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Abstract 

This study presents analytical frameworks to provide firms with effective strategies that can 

be adopted when they plan to release a new technological product (e.g., TV sets, video 

players, cameras, video games, etc.). Specifically, focusing on technology products, the 

current study recommends optimal pricing strategies for new products, introduces a 

multigeneration sales model developed to capture evolving sales trends across multiple 

product generations, outlines an optimal market entry timing strategy for a new product 

generation in a product line, and provides an effective marketing strategy to promote sales of 

a new product by offering an optimal number of free products to users.   

The dissertation includes three essays. The first essay (Chapter 2) provides a modeling 

scheme to examine the optimal pricing strategy for a new technology product. Specifically, 

the first essay investigates when the widely-used price-skimming strategy should be the go-to 

pricing strategy. The contribution in the second essay (Chapter 3) is twofold. First, a 

multigeneration sales model for technological products is developed. The proposed 

multigeneration sales model takes into account within-generation repeat purchases as well as 

initial purchases and cross-generation upgrades. Next, based on the proposed sales model, a 

framework to derive optimal market entry timing for a new product generation is developed. 

The third essay (Chapter 4) examines the marketing strategy of offering free products for a 

new technological product. The proposed modeling framework encompasses scenarios under 

which: (i) the firm offers free products before product launch, (ii) the firm immediately 

releases the product and offers free products upon the product launch and in parallel with the 

sales, and (iii) the firm offers free products before product launch and simultaneously with 

the sales after the launch. 

In summary, this study significantly contributes to the field of management science by 

providing comprehensive analytical frameworks developed to address the challenges of 

introducing a new technological product to the market. These challenges include estimating 

sales trends in product lines composed of successive generations, finding the optimal market 

entry timing strategies for new generations, finding the optimal pricing strategies, and 

promoting sales by offering free products to the target market. 
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Summary for Lay Audience 

Firms often need to release new products to motivate sales further and stay competitive. 

However, a successful release of a new product requires careful planning. Focusing on 

technology products, the three essays presented in this dissertation help firms efficiently plan 

for a new product.  

Essay 1 (Chapter 2) develops a modeling framework to determine the optimal pricing 

strategies for sales of new technology products. Specifically, Essay 1 examines the widely 

adopted price-skimming strategy in which firms initially set the price relatively high and later 

reduce it over time.  

In Essay 2 (Chapter 3), an analytical model is developed to accurately capture sales trends of 

successive generations of a product line. Next, using the developed sales models, a modeling 

framework is introduced for finding the optimal market entry timing strategy for a new 

product generation. Two main generation transition strategies are studied in this essay: (i) 

phase-out transition strategy in which sales of the old generation continue after the 

introduction of the new generation, and (ii) total transition strategy in which by the release of 

the new generation, the old generation is discontinued.  

Finally, Essay 3 (Chapter 4) develops an analytical modeling framework to examine the 

widely used marketing strategy of offering free products. In this essay, three different free 

product offering strategies are studied: (i) offering free products before the product launch, 

(ii) immediate release of the new product and offering free products upon the introduction of 

the new product and parallel to sales, and (iii) offering free products before and after the 

product launch. 

In summary, the three essays of this dissertation provide analytical frameworks that help 

firms effectively address the challenges of introducing a new technological product to the 

market. These challenges encompass optimal pricing, accurate estimation of sales trends, 

optimal release timing of a new product generation, and promoting sales through offering 

free products.  
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Chapter 1  

1 Introduction 

This study provides analytical models to help firms develop effective strategies for 

introducing new technological products such as TV sets, video players, cameras, video 

games, etc. Specifically, this study examines optimal pricing strategies for new products. 

It introduces a new multigeneration sales model developed to capture sales trends across 

multiple generations of a new product and examines the optimal market entry timing 

strategy for a new product generation within a product line. Furthermore, this study 

provides an effective marketing strategy to promote sales by determining the optimal 

number of free products to offer users. 

Chapter 2 develops an analytical framework to find the optimal pricing strategy for a new 

technological product. Specifically, this chapter focuses on the widely-used price- 

skimming strategy. Price skimming is a common pricing strategy for technological 

products where the price is set at the highest level at the time of product release and then 

declines over time. Most pricing models developed in the literature are based on the 

assumption that sales consist only of initial purchases or adoptions. These models ignore 

repeat purchases, which constitute a significant portion of the sales of technological 

products, making them inadequate for such products. To fill this void, in Chapter 2, we 

develop an optimization model to find the optimal pricing strategy when sales comprise 

both initial purchases and repeat purchases. The results demonstrate that the effectiveness 

of price skimming is highly dependent on the rate of repeat purchases. Specifically, when 

the rate of repeat purchases is low, price skimming may not be an optimal pricing 

strategy, and firms may benefit more from delaying the price reduction. Moreover, when 

markets are highly sensitive to price changes, firms may benefit from charging a higher 

introductory price; however, the price must be decreased over time to motivate buyers to 

purchase. 

Focusing on technological products, Chapter 3 formulates multigeneration sales 

dynamics and examines the optimal market entry timing for a new product generation in 
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a product line. Current multigeneration diffusion models in the literature do not account 

for within-generation repeat purchases. Thus, these models are not suitable for capturing 

sales of multigeneration technological products with high rates of within-generation 

repeat purchases. To fill this void, we develop a multigeneration sales model that 

accounts for initial purchases and within-generation repeat purchases for each generation 

as well as cross-generation upgrades. 

The model proposed in Chapter 3 includes two main generation transition strategies: (i) a 

phase-out transition strategy, where firms continue to sell the old generation after the 

release of the new generation, and (ii) a total transition strategy, where firms discontinue 

the old generation after introducing the new generation. Empirical results demonstrate the 

importance of accounting for within-generation repeat purchases. Specifically, they show 

that the new model provides more accurate sales estimates and forecasts than a state-of-

the-art benchmark model, which does not account for within-generation repeat purchases. 

Furthermore, we employ the new model to examine optimal market entry timing under 

the two main generation transition strategies. The results highlight the critical role of the 

repeat purchase rate in market entry timing strategies. 

Free product giveaway is a common marketing strategy to accelerate new product sales. 

Focusing on technology products, Chapter 4 studies three strategies a firm can employ in 

offering free products: (i) the firm offers free products before product launch (before 

strategy), (ii) the firm immediately releases the product and offers free products in 

parallel with sales (concurrent strategy), and (iii) the firm offers free products before 

product launch and simultaneously with sales after the launch (combined strategy). 

Considering that repeat purchases account for a large proportion of sales of technology 

products, we present a framework that captures sales composed of both the initial and 

repeat purchases. Our framework differentiates between two groups of free product users: 

high-valuation free users and low-valuation free users. High-valuation free users are 

those who are willing to buy the product if it were not offered for free, whereas those 

who are not willing to buy the product belong to the low-valuation group. Our results 

demonstrate that offering free products can be more appealing when there are high repeat 

purchase rates, slow product adoption among buyers, and a significant proportion of low-
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valuation free users. In contrast, we show that there are instances in which even a zero 

marginal cost and an extended market size may not justify offering free products. The 

results also show that targeting highly influential free users and more low-valuation free 

users can increase profitability in the case of a short planning horizon and this 

profitability can be further elongated with increase in the rate of repeat purchases. 

However, this strategy may result in less profitability under extensively long planning 

horizons. We find that if the new product release is delayed briefly, firms might benefit 

more from adopting the before strategy over the concurrent one. Also, in certain cases, 

employing a combined strategy can lead to greater profitability than just using the before 

strategy.   

In summary, the three essays in this dissertation, presented in Chapters 2 through 4, 

provide comprehensive analytical frameworks that firms can use to tackle the challenges 

of releasing a new technological product, including finding the optimal pricing strategy, 

estimating and forecasting sales trends, determining the optimal market entry timing, and 

offering free products to promote sales. 
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Chapter 2  

2 To Skim or not to Skim: Studying the Optimal Pricing 
Strategy for Technology Products1 

2.1 Introduction 
Facing rapid technological changes and ever-shortening product lifecycles, firms need a 

proper pricing strategy in place to recoup costs and gain profit during short product 

lifecycles. One popular pricing strategy for technology products is the price-skimming 

strategy, in which price is initially set at a relatively high level and then reduced over 

time (Ward, 2019). Among many technology products priced based on the skimming 

strategy are Apple smartphones (Holownia, 2021), video-game consoles such as the Sony 

PlayStation and the Nintendo Switch (Moy Media, n.d.), DVD players (Beltis, 2019), 

Blu-ray players (Fogel, 2023), and the latest 4K/8K television sets (Pettinger, 2019). An 

example reported by Statista (2014), as shown in Figure 2-1, illustrates the decline in the 

average price of 4K TVs between 2012 and 2017. As several examples suggest, price 

skimming seems to have been the go-to strategy for technology products. 

 

Figure 2-1: Average worldwide selling price of 4K TVs 2012-2017. NOTE: 

Estimated values are shown for years denoted by *s. 

 
1 This is an author version of the paper published as: Lotfi, A., Naoum-Sawaya, J., Lotfi, A., & Jiang, Z. 
(2024). To skim or not to skim: studying the optimal pricing strategy for technology products. Omega, 127, 
103079. 
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A price-skimming strategy benefits from consumer heterogeneity in terms of their 

willingness to pay and price sensitivity. This strategy specifically aims to “skim” off 

potential buyers willing to purchase the product at a higher price (Liu, 2010). For 

example, Apple often charges a premium price when first releasing their new products; 

after less price-sensitive technology-enthusiast consumers have made their purchases, the 

price is then reduced to attract more consumers. While being criticized for overpricing 

their products, Apple has fans who disagree with the criticisms and are happy to pay the 

premium prices (Epstein, 2017). Moreover, with significant performance improvement 

based on Moore’s law, components used in electronic products have been experiencing 

relentless price drops, driving down the cost of technology products (Rosoff, 2015), and a 

decline in production costs resulting from learning effects can also help firms reduce 

product prices over time (Besanko & Winston, 1990). All in all, the price-skimming 

strategy appears to be suitable for selling technology products. 

However, while price-skimming strategy has been studied in the literature (e.g., Chang & 

Lee 2022; Yuan, et al., 2022; Du & Chen, 2017) and widely used by practitioners, our 

review of the existing literature reveals a gap in the study of price skimming for 

technology products in particular. Specifically, during the last few decades, while 

researchers have extensively studied optimal pricing strategies for new products (e.g., 

Cosguner & Seetharaman, 2022; Chutani & Sethi, 2012; Sethi et al., 2008; Debo et al., 

2006; Hartl et al., 2003; Sethi & Bass, 2003; Krishnan et al., 1999; Horsky, 1990; Kalish, 

1985), the majority of pricing models proposed in the literature are based on diffusion 

models that consider only initial product purchases while ignoring repeat purchases. 

Since in the market of technology products, fast-paced technology advancements lead to 

frequent releases of improved product versions, technology products are often 

characterized by a high rate of repeat purchases, sometimes starting within the earlier 

stages of a product lifecycle. 

In this study, we examine an optimal pricing strategy for technology products that 

explicitly accounts for repeat purchases, thereby examining the widely-used price-

skimming strategy used for marketing such products. Specifically, to derive an optimal 

pricing strategy for technology products, we develop an extension of the generalized 
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diffusion model with repeat purchases (GDMR; Lotfi et al., 2023) which explicitly 

incorporates both initial purchases and repeat purchases. The extended sales model we 

propose incorporates the effects of both the baseline price and price changes on sales, 

while the original GDMR proposed by Lotfi et al. (2023) only incorporates the latter. The 

model we implement formulates sales based on a Riemann-Liouville integral of product 

adoption function. We name the newly-introduced sales model the extended generalized 

diffusion model with repeat purchases (EGDMR). Additionally, in our optimal pricing 

analysis based on the EGDMR, we account for both economies of scale and cost 

reductions due to learning effects, thus contributing to the extant literature that uses 

simpler cost structures. 

Due to the modeling facilities brought about by applying the Riemann-Liouville integral, 

our findings are ample in the context of our application domain. Our findings suggest that 

there is a caveat to using the widely-implemented price-skimming strategy and firms 

should be careful when opting to use this strategy. Specifically, we find that an optimal 

pricing strategy for a new product is highly dependent on the volume of repeat purchases, 

and that the optimal strategy may deviate from skimming when repeat purchases are not 

ample and sales are not expected to sustain over time. Specifically, when the repeat-

purchase rate is expected to be low and the sales rate is expected to drop considerably as 

product adoption approaches complete market penetration, to remain profitable firms are 

likely better off in delaying price reductions to offset drops in profit from declining sales. 

Particularly, our findings show that price skimming may not be optimal for fad products 

with low repeat-purchase rates resulting from the product losing popularity shortly after 

product release. Our results also demonstrate that, as opposed to common expectations, in 

markets highly sensitive to changes in price firms may get away with setting the 

introductory price at a higher level but must reduce the price over time to stimulate sales. 

In summary, our results suggest that overlooking repeat purchases when examining the 

optimal price path of a new product is likely to lead to suboptimal pricing decisions, thus 

underscoring the contribution of the optimization model developed in this research. 

Considering that our research studies the widely used strategy of price skimming, our 

finding can offer valuable insights to a broad range of firms that may consider this 
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strategy. From the methodological standpoint, our study contributes to the vast literature 

of fractional calculus in applied mathematics and science by introducing a novel 

application of Riemann-Liouville integral to solve a problem in management sciences 

where fractional calculus is mostly unknown. The model we implement has a clear 

interpretation. While fractional calculus has been extensively studied in mathematics 

(e.g., Kilbas et al., 2006), historically, coming by a clear interpretation of fractional 

calculus has proven challenging. 

The remainder of the chapter is organized as follows. Following this introductory section, 

Section 2.2 provides a review of relevant literature. In Section 2.3, we introduce the 

GDMR model and then propose an extension model to incorporate the impact of pricing. 

Section 2.4 develops the proposed price optimization model and derives key analytical 

findings. Section 2.5 presents empirical analyses and discusses the results. Concluding 

remarks are presented in Section 2.6. 

2.2 Literature Review 

Examining the optimal pricing strategy for a product or service is one of the salient 

problems studied in the operations management and supply chain management literature 

(e.g., Oh & Su, 2022; Shams-Shoaaee & Hassini, 2020; Helmes et al, 2013; Cai et al., 

2009; Ketzenberg & Zuidwijk, 2009; Vorasayan & Ryan 2006). There are several pricing 

studies on the price-skimming strategy (e.g., Chang & Lee 2022; Yuan et al., 2022; 

Zhang & Chiang, 2020; Mesak et al., 2020; Du & Chen, 2017; Martín-Herrán & Taboubi, 

2015; Liu & Zhang, 2013; Robotis et al., 2012; Liu, 2010; Besanko & Winston, 1990). 

However, the aforementioned studies differ from this study in that they do not consider 

repeat purchases. 

While there is ample research on the pricing of various technology products such as 

software (e.g., Brecko, 2023; Li & Kumar, 2022; Xin & Sundararajan 2020, Cheng et al., 

2015; Liu et al., 2011; Cheng & Koehler, 2003; Gurnani & Karlapalem, 2001), digital 

music (e.g., Li et al, 2020; Ko & Lau, 2016), video game consoles (e.g., Liu, 2010), 

electronic products (e.g., He & Chen, 2018; Fathian et al., 2009), and digital goods in 

general (e.g., Taleizadeh et al., 2022; Avinadav et al., 2014; Huang & Sundararajan, 
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2011; Khouja & Park, 2007), research that examines optimal pricing for sales processes 

that include both adoptions and repeat purchases is scarce. This omission is largely due to 

the challenges associated with modeling repeat purchases. 

Very few prior studies have accounted for repeat purchases when studying optimal price-

path strategies for new products. Dolan and Jeuland (1981) develop a model for durable 

and non-durable products that partitions the market into users (those who have tried the 

product in the past) and non-users (those who have not yet tried the product), and propose 

a repeat purchase rate for users and a conversion rate for non-users. While the model 

presented accounts for repeat purchases of non-durable products, it assumes that the sales 

of durable products are comprised only of initial purchases. 

Mesak and Berg (1995) explore the optimal price path of consumer durables while 

considering both adoptions and replacement purchases. Their findings suggest that 

accounting for replacement purchases changes the optimal price path considerably even 

when replacement purchases are not price-dependent. While Mesak and Berg (1995) 

incorporate replacement purchases, there are important differences compared to the 

model presented in this paper. First, the replacement purchase rate used by Mesak and 

Berg (1995) is unsuitable for technology products because it overestimates repeat 

purchases, while the model presented in this paper uses an extension of the GDMR, 

which is particularly suitable for technology products. In Appendix A, using data for 

sales of DVD players in the U.S., we demonstrate that the GDMR empirically performs 

well, while the sales trend by Mesak and Berg’s model deviates significantly from the 

actual sales trend. Second, the cost function found in Mesak and Berg (1995) is 

comprised only of learning cost, while the cost function considered in this study 

incorporates both the learning effect and the economy-of-scale effect, making our results 

more realistic and insightful. Third, Mesak and Berg (1995) concentrate mainly on cases 

where future uncertainty is assumed to be negligible under non-discounted situations. For 

discounted situations, their analysis is limited to cases where either the word-of-mouth 

effect is nonexistent or where the effect of price is restricted to only replacement 

purchases. In contrast, our analysis considers realistic scenarios where the word-of-mouth 

effect is present and product price influences both initial and repeat purchases.  
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Debo et al. (2006) studied cases where the products offered are either new or 

remanufactured products and examine substitution between new and remanufactured 

items through repeat purchases. Their findings show that different combinations of 

adoption rate and repeat purchase rate may lead to optimal sales trends with either a 

single peak or with fluctuations. Unlike the model proposed in this study, repeat 

purchases in Debo et al. (2006) are limited to purchases of remanufactured products. 

To the best of our knowledge, no prior research has examined the optimal price path of 

products while taking into consideration (i) both initial and repeat purchases, (ii) the 

influence of price on both initial and repeat purchases, (iii) the learning effect and the 

economy-of-scale effect, and (iv) future uncertainty (discounted situations). To fill this 

void, considering that (i)-(iv) are essential in studying sales of technology products, the 

model presented in this study proposes a price-optimization framework for technology 

products based on an extension of the generalized diffusion model with repeat purchases 

(GDMR; Lotfi et al., 2023). The GDMR, as detailed next, is an extension of the Bass 

diffusion model and has been specifically developed to model sales of technology 

products. 

2.3 Extending GDMR to Incorporate Effect of Pricing 

To derive an optimal pricing strategy for a technology product with significant repeat 

purchases, we need a sales model that incorporates both initial and repeat purchases, and 

we chose to adopt the generalized diffusion model with repeat purchases (GDMR; Lotfi 

et al., 2023) for this purpose. We next introduce the GDMR then extend it to incorporate 

pricing decisions. Following the GDMR and based on Henderson and Clark’s framework 

(Henderson & Clark, 1990), our unit of analysis is a group of products that are only 

incrementally different from each other. Specifically, a new purchase is considered a 

repeat purchase only if the newly purchased product is the same as, or only incrementally 

different from, the initially purchased product.  

2.3.1 The Baseline GDMR Model 

The GDMR as formulated by Lotfi et al. (2023) is an extension of the Bass diffusion 

model that incorporates both adoptions, essentially first-time purchases, and repeat 



10 

 

purchases, comprised of replacement purchases and multi-unit ownership purchases. The 

GDMR formulates sales as: 

𝑠(𝑡) = 𝐼!(𝑦(𝑡))                                             (2.1) 

where 𝑦(𝑡) denotes the noncumulative rate of adoptions, 𝐼!(. ) is a fractional integral of 

order 𝛽 (0 ≤ 	𝛽 ≤ 1), and 𝛽 is the repeat purchases parameter. The GDMR captures a 

continuum of sales scenarios with various repeat purchase levels, ranging from a scenario 

in which no repeat purchase takes place (when 𝛽 = 0) to a sales scenario in which all 

adopters on average make one repeat purchase in each unit time period (𝛽 = 1). Based on 

the Riemann-Liouville fractional integral formulation, Lotfi et al. (2023) reformulate 

sales shown in (2.1) as: 

𝑠(𝑡) = ∫ "
#(!)

(𝑡 − 𝜏)(!&")	𝑦(𝜏)𝑑𝜏'
( ,                             (2.2) 

where 𝑦(𝑡) is the non-cumulative rate of adoptions specified by the Bass model (Bass, 

1969). Through several empirical tests, Lotfi et al. (2023) demonstrate that the fractional 

integral operator accurately captures the repeat purchase rate for technological products.  

The Bass model’s hazard rate of adoption is formulated as: 
)(')

"&*(')
= 𝑝 + 𝑞𝐹(𝑡),                                            (2.3)                                        

where 𝑝 is the coefficient of innovation that captures a potential adopters’ internal 

motivation to adopt a new product, and 𝑞 is the coefficient of imitation that captures the 

word-of-mouth effect on the adoption process. In (2.3), 𝑓(𝑡) is the probability density of 

adoption and 𝐹(𝑡) is the cumulative distribution function of adoption (i.e., 𝐹(𝑡) =

∫ 𝑓(𝑠)𝑑𝑠'
( ) showing the fraction of potential adopters who have adopted the product up to 

time 𝑡. Based on the closed-form solution of the Bass model (Bass, 1969), the cumulative 

number of adoptions by time 𝑡, 𝑌(𝑡) = 𝑚𝐹(𝑡), equal to the first-order integral of 𝑦(𝑡) =

𝑚𝑓(𝑡), is: 

𝑌(𝑡) = +("&,!(#$%)')
("-%#,

!(#$%)')
,                                          (2.4) 

where m is the market size. Noncumulative or periodic adoption, 𝑦(𝑡), where 𝑦(𝑡) =

𝑌′(𝑡), takes the following form: 

𝑦(𝑡) = +(.-/)(

.
,!(#$%)'

("-%#,
!(#$%)')(

.                                   (2.5) 
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Note that a price-skimming strategy assumes that the market is comprised of customers 

who are heterogeneous in terms of their willingness to pay and price sensitivity. It 

specifically assumes that there are customers with low price sensitivity who are willing to 

pay higher prices shortly after the product release along with highly price-sensitive 

customers who can be captured by reducing price over time. Therefore, to achieve 

reliable results, any model used to examine price skimming needs to accommodate such 

customer heterogeneity. The Bass model, essentially the baseline model of the GDMR, is 

capable of accounting for the aforementioned market heterogeneity. Specifically, in the 

Bass model adopters are under the influence of both an innovation effect (𝑝) and an 

imitation effect (𝑞). From (2.3), an innovator who adopts a product shortly after product 

launch is mostly under the influence of innovation effect (𝑝) and less influenced by the 

imitation effect (𝑞), because the fraction of potential customers who have adopted the 

product (𝐹(𝑡)) is still small. Innovators can be characterized as being daring, 

venturesome (Bass, 1969), and comfortable with risk (Rogers, 1995). We expect 

innovators to be less price-sensitive. On the other hand, according to (2.3), an imitator 

who adopts the product later in the product lifecycle is subject to a significant imitation 

effect (𝑞) because the fraction of adopters (𝐹(𝑡)) increases as market penetration 

progresses towards completion. An imitator’s adoption timing is mostly influenced by 

social-system’s pressure (Bass, 1969) and we expect imitators to be more price sensitive. 

2.3.2 Extended GDMR Model with Pricing 

The baseline GDMR shown in (2.2) does not incorporate the effects of marketing mix 

variables, and Lotfi et al. (2023) show that the GDMR can be extended to incorporate 

marketing-mix variables as follows: 

𝑠(𝑡) = 𝑥(𝑡)𝐼!𝑦;𝑋(𝑡)=,                                       (2.6) 

where 𝑥(𝑡) and 𝑋(𝑡) represent the current marketing effort and the cumulative marketing 

effort, respectively, at time 𝑡. Sales at the current time are expected to be influenced by 

both the past marketing efforts due to these efforts’ carry over effect and the current 

marketing efforts. Therefore, incorporating both the cumulative and current marketing 

efforts in sales as shown in (2.6) seems reasonable and is expected to result in a realistic 

sales model.  
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Since the goal of this study is to derive the optimal pricing path in the presence of repeat 

purchases, we focus on pricing as a marketing-mix variable. Following Bass et al. (1994), 

we can express 𝑥(𝑡) as: 

𝑥(𝑡) = 1 + 𝛼 .01(')
.0(')

,                                           (2.7) 

where 𝑝𝑟(𝑡) is the price at time t and 𝛼 (𝛼 < 0) reflects the effect of price changes on 

sales. According to Bass et al. (1994), the cumulative marketing effort is 𝑋(𝑡) =

∫ 𝑥(𝑠)'
( 𝑑𝑠 and can be expressed as: 

𝑋(𝑡) = 𝑡 + 𝛼	ln .0(')
.0(()

,                                         (2.8)  

where 𝑝𝑟(0) is the price at product launch. The current marketing effort shown in (2.7) 

and the cumulative marketing effort expressed in (2.8) account for the changes in price. 

Here, we further extend the sales model (2.6) to incorporate the absolute price level as 

well as price changes. Specifically, we employ the following extended cumulative 

marketing effort proposed by Krishnan et al. (1999): 

𝑋(𝑡) = 𝑘	𝑡 + 𝛼	ln .0(')
.0(()

.                                       (2.9) 

In (2.9), parameter k (𝑘 > 0) captures the impact of the absolute price level and can be 

written as: 

𝑘 = 1 + 𝛾 ln(𝑝𝑟(0)),                                       (2.10) 

where 𝛾 ≤ 0 is the baseline price coefficient. The price level at product launch (pr(0)) is 

related to product positioning; products positioned to be more premium and benefit from 

more advanced technologies are often released at a higher price level. 𝑋(𝑡) in (2.9) 

accounts for both the absolute price level and price changes. Additionally, following 

Krishnan et al. (1999), we multiply the base sales by 𝑘 to capture the impact of absolute 

price level on the market size, so the sales rate utilized in the optimal pricing model is: 

𝑠(𝑡) = 𝑘	𝑥(𝑡)𝐼!𝑦;𝑋(𝑡)=,                                   (2.11) 

where, 𝑋(𝑡) = ∫ 𝑥(𝑠)'
( 𝑑𝑠. We refer to the sales model (2.11) as extended generalized 

diffusion model with repeat purchases (EGDMR). Note that when 𝛽 = 0, the GDMR 

shown in (2.1) reduces to the original Bass adoption Model (i.e., 𝑦(𝑡)), and the EGDMR 

presented in (2.11) reduces to the extended generalized Bass model (i.e., 𝑘	𝑥(𝑡)𝑦;𝑋(𝑡)=)  

proposed by Krishnan et al. (1999). The EGDMR is an extension of the GDMR in the 
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sense that the EGDMR accounts for the effect-on-sales of the absolute price level as well 

as that of the price changes, while the GDMR incorporates only the effect of price 

changes on sales. We next discuss how the optimal price path is obtained. 

2.4 Optimal Lifecycle Pricing Strategy 
In this section, we examine the optimal pricing strategy within a product lifecycle. 

Specifically, we first present our profit function, then present a special case in which we 

examine the optimal price path for software products, and subsequently discuss the 

general price-optimization model. 

2.4.1 Profit Function 

This study derives a new product’s optimal lifecycle pricing strategy that maximizes total 

profit in a demand window or planning horizon [0,T]. We begin with a profit function 

presented in the literature and then extend it to develop our own objective function. 

Specifically, we draw on the objective function proposed by Krishnan et al. (1999). The 

profit function considered by Krishnan et al. takes the following form: 

Π[𝑝𝑟(𝑡)] = ∫ [𝑝𝑟(𝑡) − 𝐶(𝑡)]𝑓(𝑡)J𝑒&0'𝑑𝑡2
( ,                         (2.12) 

where 𝑝𝑟(𝑡) denotes product price, 𝑓(𝑡)J is the adoption probability density function of 

the modified generalized Bass model by Krishnan et al. (1999), r is the discount rate, and 

𝐶(𝑡) represents cost as: 

𝐶(𝑡) = 3)
4!*
;𝜁 + 𝐹(𝑡)=&5                                       (2.13) 

In the cost function (2.13), 𝑐( is the marginal cost of making the initial batch of product, 𝑙 

is the learning-curve parameter, 𝐹(𝑡) is a cumulative distribution function of adoption 

that incorporates price effect, and 𝜁 is a small constant. In equation (2.12), note that the 

profit Π is a function of price path 𝑝𝑟(𝑡). 

Next, we extend the profit function (2.12) proposed by Krishnan et al. (1999). 

Specifically, we replace 𝑓(𝑡)J in (2.12), which captures only adoption, by sales based on 

the EGDMR, i.e., 𝑠(𝑡) formulated by (2.11), which incorporates adoptions as well as 

repeat purchases. While the cost structure used in profit function (2.12), formulated in 

(2.13), accounts for cost reduction resulting from the learning effect, it does not take into 
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account the effect of economies of scale that can play an important role in the price of 

hardware products. We extend the cost structure to account for both the effect of 

economies of scale on per-unit production and distribution cost as well as the learning 

effect on the research and development cost. Consequently, we extend the profit function 

by Krishnan et al. (1999), as presented in (2.12), to  

Π[𝑝𝑟(𝑡)] = ∫ [;𝑝𝑟(𝑡) − 𝑐(𝑡)=𝑠(𝑡)−𝑐̅(𝑡)]𝑒&0'𝑑𝑡2
( ,                    (2.14) 

where 𝑝𝑟(𝑡) denotes product price, 𝑐(𝑡) is per-unit production and distribution cost, 𝑐̅(𝑡) 

is the total research and development (R&D) cost that changes with time and learning, 

𝑠(𝑡) denotes sales including both adoptions and repeat purchases, and 𝑒&0' represents the 

discount factor corresponding to rate r.  

Due to the economies of scale, the per-unit cost is expected to decline when the number 

of units produced and sold increases, thus the per-unit production and distribution cost 

𝑐(𝑡) can be formulated as: 

𝑐(𝑡) = 3)4*+

64-7(')8
*+,                                             (2.15) 

where 𝑐( is the marginal cost associated with making the initial batch of products, 𝜎(𝑡) =

𝑠(𝑡)/𝑚, making 𝑐(𝑡) dependent on dynamics of sales (s(t)), 𝜁 is a positive constant, and 

𝑙" is the economies-of-scale parameter. The per-unit production and distribution cost 𝑐(𝑡) 

in (2.15) decreases when sales increases, reflecting the effect of economies of scale. With 

a larger (smaller) economies-of-scale parameter (𝑙"), the per-unit production and 

distribution costs decline more (less) rapidly as the rate of sales increases. 

The R&D intensity is expected to decline over time because both the product and the 

production process will likely become better understood through learning as time elapses. 

Therefore, we formulate 𝑐̅(𝑡) as: 

𝑐̅(𝑡) = 9+4*(

(4-:*(;(')))*(
,                                         (2.16) 

where 𝐹(𝑋(𝑡)) = 𝑌(𝑋(𝑡))/𝑚, in which Y is the cumulative adoption as shown in (2.4), 

X(t) is the cumulative marketing effort as shown in (2.9), and m is the market size. 𝑙< is 

the learning rate parameter, and 𝑐" represents the initial R&D investment. From (2.16), 

as product diffusion progresses, the learning effect leads to a reduction in R&D costs, and 
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with a higher (lower) learning rate (𝑙<), the R&D cost declines more (less) quickly as the 

diffusion process progresses.  

The discount rate (r) can be adjusted based on the level of future uncertainty. The 

discount rate can be set higher when future uncertainty is higher, so future profit is more 

heavily discounted to account for the higher risk of not realizing the projected future 

profit. In summary, unlike solutions from the extant literature, the profit function we 

consider accounts for (i) both adoptions and repeat purchases, (ii) cost reduction due to 

learning effect, and (iii) economies of scale. 

2.4.2 The Special Case for Software Products 

It is important to note that deriving analytical findings for our general case is 

exceptionally challenging for several reasons. By better reflecting the reality of 

technology products’ sales, our problem formulation is significantly more complicated 

than the pricing models proposed in the extant literature, including the one proposed by 

Krishnan et al. (1999). Specifically, we incorporate repeat purchases and implement a 

more realistic cost structure than the prior literature has done, making our analysis more 

complicated. Furthermore, fractional calculus is an inherently complex tool; based on our 

extensive search, with the exception of the work by Lotfi et al. (2023), fractional calculus 

has not been applied in management science, let alone the integration of fractional 

calculus into a price path optimization model, further underscoring our contribution to the 

literature. Therefore, as expected, closed-form solutions are unattainable for problem 

(2.14). To demonstrate the application and utility of our price-optimization model, in this 

section, we analytically examine the optimal price path for specific sales scenarios 

involving products with key characteristics of software products.  

Costs of providing software products mainly include development cost that can be 

considered R&D cost. The cost of distributing such products is typically low because 

they can be delivered electronically. For example, video game purchases increasingly are 

made through digital downloads (Patterson, 2021). We assume that the introductory price 

is predetermined (i.e. 𝛾 = 0 and 𝑝𝑟(0) = 𝑝𝑟(), the R&D cost is constant over time (i.e. 

𝑙< = 0), and there is no per-unit production and distribution cost (i.e. 𝑐(𝑡) = 0). Our cost 



16 

 

structure is compatible with that of Huang and Sundararajan (2011) that models IT-based 

services and products as information goods with no variable production and distribution 

costs. Additionally, we assume a constant introductory price because maintaining a 

relatively stable price at product launch is frequently observed in practice. For example, 

console video games, mainly due to consumer expectation, have tended to maintain the 

same base price of $60 for over ten years (Huang & Gilbert, 2018). Note that Section 

2.4.3 considers more general cases where introductory price is not pre-determined, the 

R&D cost is time-varying, and the per-unit production and distribution cost is not zero.  

Under the case we consider (i.e., 𝛾 = 0, 𝑝𝑟(0) = 𝑝𝑟(, 𝑙< = 0, and 𝑐(𝑡) = 0), the profit 

function (2.14) reduces to the following profit function:   

Π[𝑝𝑟(𝑡)] = ∫ [𝑝𝑟(𝑡)𝐼!𝑦;𝑋(𝑡)= R1 + 𝛼 .0,(')
.0(')

S − 𝑐"]𝑒&0'𝑑𝑡
2
( .      (2.17) 

By setting 𝑄(𝑡) ≔ .0,(')
.0(')

, the profit optimization problem is formulated as: 

Max	Π[𝑄(𝑡)] = ∫ [𝑝𝑟(𝑡)𝐼!𝑦;𝑋(𝑡)=(1 + 𝛼𝑄(𝑡))]𝑒&0'𝑑𝑡2
( ,          (2.18)                                   

        s.t.      𝑝𝑟1(𝑡) = 𝑄(𝑡)𝑝𝑟(𝑡),                                       (2.19) 

𝑝𝑟(0) = 𝑝𝑟(,                                                 (2.20) 

where 𝑄(𝑡) ∈ [𝑄, 𝑄], 𝑄 < 0, and 𝑄 > 0. Note that to guarantee the positivity of sales 

given the optimal price (i.e. 𝑠(𝑡) ≥ 0 for all 𝑡	 ∈ [0, 𝑇]), 𝑄 is set in such a way that 1 +

𝛼𝑄 > 0. 

The problem presented in (2.18)-(2.20) is an optimal control-based reformulation of the 

initial profit optimization problem in which 𝑄(𝑡) is the control variable. For the optimal 

control problem shown in (2.18)-(2.20) (see Sethi & Thompson, 2000, p. 67), the 

Hamiltonian is 𝐻(𝑡) = Γ"(𝑡) + 𝑄(𝑡)Γ<(𝑡), where Γ"(𝑡) = 𝑝𝑟(𝑡)𝐼!𝑦;𝑋(𝑡)=, Γ<(𝑡) =

𝑝𝑟(𝑡)𝛼𝐼!𝑦;𝑋(𝑡)= + 𝜆(𝑡)𝑝𝑟(𝑡), and 𝜆(𝑡) denotes the costate variable where 

𝜆1(𝑡) = 𝑟𝜆(𝑡) − =>
=.0

,							𝜆(𝑇) = 0.                                (2.21) 

By linearity of the Hamiltonian in 𝑄(𝑡) and the maximum principle, the optimal 𝑄∗(𝑡) is: 

𝑄∗(𝑡) = `
𝑄																Γ<(𝑡) > 0,
𝑄															Γ<(𝑡) < 0.		                                      (2.22) 
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The characteristics of the optimal price path corresponding to the optimal control variable 

𝑄∗(𝑡) are summarized in Theorems 2.1 and 2.2 that follow. Note that the optimal price 

path is derived by solving the initial value problem (2.19) and (2.20) for 𝑄(𝑡) = 𝑄∗(𝑡). 

Proofs are provided in Appendix A. 

Theorem 2.1. If −𝛼𝑟 > 1, then 𝑄∗(𝑡) = 𝑄 for all 𝑡 ∈ [0, 𝑇]. 

Theorem 2.1 indicates that in the cases where future is highly uncertain (i.e., the discount 

rate r is large), or when sales are highly sensitive to changes in price (i.e. −𝛼 is large), or 

both, the optimal price path is declining. Therefore, Theorem 2.1 demonstrates the 

conditions under which a price-skimming strategy is optimal. The results of Theorem 2.1 

are consistent with the frequently-observed pricing strategy for video games, because 

their sales price typically declines a few months after release (Patterson, 2021), and price-

conscious customers often delay their purchases until the price declines. Note that the 

findings under Theorem 2.1 are valid regardless of the rate of repeat purchases. 

Therefore, price skimming can be optimal, for example, for video games even though 

video games have almost no repeat purchases. 

With respect to situations where future profit is highly uncertain, it is more desirable to 

acquire revenue sooner than later, so in such environments it makes sense for firms to 

motivate sales by decreasing the price. The general shape of the optimal price path for 

products (for which sales includes both initial and repeat purchases) in the cases covered 

by Theorem 2.1 is declining regardless of the existence of repeat purchases, consistent 

with the result derived by Krishnan et al. (1999) for the optimal price path of product 

adoption in similar cases.  

Theorem 2.2. Suppose −𝛼𝑟 < 1:  

a. If 𝛤<(0) > 0, then the optimal price path assumes a first increasing and then 

decreasing pattern. More specifically, there exists a unique 𝑡∗ ∈ 	 [0, 𝑇] where  

b𝛤<
(𝑡) > 0,									𝑡 ∈ [0, 𝑡∗),

	𝛤<(𝑡) < 0,							𝑡 ∈ (𝑡∗, 𝑇].		                                   (2.23) 

b. If  𝛤<(0) < 0, then the optimal price path is monotonically declining, i.e. 𝑄∗(𝑡) = 𝑄 

for all 𝑡 ∈ [0, 𝑇]. 
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c. If  𝛤<(0) = 0, then either a or b happens.  

In Theorem 2.2, when future uncertainty is low (r is small) or sensitivity to changes in 

price is low (i.e. −𝛼 is small), or both, the optimal price path is either (i) first increasing, 

then decreasing, or (ii) monotonically declining. The general shape of the optimal price 

path for products with significant initial and repeat purchases in the scenarios considered 

in Theorem 2.2 is also consistent with that derived by Krishnan et al. (1999) for the 

optimal price path for initial product purchases in similar scenarios. 

Theorems 2.1 and 2.2 suggest that when future is highly uncertain and the market is 

highly price-sensitive, it makes sense to drop the price over time to accelerate sales. 

Furthermore, when the market is price-indifferent, even high sales-uncertainty levels may 

not warrant adopting a declining pricing strategy. In fact, firms may even be able to get 

away with increasing the price for a while before needing to drop the price to motivate 

sales. 

2.4.3 General Price Path Optimization Model  

We next examine the optimal pricing strategy for general product categories; the profit 

optimization problem involves maximizing the total profit shown in (2.14). To formulate 

the problem, we make the following reasonable assumptions: 

I. Price is always positive (i.e.  𝑝𝑟(𝑡) ≥ 𝜆( > 0	, for all 𝑡 ∈ [0, 𝑇]).  

II. The introductory price is bounded (i.e. 𝜆( ≤ 𝜆 ≤ 𝑝𝑟(0) ≤ Λ). We believe this is a 

reasonable assumption because the introductory price of a given product depends 

on the product segment within which the product is introduced. In other words, 

the price of a given product should be within the range of comparable products. 

III. The rate of change in price is bounded (i.e. 𝛿 ≤ 𝑝𝑟1(𝑡) ≤ ∆, 𝛿 < 0, ∆	> 0 , 𝑡 ∈

[0, 𝑇]). Naturally, in any given market there is a limit for increasing or decreasing 

the price from one period to the next. 

IV. The price path 𝑝𝑟(𝑡) should be admissible in the sense that the corresponding 

sales function should be nonnegative (i.e. 𝑠(𝑡) ≥ 0, for all 𝑡 ∈ [0, 𝑇]). 
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To guarantee the positivity of k, Λ is set in such a way that 1 + 𝛾 ln(Λ) > 0. Similarly, to 

guarantee the admissibility of price, we set 𝑥(𝑡) ≥ 𝜔, where 𝜔 is a small positive 

constant. We thus have 𝑋(𝑡) ≥ 0 and 𝑠(𝑡) ≥ 0 for all 𝑡	 ∈ [0, 𝑇]. While in fact the 

condition 𝑥(𝑡) ≥ 0 is sufficient to achieve 𝑠(𝑡) ≥ 0 for 𝑡 ∈ [0, 𝑇], we set 𝑥(𝑡) ≥ 𝜔 > 0 

for small 𝜔 to guarantee the admissibility of the optimal price path solutions, 𝑝𝑟@(𝑡)s, the 

derivation of which is based on the procedure introduced in Appendix A. 

Given assumptions I-IV, the objective of the optimization problem is to maximize the 

profit Π (shown in (2.14)) over the following set: 

𝑀 = {𝑝𝑟(𝑡) ∈ 𝐶"[0, 𝑇]	|	𝛿 ≤ 𝑝𝑟1(𝑡) ≤ ∆, 𝑝𝑟(𝑡) ≥ 𝜆(, 𝑥(𝑡) ≥ 𝜔, 𝜆 ≤ 𝑝𝑟(0) ≤ Λ},             

(2.24) 

where 𝐶"[0, 𝑇] denotes the space of continuously differentiable functions defined on 

[0, 𝑇]. It should be noted that the profit function (2.14) is a functional defined on the 

space of price functions 𝑀. Moreover, the profit (Π) maximization problem is a 

functional maximization problem. In Appendix A, we show that there exists a 𝜇, 𝜇 < ∞, 

such that 𝜇 = 𝑆𝑢𝑝	Π	|A. To find a profit-optimal price path in [0, 𝑇], we solve the 

following problem: 

𝑀𝑎𝑥	Π	|A∩	D-[(,2].                                       (2.25) 

Here, Π is maximized on 𝑀 ∩	𝑃@[0, 𝑇], a subset of the space of polynomial functions of 

degree at most N (see Appendix A). In fact, the functional optimization problem (2.25) 

can be interpreted as a function optimization problem in which the coefficients of the 

polynomials of degree at most 𝑁 should be determined. The existence of a solution for 

problem (2.25) is demonstrated in Appendix A. Based on formulation of (2.25), the 

function maximization problem can be derived as: 

𝑀𝑎𝑥	Πst𝑝𝑟(, 𝑣(, … , 𝑣H+w,                                    (2.26) 

s.t.    𝑅t𝑝𝑟(, 𝑣(, … , 𝑣H+ , 𝑤(, … , 𝑤H( , 𝑢(, … , 𝑢H. , 𝑟(, … , 𝑟H/w ≤ 𝜀,	       (2.27) 

𝜆 ≤ 𝑝𝑟( ≤ Λ.                                           (2.28) 

The derivation and details of the problem represented by (2.26)-(2.28) are presented in 

Appendix A, where we show that, for sufficiently large 𝐾", … , 𝐾I and sufficiently small 

and positive 𝜀, the solution to the problem represented by (2.26)-(2.28) corresponds to a 
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polynomial price function 𝑝𝑟@(𝑡) that satisfies the desired constraints of 𝑀, with the 

corresponding profit Π[𝑝𝑟@(𝑡)] close to the supremum value 𝜇.  

2.5 Numerical Examination  

As explained earlier, our fractional calculus-based price-optimization model is 

exceptionally complex, thus deriving analytical finding for the general scenarios is 

infeasible. Given that we do not intend to simplify the model to produce less realistic 

results, we conducted numerical examination to better evaluate price optimization for 

general sales scenarios. Furthermore, applying a mix of analytical and numerical 

examinations is an approach widely used in the literature (e.g., Cosguner & Seetharaman 

2022; Oh & Su, 2022; Kim & Park, 2008; Debo et al., 2006; Krankel et al., 2006; Ray et 

al., 2005; Krishnan et al. 1999). When an analytical examination is not feasible, it is 

deemed appropriate in advanced operations studies to pursue a numerical examination 

(e.g., Robotis et al., 2012). This section reports the results of numerical experiments 

conducted based on the general optimization model presented in Section 2.4.3 and 

examines the optimal price path for different sales scenarios. 

Our results demonstrate that the optimal price path in a product’s demand window 

exhibits one price peak, and different optimal price-path shapes can occur due to the 

changing position of the peak of the optimal price path under different scenarios. Briefly, 

a decreasing optimal price path corresponds to the case when the peak of the optimal 

price path occurs at product release time. The optimal price path is first increasing then 

decreasing when the peak occurs within the product’s demand window. Finally, the 

optimal price path is increasing when the peak appears at the end of the demand window 

considered. The details of the numerical experiments are provided next. 

2.5.1 Sales Scenarios 

We considered different scenarios for numerical experimentations. First, we considered a 

base scenario developed based on a set of values for the model parameters (i.e., sales, 

price, and cost). Next, for the base scenario, we developed 12 variational scenarios by 

altering the values of the model parameters one at a time. 



21 

 

The parameter values for the base scenario and its corresponding variational scenarios are 

reported in Table 2-1. Note that (2.15) and (2.16), which represent our cost functions, are 

similar to the cost function proposed by Krishnan et al. (1999), thus following Krishnan 

et al. (1999), we set 𝜁=0.005, and 𝑐( and 𝑐" were set equal to 1.5 and 25000, respectively. 

Using different values of 𝑐( and 𝑐", our tests demonstrate that the overall behavior of the 

optimal price path is not sensitive to the values of 𝑐( and 𝑐". For scenarios reported in 

Table 2-1, we set the market size to 𝑚 = 500000 and the planning horizon to 𝑇 = 12. In 

the base and variational scenarios reported in Table 2-1, the adoption process is set to be 

99% complete after 12 years (𝑇 = 12), making these scenarios compatible with sales of 

technology products with relatively short lifecycles. For example, the smartphone 

penetrated into its target market in about 12 years (Comscore, 2017). Our tests based on 

different market sizes and planning horizons lead to similar results.  

Table 2-1: Base Scenario and Variations 

 Sales Price Cost Discount 
rate Adoption Repeat 

 p q 𝛽 𝛾 𝛼 l1 l2 r 
Base  0.01 0.75 0.5 -0.3 -5.5 0 0.1 0 
Changing price 
parameters 

        

Variation 1 0.01 0.75 0.5 -0.27 -5.5 0 0.1 0 
Variation 2 0.01 0.75 0.5 -0.33 -5.5 0 0.1 0 
Variation 3 0.01 0.75 0.5 -0.3 -5 0 0.1 0 
Variation 4 0.01 0.75 0.5 -0.3 -6 0 0.1 0 
Changing cost 
parameters 

        

Variation 5 0.01 0.75 0.5 -0.3 -5.5 0.1 0.1 0 
Variation 6 0.01 0.75 0.5 -0.3 -5.5 0.25 0.1 0 
Variation 7 0.01 0.75 0.5 -0.3 -5.5 0 0.0 0 
Variation 8 0.01 0.75 0.5 -0.3 -5.5 0 0.25 0 
Changing repeat 
purchase parameter 

        

Variation 9 0.01 0.75 0.2 -0.3 -5.5 0 0.1 0 
Variation 10 0.01 0.75 0.8 -0.3 -5.5 0 0.1 0 
Changing 
discount rate 

        

Variation 11 0.01 0.75 0.5 -0.3 -5.5 0 0.1 0.01 
Variation 12 0.01 0.75 0.5 -0.3 -5.5 0 0.1 0.05 
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The following section presents the optimal price path and sales trend for each of the cases 

reported in Table 2-1. We also explored the optimal pricing strategy under several other 

base and variational scenarios similar to the ones presented in Table 2-1. Instances of 

these additional numerical analyses can be found in Appendix A. In each base scenario, 

we first set the discount rate equal to zero (𝑟 = 0) then changed it in the variational 

scenarios. In Section 2.5.2 we report the results corresponding to Table 2-1. The results 

from other base and variational scenarios considered were highly consistent with those 

obtained from the scenarios presented in Table 2-1.  

2.5.2 Optimal Price Path and Sales Trend 

Problem (2.26)-(2.28) was solved for each of the cases presented in Table 2-1. The 

assumptions of the optimization model require that boundary values be set for the initial 

price 𝑝𝑟( and the price growth rate 𝑝𝑟′. For the scenarios presented in Table 2-1, we set 

𝜆 = 5, Λ = 7, 𝛿 = −0.5, and Δ = 0.5, and the resulting optimal price paths and their 

corresponding optimal sales trends for the base and variational scenarios reported in 

Table 2-1 are shown in Figures (2-2)-(2-7). The main observations from these 

experiments are outlined next.  

Figure 2-2 demonstrates that, for higher repeat-purchase rates (higher 𝛽), the peak point 

of the optimal price path is reached earlier, leading to a longer price decline and a lower 

price path. When the repeat purchase rate is sufficiently large, the optimal price path can 

monotonically decrease for the entire product lifecycle. In other words, with ample and 

continuing repeat purchases, a straight price-skimming strategy is recommended. The 

reason behind this result is that when the repeat-purchase rate is high and sustainable 

sales are expected, it is reasonable for firms to begin dropping the price earlier in the 

product lifecycle to accelerate anticipated sales. Conversely, when the repeat-purchases 

rate is low, the profit declines as the diffusion process progresses, with this declining 

profit being a result of the drop in sales. In such a situation, to sustain profitability it is 

reasonable for a firm to delay decreasing the price in the product lifecycle. Furthermore, 

for higher repeat purchase rates, Figure 2-2 shows that the introductory price is higher as 

well, further making the optimal price path compatible with a skimming-based price path 

where the introductory price is set at a relatively high level. 
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Our finding corresponding to the relationship between repeat purchase rate and pricing is 

consistent with real-world examples. For example, repeat purchases constitute a 

significant proportion of DVD player sales (Lotfi et al., 2023), while DVD players having 

been priced based on the skimming strategy (Beltis, 2019). 

 
Figure 2-2: Optimal Price Path and Sales vs. Repeat Purchase Rate 

This finding also has a direct implication for sales of products expected or planned as a 

fad with a low repeat-purchase rate. A fad is something that results in a short-lived 

intense enthusiasm (Steingoltz & Haslehurst, 2017). A fad product is one that at first 

rapidly gains popularity and then quickly loses popularity. Among prominent examples 

of fad technology products are 3D television sets, e-book readers (Thubron, 2017), 

beepers, and Google Glass (Erickson, n.d.). According to our findings, price skimming 

may not be the optimal pricing strategy for fad products with insignificant repeat 

purchases. For such products, firms may be better off with a price path that begins with a 

relatively lower introductory price that then peaks later in the product lifecycle. 

Figure 2-3 shows that for smaller values of the baseline price parameter 𝛾 (i.e., customers 

are more sensitive to the baseline price), both introductory and average prices decrease. 

For larger values of 𝛾 (i.e., customers are less sensitive to the baseline price), both 

introductory and average prices increase. 
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Figure 2-3: Optimal Price Path and Sales vs. Baseline Price Sensitivity (γ) 

This result has implications for positioning a new product in the market, and failure to 

properly price a new product can be detrimental to the product’s market success. For 

example, Google Glass, known to be an epic failure (Crothers, 2016), was priced at 

$1500, despite it being a limited product (Plafke, 2013). Google Glass was marketed as 

an innovative product but failed to live up to its initial hype (Ward, 2019). Among other 

factors, Google Glass’s failure has been attributed to its $1500 price tag (Hodgkins, 

2019). 

Figure 2-4 demonstrates that when the value of the price-change sensitivity parameter 𝛼 

decreases (i.e., when customers become more sensitive to changes in price), the peak 

point of the optimal price path occurs earlier in the product lifecycle and the optimal 

introductory price increases. Figure 2-4 also demonstrates that for sufficiently high price-

change sensitivity, the optimal price path monotonically decreases. This result suggests 

that when customers are more sensitive to price changes, contrary to common 

expectations, firms may get away with higher introductory prices, while increasing the 

price over time is only tolerated by customers for a short time before a peak point 

reflecting the customers’ ultimate price-increase tolerance is realized. Also, when 

customers are highly sensitive to price changes, firms should only decrease the price over 

time because price increases are not tolerated. This further demonstrates that when 

customer sensitivity to price changes increases, the optimal pricing strategy approaches 

the skimming strategy. This finding is consistent with the pricing strategy of many 

technology products. For example, fitness trackers have become more afordable over 

time (Toner, 2018). One may argue that potential customers of activity trackers tend to be 
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price sensitive due to the existance of alternative products (e.g., health and activity 

smartphone applications). 

 
Figure 2-4: Optimal Price Path and Sales vs. Price Change Sensitivity (α) 

Figure 2-5 shows that as the effect of economies of scale (𝑙") increases, the optimal price 

path shifts downward, and vice versa. This result is expected since the greater effect of 

economies of scale leads to a faster drop in per-unit cost as sales increases, thus allowing 

a firm to achieve maximum profitability through a lower price level. 

 
Figure 2-5: Optimal Price Path and Sales vs. Economies of Scale 

Figure 2-6 demonstrates that with a more significant learning effect (𝑙<), the peak of the 

optimal price path occurs earlier. A higher learning rate allows the R&D cost to drop 

more rapidly, thus allowing a firm to begin dropping the product price earlier in the 

product lifecycle to motivate sales.  
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Figure 2-6: Optimal Price Path and Sales vs. R&D Learning Rate 

Finally, Figure 2-7 shows that when the discount rate (r) increases, the optimal price path 

drops at a faster rate. This result is intuitive, because when future is uncertain, firms 

should drop the price at a faster rate to increase sales in the earlier stages of the product 

lifecycle associated with less uncertainty. This finding shows that when future is 

uncertain, the optimal price path assumes a declining path that resembles that of a price-

skimming-based price path, resulting in more sales earlier in the product lifecycle. 

 
Figure 2-7: Optimal Price Path and Sales vs. Discount Rate 

In summary, the most important results from our numerical examinations are as follows: 

• The optimal price trend is highly dependent on the rate of repeat purchases. The 

optimal price path may deviate from the skimming path when the repeat purchases 

rate is low and sales are not expected to sustain over time.  

• Price skimming may not be the optimal pricing strategy for a product expected or 

planned to be a fad product with a low repeat-purchase rate. 
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• Contrary to common expectations, customers more sensitive to changes in price may 

tolerate a higher introductory price. However, increasing price over time is tolerated 

by such customers for only a short time period, after which a peak point representing 

customers’ maximum tolerance for price increase emerges. When market sensitivity 

to price changes is low, the market can accommodate an increasing price trend for a 

longer time, up to a point where price reaches a peak point, reflecting the maximal 

price tolerable by the market, after which the price should be reduced to further 

motivate sales. 

• When the market is expected to be more (less) sensitive to the product price at the 

product launch time which determines the product’s base-line price and its 

positioning in the market, the optimal product launch price tends to be lower 

(higher). 

• When faced with highly uncertain future, maximum profit can be achieved by 

quickly reducing the price to motivate customers to make purchases sooner than 

later.  

In summary, our results suggest that overlooking repeat purchases when examining the 

optimal price path of a new product is likely to lead to suboptimal pricing decisions, 

underscoring the contribution of the optimization model developed in this study. 

2.6 Concluding Remarks 

In this study, we examined optimal pricing strategies for technology products. 

Specifically, we investigated the price-skimming strategy widely used by prominent 

technology companies. To achieve realistic and dependable results, we adopt and extend 

the generalized diffusion model with repeat purchases (GDMR) by Lotfi et al. (2023), 

which is suitable for technology products with high rate of repeat purchases. By 

extending the GDMR to incorporate the effects of both baseline price and price changes, 

we formulate and advance a price-optimization model. The profit function we propose 

accounts for changes in cost due to both the learning effect and the effect of economies of 

scale, further contributing to the body of relevant literature that has used simpler cost 

structures. We examine the optimal price path under (i) a special case compatible with 

software sales where the introductory price is predetermined, and cost includes only a 
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constant R&D cost with variable cost of zero, and (ii) a general case suitable for a variety 

of product categories when the introductory price is not predetermined and economies of 

scale and a dynamic R&D cost are considered. 

Our results suggest that despite price skimming being widely used for technology 

products, it should not always automatically be considered as the go-to pricing strategy 

for such products. Whether or not price skimming should be used is highly dependent on 

the rate of repeat purchases. The price-skimming strategy benefits from having a group of 

customers who, because of their willingness to pay more for the product, can be 

effectively skimmed off (Liu, 2010). By incorporating such consumer heterogeneity in 

our analysis, we find that the optimal pricing strategy may deviate from the skimming 

strategy when consumers cease to demonstrate continued interest in the product through 

repeat purchases. In other words, our results suggest that price skimming is likely optimal 

when the repeat-purchases rate is high and sales are sustainable at a high level, thus 

underscoring the fact that accounting for repeat purchases is of prime importance when 

deriving an optimal pricing strategy. For example, when the rate of repeat purchases is 

high and sales are expected to remain sustainable over time, if firms use an optimization 

model that accounts only for adoption purchases, the adopted pricing strategy may 

deviate significantly from the optimal pricing strategy. 

Our findings also have direct implications for sales of fad products with low repeat-

purchase rates. Fad products experience a rapid increase in popularity followed by a 

quick decline in sales. Our findings indicate that price skimming may not be an optimal 

pricing strategy for such products. Our results instead suggest that, for fad products with 

low repeat-purchase rates, firms are likely better off setting their introductory price at a 

lower level and then increasing the price to a peak reflecting the market’s maximum 

tolerable price before reducing it to further motivate sales. If such a pricing strategy is not 

followed for a product expected or planned to be a fad product with a low repeat-

purchase rate, the chance of product success may be significantly lower. In particular, 

launching such a product with a relatively high introductory price, more compatible with 

a skimming strategy, can be detrimental to its success. 
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Other key findings are summarized as follows: 

• When customers demonstrate a higher sensitivity to price changes, contrary to 

common expectations, a firm may get away with launching the product at a higher 

price. However, increasing the price over time is tolerated for a shorter time period 

before a peak point reflecting customers’ highest tolerated price level is reached.  

• When customers are more (less) sensitive to the introductory price which determines 

the baseline price for the product, the optimal introductory price decreases 

(increases). 

• If a product’s future is highly uncertain, a firm is better off reducing the product’s 

price quickly so that customers will make purchases sooner rather than later. 

Our results also suggest that, under conditions of significant repeat purchases, the optimal 

price path even in different scenarios still assumes a trend with at most one peak, so our 

findings are compatible with those in the price optimization research literature that 

consider only adoption (first-time) purchases (e.g., Krishnan et al., 1999). 

The optimization model developed in this study can pave the way for further research in 

the price-optimization domain and in business research in general. The adoption process 

corresponding to the sales process examined in this study is governed by the Bass 

diffusion model, thus a similar modeling approach could be used to examine the optimal 

price path based on other diffusion models (e.g., Van den Bulte & Joshi, 2007). The 

optimal price path for sales of products with multiple generations can also be examined.  

From a broad perspective, our research contributes to the large body of literature on 

fractional calculus in applied mathematics and science by introducing a novel and 

innovative application of Riemann-Liouville integral to solve a problem in management 

science where the great potentials of fractional calculus have yet to be explored. 

Historically, applications of fractional calculus in science have been limited by the 

interpretation of this type of mathematics. Tackling the problem of interest using a 

fractional calculus-based model with clear interpretation, our study can help encourage 

researchers explore and develop different interpretations of fractional calculus in different 

application areas. 
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Chapter 3  

3 Modeling Sales of Multigeneration Technology Products in 
the Presence of Frequent Repeat Purchases: A Fractional 
Calculus-based Approach2 

3.1 Introduction 

Release of new product generations featuring major technological advancements takes 

place occasionally, while minor advancements of a current generation happen frequently. 

For example, digital cameras were introduced after few decades of numerous minor 

improvements in analogue cameras. When presented with options, some consumers may 

be interested in upgrading to a newer generation with a more advanced technology, while 

others may prefer an older generation to benefit from a more established technology. 

Specifically, in some cases, an older generation can have advantages over newer 

generations, making them favorable to some consumers. For example, film cameras have 

higher dynamic ranges and can capture higher resolutions than do most digital cameras, 

resulting in professional photographers’ continued interest in them (The Dark Room, 

2021). Similarly, sales of LCD TVs continued even after the introduction of LED TVs 

(Wang & Yu, 2010).  

Repeat purchases of a product generation occur in the form of replacements and multi-

unit ownership purchases. Modern technology products, encompassing both hardware 

and software, frequently undergo a steady stream of new releases and iterations. Many 

consumers exhibit a proclivity for consistently acquiring the latest product iterations. 

Moreover, in contrast to previous decades, it has become increasingly common for 

consumers to possess multiple units of the same or similar products (Lotfi et al., 2023). 

Given the prevalence of frequent repeat purchases, traditional multigeneration diffusion 

 
2 This is an author version of the paper published as: Lotfi, A., Jiang, Z., Naoum-Sawaya, J., & Begen, M. 
A. (2024). Modeling sales of multigeneration technology products in the presence of frequent repeat 
purchases: A fractional calculus-based approach. Production and Operations Management, 33(5), 1176-
1195. 
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models no longer suffice for accurately projecting sales path for technology products. 

Therefore, a multigeneration sales growth model that takes into account within-

generation repeat purchases as well as initial purchases and cross-generation upgrades 

becomes essential. In this research, we develop a comprehensive multigeneration sales 

model that addresses this necessity.  

We name the new model the generalized multigeneration diffusion model with repeat 

purchases (GMDR). The new model accommodates two different generation transition 

strategies, i.e., (i) phase-out transition strategy and (ii) total transition strategy (Jiang et 

al., 2019). With the phase-out transition strategy, firms continue to sell an old generation 

after the release of a new generation to satisfy the continued demand for the old 

generation. The phase-out transition strategy has been widely applied. For example, as 

mentioned above, TV manufacturers continued to sell LCD TVs after the release of LED 

TVs. Similarly, although digital cameras have long been introduced to the market, some 

camera manufacturers such as Canon and Nikon continued to sell analog film cameras 

until recently. With the total transition strategy, upon the introduction of a new 

generation, the previous generation is immediately discontinued. For instance, Fitbit, a 

fitness tracker manufacturer, replaced its older products Alta, Zip, One, and Flex 2 with 

the new generation Fitbit Inspire (Heater, 2019). 

We demonstrate that the new model can be used for both predictive and prescriptive 

analytics. Using real sales data and Google Trends product search data, we demonstrate 

that the GMDR leads to more accurate model estimations and forecasts than a state-of-the 

art multigeneration diffusion model that does not incorporate repeat purchases, further 

demonstrating the importance of incorporating repeat purchases in modeling product 

sales. Furthermore, we use the new model to find the optimal market entry timing of a 

new generation in a product line. Extensive planning goes into releasing a new product, 

including planning technical specifications of the product, developing a marketing 

strategy, and adopting a pricing plan for maximal profit. One critical and challenging 

aspect is to determine the best time to launch the new product to the market especially 

when the product is a new generation to an existing one. This is because individual 

products in a multigeneration product line usually have a competitive and complementary 
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relationship. Therefore, having an effective strategy as to when to release a new product 

generation is of great importance. Many firms fail in transitioning from a current product 

generation to a new one due to improper timing of the new generation’s release. One 

example of such failures is Kodak’s release of their digital camera. While digital camera 

technology was first invented in the company’s R&D lab in the 1970s, Kodak’s 

leadership postponed transitioning to the digital camera technology fearing that the new 

technology would cannibalize the sales of the existing film cameras (Gann, 2016). Kodak 

ended up in a bankruptcy in 2012, a result mainly attributed to the company’s slow 

transition from analogue technology to digital technology (Landoni, 2015). 

Multigeneration diffusion models, first introduced by Norton and Bass (1987), provide a 

framework for studying optimal market entry timing in a product line with successive 

generations. However, as we discuss in the next section, there is little research in the 

literature studying the optimal market entry timing. In these limited few studies, the 

underlying multigeneration diffusion models do not consider repeat purchases within 

each generation, rendering them unusable for sales of technology products that include a 

significant proportion of such purchases. To fill this gap, we use our new model to study 

the optimal new-generation release timing in a product line under the phase-out transition 

and total transition strategies. 

Our results demonstrate that the optimal entry timing is highly dependent on the rate of 

repeat purchases. Depending on the repeat purchases rate, under both the phase-out 

transition and total transition scenarios, there are cases in which firms are better off 

launching the new generation as early as possible and cases under which firms are 

advised to delay the release of the new generation as much as possible. Specifically, we 

find that when (i) the potential market size for the old generation is sufficiently large, (ii) 

the unit contribution margin for the old generation is greater than that for the new 

generation, and (iii) the repeat purchases rate for the old generation is at least as high as 

the repeat purchases rate for the new generation, firms are better off delaying the 

introduction of the new generation as much as possible. We also find that regardless of 

how large the potential market sizes for the old and new product generations are, firms 

are better off immediately releasing the new generation when (i) the unit contribution 
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margin for the new generation is at least as high as that for the old generation and is 

declining, and (ii) the repeat purchases rate of the new generation is at least as high as the 

repeat purchases rate of the old generation. In other words, if the unit contribution margin 

for the new generation is declining, even if the repeat purchases rates and the unit 

contribution margins for the old and new generations are identical, an immediate release 

of a new generation is recommended. 

In summary, the contribution of the present research to the literature is two-fold: (i) 

developing a new multigeneration sales model that accounts for within-generation repeat 

purchases and (ii) using the new model to derive the optimal market entry timing 

strategies under the phase-out transition and total transition scenarios.  

Following this introductory section, the remainder of the chapter is organized as follows. 

The related literature is reviewed in Section 3.2. The development of the multigeneration 

sales model is detailed in Section 3.3. Empirical model testing results are provided in 

Section 3.4. In Section 3.5, the optimal market entry timing is modeled, and insights are 

provided. We present concluding remarks in Section 3.6.  

3.2 Literature Review  
In this section, we review the literature on multigeneration product diffusion and optimal 

market entry timing.   

3.2.1 Multigeneration Product Diffusion 

Inspired by the Bass (1969) product diffusion model, Norton and Bass (1987) introduced 

the first multigeneration diffusion model. Their model assumes that each generation has 

its own diffusion process and, with the introduction of a new generation, adopters of the 

old generations can switch to the new generation. Their model can be used to describe 

units-in-use (systems-in-use) as well as subscription purchases when all subscribers 

renew their subscription in each time period. Following Norton and Bass (1987), many 

other models have been developed to capture the number of units-in-use in a 

multigeneration scenario (e.g., Kim et al., 2000; Sohn & Ahn, 2003; Bass & Bass, 2004; 

Jiang & Jain 2012; Shi & Chumnumpan, 2019). To model sales with repeat purchases, 
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the abovementioned models can be used only when each user on average makes one 

repeat purchase in each time period, rendering them unusable for sales of products with 

different repeat purchases rates. In contrast, the focus of this paper is to explicitly 

incorporate repeat purchases in a sales model and subsequently derive the optimal market 

entry timing for a new product generation as one possible application of the proposed 

model. 

In the operations management literature, Qu et al. (2022) develop an Exponential-Decay 

proportional hazard model to predict consumers’ time-to-upgrade based on their past 

product adoption and usage behavior. However, the model they introduce does not 

incorporate between-generation interactions and within generation repeat purchases. 

The aforementioned studies provide continuous-time modelling frameworks. Discrete-

time models have also been introduced in the literature (e.g., Danaher et al., 2001; Li et 

al., 2013). However, these models do not have a closed form expression, making them 

unsuitable for analytically studying the optimal market entry timing. Alternatively, we 

implement a continuous-time model with a closed form expression that enables us to 

analytically examine the optimal market entry timing strategy. 

There are multigeneration models in the literature that combine choice and diffusion 

models (e.g., Jun & Park, 1999; Kim et al., 2005). However, these models do not 

incorporate between-generation interactions. In our model we explicitly account for 

between-generation interactions. Kim et al. (2001) present an econometrics model for 

multigeneration product diffusion capturing both initial and repeat purchases. However, 

as they mention, their model is operationalizable at individual consumer level and not at 

an aggregate level. In contrast, our model is applicable for aggregate-level 

multigeneration sales data. 

Overall, our literature review suggests that there is a need for a comprehensive model 

with a closed form expression capturing multigeneration product sales including (1) 

initial purchases for each generation, (2) repeat purchases within each generation, and (3) 

cross-generation upgrades. To fill this void, we first develop such a comprehensive sales 

model. Next, we use our proposed model to study the optimal market entry timing in 
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product lines with successive generations. Our proposed modelling framework examines 

two main generation transition scenarios, i.e., phase-out transition in which, the firm 

continues to sale the old generation after the introduction of a new generation, and the 

total transition scenario where with the release of a new generation, the old generation is 

discontinued. 

3.2.2 Optimal Market Entry Timing 

Multigeneration diffusion models provide a desirable tool to study optimal market entry 

timing. However, there are few research works in the diffusion literature that study the 

optimal market entry timing strategy. Kalish and Lilien (1986) develop a single 

generation diffusion model to derive the optimal market entry time for a new product. 

Wilson and Norton (1989) build a multigeneration diffusion model and employ it as a 

part of a profit optimization model to capture the optimal market entry timing. They 

assume the profit margin for selling one unit of a product to be constant over time, which 

may not be realistic. Mahajan and Muller (1996) study the optimal market entry timing in 

a multigeneration setting. Their model counts system-in-use for a durable technology 

product. Krankel et al. (2006) consider a firm’s decisions on the introduction timing of 

successive product generations for a durable product. In their modelling framework, sales 

in each generation follow a diffusion process. None of the abovementioned studies 

incorporate within generation repeat purchases. Guo and Chen (2018) study market entry 

timing based on a multigeneration diffusion model they develop. However, in their 

analysis repeat purchases are made by strategic consumers and only in the form of 

upgrade from the old generation to the new generation; their model does not incorporate 

within generation repeat purchases. Furthermore, Guo and Chen’s model does not have a 

closed-form expression, requiring them to study the optimal market entry timing 

numerically. Recently, Jiang et al. (2019) derive the optimal market entry timing based 

on the multigeneration model developed by Jiang and Jain (2012). Jiang et al. (2019) 

study both the phase-out transition scenario and total transition scenario. They 

incorporate repeat purchases only in the form of resubscriptions and do not take into 

account repeat purchases for purchase-to-own products whose life-time ownerships are 

transferred to buyers at the time of purchase. Moreover, they assume that the discounted 
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profit margin for one unit of a product to be constant over time, thus leaving the door 

open for analyzing more complex cases. 

Product upgrade timing has also been studied in the operations management literature. 

For example, Mehra et al. (2014) study the optimal upgrade interval in a growing market 

that has homogeneous customers. Kirshner et al. (2017) study product upgrade, while 

accounting for technology advancement, brand commitment, and product failure. Sun et 

al. (2022) study how a firm can implement reference-group effects in the introduction of 

product upgrades. These studies, however, do not account for repeat purchases made 

within a generation and between-generation interactions.   

Our investigation in the diffusion literature reveals that there is a need for a 

comprehensive analysis of the optimal market entry timing strategy for product lines with 

successive generations in the presence of (i) initial purchases of each generation, (ii) 

within-generation repeat purchases and (iii) cross-generation upgrades. Therefore, we 

employ our proposed sales model that accounts for these three types of purchases to study 

the optimal market entry timing for product lines composed of successive product 

generations. Furthermore, we study both phase-out transition and total transition 

strategies for releasing a new product generation. Moreover, as opposed to Wilson and 

Norton (1989) and Jiang et al. (2019), we let the discounted unit profit margin of a 

product to vary over time.  

3.3 Modeling Multigeneration Product Sales 
In this section, we develop a new multigeneration product sales model. First, we define 

the types of purchases that we consider. Our unit of analysis is a group or line of products 

that fall under multiple successive generations. While the product versions belonging to a 

given product generation are different only incrementally, the differences from one 

generation to another are categorized by more significant types of innovation, as defined 

by Henderson and Clark (1990). We consider the following purchases: 

• Adoptions of the first generation: Initial purchases made for the first generation. 
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• Repeat purchases: A new purchase is considered a repeat purchase only if the newly 

purchased product is the same as or only incrementally different from the initially 

purchased product. Repeat purchases happen within one generation. 

• Adoptions of a new generation: Initial purchases made for a new generation by buyers 

who are specifically interested in that generation. These adopters include (i) those 

who have purchased one or more of the old generations but have not repeat purchased 

the old generations, have stopped making further repeat purchases for the old 

generations, or have purchased and have been repeat purchasing the old generations, 

and (ii) those who have never purchased the old generations. To be specific, adopters 

of a new generation make their adoption decision independent of the behavior they 

demonstrated toward previous generations. 

• Leapfrogging: Initial purchases made for a new generation by those who would have 

adopted one of the old generations had there not been a new generation. 

• Switching: Purchases of a newer generation product by (i) those who have purchased 

an old generation and would have made repeat purchases for the old generation had 

there not been a new generation, or (ii) those who have purchased an old generation 

and would have repeated the purchase of the old generation had it not been 

discontinued. 

It is important to note that in multigeneration scenarios with more than two generations, 

leapfrogging or switching purchases skipping one or more generations can occur (e.g., a 

customer may leapfrog from generation one to generation three or a customer may switch 

from generation two to generation five).  

Figure 3-1 illustrates the sales components and their interplay in a phase-out transition 

scenario for two generations of products. Sales components of generation 1 and 

generation 2 are represented in distinct shades, with generation 1 shown in blue and 

generation 2 in gray. Components of sales representing shifts from generation 1 to 

generation 2 (either through leapfrogging or switching) are depicted in white. These 

components would have remained in generation 1 if generation 2 did not exist.  
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Figure 3-1: Breakdown of Sales Components in a Phase-out Transition Scenario 

Across Two Generations 

Next, we provide the details of our multigeneration sales model. We separately model the 

(i) phase-out transition scenario where firms continue to sell the previous product 

generation along with the newly introduced generation, and (ii) the total transition 

scenario where the older product generation is discontinued when the new generation is 

introduced. Following Lotfi et al. (2023), we use a fractional calculus-based operator to 

incorporate repeat purchases. Lotfi et al developed a sales model for technology products 

that encompasses both adoptions and repeat purchases. Through extensive empirical 

testing, they demonstrate that the fractional integral operator accurately models the repeat 

purchase rate for technological products. They formulate sales as  

𝑆(𝑡) = 𝐼(
!𝑦(𝑡) = "

J(!)∫ (𝑡 − 𝑠)
!&"𝑦(𝑠)𝑑𝑠,'

( 					𝑡 ≥ 0.                (3.1) 

Here, 𝑦(𝑡) represents the adoptions at time t and 𝛽 (0 ≤ 𝛽 ≤ 1) denotes the order of the 

fractional integral operator 𝐼(
! that captures the rate of repeat purchases. A greater 𝛽 value 

corresponds to higher repeat purchase rate. To capture the buyer’s adoption, Lotfi et al 

use the Bass diffusion model (Bass, 1969) given by 

𝑦(𝑡) = �𝑝 + /
+
𝑌(𝑡)� ;𝑚 − 𝑌(𝑡)=,                                 (3.2) 

where 𝑝, 𝑞,	and 𝑚 denote the coefficient of innovation, capturing potential adopters’ 

internal motivation to adopt a new product, coefficient of imitation, capturing the word-
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of-mouth effect in the adoption process, and market potential, respectively. In (3.2), 𝑦(𝑡) 

represents adoption rate at time 𝑡 and 𝑌(𝑡), given by 𝑌(𝑡) = ∫ 𝑦(𝑠)'
( 𝑑𝑠, represents the 

cumulative adoption at 𝑡. The closed-form solution derived from equation (3.2) can be 

expressed as follows: 

𝑦(𝑡) = 𝑌1(𝑡) = 𝑚 (.-/)(

.
,!(#$%)'

K"-%#,
!(#$%)'L

( ,					𝑡 ≥ 0.																	 (3.3) 

In this research, we account for different product generations which is not considered in 

Lotfi et al. (2023). For further clarity, Sections 3.3.1 and 3.3.2 present a two-generation 

scenario and in Section 3.3.4 we present the general multiple-generation scenario. 

3.3.1 Phase-out Transition Scenario with Two Product Generations 

We first model the phase-out transition scenario, as also considered by Jiang and Jain 

(2012). Without loss of generality, we assume generation 1 is introduced at time 𝑡 = 0 

and generation 2 is released at time 𝑡 = 𝜏< > 0. In the absence of generation 2, the 

adoption rate of generation 1 follows the Bass Model (Bass, 1969). Specifically, 

generation 1’s rate of adoption before the release of generation 2 is 

𝑦"(𝑡) = 𝑚"	𝑓"(𝑡),                                                    (3.4)  

where 

𝑓"(𝑡) =
(.+-/+)(

.+

,!(#+$%+)'

("-%+#+
,!(#+$%+)')(

,				𝑡 ≥ 0,                                            

denotes the density function of generation 1’s adoption, at time 𝑡 before the release of 

generation 2. 𝑝M , 𝑞M and 𝑚M represent the innovation effect, imitation effect, and the size 

of the potential market, respectively, for generation i =1, 2. We formulate the adoption 

rate of generation 2 starting at 𝑡 = 𝜏< based on the Bass (1969) model as  

𝑦�<(𝑡) = 𝑚<𝑓<(𝑡 − 𝜏<), 𝑡 ≥ 𝜏<,                                          (3.5) 

where 

𝑓<(𝑡 − 𝜏<) =
(.(-/()(

.(

,!(#($%()('!0()

("-%(#(
,!(#($%()('!0())(

,						𝑡 ≥ 𝜏<.                                    

The adoption rate of generation 1 is influenced by leapfroggings to generation 2 after the 

release of generation 2. Specifically, the rate of adoption for generation 1, 𝑦"(𝑡), before 

and after the release of generation 2 can be expressed as 
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𝑦"(𝑡) = b𝑦""
(𝑡), 																					0 ≤ 𝑡 < 𝜏<,

𝑦"<(𝑡), 																													𝑡 ≥ 𝜏<.
                                 (3.6) 

In formulation (3.6), 𝑦""(𝑡) = 𝑚"𝑓"(𝑡) accounts for the adoption rate of generation 1 

before the introduction of generation 2. We model leapfroggings from generation 1 to 

generation 2 following Jiang and Jain (2012), i.e.,  

𝑢<(𝑡) = 𝑦""(𝑡)𝐹<(𝑡 − 𝜏<),                                                (3.7) 

in which 𝐹<(𝑡 − 𝜏<) denotes the cumulative distribution function for generation 2. 

Considering that 𝐹<(𝑡 − 𝜏<) increases with time, the rate of leapfrogging also increases 

over time. Subsequently, 𝑦"<(𝑡) = 𝑦""(𝑡) − 𝑢<(𝑡) denotes the adoption rate for 

generation 1 after the release of generation 2 at 𝑡 = 𝜏<. 

At time 𝑡, a fraction of those who have adopted generation 1 at 𝑠 ∈ [0, 𝑡), repeat purchase 

at 𝑡. Following Lotfi et al. (2023), the total number of adoptions and repeat purchases for 

generation 1 at time 𝑡,  𝑆"(𝑡), can be captured using a 𝛽"-order (0 ≤ 𝛽" ≤ 1) Riemann-

Liouville integral of adoptions as  

𝑆"(𝑡) = 𝐼(
!+ 	𝑦"(𝑡) = ∫ "

J(!+)
(𝑡 − 𝑠)!+&"	𝑦"(𝑠)𝑑𝑠,					𝑡 > 0'

( .                   (3.8) 

Here 𝛽" is generation 1’s coefficient of repeat purchases. According to Lotfi et al. (2023), 

𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡) captures the rate of repeat purchases taking place at time 𝑡 for 

generation 1. 

It is expected that after the release of generation 2, a lower fraction of those who have 

purchased generation 1 in the past, repeat purchase generation 1 at the present time and 

the rest of them switch to the new generation. Similar to leapfroggings, switchings are 

expected to happen at a rate proportional to generation 2’s adoption rate. Specifically, the 

number of switching buyers from generation 1 to generation 2 at time 𝑡, 𝑠𝑤𝑡<(𝑡), can be 

written as 

𝑠𝑤𝑡<(𝑡) = ℎ< ∗ 𝐹<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S ,			𝑡 ≥ 𝜏<.                         (3.9) 

Here, parameter 0 < ℎ< ≤ 1 is included to capture cases in which not all buyers of 

generation 1 switch to generation 2. Subsequently, sales of generation 1 can be 

formulated as 
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𝑆"(𝑡) = �
𝐼(
!+𝑦"(𝑡),																																						0 ≤ 	𝑡 < 𝜏<,
𝐼(
!+𝑦"(𝑡) −	𝑠𝑤𝑡<(𝑡),																							𝑡 ≥ 𝜏<.		

                         (3.10) 

Initial purchases of generation 2 by adopting users (i.e., 𝑦�<(𝑡)) and leapfrogging users 

(i.e., 𝑢<(𝑡)) is 

𝑦<(𝑡) = 𝑦�<(𝑡) + 𝑢<(𝑡),			𝑡 ≥ 𝜏<.                                      (3.11) 

At time 𝑡, repeat purchases corresponding to 𝑦<(𝑡) can be incorporated using a Riemann-

Liouville integral of order 𝛽< as  

𝐼N(
!( 	𝑦<(𝑡) = ∫ "

J(!()
(𝑡 − 𝑠)!(&"	𝑦<(𝑠)𝑑𝑠,					𝑡 ≥ 𝜏<

'
N(

,                      (3.12) 

where 𝛽< (0 ≤ 𝛽< ≤ 1) denotes generation 2’s repeat purchases coefficient. Furthermore, 

incorporating switchings shown in (3.9), generation 2’s sales is given by  

𝑆<(𝑡) = 𝐼N(
!(𝑦<(𝑡) + 𝑠𝑤𝑡<(𝑡),			𝑡 ≥ 𝜏<.                                   (3.13) 

3.3.2 Total Transition Scenario with Two Product Generations 

We next consider the total transition scenario. Again, generations 1 and 2 are introduced 

at 𝑡 = 0 and 𝑡 = 𝜏< > 0, respectively. Similar to the phase-out transition scenario, before 

the release of generation 2, the adoption rate of generation 1 follows the Bass Model 

(Bass, 1969). Specifically, generation 1’s rate of adoption before the release of generation 

2 is 𝑦"(𝑡) = 𝑚"	𝑓"(𝑡).  Similar to the phase-out transition scenario, sales, including both 

adoptions and repeat purchases for generation 1 at 𝑡 before the introduction of generation 

2, 𝑆"(𝑡), is captured by a 𝛽"-order (0 ≤ 𝛽" ≤ 1) integral of adoption, i.e., 𝐼(
!+ 	𝑦"(𝑡).      

With the release of generation 2 at 𝑡 = 𝜏<, generation 1 is discontinued. Thus, the 

adoption rate in generation 1 drops to zero after the release of generation 2. Thus, 

generation 1’s adoption rate at time 𝑡, 𝑦"(𝑡) is 

𝑦"(𝑡) = b𝑦""(𝑡), 											0 ≤ 𝑡 < 𝜏<,
0, 																													𝑡 ≥ 𝜏<,

                                  (3.14) 

where 𝑦""(𝑡) = 𝑚"	𝑓"(𝑡). After the introduction of generation 2, repeat purchases 

generated by the adopters of generation 1 drops to zero, thus the entire sales, including 

both adoptions and repeat purchases, drops to zero after the introduction of generation 2. 

Consequently, the sales of generation 1 at time t, 𝑆"(𝑡), is 
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𝑆"(𝑡) = `𝐼(
!+𝑦"(𝑡),				0 ≤ 𝑡 < 𝜏<,					
0,																										𝑡 ≥ 𝜏<.					

                               (3.15)                        

After the release of generation 2 at 𝑡 = 𝜏<, generation 2’s adoption can be written as 

𝑦�<(𝑡) = 𝑚<𝑓<(𝑡 − 𝜏<). Moreover, after the release of generation 2, those who would 

have adopted generation 1 or leapfrogged generation 1 had it been available, make initial 

purchases for generation 2 instead. These initial purchases (i.e., 𝑦""(𝑡)) in addition to 

generation 2’s adoptions (i.e., 𝑦�<(𝑡)) are  

𝑦<(𝑡) = 𝑦�<(𝑡) + 𝑦""(𝑡),			𝑡 ≥ 𝜏<.                                   (3.16) 

The initial and repeat purchases corresponding to the initial purchases shown in (3.16) 

can be captured by a 𝛽<-order (0 ≤ 𝛽< ≤ 1) integral of 𝑦<(𝑡) as 𝐼N(
!( 	𝑦<(𝑡). 

With the introduction of generation 2, the number of switching purchases are captured as 

𝑠𝑤𝑡<(𝑡) = 𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡),			𝑡 ≥ 𝜏<.                               (3.17) 

Given that 𝑦"(𝑡) = 0, for 𝑡 ≥ 𝜏< and based on the Riemann-Liouville integral, switching 

from generation 1 to generation 2 is 

𝑠𝑤𝑡<(𝑡) = 𝐼(
!+𝑦"(𝑡) = ∫ "

J(!+)
(𝑡 − 𝑠)!+&"	𝑦""(𝑠)𝑑𝑠,					𝑡 ≥ 𝜏<

N(
( .           (3.18) 

Consequently, generation 2’s sales are given by  

𝑆<(𝑡) = 𝐼N(
!(𝑦<(𝑡) + 𝑠𝑤𝑡<(𝑡),			𝑡 ≥ 𝜏<	.                               (3.19) 

Assuming that all repeat purchases of generation 2 take place at the same rate 𝛽<, then 

𝑆<(𝑡) = 𝐼N(
!(𝑦<(𝑡) + 𝑠𝑤𝑡<(𝑡) = 

∫ "
J(!()

(𝑡 − 𝑠)!(&"	;𝑦�<(𝑠) + 𝑦""(𝑠)=𝑑𝑠 + ∫
"

J(!()
(𝑡 − 𝑠)!(&"	𝑦""(𝑠)𝑑𝑠 =		

N(
( 	'

N(
   (3.20) 

𝐼N(
!(𝑦�<(𝑡) + 𝐼(

!(𝑦""(𝑡),					𝑡 ≥ 𝜏<. 

3.3.3 Model Operationalization 

To operationalize the Riemann-Liouville fractional integral in an empirical setting we 

replace the sales model shown in (3.10) and (3.13) and the sales model shown in (3.15) 

and (3.20) with computationally tractable approximate models that have the desirable 

properties of the original models as done in Lotfi et al. (2023). An approximate 

formulation for the phase-out transition model (3.10) and (3.13) is given by 
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𝑆"O(𝑡) = �

P++(()'1+

#("-!+)
+ 𝐼(,O

"-!+𝑦""1 (𝑡),																																																																0 ≤ 	𝑡 < 𝜏<,
P++(()'1+

#("-!+)
+ 𝐼(,N(,O

"-!+𝑦""1 (𝑡) + 𝐼N(,O
"-!+𝑦"<1 (𝑡) − 𝑠𝑤𝑡<O(𝑡)	,																					𝑡 ≥ 𝜏<,

       

(3.21) 

𝑆<O(𝑡) =
('&N()1(

J("-!()
𝑦<(𝜏<) + 𝐼N(,O

"-!(𝑦<1(𝑡) + 𝑠𝑤𝑡<O(𝑡),                      (3.22) 

where  

𝑠𝑤𝑡<O(𝑡) = ℎ< ∗ 𝐹<(𝑡 − 𝜏<) �
P++(()'1+

#("-!+)
+ 𝐼(,N(,O

"-!+𝑦""1 (𝑡) + 𝐼N(,O
"-!+𝑦"<1 (𝑡) − 𝑦"(𝑡)� , 𝑡 ≥ 𝜏<.  

(3.23) 

Similarly, an approximate model for the total transition model (3.15) and (3.20) is 

formulated as 

𝑆"O(𝑡) = �
P++(()'1+

#("-!+)
+ 𝐼(,O

"-!+𝑦""1 (𝑡),			0 ≤ 	𝑡 < 𝜏<,			
0,																																																𝑡 ≥ 𝜏<	,

                        (3.24) 

𝑆<O(𝑡) =
('&N()1(

J("-!()
𝑦�<(𝜏<) + 𝐼N(,O

"-!(𝑦�<1 (𝑡) +
P++(()'1(

#("-!()
+ 𝐼(,O

"-!(𝑦""1 (𝑡),											𝑡 ≥ 𝜏<	.  (3.25) 

Here 𝐼(,O
"-!,  𝐼(,N(,O

"-! , 𝐼N(,O
"-!, are approximate integral operators and n denotes the parameter 

of the approximate operators. Increasing the value of n results in approximate operators 

converging to the original operators. The details of the derivation of the approximate 

models and the convergence to the original models are provided in Appendix B. Our 

empirical results are based on the approximate sales models (3.21)-(3.25) whereas all the 

theoretical results are derived based on the original sales models (i.e., model (3.10) and 

(3.13) and model (3.15) and (3.20)). Figure 3-2 provides an example for each of the two 

scenarios, (a) the phase-out transition scenario (𝛽" = 𝛽< = 0.5, 𝑝" = 𝑝< = 0.001, 𝑞" =

𝑞< = 0.8, 𝑚" = 𝑚< = 1, ℎ< = 0.8, 𝜏< = 8) where sales of the old generation continues 

after the new generation’s release, and (b) the total transition scenario (𝛽" = 𝛽< = 0.5, 

𝑝" = 𝑝< = 0.005, 𝑞" = 𝑞< = 1, 𝑚" = 𝑚< = 1, 𝜏< = 15) where the old generation is 

discontinued with the release of the new generation.     



44 

 

 
Figure 3-2: Sales for Two Product Generations with Repeat Purchases   

3.3.4 N-Generations Scenarios 

In this section we extend the models presented in Sections 3.3.1 and 3.3.2 to product lines 

including 𝑁 (𝑁 ≥ 3) successive generations. Using a procedure analogous to that 

outlined in Section 3.3.3, we can operationalize the extended models developed in this 

section. 

3.3.4.1 N-Generations with Phase-out Transition Scenario 

Generation 1 is introduced at 𝑡 = 0. The adoption rate for generation 1 before and after 

the introduction of generation 2 at 𝑡 = 𝜏< is formulated as  

𝑦"(𝑡) = b𝑦""
(𝑡), 																					0 ≤ 𝑡 < 𝜏<,

𝑦"<(𝑡), 																													𝑡 ≥ 𝜏<,
                             (3.26) 

𝑦""(𝑡) = 𝑚"𝑓"(𝑡),                                            (3.27) 

𝑦"<(𝑡) = 𝑦""(𝑡) − 𝑢<(𝑡),                                       (3.28) 

where  

𝑢<(𝑡) = 𝑦""(𝑡)𝐹<(𝑡 − 𝜏<),                                      (3.29) 

represents leapfrogging from generation 1 to generation 2. Generation 1’s sales are given 

by   

𝑆"(𝑡) = �
𝐼(
!+𝑦"(𝑡), 																																					0 ≤ 𝑡 < 𝜏<,
𝐼(
!+𝑦"(𝑡) − 	𝑠𝑤𝑡<(𝑡), 																						𝜏< ≤ 𝑡,

                          (3.30) 

where 

𝑠𝑤𝑡<(𝑡) = ℎ< ∗ 𝐹<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S,                          (3.31) 
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are the sales due to switching from generation 1 to generation 2. With the introduction of 

generation 𝑗 (2 ≤ 𝑗 ≤ 𝑁 − 1) at 𝑡 = 𝜏Q, the initial purchases rate for generation 𝑗, 

including adoptions and leapfroggings, before and after the introduction of generation 𝑗 +

1 at 𝑡 = 𝜏Q-" is formulated as  

𝑦Q(𝑡) = `
𝑦Q"(𝑡), 																						𝜏Q ≤ 𝑡 < 𝜏Q-",
𝑦Q<(𝑡), 																																𝑡 ≥ 𝜏Q-",

                             (3.32) 

𝑦Q"(𝑡) = 𝑚Q𝑓Q;𝑡 − 𝜏Q= + 𝑢Q(𝑡),                                     (3.33) 

𝑦Q<(𝑡) = 𝑦Q"(𝑡) − 𝑢Q-"(𝑡),                                        (3.34) 

where 

𝑢Q-"(𝑡) = 𝑦Q"(𝑡)𝐹Q-";𝑡 − 𝜏Q-"=,								𝑗 = 2,… ,𝑁 − 1,                 (3.35) 

is the rate of leapfrogging to generation 𝑗 + 1. The sales for generation 𝑗 are then given 

by  

𝑆Q(𝑡) = �
𝐼N2
!2𝑦Q(𝑡) + 	𝑠𝑤𝑡Q(𝑡), 																																		𝜏Q ≤ 𝑡 < 𝜏Q-",

𝐼N2
!2𝑦Q(𝑡) + 	𝑠𝑤𝑡Q(𝑡)	 − 𝑠𝑤𝑡Q-"(𝑡), 																		𝜏Q-" ≤ 𝑡,

               (3.36) 

where the switching to generation 𝑗 + 1 (𝑗 = 2,… ,𝑁 − 1) is formulated by  

𝑠𝑤𝑡Q-"(𝑡) = ℎQ-" ∗ 𝐹Q-";𝑡 − 𝜏Q-"= �𝐼N2
!2𝑦Q(𝑡) − 𝑦Q(𝑡) + 	𝑠𝑤𝑡Q(𝑡)�.          (3.37) 

Finally, the initial purchases including adoptions and leapfroggings for generation 𝑁, 

introduced at 𝑡 = 𝜏@, is given by 

𝑦@(𝑡) = 𝑚@𝑓@(𝑡 − 𝜏@) + 𝑢@(𝑡), 𝑡 ≥ 𝜏@ .                       (3.38) 

Thus, sales for generation 𝑁 is formulated as 

𝑆@(𝑡) = 𝐼N-
!-𝑦@(𝑡) + 	𝑠𝑤𝑡@(𝑡),				𝑡 ≥ 𝜏@ .                        (3.39) 

3.3.4.2 N-Generations with Total Transition Scenario 

In this section we extend the model (3.15) and (3.20) to product lines including 𝑁 (𝑁 ≥

3) successive generations following a total transition strategy between generations. We 

assume that generation 1 is introduced at 𝑡 = 0 while generations j (𝑗 = 2,… ,𝑁) are 

introduced at 𝜏Q. Sales for generation 1 before and after the introduction of generation 2 

are given by 
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𝑆"(𝑡) = `𝐼(
!+𝑚"	𝑓"(𝑡),				0 ≤ 𝑡 < 𝜏<	,					
0,																																𝑡 ≥ 𝜏<.					

                                (3.40) 

Similarly, sales for generation 𝑗 (𝑗 = 2,… ,𝑁 − 1) are given by 

𝑆Q(𝑡) = ` 𝐼(
!2𝑚"	𝑓"(𝑡) + ∑ 𝐼N3

!2𝑚M 	𝑓M(𝑡 − 𝜏M)
Q
MR< ,					𝜏Q ≤ 𝑡 < 𝜏Q-"	,					

0,																																																																																𝑡 ≥ 𝜏Q-"	.					
      (3.41) 

Finally, sales for the last generation 𝑁 are formulated as  

𝑆@(𝑡) = 𝐼(
!-𝑚"	𝑓"(𝑡) + ∑ 𝐼N3

!-𝑚M 	𝑓M(𝑡 − 𝜏M)@
MR< .                      (3.42) 

3.4 Empirical Evaluation  

In this section, we benchmark our multigeneration sales model against a state-of-the-art 

model from the literature using six real-world datasets that include (1) digital and analog 

cameras, (2) DVD and Blu-ray players, (3) CRT and flat-panel monitors, (4) three 

generations of Nintendo gaming console software, (5) Google Search Trends for LG Full 

HD and Ultra HD TVs, and (6) Google Search Trends for LED, OLED and QLED TVs. 

We use the model developed by Jiang et al. (2019) as our benchmark. Jiang et al. include 

upgrades from older generations to newer generations in their model, but they do not 

include repeat purchases occurring within each generation. We used Mathematica 

software for estimations. Our empirical tests show that the implementation of the new 

model is not computationally intensive compared to the benchmark. 

Our fifth and sixth datasets include users’ web searches as reported by Google Trends. 

Users’ web searches can generally be used as a proxy for actual product sales. 

Consumers’ web search data allows us to track shifts in consumers’ interests (Du et al. 

2015). There are several online consumer tracking services with Google Trends probably 

the most widely used and best known (Du et al. 2015). Recent studies have benefited 

from web search data for prediction purposes. For example, Choi and Varian (2012) use 

Google Trends data for nowcasting. Particularly, they use queries on automobile sales for 

a given month to predict that month’s actual auto sales report that will become available 

several weeks later. In another study, Du and Kamakura (2012) discover consumers’ 

common shopping interests by studying search volume patterns for 38 car makes during 

an 81-month time period. Given the use of web search data by the prior literature to 
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understand the dynamics of product sales and the challenges in acquiring actual sales 

data, we also evaluate our model using Google Trends data. 

Our empirical results demonstrate that our model is more accurate than the model 

proposed by Jiang et al. in estimating and forecasting multigeneration product sales. This 

result can be mostly attributed to the fact that Jiang et al.’s model does not incorporate 

repeat purchases while the model we propose does. 

3.4.1 Dataset 1: Digital and Analog Cameras  

The first dataset records the annual sales (approximated by unit shipments) of analog 

cameras from year 1951 to 2007 and the annual sales (approximated by unit shipments)  

of digital cameras from year 1999 to 2021 in Japan.3 With the rise of smartphones, the 

digital camera market experienced an unprecedent sharp decline worldwide (Richter, 

2022). Specifically, the introduction of the iPhone in 2007 has played a critical role in 

this disruption (Molla, 2017). Therefore, we use sales from 1951 to 2006 in our analysis 

to exclude the effect of smartphones on camera sales. Considering that the remaining 

dataset includes only few data points corresponding to sales of the new generation (i.e., 

digital camera), we restrict our model comparison to model estimation in which we fit 

both models to sales data from 1951 to 2006. Considering that very few users, if any at 

all, have not switched to digital cameras, we set ℎ<=1, indicating that all users eventually 

switch from analogue camera to digital camera.  

The estimated parameters for GMDR are presented in Table 3-1. It can be observed that 

most of the estimates are statistically significant. Fitting accuracy of the GMDR and that 

of the benchmark are compared in Table 3-2 in terms of sum of squares error (SSE) and 

visually demonstrated in Figure 3-3. It can be seen both in the table and the figure that the 

GMDR provides a more accurate fit than does the benchmark.        

 

 
3 The dataset is provided by Camera and Imaging Products Association and is accessible at 
https://www.cipa.jp/e/index.html. 
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Table 3-1: Parameter Estimates for Sales of Analog Cameras (1951-2006) and 

Digital Cameras (1999-2006) in Japan 

 Estimate Standard 
Error 

t-Statistics P-value 

𝛽" 0.2829 0.2283 1.2391 0.2205 

𝛽< 0.5697 0.1685 3.3806 0.0013 

𝑝" 0.0039 0.0015 2.5842 0.0124 

𝑝< 0.066 0.01812 3.6442 0.0006 

𝑞" 0.0702 0.0073 9.5766 0.0000 

𝑞< 0.5894 0.0925 6.3717 0.0000 

𝑚" 88157.8 73436.2 1.2005 0.235 

𝑚< 9911.56 2845.36 3.4834 0.001 

Table 3-2: Comparison of Fit for Sales of Analog Cameras (1951-2006) and Digital 

Cameras (1999-2006) in Japan 

 Model fit (SSE) 
 Analog Digital Overall 

GMDR 7.41686 × 10S 6.95647× 10T 8.11253 × 10S 
Jiang et al. (2019) 2.22954 × 10U 7.23993 × 10S 2.95354 × 10U 

 
Figure 3-3: Sales of Analog Cameras (1951-2006) and Digital Cameras (1999-2006) 

in Japan       
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3.4.2 Dataset 2: DVD and Blu-ray Players    

This second dataset represents annual sales (approximated by unit shipments) of DVD 

players from year 2000 to 2021 and annual sales (approximated by unit shipments) of 

Blu-ray players from year 2008 to 2021 in Japan.4 Table 3-3 provides the parameter 

estimations for the sales of DVD players with Blu-ray players in Japan. It can be seen 

from the table that, with the exception of the repeat purchase parameter for Blu-ray 

players, which is close to zero, all other parameter estimates are statistically significant. 

The near zero value of the repeat purchase rate for Blu-ray is not surprising considering 

that Blu-ray technology did not achieve much market success due mostly to the 

emergence of streaming as a popular alternative (Vaughan-Nichols, 2019). Note that the 

estimated value of ℎ<	reflects that almost 81% of the users switch from DVD player to 

Blu-ray player, while 19% of users not switching and staying loyal to DVD technology. 

This can be attributed to the fact that Blu-ray was not a huge leap over DVD in terms of 

product physicality, experience, and quality (Nicholas Coker, 2020). 

Table 3-3: Parameter Estimates for Sales of DVD Players (2000-2018) and Blu-ray 

Players (2008-2018) in Japan 

 Estimate Standard 
Error 

t-statistics P-value 

𝛽" 

𝛽< 

0.5287 

0.0204 

0.0548 

0.1142 

9.6514 

0.1791 

0.0000 

0.8596 

𝑝" 

𝑝< 

0.0169 

0.0225 

0.0054 

0.0071 

3.1226 

3.1585 

0.0051 

0.0047 

𝑞" 

𝑞< 

0.9516 

1.1922 

0.1314 

0.1698 

7.2412 

7.0232 

0.0000 

0.0000 

𝑚" 

𝑚< 

15427.8 

14347.2 

1991.25 

2861.95 

7.7478 

5.0131 

0.0000 

0.0001 

ℎ< 0.8105 0.0665 12.1937 0.0000 

 
4 The dataset is provided by Japan Electronics and Information Technology Industries Association and is accessible at 
https://www.jeita.or.jp/english/. 
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Table 3-4 compares the model fit and the three-years-ahead prediction accuracy of the 

GMDR with those of the benchmark in terms of SSE and shows that the GMDR provides 

more accurate fit and forecast than does the benchmark. Figure 3-4 depicts the 

performance differences of GMDR and the model by Jiang et al. (2019) in model fitting 

(2000-2018) and three-years-ahead forecasting (2019-2021). It shows that the GMDR 

matches the real data points better than does the model by Jiang et al. (2019), thus 

resulting in a much smaller SSE in both model fitting and three-years-ahead forecasting.  

Table 3-4: Comparison of Fit (2000-2018) and Forecast (2019-2021) for Sales of 

DVD Players and Blu-ray Players in Japan 

 Model fit (SSE) Three years ahead forecast (SSE) 
 DVD Blu- ray Overall DVD Blu- ray Overall 

GMDR 1.29143 × 10S 2.96336 × 10S 4.25479 × 10S 91326.7 318143 409469 
Jiang et al. (2019) 6.325 × 10S 1.44819 × 10U 2.08069 × 10U 246993 574704 821697 

 
Figure 3-4: Sales of DVD Players (2000-2021) and Blu-ray Players (2008-2021) in 

Japan   

3.4.3 Dataset 3: CRT and Flat-panel (LCD and LED) Monitors  

The third dataset includes annual sales of CRT monitors from year 1980 to 2007 and 

annual sales of flat-panel monitors including LCD and LED from year 1999 to 2018 in 

the US (Althaf et al., 2021). Considering that total switching from CRT to flat-panel 

monitors has practically happened, we set ℎ<=1.  
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Table 3-5 reports the corresponding parameter estimates. It can be seen in the table that 

half of the parameter estimates are statistically significant. This can be attributed to the 

fact that generation 1’s sales are available only until 2007 and not for the entire analysis 

time frame. 

Table 3-5: Parameter Estimation for Sales of CRT Monitors (1980-2007) and Flat-

panel Monitors (1999-2015) in the US 

 Estimate Standard 
Error 

t-Statistics P-value 

𝛽" 0.111 0.1949 0.5693 0.5726 

𝛽< 0.3569 0.1421 2.5126 0.0165 

𝑝" 0.001 0.0003 3.0599 0.0041 

𝑝< 0.0000 0.0000 0.42 0.6769 

𝑞" 0.2554 0.023 11.0926 0.0000 

𝑞< 1.5258 0.3265 4.673 0.0000 

𝑚" 164414 85765.5 1.917 0.063 
𝑚< 3463.73 3987.45 0.8686 0.3906 

Model fit and the three-years-ahead forecasting accuracy of the GMDR and the 

benchmark model, measured by SSE, are summarized in Table 3-6. The results show that 

our model leads to considerably more accurate fit and forecast than does the benchmark. 

Model fit (1980-2015) and the three-years-ahead forecasting accuracy (2016-2018) of the 

GMDR compared to those for the benchmark model are also illustrated in Figure 3-5. 

The figure clearly demonstrates that the proposed model fits the data better and 

subsequently forecasts sales considerably more accurately than does the benchmark 

model.  

Table 3-6: Comparison of Fit (1980-2015) and Forecast (2016-2018) for Sales of 

CRT Monitors and Flat-panel Monitors in the US 

 Model fit (SSE) Three years ahead forecast 

(SSE)  CRT Flat panel Overall Flat panel 
GMDR 3.85089 × 10U 7.21025 × 10S 4.57192 × 10U 3.33512 × 10S 
Jiang et al. (2019) 6.73444 × 10U 7.2195 × 10U 1.39539 × 10V 3.28688 × 10U 
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Figure 3-5: Sales of CRT Monitors (1980-2007) and Flat-panel Monitors (1999-2018) 

in the US 

3.4.4 Dataset 4: Nintendo DS, Nintendo 3DS, and Nintendo Switch 
Software  

The fourth dataset includes worldwide annual software sales of three generations of 

Nintendo gaming consoles: Nintendo DS from year 2005 to 2022,5 Nintendo 3DS from 

year 2011 to 2022,6 and Nintendo Switch from year 2017 to 2022.7  

We set ℎ< = ℎW = 1, which means all the users of the older generations ultimately switch 

to newer generations. This assumption aligns with Nintendo's strong brand loyalty (Laib, 

2020). The estimated parameters for GMDR are presented in Table 3-7.8 With one 

exception, all parameter estimates are statistically significant. The estimated rate of 

repeat purchases for the third generation is notably high. Although this estimation might 

 
5 From Statista and accessible at https://www.statista.com/statistics/349048/nintendo-ds-software-unit-sales/. 

6 From Statista and accessible at https://www.statista.com/statistics/349072/nintendo-3ds-software-unit-sales/. 

7 From Statista and accessible at https://www.statista.com/statistics/868256/nintendo-switch-software-
sales/#:~:text=In%20the%20fiscal%20year%20ending,software%20amounted%20to%201.03%20billion. 

8 To obtain parameter estimates within the specified range of our model, we imposed constraints on the values of 𝑚! 

and 𝛽", specifically requiring 𝑚! > 0 and 𝛽" ≤ 1. As a result of these constraints, it was not possible to calculate their 

test statistics. Consequently, we exogenously incorporated the estimated values for 𝑚! and 𝛽" into the model and 

subsequently derived test statistics for the remaining parameters. 
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be somewhat inflated due to the limited availability of data for this particular generation, 

it aligns with expectations. The Nintendo Switch's remarkable success in the gaming 

industry (Evangelho, 2018) validates the elevated rate of repeated game purchases among 

console owners. 

Table 3-7: Parameter Estimation for Software Sales of Nintendo DS (2005-2022), 

Nintendo 3DS (2011-2022), and Nintendo Switch (2017-2022) Worldwide 

 Estimate Standard 
Error 

t-Statistics P-value 

𝛽" 0.3565 0.4813 7.4078 0.0000 

𝛽< 0.1686 0.4648 0.3627 0.7198 

𝛽W 1 ------------------------------------------- 

𝑝"	 0.0137 0.0023 5.9986 0.0000 

𝑝< 0.0367 0.0173 2.1226 0.0435 

𝑝W 0.0407 0.009 4.5024 0.0001 

𝑞" 1.1012 0.0805 13.6751 0.0000 

𝑞< 1.2897 0.2576 5.0071 0.0000 

𝑞W 1.0096 0.1261 8.0043 0.0000 

𝑚" 499.438 46.3202 10.7823 0.0000 

𝑚< 26.286 ------------------------------------------- 

--------- 

-------- 

𝑚W 211.196 10.0628 20.9877 0.0000 

Table 3-8 provides a comparison of GMDR's fitting accuracy against the benchmark’s 

using SSE, and Figure 3-6 visually presents these comparisons. Both the tabulated and 

graphical representations demonstrate that GMDR surpasses the benchmark in terms of 

fitting accuracy. 
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Figure 3-6: Software Sales of Nintendo DS (2005-2022), Nintendo 3DS (2011-2022), 

and Nintendo Switch (2017-2022) Worldwide 

Table 3-8: Comparison of Fit for Software Sales of Nintendo DS (2005-2022), 

Nintendo 3DS (2011-2022), and Nintendo Switch (2017-2022) Worldwide 

  Model fit (SSE) 
 DS 3DS Switch Overall 

GMDR 288.753 340.509 476.238 1105.5 
Jiang et al. 

(2019) 

1502.01 3566.72 727.141 5795.86 

3.4.5 Dataset 5: Google Trends Search for LG Full HD and Ultra HD 
TVs  

The fifth dataset includes Google Trends’ yearly aggregated search data for two 

generations of LG TVs in the UK from 2007 to 2021. The search terms we use are “LG 

full HD TV” and “LG Ultra HD TV”. Considering that the dataset has limited data 

points, a more parsimonious model is expected to perform better. Therefore, we assume 

that repeat purchase rates for the first and the second generations are equal. Parameters 

estimations are reported in Table 3-9. It can be observed from the table that all parameter 

estimates are statistically significant, underscoring the sound performance of the 

parsimonious model version used. 
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Table 3-9: Parameter Estimation for Search Terms “LG Full HD TV” (2007-2018) 

and “LG Ultra HD TV” (2013-2018) in the UK   

 Estimate Standard 
Error 

t-Statistics P-value 

𝛽 0.385 0.0843 4.5739 0.001 

𝑝"	 0.0033 0.0014 2.2485 0.0483 

𝑝< 0.0291 0.0084 3.4468 0.0063 

𝑞" 1.3367 0.1645 8.1284 0.0000 

𝑞< 0.86 0.1175 7.3189 0.0000 

𝑚" 1079.89 161 6.7071 0.0000 

𝑚< 965.406 252.214 3.8277 0.0033 
ℎ< 0.7398 0.1714 4.3155 0.0015 

 
Figure 3-7: Google Trends’ Search Trends for “LG Full HD TV” (2007-2021) and 

“LG Ultra HD TV” (2013-2021) in the UK 

Table 3-10: Comparison of Fit (2007-2018) and Forecast (2019-2021) for Search of 

LG Full HD TVs and Ultra HD TVs in the UK 

 Model fit (SSE) Three years ahead forecast (SSE) 
 HD UHD Overall HD UHD Overall 

GMDR 2886.01 3446.07 6332.08 1680.22 5538.86 7219.09 
Jiang et al. 

(2019) model 

model model 

25217.4 5178.19 30395.6 9201.8 58702.9 67904.7 

Table 3-10 summarizes the fitting performance and the three-years-ahead forecasting 

performance of the GMDR and the benchmark model based on SSE. Similar to the prior 
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datasets, it can be observed in the table that the proposed model provides more accurate 

fit and forecast than does the benchmark. The fit (2007-2018) and the forecasting results 

(2019-2021) are depicted in Figure 3-7. As we can see in the figure, the new model 

results are considerably better than those of the benchmark model. 

It is interesting to note that the number of search queries increased significantly in 2020, 

deviating from the main trend. This sudden increase in consumer searches can be 

attributed to the COVID-19 pandemic. Reports suggest that TV watching and online 

streaming increased dramatically in 2020 (BBC, 2020) and TV sales in the UK 

experienced a steep growth during that time (Advanced Television, 2021). 

3.4.6 Dataset 6: Google Trends Search for LED, OLED, and QLED TVs 

The sixth dataset comprises yearly aggregated search data from Google Trends, spanning 

a period from 2007 to 2022, focusing on three generations of TVs in Germany. The 

specific search terms analyzed are "LED TV," "OLED TV," and "QLED TV." Due to the 

limited size of the dataset, we opt for parsimony by assuming that repeat purchase rates 

are consistent across all three TV generations.  

Parameters estimations are reported in Table 3-11.9 We observe that half of the 

parameters exhibit statistical significance. Parameters in generation 3 are estimated to be 

close to zero or insignificant. The underlying cause for this outcome can be primarily 

attributed to the limited availability of sales data for generation 3. 

Table 3-12 compares the fitting accuracy of GMDR with that of the benchmark based on 

SSE, and Figure 3-8 visually illustrates these comparisons. Both the tabular and graphical 

representations indicate that GMDR outperforms the benchmark in terms of fitting 

accuracy. 

 

9 To obtain parameter estimates within the specified range of our model, we imposed constraints on the values of 𝑞" 

and ℎ", specifically requiring 𝑞", ℎ" > 0. As a result of these constraints, it was not possible to calculate test statistics 

for these two particular parameters. Consequently, we exogenously incorporated the estimated values for 𝑞" and ℎ" into 

the model and subsequently derived test statistics for the remaining parameters. 
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Table 3-11: Parameter Estimation for Search Terms “LED TV” (2007-2022), 

“OLED TV” (2010-2022), and “QLED TV” (2017-2022) in Germany 

 Estimate Standard 
Error 

t-Statistics P-value 

𝛽 0.5612 0.0897 6.2543 0.0000 

𝑝"	 0.0118 0.004 2.9083 0.0075 

𝑝< 0.0031 0.0021 1.4994 0.1463 

𝑝W 0.0397 0.2367 0.1676 0.8682 

𝑞" 1.1134 0.1616 6.8877 0.0000 

𝑞< 0.5795 0.1131 5.1234 0.0000 

𝑞W 0.0000 ------------------------------------------- 

𝑚" 1432.74 244.598 5.8575 0.0000 

𝑚< 647.091 555.307 1.1653 0.2549 
𝑚W 718.472 5057.61 0.1421 0.8882 
ℎ< 0.5335 0.134 3.9811 0.0005 
ℎW 0.0000 ------------------------------------------- 

-------- 

-------- 
 

Table 3-12: Comparison of Fit for Search of LED TVs (2007-2022), OLED TVs 

(2010-2022), and QLED TVs (2017-2022) in Germany 

  Model fit (SSE) 
 LED OLED QLED Overall 

GMDR 32610.8 5011.36 549.368 38171.5 
Jiang et al. 

(2019) 

209891 14597.5 1311.43 225800 
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Figure 3-8: Google Trends’ Search Trends for “LED TV” (2007-2022), “OLED TV” 

(2010-2022), and “QLED TV” (2017-2022) in Germany 

3.5 Optimal Market Entry Timing Strategy 

Accurately predicting and characterizing the sales growth of product generations are 

critically important for firms’ operational and decision-making needs, thus the value of 

such a model can hardly be overstated. In this section, we demonstrate the utility of our 

model using one of the many possible applications—deciding  the optimal market entry 

timing for a new product generation.  

The multigeneration models developed in Section 3.3 provide closed form formulations 

for sales, which allow us to formulate the market entry optimization models analytically. 

Analogous to prior research (e.g., Guo & Chen, 2018; Jiang et al., 2019), we consider a 

scenario in which a firm tries to maximize its profit in selling two successive product 

generations in a finite planning horizon. We also consider a time-window within the 

planning horizon for the introduction of the new generation. Consequently, the profit 

generated by the firm from sales of two successive generations is given by   

Π(𝜏<) = ∫ 𝜋"(𝑡)𝑆"(𝑡)𝑑𝑡
2
( + ∫ 𝜋<(𝑡)𝑆<(𝑡)𝑑𝑡

2
N(

,                       (3.43) 

where 

𝜋M(𝑡) = (𝑝𝑟M(𝑡) − 𝑐M(𝑡))𝑒&03'.                                  (3.44) 
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Here 𝑇 denotes the planning horizon. The introduction of the second generation at 𝜏< 

happens within a time-window, meaning that there exists 𝜆, Λ > 0 such that  𝜏< ∈

[𝜆, Λ] ⊂ [0, 𝑇]. 𝑆M(𝑡), denotes sales for generation 𝑖 = 1, 2	at time t, given by (3.10) and 

(3.13) in the phase-out transition scenario, and (3.15) and (3.20) in the total transition 

scenario. 𝑝𝑟M(𝑡) and 𝑐M(𝑡), refer to unit price and unit cost of production of the ith product 

generation at time t. 𝑒&03' denotes discount at rate 𝑟M for generation 𝑖 = 1, 2. 𝜋M(𝑡), 𝑖 ∈

{1, 2},	denotes the present value of profit gained by selling one unit of the product. 

Following Jiang et al. (2019) we call 𝜋M(𝑡) the unit contribution margin. We assume that 

profit margins are always positive (i.e., 𝜋M(𝑡) > 0 ). Given the total profit in (3.43), our 

goal is to find the optimal market entry timing for generation 2, 𝜏<, from the time-

window [𝜆, Λ]. Thus, the descision making problem is formulated as 

max
N(∈[Y,Z]

Π(𝜏<).                                             (3.45) 

The profit function (3.43) is similar to the one discussed in Jiang et al. (2019). However, 

they restrict their analysis to cases where the cost and the price of the products in both 

generations increase at the same rate as the discount rate. In other words, they assume 

that the unit contribution margins (𝜋M(𝑡)) are constant over time, which can be restrictive. 

Moreover, they assume that the coefficient of innovation 𝑝 and the coefficient of 

imitation 𝑞 do not change across generations. In our analysis we relax these assumptions. 

Specifically, we consider time-varying unit contribution margins and let the diffusion 

parameters	𝑝 and 𝑞 change across generations as well.  

Next, we derive analytical results regarding the optimal market entry timing. Specifically, 

Propositions 3.1 and 3.2 describe results under the phase-out transition scenario, and 

Propositions 3.3 and 3.4 depict results corresponding to the total transition scenario. In 

propositions 3.1 through 3.4, 𝜏<∗ denotes the optimal market entry timing.  

Proposition 3.1. Assume that the firm adopts the phase-out transition scenario. Suppose 

𝜋<(𝑡) is a smooth function and 𝑇 > 𝑇∗, then  

(I) If the unit contribution margin for the second generation is monotonic (𝜋<1 (𝑡) ≥ 0 

or 𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0), 𝜋"(𝑡) > 𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇], 𝛽" ≥ 𝛽<, and 𝑚" > 𝛾", then 

𝜏<∗ = Λ. 
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(II) If the unit contribution margin for the second generation is increasing (𝜋<1 (𝑡) ≥ 0), 

𝜋<(𝑡) > 𝜋"(𝑡) for 𝑡 ∈ [𝜆, 𝑇], 𝛽< ≥ 𝛽", and 𝑚" > 𝛾<, then 𝜏<∗ = λ. 

(III) If the unit contribution margin for the new generation is declining (𝜋<1 (𝑡), 𝜋<11(𝑡) ≤

0), 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝑡 ∈ [𝜆, 𝑇], and 𝛽< ≥ 𝛽", then 𝜏<∗ = 𝜆. 

Proposition 3.1 provides sufficient conditions for the optimal market entry timing in a 

phase-out transition scenario. It is assumed that the unit contribution margin for 

generation 2 is monotonic over time (i.e., increasing or decreasing over time). An 

increasing unit contribution margin is the result of an increasing per unit profit trend 

𝑝𝑟M(𝑡) − 𝑐M(𝑡) that outweighs the decreasing effect of the discount factor 𝑒&03'. On the 

other hand, a decreasing unit contribution margin is observed in two cases; (1) when per-

unit profit is decreasing over time or (2) when per-unit profit is not necessarily decreasing 

but is outweighed by the discount factor’s decreasing trend. Thresholds 𝑇∗, 𝛾", and 𝛾< are 

provided in Lemma B.3 and the proof of Proposition 3.1 in Appendix B. 

Proposition 3.1 (I) describes conditions under which the maximum delay strategy in 

releasing the new generation is optimal. Specifically, when the unit contribution margin 

for the second generation is increasing (i.e.,  𝜋<1 (𝑡) ≥ 0, 𝜆 ≤ 𝑡 ≤ 𝑇) or the unit 

contribution margin for the second generation is decreasing (i.e., 𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0, 𝜆 ≤

𝑡 ≤ 𝑇), if the potential market size for the first generation is large enough, the unit 

contribution margin for the first generation is greater than that for the second generation, 

and the repeat purchase rate of the first generation is at least as high as that of the second 

generation, firms are better off delaying the introduction of the second generation as 

much as possible.  

Proposition 3.1 (I) can be interpreted as follows. The introduction of the new generation 

attracts customers who would buy the old generation in the absence of the new generation 

through leapfrogging and switching. Considering that the unit contribution margin of the 

second generation is lower than that of the first generation and the repeat purchase rate of 

the second generation is at most as high as that of the first generation, customers shifting 

from the first generation to the second generation results in less profit, discouraging the 

earlier release of the second generation. On the other hand, the new generation creates a 
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new market and therefore increases sales, encouraging earlier release of the second 

generation. However, the profit generated by the new market created by the new 

generation does not outweigh the first generation’s substantial profit supported by a large 

market potential, a higher unit contribution margin, and a repeat purchase rate at least as 

high as that of the second generation. This finding is realistic. There are examples of 

firms that intentionally delay the introduction of a new generation to achieve a higher 

benefit. For instance, Intel deliberately delayed the release of the new generation 

Broadwell PC chip in 2014. The decision was attributed to the slow demand for personal 

computers (APH Networks, 2014). 

Proposition 3.1 (II) and (III) provide sufficient conditions for the strategy of releasing the 

new generation as early as possible. Proposition 3.1 (II) provides a sufficient condition 

for the case where the unit contribution margin for the second generation is increasing 

(i.e.,  𝜋<1 (𝑡) ≥ 0, 𝜆 ≤ 𝑡 ≤ 𝑇). According to Proposition 3.1 (II), when the unit 

contribution margin for the second generation is greater than that for the first generation, 

the repeat purchase rate of the second generation is at least as high as that of the first 

generation, and the market size of the first generation is large enough, the firm is better 

off releasing the new generation as early as possible.  

The connotation of Proposition 3.1 (II) is that when the market potential for the first 

generation is considerable, the first generation can provide a substantial number of 

customers for the second generation through leapfrogging and switching. These shifting 

customers repeat purchase at a rate at least as high as that of the first generation and 

generate higher unit contribution margins compared to the first generation, thus 

encouraging an early release of the second generation. Moreover, the release of a new 

generation creates new market and therefore generating more profit. On the other hand, 

since the unit contribution margin for the second generation is increasing, when released 

later, the higher sales, peak sales specifically, of the second generation coincide with 

higher unit contribution margins, thus encouraging a later release of the second 

generation. However, as long as the market potential for the first generation is 

sufficiently large, the profit generated by customers shifting early from the first 

generation to the second generation prevails over the profit generated by a delayed 
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introduction of the second generation. Therefore, under Proposition 3.1 (II), it is 

recommended to release the second generation as early as possible. 

According to Proposition 3.1 (III), if the unit contribution margin for the second 

generation is at least as high as that of the first generation and is decreasing (i.e., 

𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0, 𝜆 ≤ 𝑡 ≤ 𝑇), and the repeat purchase rate in the second generation is at 

least as high as that of the first generation, firms are better off releasing the second 

generation as early as possible. This result is reasonable because when the unit 

contribution margin and the repeat purchase rate of the second generation is at least as 

high as those of the first generation, attracting customers from the first generation to the 

second generation through leapfrogging and switching leads to a profit at least as large as 

that gained under the first generation. Furthermore, the introduction of a new generation 

creates a new market. All of these in addition to the fact that the unit contribution margin 

of the second generation is decreasing over time lead to the case where introducing the 

new product generation as early as possible is the best strategy. 

It is interesting to note that in Proposition 3.1, part (III), as opposed to parts (I) and (II), 

recommends the introduction of the second generation as early as possible regardless of 

how large the market potentials of the first and the second generations are. Moreover, the 

early market entry timing strategy is recommended even when the first and the second 

generations have equal unit contribution margins and repeat purchase rates (i.e., 𝜋"(𝑡) =

𝜋<(𝑡), 𝜆 ≤ 𝑡 ≤ 𝑇, and  𝛽" = 𝛽<). This interesting result can be attributed to the fact that 

the introduction of the second generation creates a new market, and considering that the 

unit contribution margin in the second generation is decreasing, then firms are better off 

activating this new market as early as possible. 

Findings of Proposition 3.1 (II) and (III) are realistic. Many firms release the new 

generation early. For example, Apple released iPad 3 in March 2012 while the sales trend 

of iPad 2, introduced in March 2011, was strongly upward (Jiang et al., 2019).   

Proposition 3.2 demonstrates a condition under which, similar to Proposition 3.1 (I), the 

first generation’s higher unit contribution margin than that of the second generation and 

the repeat purchase rate at least as high as that of the second generation, motivates 
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delaying the release of the second generation. However, unlike Proposition 3.1 (I), the 

maximum market entry delay is not an optimal strategy since the market size of the first 

generation is not big enough. 

Proposition 3.2.  Assume that the firm adopts the phase-out transition scenario. Suppose 

𝜋<(𝑡) is a smooth function and 𝑇 > 𝑇∗. If the unit contribution margin for the second 

generation is monotonic (𝜋<1 (𝑡) ≥ 0 or 𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0), 𝜋"(𝑡) > 𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇], 

𝛽" ≥ 𝛽<, and 𝑚" < 𝜂", then 𝜏<∗ ∈ [λ, Λ). 

Threshold 𝜂" is provided in the proof of Proposition 3.2 in Appendix B. It can be 

observed that 𝜂" ≤ 𝛾". To better showcase Proposition 3.2, we provide a numerical 

analysis. Figure 3-9 shows changes in profit as a function of market entry timing when 

𝜋"(t) = 1.5, 𝜋<(t) = 1, 𝑝" = 𝑝< = 0.01, 𝑞" = 𝑞< = 0.8, 𝛽" = 0.3, 𝛽< = 0.2, 𝑚" = 400, 

𝑚< = 1000, h< = 1, 𝜆 = 2, Λ = 8, and	𝑇 = 25. It shows that the profit peaks within the 

introductory time window. This means that, despite the profitability of delaying the 

release of the new generation, the introduction of the new generation should happen 

before the end of the introductory time window.  

 
Figure 3-9: Dynamics of Profit with Respect to Market Entry Timing Under 

Phase-out Transition Scenario 

Propositions 3.3 and 3.4 summarize findings regarding optimal market entry timing under 

the total transition scenario. 

Proposition 3.3. Assume that the firm adopts the total transition scenario. 
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(I) If 𝜋"(𝑡) ≥ 𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽" ≥ 𝛽< with at least one strict inequality, and 

𝑚" > 𝛾�", then 𝜏<∗ = Λ. 

(II) If 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽< ≥ 𝛽" with at least one strict inequality, and 

𝑚" > 𝛾�<, then 𝜏<∗ = λ. 

(III) Suppose	𝜋<(𝑡) declines monotonically. If 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽< ≥

𝛽", then 𝜏<∗ = 𝜆. 

Proposition 3.3 provides a set of sufficient conditions for the optimal market entry timing 

under the total transition scenario. Unlike the phase-out transition scenario discussed in 

Proposition 3.1, the results are not necessarily limited to scenarios in which the unit 

contribution margin for the second generation is monotonic. Thresholds 𝛾�" and 𝛾�< are 

provided in the proof of Proposition 3.3 in Appendix B. 

Proposition 3.3 (I) provides conditions under which maximum delay in the introduction 

of the new generation is recommended. According to Proposition 3.3 (I), if the potential 

market size for the first generation is large enough, and the unit contribution margin and 

repeat purchase rate for the first generation are at least as large as that of the second 

generation, with at least one of either the unit contribution margin or the repeat purchase 

rate for the first generation being strictly higher than that of the second generation, firms 

are better off delaying the introduction of the second generation as much as possible.   

The explanation for Proposition 3.3 (I) is that, with the introduction of a new generation 

and therefore the discontinuation of the old generation, customers who would have 

bought the old generation shift to the new generation. However, the unit contribution 

margin and the repeat purchase rate in the new generation are lower or at most as high as 

those of the old generation. This means that the customers shifting from the first 

generation to the second generation lead to a lower profit, discouraging the release of the 

new generation. On the other hand, the substantial profit generated by the first generation 

due to its large market potential, and unit contribution margin and repeat purchase rate at 

least as high has that of the second generation (with at least one of either the unit 

contribution margin or the repeat purchase rate for the first generation being strictly 
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higher than that of the second generation) outweighs the profit generated by the new 

generation’s created market. 

The sufficient conditions provided in Proposition 3.3 (II) and (III) support the strategy of 

introducing the new generation as early as possible under the total transition scenario. 

According to Proposition 3.3 (II), if the potential market size for the first generation is 

large enough, and the unit contribution margin and repeat purchase rate for the second 

generation are at least as large as that of the first generation, with at least one of either the 

unit contribution margin or the repeat purchase rate for the second generation being 

strictly higher than that of the first generation, firms are recommended to release the new 

generation as early as possible.  

Proposition 3.3 (II) indicates that when the market potential for the first generation is 

high, with the introduction of the second generation and therefore the discontinuation of 

the first generation under the total transition strategy, a substantial number of customers 

shift from the first generation to the second generation. Given that the unit contribution 

margin and the repeat purchase rate of the second generation are higher than or at least as 

high as those of the first generation, firms are recommended to introduce the second 

generation as early as possible to generate more profits. Moreover, in addition to the 

customers shifting from the first generation to the second generation, the new generation 

creates its own market potential and subsequently generating more profit. 

Note that depending on the unit contribution margin trend and the sales trend of the 

second generation, delaying the introduction of the second generation may positively 

impact profit. For example, with a monotonically increasing unit contribution margin, a 

delayed introduction of the second generation can result in having the second 

generation’s sales peaking at a point that coincides with higher unit contribution margins, 

thereby positively impact profit. However, this positive effect on profit does not outweigh 

the negative impact of a delayed release.  

Based on Proposition 3.3 (III), firms are recommended to introduce the second generation 

as early as possible when the unit contribution margin for the second generation is at least 
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as high as that of the first generation and is monotonically decreasing, and the repeat 

purchase rate of the second generation is at least as high as that of the first generation.  

Proposition 3.3 (III) indicates that when the unit contribution margin and the repeat 

purchase rate of the second generation are at least as high as those of the first generation, 

the discontinuation of the first generation, causing customers to shift from the first 

generation to the second generation subsequently resulting in a profit at least as large as 

that gained under the first generation, motivates an early release of the second generation. 

Furthermore, the introduction of a new generation activates a new section of the market 

that is interested in the new generation. That along with the unit contribution margin of 

the second generation being decreasing over time further encourage an earlier release of 

the second generation. 

It is important to note that in Proposition 3.3 (III), similar to the phase-out transition 

scenario discussed in Proposition 3.1 (III), the early market entry strategy is optimal 

regardless of how large the market potentials of the first and second generations are. 

Moreover, similar to the phase-out transition scenario, the early market entry strategy is 

recommended even if the unit contribution margins and the repeat purchase rates of the 

first and the second generation are equal (i.e., 𝜋"(𝑡) = 𝜋<(𝑡), 𝜆 ≤ 𝑡 ≤ 𝑇 , and 𝛽" = 𝛽<). 

Similar to the phase-out transition scenario, this can be attributed to the fact that the 

introduction of the second generation generates a new market. Considering that the unit 

contribution margin of the second generation is declining over time, attracting these 

second-generation customers earlier than later by releasing the second generation as early 

as possible leads to higher profits. 

Under the total transition scenario, Proposition 3.4 provides a condition under which, 

similar to Proposition 3.3 (I), the first generation’s unit contribution margin and repeat 

purchase rate at least as high as that of the second generation, with at least one of either 

the unit contribution margin or the repeat purchase rate for the first generation being 

strictly higher than that of the second generation, are in favor of a late market entry 

strategy; however, unlike Proposition 3.3 (I), the market size of the first generation is not 

big enough to support the maximum delay strategy.  
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Proposition 3.4. Assume that the firm adopts the total transition scenario. If 𝜋"(𝑡) ≥

𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽" ≥ 𝛽< with at least one strict inequality, and 𝑚" < 𝜂�", then 

𝜏<∗ ∈ [λ, Λ). 

Threshold 𝜂�" is provided in the proof of Proposition 3.4 in Appendix B. It can be 

observed that 𝜂�" ≤ 𝛾�". We conduct numerical analysis to demonstrate the result of 

Proposition 3.4. Figure 3-10 shows the profit as a function of market entry timing when 

𝜋"(t) = 1.2, 𝜋<(t) = 1, 𝑝" = 𝑝< = 0.01, 𝑞" = 𝑞< = 0.8, 𝛽" = 0.3, 𝛽< = 0.2, 𝑚" = 600, 

𝑚< = 800, 𝜆 = 4, Λ = 15,	𝑇 = 20. It can be observed in Figure 3-10 that the profit 

peaks within the introductory time-window, which means that, although the delayed 

market entry strategy is recommended, the maximum delay strategy is not optimal.    

 
Figure 3-10: Dynamics of Profit with Respect to Market Entry Timing Under Total 

Transition Scenario 

Note that our main model does not include the prices of the product generations. An 

implicit assumption is that price has already been considered in calculating the unit 

contribution margin. To explicitly explore the influence of pricing on the market entry 

timing decision, we analyze an extension scenario under phase-out transition scenario 

that incorporates price. In this extended analysis, we consider two key assumptions: (i) 

the price of the old generation is dropped (ii) the firm sets higher price for the new 

generation. Details of this analysis are provided in Appendix B. Our numerical results 

suggest that, as the price of the new generation increases, it is generally more profitable 
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to release the new generation sooner. Given that an elevated price leads to a higher unit 

contribution margin, this finding is consistent with our analytical findings outlined in 

Propositions 1 (II) and (III) that the immediate release of the new generation is 

recommended when the unit contribution margin for the new generation is higher than 

that of the old generation. 

The improved sales estimation by our model can potentially lead to better decisions on 

optimal market entry timing. Based on sales estimations using the DVD (2000-2018) and 

Blu-ray Players (2008-2018) data, we conduct numerical analysis on how a firm’s profit 

changes with the market entry timing of a new generation under our GMDR and the 

benchmark model (Jiang et al., 2019). A representative instance of their difference is 

illustrated in Figure 3-11. The unit contribution margins for the old and new generation 

are assumed to follow the decreasing trends given by 𝜋"(𝑡) = 10𝑒&(.("' and 𝜋<(𝑡) =

10𝑒&(."' and the planning horizon is set to 𝑇 = 22. We can observe a stark disparity in 

market entry timing recommendations between GMDR and the benchmark model. The 

benchmark model advocates an immediate launch of the new generation, while GMDR 

suggests a maximum delay strategy for releasing the new generation. This divergence is 

further illuminated in Figure 3-11(a), where profit estimations from GMDR differ 

substantially between the strategies of immediate product release and maximal delay. 

 
Figure 3-11: Comparison of the Profit Dynamics Under Different Market Entry 

Timing Models 

The present research does not aim to prescribe a specific phase-out transition strategy or 

total transition strategy, as external factors beyond the scope of this study can impact a 
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company's choice between these strategies. However, we also realize that an analytical 

comparison of the profitability outlined in Equation (3.43) between these two scenarios 

can shed light on the firm's decision-making process in selecting either strategy. We thus 

conduct such an analysis and derive some analytical findings, as summarized in 

Proposition 3.5. The proof of Proposition 3.5 is provided in Appendix B. 

Proposition 3.5. The following hold regarding the profit under phase-out and total 

transition scenarios: 

(I) If 𝜋"(𝑡) = 𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽" = 𝛽<, then the profit under phase-out and 

total transition scenarios are equal.  

(II) If 𝜋<(𝑡) ≤ 𝜋"(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽< ≤ 𝛽" with at least one strict inequality, then 

the profit under phase-out transition scenario is higher than that under total 

transition scenario.  

(III) If 𝜋"(𝑡) ≤ 𝜋<(𝑡) for 𝑡 ∈ [𝜆, 𝑇] and 𝛽" ≤ 𝛽< with at least one strict inequality, then 

the profit under total transition scenario is higher than that under phase-out 

transition scenario.  

Proposition 3.5 reveals that when the unit contribution margin and repeat purchase rates 

for the old and new generations are equal, the profits generated under phase-out transition 

and total transition scenarios are equal. However, if the unit contribution margin and 

repeat purchase rate for the old generation are at least as high as that of the new 

generation, with at least one of either the unit contribution margin or the repeat purchase 

rate for the old generation being strictly higher than that of the new generation, retaining 

the old generation in the market following the introduction of the new generation (i.e., 

opting for a phase-out transition scenario) yields a higher profit. Conversely, when the 

unit contribution margin and repeat purchase rate for the new generation are at least as 

high as that of the of the old generation, with at least one of either the unit contribution 

margin or the repeat purchase rate for the new generation being strictly higher than that 

of the old generation, discontinuing the old generation (i.e., employing a total transition 

strategy) results in a higher profit.  
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3.6 Concluding Remarks  

In this research, we develop a new multigeneration sales model that accounts for repeat 

purchases. Similar to models from the extant literature, our model captures initial 

purchases of each generation as well as cross-generation upgrades. However, unlike the 

existing models that do not account for repeat purchases within each generation, our new 

model incorporates such purchases, making it suitable for estimating sales of technology 

products with high rates of within-generation repeat purchases. Furthermore, we 

incorporate two main generation-transition strategies: (i) a phase-out transition strategy 

under which firms continue to sell the old generation after the release of a new generation 

to fulfill the existing demand for the old generation, and (ii) a total transition strategy 

under which firms discontinue the old generation with the release of a new generation. 

The new model can be used in predictive and prescriptive analytics corresponding to 

sales of technology products. 

We use multiple datasets to empirically evaluate the fit and forecasting accuracy of the 

proposed model. Furthermore, we compare our model with a benchmark model (Jiang et 

al., 2019) that does not incorporate repeat purchases. Our empirical results show that the 

new model fits and forecasts sales significantly better than does the benchmark model, 

demonstrating the importance of incorporating repeat purchases. 

Furthermore, using our new multigeneration sales model, we derive the optimal market 

entry timing of a new product generation in a product line under the two generation 

transition strategies. We find conditions under which firms are better off releasing a new 

generation as early as possible or waiting as much as possible to introduce the new 

product generation. Specifically, under both the phase-out transition and the total 

transition scenarios, firms are better off adopting the maximum delay strategy in 

releasing the new generation when (i) the potential market size for the old generation is 

large enough, (ii) the unit contribution margin of the old generation is greater than that of 

the new generation, and (iii) the repeat purchase rate of the old generation is at least as 

high as that of the new generation. Moreover, independent of potential market sizes of the 

old and the new product generations, firms are better off releasing the new generation as 

early as possible when (i) the unit contribution margin for the new generation is at least 
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as large as that of the old generation and declining, and (ii) repeat purchase rate of the 

new generation is at least as high as that of the old generation. This means that, even if 

the repeat purchase rates and the unit contribution margins for the old and new 

generations are identical, immediate release of the new generation is optimal if the unit 

contribution margin for the new generation is declining. Finally, under both generation 

transition scenarios, there are conditions under which neither introducing the new 

generation as early as possible nor delaying the release of new generation as long as 

possible is the optimal strategy. 

In summary, the main contributions of the present research include (i) the introduction of 

a new model for sales of multigeneration technology products with repeat purchases and 

(ii) the development of a modelling framework for optimizing the market entry timing for 

a new product generation in a product line. 

The multigeneration sales model outlined in this paper is not without limitations. 

Although factors such as pricing, quality and features, competition, and macro-economic 

conditions (e.g., recession, inflation, etc.) are implicitly considered in the model's 

parameters, they are not explicitly incorporated into the model. Consequently, this 

proposed modeling framework is best suited for situations where the primary focus of 

analysis does not revolve around directly assessing the influence of these factors on sales 

trends or the release timing of new product generation. 

The new multigeneration sales model introduced in this study can serve as a foundation 

for future works. For instance, while the adoption rate in the current model follows the 

Bass Model, other diffusion models (e.g., the one by Van den Bulte and Joshi 2007) 

could also be considered to develop a similar multigeneration product sales model. 

Furthermore, by incorporating marketing mix variables such as pricing and advertising, 

the new multigeneration sales model can be used to find profit-maximizing optimal 

pricing and advertising policies in a multigenerational sales scenario when a significant 

portion of sales come from repeat purchases. Additionally, as a novel tool in the 

management science literature (Lotfi et al., 2023), we model repeat purchases using 

fractional integration. As a result, the fractional calculus employed in the present research 
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contributes methodologically to the management science literature and may be used in 

other literatures related to business research.  
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Chapter 4  

4 Giveaway Strategies for a New Technology Product 

4.1 Introduction 

Firms often offer free products to users in exchange for behaviors that positively 

influence product sales (e.g., relevant social media postings). To be offered a free 

product, one does not necessarily need to have a celebrity stature or an extensive number 

of social media followers. Having, for example, an Instagram account with an authentic 

presence and quality content may suffice (Gervin, 2021).   

Firms may adopt different timings for giving away products for free. In one strategy, 

firms first give away their new product before launching it to the market. We call this 

strategy before. For instance, more than 5 million free copies of SpyBlocker antispyware 

software were distributed before officially selling the product in the market (Jiang & 

Sarkar, 2009). Another example is Sun Microsystems which gave away its office suite 

StarOffice for few years, before starting to charge new users for it (Jiang & Sarkar, 

2009). Alternatively, firms may choose not to delay product release and instead offer free 

products upon the product launch and in parallel with sales in the market. We call this 

strategy concurrent. For instance, Google gave away Google Nest Minis for free to 

Spotify premium users while the product was available to purchase in the market (For the 

Record, 2019). In this paper, we study the before and concurrent free product offering 

strategies as well as the combined case in which a firm offers the free products prior to 

product launch in the market as well as after the release of the new product and in parallel 

with market sales. We call this strategy combined.  

Free product giveaway can bring several benefits to firms. For instance, users can be 

offered a free product in exchange of testing a beta version of the product (Jiang et al., 

2017). Moreover, offering free products can increase the network effect (Jiang et al., 

2017). We focus on the role of free users in promoting the new product sales. 

Specifically, we present models to examine the impact of free users’ word-of-mouth on 

the acceleration of new product sales and the corresponding profits when the before, 
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concurrent, and combined free product offering strategies are adopted. Moreover, we 

assume that the free products offered are identical to those planned for market sale. This 

research does not consider cases where firms might give away products with fewer 

features.   

The current literature studies free product offers for product adoption without considering 

repeat purchases although repeat purchases constitute a significant proportion of 

technology products’ sales. To fill this void, focusing on technology products, we study 

the strategies for offering free products when sales are composed of (i) buyers’ adoptions, 

(ii) repeat purchases made by buyers, and (iii) repeat purchases made by free users when 

they get additional units. Additionally, unlike the current literature which mainly studies 

cases where the offering of free products takes place before product launch, we study free 

product offering under three strategies, before, concurrent and combined. Furthermore, 

based on the propensity to purchase the product, we distinguish between two types of free 

users. We refer to free users who would buy the product if it were not offered to them for 

free as high-valuation users, whereas we refer to free users who are not willing to buy the 

product as low-valuation users. We specifically address the following research questions 

in this paper:  

• What is the optimal number of products to offer for free under the before, 

concurrent, and combined strategies? 

• What is the impact of the different types of free product users on the optimal 

number of free product offerings and the firm’s profitability? 

• How do market dimensions such as market size, potential buyers’ internal 

motivation for new product adoption, buyers’ and free users’ word-of-mouth effect, 

and repeat purchases rates influence the optimal number of free product offerings 

and a firm’s profitability? 

• How do the before, concurrent, and combined strategies compare in terms of 

profitability?  

We obtain the following managerial insights.  
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(i) Offering free products is highly dependent on the adoption and repeat purchases 

rates. Firms may benefit more from offering free products when the rate of repeat 

purchases for the new product is expected to be high, but the adoption is slow.  

(ii) Offering free products can be more advantageous when the unit contribution margin 

is decreasing. 

(iii) Higher ratio of low-valuation to high-valuation free users can make offering free 

products more appealing. 

(iv) Offering free products is more favorable when the free product marginal cost is low. 

However, under certain conditions even a zero marginal cost may not justify the 

offering of free products. One such case is when the repeat purchase rate is low, the 

buyers’ adoption process is fast, and the ratio of low-valuation to high-valuation free 

users is low. 

(v) In the cases where offering free products is not optimal, increasing the market size 

does not necessarily make offering free products justifiable.  

We also find that, when firms plan for a short planning horizon, in a market composed of 

potential buyers with effective word-of-mouth, they should consider the following for 

higher profit:  

(i) Markets composed of potential buyers with high self-motivation to adopt the new 

product and/or high word-of-mouth effect should be targeted.  

(ii) Highly influential users should be targeted with free products.  

(iii) When the free product marginal cost is zero or relatively low compared to the unit 

contribution margin, higher ratio of low-valuation to high-valuation free users should 

be targeted with free products (i.e., corresponding to each high-valuation free 

product recipient, a larger number of low-valuation users should obtain free 

products).  

(iv) When the free product marginal cost is zero or relatively low compared to the unit 

contribution margin, faster free product adoption by low-valuation free users after 

the release time should be planned.  

Recommendations (i) through (iii) apply for all three strategies (before, concurrent, and 

combined) while recommendation (iv) applies to the concurrent and combined strategies. 
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The above recommendations lead to higher profit over a more extended time period when 

the rate of repeat purchases is high. However, intriguingly, if an extensively long 

planning horizon is desired, the above recommendations may lead to less profitability. 

Our analysis also reveals the differences between the before, concurrent, and combined 

strategies. When product giveaway is profitable, firms may profit more from the before 

strategy than the concurrent strategy if the free product distribution time window is short 

and the new product is introduced without significant delay. The concurrent strategy, 

however, may be superior to the before strategy if the free product distribution period 

before the product release is long and the new product is released to the market with a 

significant delay. Also, the before strategy may not yield the highest profits, whereas 

using a combined strategy can result in the highest profits. One such condition is when 

there is a high rate of repeat purchases but a slow adoption of new products—a favorable 

condition for free product offerings.  

We provide a literature review in Section 4.2. In Section 4.3, we establish our adoption 

and sales models for the before and concurrent scenarios. Section 4.4 presents the 

optimization problems related to the free product offers under the before and concurrent 

strategies. Section 4.5 presents a modelling framework for the combined strategy. 

Finally, Section 4.6 concludes the chapter.  

4.2 Literature Review 

Giving away products to a subset of the target population is a form of seeding in the 

target population. There are several publications discussing the role of seeding in product 

diffusion and profit optimization (e.g., Jain et al., 1995; Bakshi et al., 2007; Orbach & 

Fruchter, 2017). However, these papers account for new product adoptions only and 

ignore repeat purchases which constitute a significant proportion of the sales of 

technology products. Additionally, the modelling techniques used in these papers restrict 

the analysis to seeding only prior to product launch. We consider repeat purchases and 

analyze three free product offering strategies: prior to product release (before strategy), 

upon product release and parallel to sales (concurrent strategy), and lastly, prior to and 

after the product release time and in parallel with sales (combined strategy). 
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Lehmann and Esteban-Bravo (2006) study the effect of giving away products on a new 

product’s diffusion acceleration. Considering three time periods for the diffusion process, 

Lehmann and Esteban-Bravo (2006) develop a model in which early adopters are 

provided with free products to accelerate product adoption. In another study, Han and 

Zhang (2018) examine optimal free sampling levels based on the Bass diffusion model 

(Bass, 1969). However, Lehmann and Esteban-Bravo (2006) and Han and Zhang (2018) 

do not incorporate repeat purchases in their analysis. 

There are models that are specifically developed for software products. Jiang and Sarkar 

(2009) study the idea of offering free software in which users pay for initial 

subscriptions, while resubscriptions are available to users free of charge, making their 

model applicable only for particular cases. Jiang et al. (2017) examine giving away 

software for beta testing. However, they assume sales include only initial subscriptions, 

and exclude resubscriptions. Furthermore, they assume free users and buyers have 

identical word-of-mouth effect. Neither Jiang and Sarkar (2009) nor Jiang et al. (2017) 

examine cases in which the free offers take place after the product release and in parallel 

with product sales. 

In a recent study Lam et al. (2020) focus on freemium games. The freemium games are 

free to download and only earn revenue through offering in-app purchases. Their study 

develops a modelling framework for finding the optimal release time for in app add-ons 

but does not address the problem of finding the optimal number of product giveaways 

when the product itself is going to be sold.    

In a study, Parker and Van Alstyne (2005) examine profitability of giving away products 

by a firm in network markets. However, their model does not provide a temporal analysis 

of sales and profit. In other studies, researchers use agent-based simulation modelling to 

assess the effect of promotional strategies and seeding on new product diffusion. 

Examples of such works are Delre et al. (2007), Libai et al. (2013) and Hu et al. (2018). 

However, these studies do not provide mathematical models that explicitly capture 

product sales over time. 
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Our review of the literature indicates that a temporal analysis of free product offering for 

technology products has not been studied before when (i) sales includes both adoptions 

and repeat purchases and (ii) free product offers can happen before the product release 

time and/or after the product release time and in parallel with sales which are common in 

practice. We aim to fill this gap in the literature and provide valuable managerial insights.  

4.3 Free Product Offer Under Before and Concurrent Strategies  

We first develop novel models to capture the sales dynamics of free product offering 

strategies for technology products and provide new insights on how free offers affect the 

dynamics of sales when such sales consist of both adoptions and repeat purchases. We 

consider two cases: (i) free products are offered before the product launch (before 

strategy) and (ii) the new product is released without delay and free product offers 

happen following the product launch and continue in parallel with the product sales 

(concurrent strategy). Then we determine the optimal number of free products to offer 

under both strategies. Later in Section 4.5 we also formulate the combined strategy case.    

A common assumption in the literature is finite-time demand window. Following Kalish 

(1983), Krishnan et al. (1999), Jiang and Sarkar (2009), and Jiang et al. (2017), we set 

time 𝑇 < ∞ as the planning horizon, making [0, 𝑇] our finite-time demand window. We 

use this time window to evaluate the profit based on sales. Sales are composed of 

adoptions and repeat purchases. Free product recipients are split into two types: high-

valuation free users and low-valuation free users. High-valuation users are those who are 

willing to pay for the product and low-valuation users are those who would not pay for 

the product. Following the literature (e.g., Jiang & Sakar, 2009; Lotfi et al., 2023), we 

consider a potential adopters’ internal motivation to adopt a new product as the 

innovation effect. Similarly, we consider the word-of-mouth effect on other potential 

adopters as the imitation effect. 

We use the GDMR model developed in Lotfi et al. (2023) to model the sales process of a 

product after release. GDMR is a product sales model developed for technology products 

that captures both adoptions and repeat purchases. GDMR formulates sales as  

𝑆(𝑡) = 𝐼(
!𝑦(𝑡) = "

J(!)∫ (𝑡 − 𝑠)
!&"𝑦(𝑠)𝑑𝑠,'

( 					𝑡 ≥ 0.																					(4.1) 
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Here, 𝑦(𝑡) denotes the adoptions at time 𝑡 and 𝛽 (0 ≤ 𝛽 ≤ 1) denotes the order of the 

fractional integral operator 𝐼(
! which captures the rate of repeat purchases.10 Through 

extensive empirical testing, Lotfi et al show that the fractional integral operator 

effectively captures the repeat purchase rate for technological product sales. Higher 

values of 𝛽 correspond to higher repeat purchase rates. To capture the buyer’s adoption, 

we use the Bass diffusion model (Bass, 1969) given by 

𝑦(𝑡) = �𝑝 + /
+
𝑌(𝑡)� ;𝑚 − 𝑌(𝑡)=,                                   (4.2) 

where 𝑝, 𝑞,	and 𝑚 denote the coefficient of innovation, coefficient of imitation, and 

market potential respectively. In (4.2), 𝑦(𝑡) captures the adoption rate at time 𝑡 and 𝑌(𝑡), 

𝑌(𝑡) = ∫ 𝑦(𝑠)'
( 𝑑𝑠, is the cumulative adoption at 𝑡. One can obtain the following closed 

form solution from (4.2)  

𝑦(𝑡) = 𝑌1(𝑡) = 𝑚 (.-/)(

.
,!(#$%)'

K"-%#,
!(#$%)'L

( ,					𝑡 ≥ 0.													              (4.3) 

Following Lotfi et al. (2023), our unit of analysis is a group of products that differ only 

incrementally. Specifically, we consider a new purchase as a repeat purchase only if the 

newly purchased product is identical to the initially purchased product or differ only 

incrementally.  

4.3.1 Before Strategy 

We first consider the product sales dynamics of the before strategy, i.e., when the firm 

offers free products before the official release of the product to the market. Free products 

are offered to and adopted by users within the time-window [0, 𝜏], 𝜏 > 0 where the 

product release happens at 𝜏 and 𝜏 is exogenously given. Figure 4-1 illustrates the before 

strategy timeline. 

 

10 In the numerical computations, we replace fractional integral operators with the computationally 

tractable approximate operators introduced in Lotfi et al. (2023).  
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Figure 4-1:  Before Strategy Timeline 

Suppose 𝑛 is the number of high-valuation free users. Following Jiang and Sarkar (2009) 

and Jiang et al. (2017), we let 𝛿𝑛 be the number of low-valuation free users where 𝛿 

denotes the ratio of low-valuation to high-valuation free users. Depending on the target 

population where the free product is distributed, the ratio 𝛿 can be different. For instance, 

if the firm offers the free product to the members of a forum for the product supporters, 

then the ratio 𝛿 is expected to be lower than when the free product is offered to 

indifferent users. Since high-valuation users are those who are willing to pay for the 

product if they do not receive a free unit, unlike low-valuation free users, by offering free 

units to high-valuation users we remove them from the population of potential adopters 

who will purchase the product. Specifically, if 𝑛	free units are offered in [0, 𝜏] to high-

valuation free users, then there will be 𝑛	fewer adopters who will pay for the product 

after the product release and the market size will be 𝑚 − 𝑛 which we refer to as the 

actual market size. Thus, in the presence of high-valuation and low-valuation free users 

after the product release and accounting for their word-of-mouth effect, the buyers’ 

adoption at time 𝑡 ≥ 𝜏 follows the following diffusion process  

𝑦(𝑡) = R𝑝 + /
+
𝑌(𝑡) + Y4

+
𝑛 + Y*

+
𝛿𝑛S ;𝑚 − 𝑛 − 𝑌(𝑡)=,						𝑡 ≥ 𝜏,               (4.4) 

where, 𝑌(𝜏) = 0. Here, 𝜆\ and 𝜆5 are imitation parameters capturing high-valuation and 

low-valuation free users word-of-mouth effect on buyers respectively. Following the 

standard Bass diffusion model (Bass, 1969), the closed form solution for (4.4) can be 

derived as 

𝑦(𝑡) = 𝑌′(𝑡) = (𝑚 − 𝑛) (.]-/])
(

.]
,!(#5$%5)('!0)

K"-%5#5,
!(#5$%5)('!0)L

( 						𝑡 ≥ 𝜏.                 (4.5) 

where 𝑝� = 𝑝 + Y4
+
𝑛 + Y*

+
𝛿𝑛 and 𝑞� = 𝑞 +&O

+
 . It is worth mentioning that under the special 

case where buyers and free users’ have identical word-of-mouth effect (𝑞 = 𝜆\ = 𝜆5), the 
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adoption formulation (4.4) reduces to the adoption formulation presented in Jiang and 

Sarkar (2009) and Jiang et al. (2017). By (4.5) we have  

𝑌(𝑡) = (+&O)6"&,!(#5$%5)('!0)8

K"-%5#5,
!(#5$%5)('!0)L

.                                       (4.6) 

We observe that 𝑌(𝑡) and 𝑦(𝑡) are proportional to the actual market size 𝑚 − 𝑛. Given 

that  =^
=.]

 , =^
=/]
> 0, 𝑡 > 0, and =.]

=.
 , =.]
=Y4

 , =.]
=Y*

 , =.]
=_

, =/]
=/
> 0, we see that 𝑌(𝑡), 𝑡 > 0, is strictly 

increasing in 𝑝, 𝑞, 𝜆\ , 𝜆5 and 𝛿. Additionally, according to Bass (1969), 𝑦(𝑡) has a peak if 

𝑞� > 𝑝�. Thus, equivalently, 𝑞 > +
+&O

�	𝑝 + O
+
(𝜆\ + 𝜆5𝛿)� results in 𝑦(𝑡) having a peak. 

These properties are important because they offer valuable insights into the dynamics of 

the product adoption process. Additionally, they play a key role in the proof of 

subsequent analytical developments. 

Incorporating the repeat purchases made by buyers, we obtain the buyers’ sales at 𝑡, 𝑡 ≥

𝜏 as  

𝑆(𝑡) = 𝐼N
!𝑦(𝑡) = "

J(!)∫ (𝑡 − 𝑠)
!&"𝑦(𝑠)𝑑𝑠,'

N 																																				(4.7) 

where 𝛽 denotes the buyers’ repeat purchases rate. If high-valuation free adopters would 

like to acquire additional units, then they need to pay for those units. Therefore, high-

valuation free users can also be a source of sales through repeat purchases which we 

denote by 𝑆\(𝑡). Following the GDMR, the high-valuation free users repeat purchases 

are captured by 

𝑆\(𝑡) =
"

J(!4)
∫ (𝑡 − 𝑠)!4&"𝑦\(𝑠)𝑑𝑠
N
( ,										                             (4.8) 

where 𝑦\(𝑡) denotes the free product distribution to n high-valuation free users within the 

time window [0, 𝜏], 𝜏 > 0 and 𝛽\ denotes repeat purchases rate of high-valuation free 

users. Thus, the total sales at 𝑡, 𝑡 ≥ 𝜏, is given by 𝑆(𝑡) + 𝑆\(𝑡).   

4.3.2 Concurrent Strategy 

We now examine the concurrent strategy, i.e., the new product is released without delay 

and free product offers take place in parallel with product sales following the product 

release and within the planning horizon. Figure 4-2 depicts the timeline for the concurrent 

strategy.  
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Figure 4-2: Concurrent Strategy Timeline 

Let 𝑦(𝑡) be the product adoption process by buyers, and 𝑦\(𝑡) and 𝑦5(𝑡) be the free 

product adoption processes for high-valuation and low-valuation free users respectively. 

As before, 𝑚 is the number of potential adopters, 𝑛 is the number of high-valuation free 

users, and 𝛿𝑛 is the number of low-valuation free users with 𝛿 being the ratio of low-

valuation to high-valuation free users. We consider a generic formulation for free product 

distributions. Specifically, we consider 𝑌5(𝑡), 𝑌5(𝑡) = ∫ 𝑦5(𝑠)
'
( 𝑑𝑠 and 𝑌\(𝑡), 𝑌\(𝑡) =

∫ 𝑦\(𝑠)
'
( 𝑑𝑠, are continuous monotonically increasing functions respectively converging 

to 𝛿𝑛 and 𝑛, representing the cumulative distribution of the free products to low-

valuation and high-valuation free users respectively. It should be noted that by 

distributing all free products within the time interval [0, 𝑇], we will have 𝑌\(𝑡) = 𝑛 and 

𝑌5(𝑡) = 𝛿𝑛 for 𝑡 ≥ 𝑇. 

Given that the number of free products offered to high-valuation users is 𝑛, the market 

size should be adjusted to the actual market size 𝑚 − 𝑛. Moreover, the buyers’ adoption 

process 𝑦(𝑡) is influenced by 𝑌\(𝑡) and 𝑌5(𝑡) accounting for the word-of-mouth effect of 

the high-valuation and low-valuation free users on buyers. Thus, the buyers’ adoption 

rate is formulated as 

𝑦(𝑡) = �𝑝 + /
+
𝑌(𝑡) + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌5(𝑡)� ;𝑚 − 𝑛 − 𝑌(𝑡)=.                 (4.9) 

Here 𝑝 and 𝑞 are the buyers’ coefficients of innovation and imitation, 𝜆\ and 𝜆5 denote 

the imitation parameters corresponding to high-valuation and low-valuation free product 

users’ word-of-mouth, and 𝑌(𝑡) = ∫ 𝑦(𝑡)𝑑𝑡'
(  denotes the buyers’ cumulative adoption at 

time 𝑡. Note that (4.9) is similar to (4.4) except that in (4.4) the free products are fully 
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distributed to high-valuation and low-valuation free users by the product release time at 

𝑡 = 𝜏 (𝑌\(𝑡) = 𝑛 and 𝑌5(𝑡) = 𝛿𝑛 for 𝑡 ≥ 𝜏). Given that 𝑌(0) = 0, (4.9) is an initial value 

problem. Although unlike (4.4), the analytical solution of (4.9) cannot be derived, the 

existence of a unique global solution is guaranteed by Theorem 4.1 below. Moreover, 

Propositions 4.1-4.3 demonstrate interesting properties of 𝑦(𝑡) and 𝑌(𝑡), giving us 

insights from the modelling framework that we propose. Furthermore, they play a crucial 

role in the proof of subsequent analytical results. We provide all the proofs in Appendix 

C.  

Theorem 4.1. The initial value problem (4.9) with 𝑌(𝑡() = 𝑙, 0 ≤ 𝑡(, 0 ≤ 𝑙 < 𝑚 − 𝑛, 

has a unique solution 𝑌(𝑡) defined on [𝑡(, ∞) where 𝑌(𝑡) is monotonically increasing to 

𝑚 − 𝑛.   

Proposition 4.1 provides a sufficient condition under which the buyers’ cumulative 

adoption rate is proportional to the actual market size 𝑚 − 𝑛. 

Proposition 4.1. If 𝑌\(𝑡) and 𝑌5(𝑡) are proportional to 𝑛, then 𝑌(𝑡) is proportional to 

𝑚 − 𝑛. 

Our next result, Proposition 4.2, demonstrates that the buyers’ adoption 𝑦(𝑡) peaks if the 

buyers’ imitation effect (𝑞) is sufficiently high. Furthermore, the cumulative adoption 

rate 𝑌(𝑡) is increasing in the innovation and the imitation parameters. It's notable that 

Proposition 4.2's sufficient condition for a peak in buyers' adoption is the same as the 

sufficient condition for the before strategy, and both reduce to the sufficient condition for 

the existence of a peak in the standard Bass diffusion process (4.2), which is 𝑞 > 𝑝, when 

𝑛 = 0. 

Proposition 4.2.   

(i) If  𝑞 > +
+&O

�	𝑝 + O
+
(𝜆\ + 𝜆5𝛿)�, then the adoption rate 𝑦(𝑡) peaks.  

(ii) 𝑌(𝑡), 𝑡 > 0 is increasing in 𝑝, 𝑞, 𝜆\, and 𝜆5. 

Proposition 4.2 (i) shows that a high imitation effect increases the adoption rate 

stimulated by early adopters’ word-of-mouth and therefore reaching a peak in adoption 

before a decline that is due to approaching market saturation. Proposition 4.2 (ii) 



84 

 

demonstrates that the higher innovation effect of buyers (𝑝) results in faster buyers’ 

adoption process through internal motivation. Moreover, increasing the word-of-mouth 

effect generated by the buyers themselves (𝑞), high-valuation free users (𝜆\), and low-

valuation free users (𝜆5) further accelerate the buyers’ adoption process. Next, 

Proposition 4.3 demonstrates that faster free product distribution leads to a faster buyers’ 

adoption of the new product.  

Proposition 4.3. Suppose 𝑌�(𝑡) corresponding to 𝑌�\(𝑡), 𝑌�\(𝑡) > 𝑌\(𝑡), 𝑡 ∈ (0, 𝑇), or 

𝑌�5(𝑡), 𝑌�5(𝑡) > 𝑌5(𝑡),  𝑡 ∈ (0, 𝑇), or both. Then, 𝑌�(𝑡) ≥ 𝑌(𝑡), for all 𝑡 ∈ [0, 𝑇].   

Proposition 4.3 shows that having a higher number of free product users (higher 𝑌\(𝑡), or 

higher 𝑌5(𝑡), or both) results in higher free users’ word-of-mouth effect on buyers at each 

time, leading to a faster buyers’ adoption process. 

Firms can adopt two approaches, direct or indirect, to distribute free products to potential 

free users. The first approach is to directly send the free products to designated users. In 

the second approach, the free product is distributed indirectly by making the free products 

available to the potential free users. In the second approach, free user’s word-of-mouth 

plays an important role in the distribution of free products to free users. While under the 

direct approach 𝑌\(𝑡) and 𝑌5(𝑡) are explicitly determined by the firm, there is a need to 

develop formulations that capture free product distributions under the indirect approach. 

Next, we focus on the indirect approach and formulate the corresponding 𝑌\(𝑡) and 𝑌5(𝑡). 

We first consider the condition in which high-valuation and low-valuation free users have 

insignificant word-of-mouth effects on each other. Thus, we can formulate the 

distribution process for each free product user’s category using the Bass diffusion model 

(Bass, 1969). Specifically, 𝑌\(𝑡) and 𝑌5(𝑡) are given by 

𝑦\(𝑡) = �𝑝\ +
/4
O
𝑌\(𝑡)� ;𝑛 − 𝑌\(𝑡)=,                         (4.10) 

𝑦5(𝑡) = �𝑝5 +
/*
_O
𝑌5(𝑡)� ;𝛿𝑛 − 𝑌5(𝑡)=.                         (4.11) 

Here, 𝑝\ , 𝑝5 and 𝑞\ , 𝑞5, are the coefficients of innovation and imitation governing the free 

product adoption processes by high-valuation and low-valuation users. 𝑌\(𝑡) =

∫ 𝑦\(𝑡)𝑑𝑡
'
( , and 𝑌5(𝑡) = ∫ 𝑦5(𝑡)𝑑𝑡

'
( 	capture the cumulative adoptions at time 𝑡	for high-
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valuation and low-valuation free product users, respectively. The solution for (4.10) and 

(4.11) are  

𝑌\(𝑡) =
O("&,!6#4$%47')

("-
%4
#4
,!6#4$%47')

,                                  (4.12) 

𝑌5(𝑡) =
_O("&,!6#*$%*7')

("-
%*
#*
,!6#*$%*7')

.                                   (4.13) 

From (4.12) and (4.13), we see that 𝑌\(𝑡) and 𝑌5(𝑡) are monotonically increasing to 𝑛 and 

𝛿𝑛, and they are strictly increasing in 𝑝\ , 𝑞\, and 𝑝5 , 𝑞5 , 𝛿 respectively (=^4
=.4

, =^4
=/4

, =^*
=.*

, 

=^*
=/*
, =^*
=_
> 0). Furthermore, if 𝑞M > 𝑝M , 𝑖 = 𝑙, ℎ, then 𝑦M(𝑡) peaks (Bass, 1969). The 

following result is derived from Proposition 4.3.  

Corollary 4.1. Let 𝑌(𝑡) be the solution for (4.9) with 𝑌\(𝑡) and 𝑌5(𝑡) as given by (4.10) 

and (4.11). Then, 𝑌(𝑡), 𝑡 > 0 is increasing in 𝑝\ , 𝑝5 , 𝑞\ , 𝑞5, and 𝛿.  

Next, we consider a more general case in which high-valuation and low-valuation free 

users have word-of-mouth effects on each other. Specifically, we extend the free product 

adoption formulations (4.10) and (4.11) to the following 

𝑦\(𝑡) = �𝑝\ +
/4
O
𝑌\(𝑡) +

/*4
O
𝑌5(𝑡)� ;𝑛 − 𝑌\(𝑡)=,                      (4.14) 

𝑦5(𝑡) = �𝑝5 +
/*
_O
𝑌5(𝑡) +

/4*
_O
𝑌\(𝑡)� ;𝛿𝑛 − 𝑌5(𝑡)=.                      (4.15) 

Here, 𝑞5\ and 𝑞\5 are the imitation parameters capturing the word-of-mouth effect of low-

valuation free users on high-valuation free users and high-valuation free users on low-

valuation free users respectively. Although there is no closed-form solution for the 

system of (4.14) and (4.15), nevertheless, we can show that, similar to (4.10) and (4.11), 

the system of (4.14) and (4.15) generates monotonically increasing adoption trends for 

each category of free product users i.e., high-valuation and low-valuation, converging to 

the number of free users of each category i.e., 𝑛 for high-valuation, and 𝛿𝑛 for low-

valuation free users (Appendix C, Theorem C.1). We can demonstrate that similar to 

(4.12) and (4.13) derived from (4.10) and (4.11), 𝑌\(𝑡) and 𝑌5(𝑡), derived from (4.14) and 

(4.15), are proportional to 𝑛 (Appendix C, Proposition C.1). The following result is 

obtained based on Proposition 4.1. 
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Corollary 4.2. Let 𝑌(𝑡) be derived from (4.9) with 𝑌\(𝑡) and 𝑌5(𝑡) derived either from 

(4.10) and (4.11) or (4.14) and (4.15). Then 𝑌(𝑡) is proportional to 𝑚 − 𝑛. 

We can show that 𝑌\(𝑡) and 𝑌5(𝑡), derived from (4.14) and (4.15), are increasing in 

𝑝\ , 𝑞\ , 𝑞5\ , 𝑝5 , 𝑞5 , 𝑞\5 ,	and 𝛿, for 𝑡 > 0 (Appendix C, Proposition C.2). The following is 

immediate from Proposition 4.3.  

Corollary 4.3. Let 𝑌(𝑡) be the solution for (4.9) with 𝑌\(𝑡) and 𝑌5(𝑡) given by (4.14) and 

(4.15). Then, 𝑌(𝑡), 𝑡 > 0 is increasing in 𝑝\ , 𝑞\ , 𝑞5\ , 𝑝5 , 𝑞5,	𝑞\5 , and 𝛿.  

Following Lotfi et al. (2023), to account for repeat purchases by buyers, we model total 

sales generated by buyers at 𝑡, 𝑡 ≥ 0, as 

𝑆(𝑡) = 𝐼(
!𝑦(𝑡) = "

J(!)∫ (𝑡 − 𝑠)
!&"𝑦(𝑠)𝑑𝑠.'

( 		                      (4.16) 

Here, 𝛽 (0 ≤ 𝛽 ≤ 1) is the repeat purchase parameter of buyers. If high-valuation free 

adopters would like to acquire additional units, then they need to pay for those units. 

Therefore, high-valuation free users can also be a source of sales through repeat 

purchases. These sales at 𝑡 ≥0, can be captured by 

𝑆\(𝑡) = 𝐼(
!4𝑦\(𝑡) − 𝑦\(𝑡).									                               (4.17) 

The total sales at	𝑡 ≥ 0, are then given by 𝑆(𝑡) + 𝑆\(𝑡). We next discuss the optimal free 

product offering strategies. 

4.4 Optimal Free Product Offer Under Before and Concurrent 
Strategies 

We first develop a framework to optimize the number of free products to offer under the 

two strategies of before and concurrent then, we discuss the combined strategy in Section 

4.5.  

4.4.1 Profit Optimization 

Recall that, under the before strategy, free products are distributed within the time-

window [0, 𝜏], 𝜏 < 𝑇, and the new product is released at 𝜏 (i.e., 𝑛 free products are 

distributed to high-valuation free users and 𝛿𝑛 free products are distributed to low-

valuation free users until time 𝜏). We are interested in finding the optimal number of free 
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products to offer during the time-period [0, 𝜏], 𝜏 > 0. Consider, 𝜋(𝑡) as the discounted 

unit profit. Following Jiang et al. (2019), we refer to 𝜋(𝑡) as the unit contribution margin. 

The unit contribution margin changes over time due to changes in the unit profit and the 

discount rate over time. Given that the free product offer time window under the before 

strategy is short compared to the entire demand window, changes in cost are not 

significant, hence we assume a constant free product marginal cost 𝑐(. Furthermore, we 

assume that the product development cost is a sunk cost, and as such, for products with 

inexpensive reproduction and distribution costs, e.g., software, we consider that the 

marginal cost is zero. Consequently, the profit function under the before strategy is  

Π(𝑛) = ∫ 𝜋(𝑡)(𝑆(𝑡) + 𝑆\(𝑡))𝑑𝑡
2
N − 𝑐((1 + 𝛿)𝑛,																												(4.18) 

where, 𝑆(𝑡) and 𝑆\(𝑡) are given by (4.7) and (4.8) respectively.  

Under the concurrent strategy, the new product is released at 𝑡 = 0 and all the free 

products are distributed within the time window [0, 𝑇]  (i.e., 𝑛 free products are 

distributed to high-valuation free users and 𝛿𝑛 free products are distributed to low-

valuation free users over the entire time horizon). We are interested in finding the optimal 

number of free products to offer during the time-period [0, 𝑇]. The profit function under 

the concurrent strategy is  

Π(𝑛) = ∫ R𝜋(𝑡);𝑆(𝑡) + 𝑆\(𝑡)= − 𝑐(𝑡);𝑦\(𝑡) + 𝑦5(𝑡)=S 𝑑𝑡
2
( ,				          (4.19) 

where, 𝑆(𝑡) and 𝑆\(𝑡) are given by (4.16) and (4.17), respectively. Here, 𝑐(𝑡) denotes the 

free product marginal cost at time 𝑡, 𝑡 ∈ [0, 𝑇]. Similar to the before strategy, we assume 

that the product development cost is sunk.  

Finally, we can represent the decision-making problem of determining the optimal 

number of products to give away for free as 

max
O`O8

Π(𝑛),                                                  (4.20) 
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where, 𝑛A < 𝑚 is an exogenous upper bound on the maximum number of free products 

that can be distributed. 11  

Under both the before and concurrent strategies, it is intuitive that a rise in the potential 

market size and the upper bound on the maximum number of free products increases the 

optimal number of free product users (both high-valuation and low-valuation) to 

effectively influence sales through word-of-mouth. Proposition 4.4 demonstrates if free 

product distributions are proportional to the number of free products planned to be 

distributed, then with an increase (decrease) in the potential market size and the 

maximum free product offer bound, the optimal number of free products increase 

(decrease) at the same rate as the market size.  

Proposition 4.4. Consider profit functions (4.18) and (4.19) when 𝑌\(𝑡) and 𝑌5(𝑡) are 

proportional to 𝑛. Let the profit optimization problem Πs	∗ = Πs	(𝑛�	∗) = max
O∈[(,Oa8]

Πs(𝑛) 

corresponding to 𝑚s = 𝑟𝑚, and 𝑛�A = 𝑟𝑛A, 𝑟 > 0. Then, Πs	∗ = 𝑟Π∗, and 𝑛�	∗ = 𝑟𝑛∗, 

where Π∗ = Π	(𝑛∗) = max
O∈[(,O8]

Π(𝑛).  

When the optimal solution is not to offer any free products (𝑛∗ = 0), expanding the 

market size and the bound on the maximum number of free products (𝑚s = 𝑟𝑚, 𝑛�A =

𝑟𝑛A, 𝑟 > 1) does not make offering free products justifiable since if free users are not 

required to speed up the buyers’ adoption, then the buyers’ adoption is already 

proceeding at a reasonable rate. Through market expansion, there will be an increase in 

the number of early adopters of the product, preventing a decline in adoption rates 

through their word-of-mouth and eliminating the need for free users’ word-of-mouth. We 

obtain the following result by Proposition 4.4, (4.12) and (4.13), and Proposition C.1.  

Corollary 4.4. Consider the profit function (4.19) corresponding to (4.10) and (4.11) or 

(4.14) and (4.15). Then the result of Proposition 4.4 holds. 

 
11 We find the optimal number of high-valuation free users 𝑛. The total free users including both high-
valuation and low-valuation free users is (1 + 𝛿)𝑛.  
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Our next set of Propositions (4.5-4.7) shows interesting results regarding the optimal 

profit under the cases when the buyers’ word-of-mouth (𝑞) is sufficiently high. Recall 

that when 𝑞 is sufficiently high the buyers’ adoption rate peaks (see the discussion 

provided after (4.6) and Proposition 4.2 (i)). Thresholds are given in the proofs in 

Appendix C.  

Proposition 4.5 shows a relationship between changes in the buyers’ innovation effect (𝑝) 

and buyers’ and free users’ imitation effects (𝑞, 𝜆\, 𝜆5) and the optimal profit. 

Proposition 4.5. Let Πs(𝑛) and Π(n) where 𝑛 ≤ 𝑛A be the profit functions, given by 

(4.18) or (4.19), corresponding to 𝑝̅, 𝑞�, 𝜆̅\, 𝜆̅5, and 𝑝, 𝑞, 𝜆\, 𝜆5 respectively where, 𝑞� >
+

+&O8
(𝑝̅ + O8

+
(𝜆̅\ + 𝛿𝜆̅5)). Suppose either one of 	𝑝̅ ≥ 𝑝, 𝑞� ≥ 𝑞, 𝜆̅\ ≥ 𝜆\, and 𝜆̅5 ≥ 𝜆5 

holds with at least one strict inequality. Then 

(i) If the planning horizon is sufficiently short (𝑇 ≤ 𝑡̃), then Πs(𝑛) > Π(𝑛) for all 0 <

𝑛 ≤ 𝑛A, and Πs(0) > Π(0), if either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, otherwise Πs(0) =

Π(0). Thus Πs∗ ≥ Π∗. 

(ii) For 𝛽 > 0, the planning horizon in part (i) can be extended to 𝑇!, 𝑇! > 𝑇 where 

𝑦\(𝑡) = 𝑦5(𝑡) = 0 for 𝑡 ≥ 𝑇, with the profit differences (Πs(𝑛) − Π(𝑛) > 0) 

being larger than those in part (i) for the planning horizon 𝑇. For 𝛽̅,  𝛽̅ > 𝛽, there 

exists 𝑇!b  , 𝑇!b > 𝑇!. 

(iii) Let the planning horizon, 𝑇, in part (i) be extended to 𝑇c, 𝑇c > 𝑇! , where 𝑦\(𝑡) =

𝑦5(𝑡) = 0 for 𝑡 ≥ 𝑇. If 𝜋(𝑡) is decreasing on [𝑇! , 𝑇c] with a high declining rate, 

then Πs(𝑛) > Π(𝑛) for all 0 < 𝑛 ≤ 𝑛A, and Πs(0) > Π(0), if either of 𝑝̅ > 𝑝 or 

𝑞� > 𝑞 holds, otherwise Πs(0) = Π(0). Thus Πs∗ ≥ Π∗.  

According to Proposition 4.5 (i), under both the before and concurrent strategies, when 

the planning horizon is short and the buyers’ word-of-mouth effect (𝑞) is sufficiently 

large, having higher values for either the (1) buyers’ innovation effect (𝑝), (2) the buyers’ 

word-of-mouth effect (𝑞), (3) the high-valuation free users’ word-of-mouth effect on 

buyers (𝜆\), or (4) the low-valuation free users’ word-of-mouth effect on buyers (𝜆5), 

results in higher profit in the short-term. This is because the higher internal motivation to 
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adopt the new product by buyers and higher word-of-mouth effects on buyers result in 

faster product adoption and therefore higher adoption purchases in the early time periods 

of the product lifecycle. Consequently, these higher adoptions in the early time periods 

lead to a higher volume of sales through adoptions and repeat purchases in the early time 

periods thus higher profit in the short-term. Proposition 4.5 (ii) demonstrates that having 

a higher buyers’ innovation effect and buyers’ and free users’ imitation effect results in 

higher profit for a longer time period when the repeat purchase rate is higher. This is 

because a high repeat purchase rate results in substantial subsequent sales through repeat 

purchases. Consequently, having higher adoptions in the early time periods within the 

demand window and before the planning horizon leads to higher sales even after the 

planning horizon. Finally, we see that the conditions leading to higher short-term 

profitability stated in parts (i) and (ii) also result in higher long-term profitability when 

the unit contribution margin (𝜋(𝑡)) is declining over time with a sufficiently high 

declining rate by Proposition 4.5 (iii). This is because the unit contribution margin in the 

late time periods is small and therefore any changes in the profit gained in the later time 

periods are insignificant compared to an increase in the short-term profit listed in parts (i) 

and (ii).   

According to Proposition 4.5, if firms plan for short-term profitability and choose to offer 

free products before product launch or after the product launch but within a short time 

interval, then they should target markets with a high level of word-of-mouth 

effectiveness. Higher word-of-mouth effectiveness results in higher profits in the short 

term. Markets composed of potential buyers with a high level of social conformity are 

expected to have a high level of word-of-mouth effectiveness. Moreover, markets 

comprised of prospective buyers who have access to various communication channels are 

anticipated to demonstrate strong word-of-mouth effectiveness. Furthermore, targeting 

highly influential free users also leads to short-term profitability. Markets composed of 

highly self-motivated potential buyers are also favorable for short-term profit. The 

recommendations also result in high profitability in the long term if the unit contribution 

margin is declining at a fast rate.  
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Contrary to the short term, markets with highly self-motivated consumers, or high level 

of word-of-mouth efficacy, or influential free users, may not provide higher profits in the 

long term. Figure 4-3 shows such a scenario under the concurrent strategy (𝛽 = 𝛽\ =

0.35, 𝑝 = 0.02, 𝑝̅ = 0.025, 𝑞 = 𝜆\ = 𝜆5 = 0.5, 𝑞� = 𝜆̅\ = 𝜆̅5 = 0.6, 𝑚 = 3 × 10V, 𝛿 =

1, 𝑛+ = +
T

 , 𝜋(𝑡) = 10 + 5𝑡, and 𝑐(𝑡) = 25). Figure 4-3 (a) shows the profit functions 

when the planning horizon is set to 𝑇 = 8 and free products are distributed in the window 

[0, 𝑇 = 8]	following (4.14) and (4.15) (𝑝\ = 𝑝5 = 0.02, 𝑞\ = 𝑞5 = 𝑞\5 = 𝑞5\ = 0.55). 

Similarly, Figure 4-3 (b) shows the profit functions when the planning horizon is set to 

𝑇 = 15 and free products are distributed in the window [0, 𝑇 = 15]	following (4.14) and 

(4.15) (𝑝\ = 𝑝5 = 0.01, 𝑞\ = 𝑞5 = 𝑞\5 = 𝑞5\ = 0.3). 

 
Figure 4-3: Profit Functions Under Different Innovation and Imitation Effects 

The faster adoption rate derived by highly self-motivated consumers, high level of word-

of-mouth efficacy, and very influential free users, causes more sales to occur earlier 

where the unit contribution margins are lower rather than later in time periods where the 

unit contribution margins are greater. In the short term (Figure 4-3 (a)), this causes higher 

profitability; however, when a long planning horizon is sought, it results in less 

profitability (Figure 4-3 (b)). 

Next, we investigate the relationship between a change in the ratio of low-valuation to 

high-valuation free users (𝛿) and the optimal profit in Proposition 4.6. In Proposition 4.6 

(iii), 𝑦�5(𝑡) denotes free product distribution to low-valuation free users when the low-

valuation to high-valuation ratio is set to 𝛿̅.  
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Proposition 4.6. Let Π(𝑛) and Πs(𝑛) where 𝑛 ≤ 𝑛A be profit functions given by (4.18) or 

(4.19), corresponding to 𝛿 and 𝛿̅ respectively where 𝛿̅ > 𝛿 > 0 and 𝑞 > +
+&O8

(𝑝 +

O8
+
(𝜆\ + 𝛿̅𝜆5)). 

(i) Consider the profit function (4.18) with 𝜋(𝑡) sufficiently high compared to 𝑐( or 

𝑐( = 0, and the planning horizon sufficiently short (𝑇 ≤ 𝑡̃"). Then Πs(𝑛) > Π(𝑛) 

for all 0 < 𝑛 ≤ 𝑛A, and Πs(0) = Π(0), thus Πs∗ ≥ Π∗. 

(ii) Consider the profit function (4.19) with 𝑌5(𝑡) strictly increasing in 𝛿, 𝜋(𝑡) 

sufficiently higher than 𝑐(𝑡) on [0, 𝑇] or 𝑐(𝑡) = 0, and the planning horizon 

sufficiently short (𝑇 ≤ 𝑡̃<). Then Πs(𝑛) > Π(𝑛) for all 0 < 𝑛 ≤ 𝑛A, and Πs(0) =

Π(0), thus Πs∗ ≥ Π∗. 

(iii) Let 𝛽 > 0. Then, the planning horizon in part (i) can be extended to 𝑇!", 𝑇!" > 𝑇 

and the planning horizon in part (ii) can be extended to 𝑇!<, 𝑇!< > 𝑇, where 

𝑦\(𝑡) = 𝑦5(𝑡) = 𝑦�5(𝑡) = 0 for 𝑡 ≥ 𝑇, with the profit differences (Πs(𝑛) − Π(𝑛) >

0) being larger than those in parts (i) and (ii) for the planning horizon 𝑇. For 𝛽̅,  

𝛽̅ > 𝛽, there exists 𝑇!b
M , 𝑇!b

M > 𝑇!M , 𝑖 = 1,2. 

We see from Proposition 4.6 (i) and (ii) that if firms target a short planning horizon, then 

a higher ratio of low-valuation to high-valuation free users results in higher profits when 

the marginal cost of the free products is zero or low compared to the unit contribution 

margin, under both the before and concurrent strategies. A higher ratio of low-valuation 

to high-valuation free users means having more free users without reducing the actual 

market size. A large number of free users results in a faster buyers’ adoption process 

through free users’ word-of-mouth and therefore higher sales through adoptions and 

repeat purchases in the early time periods. The fact that the free product marginal cost is 

zero or at least is small compared to the unit contribution margin justifies the profitability 

of having a large number of low-valuation free users. Moreover, a higher ratio of low-

valuation to high-valuation free users results in higher profits for a longer period of time 

when the repeat purchases rate is higher (Proposition 4.6 (iii)). This is because, after the 

planning horizon 𝑇, all the free products are already distributed therefore there is no cost 

for providing free products anymore. However, due to the high repeat purchase rate, 
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having a higher adoption rate within the demand window and before the planning horizon 

results in higher sales even after the planning horizon due to the higher subsequent repeat 

purchases.  

Next, we discuss the relationship between the low-valuation users’ free product adoption 

rate and the short-term profitability when the concurrent strategy is adopted. 

Proposition 4.7. Suppose 𝑞 > +
+&O8

�	𝑝 + O8
+
(𝜆\ + 𝜆5𝛿)�. Let 𝑌5(𝑡) < 𝑌�5(𝑡), 𝑡 ∈ (0, 𝑇) 

with Πs(𝑛) and Π(𝑛) where 𝑛 ≤ 𝑛A be profit functions given by (4.19) corresponding to 

𝑌�5(𝑡) and 𝑌5(𝑡) respectively.  

(i) If 𝜋(𝑡) is sufficiently higher than 𝑐(𝑡) on [0, 𝑇] or 𝑐(𝑡) = 0 where the planning 

horizon is sufficiently short (𝑇 ≤ 𝑡̃), then Πs(𝑛) > Π(n), for all 0 < 𝑛 ≤ 𝑛A, and 

Πs(0) = Π(0), thus Πs∗ ≥ Π∗. 

(ii) Let 𝛽 > 0 and 𝑦\(𝑡) = 𝑦5(𝑡) = 𝑦�5(𝑡) = 0 for 𝑡 ≥ 𝑇. Then, the planning horizon 

in part (i) can be extended to 𝑇!, 𝑇! > 𝑇 with the profit differences (Πs(𝑛) −

Π(𝑛) > 0) being larger than those in part (i) for the planning horizon 𝑇. For 𝛽̅,  

𝛽̅ > 𝛽, there exists 𝑇!b  such that 𝑇!b > 𝑇!. 

We see from Proposition 4.7 (i) that if an early planning horizon is targeted and the 

concurrent strategy of the free product offer is adopted, then faster low-valuation users’ 

free product adoption results in higher profit when the buyers’ word-of-mouth effect is 

high and the marginal cost is zero or low compared to the unit contribution margin. This 

is because the higher number of low-valuation free users in the early stages of the product 

release time accelerates the buyers’ adoption process. The accelerated adoption process 

results in higher buyers’ adoption purchases in the early time periods thus higher sales 

including adoptions and repeat purchases. Changes in the total cost of the low-valuation 

free product offer due to the increased adoption rate of low-valuation free products are 

minimal compared to the profit generated by accelerating sales since the free product 

marginal cost is zero or is low relative to the unit contribution margin. The same 

conclusion works for a longer planning horizon if there is a higher repeat purchase rate 

(Proposition 4.7 (ii)) which has a similar intuition as in Proposition 4.6.  
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Propositions 4.6 and 4.7 provide the following managerial insight when (a) the target 

market enjoys a high level of buyers’ word-of-mouth effect, and (b) the marginal cost is 

zero (e.g., software products) or the firm can charge customers a unit price that is 

significantly higher than the marginal cost (i.e., high unit contribution margin) in the 

short term after the product release.  

1. If a firm’s planning horizon is short, then for each high-valuation free product 

recipient, a high number of low-valuation free users should receive free products.  

2. Firms should accelerate the free product distribution to low-valuation free users under 

the concurrent strategy.  

These two recommendations do not necessarily lead to higher profitability in a long 

planning horizon. Figures 4-4 and 4-5 show examples of these situations. Figures 4-4 and 

4-5 depict the results of altering the ratio 𝛿 and the low-valuation free users’ adoption 

rate 𝑌5(𝑡), under a concurrent strategy in the cases of a short and a long planning horizon. 

We set the base profit function Π(𝑛) (𝛽 = 0.1,	𝛽\ = 0.3, 𝑝 = 0.03, 𝑞 = 𝜆\ = 𝜆5 = 0.3, 

𝛿 = 1, 𝑚 = 3 × 10V, 𝑛+ = +
V

, 𝜋(𝑡) = 2 + 10𝑡, and 𝑐(𝑡) = 0) for the short and the long 

planning horizon (𝑇 = 8 and 𝑇 = 15). Free product distributions follow (4.10) and (4.11) 

(𝑝\ = 𝑝5 = 0.03, 𝑞\ = 𝑞5 = 1 under the short planning horizon and 𝑝\ = 𝑝5 = 0.02, 

𝑞\ = 𝑞5 = 0.6 under the long planning horizon). Figure 4-4 (a) shows the base profit 

function and the profit function with 𝛿̅ = 2, under the short planning horizon. Figure 4-4 

(b) shows similar profit functions for the long planning horizon. Figure 4-5 (a) shows the 

base profit function and the profit function corresponding to a fast free product 

distribution to low-valuation users ((4.11) with 𝑝̅5 = 0.04, 𝑞�5 = 1.8), under the short 

planning horizon. Figure 4-5 (b) depicts the base profit function and the profit function 

corresponding to a fast free product distribution for low-valuation users ((4.11) with 𝑝̅5 =

0.05, 𝑞�5 = 1) under the long planning horizon. 
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Figure 4-4: Profit Functions Under Different Ratios of Low-valuation to High-

valuation Free Users 

 
Figure 4-5: Profit Functions Under Different Free Product Distribution Rates  

Similar to Figure 4-3, the results in Figures 4-4 and 4-5 are explained by the fact that a 

faster adoption rate enables more sales to take place sooner, when unit contribution 

margins are lower. As a result, when a long planning horizon is sought, profitability is 

lower. 

4.4.2 Numerical Analysis 

Optimization problems (4.18) and (4.19) are challenging to solve analytically. To gain a 

better understanding of the dynamics of the optimal solution we conduct a numerical 

analysis as typically done in the related literature (e.g., Jiang & Sarkar, 2009; Jiang et al., 

2017).  

For the before strategy, we numerically solve the optimization problem (4.18) with the 

unit contribution margin 𝜋(𝑡) = 𝑎d + 𝑏d𝑡 where parameters 𝑎d and 𝑏d	capture the 

magnitude and rate of change. We consider two cases: (I) the unit contribution margin is 

decreasing over time (𝑏d < 0), and (II) the unit contribution margin is increasing over 
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time (𝑏d > 0). We assume that the free products are uniformly distributed to the users 

before the product launch such that 𝑌\(𝑡) =
'O
N

, 𝑡 ∈ [0, 𝜏]. We first consider a base 

scenario for sales composed of adoptions and repeat purchases. Then, we create several 

variational scenarios by altering the values of the parameters in the base scenario one at a 

time. Table 4-1 provides the values of 𝑎d, 𝑏d and marginal cost 𝑐( under Cases I and II. 

The unit contribution margin changes from a descending trend to an ascending trend 

across Cases I and II, however the average unit contribution margin and the marginal cost 

under Cases I and II are identical within the entire demand window [0, 𝑇]. It is worth 

noting that since sales begin at time 𝜏 > 0 then, the average unit contribution margin 

within the time interval [𝜏, 𝑇] under Case I is less than Case II. 

Table 4-1: Optimal Solutions for Base Scenario and Variations Under Before 

Strategy 

 Adoption Repeat 
Purchase 

Low 
to 

High 
Ratio 

 
Case I 

 

 
Case II 

 

 p q 𝜆9 𝜆: 𝛽, 𝛽9 𝛿 𝑎; = 70, 𝑏; = −5 
𝑐< = 100 

𝑎; = 10, 𝑏; = 5 
𝑐< = 100 

Base 0.037 0.656 0.656 0.656 0.278 1 𝑛∗ = 2.8% 𝑛∗ = 0% 
Variation 1 0.037 0.656 1 1 0.278 1 𝑛∗ = 𝟑. 𝟔% 𝑛∗ = 0% 
Variation 2 0.037 0.656 0.656 0.656 0.6 1 𝑛∗ = 𝟗. 𝟎% 𝑛∗ = 𝟐. 𝟐% 
Variation 3 0.01 0.3 0.656 0.656 0.278 1 𝑛∗ = 𝟖. 𝟏% 𝑛∗ = 𝟒. 𝟒%  
Variation 4 0.01 0.3 1 1 0.278 1 𝑛∗ = 𝟕. 𝟖% 𝑛∗ = 𝟑. 𝟔% 
Variation 5 0.037 0.656 0.656 0.656 0.278 2 𝑛∗ = 𝟐. 𝟏% 𝑛∗ = 0% 

We use the sales of the iPod as a baseline with parameter values 𝑝 = 0.037, 𝑞 = 0.656, 

𝑚 = 2.18 × 10V, and 𝛽 = 0.278 as estimated in Lotfi et al. (2023). 12 Our planning 

horizon is set to 𝑇 = 12. We consider equal repeat purchase rates for buyers and high-

valuation free users (𝛽 = 𝛽\). Our numerical experiments yield consistent results under 

different repeat purchases. We consider 𝛿 = 1	as the base value for the ratio of low-

valuation to high-valuation free users and alter this parameter in the variational scenarios. 

We set the new product release time at 𝜏 = 2	under the base and the variational scenarios. 

Later in Table 4-8, we discuss the effects of changing 𝜏. The parameter values under the 

 
12 Lotfi et al. (2023) estimated the parameters using iPod sales data from 2004 to 2014 obtained from 
Apple’s quarterly summary.   
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base and variational scenarios and the corresponding optimal solutions for Cases I and II 

are exhibited in Table 4-1. The optimal solutions (𝑛∗) are expressed as a percentage of 

the potential market size (𝑚), with a 20% maximum free product offer limit (𝑛 ≤ 𝑛A, 

𝑛A = +
T

). In Table 4-1, we highlight in bold the numbers that changed compared to the 

base scenario.  

Table 4-2: Base Scenario and Variations Under Concurrent Strategy 

 

Buyers’ Sales High-valuation Low-valuation  

Adoption Repeat 
Purchase Adoption Repeat 

Purchase Adoption 

Low 
to 

High 
Ratio 

 p q 𝜆9 𝜆: 𝛽 𝑝9 𝑞9 𝑞:9 𝛽9 𝑝: 𝑞: 𝑞9: 𝛿 
Base 0.037 0.656 0.656 0.656 0.278 0.02 0.5 0.5 0.278 0.02 0.5 0.5 1 

Variation 1 0.037 0.656 2 2 0.278 0.02 0.5 0.5 0.278 0.02 0.5 0.5 1 
Variation 2 0.037 0.656 0.656 0.656 0.75 0.02 0.5 0.5 0.75 0.02 0.5 0.5 1 
Variation 3 0.02 0.4 0.656 0.656 0.278 0.02 0.5 0.5 0.278 0.02 0.5 0.5 1 
Variation 4 0.02 0.4 2 2 0.278 0.02 0.5 0.5 0.278 0.02 0.5 0.5 1 
Variation 5 0.02 0.4 0.656 0.656 0.278 0.02 0.5 0.5 0.278 0.02 0.5 0.5 3 
Variation 6 0.037 0.656 0.656 0.656 0.278 0.05 0.7 0.7 0.278 0.02 0.5 0.5 1 
Variation 7 0.037 0.656 0.656 0.656 0.278 0.02 0.5 0.5 0.278 0.05 0.7 0.7 1 

 

Table 4-3: Optimal Solutions for Base Scenario and Variations for Different Cases 

Under Concurrent Strategy 

 Case I Case II Case III Case IV 

 𝑎; = 100, 𝑏; = −6 
𝑎> = 25, 𝑏> = −2 

𝑎; = 100, 𝑏; = −6 
𝑎> = 1, 𝑏> = 2 

𝑎; = 28, 𝑏; = 6 
𝑎> = 25, 𝑏> = −2 

𝑎; = 28, 𝑏; = 6 
𝑎> = 1, 𝑏> = 2 

Base 𝑛∗ = 0% 𝑛∗ = 0% 𝑛∗ = 0% 𝑛∗ = 0% 
Variation 1 𝑛∗ = 4.2% 𝑛∗ = 5.5% 𝑛∗ = 0% 𝑛∗ = 0% 
Variation 2 𝑛∗ = 4.0% 𝑛∗ = 7.4%  𝑛∗ = 3.3% 𝑛∗ = 7.1% 
Variation 3 𝑛∗ = 13.6% 𝑛∗ = 16.0% 𝑛∗ = 5.9% 𝑛∗ = 7.0% 
Variation 4 𝑛∗ = 12.0% 𝑛∗ = 13.5% 𝑛∗ = 3.7% 𝑛∗ = 4.1% 
Variation 5 𝑛∗ = 11.0% 𝑛∗ = 13.3% 𝑛∗ = 4.0% 𝑛∗ = 4.7% 
Variation 6 𝑛∗ = 0% 𝑛∗ = 1.7% 𝑛∗ = 0% 𝑛∗ = 0% 
Variation 7 𝑛∗ = 0% 𝑛∗ = 1.1% 𝑛∗ = 0% 𝑛∗ = 0% 

For the concurrent strategy, we numerically solve the optimization problem (4.19) when 

free product distributions follow the indirect approach formulated by the general free 
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product adoption formulations (4.14) and (4.15), discussed in Section 4.3.2. We consider 

a base scenario with (i) sales generated by product buyers, (ii) free product adoptions by 

high-valuation free users and their subsequent repeat purchases, and (iii) free product 

adoptions by low-valuation free users. Next, we generate variational scenarios by altering 

the base scenario parameters one at a time. Similar to the before scenario, we use the 

sales of iPod as the baseline with the parameters estimated in Lotfi et al. (2023) and a 

planning horizon set to 𝑇 = 12. We also consider identical repeat purchase rates for 

buyers and high-valuation free users (𝛽 = 𝛽\), and 𝛿 = 1	as the base value for the ratio 

of low-valuation to high-valuation free users. We set the free product adoptions’ 

innovation (𝑝\ and 𝑝5) and imitation parameters (𝑞\, 𝑞5 , 𝑞5\, and 𝑞\5) to values such that 

the free product adoptions by high-valuation and low-valuation free users reach 99 

percent completion by the end of the planning horizon 𝑇. Table 4-2 shows the parameter 

values under the base and variational scenarios. As before, we highlight in bold the 

numbers that changed in each variation compared to the base scenario.  

For optimization problem (4.19), we set the unit contribution margin and the free product 

marginal cost trends as 𝜋(𝑡) = 𝑎d + 𝑏d𝑡 and 𝑐(𝑡) = 𝑎9 + 𝑏9𝑡 respectively with 

parameters 𝑎d, 𝑏d and 𝑎9, 𝑏9 corresponding to the magnitude and rate of change for the 

unit contribution margin and the marginal cost respectively. We consider the unit 

contribution margin and the free product marginal cost trends under four possible cases: 

(I) the unit contribution margin and the marginal cost trends are both decreasing (𝑏d, 

𝑏9 < 0), (II) the unit contribution margin is decreasing but the marginal cost is increasing 

(𝑏d < 0, 𝑏9 > 0), (III) the unit contribution margin is increasing but the marginal cost is 

decreasing (𝑏d > 0, 𝑏9 < 0), and (IV) both the unit contribution margin and the marginal 

cost are increasing (𝑏d, 𝑏9 > 0). Values of 𝑎d, 𝑏d, 𝑎9, and 𝑏9 are demonstrated in Table 

4-3 under Cases I through IV. To focus on the effect of the unit contribution margin and 

free product marginal cost trends on the optimal solution, the parameters are set to values 

where the average unit contribution margin and the average free product marginal cost 

remain identical under Cases I through IV. Subsequently, Table 4-3 shows the optimal 

solutions (𝑛∗) corresponding to Cases I through IV for the base and the variational 



99 

 

scenarios. The optimal solution is given as the percentage of the potential market size 

with the upper bound being 20% of the potential market (𝑛 ≤ 𝑛A, 𝑛A = +
T

).  

The comparisons between Cases I and II in Table 4-1, as well as between Cases I and III 

and between Cases II and IV in Table 4-2, suggest that for similar free product marginal 

cost, offering free products is more desirable when the unit contribution margin is 

decreasing (Case I in Table 4-1 and Cases I and II in Table 4-2) compared to the cases 

with an increasing unit contribution margin (Case II in Table 4-1 and Cases III and IV in 

Table 4-2). The decreasing trend of the unit contribution margin further motivates 

employing free users’ word-of-mouth to accelerate the buyer’s adoption process to get a 

higher volume of sales in the earlier time periods which correspond to higher unit 

contribution margins. In contrast, the increasing trend of the unit contribution margin 

makes the free product offer strategy less favorable because shifting the sales peak 

towards earlier time periods results in less profit due to lower unit contribution margins in 

the early time periods.  

Tables 4-1 through 4-3 Variation 1 demonstrate that the higher effectiveness of free 

users’ word-of-mouth on the target market justifies offering a higher volume of free 

products under Case I in Table 4-1, and under Cases I and II in Table 4-3, since under 

these cases the unit contribution margin in the early time periods is higher which means a 

higher volume of sales in the early time periods result in higher profits. Thus, having 

highly influential free product users who can efficiently accelerate sales makes the cost of 

offering free products more justifiable. However, the conclusion is the opposite for Case 

II in Table 4-1, and Cases III and IV in Tables 4-2 and 4-3, because the higher word-of-

mouth effect of free users results in shifting the peak for the sales towards earlier time 

periods where the unit contribution margin is lower, and thus, the resulting profit is 

lower.   

Tables 4-1 through 4-3, Variation 2, demonstrate that when the repeat purchase rate is 

high, firms are better off giving away more products and this holds for all cases. More 

free users result in faster buyers’ adoption due to free users’ word-of-mouth. As a result, 

substantial sales composed of adoptions and a high volume of repeat purchases made by 
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buyers, occur in the demand window ([0, 𝑇]). This high volume of sales, promoted by 

free users’ word-of-mouth, further justifies the cost of product giveaways, thus more free 

product offerings are justified. Moreover, the high rate of repeat purchases results in a 

high volume of sales generated through high-valuation free users’ repeat purchases 

further motivating the offering of free products.  

Tables 4-1 through 4-3, Variations 3 and 4, show that a target market with weak 

innovation and imitation effect makes the product giveaway more appealing. This is 

because low innovation and imitation effects in the target market result in buyers’ slow 

adoption process and therefore low sales volume composed of both adoptions and 

subsequent repeat purchases before the planning horizon. This makes the role of free 

users’ word-of-mouth in accelerating buyers’ adoption more crucial and therefore 

offering free products becomes more desirable in all cases. The comparison of variations 

3 and 4 in Tables 4-1 through 4-3 further shows the importance of having a high number 

of free users to accelerate sales under scenarios in which the buyers’ adoption process is 

slow. Specifically, under such scenarios, even less effectiveness of the free users’ word-

of-mouth may need to be compensated by giving away a higher number of products.  

Table 4-1 variation 5 and Table 4-2 variations 3 and 5 show that increasing the ratio of 

low-valuation free users to the high-valuation free users favors offering more free 

products, however, it reduces the need to rely on high-valuation free users to accelerate 

buyers’ adoption and sales. When the ratio of low-valuation to high-valuation free users 

is low, there is naturally more need for high-valuation free users to accelerate sales at the 

cost of lowering the actual market size. Tables 4-6 and 4-7 illustrate the situations where 

the ratio of low-valuation to high-valuation free users is low and offering free products, 

despite having no cost, is not worth reducing the actual market size. 13 

 
13 While the alteration of 𝛿 under concurrent strategy impacts adoption rates for free products (see (4.14) 

and (4.15)), this alteration does not ultimately affect the outcome. Our numerical tests lead to a similar 

outcome when using alternative formulation for free product adoption (4.10) and (4.11), where changing 

the value of 𝛿 does not impact the free product adoption process.  
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Figure 4-6: (a) Free product Distributions  (b) Free Product Marginal Cost Trends 

The comparisons between Cases I and II, and between Cases III and IV in Table 4-3 

provide an insight regarding the dependence of the optimal free product offer on the free 

product marginal cost trend and the free product distribution process, under the 

concurrent strategy. In Table 4-3, under a similar unit contribution margin trend, Cases II 

and IV, where the marginal cost trends are increasing, are more favorable to offering free 

products than Cases I and III, where the marginal cost trends are decreasing. Figure 4-6 

(a) demonstrates the free product distribution for both the high-valuation and low-

valuation free users under the base scenario and the variations 6 and 7 in Table 4-2. The 

free product distributions in Figure 4-6 (a) are demonstrated for 𝑛 = 𝑛A. However, it is 

important to note that the form of the distribution remains identical for any value of 𝑛 >

0 (Appendix C, Proposition C.1). Figure 4-6 (b) demonstrates the cost trends under Cases 

I through IV in Table 4-3. The free product distributions peak in the first half of the time 

horizon (before 𝑡 = 6) (Figure 4-6 (a)). Figure 4-6 (b) demonstrates that the cost trends 

are symmetric around 𝑡 = 6. This means that under Cases I and III (decreasing marginal 

cost), the total cost of providing free products is higher than in Cases II and IV 

(increasing marginal cost) making Cases I and III less favorable for product giveaway.  

A faster rate of free product distribution between the high-valuation and low-valuation 

free users under the concurrent strategy makes it profitable to offer a higher number of 

free products when the unit contribution margin is decreasing and the free product unit 

cost is increasing (Tables 4-2 and 4-3, Case II, Variations 6 and 7). Faster adoption of 

free products by high-valuation and low-valuation free users results in faster adoptions 
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and subsequent repeat purchases due to the free users’ word-of-mouth. Consequently, a 

higher profit is gained under Case II since the unit contribution margin is higher and the 

free product cost is lower in the early time periods. The fact that high-valuation free 

users, unlike low-valuation free users, are also a source of revenue through repeat 

purchases can explain why more free products are offered under Case II Variation 6 

compared to Variation 7.  

Table 4-4: Optimal Solutions for Different Free Product Marginal Costs Under 

Before Strategy 
 𝑎; = 70, 𝑏; = −5 

𝑐< = 30	 
𝑎; = 70, 𝑏; = −5 

𝑐< = 50 
𝑎; = 70, 𝑏; = −5 

𝑐< = 100 
Base  𝑛∗ = 9.2%	 𝑛∗ = 6.3% 𝑛∗ = 2.8% 

Table 4-5: Optimal Solutions for Different Free Product Marginal Costs Under 

Concurrent Strategy 

 𝑎; = 100, 𝑏; = −6 
𝑎> = 25, 𝑏> = −2 

𝑎; = 100, 𝑏; = −6 
𝑎> = 45, 𝑏> = −2 

𝑎; = 100, 𝑏; = −6 
𝑎> = 75, 𝑏> = −2 

Variation 3 𝑛∗ = 13.6% 𝑛∗ = 9.5% 𝑛∗ = 5.8% 

Table 4-6: Optimal Solutions for Zero Free Product Marginal Cost Under Before 

Strategy 
𝑎; = 70, 𝑏; = −5, 𝑐< = 0 

 Ceteris Paribus     𝛽 = 𝛽9 = 0,  𝑝 = 0.2,  𝑞 = 1.5, 𝛿 = 0 𝑛∗ = 0% 
Ceteris Paribus   𝛽 = 𝛽9 = 0, 	𝑝 = 0.2,  𝑞 = 1.5, 𝛿 = 10 𝑛∗ = 2% 

Table 4-7: Optimal Solutions for Zero Free Product Marginal Cost Under 

Concurrent Strategy 
𝑎; = 100, 𝑏; = −6 
𝑎> = 0, 𝑏> = 0 

 Base 𝑛∗ = 0% 
Ceteris Paribus 𝛿 = 3 𝑛∗ = 5.3% 

Tables 4-4 and 4-5 demonstrate that a lower marginal cost favors giving away more free 

products. However, as mentioned earlier, Tables 4-6 and 4-7 provide examples of 

scenarios in which even zero marginal cost may not justify offering free products despite 

having a decreasing unit contribution margin which in general favors offering free 

products. The reason behind this result is that while providing free products to low-

valuation free users does not affect the actual market size, offering free products to high-
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valuation free users results in a smaller actual market size. Therefore, when the adoption 

process is not slow and sales through repeat purchases made by buyers and high-

valuation free users are not large, accelerating buyers’ adoption process through free 

users’ word-of-mouth is not justifiable particularly when the percentage of high-valuation 

free users is high and free product offers lead to lowering the actual market size.  

In summary, our numerical findings suggest the following for both the before and the 

concurrent strategies:  

• Offering free products is more appealing when the repeat purchases of the new 

product are anticipated to be high but adoption of the new product is taking place at a 

slow pace.  

• Offering free products is more appealing when the unit contribution margin follows a 

decreasing trend. Conversely, an increasing unit contribution margin makes offering 

free products less favorable. 

• Offering free products is more appealing when the ratio of low-valuation to high-

valuation free users is high. 

• Having a lower marginal cost makes offering free products more appealing. 

However, in certain cases where the repeat purchases rate is low, the buyers’ 

adoption process is taking place at a high pace (high innovation and imitation 

effects), and the ratio of low-valuation to high-valuation free users is low, even a 

zero marginal cost for the free products may not justify the before or the concurrent 

strategies.  

Our numerical experiments demonstrate the difference in the effectiveness between the 

before and concurrent strategies. Table 4-8 gives the optimal number of free products to 

offer (𝑛∗) and the corresponding profits (Π∗) under both the before and concurrent 

strategies with the same unit contribution margin and free product marginal cost (𝑎d =

100, 𝑏d = −6, 𝑐( = 𝑎9 = 100, and 𝑏9 = 0). We specifically consider the case of 

decreasing unit contribution margin since it favors offering free products. Furthermore, 

the innovation and imitation effects are considered weak (slow buyers’ adoption rate) 

compared to the base scenarios provided in Tables 4-1 and 4-2, making the offering of 

free products more desirable under both strategies (𝑝 = 0.01 and 𝑞 = 𝜆\ = 𝜆5 = 0.3).  
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Table 4-8: Optimal Free Product Offers and Profits Under Before and Concurrent 

Strategies 

Before Strategy Concurrent Strategy 
𝜏 = 2 𝜏 = 3 

𝑛∗ = 11.1% 
Π∗ = 1.316 × 10?< 

𝑛∗ =	10.5 % 
Π∗ = 1.039 × 10?< 

𝑛∗ =	6.8 % 
Π∗ = 1.127 × 10?< 

Despite the fact that (i) the sales period under the before strategy is shorter compared to 

the concurrent strategy ([𝜏, 𝑇] ⊂ [0, 𝑇]) and (ii) the average unit contribution margin is 

lower under the before strategy (the average value of 𝜋(𝑡) over [𝜏, 𝑇] is lower compared 

to the average value over [0, 𝑇] since 𝜏 > 0 and 𝜋(𝑡) is decreasing), the before strategy 

leads to higher profit as long as the free product distribution period is not long (𝜏 is 

small). When the free product offering period is short, the before strategy is more 

beneficial than the concurrent strategy since firms can enjoy a high level of free users’ 

word-of-mouth instantly after the product release without sacrificing so much of the 

demand window. The concurrent strategy, on the other hand, leads to greater profitability 

when the free product offer period is lengthy (τ is large). Because the entire demand 

window is utilized, the sales period is longer under the concurrent strategy.  

4.5 Optimal Free Product Offer Under Combined Scenario 

So far, we have discussed two (before and concurrent) strategies. We now provide an 

extension of the before strategy under which the firm not only provides free products 

prior to the product launch but also continues to offer the free products after the product 

launch to further motivate sales. We refer to this strategy as the combined strategy which 

is illustrated in Figure 4-7. 

 
Figure 4-7: Combined Strategy Timeline 
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Let 𝑛e and 𝛿𝑛e be the number of free products that are offered to the high-valuation free 

users and low-valuation free users respectively before the product launch (𝑡 = 𝜏) within 

[0, 𝜏]. Then analogous to the before strategy formulated by (4.4), the buyers’ product 

adoption process after the product release follows  

𝑦(𝑡) = R𝑝 + /
+
𝑌(𝑡) + Y4

+
𝑛e +

Y*
+
𝛿𝑛eS ;𝑚 − 𝑛e − 𝑌(𝑡)=,						𝑡 ≥ 𝜏,             (4.21) 

where,	𝑌(𝜏) = 0.	After product launch, 𝑛f free products are offered to high-valuation 

users with distribution 𝑌\f(𝑡), 𝑡 ∈ [𝜏, 𝑇], and 𝛿𝑛f free products are offered to low-

valuation users with distribution 𝑌5f(𝑡), 𝑡 ∈ [𝜏, 𝑇], where, 𝑌\f(𝑡) = 𝑛f and 𝑌5f(𝑡) = 𝛿𝑛f 

for 𝑡 ≥ 𝑇. We also incorporate the impact of free users who received free products after 

the new product launch into the buyer’s adoption process. Thus, the buyers’ product 

adoption after the product launch follows 

𝑦(𝑡) = R𝑝 + /
+
𝑌(𝑡) + Y4

+
(𝑛e + 𝑌\f(𝑡)) +

Y*
+
(𝛿𝑛e + 𝑌5f(𝑡))S ;𝑚 − 𝑛e − 𝑛f −

𝑌(𝑡)=,			𝑡 ≥ 𝜏,                         (4.22) 

where,	𝑌(𝜏) = 0,	and	𝑛f + 𝑛e < 𝑚. Similar to Theorem 4.1, we can show that the initial 

value problem (4.22), with 𝑌(𝜏) = 0	has a unique global solution 𝑌(𝑡), 𝑡 ∈ [𝜏,∞), which 

is monotonically increasing to the actual market size 𝑚 − 𝑛e − 𝑛f (Appendix C, (C.10)). 

Moreover, like Proposition 4.1, we can demonstrate that 𝑌(𝑡) is proportional to the actual 

market size 𝑚 − 𝑛e − 𝑛f if 𝑌\f(𝑡) and 𝑌5f(𝑡) are proportional to 𝑛f.  

Analogous to the before and concurrent strategies, we can show that the buyers’ adoption 

peaks if the buyers’ imitation effect (𝑞) is high (Appendix C, Proposition C.3 (i)). 

Moreover, the buyers’ cumulative adoption rate (𝑌(𝑡)) is increasing in innovation (𝑝) and 

imitation (𝑞, 𝜆\, 𝜆5) parameters (Appendix C, Proposition C.3 (ii)). Furthermore, we can 

show that faster free product distribution leads to faster buyers’ adoption (Appendix C, 

Proposition C.4). We can see that the results of Corollaries 4.1 through 4.3 are also 

applicable to (4.22) when 𝑌\f(𝑡) and 𝑌5f(𝑡) are given by (4.10) and (4.11) or (4.14) and 

(4.15). 

Incorporating the buyers’ repeat purchases, the buyers’ sales is captured by 

𝑆(𝑡) = 𝐼N
!𝑦(𝑡) = "

J(!)∫ (𝑡 − 𝑠)
!&"𝑦(𝑠)𝑑𝑠.'

N 										               (4.23) 
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Similar to (4.8), the repeat purchases made by high-valuation free users who are provided 

with free products before the product launch is given by  

𝑆\e(𝑡) =
"

J6!4
@8∫ (𝑡 − 𝑠)

!4
@&"𝑦\e(𝑠)𝑑𝑠

N
( ,		                        (4.24) 

where 𝑦\e(𝑡), 𝑡 ∈ [0, 𝜏], denotes the free product distribution to 𝑛e high-valuation free 

users before the product launch. Moreover, analogous to (4.17), sales through repeat 

purchases made by high-valuation free users who are provided with free products after 

the product release are captured by 

𝑆\f(𝑡) = 𝐼N
!4
A
𝑦\f(𝑡) − 𝑦\f(𝑡).										                            (4.25) 

Here, 𝛽\e and 𝛽\f	denote the repeat purchase rates of high-valuation free users before and 

after product release, respectively. Thus, the total sales are given by 𝑆(𝑡) + 𝑆\f(𝑡) +

𝑆\e(𝑡). Consequently, the profit function is given by 

Π(𝑛f , 𝑛e) = ∫ �𝜋(𝑡) R𝑆(𝑡) + 𝑆\f(𝑡) + 𝑆\e(𝑡)S − 𝑐(𝑡);𝑦\f(𝑡) + 𝑦5f(𝑡)=� 𝑑𝑡
2
N −

𝑐((1 + 𝛿)𝑛e , (4.26) 

where, 𝑐( and 𝑐(𝑡) denote the free product marginal costs before and after the product 

release respectively. Hence, the decision-making problem of determining the optimal 

number of free products to offer before the release (𝑛e) and after the release (𝑛f) can be 

represented as 

max
OA`O8

A ,O@`O8
@
Π(𝑛f , 𝑛e),                                      (4.27) 

where, 𝑛Af + 𝑛Ae < 𝑚. 𝑛Ae  and 𝑛Af  denote exogenous upper bounds on the number of free 

product offers before and after the product release. We note that by setting 𝑛f = 0, the 

profit function (4.26) reduces to (4.18) which corresponds to the before strategy.  

We expect that with an increase in the potential market size and the upper bound on the 

maximum number of free product offers, the optimal number of free product users (both 

high-valuation and low-valuation) should increase to effectively promote sales through 

word-of-mouth. Similar to the before and concurrent strategies, we observe that if free 

product distributions are proportional to the number of free products that are planned to 

be distributed, this increase in the number of optimal free users (including before and 

after the release low-valuation and high-valuation free product recipients) should be at 
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the same rate as the potential market size and the maximum free product offer bound, 

which leads to an increase in the optimal profit. This increase in the optimal profit 

follows the same rate of increase as the potential market size (Appendix C, Proposition 

C.5). Similar to the before and concurrent strategies, we observe that expanding the 

market size and the bound on the maximum number of free products, however, does not 

make the free product offering strategy justifiable in a situation when the optimal 

strategy is not to offer any free products. 

Analogous to the before and concurrent strategies, we find the following results for the 

combined strategy when the buyers’ word-of-mouth (𝑞) is sufficiently high. These 

findings are equally justified using the logic offered for the results of Proposition 4.5-4.7. 

• When the planning horizon is short (𝑇 ≤ 𝑡̃), having higher values for either the 

buyers’ innovation effect (𝑝), or the buyers’ or the free users’ imitation effects (𝑞, 𝜆\, 

𝜆5) increases profit (Appendix C, Proposition C.6 (i)). This higher profit is attained 

for a longer period of time when the repeat purchase rate is higher (Appendix C, 

Proposition C.6 (ii)). Furthermore, if the unit contribution margin (𝜋(𝑡)) is decreasing 

over time at a sufficiently high declining rate, this higher profitability holds in the 

long-term as well (Appendix C, Proposition C.6 (iii)).   

• When the planning horizon is short (𝑇 ≤ 𝑡̃), a higher ratio of low-valuation to high-

valuation free users (𝛿) results in higher profit if the marginal cost is zero or low 

compared to the unit contribution margin (Proposition C.7 (i)). Higher rates of repeat 

purchases lead to higher profitability for a longer period of time (Proposition C.7 (ii)). 

• When the planning horizon is short (𝑇 ≤ 𝑡̃), a faster low-valuation users' free product 

adoption after the product release results in a higher profit if the marginal cost is zero 

or low compared to the unit contribution margin (Proposition C.8 (i)). This 

conclusion is applicable to a longer period of time if the rate of repeat purchases is 

higher (Proposition C.8 (ii)). 

Our numerical experiments, which are presented in Tables 4-9 and 4-10, show interesting 

results about the efficacy of the combined strategy. Table 4-9 shows the optimal solution 

for (4.26) under three buyers’ adoption and repeat purchase rates. In the base scenario, 

the values of the parameters of adoptions and repeat purchases for buyers (𝑦(𝑡)) and 
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after-the-release free product recipients (𝑦\f(𝑡) and 𝑦5f(𝑡)) are set to those provided in the 

base scenario of Table 4-2. Free product distribution to high-valuation free product 

recipients before the product launch (𝑦\e(𝑡)) is identical to the one provided in Section 

4.4.2 for the before strategy. Repeat purchase rates for the before and after-the-release 

high-valuation free product recipients are equal to the buyers’ repeat purchases rate (𝛽 =

𝛽\f = 𝛽\e). The unit contribution margin (𝜋(𝑡)) and the free product unit cost after the 

product launch (𝑐(𝑡)) are set to those provided in Table 4-3 Case I. We also set the free 

product unit cost before product launch to 𝑐( = 25, the planning horizon (𝑇) to 12, the 

product release time (𝜏) to 2, and 𝑛Af = 𝑛Ae = +
"(

.   

Table 4-9: Optimal Solution for Combined Strategy Under Different Scenarios 

Scenarios 
Ceteris Paribus 

𝑝 = 0.05, 𝑞 = 1.2, 
𝛽 = 𝛽9B = 𝛽9C = 0 

Base 
Ceteris Paribus 

𝑝 = 0.01, 𝑞 = 0.1, 
𝛽 = 𝛽9B = 𝛽9C = 0.5 

Optimal Solution 𝑛B∗ = 𝑛C∗ = 0% 
Π∗ = 1.568 × 10?< 

𝑛B∗ = 0, 𝑛C∗ = 10% 
Π∗ = 2.455 × 10?< 

𝑛B∗ = 𝑛C∗ = 10% 
Π∗ = 2.821 × 10?< 

Table 4-9 demonstrates that having a high repeat purchase rate and a slow rate of buyers’ 

adoption makes the free product offer strategy more favorable, which is consistent with 

the results derived earlier for the before and concurrent strategies (Section 4.4.2). In 

particular, we can see that when no significant repeat purchases are expected (𝛽 = 𝛽\f =

𝛽\e = 0) and buyers’ product adoption is happening at a fast pace (𝑝 = 0.05, 𝑞 = 1.2), 

offering free products is not recommended. Free product offers before the product launch 

are advised in the base scenario, where repeat purchase rates are higher (𝛽 = 𝛽\f = 𝛽\e =

0.278) and buyers’ adoption rate is slower (𝑝 = 0.037, 𝑞 = 0.656). However, offering 

free products after the product release is still not an optimal strategy under the base 

scenario, even though the unit cost (𝑐(𝑡)) is lower and declining after the product release. 

Finally, it is recommended to offer free products before and after the release time when 

the repeat purchase rate is high (𝛽 = 𝛽\f = 𝛽\e = 0.5) and the buyers’ adoption rate is 

slow (𝑝 = 0.01, 𝑞 = 0.1). This means that, while adopting the before strategy is the best 

course of action in the base scenario, it does not result in the highest profit when repeat 

purchases are high and adoption is sluggish. Instead, providing free products after the 

product's release time as well, leads to higher profitability. 
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We see that there are situations in which even zero marginal cost may not support the 

offering of any free products under the combined strategy. Table 4-10 provides an 

instance of such scenarios. Consistent with the results found under the before and 

concurrent strategies (Section 4.4.2), Table 4-10 shows that when adoption is occurring 

quickly, the repeat purchase rate is low, and the proportion of low-valuation free users is 

low, even a free product offer at no cost does not justify offering free products under the 

combined strategy (𝑛f∗ = 𝑛e∗ = 0% )14. Furthermore, consistent with the outcomes 

achieved under the before and concurrent scenarios (see Section 4.4.2), Table 4-10 shows 

that having a higher proportion of low-valuation free users makes offering free products 

justifiable (𝑛e∗ = 2%).   

Table 4-10: Optimal Solution for Zero Free Product Marginal Cost Under 

Combined Strategy 
𝑎; = 100, 𝑏; = −6       𝑎> = 𝑏> = 𝑐< = 0 

 Ceteris Paribus     𝛽 = 𝛽9B = 𝛽9C = 0,  𝑝 = 0.05, 𝑞 = 1.2, 𝛿 = 0.1	, 𝑝9 = 0.04, 
𝑞9 = 𝑞:9 = 0.8 𝑛B∗ = 𝑛C∗ = 0% 

Ceteris Paribus     𝛽 = 𝛽9B = 𝛽9C = 0,  𝑝 = 0.05, 𝑞 = 1.2  𝑛B∗ = 0, 𝑛C∗ = 2% 

4.6 Concluding Remarks 

We develop models to analyze marketing strategies of offering free products to promote 

sales and subsequently generate profit. In contrast to the existing literature which focuses 

mostly on cases where offering free products occurs prior to product launches, we 

examine three main product giveaway strategies: (i) free products are offered before the 

product release time (before), (ii) immediate product release and free product offering 

upon the new product release and in parallel with sales (concurrent), and (iii) free product 

offering before the new product release time and after the new product release and in 

parallel with sales (combined). The current literature also assumes that sales are 

composed of only adoptions whereas in this paper, sales are composed of both adoptions 

 
14 By setting 𝑝9 = 0.04, 𝑞9 = 𝑞:9 = 0.8 we compensate for the reduction in the speed of free product 
adoption by high-valuation free users caused by the drop in the proportion of low-valuation users (𝛿 =
0.1).     
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and repeat purchases made by product buyers and high-valuation free product users. In 

our study, we distinguish between two types of free product users: (i) high-valuation free 

users who are willing to purchase the product and (ii) low-valuation free users who are 

not willing to pay for the product.  

We assess product giveaway strategies to determine the conditions under which 

offering free products is advantageous. Offering free products hinges greatly on the rates 

of adoption and repeat purchases. Firms may gain from offering free products when high 

repeat purchases of the new products are expected, but adoption is sluggish. Moreover, a 

higher ratio of low-valuation to high-valuation free users can make offering free products 

more promising. Additionally, the findings indicate that offering free products can be 

more beneficial when the unit contribution margin follows a declining trend. Offering 

free products is more appealing when the free product's marginal cost is lower, but in 

some cases, even a zero marginal cost may not be sufficient to support any of the free 

product offering strategies. One such scenario occurs when the repeat purchases rate is 

low, the buyers’ adoption process is taking place at a high pace and the ratio of low-

valuation to high-valuation free users is low. Even though it is expected that the optimal 

number of free products to offer will rise as the potential market grows, our results 

demonstrate that expanding the potential market alone may not be sufficient to justify 

offering free products. 

Our results further show that, for the three studied free product offering strategies, when 

firms plan for a short planning horizon in a market composed of potential customers with 

sufficient strong word-of-mouth effect they should target: 

(i) markets composed of potential buyers with high innovation and imitation effects;  

(ii) highly influential free users;  

(iii) a higher ratio of low-valuation to high-valuation free users (corresponding to each 

high-valuation free product recipient, a larger number of low-valuation users 

receive the free product) when the free product marginal cost is zero or low 

compared to the unit contribution margin. 

Furthermore, if the concurrent and combined strategies are adopted, then (iv) faster free 

product adoption by low-valuation free users should be planned when the free product 
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marginal cost is zero or low in comparison to the unit contribution margin. When the rate 

of repeat purchases is higher, recommendations (i) through (iv) lead to higher profit over 

a longer period. However, recommendations (i) through (iv) may potentially have a 

detrimental effect on profitability if an extensively long planning horizon is chosen. 

We find that when a product giveaway strategy is profitable, the before strategy can be 

better than the concurrent strategy if the new product release time is early. Otherwise, 

firms may better off immediately releasing the new product and following the concurrent 

strategy. Furthermore, using the before strategy may not produce the highest profit, and 

using a combined strategy, in which free products are also offered after the release time, 

may result in higher profitability. One such situation is when the adoption of the new 

product is sluggish, and the rate of repeat purchases is high. 

Our models serve as a basis for future research. For instance, the adoption rate in the 

current models is based on the Bass Model, which considers the innovation and imitation 

effects as drivers of adoption. More extensive diffusion models can be used in place of 

the bass diffusion model (e.g., Van den Bulte & Joshi, 2007). Moreover, we focused on 

the role of free users in promoting the new product sales and firms’ profitability through 

word-of-mouth. Future research may consider additional possible advantages of offering 

free products on firms' profitability, such as enhancing the network effect, when sales are 

composed of both adoptions and repeat purchases.  

 

 



112 

 

Chapter 5  

5 Conclusion 
Focusing on technological products, this research provides comprehensive analytical 

models that firms can use when planning to release a new product to the market. The 

problems addressed in the three essays of this dissertation include: finding the optimal 

pricing strategy for a new product, estimating and forecasting sales trends in a product 

line composed of multiple generations, determining the optimal market entry timing 

strategy for a new product generation in a product line, and identifying the optimal 

number of free products that should be offered to promote sales and maximize profit. 

Focusing on the price skimming strategy, Chapter 2 examines optimal pricing strategies 

for technological products. In this research, we first extend the generalized diffusion 

model proposed by Lotfi et al. (2023), which captures initial purchases or adoptions and 

repeat purchases, to incorporate the effects of introductory price and price changes on 

sales. Next, based on the extended sales model, we formulate a profit optimization 

problem. 

Our results in Chapter 2 reveal that the effectiveness of a price-skimming strategy is 

highly dependent on the rate of repeat purchases. Specifically, the results show that price 

skimming may not be an optimal pricing strategy when sales through repeat purchases 

are weak. Conversely, our results suggest that price skimming is likely optimal when the 

repeat purchase rate is high. 

Chapter 2 also provides the following important findings: 

• When the market’s sensitivity to price changes is high, firms may be better off 

setting a higher introductory price; however, the price should start to decline earlier. 

• When customers are more (less) sensitive to the baseline price, the optimal 

introductory price decreases (increases). 

Chapter 3 introduces a new model that captures the sales trends of a product line 

composed of multiple generations of a technological product. The new model accounts 
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for initial purchases of each generation, within-generation repeat purchases, and cross-

generation upgrades. It considers two main generation transition strategies: (i) a phase-

out transition strategy, under which firms continue to sell the old generation after the 

release of a new generation, and (ii) a total transition strategy, under which firms 

discontinue the old generation with the release of a new generation. 

Our empirical results in Chapter 3 demonstrate that the new model leads to significantly 

more accurate fits and forecasts than a benchmark model that does not account for 

within-generation repeat purchases. Therefore, our results underscore the importance of 

incorporating repeat purchases. 

In Chapter 3, by employing our new multigeneration sales model, we develop a 

framework to determine the optimal market entry timing strategy for a new product 

generation in a product line. Depending on the rate of repeat purchases, under both 

generation transition strategies, we identify conditions under which the new generation 

should be released as early as possible, or its introduction should be delayed as much as 

possible. Furthermore, under both strategies, we find conditions where neither the 

immediate release strategy nor the maximum release delay strategy is optimal. 

Chapter 4 introduces a new model to examine marketing strategy of offering free 

products to promote sales and maximize profit for a new technological product. The new 

model accounts for three main product giveaway strategies: (i) free products are offered 

before the product release (before), (ii) the product is released immediately, and free 

products are offered in parallel with sales (concurrent), and (iii) free products are offered 

both before and after the product release (combined). In the new modeling framework, 

sales comprise initial purchases or adoptions and repeat purchases. This study considers 

two types of free product recipients: (i) high-valuation free users who are willing to 

purchase the product and (ii) low-valuation free users who are not willing to pay for the 

product. 

We find that offering free products is highly dependent on the rate of adoptions and 

repeat purchases. Specifically, offering free products is more appealing when adoptions 

occur at a slow pace, but a high rate of repeat purchases is expected. Additionally, a 
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higher ratio of low-valuation to high-valuation free users can make the free product 

offering strategy more favorable. Moreover, we find that when the rate of repeat 

purchases is low, buyers’ product adoption is fast, and the ratio of low-valuation to high-

valuation free users is low, even zero-cost free product offers may not justify offering 

free products. Furthermore, our results show that when offering free products is not an 

optimal strategy, even expanding the market size may not make offering free products 

justifiable. 

In Chapter 4, we further find that when a short planning horizon is considered in a market 

composed of potential customers with a sufficiently strong word-of-mouth effect, the 

following strategies should be adopted by firms under the three free product offer timing 

strategies: 

(i) Markets composed of potential buyers with high innovation and imitation effects 
should be targeted.  

(ii) Highly influential free users should be targeted.  

(iii) When the free product marginal cost is zero or low compared to the unit 

contribution margin, for each high-valuation free product recipient, a larger number 

of low-valuation users should receive the free product.  

We find that when the rate of repeat purchases is higher, recommendations (i) through 

(iii) lead to higher profit over a longer period. However, these recommendations may 

potentially lead to lower profitability over an extensively long planning horizon. 

Additionally, the results in Chapter 4 indicate that if the new product is released without a 

significant delay, the before strategy may lead to higher profit than the concurrent 

strategy. Moreover, when the buyers' product adoption rate is slow, but the rate of repeat 

purchases is high, the combined strategy may lead to higher profit than the before 

strategy. 

Methodologically, the three essays presented in Chapters 2 through 4 of this dissertation 

contribute to the management science literature by implementing fractional calculus as a 

novel tool. Fractional calculus, a well-established field in applied mathematics, may find 

more applications in different areas of management science research. 
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Appendices  

Appendix A: To Skim or not to Skim: Studying the Optimal 

Pricing Strategy for Technology Products 

A.1   Software Sales 

Before proceeding to prove Theorems 2.1 and 2.2 we state the following theorems from 

fractional calculus needed for the subsequent developments.  

Theorem A.1 For 𝑓 continuous on [0, 𝑇] and 𝛽", 𝛽< > 0, 𝐼!+-!(𝑓(𝑡) = 𝐼!+𝐼!(𝑓(𝑡) . 

Proof  (Kilbas et al., 2006). 

Theorem A.2  For 𝑓 continuous on [0, 𝑇] and 𝛽 > 1, g
g'
𝐼!𝑓(𝑡) = 𝐼!&"𝑓(𝑡). 

Proof  (Kilbas et al., 2006). 

Proof of Theorem 2.1  Since 𝜆(𝑇) = 0, Γ<(𝑇) = 𝑝𝑟(𝑇)𝛼𝐼!𝑦;𝑋(𝑇)=. Because 𝛼 < 0, 

Γ<(𝑇) < 0.  In the remainder of the proof, it is shown that Γ<(𝑡) ≤ 0 for 𝑡 ∈ [0, 𝑇). 

Suppose there exists 𝑡" ∈ [0, 𝑇) such that  Γ<(𝑡") > 0. Then there exists 𝑡< ∈ (𝑡", 𝑇) such 

that Γ<(𝑡<) = 0 and Γ<1(𝑡<) ≤ 0. Clearly 

Γ<1(𝑡) = 𝛼 � g
g'
	𝐼!𝑦;𝑋(𝑡)=𝑝𝑟(𝑡) + 𝐼!𝑦;𝑋(𝑡)=𝑝𝑟1(𝑡)� + 𝜆(𝑡)𝑝𝑟1(𝑡) + 𝑝𝑟(𝑡)𝜆1(𝑡),         

(A.1) 

where 

𝜆1(𝑡) = 𝑟𝜆(𝑡) − =>
=.0

(𝑡),                                                     (A.2) 

=>
=.0

(𝑡) = (1 + 𝛼𝑄(𝑡))(	𝐼!𝑦;𝑋(𝑡)= + 𝑝𝑟(𝑡) =h
1P(;)
=.0

(𝑡)) + 𝜆(𝑡)𝑄(𝑡).              (A.3) 

By Theorem A.1 

𝐼!𝑦;𝑋(𝑡)= = ;(')1

J(!-")
𝑦(0) + 𝐼!-"𝑦′;𝑋(𝑡)=.                                       (A.4) 

Then, by Theorem A.2 
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=h1P(;)
=.0

(𝑡) = i
.0(')

�;(')
1!+

J(!)
𝑦(0) + 𝐼!𝑦1;𝑋(𝑡)=� ,			𝑡 ∈ (0, 𝑇].                       (A.5) 

Similarly, by Theorem A.2 it can be observed that  

g
g'
𝐼!𝑦;𝑋(𝑡)= = ;1 + 𝛼𝑄(𝑡)= �;(')

1!+

J(!)
𝑦(0) + 𝐼!𝑦′;𝑋(𝑡)=� ,			𝑡 ∈ (0, 𝑇].                      

(A.6) 

Substituting (A.2), (A.3), (A.5), and (A.6) in (A.1) and noting (2.19), 

Γ<1(𝑡) = 𝑝𝑟(𝑡)(𝑟𝜆(𝑡) − 𝐼!𝑦;𝑋(𝑡)=),       𝑡 ∈ (0, 𝑇].                                (A.7)   

On the other hand, Γ<(𝑡<) = 0 implies that,  −𝛼𝐼!𝑦;𝑋(𝑡<)= = 𝜆(𝑡<).  So, by (A.7)  

Γ<1(𝑡<) = 𝑝𝑟(𝑡<)𝐼!𝑦;𝑋(𝑡<)=(−𝛼𝑟 − 1).                                      (A.8)  

The assumption −𝛼𝑟 > 1 implies that Γ<1(𝑡<) > 0 which is a contradiction.                    ☐               

Proof of Theorem 2.2a By assuming Γ<(0) > 0 and the fact that Γ<(𝑇) < 0 (see the 

proof of Theorem 4.1), there exists 𝑡∗ ∈ (0, 𝑇) such that Γ<(𝑡∗) = 0 which means that 

−𝛼𝐼!𝑦;𝑋(𝑡∗)= = 𝜆(𝑡∗). On the other hand, by (A.7) 

Γ<1(𝑡∗) = 𝑝𝑟(𝑡∗)𝐼!𝑦;𝑋(𝑡∗)=(−𝛼𝑟 − 1) < 0.                                   (A.9) 

This means that at any point in (0, 𝑇), if Γ< = 0, then Γ<1 < 0.  Now let 𝑡" ≠ 𝑡∗, such that 

Γ<(𝑡") = 0 and without loss of generality 𝑡" ∈ (𝑡∗, 𝑇). Then by continuity of Γ<(𝑡) and 

the fact that Γ<1(𝑡∗) < 0, we must have Γ<1(𝑡") ≥ 0 which is a contradiction.                    ☐                                         

Proof of Theorem 2.2b If there exists 𝑡∗ ∈ (0, 𝑇) such that Γ<(𝑡∗) > 0, then by 

continuity of Γ<(𝑡) and the fact that Γ<(0), Γ<(𝑇) < 0, there must exist 𝑡" ∈ (0, 𝑡∗) and 

𝑡< ∈ (𝑡∗, 𝑇)  such that Γ<(𝑡") = Γ<(𝑡<) = 0 and Γ<1(𝑡") ≥ 0 and  Γ<1(𝑡<) ≤ 0. Since 

Γ<(𝑡") = 0, then Γ<1(𝑡") < 0 (see proof of Theorem 2.2a) which is a contradiction.      ☐                                                                            

Proof of Theorem 2.2c By assuming Γ<(0) = 0 and the fact that Γ<(𝑇) < 0 two cases 

can happen. First, there exists 𝑡̅ ∈ (0, 𝑇) such that Γ<(𝑡̅) > 0. Then, there exists 𝑡∗ ∈

(𝑡̅, 𝑇) such that Γ<(𝑡∗) = 0 which means Theorem 2.2a happens (see proof of Theorem 

2.2a). Second, Γ<(𝑡) ≤ 0 for 𝑡 ∈ (0, 𝑇] which means Theorem 2.2b happens.           ☐                                                                        
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A.2   General Optimization Model 

It should first be demonstrated that the functional Π has an upper bound and therefore 

supremum.  

According to Assumption III, the inequality 

𝛿 ≤ 	𝑝𝑟1(𝑡) ≤ ∆,				                                                (A.10) 

holds on [0, 𝑇]. Integrating inequality (A.10) over [0, 𝑇] along with Assumptions I and II 

leads to 

𝜆( ≤ 𝑝𝑟(𝑡) ≤ Λ + ∆𝑇, 𝑡 ∈ [0, 𝑇].                                     (A.11) 

It can be observed that 

0 < 𝜔 ≤ 𝑥(𝑡) = R𝑘 + 𝛼 .0,(')
.0(')

S ≤ 1 + 𝛾 ln(𝜆) + 𝛼 _
Y)
, 𝑡 ∈ [0, 𝑇].        (A.12)                       

Simply integrating (A.12) leads to 

0 ≤ 𝑋(𝑡) ≤ R1 + 𝛾 ln(𝜆) + 𝛼 _
Y)
S𝑇, 𝑡 ∈ [0, 𝑇].                          (A.13) 

Since 𝑦(𝑡) is a continuous function, it can be observed that 𝐼!𝑦(𝑡) defined in (2.1) is a 

continuous function on any closed interval [0, 𝐿]. Therefore, the sales function 𝑠(𝑡) 

defined in (2.11) is clearly continuous with respect to arguments k, 𝑥(𝑡) and 𝑋(𝑡) and 

therefore, by inequalities (A.12), (A.13), and the boundedness of  𝑝𝑟(, 𝑠(𝑡) is bounded on 

[0, 𝑇]. In the same way it can be observed that the cost functions 𝑐(𝑡) and 𝑐̅(𝑡) are also 

bounded on [0, 𝑇]. Therefore, it can be deduced that the functional Π is bounded from 

above on 𝑀 and therefore there exists  𝜇 < ∞ such that 𝜇 = 𝑆𝑢𝑝	Π	|A. 

In the remainder of this section, the objective is to find polynomial functions of degree at 

most 𝑁, such that each 𝑝𝑟@(𝑡) satisfies assumptions I-IV and also that Π[𝑝𝑟@(𝑡)]  be 

sufficiently close to 𝜇 for large enough values of 𝑁. To do so, the focus is placed on the 

optimization problem (2.25). The existence of a solution for the problem expressed by 

(2.25) is proven in Theorem A.4. The continuity of functional Π is needed for the 

subsequent development, and this is demonstrated in Lemma A.1 using the following 

theorem. 
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Theorem A.3 Let 𝑔 be a continuous mapping of a compact metric space 𝑋 into a metric 

space 𝑌, then 𝑔 is uniformly continuous. 

Proof  (Royden, 1988). 

Note that 𝐶"[0, 𝑇] denotes the Banach space of continuously-differentiable functions 

defined on [0, 𝑇] equipped with the uniform norm, ‖. ‖"where, ‖𝑓‖" = ‖𝑓‖j + ‖𝑓′‖j, 

‖𝑓‖j = 𝑀𝑎𝑥	{|𝑓(𝑡)||0 ≤ 𝑡 ≤ 𝑇}, 𝑓 ∈ 𝐶"[0, 𝑇].   

Lemma A.1  For any 𝜌 > 0, the functional 𝛱 is continuous on 𝐺k where 

𝐺k ∶= {𝑝𝑟(𝑡) ∈ 𝐶"[0, 𝑇]	|𝑝𝑟(𝑡) ≥ 𝜌, 𝑥(𝑡) > 0, 𝑘 > 0}.                        (A.14) 

Proof  Let 𝑝𝑟∗ ∈ 𝐺k . Consider 

𝐼 = [0, 𝑇] × [𝜌, 𝑝𝑟∗(0) + 1] × [𝜌, ‖𝑝𝑟∗‖j + 1] × [−‖𝑝𝑟∗′‖j − 1, ‖𝑝𝑟∗′‖j + 1]. 

Obviously for 𝑡 ∈ [0, 𝑇] we have 𝑃∗(𝑡): = ;𝑡, 𝑝𝑟∗(0), 𝑝𝑟∗(𝑡), 𝑝𝑟∗,(𝑡)= ∈ 𝐼. Let 𝑝𝑟(𝑡) ∈

𝐺k ,  𝜂 > 0 and ‖𝑝𝑟 − 𝑝𝑟∗‖" < 𝜂. Then for 𝜂 < 1, 𝑃(𝑡) = (𝑡, 𝑝𝑟(0), 𝑝𝑟(𝑡), 𝑝𝑟1(𝑡)) ∈ 𝐼 

for 𝑡 ∈ [0, 𝑇]. Define  

𝐻"(𝑡, 𝑝𝑟(0), 𝑝𝑟(𝑡), 𝑝𝑟1(𝑡)) ≔ 𝑘 + 𝛼 .0,(')
.0(')

,                            (A.15) 

𝐻<(𝑡, 𝑝𝑟(0), 𝑝𝑟(𝑡), 𝑝𝑟1(𝑡)) ≔ 𝑘𝑡 + 𝛼ln .0(')
.0(()

.                         (A.16) 

Because 𝐻" and 𝐻< are continuous on 𝐼, where 𝐼 is a compact subset of the metric space 

ℝI, then, according to Theorem A.3, 𝐻" and 𝐻< are uniformly continuous on 𝐼. Now 

suppose 𝜀 > 0 is given.  Clearly for 0 < 𝜂 < 1 sufficiently small, |𝐻"(𝑃(𝑡)) −

𝐻"(𝑃∗(𝑡))|, |𝐻<(𝑃(𝑡)) − 𝐻<(𝑃∗(𝑡))| < 𝜀 for 𝑡 ∈ [0, 𝑇], and therefore ‖𝐻"(𝑃) −

𝐻"(𝑃∗)‖	j, ‖𝐻<(𝑃) − 𝐻<(𝑃∗)‖	j < 𝜀. It can thus be concluded that 𝑥 → 𝑥∗, 𝑋 → 𝑋∗ 

with respect to ‖. ‖j as 𝑝𝑟 → 𝑝𝑟∗	with respect to ‖. ‖" where 𝑥∗(𝑡): = 𝑘∗ + 𝛼 .0(')∗,

.0(')∗
 , 

𝑋∗(𝑡): = 𝑘∗𝑡 + 𝛼ln .0(')∗

.0(()∗
 and, 𝑘∗ = 1 + 𝛾 ln(𝑝𝑟(0)∗). Let 𝑚l∗, 𝑀l∗ be the respective 

minimum and maximum values of  𝑥∗(𝑡) on [0, 𝑇]. Then for 𝜏 > 0	small enough such 

that 𝑚l∗ − 𝜏 > 0,  𝑥(𝑡), 𝑥∗(𝑡) ∈ [𝑚l∗ − 𝜏,𝑀l∗ + 𝜏] and 𝑋(𝑡), 𝑋∗(𝑡) ∈ [0, (𝑀l∗ + 𝜏)𝑇] 

for 𝑝𝑟 sufficiently close to 𝑝𝑟∗. Therefore, by Theorem A.3 it can be concluded that  

(1 + 𝛾 ln(𝑝𝑟(0)))𝐹;𝑋(𝑡)= → (1 + 𝛾 ln(𝑝𝑟∗(0)))𝐹;𝑋∗(𝑡)= and (1 +
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𝛾 ln(𝑝𝑟(0)))𝑥(𝑡)𝐼!𝑦;𝑋(𝑡)= → (1 + 𝛾 ln(𝑝𝑟∗(0)))𝑥∗(𝑡)𝐼!𝑦;𝑋∗(𝑡)= with respect to 

‖. ‖j as 𝑝𝑟 → 𝑝𝑟∗	with respect to  ‖. ‖".  

On the other hand, for 𝜏 > 0, 	(1 + 𝛾 ln(𝑝𝑟(0)))𝐹;𝑋(𝑡)=, ;1 +

𝛾 ln;𝑝𝑟∗(0)==𝐹;𝑋∗(𝑡)=, (1 + 𝛾 ln(𝑝𝑟(0)))𝑥(𝑡)𝐼!𝑦;𝑋(𝑡)= and (1 +

𝛾 ln(𝑝𝑟∗(0)))𝑥∗(𝑡)𝐼!𝑦;𝑋∗(𝑡)= ∈ [0,	𝑀∗ + 𝜏] for 𝑝𝑟 sufficiently close to 𝑝𝑟∗ with 

respect to  ‖. ‖", where 

𝑀∗ = 𝑀𝑎𝑥 ¬𝑀𝑎𝑥­;1 + 𝛾 ln;𝑝𝑟∗(0)==𝐹;𝑋∗(𝑡)=|𝑡 ∈ [0, 𝑇]	®,𝑀𝑎𝑥­(1 +

𝛾 ln(𝑝𝑟∗(0)))𝑥∗(𝑡)𝐼!𝑦;𝑋∗(𝑡)=|𝑡 ∈ [0, 𝑇]	®¯.                       (A.17) 

Again, by Theorem A.3 it can be observed that	𝑐(𝑡) → 𝑐∗(𝑡), and 𝑐̅(𝑡) → 𝑐̅∗(𝑡), with 

respect to ‖. ‖j as 𝑝𝑟 → 𝑝𝑟∗	with respect to  ‖. ‖" where 

𝑐∗(𝑡) = 3)4*+

64-7∗(')8
*+,   𝑐̅

∗(𝑡) = 9+4*(

(4-:∗*6;∗(')8)*(
,                              (A.18) 

𝜎∗(𝑡) = 6"-m no6.0∗(()88l∗(')h1P6;∗(')8
+

.                                      (A.19) 

This completes the proof.                                                                                                   ☐                                                                                                            

Theorem A.4 For all 𝑁 ∈ ℕ, the optimization problem expressed in (2.25) has a solution. 

Proof  First it can be shown that 𝑀 is a closed subset of 𝐶"[0, 𝑇]. Consider 

{𝑝𝑟O(𝑡)}O∈ℕ ⊂ 𝑀 such that 𝑝𝑟O ⟶ 𝑝 with respect to ‖. ‖". Clearly 𝛿 ≤ 𝑝𝑟O′(𝑡) ≤ ∆  

implies that  𝛿 ≤ 𝑝1(𝑡) ≤ ∆  on [0, 𝑇].  𝜆 ≤ 𝑝𝑟O(0) ≤ Λ and 𝑝𝑟O(𝑡) ≥ 𝜆( on [0, 𝑇] also 

result in 𝜆 ≤ 𝑝(0) ≤ Λ and 	𝑝𝑟(𝑡) ≥ 𝜆( on [0, 𝑇], respectively. Similar to the proof of 

Lemma A.1, it can be demonstrated that 𝑥O ⟶ 𝑥 with respect to ‖. ‖j where 𝑥O(𝑡) =

𝑘O + 𝛼
.0D1(')
.0D(')

, 𝑥(𝑡) = 𝑘 + 𝛼 .1(')
.(')

 , 𝑘O = 1 + 𝛾 ln(𝑝𝑟O(0)), and 𝑘 = 1 + 𝛾 ln(𝑝(0)) 

which means that 𝑥(𝑡) ≥ 𝜔. So, 𝑝(𝑡) ∈ 𝑀, which means that 𝑀 is closed. Since 𝑃@[0, 𝑇] 

is a finite dimensional subspace of 𝐶"[0, 𝑇] it is closed and therefore 𝑀 ∩ 𝑃@[0, 𝑇]is a 

closed subset of 𝑃@[0, 𝑇]. On the other hand, by inequalities (A.10) and (A.11), 𝑀 ∩

	𝑃@[0, 𝑇] is also bounded. Therefore, by the Heine-Borel theorem 𝑀 ∩	𝑃@[0, 𝑇] is 

compact. Because Π is continuous by Lemma A.1 and 𝑀 ∩	𝑃@[0, 𝑇] is nonempty, the 

existence of a solution for (2.25) is guaranteed.                                                                ☐                                                                                                                                                                                                 
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So far, Theorem A.4 demonstrates that problem expressed in (2.25) has a solution. 

Although the functional optimization problem of (2.25) can be interpreted as a function 

optimization problem in which coefficients of polynomials of degree at most 𝑁 should be 

determined to get the optimal solution, the existence of inequality constraints make it 

impossible to easily deal with (2.25) as a function optimization problem. The objective is 

therefore to derive a sequence of function optimization problems and show that solutions 

for these problems provide us with the desired sequence of polynomial price functions 

{𝑝𝑟@}@∈ℕ discussed earlier in Section 2.4.3. 

By using the transformation 

𝑝𝑟1(𝑡) = 𝑣<(𝑡) + 𝛿,                                                (A.20) 

(2.14) and (2.24) are transformed into (A.21) and (A.22) respectively  

                           Π²[𝑝𝑟(, 𝑣(𝑡)] = Π ³𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'
( ´,	                           (A.21) 

 𝑀² = b(𝑝𝑟(, 𝑣(𝑡), 𝑤(𝑡), 𝑢(𝑡), 𝑟(𝑡)) ∈ [𝜆, Λ] × ∏ 𝐶[0, 𝑇]I
5R" | ∫ [;𝑣<(𝑡) + 𝑤<(𝑡) 	−2

(

(Δ − 𝛿)=< + R𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'
( − 𝑢<(𝑡) − 𝜆(S

<
+ (𝑥q(𝑡) − 𝑟<(𝑡) − 𝜔)<] = 0¶,  

(A.22) 

where 

𝑥q(𝑡) = (1 + 𝛾 ln(𝑝𝑟()) + 𝛼
q((')-_

.0)-_'-∫ q((s)gs'
)

.                         (A.23) 

Lemma A.2 demonstrates the equivalence of the optimization problem described by 

(2.14), (2.24) with (A.21), (A.22). 

Lemma A.2  𝑆𝑢𝑝	Π²|At=	𝜇. 

Proof  Let (𝑝𝑟(, 𝑣(𝑡), 𝑤(𝑡), 𝑢(𝑡), 𝑟(𝑡)) 	∈ 	𝑀². Define 

𝑝𝑟(𝑡): = 𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'
( .                                      (A.24) 

Clearly 𝑝𝑟(𝑡) ∈ 	𝐶"[0, 𝑇]. Also  𝑝𝑟1(𝑡) = 𝛿 + 𝑣<(𝑡), which means that	𝑝𝑟1(𝑡) ≥ 𝛿 on 

[0, 𝑇]. On the other hand,  ∫ ;𝑣<(𝑡) + 𝑤<(𝑡) − (Δ − 𝛿)=<2
( 𝑑𝑡 = 0 which implies that 

𝑝𝑟1(𝑡) ≤ Δ on [0, 𝑇].  It is clear that 𝜆 ≤ 𝑝𝑟(0) ≤ Λ. It can also be observed that 
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∫ (𝑝𝑟(𝑡) − 𝑢<(𝑡) − 𝜆()<𝑑𝑡 = 0,2
(  implying that 𝑝𝑟(𝑡) ≥ 𝜆( on [0, 𝑇]. Also ∫ (𝑥q(𝑡) −

2
(

𝑟<(𝑡) − 𝜔)<𝑑𝑡 = 0 implies that 𝑥(𝑡) ≥ 𝜔. Hence 𝑝𝑟(𝑡) ∈ 	𝑀 and Π²[𝑝𝑟(, 𝑣(𝑡)] =

Π[𝑝𝑟(𝑡)], which means that 𝑆𝑢𝑝	Π²|At ≤ 𝜇.  Now consider an arbitrarily small 𝜂 > 0 and  

𝑝𝑟u(𝑡) ∈ 	𝑀 such that Πt𝑝𝑟u(𝑡)w > 𝜇 − 𝜂. Define 𝑝𝑟(u: = 𝑝𝑟u(0),  𝑣u(𝑡): =

·𝑝𝑟u′(𝑡) − 𝛿,			𝑤u(𝑡): = ·Δ − 𝑝𝑟u′(𝑡) , 𝑢u(𝑡): = ·𝑝𝑟u(𝑡) − 𝜆( and 𝑟u(𝑡): = ·𝑥u(𝑡) − 𝜔 

where 𝑥u(𝑡): = (1 + 𝛾 ln(𝑝𝑟(u 	)) + 𝛼
.0E1(')

.0E(')
. Clearly 𝑣u<(𝑡) + 𝑤u<(𝑡) = Δ − 𝛿, 

𝑢u<(𝑡) + 𝜆( = 𝑝𝑟u(𝑡) and 𝑟u<(𝑡) + 𝜔 = 𝑥u(𝑡). On the other hand, 𝑝𝑟u(𝑡) = 𝑝𝑟u(0) +

∫ 𝑝𝑟u′(𝑠)𝑑𝑠
'
( = 𝑝𝑟(u + 𝛿𝑡 + ∫ 𝑣u<(𝑠)𝑑𝑠

'
( .  Hence (𝑝𝑟(u , 𝑣u(𝑡), 𝑤u(𝑡), 𝑢u(𝑡), 𝑟u(𝑡)) ∈ 𝑀²  

and  Π²(𝑝𝑟(u , 𝑣u(𝑡)) = Πt𝑝𝑟u(𝑡)w > 𝜇 − 𝜂, meaning that 𝑆𝑢𝑝	Π²|At > 𝜇 − 𝜂; this 

completes the proof.                                                                                                           ☐                                                    

Consider vectors  

𝜙H(𝑡) = ¹

𝜑((𝑡)
𝜑"(𝑡)
⋮

𝜑H(𝑡)

¼ ,									𝑉H 	= ¹

𝑣(
𝑣"
⋮
𝑣H

¼,			𝑊H 	= ¹

𝑤(
𝑤"
⋮
𝑤H

¼,				𝑈H 	= ¹

𝑢(
𝑢"
⋮
𝑢H

¼,				𝑅H 	= ¹

𝑟(
𝑟"
⋮
𝑟H

¼,	 (A.25) 

and expansions 

𝑣H+(𝑡) = 𝑉H+
2 . 𝜙H+(𝑡),                                                    (A.26)                                                                                                                

   𝑤H((𝑡) = 𝑊H(
2 . 𝜙H((𝑡),                                                    (A.27) 

𝑢H.(𝑡) = 𝑈H.
2 . 𝜙H.(𝑡),                                                    (A.28) 

𝑟HI(𝑡) = 𝑅H/
2 . 𝜙H/(𝑡),                                                    (A.29) 

where 𝜑Ms are polynomial functions of degree 𝑖, defined on [0, 𝑇]. 

Now for given 𝜀 > 0, the constrained function optimization problem represented by 

(2.26)-(2.28) is defined as follows                                                   

Πst𝑝𝑟(, 𝑣(, … , 𝑣H+w ≔ Π²t𝑝𝑟(, 𝑣H+(𝑡)w,                                        (A.30) 

𝑅t𝑝𝑟(, 𝑣(, … , 𝑣H+ , 𝑤(, … , 𝑤H( , 𝑢(, … , 𝑢H. , 𝑟(, … , 𝑟H/w: = 	∫ [(𝑣H+
<(𝑡) + 𝑤H(

<(𝑡) − (Δ −2
(

𝛿))< + R𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣H+
<(𝑠)𝑑𝑠'

( − 𝑢H.
<(𝑡) − 𝜆(S

<
+ R𝑥qF+(𝑡) − 𝑟H/

<(𝑡) − 𝜔S
<
] 𝑑𝑡.     

(A.31) 
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Theorem A.5 For 𝜀 > 0 sufficiently small, the optimization problem (2.26)-(2.28) has a 

solution. 

Proof  Define  

𝑀²vH+,H(,H.,H/ = b(𝑝𝑟(, 𝑣(𝑡), 𝑤(𝑡), 𝑢(𝑡), 𝑟(𝑡)) ∈ [𝜆, Λ] × ∏ 𝑃H*[0, 𝑇]
I
5R" 	 | ∫ [;𝑣<(𝑡) +2

(

𝑤<(𝑡) 	− (Δ − 𝛿)=< + R𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'
( − 𝑢<(𝑡) − 𝜆(S

<
+ (𝑥q(𝑡) − 𝑟<(𝑡) −

𝜔)<] 𝑑𝑡 ≤ 𝜀¶.                                                                                                               (A.32) 

It can be easily observed that 𝑀²vH+,H(,H.,H/ is nonempty (e.g. set 𝑣(𝑡) = √−𝛿, 𝑤(𝑡) =

√Δ, 𝑢(𝑡) = Á𝑝𝑟( − 𝜆(	 and 𝑟(𝑡) = √𝑘 − 𝜔). Let (𝑝𝑟(, 𝑣(𝑡), 𝑤(𝑡), 𝑢(𝑡), 𝑟(𝑡)) ∈

𝑀²vH+,H(,H.,H/. It can be observed that 

‖𝑣< +𝑤< 	− (Δ − 𝛿)‖c( ≤ √𝜀,                                                 (A.33) 

Â𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'
( − 𝑢<(𝑡) − 𝜆(Â

c(
≤ √𝜀,                       (A.34) 

‖𝑥q − 𝑟< − 𝜔‖c( ≤ √𝜀.                                                  (A.35) 

By (A.33) and the equivalence of norms on finite-dimensional spaces (Folland, 1999) it 

can be observed that for 0 < 𝜀 < 1, 𝑣(𝑡) and 𝑤(𝑡) are both bounded on [0, 𝑇]. Inequality 

expressed in (A.34) indicates that 𝑢(𝑡) is also bounded on [0, 𝑇]. Furthermore, by (A.34) 

and the equivalence of norms it can be observed that for 0 < 𝜀 < 1 sufficiently small 

there exists 𝜏w > 0 such that 𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠 ≥ 𝜆( −
'
( 𝜏w > 0 on [0, 𝑇]. This means 

that 𝑥q(𝑡) is bounded and therefore 𝑟(𝑡) is bounded by (A.35) for 0 < 𝜀 < 1 sufficiently 

small. Hence, 𝑀²vH+,H(,H.,H/ is bounded. (A.35) also implies that 𝑥q(𝑡) > 0 for small 

enough 0	< 𝜀 < 1. To show that 𝑀²vH+,H(,H.,H/ is also closed, suppose 

¬R𝑝𝑟(M , 𝑣M(𝑡), 𝑤M(𝑡), 𝑢M(𝑡), 𝑟M(𝑡)S¯M∈ℕ
⊂ 𝑀²vH+,H(,H.,H/ and 

R𝑝𝑟(M , 𝑣M(𝑡), 𝑤M(𝑡), 𝑢M(𝑡), 𝑟M(𝑡)S ⟶ (𝑝𝑟(, 𝑣(𝑡), 𝑤(𝑡), 𝑢(𝑡), 𝑟(𝑡)). By the equivalence of 

norms in finite-dimensional spaces we obtain Ã𝑝𝑟(M − 𝑝𝑟(Ã, ‖𝑣M − 𝑣‖j, ‖𝑤M −𝑤‖j,	 and 

‖𝑟M − 𝑟‖j → 0  as 𝑖	 → 	∞. Similar to the proof of Lemma A.1, it is easy to observe that  

𝑥q3 ⟶	𝑥q	with respect to ‖. ‖j, and therefore 
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∫ [(𝑣M<(𝑡) + 𝑤M<(𝑡) − (Δ − 𝛿))< + R𝑝𝑟(M + 𝛿𝑡 + ∫ 𝑣M<(𝑠)𝑑𝑠
'
( − 𝑢M<(𝑡) − 𝜆(S

<
+2

(

;𝑥q3(𝑡) − 𝑟M
<(𝑡) − 𝜔=<] 𝑑𝑡 ⟶ ∫ [;𝑣<(𝑡) + 𝑤<(𝑡) 	− (Δ − 𝛿)=<2

( + R𝑝𝑟( + 𝛿𝑡 +

∫ 𝑣<(𝑠)𝑑𝑠'
( − 𝑢<(𝑡) − 𝜆(S

<
+ (𝑥q(𝑡) − 𝑟<(𝑡) − 𝜔)<]𝑑𝑡,                           (A.36) 

meaning that ∫ [;𝑣<(𝑡) + 𝑤<(𝑡) 	− (Δ − 𝛿)=<2
( + R𝑝𝑟( + 𝛿𝑡 + ∫ 𝑣<(𝑠)𝑑𝑠'

( − 𝑢<(𝑡) −

𝜆(S
<
+ (𝑥q(𝑡) − 𝑟<(𝑡) − 𝜔)<]𝑑𝑡 ≤ 𝜀  and also, 𝑝𝑟( ∈ [𝜆, Λ]. Hence, 𝑀²vH+,H(,H.,H/ is 

closed. 𝑀²vH+,H(,H.,H/ is a closed and bounded subset of  ℝ × ∏ 𝑃H*[0, 𝑇]
I
5R" , so by the 

Heine-Borel theorem 𝑀²vH+,H(,H.,H/  is a compact set.  Since Π is continuous by Lemma 

A.1, Π² is continuous on 𝑀²vH+,H(,H.,H/, implying that it attains a maximum on 

𝑀²vH+,H(,H.,H/ .                                                                                                           ☐                                                                                                          

By solving the problem expressed in (2.26)-(2.28) for small values of 𝜀 > 0, 

corresponding optimal values, say 𝑝𝑟(w, 𝑣(w , … , 𝑣H+
w, are determined. By substituting 

these values in (A.26), 𝑣H+
w(𝑡) and subsequently the desired 𝑝𝑟@w(𝑡) are given by 

𝑝𝑟@w(𝑡) = 𝑝𝑟(w + 𝛿𝑡 + ∫ 𝑣H+
w<(𝑠)𝑑𝑠'

( ,                                     (A.37) 

where 𝑁 = 2𝐾" + 1. Note that Π²t𝑝𝑟(w , 𝑣H+
w(𝑡)w = Π[𝑝𝑟@w(𝑡)]. Theorem A.6 

demonstrates the desired convergence. 

Theorem A.6  For given 𝜀, 𝜂 > 0, there exists 𝐾", … , 𝐾I ∈ ℕ such that 

𝛱²t𝑝𝑟(w , 𝑣H+
w(𝑡)w > 𝜇 − 𝜂.  

Proof  Referring to Lemma A.2, it can be observed that there exists 

(𝑝𝑟(u , 𝑣u(𝑡), 𝑤u(𝑡), 𝑢u(𝑡), 𝑟u(𝑡)) 	∈ 	𝑀²  such that Π²t𝑝𝑟(u , 𝑣u(𝑡)w > 𝜇 − u
<
. By the 

Weierstrass theorem there exist sequences of polynomial functions ­𝑣H+(𝑡)®H+∈ℕ, 

­𝑤H((𝑡)®H(∈ℕ , ­𝑢H.(𝑡)®H.∈ℕ and, ­𝑟H/(𝑡)®H/∈ℕ such that 𝑣H+ → 𝑣u, 𝑤H( → 𝑤u, 𝑢H. → 𝑢u 

and 𝑟H/ → 𝑟uwith respect to ‖. ‖j. From the fact that 

∫ [R𝑣u<(𝑡) + 𝑤u<(𝑡) 	− (Δ − 𝛿)S
<2

( + R𝑝𝑟(u + 𝛿𝑡 + ∫ 𝑣u<(𝑠)𝑑𝑠
'
( − 𝑢u<(𝑡) − 𝜆(S

<
+

R𝑥qE(𝑡) − 𝑟u
<(𝑡) − 𝜔S

<
]𝑑𝑡 = 0,                                       (A.38) 
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it can be easily observed that for 𝐾", … , 𝐾I ∈ ℕ sufficiently large 

∫ [(𝑣H+
<(𝑡) + 𝑤H(

<(𝑡) − (Δ − 𝛿))< + R𝑝𝑟(u + 𝛿𝑡 + ∫ 𝑣H+
<(𝑠)𝑑𝑠'

( − 𝑢H.
<(𝑡) − 𝜆(S

<
+2

(

R𝑥qF+(𝑡) − 𝑟H/
<(𝑡) − 𝜔S

<
] 𝑑𝑡 ≤ 𝜀.                                       (A.39) 

Thus, for 𝐾", … , 𝐾I ∈ ℕ sufficiently large (𝑝𝑟(u , 𝑣H+(𝑡), 𝑤H((𝑡), 𝑢H.(𝑡), 𝑟H/(𝑡)) ∈

	𝑀²vH+,H(,H.,H/. Hence 

Π²t𝑝𝑟(w , 𝑣H+
w(𝑡)w ≥ Π²t𝑝𝑟(u , 𝑣H+(𝑡)w.                                   (A.40) 

On the other hand, Lemma A.1 implies that Π²t𝑝𝑟(u , 𝑣H+(𝑡)w → Π²t𝑝𝑟(u , 𝑣u(𝑡)w as 𝑣H+ →

𝑣u with respect to ‖. ‖j. This means for 𝐾", … , 𝐾I ∈ ℕ sufficiently large  

Π²t𝑝𝑟(u , 𝑣H+(𝑡)w ≥ Π²t𝑝𝑟(u , 𝑣u(𝑡)w −
u
<
> 𝜇 − 𝜂.                         (A.41) 

Now, by (A.40) and (A.41) Π²t𝑝𝑟(w , 𝑣H+
w(𝑡)w > 𝜇 − 𝜂.                                                 ☐                                                                         

A.3   Empirical Testing 
In this appendix, we demonstrate the empirical superiority of the GDMR over the sales 

model proposed by Mesak and Berg (1995). Mesak and Berg’s sales model can be 

expressed as: 

𝑆(𝑡) = 𝑦(𝑡) + 𝜆 ∗ 𝑦(𝑡),                                       (A.42) 

in which y(t) is noncumulative adoption at t and 𝜆 represents the repeat purchases rate.  

We empirically test both the GDMR and Mesak and Berg’s model on the sales data of 

DVD players in the U.S. Data sources are provided in Lotfi et al. (2023). Considering 

that the adoption trend corresponding to the sales trend is available, we first estimate the 

adoption parameters by fitting a Bass curve to the adoption trend. Next, we fit the GDMR 

and Mesak and Berg’s model to the DVD player sales data, while inputting the estimated 

adoption parameters into both models. We use the first 13 sales data points for model-

fitting and the remaining data points for examining the models’ forecasting performance. 

It can be seen in Figure A-1 that the GDMR results in considerably more accurate 

forecasts than does the model by Mesak and Berg (1995). 
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Figure A-1: Model Fitting and Forecasting on DVD Player Sales in the U.S 

A.4   Further Numerical Examinations 
In this appendix we conduct more numerical examinations in addition to those reported in 

Section 2.5. We consider two more base scenarios based on the two planning horizons of 

𝑇 = 10 and 𝑇 = 14. The adoption processes corresponding to each base scenario is set to 

be 99% complete when the process reaches the planning horizon. The market sizes for 

these scenarios are set at 𝑚 = 500000. Additionally, we set 𝜆 = 5 and Λ = 7 for the 

introductory price, and 𝛿 = −0.5 and Δ = 0.5 for the price change rate. Moreover, we set 

𝜁=0.005, 𝑐( = 1.5, and 𝑐" = 25000 in cost functions (2.15) and (2.16). For each base 

scenario, we consider 12 variation scenarios by changing the parameters one at a time. 

Tables A-1 and A-2 present the base and variation scenarios corresponding to short and 

long planning horizons (i.e., 𝑇 = 10  and 𝑇 = 14, respectively), while the corresponding 

optimal price paths are presented in Figures A-2 and A-3, respectively. It can be observed 

in Figures A-2 and A-3 that the results from scenarios presented in Tables A-1 and A-2 

are consistent with those from the scenarios shown in Table 2-1. 
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Table A-1 Base and Variation Scenarios in Short Planning Horizon Case (𝑻 = 𝟏𝟎) 

 Sales Price Cost Discount 
rate Adoption Repeat 

 p q 𝛽 𝛾 𝛼 l1 l2 r 
Base  0.01 0.95 0.4 -0.25 -3 0 0.1 0 
Changing price parameters      
Variation 1 0.01 0.95 0.4 -0.23 -3 0 0.1 0 
Variation 2 0.01 0.95 0.4 -0.27 -3 0 0.1 0 
Variation 3 0.01 0.95 0.4 -0.25 -2.8 0 0.1 0 
Variation 4 0.01 0.95 0.4 -0.25 -3.2 0 0.1 0 
Changing cost parameters      
Variation 5 0.01 0.95 0.4 -0.25 -3 0.01 0.1 0 
Variation 6 0.01 0.95 0.4 -0.25 -3 0.02 0.1 0 
Variation 7 0.01 0.95 0.4 -0.25 -3 0 0.0 0 
Variation 8 0.01 0.95 0.4 -0.25 -3 0 0.25 0 
Changing repeat purchase parameter      
Variation 9 0.01 0.95 0.2 -0.25 -3 0 0.1 0 
Variation 10 0.01 0.95 0.6 -0.25 -3 0 0.1 0 
Changing 
discount rate 

        

Variation 11 0.01 0.95 0.4 -0.25 -3 0 0.1 0.01 
Variation 12 0.01 0.95 0.4 -0.25 -3 0 0.1 0.05 

Table A-2 Base and Variation Scenarios in Long Planning Horizon Case (𝑻 = 𝟏𝟒) 

 Sales Price Cost Discount 
rate Adoption Repeat 

 p q 𝛽 𝛾 𝛼 l1 l2 r 
Base  0.01 0.65 0.65 -0.3 -6 0 0.1 0 
Changing price parameters      
Variation 1 0.01 0.65 0.65 -0.27 -6 0 0.1 0 
Variation 2 0.01 0.65 0.65 -0.33 -6 0 0.1 0 
Variation 3 0.01 0.65 0.65 -0.3 -5.5 0 0.1 0 
Variation 4 0.01 0.65 0.65 -0.3 -6.5 0 0.1 0 
Changing cost parameters      
Variation 5 0.01 0.65 0.65 -0.3 -6 0.05 0.1 0 
Variation 6 0.01 0.65 0.65 -0.3 -6 0.1 0.1 0 
Variation 7 0.01 0.65 0.65 -0.3 -6 0 0.0 0 
Variation 8 0.01 0.65 0.65 -0.3 -6 0 0.25 0 
Changing repeat purchase parameter      
Variation 9 0.01 0.65 0.5 -0.3 -6 0 0.1 0 
Variation 10 0.01 0.65 0.8 -0.3 -6 0 0.1 0 
Changing discount rate      
Variation 11 0.01 0.65 0.65 -0.3 -6 0 0.1 0.01 
Variation 12 0.01 0.65 0.65 -0.3 -6 0 0.1 0.05 
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Figure A-2: Optimal Prices for Short Planning Horizon Case (𝑻 = 𝟏𝟎) Under Base 

and Variation Scenarios 
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Figure A-3: Optimal Prices for Long Planning Horizon Case (𝑻 = 𝟏𝟒) Under Base 

and Variation Scenarios 
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Appendix B:  Modeling Sales of Multigeneration Technology 

Products in the Presence of Frequent Repeat Purchases: A 

Fractional Calculus-based Approach 

B.1   Approximate Operators 

We start with introducing substitute operators. After introducing the new operators, by 

showing that the approximate operators, 𝐼O
!, converge to 𝐼! with respect to the operator 

norm, we demonstrate that 𝐼O
! has the same properties as those of 𝐼!. We discuss the 

phase-out transition scenario formulas (3.21)-(3.23). The total transition scenario 

formulas (3.24) and (3.25) are derived similarly. 

Theorem B.1. (Semigroup property) For 𝑓 continuous on [𝑡(, 𝑇] and 𝛽", 𝛽< > 0, 

𝐼')
!+-!(𝑓(𝑡) = 𝐼')

!+𝐼')
!(𝑓(𝑡). 

Proof  (Kilbas et al., 2006). 

Applying the semigroup property of fractional integral operator, for 𝑡 ≤ 𝜏< we have 

𝐼(
!+𝑦"(𝑡) = 𝐼(

!+[𝑦""(0) + 𝐼("𝑦""1 (𝑡)] 

= 𝐼(
!+𝑦""(0) + 𝐼(

"-!+𝑦""1 (𝑡) 

= P++(()'1+

#("-!+)
+ 𝐼(

"-!+𝑦""1 (𝑡).	                                          (B.1) 

On the other hand, for 𝑡 ≥ 𝜏< 

𝐼(
!+𝑦"(𝑡) = ∫

('&s)1+!+

J(!+)
𝑦""(𝑠)𝑑𝑠

N(
( + ∫

('&s)1+!+

J(!+)
𝑦"<(𝑠)𝑑𝑠.		

'
N(

           (B.2) 

By integration by parts 

∫
('&s)1+!+

J(!+)
𝑦""(𝑠)𝑑𝑠

N(
( = − ('&N()1+

J("-!+)
𝑦""(𝜏<) +

'1+

J("-!+)
𝑦""(0) +  

∫
('&s)1+
J("-!+)

𝑦""1 (𝑠)𝑑𝑠
N(
(

ÈÉÉÉÉÉÊÉÉÉÉÉË
h),0(
+$1+P++, (')

.									                                 (B.3) 

Given that 

𝑦"<(𝑡) = 𝑦"<(𝜏<) + ∫ 𝑦"<1 (𝑠)𝑑𝑠
'
N(

,                               (B.4) 
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by (B.4) and Theorem B.1 

∫
('&s)1+!+

J(!+)
𝑦"<(𝑠)𝑑𝑠

'
N(

= ('&N()1+

J("-!+)
𝑦"<(𝜏<) + ∫

('&s)1+

J("-!+)
𝑦"<1 (𝑠)𝑑𝑠

'
N(

.		        (B.5) 

Finally, by (B.2)-(B.5) for 𝑡 ≥ 𝜏< 

𝐼(
!+𝑦"(𝑡) =

'1+

J("-!+)
𝑦""(0) + 𝐼(,N(

"-!+𝑦""1 (𝑡) + 𝐼N(
"-!+𝑦"<1 (𝑡).                    (B.6) 

Similarly, by Theorem B.1 we get 

𝐼N(	
!(𝑦<(𝑡) =

('&N()1(

J("-!()
𝑦<(𝜏<) + 𝐼N(

"-!(𝑦<1(𝑡).		                                  (B.7) 

We approximate fractional integration operators by applying the well-known n-point 

Gauss quadrature formula for integrals knowing that 𝑤M and 𝑥M denote the quadrature 

nodes and weights (DeVore & Scott, 1984). For 𝑡 ≤ 𝜏< 

𝐼(
!+𝑦"(𝑡) ≈

P++(()'1+

#("-!+)
+ 𝐼(,O

"-!+𝑦""1 (𝑡)                                         (B.8) 

where 

𝐼(,O
"-!+𝑦""1 (𝑡) ≔

"
J("-!+)

'
<
∑ 𝑤M �𝑡 −

'
<
(1 + 𝑥M)�

!+
𝑦""1 R

'
<
(1 + 𝑥M)S	O

MR" . 

For  𝑡 > 𝜏< 

𝐼(
!+𝑦"(𝑡) ≈

'1+

J("-!+)
𝑦""(0) + 𝐼(,N(,O

"-!+𝑦""1 (𝑡) + 𝐼N(,O
"-!+𝑦"<1 (𝑡).                    (B.9) 

where 

𝐼(,N(,O
"-!+𝑦""1 (𝑡) ∶=

"
J("-!+)

N(
<
∑ 𝑤M �𝑡 −

N(
<
(1 + 𝑥M)�

!+
𝑦""1 R

N(
<
(1 + 𝑥M)SO

MR" , 

𝐼N(,O
"-!+𝑦"<′(𝑡) ∶= 

"
J("-!+)

('&N()
<

∑ 𝑤M R𝑡 − (
'&N(
<
(1 + 𝑥M) + 𝜏<)S

!+
𝑦"<1 R(

'&N(
<
(1 + 𝑥M) + 𝜏<)SO

MR" . 

Similarly 

𝐼N(
!(𝑦<(𝑡) ≈

('&N()1(

J("-!()
𝑦<(𝜏<) + 𝐼N(,O

"-!(𝑦<1(𝑡).							                        (B.10) 

Now we need to show that the computationally implementable approximate operators 

given in (B.8)-(B.10) maintain the desired characteristics of the main operators. 

Specifically, we will show that, with increase in value of 𝑛, approximate operators 
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converge to the main operator. We begin with some definitions and theorems from 

functional analysis (Kreyszig, 1978) that are needed in this argument. 

The normed space (𝐶"[𝑡(, 𝑡"], ‖. ‖") is defined as follows: 

𝐶"[𝑡(, 𝑡"] = {𝑓(𝑡)|	𝑓1(𝑡) ∈ 𝐶[𝑡(, 𝑡"]}, 

‖𝑓‖" = ‖𝑓‖j + ‖𝑓′‖j, 

where 𝐶[𝑡(, 𝑡"] denotes the space of continuous functions on the interval [𝑡(, 𝑡"] equipped 

with the uniform norm, 

‖𝑓‖j = sup{|𝑓(𝑡)||	𝑡 ∈ [𝑡(, 𝑡"]} 

Definition B.1 (Bounded linear operator).  Let 𝐿:	𝐶"[𝑡(, 𝑡"] → 𝐶[𝑡(s , 𝑡"s] be a linear 

operator. The operator 𝐿 is said to be bounded if there exists a real number 𝑐 in such a 

way that for all 𝑓 ∈ 	𝐶"[𝑡(, 𝑡"] , 

‖𝐿(𝑓)‖j ≤ 𝑐‖𝑓‖". 

Definition B.2 (Operator Norm).  Let 𝐿 be a bounded linear operator as defined in 

Definition B.1. ‖𝐿‖ is called the norm of the operator 𝐿 and is defined as 

‖𝐿‖ = inf{𝑐 ∶ ‖𝐿(𝑓)‖j ≤ 𝑐‖𝑓‖", 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑓 ∈ 𝐶"[𝑡(, 𝑡"]	}. 

Theorem B.2 presents an error upper bound for the Gauss quadrature formula. 

Theorem B.2.  Let 𝐸O(𝑓) denote the error in n-point Gaussian quadrature applied to 

function 𝑓 on the interval [𝑡(, 𝑡"]. If |𝑓1(𝑠)|·1 − (
<(s&'))
'+&')

− 1)<	be integrable, then 

|𝐸O(𝑓)| ≤
Wd('+&'))

O ∫ |𝑓1(𝑠)|·1 − (<(s&'))
'+&')

− 1)<𝑑𝑠'+
')

. 

Proof  (DeVore & Scott, 1984). 

Theorem B.3. Consider 𝐼(
"-! , 𝐼(,O

"-! ∶ 	 𝐶"[0, 𝜏<] → 𝐶[0, 𝜏<],  	𝐼(,N(
"-! , 𝐼(,N(,O

"-! ∶ 	 𝐶"[0, 𝜏<] →

𝐶[𝜏<, 𝑇], 𝐼N(
"-! , 𝐼N(,O

"-!:	𝐶"[𝜏<, 𝑇] → 𝐶[𝜏<, 𝑇], then as the value of 𝑛 increases, Â𝐼(
"-! −

𝐼(,O
"-!Â, Â𝐼(,N(

"-! − 𝐼(,N(,O
"-! Â and, Â𝐼N(

"-! − 𝐼N(,O
"-!Â converge to zero. 

Proof 
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(I) We show that Â𝐼(
"-! − 𝐼(,O

"-!Â converges to zero. From Theorem B.2 we get 

Ô∫
('&s)1

J("-!)
𝑓(𝑠)𝑑𝑠 − "

J("-!)
'
<
∑ 𝑤M R

'
<
(1 − 𝑥M)S

!
𝑓 R'

<
(1 + 𝑥M)SO

MR"
'
( Ô ≤

Wd'
O ∫ ÕÖ ('&s)

1

J("-!)
𝑓1(s) − ('&s)1!+

J(!)
𝑓(𝑠)Ö·1 − R<

'
𝑠 − 1S

<
× 𝑑𝑠'

( ≤  

Wd'
O
R '1$+

J(<-!)
‖𝑓1‖j +

'1

J(!-")
‖𝑓‖jS ≤

Wd
O
� N(

1$(

J(<-!)
+ N(

1$+

J(!-")
� ‖𝑓‖".  

According to Definition B.2, Â𝐼(
"-! − 𝐼(,O

"-!Â ≤ Wd
O
� N(

1$(

J(<-!)
+ N(

1$+

J(!-")
� which means 

Â𝐼(
"-! − 𝐼(,O

"-!Â converges to zero. 

(II) We show that Â𝐼(,N(
"-! − 𝐼(,N(,O

"-! Â converges to zero. By Theorem B.2 we get 

Ô∫
('&s)1

J("-!)
𝑓(𝑠)𝑑𝑠 − "

J("-!)
N(
<
∑ 𝑤M R𝑡 −

N(
<
(1 + 𝑥M)S

!
𝑓 RN(

<
(1 + 𝑥M)SO

MR"
N(
( Ô ≤

WdN(
O ∫ [Ö ('&s)

1

J("-!)
𝑓′(𝑠) − ('&s)1!+

J(!)
𝑓(𝑠)Ö ·1 − ( <N( 𝑠 − 1)

<]𝑑𝑠N(
( ≤  

WdN(
O
R'

1$+-('&N()1$+

J(<-!)
‖𝑓1‖j +

'1-('&N()1

J(!-")
‖𝑓‖jS ≤

WdN(
O
R2

1$+-(2&N()1$+

J(<-!)
+

21-(2&N()1

J(!-")
S ‖𝑓‖".  

According to Definition B.2, Â𝐼(,N(
"-! − 𝐼(,N(,O

"-! Â ≤ WdN(
O
R2

1$+-(2&N()1$+

J(<-!)
+ 21-(2&N()1

J(!-")
S 

which implies that Â𝐼(,N(
"-! − 𝐼(,N(,O

"-! Â converges to zero. 

(III) We show that Â𝐼N(
"-! − 𝐼N(,O

"-!Â converges to zero. From Theorem B.2, we get 

Ô∫
('&s)1

J("-!)
𝑓(𝑠)𝑑𝑠 − "

J("-!+)
('&N()
<

∑ 𝑤M R𝑡 − (
'&N(
<
(1 + 𝑥M) + 𝜏<)S

!+
𝑓 R('&N(

<
(1 +O

MR"
'
N(

𝑥M) + 𝜏<)SÔ ≤
Wd('&N()

O ∫ [Ö('&s)
1

J("-!)
𝑓′(𝑠) − ('&s)1!+

J(!)
𝑓(𝑠)Ö·1 − (<(s&N()

'&N(
− 1)<]𝑑𝑠'

N(
≤  

Wd('&N()
O

R('&N()
1$+

J(<-!)
‖𝑓1‖j +

('&N()1

J(!-")
‖𝑓‖jS ≤

Wd
O
R(2&N()

1$(

J(<-!)
+ (2&N()1$+

J(!-")
S ‖𝑓‖".  

According to Definition B.2, Â𝐼N(
"-! − 𝐼N(,O

"-!Â ≤ Wd
O
R(2&N()

1$(

J(<-!)
+ (2&N()1$+

J(!-")
S and therefore 

Â𝐼N(
"-! − 𝐼N(,O

"-!Â converges to zero.                                                                                     ☐  
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B.2   Optimal Market Entry Timing Strategy 

Before proving Propositions 3.1 through 3.5 we provide several theorems and lemmas 

needed for the subsequent developments.  

Theorem B.4. For 𝑓 continuous on [0, 𝑇] and 𝛽 > 1, g
g'
𝐼!𝑓(𝑡) = 𝐼!&"𝑓(𝑡). 

Proof  (Kilbas et al., 2006). 

Theorem B.5. Let 𝑓: [𝑎, 𝑏] → [0,∞) be a monotonic function, whereas 𝑔: [𝑎, 𝑏] → ℝ be 

a Lebesgue integrable function.  

(I) If the function 𝑓 is non-decreasing, then there exists 𝜉 ∈ [𝑎, 𝑏] such that  

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥e
f = 𝑓(𝑏 −)∫ 𝑔(𝑥)𝑑𝑥e

x .  

(II) If the function 𝑓 is non-increasing, then there exists 𝜂 ∈ [𝑎, 𝑏] such that  

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥e
f = 𝑓(𝑎 +)∫ 𝑔(𝑥)𝑑𝑥u

f .  

Proof  (Witula et al., 2012). 

In Theorem B.6 we derive a version of the Leibnitz rule applicable in the subsequent 

development. 

Theorem B.6. (Leibnitz rule) Suppose 𝑔(𝑡, 𝜏) continuous for 𝜏 ≤ 𝑡 ≤ 𝑇 and =
=N
𝑔(𝑡, 𝜏) 

uniformly bounded for 𝜏 < 𝑡 ≤ 𝑇, 𝜏 ∈ [𝜆, Λ] ⊂ [0, 𝑇]. Then  
g
gN ∫ 𝑔(𝑡, 𝜏)𝑑𝑡 = −𝑔(𝜏, 𝜏) + ∫ g

gN
𝑔(𝑡, 𝜏)𝑑𝑡.2

N
2
N   

Proof  Define 𝜙(𝜏) = ∫ 𝑔(𝑡, 𝜏)𝑑𝑡2
N  and let ΔO > 0. Then  

yz
yD
= z(N-yD)&z(N)

yD
= "

yD
(∫ 𝑔(𝑡, 𝜏 + ΔO)𝑑𝑡 − ∫ 𝑔(𝑡, 𝜏)𝑑𝑡) =2

N
2
N-yD

  

"
yD
(∫ [𝑔(𝑡, 𝜏 + ΔO) − 𝑔(𝑡, 𝜏)]𝑑𝑡 − ∫ 𝑔(𝑡, 𝜏)𝑑𝑡) =N-yD

N
2
N-yD

                   (B.11) 

∫ {(',N-yD)&{(',N)
yD

𝑑𝑡2
N-yD

− 𝑔(𝜁, 𝜏),  
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where  𝜁 ∈ [𝜏, 𝜏 + ΔO]. Note that the last term is derived by mean value theorem for 

integrals. By continuity of 𝑔, 𝑔(𝜁, 𝜏) → 𝑔(𝜏, 𝜏) as ΔO → 0.  On the other hand,  

Ö∫ {(',N-yD)&{(',N)
yD

2
N-yD

𝑑𝑡 − ∫ =
=N
𝑔(𝑡, 𝜏)𝑑𝑡2

N Ö ≤	  

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö 𝑑𝑡 + ∫ Ö =

=N
𝑔(𝑡, 𝜏)Ö 𝑑𝑡N-yD

N .2
N-yD

              (B.12) 

By boundedness of =
=N
𝑔(𝑡, 𝜏) there exists 𝑀" > 0 such that ∫ Ö =

=N
𝑔(𝑡, 𝜏)Ö 𝑑𝑡N-yD

N ≤ ΔO𝑀". 

Now let 𝜖 > 0 arbitrarily small and ΔO < 𝜖, then we have 

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N-yD
𝑑𝑡 ≤  

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N-v 𝑑𝑡 + ∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)ÖN-v

N-yD
𝑑𝑡.  

Clearly for 𝑡 ∈ [𝜏 + 𝜖, 𝑇], Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö → 0 as ΔO → 0. By mean value 

theorem, for 𝑡 ∈ [𝜏 + ΔO, 𝑇] there exists 𝜁O ∈ (𝜏, 𝜏 + ΔO) such that {(',N-yD)&{(',N)
yD

=

=
=N
𝑔(𝑡, 𝜁O). So it can be concluded that the sequence {{(',N-yD)&{(',N)

yD
}	is uniformly 

bounded on [𝜏 + ΔO, 𝑇], which means there exists 𝑀 > 0 such that  Ö{(',N-yD)&{(',N)
yD

−

=
=N
𝑔(𝑡, 𝜏)Ö ≤ 𝑀 for all 𝑡 ∈ [𝜏 + ΔO, 𝑇], ΔO > 0. So, by the dominated convergence 

theorem (Folland, 1999)  ∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N-v 𝑑𝑡 → 0 as ΔO → 0 and 

therefore  

lim	 sup
yD→(

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N-yD
𝑑𝑡 ≤ 𝑀𝜖.  

Since 𝜖 > 0 is arbitrary we get  

lim	
yD→(

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N-yD
𝑑𝑡 = 0.  

Now by (B.11) and (B.12) we can conclude that  

lim
yD→(

yz
yD
=− 𝑔(𝜏, 𝜏) + ∫ g

gN
𝑔(𝑡, 𝜏)𝑑𝑡,2

N   

let ΔO < 0. Then  
yz
yD
= z(N-yD)&z(N)

yD
= "

yD
(∫ 𝑔(𝑡, 𝜏 + ΔO)𝑑𝑡 − ∫ 𝑔(𝑡, 𝜏)𝑑𝑡) =2

N
2
N-yD

  

"
yD
(∫ [𝑔(𝑡, 𝜏 + ΔO) − 𝑔(𝑡, 𝜏)]𝑑𝑡 + ∫ 𝑔(𝑡, 𝜏 + ΔO)𝑑𝑡) =

N
N-yD

2
N   
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∫ {(',N-yD)&{(',N)
yD

𝑑𝑡 − 𝑔(𝜁, 𝜏 + ΔO)
2
N , 

where  𝜁 ∈ [𝜏 + ΔO, 𝜏]. Again, by continuity of 𝑔, 𝑔(𝜁, 𝜏 + ΔO) → 𝑔(𝜏, 𝜏) as ΔO → 0 and 

similar to the case of ΔO > 0, by the dominated convergence theorem we have   

lim	
yD→(

∫ Ö{(',N-yD)&{(',N)
yD

− =
=N
𝑔(𝑡, 𝜏)Ö2

N 𝑑𝑡 = 0.  

and this completes the proof.                                                                                              ☐  

Note that in the case of fixed integral bounds Theorem B.6 reduces to the standard form 

of the Leibnitz rule (i.e., g
gN ∫ 𝑔(𝑡, 𝜏)𝑑𝑡 = ∫ g

gN
𝑔(𝑡, 𝜏)𝑑𝑡2

N∗
2
N∗ ). 

Lemma B.1. Let 𝑔(𝑠, 𝜏) be a smooth function, 𝜇 > 0 and, 𝑡 > 𝜏 ≥ 0, then 
g
gN

"
J(}) ∫ (𝑡 − 𝑠)

}&"𝑔(𝑠, 𝜏)𝑑𝑠 = − ('&N)H!+

J(})
𝑔(𝜏, 𝜏) + "

J(})∫ (𝑡 − 𝑠)
}&" g

gN
𝑔(𝑠, 𝜏)𝑑𝑠.'

N
'
N   

Proof   By using Theorem B.1 we have 
"

J(})∫ (𝑡 − 𝑠)
}&"𝑔(𝑠, 𝜏)𝑑𝜏'

N = 𝑔(𝜏, 𝜏) ('&N)
H

J(}-")
+ "

J(}-")∫ (𝑡 − 𝑠)
} g
gs
𝑔(𝑠, 𝜏)𝑑𝑠.'

N   

Now using Leibnitz rule, it can be observed that 
g
gN

"
J(})∫ (𝑡 − 𝑠)

}&"𝑔(𝑠, 𝜏)𝑑𝜏'
N = 𝜕"𝑔(𝜏, 𝜏)

('&N)H

J(}-")
+ 𝜕<𝑔(𝜏, 𝜏)

('&N)H

J(}-")
− 𝑔(𝜏, 𝜏) ('&N)

H!+

J(})
−

𝜕"𝑔(𝜏, 𝜏)
('&N)H

J(}-")
+ "

J(}-")∫ (𝑡 − 𝑠)
} g
gN
𝜕"𝑔(𝑠, 𝜏)𝑑𝑠 =

'
N 𝜕<𝑔(𝜏, 𝜏)

('&N)H

J(}-")
−

𝑔(𝜏, 𝜏) ('&N)
H!+

J(})
+ "

J(}-")∫ (𝑡 − 𝑠)
}𝜕"

g
gN
𝑔(𝑠, 𝜏)𝑑𝑠 ='

N − 𝑔(𝜏, 𝜏) ('&N)
H!+

J(})
+ "

J(})∫ (𝑡 −
'
N

𝑠)}&" g
gN
𝑔(𝑠, 𝜏)𝑑𝑠.  

☐ 

Lemma B.2   Let 𝛽 > 0 and 𝑇 > 1, then 

(I)  𝐼(
!𝑦"(𝑡), 𝐼N(

! 𝑢<(𝑡), and 𝐼N(
! 𝑦�<(𝑡) are continuous for 𝜏< ≤ 𝑡 ≤ 𝑇, 𝜏< ∈ [𝜆, Λ] ⊂

[0, 𝑇], 

(II)  =
=N(

𝐼(
!𝑦"(𝑡), 

=
=N(

𝐼N(
! 𝑢<(𝑡), and =

=N(
𝐼N(
! 𝑦�<(𝑡) are uniformly bounded for 𝜏< < 𝑡 ≤ 𝑇, 

𝜏< ∈ [𝜆, Λ] ⊂ [0, 𝑇], 
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(III) 𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) is continuous for 𝜏< ≤ 𝑡 ≤ 𝑇, 𝜏< ∈ [𝜆, Λ] ⊂ [0, 𝑇], and 
g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) is continuous for 𝜏< < 𝑡 ≤ 𝑇 and has a removable 

discontinuity at 𝑡 = 𝜏<.  g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) is uniformly bounded for all 𝑡 ∈

[𝜏<, 𝑇],  𝜏< ∈ [𝜆, Λ] ⊂ [0, 𝑇],  𝛽 ≤ 2. 

Proof 

(I) We show the result for 𝐼(
!𝑦"(𝑡). For the others the proof is similar. Without loss 

of generality assume 𝑡∗ > 𝑡, 𝜏<∗ > 𝜏<, and 𝑡∗ > 𝜏<∗, 𝑡 > 𝜏<. Then for (𝑡, 𝜏<) 

sufficiently close to (𝑡∗, 𝜏<∗)  we have 

Ö𝐼(
!𝑦"(𝑡∗) − 𝐼(

!𝑦"(𝑡)Ö =
"

J(!)
RÖ∫ (𝑡∗ − 𝑠)!&"N(∗

( 𝑚"𝑓"(𝑠)𝑑𝑠 + ∫ (𝑡∗ − 𝑠)!&"'∗

N(∗
𝑚"𝑓"(𝑠)(1 −

𝐹<(𝑠 − 𝜏<∗))𝑑𝑠 − ∫ (𝑡 − 𝑠)!&"N(
( 𝑚"𝑓"(𝑠)𝑑𝑠 − ∫ (𝑡 − 𝑠)!&"'

N(
𝑚"𝑓"(𝑠)(1 − 𝐹<(𝑠 −

𝜏<))𝑑𝑠ÖS ≤  

"
J(!)

RÖ∫ (𝑡∗ − 𝑠)!&"N(∗

( 𝑚"𝑓"(𝑠)𝑑𝑠 − ∫ (𝑡 − 𝑠)!&"N(
( 𝑚"𝑓"(𝑠)𝑑𝑠Ö + Ö∫ (𝑡∗ −'∗

N(∗

𝑠)!&"𝑚"𝑓"(𝑠)(1 − 𝐹<(𝑠 − 𝜏<∗))𝑑𝑠 − ∫ (𝑡 − 𝑠)!&"'
N(

𝑚"𝑓"(𝑠)(1 − 𝐹<(𝑠 − 𝜏<))𝑑𝑠ÖS ≤		  

"
J(!)

RÖ∫ ((𝑡∗ − 𝑠)!&"N(
( − (𝑡 − 𝑠)!&")𝑚"𝑓"(𝑠)𝑑𝑠 + ∫ (𝑡∗ − 𝑠)!&"N(∗

N(
𝑚"𝑓"(𝑠)𝑑𝑠ÖS +  

Ö∫ (𝑡∗ − 𝑠)!&"'∗

N(∗
𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<∗)=𝑑𝑠 − ∫ (𝑡∗ − 𝑠)!&"'∗

N(∗
𝑚"𝑓"(𝑠);1 −

𝐹<(𝑠 − 𝜏<)=𝑑𝑠 + ∫ (𝑡∗ − 𝑠)!&"'∗

N(∗
𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=𝑑𝑠 − ∫ (𝑡 −'

N(

𝑠)!&"𝑚"𝑓"(𝑠)(1 − 𝐹<(𝑠 − 𝜏<))𝑑𝑠Ö ≤  

"
J(!)

RÖ∫ ((𝑡∗ − 𝑠)!&"N(
( − (𝑡 − 𝑠)!&")𝑚"𝑓"(𝑠)𝑑𝑠 + ∫ (𝑡∗ − 𝑠)!&"N(∗

N(
𝑚"𝑓"(𝑠)𝑑𝑠ÖS +  

Ö∫ (𝑡∗ − 𝑠)!&"'∗

N(∗
R𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<∗)= − 𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=S 𝑑𝑠 +

∫ ((𝑡∗ − 𝑠)!&" − (𝑡 − 𝑠)!&")'
N(∗

𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=𝑑𝑠 − ∫ (𝑡 −N(∗

N(

𝑠)!&"𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=𝑑𝑠 + ∫ (𝑡∗ − 𝑠)!&"'∗

' 𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=𝑑𝑠Ö ≤  

++
J(!-")

;Ã(𝑡 − 𝜏<)! − (𝑡∗ − 𝜏<)!Ã + Ã𝑡! − 𝑡∗
!Ã + Ã(𝑡∗ − 𝜏<)! − (𝑡∗ − 𝜏<∗)!Ã +

Ã(𝑡 − 𝜏<∗)! − (𝑡∗ − 𝜏<∗)!Ã + Ã(𝑡 − 𝜏<)! − (𝑡 − 𝜏<∗)!Ã + 2Ã(𝑡∗ − 𝑡)!Ã= +  
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         v('
∗&N∗)1

J(!-")
.                                                          (B.13) 

Note that in (B.13) we have used the fact that, by continuity of 𝐹<, for any given 𝜖 > 0, if 

|𝜏< − 𝜏<∗| be sufficiently small then, 

Ã𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<∗)= − 𝑚"𝑓"(𝑠);1 − 𝐹<(𝑠 − 𝜏<)=Ã < 𝜖.			  

Since 𝜖 > 0 is arbitrary, it can be observed that the inequality (B.13) tends to zero as 

(𝑡, 𝜏<) → (𝑡∗, 𝜏<∗) and this shows the continuity.  

(II) We show the result for =
=N(

𝐼(
!𝑦"(𝑡). For the others the proof is similar. By 

employing Lemma B.1. for 𝑡 > 𝜏< we have 
g
gN(

𝐼(
!𝑦"(𝑡) =

g
gN(

"
J(!)

R∫ (𝑡 − 𝑠)!&"N(
( 𝑦""(𝑠)𝑑𝑠 + ∫ (𝑡 − 𝑠)!&"'

N(
𝑦"<(𝑠)𝑑𝑠S =  

R('&N()
1!+

J(!)
𝑦""(𝜏<) −

('&N()1!+

J(!)
𝑦"<(𝜏<) +

"
J(!)∫ (𝑡 − 𝑠)!&"'

N(
g
gN(

𝑦"<(𝑠)𝑑𝑠S =  

𝐼N(
! 𝑦""(𝑡)𝑓<(𝑡 − 𝜏<). 

It can be observed that  

Ö g
gN(

𝐼(
!𝑦"(𝑡)Ö = Ö𝐼N(

! 𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)Ö ≤
++21

J(!-")
.  

(III) The continuity of 𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) can be demonstrated similar to the part (I). 

Next, we show the continuity of  g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<). 

Define 𝑓: [𝜏<, 𝑡] × [𝜖, 2] → ℝ where 𝑓(𝑠, 𝛽): = (𝑡 − 𝑠)!𝑓"(𝑠)𝑓<(𝑠 − 𝜏<), 𝑠 ∈ [𝜏<, 𝑡] and, 

𝛽 ∈ [𝜖, 2], 𝜖 > 0	. Then, 𝑓!(𝑠, 𝛽) = (𝑡 − 𝑠)! ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<). Clearly 𝑓!(𝑠, 𝛽) 

is continuous on [𝜏<, 𝑡] × [𝜖, 2]. (Note that 𝑓! has a removable discontinuity at 𝑡). Then 

by standard Leibnitz rule we have 

g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) =

g
g!

"
J(!-")∫ (𝑡 − 𝑠)!'

N(
𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 =  

= − J,(!-")
J((!-")∫ (𝑡 − 𝑠)!'

N(
𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 +  

"
J(!-")∫ (𝑡 − 𝑠)!'

N(
ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠.  

We focus on showing the continuity of ∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠. In a 

similar fashion we can show that ∫ (𝑡 − 𝑠)!'
N(

𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 is also continuous. Let 
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𝜏< < 𝑡∗ ≤ 𝑇 and without loss of generality assume 𝑡 > 𝑡∗. Suppose |𝑡 − 𝑡∗| < 𝛿 < 1.  

Then  

Ö∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 − ∫ (𝑡∗ − 𝑠)!'∗

N(
ln(𝑡∗ −

𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠Ö ≤  

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡∗ − 𝑠)Ã'∗

N(
𝑑𝑠 +  

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠)Ã'
'∗ 𝑑𝑠.                               (B.14) 

On the other hand 

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡∗ − 𝑠)Ã'∗

N(
𝑑𝑠 ≤  

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡 − 𝑠)Ã'∗

N(
𝑑𝑠 +  

∫ Ã(𝑡∗ − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡∗ − 𝑠)Ã'∗

N(
𝑑𝑠.			              (B.15) 

We also have  

Ã(𝑡 − 𝑠)! − (𝑡∗ − 𝑠)!Ã ≤ `
(𝑡 − 𝑡∗)! ,																														𝛽 ≤ 1
(𝑡 − 𝜏<)! + (𝑡∗ − 𝜏<)! ,				𝛽 > 1

, 𝑠 ∈ [𝜏<, 𝑡∗].  

So, for any 𝜂 > 0	 there exists  𝛿 < 1 sufficiently small such that 

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡 − 𝑠)Ã'∗

N(
𝑑𝑠 ≤ 𝜂 ∫ |ln(𝑡 − 𝑠)|'∗

N(
𝑑𝑠,								(B.16) 

where  

∫ |ln(𝑡 − 𝑠)|'∗

N(
𝑑𝑠 =  

b2 + 𝑡
∗ − 2𝑡 + 𝜏< + (𝑡 − 𝑡∗) ln(𝑡 − 𝑡∗) + (𝑡 − 𝜏<) ln(𝑡 − 𝜏<),									𝑡 − 𝜏< ≥ 1,

𝑡∗ − 𝜏< + (𝑡 − 𝑡∗) ln(𝑡 − 𝑡∗) − (𝑡 − 𝜏<) ln(𝑡 − 𝜏<),																										𝑡 − 𝜏< < 1 .		  (B.17) 

On the other hand 

∫ Ã(𝑡∗ − 𝑠)! ln(𝑡 − 𝑠) − (𝑡∗ − 𝑠)! ln(𝑡∗ − 𝑠)Ã'∗

N(
𝑑𝑠 ≤ (𝑡∗ − 𝜏<)! ∫ |ln(𝑡 − 𝑠) −'∗

N(

ln(𝑡∗ − 𝑠)| 𝑑𝑠 =  

(𝑡∗ − 𝜏<)!(((𝜏< − 𝑡∗) − (𝑡 − 𝑡∗) ln(𝑡 − 𝑡∗) +  

(𝑡 − 𝜏<) ln(𝑡 − 𝜏<)) − ((𝜏< − 𝑡∗) + (𝑡∗ − 𝜏<) ln(𝑡∗ − 𝜏<))).               (B.18) 

It can be observed that  

∫ Ã(𝑡 − 𝑠)! ln(𝑡 − 𝑠)Ã'
'∗ 𝑑𝑠 < 𝛿! ∫ |ln(𝑡 − 𝑠)|'

'∗ 𝑑𝑠,				                         (B.19) 
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where  

∫ |ln(𝑡 − 𝑠)|'
'∗ 𝑑𝑠 = (𝑡 − 𝑡∗) − (𝑡 − 𝑡∗) ln(𝑡 − 𝑡∗).                           (B.20) 

Now by (B.14)-(B.20) we can conclude that Ö∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 −

∫ (𝑡∗ − 𝑠)!'∗

N(
ln(𝑡∗ − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠Ö tends to zero as 𝑡,  𝑡 > 𝑡∗ tends to 𝑡∗ which 

demonstrates the continuity of ∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠.  

It can be observed that for (𝑡 − 𝜏<) < 1 

Ö∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠Ö ≤ ∫ |ln(𝑡 − 𝑠)|'
N(

𝑑𝑠 =  

((𝑡 − 𝜏<) − (𝑡 − 𝜏<) ln(𝑡 − 𝜏<)),  

which means ∫ (𝑡 − 𝑠)!'
N(

ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 converges to zero as 𝑡 tends to 𝜏<. 

We can easily show a similar result for  ∫ (𝑡 − 𝑠)!'
N(

𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠. Hence 

g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) has a removable discontinuity at 𝑡 = 𝜏<.  

To show the uniform boundedness of g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) it is enough to observe that 

g
g!
𝐼N(
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏<)  

= − J,(!-")
J((!-")∫ (𝑡 − 𝑠)!'

N(
𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 +  

"
J(!-") ∫ (𝑡 − 𝑠)!'

N(
ln(𝑡 − 𝑠) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏<)𝑑𝑠 ≤  

∫ (𝑡 − 𝑠)!'
N(

𝑑𝑠 + 2∫ (𝑡 − 𝑠)!|ln(𝑡 − 𝑠)|'
N(

𝑑𝑠 ≤  

∫ (𝑡 − 𝑠)!'
( 𝑑𝑠 + 2𝑇< ∫ |ln(𝑡 − 𝑠)|'

( 𝑑𝑠 ≤ 𝑇W	 + 2𝑇<(3 + 𝑇 + 𝑇 ln 𝑇).  

☐ 

Lemma B.3 Let 0 < 𝛽 ≤ 1, 𝑇 > 𝑇∗, where 𝑇∗ = max{𝜃" , 𝜃<} + 𝑒< + 𝑒, and 𝜃" and 𝜃< 

are time to peak for 𝑓"(𝑡) and 𝑓<(𝑡 − Λ) respectively. Suppose 𝜋(𝑡) a smooth monotonic 

function and 𝜏 ∈ [𝜆, Λ]. 

(I) Assume  𝜋1(𝑡) ≥ 0, then g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡
2
N ≥ 0. 

(II) Assume 𝜋1(𝑡), 𝜋11(𝑡) ≤ 0, then g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡
2
N ≥ 0. 
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Proof  Let 𝜖 > 0. For any 𝛽 ∈ [𝜖, 2] we have 
g
g!
𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏) =

g
g!

"
J(!-")∫ (𝑡 − 𝑠)

!'
N 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

"
J(!-")∫ (𝑡 − 𝑠)

!'
N (ln(𝑡 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠,                      (B.21) 

where  𝛿 = J,(!-")
J(!-")

. Note that for 𝛽 ∈ [0,2], −0.6 < 𝛿 < 1. Also let 𝑟 > 0 such that 

ln 𝑟 = 𝛿. Let α = max{𝜃̅" , 𝜃̅<} and 𝜃̅" and 𝜃̅< are time to peak for 𝑓"(𝑡) and 𝑓<(𝑡 − τ) 

respectively. Since 𝑇 > 𝑇∗,  𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is decreasing on [𝛼, 𝑇].  

First, we show that g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) ≥ 0 for 𝛽 ∈ [𝜖, 2], 𝜖 > 0.  It can be observed 

that 

∫ (𝑇 − 𝑠)!2
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 = ∫ (𝑇 − 𝑠)!2&,(

N (ln(𝑇 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 +  

∫ (𝑇 − 𝑠)!2
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.		                   (B.22) 

In the equation (B.22), the first integral in right hand side is clearly nonnegative. On the 

other hand, by Theorem B.5 (II), there exists 𝜁 ∈ [𝑇 − 𝑒<, 𝑇] such that  

∫ (𝑇 − 𝑠)!2
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 = 𝑓"(𝑇 − 𝑒<)𝑓<((𝑇 − 𝑒<) −

𝜏) ∫ (𝑇 − 𝑠)!4
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑑𝑠  

= 𝑓"(𝑇 − 𝑒<)𝑓<(𝑇 − 𝑒< − 𝜏)(
,((1$+)(&"&("-!)_-("-!) no(2&(2&,()))	

("-!)(
−  

(2&4)1$+	(&"&("-!)_-("-!) no(2&4))
("-!)(

) > 0.	                        (B.23) 

 By (B.21), (B.22) and (B.23), g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) > 0, for 𝛽 ∈ [𝜖, 2]. 

Next we show that g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) − g

g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 − 𝜏) ≥ 0 for 𝛽 ∈ [𝜖, 2], 

𝜖 > 0, and different possible values that 𝜂 ∈ [𝜏, 𝑇] can take. 

(i)  𝜂 ≤ 𝛼. Then   

∫ (𝑇 − 𝑠)!2
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 − ∫ (𝜂 − 𝑠)!u

N (ln(𝜂 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠  

= ∫ ((𝑇 − 𝑠)! (ln(𝑇 − 𝑠) − 𝛿) − (𝜂 − 𝑠)! (ln(𝜂 − 𝑠) − 𝛿))𝑓"(𝑠)𝑓<(𝑠 − 𝜏)
u
N +  

∫ (𝑇 − 𝑠)!2
u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.	                    (B.24) 
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Clearly the first integral in (B.24) right hand side is nonnegative. On the other hand  

∫ (𝑇 − 𝑠)!2
u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

∫ (𝑇 − 𝑠)!i
u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 +  

∫ (𝑇 − 𝑠)!2
i (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.	                        (B.25) 

The first integral in (B.25) right hand side is nonnegative. By Theorem B.5 (II), there 

exists 𝜁 ∈ [𝛼, 𝑇] such that  

∫ (𝑇 − 𝑠)!2
i (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 = 𝑓"(𝛼)𝑓<(𝛼 − 𝜏) ∫ (𝑇 − 𝑠)!

4
i (ln(𝑇 −

𝑠) − 𝛿) 𝑑𝑠  

= 𝑓"(𝛼)𝑓<(𝛼 − 𝜏)(
(2&i)1$+(&"&("-!)_-("-!) no(2&i))	

("-!)(
−  

(2&4)1$+	(&"&("-!)_-("-!) no(2&4))
("-!)(

) > 0.			                         (B.26) 

By (B.21) and (B.24)-(B.26),  g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) − g

g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 − 𝜏) > 0 for 

𝛽 ∈ [𝜖, 2], 𝜖 > 0 and 𝜂 ≤ 𝛼. 

(ii) 	𝛼 < 𝜂 ≤ 𝑇 − 𝑒<. Then   

∫ (𝑇 − 𝑠)!2
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 − ∫ (𝜂 − 𝑠)!u

N (ln(𝜂 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠  

= ∫ ((𝑇 − 𝑠)! (ln(𝑇 − 𝑠) − 𝛿) − (𝜂 − 𝑠)! (ln(𝜂 − 𝑠) − 𝛿))𝑓"(𝑠)𝑓<(𝑠 − 𝜏)
u
N +  

∫ (𝑇 − 𝑠)!2
u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.						                     (B.27) 

Obviously the first integral in (B.27) right hand side is nonnegative. On the other hand 

∫ (𝑇 − 𝑠)!2
u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

∫ (𝑇 − 𝑠)!2&,(

u (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 +			                      (B.28) 

∫ (𝑇 − 𝑠)!2
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.		  

The first integral in (B.28) right hand side is obviously nonnegative. For the second 

integral by Theorem B.5 (II), there exists 𝜁 ∈ [𝑇 − 𝑒<, 𝑇] such that 

∫ (𝑇 − 𝑠)!2
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

𝑓"(𝑇 − 𝑒<)𝑓<(𝑇 − 𝑒< − 𝜏) ∫ (𝑇 − 𝑠)!4
2&,( (ln(𝑇 − 𝑠) − 𝛿) 𝑑𝑠 =	              (B.29) 
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𝑓"(𝑇 − 𝑒<)𝑓<(𝑇 − 𝑒< − 𝜏)(
,((1$+)(&"&("-!)_-("-!) no(2&(2&,()))	

("-!)(
−  

(2&4)1$+	(&"&("-!)_-("-!) no(2&4))
("-!)(

) > 0.  

By (B.21) and (B.27)-(B.29),  g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) − g

g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 − 𝜏) > 0 for 

𝛽 ∈ [𝜖, 2], 𝜖 > 0 and 𝛼 < 𝜂 ≤ 𝑇 − 𝑒<. 

(iii) 𝑇 − 𝑒< < 𝜂 < 𝑇. Then 

∫ (𝑇 − 𝑠)!2
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 − ∫ (𝜂 − 𝑠)!u

N (ln(𝜂 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠  

= ∫ (𝑇 − 𝑠)!2&0
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 − ∫ (𝜂 − 𝑠)!u&0

N (ln(𝜂 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠  

+∫ (𝑇 − 𝑠)!2
2&0 (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 −			                      (B.30) 

∫ (𝜂 − 𝑠)!u
u&0 (ln(𝜂 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.  

We have 

∫ (𝑇 − 𝑠)!2&0
N (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 − ∫ (𝜂 − 𝑠)!u&0

N (ln(𝜂 − 𝑠) −

𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

∫ ((𝑇 − 𝑠)!u&0
N (ln(𝑇 − 𝑠) − 𝛿) − (𝜂 − 𝑠)!(ln(𝜂 − 𝑠) − 𝛿)) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠	      (B.31) 

+∫ (𝑇 − 𝑠)!2&0
u&0 (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠.  

The first and the second integrals in (B.31) right hand side are both nonnegative. On the 

other hand 

∫ (𝜂 − 𝑠)!u
u&0 (ln(𝜂 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

∫ 𝑢!0
( (ln 𝑢 − 𝛿) 𝑓"(𝜂 − 𝑢)𝑓<;(𝜂 − 𝑢) − 𝜏=𝑑𝑢,	                              (B.32) 

∫ (𝑇 − 𝑠)!2
2&0 (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 =  

∫ 𝑢!0
( (ln 𝑢 − 𝛿) 𝑓"(𝑇 − 𝑢)𝑓<;(𝑇 − 𝑢) − 𝜏=𝑑𝑢.					                            (B.33) 

But for 0 < 𝑢 ≤ 𝑟, 𝑢!(ln 𝑢 − 𝛿) 𝑓"(𝑇 − 𝑢)𝑓<((𝑇 − 𝑢) − 𝜏) ≥ 𝑢!(ln 𝑢 − 𝛿) 𝑓"(𝜂 −

𝑢)𝑓<((𝜂 − 𝑢) − 𝜏) which by (B.32) and (B.33) implies that  

∫ (𝑇 − 𝑠)!2
2&0 (ln(𝑇 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 −  

∫ (𝜂 − 𝑠)!u
u&0 (ln(𝜂 − 𝑠) − 𝛿) 𝑓"(𝑠)𝑓<(𝑠 − 𝜏)𝑑𝑠 ≥ 	0.						                   (B.34) 
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Hence by (B.21) and (B.30)-(B.34),  g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) − g

g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 − 𝜏) ≥

0 for 𝛽 ∈ [𝜖, 2], 𝜖 > 0 and 𝑇 − 𝑒< < 𝜂 < 𝑇.  

Proof of part (I). 

Employing integration by part we get 

∫ 𝜋(𝑡)𝐼N
!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇)𝐼N

!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −
2
N ∫ 𝜋1(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 −
2
N

𝜏)𝑑𝑡.	(B.35) 

It can be verified by Lemma B.2 that 𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is continuous and 

g
g!
𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is continuous and uniformly bounded on [𝜏, 𝑇] × [𝜖, 1]. So, by 

Leibnitz rule (Folland, 1999, p. 56, Theorem 2.27) we get 
g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇) g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 −

2
N

𝜏) −∫ 𝜋′(𝑡) g
g!
𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡

2
N .  

Since 𝜋′(𝑡) does not change sign and by Lemma B.2 g
g!
𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is 

continuous, according to the mean value theorem for integrals there exists 𝜂 ∈ [𝜏, 𝑇] such 

that 
g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇) g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −

g
g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 −

2
N

𝜏) (𝜋(𝑇) − 𝜋(𝜏)).  

Since g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) ≥

g
g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 − 𝜏), by the fact that 𝜋(𝑡) is increasing 

it can be observed that   
g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇) g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −

g
g!
𝐼N
!-"𝑓"(𝜂)𝑓<(𝜂 −

2
N

𝜏) ;𝜋(𝑇) − 𝜋(𝜏)= ≥ 0.  

and this completes the proof for part (I).  

Proof of part (II). 

Employing integration by part we get 

∫ 𝜋(𝑡)𝐼N
!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇)𝐼N

!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −
2
N ∫ 𝜋′(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡
2
N ,  

and 
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g
g! ∫ 𝜋(𝑡)𝐼N

!𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = 𝜋(𝑇) g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −

2
N   

g
g! ∫ 𝜋1(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡
2
N .		                                    (B.36) 

Employing integration by part we get 

∫ −𝜋′(𝑡)𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = −𝜋′(𝑇)𝐼N

!-<𝑓"(𝑇)𝑓<(𝑇 −
2
N

𝜏) +∫ 𝜋′′(𝑡)𝐼N
!-<𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡

2
N .  

It can be verified by Lemma B.2 that 𝐼N
!-<𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is continuous and 

g
g!
𝐼N
!-<𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is continuous and uniformly bounded on [𝜏, 𝑇] × [𝜖, 1]. So, by 

Leibnitz rule (Folland, 1999, p. 56, Theorem 2.27) we get 
g
g! ∫ −𝜋1(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 =
2
N   

−𝜋1(𝑇) g
g!
𝐼N
!-<𝑓"(𝑇)𝑓<(𝑇 − 𝜏) + ∫ 𝜋11(𝑡) g

g!
𝐼N
!-<𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡

2
N .	         (B.37) 

Since 𝜋′′(𝑡) ≤ 0 and by Lemma B.2 g
g!
𝐼N
!-<𝑓"(𝑡)𝑓<(𝑡 − 𝜏) is continuous, according to 

the mean value theorem for integrals there exists 𝜂 ∈ [𝜏, 𝑇] such that 
g
g! ∫ −𝜋′(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 = −𝜋′(𝑇) g
g!
𝐼N
!-<𝑓"(𝑇)𝑓<(𝑇 − 𝜏) −

2
N

g
g!
𝐼N
!-<𝑓"(𝜂)𝑓<(𝜂 − 𝜏) (−𝜋′(𝑇) + 𝜋′(𝜏)).  

Since g
g!
𝐼N
!-<𝑓"(𝑇)𝑓<(𝑇 − 𝜏) ≥

g
g!
𝐼N
!-<𝑓"(𝜂)𝑓<(𝜂 − 𝜏)	and g

g!
𝐼N
!-<𝑓"(𝑇)𝑓<(𝑇 − 𝜏) ≥ 0, 

by (B.37) and  the fact that  𝜋1(𝑡) ≤ 0,	 𝜋11(𝑡) ≤ 0 it can be observed that 
g
g! ∫ −𝜋′(𝑡)𝐼N

!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡
2
N ≥ 0. Hence by (B.36) and the fact that 

g
g!
𝐼N
!-"𝑓"(𝑇)𝑓<(𝑇 − 𝜏) ≥ 0 it can be concluded that g

g! ∫ 𝜋(𝑡)𝐼N
!-"𝑓"(𝑡)𝑓<(𝑡 − 𝜏)𝑑𝑡 ≥

2
N

0,  and this completes the proof for part (II).                                                                     ☐  

Proof of Proposition 3.1. 

Profit function can be written as 

Π(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( − ∫ 𝜋"(𝑡)𝑠𝑤𝑡<(𝑡)𝑑𝑡

2
N(

+  

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

+ ∫ 𝜋<(𝑡)𝑠𝑤𝑡<(𝑡)𝑑𝑡
2
N(

.			            (B.38) 

By Lemmas B.1 and B.2 and Theorem B.6 we get 
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g
gN(

∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( = ∫ 𝜋"(𝑡)𝐼N(

!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

,		                (B.39) 

g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

= −∫ 𝜋<(𝑡)𝐼N(
!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(

,		             (B.40) 

and for 𝑖 ∈ {1,2}, 
g
gN(

∫ 𝜋M(𝑡)𝑠𝑤𝑡<(𝑡)𝑑𝑡
2
N(

= −𝜋M(𝜏<)𝑠𝑤𝑡<(𝜏<) +  

∫ [−𝜋M(𝑡)ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S +

2
N(

  

𝜋M(𝑡)ℎ<𝐹<(𝑡 − 𝜏<)
g
gN(

R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S]𝑑𝑡,		                            (B.41) 

where 
g
gN(

R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S = 𝐼N(

!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝑦""(𝑡)𝑓<(𝑡 − 𝜏<).		            (B.42) 

Now by (B.38)-(B.41) we get 
g
gN(

Π(𝜏<) = ∫ 𝜋"(𝑡)𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(

+  

g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

− ∫ 𝜋<(𝑡)𝐼N(
!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(

+  

∫ [−(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝑓<(𝑡 − 𝜏<)(𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)) +

2
N(

		  

(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)
g
gN(

R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S]𝑑𝑡.	                      (B.43) 

Proof of part (I). 

Let  𝜋<1 (𝑡) ≥ 0 or 𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0, 𝜋"(𝑡) > 𝜋<(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, and  𝛽< ≤ 𝛽".  

By Lemma B.2 and Theorem B.6 we get 
g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

= ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡,

2
N(

						                      (B.44) 

where, by Lemma B.1 
g
gN(

𝐼N(
!(𝑦�<(𝑡) = − ('&N()1(!+

J(!()
𝑦�<(𝜏<) − 𝐼N(

!(𝑦�<1(𝑡).			                              (B.45) 

By (B.42)-(B.44) we get 
g
gN(

Π(𝜏<) = ∫ 𝜋"(𝑡)𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝜋<(𝑡)𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

+  

∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+  

∫ [−(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S + (𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 −

2
N(

𝜏<)
g
gN(

R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S]𝑑𝑡 ≥  
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∫ 𝜋"(𝑡)𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝜋<(𝑡)𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

  

+	∫ −(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

+		                 (B.46) 

	∫ (𝜋<(𝑡) − 𝜋"(𝑡))𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(

−	∫ (𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 −
2
N(

𝜏<)𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡 =  

∫ 𝜋<(𝑡)(𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

−  

∫ (𝜋<(𝑡) − 𝜋"(𝑡))	ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

−  

∫ (𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

.  

By Lemma B.3 and the fact that 𝛽< ≤ 𝛽" we have  

∫ 𝜋<(𝑡)(𝐼N(
!+𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑓"(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

≥ 0.			                (B.47) 

On the other hand, for 𝑡 ∈ [𝜏<, 𝑇]  

𝑚"(𝐼(
!+Φ"(𝑡) − 𝑓"(𝑡);1 − 𝐹<(𝑡 − 𝜏<)=) = 𝐼(

!+𝑦"(𝑡) − 𝑦"(𝑡) ≥ 0,	             (B.48) 

where  

Φ"(𝑡) = b 𝑓"
(𝑡)																																																	0 < 𝑡 ≤ 𝜏<

𝑓"(𝑡)(1 − 𝐹<(𝑡 − 𝜏<)	)																											𝑡 > 𝜏<
,  

So, by (B.45), (B.47) and (B.48), for 𝑚" sufficiently large,  𝑚"𝑟(𝜏<) +

	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 ≥ 02

N(
, for all 𝜏< ∈ [𝜆, Λ] where 

𝑟(𝜏<) = ∫ 𝜋<(𝑡)(𝐼N(
!+𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑓"(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

+  

∫ (𝜋"(𝑡) − 𝜋<(𝑡))	ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+Φ"(𝑡) − 𝑓"(𝑡);1 − 𝐹<(𝑡 − 𝜏<)=S 𝑑𝑡

2
N(

+	       (B.49) 

∫ (𝜋"(𝑡) − 𝜋<(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)𝑓"(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

.  

 Let 𝛾" = inf	{𝑚":	𝑚"𝑟(𝜏<) +	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 ≥ 02

N(
 for all 𝜏< ∈ [𝜆, Λ]}. Then by 

(B.46) and (B.49) it can be observed that, for 𝑚" > 𝛾" we get g
gN(

Π(𝜏<) ≥ 0 which 

implies that 𝜏<∗ = Λ. 

Proof of part (II). 

Let 𝜋<1 (𝑡) ≥ 0,  𝜋<(𝑡) > 𝜋"(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, and  𝛽" ≤ 𝛽<. 

By (B.42)-(B.44) we get 
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g
gN(

Π(𝜏<) ≤  

∫ 𝜋<(𝑡)(𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

−  

∫ (𝜋<(𝑡) − 𝜋"(𝑡))	ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

−		              (B.50) 

∫ (𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

.  

By Lemma B.3 (I) and the fact that 𝛽" ≤ 𝛽< we have  

∫ 𝜋<(𝑡)(𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡 ≤ 0.2
N(

	             (B.51) 

So, by (B.45), (B.48) and (B.51), for 𝑚" sufficiently large,  𝑚"𝑟(𝜏<) +

	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

≤ 0, for all 𝜏< ∈ [𝜆, Λ].  Let 𝛾< = inf	{𝑚":	𝑚"𝑟(𝜏<) +

	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

≤ 0 for all 𝜏< ∈ [𝜆, Λ]}. Then by (B.49) and (B.50) it can be 

observed that for 𝑚" > 𝛾< we get g
gN(

Π(𝜏<) ≤ 0 which implies that 𝜏<∗ = λ. 

Proof of part (III). 

Let 𝜋<1 (𝑡), 𝜋<11(𝑡) ≤ 0, 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇 and, 𝛽" ≤ 𝛽<.  

By Lemma B.3 (II) we have  

∫ 𝜋<(𝑡)(𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

≤ 0.			          (B.52) 

By Lemma B.2, Theorem B.5 (II) and Theorem B.6 we get 
g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

= ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 = 𝜋<(𝜏<) ∫

g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡,

u
N(

2
N(

   (B.53) 

where 𝜂 ∈ [𝜏<, 𝑇]. By (B.45) and Theorem B.1 we get 

∫ g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

u
N(

= −∫ �('&N()
1(!+

J(!()
𝑦�<(𝜏<) + 𝐼N(

!(𝑦�<′(𝑡)� 𝑑𝑡
u
N(

= −𝐼N(
!(𝑦�<(𝜂).			     (B.54) 

Therefore by (B.53) and (B.54) 
g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

= −𝜋<(𝜏<)𝐼N(
!(𝑦�<(𝜂).		                             (B.55) 

By (B.42), (B.43), and (B.55) we get 
g
gN(

Π(𝜏<) ≤ ∫ 𝜋<(𝑡)(𝐼N(
!+𝑦""(𝑡)𝑓<(𝑡 − 𝜏<) − 𝐼N(

!(𝑦""(𝑡)𝑓<(𝑡 − 𝜏<))𝑑𝑡
2
N(

−

𝜋<(𝜏<)𝐼N(
!(𝑦�<(𝜂)  

−∫ (𝜋<(𝑡) − 𝜋"(𝑡))	ℎ<𝑓<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

	                   (B.56) 
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−∫ (𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)𝑦""(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

.  

Noting (B.52), (B.56) implies that g
gN(

Π(𝜏<) ≤ 0 and therefore 𝜏<∗ = λ.                           ☐  

Proof of Proposition 3.2. 

By (B.46) 
g
gN(

Π(𝜏<) = 𝑚"𝜇"(𝜏<) + 𝑚<𝜇<(𝜏<),  

where 

𝜇"(𝜏<) = ∫ 𝜋"(𝑡)𝐼N(
!+𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) − 𝜋<(𝑡)𝐼N(

!(𝑓"(𝑡)𝑓<(𝑡 − 𝜏<)𝑑𝑡
2
N(

+  

∫ [−(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝑓<(𝑡 − 𝜏<)(𝐼(
!+Φ"(𝑡) − 𝑓"(𝑡);1 − 𝐹<(𝑡 − 𝜏<)=) +

2
N(

  

(𝜋<(𝑡) − 𝜋"(𝑡))ℎ<𝐹<(𝑡 − 𝜏<)(𝐼N(
!+𝑓"(𝑡)𝑓<(𝑡 − 𝜏<) − 𝑓"(𝑡)𝑓<(𝑡 − 𝜏<))]𝑑𝑡,  

𝜇<(𝜏<) = ∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(

.  

Note that 𝜇"(𝜏<) ≥ 𝑟(𝜏<) > 0, 𝜏< ∈ [𝜆, Λ]. It can be observed that if  𝑚" <
&~(}((Z)
}+(Z)ßàáàâ
u+

  

then g
gN(

Π(Λ) < 0 which means 𝜏<∗ ∈ [𝜆, Λ).                                                                     ☐  

Proof of Proposition 3.3. 

Profit function can be written as 

Π(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡 + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+N(
( ∫ 𝜋<(𝑡)𝐼(

!(𝑦""(𝑡)𝑑𝑡
2
N(

.		  (B.57) 

It can be easily observed that 
g
gN(

∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

N(
( = 𝜋"(𝜏<)𝐼(

!+𝑦""(𝜏<),		                                (B.58) 

g
gN(

∫ 𝜋<(𝑡)𝐼(
!(𝑦""(𝑡)𝑑𝑡

2
N(

= −𝜋<(𝜏<)𝐼(
!(𝑦""(𝜏<).	                               (B.59) 

Now by (B.57)-(B.59) we get 
g
gN(

Π(𝜏<) = 𝜋"(𝜏<)𝐼(
!+𝑦""(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑦""(𝜏<) +
g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

.			(B.60) 

Proof of part (I). 

Let  𝜋"(𝑡) ≥ 𝜋<(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, 𝛽< < 𝛽" (or 𝜋"(𝑡) > 𝜋<(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, 𝛽< ≤ 𝛽"). 

Then  



159 

 

𝜋"(𝜏<)𝐼(
!+𝑦""(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑦""(𝜏<) > 0.		                           (B.61) 

By (B.44), (B.45), and (B.61), for 𝑚" sufficiently large,  𝑚"(𝜋"(𝜏<)𝐼(
!+𝑓"(𝜏<) −

𝜋<(𝜏<)𝐼(
!(𝑓"(𝜏<)) +	∫ 𝜋<(𝑡)

g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

≥ 0, for all 𝜏< ∈ [𝜆, Λ].  Let 𝛾�" =

inf	 ¬𝑚":	𝑚"(𝜋"(𝜏<)𝐼(
!+𝑓"(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑓"(𝜏<)) +	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 ≥

2
N(

0 	for	all	𝜏< ∈ [𝜆, Λ]¯. Then by (B.60) it can be observed that for 𝑚" > 𝛾�" we get  

g
gN(

Π(𝜏<) ≥ 0 for 𝜏< ∈ [𝜆, Λ] which implies that 𝜏<∗ = Λ.  

Proof of part (II). 

Let 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, 𝛽" < 𝛽< (or 𝜋<(𝑡) > 𝜋"(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇, 𝛽" ≤ 𝛽<). 

Then  

𝜋"(𝜏<)𝐼(
!+𝑦""(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑦""(𝜏<) < 0.			                      (B.62) 

By (B.44), (B.45), and (B.62), for 𝑚" sufficiently large,  𝑚"(𝜋"(𝜏<)𝐼(
!+𝑓"(𝜏<) −

𝜋<(𝜏<)𝐼(
!(𝑓"(𝜏<)) +	∫ 𝜋<(𝑡)

g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 ≤ 02

N(
, for all 𝜏< ∈ [𝜆, Λ].  Let 𝛾�< =

inf	 ¬𝑚":	𝑚"(𝜋"(𝜏<)𝐼(
!+𝑓"(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑓"(𝜏<)) +	∫ 𝜋<(𝑡)
g
gN(

𝐼N(
!(𝑦�<(𝑡)𝑑𝑡 ≤

2
N(

0 	for	all	𝜏< ∈ [𝜆, Λ]¯. Then by (B.60), for 𝑚" > 𝛾�< we get g
gN(

Π(𝜏<) ≤ 0 which implies 

that 𝜏<∗ = λ. 

Proof of part (III). 

Suppose	𝜋<(𝑡) be monotonically declining. Let 𝜋<(𝑡) ≥ 𝜋"(𝑡) for 𝜆 ≤ 𝑡 ≤ 𝑇 and, 𝛽" ≤

𝛽<. Then 

𝜋"(𝜏<)𝐼(
!+𝑦""(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑦""(𝜏<) ≤ 0.			                            (B.63) 

By (B.55), (B.60) and (B.63) it can be concluded that g
gN(

Π(𝜏<) ≤ 0 for 𝜏< ∈ [𝜆, Λ] which 

means 𝜏<∗ = 𝜆.                                                                                                                     ☐  

Proof of Proposition 3.4. 

By (B.60) 
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g
gN(

Π(𝜏<) = 𝑚"(𝜋"(𝜏<)𝐼(
!+𝑓"(𝜏<) − 𝜋<(𝜏<)𝐼(

!(𝑓"(𝜏<)) + 𝑚<
g
gN(

∫ 𝜋<(𝑡)𝐼N(
!(𝑓<(𝑡 − 𝜏<)𝑑𝑡

2
N(ßààààààààáààààààààâ

}�(N()

.  

It can be observed that if  

𝑚" <
&~(}�(Z)

�d+(Z)h)
1+)+(Z)&d((Z)h)

1()+(Z)�ßàààààààáàààààààâ
u�+

,					  

then g
gN(

Π(Λ) < 0 which means 𝜏<∗ ∈ [𝜆, Λ).                                                                    	☐ 	

Proof of Proposition 3.5. 

We refer to the profit function (3.43) under phase-out transition and total transition 

scenarios as Π.\ and Π� respectively. By (3.10) and (3.13) profit function (3.43) under 

phase-out transition scenario is given by 

Π.\(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

  

−∫ ;𝜋"(𝑡) − 𝜋<(𝑡)=𝑠𝑤𝑡<(𝑡)𝑑𝑡
2
N(

.			                                       (B.64) 

By (3.15) and (3.20), profit function (3.43) under total transition scenario is given by 

Π�(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡 + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+N(
( ∫ 𝜋<(𝑡)𝐼(

!(𝑦""(𝑡)𝑑𝑡
2
N(

.	(B.65)     

Proof of part (I). 

Suppose 𝜋"(𝑡) = 𝜋<(𝑡) and 𝛽" = 𝛽<. By (B.64) and (B.65)  

Π.\(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋"(𝑡)𝐼(

!+𝑦""(𝑡)𝑑𝑡
2
N(

− ∫ 𝜋"(𝑡)𝐼N(
!+𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼(

!(𝑦""(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

= Π�(𝜏<).  

Proof of part (II). 

Suppose 𝜋<(𝑡) < 𝜋"(𝑡) and 𝛽< ≤ 𝛽". By (B.64) and (B.65) we get 

Π.\(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

−

∫ ;𝜋"(𝑡) − 𝜋<(𝑡)=ℎ<𝐹<(𝑡 − 𝜏<) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

>  
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∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

− ∫ ;𝜋"(𝑡) −
2
N(

𝜋<(𝑡)= R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡 =  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋"(𝑡)𝐼(

!+𝑦""(𝑡)𝑑𝑡
2
N(

− ∫ 𝜋"(𝑡)𝐼N(
!+𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

− ∫ 𝜋"(𝑡) R𝐼(
!+𝑦""(𝑡) − 𝐼N(

!+𝑢<(𝑡) −
2
N(

𝑦"(𝑡)S 𝑑𝑡 + ∫ 𝜋<(𝑡) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋"(𝑡)𝑦"(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡) R𝐼(
!+𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

≥  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋"(𝑡)𝑦"(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡) R𝐼(
!(𝑦"(𝑡) − 𝑦"(𝑡)S 𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋"(𝑡)𝑦"(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡) R𝐼(
!(𝑦""(𝑡) − 𝐼N(

!(𝑢<(𝑡) − 𝑦"(𝑡)S 𝑑𝑡
2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ (𝜋"(𝑡) − 𝜋<(𝑡))𝑦"(𝑡)𝑑𝑡
2
N(

+

∫ 𝜋<(𝑡)𝐼(
!(𝑦""(𝑡)𝑑𝑡

2
N(

> Π�(𝜏<).  

Suppose 𝜋"(𝑡) = 𝜋<(𝑡) and 𝛽< < 𝛽". By (B.64) and (B.65) we get 

Π.\(𝜏<) = ∫ 𝜋"(𝑡)𝐼(
!+𝑦"(𝑡)𝑑𝑡

2
( + ∫ 𝜋<(𝑡)𝐼N(

!(𝑦�<(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋"(𝑡)𝐼(

!+𝑦"(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

>  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋"(𝑡)𝐼(

!(𝑦"(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋"(𝑡)𝐼(

!(𝑦""(𝑡)𝑑𝑡
2
N(

− ∫ 𝜋"(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

+

∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑢<(𝑡)𝑑𝑡

2
N(

=  

∫ 𝜋"(𝑡)𝐼(
!+𝑦""(𝑡)𝑑𝑡

N(
( + ∫ 𝜋<(𝑡)𝐼(

!(𝑦""(𝑡)𝑑𝑡
2
N(

+ ∫ 𝜋<(𝑡)𝐼N(
!(𝑦�<(𝑡)𝑑𝑡

2
N(

= Π�(𝜏<).  

Proof of part (III). 
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Similar to the proof of part (II) but with the direction of inequalities reversed.                ☐  

B.3   Impact of Price on Optimal Market Entry Timing 

Our main model does not take into consideration the impact of pricing. In an extension 

scenario, we conduct numerical analysis to investigate the impact of pricing on the 

optimal market entry timing strategy under the phase-out transition scenario. 

We consider a declining price trend for the old generation, 𝑝𝑟"(𝑡), as follows:  

𝑝𝑟"(𝑡) = 𝑑"
.𝑒&0#∗'		, 𝑡 ≥ 0. 

Here, 𝑑"
. represents the baseline price and 𝑟. > 0 denotes the declining rate of price. We 

let the price for the new generation, denoted as 𝑝𝑟<, be higher than the old generation 

(i.e., 𝑝𝑟< > 𝑝𝑟"(𝑡), 𝑡 ≥ 𝜏<). Our goal is to examine how the price differential between the 

old and new generations impacts the optimal market entry timing. In pursuit of this goal, 

we fix the price trend of the old generation while varying the price trend of the new 

generation.  

We extend the sales model outlined in equations (3.10) and (3.13) to account for 

variations in the sales of the new generation resulting from alterations in the price trend 

(𝑝𝑟<) of the new generation. To this end, following Mesak and Berg (1995), we 

incorporate price in the new generation’s market size 𝑚< and adoption parameters 𝑝< and 

𝑞<. Specifically, we set  

𝑝<(𝑝𝑟<) = 𝑝<𝑒&0I(.0(&5(), 

𝑞<(𝑝𝑟<) = 𝑞<𝑒&0I(.0(&5() 

𝑚<(𝑝𝑟<) = 𝑚<𝑒&0I(.0(&5(), 

where  𝑝<, 𝑞<, and 𝑚< represent the baseline values for the innovation parameter, 

imitation parameter, and market size for the new generation respectively. 𝑙< denotes the 

baseline price for the new generation, and 𝑟g > 0 denotes the declining rate. We consider 

the following monotone cost functions for the old (𝑐"(𝑡)) and the new generation (𝑐<(𝑡)):  

𝑐"(𝑡) = 𝑑"9𝑒0J∗'		, 

𝑐<(𝑡) = 𝑑<9𝑒0J∗' , 
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where, 𝑑"9 and 𝑑<9 represent the baseline cost for generations 1 and 2, respectively and 𝑟9 

denotes the rate of change in cost.  

In our numerical analysis we consider a base sales scenario with parameters, 𝑝" = 𝑝< =

0.01, 𝑞" = 𝑞< = 0.5, 𝛽" = 𝛽< = 0.3, 𝑚" = 800, 𝑚< = 600, 𝑟g = 0.05, 𝑙< = 10, and 

ℎ< = 1. Price, cost, and discount rate parameters are set to 𝑑"
. = 10, 𝑟. = 0.01, 𝑑"9 = 5, 

𝑑<9 = 10, 𝑟9 = −0.01, and 𝑟" = 𝑟< = 0. The Planning horizon is set to 𝑇 = 20. Under the 

base scenario, we set the price levels for the new generation to be 𝑝𝑟< = 10, 12, and 15. 

Next, we change the base scenario to variational scenarios by changing the sales 

parameters one at the time. Table B-1 demonstrates the profit dynamics with respect to 

the market entry timing across three different pricing levels for the new generation 

(𝑝𝑟< = 10, 12, and 15), under the base and variational scenarios. We repeat the 

previously described process, taking into account increasing cost trends with 𝑟9 = 0.01 

and 𝑑<9 = 8. The results are demonstrated in Table B-2.  

It is evident that across all scenarios presented in Tables B-1 and B-2, as the price of the 

new generation (𝑝𝑟<) rises, it is more profitable to release the new generation earlier. 

Furthermore, it is noteworthy that when the price is set to the highest level	𝑝𝑟< = 15, 

where the unit contribution margin for the new generation surpasses the old generation 

(i.e., 𝜋<(𝑡) > 𝜋"(𝑡)), the immediate release of the new generation is the optimal strategy. 

This result is consistent with our earlier analytical findings presented in Proposition 3.1 

(II) and (III).  
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Table B-1: Dynamics of Profit with Respect to Market Entry Timing with 

Decreasing Cost Trends 
Base  

 

 

 

New generation fast adoption (𝑝! = 0.05, 𝑞! = 0.8) 

 

Old generation fast adoption (𝑝# = 0.05, 𝑞# = 0.8) 

 

New generation big market size (𝑚! = 1000)   

 

Old generation big market size (𝑚# = 1200)   

 
New generation high repeat purchase (𝛽! = 0.5)  

 

Old generation high repeat purchase rate (𝛽# = 0.5)    

 

 

●
●

● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

8000

10000

12000

14000

profit

● ●
●

● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■ ■ ■ ■ ■ ■ ■ ■

3 4 5 6 7 8 9 10
τ2

6000

8000

10000

12000

14000

16000

18000
profit

●
● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

10000

11000

12000

13000

14000

15000

16000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

10000

12000

14000

16000

18000

profit

●
●

●
● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

12000

14000

16000

18000

20000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆
◆

◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

10000

12000

14000

16000

18000

profit

●
●

●
●

● ● ● ●
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■ ■ ■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

10000

12000

14000

16000

18000

20000

profit
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Table B-2: Dynamics of Profit with Respect to Market Entry Timing with 

Increasing Cost Trends 
Base 

 

 

New generation fast adoption (𝑝! = 0.05, 𝑞! = 0.8) 

 

Old generation fast adoption (𝑝# = 0.05, 𝑞# = 0.8) 

 
New generation big market size (𝑚! = 1000)   

 

Old generation big market size (𝑚# = 1200)   

 

New generation high repeat purchase (𝛽! = 0.5)  

 

Old generation high repeat purchase rate (𝛽# = 0.5)    

 

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

6000

8000

10000

12000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

6000

8000

10000

12000

14000

16000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

9000

10000

11000

12000

13000

14000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

8000

10000

12000

14000

16000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

10000

12000

14000

16000

18000
profit

● ● ● ● ● ● ● ●

◆
◆

◆ ◆ ◆ ◆ ◆ ◆

■

■
■

■
■

■
■

■

3 4 5 6 7 8 9 10
τ2

8000

10000

12000

14000

16000

profit

● ● ● ● ● ● ● ●

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

■
■

■
■

■
■

■
■

3 4 5 6 7 8 9 10
τ2

8000

10000

12000

14000

16000

18000

profit
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Appendix C: Giveaway Strategies for a New Technology Product 

C.1   Supplementary Analysis 

We provide all the proofs in Section C.2.  

Theorem C.1. The initial value problem (4.14) and (4.15) with 𝑌5(𝑡() = 𝑙", 0 ≤ 𝑙" < 𝛿𝑛, 

𝑌\(𝑡() = 𝑙<, 0 ≤ 𝑙< < 𝑛, 𝑡( ≥ 0, has a unique solution 𝑌\(𝑡), 𝑌5(𝑡) defined on [𝑡(, ∞) 

where 𝑌\(𝑡) and 𝑌5(𝑡) are monotonically increasing to 𝑛 and 𝛿𝑛 respectively.    

Proposition C.1. 𝑌\(𝑡) and 𝑌5(𝑡) (derived from (4.14) and (4.15)) are proportional to 𝑛.  

Proposition C.2. 𝑌\(𝑡) and 𝑌5(𝑡), 𝑡 > 0 (derived from (4.14) and (4.15)) are increasing 

in 𝑝\ , 𝑞\ , 𝑞5\ , 𝑝5 , 𝑞5,	𝑞\5 , and 𝛿.  

Proposition C.3.   

(i) If 	𝑞 > +
+&(OA-O@)

�	𝑝 + OA-O@
+

(𝜆\ + 𝜆5𝛿)�, then the adoption rate 𝑦(𝑡) peaks.  

(ii) 𝑌(𝑡), 𝑡 > 𝜏 is increasing in 𝑝, 𝑞, 𝜆\, and 𝜆5. 

Proposition C.4. Suppose 𝑌�(𝑡) corresponding to 𝑌�\f(𝑡), 𝑌�\f(𝑡) > 𝑌\f(𝑡), 𝑡 ∈ (𝜏, 𝑇), or 

𝑌�5f(𝑡), 𝑌�5f(𝑡) > 𝑌5f(𝑡), 𝑡 ∈ (𝜏, 𝑇), or both. Then, 𝑌�(𝑡) ≥ 𝑌(𝑡), for all 𝑡 ∈ [𝜏, 𝑇].   

Proposition C.5. Consider profit function (4.26) when 𝑌\f(𝑡) and 𝑌5f(𝑡) are proportional 

to 𝑛f and 𝑌\e(𝑡) is proportional to 𝑛e. Let the profit optimization problem Πs	∗ =

Πs	(𝑛�f∗ , 𝑛�e∗ ) = max
OA∈�(,Oa8

A �,O@∈[(,Oa8
@ ]
Πs(𝑛f , 𝑛e) corresponding to 𝑚s = 𝑟𝑚, 𝑛�Af = 𝑟𝑛Af , and 

𝑛�Ae = 𝑟𝑛Ae , 𝑟 > 0. Then, Πs	∗ = 𝑟Π∗, with 𝑛�f∗ = 𝑟𝑛f∗  and 𝑛�e∗ = 𝑟𝑛e∗ , where Π	∗ =

Π	(𝑛f∗ , 𝑛e∗ ) = max
OA∈�(,O8

A �,O@∈[(,O8
@ ]
Π(𝑛f , 𝑛e). 

Proposition C.6. Let Πs(𝑛f , 𝑛e) and Π(𝑛f , 𝑛e) where 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , be profit 

functions, given by (4.26), corresponding to 𝑝̅, 𝑞�, 𝜆̅\, 𝜆̅5, and 𝑝, 𝑞, 𝜆\, 𝜆5 respectively 
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where, 𝑞� > +
+&O8

A &O8
@ �	𝑝̅ +

O8
A -O8

@

+
;𝜆̅\ + 𝛿𝜆̅5=�. Suppose either one of 	𝑝̅ ≥ 𝑝, 𝑞� ≥ 𝑞, 

𝜆̅\ ≥ 𝜆\, and 𝜆̅5 ≥ 𝜆5 holds with at least one strict inequality. Then 

(i) If the planning horizon is sufficiently short (𝑇 ≤ 𝑡̃), then Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) 

for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and Πs(0,0) > Π(0,0) if either of 

𝑝̅ > 𝑝 or  𝑞� > 𝑞 holds, otherwise Πs(0,0) = Π(0,0). Thus, Πs∗ ≥ Π∗. 

(ii) For 𝛽 > 0, the planning horizon in part (i) can be extended to 𝑇!, 𝑇! > 𝑇 where 

𝑦\f(𝑡) = 𝑦5f(𝑡) = 0 for 𝑡 ≥ 𝑇 with the profit differences (Πs(𝑛f , 𝑛e) −

Π(𝑛f , 𝑛e) > 0) being larger than those in part (i) for the planning horizon 𝑇. For 

𝛽̅,  𝛽̅ > 𝛽, there exists 𝑇!b  such that 𝑇!b > 𝑇!. 

(iii) Let the planning horizon in part (i) be extended to 𝑇c, 𝑇c > 𝑇! , where 𝑦\f(𝑡) =

𝑦5f(𝑡) = 0 for 𝑡 ≥ 𝑇. If 𝜋(𝑡) be decreasing on [𝑇! , 𝑇c] with high declining rate, 

then Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and 

Πs(0,0) > Π(0,0) if either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, otherwise Πs(0,0) = Π(0,0). 

Thus, Πs∗ ≥ Π∗. 

Proposition C.7. Suppose Πs(𝑛f , 𝑛e) and Π(𝑛f , 𝑛e) where 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae  be profit 

functions given by (4.26), corresponding to 𝛿̅ and 𝛿 respectively where 𝛿̅ > 𝛿 > 0 and 

𝑞 > +
+&O8

A &O8
@ �	𝑝 +

O8
A -O8

@

+
;𝜆\ + 𝛿̅𝜆5=�.  

(i) Let 𝑌5(𝑡) be strictly increasing in 𝛿, 𝜋(𝑡) sufficiently high compared to 𝑐( and 

𝑐(𝑡) on [𝜏, 𝑇] or 𝑐(𝑡) = 𝑐( = 0, and the planning horizon be sufficiently short 

(𝑇 ≤ 𝑡̃). Then Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠

(0,0) and Πs(0,0) = Π(0,0), thus Πs∗ ≥ Π∗.  

(ii) For 𝛽 > 0, the planning horizon in part (i) can be extended to 𝑇!, 𝑇! > 𝑇 where 

𝑦\f(𝑡) = 𝑦5f(𝑡) = 𝑦�5f(𝑡) = 0 for 𝑡 ≥ 𝑇 with the profit differences (Πs(𝑛f , 𝑛e) −

Π(𝑛f , 𝑛e) > 0) being larger than those in part (i) for the planning horizon 𝑇. For 

𝛽̅,  𝛽̅ > 𝛽, there exists 𝑇!b  such that 𝑇!b > 𝑇!. 

In Proposition C.7 (ii), 𝑦�5f(𝑡) denotes free product distribution to low-valuation free users 

after product launch when the low-valuation to high-valuation ratio is set to 𝛿̅.  
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Proposition C.8. Suppose 𝑞 > +
+&O8

A &O8
@ �	𝑝 +

O8
A -O8

@

+
(𝜆\ + 𝛿𝜆5)�. Let 𝑌5f(𝑡) < 𝑌�5f(𝑡), 

𝑡 ∈ (𝜏, 𝑇), with Πs(𝑛f , 𝑛e) and Π(𝑛f , 𝑛e) where 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae  be profit functions 

given by (4.26) corresponding to 𝑌�5f(𝑡) and 𝑌5f(𝑡) respectively.  

(i) If 𝜋(𝑡) is sufficiently higher than 𝑐(𝑡) on [𝜏, 𝑇] or 𝑐(𝑡) = 0 where the planning 

horizon is sufficiently short (𝑇 ≤ 𝑡̃), then Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤

𝑛Af , 𝑛e ≤ 𝑛Ae , and Πs(0, 𝑛e) = Π(0, 𝑛e), 𝑛e ≤ 𝑛Ae , thus Πs∗ ≥ Π∗. 

(ii) Let 𝛽 > 0 and 𝑦\f(𝑡) = 𝑦5f(𝑡) = 𝑦�5f(𝑡) = 0 for 𝑡 ≥ 𝑇. Then, the planning horizon 

in part (i) can be extended to 𝑇!, 𝑇! > 𝑇 with the profit differences (Πs(𝑛f , 𝑛e) −

Π(𝑛f , 𝑛e) > 0) being larger than those in part (i) for the planning horizon 𝑇. For 

𝛽̅,  𝛽̅ > 𝛽, there exists 𝑇!b  such that 𝑇!b > 𝑇!. 

C.2   Proofs 

We begin by presenting a theorem and a lemma that will be used in the subsequent 

proofs.  

Theorem C.2. Let 𝑓 be a vector function defined on 𝐷 ⊆ ℝO-" open. Let 𝑓 and =)
=P3

, 𝑖 =

1,… , 𝑛, be continuous in 𝐷. Then given any point (𝑡(, 𝜂) ∈ 𝐷, there exists a unique 

solution 𝜙 of the system 

𝑦1 = 𝑓(𝑡, 𝑦), 

satisfying the initial condition 𝜙(𝑡() = 𝜂 on an interval 𝐼 containing 𝑡(.  

Proof  (Brauer & Nohel, 1989). 

Lemma C.1.  Let [𝑡(, 𝑡c) be the maximal interval of existence of solution of the initial 

value problem (4.9) with 𝑌(𝑡() = 𝑙, 0 ≤ 𝑡(, 0 ≤ 𝑙 < 𝑚 − 𝑛. If 𝑡c < ∞, then given any 

compact set 𝐾, there exists a 𝑡 ∈ [𝑡(, 𝑡c) such that 𝑌(𝑡) ∉ 𝐾. 

Proof  Suppose 𝑡c < ∞. Let compact set 𝐾 be such that 𝑌(𝑡) ∈ 𝐾, for all 𝑡 ∈ [𝑡(, 𝑡c). 

Define  

𝜓(𝑌, 𝑌\ , 𝑌5) = R𝑝 + /
+
𝑌 + Y4

+
𝑌\ +

Y*
+
𝑌5S (𝑚 − 𝑛 − 𝑌).  
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Given that 𝜓 is continuous with respect to its arguments and by the fact that 0 ≤ 𝑌\ ≤ 𝑛 

and 0 ≤ 𝑌5 ≤ 𝛿𝑛 there exists 𝑀 > 0 such that 𝜓(𝑌, 𝑌\ , 𝑌5) ≤ 𝑀 for all 𝑌 ∈ 𝐾. We show 

that there exists 𝑌c such that lim
'→'K

! 𝑌(𝑡) = 𝑌c .	Let 𝑡( < 𝑡" < 𝑡< < 𝑡c, then 

 |𝑌(𝑡") − 𝑌(𝑡<)| ≤ ∫ |𝜓(𝑌(𝑠), 𝑌\(𝑠), 𝑌5(𝑠))|
'(
'+

𝑑𝑠 ≤ 𝑀|𝑡< − 𝑡"|. 

We observe that {𝑌(𝑡O)}, 𝑡O → 𝑡c&, is a Cauchy sequence. Thus, by completeness of ℝ the 

existence of 𝑌c is guaranteed. Moreover, since 𝐾 is compact we see 𝑌c ∈ 𝐾. Now define 

𝑋(𝑡) as  

𝑋(𝑡) = b𝑌(𝑡)											𝑡 ∈ [𝑡(, 𝑡c),𝑌c																				𝑡 = 𝑡c .				
  

Then,  

𝑋(𝑡) = 𝑙 + ∫ 𝜓(𝑋(𝑠), 𝑌\(𝑠), 𝑌5(𝑠))𝑑𝑠
'
')

, 

which means  g;
g'
(𝑡c) = 𝜓(𝑋(𝑡c), 𝑌\(𝑡c), 𝑌5(𝑡c)). This means 𝑋(𝑡) is a solution for the 

problem (4.9) on [𝑡(, 𝑡c]. By Theorem C.2 the equation g^
g'
= 𝜓(𝑌(𝑡), 𝑌\(𝑡), 𝑌5(𝑡)) with 

the initial condition 𝑌(𝑡c) = 𝑌c has a unique solution 𝑌�(𝑡) on (𝑡c − 𝛿, 𝑡c + 𝛿) for some 

𝛿 > 0. But 𝑌�(𝑡) = 𝑋(𝑡) on (𝑡c − 𝛿, 𝑡c) and 𝑌�(𝑡c) = 𝑋(𝑡c) = 𝑌c. Now let 

𝑈(𝑡) = b
𝑋(𝑡)																																	𝑡 ∈ [𝑡(, 𝑡c],
𝑌�(𝑡)																									𝑡 ∈ [𝑡c , 𝑡c + 𝛿).

  

Then 𝑈(𝑡) is a solution for (4.9) on [𝑡(, 𝑡c + 𝛿) but this contradicts the fact that [𝑡(, 𝑡c) is 

the maximal interval of existence.                                                                                     ☐  

Proof of Theorem 4.1  

Consider the initial value problem (4.9) with 𝑌(𝑡() = 𝑙, 0 ≤ 𝑡(, 0 ≤ 𝑙 < 𝑚 − 𝑛, on 

maximal interval of existence of solution (𝑡 ∈ [𝑡(, 𝑡c)). We see that g^
g'
(𝑡() = (𝑝 + /

+
𝑙 +

Y4
+
𝑌\(𝑡() +

Y*
+
𝑌5(𝑡())(𝑚 − 𝑛 − 𝑙) > 0. We show that there exists 𝑡" > 𝑡( such that 

𝑌(𝑡) > 𝑙, for 𝑡 ∈ (𝑡(, 𝑡"]. Suppose for all 𝑡": > 𝑡(, 𝑘 ∈ ℕ, there exists 𝑡: ∈ (𝑡(, 𝑡":] such 

that 𝑌(𝑡:) ≤ 𝑙. Then 
^('L)&^('))

'L&')
≤ 0. 
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Consider 𝑡": is a monotonically decreasing sequence approaching 𝑡(. Then, it can be 

observed that 

lim
:→j

^('L)&^('))
'L&')

= g
g'
𝑌(𝑡(), 

and therefore g
g'
𝑌(𝑡() ≤ 0 which is a contradiction. Now suppose there exists 𝑡̂ ∈

[𝑡(, 𝑡c), 𝑡̂ > 𝑡" such that 𝑌(𝑡̂) < 𝑙. Then by continuity of 𝑌	and the fact that 𝑌(𝑡") > 𝑙 

there exists 𝑡∗ ∈ (𝑡", 𝑡̂) such that 𝑌(𝑡∗) = 𝑙. We consider 𝑡̂ small enough to have 𝑡∗ ∈

(𝑡", 𝑡̂) unique. Therefore, 𝑌(𝑡) < 𝑙, 𝑡 ∈ (𝑡∗, 𝑡̂]. On the other hand g^
g'
(𝑡∗) = (𝑝 +

/
+
𝑌(𝑡∗) + Y4

+
𝑌\(𝑡∗) +

Y*
+
𝑌5(𝑡∗))(𝑚 − 𝑛 − 𝑌(𝑡∗)) > 0. Similar to the above discussion 

we can show that there exists 𝜂 > 0	such that 𝑌(𝑡) > 𝑙, 𝑡 ∈ (𝑡∗, 𝑡∗ + 𝜂] which is a 

contradiction. This means 𝑌(𝑡) ≥ 𝑙, 𝑡 ∈ [𝑡(, 𝑡c) and g^
g'
(𝑡) > 0 as long as 𝑌(𝑡) < 𝑚 − 𝑛. 

This means 𝑌(𝑡) is increasing on [𝑡(, 𝑡c) as long as 𝑌(𝑡) < 𝑚 − 𝑛. However, with 

increase in the value of 𝑌(𝑡) and approaching 𝑚 − 𝑛, the increasing rate g^
g'
(𝑡) 

approaches to zero which means 𝑌(𝑡) is bounded from above to the asymptote 𝑚 − 𝑛. 

Hence, 𝑌(𝑡) ∈ [𝑙, (𝑚 − 𝑛)], for 𝑡 ∈ [𝑡(, 𝑡c), which by Lemma C.1 means 𝑡c = ∞.         ☐  

Lemma C.2. Let 𝑌(𝑡, 𝑡(, 𝑙) be the solution for (4.9) where 𝑌(𝑡(, 𝑡(, 𝑙) = 𝑙, 𝑡(, 𝑙 ≥ 0. Then 

for 𝑡 > 𝑡(, 𝑌(𝑡, 𝑡(, 𝑙) → 𝑌(𝑡, 0,0), when 𝑡(, 𝑙 → 0.  

Proof  Consider 𝜓(𝑌, 𝑌\ , 𝑌5) as defined in the proof of Lemma C.1. We have  

𝑌(𝑡, 𝑡(, 𝑙) = 𝑙 + ∫ 𝜓('
')

𝑌(𝑠, 𝑡(, 𝑙), 𝑌\(𝑠), 𝑌5(𝑠))𝑑𝑠, 

𝑌(𝑡, 0,0) = ∫ 𝜓('
( 𝑌(𝑠, 0,0), 𝑌\(𝑠), 𝑌5(𝑠))𝑑𝑠. 

By the fact that 0 ≤ 𝑌\ ≤ 𝑛, 0 ≤ 𝑌5 ≤ 𝛿𝑛, and 0 ≤ 𝑌 ≤ 𝑚 − 𝑛, there exists 𝑀,𝐾 > 0 

such that 𝜓(𝑌, 𝑌\ , 𝑌5) ≤ 𝑀 and =
=^
𝜓(𝑌, 𝑌\ , 𝑌5) ≤ 𝐾. Therefore 

|𝑌(𝑡, 𝑡(, 𝑙) − 𝑌(𝑡, 0,0)| ≤ 𝑙 + ∫ |𝜓(𝑌(𝑠, 0,0), 𝑌\(𝑠), 𝑌5(𝑠))|
')
( 𝑑𝑠 +  

∫ Ã𝜓;𝑌(𝑠, 𝑡(, 𝑙), 𝑌\(𝑠), 𝑌5(𝑠)= − 𝜓;𝑌(𝑠, 0,0), 𝑌\(𝑠), 𝑌5(𝑠)=Ã
'
')

𝑑𝑠 ≤  

𝑙 + 𝑡(𝑀 +𝐾∫ |𝑌(𝑠, 𝑡(, 𝑙) − 𝑌(𝑠, 0,0)|
'
')

𝑑𝑠.  

Using Gronwall inequality (Brauer & Nohel, 1989, p.31, Theorem 1.4) we get  

|𝑌(𝑡, 𝑡(, 𝑙) − 𝑌(𝑡, 0,0)| ≤ (𝑙 + 𝑡(𝑀)𝑒H('&')). 
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Thus, we can observe that |𝑌(𝑡, 𝑡(, 𝑙) − 𝑌(𝑡, 0,0)| → 0, when 𝑡(, 𝑙 → 0.                          ☐ 

Proof of Proposition 4.1 

Let 𝑌�\ , 𝑌�5 and 𝑌� corresponding to 𝑚s = 𝑟𝑚 and 𝑛� = 𝑟𝑛. Then 𝑌�\ = 𝑟𝑌\ and 𝑌�5 = 𝑟𝑌5 

where 𝑌\ and 𝑌5 are corresponding to 𝑛. It can be observed that 

𝑟𝑦(𝑡) = R𝑝 + /
0+
𝑟𝑌(𝑡) + Y4

0+
𝑟𝑌\(𝑡) +

Y*
0+
𝑟𝑌5(𝑡))S ;𝑟(𝑚 − 𝑛) − 𝑟𝑌(𝑡)=. 

By Theorem 4.1 we conclude that 𝑌�(𝑡) = 𝑟𝑌(𝑡) and this completes the proof.               ☐  

Proof of Proposition 4.2 

For 𝑛 = 0, (4.9) reduces to the standard Bass equation (4.2) for which both (i) and (ii) 

hold. We show the results for 𝑛 > 0.  

(i) Consider 𝜓(𝑌, 𝑌\ , 𝑌5) as defined in the proof of Lemma C.1. Then 
=�
=^
(𝑌, 𝑌\ , 𝑌5) = 𝑞 +&O

+
− 2 /

+
𝑌 − R𝑝 + Y4

+
𝑌\ +

Y*
+
𝑌5S. 

We see that for 

𝑌 ≤ +
</
�𝑞 R+&O

+
S − R𝑝 + Y4

+
𝑌\ +

Y*
+
𝑌5S�,	                                (C.1)                

we have =�
=^
(𝑌, 𝑌\ , 𝑌5) ≥ 0. On the other hand,	𝑞 > +

+&O
(	𝑝 + O

+
(𝜆\ + 𝜆5𝛿)) implies that 

there exists a time period [0, 𝜃] for which the inequality (C.1) is satisfied. On the other 

hand, =�
=^4

(𝑌, 𝑌\ , 𝑌5) =
Y4
+
;(𝑚 − 𝑛) − 𝑌= > 0, =�

=^*
(𝑌, 𝑌\ , 𝑌5) =

Y*
+
;(𝑚 − 𝑛) − 𝑌= > 0. By 

Theorem 4.1,	𝑌(𝑡) converges to the asymptote (𝑚 − 𝑛) which means g^
g'
(𝑡) approaches 

zero. Thus, we conclude that 𝑦(𝑡) = g^
g'
(𝑡) first increases in the time period [0, 𝜃] and 

reaches a peak before approaching zero.  

(ii) Suppose 𝑌�(𝑡, 𝑙, 𝑡() and 𝑌(𝑡, 𝑙, 𝑡() derived from (4.9) corresponding to 𝑝̅, 𝑞�, 𝜆̅\, 𝜆̅5 

and 𝑝, 𝑞, 𝜆\, 𝜆5, respectively, with initial conditions 𝑌�(𝑡(, 𝑙, 𝑡() = 𝑌(𝑡(, 𝑙, 𝑡() = 𝑙, 0 <

𝑙 < 𝑚 − 𝑛, 0 < 𝑡( < 1, where 𝑝̅ ≥ 𝑝, 𝑞� ≥ 𝑞, 𝜆̅\ ≥ 𝜆\, 𝜆̅5 ≥ 𝜆5, and at least one of the 

inequalities is strict. Theorem 4.1 guarantees the existence of such solutions on [𝑡(, ∞). 

First, we show that 𝑌�(𝑡, 𝑙, 𝑡() ≥ 𝑌(𝑡, 𝑙, 𝑡() for 𝑡 ≥ 𝑡(. It can be observed that 

�𝑝̅ + /a
+
𝑙 + Yb4

+
𝑌\(𝑡() +

Yb*
+
𝑌5(𝑡()� ;(𝑚 − 𝑛) − 𝑙= >  
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�𝑝 + /
+
𝑙 + Y4

+
𝑌\(𝑡() +

Y*
+
𝑌5(𝑡()� ;(𝑚 − 𝑛) − 𝑙=,	                          (C.2) 

which means g
g'
𝑌�(𝑡(, 𝑙, 𝑡() >

g
g'
𝑌(𝑡(, 𝑙, 𝑡(). Now we show that there exists 𝑡" > 𝑡( such 

that for all 𝑡 ∈ (𝑡(, 𝑡"], 𝑌�(𝑡, 𝑙, 𝑡() > 𝑌(𝑡, 𝑙, 𝑡(). Suppose for all 𝑡": > 𝑡(, 𝑘 ∈ ℕ, there 

exists 𝑡: ∈ (𝑡(, 𝑡":] such that 𝑌�(𝑡: , 𝑙, 𝑡() ≤ 𝑌(𝑡: , 𝑙, 𝑡(). Then 
â('L,5,'))& â('),5,'))

'L&')
≤ ^('L,5,'))&^('),5,'))

'L&')
. 

Consider 𝑡": is a monotonically decreasing sequence approaching to 𝑡(. Then, it can be 

observed that 

lim
:→j

â('L,5,'))& â('),5,'))
'L&')

= g
g'
𝑌�(𝑡(, 𝑙, 𝑡(), 

lim
:→j

^('L,5,'))&^('),5,'))
'L&')

= g
g'
𝑌(𝑡(, 𝑙, 𝑡(), 

and therefore g
g'
𝑌�(𝑡(, 𝑙, 𝑡() ≤

g
g'
𝑌(𝑡(, 𝑙, 𝑡() which is a contradiction. Now suppose there 

exists 𝑡̂ > 𝑡" such that 𝑌�(𝑡̂, 𝑙, 𝑡() < 𝑌(𝑡̂, 𝑙, 𝑡(). Then by continuity of 𝑌� and 𝑌 and the fact 

that 𝑌�(𝑡", 𝑙, 𝑡() > 𝑌(𝑡", 𝑙, 𝑡() there exists 𝑡∗ ∈ (𝑡", 𝑡̂) such that 𝑌�(𝑡∗, 𝑙, 𝑡() = 𝑌(𝑡∗, 𝑙, 𝑡(). 

We consider 𝑡̂ small enough to have 𝑡∗ ∈ (𝑡", 𝑡̂) unique. Therefore, 𝑌�(𝑡, 𝑙, 𝑡() < 𝑌(𝑡, 𝑙, 𝑡() 

for all 𝑡 ∈ (𝑡∗, 𝑡̂]. It can be seen that 

R𝑝̅ + /a
+
𝑌�(𝑡∗, 𝑙, 𝑡() +

Yb4
+
𝑌\(𝑡∗) +

Yb*
+
𝑌5(𝑡∗))S ;𝑚 − 𝑛 − 𝑌�(𝑡∗, 𝑙, 𝑡()= >  

R𝑝 + /
+
𝑌(𝑡∗, 𝑙, 𝑡() +

Y4
+
𝑌\(𝑡∗) +

Y*
+
𝑌5(𝑡∗))S ;𝑚 − 𝑛 − 𝑌(𝑡∗, 𝑙, 𝑡()=,	          (C.3) 

which means g
g'
𝑌�(𝑡∗, 𝑙, 𝑡() >

g
g'
𝑌(𝑡∗, 𝑙, 𝑡(). Similar to the above argument we can 

demonstrate that there exists an 𝜂 > 0 such that 𝑌�(𝑡, 𝑙, 𝑡() > 𝑌(𝑡, 𝑙, 𝑡() for all 𝑡 ∈

(𝑡∗, 𝑡∗ + 𝜂] which is a contradiction.  

So far, we have shown that  𝑌�(𝑡, 𝑙, 𝑡() ≥ 𝑌(𝑡, 𝑙, 𝑡() for 𝑡 ≥ 𝑡(. Now let 𝑡 > 0 and set 𝑡( 

such that 𝑡 > 𝑡(. By Lemma C.2, 𝑌�(𝑡, 𝑙, 𝑡() and 𝑌(𝑡, 𝑙, 𝑡() tend to 𝑌�(𝑡, 0,0) and 𝑌(𝑡, 0,0) 

respectively as 𝑙 and 𝑡( tend to zero. Since 𝑌�(𝑡, 𝑙, 𝑡() ≥ 𝑌(𝑡, 𝑙, 𝑡() it can be concluded that 

𝑌�(𝑡, 0,0) ≥ 𝑌(𝑡, 0,0) for 𝑡 ≥ 0 and this completes the proof.                                           ☐  

Proof of Proposition 4.3  
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Suppose 𝑌�(𝑡, 𝑙, 𝑡() and 𝑌(𝑡, 𝑙, 𝑡() derived from (4.9), with initial conditions 𝑌�(𝑡(, 𝑙, 𝑡() =

𝑌(𝑡(, 𝑙, 𝑡() = 𝑙, 0 < 𝑙 < 1, 0 < 𝑡( < 1, corresponding to 𝑌�\(𝑡), 𝑌�5(𝑡) and 𝑌\(𝑡), 𝑌5(𝑡) 

respectively. Theorem 4.1 guarantees the existence of such solutions on [𝑡(, ∞). The rest 

of the proof is similar to the proof of Proposition 4.2 (ii) in which for (C.2) we have 

�𝑝 + /
+
𝑙 + Y4

+
𝑌�\(𝑡() +

Y*
+
𝑌�5(𝑡()� ;(𝑚 − 𝑛) − 𝑙= >  

�𝑝 + /
+
𝑙 + Y4

+
𝑌\(𝑡() +

Y*
+
𝑌5(𝑡()� ;(𝑚 − 𝑛) − 𝑙=.					  

Similar to Proposition 4.2 (ii), we suppose there exists 𝑡̂ ∈ (𝑡", 𝑇] such that 𝑌�(𝑡, 𝑙, 𝑡() <

𝑌(𝑡, 𝑙, 𝑡() and we find 𝑡∗ ∈ (𝑡", 𝑡̂) such that 𝑌�(𝑡∗, 𝑙, 𝑡() = 𝑌(𝑡∗, 𝑙, 𝑡(). We proceed similar 

to the Proposition 4.2 (ii) in which for (C.3) we have 

R𝑝 + /
+
𝑌�(𝑡∗, 𝑙, 𝑡() +

Y4
+
𝑌�\(𝑡∗) +

Y*
+
𝑌�5(𝑡∗))S ;𝑚 − 𝑛 − 𝑌�(𝑡∗, 𝑙, 𝑡()= >  

R𝑝 + /
+
𝑌(𝑡∗, 𝑙, 𝑡() +

Y4
+
𝑌\(𝑡∗) +

Y*
+
𝑌5(𝑡∗))S ;𝑚 − 𝑛 − 𝑌(𝑡∗, 𝑙, 𝑡()=.		  

☐   

Lemma C.3 is needed in the proof of Theorem C.1. 

Lemma C.3.  Let [𝑡(, 𝑡c) be the maximal interval of existence of solution of the initial 

value problem (4.14) and (4.15) with 𝑌5(𝑡() = 𝑙", 0 ≤ 𝑙" < 𝛿𝑛, 𝑌\(𝑡() = 𝑙<, 0 ≤ 𝑙< <

𝛿𝑛, 𝑡( ≥ 0. If a compact set 𝐾 be such that ;𝑌5(𝑡), 𝑌\(𝑡)= ∈ 𝐾, 𝑡 ∈ [𝑡(, 𝑡c), then 𝑡c = ∞. 

Proof  (Perko, 2001, p. 91, Corollary 2). 

Proof of Theorem C.1 

With a procedure similar to the one presented in the proof of Theorem 4.1 we show that 

there exists 𝑡"\ and 𝑡"5 , 𝑡"\ , 𝑡"5 > 𝑡( such that 𝑌5(𝑡) > 𝑙", for 𝑡 ∈ (𝑡(, 𝑡"5 ] and 𝑌\(𝑡) > 𝑙<, for 

𝑡 ∈ (𝑡(, 𝑡"\]. Now suppose there exists 𝑡̂ ∈ [𝑡(, 𝑡c), 𝑡̂ > 𝑡"\ such that 𝑌\(𝑡̂) < 𝑙<. Then by 

continuity of 𝑌\	and the fact that 𝑌\;𝑡"\= > 𝑙< there exists 𝑡\∗ ∈ (𝑡"\ , 𝑡̂) such that 𝑌\(𝑡\∗) =

𝑙<. We consider 𝑡̂ small enough to have 𝑡\∗ ∈ (𝑡"\ , 𝑡̂) unique. Suppose 𝑌5(𝑡\∗) < 𝑙". Then 

by continuity of 𝑌5 	and the fact that 𝑌5;𝑡"5= > 𝑙" there exists 𝑡5∗ ∈ (𝑡"5 , 𝑡\∗) such that 

𝑌5(𝑡5∗) = 𝑙". Let 𝑡5∗, be the smallest value where 𝑌5(𝑡5∗) = 𝑙". But 𝑌\(𝑡5∗) > 𝑙<. Therefore, 
g^*
g'
(𝑡5∗) > 0. Similar to the proof of Theorem 4.1 we can show that there exists 𝜂 >
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0	such that 𝑌5(𝑡) > 𝑙", 𝑡 ∈ (𝑡5∗, 𝑡5∗ + 𝜂] which is a contradiction. Suppose 𝑌5(𝑡\∗) ≥ 𝑙". 

Then, g^4
g'
(𝑡\∗) > 0 and again similar to the proof of Theorem 4.1 we can show that there 

exists 𝜂 > 0	such that 𝑌\(𝑡) > 𝑙<, 𝑡 ∈ (𝑡\∗ , 𝑡\∗ + 𝜂] which is a contradiction. In a similar 

fashion we can show that there is no 𝑡̂ ∈ [𝑡(, 𝑡c), 𝑡̂ > 𝑡"5  such that 𝑌5(𝑡̂) < 𝑙". Thus, 

𝑌5(𝑡) ≥ 𝑙" and 𝑌\(𝑡) ≥ 𝑙<, for 𝑡 ∈ [𝑡(, 𝑡c). This means g^4
g'
(𝑡), g^*

g'
(𝑡) > 0, 𝑡 ∈ [𝑡(, 𝑡c), as 

long as 𝑌\(𝑡) < 𝑛 and 𝑌5(𝑡) < 𝛿𝑛. Thus 𝑌\(𝑡) and 𝑌5(𝑡) are increasing on [𝑡(, 𝑡c) as long 

as 𝑌\(𝑡) < 𝑛 and 𝑌5(𝑡) < 𝛿𝑛. However, as 𝑌\(𝑡) approaches 𝑛 and 𝑌5(𝑡) approaches 𝛿𝑛, 

the increasing rates g^4
g'
(𝑡) and g^*

g'
(𝑡) approach zero which means 𝑌\(𝑡) and 𝑌5(𝑡) are 

bounded from above to asymptotes 𝑛 and 𝛿𝑛 respectively. Hence, ;𝑌5(𝑡), 𝑌\(𝑡)= ∈

[𝑙", 𝛿𝑛] × [𝑙<, 𝑛], for 𝑡 ∈ [𝑡(, 𝑡c), which by Lemma C.3 means 𝑡c = ∞.                           ☐  

Proof of Proposition C.1  

Similar to the proof of Proposition 4.1.                                                                              ☐	

Lemma C.4 is needed in the proof of Proposition C.2. 

Lemma C.4. Let 𝑌\(𝑡, 𝑡(, 𝑙), 𝑌5(𝑡, 𝑡(, 𝑙) be the solution for (4.14), (4.15) where 

𝑌\(𝑡(, 𝑡(, 𝑙) = 𝑌5(𝑡(, 𝑡(, 𝑙) = 𝑙, 𝑡(, 𝑙 ≥ 0. Then for 𝑡 > 𝑡(, 𝑌\(𝑡, 𝑡(, 𝑙) → 𝑌\(𝑡, 0,0), and 

𝑌5(𝑡, 𝑡(, 𝑙) → 𝑌5(𝑡, 0,0), when 𝑡(, 𝑙 → 0.  

Proof  Similar to the proof of Lemma C.2.                                                                        ☐  

Proof of Proposition C.2 

Suppose 𝑌�\(𝑡, 𝑙, 𝑡(), 𝑌�5(𝑡, 𝑙, 𝑡() and 𝑌\(𝑡, 𝑙, 𝑡(), 𝑌5(𝑡, 𝑙, 𝑡() derived from (4.14) and (4.15) 

with initial conditions 𝑌�\(𝑡(, 𝑙, 𝑡() = 𝑌\(𝑡(, 𝑙, 𝑡() = 𝑙, 𝑌�5(𝑡(, 𝑙, 𝑡() = 𝑌5(𝑡(, 𝑙, 𝑡() = 𝑙, 0 <

𝑙 < min	{𝑛, 𝛿𝑛}, 0 < 𝑡( < 1, corresponding to 𝑝̅\, 𝑞�\, 𝑝̅5, 𝑞�5, 𝜆̅\, 𝜆̅5, 𝛿̅ and  𝑝\, 𝑞\, 𝑝5, 𝑞5, 

𝜆\, 𝜆5, 𝛿 where 𝑝̅\ ≥ 𝑝\, 𝑞�\ ≥ 𝑞\, 𝑝̅5 ≥ 𝑝5, 𝑞�5 ≥ 𝑞5, 𝑞�5\ ≥ 𝑞5\, 𝑞�\5 ≥ 𝑞\5, 𝛿̅ ≥ 𝛿 and at 

least one of the inequalities are strict. Theorem C.1 guarantees the existence of such 

solutions on [𝑡(, ∞). We show that 𝑌�\(𝑡, 𝑙, 𝑡() ≥ 𝑌\(𝑡, 𝑙, 𝑡() and 𝑌�5(𝑡, 𝑙, 𝑡() ≥ 𝑌5(𝑡, 𝑙, 𝑡() 

for 𝑡 ≥ 𝑡(. It can be observed that  

R𝑝̅\ +
/a4
O
𝑙 + /a*4

O
𝑙S (𝑛 − 𝑙) ≥ R𝑝\ +

/4
O
𝑙 + /*4

O
𝑙S (𝑛 − 𝑙), 
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R𝑝̅5 +
/a*
_bO
𝑙 + /a4*

_bO
𝑙S ;𝛿̅𝑛 − 𝑙= ≥ R𝑝5 +

/*
_O
𝑙 + /a4*

_O
𝑙S (𝛿𝑛 − 𝑙), 

which means g
g'
𝑌�\(𝑡(, 𝑙, 𝑡() ≥

g
g'
𝑌\(𝑡(, 𝑙, 𝑡() and g

g'
𝑌�5(𝑡(, 𝑙, 𝑡() ≥

g
g'
𝑌5(𝑡(, 𝑙, 𝑡(), with at 

least one of the inequalities being strict. Without loss of generality, we assume the first 

inequality is strict (𝑝̅5 = 𝑝5, 𝑞�5 = 𝑞5, 𝑞�\5 = 𝑞\5, 𝛿̅ = 𝛿). Similar to the proof of  

Proposition 4.2 (ii) we can show that there exists 𝑡"\ > 𝑡( such that for all 𝑡 ∈ (𝑡(, 𝑡"\], 

𝑌�\(𝑡, 𝑙, 𝑡() > 𝑌\(𝑡, 𝑙, 𝑡(). Let 𝑌�5(𝑡, 𝑙, 𝑡") and 𝑌5(𝑡, 𝑙, 𝑡") be the solution for (4.15) 

corresponding to 𝑌�\(𝑡, 𝑙, 𝑡(), and 𝑌\(𝑡, 𝑙, 𝑡(), 𝑡 ∈ (𝑡(, 𝑡"\], with 𝑡", 𝑡( < 𝑡" < 𝑡"\ and 

𝑌�5(𝑡", 𝑙, 𝑡") = 𝑌5(𝑡", 𝑙, 𝑡") = 𝑙. Similar to Theorem 4.1 we can show that solutions 

𝑌�5(𝑡, 𝑙, 𝑡") and 𝑌5(𝑡, 𝑙, 𝑡") are increasing to 𝛿𝑛. Then 

�𝑝5 +
/*
_O
𝑙 + /4*

_O
𝑌�\(𝑡", 𝑙, 𝑡()� (𝛿𝑛 − 𝑙) > �𝑝5 +

/*
_O
𝑙 + /4*

_O
𝑌\(𝑡", 𝑙, 𝑡()� (𝛿𝑛 − 𝑙), 

which means, g
g'
𝑌�5(𝑡", 𝑙, 𝑡") >

g
g'
𝑌5(𝑡", 𝑙, 𝑡"). Similar to the proof of Proposition 4.2 (ii) 

we can show that there exists 𝑡"5 > 𝑡" such that for all 𝑡 ∈ (𝑡", 𝑡"5 ], 𝑌�5(𝑡, 𝑙, 𝑡") > 𝑌5(𝑡, 𝑙, 𝑡"). 

Suppose there exists 𝑡̂5, 𝑡" < 𝑡̂5 ≤ 𝑡"\, such that 𝑌�5(𝑡̂5 , 𝑙, 𝑡") < 𝑌5(𝑡̂5 , 𝑙, 𝑡"). Then by 

continuity of 𝑌�5 and 𝑌5 and the fact that for all 𝑡 ∈ (𝑡", 𝑡"5 ], 𝑌�5(𝑡, 𝑙, 𝑡") > 𝑌5(𝑡, 𝑙, 𝑡"), there 

exists 𝑡5∗ < 𝑡̂5 such that 𝑌�5(𝑡5∗, 𝑙, 𝑡") = 𝑌5(𝑡5∗, 𝑙, 𝑡"). Let 𝑡5∗, be the smallest value where 

𝑌�5(𝑡5∗, 𝑙, 𝑡") = 𝑌5(𝑡5∗, 𝑙, 𝑡"). Then g
g'
𝑌�5(𝑡5∗, 𝑙, 𝑡") >

g
g'
𝑌5(𝑡5∗, 𝑙, 𝑡") and similar to the proof of 

Proposition 4.2 (ii) we can show that there exists an 𝜂 > 0 such that 𝑌�5(𝑡, 𝑙, 𝑡") >

𝑌5(𝑡, 𝑙, 𝑡"), for 𝑡 ∈ (𝑡5∗, 𝑡5∗ + 𝜂] which is a contradiction. Thus, 𝑌�5(𝑡, 𝑙, 𝑡") ≥ 𝑌5(𝑡, 𝑙, 𝑡") for 

all 𝑡 ∈ (𝑡", 𝑡"\]. For 𝑡, 𝑡( < 𝑡 ≤ 𝑡"\, let 𝑡", 𝑡( < 𝑡" < 𝑡. Then, we have 𝑌�5(𝑡, 𝑙, 𝑡") ≥

𝑌5(𝑡, 𝑙, 𝑡"). Similar to Lemma C.2, we can show that 𝑌�5(𝑡, 𝑙, 𝑡") and 𝑌5(𝑡, 𝑙, 𝑡") tend to 

𝑌�5(𝑡, 𝑙, 𝑡() and 𝑌5(𝑡, 𝑙, 𝑡() respectively, as 𝑡" tends to 𝑡(. Thus, 𝑌�5(𝑡, 𝑙, 𝑡() ≥ 𝑌5(𝑡, 𝑙, 𝑡(), 𝑡 ∈

(𝑡(, 𝑡"\].  

Suppose there exists 𝑡̂\, 𝑡̂\ > 𝑡"\, and 𝑡̂5, 𝑡̂5 > 𝑡"\ such that 𝑌�\(𝑡̂\ , 𝑙, 𝑡() < 𝑌\(𝑡̂\ , 𝑙, 𝑡() and 

𝑌�5(𝑡̂5 , 𝑙, 𝑡() < 𝑌5(𝑡̂5 , 𝑙, 𝑡().	Then by continuity of 𝑌�\, 𝑌�5, 𝑌\, and 𝑌5 there exist 𝑡\∗ ∈ (𝑡"\ , 𝑡̂\) 

and 𝑡5∗ ∈ [𝑡"\ , 𝑡̂5) such that 𝑌�\(𝑡\∗ , 𝑙, 𝑡() = 𝑌\(𝑡\∗ , 𝑙, 𝑡() and 𝑌�5(𝑡5∗, 𝑙, 𝑡() = 𝑌5(𝑡5∗, 𝑙, 𝑡(). We 

consider 𝑡̂\ and 𝑡̂5 small enough to have 𝑡\∗ ∈ (𝑡"\ , 𝑡̂\) and 𝑡5∗ ∈ [𝑡"\ , 𝑡̂5) unique. If 𝑡\∗ ≤ 𝑡5∗, 

then 𝑌�5(𝑡\∗ , 𝑙, 𝑡() ≥ 𝑌5(𝑡\∗ , 𝑙, 𝑡() and therefore 



176 

 

�𝑝̅\ +
/a4
O
𝑌�\(𝑡\∗ , 𝑙, 𝑡() +

/a*4
O
𝑌�5(𝑡\∗ , 𝑙, 𝑡()� ;𝑛 − 𝑌�\(𝑡\∗ , 𝑙, 𝑡()= > �𝑝\ +

/4
O
𝑌\(𝑡\∗ , 𝑙, 𝑡() +

/*4
O
𝑌5(𝑡\∗ , 𝑙, 𝑡()� ;𝑛 − 𝑌\(𝑡\∗ , 𝑙, 𝑡()=.  

Thus, g
g'
𝑌�\(𝑡\∗ , 𝑙, 𝑡() >

g
g'
𝑌\(𝑡\∗ , 𝑙, 𝑡() and similar to the proof of Proposition 4.2 (ii) we 

can show that there exists an 𝜂 > 0 such that 𝑌�\(𝑡, 𝑙, 𝑡() > 𝑌\(𝑡, 𝑙, 𝑡(), for 𝑡 ∈ (𝑡\∗ , 𝑡\∗ + 𝜂] 

which is a contradiction. If 𝑡\∗ > 𝑡5∗, then 𝑌�\(𝑡5∗, 𝑙, 𝑡() > 𝑌\(𝑡5∗, 𝑙, 𝑡() and therefore 

�𝑝5 +
/*
_O
𝑌�5(𝑡5∗, 𝑙, 𝑡() +

/4*
_O
𝑌�\(𝑡5∗, 𝑙, 𝑡()� ;𝛿𝑛 − 𝑌�5(𝑡5∗, 𝑙, 𝑡()= > �𝑝5 +

/*
_O
𝑌5(𝑡5∗, 𝑙, 𝑡() +

/4*
_O
𝑌\(𝑡5∗, 𝑙, 𝑡()� ;𝛿𝑛 − 𝑌5(𝑡5∗, 𝑙, 𝑡()=.  

Thus, g
g'
𝑌�5(𝑡5∗, 𝑙, 𝑡() >

g
g'
𝑌5(𝑡5∗, 𝑙, 𝑡() and similar to the proof of Proposition 4.2 (ii) it can 

be shown that there exists an 𝜂 > 0 such that 𝑌�5(𝑡, 𝑙, 𝑡() > 𝑌5(𝑡, 𝑙, 𝑡(), for 𝑡 ∈ (𝑡5∗, 𝑡5∗ + 𝜂] 

which is a contradiction.  

Suppose 𝑌�\(𝑡, 𝑙, 𝑡() ≥ 𝑌\(𝑡, 𝑙, 𝑡() for 𝑡 ≥ 𝑡( but there exists 𝑡̂5, 𝑡̂5 > 𝑡"\ such that 

𝑌�5(𝑡̂5 , 𝑙, 𝑡() < 𝑌5(𝑡̂5 , 𝑙, 𝑡().	Then by continuity of 𝑌�5 and 𝑌5 there exist 𝑡5∗ ∈ [𝑡"\ , 𝑡̂5) such that 

𝑌�5(𝑡5∗, 𝑙, 𝑡() = 𝑌5(𝑡5∗, 𝑙, 𝑡(). We consider 𝑡̂5 small enough to have 𝑡5∗ ∈ [𝑡"\ , 𝑡̂5) unique. If 

𝑌�\(𝑡5∗, 𝑙, 𝑡() = 𝑌\(𝑡5∗, 𝑙, 𝑡(), then g
g'
𝑌�\(𝑡5∗, 𝑙, 𝑡() =

g
g'
𝑌\(𝑡5∗, 𝑙, 𝑡(), since 𝑌�\(𝑡, 𝑙, 𝑡() ≥

𝑌\(𝑡, 𝑙, 𝑡() for 𝑡 ≥ 𝑡(. On the other hand 

�𝑝̅\ +
𝑞�\
𝑛 𝑌
�\(𝑡5∗, 𝑙, 𝑡() +

𝑞�5\
𝑛 𝑌�5(𝑡5∗, 𝑙, 𝑡()� ;𝑛 − 𝑌�\(𝑡5∗, 𝑙, 𝑡()=

> �𝑝\ +
𝑞\
𝑛 𝑌\

(𝑡5∗, 𝑙, 𝑡() +
𝑞5\
𝑛 𝑌5(𝑡5∗, 𝑙, 𝑡()� ;𝑛 − 𝑌\(𝑡5∗, 𝑙, 𝑡()=. 

Thus, g
g'
𝑌�\(𝑡5∗, 𝑙, 𝑡() >

g
g'
𝑌\(𝑡5∗, 𝑙, 𝑡() which is a contradiction. If 𝑌�\(𝑡5∗, 𝑙, 𝑡() >

𝑌\(𝑡5∗, 𝑙, 𝑡(), then 

�𝑝5 +
𝑞5
𝛿𝑛 𝑌

�5(𝑡5∗, 𝑙, 𝑡() +
𝑞\5
𝛿𝑛 𝑌

�\(𝑡5∗, 𝑙, 𝑡()� ;𝛿𝑛 − 𝑌�5(𝑡5∗, 𝑙, 𝑡()=

> �𝑝5 +
𝑞5
𝛿𝑛 𝑌5

(𝑡5∗, 𝑙, 𝑡() +
𝑞\5
𝛿𝑛 𝑌\

(𝑡5∗, 𝑙, 𝑡()� ;𝛿𝑛 − 𝑌5(𝑡5∗, 𝑙, 𝑡()=. 
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Thus, g
g'
𝑌�5(𝑡5∗, 𝑙, 𝑡() >

g
g'
𝑌5(𝑡5∗, 𝑙, 𝑡() and similar to the proof of Proposition 4.2 (ii) it can 

be shown that there exists an 𝜂 > 0 such that 𝑌�5(𝑡, 𝑙, 𝑡() > 𝑌5(𝑡, 𝑙, 𝑡(), for 𝑡 ∈ (𝑡5∗, 𝑡5∗ + 𝜂] 

which is a contradiction.  

Suppose 𝑌�5(𝑡, 𝑙, 𝑡() ≥ 𝑌5(𝑡, 𝑙, 𝑡() for 𝑡 ≥ 𝑡(	but there exists 𝑡̂\, 𝑡̂\ > 𝑡"\, such that 

𝑌�\(𝑡̂\ , 𝑙, 𝑡() < 𝑌\(𝑡̂\ , 𝑙, 𝑡().	Then by continuity of 𝑌�\ and 𝑌\, there exist 𝑡\∗ ∈ (𝑡"\ , 𝑡̂\) such 

that 𝑌�\(𝑡\∗ , 𝑙, 𝑡() = 𝑌\(𝑡\∗ , 𝑙, 𝑡(). We consider 𝑡̂\ small enough to have 𝑡\∗ ∈ (𝑡"\ , 𝑡̂\) 

unique. Therefore 

�𝑝̅\ +
𝑞�\
𝑛 𝑌
�\(𝑡\∗ , 𝑙, 𝑡() +

𝑞�5\
𝑛 𝑌�5(𝑡\∗ , 𝑙, 𝑡()� ;𝑛 − 𝑌�\(𝑡\∗ , 𝑙, 𝑡()=

> �𝑝\ +
𝑞\
𝑛 𝑌\

(𝑡\∗ , 𝑙, 𝑡() +
𝑞5\
𝑛 𝑌5(𝑡\∗ , 𝑙, 𝑡()� ;𝑛 − 𝑌\(𝑡\∗ , 𝑙, 𝑡()=. 

Thus, g
g'
𝑌�\(𝑡\∗ , 𝑙, 𝑡() >

g
g'
𝑌\(𝑡\∗ , 𝑙, 𝑡() and similar to the proof of Proposition 4.2 (ii) we 

can show that there exists an 𝜂 > 0 such that 𝑌�\(𝑡, 𝑙, 𝑡() > 𝑌\(𝑡, 𝑙, 𝑡(), for 𝑡 ∈ (𝑡\∗ , 𝑡\∗ + 𝜂] 

which is a contradiction.  

So far, we have shown that 𝑌�\(𝑡, 𝑙, 𝑡() ≥ 𝑌\(𝑡, 𝑙, 𝑡() and 𝑌�5(𝑡, 𝑙, 𝑡() ≥ 𝑌5(𝑡, 𝑙, 𝑡() for 𝑡 ≥

𝑡(. Now let 𝑡 > 0 and set 𝑡( such that 𝑡 > 𝑡(. By Lemma C.4, we observe that  

𝑌�\(𝑡, 𝑙, 𝑡() → 𝑌�\(𝑡, 0,0), 

𝑌�5(𝑡, 𝑙, 𝑡() → 𝑌�5(𝑡, 0,0), 

𝑌\(𝑡, 𝑙, 𝑡() → 𝑌\(𝑡, 0,0), 

𝑌5(𝑡, 𝑙, 𝑡() → 𝑌5(𝑡, 0,0), 

as 𝑙 and 𝑡( tend to zero. Thus, 𝑌�\(𝑡, 0,0) ≥ 𝑌\(𝑡, 0,0) and 𝑌�5(𝑡, 0,0) ≥ 𝑌5(𝑡, 0,0) for 𝑡 ≥

0, and this completes the proof.                                                                                          ☐  

Proof of Proposition 4.4  

We prove the proposition under the concurrent strategy. The proof under the before 

strategy is similar. Let 𝑦ê\∗(𝑡), 𝑦ê5∗(𝑡), and 𝑦ê∗(𝑡) corresponding to 𝑚s  and 𝑟𝑛∗, and 𝑦\∗(𝑡), 

𝑦5∗(𝑡), and 𝑦∗(𝑡) corresponding to 𝑚 and 𝑛∗. Then by Proposition 4.1, 𝑦ê∗(𝑡) = 𝑟𝑦∗(𝑡). 

Moreover, 𝑦ê\∗(𝑡) = 𝑟𝑦\∗(𝑡) and 𝑦ê5∗(𝑡) = 𝑟𝑦5∗(𝑡) . Hence, 

Πs(𝑟𝑛∗) = ∫ (𝜋(𝑡)(𝐼(
!𝑦ê∗(𝑡) + 𝐼(

!4𝑦ê\∗(𝑡) − 𝑦ê\∗(𝑡)) − 𝑐(𝑡);𝑦ê\∗(𝑡) + 𝑦ê5∗(𝑡)=)𝑑𝑡
2
( =  

𝑟 ∫ (𝜋(𝑡)(𝐼(
!𝑦∗(𝑡) + 𝐼(

!4𝑦\∗(𝑡) − 𝑦\∗(𝑡)) − 𝑐(𝑡);𝑦\∗(𝑡) + 𝑦5∗(𝑡)=)𝑑𝑡
2
( =  
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𝑟Π(𝑛∗) = 𝑟Π∗,	                                            (C.4) 

which means Πs∗ ≥ 𝑟Π∗. Now let 𝑦�\∗(𝑡), 𝑦�5∗(𝑡), and 𝑦�∗(𝑡) corresponding to 𝑚 and Oa
∗

0
 and 

similarly 𝑦�\∗(𝑡), 𝑦�5∗(𝑡), and 𝑦�∗(𝑡) corresponding to 𝑚s  and 𝑛�∗. Then 𝑦�\∗(𝑡) =
"
0
𝑦�\∗(𝑡), 

𝑦�5∗(𝑡) =
"
0
𝑦�5∗(𝑡), and by Proposition 4.1, 𝑦�∗(𝑡) = "

0
𝑦�∗(𝑡). Therefore, 

ΠROa
∗

0
S = ∫ (𝜋(𝑡)(𝐼(

!𝑦�∗(𝑡) + 𝐼(
!4𝑦�\∗(𝑡) − 𝑦�\∗(𝑡)) − 𝑐(𝑡);𝑦�\∗(𝑡) + 𝑦�5∗(𝑡)=)𝑑𝑡

2
( =  

"
0 ∫ (𝜋(𝑡)(𝐼(

!𝑦�∗(𝑡) + 𝐼(
!4𝑦�\∗(𝑡) − 𝑦�\∗(𝑡)) − 𝑐(𝑡);𝑦�\∗(𝑡) + 𝑦�5∗(𝑡)=)𝑑𝑡

2
( = "

0
Πs	(𝑛�∗) = "

0
Πs∗, 

which means  Π∗ ≥ "
0
Πs∗ . Hence, 𝑟Π∗ = Πs∗ and therefore by (C.4) we conclude 𝑛�∗ = 𝑟𝑛∗ 

and this completes the proof.                                                                                              ☐  

Theorem C.3 from Kilbas et al. (2006) demonstrates an important property of fractional 

integral operators we use in the subsequent proofs. 

Theorem C.3. (Semigroup property) For 𝑓 continuous on [𝑡(, 𝑡"], and 𝛽", 𝛽< > 0, 

𝐼')
!+-!(𝑓(𝑡) = 𝐼')

!+𝐼')
!(𝑓(𝑡). 

Proof   (Kilbas et al., 2006). 

Proof of Proposition 4.5 

We prove the proposition under the concurrent strategy. The before strategy proof is 

similar in which we set 𝑌\(𝑡) = 𝑛 and 𝑌5(𝑡) = 𝛿𝑛, buyers’ adoption 𝑌(𝑡) is formulated 

by (4.4) with closed form solution given by (4.5) and (4.6), sales are given by (4.7) and 

(4.8), and the profit is given by (4.18).  

(i) Suppose 𝑌(𝑡), 𝑌�(𝑡) derived from (4.9) corresponding 

to	𝑝̅, 𝑞�, 𝜆̅\ , 𝜆̅5 	and	𝑝, 𝑞, 𝜆\ , 𝜆5 , respectively	for 0 < 𝑛 ≤ 𝑛A and initial conditions 𝑌�(0) =

𝑌(0) = 0.  Let 

𝜙:= +
</a
�𝑞� +&O8

+
− R𝑝̅ + Yb4

+
𝑛A +

Yb*
+
𝛿𝑛AS�. 

It can be observed that for all 𝑛 ≤ 𝑛A 

0 < 𝜙 ≤ +
</a
ï𝑞� +&O

+
− �𝑝̅ + Yb4

+
𝑌\(𝑡) +

Yb*
+
𝑌5(𝑡)�ð , 𝑡 ≥ 0.                     (C.5)  
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Let 𝑌�ñ(𝑡) be the solution for (4.9) corresponding to 𝑝̅, 𝑞�, 𝜆̅\ , 𝜆̅5, 𝑌\(𝑡) = 𝑛, and 𝑌5(𝑡) = 𝛿𝑛. 

For 𝑛 ∈ {1,… , 𝑛A}, let 𝑡̃O be such that 𝑌�ñ(𝑡̃O) 	= 𝜙. Then for 𝑡 ∈ [0, 𝑡̂], 𝑌�ñ(𝑡) ≤ 𝜙, for all 

0 < 𝑛 ≤ 𝑛A where 𝑡̂ = min
O∈{",…,O8}

𝑡̃O. According to Proposition 4.3, for any 𝑌\(𝑡), 𝑌5(𝑡), 

and 𝑇 > 0, 𝑌�(𝑡) ≤ 𝑌�ñ(𝑡) for all 𝑡 ∈ [0, 𝑇] and 0 < 𝑛 ≤ 𝑛A. Moreover, by Proposition 4.2 

(ii), 𝑌(𝑡) ≤ 𝑌�(𝑡) for 𝑡 ≥ 0 and 0 < 𝑛 ≤ 𝑛A. Consider 𝑇 > 0 such that 𝑇 ≤ 𝑡̂.  By the 

fact that 𝑌(𝑡) ≤ 𝑌�(𝑡) ≤ 𝜙 for 𝑡 ∈ [0, 𝑇] and 0 < 𝑛 ≤ 𝑛A, and considering (C.5), it can 

be observed that for 𝑡 ∈ (0, 𝑇] 

𝑦�(𝑡) = �𝑝̅ + /a
+
𝑌�(𝑡) + Yb4

+
𝑌\(𝑡) +

Yb*
+
𝑌5(𝑡)� ;(𝑚 − 𝑛) − 𝑌�(𝑡)= ≥ �𝑝̅ + /a

+
𝑌(𝑡) +

Yb4
+
𝑌\(𝑡) +

Yb*
+
𝑌5(𝑡)� ;(𝑚 − 𝑛) − 𝑌(𝑡)= > 	 �𝑝 + /

+
𝑌(𝑡) + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌5(𝑡)� ;(𝑚 − 𝑛) −

𝑌(𝑡)= = 𝑦(𝑡).  

Let the sales processes 𝑆̅(𝑡) and 𝑆(𝑡) corresponding to diffusion processes 𝑦�(𝑡) and 𝑦(𝑡) 

respectively for 0 < 𝑛 ≤ 𝑛A. Then 𝑆̅(𝑡) > 𝑆(𝑡) for 𝑡 ∈ (0, 𝑇]. It can be observed that 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2
( > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2

(  and therefore Πs(𝑛) > Π(n) for 0 < 𝑛 ≤ 𝑛A. Let 𝑛 = 0. 

If neither of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, then Πs(0) = Π(0). Otherwise, let 𝑡̃( be such that 

𝑌�(𝑡̃() = 𝜙. By Proposition 4.2 (ii), 𝑌(𝑡) ≤ 𝑌�(𝑡) ≤ 𝜙 for 𝑡 ∈ [0, 𝑡̃(]. Considering (C.5), it 

can be observed that for 𝑡 ∈ (0, 𝑇], 𝑇 ≤ 𝑡̃(  

𝑦�(𝑡) = �𝑝̅ + /a
+
𝑌�(𝑡)� ;𝑚 − 𝑌�(𝑡)= ≥ �𝑝̅ + /a

+
𝑌(𝑡)� ;𝑚 − 𝑌(𝑡)= > 	 �𝑝 + /

+
𝑌(𝑡)� ;𝑚 −

𝑌(𝑡)= = 𝑦(𝑡).  

Thus, for sales processes 𝑆̅(𝑡) and 𝑆(𝑡) corresponding to diffusion processes 𝑦�(𝑡) and 

𝑦(𝑡) respectively we have 𝑆̅(𝑡) > 𝑆(𝑡) for 𝑡 ∈ (0, 𝑇]. Hence, ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2
( >

∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2
(  and therefore Πs(0) > Π(0). Hence, for 𝑇 ≤ 𝑡̃, 𝑡̃ = min{ 𝑡̃(, 𝑡̂} we have 

Πs(𝑛) > Π(n) for 0 < 𝑛 ≤ 𝑛A, Πs(0) > Π(0), if either of 𝑝̅ > 𝑝 or  𝑞� > 𝑞 holds, 

otherwise Πs(0) = Π(0). Thus Πs∗ ≥ Π∗. 

(ii)        By continuity of 𝑆̅(𝑡) − 𝑆(𝑡) and the fact that 𝑆̅(𝑇) − 𝑆(𝑇) > 0, for each 𝑛, 0 <

𝑛 ≤ 𝑛A there exists 𝑇!O > 𝑇 such that 𝑆̅(𝑡) ≥ 𝑆(𝑡) for 𝑡 ∈ [0, 𝑇!O]. Let 𝑇ñ! = min
(�O`OM

𝑇!O. 

Then, 𝑇ñ! > 𝑇 and 𝑆̅(𝑡) ≥ 𝑆(𝑡) for 𝑡 ∈ [0, 𝑇ñ!]. Hence, ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2�1
( > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2�1

( , 
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therefore Πs(𝑛) > Π(𝑛) for 0 < 𝑛 ≤ 𝑛A. On the other hand, for 𝑛 = 0, when either of 

𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds we have 𝑆̅(𝑇) − 𝑆(𝑇) > 0. So, by continuity of 𝑆̅(𝑡) − 𝑆(𝑡), there 

exists 𝑇!( > 𝑇 such that  𝑆̅(𝑡) ≥ 𝑆(𝑡) for 𝑡 ∈ [0, 𝑇!(]. Hence, ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡21
)

( >

∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡21
)

( , therefore Πs(0) > Π(0). If 𝑛 = 0, and neither of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds 

we have Πs(0) = Π(0). Let, 𝑇! = min{𝑇!(, 𝑇ñ!}, then 𝑇! > 𝑇 and under the planning 

horizon 𝑇! we have Πs(𝑛) > Π(𝑛) for 0 < 𝑛 ≤ 𝑛A, and Πs(0) > Π(0), when either of 

𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, otherwise Πs(0) = Π(0). Thus, Πs∗ ≥ Π∗. Moreover, by Theorem 

C.3 it can be observed that 

𝐼(
!b(𝑦� − 𝑦)(𝑡) = 𝐼(

!b&!𝐼(
!(𝑦� − 𝑦)(𝑡) = 𝐼(

!b&! R𝐼(
!𝑦�(𝑡) − 𝐼(

!𝑦(𝑡)S. 

Thus, 𝐼(
!b(𝑦� − 𝑦)(𝑡) > 0 for 𝑡 ∈ (0, 𝑇ñ!] and 0 < 𝑛 ≤ 𝑛A. Continuity of 𝐼(

!b(𝑦� − 𝑦)(𝑡) 

implies the existence of  𝑇!b
O > 𝑇ñ! for each 𝑛, 0 < 𝑛 ≤ 𝑛A such that 𝐼(

!b(𝑦� − 𝑦)(𝑡) ≥ 0 

for 𝑡 ∈ [0, 𝑇!b
O]. Set 𝑇ñ!b = min

(�O`O8
𝑇!b
O. Then, 𝑇ñ!b > 𝑇ñ! , and 𝑆̅(𝑡) = 𝐼(

!b𝑦�(𝑡) ≥ 𝐼(
!b𝑦(𝑡) =

𝑆(𝑡), for 𝑡 ∈ [0, 𝑇ñ!b ], and 0 < 𝑛 ≤ 𝑛A. Similarly, for 𝑛 = 0, when either of 𝑝̅ > 𝑝 or 𝑞� >

𝑞 holds we have 𝑇!b
( > 𝑇!( such that 𝑆̅(𝑡) = 𝐼(

!b𝑦�(𝑡) ≥ 𝐼(
!b𝑦(𝑡) = 𝑆(𝑡), for 𝑡 ∈ [0, 𝑇!b

(]. Set 

𝑇!b = min{𝑇!b
(, 𝑇ñ!b}. Then, 𝑇!b > 𝑇! , and 𝑆̅(𝑡) = 𝐼(

!b𝑦�(𝑡) ≥ 𝐼(
!b𝑦(𝑡) = 𝑆(𝑡), 𝑡 ∈ [0, 𝑇!b ] for 

0 < 𝑛 ≤ 𝑛A, and for 𝑛 = 0 when either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. This completes the 

proof for part (ii). 

(iii)       We have 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
( − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

( =  

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡21
( + ∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡2K

21
.  

By mean value theorem there exists 𝜁O" ∈ (0, 𝑇!) and 𝜁O< ∈ (𝑇! , 𝑇c) such that  

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡21
( = ;𝑆̅(𝜁O") − 𝑆(𝜁O")= ∫ 𝜋(𝑡)𝑑𝑡21

( ,  

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡2K
21

= ;𝑆̅(𝜁O<) − 𝑆(𝜁O<)=∫ 𝜋(𝑡)𝑑𝑡2K
21

.  

Let Ω = min 	{𝑆̅(𝜁O") − 𝑆(𝜁O"): 0 < 𝑛 ≤ 𝑛A} and Γ = min 	{𝑆̅(𝜁O<) − 𝑆(𝜁O<): 0 < 𝑛 ≤ 𝑛A} 

when neither of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. Also let Ω = min 	{𝑆̅(𝜁O") − 𝑆(𝜁O"): 0 ≤ 𝑛 ≤ 𝑛A} 

and Γ = min 	{𝑆̅(𝜁O<) − 𝑆(𝜁O<): 0 ≤ 𝑛 ≤ 𝑛A} when either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. Then 
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∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
( − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

( ≥ Ω∫ 𝜋(𝑡)𝑑𝑡21
( + Γ∫ 𝜋(𝑡)𝑑𝑡2K

21
.  

It can be observed that if Γ ≥ 0 then ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
( − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

( > 0 which 

implies that Πs(𝑛) > Π(𝑛) for all 0 < 𝑛 ≤ 𝑛A and Πs(0) > Π(0) when either of 𝑝̅ > 𝑝 or 

𝑞� > 𝑞 holds. Otherwise, if the following inequality is satisfied 

∫ d(')g'NK
N1

∫ d(')g'
N1
)

< �
&J
,		                                                    (C.6) 

then we conclude that ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
( > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

(  and therefore Πs(𝑛) > Π(n) for 

all 0 < 𝑛 ≤ 𝑛A, and Πs(0) > Π(0) when either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. We see that if 

𝜋(𝑡) is decreasing on [𝑇! , 𝑇c] with high declining rate, then the inequality (C.6) is 

satisfied. When 𝑛 = 0 and neither of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, then ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
( =

∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K
(  and this completes the proof for part (iii).                                                ☐  

Proof of Proposition 4.6 

We prove part (ii) and the result of part (iii) corresponding to part (ii). For part (i) and 

part (iii) corresponding to part (i) proof is similar in which we set 𝑌\(𝑡) = 𝑛, 𝑌5(𝑡) = 𝛿𝑛, 

buyers’ adoption 𝑌(𝑡) is formulated by (4.4) with closed form solution given by (4.5) and 

(4.6), sales are given by (4.7) and (4.8), and the profit is given by (4.18). 

(ii)         Let 𝑌�5(𝑡) and 𝑌5(𝑡) corresponding to 𝛿̅ and 𝛿 respectively. Suppose 𝑌�(𝑡) and 

𝑌(𝑡) derived from (4.9) corresponding to 𝑌�5(𝑡) and 𝑌5(𝑡) respectively where, 0 < 𝑛 ≤

𝑛A, and 𝑌�(0) = 𝑌(0) = 0. Define 

𝜙:= +
</
�𝑞 +&O8

+
− R𝑝 + Y4

+
𝑛A +

Y*
+
𝛿̅𝑛AS�. 

We can see that for all 𝑛 ≤ 𝑛A 

0 < 𝜙 ≤ +
</
�𝑞 +&O

+
− R𝑝 + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌�5(𝑡)S� , 𝑡 ≥ 0.                          (C.7)  

Let 𝑌�ñ(𝑡) be the solution for (4.9) corresponding to 𝑌\(𝑡) = 𝑛 and 𝑌�5(𝑡) = 𝛿̅𝑛. For 𝑛 ∈

{1,… , 𝑛A}, let 𝑡̃O be such that 𝑌�ñ(𝑡̃O) = 𝜙. Then for 𝑡 ∈ [0, 𝑡̃<], 𝑌�ñ(𝑡) ≤ 𝜙, for all 0 < 𝑛 ≤

𝑛A where 𝑡̃< = min
O∈{",…,O8}

𝑡̃O. According to Proposition 4.3, for any 𝑌\(𝑡), 𝑌�5(𝑡), and 𝑇 >

0, 𝑌�(𝑡) ≤ 𝑌�ñ(𝑡) for 𝑡 ∈ [0, 𝑇] and 0 < 𝑛 ≤ 𝑛A. Moreover, by Proposition 4.3, 𝑌(𝑡) ≤
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𝑌�(𝑡) for 𝑡 ≥ 0 and 0 < 𝑛 ≤ 𝑛A. Consider 𝑇 > 0 such that 𝑇 ≤ 𝑡̃<. By the fact that 

𝑌(𝑡) ≤ 𝑌�(𝑡) ≤ 𝜙 and 𝑌�5(𝑡) > 𝑌5(𝑡) for 𝑡 ∈ (0, 𝑇] and 0 < 𝑛 ≤ 𝑛A, and considering 

(C.7), we see that for 𝑡 ∈ (0, 𝑇] 

𝑦�(𝑡) = R𝑝 + /
+
𝑌�(𝑡) + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌�5(𝑡)S ;(𝑚 − 𝑛) − 𝑌�(𝑡)= ≥  

R𝑝 + /
+
𝑌(𝑡) + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌�5(𝑡)S ;(𝑚 − 𝑛) − 𝑌(𝑡)= >			                  (C.8) 

�𝑝 + /
+
𝑌(𝑡) + Y4

+
𝑌\(𝑡) +

Y*
+
𝑌5(𝑡)� ;(𝑚 − 𝑛) − 𝑌(𝑡)= = 𝑦(𝑡). 

Let the sales processes 𝑆̅(𝑡) and 𝑆(𝑡) corresponding to diffusion processes 𝑦�(𝑡) and 𝑦(𝑡) 

respectively for 0 < 𝑛 ≤ 𝑛A. Then 𝑆̅(𝑡) > 𝑆(𝑡) for 𝑡 ∈ (0, 𝑇], therefore 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2
( > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2

(  for 0 < 𝑛 ≤ 𝑛A. If 𝜋(𝑡) is sufficiently higher than 𝑐(𝑡) 

on [0, 𝑇] or 𝑐(𝑡) = 0, then for 0 < 𝑛 ≤ 𝑛A  

∫ 𝜋(𝑡)(𝑆̅(𝑡) − 𝑆(𝑡))𝑑𝑡2
( > ∫ 𝑐(𝑡);𝑦�5(𝑡) − 𝑦5(𝑡)=𝑑𝑡

2
( ,		              (C.9) 

which implies that Πs(𝑛) > Π(n) for 0 < 𝑛 ≤ 𝑛A. On the other hand, Πs(0) = Π(0). 

Thus, Πs∗ ≥ Π∗.   

(iii)         By continuity of 𝑆̅(𝑡) − 𝑆(𝑡) and the fact that 𝑆̅(𝑇) − 𝑆(𝑇) > 0, for each 𝑛, 0 <

𝑛 ≤ 𝑛A there exists 𝑇!O > 𝑇 such that  𝑆̅(𝑡) ≥ 𝑆(𝑡) for 𝑡 ∈ [0, 𝑇!O]. Let 𝑇!< = min
(�O`OM

𝑇!O. 

Then, 𝑇!< > 𝑇 and 𝑆̅(𝑡) ≥ 𝑆(𝑡) for 𝑡 ∈ [0, 𝑇!<] and 0 < 𝑛 ≤ 𝑛+. Thus 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡21
(

( > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡21
(

( . 

On the other hand, for 0 < 𝑛 ≤ 𝑛A  

∫ 𝜋(𝑡)(𝑆̅(𝑡) − 𝑆(𝑡))𝑑𝑡21
(

( > ∫ 𝜋(𝑡)(𝑆̅(𝑡) − 𝑆(𝑡))𝑑𝑡2
( , 

∫ 𝑐(𝑡)(𝑦�5(𝑡) − 𝑦5(𝑡))𝑑𝑡
21
(

( = ∫ 𝑐(𝑡)(𝑦�5(𝑡) − 𝑦5(𝑡))𝑑𝑡
2
( . 

Therefore by (C.9), under the planning horizon 𝑇!<, Πs(𝑛) > Π(n) for 0 < 𝑛 ≤ 𝑛A. On 

the other hand, Πs(0) = Π(0). Thus, Πs∗ ≥ Π∗. Moreover, by Theorem C.3 we observe 

that 

𝐼(
!b(𝑦� − 𝑦)(𝑡) = 𝐼(

!b&!𝐼(
!(𝑦� − 𝑦)(𝑡) = 𝐼(

!b&! R𝐼(
!𝑦�(𝑡) − 𝐼(

!𝑦(𝑡)S. 

Thus, 𝐼(
!b(𝑦� − 𝑦)(𝑡) > 0 for 𝑡 ∈ (0, 𝑇!<]. The continuity of 𝐼(

!b(𝑦� − 𝑦)(𝑡) implies the 

existence of  𝑇!b
O > 𝑇!< for each 𝑛, 0 < 𝑛 ≤ 𝑛A such that 𝐼(

!b(𝑦� − 𝑦)(𝑡) ≥ 0 for 𝑡 ∈
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[0, 𝑇!b
O]. Set 𝑇!b

< = min
(�O`O8

𝑇!b
O. Then, 𝑇!b

< > 𝑇!<, and  𝑆̅(𝑡) = 𝐼(
!b𝑦�(𝑡) ≥ 𝐼(

!b𝑦(𝑡) = 𝑆(𝑡), for 

𝑡 ∈ [0, 𝑇!b
<] and this completes the proof.                                                                           ☐  

Proof of Proposition 4.7 

(i)      Similar to the proof of Proposition 4.6 (ii). 

(ii)     Similar to the proof of Proposition 4.6 (iii).                                                             ☐   

We rewrite (4.22) as follows 

𝑦(𝑢) = R𝑝� + /]
+�
𝑌(𝑢) + Yt4

+�
𝑌\f(𝑢) +

Yt*
+�
𝑌5f(𝑢))S ;𝑚ó − 𝑛f − 𝑌(𝑢)=						𝑢 ≥ 0,    (C.10)               

where 𝑝� = 𝑝 + O@
+
(𝜆\ + 𝛿𝜆5),	𝑞� = 𝑞 +�

+
  , 𝜆ô\ = 𝜆\

+�
+

, 𝜆ô5 = 𝜆5
+�
+

, 𝑚ó = 𝑚 − 𝑛e, and 𝑢 =

𝑡 − 𝜏, 𝑡 ≥ 𝜏. We can observe that (C.10) with the initial condition 𝑌(0) = 0 is identical 

to (4.9) with 𝑝, 𝑞, 𝜆\, 	𝜆5, 𝑛, 𝑚, 𝑌\, and 𝑌5 given as 𝑝�, 𝑞�, 𝜆ô\, 𝜆ô5,	𝑛f , 𝑚ó , 𝑌\f, and 𝑌5f 

respectively and the initial condition 𝑌(0) = 0. Accordingly, we rewrite buyers’ sales 

(4.23) as  

𝑆(𝑢) = 𝐼(
!𝑦(𝑢) = "

J(!)∫ (𝑢 − 𝑠)!&"𝑦(𝑠)𝑑𝑠�
( ,		                       (C.11) 

which is identical to (4.16). We also rewrite after the release high-valuation free users’ 

sales (4.25) as  

𝑆\f(𝑢) = 𝐼(
!4
A
𝑦\f(𝑢) − 𝑦\f(𝑢).			                                 (C.12) 

We can see that 

Π(𝑛f , 𝑛e) = ∫ R𝜋(𝑢);𝑆(𝑢) + 𝑆\f(𝑢)= − 𝑐(𝑢);𝑦\f(𝑢) + 𝑦5f(𝑢)=S 𝑑𝑢
2&N
( +  

∫ 𝜋(𝑡)𝑆\e(𝑡)𝑑𝑡
2
N − 𝑐((1 + 𝛿)𝑛e ,			                             (C.13) 

where, the first term in (C.13) right hand side is similar to (4.19) with the planning 

horizon given as 𝑇 − 𝜏. We employ (C.10)-(C.13) in the following proofs. 

Proof of Proposition C.3 

(i) Since 	𝑞 > +
+&(OA-O@)

�	𝑝 + OA-O@
+

(𝜆\ + 𝜆5𝛿)�,	then	𝑞� >
+�

+�&OA
(𝑝� + OA

+�
(𝜆ô\ +

𝜆ô5𝛿)).	Thus, considering (C.10) we obtain the result by Proposition 4.2 (i). 
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(ii) Given that increasing 𝑝, 𝑞, 𝜆\, and 𝜆5 result in increasing 𝑝�, 𝑞�, 𝜆ô\, and 𝜆ô5, we 

obtain the result considering (C.10) and Proposition 4.2 (ii).                                            ☐  

Proof of Proposition C.4 

We derive the result considering (C.10) and using Proposition 4.3 with the planning 

horizon 𝑇 − 𝜏.                                                                                                                    ☐  

Proof of Proposition C.5 

Analogous to the proof of Proposition 4.4.                                                                       ☐  

Proof of Proposition C.6 

(i) We can see that either one of 𝑝�̅ ≥ 𝑝� and 𝑞�� ≥ 𝑞�,  𝜆ô̅\ ≥ 𝜆ô\, and 𝜆ô̅5 ≥ 𝜆ô5 holds with 

at least one strict inequality where 𝑝�̅ = 𝑝̅ + O@
+
(𝜆̅\ + 𝛿𝜆̅5), 𝑞�� = 𝑞� +�

+
, 𝜆ô̅\ = 𝜆̅\

+�
+

, and 𝜆ô̅5 =

𝜆̅5
+�
+

. Since 𝑞� > +
+&O8

A &O8
@ �	𝑝̅ +

O8
A -O8

@

+
;𝜆̅\ + 𝛿𝜆̅5=�, we see that 𝑞�� > +�

+�&O8
A (𝑝�̅ +

O8
A

+�
(𝜆ô̅\ + 𝛿𝜆ô̅5)) for all 𝑛e ≤ 𝑛Ae . Thus, considering (C.10)-(C.13), and 𝑛e ≤ 𝑛Ae , by 

Proposition 4.5 (i), there exists a threshold 𝑡̃O@ such that for 𝑇 ≤ 𝑡̃O@, Πs(𝑛f , 𝑛e) >

Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , if 𝑛e > 0, Πs(𝑛f , 0) > Π(𝑛f , 0), 0 < 𝑛f ≤ 𝑛Af , and Πs(0,0) >

Π(0,0) if either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, otherwise Πs(0,0) = Π(0,0). Let 𝑡̃ = min
O@`O8

@
𝑡̃O@. 

Then, Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and Πs(0,0) >

Π(0,0) if either of 𝑝̅ > 𝑝 or  𝑞� > 𝑞 holds, otherwise Πs(0,0) = Π(0,0).   

(ii) For 𝑛e ≤ 𝑛Ae , by Proposition 4.5 (ii), there exists  𝑇!
O@, 𝑇!

O@ > 𝑇, 𝑇 ≤ 𝑡̃, where 

𝑦\f(𝑢) = 𝑦5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏, and (1) if 𝑛e > 0, Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 

𝑛f ≤ 𝑛Af , (2) Πs(𝑛f , 0) > Π(𝑛f , 0), 0 < 𝑛f ≤ 𝑛Af , and (3) Πs(0,0) > Π(0,0) if either of 

𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, otherwise Πs(0,0) = Π(0,0). Let, 𝑇! = min
O@`O8

@
𝑇!
O@. Then, 𝑇! > 𝑇 

and under the planning horizon 𝑇! − 𝜏 we have Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 

𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and Πs(0,0) > Π(0,0) if either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, 
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otherwise Πs(0,0) = Π(0,0). In a similar fashion, for 𝑛e ≤ 𝑛Ae , by Proposition 4.5 (ii), 

there exists 𝑇!b
O@ such that 𝑇!b

O@ > 𝑇!
O@. Let, 𝑇!b = min

O@`O8
@
𝑇!b
O@. Then, 𝑇!b > 𝑇!. 

(iii) Let 𝑆̅(𝑡) and 𝑆(𝑡), corresponding to 𝑝̅, 𝑞�, 𝜆̅\, 𝜆̅5, and 𝑝, 𝑞, 𝜆\, 𝜆5 respectively. We 

have 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
N − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

N =  

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡21
N + ∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡2K

21
. 

By mean value theorem there exists 𝜁(OA,O@)
" ∈ (𝜏, 𝑇!) and 𝜁(OA,O@)

< ∈ (𝑇! , 𝑇c) such that  

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡21
N = R𝑆̅;𝜁(OA,O@)

" = − 𝑆;𝜁(OA,O@)
" =S ∫ 𝜋(𝑡)𝑑𝑡21

N , 

∫ (𝑆̅(𝑡) − 𝑆(𝑡))𝜋(𝑡)𝑑𝑡2K
21

= R𝑆̅;𝜁(OA,O@)
< = − 𝑆;𝜁(OA,O@)

< =S ∫ 𝜋(𝑡)𝑑𝑡2K
21

. 

Let 

Ω = min 	­𝑆̅;𝜁(OA,O@)
" = − 𝑆;𝜁(OA,O@)

" =: 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0)®, 

Γ = min 	­𝑆̅;𝜁(OA,O@)
< = − 𝑆;𝜁(OA,O@)

< =: 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0)®, 

when neither of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. Also  

Ω = min 	­𝑆̅;𝜁(OA,O@)
" = − 𝑆;𝜁(OA,O@)

" =: 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae ®, 

Γ = min 	­𝑆̅;𝜁(OA,O@)
< = − 𝑆;𝜁(OA,O@)

< =: 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae ®, 

when either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. Then 

∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
N − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

N ≥ Ω∫ 𝜋(𝑡)𝑑𝑡21
N + Γ∫ 𝜋(𝑡)𝑑𝑡2K

21
. 

It can be observed that if Γ ≥ 0 then ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
N − ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

N > 0 which 

implies that Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and 

Πs(0,0) > Π(0,0) when either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. Otherwise, if the following 

inequality is satisfied 

∫ d(')g'NK
N1

∫ d(')g'
N1
0

< �
&J
,			                                                 (C.14) 

then we conclude that ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
N > ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

N  and therefore Πs(𝑛f , 𝑛e) >

Π(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , (𝑛f , 𝑛e) ≠ (0,0), and Πs(0,0) > Π(0,0) when 

either of 𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds. We see that if 𝜋(𝑡) is decreasing on [𝑇! , 𝑇c] with high 

declining rate, then the inequality (C.14) is satisfied. When 𝑛f = 𝑛e = 0 and neither of 
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𝑝̅ > 𝑝 or 𝑞� > 𝑞 holds, then ∫ 𝜋(𝑡)𝑆̅(𝑡)𝑑𝑡2K
N = ∫ 𝜋(𝑡)𝑆(𝑡)𝑑𝑡2K

N  and this completes the 

proof for part (iii).                                                                                                               ☐  

Proof of Proposition C.7 

(i) We have 𝑞� > +�
+�&O8

A (𝑝� +
O8
A

+�
(𝜆ô\ + 𝛿̅𝜆ô5)) for all 𝑛e ≤ 𝑛Ae , because 𝑞 >

+
+&O8

A &O8
@ �	𝑝 +

O8
A -O8

@

+
;𝜆\ + 𝛿̅𝜆5=�. Let 𝑦�5f(𝑢) corresponding to 𝛿̅ and 𝑆̅(𝑢) derived 

from (C.10) and (C.11) corresponding to 𝑦�5f(𝑢). Let 

Πõ(𝑛f , 𝑛e) = ∫ R𝜋(𝑢);𝑆̅(𝑢) + 𝑆\f(𝑢)= − 𝑐(𝑢)(𝑦\f(𝑢) + 𝑦�5f(𝑢))S 𝑑𝑢
2&N
( +

∫ 𝜋(𝑡)𝑆\e(𝑡)𝑑𝑡
2
N − 𝑐(;1 + 𝛿̅=𝑛e .  

Using Proposition 4.6 (ii) we can show that if 𝜋(𝑢) be sufficiently high compared to 𝑐( 

and 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐( = 𝑐(𝑢) = 0 then for 𝑛e ≤ 𝑛Ae  there exists a threshold 𝑡̃O@
"  

such that for 𝑇 ≤ 𝑡̃O@
" , Πõ(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤ 𝑛Af . Let 𝑝�̅ = 𝑝 + O@

+
(𝜆\ +

𝛿̅𝜆5). Then, 𝑝�̅ > 𝑝� for 𝑛e > 0 and 𝑝�̅ = 𝑝� = 𝑝 when 𝑛e = 0. Since 𝑞 > +
+&O8

A &O8
@ �	𝑝 +

O8
A -O8

@

+
;𝜆\ + 𝛿̅𝜆5=�, we have 𝑞� > +�

+�&O8
A (𝑝�̅ +

O8
A

+�
(𝜆ô\ + 𝛿̅𝜆ô5)) for 𝑛e ≤ 𝑛Ae . Considering 

(C.10)-(C.13), by Proposition 4.5 (i), there exists a threshold 𝑡̃O@
< such that for 𝑇 ≤ 𝑡̃O@

< , 

Πs(𝑛f , 𝑛e) > Πõ(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af  if 𝑛e > 0 and Πs(𝑛f , 0) = Πõ(𝑛f , 0). Let, 𝑡̃O@ =

min{ 𝑡̃O@
" , 𝑡̃O@

< }. Then, for 𝑇 ≤ 𝑡̃O@, Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤ 𝑛Af , if 𝜋(𝑢) 

be sufficiently high compared to 𝑐( and 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐(𝑢) = 𝑐( = 0. Let, 𝑡̃ =

min
O@`O8

@
𝑡̃O@. Then for 𝑇 ≤ 𝑡̃, Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for 0 < 𝑛f ≤ 𝑛Af  and 𝑛e ≤ 𝑛Ae , if 

𝜋(𝑢) be sufficiently high compared to 𝑐( and 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐(𝑢) = 𝑐( = 0. For 

𝑇 ≤ 𝑡̃, Πs(0, 𝑛e) > Π(0, 𝑛e) for 0 < 𝑛e ≤ 𝑛Ae , if 𝜋(𝑢) be sufficiently high compared to 

𝑐( and 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐(𝑢) = 𝑐( = 0. Moreover, Πs(0,0) = Π(0,0). 

(ii) For 𝑛e ≤ 𝑛Ae , by Proposition 4.6 (iii), there exists  𝑇!
O@", 𝑇!

O@" > 𝑇, 𝑇 ≤ 𝑡̃, where 

𝑦\f(𝑢) = 𝑦5f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏 and Πõ(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 <

𝑛f ≤ 𝑛Af . Moreover, by Proposition 4.5 (ii), there exists  𝑇!
O@<, 𝑇!

O@< > 𝑇, 𝑇 ≤ 𝑡̃, where 
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𝑦\f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏 and Πs(𝑛f , 𝑛e) > Πõ(𝑛f , 𝑛e) for all 𝑛f ≤ 𝑛Af  if 𝑛e > 0 

and Πs(𝑛f , 0) = Πõ(𝑛f , 0). Let 𝑇!
O@ = min{𝑇!

O@", 𝑇!
O@<}.	Then for the planning horizon 

𝑇!
O@, where 𝑦\f(𝑢) = 𝑦5f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏, 𝑇 ≤ 𝑡̃, we have Πs(𝑛f , 𝑛e) >

Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤ 𝑛Af . Let, 𝑇! = min
O@`O8

@
𝑇!
O@. Then, 𝑇! > 𝑇, 𝑇 ≤ 𝑡̃. Under the 

planning horizon 𝑇! − 𝜏, where 𝑦\f(𝑢) = 𝑦5f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏, we have 

Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for 0 < 𝑛f ≤ 𝑛Af  and 𝑛e ≤ 𝑛Ae . Under the planning horizon 𝑇! −

𝜏, where 𝑦\f(𝑢) = 𝑦5f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏, we have Πs(0, 𝑛e) > Π(0, 𝑛e) for 

0 < 𝑛e ≤ 𝑛Ae . Furthermore, for 𝛽̅,  𝛽̅ > 𝛽 , by Proposition 4.6 (iii) we will have 𝑇!b
O@" >

𝑇!
O@" and by Proposition 4.5 (ii) we will have  𝑇!b

O@< > 𝑇!
O@<. In a similar fashion we find 

𝑇!b
O@ = min{𝑇!b

O@", 𝑇!b
O@<} and 𝑇!b = min

O@`O8
𝑇!b
O@ where,  𝑇!b > 𝑇!.                                        ☐  

Proof of Proposition C.8 

(i) Since 𝑞 > +
+&O8

A &O8
@ �	𝑝 +

O8
A -O8

@

+
(𝜆\ + 𝛿𝜆5)� we have 𝑞� > +�

+�&O8
A (𝑝� +

O8
A

+�
(𝜆ô\ +

𝛿𝜆ô5)) for 𝑛e ≤ 𝑛Ae . Thus, considering (C.10)-(C.13) and 𝑛e ≤ 𝑛Ae , by Proposition 4.7 (i), 

there exists a threshold 𝑡̃O@ such that for 𝑇 ≤ 𝑡̃O@, Πs(𝑛f , 𝑛e) ≥ Π(𝑛f , 𝑛e) for all 0 <

𝑛f ≤ 𝑛Af , if 𝜋(𝑢) be sufficiently high compared to 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐(𝑢) = 0. Let, 

𝑡̃ = min
O@`O8

@
𝑡̃O@. Then for 𝑇 ≤ 𝑡̃, we have Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤ 𝑛Af , 

𝑛e ≤ 𝑛Ae  if 𝜋(𝑢) be sufficiently high compared to 𝑐(𝑢) on [0, 𝑇 − 𝜏] or 𝑐(𝑢) = 0 and 

Πs(0, 𝑛e) = Π(0, 𝑛e), 𝑛e ≤ 𝑛Ae .   

(ii) For 𝑛e ≤ 𝑛Ae , by Proposition 4.7 (ii), there exists  𝑇!
O@, 𝑇!

O@ > 𝑇, 𝑇 ≤ 𝑡̃, where 

𝑦\f(𝑢) = 𝑦5f(𝑢) = 𝑦�5f(𝑢) = 0 for 𝑢 ≥ 𝑇 − 𝜏, and Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 <

𝑛f ≤ 𝑛Af . Let, 𝑇! = min
O@`O8

@
𝑇!
O@. Then, 𝑇! > 𝑇 and under the planning horizon 𝑇! − 𝜏 we 

have Πs(𝑛f , 𝑛e) > Π(𝑛f , 𝑛e) for all 0 < 𝑛f ≤ 𝑛Af , 𝑛e ≤ 𝑛Ae , and Πs(0, 𝑛e) = Π(0, 𝑛e), 

𝑛e ≤ 𝑛Ae . Furthermore, for 𝛽̅,  𝛽̅ > 𝛽 , by Proposition 4.7 (ii) we will have 𝑇!b
O@ > 𝑇!

O@, 

and 𝑇!b = min
O@`O8

@
𝑇!b
O@ where, 𝑇!b > 𝑇!.                                                                                ☐  
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