal and cellular diameters (9). In mice, axonal diameters range 

from 0.1 - 2.9 µm with high frequencies around 0.4 - 0.8 µm (146), and cellular 

diameters range from 4 - 10 µm (147–151). Probing shorter length scales and the time-

dependence of diffusion would provide insight into smaller, previously inaccessible, 

microstructural features. 

1.6.10 Magnetization Transfer MRI  

The transverse relaxation time (T2) of protons in macromolecules, such as myelin 

lipids, is very short due to their restricted mobility and essentially invisible to traditional 

spin echo or gradient echo MR sequences (109). The signal seen in traditional MR 

images is generated entirely from the protons in the liquid pool, such as protons in free 

water molecules, which have longer T2 due to their mobility. The protons in the 

macromolecular pool have a much broader spectral width, because the full width at half 

maximum (FWHM) of a spectrum is inversely related to T2. An appropriately chosen 

off-resonance RF pulse, called the magnetization transfer (MT) pulse, will selectively 

saturate the macromolecular pool, which will then transfer its magnetization via spin 

exchange (dipole-dipole interactions across space) to the liquid pool (see Figure 1.12). 

MT MRI relies on this spin exchange to indirectly image semi-solid tissue such as 

myelin. 
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Figure 1.12 – Schematic of magnetization transfer (MT) pulse application. The MT pulse 

is typically applied several hundred to several thousand Hz away from the liquid pool 

Larmor frequency (an offset frequency of 0) to saturate the macromolecular (bound) 

pool, as the protons in the macromolecular pool have a much broader spectral width. 

After an MT pulse selectively saturates the macromolecular pool, the saturation 

transfers to the free water proton pool via MT, resulting in a decrease in the observed free 

water signal. The magnitude of the MT effect can be characterized by the magnetization 

transfer ratio (𝑀𝑇𝑅): 

𝑀𝑇𝑅 =  
𝑃𝐷𝑤−𝑀𝑇𝑤

𝑃𝐷𝑤
     (1.12) 

where 𝑃𝐷𝑤 is the reference signal without an MT pulse applied, which is proton density 

weighted, and 𝑀𝑇𝑤 is the signal with the MT pulse applied, which is MT weighted. 

Minimizing the TR and reducing the flip angle, to reduce T1-weighting, in a spoiled 

gradient echo imaging sequence, allows us to acquire a fast 𝑃𝐷𝑤 image, commonly 

known as the Fast Low Angle Shot (FLASH) method (152). To acquire an 𝑀𝑇𝑤 image, 
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the same scan parameters are used as the reference 𝑃𝐷𝑤 image, with an MT pulse 

applied. 

Although 𝑀𝑇𝑅 has been shown to correlate well with histological myelin content 

(153,154), it is also sensitive to the choice of sequence parameters, flip angle 

inhomogeneities, and longitudinal relaxation time (T1) (14). T1 also correlates strongly 

with myelin content but is also sensitive to axon size (155) and iron content (156), 

mitigating the power of 𝑀𝑇𝑅 as a measure of myelin. Thus, decoupling 𝑀𝑇𝑅 from T1 

effects could increase the specificity of 𝑀𝑇𝑅 to myelin. 

1.7 Advanced Multi-modal Microstructural MRI 

To address the limitations of standard DTI, DKI, and MTR protocols and improve 

sensitivity and specificity to microstructure, advanced multi-modal microstructural MRI 

is implemented and applied in this thesis, consisting of tensor-valued dMRI, frequency-

dependent dMRI, and MTsat MRI. Applications of these microstructural MR methods are 

discussed in later chapters, and therefore not included in this section. 

1.7.1 Tensor-Valued Diffusion MRI 

Tensor‐valued diffusion encoding is a dMRI concept that can be used to 

disentangle the effects of microscopic diffusion anisotropy from orientation dispersion, as 

illustrated in Figure 1.13. While conventional dMRI encodes for diffusion by a single 

pair of pulsed gradients applied in one direction (113), as shown in Figure 1.5, tensor‐

valued encoding uses multiple pairs of diffusion gradients that encode for diffusion in 

more than one direction (11,157,158). In this framework, the conventional description of 

b-value and encoding direction (159) is replaced by the ‘b-tensor’, which adds the shape 
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of the diffusion encoding to the description (11,157,158). As the b-value describes the 

degree of diffusion sensitivity of the measurement, the b-tensor expands this description 

to describe the degree of diffusion sensitivity in each direction: [bxx bxy bxz; byx byy byz; 

bzx bzy bzz]. Varying the shape of the b-tensor allows us to control the measurement’s 

sensitivity to diffusion anisotropy.  

 

Figure 1.13 – The effects of various tissue geometries on microscopic fractional 

anisotropy (µFA), acquired from tensor-valued dMRI, and fractional anisotropy (FA), 

acquired from DTI. The cylinders (top panel) approximate neuronal axons, while the 

spheres represent non-neuronal, spherical cells. FA and μFA are equivalent in voxels 

containing coherently aligned axons (column 1) and voxels containing only spherical 

cells (column 4), but when voxels contain crossing axons, as in columns 2 and 3, μFA 

correctly detects anisotropic diffusion whereas FA reports reduced anisotropy due to the 
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confounding effects of fiber orientation. Moreover, the DTI signal representation cannot 

distinguish between incoherently arranged axons (column 3) and spherical cells (column 

4), as diffusion appears isotropic in both cases. Image adapted from Lasic et al. (141) 

(open access). 

The shape of the b-tensor is quantified by its eigenvalues, and two b-tensors are of 

identical shapes if they share eigenvalues (11). In conventional dMRI, the b-tensors are 

of rank 1 (the rank of the b-tensor is given by the number of non-zero eigenvalues) and 

are shaped like a stick, giving “linear” b-tensors. Rank 2 b-tensors are shaped like a disc 

or a plane, producing a “planar” b-tensor. Gradient waveforms designed to yield isotropic 

diffusion encoding have b-tensors of rank 3, shaped like spheres (“spherical” b-tensors). 

Encoding with linear b-tensors (conventional) is maximally sensitive to diffusion 

anisotropy on both macro- and microscopic scales, as linear b-tensors only probe 

diffusion along the main orientation of the diffusion tensor. Planar b-tensors probe 

diffusion perpendicularly to their main orientation and spherical b-tensors probe isotropic 

diffusion (11,160). Diffusion encoding with the b-tensor framework is referred to as 

‘tensor-valued,’ since a single b-value and encoding direction cannot describe diffusion 

encoding in more than one direction per signal acquisition. Thus, in this framework, the 

conventional diffusion encoding scheme is referred to as linear tensor encoding (LTE). 

Encoding with planar and spherical b-tensors is referred to as planar tensor encoding 

(PTE) and spherical tensor encoding (STE), respectively.  

By applying both LTE and STE schemes, the effects of microscopic diffusion 

anisotropy can be disentangled from orientation dispersion. LTE encoding schemes 

encode for diffusion along a single direction at a time, and thus have diffusion gradients 
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on along a single direction per signal acquisition. STE encoding schemes encode for 

diffusion along all directions at the same time, and thus have diffusion gradients on along 

all three axes per signal acquisition (as portrayed in Figure 1.14).  

 

Figure 1.14 – Schematic of linear tensor encoding (LTE) versus spherical tensor 

encoding (STE). In LTE, used in conventional DTI and DKI protocols, each diffusion-

weighted image is acquired by applying the diffusion gradients in a single direction. In 

STE, each diffusion-weighted image is acquired by applying the diffusion gradients in all 

directions at the same time. 

In this framework, the signal representation decomposes the diffusion signal 

kurtosis into terms originating from either ensemble variance of isotropic diffusivity or 

microscopic diffusion anisotropy (161). This ability rests on the assumption that diffusion 

can be described as a sum of multiple non-exchanging Gaussian compartments, although 

this assumption is not always valid. In such systems, net diffusional kurtosis arises 

exclusively due to isotropic variance arising from polydispersity in mean diffusivity, and 

anisotropic variance arising from microscopic anisotropy (21); a general assumption 

underlying these systems is that LTE signals depend on both isotropic and anisotropic 

variance while STE signals depend only on isotropic variance. Other sources of non-
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Gaussian diffusion that this representation does not account for include time-dependent 

diffusion (161,162) and microscopic kurtosis from restricted diffusion and microscopic 

structural disorder (21,161,163,164). 

 Before describing the signal representation of b-tensor encoding, it is necessary to 

describe the Taylor series expansion of the natural logarithm of the dMRI signal. Such an 

expansion is sometimes referred to as the cumulant expansion since the coefficients of 

different terms correspond to the cumulants of the compartment diffusivities (165–167). 

Conceptually, cumulants are the most compressed means to characterize a distribution. 

The mean diffusivity gives the initial slope of the echo attenuation and corresponds to the 

1st central moment and cumulant. The second central moment, µ2, represents the initial 

deviation from mono-exponential attenuation, corresponding to the second term in the 

cumulant expansion. Retaining more terms in the Taylor series extends the validity of the 

representation toward larger b-values (168).  

Calculating the mean of dMRI signal over all acquired directions is referred to as 

‘powder-averaging’. The normalized signal intensity of powder-averaged dMRI 

acquisitions of a multi-component system, assuming negligible time-dependent diffusion, 

can be represented by the cumulant expansion (141): 

ln (
𝑆

𝑆0
) =  −𝑏𝐷 +

µ2𝑏2

2
    (1.13) 

where 𝑆 is the powder-averaged signal, 𝑆0 is the mean signal with no diffusion encoding, 

𝑏 is the b-value, and µ2 is the second central moment or variance of diffusivity. The 

second central moment is often expressed in terms of kurtosis as µ2 = 𝐷2𝐾/3 (141), 



55 

 

which leads to the DKI signal representation, shown in Equation 1.11. For Gaussian 

diffusion in each component (i.e., within each different cell), the value of µ2 corresponds 

to the variance of mean diffusivities.  

Microscopic fractional anisotropy is a normalized counterpart of microscopic 

anisotropy, which is directly comparable to the standard FA metric. Lasic et al. (141) 

define the microscopic fractional anisotropy in terms of the scaled difference in 

diffusivity variance between powder-averaged LTE and STE acquisitions: 

µ𝐹𝐴 =  √
3

2
(1 +  

2

5

1

𝛥µ̃2
)−

1

2     (1.14) 

𝛥µ̃2 =  
µ2

𝐿𝑇𝐸− µ2
𝑆𝑇𝐸

𝐷2      (1.15) 

Where µ2
𝐿𝑇𝐸 and µ2

𝑆𝑇𝐸 are the second central moments in the cumulant expansions of 

powder-averaged LTE and STE acquisitions, respectively. Equation 1.15 can be related 

to diffusional kurtosis as µ2
𝐿𝑇𝐸 =  𝐷2𝐾𝑡𝑜𝑡𝑎𝑙/3  and µ2

𝑆𝑇𝐸 =  𝐷2𝐾𝑖𝑠𝑜/3. 𝐾𝑡𝑜𝑡𝑎𝑙 is the total 

kurtosis from LTE acquisitions, which is the conventionally reported mean kurtosis 

measure in DKI, and 𝐾𝑖𝑠𝑜is the isotropic kurtosis from STE acquisitions, which is a 

measure of the variance in the magnitude of diffusion tensors (i.e., D) and can be related 

to cell size heterogeneity (21). If it is assumed that the only sources of kurtosis are 

dispersion in size and orientation of diffusion tensors, then the diffusion coefficient D 

will be equal between LTE and STE powder-averaged acquisitions at the same b-value 

(21). The powder-averaged LTE and STE signals can be expressed as: 

𝑆𝐿𝑇𝐸 =  𝑆0𝑒−𝐷𝑏+
𝑏2𝐷2𝐾𝑡𝑜𝑡𝑎𝑙

6     (1.16) 
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𝑆𝑆𝑇𝐸 =  𝑆0𝑒−𝐷𝑏+
𝑏2𝐷2𝐾𝑖𝑠𝑜

6     (1.17) 

From this framework, the total diffusional kurtosis can be disentangled into isotropic and 

anisotropic kurtosis components: 

𝐾𝑡𝑜𝑡𝑎𝑙 =  𝐾𝑖𝑠𝑜 + 𝐾𝑎𝑛𝑖𝑠𝑜    (1.18) 

Where 𝐾𝑎𝑛𝑖𝑠𝑜 is the anisotropic kurtosis. This is depicted conceptually in Figure 1.15. 

Expressing Equation 1.15 in terms of kurtosis, we have 

𝛥µ̃2 =  
𝐾𝑡𝑜𝑡𝑎𝑙 − 𝐾𝑖𝑠𝑜

3
 = 

𝐾𝑎𝑛𝑖𝑠𝑜

3
    (1.19) 

Substituting Equation 1.19 into Equation 1.14 gives an estimate for µ𝐹𝐴: 

µ𝐹𝐴 =  √
3

2
(1 +

6

5

1

𝐾𝑎𝑛𝑖𝑠𝑜
)

−
1

2
      (1.20) 

Accordingly, it is evident that µ𝐹𝐴 is closely related to 𝐾𝑎𝑛𝑖𝑠𝑜 and they have a monotonic 

relationship with each other. Microscopic anisotropy is another measurement sometimes 

used that is defined based on the difference in signal between LTE and STE dMRI 

acquisitions (141) and can also be expressed in terms of 𝐾𝑎𝑛𝑖𝑠𝑜: 

µ𝐴 =  √
ln (

𝑆𝐿𝑇𝐸
𝑆𝑆𝑇𝐸

)

𝑏2 =  √
𝐷2𝐾𝑎𝑛𝑖𝑠𝑜

6
     (1.21) 

µ𝐹𝐴 can also be expressed in terms of µ𝐴: 

µ𝐹𝐴 =  √
3

2

µ𝐴2

µ𝐴2 +0.2𝐷2     (1.22) 
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Figure 1.15 – Total diffusional kurtosis (𝐾𝑡𝑜𝑡𝑎𝑙), acquired from LTE acquisitions, can be 

disentangled into isotropic and anisotropic kurtosis components. Isotropic kurtosis 

(𝐾𝑖𝑠𝑜), acquired from STE acquisitions, arises from the variance in compartment-specific 

diffusivities and is related to cell size heterogeneity (21). Anisotropic kurtosis (𝐾𝑎𝑛𝑖𝑠𝑜) 

arises from microscopic diffusion anisotropy, which is related to anisotropic cellular 

morphology. 

1.7.2 Frequency-Dependent Diffusion MRI 

Frequency-dependent dMRI addresses the 4th limitation outlined in Section 1.6.8 

and probes diffusion at various length scales, including length scales that are too small to 

be probed by the PGSE sequence, as described in Section 1.6.8. By varying the effective 

diffusion time (𝑡𝑑), which is the time allowed for molecules to probe the environment as 

defined by the diffusion gradients, molecules will probe varying length scales, allowing 

us to differentiate boundaries of varying sizes and probe previously inaccessible length 

scales. This is represented graphically in Figure 1.16. The terms ‘frequency-dependent’ 
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and ‘time-dependent’ are used interchangeably in the field to describe this technique, as 

various effective diffusion times are probed, since any time dependent phenomena can be 

recast into frequency dependence through a Fourier transform. In this thesis, ‘frequency-

dependent’ will be used, as explained below. 

 

 

Figure 1.16 – Schematic of water diffusion behavior in a healthy versus beaded axon for 

short and long diffusion times (corresponding to high and low gradient oscillation 

frequencies, respectively). For a lower frequency, MD is measured after a longer 

diffusion time, where the molecules have enough time to interact with all the barriers in 

the vicinity. In a beaded axon, the constrictions between the swellings would inhibit the 

ability of water to diffuse along the axon, leading to water diffusion in a smaller space 

(within the swellings) and lower MD due to more interaction with boundaries at a low 

frequency. The shorter diffusion time (higher frequency) lessens interactions with 

narrowings of the axons, thereby reducing the effect of beading on the diffusion 
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measurement, and the MD measured approaches free diffusivity. Thus, the change in MD 

between different frequencies (diffusion times) will be higher for beaded axons than for 

healthy axons, providing us with a measure to improve specificity to axonal beading 

(19,20), as the change in MD (due to changing microstructure) during long diffusion 

times can be influenced by many factors. 

Frequency-dependent dMRI is implemented with oscillating diffusion gradients, 

using a sequence called ‘oscillating gradient spin echo’ (OGSE), which replaces pulsed 

gradients (in the standard PGSE sequence) with oscillating gradients. An example OGSE 

sequence is shown later in Chapter 2. A key difference between PGSE and OGSE is the 

estimation of the effective diffusion time. While the 𝑡𝑑 for PGSE (if the gradients are 

assumed to be much narrower than their separation) can be calculated as 𝑡𝑑 =  𝛥 −  𝛿/3, 

the effective diffusion times of OGSE sequences are not as well defined; the literature 

demonstrates disagreement on the exact relation of the diffusion time to oscillation 

frequency (9). The initial solution was to use 𝑡𝑑 =  1/4𝑓, where 𝑓 =  𝜔/(2𝜋), 𝜔 being 

the oscillating gradient modulation frequency (169,170). However, later it was suggested 

a more accurate representation is 𝑡𝑑 =  9/64𝑓 (171). Nevertheless, it is agreed upon that 

the use of increasingly higher frequencies translates to shorter effective diffusion times, 

scaling inversely with frequency. Thus, it can be convenient to work instead in the 

spectral domain with reference to oscillation frequency as opposed to diffusion time, and 

this method is referred to as ‘frequency-dependent dMRI’ in this thesis. Essentially, in 

frequency-dependent dMRI, higher oscillating gradient frequencies correspond to shorter 

effective diffusion times, and thus smaller microstructure scales. The highest frequency 
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(corresponding to the shortest length scale) possible is limited by the system gradient and 

slew rate characteristics, since 𝑏 ~ 𝐺2/𝑓3, where 𝐺 is the gradient strength (9). 

Diffusion gradient modulation can take the form of sine or cosine apodization to 

probe specific frequencies of the gradient modulation spectrum (which is the Fourier 

transform of the time integral of the gradient amplitude applied). However, measuring 

diffusion with sine modulation at a particular non-zero frequency can be problematic, as  

sine modulation  produces a peak frequency at zero. Cosine modulation provides 

increased spectral selectivity by ensuring the peak frequency is non-zero and allowing 

specific frequencies to be probed (169,172). Additionally, the increase in maximum 

possible b-value between cosine and trapezoidal-cosine modulated waveforms is 

significant (170,173), which is why most modern implementations, including this thesis, 

rely on the trapezoidal-cosine method. 

The diffusion spectrum 𝐷(𝑓) over a broad range of frequencies and 𝑡𝑑 is desirable 

to characterize comprehensive information on tissue microstructure (174). However, the 

exact dependence of 𝐷(𝑓) on 𝑓 is determined by the specific 𝑓 range (175). In the high 

frequency (short 𝑡𝑑) regime,𝐷(𝑓) ~ 𝑓−1/2 (176,177). In the low frequency (long 𝑡𝑑) 

regime, there is a power-law relationship between 𝑀𝐷 and 𝑓 as 𝑀𝐷 =  𝑀𝐷0 +  𝛬𝑓𝛳 

(162,178), where the constant 𝛬 is defined as diffusion dispersion rate and 𝑀𝐷0 is 𝑀𝐷 at 

zero frequency (a PGSE sequence). 

For more details on frequency-dependent dMRI, the author recommends the following 

review papers: 
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• For basics of the OGSE sequence including the frequency domain analysis: Gore, 

John et al. Characterization of Tissue Structure at Varying Length Scales Using 

Temporal Diffusion Spectroscopy. NMR in Biomedicine (2010). 

• For theories of diffusion time dependency: Novikov, Dmitry et al. Quantifying 

brain microstructure with diffusion MRI: Theory and parameter estimation. NMR 

in Biomedicine (2019). 

• For practical applications of OGSE: Xu, Junzhong. Probing neural tissues at 

small scales: Recent progress of oscillating gradient spin echo (OGSE) 

neuroimaging in humans. Journal of Neuroscience Methods (2020).  

1.7.3 Magnetization Transfer Saturation MRI 

Magnetization transfer saturation (𝑀𝑇𝑠𝑎𝑡) imaging was developed to improve 

𝑀𝑇𝑅, by correcting for RF inhomogeneity and T1 relaxation, while maintaining a 

feasible scan time (14). 𝑀𝑇𝑠𝑎𝑡 is defined as the percentage saturation imposed by one 

MT pulse during a repetition time TR. This is done by acquiring a T1-weighted image 

(𝑇1𝑤), in addition to the proton density-weighted (𝑃𝐷𝑤) image (without an MT pulse 

applied) and MT-weighted image (𝑀𝑇𝑤), as described in Section 1.6.9. 𝑃𝐷𝑤 and 𝑇1𝑤 

account for the influence of PD signal and T1 relaxation, respectively, on the MT signal. 

The effects of excitation and longitudinal relaxation in the FLASH sequence are 

given by the Ernst equation. Helms et al. (14) use the relaxation rate, 𝑅1 = 1/𝑇1, to 

simplify the notation. If small flip angles (𝛼 ≪ 1, in radians) and repetition times (𝑇𝑅) 

much shorter than longitudinal relaxation (𝑅1𝑇𝑅 ≪ 1) are employed the signal is in 

excellent agreement with a rational approximation of the Ernst equation (179): 
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𝑆(𝛼, 𝑇𝑅) = 𝐴𝑠𝑖𝑛𝛼
1−exp(−𝑅1𝑇𝑅)

1−𝑐𝑜𝑠𝛼exp(−𝑅1𝑇𝑅)
 ≅  𝐴𝛼

𝑅1𝑇𝑅

𝛼2/2 + 𝑅1𝑇𝑅
  (1.23) 

𝐴 = 𝐴(𝑇𝐸) denotes the amplitude of the spoiled gradient echo at the echo time, 𝑇𝐸, 

under fully relaxed conditions (𝑅1𝑇𝑅 ≫ 1, 𝛼 =  𝜋/2). In the MT FLASH experiment, 

the additional saturation due to MT is observed as a reduction in steady state signal, and 

is slightly modified from Equation 1.23: 

𝑆𝑀𝑇  ≅  𝐴𝛼
𝑅1𝑇𝑅

𝛼2/2 + 𝑅1𝑇𝑅 + 𝛿
     (1.24) 

Where the reduction of the signal imposed by the application of the MT pulse is 

described by an arbitrary saturation term, 𝛿, the ‘MT saturation’ or 𝑀𝑇𝑠𝑎𝑡. If 𝐴 and 𝑅1 

are given, 𝛿 can be calculated from the 𝑀𝑇𝑤 signal.  

 Helms et al. estimate the parameters 𝐴 and 𝑅1 from two FLASH signals, 𝑆𝑃𝐷 and 

𝑆𝑇1, acquired with predominant PD and T1 weighting at different excitation flip angles, 

𝛼𝑃𝐷 and 𝛼𝑇1, and repetition times, 𝑇𝑅𝑃𝐷 and 𝑇𝑅𝑇1. These reference images are acquired 

without the MT pulse and the signals can be described by Equation 1.23. Without 

correction for local flip angle errors, the following parameter estimates are labeled by the 

subscript “𝑎𝑝𝑝.” First, the apparent longitudinal relaxation rate, 𝑅1𝑎𝑝𝑝, is calculated as 

follows: 

𝑅1𝑎𝑝𝑝 =  
1

2

𝑆𝑇1𝛼𝑇1/𝑇𝑅𝑇1 − 𝑆𝑃𝐷𝛼𝑃𝐷/𝑇𝑅𝑃𝐷

𝑆𝑃𝐷/𝛼𝑃𝐷− 𝑆𝑇1/𝛼𝑇1
    (1.25) 

Second, the apparent signal amplitude, 𝐴𝑎𝑝𝑝, is calculated as follows: 

𝐴𝑎𝑝𝑝 =  𝑆𝑃𝐷𝑆𝑇1
𝑇𝑅𝑃𝐷𝛼𝑇1/𝛼𝑃𝐷 −𝑇𝑅𝑇1𝛼𝑃𝐷/𝛼𝑇1

𝑆𝑇1𝑇𝑅𝑃𝐷𝛼𝑇1− 𝑆𝑃𝐷𝑇𝑅𝑇1𝛼𝑃𝐷
   (1.26) 
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From this, the apparent MT saturation 𝛿𝑎𝑝𝑝 is calculated as follows: 

𝛿𝑎𝑝𝑝 =  (𝐴𝑎𝑝𝑝𝛼𝑀𝑇/𝑆𝑀𝑇  − 1)𝑅1𝑎𝑝𝑝𝑇𝑅𝑀𝑇 − 𝛼𝑀𝑇
2 /2   (1.27) 

Where 𝑆𝑀𝑇, 𝑇𝑅𝑀𝑇, and 𝛼𝑀𝑇 denote signal intensity, TR, and excitation flip angle of MT-

weighted image, respectively. The apparent MT saturation is inherently robust against 

differences in relaxation rates and inhomogeneities of RF transmit and receive field 

compared with conventional MTR imaging (14,15). Furthermore, small residual higher-

order dependencies of the MT saturation on the local RF transmit field can be corrected 

to further improve spatial uniformity, as suggested by Weiskopf et al. (180): 

𝑀𝑇𝑠𝑎𝑡 =  
𝛿𝑎𝑝𝑝(1−0.4)

1−0.4𝑅𝐹𝑙𝑜𝑐𝑎𝑙
     (1.28) 

Where 𝑅𝐹𝑙𝑜𝑐𝑎𝑙 is the relative local flip angle compared to the nominal flip angle. 
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Chapter 2  

2 Test-retest reproducibility of in vivo oscillating 

gradient and microscopic anisotropy diffusion 

MRI in mice at 9.4 Tesla 

This chapter was published in PLoS ONE, volume 16, Rahman et al., Test-retest 

reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion 

MRI in mice at 9.4 Tesla (181), Copyright CC-BY, 2021. 

2.1 INTRODUCTION 

Diffusion MRI (dMRI) provides a non-invasive means to capture microstructure 

changes in the brain during development, aging, disease, and injury by probing the 

diffusion of water molecules (182). The most widely used dMRI techniques are diffusion 

tensor imaging (DTI) and diffusion kurtosis imaging (DKI). DTI assumes the dMRI 

signal is entirely characterized by Gaussian diffusion (8) and utilizes a diffusion tensor 

model to estimate metrics such as mean diffusivity (MD) and fractional anisotropy (FA). 

DKI provides more information about the underlying tissue via the diffusion kurtosis, 

which quantifies the deviation from Gaussian diffusion (124). However, both DTI and 

DKI are unable to distinguish between microstructural changes and neuron fiber 

orientation dispersion (8,21), reducing their specificity to microstructural changes in 

brain regions with crossing fibers. Furthermore, DKI cannot differentiate between 

different sources of kurtosis (non-Gaussian diffusion) (124).  

Probing microstructure with diffusion-weighted sequences beyond the 

conventional Stejskal-Tanner pulsed gradient spin echo (PGSE) sequence (113), used in 
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DTI and DKI, is currently of broad interest. The aims of these emerging dMRI sequences 

are to overcome the limitations of DTI and DKI and improve sensitivity and specificity to 

microstructural changes. In the present work, the reproducibility of in vivo oscillating 

gradient and microscopic anisotropy dMRI, both of which have unique features that go 

beyond the PGSE sequence, is investigated in mice at 9.4 Tesla. It is important to note 

that these are two distinct dMRI methods which are evaluated separately in this work. 

The conventional PGSE sequence consists of a pair of pulsed gradients applied 

along a single direction. Here, the diffusion measurement reflects information about 

diffusion along a single direction and at a single relatively long diffusion time, which is 

the time allowed for water molecules to probe the local environment. Given hardware 

constraints, diffusion times achievable in PGSE can probe displacements on the order of 

10 – 30 µm, which is much larger than typical axon sizes (~ 2 µm) (9). 

To overcome the diffusion time limitations of PGSE, the oscillating gradient spin 

echo (OGSE) method was developed to modify sensitivity to cellular length scales (10). 

OGSE allows different microstructure length scales to be probed by varying the 

frequency of the oscillating diffusion gradients, which is inversely related to diffusion 

time. For increasing diffusion times (lower oscillating gradient frequencies), the 

molecules travel greater distances and interact with more barriers such as cell 

membranes, resulting in lower observed MD values (145). As MD is different at the 

various frequencies, this provides the ΔMD - the metric of interest in OGSE dMRI, the 

difference in MD between the highest and lowest frequencies applied. By acquiring 

diffusion data at multiple frequencies, the power law relationship between MD and 

frequency (f) can be explored via the “diffusion dispersion rate”, Λ (162,178). Evidence 
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of a linear dependence of MD on the square root of frequency has been demonstrated in 

healthy and globally ischemic rodent brain tissue (169) and healthy human white matter 

(183). Thus, Λ can be calculated as  

MDf = MD0 + Λ·f0.5     (2.1) 

where MDf is the OGSE MD at a frequency f and MD0 is the MD at f = 0 (162,178,183). 

Since OGSE is sensitive to structural disorder along one dimension (162), changes in the 

number and morphology of neurite varicosities will result in changes to Λ (178), which 

potentially makes OGSE an invaluable tool to probe microstructural changes, such as 

axonal beading, in vivo (19,20). 

In contrast to the widely used fractional anisotropy metric (FA), which confounds 

true microstructural changes with fiber orientation dispersion (8), the microscopic 

anisotropy (µA) metric quantifies water diffusion anisotropy independent of orientation 

dispersion (141,184,185). To disentangle orientation dispersion from true microstructure 

changes, the shape of the b-tensor, which describes the strength of diffusion weighting 

along each direction, is varied via tensor-valued diffusion encoding (141,185–187). Most 

tensor-valued encoding protocols are based on double diffusion encoding (DDE) 

techniques (185,188–191) or a combination of linear tensor encoding (LTE) and spherical 

tensor encoding (STE) (12,21,141,184). As DDE sequences are implemented via two 

consecutive diffusion encoding pulses separated by a mixing time, in some cases they 

may require longer TEs than standard LTE/STE sequences to achieve equal b-values 

(192). Conventional DTI and DKI utilize only LTE, in which all gradients are along the 

same axis, so that diffusion is encoded along a single direction at a time. STE, in which 
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the gradients are distributed throughout all directions, sensitizes the signal to diffusion 

along all directions at the same time. Here, a combination of LTE and STE is utilized to 

implement microscopic anisotropy (µA) dMRI (21,184), using an optimized linear 

regression technique based on the diffusion kurtosis model (12). 

 This technique makes the assumption that the dMRI signal arises only from 

multiple Gaussian components, which may not be appropriate in certain cases, such as 

when time-dependent diffusion is not negligible (161). Nevertheless, the normalized 

signal intensity of powder-averaged dMRI acquisitions of a multi-component system can 

be represented by the cumulant expansion (141): 

ln (
S

So
) =  −bD +  

1

6
bD2K …    (2.2) 

where S is the powder-averaged signal, So is the mean signal with no diffusion encoding, 

b is the b-value, D is the diffusivity, and K is the kurtosis of the power-averaged signal. 

Microscopic anisotropy (µA) is defined here based on the difference in signal between 

LTE and STE dMRI acquisitions, similar to the equation used in DDE protocols 

(184,193): 

µA =  √
ln (

SLTE
SSTE

)

b2      (2.3) 

where SLTE and SSTE are the powder-averaged LTE and STE signals, respectively. 

Microscopic fractional anisotropy (µFA), the normalized counterpart of µA, can be 

expressed in terms of µA: 
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µFA =  √
3

2

µA2

µA2+0.2D2     (2.4) 

The complete derivation of equations (2.3) and (2.4) is available in Arezza et al. (12). As 

the LTE signal depends on variance of both isotropic and anisotropic diffusivity, while 

the STE signal depends only on variance of isotropic diffusivity, diffusional kurtosis 

estimated from the µA protocol includes linear kurtosis (KLTE – arising from the LTE 

acquisitions) and isotropic kurtosis (KSTE – arising from the STE acquisitions). KSTE is a 

measure of the variance in the magnitude of diffusion tensors or the mean diffusivity, 

which can be related to cell size heterogeneity (21).  

OGSE and µA dMRI have recently been gaining attention in various disease and 

injury models and their feasibility has been shown in both preclinical and clinical 

settings. Importantly, OGSE dMRI can provide measures of mean cell size (194,195) and 

axonal diameter (196–199), while µA dMRI can provide estimates of cell shape 

(21,141,185–188,190,191). Low-frequency OGSE has also been shown to provide better 

contrast, compared to PGSE, to cylinder diameter in the presence of orientation 

dispersion (197,198,200). The OGSE ΔMD metric has shown increased sensitivity, 

compared to MD alone, in the assessment of hypoxia-ischemia (201) and radiation 

therapy treatment response (202) in rodents, and in various pathologies in humans, 

including muscle contraction abnormalities (203), high- and low-grade brain tumor 

differentiation (16), and neonatal hypoxic-ischemic encephalopathy (204). Notably, 

OGSE has helped to identify neurite beading as a mechanism for dMRI contrast after 

ischemic stroke (19,20). Preliminary studies in humans have found that µA provides 

better sensitivity than the conventional FA in distinguishing between different types of 
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brain tumours (21), assessment of multiple sclerosis lesions (16,17), and detecting white 

matter microstructure changes associated with HIV infection (193). Furthermore, Westin 

et al. reported that KSTE showed significant differences between controls and 

schizophrenia patients, while conventional mean kurtosis showed no difference (11). The 

feasibility of µA dMRI has been demonstrated in rodents both in vivo (205,206) and ex 

vivo (161,193,207). In vivo preclinical rodent µA studies, which have included 

predominantly DDE techniques and more recently combined LTE/STE techniques, have 

shown that measurements of eccentricity provide additional sources of contrast for the rat 

brain, especially in the gray matter (205), and recently, He et al. have shown that KSTE 

may be particularly sensitive to deep gray matter lesions (208). 

As dMRI has reached the forefront of tissue microstructure imaging (209), there 

is a need to establish the reproducibility of these emerging methods. While the 

reproducibility of DTI and DKI has been investigated extensively (210–213), to the best 

of our knowledge, no test-retest assessment of OGSE and µA dMRI has been done at 

ultra-high field strength. The aim of this work was to assess test-retest reproducibility of 

in vivo OGSE and µA dMRI in mice at 9.4 Tesla and provide estimates of required 

sample sizes, which is essential in planning future preclinical neuroimaging studies 

involving models of disease/injury. 

2.2 METHODS 

2.2.1 Subjects 

All animal procedures were approved by the University of Western Ontario 

Animal Use Subcommittee and were consistent with guidelines established by the 
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Canadian Council on Animal Care. Twelve adult C57Bl/6 mice (six male and six 

female), between 12 - 14 weeks old, were scanned twice 5 days apart. The sample size 

was chosen to reflect similar sample sizes used in other pre-clinical imaging studies 

(214–217). Before scanning, anesthesia was induced by placing the animals in an 

induction chamber with 4 % isoflurane and an oxygen flow rate of 1.5 L/min. Following 

induction, isoflurane was maintained during the imaging session at 1.8 % with an oxygen 

flow rate of 1.5 L/min through a custom-built nose cone. The mouse head was fixed in 

place using ear bars and a bite bar to prevent head motion. These mice were part of a 

longitudinal study, at the end of which they were euthanized for histology. The mice were 

anesthetized with ketamine/xylazine (2:1) and then underwent trans-cardiac perfusion 

with ice-cold saline, followed by 4% paraformaldehyde in phosphate-buffer saline (PBS). 

2.2.2 In vivo MRI 

In vivo MRI experiments were performed on a 9.4 Tesla (T) Bruker small animal 

scanner equipped with a gradient coil set of 1 T/m strength (slew rate = 4100 T/m/s). A 

single channel transceive surface coil (20 mm x 25 mm), built in-house, was fixed in 

place directly above the mouse head to maximize signal-to-noise ratio (SNR). The mouse 

holder (which included the ear bars and bite bar), nose cone, and surface coil were fixed 

onto a support, which was placed into the scanner. This ensured consistent positioning of 

the mouse head in the scanner at each session. Each dMRI protocol was acquired with 

single-shot spin echo echo-planar-imaging (EPI) readout with scan parameters: TR = 10 

s; in-plane resolution = 175 x 200 µm; slice thickness = 500 µm; 30 slices to acquire the 

full brain; field-of-view = 19.2 x 14.4 mm2; partial Fourier imaging in the phase encode 

direction with 80% of k-space being sampled; 45 minutes scan time. For each dMRI 
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protocol, a single reverse phase encoded b = 0 s/mm2 volume was acquired at the end of 

the diffusion sequence for subsequent use in TOPUP (218) and EDDY (219) to correct 

for susceptibility and eddy current induced distortions. Averages were acquired 

separately on the scanner and combined using in-house MATLAB code which included 

reconstruction of partial Fourier data using POCS (Projection onto Convex Sets) (220) 

and correction for frequency and signal drift associated with gradient coil heating (221). 

Anatomical images were also acquired for each subject within each session using a 2D 

T2-weighted TurboRARE pulse sequence (150 μm in-plane resolution; 500 μm slice 

thickness; TE/TR = 40/5000 ms; 16 averages; total acquisition time = 22 min). 

2.2.2.1 Oscillating Gradient Spin Echo (OGSE) dMRI  

The OGSE dMRI protocol included a PGSE sequence (with gradient duration = 

11 ms and diffusion time = 13.8 ms) and four OGSE sequences with oscillating gradient 

frequencies of 50 Hz, 100 Hz, 145 Hz, and 190 Hz. The waveforms and gradient 

modulation power spectra are shown in Figure 2.1 (A – E). The 50 Hz sequence is based 

on the recently proposed frequency tuned bipolar (FTB) oscillating gradient waveform, 

which allows for shorter TEs at lower frequencies (222). The frequencies were chosen 

based on a hypoxic-ischemic injury study in mice (201), where the frequencies ranged 

from 0 - 200 Hz, which enables probing length scales between 1.2 – 4.2 µm. Other scan 

parameters included: gradient separation = 5.5 ms; TE = 39.2 ms; 5 averages; b = 800 

s/mm2; 10 diffusion encoding directions. As the gradient duration was slightly different 

for each OGSE sequence, zeroes were added to the start of the first diffusion-encoding 

waveform and to the end of the second diffusion-encoding waveform, to ensure that TE 
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remained the same across all OGSE sequences. 10 b = 0 s/mm2 volumes were 

interspersed evenly throughout the acquisition.  

 

Figure 2.1 - Schematic representations of the gradient waveforms and gradient 

modulation power spectra, |F(f)|2, used for the PGSE (a), OGSE (b-e) and µA (f-g) 

protocols. Diffusion encoding blocks have been inserted on both sides of a 180° pulse 

and implicit gradient reversal due to the 180° pulse has been applied. The PGSE 
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waveform (a) is shown with a gradient duration of 11 ms and diffusion time of 13.8 ms. 

OGSE waveforms (b-e) with gradient oscillation frequencies of 50 Hz, 100 Hz, 145 Hz, 

and 190 Hz have zeros added to the start of the first gradient and end of the second 

gradient to ensure all scans in the OGSE protocol have the same TE. LTE and STE 

waveforms, used in the µA protocol, are shown in (f) and (g) respectively. 

2.2.2.2 Microscopic Anisotropy (µA) dMRI 

The STE dMRI gradient waveforms implemented here were similar to the 

protocol in Arezza et al. (12). The μA sequence was implemented with linear (LTE) and 

spherical tensor (STE) encodings, as shown in Figure 2.1 (F – G), at b = 2000 s/mm2 (30 

directions for each of LTE and STE) and b = 1000 s/mm2 (12 directions). Other scan 

parameters included: gradient duration = 5 ms; gradient separation = 5.54 ms; TE = 26.8 

ms; 3 averages. 8 b = 0 s/mm2 volumes were interspersed evenly throughout the 

acquisition. 

2.2.3 Image Processing 

Images were pre-processed using PCA denoising (223) and Gibbs ringing 

correction  from the MRtrix3 package (224), followed by TOPUP (218) and EDDY (219) 

from FMRIB Software Library (FSL, Oxford, UK) (225). Brain masks were produced 

using the skull stripping tool from BrainSuite (v. 19b) (226). Image registration was 

performed using affine and symmetric diffeomorphic transforms with ANTs software 

(https://github.com/ANTsX/ANTs) (227). Region-of-interest (ROI) masks were acquired 

from the labeled Allen Mouse Brain Atlas (228). Since registration to an atlas is time-

consuming, only one anatomical T2-weighted scan was chosen (the “chosen T2”) to be 

https://github.com/ANTsX/ANTs
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registered to the atlas. All other anatomical T2-weighted images were registered to the 

chosen T2. Non-diffusion weighted (b0) volumes were registered to the corresponding 

anatomical images (from the same subject at the same timepoint). All dMRI volumes 

were registered to the corresponding anatomical space using the transforms resulting 

from the previous step (b0 → corresponding T2). For ROI-based analysis, the inverse 

transforms resulting from these two registration steps (corresponding T2 → chosen T2 → 

atlas) were then used to bring the labeled atlas to the corresponding T2 space for each 

subject at each timepoint. Binary masks for each ROI were generated by thresholding the 

labeled atlas. Each mask was eroded by one voxel, except for the corpus callosum masks, 

to minimize partial volume errors within a given ROI. The binary masks were visually 

inspected to ensure good registration quality. Furthermore, to perform whole brain voxel-

wise analysis of all subjects across both timepoints, all dMRI volumes were registered to 

the chosen T2 space using transforms from two registration steps (b0 → corresponding 

T2 → chosen T2). For voxel-wise analysis targeted to specific ROIs, the labeled atlas 

was registered to the chosen T2 space. 

From the OGSE data, maps of MD at each frequency were generated using 

MRtrix3 (224,229). ΔMD was calculated as the difference between MD acquired at the 

highest frequency (190 Hz) and MD acquired at the lowest frequency (0 Hz). To 

characterize the power law relationship between MD and OGSE frequency (f) (178), the 

slope of linear regression of MD with f0.5, the diffusion dispersion rate (Λ), was 

calculated. From the µA data, maps of µA, µFA, KLTE, and KSTE were generated by 

fitting the powder-averaged STE and LTE signals versus b-value to the diffusion kurtosis 

model, using a joint non-negative least squares method assuming consistent diffusivity 
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between STE and LTE (12). As a reference for the OGSE and µA metrics, DTI metrics 

(MD and FA) have been included in both ROI-based and voxel-wise variability analyses. 

MD and FA maps were generated using the PGSE sequence (with b=800 s/mm2 from the 

OGSE protocol) and the LTE sequence (with b=1000 s/mm2 from the µA protocol), 

separately. 

2.2.4 Data Analysis 

The test-retest dataset is available online (230). Measurement reproducibility was 

explored for both ROI-based analysis and whole brain voxel-wise analysis, since both are 

common analyses techniques in neuroimaging. To mitigate partial volume errors from 

cerebrospinal fluid (CSF), voxels with MD (0 Hz) > 0.9 µm2/ms were omitted from the 

analyses of all scalar maps. Outlier detection was included in both ROI-based and voxel-

wise analyses, to remove data both animal-wise and voxel-wise. Outliers were defined as 

values which were more than three scaled median absolute deviations (MAD) away from 

the median. The ROI analysis focused on five different tissue regions: corpus callosum, 

internal capsule, hippocampus, cortex, and thalamus. Bland-Altman analysis was 

performed for both ROI-based and voxel-wise analyses to identify any biases between 

test and retest measurements. For both analysis techniques, the scan-rescan 

reproducibility was characterized using the coefficient of variation (CV). The CV reflects 

both the reproducibility and variability of these metrics and allows calculation of the 

sample sizes necessary to detect various effect sizes. CVs were calculated between 

subjects and within subjects to quantify the between subject and within subject 

reproducibility respectively. The between subject CV was calculated separately for the 

test and retest timepoints as the standard deviation divided by the mean value across 
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subjects 1–12. These two CV values were then averaged for the mean between subject 

CV. The within subject CV was calculated separately for each subject as the standard 

deviation divided by the mean of the test and retest scans. The 12 within subject CVs 

were then averaged to determine the mean within subject CV. Following the procedure 

presented in van Belle (231), the between subject CVs, from the ROI analysis, were used 

to determine the sample size required per group to detect a defined biological effect 

between subjects in each ROI. Assuming paired t-tests, the standard deviations of the 

differences between test-retest mean values across subjects, were used to determine the 

sample size required to detect a defined biological effect within subjects in each ROI 

(232). The minimum sample sizes, using the between and within subject approaches, 

were both determined at a 95 % significance level (α = 0.05) and power of 80 % (1−β = 

0.80). 

2.2.4.1 SNR Analysis 

As the transceive surface coil used in this study was built in-house, SNR maps 

were generated for the lowest and highest b-value acquisitions in the OGSE and µA 

protocols to compare SNR acquired using a commercially available 40-mm millipede 

(MP40) volume coil (Agilent, Palo Alto, CA, USA) and SNR acquired with fewer 

averages. SNR maps were calculated by dividing the powder-averaged magnitude signal 

(of the combined averages) by the noise. Noise was calculated from each of the real and 

imaginary components of the complex-valued data as the standard deviation of the 

background signal from a single average of a single direction divided by 

√(number of averages) ∙ (number of directions), and averaged over the real and 

imaginary components. Furthermore, to test the effects of using a different number of 
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averages on the results, ROI-based between and within-subject CV analysis was 

performed on subsets of the OGSE and µA data containing only 3 and 2 averages, 

respectively. Note that preprocessing was performed on the subset of fewer averages 

separately from the full data set (e.g., denoising only used the subset of averages). 

2.2.4.2 ROI Analysis 

The mean MD was calculated for each ROI at each frequency. For each ROI, 

ΔMD was calculated as the difference between the mean MD at 190 Hz and the mean 

MD at 0 Hz. The apparent diffusion dispersion rate, Λ, was determined for each ROI by 

performing a least square fit of the mean MD (in each ROI) to f0.5. Scalar maps from the 

µA protocol (µA, µFA, KLTE, KSTE) were computed directly from the signal, and mean 

values for each metric were computed for each ROI. It should be noted that for both 

OGSE and µA metrics, averaging for each ROI was performed over the first non-signal 

parameter computed. Bland-Altman and CV analyses were performed using the mean 

values.  

2.2.4.3 Voxel-wise Analysis 

ΔMD maps were generated by subtracting the MD maps at 0 Hz from the MD 

maps at 190 Hz. Λ maps were generated by performing a least square fit of MD to f0.5 for 

each voxel. Voxel-wise Bland-Altman and CV analyses were performed for each metric 

using the scalar maps (ΔMD, Λ, and scalar maps from the µA protocol).  
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2.3 RESULTS 

2.3.1 SNR Analysis 

SNR maps, shown in Figure 2.2, revealed a higher SNR in the cortex when using 

the surface coil (with 5 and 3 averages for the OGSE and µA protocols respectively) 

compared to the MP40 volume coil. As expected, a gradient of SNR change can be seen 

in the superior-inferior direction of the brain with the surface coil. 

 

Figure 2.2 - SNR maps of images acquired with the surface coil and the millipede-40mm 

(MP40) volume coil.  SNR maps for a single b = 0 s/mm2 image are shown for both 

protocols, and SNR maps for the powder average of the highest b-values are shown for 
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both protocols (b = 800 s/mm2 for OGSE-190 Hz and b = 2000 s/mm2 for µA-STE). The 

middle column shows SNR maps acquired from the surface coil with the number of 

averages used in this study (5 averages for the OGSE protocol and 3 averages for the µA 

protocol). The left column shows the effect of using fewer averages (3 averages for OGSE 

and 2 averages for µA). The right column shows the effect of using a commercially 

available MP40 volume coil with same number of averages used in this study. 

2.3.2 Raw Data to Parameter Maps 

Raw data (after combining all averages) and preprocessed data are shown in 

Figure 2.3. Representative parameter maps are shown in Figure 2.4. MD (190 Hz) has an 

overall higher intensity than MD (0 Hz). ΔMD shows selective enhancement of distinct 

regions in the brain - the dentate gyrus (part of the hippocampal formation) is shown with 

white arrows. As expected, ΔMD and Λ show similar contrast. ROI-based fitting of Λ 

showed the expected trends with f0.5 in all ROIs and at both test and retest time-points 

(Figure 2.5). The µA and µFA maps also show similar contrast. KLTE highlights white 

matter structures as expected and KSTE is homogenous throughout the brain, although 

very high in CSF regions and regions impacted by CSF partial volume effects.  

 



80 

 

Figure 2.3 - Raw and preprocessed dMRI data. Raw data (after combining averages) is 

shown in the top row and preprocessed data is shown in the bottom row. Representative b 

= 0 s/mm2 images are shown for both the OGSE and µA protocols. From the OGSE 

protocol, representative diffusion weighted images from a single diffusion gradient 

direction are shown from PGSE and OGSE with the highest frequency used in this study 

(190 Hz), at b = 800 s/mm2. From the µA protocol, diffusion weighted images from a 

single diffusion gradient direction are shown from the LTE and STE sequences, at b = 

2000 s/mm2. 

 

Figure 2.4 - Example axial cross sections from a single subject showing an anatomical 

T2-weighted image, a non-diffusion weighted image (b0), and a color fractional 

anisotropy map (Color FA), where the colors represent the primary direction of diffusion. 

Parameter maps from the OGSE protocol (MD (0 Hz): Mean Diffusivity from PGSE (0 
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Hz); MD (190 Hz): Mean Diffusivity from OGSE (190 Hz); ΔMD: the difference between 

MD (190 Hz) and MD (0 Hz); Λ: the apparent diffusion dispersion rate) and the µA 

protocol (µA: Microscopic Anisotropy; µFA: Microscopic Fractional Anisotropy; KLTE: 

Linear Kurtosis (from linear tensor encodings); KSTE: Isotropic Kurtosis (from spherical 

tensor encodings)) are shown. The white arrows in the ΔMD and Λ maps indicate high 

OGSE contrast in the dentate gyrus. 

 

Figure 2.5 - Least square fitting of mean MD values to f0.5, depicted by the dotted lines, 

in each ROI for test and retest timepoints in one mouse. The diffusion dispersion rate, Λ, 

ranged from 0.0051 – 0.0070 µm2/ms1/2, depending on the ROI.  

2.3.3 ROI Analysis 

Violin plots depict the distribution of the mean values for each metric within each 

ROI for the twelve subjects (Figure 2.6). Across all metrics, the median and interquartile 

range are similar for test and retest conditions. In general, the smaller ROIs (the internal 

capsule and the thalamus) show greater distributions, while the larger ROIs (i.e., the 
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cortex) showed much tighter distributions. Bland-Altman plots (Figure 2.7) revealed 

negligible biases between repeat measurements across all metrics. In the variability 

analysis, outlier removal revealed at most one outlier for most metrics (in some of the 

ROIs), with KSTE and FA containing two outliers in the thalamus and internal capsule. Λ 

and ΔMD showed similar CVs, with the between subject CVs ranging from 5 – 15 %, 

and the within subject CVs ranging from 4 – 10 %. (Figure 2.8). µA and µFA show low 

between and within subject CVs for all ROIs (ranging from 3 – 8 %), with µFA showing 

slightly lower CVs. KLTE exhibited consistently lower between and within subject CVs (3 

– 8 %) compared to KSTE (10 – 17 %). In terms of the DTI metrics, the lowest CVs were 

observed in MD (CVs < 5 %) and FA showed a higher variation of CVs than most of the 

OGSE and µA metrics. ROI-based between and within-subject CV analysis performed on 

OGSE and µA data with fewer averages revealed comparable CVs (as shown in 

Supplemental Figure 2.S1). 



83 

 

 

Figure 2.6 - Violin plots showing the distribution of the OGSE metrics (ΔMD and Λ) and 

the µA metrics (µA, µFA, KLTE, and KSTE) at the test and retest timepoints (five days 

apart) for twelve subjects in several brain regions. The dark black line represents the 

median and the red lines depict the interquartile range (25th to 75th percentile). The 

violin plots extend to the minimum and maximum values of each metric. ROIs are 
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abbreviated as follows: CC – corpus callosum; IC – internal capsule; HC – 

hippocampus; CX – cortex; TH – thalamus. 
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Figure 2.7 - Bland-Altman plots depicting biases between test and retest scans for mean 

values of OGSE and µA metrics (from the ROI-based analysis). The solid black lines 

represent the mean bias, and the dotted black lines represent the ±1.96 standard 

deviation lines. The average of the test and retest mean values is plotted along the x-axis 

and the difference between the test and retest mean values is plotted along the y-axis. 

ROIs in the legend are abbreviated as follows: CC – corpus callosum; IC – internal 

capsule; HC – hippocampus; CX – cortex; TH – thalamus. 

 

Figure 2.8 - Mean between subject and within subject coefficients of variation (CV) for 

OGSE and µA metrics for each ROI. Values for the between subject condition represent 

the mean ± standard deviation over subjects (averaged over the test and retest 

timepoints). Values for the within subject condition represent the mean ± standard 

deviation between test and retest (averaged over all subjects). ROIs are abbreviated as 
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follows: CC – corpus callosum; IC – internal capsule; HC – hippocampus; CX – cortex; 

TH – thalamus. 

2.3.4 Voxel-wise Analysis 

Bland-Altman plots comparing whole brain test and retest voxels for all twelve 

subjects revealed negligible biases for all metrics (Figure 2.9). However, ΔMD, Λ, and 

KSTE showed greater variation in test and retest differences. The CV maps (Figure 2.10) 

show very high CVs in the CSF regions (except for the KSTE and FA CV maps). 

Histograms (Figure 2.11) show ΔMD and Λ have the same distribution. Overall, the 

between and within subject CVs are comparable for all metrics. µA, µFA, and KLTE have 

comparable CVs with peaks at 10, 8, and 16 % respectively.  ΔMD, Λ, and KSTE peak 

around 50 % and have very wide distributions. In comparison, the DTI metrics, MD and 

FA, peak at 8 % and 25 % respectively. Whole brain histograms and histograms for 

specific ROIs (Supplemental Figure 2.S2) show similar trends.  



88 

 

 

Figure 2.9 - Bland-Altman plots depicting biases between test and retest scans for OGSE 

and µA metrics from the whole-brain voxelwise analysis for all subjects. The solid black 
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lines represent the mean bias, and the dotted black lines represent the ±1.96 standard 

deviation lines. The average of the test and retest voxels is plotted along the x-axis and 

the difference between the test and retest voxels is plotted along the y-axis. 

 

Figure 2.10 - Whole brain average between subject and within subject CV maps. All 

diffusion data was registered to a single anatomical T2-weighted dataset (representative 

axial slice shown). Values for the between subject condition represent the mean CV 

within each voxel averaged over the test and retest timepoints. Values for the within 

subject condition represent the mean CV within each voxel averaged over all subjects. 

DTI metrics, MD and FA, acquired from both the OGSE and µA protocols, are shown as 

a reference. Note that the color bar scale varies between the maps. 
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Figure 2.11 - Distribution of between and within subject whole brain voxel-wise CVs for 

the OGSE and µA metrics. DTI metrics, acquired from both protocols, are shown as a 

reference. 

2.3.5 Sample sizes and minimum detectable effect 

2.3.5.1 Between subjects 

The between subject CVs, from the ROI analysis, were used to determine the 

minimum sample sizes required to detect statistically significant changes of 4, 6, 8, 10, 

and 12 % between subjects in each metric within each ROI. ΔMD required a sample size 

of 15 to detect a minimum change of 8 % in the three larger ROIs (the corpus callosum, 

hippocampus, and cortex). In comparison, the same changes could be detected in Λ with 

a sample size of 9 (Figure 2.12). µA and µFA required a sample size of 9 to detect a 6 % 

change in the three larger ROIs. With a sample size of 12, a minimum change of 8 % in 

KLTE could be detected within all ROIs. KSTE, on the other hand, required much larger 



91 

 

sample sizes (at least 20 subjects per group are required to detect a 12 % change in the 

three larger ROIs). 
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Figure 2.12 - Sample size estimation using a between-subjects approach. Sample sizes 

required, calculated from ROI-based between-subject CVs, to detect a statistically 

significant effect within each ROI with a change in each metric of 4, 6, 8, 10, and 12 %. 

Note that the sample size range varies between plots and sample sizes exceeding the 

range are not shown. ROIs are abbreviated as follows: CC – corpus callosum; IC – 

internal capsule; HC – hippocampus; CX – cortex; TH – thalamus. 

2.3.5.2 Within subjects 

The standard deviations of the differences between test-retest mean values across 

subjects (assuming paired t-tests) were used to determine the minimum sample sizes 

required to detect statistically significant changes of 4, 6, 8, 10, and 12 % within subjects 

in each metric within each ROI. In the larger ROIs, changes on the order of 8 – 10 % 

could be detected in Λ with 12 subjects per group, while ΔMD showed similar trends, 

requiring 15 subjects per group to detect changes of 8 – 10 % (Figure 2.13). µA was able 

to detect a minimum change of 4 % in the larger ROIs with 12 subjects per group, while 

the smaller ROIs required greater sample sizes. µFA was slightly more robust, being able 

to detect a 4 % change in the larger ROIs (with 9 subjects per group) and in all ROIs 

(with 14 subjects per group). KLTE was able to detect moderate changes (6 %) with 12 

subjects per group in all ROIs, whereas KSTE required at least 30 subjects to detect larger 

changes (12 %). 
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Figure 2.13 - Sample size estimation using a within-subjects approach. Sample sizes 

required, calculated from the standard deviation of differences between test-retest mean 

values across subjects (assuming paired t-tests), to detect a statistically significant effect 

within each ROI with a change in each metric of 4, 6, 8, 10, and 12 %. Note that the 
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sample size range varies between plots and sample sizes exceeding the range are not 

shown. ROIs are abbreviated as follows: CC – corpus callosum; IC – internal capsule; 

HC – hippocampus; CX – cortex; TH – thalamus. 

2.4 DISCUSSION 

This study explored the reproducibility of OGSE and µA metrics at 9.4 Tesla. No 

biases were found between repeat measurements with either ROI-based or voxel-wise 

analysis. µA, µFA, and KLTE were shown to be reproducible in both the mean ROI 

analysis and the whole brain voxel-wise analysis, while ΔMD, Λ, and KSTE were 

reproducible in only the mean ROI analysis. µA and µFA showed the highest 

reproducibility of all the metrics, comparable to the DTI metric MD, and the least 

dispersion of CVs. The CVs observed for µFA in this work are consistent with CVs 

reported in a recent study by Arezza et al. (12) in human subjects at 3 T, where CVs 

ranged from 6 – 8 %.  Overall, within subject CVs were lower than between subject CVs 

for both ROI-based and voxel-wise analysis, indicating less variability within subjects on 

a test-retest basis.  

2.4.1 SNR Analysis 

Although the MP40 volume coil provides uniform whole-brain SNR (as shown in 

Figure 2.2), the surface coil may be preferred for applications focusing on certain regions 

of the brain, such as the cortex and the corpus callosum. Although higher CVs are 

observed farther away from the surface coil for all metrics (Figure 2.10), the gradient of 

SNR change observed for the surface coil (Figure 2.2) does not seem to affect the voxel-

wise CV maps to the same extent, which could be due to the denoising quality. 
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Furthermore, lowering the number of averages in the acquisition shows comparable ROI-

based reproducibility (Supplemental Figure 2.S1), which points to the robustness of the 

denoising and outlier removal in the pipeline. This also suggests that the reproducibility 

of the dMRI metrics is more heavily impacted by physiological effects (such as between-

subject heterogeneity) and partial volume effects, compared to SNR. 

2.4.2 ROI-based Reproducibility 

Our ΔMD maps (Figure 2.4) show contrast which is consistent with recent 

observations in both in vivo and ex vivo OGSE studies in mouse brains by other groups 

(201,233–235). Aggarwal et al. related the higher OGSE contrast in the dentate gyrus 

layer of the hippocampal formation to densely packed neurons in the region (233), which 

simulations have indicated increase the rate of change in MD with frequency (176). The 

very low values of ΔMD seen in certain regions of the gray matter are due to partial 

volume effects from CSF, as CSF exhibits negative values of ΔMD due to flow 

(170,183). ΔMD and Λ maps (Figure 2.4) show the same contrast, since the apparent 

diffusion dispersion rate is directly proportional to ΔMD. This relationship is also 

reflected in the ΔMD and Λ ROI-based CVs (Figure 2.8) and voxel-wise CV maps 

(Figure 2.10), which are very similar.  While ΔMD requires less scan time than Λ, as it 

requires only a single OGSE and PGSE acquisition, acquiring multiple frequencies 

allows probing of whether diseases may affect the power law scaling of MD with respect 

to frequency (f0.5 was assumed here). Further, Λ is expected to be more robust in terms of 

reproducibility as it includes data from all OGSE acquisitions (as shown in Figure 2.5). 

This is reflected in our results by the smaller sample sizes needed to detect the same 

statistically significant changes in Λ, compared to ΔMD (Figure 2.12 and Figure 2.13).  
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In the mean ROI analysis, the size and location of the ROIs influenced the 

reliability of the measurements. A greater distribution in the mean values for all metrics 

are observed in the internal capsule and thalamus (Figure 2.6), which are the smallest 

ROIs analyzed in this study. Similarly, higher CVs and a greater dispersion of CV values 

are observed in both smaller ROIs (Figure 2.8). This result leads to greater sample sizes 

being required to detect the same change in the smaller ROIs compared to the larger 

ROIs in some metrics (Figure 2.12). Thus, smaller ROIs lead to unreliable measurements 

due to less averaging and possibly a greater effect from slight registration inaccuracies. 

Both smaller ROIs are also positioned in the lower half of the brain, farther away from 

the surface coil. In addition to the location and the size of the ROIs, certain brain regions, 

such as the internal capsule, show higher between-subject anatomical variation (236), 

which would result in a higher between-subject CV. Furthermore, greater variability in 

terms of tissue microstructure, such as the greater variation of cell sizes and cell types in 

the thalamus (148), may also lead to higher CVs. 

It is noteworthy that FA showed comparable reproducibility to Λ and µFA in the 

corpus callosum (i.e., white matter) and generally lower reproducibility in grey matter, 

which suggests sample sizes estimated using FA reproducibility would also be sufficient 

to investigate Λ and µFA. The lower reliability of FA in grey matter, compared to µFA, 

likely stems from its low value due to intravoxel dispersion of fiber orientations.  

2.4.3 Voxel-wise Reproducibility 

Voxel-wise analysis for specific ROIs (Supplemental Figure 2.S2) shows that in 

general, the 3 ROIs shown (the corpus callosum, hippocampus, and cortex) follow the 

same trends. The corpus callosum shows a slightly lower CV peak than the gray matter 
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regions for the more reproducible metrics (µA, µFA, and KLTE). Overall, the within 

subject CV histograms have peaks at lower values than the between subject CV 

histograms, indicating less variability on a within subject test-retest basis. This is also 

noticeable in the between and within subject CV maps (Figure 2.10), with the within 

subject CV maps showing lower values overall.  

One of the main reasons for the lack of reproducibility through voxel-wise 

analysis of ΔMD and Λ is likely CSF partial voluming. Since voxels with CSF can 

exhibit negative ΔMD and Λ values, whereas brain tissue shows positive ΔMD values, 

this leads to very high CVs (CVs > 60) in voxels impacted by CSF contamination, such 

as in regions with CSF in adjacent slices. This partial volume effect on ΔMD and Λ can 

be mitigated by using a higher resolution. However, this would also reduce SNR and 

longer scan times would be required to produce the same image quality. Voxel-wise 

analysis of ΔMD and Λ (from in vivo OGSE data) is not feasible given the resolution and 

scan time constraints. In contrast, ΔMD and Λ both show good reproducibility in the ROI 

analysis, where this partial volume effect is mitigated due to averaging. µA, µFA, and 

KLTE also show greater CVs in regions with CSF, such as the ventricles, arising from the 

very small values of these metrics in CSF. 

As KSTE values are intrinsically low in the brain (11,21), higher CVs and greater 

dispersion of CV values are observed, even in the ROI analysis. Since KSTE depends on 

the variance in mean diffusivity, low KSTE values point to a low variance in MD. This 

indicates similar sized cells across the brain, since a higher variance in cell size would 

lead to a higher variance in MD. In other words, the volume-weighted variance of cell 

size is low compared to the mean cell size. Unlike the other metrics explored in this 
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study, KSTE shows very low CVs in regions with CSF and in regions affected by CSF 

contamination (Figure 2.10), since KSTE values are very high in CSF (Figure 2.6). As the 

CSF STE signal as a function of b-value decays very rapidly and reaches the noise floor, 

the fitting detects a false variance (very high KSTE) if high b-value data is not excluded 

(21). The generally low reliability of KSTE is likely due to a combination of its low value 

and the well-known sensitivity of kurtosis fitting to both physiological and thermal noise 

(237). Notably, while ostensibly based on kurtosis fitting, µA and µFA do not suffer 

similar issues because no 2nd order kurtosis fitting is required to estimate these metrics 

due to term cancellations that occur when the kurtosis difference between LTE and STE 

is evaluated to estimate these metrics (12). Despite the low reliability, it is encouraging 

that the KSTE maps (Figure 2.4) exhibit contrast which is comparable to KSTE maps shown 

in a recent in vivo rodent study applying correlation tensor imaging (a DDE technique) 

(238). 

2.4.4 Sample Size and Minimum Detectable Effect 

Given the current test-retest study design, small changes (< 6 %) can be detected 

in µA, µFA, and KLTE, both between and within subjects, with moderate sample sizes of 

10 – 15. With all minimum detectable changes explored (Figure 2.12 and Figure 2.13), 

µFA was the most sensitive metric, followed by µA. ΔMD and Λ can detect moderate 

changes (> 6 %), given sample sizes of 12 - 15. KSTE cannot detect small changes with 

sample sizes relevant to preclinical neuroimaging studies, unless compromises in scan 

time or resolution are made to improve SNR compared to the scans performed here. 
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2.4.5 Limitations 

It should be noted that the findings in this work are specific to the scan parameters 

used. Diffusion MRI is inherently a low SNR technique and high b-value acquisitions 

(from the µA protocol) and high oscillating gradient frequency acquisitions (from the 

OGSE protocol) result in even lower SNR. To acquire sufficient SNR, the voxel size was 

adjusted, with slice thickness set to 500 µm. Since our metrics are greatly impacted by 

partial volume effects (mostly from CSF), a higher resolution may provide more accurate 

and reproducible measurements. However, acquiring higher resolution with comparable 

SNR would require much greater scan time, which is not feasible for longitudinal in vivo 

neuroimaging studies, which are essential to characterize the progression of disease and 

injury recovery. Furthermore, a single channel transceive surface coil was used in this 

study and scan acceleration with parallel imaging was not possible. An option for 

obtaining more reliable ΔMD measures is to acquire only one PGSE and one OGSE scan, 

utilizing the same scan time of 45 minutes for the multifrequency OGSE protocol in this 

study. Thus, greater SNR and/or resolution can be achieved with more averaging. 

However, in doing so, one would lose the potential additional insight into microstructure 

organization and tissue integrity that multiple frequency analysis can provide if, for 

example, the f0.5 power law scaling of MD changes in certain pathologies.  

In the statistical analyses, it should be noted that for the within-subject calculation 

of CV, the standard deviation was determined from only two data points (the test and 

retest conditions). As a result, the standard deviation may not accurately represent the 

spread of data within the population, leading to an unknown bias in the resulting within-

subject CV.  
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2.5 CONCLUSION 

In conclusion, we have investigated the reproducibility of OGSE and µA metrics in a 

rodent model at an ultra-high field strength. We have shown that the µA, µFA, and KLTE 

metrics (from the µA protocol) are reproducible in both ROI-based and voxel-wise 

analysis, while the ΔMD and Λ metrics (from the OGSE protocol) are only reproducible 

in ROI-based analysis. Given feasible sample sizes (10 – 15), µA, µFA, and KLTE may 

provide sensitivity to subtle microstructural changes (4 - 8 %), while ΔMD and Λ may 

provide sensitivity to moderate changes (> 6 %). This work will provide insight into 

experiment design and sample size estimation for future longitudinal in vivo OGSE and 

µA microstructural dMRI studies at 9.4 T. 

2.6 SUPPORTING INFORMATION 
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Supplemental Figure 2.S1 - ROI-based mean between subject and within subject 

coefficients of variation (CV) analysis for OGSE and µA metrics, acquired with fewer 

averages. DTI metrics, MD and FA, acquired from both the OGSE and µA protocols, are 

shown as a reference. Values for the between subject condition represent the mean ± 

standard deviation over subjects (averaged over the test and retest timepoints). Values 

for the within subject condition represent the mean ± standard deviation between test and 

retest (averaged over the eight subjects). ROIs are abbreviated as follows: CC – corpus 

callosum; IC – internal capsule; HC – hippocampus; CX – cortex; TH – thalamus. 



102 

 

 



103 

 

Supplemental Figure 2.S2 - Distribution of voxel-wise between and within subject CVs 

within each ROI.  
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Chapter 3  

3 Test-retest reproducibility of in vivo 

magnetization transfer ratio and saturation index 

in mice at 9.4 Tesla 

This chapter was published in Journal of Magnetic Resonance Imaging, volume 56, 

Rahman et al., Test-retest reproducibility of in vivo magnetization transfer ratio and 

saturation index in mice at 9.4 Tesla (239), Copyright Wiley, 2022. 

3.1 INTRODUCTION 

Magnetization transfer (MT) imaging has been used extensively to investigate 

changes in myelin content and integrity in brain development, injury and white matter 

diseases, most notably in multiple sclerosis patients (153,240). MT imaging applications 

include both conventional contrast-weighted protocols (such as magnetization transfer 

ratio, MTR) and quantitative MT (qMT) methods (241).  

MT is a physical process by which macromolecules and their closely associated 

water molecules cross-relax with protons in the free water pool (241). Based on this 

phenomenon, it is possible to quantify the protons bound to large molecules, which are 

not MR visible, due to their extremely short transverse relaxation time (T2). MT contrast 

can be generated by applying an off-resonance radiofrequency pre-pulse (MT pulse) to 

selectively saturate the spectrally broad macromolecular proton pool. This saturation then 

transfers to the free water proton pool via MT, resulting in a decrease in the observed free 

water signal. The magnitude of the MT effect can be characterized by the magnetization 

transfer ratio (MTR):  
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MTR =  
PDw−MTw

PDw
      (3.1) 

where PDw is the signal without an MT pulse applied, which is proton density weighted 

(PDw), and MTw is the signal with the MT pulse applied, which is MT weighted (MTw). 

Although MTR has been shown to correlate well with histological myelin content 

(153,154), it is also sensitive to the choice of sequence parameters, flip angle 

inhomogeneities, and longitudinal relaxation time (T1) (14). T1 also correlates strongly 

with myelin content, but is also sensitive to axon size (155) and iron content (156), 

mitigating the power of MTR as a measure of myelin. Quantitative MT has been used in 

many recent works to quantify myelin (242–244), as it reduces the confounding effects of 

scan parameters and quantifies specific tissue characteristics, such as the macromolecular 

pool size (241). However, qMT relies on complex modeling of the MR signal 

dependence on myelin, and requires more measurements and thus longer acquisition 

times compared to contrast-weighted MT protocols (241). 

Magnetization transfer saturation (MTsat) imaging was developed to improve 

MTR, by decoupling MTR from T1 effects, while maintaining a feasible scan time (14). 

The shorter scan time compared to qMT enables longitudinal in vivo imaging and allows 

the addition of other imaging techniques required to characterize microstructure. A scalar 

map of MTsat can be acquired using two reference scans of proton density and T1 

weighting (PDw and T1w respectively), and one MTw scan. MTsat, being more 

independent of system parameters and T1 weighting, and less susceptible to 

inhomogeneities of the receiver coil and the transmitted RF field, provides greater 

specificity and contrast compared to MTR (14,15). MTsat shows higher white matter 
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contrast in the brain than MTR (14), and has been shown to correlate more with disability 

metrics than MTR in patients with multiple sclerosis (18). Hagiwara et al. reported that 

MTsat may be more suited to measure myelin in the white matter, compared to the ratio 

of T1-weighted to T2-weighted images, which has also been proposed as a measure of 

myelin (245).  

There is strong interest in applying MT to preclinical rodent neuroimaging studies 

at ultra-high field strengths (≥ 7 T), demonstrated by MTR (246–249) and qMT studies 

(244,250–252). The feasibility of MTsat imaging in mice at 9.4 T has been shown 

previously (253) and MTsat has been explored in a feline model of demyelination at 3 T 

(254). While most MTsat studies have been performed at 3 T, recently, Olsson et al. 

reported an optimized whole-brain MTsat protocol at 7 T (255), which highlights the 

increasing interest in this method. Although previous in vivo MTsat studies have shown 

high reproducibility in humans at 3 T (180,256), the comparability of MTR and MTsat 

reproducibility has not been fully evaluated. This also leaves open the question of MTsat 

reproducibility in a preclinical setting, at an ultra-high field strength. As MTsat provides 

a time-efficient alternative to fully quantitative techniques but with increased specificity 

and contrast compared to MTR, investigation of MTsat in preclinical rodent imaging will 

likely be of interest to other research groups. The aim of this work was to assess test-

retest reproducibility of in vivo MTR and MTsat in mice at 9.4 Tesla and provide 

estimates of required sample sizes, which is essential in planning preclinical 

neuroimaging studies involving models of disease/injury. 
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3.2 METHODS 

3.2.1 Subjects 

All animal procedures were approved by the University of Western Ontario 

Animal Use Subcommittee and were consistent with guidelines established by the 

Canadian Council on Animal Care. Twelve adult C57Bl/6 mice (six males and six 

females) were scanned twice 5 days apart. The sample size was chosen to reflect similar 

sample sizes used in other pre-clinical imaging studies (214,215,217). Before scanning, 

anesthesia was induced by placing the animals in an induction chamber with 4 % 

isoflurane and an oxygen flow rate of 1.5 L/min. Following induction, isoflurane was 

maintained during the imaging session at 1.8 % with an oxygen flow rate of 1.5 L/min 

through a custom-built nose cone. The mouse head was fixed in place using ear bars and 

a bite bar to prevent head motion. These mice were also part of a different longitudinal 

study with 3 additional imaging sessions following the test and retest scans, at the end of 

which they were euthanized for histology. The mice were anesthetized with 

ketamine/xylazine (2:1) and then underwent trans-cardiac perfusion with ice-cold saline, 

followed by 4% paraformaldehyde in phosphate-buffer saline (PBS). 

3.2.2 In vivo MRI 

In vivo MRI experiments were conducted on a hybrid system: Agilent 9.4 Tesla, 

31-cm bore magnet (Agilent, Palo Alto, CA, USA), equipped with a 60 mm gradient coil 

set of 1 T/m strength (slew rate = 4100 T/m/s) (Agilent, Palo Alto, CA, USA) and Bruker 

Avance MRI III console with software package of Paravision-7 (Bruker BioSpin 

Corp, Billerica, MA). A single channel transceiver surface coil (20 mm x 25 mm), built 

in-house, was fixed in place directly above the mouse head to maximize signal-to-noise 
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ratio (SNR). A boost in SNR in the cortex when using this surface coil, compared to a 

commercially available 40-mm millipede (MP40) volume coil (Agilent, Palo Alto, CA, 

USA), has been reported previously (181). 

The MT protocol required 50 minutes total scan time and comprised three 

FLASH-3D (fast low angle shot) scans, and one RF transmit field (B1) map scan to 

correct for local variations in flip angle. An MT-weighted scan, and reference T1-

weighted and PD-weighted scans (MTw, T1w, and PDw respectively) were acquired by 

appropriate choice of the repetition time (TR) and the flip angle (α): TR/α = 8.5 ms/20° 

for the T1w scan and 25 ms/9° for the PDw and the MTw scans. MT-weighting was 

achieved by applying an off-resonance Gaussian-shaped RF pulse (12 ms duration, 385° 

nominal flip angle, 3.5 kHz frequency offset from water resonance, 5 µT RF peak 

amplitude) prior to the excitation. Other acquisition parameters were: TE = 2.75 ms; 

resolution = 150x150x400 µm3; field of view (FOV) = 19.2 x 14.4 x 12 mm3; read-out 

bandwidth = 125 kHz; 12 averages. The B1 map was acquired at a lower resolution of 

600x600x400 um3 and the following scan parameters: TE = 4 ms; α = 60°; short TR = 20 

ms; long TR = 100 ms; 2 averages. Anatomical images were also acquired for each 

subject within each session using a 2D T2-weighted TurboRARE pulse sequence (150 

μm in-plane resolution; 500 μm slice thickness; TE/TR = 40/5000 ms; 16 averages; total 

acquisition time = 22 min). 

3.2.3 Image Processing 

MTR and MTsat maps were generated using in-house MATLAB (ver. 2020b, 

Mathworks, Natick, MA) code. Gaussian filtering (full-width-half-maximum = 3 voxels) 

was first applied to the original images (MTw, PDw, and T1w images, and B1 maps) to 
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reduce noise, while retaining image contrast. The standard MTR maps were calculated 

using Equation 3.1. MTw, PDw, and T1w images were used to calculate MTsat maps, 

following the original method proposed by Helms et al. (14), and outlined by Hagiwara et 

al. (245) The following parameter estimates are influenced by local flip angle errors and 

are hence labeled by the subscript “app.” The apparent longitudinal relaxation rate, R1app, 

was calculated as follows: 

R1app =  
1

2

ST1αT1/TRT1− SPDαPD/TRPD

SPD/αPD− ST1/αT1
    (3.2) 

where ST1 and SPD denote signal intensities of T1w and PDw images, respectively; TRT1 

and TRPD denote TR of T1w and PDw images, respectively; and αT1 and αPD denote 

excitation flip angles of T1w and PDw images, respectively. The apparent signal 

amplitude, Aapp, was calculated as follows: 

Aapp =  SPDST1
TRPDαT1/αPD− TRT1αPD/αT1

ST1TRPDαT1− SPDTRT1αPD
   (3.3) 

Using R1app and Aapp, the apparent MT saturation, MTsatapp, was calculated as follows: 

MTsatapp = (
AappαMT

SMT
− 1) R1appTRMT −  αMT

2 /2   (3.4) 

where SMT, TRMT, and αMT denote signal intensity, TR, and excitation flip angle of the 

MTw image, respectively. 

MTsatapp is inherently robust against differences in relaxation rates and 

inhomogeneities of RF transmit and receive field compared with conventional MTR 

imaging (14,15). Furthermore, B1 maps were used to correct for small residual higher-
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order dependencies of the MT saturation on the local RF transmit field to further improve 

spatial uniformity, as suggested by Weiskopf et al. (180): 

MTsat =  
MTsatapp∙(1 − 0.4)

1 − 0.4∙RFlocal
    (3.5) 

where RFlocal is the relative flip angle α compared to the nominal flip angle. 

Brain masks were produced using the skull stripping tool from BrainSuite (ver. 

19b, http://brainsuite.org/quickstart/cse/) (226). Image registration was performed using 

affine and symmetric diffeomorphic transforms with ANTs software 

(https://github.com/ANTsX/ANTs) (227). Region-of-interest (ROI) masks were acquired 

from the labeled Allen Mouse Brain Atlas (228). One T2-weighted scan was performed 

for each subject at each timepoint. As registration to an atlas is time-consuming, a T2-

weighted scan from only one subject at the test timepoint was chosen (the “chosen T2”) 

to be registered to the atlas. All other T2-weighted images from other subjects, at both 

timepoints, were registered to the “chosen T2.” MTR parameter maps were registered to 

the corresponding anatomical images (from the same subject at the same timepoint). For 

ROI-based analysis, the inverse transformations resulting from the preceding registration 

steps (MTR → corresponding T2 → chosen T2 → atlas) were then used to bring the 

labeled atlas to the corresponding MT space for each subject at each timepoint. The 

inverse transformations, computed by ANTs for each registration step, are used to 

perform the opposite operation (such as deforming an image in the atlas space and 

producing an output in the chosen T2 space), and include inverse deformation fields and 

inverse affine transforms. Binary masks for each ROI were generated by thresholding the 

labeled atlas. Each mask was eroded by one voxel, except for the corpus callosum masks, 

https://github.com/ANTsX/ANTs
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to minimize partial volume errors within a given ROI. The binary masks were visually 

inspected to ensure good registration quality.  

Furthermore, to perform whole brain voxel-wise analysis of all subjects across 

both timepoints, the data was registered to a common template. MTR maps were first 

registered to one MTR map (the “chosen MTR”). All MTsat maps were then registered to 

the chosen MT space using a single transform: MTR → chosen MTR.  

3.2.4 Data Availability 

The test-retest dataset and in-house code to compute MTR and MTsat is available 

online: https://osf.io/5nwae/.  

3.2.5 Data Analysis 

3.2.5.1 ROI-based and Voxel-wise Analysis 

ROI analysis was performed using two approaches: (1) analysis of unregistered 

data and (2) analysis of data registered to a common template. For the second approach, 

all MTR and MTsat maps were registered to a “chosen” MTR space, as described above.  

The ROI analysis focused on five different tissue regions: corpus callosum (CC), 

internal capsule (IC), hippocampus (HC), cortex (CX), and thalamus (TH). For both ROI-

based approaches, Bland-Altman and CV analyses were performed using the mean MTR 

and MTsat values from each ROI. Voxel-wise CV analysis was also performed with the 

registered data.  
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3.2.6 Statistical Analysis 

The normalized contrast between white matter (WM) and gray matter (GM) 

regions was calculated as (WM(MTR or MTsat) – GM(MTR or MTsat))/GM(MTR or MTsat), where the 

WM MTR and MTsat values were the average of mean ROI-based CC and IC values, and 

the GM MTR and MTsat values were the average of mean ROI-based HC, CX, and TH 

values. For the test scans of the registered data, the normalized contrast was averaged 

across all subjects, and an unpaired two-tailed t-test was performed between MTR and 

MTsat contrast. For both registered and unregistered data, paired two-tailed t-tests were 

performed to test for significant differences between ROI-based test and retest mean 

measurements. As there were multiple ROIs, the Bonferroni-Dunn method was used to 

correct for multiple comparisons. 

Measurement reproducibility was explored for both ROI-based analysis and 

whole brain voxel-wise analysis. To mitigate partial volume errors from cerebrospinal 

fluid (CSF) in ROI-based analysis, voxels with MTR < 0.1 were omitted in both test and 

retest images. In voxel-wise analysis, voxels with MTR < 0.1, as measured on the test 

images, were omitted. Bland-Altman analysis was performed for the ROI-based analyses 

to identify any biases between test and retest measurements. For both analysis techniques, 

the scan-rescan reproducibility was characterized using the coefficient of variation (CV). 

The CV reflects both the reproducibility and variability of these metrics, as well as 

provides insight into necessary sample sizes and minimum detectable effect size. CVs 

were calculated between subjects (bsCV) and within subjects (wsCV) to quantify the 

between subject and within subject reproducibility, respectively. The between subject CV 

was calculated separately for the test and retest timepoints as the standard deviation 
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divided by the mean value across subjects 1–12. These two CV values were then 

averaged for the mean between subject CV. The within subject CV was calculated 

separately for each subject as the standard deviation divided by the mean of the test and 

retest scans. The 12 within subject CVs were then averaged to determine the mean within 

subject CV. For both registered and unregistered data, one-way ANOVA was performed 

to test for significant differences between ROI-based CVs, and unpaired two-tailed t-tests 

were performed to test for significant differences between ROI-based MTR and MTsat 

CVs (using the Bonferroni-Dunn method to correct for multiple comparisons).  

Sample size calculations were performed based on CVs from the ROI analysis of 

registered data. Minimum sample sizes required to detect defined biological effects 

(statistically significant changes of 6, 8, 10, 12 and 14 %), using both between and within 

subject approaches, were determined at a 95 % significance level (α = 0.05) and power of 

80 % (1−β = 0.80). The defined statistically significant changes were centered around 10 

%, as most MT studies report changes in MTR between 15 – 30 % (248,257), while some 

studies report more subtle changes between 5 – 10 % (247,258). This is explained in 

greater detail in the Discussion. Thus, changes smaller than 10 % were considered 

“small” changes and changes larger than 10 % were considered “large” changes.  

Following the procedure presented in van Belle (231), the between subject CVs 

were used to determine the sample size required per group to detect a defined biological 

effect between subjects in each ROI. Assuming paired t-tests, the standard deviations of 

the differences between test-retest mean values across subjects, were used to determine 

the sample size required to detect a defined biological effect within subjects in each ROI, 

using an online sample size calculator (UCSF Clinical & Translational Science Institute, 
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San Francisco, CA, https://sample-size.net/sample-size-study-paired-t-test/) (232). BA 

plots, CV calculations, and sample sizes required (using a between subjects approach) 

were generated using MATLAB (ver. 2020b, Mathworks, Natick, MA). All tests of 

statistical significance were performed using GraphPad Prism 9 (San Diego, CA). Results 

were considered statistically significant at P ≤ 0.05. 

3.3 RESULTS 

3.3.1 Parameter Maps 

Representative parameter maps are shown in Figure 3.1. MTsat revealed slightly 

greater contrast than MTR between gray matter and white matter, which was noticeable 

when comparing the corpus callosum and internal capsule (white matter regions) to the 

surrounding gray matter. The normalized contrast between gray matter and white matter 

regions, averaged over all subjects, in MTsat (0.376) was significantly higher (P < 

0.0001) than in MTR (0.226). 
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Figure 3.1 - Example axial cross sections from a single subject. An anatomical T2-

weighted image, an MT weighted (MTw) image, reference T1 weighted (T1w) and proton 

density weighted (PDw) images, a B1 map, and corresponding MTR and MTsat maps are 

shown. ROIs analyzed are overlaid on an MTw image and abbreviated as follows: CC – 

corpus callosum; IC – internal capsule; HC – hippocampus; CX – cortex; TH – 

thalamus. 

3.3.2 ROI-based Analysis 

Violin plots, shown in Figure 3.2, depict the distribution of the mean values for 

each metric within each ROI for the 12 subjects for both registered and unregistered 

datasets. Across all ROIs, for both MTR and MTsat, no significant differences were 

found between mean test and retest values. For registered data, adjusted P-values for 

MTR were (P = 0.864 (CC); 0.315 (HC); 0.353 (CX); 0.285 (TH); 0.448 (IC)), while all 

adjusted P-values for MTsat were > 0.999 (paired two-tailed t-test). For unregistered 

data, adjusted P-values for MTR and MTsat were (P = 0.423 (CC); 0.273 (HC); > 0.999 

(CX); 0.260 (TH); 0.586 (IC)) and (P = 0.954 (CC); 0.902 (HC); 0.957 (CX); 0.954 (TH); 

0.954 (IC)), respectively. In general, the smaller ROIs (i.e., the internal capsule) showed 

greater distributions, while the larger ROIs (i.e., the cortex) showed much tighter 

distributions. For example, for registered data at the test timepoint, MTR and MTsat had 

a range of 0.059 and 0.0031, respectively, in the CX, and 0.075 and 0.0046, respectively, 

in the IC. 
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Figure 3.2 - Violin plots showing the distribution of MTR and MTsat at the test and retest 

timepoints (five days apart) for 12 subjects in several brain regions. Unregistered data 

(left column) and data registered to a common template (right column) are shown. The 

dark black line represents the median and the red lines depict the interquartile range 

(25th to 75th percentile). The violin plots extend to the minimum and maximum values of 

each metric. ROIs are abbreviated as follows: CC – corpus callosum; IC – internal 

capsule; HC – hippocampus; CX – cortex; TH – thalamus. 

     Bland-Altman (BA) plots, shown in Figure 3.3, revealed negligible biases, 

with mean biases of 0.009 and 0 for MTR and MTsat, respectively. Although not 

significant, MTR exhibited lower between and within subject CVs (2.9 – 8 %) compared 
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to MTsat (4.5 – 10 %), as shown in Figure 3.4. This range represents the minimum and 

maximum CVs obtained across all ROIs in the registered dataset. For registered data, 

adjusted P-values for bsCV and wsCV were (P = 0.680 (CX); > 0.999 (all other ROIs)) 

and (P = 0.080 (CX); > 0.999 (all other ROIs)), respectively (unpaired two-tailed t-test 

between MTR and MTsat CVs). For unregistered data, adjusted P-values for bsCV and 

wsCV were (P > 0.999 (all ROIs)) and (P = 0.162 (CC); 0.557 (CX); > 0.999 (all other 

ROIs)), respectively. In general, CVs were comparable across all ROIs, as no significant 

differences were found between ROI-based mean CVs (one-way ANOVA). For 

registered data, P-values were (P = 0.532 (bsCV-MTR); 0.255 (wsCV-MTR); 0.789 

(bsCV-MTsat); 0.817 (wsCV-MTsat)). For unregistered data, P-values for were (P = 

0.661 (bsCV-MTR); 0.353 (wsCV-MTR); 0.890 (bsCV-MTsat); 0.666 (wsCV-MTsat)). 



119 

 

 

Figure 3.3 - Bland-Altman plots depicting biases between test and retest scans for mean 

MTR and MTsat values (from the ROI-based analysis). Unregistered data (left column) 

and data registered to a common template (right column) are shown. The solid black 

lines represent the mean bias, and the dotted black lines represent the ±1.96 standard 

deviation lines. The average of the test and retest mean values is plotted along the x-axis 

and the difference between the test and retest mean values is plotted along the y-axis. 

ROIs in the legend are abbreviated as follows: CC – corpus callosum; IC – internal 

capsule; HC – hippocampus; CX – cortex; TH – thalamus.  
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Figure 3.4 - Mean between subject and within subject coefficients of variation (CV) for 

MTR and MTsat in each ROI. Reproducibility metrics for unregistered data (left column) 

and data registered to a common template (right column) are shown. Values for the 

between subject CV condition represent the mean ± standard deviation over subjects 

(averaged over the test and retest timepoints). Values for the within subject CV condition 

represent the mean ± standard deviation between test and retest (averaged over the 12 

subjects). ROIs are abbreviated as follows: CC – corpus callosum; IC – internal capsule; 

HC – hippocampus; CX – cortex; TH – thalamus. 
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3.3.3 Voxel-wise Analysis 

 The voxel-wise CV maps showed very high CVs in the cerebrospinal fluid (CSF), 

due to the low values of MTR (< 0.1) and MTsat (< 0.004) in the CSF (Figure 3.5). In the 

CSF, mean bsCV/wsCV were 44.5%/36.5% and 53.2%/39.8% for MTR and MTsat, 

respectively, while whole brain mean bsCV/wsCV (with a mask applied to omit CSF 

voxels) were significantly lower at 20.5%/11.8% and 26.2%/16.5% for MTR and MTsat, 

respectively. Throughout the whole brain, between and within subject CVs showed good 

reproducibility (CV < 20%) with 67% of voxels and 87% of voxels falling within this 

range for MTR bsCV and wsCV, respectively. For MTsat, 54% and 80% of voxels were 

within this range for bsCV and wsCV, respectively. The wsCVs were significantly lower 

than the bsCVs for both MTR (p < 0.0001) and MTsat (p < 0.0001). For both wsCVs and 

bsCVs, voxelwise MTR and MTsat CVs had significantly different variances (F test). As 

shown in Figure 3.6, the MTsat histograms revealed a wider distribution (with standard 

deviations of 17.3 (bsCV) and 9.3 (wsCV)) compared to the MTR histograms (with 

standard deviations of 16.3 (bsCV) and 8.3 (wsCV)). As observed in the ROI-based CVs, 

MTR exhibited lower bsCVs (p < 0.0001) and wsCVs (p < 0.0001) (with peaks at 7 % 

and 6 %, respectively) compared to MTsat (with peaks at 15 % and 12 %, respectively), 

as shown in whole brain histograms (Figure 3.6).  
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Figure 3.5 - Voxelwise average between subject and within subject CV maps for MTR 

(top row) and MTsat (bottom row). Values for the between subject condition represent 

the mean CV within each voxel averaged over the test and retest timepoints. Values for 

the within subject condition represent the mean CV within each voxel averaged over all 

eight subjects. ROIs are abbreviated as follows: CC – corpus callosum; IC – internal 

capsule; HC – hippocampus; CX – cortex; TH – thalamus. 
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Figure 3.6 - Distribution of whole brain voxel-wise between and within subject CVs for 

MTR and MTsat. 

3.3.4 Sample sizes and minimum detectable effect 

3.3.4.1 Between subjects 

To detect a minimum change of 8 % in all ROIs, MTR required a sample size of 

15 (Figure 3.7a). In comparison, MTsat required a sample size of 25 to detect an 8 % 

change in all ROIs. The CC and CX required smaller sample sizes, with MTR requiring 

12 subjects to detect a 6 % change, and MTsat requiring 15 subjects to detect an 8 % 

change.  
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3.3.4.2 Within subjects 

As shown in Figure 3.7b, in the CC and CX, small changes (6 %) could be 

detected in MTR with 6 subjects per group, while MTsat could detect larger changes (8 – 

12 %) with 12 subjects per group. For MTR, small changes (6 %) could be detected in the 

other ROIs (IC, HC, TH) with a feasible sample size of 15. MTsat could detect larger 

changes (8 % and greater) in all ROIs with 20 subjects per group.  

 

Figure 3.7 - Sample size estimation using a between subjects (a) and within subjects 

approach (b) approach on data registered to a common template. Sample sizes required, 
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calculated from ROI-based between-subject CVs, to detect a statistically significant effect 

within each ROI with a change in each metric of 6, 8, 10, 12, and 14 %. Note that the 

sample size range varies between plots and sample sizes exceeding the range are not 

shown. ROIs are abbreviated as follows: CC – corpus callosum; IC – internal capsule; 

HC – hippocampus; CX – cortex; TH – thalamus. 

3.4 DISCUSSION 

This study explored the reproducibility of MTR and MTsat at 9.4 T and will 

provide insight into experiment design and sample size estimation for future in vivo 

MTsat imaging studies. No biases were found between repeat measurements with ROI-

based analysis. MTR and MTsat were shown to be reproducible in both the mean ROI 

analysis and the whole brain voxel-wise analysis, with MTsat CVs being slightly higher 

than MTR CVs (which was not significant in ROI analysis, but significant in voxel-wise 

analysis). Overall, within subject CVs were lower than between subject CVs for both 

ROI-based (not significant) and voxel-wise (significant) analysis, indicating less 

variability within subjects on a test-retest basis. 

3.4.1 ROI-based Reproducibility 

ROI-based reproducibility was investigated using an unregistered dataset and a 

dataset registered to a common template, as both unregistered and registered analysis 

techniques have been used in neuroimaging studies, and the difference between using 

either analysis technique remains sparsely explored. Recently, Klingenberg et al. reported 

that registration significantly increased the accuracy of a convolutional neural network 

(CNN) to detect Alzheimer’s disease, compared to no registration (259). In our study, 

violin plots, BA plots, and ROI-based CV analysis revealed the same trends for both 

registered and unregistered ROI-based analysis approaches, which indicated that either 
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method can be used for MT analysis. However, we recommend using the registered 

analysis approach, as there is only one set of ROI masks to edit, making the analysis 

process more time efficient. The unregistered analysis approach will also introduce inter- 

and intra-rater variability, due to the large number of ROI masks being edited.  

The MTR ROI CVs observed in this work are consistent with MTR CVs in human 

studies done by Welsch et al (260). and Hannila et al (261). MTsat CVs reported here are 

comparable to MTsat CVs in human studies at 3 T (180,256). Overall, MTsat exhibits 

slightly higher CVs than MTR, which may arise from noise propagation through the 

equations used to calculate MTsat, as described by Olsson et al. (255) A noticeable 

increase in MTsat CVs compared to MTR CVs, in the HC and CX, may be due to low 

MTsat values in these regions. 

3.4.2 Voxel-wise Reproducibility 

Voxel-wise CV trends were comparable to ROI-based CV trends. Voxel-wise CV 

maps revealed a more noticeable increase in CVs in the superior-inferior direction of the 

brain in MTR, compared to MTsat. This can be related to the inherent compensation of 

flip angle inhomogeneities in MTsat (14). 

3.4.3 Sample Size and Minimum Detectable Effect 

The CC consistently exhibited the smallest required sample sizes, which can be 

related to the lower variability of myelin content in the CC, compared to the gray matter 

ROIs (148). Interestingly, the CC and IC (the white matter regions) required similar 

sample sizes to detect the same changes in MTsat (using both between and within subject 

approaches), but not in MTR, which required larger sample sizes to detect changes in the 
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IC. This may stem from the better contrast seen between the IC and gray matter in MTsat, 

compared to MTR, which arises from MTsat being less susceptible to inhomogeneities of 

the transmitted field and more independent of T1-weighting (14,253).  

Most MT studies report changes in MTR between 15 – 30 %, with some studies 

reporting more subtle changes between 5 – 10 %. In a cuprizone demyelination model in 

mice, MTR decreased by 15 % and 30 % at 4 weeks and 6 weeks of cuprizone 

administration, respectively (257). In an ischemic injury model in mice, MTR decreased 

by 30 % in the corpus callosum of injured mice compared to controls (248). In a closed 

head traumatic brain injury model in mice, MTR in the corpus callosum decreased by 10 

% from baseline at 1-day post-injury (247). A post-mortem study revealed a 10 % 

decrease in MTR between normal-appearing white matter and multiple sclerosis lesions 

(153). In a recent multiple sclerosis study, MTR was able to differentiate between 

patients with and without cognitive impairment, showing a 7 % decrease in patients with 

cognitive impairment (258).  

MTR can detect changes on the order of 15 - 30 % (such as the changes found in 

the cuprizone demyelination model) with small sample sizes (n = 6). With disease and 

injury models resulting in less drastic changes to myelin content, our findings suggest 

that MTR and MTsat can detect smaller changes with feasible preclinical sample sizes. 

Thiessen et al. (257) showed that when there's an 80% reduction in myelinated axon 

density, MTR only decreases by ~ 30 % (because it's thought that inflammation has a 

competing effect on MTR). So, a two-fold difference in myelination will result in at least 

a 15 % change in MTR. However, as MTsat provides greater specificity to myelin, a two-

fold difference in myelination should translate to a larger percent change in MTsat.  
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3.4.4 Limitations 

Although a volume coil is more appropriate for structural imaging as it provides 

stable signal-to-noise ratio throughout the brain, this study used a transceiver surface coil. 

The voxel-wise CV maps showed that between-subject and within-subject CVs were 

slightly higher towards the inferior region of the brain. However, the increase in CV was 

subtle and as shown in ROI-based analysis, the CVs of ROIs located in inferior regions of 

the brain (such as the IC) were comparable to the ROIs closer to the surface coil. 

Moreover, MTsat maps were comparable to MTsat maps acquired by Boretius et al. in 

the mouse brain at 9.4 T (253). This shows the feasibility of acquiring MTR and MTsat 

data using a surface coil, which may be useful in studies in which MT imaging is 

combined with other methods that require a surface coil or in inherently low SNR 

methods that would benefit from a surface coil, such as diffusion MRI. Recent preclinical 

investigations have included a combination of MT imaging and diffusion MRI (247,252). 

Moreover, the findings in this study will complement a recent test-retest reproducibility 

study in advanced diffusion MRI techniques in mice at 9.4 T (181). 

Although the sample size was chosen to reflect similar sample sizes used in other 

pre-clinical imaging studies (214,215,217), the small number of subjects is another 

limitation in this work. Nevertheless, we believe that these results are valuable and useful 

for the MT imaging community. In the statistical analyses, it should be noted that for the 

within-subject calculation of CV, the standard deviation was determined from only two 

data points (the test and retest conditions). As a result, the standard deviation may not 

accurately represent the spread of data within the population, leading to an unknown bias 

in the resulting within-subject CV.  
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3.5 CONCLUSION 

We demonstrated that MTR and MTsat were reproducible in both ROI-based 

analysis, which includes both registered and unregistered analysis techniques, and voxel-

wise analysis. Importantly, MTsat exhibited comparable reproducibility to MTR, and 

could detect small changes (< 10%) with sample sizes of 15 - 20, while providing better 

contrast and maintaining a feasible scan time.  
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Chapter 4  

4 Tensor-valued and frequency-dependent 

diffusion MRI and magnetization transfer 

saturation MRI evolution during adult mouse 

brain maturation 

This chapter is adapted from a manuscript currently in preparation titled Tensor-valued and 

frequency-dependent diffusion MRI and magnetization transfer saturation MRI evolution 

during adult mouse brain maturation (262), which is posted as a preprint on arXiv. 

4.1 INTRODUCTION 

Rodent models are a predominant study model in basic neuroscience research 

(263), with applications in ageing and Alzheimer’s disease (264), traumatic brain injury 

(265), brain tumours (266), and other neuroscience research avenues. Most studies 

consider adulthood in rodents at 2-3 months of age, assuming a steady state condition of 

adulthood (23). However, Hammelrath et al. (23) and Mengler et al. (267) demonstrated 

that myelination continues to increase past 3 months of age in rodents, using T2-weighted 

MRI, diffusion MRI (dMRI), and histology. Many MRI studies investigated early 

postnatal neurodevelopment in rodents (236,268–276), but few have explored normal 

brain maturation after 3 months of age. This motivates further study of normal brain 

maturation in rodents to exclude confounds of cerebral developmental changes from 

interpretations of disease and injury mechanisms.  
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As neurobiological changes are challenging to track longitudinally using 

histology, dMRI provides a non-invasive means to capture changes in brain 

microstructure during development, aging, disease, and injury by probing the diffusion of 

water molecules (182). The most widely used dMRI technique is diffusion tensor 

imaging (DTI), which assumes the dMRI signal is entirely characterized by Gaussian 

diffusion (8) and utilizes a diffusion tensor model to estimate metrics including mean, 

axial, and radial diffusivity (MD, AD, and RD), and fractional anisotropy (FA). Diffusion 

kurtosis imaging (DKI) provides more information about the underlying tissue via the 

diffusion kurtosis, which quantifies the deviation from Gaussian diffusion (124). 

However, both DTI and DKI are unable to distinguish between microstructural changes 

and neuron fiber orientation dispersion (8,21), reducing their specificity to 

microstructural changes in brain regions with crossing fibers. 

To reduce orientation dispersion effects on diffusion measurements, tensor-valued 

diffusion encoding (11–13), which varies the shape of the b-tensor (describes the strength 

of diffusion weighting along each direction) to vary the sensitivity to diffusion 

anisotropy, was developed. The utility of tensor-valued encoding stems from the fact that 

diffusion kurtosis characterizes the heterogeneity of sub-voxel sources of diffusion 

coefficient heterogeneity (124). Linear tensor encoding (LTE), which is the conventional 

method of encoding diffusion along a single diffusion direction at a time, is sensitive to 

sources of diffusion coefficient heterogeneity from both isotropic and anisotropic 

microstructural components, while spherical tensor encoding (STE), which encodes 

diffusion equally along all directions at the same time, is only sensitive to isotropic 

sources of sub-voxel diffusion heterogeneity. Accordingly, tensor-valued dMRI 
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distinguishes between different sources of kurtosis and allows for computation of 

microscopic fractional anisotropy (µFA), which reports water diffusion anisotropy 

independent of the neuron fiber orientation dispersion (21,141,190). Previous studies 

have shown that tensor-valued dMRI provides better sensitivity than conventional DTI in 

distinguishing between different types of brain tumours (21), assessment of multiple 

sclerosis lesions (16,17), and detecting white matter microstructure changes associated 

with HIV infection (193). The normalized signal intensity of powder-averaged (i.e., 

average over all diffusion directions) dMRI acquisitions of a multiple Gaussian 

component system can be represented by the cumulant expansion (124,141): 

ln (
S

So
) =   − bD +  

1

6
bD2K  …    (4.1) 

where S is the powder-averaged signal, So is the mean signal with no diffusion encoding, 

b is the b-value, D is the diffusivity, and K is the kurtosis of the powder-averaged signal. 

By fitting Equation 4.1 with the powder-averaged LTE and STE signals (SLTE and SSTE 

respectively), the total kurtosis (Ktotal), which is the conventionally reported mean 

kurtosis measure in DKI, and isotropic kurtosis (Kiso), can be calculated, respectively. 

Kiso is a measure of the variance in the magnitude of diffusion tensors (i.e., MD), which 

can be related to cell size heterogeneity (21). Additionally, by subtracting Kiso
 from Ktotal, 

the kurtosis arising from diffusion anisotropy, Kaniso, can be calculated: 

Ktotal = Kiso + Kaniso     (4.2) 

Subsequently, µFA can be expressed in terms of Kaniso by (141): 
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Conventional dMRI sequences are also limited to probing length scales on the 

order of 10-30 µm due to hardware constraints (9), as they rely on the pulsed gradient 

spin echo (PGSE) sequence to encode diffusion. To probe smaller length scales, the 

oscillating gradient spin echo (OGSE) sequence was developed to modify sensitivity to 

cellular length scales (10). OGSE dMRI has helped to identify neurite beading as a 

mechanism for contrast after ischemic stroke (30,31), and has shown increased sensitivity 

compared to conventional PGSE dMRI in the assessment of hypoxia-ischemia (201) in 

rodents, and in various pathologies in humans (202–204). By varying the frequency of 

the gradient waveform (i.e., frequency-dependent dMRI), which is inversely related to 

diffusion time, OGSE encoding allows different microstructural length scales to be 

probed. For increasing diffusion times (lower oscillating gradient frequencies), the 

molecules travel greater distances and interact with more barriers such as cell 

membranes, resulting in lower observed diffusivity values and higher FA values (145). 

Subsequently the difference in these DTI metrics between the highest and lowest 

frequencies applied (ΔMD, ΔAD, ΔRD, and ΔFA) can be used to examine their 

dispersion with frequency and provide greater insight into tissue microstructure 

(162,178). Additionally, evidence of a linear dependence of MD on the square root of 

frequency has been demonstrated in healthy and globally ischemic rodent brain tissue 

(169) and healthy human white matter (183,277). Therefore, the diffusion dispersion rate 

(Λ) can be calculated using a power-law model as:  

MDf =  MD0 +  Λf 0.5      (4.4) 



134 

 

where MDf is the MD at OGSE frequency, f, and MD0 is the MD at f = 0, which is the 

conventional PGSE sequence (162,178,183).  

As myelination is an adaptive process that continues throughout adulthood, 

changes in myelin content throughout healthy brain maturation are important to consider 

when comparing to effects of disease/injury. As myelin is MR-invisible in diffusion-

weighted scans, recent studies have applied both dMRI and myelin-sensitive methods for 

a more comprehensive view of microstructural changes (247,252,278). Sensitivity to 

myelin can be encoded in the MR signal by probing the magnetization transfer (MT) 

effect of bound water molecules by quantifying the MT ratio (MTR) (241). However, 

MTR has been shown to be sensitive to sequence parameters, flip angle inhomogeneities, 

and T1 effects (14,15). MT saturation (MTsat) imaging has been shown to reduce these 

sensitivities and increase specificity to changes in myelin content (14). Additionally, 

changes in DTI, DKI, and µFA metrics have been correlated with changes in myelin 

content and/or integrity of the myelin sheath (279–281), however, the biophysical nature 

of how myelination impacts these metrics remains unclear. Many studies have correlated 

an increase in total kurtosis with increased myelin content, however, whether this is the 

anisotropic or isotropic diffusion component (Kaniso and Kiso, respectively) remains to be 

determined.  

In humans, a number of MRI studies have been conducted on brain maturation 

and aging across the entire lifespan, most involving large multi-center datasets 

(24,282,291–293,283–290). The studies have included structural MRI, DTI, DKI, 

NODDI (a biophysical dMRI model), and myelin-sensitive MR techniques, with 

quantitative and volumetric analyses. Lifespan patterns of quantitative and volumetric 
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analyses were widely reported to follow U-shaped or inverted U-shaped trajectories, 

including brain regional variations in these trajectories. For example, MD demonstrated a 

U-shape, while FA demonstrated an inverted U-shape, showing that brain maturation 

continues until middle age followed by a phase of degeneration at older ages. Most 

studies have reported on MD and FA, while only Latt et al. (292) and Das et al. (293) 

have reported on diffusion kurtosis changes over the human lifespan, and Cheung et al. 

(294) and Han et al. (125) have reported on diffusion kurtosis evolution in rats, up to 3 

months and 13 months of age, respectively. Ktotal has been shown to follow the inverted 

U-shape trajectory through normal development in humans and rodents. However, the 

sources of kurtosis that drive these changes remains unclear, so it is necessary to 

disentangle how each kurtosis component is affected by neurobiological changes during 

ageing to examine what changes in Ktotal could indicate. Importantly, frequency-

dependent and tensor-valued dMRI metrics, which provide improved sensitivity and 

specificity to microstructural changes, have not been explored in terms of normal brain 

maturation. 

As microstructural MRI studies in rodents are becoming more prevalent in 

neuroscience research, our aim was to investigate how frequency-dependent and tensor-

valued dMRI, and MT MRI metrics change over the course of brain maturation and 

disentangle what changes in these metrics may indicate on a neurobiological level. 

Understanding how these MRI metrics change over the course of normal development 

can potentially yield additional insights into the contrast mechanisms of these metrics and 

on the underlying mechanisms of changes in disease and injury models.  
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4.2 METHODS  

Detailed information on the data acquisition and analysis pipeline used for this 

study, including the dataset, is openly available (295). Moreover, the test-retest 

reproducibility of the MRI metrics have been reported previously (181,239). Therefore, 

we will only summarize acquisition and analysis and refer the reader to the linked papers 

for full detailed methods.  

4.2.1 Subjects 

Data used for this study included 12 C57Bl/6 mice (6 males, 6 females) scanned 

at 3, 4, 5, and 8 months of age. We chose to exclude ‘Day 3’ and ‘Week 1’ data from 

Rahman et al. (295) to avoid possible effects from anesthesia on tissue microstructure. 

For this study we used data from 11 mice (6 males), as one female mouse did not receive 

a scan at all timepoints. 

Before scanning, anesthesia was induced by placing the animals in an induction 

chamber with 4 % isoflurane and an oxygen flow rate of 1.5 L/min. Following induction, 

isoflurane was maintained during the imaging session at 1.8 % with an oxygen flow rate 

of 1.5 L/min through a custom-built nose cone. The mouse head was fixed in place using 

ear bars and a bite bar to prevent head motion. As these mice were part of a larger 

longitudinal study, they were anaesthetized 2 days after the first scan (at 3 months of age) 

by intra-peritoneum injection with Ketamine 80mg/kg and Xylazine 10mg/kg, diluted in 

saline. After the last timepoint, the mice were euthanized for histology. The mice were 
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anesthetized with ketamine/xylazine (2:1) and then underwent trans-cardiac perfusion 

with ice-cold saline, followed by 4% paraformaldehyde in phosphate-buffer saline (PBS). 

 

4.2.2 Data Acquisition 

MRI experiments were conducted on a 9.4 Tesla (T) Bruker small animal scanner 

equipped with a gradient coil insert of 1 T/m strength (slew rate = 4100 T/m/s). During 

each imaging session, frequency-dependent and tensor-valued dMRI, MT MRI, and 

anatomical data was acquired with a total scan time of 2 hours and 35 minutes. 

Anatomical images were acquired using a T2-weighted TurboRARE sequence with 

parameters: in-plane resolution 150 x 150 µm, slice thickness 500 µm, TE/TR = 40/5000 

ms, 16 averages, total scan time of 22 minutes. The frequency-dependent dMRI protocol 

included a PGSE sequence (gradient duration = 11 ms and diffusion time = 13.8 ms) and 

OGSE sequences with frequencies of 50, 100, 145, and 190 Hz with a single b-value shell 

of 800 s/mm2 (10 directions) (296) and parameters: in-plane resolution 175 x 200 µm, 

slice thickness 500 µm, TE/TR = 39.2/10000 ms, 5 averages, total scan time of 45 

minutes. Frequency tuned bipolar (FTB) waveforms were used at 50 Hz to lower the TE 

of the acquisition (297). The tensor-valued dMRI protocol consisted of LTE and STE 

acquisitions with b-value shells of 1000 s/mm2 (12 directions) and 2000 s/mm2 (30 

directions) with parameters: in-plane resolution 175 x 200 µm, slice thickness 500 µm, 

TE/TR = 26.8/10000 ms, 3 averages, total scan time of 45 minutes. The MT protocol 

included three FLASH-3D scans and one B1 map scan to correct for local variations in 

flip angle. The FLASH-3D scans consisted of an MT-weighted scan, and reference T1-
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weighted and PD-weighted scans with parameters: in-plane resolution 150 x 150 µm, 

slice thickness 500 µm, 12 averages, total scan time of 43 minutes. 

4.2.3 Data analysis  

Complex-valued averages were combined using in-house MATLAB code which 

included frequency and signal drift correction (221) and Marchenko-Pastur denoising of 

complex-valued data (223). After averages were combined, data underwent correction for 

Gibbs ringing using Mrtrix3 (224), and eddy-current induced distortions using TOPUP 

(218) followed by EDDY (219) from FMIRB Software library (FSL, Oxford, UK) (225).  

Scalar maps of magnetization transfer ratio (MTR) and MT saturation (Mtsat) 

were generated from the MT protocol as outlined by Rahman et al. (295). From the 

frequency-dependent dMRI data, Mrtrix3 was used to fit the diffusion tensor and acquire 

maps of MD, AD, RD, and FA. Quantitative values of ΔFA, ΔAD, and ΔRD were 

calculated as the mean of each metric within the region-of-interest (ROI) between the 

highest frequency (190 Hz) and the lowest frequency (0 Hz). Diffusion dispersion rate 

(Λ) maps were computed as outlined in Eq. 4. From the tensor-valued dMRI data, maps 

of Ktotal and Kiso were generated by fitting Eq. 1 to the signal from LTE and STE 

acquisitions, respectively. Kaniso and µFA maps were generated using Eq.’s 2 and 3, 

respectively. 

4.2.4 Region-of-interest (ROI) analysis   

Quantitative MRI parameters were investigated in three regions of interest: global 

white matter (WM), global deep grey matter (DGM), and the cortex (CX). Masks for 
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these three ROIs were generated from the labelled Turone mouse brain atlas (298), which 

was downsampled to the resolution of the T2-weighted images. To ensure accurate 

registration of scalar maps to the atlas, a T2 template, an FA template, and an MT-

weighted template was created based on images from all scanning sessions using ANTs 

software (227). There are 3 steps to warp individual scalar maps to the down sampled 

atlas space: (1) Individual FA and MT-weighted maps are registered to their respective 

templates, (2) the FA and MT templates are registered to the T2 template, and (3) the T2 

template is registered to the downsampled atlas. Each registration step involves affine 

transformation followed by symmetric diffeomorphic transformation using ANTs 

software. Output deformation fields and affine transforms from each of the three steps 

were used to warp the individual scalar maps to the atlas space, resulting in only a single 

interpolation during registration, to obtain quantitative values for each dMRI metric.  

4.2.5 Statistical Analysis 

To investigate if the MRI metrics changed significantly over time, repeated 

measures MANOVAs were performed for each metric, over the multiple ROIs (WM, 

DGM, and CX), to examine differences between timepoints. Metrics with a significant 

MANOVA were followed up by separate univariate ANOVAs within each ROI, and 

significant ANOVAs were followed up by Tukey HSD test for post hoc pair-wise 

comparison to determine differences in metrics within an ROI across time. As previous 

literature has shown U-shaped trajectories over the healthy brain lifespan 

(24,38,286,287,290,299), for each ROI and metric, both linear and quadratic models were 

fit to the data. Furthermore, we performed an extra sum of squares F test to determine 
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whether the data was significantly better fit by a quadratic model as compared to a linear 

model. Similarly, to examine if the developmental trajectories of male and female mice 

were significantly different, an extra sum of squares F test was used to determine if both 

data sets could be accurately fit using a single quadratic fit. Statistical analysis was done 

in MATLAB and GraphPad Prism version 9.5.1.     

4.3 RESULTS  

4.3.1 MRI Metrics over Time 
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Figure 4.1 shows representative parameter maps for one mouse at 3 months of 

age. Kaniso shows the same contrast as µFA and enhanced WM contrast compared to Ktotal. 

Λ shows selective enhancement of distinct regions in the brain with densely packed 

neurons, such as the dentate gyrus (part of the hippocampal formation). MTsat reveals 

slightly greater contrast than MTR between gray matter and white matter, which is 

noticeable when comparing the corpus callosum and internal capsule (white matter 

regions) to the surrounding gray matter. 

Figure 4.1 - Representative axial parameter maps from one mouse at 3 months of age. 

Structural maps include a T2-weighted map, MTR (magnetization transfer ratio), and 
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MTsat (magnetization transfer saturation). Conventional DTI metrics are shown for 

reference (MD, AD, RD, and FA). Maps from the frequency-dependent dMRI protocol 

include Λ (the diffusion dispersion rate), ΔAD, ΔRD, and ΔFA, which show the difference 

between the DTI metrics at 190 Hz and 0 Hz. Maps from the tensor-valued dMRI 

protocol include Ktotal, Kiso, Kaniso, and µFA. 

Figure 4.2 shows each metric at each timepoint for 3 key ROIs: WM, DGM, and 

CX. Of the DTI metrics, MD and AD are relatively stable over time, while the significant 

decreases in RD agree with the significant increases in FA, over all 3 ROIs. Among the 

frequency-dependent metrics, Λ shows a significant decrease in WM between 4 to 5 

months of age. However, ΔAD, ΔRD, and ΔFA do not show any significant changes in 

follow-up post hoc testing. Ktotal shows significant increases over time for all ROIs, from 

3 to 8 months. This is paired with increasing trends of Kiso, significant in WM and DGM, 

and increasing trends in MTsat, while Kaniso and µFA remain stable over time. 

Interestingly, while µFA remains stable, FA shows a significantly increasing trend over 

time. 
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Figure 4.2 - Quantitative MRI parameter evolution during healthy ageing in white matter 

(WM), deep gray matter (DGM), and the cortex (CX). Data represents mean values of 

each metric and error bars represent the standard deviation among n=11 mice. Asterisks 

represent results from post hoc pair-wise comparison (* p<0.05, ** p<0.01, *** 

p<0.001). 

Supplemental Figure 4.S1 shows each metric at each timepoint for smaller ROIs 

including 4 white matter ROIs (corpus callosum, internal capsule, external capsule, and 

fornix) and 4 gray matter ROIs (hippocampus, hypothalamus, thalamus, and amygdala). 

The trends are similar to the global WM and DGM ROIs, with the corpus callosum and 

internal capsule showing decreases in RD and increases in MTsat. A trend of increasing 

Ktotal is found in the corpus callosum, internal capsule, hippocampus, thalamus, and 

amygdala, while increasing Kiso is only observed in the hippocampus, and Kaniso and µFA 

remain stable over time. 

4.3.2 Linear and Quadratic Fits to the Data 

Linear and quadratic fits of all metrics over time, in WM, DGM, and CX are 

shown in Figure 4.3, with coefficients of determination for each fit and F test results 

comparing quadratic and linear fits in Tables 1-3. Most metrics show a maximum or 

minimum in the quadratic fits around 5-6 months of age. Significant linear fits (p < 0.05) 

were obtained for MTsat (WM), MD (WM, CX), RD (all ROIs), FA (CX), Ktotal (all 

ROIs), Kiso (WM, DGM), Λ (WM) and ΔFA (WM, DGM). Significant quadratic fits 

were also obtained for most cases with significant linear fits. In addition to cases with 

significant linear fits, significant quadratic fits were also obtained for FA (CX and 
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DGM), Kiso (all ROIs), Λ (WM and CX), and ΔRD (CX). Although MD did not show 

any significant changes in Figure 4.2, MD does show a significant linear and quadratic fit 

over time with a trend of decreasing MD, in WM and CX. For most cases the non-linear 

fit is not significantly better than the linear fit, except for FA in DGM, ΔRD in cortex, 

and ΔFA in cortex. 
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Figure 4.3 - Linear and quadratic fits of the metrics with age for WM (white matter), 

DGM (deep gray matter), and CX (cortex). The solid lines represent linear fits, and the 

dotted lines represent quadratic fits. For linear and quadratic fits, the coefficient of 

determination, R2, is reported in Table 1 and Table 2, respectively. Table 3 reports p-

values comparing regression models to assess whether the data supports a quadratic 

model versus a linear model for all metrics in all 3 ROIs. 

Table 4-1: Coefficients of determination, R2, and p-values for linear fits to the data 

over age in WM (white matter), DGM (deep gray matter), and CX (cortex). 

Highlighted cells show significant fits with p < 0.05. 

 ROIs 

Metric WM DGM Cortex 

 R2 P-value R2 P-value R2 P-value 

MD 0.1239 0.01408 * 0.07240 0.05145 0.1308 0.01302 * 

RD 0.2386 4.891E-05 *** 0.1266 0.009886 ** 0.1674 0.004804 ** 

AD 0.01691 0.3572 0.01480 0.3577 0.05840 0.1047 

FA 0.04212 0.2022 0.05977 0.1304 0.1922 0.001683 * 

Λ 0.07728 0.04176 * 0.01977 0.3359 0.03104 0.2510 

ΔAD 0.04070 0.1274 0.01379 0.4022 0.0002007 0.8842 

ΔRD 0.05451 0.09165 0.01150 0.4855 0.07185 0.0936 

ΔFA 0.09463 0.03164 * 0.07508 0.04812 * 0.02454 0.3519 

Ktotal 0.3684 1.38E-05 **** 0.3133 2.79E-05 **** 0.1934 0.0017 ** 

Kiso 0.2378 0.001117 ** 0.2279 0.00064 *** 0.08732 0.05140 

Kaniso 0.002294 0.7397 0.002151 0.7783 0.02638 0.2795 

µFA 0.005026 0.6689 0.003499 0.7144 0.007399 0.5332 
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MTR 0.01870 0.4274 0.04585 0.8168 0.02877 0.2749 

MTsat 0.1993 0.001111 ** 0.03896 0.1684 0.03643 0.1545 

 

Table 4-2: Coefficients of determination, R2, and p-values for quadratic fits to the 

data over age in WM (white matter), DGM (deep gray matter), and CX (cortex). 

Highlighted cells show significant fits with p < 0.05. 

 ROIs 

Metric WM DGM Cortex 

 R2 P-value R2 P-value R2 P-value 

MD 0.1263 0.04770 * 0.07531 0.149471 0.1308 0.04733 * 

RD 0.2388 0.002441 ** 0.1458 0.02448 * 0.1697 0.01722 * 

AD 0.0.03110 0.461225 0.02052 0.501572 0.06381 0.224762 

FA 0.04311 0.43848 0.1476 0.03199 * 0.2008 0.004257 ** 

Λ 0.1204 0.02213 * 0.04087 0.307299 0.1157 0.03186 * 

ΔAD 0.08250 0.051128 0.02098 0.632942 0.03695 0.254895 

ΔRD 0.07981 0.093223 0.03655 0.324595 0.1696 0.009456 ** 

ΔFA 0.09464 0.097398 0.07508 0.14487 0.1333 0.13293 

Ktotal 0.3711 8.23E-05 **** 0.3347 7.78E-05 **** 0.1999 0.005298 ** 

Kiso 0.2552 0.001893 ** 0.2584 0.0007960 *** 0.09781 0.04666 * 

Kaniso 0.02334 0.2742 0.01029 0.5906 0.07684 0.08512 
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µFA 0.02271 0.2763 0.02782 0.3225 0.06467 0.1044 

MTR 0.02473 0.5108 0.004614 0.9413 0.02894 0.5457 

MTsat 0.2629 0.0007330 *** 0.08520 0.1077 0.05879 0.2117 

 

Table 4-3: P-values from extra sum of squares F test for each metric in WM, DGM, 

and Cortex showing if the non-linear fit is significantly better than linear fit. 

Highlighted cells show significantly better non-linear fits with p < 0.05. 

 ROIs 

Metric WM DGM Cortex 

MD 0.7389 0.7215 0.9993 

RD 0.9139 0.3422 0.7392 

AD 0.4428 0.6271 0.6288 

FA 0.8385 0.0462* 0.5108 

Λ 0.1638 0.3478 0.0543 

ΔAD 0.1792 0.5863 0.2810 

ΔRD 0.2946 0.3076 0.0337* 

ΔFA 0.9835 0.9932 0.0287* 

Ktotal 0.6796 0.2570 0.5669 

Kiso 0.3335 0.2014 0.2744 

Kaniso 0.3528 0.5647 0.1420 
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µFA 0.3940 0.3171 0.1208 

MTR 0.6173 0.9729 0.9330 

MTsat 0.0670 0.1576 0.3295 

4.3.3 Sex-dependent Differences over Time 

Data was separated by sex to examine sex-based differences for all metrics in 

WM, CX, and DGM (Figure 4.4).  Most metrics show significantly different fits between 

males and females. For the diffusivity metrics (MD, AD, RD), the females show an 

inverted U-shape trajectory, while the males consistently show a decreasing trend. 

Among the frequency-dependent metrics, ΔAD and ΔFA show the same fits for both 

sexes, while Λ shows a U-shape trajectory for females and an inverted U-shape for males 

in the CX, driven by the ΔRD trajectories. Ktotal and Kiso both show a U-shape trajectory 

for males and an inverted U-shape trajectory for females. Interestingly, Kiso and Kaniso 

show opposing trends for males and females. As expected, Kaniso and µFA show similar 

trends to each other for both sexes. MTR and MTsat also show the same fits for both 

sexes, with MTsat showing an increasing trend up to 5 months and remaining stable until 

8 months. 
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Figure 4.4 - Plots showing quadratic fits to the data, separated by sex, for each metric in 

WM (white matter), DGM (deep gray matter), and CX (cortex). For those plots with 

separate fits for male and female, there was a significant difference in the fitting 

parameters, and for those with a single line, a single fit could accurately represent both 

datasets. 
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4.3.4 Linear Regression of Kurtosis with Myelin-Specific 

Metrics 

To explore how kurtosis relates to the myelin-specific metrics over time, Figure 4.5 

shows linear regressions of the kurtosis metrics with MTR and MTsat over all timepoints 

and mice, for each ROI. Ktotal and Kiso show similar trends, with positive correlations with 

MTR and MTsat in the WM and CX. Although Kaniso does not show any correlations with 

MTsat, negative correlations are found for Kaniso and MTR for all ROIs. 

 

Figure 4.5 - Plots illustrating linear fits of the kurtosis metrics (Ktotal, Kiso, and Kaniso) to 

the myelin-specific metrics (MTR and MTsat) in WM (white matter), DGM (deep gray 



152 

 

matter), and CX (cortex) over all timepoints. The slope, R2, and p-value are reported for 

each fit. 

To explore the linear relationship of kurtosis metrics to myelin-specific metrics 

from gray to white matter, Figure 4.6 shows the linear fits of the kurtosis metrics with 

MTR and MTsat over all ROIs. Interestingly, Kaniso shows a positive correlation with 

both MTR and MTsat, in contrast to Figure 4.5. The positive correlation of Ktotal with 

MTR and MTsat is driven by the trend in Kaniso, as Kiso does not show any correlation 

with MTR and MTsat over all ROIs. 

 

Figure 4.6 - Plots illustrating linear fits of the kurtosis metrics (Ktotal, Kiso, and Kaniso) to 

the myelin-specific metrics (MTR and MTsat) for all ROIs together (WM, DGM, and 

Cortex) over all timepoints. The slope, R2, and p-value are reported for each fit. 
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4.4 DISCUSSION  

Here we explored healthy mouse brain maturation using frequency-dependent and 

tensor-valued dMRI and MT MRI to probe smaller spatial scales, orientation-independent 

diffusion and various kurtosis sources, and myelin content, respectively. Our protocols 

were applied longitudinally in mice between 3 – 8 months of age to better understand the 

contrast mechanisms of these advanced MRI metrics and how they evolve over the 

course of healthy brain maturation. As microstructural MRI is becoming more prevalent 

in the neuroscience community, there is a need to assess the evolution of these metrics in 

healthy rodents, which may provide insights into the underlying mechanisms of changes 

in these metrics in disease and injury models. Although there have been several human 

lifespan imaging studies, healthy rodent brain maturation studies are sparse. This study 

builds on previous rodent studies (23,125,267,294), including more timepoints and a 

more comprehensive set of advanced imaging protocols to probe the evolving 

microstructure in the maturing brain. Importantly, this is the first study to characterize the 

evolution of frequency-dependent and tensor-valued dMRI metrics longitudinally during 

brain maturation. Additionally, we show here changes in total kurtosis over time may be 

dominated by isotropic sources, which suggests that total kurtosis is unlikely to be 

sensitive to how myelination affects water diffusion anisotropy over the course of normal 

brain development but may rather be sensitive to myelin formation/remodeling and glial 

cell diversification. For studies that only calculate total kurtosis (likely as most only use 

LTE acquisitions), we suggest caution in attributing neurobiological changes to changes 

in total kurtosis as we show here no changes in anisotropic sources of kurtosis in the 

presence of increasing myelin content.  
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4.4.1 MRI Metrics over Time 

The trends observed in our DTI metrics are comparable to previous human and 

rodent studies investigating normal brain development (23,24,38,267,289,290,299). As 

MD and AD do not show any significant change with post hoc analyses (although they 

show significant time effects and a decreasing trend with age), the significant increases in 

FA in WM, DGM, and CX are driven by the significant decreases in RD in these three 

regions between 3 – 8 months (Figure 4.2). Hammelrath et al. reported that in most white 

matter ROIs, FA continuously increased in agreement with increased intensity on myelin 

staining, in mice studied until 6 months of age (23). Mengler et al. found a pronounced 

increase in myelinated fibers, using histology, in the cortex between 3 – 6 months of age 

in rats (267). They interpreted that the drop in MD and RD with age was likely due to 

myelination. Myelination results in reduced RD, as radial water diffusivity becomes more 

restricted, which consequently leads to reduced MD (300). In addition, myelination, as 

well as neurogenesis (301), decreases the extracellular free water compartment in favour 

of the intracellular compartment, which can also lower MD (302). Interestingly, in a 

histological study, Mortera et al. found a significant trend of widespread and progressive 

neuronal loss that began as early as 3 months of age in rats (15-20 % decrease in neuron 

counts between 3 – 5 months of age in the cortex and olfactory bulb), when neuronal 

numbers are maximal in all structures, which indicates that age-related decline in the 

brain begins as soon as the end of adolescence (301). Neuronal loss would result in 

increased MD, and counteract the decreased MD due to myelination, which may explain 

why no significant changes are observed in MD after post hoc analyses (Figure 4.2). 

Additionally, Mortera et al. reported that brain mass increased in all structures over time 
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despite a decline in numbers of neurons, which implies that the average size of the 

surviving cells, neuronal and/or non-neuronal, may be increasing during aging and/or 

there is increased extracellular fluid. 

Among the metrics from the frequency-dependent dMRI protocol, there is a 

significant decrease in Λ, the diffusion dispersion rate, between 4 – 5 months of age in 

WM (Figure 4.2). As Λ shows similar contrast to ΔMD (181),  we can refer to previous 

ΔMD studies to interpret changes in Λ. Aggarwal et al. reported elevated ΔMD contrast 

in mouse brain regions with high neuron packing, such as in the dentate gyrus of the 

hippocampus (233). This elevated contrast in the dentate gyrus can also be seen in the Λ 

map in Figure 4.1. In a phantom study, Parsons et al. related elevated ΔMD to the 

presence of larger spherical structures (174), and in a simulation study, Xu et al. related 

elevated ΔMD with higher nuclear volume fraction (303). In another study, Aggarwal et 

al. found consistent decrease in ΔMD in the CA1 Pyramidal Layer of the hippocampus in 

healthy mice during the first two months after birth and related this to a progressive 

increase in pyramidal cell soma size with age (304). Thus, the decrease in Λ observed in 

Figure 4.2 can be interpreted as a reduction in axonal packing, which is also supported by 

the neuron loss finding of Mortera et al. (301) and may be related to synaptic pruning 

during development (305), and an increase in soma cell size. The other frequency-

dependent metrics here do not show any significant changes after post hoc analyses, 

possibly due to higher inter-subject variation in these metrics, although ΔRD did show a 

significant time effect, with decreasing trends in WM and CX. Aggarwal et al. found 

significantly higher ΔRD in the mouse corpus callosum in a cuprizone demyelination 

model (233), so the decreasing trend of ΔRD here may be due to continued myelination. 
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Ktotal shows significant increases over time for WM, DGM, and CX, from 3 to 8 

months. This is comparable to previous DKI studies in healthy brain maturation 

(125,293,294), and previous literature has related Ktotal increases to myelination and 

dense packing of axon fibers in white matter and more densely packed structures like 

cells or membranes and dendritic architectural modifications in gray matter. However, 

these interpretations involving fibre microstructure would be expected to coincide with 

changes in anisotropic components of kurtosis, which was not seen here. By investigating 

both isotropic and anisotropic kurtosis components in this study, we observe that during 

healthy brain development, changes in Ktotal are driven by changes in Kiso (significant in 

WM and DGM). This is paired with increasing trends in MTsat, which indicates 

increasing myelination, while Kaniso and µFA remain relatively stable over time. MTR 

does not show any significant trends over time, which could be due to the reduced 

myelin-sensitivity of MTR, while MTsat has improved specificity to myelin (14). 

Moreover, the contrast between gray  and white matter regions, averaged over all mice in 

this dataset, was previously shown to be significantly higher in MTsat, compared to MTR 

(239). As there is a trend of increasing Ktotal, Kiso, and MTsat, the relationship of the 

kurtosis metrics and the myelin-specific metrics is further explored in Figure 4.5 and 

Figure 4.6.  

The mean µFA values are much higher than mean FA values (by ~0.4), indicating 

there is orientation dispersion of axons within our ROIs. It is interesting to note that 

although µFA remains stable, FA is increasing over time, which may be due to fibers 

becoming more aligned through development. As fibers become more aligned, FA is 

expected to increase, as macroscopic water diffusion anisotropy increases, but µFA is not 
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expected to change, as it disentangles effects of fiber orientation dispersion from 

microstructure (21,141). As µFA remains unchanged over time, this indicates that axon 

integrity is not compromised over this period. Moreover, as there are no changes in µFA 

despite increases in MTsat, this suggests myelination in the mature brain is not a main 

contributor to microscopic diffusion anisotropy and anisotropic kurtosis in axons. In a 

study investigating axon diameters and myelin content in fixed rat spinal cord, a 

moderate negative correlation was observed between µFA and MWF (myelin water 

fraction), while FA was positively correlated with MWF (281). This is comparable to our 

study as increasing FA is paired with increasing MTsat. Shemesh explains that the 

negative correlation between µFA and MWF would reflect indirectly the approximately 

constant g-ratio in healthy tissue, rather than enhanced restriction, and as axon diameter 

increases with myelination, µFA decreases (281). Additionally, unlike FA, compartments 

of proportionally different sizes can give rise to the same µFA. However, µFA reported 

in the rat spinal cord study was derived from Double Oscillating Diffusion Encoding 

(DODE) protocols, which can probe smaller spatial scales. Thus, the µFA calculated 

from our b-tensor encoding protocol may not be sensitive to changes in axon diameter, as 

the larger the diffusion time, the longer path will be probed in the unrestricted dimension 

(parallel to the axon length), and the µFA will be larger and less reflective of axon 

diameter, and consequently, myelination.  

The increase in Kiso reflects increased cell size and density heterogeneity, as it 

indicates a heterogeneous microenvironment with compartments having a wide variation 

of diffusivities within the voxel (184,306). We hypothesize that the increased cell 

size/density heterogeneity may be due to (1) differentiation and maturation of 
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oligodendrocytes (OLs) and/or (2) increased number and increased diversity of glial cells. 

Oligodendrocyte precursor cells (OPCs) divide and generate myelinating 

oligodendrocytes (OLs) throughout postnatal and adult life. Although most OPC 

proliferation, OL differentiation, and myelin development occurs before 3 months of age, 

after postnatal 3 months (the age of our mice at the start of this study), OPCs continue to 

proliferate, OLs continue to differentiate, and adaptive myelination continues, at a lower 

stable rate (307). He et al. showed increased Kiso in LPC (L-α-Lysophosphatidylcholine) 

treated regions in the mouse brain (208). LPC is known to kill mature OLs, so increased 

Kiso could be due to re-population of mature OLs by OPCs, which has been seen 3-7 days 

post-LPC treatment (308). The increase in Kiso may reflect oligodendrocyte proliferation 

and maturation, and thus myelin formation, which is supported by the increase observed 

in MTsat. Elevated Kiso may also be related to the increasing release of myelin debris 

over the course of normal aging, which is effectively cleared by activated microglia 

(309), also known to play a role in ‘myelin remodeling’. Kiso may be sensitive to 

microglia activation associated with normal brain development, which would result in 

diversification of cell morphology. Cell size and density of astrocytes increasing at 

different rates in different regions of the brain may also result in increased Kiso (310,311). 

In the rat cerebral cortex, Sabbatini et al. reported that the size and number of astrocytes 

increased progressively from 3 to 24 months old (311). Age-associated increases in 

astrocytic hypertrophy and microglial activation were found to be prominent in white 

matter (310), which may explain why we observe the largest increase of Kiso in WM. It is 

likely that changes in Kiso are reflective of these various microstructural changes to some 

degree, as increases in Kiso in GM may suggest glial cell diversification whereas the 
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larger increase in WM may suggest a combination of glial cell diversification including 

OL proliferation/maturation. 

4.4.2 Linear and Quadratic Fits to the Data 

Quadratic fits of the metrics with age (Figure 4.3) reveal a maximum or minimum 

for most metrics around 5-6 months of age. This is comparable with the mean kurtosis 

peak of 6 months in rats reported by Han et al. (125). Although most metrics that show a 

significant linear fit (Table 4-1) also show a significant quadratic fit (Table 4-2), the 

quadratic fit is not significantly better than the linear fit in most cases (Table 4-3). 

Investigating more subjects and timepoints after the minimum/maximum had been 

reached would likely have improved the quadratic fits. The largest variability is also 

observed around the maximum/minimum period, likely due to individual mice reaching 

their maxima/minima at slightly different times.(24,286,287,290,291) Among the 

frequency-dependent metrics, significant quadratic fits were found for Λ and ΔRD. 

Interestingly, a significant linear trend of decreasing ΔFA is found in WM and DGM. To 

our knowledge, previous literature has not discussed values of ΔFA, and our results show 

that ΔFA may be a relevant frequency-dependent metric to explore. Significant linear and 

quadratic fits were found for Ktotal and Kiso, but not for Kaniso, which indicates that Kaniso is 

not sensitive to age-related changes during normal brain maturation. 

The linear and quadratic fits shown here are comparable to previous studies in 

both humans (24,38,286,287,289–293) and rodents (125), investigating DTI, DKI, and 

myelin-specific metrics. In a human lifespan study, peak age calculated with the 

quadratic model revealed peak ages in the range of 30-50 years depending on brain 
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region and metric (290). 30 human years is equivalent to about 6 mouse months and 50 

human years is equivalent to about 15 mouse months (312). This is consistent with our 

results, as we start to observe peaks around the 5-6 month timepoint. Most DTI studies 

indicate a U-shaped relationship between the diffusivity metrics and age in most ROIs, 

with FA exhibiting an inverted U-shaped relationship. An inverted U-shape trend of 

myelin-specific metrics with age has been reported (286,287,290,313–315), and this 

quadratic association is attributed to the process of myelination from youth through 

middle age, followed by demyelination in later years. 

4.4.3 Sex-dependent Differences over Time 

Sex-dependent differences over time are observed in most of the dMRI metrics 

(Figure 4.4), while MTsat shows the same fits for both sexes. This suggests that the 

diffusion metrics are more sensitive to differences between sexes, as they are sensitive to 

other factors beyond myelination. Interestingly, the overall shape of the fits for the 

metrics do not change between ROIs (WM, CX, DGM), possibly as the ROIs are quite 

large. MD, AD, and RD show opposing trends for both sexes, with males following a U-

shape trajectory. Among human lifespan studies, Kiely et al. (290) reported that sex 

effects were limited to very few ROIs, while Grydeland et al. (286) and Lebel et al. 

(24,38) found no sex effects. Although these studies included both sexes, some studies 

contained disproportionately more males, while others contained almost equal 

proportions, but it is unknown what percentage of males and females were considered for 

each age range, which may have introduced bias into the results. According to a review, 

most DTI human lifespan studies have not explicitly measured sex differences over time 
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(299). Previous DTI studies (imaged at a single cross-sectional timepoint) have found 

higher FA and lower MD in males (the lower MD is consistent with our results), tied to 

hormonal levels, although contradictory and null findings have also been reported (316). 

The frequency-dependent metrics show the same fit for males and females for most cases 

in Figure 4.4. Tetreault et al. were the first to explore sex differences in the human corpus 

callosum using frequency-dependent dMRI (194). They reported greater ΔRD in the genu 

of males, which could reflect larger axon diameters than females. However, this study 

combined data from all ages (20-73 years old) when reporting this difference, so 

analyzing age ranges separately may change the results.  

Kurtosis metrics and µFA also show opposing trends for both sexes, with females 

showing an inverted U-shape for Ktotal and Kiso and a U-shape trajectory for Kaniso and 

µFA. This further supports our finding that Ktotal changes over time are driven by changes 

in Kiso. Previous µFA studies have not explored sex differences, as most studies have 

been proof-of-concept. The differences in Kiso trajectories between sexes may be related 

to differences in glial cell number and morphology and/or oligodendrocyte cell diversity 

between males and females. Mouton et al. reported that female mice have significantly 

higher numbers of microglia and astrocytes than males (consistently as measured from 3-

24 months) in the hippocampus (317). Previous studies have found that female microglia 

are more developmentally mature than male microglia and females have higher 

expression of inflammatory, phagocytic, and immune genes than males (318). Thus, 

females could have lower levels of cell proliferation due to increased phagocytosis of 

progenitor cells, which may explain the overall lower trend of Ktotal and Kiso in the female 

trajectory. The differences seen in the male and female trajectories in Figure 4.4 highlight 
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the importance of including both sexes in research and considering sex-dependent 

analyses. However, these differences may be amplified by the oldest age lying only 

barely outside the peak of the U-shape, and may be consistent with a later peak in males 

(that is not captured here) compared to females. Combined with the small sample size in 

this study, it is challenging to fully interpret the sex dependent trajectories, which will 

require larger sample sizes and age ranges, and further histological analyses. 

4.4.4 Linear Regression of Kurtosis with Myelin-Specific 

Metrics 

Figure 4.5 illustrates the linear relationship of kurtosis metrics with myelin-

specific metrics in each ROI independently. Kaniso does not show any correlations with 

MTsat (Figure 4.5). The negative correlations of Kaniso with MTR may include biases, as 

MTR is sensitive to T1-weighting and various sequence parameters. This indicates that 

Kaniso (and µFA via Eq. 3) is not sensitive to myelination, which agrees with the results in 

Figure 4.2. Although previous studies found changes in µFA with demyelination in the 

cuprizone demyelination model (208) and multiple sclerosis patients (17), we anticipate 

that subsequent damage to axons and/or neuroinflammation may have caused resultant 

changes in µFA and Kiso as well, which supports our reasoning that myelination may not 

be a key contributor to axonal anisotropy. Figure 4.5 shows that increases in Ktotal over 

the course of development, which have been shown by others in humans (292,293) and 

rodents (125,294), are largely due to increases in isotropic kurtosis rather than anisotropic 

kurtosis. Furthermore, the results highlight the importance of using both LTE and STE 

acquisitions as Ktotal accounts for kurtosis from both anisotropic and isotropic sources, 
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and most studies only explore the total kurtosis. We show here changes in total kurtosis 

over time may be predominated by isotropic sources, which suggests that total kurtosis is 

unlikely to be sensitive to how myelination affects water diffusion anisotropy over the 

course of normal brain development (as these changes would be reflected in anisotropic 

sources of kurtosis). 

Figure 4.6 illustrates the linear fits of kurtosis metrics with myelin-specific 

metrics in all ROIs combined, to focus on linear relationships over the ROIs. As Kaniso 

shows positive correlations with both MTR and MTsat (Figure 4.6), and Kiso does not 

show any correlations here, this indicates that Kaniso is sensitive to microstructural 

differences that distinguish different brain regions, while Kiso is not. Figure 4.5 and 

Figure 4.6 highlight that changes in total kurtosis found over time (in normal brain 

development) are driven by isotropic kurtosis, while differences in total kurtosis 

found between brain regions are driven by anisotropic kurtosis. This indicates that 

while the main differences between white and gray matter regions stem from fiber 

content and alignment, leading to differences in anisotropic kurtosis, the main differences 

over time are not related to changes in axonal content. Age and region dependent kurtosis 

changes have been reported in previous DKI studies (125,292–294,319–321), but these 

studies only focused on the total kurtosis. 

4.4.5 Limitations 

Although conducted using a longitudinal study design and state-of-the-art 

methods, our investigation has limitations. Firstly, we do not calculate microscopic 

kurtosis (µK), which is another source of total kurtosis and ignoring it can impact the 
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accuracy of other kurtosis sources. µK is the weighted sum of different microscopic 

sources of non-Gaussian diffusion, which include restricted diffusion inside 

compartments, microstructural disorder due to the presence of microscopic hindrances to 

water molecules (such as membranes and axon caliber variations), and exchange between 

components (164,238). Recently, µK was shown to be a primary driver of total kurtosis 

upon ischemia in mice (322) and was mapped in human brain tissue for the first time 

(323), revealing that this component is non-negligible. Moreover, Novello et al. showed 

that assuming the multiple Gaussian component approximation for kurtosis source 

estimation (ignoring µK) introduces significant bias in the estimation of other kurtosis 

sources (323). Additionally, for our frequency-dependent dMRI protocol, our highest 

OGSE frequency (190 Hz) was determined by hardware constraints, and reaching even 

higher frequencies would allow us to probe smaller spatial scales. Although our MTsat 

protocol improves myelin specificity compared to MTR, a more recent technique, 

inhomogeneous magnetization transfer (ihMT), may be better suited for our study. ihMT, 

which was developed based on MT MRI, is more specific to myelin than MTsat, due to 

its direct sensitivity to the phospholipids in myelin (324,325). In this study, we only 

explored one phase of the mouse brain lifespan, the brain maturation phase, while the 

degeneration phase remains to be investigated. Including more timepoints after 8 months 

would allow for a more robust and complete picture of the mouse brain lifespan 

trajectory. However, the time period used in this study (between 3-8 months of age) is a 

widely used time period for longitudinal rodent neuroimaging studies and will provide 

insight into healthy rodent brain development to help disentangle normal and 

pathological microstructural changes. It is also important to note that the developmental 
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trajectory described here is for wild type C57Bl/6 mice and may be altered in other 

mouse lines. 

4.5 CONCLUSION  

In conclusion, we investigated the evolution of advanced dMRI and MT MRI 

metrics longitudinally in healthy mouse brain maturation, as the study of normal brain 

maturation will help exclude confounds of cerebral developmental changes from 

interpretations of disease and injury mechanisms. Overall, the trends observed in our DTI 

and MTsat metrics are comparable to previous human and rodent studies investigating 

normal brain development. Neurobiological changes that result in changes to isotropic 

kurtosis remain understudied, however, we suggest here that isotropic kurtosis sources 

drive changes in total kurtosis during normal brain maturation. Our results suggest 

myelination is not a main contributor to microscopic diffusion anisotropy and anisotropic 

kurtosis in axons. For studies that only calculate total kurtosis, we suggest caution in 

attributing neurobiological changes to changes in total kurtosis as we show here no 

changes in anisotropic sources of kurtosis in the presence of myelination.  
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4.6 SUPPORTING INFORMATION 

 

Supplemental Figure 4.S1 - Quantitative MRI parameter evolution during healthy 

ageing in smaller ROIs including 4 white matter ROIs (corpus callosum, internal 

capsule, external capsule, and fornix) and 4 gray matter ROIs (hippocampus, 
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hypothalamus, thalamus, and amygdala). Data represents mean values of each metric 

and error bars represent the standard deviation among n=11 mice. Asterisks represent 

results from post hoc pair-wise comparison (* p<0.05, ** p<0.01, *** p<0.001). 
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Chapter 5 

5 Microstructural MRI evolution during adult 

mouse brain concussion recovery 

5.1 INTRODUCTION 

Mild traumatic brain injury (mTBI), also known as concussion, is a significant 

public health concern, with approximately 200,000 cases reported annually in Canada 

(47). mTBI is defined as acute neurophysiologic brain dysfunction resulting from impact 

contact forces or sudden acceleration/deceleration causing a transient alteration of 

consciousness and/or a period of anterograde (and possibly retrograde) amnesia (55). The 

overwhelming majority (75 - 90%) of traumatic brain injuries (TBIs) are mild (326) with 

the acknowledgment that the incidence of mTBI is likely grossly underestimated because 

many patients with mTBI do not seek medical treatment (327). Moreover, while 

symptom resolution in most concussion patients occurs within 3 months post-injury, 15 

% of individuals with a single mTBI demonstrate long-term cognitive impairment (56–

58). A more recent review by McInnes et al. (49) found that the 15 % estimate is an 

underestimation, and approximately half of individuals with a single mTBI demonstrate 

long-term cognitive impairment. The pathological mechanisms underlying this 

incongruence remain largely unknown, presenting a need to continue efforts to better 

understand the transition from early phase to late phase disorder after mTBI. 

Diagnosis of mTBI relies on patient-reported symptomatology, such as 

headaches, fatigue, depression, and cognitive impairments. However, this subjective 

assessment can be imprecise and unreliable. While structural MRI and CT show 
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sensitivity to TBIs, they often show normal findings in mTBI cases (50,51). Additionally, 

CT and MR findings are poor indicators of persistent symptoms in patients with mTBI 

(52). Biomarkers for diagnosing and assessing the severity of mTBI are not yet 

established, although techniques like diffusion tensor imaging (DTI) and magnetic 

resonance spectroscopy (MRS) are promising  (53,54).  

Diffusion MRI (dMRI) provides a non-invasive means to capture changes in brain 

microstructure during development, aging, disease, and injury by probing the diffusion of 

water molecules (182). Diffusion tensor imaging (DTI), the most widely used dMRI 

technique, is sensitive to the coherence of fibrous structures that can detect diffuse axonal 

injury in TBI patients (328,329) and experimental studies (135,136,247). Although DTI 

has arguably had the greatest influence to-date of neuroimaging modalities in mTBI 

(330), previous studies have reported inconsistent DTI findings across studies (22). In the 

late period following TBI, the most common DTI finding is reduced fractional anisotropy 

(FA) that is proportional to the injury severity, reported 1 – 6 years post-injury (330–

332). Overall, DTI studies demonstrate diffusion restrictions, resulting in lower mean 

diffusivity (MD) and higher FA, along white matter tracts in the acute setting that 

typically pseudo-normalize in the sub-acute period (121). There is not yet a consensus as 

to what these changes mean in terms of specific underlying neuropathology nor is there 

consensus on how they relate to functional impairment. Magnetization transfer (MT) 

MRI has also been applied to mTBI, and the magnetization transfer ratio (MTR) offers 

sensitivity to myelin content and integrity to detect axonal injury and demyelination, as 

well as recovery and remyelination, consequent to mTBI (247,333). Although 

inconsistent MTR findings have been reported, with one study reporting no changes in 
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the acute stage (24 hours) and chronic stage (90 days) post-mTBI (334), most MTR 

studies indicate decreased MTR, histologically verified as demyelination (247,335) and 

correlating with cognitive dysfunction (336). While an mTBI study found that MTR 

values normalized 30 days post-injury (247), a TBI study reported decreased MTR even 

1-year post-injury (336). As DTI and MTR MRI have limitations reducing their 

sensitivity and specificity to microstructural changes, we apply a microstructural MRI 

protocol, in addition to DTI and MTR metrics as references, including: 1) frequency-

dependent dMRI; 2) tensor-valued dMRI; 3) magnetization transfer saturation (MTsat) 

MRI. This is the first application of any of these advanced MRI techniques to mTBI. 

Each of these 3 advanced techniques, and the limitations they overcome, are described 

below. 

Firstly, conventional dMRI sequences are limited to probing length scales on the 

order of 10-30 µm due to hardware constraints (9), as they rely on the pulsed gradient 

spin echo (PGSE) sequence to encode diffusion. To probe smaller length scales, the 

oscillating gradient spin echo (OGSE) sequence was developed to modify sensitivity to 

cellular length scales (10). By varying the frequency of the diffusion gradient waveform 

(i.e., frequency-dependent dMRI), which is inversely related to diffusion time, OGSE 

encoding allows different microstructural length scales to be probed. Subsequently the 

difference in DTI metrics between the highest and lowest frequencies applied, such as 

ΔMD, can be used to examine their dispersion with frequency and provide greater insight 

into tissue microstructure (162,178). Additionally, evidence of a linear dependence of 

MD on the square root of frequency has been demonstrated in healthy and globally 
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ischemic rodent brain tissue (169) and healthy human white matter (183,277). Therefore, 

the diffusion dispersion rate (Λ) can be calculated using a power-law model as: 

MDf =  MD0 +  Λf 0.5     (5.1) 

where MDf is the MD at OGSE frequency, f, and MD0 is the MD at f = 0, which is the 

conventional PGSE sequence (162,178,183). Frequency-dependent dMRI has helped to 

identify neurite beading as a mechanism for contrast after ischemic stroke (19,20), and 

has shown increased sensitivity compared to conventional PGSE dMRI in the assessment 

of hypoxia-ischemia (201) in rodents, and in various pathologies in humans (202–204). 

 Secondly, DTI is confounded by neuron fiber orientation dispersion (8,21), 

reducing its specificity to microstructural changes in brain regions with crossing fibers, 

and assumes the dMRI signal is entirely characterized by Gaussian diffusion (8), 

providing a vague and limited model of neuroanatomy. To reduce orientation dispersion 

effects on diffusion measurements, tensor-valued diffusion encoding (11–13), which 

varies the shape of the b-tensor (describes the strength of diffusion weighting along each 

direction) to vary the sensitivity to diffusion anisotropy, was developed. Previous studies 

have shown that tensor-valued dMRI provides better sensitivity than conventional DTI in 

distinguishing between different types of brain tumours (21) and assessment of multiple 

sclerosis lesions (16,17). Tensor-valued dMRI distinguishes between different sources of 

kurtosis (kurtosis quantifies the deviation away from Gaussian diffusion) and allows for 

computation of microscopic fractional anisotropy (µFA), which is analogous to the 

standard FA metric and reports water diffusion anisotropy independent of the neuron 

fiber orientation dispersion (21,141,190). In tensor-valued dMRI, the total diffusional 
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kurtosis (Ktotal), reported as the mean kurtosis in conventional diffusion kurtosis imaging 

(DKI) (124), can be disentangled into isotropic and anisotropic kurtosis (Kiso and Kaniso, 

respectively). Kiso is a measure of the variance in compartment-specific diffusivities  

which can be related to cell size heterogeneity (21) and Kaniso arises from microscopic 

diffusion anisotropy. µFA can be expressed in terms of Kaniso: 

µFA =  √
3

2
(1 +

6

5

1

Kaniso
)

−
1

2
     (5.2) 

Last but not least, MTR has been shown to be sensitive to sequence parameters, 

flip angle inhomogeneities, and T1 effects (14,15). MT saturation (MTsat) imaging 

reduces these sensitivities and increases specificity to changes in myelin content in a 

comparable scan time (14). MTsat shows higher white matter contrast in the brain than 

MTR (14), and has been shown to correlate more with disability metrics than MTR in 

patients with multiple sclerosis (18). 

To explore the pathophysiology and the evolution of microstructural MR metrics 

at the mild end of the spectrum of mTBIs, we implemented possibly one of the mildest 

single impact models in the literature. Our results exhibit greater sensitivity of 

microstructural MR metrics, compared to standard DTI, to changes following injury at 

both subacute and chronic stages. Of particular interest, we identify evidence of a 

sexually dimorphic response to mTBI, reinforcing that sex matters in mTBI as females 

are still underrepresented in clinical and preclinical mTBI research. 



173 

 

5.2 METHODS 

Detailed information on the data acquisition and analysis pipeline used for this 

study is openly available (295) and included as Appendix A. Moreover, the test-retest 

reproducibility of the MRI metrics have been reported previously in Chapters 2 and 3 

(181,239). Therefore, we will only summarize acquisition and analysis and refer the 

reader to the previous chapters for full detailed methods.  

5.2.1 Subjects 

The sham and concussed cohorts each consisted of 12 C57Bl/6 mice (6 males, 6 

females), with a total of 24 mice aged 10-12 weeks at the start of the study. The mice 

were scanned longitudinally at Baseline (before mTBI), 1-month post-mTBI, 2-months 

post-mTBI, and 5-months post-mTBI, as shown in Figure 5.1. One female sham mouse 

was not scanned at the 5-month timepoint, as it expired before this timepoint due to 

natural causes. Imaging was also performed at the acute stage after mTBI, at 2 days post-

mTBI and 1-week post-mTBI. However, this data was excluded from analysis to avoid 

possible effects from anesthesia on tissue microstructure (337,338). In a DTI mTBI 

study, Hoogenboom et al. observed considerable DTI changes in sham animals between 

baseline and 48 hours post-sham procedure (339), which was the most anesthesia-intense 

timeframe in the study. In a repeated isoflurane study in mice, behavioral deficits and 

reduced axial diffusivity in the corpus callosum were found up to 90 days after isoflurane 

exposure (340).  

Before scanning, anesthesia was induced by placing the animals in an induction 

chamber with 4 % isoflurane and an oxygen flow rate of 1.5 L/min. Following induction, 
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isoflurane was maintained during the imaging session at 1.8 % with an oxygen flow rate 

of 1.5 L/min through a custom-built nose cone. The mouse head was fixed in place using 

ear bars and a bite bar to prevent head motion. After the last timepoint, the mice were 

euthanized for histology. The mice were anesthetized with ketamine/xylazine (2:1) and 

then underwent trans-cardiac perfusion with ice-cold saline, followed by 4% 

paraformaldehyde in phosphate-buffer saline (PBS). 

 

 

Figure 5.1 - Overview of study design. At Baseline, all mice were 12–14 weeks old. A 

single mild impact was delivered to the concussed cohort 2 days after baseline imaging, 

following the CHI-RF (cortical head injury with rotational force) model. In the CHI-RF 

model, the mouse is placed on a piece of pre-pierced clear plastic and following impact, 

undergoes a 180° rotation and falls onto a foam pad or soft towel. After the 5-month 
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scan, all mice were euthanized. Injury graphic adapted from Bodnar et al. (open access) 

(341). 

5.2.2 Mild Traumatic Brain Injury Model 

For the concussed cohort, a closed head single mild impact model, involving both 

linear and rotational forces, was implemented 2 days after the Baseline scan. This 

emerging mTBI model is termed “Closed head injury with rotational force” or CHI-RF. 

The goal of this model is to match the stretch and strain in the rodent brain during mTBI 

to that experienced by the human brain, as measured in contact sports (342). The mouse 

is placed on a custom-made acrylic box, topped with a piece of pre-pierced clear plastic 

(facilitating the fall). Following impact, the mouse undergoes a 180° rotation and falls 

onto a foam pad or soft towel, as depicted in Figure 5.1. The parameters of our CHI-RF 

impact were: impact speed (3.5 m/s), tissue depth (8 mm) and dwell time (500 ms, the 

amount of time the impactor tip will remain in contact with the brain surface). 

Animals were anaesthetized by intra-peritoneum injection with Ketamine 

80mg/kg and Xylazine 10mg/kg, diluted in saline, and placed in a Kopf stereotaxic frame 

for positioning under a traumatic brain injury device (TBI 0310, Precision Systems and 

Instrumentation, LLC), which consists of an air-driven custom impactor, centered on 

Bregma, as shown in Figure 5.2. Sham mice also underwent the same anesthetic 

procedure. In rodents, the Bregma is widely used as the origin reference point for 

stereotaxic coordinates and refers to the crossing point of the coronal and the sagittal 

sutures (343). The custom impactor is a 4 mm-diameter pliant silicone tip. The sham 

cohort underwent a sham procedure, 2 days after the baseline scan, and were subjected to 

equal amounts of anesthesia as the concussed cohort. 
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Figure 5.2 - Dorsal view of the rodent skull diagram with sutures and detailed points of 

measurement of the Bregma and the Lambda. A) The Bregma is measured on the 

crossing point between the coronal and the sagittal sutures. The Lambda landmark is 

defined “as the point of intersection of the best-fit lines passing through the sagittal 

suture and the left and right portions of the lambdoid suture”. B) Skull landmarks on 

surgery view, with the blue dot indicating Bregma and location of the single mild impact. 

Image adapted from Cecyn & Abrahao (open access) (343). 

These injury depths and speeds are similar to the injury parameters used by others 

studying mTBI in mice (214,344,345), although these studies investigated models of 

repetitive mTBI. Single impact models in the literature use relatively greater injury 

parameters (247,346,347). Thus, to the best of our knowledge, this study may be 

implementing one of the mildest single impact models in literature. 

5.2.3 Data Acquisition 

MRI experiments were conducted on a 9.4 Tesla (T) Bruker small animal scanner 

equipped with a gradient coil insert of 1 T/m strength (slew rate = 4100 T/m/s). During 
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each imaging session, frequency-dependent and tensor-valued dMRI, MT MRI, and 

anatomical data was acquired with a total scan time of 2 hours and 35 minutes. 

Anatomical images were acquired using a T2-weighted TurboRARE sequence with 

parameters: in-plane resolution 150 x 150 µm, slice thickness 500 µm, TE/TR = 40/5000 

ms, 16 averages, total scan time of 22 minutes. The frequency-dependent dMRI protocol 

included a PGSE sequence (gradient duration = 11 ms and diffusion time = 13.8 ms) and 

OGSE sequences with frequencies of 50, 100, 145, and 190 Hz with a single b-value shell 

of 800 s/mm2 (10 directions) (348) and parameters: in-plane resolution 175 x 200 µm, 

slice thickness 500 µm, TE/TR = 39.2/10000 ms, 5 averages, total scan time of 45 

minutes. Frequency tuned bipolar (FTB) waveforms were used at 50 Hz to lower the TE 

of the acquisition (297). The tensor-valued dMRI protocol consisted of LTE and STE 

acquisitions with b-value shells of 1000 s/mm2 (12 directions) and 2000 s/mm2 (30 

directions) with parameters: in-plane resolution 175 x 200 µm, slice thickness 500 µm, 

TE/TR = 26.8/10000 ms, 3 averages, total scan time of 45 minutes. The MT protocol 

included three FLASH-3D scans and one B1 map scan to correct for local variations in 

flip angle. The FLASH-3D scans consisted of an MT-weighted scan, and reference T1-

weighted and PD-weighted scans with parameters: in-plane resolution 150 x 150 µm, 

slice thickness 500 µm, 12 averages, total scan time of 43 minutes. 

5.2.4 Data analysis  

Complex-valued averages were combined using in-house MATLAB code which 

included frequency and signal drift correction (221) and Marchenko-Pastur denoising of 

complex-valued data (223). After averages were combined, data underwent correction for 
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Gibbs ringing using MRtrix3 (224), and eddy-current induced distortions using TOPUP 

(218) followed by EDDY (219) from FMIRB Software library (FSL, Oxford, UK) (225).  

Scalar maps of magnetization transfer ratio (MTR) and MT saturation (MTsat) 

were generated from the MT protocol as outlined by Rahman et al. (295). From the 

frequency-dependent dMRI data, MRtrix3 was used to fit the diffusion tensor and acquire 

maps of MD, AD, RD, and FA. Quantitative values of ΔFA, ΔAD, and ΔRD were 

calculated as the mean of each metric within the region-of-interest (ROI) between the 

highest frequency (190 Hz) and the lowest frequency (0 Hz). Diffusion dispersion rate 

(Λ) maps were computed as outlined in Eq. 1. From the tensor-valued dMRI data, maps 

of Ktotal, Kiso, and µFA were generated as described in Chapter 4. 

5.2.5 Region-of-interest (ROI) analysis   

Quantitative MRI parameters were investigated in 3 gray matter and 3 white 

matter regions of interest (ROIs): hippocampus (HC), prefrontal cortex (PFC), olfactory 

region (OLF), corpus callosum (CC), internal capsule (IC), and cerebral peduncle (CP). 

We defined the PFC to include cortex from the orbital area to 1 mm caudal to the bregma, 

which included the secondary motor cortex; the anterior cingular area, the prelimbic area, 

the infralimbic area and the agranular insular area as defined by Carlen (349). The 

olfactory region included the olfactory bulb, anterior olfactory cortex, taenia tecta, and 

olfactory tubercle. The white matter tracts (CC, IC, and CP) are perpendicular to each 

other and were thus chosen to account for differences in injury based on the axis of the 

tracts. Masks for all ROIs were generated from the labelled Turone mouse brain atlas 

(298), which was downsampled to the resolution of the T2-weighted images. To ensure 

accurate registration of scalar maps to the atlas, a T2 template, an FA template, and an 
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MT-weighted template was created based on images from all scanning sessions using 

ANTs software (227). There are 3 steps to warp individual scalar maps to the 

downsampled atlas space: (1) Individual FA and MT-weighted maps are registered to 

their respective templates, (2) the FA and MT templates are registered to the T2 template, 

and (3) the T2 template is registered to the downsampled atlas. Each registration step 

involves affine transformation followed by symmetric diffeomorphic transformation 

using ANTs software. Output deformation fields and affine transforms from each of the 

three steps were used to warp the individual scalar maps to the atlas space, resulting in 

only a single interpolation during registration, to obtain quantitative values for each 

dMRI metric.  

5.2.6 Statistical Analysis 

Statistical analysis was done in MATLAB version R2020b and graphs were 

created in GraphPad Prism version 9.5.1. To investigate if the MRI metrics changed 

significantly over time, repeated measures MANOVAs were performed for each metric, 

over all ROIs, to examine differences between timepoints, and account for multiple 

regions being examined in each mouse. Metrics with a significant group effect (p < 0.05) 

from MANOVA were followed up by separate univariate repeated measures ANOVAs 

within each ROI. Significant group by time interaction effects (Greenhouse-Geisser 

corrected) from the ANOVAs were followed up by repeated measures ANOVA and 

Tukey HSD test for post hoc pair-wise comparison within each group separately, to 

determine within-subject differences in metrics within an ROI across time.  

To perform sex-dependent analysis, significant group by sex interaction effects 

from the initial MANOVA, for each metric, were followed up by analyzing the male and 
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female group separately for each ROI. Repeated measures ANOVAs were performed in 

the male and female group, separately. Significant group by time interaction effects 

(Greenhouse-Geisser corrected) from the ANOVAs were followed up by repeated 

measures ANOVA and Tukey HSD test for post hoc pair-wise comparison within the 

concussed and sham groups separately, to determine within-subject differences in metrics 

within an ROI across time.     

5.3 RESULTS 

Table 5-1 shows the results of group effects and group by sex interaction effects 

from the initial MANOVA for each metric. RD shows a significant group effect, while 

AD shows a significant group by sex interaction effect. All tensor-valued dMRI metrics 

(Ktotal, Kiso, Kaniso, and µFA) reveal significant group and group by sex interaction effects. 

MTR shows both group and group by sex interaction effects, while MTsat only shows a 

group by sex interaction effect. The frequency-dependent dMRI metrics did not show any 

significant results from the initial MANOVA. Table 5-2 shows results of group by time 

interaction effects from repeated measures ANOVAs, for each ROI, for all metrics that 

demonstrated a significant group effect from the initial MANOVA. The only significant 

group by time effects are observed in Kaniso and µFA in the olfactory region, and MTR in 

the cerebral peduncle. 

Table 5-1: MANOVA results for each metric over all ROIs showing group effects 

and group by sex interaction effects. Highlighted cells show significant p-values (p < 

0.05). 

Metric Group effect (P-value) Group*Sex effect (P-value) 
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MD 0.0944 0.8083 

AD 0.5322 0.0131 * 

RD 0.0324 * 0.4055 

FA 0.6358 0.1889 

Λ 0.0610 0.0644 

ΔAD 0.2847 0.3503 

ΔRD 0.3261 0.1310 

ΔFA 0.3068 0.1256 

Ktotal 0.0047 ** 1.662 x 10-6 *** 

Kiso 1.846 x 10-4 *** 5.200 x 10-10 *** 

Kaniso 1.441 x 10-4 *** 5.350 x 10-8 *** 

µFA 4.074 x 10-5 *** 1.739 x 10-7 *** 

MTR 6.646 x 10-5 *** 1.339 x 10-6 *** 

MTsat 0.5493 2.390 x 10-9 *** 

 

Table 5-2: Repeated measures ANOVA results showing group by time interaction 

effects, for each ROI, for all metrics that demonstrated a significant group effect 

from the initial MANOVA. Highlighted cells show significant p-values (p < 0.05). 

 Group*Time Effect (P-value) 

ROIs 
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Metrics HC PFC OLF CC IC CP 

RD 0.1497 0.2024 0.1062 0.2337 0.3920 0.3400 

Ktotal 0.1337 0.4688 0.2408 0.2063 0.3946 0.4911 

Kiso 0.0946 0.2025 0.1134 0.1826 0.4050 0.2070 

Kaniso 0.1636 0.3610 0.0020 0.3880 0.3304 0.2045 

µFA 0.0937 0.1811 7.275 x 

10-4 

0.2775 0.2489 0.1624 

MTR 0.1789 0.2457 0.4182 0.2256 0.4956 0.0448 

Figure 5.3 shows all MRI metrics at all timepoints and ROIs for both sham and 

concussed cohorts. The significant group by time effects in Kaniso, µFA, and MTR are 

shown, including the results of follow-up post hoc pairwise comparisons over time within 

each group. No significant pairwise comparisons were found for MTR. Only in the 

concussed group, both Kaniso and µFA significantly increase in the olfactory region from 

Baseline to 5-months post-mTBI, with a 32% increase in Kaniso and 15% increase in µFA. 

Of the frequency-dependent metrics, Λ and ΔAD in the concussed cohort reveal an 

increasing trend over time in PFC and OLF, compared to the shams, although not 

significant. 
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Figure 5.3 - Quantitative MRI parameter in sham and concussed cohorts in the following 

ROIs: hippocampus (HC); prefrontal cortex (PFC); olfactory region (OLF); corpus 

callosum (CC); internal capsule (IC); cerebral peduncle (CP). Data represents mean 

values of each metric and error bars represent the standard deviation over all mice in the 
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cohort. Within each cohort, the four bars from left to right represent the following 

timepoints: Baseline; 1-month post-mTBI; 2-months post-mTBI; 5-months post-mTBI. 

The shaded background represents metrics with significant group effects. Asterisks 

represent statistically significant results (* p<0.05, ** p<0.01, *** p<0.001), with 

capped lines showing significant group by time effects and n zig-zag lines showing 

significant post-hoc pairwise comparisons. 

Group by time interaction effects from repeated measures ANOVAs, for males 

and females separately, are reported in Tables 5.3 (females) and 5.4 (males), for all 

metrics that demonstrated a significant group by sex interaction effect from the initial 

MANOVA. Interestingly, no group by time interaction effects are found in males. In 

females, all reported metrics show significant group by time effects in various ROIs. 

Both MTR and MTsat show significant effects in HC and CP, while only MTR shows 

significant results in PFC and OLF. Kaniso and µFA show significant effects in the same 

regions: HC, OLF, CC, IC. Kiso shows significant results in all ROIs, except CP. AD 

shows significant group by time effects only in HC and CC. 

Table 5-3: Repeated measures ANOVA results showing group by time interaction 

effects for each ROI in females, for all metrics that demonstrated a significant group 

by sex interaction effect from the MANOVA. Highlighted cells show significant p-

values (p < 0.05). 

 Group*Time Effect (P-value) 

ROIs 

Metrics HC PFC OLF CC IC CP 
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AD 0.0203 * 0.3324 0.4860 0.0119 * 0.3994 0.8928 

Ktotal 0.0143 * 0.0202 * 0.1354 0.0059 

** 

0.0430 * 0.2373 

Kiso 0.0036 ** 0.0184 * 0.0317 * 0.0077 

** 

0.0152 * 0.1448 

Kaniso 0.0064 ** 0.3303 2.058 x 10-4 

*** 

0.0315 * 0.0334 * 0.2481 

µFA 0.0109 * 0.1411 1.595 x 10-4 

*** 

0.0294 * 0.0209 * 0.1785 

MTR 0.0058 ** 0.0241 * 0.0041 ** 0.0795 0.0512 0.0131 * 

MTsat 0.0012 ** 0.0573 0.3303 0.0927 0.2628 0.0254 * 

 

Table 5-4: Repeated measures ANOVA results showing group by time interaction 

effects for each ROI in males, for all metrics that demonstrated a significant group 

by sex interaction effect from the initial MANOVA. 

 Group*Time Effect (P-value) 

ROIs 

Metrics HC PFC OLF CC IC CP 

AD 0.2999 0.3822 0.1685 0.5238 0.6140 0.6212 

Ktotal 0.6737 0.6735 0.6717 0.6804 0.4429 0.8836 

Kiso 0.6033 0.3108 0.4806 0.7216 0.3467 0.7532 
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Kaniso 0.7169 0.2315 0.2990 0.9207 0.3042 0.5921 

µFA 0.7269 0.2085 0.3278 0.8860 0.2902 0.7253 

MTR 0.6229 0.7966 0.3439 0.6821 0.7120 0.6980 

MTsat 0.4452 0.2930 0.0069 0.0752 0.2943 0.5446 

Figure 5.4 shows MRI metrics, with a significant group by sex interaction effect 

from the initial MANOVA, for females and males separately. In females, post hoc 

pairwise comparisons over time are shown, within sham and concussed cohorts, 

following up the significant group by time effects reported in Table 5-3. For concussed 

females, MTsat (HC) shows an initial 13% increase at 1-month post-mTBI, followed by a 

5% decrease at 2-months post-mTBI (compared to 1-month). The initial MTsat increase 

is not resolved by 5-months post-mTBI, and MTsat remains 11% higher than at Baseline. 

MTR (HC) shows a similar trend (although not significant). MTR shows significant 

increases from Baseline to 5-months post-mTBI in PFC (13%) and OLF (27%), while 

MTsat shows similar (not significant) trends. On the other hand, MTsat shows significant 

increases post-mTBI in CP (22% increase at 5-months), with MTR showing similar (not 

significant) trends. In concussed females, there is an increase in Ktotal at 5-months post-

mTBI, compared to 1-month post-mTBI, in HC (13%), PFC (13%), CC (12%), and IC 

(7%). Ktotal increases in sham females are more gradual across time, from Baseline to 5-

months, as seen in CC (6%) and IC (8%). Ktotal increases in concussed females in HC and 

CC are paired with increases in Kiso, Kaniso, and µFA in those regions. Ktotal increases in 

the PFC are only paired with Kiso increases. Kaniso and µFA increases are also observed in 
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OLF from Baseline to 5-months post-mTBI, although this increase is not significant for 

Ktotal. 

 

Figure 5.4 - Quantitative MRI parameters in sham and concussed cohorts, within each 

sex, in the following ROIs: hippocampus (HC); prefrontal cortex (PFC); olfactory region 

(OLF); corpus callosum (CC); internal capsule (IC); cerebral peduncle (CP). Results 

from female and male mice are presented in the left and right columns, respectively. Data 

represents mean values of each metric and error bars represent the standard deviation 
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within each cohort. Within each cohort, the four bars from left to right represent the 

following timepoints: Baseline; 1-month post-mTBI; 2-months post-mTBI; 5-months post-

mTBI. Asterisks represent results from post hoc pair wise comparisons (* p<0.05, ** 

p<0.01, *** p<0.001). 

5.4 DISCUSSION 

In this study, we investigated mouse brain concussion recovery at subacute and 

chronic timepoints after a single closed head impact with rotational force, utilizing 

frequency-dependent and tensor-valued dMRI and MT MRI to probe smaller spatial 

scales, orientation-independent diffusion and various kurtosis sources, and myelin 

content, respectively. We performed sex-dependent analysis to disentangle male and 

female contributions to the whole group results, as there is a gap in the literature with 

respect to how the female brain responds to mTBI. We demonstrate that tensor-valued 

dMRI and MT metrics are more sensitive to microstructural changes in the sub-acute and 

chronic stages following mTBI, compared to DTI. Of particular interest, the tensor-

valued dMRI and MT metrics exhibited a sex-dependent response to mTBI. Notably, this 

is the first time that frequency-dependent and tensor-valued dMRI are applied to mTBI. 

A unique feature of the present study was the utilization of a closed-head model 

of mTBI. This circumvents some of the issues associated with the more invasive 

controlled cortical impact (CCI) and fluid percussion (FP) models, in which the brain 

itself is directly impacted, by surgically removing part of the skull, producing significant 

and focal physical damage that commonly extends into the hippocampus (350). The CHI-

RF (closed head injury with rotational force) model, as used in this study, produces 

diffuse injury characterized by activation of inflammatory reactions and axonal damage, 
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replicating many aspects of the neuropathology of human mTBI without overt focal 

damage (351). Thus, we did not observe any gross anatomical changes here post-mTBI, 

as well as any qualitative changes in any of the MR metric maps, as confirmed by visual 

inspection. 

5.4.1 DTI of mTBI 

Most mTBI animal imaging studies investigate the acute stage post-mTBI, within 

the first month (136,137,247,352). DTI findings in mTBI all point to restricted diffusion 

in the early acute injury window, with subsequent pseudo-normalization sometimes 

within 3 - 7 days post injury (121). Pseudo-normalization of DTI metrics may be one 

reason why we are not observing changes in DTI metrics here. In a CCI model, decreased 

FA and AD was evident in the corpus callosum within several hours after injury (137). 

While AD pseudo-normalized beyond 4 days, RD increased compared to control levels in 

the similar window, with FA remaining low regardless of the time after injury. In the 

same injury model, prominent decreases in MD in the cortex immediately below the 

injury were demonstrated at two hours post injury, with values normalizing or increasing 

compared to controls at 7 days post injury (123). In a repetitive mTBI model, FA was 

increased at 48 hours post-injury compared to 4 weeks and 10 weeks post-injury in the 

corpus callosum and hippocampus (214). In human mTBI, DTI findings have been 

considerably more mixed (353). Differences in the injury classification, the injury-to-

imaging time, and the heterogeneity in brain regions affected have complicated a single 

interpretation of the reported effects.  
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5.4.2 Evolution of MR Metrics and Underlying Biological 

Interpretations 

Increases in Λ can be related to axonal beading, as increased ΔMD was related to 

a combination of neuronal beading and axonal swelling after ischemic stroke (19,20). No 

significant changes in Λ here, although an increasing trend is observed in the concussed 

cohort in the PFC and OLF (Figure 5.3), indicates that there likely is not substantial sub-

acute or chronic axonal beading. Histologically observed axonal beading in a repetitive 

mTBI model was reported at acute, subacute, and chronic (up to 10 weeks) timepoints 

post-injury (214). As expected, there is much less damage with this single mild impact 

model. The frequency-dependent metrics also demonstrated a lower test-retest 

reproducibility than tensor-valued metrics in Chapter 2 (181), and this greater variability 

may be another reason the frequency-dependent metrics are not exhibiting significant 

effects.  

No decrease in µFA suggests a lack of neurodegeneration and axon loss with this 

mild impact model. Variation in µFA in the brain has been related to axonal content 

(354) and increased µFA has been related to the presence of elongated cells (21). Monte 

Carlo simulations suggest Kaniso and µFA reduce with axon beading and µFA increases 

with greater intracellular volume fraction (355,356). Here, the increase in µFA and Kaniso, 

observed in concussed mice at the whole group level, as well as for concussed females, 

may be related to a greater number of elongated cells and greater intracellular volume 

fraction. This may arise from the infiltration of activated microglia in their hypertrophied 

and elongated state (357,358). In a rat TBI model, increased total kurtosis at the acute 

stage (1-week post-mTBI) was associated with reactive astrogliosis (123). Although the 
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effect of astrogliosis on µFA and Kaniso is unknown, we hypothesize that the highly 

branched processes of reactive astrocytes may contribute to increased µFA and Kaniso. 

Although a repetitive mTBI model showed persistent microgliosis 3-months post-mTBI 

(359), it is unknown whether a single mTBI can lead to persistent microgliosis or 

astrogliosis. The increase in µFA and Kaniso may also be associated with synaptic 

remodeling. 

Increasing Kiso for concussed females at the chronic timepoint (5-months post-

mTBI) may be related to the infiltration of glial cells and/or differentiation and 

maturation of oligodendrocytes, as increased Kiso reflects increased cell size and density 

heterogeneity (21,184). These mechanisms may arise as a chronic response to the initial 

injury or from delayed normal brain maturation after the injury. Specifically, in the 

internal capsule, the gradually increasing total kurtosis over time in sham females 

compared to the chronic (delayed) increase in total kurtosis in concussed females may 

indicate delayed normal brain development after injury. 

The increase observed in MTR and MTsat in concussed females may be a 

combined effect of myelin remodeling (360), as a response to impaired synaptic plasticity 

and myelin abnormalities, and remyelination, which may be forms of plasticity after 

mTBI (361). In a weight drop model of mTBI in rats, Tu et al. observed significantly 

reduced MTR at 10 days post-mTBI, related to demyelination, which resolved by 20 days 

post-mTBI (247). In our milder model of mTBI, demyelination may not be triggered, or 

demyelination may occur at acute timepoints that were not included in our analysis. In a 

controlled cortical impact model in mice, with the brain being directly impacted, 

histologically evaluated demyelination was reported from 7 days to 3 months post-injury 
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and electron microscopy revealed various myelin sheath abnormalities within the corpus 

callosum at 3 months post-mTBI (362). Mouse models of single impact closed skull 

mTBI have demonstrated demyelination that is associated with evidence of 

remyelination, including oligodendrocyte progenitor cell proliferation and generation of 

new oligodendrocytes (101,107). In one of these models, Mierzwa et al. (101) reported 

that the frequency of demyelinated intact axons did not correlate with the presence of 

degenerating axons, which suggests that myelin remodeling can occur along intact axons 

through demyelination and remyelination. So, demyelination can occur without the 

presence of neurodegeneration. This phenomenon may explain our results as we observe 

an increase in MTR and MTsat, which indicates myelin remodeling and/or remyelination, 

but no evidence of neurodegeneration. In a contact sports concussion study, myelin water 

fraction (MWF), another MR measure of myelin content, was found to be increased in the 

brains of players compared with the brains of controls, suggesting acute/chronic MWF 

alterations in players from previous injuries (363). Increases in MWF were also 

demonstrated in the brains of players 3 months after the players sustained an mTBI. The 

full clinical significance of increased myelin and whether this reflects axon 

neuropathology or disorderly remyelination leading to hypermyelination has yet to be 

determined.  

In a juvenile rat mTBI model, the dentate gyrus region of the hippocampus in 

females showed a significant reduction in synaptic plasticity (as investigated with 

electrophysiology) at 1 day, which persisted to 28 days following injury (350). In male 

rats, the deficit was maximal in hippocampal subfields 7 days post-injury; however, these 

deficits did not persist to 28 days post-injury. These data indicate that mTBI can produce 
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more immediate and persistent impairments in synaptic plasticity in the female brain. The 

cellular and molecular mechanisms underlying the mTBI-induced synaptic plasticity 

deficits are yet to be fully elucidated. There are many possible mechanisms that may 

contribute to the observed impaired synaptic plasticity, including acute and chronic 

inflammatory processes, decreases in blood–brain barrier integrity (364), dendritic spine 

remodeling (365), and changes in metabolic pathways (69). 

5.4.3 Brain Region-Specific Notes 

Interestingly, the only white matter tract with MTR/MTsat changes is the cerebral 

peduncle (CP). This tract is positioned anterior-posterior in the mouse brain, and thus 

may undergo more axonal stretching and shearing than the corpus callosum (CC) and 

internal capsule (IC) during the rotational acceleration of the CHI-RF model. The 

olfactory region (OLF) is the only region with significant post hoc pairwise comparisons 

in the whole group analysis. Although olfactory dysfunction is one of the most common 

symptoms in TBI patients and often an early signal for neurodegenerative disorders (366–

368), there are very few studies that show the association between olfactory dysfunction 

and mTBI. A repetitive mTBI model showed a significant change of olfactory 

dysfunction-related behaviors in injured compared to control mice, as well as axonal 

damage in olfactory-bulb-associated areas 5 days post-mTBI (369). The prefrontal cortex 

(PFC) region includes the site of injury and thus changes are expected in this region. The 

hippocampus shows changes in all tensor-valued and MT metrics in concussed females. 

The hippocampus is particularly vulnerable to brain injury, with demonstrable neuronal 

degeneration (370,371). Previous work showed that demyelination in the hippocampus 

and associated spatial learning impairments peaked between 1 and 2 weeks after m TBI 
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(372), which may be why we are not observing a decrease in MT metrics 1-month post-

injury in the hippocampus. 

5.4.4 Sexual Dimorphism in mTBI Response 

Overall, sex dependent changes observed here suggest either a chronic response to 

mTBI or delayed development in female concussed mice, while the male concussed mice 

do not exhibit a response. Females remain underrepresented in mTBI research, where 

fewer women than men are recruited to clinical trials and male rodents have 

predominantly been used as an experimental injury model (373). The sexually dimorphic 

findings identified here suggest more research into sex-dependent changes post-mTBI are 

needed. In a recent review on sex differences in TBI, Gupte et al. (373) found that most 

human studies report worse outcomes in women than men, whereas most animal studies 

report better outcomes in females than males. However, closer examination shows that 

multiple factors including injury severity, sample size, and experimental injury model 

may differentially interact with sex to affect TBI outcomes. Interestingly, in humans, 

most mTBI studies reported worse outcomes for females, whereas most moderate/severe 

TBI studies reported better outcomes for females. Among animal studies of mTBI, only 

17% showed better outcomes in females than males, whereas in moderate/severe TBI a 

larger proportion (55%) showed better outcomes in females. 

One of the most compelling and widely studied hypotheses of the cause of sex 

differences in TBI is that the injury response is modulated by sex hormones, as recently 

reviewed by Spani et al. (374). Whereas women experience cyclic production of estrogen 

and progesterone until menopause, testosterone production in men declines incrementally 

over time and is markedly reduced in older men. Whether better outcomes in female 
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animals are due to the neuroprotective effects of estrogen and/or progesterone has been 

extensively examined, with studies indicating that estradiol can produce quite favorable 

results in treating the central nervous system injuries in animal models (375,376). 

There are also structural differences between sexes that may give rise to sex-

dependent differences in injury response. At the ultrastructural level, axons of cultured 

neurons isolated from females were consistently smaller and contained fewer 

microtubules than those from males (377). This finding is also corroborated by electron 

microscopy analysis of the rat corpus callosum showing female axon diameters to be 

smaller than male axons (378,379), and by axon diameter mapping using diffusion MRI 

showing female mean axon diameters within the human corpus callosum to be smaller 

than male axons (380). Interestingly, it has even been speculated that this size difference 

may be due to greater number of microtubules in male axons than female axons (381). 

Also, following a stretch-induced injury in vitro, axons from females exhibited greater 

swelling and loss of calcium signaling compared with those from males (377). 

Mechanical vulnerability to dynamic injuries may be increased for smaller axons on 

average. This has precedence in animal models of TBI, where white matter axons with 

smaller diameters have been shown to undergo more acute dysfunction, slower recovery 

of function and/or greater degeneration than large diameter axons (382). Thus, under the 

same level of mechanical loading during head impact, axons in female brains may be 

more susceptible to damage than axons in male brains due to fundamental differences in 

axon ultrastructure.  

 Another factor that may give rise to sex-dependent differences is neck 

musculature (383). The male mice in this study were noticeably larger in size than their 
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female counterparts, with visibly larger neck girth. Nutt et al. (384) reported that male 

rugby athletes who self-reported higher rates of a previous concussion demonstrated 

greater strength imbalances of their neck musculature. Males also had stronger neck 

musculature compared to age-matched females, with these strength differences becoming 

increasingly significant with age. Recent research has demonstrated that linear and 

rotational head acceleration, as well as the magnitude of force upon impact, is influenced 

by neck biomechanics, and increased neck strength and girth are associated with reduced 

linear and rotational head acceleration during impact (385). Thus, the lower neck strength 

and girth of female mice in this study may cause increased linear and rotational head 

acceleration and thus greater observed changes post-mTBI. 

5.4.5 Limitations 

This study is not without its limitations and has many avenues for improvement. 

Scanning of sham and concussed cohorts was not interleaved. All sham mice were 

scanned first, and all concussed mice were scanned the following year due to delays in 

procuring a cortical impactor associated with the COVID-19 pandemic. This may have 

resulted in slightly different genomes between the sham and concussed mice, although all 

mice were acquired from the same vendor. Also, as the whole group analysis did not 

show significant group effects in DTI metrics, except for RD, between sham and 

concussed cohorts, and there is no evidence of axon loss, our CHI-RF model may have 

been too mild. In repeated mTBI models, reduced FA and increased RD was found 1-

month post-injury in the corpus callosum (25,217). In a more severe single mTBI model, 

elevated RD and MD, and reduced FA, was reported at 1-month post-injury in the corpus 

callosum (137). It is likely that due to our model being too mild, we are not sensitive to 
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group by time effects in RD, and group effects in other DTI metrics. Ideally, our impact 

should be strong enough to elicit a response from the male mice as well, to allow for a 

more comprehensive investigation of sex-dependent differences. Due to neuromodulatory 

effects of anesthesia (337) potentially confounding results in the acute stage, at 2 days 

and 1-week post-mTBI, and the focus of our work on brain maturation, we did not 

include acute stage data in our analysis here. Anesthesia may confound both behavioral 

measures and the biochemical dynamics of the injury cascade and is a major caveat in 

mTBI research (330). Future closed head mTBI models can consider delivering impacts 

to unanesthetized animals, as has been demonstrated in a mouse study (367). Imaging 

without the use of anesthesia can also be considered by habituating mice to awake MRI, 

as recently demonstrated (386). Studies designed to specifically disentangle anesthetic 

effects is an important area for future research. It is also important to note that the 

developmental trajectory described here is for wild type C57Bl/6 mice and may be 

altered in other mouse lines. Other mouse lines, such as transgenic mice carrying 

humanized wildtype microtubule-associated protein tau (387) and amyloid precursor 

protein (388), would also result in greater translatability to humans. Future work should 

include investigating more timepoints in the acute and chronic stage for a comprehensive 

view of the time course of MR metric evolution after injury. Application of mTBI at 

different mouse ages including in juvenile and aged mice would help elucidate how 

mTBIs impact younger and aged populations, as most mTBI research is focused on 

adults. In a recent study in juvenile male mice, mTBI led to significant region‑specific 

DTI microstructural alterations, distant from the site of impact, that correlated with 
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cognitive and spatial memory impairments at 12 months after a single concussive injury 

(389).  

There are also several technical limitations to consider in this study. Although our 

MTsat protocol improves myelin specificity compared to MTR, a more recent technique, 

inhomogeneous magnetization transfer (ihMT), may be better suited for our study. ihMT, 

which was developed based on MT MRI, is more specific to myelin than MTsat, due to 

its direct sensitivity to the phospholipids in myelin. For our frequency-dependent dMRI 

protocol, our highest OGSE frequency (190 Hz) was determined by hardware constraints, 

and reaching even higher frequencies would allow us to probe smaller spatial scales. This 

may have limited our frequency-dependent dMRI findings here. In our tensor-valued 

dMRI protocol, we do not consider microscopic kurtosis (µK), which is another source of 

total kurtosis and ignoring it can impact the accuracy of other kurtosis sources (323). µK 

is the weighted sum of different microscopic sources of non-Gaussian diffusion, which 

include restricted diffusion inside compartments, microstructural disorder due to the 

presence of microscopic hindrances to water molecules (such as membranes and axon 

caliber variations), and exchange between components (164,238). Recently, µK was 

shown to be a primary driver of total kurtosis upon ischemia in mice (322) and was 

mapped in human brain tissue for the first time (323), revealing that this component is 

non-negligible.  

5.5 CONCLUSION 

In this study, we investigated mouse brain concussion recovery at subacute and 

chronic timepoints after a single closed head impact with rotational force, utilizing 

frequency-dependent and tensor-valued dMRI and MT MRI. We demonstrate that tensor-
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valued dMRI and MT metrics are more sensitive to microstructural changes in the 

subacute and chronic stages following mTBI, compared to DTI. We hope the sexually 

dimorphic pattern of response identified here will motivate more research in sex-

dependent changes after mTBI. 
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Chapter 6 

6 Conclusions 

While each Chapter of this thesis describes chapter-specific limitations, there are 

several broad limitations that affected most of the work. Following the discussion of 

limitations, the overall conclusions, future directions, and impact of the thesis will be 

discussed. 

6.1 Limitations and Suggestions 

6.1.1 Anesthetic Effects 

The neuromodulatory effects of anesthesia (337,338) could have potentially 

confounded our results, but all scans analyzed in Chapters 4 and 5 were acquired at least 

1 month after the last anesthesia session, which gave time for recovery. Notably, acute 

timepoints (2 days and 1-week) were not included in the analysis in Chapters 4/5, but 

evidence of parameter changes in the sham cohort at acute time-points is present, as 

depicted in Figure 6.1 in the cerebral peduncle, as an example.  Although anesthesia can 

result in negative effects during development, such as apoptotic neurodegeneration, 

deficits in hippocampal synaptic functions, and persistent behavioral and cognitive 

impairments (337,338), few studies have investigated neural and behavioral deficits that 

may extend into adulthood (390,391). In a DTI mTBI study, Hoogenboom et al. observed 

considerable DTI changes in sham animals between baseline and 48 hours post-sham 

procedure (339), which was the most anesthesia-intense timeframe in the study. In a 

repeated isoflurane study in mice, behavioral deficits and reduced axial diffusivity in the 

corpus callosum were found up to 90 days after isoflurane exposure (340). Repeated 
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isoflurane anesthesia exposure impacted burrowing behavior and reduced exploratory 

behavior in adult mice, though these differences became negligible 8 days after 

anesthesia (392). Lindhardt et al. applied diffusion kurtosis imaging in awake and sedated 

mice for a single imaging session and demonstrated MR metric modulations between the 

cohorts (393). 

Our study was not designed to disentangle anesthetic effects. Future closed head 

mTBI models can consider delivering impacts to unanesthetized animals, as has been 

demonstrated in a mouse study (367). Imaging without the use of anesthesia can also be 

considered by habituating mice to awake MRI, as recently demonstrated (386). Studies 

designed to specifically disentangle anesthetic effects is an important area for future 

research, to better understand to what degree sedation affects the MR signal and the acute 

and chronic implications. A study focused on disentangling anesthetic effects can include 

two cohorts of mice, an awake mouse cohort (unanesthetized) and an anesthetized mouse 

cohort, imaged longitudinally to identify acute and chronic effects of anesthesia applied 

during imaging. Furthermore, investigating various doses of anesthesia would help 

elucidate how the dosage relates to microstructural alterations. 
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Figure 6.1 - Quantitative MRI parameters in the sham cohort in the cerebral peduncle (a 

white matter tract). Data represents mean values and error bars represent the standard 

deviation over all mice in the cohort. At acute timepoints, an increase in AD and FA is 

observed after repeated measures ANOVA. Asterisks represent statistically significant 

differences between timepoints (* p < 0.05). 

6.1.2 Imaging Timepoints 

Although healthy brain maturation was assessed over a period of 5 months 

(Chapter 4) and concussion recovery was assessed at both subacute and chronic stages 

(Chapter 5), evaluating more timepoints would provide a more comprehensive view of 
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MR metric evolution. In healthy mice (Chapter 4), imaging at more timepoints during 

developing, maturing, and ageing periods would give us a picture of the entire mouse 

lifespan. This may help us identify more contrast mechanisms driving changes in MR 

metrics and the results would be applicable to a wider range of preclinical research in 

mice. In the mTBI study (Chapter 5), adding more chronic timepoints would allow us to 

identify when and if the MR metrics normalize, as the present study did not show 

normalization of tensor-valued dMRI and MT metrics in concussed females by the last 

imaging timepoint. This suggests that there are still ongoing microstructural changes, due 

to mTBI, occurring after the last imaging timepoint. 

6.1.3 Sex-Dependent Analysis 

Although the reproducibility and sample sizes required for the MR metrics used in 

this thesis were characterized in Chapters 2 and 3, a greater sample size would be 

beneficial for sex-dependent analysis, increasing the power to disentangle sex-dependent 

effects. Including other sex-dependent factors in the study would have facilitated our 

understanding of the causes of the sexually dimorphic MR metric evolution observed in 

Chapters 4 and 5. One example is the measurement of sex hormone levels to explore 

whether differences in hormone levels correlated with differences in imaging results. 

Future animal studies of sex differences in TBI should also consider the potential for 

hidden confounds, such as differential response to anesthetics, sex differences in body 

and/or skull size, and sex differences in motivation to perform behavioral tasks (373).  



205 

 

6.2 Conclusions 

Although concussion has become a significant public health concern, current 

clinical neuroimaging techniques lack the sensitivity and specificity required to reliably 

detect signs of concussion, as large-scale changes are absent (22). This results in an 

inability to predict who will recover completely, who will have long-term impairments, 

or when it is safe to return to play in contact sports. Diffusion tensor imaging has 

arguably had the greatest influence to-date of neuroimaging modalities in mTBI (330), 

but previous studies have reported inconsistent DTI findings across studies (22), as 

standard diffusion MRI lacks the specificity to identify unique microstructural 

environments (e.g., cannot distinguish between loss of structural integrity and fiber 

orientation) and represents and inherently vague and limited model of neuroanatomy (8). 

This thesis explores the application of microstructural MR methods, that go beyond DTI 

to improve sensitivity and specificity, to a preclinical model of mTBI and adult brain 

maturation. This work characterizes the reproducibility of the microstructural MR metrics 

applied, establishes that these metrics are capable of detecting microstructural changes 

throughout adult mouse brain maturation and concussion recovery, and represents the 

first application of these advanced MR techniques in either healthy brain aging or mTBI. 

Chapters 2 and 3 present test-retest reproducibility studies of advanced diffusion 

MRI and magnetization transfer MRI metrics, respectively. Both chapters describe the 

implementation of the MRI methods used in this thesis, characterize both ROI-based and 

voxel-wise test-retest reproducibility of the in vivo MRI metrics, and report sample sizes 

required to detect a variety of effect sizes. This is the first test-retest assessment of these 

advanced MR protocols at ultra-high field strength, which will be useful in planning 
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future preclinical neuroimaging studies involving models of disease/injury. Presented in 

Chapter 2, most of the tensor-valued dMRI metrics are reproducible in both ROI-based 

and voxel-wise analysis, while the frequency-dependent dMRI metrics are only 

reproducible in ROI-based analysis. ROI-based coefficients of variation (CVs) revealed 

high reproducibility for most metrics (CVs < 15%), while voxel-wise CV maps revealed 

high reproducibility for tensor-valued metrics (CVs ~ 10%), but low reproducibility for 

frequency-dependent metrics (CVs ~ 50%). Given feasible sample sizes (10 - 15), tensor-

valued and frequency-dependent dMRI metrics may provide sensitivity to subtle 

microstructural changes (4 - 8%) and moderate changes (> 6%), respectively. Presented 

in Chapter 3, MTR and MTsat were reproducible in both ROI-based and voxel-wise 

analysis. MTsat exhibited comparable reproducibility to MTR and could detect small 

changes (< 10%) with sample sizes of 15–20, while providing better contrast and 

maintaining a feasible scan time. 

Research investigating healthy rodent brain maturation remains limited, which 

warrants further study of normal brain maturation in rodents to exclude confounds of 

developmental changes from interpretations of disease mechanisms. Chapter 4 

investigates healthy rodent brain maturation in mice scanned longitudinally at 3, 4, 5, and 

8 months of age, and provides a discussion of what the evolution of MR metrics suggests 

on a neurobiological level. This work shows that there are continuing microstructural 

changes in the brain, even after 3 months of age, when mice are considered adults. The 

linear and quadratic fits observed over time are comparable to previous studies in both 

humans (24,38,286,287,289–293) and rodents (125), investigating DTI, DKI, and myelin-

specific metrics. In a human lifespan study, peak age calculated with the quadratic model 
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revealed peak ages in the range of 30-50 years depending on brain region and metric 

(290). 30 human years is equivalent to about 6 mouse months and 50 human years is 

equivalent to about 15 mouse months (312). This is consistent with our results, as we 

start to observe peaks around the 5-6 month timepoint. Most DTI studies indicate a U-

shaped relationship between the diffusivity metrics and age in most ROIs, with FA 

exhibiting an inverted U-shaped relationship. An inverted U-shape trend of myelin-

specific metrics with age has been reported (286,287,290,313–315), and this quadratic 

association is attributed to the process of myelination from youth through middle age, 

followed by demyelination in later years.  

Overall, the trends observed in conventional dMRI and MT metrics are 

comparable to previous studies on normal brain development (23,24,38), while the 

trajectories of our more advanced dMRI metrics provide novel insight. Particularly, total 

kurtosis increases over time were driven by increases in isotropic kurtosis, which may be 

related to glial cell diversification and/or oligodendrocyte differentiation and maturation. 

Based on the developmental trajectories of tensor-valued dMRI and MT metrics, our 

results suggest myelination during brain maturation is not a main contributor to 

microscopic diffusion anisotropy and anisotropic kurtosis in axons. Through this work, 

for studies that only calculate total kurtosis, we suggest caution in attributing 

neurobiological changes to changes in total kurtosis as we show constant anisotropic 

kurtosis in the presence of increasing myelin content. These findings can be translated to 

understanding human brain maturation as well. As Kiso and Kaniso have not been explored 

in the context of human brain maturation, and our observed Ktotal shows similar trends to 

human brain maturation, it is likely that Kiso and Kaniso in the human brain may follow the 
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same trajectory that we observe here, and our interpretations for the increase in isotropic 

kurtosis can likely be extrapolated to humans. 

Chapter 5 explores the evolution of microstructural MR metrics in a closed head, 

single impact, mouse model of concussion at 1-month, 2-months, and 5-months post-

mTBI. Tensor-valued dMRI and MT metrics exhibited greater sensitivity to 

microstructural changes in the subacute and chronic stages following mTBI, compared to 

DTI, with a chronic increase in tensor-valued metrics and a more gradual increase in MT 

metrics in concussed females. These changes suggest delayed normal brain development 

and/or myelin and synaptic remodeling as forms of brain plasticity in concussed females. 

The sexually dimorphic pattern of response identified here motivates more research in 

sex-dependent changes after mTBI, as females remain underrepresented in both clinical 

and preclinical mTBI research.  

6.3 Future Directions 

Future studies should consider application of mTBI at different mouse ages 

including in juvenile and aged mice, which would help characterize the time-course of 

injury response in younger and aged populations, as most mTBI research is focused on 

adults. In a recent study in juvenile male mice, DTI alterations, distant from the site of 

impact, correlated with cognitive and spatial memory impairments, even at 12 months 

after a single concussive injury (389). Future studies would benefit from quantitative 

histological analysis that can be correlated with MR results to accurately identify the 

contract mechanisms underlying the MR changes. Specifically, histological analysis can 

be performed for glial cells (oligodendrocytes, microglia, and astrocytes), myelin content, 

and axonal beading and injury. Additionally, our institute has recently acquired a light 
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sheet microscope which facilitates acquisition of whole mouse brain 3D images. 

Histological images acquired in this format can also be more readily registered to their 

MR counterparts to ensure the same ROIs are investigated in histology and MRI (394). 

Performing Monte Carlo simulations of diffusion (20,356) to reflect the biophysical 

alterations hypothesized in this thesis would also help verify or contradict our hypotheses 

and elucidate what is contributing to dMRI contrast. Harnessing biophysical multi-

compartment modeling in dMRI is another avenue for future research, as biophysical 

models possess greater specificity through access to more meaningful and specific 

parameters of the tissue microstructure, such as neurite fraction (395).  For example, the 

CODIVIDE (constrained diffusional variance decomposition) model can be applied to 

tensor-valued dMRI data (396). Additionally, as tensor-valued diffusion MRI can be 

applied in clinical scanners in under 3 minutes (12,184), the changes observed in tensor-

valued metrics in this thesis motivate the application of this method in investigations of 

clinical mTBI. 

As both our brain maturation and concussion recovery studies reveal increases in 

isotropic kurtosis, which is a measure of cell size/density heterogeneity, isotropic kurtosis 

can be leveraged to evaluate disease models where changes to cell size/density are 

expected. Kiso would be a strong candidate to evaluate brain tumour models, where 

changes in cell size and density are substantial. Kiso has previously been mapped in brain 

tumours as a proof-of-concept (21) but has not been used to explore the detection of brain 

tumour progression and differentiation. As glial cell loss may be a feature of 

schizophrenia (397) and have significant roles in the progression of Alzheimer’s disease 

(398), Kiso can be utilized to non-invasively characterize the changes to glial cells in these 
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models. Kiso can also be applied to models of demyelination and remyelination to further 

investigate the sensitivity of Kiso to oligodendrocyte differentiation and maturation. 

Increased Kiso was reported in LPC (L-α-Lysophosphatidylcholine) treated regions in the 

mouse brain, which introduces focal demyelination (399). The increased Kiso was 

hypothesized to be due to repopulation of mature oligodendrocytes by oligodendrocyte 

progenitor cells. However, this study did not include histological analysis, which would 

verify the hypotheses for Kiso changes in future studies. Exploring the time-dependence 

of Kiso is an interesting avenue for future research, as it may provide new insight and 

capture contrast from smaller cells.  

In Chapter 5, no behavioral measures were acquired to determine if the injury model 

used did in fact produce an mTBI, although preliminary histological analysis did show 

diffuse axonal damage at 2-days post-injury. The varied responses on an individual level 

could possibly be explained in part by behavioral analysis of the subjects. Behavioral sex-

dependent analysis correlated with MR results would also provide a window into the sex-

dependent functional outcomes associated with underlying microstructural brain changes. 

While the controlled cortical impact was landmarked and standardized for each mTBI in 

this thesis, no metrics were obtained quantifying kinematic properties such as rotation 

and translation of the head. Although kinematic analysis was done on different mice 

during the development of this injury model (400), this analysis was not done on the mice 

used in this study. Performing kinematic analysis and imaging on the same mice would 

allow us to correlate the strain experienced in different regions of the brain to the changes 

in MR parameters. Finally, the concussion injury may have been too mild, as males did 

not show any changes with DTI metrics or advanced dMRI methods, females only had 
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detectable changes with advanced dMRI methods. Future work would benefit from a 

stronger model (while verifying that gross anatomical changes are not present) to elicit 

detectable changes with microstructural MR methods to better understand the contrast 

mechanisms of these advanced metrics and non-invasively characterize the time-course 

post-injury. 

The mouse brain maturation study in this thesis inspires the concept of stratification 

based on ‘brain age’ for neuroscience experiments, as there is variability in the time that 

individual subjects reach their peak and in the trajectory of MR metrics for each subject. 

This grouping can differ for males and females, as this work shows evidence for different 

trajectories for both sexes. Thus, a possible outlook for future neuroscience research may 

be grouping subjects based on ‘brain age,’ instead of actual age in years, which may 

present a more accurate means of studying brain injury, disease, development, and aging. 

This grouping idea is similar to grouping children based on growth charts for height and 

weight (401). Stratification based on ‘brain age’ can be defined with access to very large 

datasets, to study brain development in early childhood (402,403),  and throughout the 

human lifespan with the LIFESPAN dataset which pools together data from ages 3 – 96 

(283), the brain chart resource which aggregates data from over 100,000 participants and 

is an interactive open resource to benchmark brain morphology derived from future 

samples as well (284), and the Human Connectome Project with multiple aging and 

development datasets (404), to name a few. Brain charts are an essential step towards 

robust quantification of individual variation benchmarked to normative trajectories, and 

thus identifying early deviations from normative trajectories, which may lead to 

neuropathology such as dementia. 
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6.4 Clinical Relevance 

Along with diffusion MRI research, imaging studies have also investigated 

changes in blood flow (arterial spin labeling MRI) (405), neuroinflammation (PET) 

(406), connectivity (functional MRI) (407), metabolic activity (MRS) (408) after 

concussion, and changes have been identified in all these metrics, but clinical translation 

is still limited. We are now at a point in concussion research where it is imperative that 

we start using results from different imaging metrics, together, to interpret and 

understand what is happening after concussion, and why. Thus, it is critical to continue 

paving the path to clinical translation for more advanced imaging techniques. With a 

better understanding of these mechanisms, therapies can be optimized. For example, 

MRS provides a way to measure the chemical content of MR-visible nuclei, allowing for 

evaluation of brain metabolism and the biochemical pathways involved, but cannot 

interrogate changes in microstructure that altered brain metabolism can lead to. 

Harnessing microstructural MRI along with MRS can provide a more comprehensive 

view of altered brain metabolism and the resulting microstructural changes, and vice 

versa. 

By longitudinally tracking changes in brain microstructure post-concussion, 

animal studies can shed light on the long-term effects of concussive injuries. 

Understanding the chronic consequences of concussion is crucial for implementing 

appropriate follow-up care and rehabilitation strategies. The findings in Chapter 5 point 

to delayed normal brain development and/or myelin and synaptic remodeling as forms of 

brain plasticity in concussed females, detectable even 5 months post-mTBI, elicited by 

possibly one of the mildest cortical impacts in the literature. This work identifies tensor-
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valued dMRI and myelin-sensitive MRI as promising candidates for mTBI diagnosis and 

prognosis in the clinic. Both tensor-valued dMRI and myelin-sensitive MRI have been 

applied before in clinical populations (354,409,410) and are clinically feasible. Applying 

these microstructural MR techniques in human mTBI may help provide evidence for the 

period of rest required for brain recovery, which will be a better indicator of patient 

recovery than the currently used marker of symptom recovery.  

Multi-modal neuroimaging techniques can provide a wealth of information about 

complex features that contribute to underlying neurobiological processes. Through strong 

inter-disciplinary collaborations, this avenue of research could be used to quantitatively 

monitor and stratify neurological phenotypes, develop diagnostic and prognostic 

biomarkers of neuronal integrity and health, and optimize neuroplasticity and potential 

recovery strategies. Moreover, as the medical field shifts towards personalized medicine, 

there should be a parallel shift towards real-time patient specific data analysis, using 

microstructural MRI and other imaging modalities, allowing for more evidence-based 

and personalized concussion management protocols and treatment options. 

6.5 Significance and Impact 

Overall, this thesis explores the capabilities of microstructural MRI in a 

preclinical model of mTBI and healthy brain maturation, advancing our understanding of 

the contrast mechanisms of microstructural MRI metrics and the evolution of these 

metrics during brain maturation and concussion recovery. This thesis characterizes the 

reproducibility of the microstructural MR metrics applied and provides preclinical sample 

sizes required to detect relevant effect sizes, which had not been done before at an ultra-
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high field strength. This work will inform future preclinical investigations of neuronal 

health, disease, and injury using these MR metrics. This thesis reinforces that there are 

continuing microstructural changes in the brain, even after 3 months of age, when mice 

are considered adults. We observe for the first time that total kurtosis increases over time 

are driven by increases in isotropic kurtosis during brain maturation, which may be 

related to glial cell diversification and/or oligodendrocyte differentiation and maturation. 

Through this work, for studies that only calculate total kurtosis, we suggest caution in 

attributing neurobiological changes to changes in total kurtosis as we show constant 

anisotropic kurtosis in the presence of increasing myelin content. We provide for the first 

time, in vivo evidence of changes post-mTBI detectable with microstructural MR 

methods in subacute and chronic stages, while the standard DTI metrics did not show 

changes. The sexually dimorphic patterns observed in this thesis, both during brain 

maturation and concussion recovery, may motivate more sex-dependent mTBI research, 

as females remain underrepresented in mTBI research. This thesis indicates that these 

microstructural MR techniques have potential to be further optimized and applied to 

better understand concussion neuropathology and its time-course, and to be further 

applied in clinical settings to study human mTBI. 
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Appendices 

Appendix A: A longitudinal microstructural MRI dataset in 

healthy C57Bl/6 mice at 9.4 Tesla 

This Appendix was published in Scientific Data, volume 10, Rahman et al., A longitudinal 

microstructural MRI dataset in healthy C57Bl/6 mice at 9.4 Tesla (295), Copyright CC-BY, 

2023. 

Background & Summary 

Multimodal microstructural MRI has shown increased sensitivity and specificity 

to microstructural changes in various brain disease and injury models in the preclinical 

setting. Here, we present an in vivo longitudinal imaging dataset in the healthy mouse 

brain, which includes structural T2-weighted, magnetization transfer (MT), and advanced 

diffusion MRI (dMRI) data. There were no hardware or software changes during data 

acquisition, and all protocols for a single timepoint in each mouse were acquired in the 

same session. Each of 12 C57Bl/6 mice were scanned at 6 different timepoints, between 3 

- 8 months of age (Figure A.1). Importantly, this dataset provides imaging data in the 

same mice over time, which provides greater statistical power compared to cross-

sectional studies, to detect changes in brain maturation, as myelination continues to 

increase between three and six months (23). 
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Figure A.1 - Overview of study design. At Day 0, all mice were 12 – 14 weeks old. Each 

C57Bl/6 mouse (n = 12, six males and six females) was scanned at 6 different timepoints, 

comprising a total of 72 MRI sessions. After Week 20, four of the mice (two males and 

two females) underwent ex vivo imaging. 

We envision utility of this dataset in the microstructural MRI field to develop and 

test methods that model temporal brain dynamics, registration and preprocessing 

pipelines, and biophysical models of brain microstructure. Sex and age-dependent 

differences can be investigated, as the dataset includes an equal number of male and 

female age-matched mice. In vivo to ex vivo changes, arising from perfusion and fixation 

processes, can be explored, as a subset of ex vivo data has been included. The data were 

acquired with the goals of forming a control dataset and investigating microstructural 

changes in the healthy mouse brain. Analysis of test-retest reproducibility of the MRI 

metrics, using a subset of the data, have been published elsewhere (181,239). To optimize 

potential applications of this dataset, we provide dMRI pulse sequences and protocols, 

source data (DICOM format), code to process source data, unprocessed and preprocessed 

data (NIFTI format), and quantitative MRI metric maps. We have made this dataset 

publicly available as other groups may not have access to all resources required to 
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undertake a longitudinal MRI study. This includes hardware, software (specifically 

custom pulse sequences to implement advanced dMRI protocols), and time/personnel 

required. MT imaging has been used extensively to investigate changes in myelin content 

and integrity (153,240). The MT imaging protocol applied here enables computation of 

the widely used MT ratio (MTR), and the more recently developed MT saturation index 

(MTsat) (14). As MTR is confounded by T1 effects, flip angle inhomogeneities, and 

choice of sequence parameters, MTsat was developed to reduce T1 dependence and 

improve specificity to myelin, while maintaining a feasible scan time. MTsat shows 

higher white matter contrast in the brain than MTR (14,239), and has been shown to 

correlate more with disability metrics than MTR in patients with multiple sclerosis (18).  

Developing advanced dMRI techniques, beyond the conventional diffusion tensor 

imaging (DTI) model, is currently of broad interest, as DTI lacks the specificity to 

identify unique microstructural environments (8). The advanced dMRI methods applied 

here include oscillating gradient spin echo (OGSE) dMRI (9,170), implemented by 

varying the oscillating gradient frequency, and microscopic anisotropy (μA) dMRI 

(12,141,189,193), implemented via tensor valued diffusion encoding. In addition to 

advanced dMRI metrics, traditional DTI metrics are also provided. OGSE dMRI provides 

additional insight, compared to conventional dMRI, by increasing sensitivity to smaller 

spatial scales. This is a robust dataset to explore the frequency dependence of OGSE 

dMRI metrics, which may provide insight into the relevant mesoscopic structures 

affecting water diffusion (178). Evidence of a linear dependence of mean diffusivity on 

the square root of OGSE frequency has been demonstrated in healthy and globally 

ischaemic rodent brain tissue (169) and in healthy human white matter (183). In contrast 
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to the widely used fractional anisotropy metric (FA) (8), which confounds true 

microstructural changes with fiber orientation dispersion, the microscopic anisotropy 

(μA) metric quantifies water diffusion anisotropy independent of orientation dispersion 

(141,184,185). Importantly, μA dMRI can provide estimates of cell shape (21,141,185–

188,190,191). Additionally, diffusional kurtosis estimated from the μA protocol includes 

linear kurtosis (arising from the linear tensor encoding (LTE) acquisitions) and isotropic 

kurtosis (arising from the spherical tensor encoding (STE) acquisitions), which can be 

related to cell size heterogeneity (21). 

As myelin is MR-invisible in diffusion-weighted scans, recent studies have 

applied both dMRI and MT methods for a more comprehensive view of microstructural 

changes (247,252,278). Thus, there may be interest in investigating longitudinal changes 

by jointly assessing MT and dMRI data, and additionally testing biophysical models 

using the combined OGSE, µA, and MT data. 

Methods 

Subjects 

All animal procedures were approved by the University of Western Ontario 

Animal Care Committee and were consistent with guidelines established by the Canadian 

Council on Animal Care. Twelve adult C57Bl/6 mice (six male and six female) were 

scanned at six timepoints. They were between 12 - 14 weeks old at the first timepoint 

(Figure A.1). Before scanning, anesthesia was induced by placing the animals in an 

induction chamber with 4 % isoflurane and an oxygen flow rate of 1.5 L/min. Following 

induction, isoflurane was maintained during the imaging session at 1.8 % with an oxygen 
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flow rate of 1.5 L/min through a custom-built nose cone. At the end of the study, the mice 

were euthanized. The mice were anesthetized with ketamine/xylazine (2:1) and then 

underwent trans-cardiac perfusion with ice-cold saline, followed by 4% 

paraformaldehyde in phosphate-buffer saline (PBS). 

In vivo MRI Acquisition 

In vivo MRI experiments were performed on a 9.4 Tesla (T) Bruker small animal 

scanner, running ParaVision 6.0.1, equipped with a gradient coil set of 1 T/m strength 

(slew rate = 4100 T/m/s). A single channel transceive surface coil (20 mm x 25 mm), 

built in-house, was fixed in place directly above the mouse head to maximize signal-to-

noise ratio (SNR). The mouse holder (which included ear bars and a bite bar), nose cone, 

and surface coil were fixed onto a support, which was placed into the scanner (Figure 

A.2a). This ensured consistent positioning of the mouse head in the scanner at each 

session. For all protocols, 30 slices, with a slice thickness of 400 µm (anatomical scans) 

or 500 µm (diffusion-weighted scans), were required for full brain acquisition. 

Anatomical images were acquired at each session for each subject using a T2-weighted 

TurboRARE sequence. A brief overview of the protocols is given in Table A-1. 
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Figure A.2 - Schematic of experimental setup for in vivo and ex vivo imaging sessions. a) 

In vivo setup showing the 3D printed mouse holder and surface coil securely attached to 

a support. The cross-section of the mouse holder depicts how the mouse is secured in 

place with a nose cone, bite bar, and ear bars. b) Ex vivo setup showing the 3D printed 

mouse brain holder, which can hold two extracted brains, and the 3D printed plastic 

container, which holds the mouse holder and is filled with Christo-lube. Both the mouse 

brain holder and container were custom designed to fit in the MP30 volume coil. The 

MP30 volume coil is securely attached to the support, with the isocenter marked in red.  
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Table A-1: Brief sequence details for in vivo imaging. For a full list of parameters, 

the exported protocols are included in the repository. 

Sequence FoV (mm3) Slice 
Thicknes
s (µm) 

In-plane 
Resolutio
n (µm2) 

TE/TR (ms) α 
(°) 

Average
s 

Scan 
Time 
(min.) 

Notes 

T2 
weighted 
TurboRARE 

19.2x14.4x1
5 

500 150x150 40/5000 90 16 22  

MT 
Imaging 

FLASH-3D 

19.2x14.4x1
2 

400 150x150 2.75/25 9 12 18 MT pulse on (MTw) 

19.2x14.4x1
2 

400 150x150 2.75/25 9 12 18 Reference PD-weighted 
scan (PDw) 

MT pulse off 

19.2x14.4x1
2 

400 150x150 2.75/8.5 20 12 6 Reference T1-weighted 
scan (T1w) 

MT pulse off 

19.2x14.4x1
2 

400 300x300 3/(TR1 = 20, 
TR2 = 100) 

60 1 1 B1 map 

OGSE 
dMRI 

Single-shot 
EPI 

19.2x14.4x1
5 

500 175x200 39.2/10000 90 5 45 b-value 
(s/mm2) 

# of directions 

0 10 

800 10 

µA dMRI 

Single-shot 
EPI 

19.2x14.4x1
5 

500 175x200 26.8/10000 90 3 45 b-value 
(s/mm2) 

# of directions 

0 8 

1000 12 LTE + 12 STE 

2000 30 LTE + 30 STE 
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OGSE and µA dMRI 

Each dMRI protocol was acquired with single-shot spin echo echo-planar-

imaging (EPI) readout with partial Fourier imaging in the phase encode direction with 

80% of k-space being sampled. For each dMRI protocol, a single reverse phase encoded 

b = 0 s/mm2 volume was acquired at the end of the diffusion sequence for subsequent use 

in TOPUP (218) and EDDY (219), from FMRIB Software Library (FSL, Oxford, UK) 

(225), to correct for susceptibility and eddy current induced distortions.  

The OGSE dMRI protocol included a PGSE sequence (with gradient duration = 

11 ms and diffusion time = 13.8 ms) and four OGSE sequences with oscillating gradient 

frequencies of 50 Hz, 100 Hz, 145 Hz, and 190 Hz at b = 800 s/mm2 (10 directions for 

each frequency). The lowest OGSE frequency (50 Hz) uses the newly introduced 

frequency tuned bipolar (FTB) waveforms to reduce TE of the acquisition (297). The μA 

sequence was implemented with linear (LTE) and spherical tensor (STE) encodings, as 

shown in Table A-1, at b = 2000 s/mm2 (30 directions for each of LTE and STE) and b = 

1000 s/mm2 (12 directions). Details about gradient waveforms and gradient modulation 

power spectra for the OGSE and µA protocols implemented here are presented in 

Rahman et al. (181).  

MT Imaging 

The MT protocol required 50 minutes total scan time and comprised three 

FLASH-3D (fast low angle shot) scans, and one RF transmit field (B1) map scan 

acquired using the actual flip-angle imaging (AFI) method (411) to correct for local 

variations in flip angle. An MT-weighted scan, and reference T1-weighted and PD-
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weighted scans (MTw, T1w, and PDw respectively) were acquired by appropriate choice 

of the repetition time (TR) and the flip angle (α). MT-weighting was achieved by 

applying an off-resonance Gaussian-shaped RF pulse (12 ms duration, 385° nominal flip 

angle, 3.5 kHz frequency offset from water resonance, 5 µT RF peak amplitude) prior to 

the excitation.  

Ex vivo MRI Acquisition 

Ex vivo MRI experiments were performed on a subset of four mice (two male and 

two female) after the last in vivo scan. The mouse IDs of ex vivo data are: NR1_F 

(female), NR2_F (female), NR7_M (male), and NR8_M (male). NR1_F and NR2_F were 

scanned with the skull attached to the brain to minimize chances of tissue deformation, 

while NR7_M and NR8_M were scanned with the skull removed. 

Ex vivo imaging was also performed on the 9.4 Tesla (T) Bruker small animal 

scanner, running ParaVision 6.0.1, equipped with a gradient coil set of 1 T/m strength 

(slew rate = 4100 T/m/s). A 3D printed mouse brain holder, holding two mouse brains at 

a time, was placed into a 3D printed plastic container and submerged with lubricant 

(Christo-lube MCG 1009; Engineered Custom Lubricants) to avoid magnetic 

susceptibility-related distortion artifacts (Figure A.2b). The mouse brain holder and 

container were custom designed to fit in the MP30 volume coil. The container was then 

slid into the volume coil (fixed on a support) and taped onto the support. The design of 

the mouse brain holder and container ensured that the mouse brain was positioned at the 

isocenter of the volume coil and the design of the support ensured consistent positioning 

of the mouse brain in the scanner at each session. For all protocols, 30 slices, with a slice 
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thickness of 400 µm (anatomical scans) or 500 µm (diffusion-weighted scans), were 

required for full brain acquisition. Anatomical images were acquired for each brain using 

a T2-weighted TurboRARE sequence. Due to field-of-view (FOV) constraints, one brain 

was imaged at a single session (although the mouse holder was designed to hold two 

brains). A brief overview of the protocols is given in Table A-2. The total ex vivo scan 

time for each brain was 15 hours. 

Table A-2: Brief sequence details for ex vivo imaging. For a full list of parameters, 

the exported protocols are included in the repository. 

Sequence FoV (mm3) Slice 
Thick
-ness 
(µm) 

In-plane 
Resolutio
n (µm2) 

TE/TR (ms) α 
(°) 

Average
s 

Scan 
Time  

Notes 

T2 weighted 
TurboRARE 

19.2x14.4x17.
5 

500 100x100 30/5000 90 48 1h12min  

MT Imaging 

FLASH-3D 

19.2x14.4x12 400 100x100 3.06/30 9 36 1h42min MT pulse on (MTw) 

19.2x14.4x12 400 100x100 3.06/30 9 36 1h42min Reference PD-weighted 
scan (PDw) 

MT pulse off 

19.2x14.4x12 400 100x100 3.06/12 20 36 40min Reference T1-weighted 
scan (T1w) 

MT pulse off 

19.2x14.4x12 400 300x300 3/(TR1 = 20, 
TR2 = 100) 

60 1 1 min B1 map 

OGSE dMRI 

Multishot 
EPI  

19.5x15x15 500 130x150 36.4/15000 90 14 6h25min b-value 
(s/mm2

) 

# of directions 

0 10 
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(2 
segments) 

1600 10 

µA dMRI 

Multishot 
EPI (2 
segments) 

19.5x15x15 500 130x150 28.9/10000 90 10 3h34min b-value 
(s/mm2

) 

 

# of directions 

0 4 

1320 6 LTE + 6 STE 

2640 9 LTE + 9 STE 

4000 15 LTE + 15 
STE 

OGSE and µA dMRI 

Each dMRI protocol was acquired with multi-shot spin echo echo-planar-imaging 

(EPI) readout with 2 shots and partial Fourier imaging in the phase encode direction with 

75% of k-space being sampled. Reverse phase-encoded volumes were not acquired for ex 

vivo data. 

The OGSE dMRI protocol included a PGSE sequence (with gradient duration = 

11 ms and diffusion time = 13.8 ms) and four OGSE sequences with oscillating gradient 

frequencies of 50 Hz, 80 Hz, 115 Hz, and 150 Hz at b = 1600 s/mm2 (10 directions for 

each frequency), with the lowest OGSE frequency using the FTB waveform. The μA 

sequence was implemented with linear (LTE) and spherical tensor (STE) encodings, as 

shown in Table A-2, at b = 1320 s/mm2 (6 directions for each of LTE and STE), b = 2640 

s/mm2 (9 directions), and b = 4000 s/mm2 (15 directions).  

MT Imaging 
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MT-weighting was achieved by applying an off-resonance Gaussian-shaped RF 

pulse, with the same parameters for in vivo imaging, prior to the excitation.  

Data Analysis Pipeline 

The data analysis pipeline was built using Snakemake (412) (described in greater 

detail in the Usage Notes section). A Snakemake workflow defines data analysis in terms 

of rules that are specified in the “Snakefile.” Figure A.3 outlines the data analysis steps 

from DICOM to scalar map generation. 

 

Figure A.3 - Flowchart outlining data analysis steps from DICOM to scalar map 

generation. The “rules” listed are those used in the Snakemake pipeline, using 

Snakemake 3.13.3. The software dependencies and versions of each analysis step are 

included. 

OGSE and µA dMRI Recon and Preprocessing 
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For the dMRI protocols, averages were acquired separately on the scanner and the 

complex-valued averages were combined using in-house MATLAB code which included 

reconstruction of partial Fourier data using POCS (Projection onto Convex Sets) (220), 

correction for frequency and signal drift associated with gradient coil heating (221), and 

Marchenko-Pastur denoising of complex-valued data (223). If averages were not 

collected separately, this step can simply be skipped. Importantly, the pipeline can be 

used for both complex-valued and magnitude data. After the averages were combined, 

images were preprocessed using Gibbs ringing correction from the MRtrix3 package 

(224), followed by TOPUP (218) and EDDY (219) from FMRIB Software Library (FSL, 

Oxford, UK) (225). Using the data collected with reverse phase-encode blips, the 

susceptibility-induced off-resonance field was estimated using TOPUP. Then, EDDY 

was run to correct for eddy current induced distortions (volume-by-volume), perform 

motion correction, and apply the results from TOPUP. 

Brain Masks 

Brain masks, for each protocol, were produced using the skull stripping tool from 

BrainSuite (v. 19b) (226) and manually edited, as needed. For dMRI data, an initial brain 

mask (after dMRI averages were combined) was created by registering the T2 brain 

masks to a b = 0 s/mm2 volume, using ANTs software (227). This initial brain mask was 

required for EDDY in the dMRI preprocessing step. After dMRI preprocessing, a final 

brain mask was produced and manually edited using BrainSuite. Brain masks for images 

from the T2, MT, and dMRI protocols have been included in the repository. 

Scalar Map Generation 
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Scalar maps are shown in Figure A.4 (in vivo) and Figure A.5 (ex vivo). Table A-3 

summarizes the scalar maps provided in the repository. Although briefly described here, 

more details describing the scalar maps are presented in previous reproducibility studies 

of the data that examined the two earliest time points (181,239).  

 

Figure A.4 - In vivo scalar maps. Other DTI metric maps (such as axial and radial 

diffusivity) are not shown here but have been included in the repository. MTR: 

magnetization transfer ratio; MTsat: magnetization transfer saturation; FA: fractional 

anisotropy; MD: mean diffusivity; ΔMD: mean diffusivity difference between MD (190 

Hz) and MD (0 Hz); Λ: diffusion dispersion rate; µA: microscopic anisotropy; µFA: 

microscopic fractional anisotropy; KLTE: linear kurtosis acquired from LTE volumes; 

KSTE: isotropic kurtosis acquired from STE volumes. 
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Figure A.5 - Ex vivo scalar maps. Other DTI metric maps (such as axial and radial 

diffusivity) are not shown here but have been included in the repository. MTR: 

magnetization transfer ratio; MTsat: magnetization transfer saturation; FA: fractional 

anisotropy; MD: mean diffusivity; ΔMD: mean diffusivity difference between MD (190 

Hz) and MD (0 Hz); Λ: diffusion dispersion rate; µA: microscopic anisotropy; µFA: 

microscopic fractional anisotropy; KLTE: linear kurtosis acquired from LTE volumes; 

KSTE: isotropic kurtosis acquired from STE volumes. 

Table A-3: Brief description of scalar maps provided in the repository. 

Imaging 

Protocol 

MRI Metrics (Scalar 

Maps) 

Equation Interpretation 

MT Magnetization 

transfer ratio (MTR) 
MTR =  

PDw − MTw

PDw
 

MTR has been 

shown to correlate 

well with 

histological myelin 

content (153,154). 
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However, MTR is 

also sensitive to the 

choice of sequence 

parameters, flip 

angle 

inhomogeneities, 

and longitudinal 

relaxation time (T1) 

(14). 

Magnetization 

transfer saturation 

index (MTsat) 

The apparent MTsat is calculated as:  

MTsatapp = (
AappαMT

SMT
− 1) R1appTRMT

− αMT
2 /2 

Aapp: apparent signal amplitude; αMT: excitation 

flip angle of the MTw image; SMT: signal intensity 

of MTw image; R1app: apparent longitudinal 

relaxation rate; TRMT: TR of MTw image 

 

MTsat was calculated from MTsatapp, after 

correcting for small residual higher order 

dependencies of the MT saturation on the local RF 

transmit field to further improve spatial 

uniformity: 

MTsat =  
MTsatapp ∙ (1 −  0.4)

1 −  0.4 ∙ RFlocal
 

RFlocal: relative flip angle α compared to the 

nominal flip angle 

 

For more details on the calculations of Aapp and 

R1app, see Helms et al.(14) 

 

MTsat reduces T1 

dependence and 

improves specificity 

to myelin, compared 

to MTR, while 

maintaining a 

feasible scan time 

(14). 

OGSE 

dMRI 

DTI Metrics at each 

frequency: 

• Axial 

Diffusivity 

DTI assumes Gaussian diffusion and models 

diffusion as an ellipsoid with three eigenvectors 

and corresponding eigenvalues (𝜆1, 𝜆2, 𝜆3). 

DTI metrics reflect 

white matter tissue 

properties such as 

myelination or fiber 
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(AD) 

• Radial 

Diffusivity 

(RD) 

• Mean 

Diffusivity 

(AD) 

• Fractional 

Anisotropy 

(FA) 

AD = λ1 

RD =
λ2 + λ3

2
 

MD =
λ1 + λ2 + λ3

3
 

FA

= √
3

2

√(λ1 − 𝑀𝐷)2 + (λ2 − 𝑀𝐷)2 + (λ3 − 𝑀𝐷)2

√λ1
2+λ2

2 + λ3
2

 

density. However, 

the effects of 

orientation 

dispersion dominate 

such contrast and 

more sophisticated 

models are 

necessary to 

separate the effects 

(8). 

Mean diffusivity 

difference (ΔMD) 

ΔMD = MDf − MD0 

 

MDf: OGSE MD at a frequency f 

MD0: MD at f = 0 

f: OGSE frequency 

Here, ΔMD maps 

provided are ΔMD 

between OGSE-190 

Hz and PGSE-0 Hz. 

ΔMD has shown 

increased sensitivity, 

compared to MD 

alone, in the 

assessment of 

hypoxia-ischemia in 

rodents (201), and in 

various pathologies 

in humans (202–

204). Notably, ΔMD 

has helped to 

identify neurite 

beading as a 

mechanism for 

dMRI contrast after 

ischemic stroke 

(19,20). 

Diffusion dispersion 

rate (Λ) 
MDf = MD0 + Λf 0.5 By acquiring 

diffusion data at 

multiple 

frequencies, the 

power law 

relationship between 

MD and frequency 

can be explored via 

the “diffusion 
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dispersion rate”, 

Λ (162,178). 

µA 

dMRI 

DTI Metrics 

(acquired with b1000 

LTE volumes): 

AD, RD, MD, FA 

  

Microscopic 

anisotropy (µA) 
µA =  

√ln (
SLTE

SSTE
)

b2
 

 

SLTE: powder-averaged LTE signal 

SSTE: powder-averaged STE signal 

 

In contrast to the 

widely used FA 

metric, which 

confounds true 

microstructural 

changes with fiber 

orientation 

dispersion (8), the 

microscopic 

anisotropy (µA) 

metric quantifies 

water diffusion 

anisotropy 

independent of 

orientation 

dispersion 

(141,189). µA is 

defined here based 

on the difference in 

signal between LTE 

and STE dMRI 

acquisitions. 

Preliminary studies 

in humans have 

found that µA 

provides better 

sensitivity than the 

conventional FA in 

distinguishing 

between different 

types of brain 

tumours (21), and 

the assessment of 

multiple sclerosis 

lesions (16,17). 
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Microscopic 

fractional anisotropy 

(µFA) 
µFA =  √

3

2

µA2

µA2 + 0.2MD2
 

µFA is the 

normalized 

counterpart of µA 

and can be 

expressed in terms 

of µA. 

Linear Diffusion 

Kurtosis (KLTE) 

KLTE was calculated by fitting the LTE signal to 

the diffusion kurtosis model using a joint non-

negative least squares method, assuming MD is the 

same between LTE and STE acquisitions: 

ln (
SLTE

So
) = −bMD +

1

6
𝑏2MD2KLTE 

 

So: mean signal with no diffusion encoding 

KLTE arises from the 

LTE acquisitions, 

which depends on 

the variance of both 

isotropic and 

anisotropic 

diffusivity. 

Isotropic diffusion 

kurtosis (KSTE) 

KSTE was calculated as described above: 

ln (
SSTE

So
) = −bMD +

1

6
𝑏2MD2KSTE 

KSTE arises from the 

STE acquisitions, 

which depends only 

on the variance of 

isotropic diffusivity. 

KSTE is a measure of 

the variance in the 

magnitude of 

diffusion tensors or 

the mean diffusivity, 

which can be related 

to cell size 

heterogeneity (21). 

Recently, He et al. 

have shown that 

KSTE may be 

particularly sensitive 

to deep gray matter 

lesions (208). 

Scalar maps of MTR and MTsat were generated from the MT protocol. MTw, 

PDw, and T1w images were used to calculate MTsat maps, following the original method 

proposed by Helms et al. (14) and outlined by Hagiwara et al. (413)  and Rahman et al. 

(239) Furthermore, B1 maps are available to correct for small residual higher-order 
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dependencies of the MT saturation on the local RF transmit field to further improve 

spatial uniformity, as suggested by Weiskopf et al. (180). 

From the OGSE data, maps of MD at each frequency were generated using 

MRtrix3 (224). The mean diffusivity difference, ΔMD, was calculated as the difference 

between MD acquired at the highest frequency (190 Hz (in vivo) or 150 Hz (ex vivo)) and 

MD acquired at the lowest frequency (0 Hz). To characterize the power law relationship 

between MD and OGSE frequency (f),(178) the slope of linear regression of MD with 

f,0.5 the diffusion dispersion rate (Λ), was calculated. From the µA data, maps of 

microscopic anisotropy (µA), microscopic fractional anisotropy (µFA), and diffusion 

kurtosis arising from LTE and STE acquisitions (KLTE and KSTE respectively) were 

generated by fitting the powder-averaged STE and LTE signals versus b-value to the 

diffusion kurtosis model (12). The powder-averaged signal, in diffusion MRI, refers to 

the average signal intensity over all directions in a specific b-shell (141). As a reference 

for the OGSE and µA metrics, DTI metrics have been included in the repository. 

Data Records 

The datasets, exported MRI protocols, Snakemake pipeline, and in-house 

MATLAB code are available in the Federated Research Data Repository (FRDR) at 

https://doi.org/10.20383/103.0594 (414). 

Datasets are arranged in ‘Data’ as mouseID_sex/timepoint/MRI_contrast. For 

dMRI data, preprocessed data and scalar maps are arranged in ‘DiffusionDataPreproc’ 

with the same structure of mouseID_sex/timepoint/MRI_contrast. 

https://doi.org/10.20383/103.0594
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Table A-4: Structural T2-weighted dataset 

Folder Filename Filename 

Extensions 

Data T2-weighted scan: 

mouseID_sex/timepoint/T2_TurboRARE_AX150150500_A16/ 

T2_TurboRARE_AX150150500_A16 (in vivo) 

mouseID_sex/ex_vivo/ T2_TurboRARE_AX100100500_A48/ 

T2_TurboRARE_AX100100500_A48 (ex vivo) 

.dcm 

.nii.gz 

.json 

_method.json 

Data Brain mask: 

mouseID_sex/timepoint/T2_TurboRARE_AX150150500_A16/ 

T2_TurboRARE_AX150150500_A16_mask (in vivo) 

mouseID_sex/ex_vivo/ T2_TurboRARE_AX100100500_A48/ 

T2_TurboRARE_AX100100500_A48_mask (ex vivo) 

.nii.gz 

Data T2-weighted scan with brain mask applied: 

mouseID_sex/timepoint/T2_TurboRARE_AX150150500_A16/ 

T2_TurboRARE_AX150150500_A16_Wmask (in vivo) 

mouseID_sex/ex_vivo/ T2_TurboRARE_AX100100500_A48/ 

T2_TurboRARE_AX100100500_A48_Wmask (ex vivo) 

.nii.gz 

Table A-5: MT Imaging dataset 

Folde

r 

Filename Filename 

Extensions 

Data MTw scan: 

mouseID_sex/timepoint/MTon_GRE_3D_150x400_12A_5uT_385FA

_3500Hz/ MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz (in 

vivo) 

mouseID_sex/ex_vivo/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz (ex vivo) 

.dcm 

.nii.gz 

.json 

_method.json 

_visu_pars.js

on 

Data PDw scan: 

mouseID_sex/timepoint/MToff_PD_GRE_3D_150x400_12A/MToff_

.dcm 

.nii.gz 
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PD_GRE_3D_150x400_12A (in vivo) 

mouseID_sex/ex_vivo/ MToff_PD_GRE_3D_100x400_36A/ 

MToff_PD_GRE_3D_100x400_36A (ex vivo) 

.json 

_method.json 

_visu_pars.js

on 

Data T1w scan: 

mouseID_sex/timepoint/ 

MToff_T1_GRE_3D_150x400_12A/MToff_T1_GRE_3D_150x400_1

2A (in vivo) 

mouseID_sex/ex_vivo/ MToff_T1_GRE_3D_100x400_36A/ 

MToff_T1_GRE_3D_100x400_36A (ex vivo) 

.dcm 

.nii.gz 

.json 

_method.json 

_visu_pars.js

on 

Data B1 map data (2 volumes acquired from 2 TRs): 

mouseID_sex/timepoint/rpAFI_mouse_2/rpAFI_mouse_2 (in vivo and 

ex vivo) 

.dcm 

.nii.gz 

.json 

_method.json 

_visu_pars.js

on 

Data B1 map (from the scanner): 

mouseID_sex/timepoint/rpAFI_mouse_1/rpAFI_mouse_1 (in vivo and 

ex vivo) 

.dcm 

.nii.gz 

.json 

_method.json 

_visu_pars.js

on 

Data B1 map (resampled to match MTw scan’s resolution): 

mouseID_sex/timepoint/rpAFI_mouse_1/rpAFI_mouse_1_vol2_RS 

(in vivo and ex vivo) 

.nii.gz 

 

Data Text file detailing which B1 map slices have artifacts (0 for slices 

with the banding artifact and 1 for slices without artifacts): 

.csv 
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mouseID_sex/timepoint/rpAFI_mouse_1/rpAFI_mouse_1 (in vivo and 

ex vivo) 

Data Brain mask: 

mouseID_sex/timepoint/MTon_GRE_3D_150x400_12A_5uT_385FA

_3500Hz/MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz_mas

k (in vivo) 

mouseID_sex/ex_vivo/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz_mask (ex vivo) 

.nii.gz 

Data MTR – scalar map: 

mouseID_sex/timepoint/MTon_GRE_3D_150x400_12A_5uT_385FA

_3500Hz/MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz_mtr 

(in vivo) 

mouseID_sex/ex_vivo/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz_mtr (ex vivo) 

.nii.gz 

Data MTsat – scalar map: 

mouseID_sex/timepoint/MTon_GRE_3D_150x400_12A_5uT_385FA

_3500Hz/MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz_mtsa

t (in vivo) 

mouseID_sex/ex_vivo/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz/ 

MTon_GRE_3D_100x400_36A_5uT_385FA_3500Hz_mtsat (ex vivo) 

.nii.gz 

Table A-6: OGSE dMRI dataset 

Folder Filename Filename 

Extensions 

Data OGSE dMRI scan (complex-valued data): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10 (in vivo) 

mouseID_sex/ex_vivo/OGSE_res130150500/OGSE_res130150

500 (ex vivo) 

.dcm 

_real.nii.gz 

_imaginary.n

ii.gz 

_real.json 
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_imaginary.js

on 

_method.json 

_visu_pars.js

on 

.bmat 

.bvec 

.bval 

Data OGSE dMRI scan (after averages are combined): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb (in vivo) 

mouseID_sex/ex_vivo/OGSE_res130150500/OGSE_res130150

500_aveComb (ex vivo) 

.nii.gz 

.bmat 

.bvec 

.bval 

Data b0 scan acquired with reverse PE (complex-valued data): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10_b0_

reversePE/OGSE_5Shapes_1A_5Rep_TR10_b0_reversePE_a

veComb (in vivo) 

(not acquired for ex vivo) 

.dcm 

_real.nii.gz 

_imaginary.n

ii.gz 

_real.json 

_imaginary.js

on 

_method.json 

_visu_pars.js

on 

.bmat 

.bvec 

.bval 

Data b0 scan acquired with reverse PE (after averages are 

combined): 

.nii.gz 

.bmat 
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mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10_b0_

reversePE/OGSE_5Shapes_1A_5Rep_TR10_b0_reversePE_a

veComb (in vivo) 

.bvec 

.bval 

Data Mean b0 volume extracted from dataset after averages are 

combined (with normal PE): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_mean_b0 (in vivo) 

.nii.gz 

DiffusionDat

aPreproc 

Preprocessed Dataset split into separate frequencies (in 

vivo): 

PGSE or 0 Hz: 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000 

50Hz OGSE: 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f050 

100 Hz OGSE: 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f100 

145 Hz OGSE: 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f145 

190 Hz OGSE: 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f190 

Preprocessed Dataset split into separate frequencies (ex 

vivo): 

PGSE or 0 Hz: 

mouseID_sex/timepoint/OGSE_res130150500/OGSE_ 

res130150500_aveComb_preproc_f000 

50Hz OGSE: 

.nii.gz 

.bvec 

.bval 
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mouseID_sex/timepoint/OGSE_ res130150500/OGSE_ 

res130150500_aveComb_preproc_f050 

80 Hz OGSE: 

mouseID_sex/timepoint/OGSE_ res130150500/OGSE_ 

res130150500_aveComb_preproc_f080 

115 Hz OGSE: 

mouseID_sex/timepoint/OGSE_ res130150500/OGSE_ 

res130150500_aveComb_preproc_f115 

150 Hz OGSE: 

mouseID_sex/timepoint/OGSE_ res130150500/OGSE_ 

res130150500_aveComb_preproc_f150 

DiffusionDat

aPreproc 

Scalar Maps generated for each frequency (in vivo and ex 

vivo) 

For example, for PGSE or 0 Hz (in vivo): 

Axial Diffusivity (AD): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_AD 

Radial Diffusivity (RD): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_RD 

Mean Diffusivity (MD): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_MD 

Fractional Anisotropy (FA): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_FA 

Color Fractional Anisotropy (Color FA): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_FAvec 

.nii.gz 
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Voxelwise Diffusion Dispersion Rate (Λ): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_f000_MD_

Gfactor 

DiffusionDat

aPreproc 

Other Scalar Maps 

Mean Diffusivity Difference (between 190 Hz OGSE and 

PGSE (0 Hz)): 

mouseID_sex/timepoint/OGSE_5Shapes_1A_5Rep_TR10/OG

SE_5Shapes_1A_5Rep_TR10_aveComb_preproc_delMD (in 

vivo) 

mouseID_sex/timepoint/OGSE_res130150500/OGSE_res1301

50500_aveComb_preproc_delMD (ex vivo) 

.nii.gz 

As the same brain mask is used for both dMRI datasets, the brain mask has been included 

in the µA dMRI dataset. 

Table A-7: µA dMRI dataset 

Folder Filename Filename 

Extensions 

Data µA dMRI scan (complex-valued data): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10 (in vivo) 

mouseID_sex/timepoint/uFA_res130150500/uFA_res130150

500 (ex vivo) 

.dcm 

_real.nii.gz 

_imaginary.nii.

gz 

_real.json 

_imaginary.jso

n 

_method.json 

_visu_pars.json 

.bmat 

.bvec 
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.bval 

Data µA dMRI scan (after averages are combined): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/ 

uFA_2Shapes_1A_3Rep_TR10_aveComb (in vivo) 

mouseID_sex/timepoint/uFA_res130150500/ 

uFA_res130150500 (ex vivo) 

.nii.gz 

.bmat 

.bvec 

.bval 

Data b0 scan acquired with reverse PE (complex-valued data): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10_b0_

reversePE/ uFA_2Shapes_1A_3Rep_TR10_b0_reversePE 

(in vivo) 

(not acquired for ex vivo) 

.dcm 

_real.nii.gz 

_imaginary.nii.

gz 

_real.json 

_imaginary.jso

n 

_method.json 

_visu_pars.json 

.bmat 

.bvec 

.bval 

Data b0 scan acquired with reverse PE (after averages are 

combined): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10_b0_

reversePE/ 

uFA_2Shapes_1A_3Rep_TR10_b0_reversePE_aveComb (in 

vivo) 

.nii.gz 

.bmat 

.bvec 

.bval 

Data Mean b0 volume extracted from dataset after averages 

are combined (normal PE): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_mean_b0 (in vivo) 

.nii.gz 

DiffusionDat

aPreproc 

Preprocessed Dataset: .nii.gz 
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mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc (in vivo) 

mouseID_sex/timepoint/uFA_res130150500/uFA_res130150

500_aveComb_preproc (ex vivo) 

.bvec 

.bval 

.isiso 

DiffusionDat

aPreproc 

Scalar maps (in vivo): 

(for ex vivo scalar maps, replace 

‘uFA_2Shapes_1A_3Rep_TR10/uFA_2Shapes_1A_3Rep_T

R10’ with ‘uFA_res130150500/uFA_res130150500’) 

Axial Diffusivity (AD) – acquired with b1000 LTE 

volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_AD 

Radial Diffusivity (RD) – acquired with b1000 LTE 

volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_RD 

Mean Diffusivity (MD) – acquired with b1000 LTE 

volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_MD 

Fractional Anisotropy (FA) – acquired with b1000 LTE 

volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_FA 

Fractional Anisotropy (FA) – acquired with b2000 LTE 

volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_b2000_FA 

Color Fractional Anisotropy (FA) – acquired with b1000 

LTE volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_b1000_FAve

.nii.gz 
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c 

Color Fractional Anisotropy (FA) – acquired with b2000 

LTE volumes: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_b2000_FAve

c 

Microscopic Anisotropy (µA): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_uA 

Microscopic Fractional Anisotropy (µFA): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_uFA 

Linear Kurtosis – acquired from LTE volumes (KLTE): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_Klin 

Isotropic Kurtosis – acquired from STE volumes 

(KSTE): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_Kiso 

DiffusionDat

aPreproc 

Initial brain mask (for use in EDDY in the preprocessing 

step): 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_mask (in 

vivo) 

mouseID_sex/timepoint/uFA_res130150500/uFA_res130150

500_aveComb_preproc_mask (ex vivo) 

.nii.gz 

DiffusionDat

aPreproc 

Final brain mask: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_mask_after 

(in vivo) 

mouseID_sex/timepoint/uFA_res130150500/uFA_res130150

500_aveComb_preproc_mask_after (ex vivo) 

.nii.gz 
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DiffusionDat

aPreproc 

Mean b0 volume extracted from dataset after 

preprocessing: 

mouseID_sex/timepoint/uFA_2Shapes_1A_3Rep_TR10/uFA

_2Shapes_1A_3Rep_TR10_aveComb_preproc_mean_b0 (in 

vivo) 

.nii.gz 

Table A-8: Templates and Atlas for Registration 

Folder Filename Filename 

Extensions 

Registration Turone Atlas (as downloaded from 

https://www.nitrc.org/projects/tmbta_2019/): 

atlas/TMBTA_Brain_Template 

Turone Atlas Labels (as downloaded from 

https://www.nitrc.org/projects/tmbta_2019/): 

atlas/TMBTA_Brain_Labels 

.nii 

Registration Downsampled Turone Atlas (to be used for registration): 

atlas/TMBTA_Brain_Template_reorient_smoothed0_2_RS_Ga

ussian 

Downsampled Turone Atlas Labels: 

atlas/TMBTA_Brain_Labels_reorient_RS_Gaussian 

.nii.gz 

Registration Study-specific templates: 

ANTStemplate_T2/T2_template (T2-weighted template) 

ANTStemplate_MT/MT_template (MTw template) 

ANTStemplate_FA/FA_template (FA template) 

.nii.gz 

Registration Registration transforms (Affine transform to register 

individual images to template space): 

In each template folder: 

template_contrast_mouseID_sex_timepoint***GenericAffine 

where ‘contrast’ is ‘T2,’ ‘b2000_FA,’ or ‘MTon’ and *** are 3 

.mat 
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numbers outputted by the ANTs template building command 

For example: template_T2_NR1_F_1week600GenericAffine 

Registration Registration transforms (Symmetric diffeomorphic 

transform to register individual images to template space): 

In each template folder: 

template_contrast_mouseID_sex_timepoint***Warp 

template_contrast_mouseID_sex_timepoint***InverseWarp 

.nii.gz 

Registration Registration transforms (between templates): 

 

FA template to T2 template: 

FAtemplate_to_T2template/FA_T2_SynMI0_005_transform0

GenericAffine.mat (affine transform) 

FAtemplate_to_T2template/FA_T2_SynMI0_005_transform1

Warp.nii.gz (symmetric diffeomorphic transform) 

FAtemplate_to_T2template/FA_T2_SynMI0_005_transform1I

nverseWarp.nii.gz (inverse symmetric diffeomorphic 

transform) 

 

MTw template to T2 template: 

MTtemplate_to_T2template/ 

MT_T2_SynCI0.005_transform0GenericAffine.mat (affine 

transform) 

MTtemplate_to_T2template/ 

MT_T2_SynCI0.005__transform1Warp.nii.gz (symmetric 

diffeomorphic transform) 

MTtemplate_to_T2template/ 

MT_T2_SynCI0.005__transform1InverseWarp.nii.gz (inverse 

symmetric diffeomorphic transform) 

 

Registration Registration transforms (from T2 template to the 

downsampled atlas): 

T2template_to_atlas/T2_atlas_SynMI0_00005_transform0Gen
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ericAffine.mat (affine transform) 

T2template_to_atlas/T2_atlas_SynMI0_00005_transform1War

p.nii.gz (symmetric diffeomorphic transform) 

 

Imaging Protocols 

To optimize utility of the protocols, imaging protocols were exported from a 

Bruker ParaVision 6.0.1 system (OGSE and µA dMRI protocols), which was used for 

data collection, and are included. The files can be imported into the Bruker ParaVision 

system to run all protocols. ParaVision 6.0.1 compiled binaries for the custom diffusion 

MRI pulse sequences are available at doi.org/10.17605/OSF.IO/5EUSW, while the other 

scans used vendor-provided sequences. Imaging protocols and compiled binaries for a 

Bruker ParaVision 7.0.0 system are also included, for convenience. The diffusion MRI 

pulse sequence source code is available upon reasonable request. 

Technical Validation 

As 3D printed custom designed parts and the surface/volume coil were fixed onto 

a support, which was placed into the scanner, this ensured consistent positioning of the 

mouse head in the scanner at each session and prevented motion artifacts. Raw and 

preprocessed dMRI data were visually inspected to ensure good preprocessing results, as 

shown previously (181) and in Figure A.6a (in vivo) and Figure A.6b (ex vivo).  



249 

 

 

Figure A.6 - In vivo (a) and ex vivo (b) raw and preprocessed dMRI data. Raw data 

(after combining averages) is shown in the top row and preprocessed data is shown in 

the bottom row. Representative b = 0 s/mm2 images are shown for both the OGSE and µA 

protocols. From the OGSE protocol, representative diffusion weighted images from a 

single diffusion gradient direction are shown from PGSE and OGSE with the highest 

frequency used in this study (190 Hz (in vivo) and 150 Hz (ex vivo)), at b = 800 s/mm2 (in 

vivo) and b = 1600 s/mm2 (ex vivo). From the µA protocol, diffusion weighted images 

from a single diffusion gradient direction are shown from the LTE and STE sequences, at 

b = 2000 s/mm2 (in vivo) and b = 4000 s/mm2 (ex vivo). Adapted from Rahman et al. 

(181). 

The only artifact observed in the in vivo data was a banding artifact in the rostral 

region of the brain in most of the B1 maps, which were acquired as part of the MT 

protocol. Thus, the MTsat maps included in the repository were generated without 

applying the B1 correction. Users have the option to turn the B1 correction on or off. If 
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the B1 correction is on, the correction will be applied only to the slices which showed no 

banding artifact in the B1 map. Although the B1 maps have an artifact and the correction 

cannot be applied to all brain slices, inhomogeneities in the transmitted RF field are 

inherently compensated to some degree when calculating MTsat (14). The B1 maps were 

acquired to correct for small residual higher-order dependencies of the MT saturation on 

the local RF transmit field to further improve spatial uniformity, as suggested by 

Weiskpof et al. (180). Thus, the B1 correction is a finetuning for MTsat maps rather than 

a substantial part of the calculation, and the MTsat maps can still be analyzed without the 

correction. 

For ex vivo data, as mouse IDs NR7_M and NR8_M were scanned with the skull 

removed, slight deformation of the tissue is observed at the superior edges of the brain. 

Mouse IDs NR1_F and NR2_F show banding artifacts in the caudal region of the brain in 

the B1 maps. 

Test-retest Reproducibility 

Test-retest analysis is an additional tool for technical validation. Test-retest 

comparisons have been performed using data from two timepoints: Day 3 and Week 1 

(181,239). Bland-Altman plots and coefficients of variation (CVs) revealed that most of 

the μA dMRI metrics are reproducible in both ROI-based and voxelwise analysis, while 

the OGSE dMRI metrics are only reproducible in ROI-based analysis. MTR and MTsat 

show high reproducibility (CVs < 10%) in both voxelwise and ROI-based analyses. The 

previous test-retest analysis also shows that given feasible preclinical sample sizes (10 – 

15), the MRI metrics may provide sensitivity to subtle microstructural changes (6 – 8%). 
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Signal-to-noise ratio measurements 

For dMRI data, SNR maps were calculated by dividing the powder-averaged 

magnitude signal (of the combined averages) by the noise. Noise was calculated from 

each of the real and imaginary components of the complex-valued data as the standard 

deviation of the background signal from a single average of a single direction divided by 

√(number of averages) ∙ (number of directions), and averaged over the real and 

imaginary components. For MT data, SNR maps were calculated by dividing the 

magnitude signal by the standard deviation of background signal. 

To maximize SNR, a surface coil, built in-house, was used for in vivo imaging. As 

expected with a surface coil, a gradient of SNR change can be seen in the superior-

inferior direction of the brain, compared to the commercially available MP30 volume 

coil, which was used for ex vivo imaging (Figure A.7). This gradient of SNR change does 

not seem to affect voxel-wise CV maps to the same extent, as shown in Rahman et al. 

(181), which could be due to the denoising quality.  

 

Figure A.7 - SNR maps of in vivo and ex vivo images. SNR maps for a single b = 0 s/mm2 

image are shown for all dMRI protocols, and SNR maps for the powder average of the 
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highest b-values are shown for all protocols (b = 800 s/mm2 for OGSE-190 Hz (in vivo), 

b = 2000 s/mm2 for μA-STE (in vivo), b = 1600 s/mm2 for OGSE-150 Hz (ex vivo), and b 

= 4000 s/mm2 for μA-STE (ex vivo)). SNR maps for MTw and PDw scans are shown for 

MT MRI. Adapted from Rahman et al.(181). 

Usage Notes 

Data Analysis Pipeline - Snakemake 

The data preprocessing and analysis pipeline was built using Snakemake (412), a 

reproducible and adaptable Python-based workflow management system. Snakemake 

itself is easily deployable via the Conda package manager (https://conda.io). Instructions 

and further information can be found at https://snakemake.github.io.  

The workflow, called the “Snakefile,” contains all data analysis steps such as 

DICOM to NIFTI conversion, preprocessing data, and scalar map generation. This 

involves FSL (225), MRtrix3 (224), and ANTs (227) commands, as well as MATLAB 

functions and bash scripts. Users can easily modify and add rules to the pipeline. 

Example Snakemake Usage 

Below are example Snakemake commands, which can be run from the command 

line, to process dicoms to preprocessed data and scalar maps. These instructions have 

also been included in the README of the code directory. The Snakemake rules used are 

listed directly below each command. The filepaths and filenames, which the user must 

change, are in italics, and any number of files can be converted at once. Importantly, 

most of the code assumes that the dicom or NIFTI filename matches the name of the 
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folder that it is in. All brain masks (for each MRI contrast) have been provided in the 

repository and the user should copy the masks to their respective folders, as the code 

assumes that these masks exist. Alternatively, the user can edit the code to run without 

masks. 

Anatomical Data 

To convert the anatomical dicoms (which include T2 and all MT related dicoms) to 

NIFTI format, the following Snakemake command can be used: 

$ snakemake --cores 1 

filepath/{mouse#1_sex/timepoint,mouse#2_sex/timepoint,mouse#3_sex/timepoint}/dicom

_foldername/dicom_filename.json 

[Rules: dcmTOnii_anat] 

For example, a real use case of the above command, with the actual filepaths and 

filenames to acquire T2-weighted NIFTIs may be: 

$ snakemake --cores 1 

Data/{NR1_F/Day0,NR1_F/Day3,NR2_F/Day0}/T2_TurboRARE_AX150150500_A16/

T2_TurboRARE_AX150150500_A16.json 

Before acquiring MT metric maps, users must make a brain mask using the MT-weighted 

images (with software such as BrainSuite) and save the mask as 

“MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz_mask.nii.gz” in the folder 

“MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz.” As brain masks are also 



254 

 

provided in the repository, users can also copy the mask, instead of creating a new one. 

To generate MT metric maps (MTR and MTsat), the following Snakemake command can 

be used: 

$ snakemake --cores 1 filepath/{mouse#1_sex /timepoint,mouse#2_sex 

/timepoint,mouse#3_sex /timepoint}/ 

MTon_GRE_3D_150x400_12A_5uT_385FA_3500Hz/MTon_GRE_3D_150x400_12A_

5uT_385FA_3500Hz_mtsat.nii.gz 

[Rules: mtsat] 

Diffusion MRI Data 

To convert a number of dicoms to combined averages (in NIFTI format, with partial 

Fourier reconstruction, correction for frequency and signal drift, and denoising) and 

generate the initial dMRI brain mask (needed for preprocessing), the following 

Snakemake command can be used:$ snakemake --cores 1 filepath/{mouse#1_sex 

/timepoint,mouse#2_sex /timepoint,mouse#3_sex 

/timepoint}/dMRI_filename/dMRI_filename_aveComb_preproc_mask.nii.gz 

[Rules: dcmTOnii_dMRI, combAve, get_preproc_mask] 

The above command assumes that T2-weighted brain masks exist as 

“T2_TurboRARE_AX150150500_A16_mask.nii.gz” in the folder 

“T2_TurboRARE_AX150150500_A16,” as this mask is registered to dMRI space to 

create the initial dMRI brain mask. As the data acquired with reverse phase-encoding do 

not require an initial mask, since they are combined with the larger datasets 
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(“uFA_2Shapes_1A_3Rep_TR10” and “OGSE_5Shapes_1A_5Rep_TR10”), the 

command to convert dicoms with reverse phase-encoding to combined averages is: 

$ snakemake --cores 1 filepath/{mouse#1_sex /timepoint,mouse#2_sex 

/timepoint,mouse#3_sex /timepoint}/dMRI_filename/dMRI_filename_aveComb.nii.gz 

[Rules: dcmTOnii_dMRI, combAve] 

After combined averages and initial dMRI brain masks are generated, preprocessing can 

be run by this command: 

$ snakemake --cores 1 DiffusionDataPreproc/{mouse#1_sex /timepoint,mouse#2_sex 

/timepoint,mouse#3_sex 

/timepoint}/dMRI_filename/dMRI_filename_aveComb_preproc.nii.gz 

[Rules: dMRIpreproc] 

Note that the code assumes that the original NIFTI files are located in the “Data” folder 

and that FSL is being run from a singularity container. The user can change the code in 

“dMRIpreproc.sh” located in the folder “code_scidata_paper/dMRIpreproc” to align with 

their FSL environment. The above command will work with or without reverse phase-

encoded data. 

After the dMRI preprocessing step, final dMRI brain masks can be created, or the user 

can use the masks provided in the repository 

(“dMRI_filename_aveComb_preproc_mask_after.nii.gz”). The code assumes that the 

masks are named as they are in the repository. Alternatively, the user can acquire dMRI 
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scalar maps without using brain masks by editing the code in the Snakefile. To acquire 

dMRI scalar maps, the following command can be run: 

$ snakemake --cores 1 filepath/{mouse#1_sex /timepoint,mouse#2_sex 

/timepoint,mouse#3_sex 

/timepoint}/dMRI_filename/dMRI_filename_aveComb_preproc_mean_b0_Wmask.nii.gz 

[Rules: get_dwimetric_maps] 

The above command will generate scalar maps as well as a non-diffusion weighted (b0) 

NIFTI, averaged over all non-diffusion weighted volumes. This mean b0 NIFTI may be 

used to facilitate registration. 

Image Registration 

The dMRI and MT data were not registered to a template or to the anatomical T2-

weighted images to avoid errors from interpolation and registration inaccuracies, and as 

other researchers may prefer using their own registration pipelines. However, for flexible 

utility of the dataset, the anatomical T2-weighted images, study-specific templates, a 

downsampled atlas, and registration transforms have been included in the repository, so 

registration of the dMRI and MT data to anatomical space or an atlas is possible. 

Currently, the registration pipeline has been tested only with the in vivo dataset. Users 

may use the robust registration pipeline, based on ANTs commands, included in the 

Snakefile or tweak them accordingly. ANTs is an open source software package which 

comprises tools for image registration, template building and segmentation (227). ANTs 

was chosen due to its flexibility and the robust performance of default ANTs registration 
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parameters. Moreover, the nonlinear deformation algorithm used in ANTs was top ranked 

in a comparative study (415). 

The Turone atlas (298), downsampled to the resolution of the in vivo T2-weighted 

images, was used for registration (Figure A.8a). Three study-specific templates, based on 

all images from all sessions, were created to facilitate the registration process, which 

included a T2 template, an FA template, and an MT-weighted template. Individual 

images can be registered to the downsampled atlas in three steps, as shown in Figure 

A.8b and A.8c: 1) the FA maps and MT-weighted images are registered to the FA 

template and MT-weighted template, respectively; 2) the FA template and MT-weighted 

template are registered to the T2 template; 3) the T2 template is registered to the 

downsampled atlas. Each registration step involves an affine transformation, followed by 

a symmetric diffeomorphic transformation using ANTs’ Symmetric Normalization (SyN) 

algorithm. The registration transforms resulting from the previous three registration steps 

can be used to warp all dMRI metric maps and MT metric maps (MTR and MTsat) to the 

downsampled atlas space. Registration of all images to the atlas allows for voxel-wise 

analysis and atlas-based region-of-interest analysis. For region-of-interest analysis, atlas 

labels can be downloaded from https://www.nitrc.org/projects/tmbta_2019/ (298). 

Example ANTs commands, used for template-building and generating registration 

transforms, have been included in the text file ‘ANTs_Registration_Commands.txt.’ All 

other code to warp metric maps to the downsampled atlas space have been included in the 

Snakefile.  

https://www.nitrc.org/projects/tmbta_2019/
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Figure A.8 - Schematic of registration steps. a) The Turone atlas (60 µm isotropic 

resolution) was downsampled to the resolution of the T2-weighted images. b) 

Registration steps to register individual FA maps to the downsampled atlas space. c) 

Registration steps to register individual MT-weighted images to the downsampled atlas 

space. The registration transforms resulting from part b) and c) can be used to warp 

dMRI and MT metric maps to the downsampled atlas space. 

Code Availability 

As mentioned previously, all code required to process dicoms to the final scalar 

maps are available: https://doi.org/10.20383/103.0594 (414). The code is also available 

publicly through GitLab: 

https://gitlab.com/cfmm/pipelines/mouse_dmri_MT_dicomTOscalarMaps. This includes 

a Snakemake pipeline, which includes FSL, MRtrix3, and ANTs commands, and 

MATLAB functions. The custom dMRI pulse sequences used in this work are available 

https://doi.org/10.20383/103.0594
https://gitlab.com/cfmm/pipelines/mouse_dmri_MT_dicomTOscalarMaps
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as binary methods: https://osf.io/5eusw/, and the source code is available upon reasonable 

request (416). 
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Figure 1.5 
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Figure 1.9 
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