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Abstract

This thesis provides some hybrid feedback based autonomous navigation algorithms.
First, the problem of autonomous robot navigation in planar environments with arbitrarily-
shaped convex obstacles is considered. The proposed navigation approach guarantees safe
and global convergence to the target location through an appropriately designed switch-
ing strategy between two different modes, namely, the move-to-target mode and the
obstacle-avoidance mode. A procedure for the implementation of the proposed hybrid
feedback controller in a priori unknown environments is provided.

Subsequently, the problem of autonomous navigation in planar environments with
non-convex obstacles is considered. An instrumental transformation that modifies (vir-
tually) the non-convex obstacles, in a non-conservative manner, is introduced to facilitate
the design of the obstacle-avoidance strategy. The proposed autonomous robot naviga-
tion scheme relies on a switching strategy between the move-to-target mode and the
obstacle-avoidance mode. When initialized in the move-to-target mode, the proposed
feedback control law guarantees safe and global convergence to the predefined target
location in the modified obstacle-free workspace. The proposed controller has been suc-
cessfully implemented in a priori unknown environments on the Turtlebot3 burger model
in the Gazebo simulator using the ROS framework.

Finally, the problem of autonomous navigation in three-dimensional environments
with arbitrarily-shaped convex obstacles is addressed. The proposed hybrid feedback
control strategy, which consists in switching between the move-to-target and the obstacle-
avoidance modes, guarantees safe and global autonomous robot navigation. A procedure
for the implementation of the proposed autonomous navigation controller, in a priori
unknown three-dimensional environments, is also provided.
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Summary for Lay Audience

This thesis deals with the design of control algorithms allowing to safely guide a
robot from any initial location to any target location in a given workspace. We consider
three types of environments: two-dimensional environments with convex obstacles, two
dimensional environments with arbitrarily shaped obstacles (possibly non-convex), and
three-dimensional environments with arbitrarily shaped convex obstacles. The proposed
control algorithms can also be implemented in a priori unknown environments, relying
solely on information obtained from the sensors mounted on the robot.
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Chapter 1

Introduction

The ongoing developments in the field of self-driving vehicles, swarm robotics and hu-
manoid robotics have surged research interests in the domain of autonomous robotics.
Autonomous robots with various features are being developed for a multitude of applica-
tions such as nurse robots for patient care [Tanioka et al., 2017], autonomous underwater
vehicles (AUVs) for marine life exploration [Leonard and Bahr, 2016], unmanned aerial
vehicles (UAVs) for remote surveillance [Jain et al., 2021] and package delivery [Mehndi-
ratta et al., 2018], autonomous ground vehicles (AGVs) for public transport [Poczter
et al., 2014], to name a few. Depending upon the nature of the application, mobile
robots can be used to perform various tasks such as trajectory tracking, rendezvous, for-
mation control, coverage control, boundary patrol, etc. However, most of these complex
tasks can be boiled down to a sequence of point navigation problems wherein given an
initial and a final location within an obstacle-free space, the robot has to navigate to-
wards the destination without colliding with the obstacles and the other robots in the
environment.

There has been a considerable amount of literature dedicated to solving this nav-
igation problem, with configuration space motion planning [Choset et al., 2005] being
among the earliest. Here, the configuration of a robot corresponds to its location and
orientation at any given instant of time. With an explicit representation of the robot’s
configuration space, several planning and control schemes such as those based on the
exact cell decomposition approach [LaValle, 2006], [Boissonnat and Yvinec, 1998] are
used to safely navigate the robot towards its destination. However, obtaining the exact
description of the configuration space in terms of standard geometric models is a difficult
task. On the other hand, approximate decomposition techniques such as slice projec-
tion (SP) [Lozano-Perez, 1990] and hierarchical approximate cell decomposition (HACD)
[Brooks and Lozano-Perez, 1985], avoid this issue by constructing an approximation of
the configuration space as a union of simpler geometric shapes such as hyper-rectangles
and polytopes, at the expense of accuracy and completeness. Sampling-based motion
planning techniques [Kavraki et al., 1996], [LaValle, 1998] provide an alternative solu-
tion to circumvent the aforementioned issue since they require an implicit definition of
the configuration space, which is generally much easier to obtain. These path planning
methodologies provide a feasible path that has to be tracked, as closely as possible, by
another feedback control scheme. On the other hand, feedback-based autonomous naviga-
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tion strategies can simultaneously handle the path-finding and path-following tasks. The
feedback-based autonomous navigation approach relying on the artificial potential field
(APF), originally introduced in [Khatib, 1986], is one of the most popular approaches
in mobile robotics. However, it suffers from the well-known problem of undesired local
minima. In [Koditschek and Rimon, 1990], [Koditschek and Rimon, 1992], the authors
proposed a class of APF-based controllers, relying on some appropriately designed navi-
gation functions (NF), which with proper parameter tuning can overcome the drawbacks
of the APF approach and lead to a safe and almost1 global asymptotic convergence to the
target location. The original work was limited to the navigation of a point-mass robot,
in a sphere world 2 assuming perfect knowledge of the environment. Since then there
have been considerable developments in the field of robot navigation using NFs. Alter-
natively, some research works such as those in [Arslan and Koditschek, 2019], [Berkane
et al., 2021a] address the robot navigation problem with collision avoidance, without an
explicit design of the navigation function, instead they exploit the topological properties
of the environment to provide a navigation control scheme.

Most of the available research work dealing with feedback-based autonomous naviga-
tion, with collision avoidance, assume either global information availability [Koditschek
and Rimon, 1992], [Berkane et al., 2021a] or obstacles with simple geometries [Lionis
et al., 2007], [Vrohidis et al., 2018]. Another deficiency of the NF-based robot navi-
gation approach is that it does not guarantee global convergence due to the undesired
unstable equilibria it generates [Koditschek and Rimon, 1990]. Moreover, their exten-
sions to a multi-robot environment cluttered with stationary and\or moving obstacles
are challenging.

1.1 Literature review

Autonomous navigation approaches can mainly be classified into two categories, namely,
the collision-free path planning-based approach and the planning-free feedback-based
approach. The first approach, referred to as the collision-free path planning-based ap-
proach, consists of a high-level planning task which generates the collision-free path to be
followed by a low-level feedback controller. This approach is interesting in applications
where the vehicle’s surrounding environment is static and a priori known. The second
approach, referred to as the planning-free feedback-based approach, consists in dealing
(simultaneously) with the collision avoidance and path-following problems as the vehicle
moves. This approach allows the integration of obstacle-avoidance task and the low-level
control task through environment sensing (or knowledge) feedback. Among this second
class, one can find two main sub-classes, namely, the a priori known-environment-based
approach and the reactive sensor-based approach. However, there is no result in the liter-
ature, providing a sensor-based reactive navigation strategy, with provable global stability
guarantees, for robots navigating in unknown environments with arbitrarily shaped static
(or dynamic) obstacles.

1For all initial conditions except a set of zero Lebesgue measure.
2An Euclidean sphere world of dimension n is formed by removing from the interior of a large n-

dimensional ball a finite number of non-overlapping smaller balls.
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1.1.1 Collision-free path planning approach

In the path planning-based approaches, one constructs a roadmap of the obstacle-free
space, independent of any particular initial and final configuration of the robot. Then
given any valid initial and final configuration of the robot, the roadmap is searched for
a feasible path joining these configurations. Depending on the roadmap construction
process, these approaches can mainly be subdivided into two categories, i.e., sampling-
based approaches and combinatorial approaches. In the case of sampling-based motion
planning the main idea is to avoid the explicit construction of the obstacle regions, and
instead conduct a search that probes the robot’s workspace with a sampling scheme.
This probing is enabled by a collision detection module, which the motion planning al-
gorithms consider as a black box. This enables the development of planning algorithms
that are independent of the particular geometric models of the obstacles [LaValle, 2006].
This technique includes methodologies such as probabilistic roadmaps (PRMs) [Kavraki
et al., 1996] and rapidly exploring random trees (RRTs) [LaValle, 1998]. The PRM
approach consists of two distinct phases; a learning phase and a query phase. In the
learning phase, the robot’s configuration space is sampled for collision-free configura-
tions, which are added as nodes to a graph whose edges correspond to feasible paths
between these configurations. These paths are computed using a simple and fast local
planner. This graph is referred to as the probabilistic roadmap. In the query phase,
any given initial and goal configurations of the robot are connected to two nodes of the
roadmap. The roadmap is then searched for a path joining these two nodes [Kavraki
et al., 1996]. The randomized sampling technique proposed in [Kavraki et al., 1996],
did not consider the effects of configuration-obstacle, which created bottlenecks in the
region where configuration obstacles are closely spaced. Several research works have tried
to improve the sampling procedure to provide better representation of the obstacle-free
configuration space. In [Boor et al., 1999], a Gaussian sampling strategy was proposed
that guarantees configurations with a Gaussian distribution around obstacle surfaces.
This method has a parameter that controls the distribution and how near the nodes
are to the obstacles. In [Yeh et al., 2012], a PRM generation with an obstacle-based
sampler is proposed to provide uniform distribution of the nodes near the obstacle re-
gion. The PRM approach utilizes a local planner to connect different nodes, however for
the case of complicated nonholonomic and dynamical systems, a simplistic local planner
may be insufficient to establish connection between any given pair of nodes. To that
end, the RRTs method, which was originally introduced in [LaValle, 1998], [LaValle and
Kuffner Jr, 2001], provides a sampling-based alternative to PRM, allowing one to address
the navigation problem for more intricate classes of constrained dynamical systems. In
[Karaman and Frazzoli, 2011], the authors have carried out a performance analysis of
the quality of the solution returned by the above-mentioned algorithms as a function of
the number of samples and provided an optimal variant of the approach. Recently, in
[Arslan et al., 2017], a novel sensor-based steering algorithm was designed which used
local Voronoi decomposition of the workspace to significantly improve the path planning
performance of sampling-based algorithms near difficult regions such as narrow passages.

On the other hand, the combinatorial approaches to motion planning find paths
through the continuous configuration space without resorting to approximations. Due to
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this property, they are alternatively referred to as exact algorithms. In contrast to the
sampling-based approach, the motion planning algorithms based on the combinatorial
approach can either find a path between two valid configurations, if it exists, otherwise
declare that no feasible path is present [LaValle, 2006]. In [Lozano-Pérez and Wesley,
1979], [Brooks and Lozano-Perez, 1985], the authors utilized an approximate cell divi-
sion technique to develop an algorithm to find the collision-free path between any two
obstacle-free robot configurations. If a given cell is partially occupied by the configura-
tion obstacle then it is sub-divided to obtain better approximation of the configuration
obstacle-free region. Such a hierarchical approximate cell decomposition (HACD) process
allows fast exploration of the configuration space. Another approach is the use of slice
projection (SP) methodology, presented in [Lozano-Perez, 1987], [Lozano-Perez, 1990],
wherein the robot’s configuration space is partitioned into slices with respect to a given
axis e.g., the robot’s orientation and then projecting those slices to obtain safe, lower
dimensional under-approximations of the robot’s free space. A major advantage of the
SP methodology over the HACD methodology is that SP generates, in general, a smaller
amount of cells since the geometry represented by a slice does not need to be any further
approximated by simpler shapes, although, this comes at the cost of requiring more elab-
orate techniques, compared to rectangloids, in order to safely navigate within a projected
slice.

1.1.2 Feedback-based approach

One of the earliest works in the field of feedback-based autonomous robot navigation is
the work by Oussama Khatib [Khatib, 1986]. This approach makes use of an artificial
potential function (APF) which is the summation of an attractive potential function with
goal location as the global minimum and a repulsive potential function whose value is in-
versely proportional to the distance between the robot and obstacle-occupied workspace.
It was shown that guiding a robot using the control law of the form of a negative gradient
of the APF ensures, in most cases, convergence to the desired goal location while avoid-
ing collisions with the obstacles as shown in Fig. 1.1 (left). However, as shown in 1.1
(right), despite its intuitive nature, this class of controllers suffers unavoidably from the
presence of unwanted equilibria induced by the workspace’s topology and whose region
of attraction may not be trivial.

In their seminal work [Koditschek and Rimon, 1990], Rimon and Koditschek presented
a family of APFs called Navigation functions (NFs) for point and sphere worlds3. The
NF proposed in [Koditschek and Rimon, 1990, (1)] is of the following form:

φ =
γ(x)

(γ(x)κ + β(x))
1
κ

, (1.1)

where x ∈ Rn is the location of the robot and κ > 0 is the tuning parameter. In (1.1),
γ : Rn → R is a convex attractive potential function with the goal location as the global
minimum. The repulsive potential function β : Rn → R is the product of the Euclidean

3An Euclidean sphere world of dimension n is formed by removing from the interior of a large
n−dimensional ball a finite number of non-overlapping smaller balls
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Figure 1.1: The robot initialized at the origin (green dot) moving towards the target
location (red dot) according to the negative gradient of the APF. The left figure shows
the safe convergence of the robot to the target location. The right figure illustrates the
presence of undesired stable local minima.

distances between the robot and the workspace obstacles. A properly tuned NF avoids
the generation of undesired stable local minima, as illustrated in Fig. 1.2. The figure
shows the contour plot of the navigation function φ given in (1.1) that shows no undesired
stable minima in the workspace for higher values of κ.

However, NF-based autonomous navigation approaches generate undesired unstable
local minima (saddle points). In fact, [Koditschek and Rimon, 1990] demonstrated that
in the case of a single point-mass robot navigating in a sphere world, the control law
of the form of negative gradient of the NF, with proper tuning of the parameter κ,
ensures almost global convergence to the target location, i.e., there exists a set of initial
locations, with zero Lebesgue measure, from which the robot gets stuck away from the
target location, as depicted in Fig. 1.3.

Later in [Koditschek and Rimon, 1992], the authors presented a constructive trans-
formation for mapping a workspace cluttered by trees of star-shaped obstacles4 into
sphere worlds. This extended the applicability of the NF-based autonomous navigation
approaches to workspaces containing star-shaped obstacles.

Since then the NF framework has been successfully adapted to resolve the limita-
tions related to the original work such as parameter tuning and global information re-
quirements, and to extend its applicability to more general problem settings involving
multiple robots. In [Lionis et al., 2007], [Verginis and Dimarogonas, 2021], the authors
proposed the concept of locally computable NF wherein the parameter tuning require-
ment is removed by restricting the obstacles’ influence within their local neighbourhood.
In [Filippidis and Kyriakopoulos, 2011], the authors provided the construction of an ad-

4A star is a set which possesses a point from which all the rays cross the boundary only once.
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Figure 1.2: The effect of the tuning parameter κ on the critical points of the navigation
function φ given in (1.1). The left figure shows the presence of undesired stable local
minima for κ = 2. The right figure shows the absence of undesired stable local minima
for κ = 4.

justable NF, in sphere words, where the robot can update its NF for each new obstacle
encountered within a spherical sensing region. This work also extended the applicability
of the NF for an unbounded workspace and introduced an online parameter tuning algo-
rithm. In [Filippidis and Kyriakopoulos, 2012], [Filippidis and Kyriakopoulos, 2013], the
authors provided a sufficient condition based on the curvature of the obstacle boundary
which extended the applicability of NF to obstacles with focally admissible surfaces with-
out the need for a diffeomorphism. It is shown that with proper parameter tuning, the
environment which may not be diffeomorphic to the sphere world but contains obstacles
which are sufficiently curved, is almost globally navigable.

Another research work [Paternain et al., 2017], extended the NF-based approach for
ellipsoidal obstacles wherein the authors provided a sufficient condition on the eccentricity
of the obstacles. However, this methodology is limited to obstacles which are not too flat.
Recently, in [Kumar et al., 2022], the authors removed the flatness limitation presented
in [Paternain et al., 2017], by providing a controller, in an ellipsoidal world, which locally
transforms the region near the obstacle into a spherical region by using the information
related to the Hessian of the ellipsoid. In [Sun and Tanner, 2015], the NF-based approach
is adapted for the case of a moving target. For a robot operating in a sphere world,
governed by double integrator dynamics, with proper parameter tuning, the authors
provide almost global convergence guarantees to a circular disk around the moving target,
using the control of the form of the negative gradient of the time-varying navigation
function. This work was then extended in [Li and Tanner, 2018] to star worlds, wherein
the author introduced a novel computationally efficient diffeomorphism between a given
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Figure 1.3: The robot trajectory obtained using navigation function-based approach
proposed in [Koditschek and Rimon, 1990].

star world and the respective sphere world. Recently, in [Chen et al., 2020], the authors
extended the work in [Sun and Tanner, 2015] to the case of moving obstacles in a sphere
world satisfying certain workspace validity assumptions.

One of the drawbacks of the above-mentioned NF-based approaches is their inability
to abstract the time needed to carry out a navigation task, which restricts one from
employing NF-based autonomous navigation strategies in a time-critical environment.
This issue is tackled in [Loizou, 2011b], [Loizou, 2017], wherein the authors proposed
a new concept of navigation transformation which consists of a diffeomorphism which
transforms a given sphere world into a point world such that the spherical obstacles are
mapped to an isolated set of points. In the point world, the final trajectory between
any two locations is simply represented by the line segment joining those two points.
This allows one to create time abstracting navigation controllers, for almost all pairs of
valid initial and target locations, due to the capability to analytically obtain collision-free
distance-to-the-target Euclidean metrics. In [Kim and Khosla, 1992], the authors pro-
posed a harmonic function (HF) based approach for the obstacle avoidance problem for a
mobile robot in a known environment. The main idea is to consider a robot as a particle
suspended in a fluid with a uniform flow having a sink at the desired target location
with source at the boundaries of the obstacles. In [Loizou, 2011a], the authors provided
a methodology for the design of a harmonic potential-based NF, with almost global con-
vergence properties, in a priori known environments which are diffeomorphic to the point
world. The proposed NF is correct-by-construction i.e., it does not have undesired local
minima by design. Recently, this work was extended in [Loizou and Rimon, 2021], for un-
known environments with a sensor-based robot navigation approach. However, similar to
[Paternain et al., 2017], the complete shape of the obstacles is assumed to become known
when the robot visits their respective neighborhoods. Most of the NF-based approaches
in the literature are only applicable to environments with either unknown spherical obsta-
cles or known obstacles which are diffeomorphic to a sphere. Moreover, these NF-based
approaches generate undesired unstable equilibria (saddle points) away from the prede-
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fined target location due to the topological obstruction induced by the motion space in
the presence of obstacles for any smooth transversal vector field, as shown in [Koditschek
and Rimon, 1990], which renders these approaches at best almost globally convergent.

There are several research works which do not explicitly define the navigation func-
tion, but instead directly design vector fields based on the topological properties of the
environment to satisfy the predefined objectives. For example, in [Arslan and Koditschek,
2016], [Arslan and Koditschek, 2019], the authors proposed a novel sensor-based reac-
tive5 navigation approach for a single robot operating in an unknown environment with
sufficiently curved convex obstacles. The central idea is to construct a compact obstacle-
free local neighbourhood around the robot by identifying the hyperplanes separating the
robot body from the obstacles in the surrounding, as shown by the shaded green color
in Fig. 1.4(left), and then guiding the robot towards the projection of the target lo-
cation onto the boundary of this compact set. If the workspace satisfies the obstacle
curvature condition [Arslan and Koditschek, 2019, Assumption 2], see Fig. 1.4(right),
then for almost all initial locations, the robot trajectories obtained using the separating
hyperplane-based approach converge asymptotically to the target location, while strictly
decreasing the Euclidean distance to the target location [Arslan and Koditschek, 2019,
Theorem 3], see Fig. 1.5 (left). When the environment consists of obstacles that do
not satisfy the obstacle curvature condition [Arslan and Koditschek, 2019, Assumption
2], which is the case with obstacles O1 and O2 in Fig. 1.5(right), the hyperplane-based
approach generates undesired local minima, as can be seen in Fig. 1.5 (right).
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Figure 1.4: The left figure illustrates the process behind the construction of the local
obstacle-free neighbourhood, represented by the shaded green color, using separating
hyperplanes. The right figure provides a representation of the obstacle curvature as-
sumption [Arslan and Koditschek, 2019, Assumption 2]. Obstacles O1 and O3 satisfy the
assumption, whereas obstacle O2 does not.

5the term reactive means that motion is generated by a vector field arising from some closed-loop
feedback policy issuing online force or velocity commands in real time as a function of the instantaneous
robot state.
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Figure 1.5: Trajectories of a point robot obtained using the separating hyperplane-based
approach [Arslan and Koditschek, 2019]. The left figure shows the trajectories of a point
robot from 8 different locations (diamond symbols), converging to the target location at
the origin. The right figure illustrates the presence of undesired local minima near the
obstacles that do not satisfy the curvature condition.

This work is then extended in [Vasilopoulos and Koditschek, 2018] to the case of a
two-dimensional partially known non-convex environment wherein geometric information
regarding the non-convex obstacles is assumed to be a priori known. When the robot
visits the neighbourhood of these known obstacles, a diffeomorphic transformation is used
to convert them into disk-shaped obstacles. In [Berkane, 2021], the author proposed a
controller design based on Nagumo’s theorem [Nagumo, 1942], [Blanchini et al., 2008] for
general convex obstacles. In this work, the authors ensured the forward invariance of the
obstacle-free space by projecting the ideal velocity control vector, pointing towards the
target, onto the tangent cone at the boundary of the obstacle whenever it points towards
the obstacle. However, similar to the NF-based approaches, this approach suffers from the
presence of undesired equilibria. To tackle this issue, the authors in [Berkane et al., 2019]
proposed a hybrid controller which renders the target location globally asymptotically
stable in the case of a single spherical obstacle. The robot operates in the move-to-target
mode6 when it is away from the obstacle and switches to the obstacle-avoidance mode
close to the obstacle. The strategy is similar to the bug path planning algorithms [Lumel-
sky and Stepanov, 1986]. This work is then extended in [Berkane et al., 2021a] to the case
of known environments with sufficiently disjoint ellipsoidal obstacles, leading to global
asymptotic stabilization of the target location. The switching mechanism proposed in
[Berkane et al., 2019], [Berkane, 2021], [Berkane et al., 2021a] generates discontinuous
control laws in the case of single integrator dynamics. In [Vrohidis et al., 2018], the

6The move-to-target mode is referred to as the mode where the control applied to the robot is the
ideal control pointing towards the target in the absence of obstacles.
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authors proposed a discontinuous vector field design in a sphere world, for a robot mod-
elled as a single integrator, that ensures obstacle avoidance and facilitates the use of the
prescribed performance control technique to impose predetermined convergence to the
desired location.

1.2 Thesis contributions

The contributions presented in this dissertation are summarized as follows:

• In Chapter 3, a hybrid feedback controller for autonomous robot navigation in two-
dimensional environments with arbitrarily-shaped convex obstacles is proposed.
Existing approaches such as NF-based approaches [Paternain et al., 2017], [Vergi-
nis and Dimarogonas, 2021], [Kumar et al., 2022], the separating hyperplane-based
approach [Arslan and Koditschek, 2019], and the control Lyapunov barrier function
based approach [Reis et al., 2020], are tailored for sufficiently curved obstacles with
smooth boundaries. Due to the topological obstruction induced by the motion space
[Koditschek and Rimon, 1990], the above-mentioned approaches provide at best al-
most global asymptotic stability guarantees. Additionally, their direct application
to environments with flat obstacles with nonsmooth boundaries can generate un-
desired stable local minima, as shown in Fig. 1.5 (right). In contrast, the proposed
hybrid feedback autonomous navigation scheme, consisting of two modes of opera-
tion, namely, the move-to-target mode and obstacle-avoidance mode), is applicable
to robots navigating in environments with arbitrarily-shaped convex obstacles (in-
cluding obstacles with nonsmooth boundaries). Most importantly, the proposed
hybrid control scheme is endowed with global asymptotic stability guarantees. The
proposed hybrid feedback controller can be implemented in a priori unknown envi-
ronments using the measurements obtained via a range-bearing sensor mounted on
the robot. The obtained results have been published in [Sawant et al., 2023a] and
[Sawant et al., 2022a].

• In Chapter 4, a hybrid feedback controller, endowed with global asymptotic stabil-
ity guarantees, for autonomous robot navigation in two-dimensional environments
with arbitrarily-shaped non-convex obstacles, is presented. An instrumental ob-
stacle reshaping technique is introduced to (virtually) modify the obstacles, in a
less conservative manner (without necessarily convexifying them), in a way that
ensures the uniqueness of the closest point on the modified obstacles from the
robot’s center–a useful feature for our obstacle avoidance technique. The exist-
ing autonomous robot navigation algorithms assume that the non-convex obstacles
have smooth boundaries (references), and/or the robot can pass through any pair of
obstacles, see for instance [Arslan and Koditschek, 2019, Assumption 1], [Berkane
et al., 2021a, Section V-C3] and [Verginis and Dimarogonas, 2021, Assumption 2].
In contrast, the proposed control strategy applies to environments with arbitrarily-
shaped non-convex obstacles and does not require the obstacles to be pairwise
separated as long as there exists a safe path between the initial and the target
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locations. Moreover, the proposed autonomous navigation algorithm can be imple-
mented in a priori unknown environments using the measurements obtained via a
range-bearing sensor mounted on the robot.
The work in this chapter has been reported in [Sawant et al., 2022b] and [Sawant
et al., 2023b].

• In Chapter 5, we propose a hybrid feedback controller for safe autonomous robot
navigation in three-dimensional environments with arbitrarily-shaped convex obsta-
cles. In comparison with the continuous control schemes presented in [Koditschek
and Rimon, 1992], [Paternain et al., 2017], [Arslan and Koditschek, 2019], which
guarantee safety and almost global asymptotic stability, the proposed hybrid feed-
back controller is endowed with safety and global asymptotic stability guarantees.
We also propose a modification to the hybrid feedback controller, tailored for the
sphere world, that ensures a monotonic decrease in the distance between the robot’s
center and the target location. The proposed autonomous navigation algorithm can
be implemented in a priori unknown environments, relying on range-bearing mea-
surements. The results presented in this chapter have been reported in [Sawant
et al., 2024].

1.3 List of publications

The materials presented in this dissertation are based on the following publications:
Journal Articles:

• M. Sawant, S. Berkane, I. Polushin and A. Tayebi, “Hybrid Feedback for Au-
tonomous Navigation in Planar Environments with Convex Obstacles,” IEEE Trans-
actions on Automatic Control, 68(12), pp. 7342 - 7357, 2023.

• M. Sawant, I. Polushin and A. Tayebi, “Hybrid Feedback Control Design for Non-
convex Obstacle Avoidance,” IEEE Transactions on Automatic Control, 2024, (Sub-
mission no. 23-0869, accepted).

Peer-Reviewed Conference Proceedings:

• M. Sawant, A. Tayebi and I. Polushin, “Autonomous Navigation in Environments
with Arbitrary Non-convex Obstacles,” In Proc. of 61st IEEE Conference on De-
cision and Control (CDC), Cancun, Mexico, pp. 7208-7213, 2022.

• M. Sawant, I. Polushin and A. Tayebi, “Hybrid Feedback for Three-dimensional
Convex Obstacle Avoidance,” Submitted to 64th IEEE Conference on Decision and
Control (CDC), Milan, Italy, 2024 (Under review).

1.4 Thesis outline

The thesis is organized as follows:
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Chapter 2 presents the notations, background and preliminaries used throughout
the thesis. Section 2.1 provides general notations used in the thesis. Section 2.2 presents
tools allowing one to obtain the closest points on a given set from any given location.
Section 2.3 provides mathematical definitions of several geometrical subsets of Rn used
throughout this work. Section 2.4 provides the hybrid systems framework used in this
work.

Chapter 3 is dedicated to the design and stability analysis of the hybrid feedback
controller for point-mass robots operating in planar environments with arbitrarily-shaped
convex obstacles. Section 3.3 deals with the design of the hybrid feedback controller.
Section 3.4, deals with the forward invariance and the stability properties of the resulting
hybrid closed-loop system. Section 3.5 presents an implementation procedure for the
proposed hybrid feedback controller in a priori unknown environments. This is followed
by computer simulation results in Section 3.6.

Chapter 4 considers the problem of autonomous robot navigation in planar envi-
ronments with arbitrarily-shaped obstacles (possibly non-convex). Section 4.3 provides
an instrumental obstacle reshaping technique that will be used for the design of the
obstacle-avoidance strategy presented in Section 4.4. Section 4.5, deals with the forward
invariance and the stability properties of the resulting hybrid closed-loop system. Section
4.6 presents a sensor-based implementation procedure in a priori unknown environments.
This is followed by computer simulation results in Section 4.7.

Chapter 5 deals with the design of a hybrid feedback controller for robots operating
in three-dimensional environments with arbitrarily-shaped convex obstacles. Section 5.3,
deals with the control design. Section 5.4, deals with the forward invariance and stability
properties of the resulting hybrid closed-loop system. Section 5.5 offers a modified version
of the hybrid feedback controller tailored for sphere worlds. Section 5.6 presents a sensor-
based implementation procedure in a priori unknown environments. Section 5.7 provides
some simulation results.

Chapter 6 summarizes the findings of this thesis and presents some possible future
directions.

Appendices A, B, C and D contain the detailed proofs of lemmas and theorems
stated throughout the thesis.



Chapter 2

Background and Preliminaries

2.1 General notations

The sets of real, non-negative real and natural numbers are denoted by R, R≥0 and N,
respectively. We identify vectors using bold lowercase letters. The Euclidean norm of
a vector p ∈ Rn is denoted by ∥p∥, and an Euclidean ball of radius r > 0 centered at
p is represented by Br(p) = {q ∈ Rn|∥q− p∥ ≤ r}. Given two vectors p ∈ R2 and
q ∈ R2, we denote by ψ(p,q) the angle from p to q. The angle measured in a counter-
clockwise manner is considered positive, and vice versa. Given two locations p,q ∈ Rn,
the notation path(p,q) represents a continuous path in Rn, which joins these locations.
A set A ⊂ Rn is said to be pathwise connected if for any two points p,q ∈ A, there
exists a continuous path, joining p and q, that belongs to the same set i.e., there exists a
path(p,q) ⊂ A [Willard, 2012, Definition 27.1]. The set of n−dimensional unit vectors
is given by Sn−1 := {p ∈ Rn|∥p∥ = 1}. The three-dimensional Special Orthogonal
group is defined by SO(3) := {R ∈ R3×3|R⊤R = I3,det(R) = 1}. For a given vector
x := [x1, x2, x3]

⊤ ∈ R3, we define x× as the skew-symmetric matrix, which is given by

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (2.1)

For two sets A,B ⊂ Rn, the relative complement of B with respect to A is denoted by
A \ B = {a ∈ A|a /∈ B}. Given a set A ⊂ Rn, the symbols ∂A,A◦, Ac and Ā represent
the boundary, interior, complement and the closure of the set A, respectively, where
∂A = Ā\A◦. The number of elements in a set A is given by card(A). Let A and B be
subsets of Rn, then the dilation ofA by B is denoted byA⊕B = {a+b|a ∈ A,b ∈ B}, and
the erosion of A by B is denoted by A⊖B = {x ∈ Rn|x+b ∈ A, ∀b ∈ B} [Haralick et al.,
1987]. Additionally, the set B is referred to as a structuring element. Given a positive
scalar r > 0, the r−dilated version of the set A ⊂ Rn is denoted by Dr(A) = A⊕Br(0).
The r−neighbourhood of the set A is then denoted by Nr(A) = Dr(A) \ A◦.
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2.2 Projection maps

2.2.1 Projection on a set

Given a closed set A ⊂ Rn and a point x ∈ Rn, the Euclidean distance of x from the set
A is evaluated as

d(x,A) = min
q∈A
∥x− q∥. (2.2)

The set PJ (x,A) ⊂ A, which is defined as

PJ (x,A) = {q ∈ A|∥x− q∥ = d(x,A)}, (2.3)

is the set of points in the set A which are at the distance of d(x,A) from x. If
card(PJ (x,A)) is one, then the element of the set PJ (x,A) is denoted by Π(x,A).

2.2.2 Sets with positive reach

Given a closed set A ⊂ Rn, the set Unp(A), which is defined as

Unp(A) = {x ∈ Rn|card(PJ (x,A)) = 1}, (2.4)

denotes the set of all x ∈ Rn for which there exists a unique point in A nearest to x.
Then, for any x ∈ A, the reach of set A at x, denoted by r(A,x) [Rataj and Zähle, 2019,
Pg 55], is defined as

r(A,x) := sup{r ≥ 0|B◦
r(x) ⊂ Unp(A)}. (2.5)

The reach of set A is then given by

reach(A) := inf
x∈A

r(A,x). (2.6)

If a closed set has reach greater than or equal to r > 0, then any location less than r
distance away from the set will have a unique closest point on the set.

2.3 Geometric subsets of Rn

2.3.1 Line

Let q ∈ Rn\{0} and p ∈ Rn, then a line passing through p in the direction of q is defined
as

L(p,q) := {x ∈ Rn|x = p+ λq, λ ∈ R}. (2.7)

If λ ≥ 0 (respectively, λ > 0), then we get the positive half-line L≥(p,q) (respectively,
L>(p,q)). Similarly, we define the negative half-lines for λ ≤ 0 and λ < 0 as L≤(p,q)
and L<(p,q), respectively.
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2.3.2 Line segment

Let p ∈ Rn and q ∈ Rn, then a line segment joining p and q is given by

Ls(p,q) := {x ∈ Rn|x = λp+ (1− λ)q, λ ∈ [0, 1]}. (2.8)

2.3.3 Hyperplane

Given p ∈ Rn and q ∈ Rn\{0}, a hyperplane passing through p and orthogonal to q is
given by

P(p,q) := {x ∈ Rn|q⊺(x− p) = 0}. (2.9)

The hyperplane divides the Euclidean space Rn into two half-spaces i.e., a closed positive
half-space P≥(p,q) and a closed negative half-space P≤(p,q) which are obtained by
substituting ‘=’ with ‘≥’ and ‘≤’ respectively, in the right-hand side of (2.9). We also use
the notations P>(p,q) and P<(p,q) to denote the open positive and the open negative
half-spaces such that P>(p,q) = P≥(p,q)\P(p,q) and P<(p,q) = P≤(p,q)\P(p,q).

2.3.4 Supporting hyperplane

Given a closed convex set A ⊂ Rn, p ∈ ∂A and q ∈ Rn\{0}, a hyperplane P(p,q) is a
supporting hyperplane [Boyd et al., 2004] to A at point p, if

q⊺(x− p) ≤ 0, ∀x ∈ A. (2.10)

In this case, the vector q is normal to the set A at p, the supporting hyperplane P(p,q)
is tangent to A at p, and the negative half-space P≤(p,q) contains A.

2.3.5 Convex cone

Given c ∈ Rn,p1 ∈ R2\c and p2 ∈ R2\c, a convex cone [Boyd et al., 2004] C(c,p1,p2)
with its vertex at c and its edges passing through p1 and p2 is defined as

C(c,p1,p2) := {x ∈ R2|x = c+ λ1(p1 − c) + λ2(p2 − c), ∀λ1 ≥ 0,∀λ2 ≥ 0}. (2.11)

2.3.6 Conic hull

Given a set A ⊂ Rn and a point x ∈ Rn, the conic hull [Boyd et al., 2004, Section 2.1.5]
CH(x,A) for the set A, with its vertex at x is defined as

CH(x,A) :=
⋃

p,q∈A

C(x,p,q). (2.12)

The conic hull CH(x,A) is the smallest convex cone with its vertex at x that contains
the set A i.e., A ⊂ CH(x,A).
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2.3.7 Tangent cone and normal cone

Given a closed set A ⊂ Rn, the tangent cone to A at a point x ∈ Rn [Aubin et al., 2011,
Definition 11.2.1] is defined by

TA(x) :=

{
w ∈ Rn

∣∣∣∣lim inf
τ→0+

d(x+ τw,A)
τ

= 0

}
. (2.13)

The tangent cone to the set A at x is the set that contains all the vectors whose directions
point from x either inside or tangent to the set A. Given a tangent cone to a set A at
a point x, the normal cone to the set A at the point x, as defined in [Rataj and Zähle,
2019, Pg 58], [Aubin et al., 2011, Pg 475], is given by

NA(x) :=
{
p ∈ Rn

∣∣p⊺w ≤ 0,∀w ∈ TA(x)
}
. (2.14)

2.4 Hybrid system framework

A hybrid dynamical system [Goebel et al., 2012] is represented using differential and
difference inclusions for the state ξ ∈ Rn as follows:

H :

{
ξ̇ ∈ F(ξ), ξ ∈ F ,
ξ+ ∈ J(ξ), ξ ∈ J ,

(2.15)

where

• F ⊂ Rn is the flow set,

• J ⊂ Rn is the jump set,

• the flow map F : Rn ⇒ Rn describes the continuous flow on F ,

• the jump map J : Rn ⇒ Rn describes the discrete jump on J .
Note that ⇒ denotes a set-valued mapping, and ξ+ denotes the value of ξ after an

instantaneous jump. The hybrid system (2.15) is defined by its data and denoted as
H = (F ,F,J ,J).

The solutions to a hybrid system are obtained on a hybrid time domain parameterized
by the amount of time t ∈ R≥0 spent in the flow set and by the number of jumps j ∈ N
of the state. A hybrid time domain E ⊂ R≥0 × N is defined as

E =
J−1⋃
j=0

([tj, tj+1]× {j}) , (2.16)

for some finite sequence 0 = t0 ≤ t1 ≤ · · · ≤ tJ , with the last interval (if existent) possibly
in the form ([tJ−1, T ) × {J}) with T finite or T = +∞. On each hybrid time domain
there is a natural ordering of points: (t, j) ⪯ (t′, j′) if t ≤ t′ and j ≤ j′.

A hybrid arc is a function ϕ : E→ Rn, where dom ξ is a hybrid time domain, and for
each fixed j ∈ N, the function t → ξ(t, j) is a locally absolutely continuous function on
the interval Ij = {t : (t, j) ∈ E}. A hybrid arc ϕ is a solution to the hybrid system H if
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• ϕ(0, 0) ∈ F ∪ J , where F denotes the closure of F ,

• for all j ∈ N such that Ij has nonempty interior

ϕ(t, j) ∈ C for all t ∈ I◦j ,
ϕ̇(t, j) ∈ F(ϕ(t, j)) for almost all t ∈ Ij,

(2.17)

• for all (t, j) ∈ dom ϕ such that (t, j + 1) ∈ dom ϕ,

ϕ(t, j) ∈ J ,
ϕ(t, j + 1) ∈ J(ϕ(t, j)),

(2.18)

A solution ξ to H is maximal if it cannot be extended by flowing nor jumping, and it
is complete if its domain dom ϕ is unbounded. We denote SH as the set of all maximal
solutions ϕ to H. One can prove the existence of nontrivial solutions for the given hybrid
system H by verifying the hybrid basic conditions [Goebel et al., 2012, Assumption 6.5]
which are stated below:

Assumption 2.1 (Hybrid basic conditions) :

1. F and J are closed subsets of Rn;

2. F is outer semicontinuous and locally bounded relative to F , F ⊂ dom F, and
F(ξ) is convex for every ξ ∈ F ;

3. J is outer semicontinuous and locally bounded relative to J , and J ⊂ dom J.

2.5 Preliminary lemmas

Next, we provide a few lemmas that describe some properties of the sets with positive
reach, which will be used later.

Lemma 2.1 Let A ⊂ Rn be a closed convex set and q ∈ Rn\A. Then the vector (q −
Π(q,A)) is normal to Dr(A) at Π(q,Dr(A)) and the hyperplane P(Π(q,Dr(A)), (q −
Π(q,A))) is a supporting hyperplane to Dr(A) at Π(q,Dr(A)) for r ∈ [0, d(q,A)].

Proof See Appendix A.1.

Lemma 2.1 provides a property of the projection (2.3) such that given a closed convex
set A and a point q ∈ Rn outside the set A, the vector joining the projection of q on
A with the point q is always normal to the dilated versions of the set A, Dr(A) where
r ∈ [0, d(q,A)].

Lemma 2.2 Given a closed set A ⊂ Rn, we define the set G = (A⊕ B◦
α(0))

c . If
reach(A) ≥ α, then reach(G) ≥ α.
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Proof See Appendix A.2.

According to Lemma 2.2, if a closed set A has reach greater than or equal to a non-
negative scalar α, then the complement of its dilation with the open Euclidean ball of
radius α also has reach greater than or equal to α.

Lemma 2.3 Consider a closed set A ⊂ Rn and scalars α ≥ β ≥ 0. If reach(A) ≥ α,
then reach(Dβ(A)) ≥ α− β.

Proof See Appendix A.3.

According to Lemma 2.3, if a closed set A, with reach greater than or equal to a non-
negative scalar α, is dilated by some distance β less than or equal to α, then reach of the
dilated set is greater than or equal to α− β.



Chapter 3

Autonomous Navigation in Planar
Environments with Convex
Obstacles

3.1 Introduction

In this chapter, we deal with the autonomous robot navigation problem in environments
with arbitrarily-shaped convex obstacles. One of the widely explored techniques in this
context is the NF-based approach which is directly applicable to sphere world environ-
ments [Koditschek and Rimon, 1992], [Verginis and Dimarogonas, 2021] or environments
that contain sufficiently curved obstacles [Filippidis and Kyriakopoulos, 2012]. To make
it applicable in environments with more general convex and star-shaped obstacles, one
can make use of diffeomorphic mappings provided in [Koditschek and Rimon, 1992], [Li
and Tanner, 2018], to transform a given environment into a sphere world. However, to
perform these diffeomorphic mappings, the robot must have global knowledge about the
environment, which makes the NF-based mobile robot navigation schemes less attrac-
tive in practical applications. In [Arslan and Koditschek, 2019], the authors proposed
a purely reactive power diagram-based approach for robots operating in environments
cluttered with unknown but sufficiently separated and strongly convex obstacles while
ensuring almost global asymptotic stabilization of the target location. This approach has
been extended in [Vasilopoulos and Koditschek, 2018], for partially known non-convex
environments, wherein it is assumed that the robot has the geometrical information of
the non-convex obstacles but not their locations in the workspace. However, using the
continuous time-invariant approaches discussed above, one can at best guarantee almost
global asymptotic stability [Koditschek and Rimon, 1990]. In [Sanfelice et al., 2006] and
[Casau et al., 2019], hybrid control techniques are used to ensure robust global asymptotic
stabilization of a target location in R2, while avoiding collision with a single spherical
obstacle. The approach in [Sanfelice et al., 2006] has been extended in [Poveda et al.,
2018] to steer a group of planar robots in formation towards the source of an unknown
but measurable signal, while avoiding a single obstacle. In [Braun et al., 2018], the au-
thors proposed a hybrid control law to globally asymptotically stabilize a class of linear
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systems while avoiding neighbourhoods of unsafe isolated points. In other works such as
[Matveev et al., 2011], [Berkane et al., 2021a], the proposed hybrid control techniques
allow the robot to operate either in the obstacle-avoidance mode when it is close to an
obstacle or in the move-to-target mode when it is away from the obstacles. The strategies
used in these research works are similar to the point robot path planning algorithms re-
ferred to as the bug algorithms [Lumelsky and Stepanov, 1986]. For some special obstacle
arrangements, the robot retraces a previously followed path instead of converging to the
predefined target location, in which case these algorithms terminate the path planning
process establishing the failure to converge to the target location due to the presence of
a closed trajectory around the target location. The authors in [Matveev et al., 2011],
[Berkane et al., 2021a], overcame these special scenarios by restricting the inter-obstacle
arrangements.

In this chapter, we propose a hybrid controller that allows to steer a holonomic robot,
modelled as a single integrator, to reach a predefined target location while avoiding
convex obstacles in two-dimensional environments. The proposed controller, enjoying
global asymptotic stability guarantees, operates in the move-to-target mode when the
robot is away from the obstacles and in the obstacle-avoidance mode when it is close to
an obstacle. The main contributions of the proposed research work are as follows:

1. Global asymptotic stability: The proposed autonomous navigation solution provides
global asymptotic stability guarantees for robots operating in two-dimensional en-
vironments with convex obstacles of arbitrary shapes. Note that the few existing
results in the literature achieving such strong stability results are of hybrid type
and are restricted to elliptically-shaped convex obstacles [Berkane et al., 2021a].

2. Arbitrarily-shaped convex obstacles: The proposed hybrid feedback controller is
applicable to environments consisting of convex obstacles with arbitrary shapes.
Compared to this, the recently developed separating hyperplane-based approach
is restricted to smooth obstacles which satisfy some curvature conditions [Arslan
and Koditschek, 2019, Assumption 2]. Similarly, in [Berkane et al., 2021a], the
obstacles are assumed to be ellipsoidal.

3. Arbitrary inter-obstacle arrangements: There are no restrictions on the inter-obstacle
arrangements such as those in [Matveev et al., 2011, Assumption 10], [Berkane et al.,
2021a, Theorem 2], except for the widely used mild ones stated in Assumption 1,
i.e., the robot can pass in between any two obstacles while maintaining a positive
distance.

4. Continuous vector field: The proposed hybrid controller generates continuous veloc-
ity input trajectories as long as the robot is initialized away from the boundaries of
the unsafe regions. This is a very interesting feature for practical implementations
that distinguishes our approach with respect to the hybrid approach of [Berkane
et al., 2021a].

5. Applicable in a priori unknown environments: The proposed obstacle avoidance
approach can be implemented using only range scanners (e.g., LiDAR) without a
priori global knowledge of the environment (sensor-based technique).



21

Target location𝟎 

𝒪𝑖  

𝑟
+
𝑟𝑠  

γ
a  

γ
𝑠  γ 

𝑟 

𝐱 

𝒪𝑗  

𝑟 +
𝑟𝑠+

γ 

𝒲 

Π x,𝒪𝒾  

Figure 3.1: Workspace W with two convex obstacles separated by the distance greater
than or equal to 2(ra + γ). The γ−neighbourhood of dilated obstacles is further parti-
tioned into three regions such that γ > γs > γa > 0.

The results presented in this chapter have been published in [Sawant et al., 2022a] and
[Sawant et al., 2023a].

3.2 Problem formulation

We consider a disk-shaped robot with radius r ≥ 0, operating in a two-dimensional
Euclidean space W ⊆ R2 as shown in Fig. 3.1. The workspace contains a finite number
of compact convex obstacles Oi ⊂ W , i ∈ {1, . . . , b} := I, where b ∈ N is the total number
of obstacles. The task is to reach a predefined target location from any obstacle-free
region while avoiding collisions. Without loss of generality, consider the origin 0 as the
target location. Throughout this chapter, we make the following feasibility assumption.

Assumption 3.1 The minimum separation between any pair of obstacles is greater than
2r i.e., for all i, j ∈ I, i ̸= j, one has d(Oi,Oj) := min

p∈Oi,q∈Oj

∥p− q∥ > 2r.

According to Assumption 3.1 and the compactness of the obstacles, there exists a
minimum separating distance between any pair of obstacles r̄ = min

i,j∈I,i ̸=j
d(Oi,Oj) > 2r.

Moreover, for collision-free navigation we require d(0,OW)−r > 0, where OW :=
⋃

i∈IOi.
We define a positive real r̄s as

r̄s = min
{ r̄
2
− r, d(0,OW)− r

}
. (3.1)

We then pick an arbitrarily small value rs ∈ (0, r̄s) as the minimum distance that the
robot should maintain with respect to any obstacle.

The obstacle-free workspace is then defined as

W0 :=W\
⋃
i∈I

O◦
i .
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Given y ≥ 0, an eroded version of the obstacle-free workspace, Wy is defined as

Wy :=W\
⋃
i∈I

(
Dy(O◦

i )
)
⊂ W0. (3.2)

Hence, Wra with ra = r + rs is a free workspace with respect to the center of the robot
i.e., x ∈ Wra ⇐⇒ Bra(x) ⊂ W0. The robot is governed by a single integrator dynamics

ẋ = u, (3.3)

where u ∈ R2 is the control input. Given a target location in the interior of the obstacle-
free workspace i.e., 0 ∈

(
Wra

)◦
, we aim to design a feedback control law such that:

1. the obstacle-free space Wra is forward invariant,

2. the target location x = 0 is a globally asymptotically stable equilibrium for the
closed-loop system.

3.3 Hybrid control for obstacle avoidance

In the proposed scheme, similar to [Berkane et al., 2021a], depending upon the value of a
mode indicator variable m ∈ {−1, 0, 1} := M, the robot operates in two different modes,
namely the move-to-target mode (m = 0) when it is away from the obstacles and the
obstacle-avoidance mode (m ∈ {−1, 1}) when it is in the proximity of any obstacle. In
the move-to-target mode, the robot moves straight towards the target whereas during
the obstacle-avoidance mode the robot moves around the nearest obstacle, either in the
clockwise direction (m = 1) or in the counter-clockwise direction (m = −1). We allow
the robot to exit the obstacle-avoidance mode whenever it can move straight towards the
target without reducing its proximity from the nearest obstacle. We ensure that when
the robot switches between the two modes, the velocity vector remains continuous.

Now, notice that, if the robot were to arbitrarily choose between the clockwise and
counter-clockwise motions when it switches from themove-to-target mode to the obstacle-
avoidance mode, then for some inter-obstacle arrangements the robot might get trapped
in a closed trajectory around the target location. To avoid this situation, we propose a
switching strategy which allows the robot to decide between the clockwise motion and
the counter-clockwise motion based on its location and a line segment joining its initial
location and the target location. When the robot operates in the obstacle-avoidance
mode, it always attempts to go towards this line, which in turn ensures that the robot
does not get trapped in a closed trajectory around the target and eventually converges
to it. The results presented in this Chapter have been published in [Sawant et al., 2023a]
and [Sawant et al., 2022a].

3.3.1 Hybrid control law

The proposed hybrid control law is given as

u(x,m) = −κσ(x,m)x+ κ[1− σ(x,m)]v(x,m), (3.4a)
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ṁ = 0,︸ ︷︷ ︸
(x,m)∈FW

m+ = L(x,m)︸ ︷︷ ︸
(x,m)∈JW

, (3.4b)

where κ > 0, and x ∈ Wra is the location of the center of the robot. The discrete
variable m ∈ M is the mode indicator. The update law L(x,m) ∈ M in (3.4b) will be
provided later in Section 3.3.3. The flow set FW and the jump set JW will be defined
later in Section 3.3.2. Next, we provide the construction of the vector v(x,m) ∈ R2 along
with the scalar function σ(x,m) ∈ [0, 1], used in (3.4a).

The vector v(x,m) ∈ R2 is defined as

v(x,m) =

[
0 m
−m 0

]
x− Π(x,OW)

∥x− Π(x,OW)∥
∥x∥, (3.5)

where Π(x,OW), defined in Section 2.2.1, is the closest point on the boundary of the
obstacle-occupied workspace from the robot’s center. It should be noted that if the
center of the robot is within the (ra + γad)−neighbourhood of any obstacle, let us say
Ok, k ∈ I, where γad ∈ (0, r̄s − rs), then the projection Π(x,OW) is unique and equals
Π(x,Ok). In this case, the rotational vector v(x,m) allows the robot to revolve around
the obstacle Ok. The direction of the rotation depends on the value of the mode indicator
variable. When m = 1 the robot moves in the clockwise direction, whereas if m = −1
it moves in the counter-clockwise direction with respect to the boundary of the obstacle
Ok.

The scalar function σ :Wra ×M→ [0, 1] defined as

σ(x,m) = 1 +m2
[
η(ϱ(x))− 1

]
, (3.6)

allows for a continuous transition between the stabilizing vector −x and the rotational
vector v(x,m) whenever the robot operates in the obstacle-avoidance mode i.e., m ∈
{−1, 1}, depending on its proximity with respect to the boundary of the set OW . In
(3.6), the scalar function ϱ(x) evaluates the proximity of the robot with the unsafe region
OW , and is given by

ϱ(x) = d(x,OW)− ra. (3.7)

According to (3.6), whenever m ∈ {−1, 1}, the value of σ(x,m) equals to the value of a
non-decreasing continuous scalar function η : R→ [0, 1], defined as

η(ϱ(x)) =


1, ϱ(x) ≥ γs,

ϱ(x)−γa
γs−γa

, γa ≤ ϱ(x) ≤ γs,

0, ϱ(x) ≤ γa,

(3.8)

where 0 < γa < γs < γ. The scalar function η is constructed such that the influence of
the stabilizing control vector in (3.4a) decreases and the contribution from the rotational
control vector increases, as the robot approaches the γa−neighbourhood of the obstacle-
occupied workspace OW . Next, we provide a geometric construction of the flow set FW
and the jump set JW , used in (3.4b).
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Figure 3.2: Partitions of the local neighbourhood of obstacle Oi, i ∈ I based on the
location of the target.

3.3.2 Geometric construction of the flow and jump sets

We define an γ−neighbourhood around the dilated obstacle Dra(Oi), i ∈ I, where γ ∈
(0, r̄s−rs).1 For an obstacleOi, i ∈ I, the compact tubular neighbourhoodNγ(Dra(Oi)) :=
Dra+γ(Oi)\

(
Dra(Oi)

)◦
is partitioned into several sub-regions, as shown in Fig. 3.2, which

then will be used to construct the jump and the flow sets used in (3.4).

Back region

Ri
b is defined as

Ri
b = {q ∈ Nγ(Dra(Oi))|q⊺(q− Π(q,Oi)) ≤ 0}. (3.9)

The back region Ri
b is a closed connected subset of the region Nγ(Dra(Oi)) such that

for all q ∈ Ri
b the angle measured from the vector q to the vector q− Π(q,Oi) satisfies

ψ(q, (q− Π(q,Oi))) ∈ [π
2
, 3π

2
].

Gates

Gim, m ∈ {−1, 1}, defined as

Gim =

{
q ∈ Nγ(Dra(Oi))|ψ(q, (q− Π(q,Oi))) =

−mπ
2

}
, (3.10)

are the regions where the vectors q and (q− Π(q,Oi)) are orthogonal to each other. In
Proposition 3.1, it is shown that, while operating in the obstacle-avoidance mode, away

1Note that the value of the parameter γ can be small. Since this parameter adds a safety margin
around the robot’s body, one can choose a sufficiently small value while compensating for the measure-
ment noise.
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from the boundary of the respective obstacle’s unsafe region, if the robot switches to
the move-to-target mode in the gate region, then the control input trajectories remain
continuous.

Front region

Ri
f is defined as

Ri
f = {q ∈ Nγ(Dra(Oi))|Ls(q,0) ∩ (Dra(Oi))

◦ ̸= ∅}. (3.11)

If the robot, located in the front region Ri
f , moves straight towards the origin, it will

eventually enter in the unsafe region related to obstacle Oi. To avoid this, in this region,
the robot should switch to the obstacle-avoidance mode.

Side regions

Ri
m, m ∈ {−1, 1}, are constructed as

Ri
1 = {q ∈ Nγ(Dra(Oi))\

(
Ri

b ∪Ri
f

)
|ψ(q,q− Π(q,Oi)) ∈ [−π/2, 0]},

Ri
−1 = {q ∈ Nγ(Dra(Oi))\

(
Ri

b ∪Ri
f

)
|ψ(q,q− Π(q,Oi)) ∈ [0, π/2]}.

(3.12)

Since the intersection of the interior of the conic hull [Boyd et al., 2004, Section 2.1.5]
for the dilated obstacle Dra(Oi), having its vertex at the origin, with the side regions is
empty, for x ∈ Ri

m,m ∈ {−1, 1}, the robot can move straight towards the target location,
see Fig. 3.2.

Remark 3.1 For an arbitrary compact convex obstacle Oi, i ∈ I, the projection of a
point q /∈ Oi onto the obstacle Oi i.e., Π(q,Oi) is continuous with respect to q. As a
result, the respective back region Ri

b defined in (3.9), is a compact connected subset of the
γ−neighbourhood of the obstacle Oi. Hence, one has for all q ∈ Nγ(Dra(Oi))\Ri

b

q⊺(q− Π(q,Oi)) > 0. (3.13)

This concludes the partitioning of the γ−neighbourhood of the dilated obstacleDra(Oi)
for some i ∈ I. Similar regions are defined for all remaining obstacles. Next, we utilize
these regions to define the flow and the jump sets for each mode of operation.

Flow and jump sets (move-to-target mode)

In this mode, the robot moves straight towards the origin. Consider Fig. 3.3 for a visual
representation. As discussed earlier, the robot moving straight towards the origin should
switch to the obstacle-avoidance mode whenever it enters Ri

f , ∀i ∈ I, otherwise it will
collide with obstacle Oi. Hence, we define the jump set J i

0 for each obstacle i ∈ I as

J i
0 := Dra+γs(Oi) ∩ R̄i

f , (3.14)

where γs ∈ (0, γ).
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However, if the center of the robot is located in the back or side regions of an obstacle
Oi, i ∈ I, the robot can navigate safely with respect to obstacle Oi towards the target
in the move-to-target mode. Hence, the flow set of the move-to-target mode F i

0 for each
obstacle Oi, i ∈ I, defined as

F i
0 :=

(
Wra\

(
Dra+γs(Oi)

)◦) ∪Ri
−1 ∪Ri

1 ∪Ri
b, (3.15)

includes the union of the back and side regions of the respective obstacle. Inspired by
[Berkane et al., 2021a, (17)], considering all obstacles, the flow and jump sets for the
move-to-target mode m = 0 are defined as

F0 :=
⋂
i∈I

F i
0, J0 :=

⋃
i∈I

J i
0 . (3.16)

Next, we define the flow and jump sets for the obstacle-avoidance mode.

Flow and jump sets (obstacle-avoidance mode)

This mode is activated only if the robot enters in the γ−neighbourhood of some obstacle
Oi, i ∈ I, which according to Assumption 3.1 can only be valid for at most one obstacle
at any given time. We now consider the construction of the flow and jump sets for the
obstacle-avoidance mode (m ∈ {−1, 1}) with a specific obstacle Oi, as shown in Fig. 3.3.
Here the mode indicator variable m = −1 and m = 1, prompts the robot to move in the
counter-clockwise and clockwise directions with respect to the obstacle’s boundary ∂Oi,
respectively. Hence for m ∈ {−1, 1} the flow sets are constructed as follows:

F i
m := Ri

m ∪ ERi
f\Ri

b, (3.17)

where the set ERi
f is defined as

ERi
f = {q ∈ Nγ(Dra(Oi))|Ls(q,0) ∩ (Dra+γa(Oi))

◦ ̸= ∅}. (3.18)

where γa ∈ (0, γs). The jump set J i
m of the respective mode, which includes the relative

complement of the set Wra with respect to the interior of the flow set
(
F i

m

)◦
, is defined

as
J i

m := (Wra\(Dra+γ(Oi))
◦) ∪Ri

b ∪
(
Ri

−m\ERi
f

)
. (3.19)

Finally, considering all the obstacles, the flow and jump sets for the obstacle-avoidance
mode are defined as

Fm :=
⋃
i∈I

F i
m, Jm :=

⋂
i∈I

J i
m, (3.20)

where m ∈ {−1, 1}. Finally the flow set FW and the jump set JW in (3.4a) are defined
as

FW :=
⋃
m∈M

(Fm × {m}), JW :=
⋃
m∈M

(Jm × {m}), (3.21)

with Fm,Jm defined in (3.16) for m = 0 and in (3.20) for m ∈ {−1, 1}. Next, we provide
the formalism for the update law L used in (3.4b).
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Figure 3.3: Geometric representations of the flow and jump sets for different modes of
operation related to obstacle Oi, i ∈ I. The left figures (m = 0) illustrate the case where
the robot operates in the move-to-target mode and moves straight toward the target
location. The middle figures (m = −1) illustrate the case where the robot, operating
in the obstacle-avoidance mode, moves in the counter-clockwise direction with respect
to ∂Oi. The right figures (m = 1) illustrate the case where the robot, operating in the
obstacle-avoidance mode, moves in the clockwise direction with respect to ∂Oi.

3.3.3 Mode selection map L(x,m)

The update law L(x,m), used in (3.4b), allows the robot to update the value of the mode
indicator variable m ∈ M when the state (x,m) belongs to the jump set JW , which is
defined in (3.21), is given as

L(x,m) =

{
0, (x,m) ∈ Jm × {−1, 1},

M(x), (x,m) ∈ J0 × {0}.
(3.22)

When the robot enters in the jump set of the obstacle-avoidance mode, the value of the
mode indicator variable switches to 0. The mapping M, which is based on the current
location of the center of the robot x with respect to the hyperplane P(0, s) is defined as

M(x) :=


{−1}, x⊺s < 0,

{−1, 1}, x⊺s = 0,

{1}, x⊺s > 0,

(3.23)
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where s ∈ R2\{0} is an arbitrary non-zero constant vector. The switching strategy in
(3.23), allows the robot to choose between the clockwise and counter-clockwise motions
based on its current location whenever the state (x,m) belongs to the jump set of the
move-to-target mode, J0 × {0}. This strategy is crucial to establish global asymptotic
convergence of the robot towards the target location, irrespective of the arrangements of
the obstacles as it is going to be stated later in Theorem 3.1.

It is shown that if, at some point in time, the center of the robot does not belong
to the half-line L>(0, ν−1(s)), then it will never enter the half-line L>(0, ν−1(s)) for all

future times under the control law (3.4), where νz(p) :=

[
0 z
−z 0

]
p, with p ∈ R2 and z ∈

{−1, 1}. This ensures that our algorithm will never generate a closed trajectory around
the target location. Moreover, the robot cannot move indefinitely in either P>(0, s) or
P<(0, s) i.e., during the motion it will either directly converge to the origin or intersect
the half-line L>(0, ν1(s)), and with every consecutive intersection with this half-line, the
robot gets closer to the origin. This concludes the definition of the update law L in
(3.4b).

Control design summary: The proposed hybrid feedback control law can be sum-
marized as follows:

• Parameters selection: the target location is set at the origin with 0 ∈ W◦
ra .

The state variables x and m are initialized such that x(0, 0) ∈ Wra and m ∈ M.
The gain parameter κ is set to a positive value. The scalar parameter γ, used in
the construction of the flow set FW and the jump set JW , is selected such that
γ ∈ (0, r̄s − rs), where r̄s is defined in (3.1). The parameters γa and γs are set to
satisfy 0 < γa < γs < γ.

• Move-to-target mode m = 0: this mode is activated when x ∈ F0 and m = 0.
As per (3.4a) and (3.6), the control input is given by u(x,m) = −κx, causing x
to evolve along the line segment Ls(0,x) towards the origin. If, at some instance
of time, (x,m) ∈ J0 × {0}, the mode indicator variable m is updated using (3.22),
and the control input switches to the obstacle-avoidance mode.

• Obstacle-avoidance mode m ∈ {−1, 1}: this mode is activated when (x,m) ∈
Fm × {m} for some m ∈ {−1, 1}. As per (3.4a) and (3.6), the control input is
given by u(x,m) = κη(ρ(x))v(x,m), causing x to evolve in the γ−neighborhood
of the nearest modified obstacle until (x,m) ∈ Jm × {m}, where m ∈ {−1, 1}.
When (x,m) ∈ Jm × {m} with m ∈ {−1, 1}, the control input switches to the
move-to-target mode by setting m = 0, as per (3.22).

This concludes the design of the proposed hybrid controller.

3.4 Forward invariance and stability analysis

As noted earlier, the robot operating with the proposed hybrid control law avoids one
obstacle at a time. In general, while moving in the workspace, the robot might encounter
more than one obstacle. To model this change of obstacle to be avoided, we introduce a
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discrete variable k ∈ I, which corresponds to the index of the obstacle being avoided by
the robot while operating in the obstacle-avoidance mode. The hybrid evolution of the
state k is given as

k̇ = 0,︸ ︷︷ ︸
ξ∈F

k+ = K(ξ)︸ ︷︷ ︸
ξ∈J

, (3.24)

where
ξ := (x,m, k) ∈ Wra ×M× I =: K, (3.25)

is the composite state vector. The flow set F and the jump set J are defined as

F = FW × I, J = JW × I. (3.26)

The update law for the state k ∈ I, denoted as K(ξ), is designed to change the value
of the variable k to the index of the closest obstacle whenever the robot encounters the
jump set of the move-to-target mode. Otherwise, the value remains unchanged. Hence,
K(ξ) is given as

K(ξ) =

{
k′, ξ ∈ J k′

0 × {0} × I,
k, ξ ∈ Jm × {m} × I,m ∈ {−1, 1}.

(3.27)

The hybrid closed-loop system, resulting from the control law (3.4b) and auxiliary
state hybrid dynamics (3.24), is given by

ẋ
ṁ

k̇

= u(ξ)
= 0
= 0︸ ︷︷ ︸

ξ̇=F(ξ), ξ∈F ,

x+

m+

k+

= x
∈ L(ξ)
∈ K(ξ)︸ ︷︷ ︸

ξ+=J(ξ), ξ∈J ,

(3.28)

where u(ξ) is defined in (3.4a), and the update laws L(ξ) and K(ξ) are provided in
(3.22)-(3.23) and (3.27), respectively. The definitions of the flow set F and the jump set
J are provided in (3.21), (3.26). In the next section, we analyze the hybrid closed-loop
system (3.28) in terms of the forward invariance of the obstacle-free state space K along
with the stability properties of the target set A, which is defined as

A := {0} ×M× I. (3.29)

Next, we analyze the forward invariance of the obstacle-free workspace, which then
will be followed by the convergence analysis. First, we show that the hybrid closed-loop
system (3.28) satisfies the hybrid basic conditions, as stated in Assumption 2.1, which
allows us to invoke some useful results on hybrid systems in our proofs.

Lemma 3.1 The hybrid closed-loop system (3.28) with the data (F ,F,J ,J) satisfies the
hybrid basic conditions stated in Assumption 2.1.

Proof See Appendix B.1.
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For safe autonomous navigation, the robot should belong to the obstacle-free workspace
W0 for all time i.e., the state x must always evolve within the robot-centered free
workspace Wra , regardless of the variables k and m. This is equivalent to showing that
the set K, defined in (3.25), is forward invariant with respect to the hybrid closed-loop
system (3.28). This is stated in the next Lemma.

Lemma 3.2 (Safety) Under Assumption 3.1, for the obstacle-free set K, defined in
(3.25), and the hybrid closed-loop system (3.28), the set K is forward invariant.

Proof See Appendix B.2.

The proposed switching strategy between the move-to-target mode and the obstacle-
avoidance mode is similar to the strategies used in the sensor-based path planning al-
gorithms for a point robot, referred to as bug algorithms [Ng and Bräunl, 2007]. As
discussed earlier, in [Matveev et al., 2011], [Berkane et al., 2021a], the authors imposed
restrictions on the inter-obstacle arrangements to avoid closed trajectories around the tar-
get location. In the proposed approach, the non-existence of closed trajectories, around
the target location, is guaranteed by design without imposing any restrictions on the
inter-obstacle arrangements except for the ones stated in Assumption 3.1. The next
lemma shows that the robot operating with the proposed hybrid controller (3.4b), in en-
vironments satisfying Assumption 3.1, does not get stuck in any closed trajectory around
the target location.

Lemma 3.3 Consider the hybrid closed-loop system (3.28) and let Assumption 3.1 hold.
If ξ(t0, j0) ∈ Wra\L>(0, ν−1(s)) × {0} × I at some (t0, j0) ∈ dom ξ, then ξ(t, j) /∈
L>(0, ν−1(s))×M× I for all (t, j) ⪰ (t0, j0).

Proof See Appendix B.3.

Lemma 3.3 shows that if the robot, operating in the obstacle-free workspace Wra ,
with the move-to-target mode, does not belong to the half-line L>(0, ν−1(s)), see Fig.
B.3, at some time (t0, j0), then it can never intersect the half-line L>(0, ν−1(s)) for all
(t, j) ⪰ (t0, j0). An example is provided in Fig. B.3, showing that the robot’s trajectory,
initialized at x2, does not intersect the half-line L>(0, ν−1(s)) represented in red. The
main reason behind this behaviour is the switching strategy (3.23) for the mode indicator
variable when the solution enters in the obstacle-avoidance mode, which assigns the
direction of motion that always steers the robot away from the half-line L>(0, ν−1(s)).
This feature ensures that the robot cannot revolve around the target location. Next, we
provide one of our main results which establishes the fact that for all initial conditions in
the obstacle-free set K, the proposed hybrid controller not only ensures safe navigation
but also guarantees global asymptotic convergence to the predefined target location at
the origin.

We define the Lebesgue measure zero set Z0 :=M0 ×M× I such that

M0 :=
⋃
i∈I

(∂Dra(Oi) ∩ J i
0), (3.30)
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is the intersection of the boundaries of the unsafe region and the move-to-target mode
jump set. The intersection of the move-to-target mode jump set J0 × {0} × I and the
obstacle-avoidance mode jump set Jm × {m} × I,m ∈ {−1, 1}, is not empty, for x ∈
M :=

⋃
i∈I{n

(−1,i)
ra ,n

(1,i)
ra }, where

n(m,i)
y = arg max

q∈∂Dy(Oi)∩Gi
m

∥q∥. (3.31)

Note that n
(m,i)
y is the farthest point from the origin, which belongs to the boundary of

the dilated obstacle Dy(Oi) such that ψ(q,q − Π(q,Oi)) is −mπ/2. For example, see

points n
(m,i)
ra ,m ∈ {−1, 1}, depicted in Fig. 3.2. As stated next in Theorem 3.1, the

solution will reach the Zeno setM×M × I =: Z when it is initialized in the Lebesgue
measure zero set Z0.

Theorem 3.1 Consider the hybrid closed-loop system (3.28) and let Assumption 3.1
hold. Then,

i) the obstacle-free set K is forward invariant,

ii) the set A is almost globally asymptotically stable,

iii) the solutions will converge to A from all initial conditions except from the set of
Lebesgue measure zero Z0 where the solutions may stay jumping in Z (Zeno behav-
ior),

Proof See Appendix B.5.

It is worth pointing out that the almost global stability result established in Theorem
3.1 is not due to the existence of undesired saddle points as in [Koditschek and Rimon,
1990], but due to the potential existence of a Zeno behaviour [Goebel et al., 2012]. If the
robot is initialized inM0, which consists of all the inner boundaries of the front regions,
it may not converge to the target and instead will converge to some isolated points where
it will experience a Zeno behaviour by switching indefinitely between the two modes of
operation. This behaviour is obtained only if the jumps are prioritized over the flows in
the implementation.

Remark 3.2 It is possible to avoid the Zeno behaviour by prioritizing flows over jumps,
however, this arrangement does not always satisfy the useful structural and robustness
properties of the set of solutions guaranteed by the hybrid basic conditions [Goebel et al.,
2012, Assumption 6.5]. Another practical way (different from prioritizing the flows over
jumps), that helps in avoiding the Zeno behaviour, consists in introducing a small enough
period τ > 0 (dwell time) between consecutive jumps when ξ ∈ M. This will force the
solution ξ, after switching once, to leave the setM through the flow.
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Remark 3.3 (Continuous input) The continuous scalar function σ, as described in
(3.6), helps to guarantee the continuity of the control input vector when transitioning
from the move-to-target mode to the obstacle-avoidance mode. On the other hand, the
control law switches from the obstacle-avoidance mode to the move-to-target mode at
the gate region. This ensures that the obstacle-avoidance control vector κv(x,m) and
the stabilization control vector −κx are equivalent at the location where the control law
switches back to the move-to-target mode, thereby helping to guarantee the continuity of
the control input. This interesting feature of the proposed hybrid control law (3.4b) is
formalized in Proposition 3.1.

Proposition 3.1 Consider the closed-loop system (3.3) and let Assumption 3.1 hold. If
ξ(t0, j0) ∈ K\Z0, for some (t0, j0) ∈ dom ξ, then the control input trajectories u(ξ(t, j)),
generated according to (3.4b), are continuous ∀(t, j) ⪰ (t0, j0).

Proof See Appendix B.6.

According to Proposition 3.1, if the solution is in the set K\Z0 at some time (t0, j0) ∈
dom ξ during the evolution, then the proposed hybrid feedback control law (3.4b) ensures
that continuous control input trajectories are generated for all subsequent times (t, j) ⪰
(t0, j0). This concludes the stability analysis of the hybrid closed-loop system (3.28).
Next, we provide a procedure to implement the proposed hybrid feedback controller
(3.4b) for safe autonomous navigation of a mobile robot operating in a priori known and
unknown environments.

3.5 Sensor-based implementation procedure

Without loss of generality, we assume that the target location is at the origin, and
we set m(0, 0) = 0. The non-zero vector s, used in (3.23), can be selected such that
x(0, 0) ∈ L>(ν1(s)). Then the robot can implement the proposed hybrid control law
(3.4), using Algorithm 1. Since the parameters γ > γs > γa > 0 can be tuned of-
fline, Algorithm 1 should be implemented excluding the steps highlighted in blue color.
The blue-colored steps are essential for the sensor-based implementation in an a priori
unknown environment.

In the case where the environment is a priori unknown, we choose a sufficiently small
value of the parameter γ ∈ (0, r̄s − rs), which ensures that the target location is at a
distance greater than ra+γ from the unsafe region. We assume that the robot is equipped
with a range-bearing sensor with an angular scanning range of 360◦ and sensing radius
Rs > ra + γ. Due to the limited sensing radius, the robot can only detect a subset of the
obstacles Ix ⊆ I, defined as

Ix = {i ∈ I|d(x,Oi) ≤ Rs}. (3.32)

Based on the local sensing information, we provide a procedure that allows to identify
whether the state (x,m) belongs to the jump set JW (3.21) or not, when m(0, 0) = 0,
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Algorithm 1 General implementation of the proposed hybrid control law (3.4).

1: Set target location at the origin 0.
2: Initialize x(0, 0) ∈ Wra , m(0, 0) = 0, γ ∈ (0, r̄s − rs). Pick s ∈ R2\{0}, used in

(3.23), such that x(0, 0) ∈ L≥(0, ν1(s)).
3: Measure x.
4: if m = 0, then
5: Implement Algorithm 2.
6: if (x,m) ∈ J0 × {0}, then
7: Set γs = d(x,OW)− ra.
8: Select γa = (0, γs).
9: Update m← L(x,m) using (3.22), (3.23).
10: end if
11: end if
12: if m ∈ {−1, 1}, then
13: Implement Algorithm 2.
14: if (x,m) ∈ Jm × {m}, then
15: Update m← L(x,m) using (3.22), (3.23).
16: end if
17: end if
18: Execute u(x,m) (3.4), used in (4.29).
19: Go to step 3.

which is summarized in Algorithm 2. The range-bearing sensor is modeled using a polar
curve rg(x, θ) :Wra × [−π, π]→ [0, Rs],

rg(x, θ) = min

Rs, min
y ∈ ∂OW

atan2(y − x) = θ

∥x− y∥

 , (3.33)

which represents the distance between the center of the robot and the boundary of the
unsafe region ∂OW , measured by the sensor, in the direction defined by the angle θ.
Given the location of the center of the robot x, along with the bearing angle θ, the
mapping λ(x, θ) :Wra × [−π, π]→W0, given by

λ(x, θ) = x+ rg(x, θ)[cos θ, sin θ]
⊺, (3.34)

evaluates the Cartesian coordinates of the detected point.
The robot should identify the minimum distance from the set OW ,

d(x,OW) = min
θ∈[−π,π]

rg(x, θ). (3.35)

If d(x,OW) is greater than or equal to ra + γ, then, according to (3.14), (3.16) and
(3.21), the state (x,m) /∈ J0 × {0}, i.e., the robot should continue to operate in the
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move-to-target mode. On the other hand, if d(x,OW) ∈ [ra, ra + γ], which, according
to Assumption 3.1, can be true for only one obstacle, let us say k ∈ Ix, then the robot
should identify whether the state x belongs to the back region of the respective obstacle
Rk

b or not. The robot should locate the projection of its center onto the obstacle Ok i.e.,
Π(x,Ok), which is unique and given by

Π(x,Ok) = λ(x, θ∗), (3.36)

where
θ∗ = argmin

θ∈[−π,π]

rg(x, θ). (3.37)

Then, the robot should verify the following condition:

x⊺(x− Π(x,Ok)) ≤ 0. (3.38)

The satisfaction of (3.38) implies that the state x belongs to the back region of the
obstacle Ok, and, according to (3.14), (3.16) and (3.21), (x,m) /∈ J0×{0} implying that
the robot can continue to operate in the move-to-target mode. Otherwise, if (3.38) is not
satisfied, the robot should further investigate the possibility of collision while operating
in the move-to-target mode.
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Figure 3.4: The left figure shows a robot, with radius r = 0.5m, using a range-bearing
sensor to locate the partial boundary of the obstacles within the sensing range Rs = 2.5m,
wherein the observed boundary of the nearest obstacle is shown in green and the observed
boundaries of the remaining obstacles are represented by the blue colored curves. The
right figure displays the range measurements obtained with a sensor located at x for
θ ∈ [−π, π]. Similar colors have been used to represent the correlation between the
points on the boundary of the observed obstacles (left figure) and the range/bearing
measurements (right figure).

Next, the robot should identify the boundary curve ðOk ⊂ ∂Ok, which is a set of
points which belongs to the boundary of the obstacle Ok and are in the line-of-sight of
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the center of the robot. Figure 3.4 illustrates the measurements obtained via a range-
bearing sensor when the robot is located in the obstacle-free space. Since the obstacles
are disjoint with a minimum separation greater than 2r as per Assumption 3.1, the range-
bearing measurement graph, shown in Fig. 3.4, consists of convex curves, one for each
of the obstacles present within the sensing region BRs(x).

For each obstacle Oi, i ∈ Ix, the robot can identify θi, θi ∈ [−π, π] such that the
measurements related to the obstacle Oi, i ∈ Ix, lie within the angular range of

[
θi, θi

]
,

as shown in Fig. 3.4. Since the measurements are acquired in the line-of-sight format,
there cannot be any overlap between the angular intervals related to any two obstacles
i.e.,

[
θi, θi

]
∩
[
θj, θj

]
= ∅, i, j ∈ Ix, i ̸= j. The robot should then identify

[
θk, θk

]
for the

obstacle Ok where
k =

{
i ∈ Ix|θ∗ ∈

[
θi, θi

]}
, (3.39)

then the set ðOk can be defined as

ðOk =
{
λ(x, θ) ∈ W0|θ ∈

[
θk, θk

]}
. (3.40)

𝟎 

𝐱 
𝑟 
𝑟𝑎  

Rs  

𝐱−1 

𝐱1 

𝟎1 

𝟎−1 
𝒪k  

𝜃𝑑  

Figure 3.5: Construction of the rectangle □(x), used in (3.42), based on the location of
the robot and the target location at the origin.

The robot should then construct a rectangle □(x) with its vertices located at the
points x−1,x1,0−1 and 01, as shown in Fig. 3.5, defined as[

xz

0z

]
=

[
x
0

]
+ zra

[
I
I

] [
cos θd
sin θd

]
, z ∈ {−1, 1}, (3.41)

where I is a 2 × 2 identity matrix, and θd = π/2 + atan2(x). It is straightforward to
notice that, the robot can continue to navigate in the move-to-target mode, safely with
respect to partial obstacle boundary ðOk, if and only if the following condition holds:

ðOk ∩□(x) = ∅. (3.42)

If the above condition is not satisfied at some (t, j), as illustrated in Fig. 3.5, then the
robot can conclude that continuing to move in the move-to-target mode will result in a
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collision with obstacle Ok i.e., (x(t, j),m(t, j)) ∈ J0×{0}, and that now it should operate
in the obstacle-avoidance mode. At this instant, the robot should set γs = d(x,OW)− ra
and γa = pγs, p ∈ (0, 1). Finally, as the robot starts operating in the obstacle-avoidance
mode, it should continuously verify (3.38) to identify whether it has entered the back
region of obstacle Ok. Satisfaction of (3.38), according to (3.14), (3.20) and (3.21),
implies that the state (x,m) belongs to the jump set of the obstacle-avoidance mode.

Remark 3.4 The proposed hybrid control law (3.4) requires the state (x,m) and the
projection of x on the nearest obstacle. Additionally, it also requires knowledge of all
positions along the visible boundary of the nearest obstacle when the robot enters the γ-
neighborhood of that obstacle. This additional information is crucial to determine whether
the state (x,m) belongs to the jump set of the move-to-target mode or not.

3.6 Simulation results

In this section, we present simulation results for a robot navigating in a priori unknown
environments. In both simulations discussed below, the robot is assumed to be equipped
with a range-bearing sensor (e.g. LiDAR) with an angular scanning range of 360◦ and
sensing radius Rs = 1.5m. The angular resolution of the sensor is chosen to be 0.5◦. The
simulations are performed in MATLAB 2020a.

In the first simulation scenario, we consider an environment with 6 convex obstacles, as
shown in Fig. 3.6. The robot with radius r = 0.3m is initialized at [−22, 0]⊺. The target
is located at the origin. The minimum safety distance rs = 0.1m. We set γ = 0.35m and
choose the location of the vector s, used in (3.23), to be [0,−1]⊺. We set the gain value
κ, used in (3.4), to be 0.2. Fig. 3.6 illustrates the motion of the robot towards the target
location while avoiding obstacles. Whenever the robot enters in the γ−neighbourhood of
any obstacle, it identifies the points on the boundary of that respective obstacle, which
are in the line-of-sight of the center of the robot, to investigate the collision possibilities
while operating in the move-to-target mode, as shown by the green curve in Fig. 3.6 for
obstacle O2 and O4. Then by verifying the condition in (3.42), the robot chooses either
to stay in the move-to-target mode or switch to the obstacle-avoidance mode. When the
robot operates in the obstacle-avoidance mode, it only needs to identify the closest point
on the nearest obstacle, as depicted with the pink dot in Fig. 3.6, which is used in the
rotational control vector v(x,m) (3.5). The complete simulation video can be found at
https://youtu.be/llRrbGfvGBA.

In the second simulation scenario, and as shown in Fig. 3.7, we consider an environ-
ment consisting of convex obstacles with smooth and non-smooth boundaries, and apply
the proposed hybrid controller (3.4) for a point robot navigation initialized at 14 different
locations in the obstacle-free workspace. The safety distance rs = 0.15, and the value of
the variable γ = 0.5. We set the gain value κ, used in (3.4), to be 0.2. For each initial-
ization, the vector s, used in (3.23), is selected such that the initial location of the robot
belongs to the half-line L≥(0, ν1(s)). It can be noticed that the point robot intersects
with the half-line L>(0, ν1(s)) and with each consecutive intersection it moves closer to

https://youtu.be/llRrbGfvGBA
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Algorithm 2 Sensor-based identification of the jump set.

1: Measure d(x,OW) defined in (3.35).
2: if m = 0, then
3: if d(x,OW) ≤ ra + γ, then
4: Identify Ok, k ∈ I using (3.37), (3.39).
5: Locate Π(x,Ok) defined in (3.36).
6: if x⊺(x− Π(x,Ok)) > 0, see (3.38), then
7: Identify ðOk using (3.40).
8: Construct □(x) using (3.41).
9: if ðOk ∩□(x) ̸= ∅, see (3.42), then
10: (x,m) ∈ J0 × {0}.
11: else
12: (x,m) /∈ J0 × {0}.
13: end if
14: else
15: (x,m) /∈ J0 × {0}.
16: end if
17: else
18: (x,m) /∈ J0 × {0}.
19: end if
20: end if
21: if m ∈ {−1, 1}, then
22: if d(x,OW) ≤ ra + γ, then
23: Identify Ok, k ∈ I using (3.37), (3.39).
24: Locate Π(x,Ok) defined in (3.36).
25: if x⊺(x− Π(x,Ok)) ≤ 0, see (3.38), then
26: (x,m) ∈ Jm × {m}.
27: end if
28: else
29: (x,m) ∈ Jm × {m}.
30: end if
31: end if
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Figure 3.6: Robot safely navigating towards the target (red dot), along with three
intermediate locations along the path.

the target location at the origin while ensuring obstacle avoidance, as shown in Fig. 3.7.
The complete simulation video can be found at https://youtu.be/_AwDqNY06rU.

Notice that when the robot operates in the move-to-target mode, in addition to its
location and the target location, it only requires its distance from the nearby obstacles.
When it operates in the obstacle-avoidance mode, it further requires the closest point
on the obstacle-occupied workspace OW . The robot needs to identify all the points on
the closest obstacle which are in the line-of-sight of the center of the robot only when it
operates in the move-to-target mode inside the γ−neighbourhood of any obstacle so that
it can evaluate the possibility of collision and switch to the obstacle-avoidance mode, as
stated in Remark 3.4.

The proposed hybrid feedback algorithm has been designed with some robustness
to noise properties through the additional safety layers around the obstacles and the
overlaps between the flow and jump sets. For example, for a range-bearing sensor with
a measurement error of ±δ, one should ensure that the separation between the γ−safety
layer and the γs−safety layer should be greater than δ. Similarly, to ensure collision-free
motion while operating in the obstacle-avoidance mode, the γa−safety layer should be
larger than δ, see Fig. 3.2 for the construction of these layers.

The simulation results given in Fig. 3.8 show the effectiveness of our proposed algo-
rithm implemented with noisy sensor data. We consider an environment similar to the
one shown in Fig. 3.6. The robot radius is 0.3m and the minimum safety distance is
rs = 0.1m. We set γ = 0.35m and choose the gain κ = 0.2. The range measurements are
affected by a Gaussian noise of 0 mean and 50mm standard deviation. Figure 3.8 shows
the trajectory of the robot, initialized at [−22, 0]⊺, converging to the target location at
the origin. Figure 3.9 indicates that even in the presence of measurement noise, the robot
maintains a safe distance from the obstacle-occupied workspace.

We next provide a comparison with the separating hyperplane approach recently

https://youtu.be/_AwDqNY06rU
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Figure 3.7: Robot trajectories starting from different locations.

Figure 3.8: Trajectory of a robot, equipped with a range-bearing sensor, converging safely
to the target location at the origin. The sensor measurements are affected by a Gaussian
noise of 0 mean and 50mm standard deviation.

developed in [Arslan and Koditschek, 2019]. Similar to our approach, this approach can
be implemented in a priori unknown environments using the information obtained via a
range-bearing sensor mounted on the robot. Contrary to our approach, this approach only
works for convex obstacles that satisfy the curvature condition [Arslan and Koditschek,
2019, Assumption 2]. When this assumption is not satisfied, the separating hyperplane
approach generates stable undesired equilibria. Some of the differences between our
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𝛾 

Figure 3.9: Distance of the center of the robot from the boundary of the obstacle-occupied
workspace as the robot converges to the target location.

approach and the separating hyperplane approach are given below.

In the separating hyperplane-based navigation approach, the robot has to construct a
local obstacle-free region by first identifying the lines joining the closest point on each ob-
stacle (within the sensing range) with its location, and then constructing the hyperplanes
perpendicular to these lines that separate the robot’s body from the obstacles. Then, at
each control update step, it has to locate the projection of the target location onto the
boundary of the local obstacle-free region. Compared to this approach, in our proposed
sensor-based hybrid feedback approach, the robot only requires the closest point on the
nearest obstacle when it operates in the obstacle-avoidance mode. It only needs to iden-
tify all the points on the closest obstacle, which are in the line-of-sight of the center of the
robot only when it operates in the move-to-target mode inside the γ−neighbourhood of
that obstacle, to evaluate the possibility of collision and switch to the obstacle-avoidance
mode, if necessary, as stated in Remark 3.4.

When the environment consists of obstacles that do not satisfy the obstacle curva-
ture condition [Arslan and Koditschek, 2019, Assumption 2], the separating hyperplane
approach generates undesired stable equilibria as shown in Fig. 3.10(left). On the other
hand, our proposed hybrid feedback approach always guarantees convergence to the tar-
get location regardless of the shape and size of the convex obstacles as shown in Fig.
3.10(right).

If the workspace satisfies the obstacle curvature condition [Arslan and Koditschek,
2019, Assumption 2], then for almost all initial locations, the robot trajectories obtained
using the separating hyperplane approach converge asymptotically to the target location,
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Figure 3.10: The left figure represents the robot trajectories obtained using the sensor-
based separating hyperplane approach [Arslan and Koditschek, 2019] showing the pres-
ence of stable undesired equilibria. The right figure presents the robot trajectories con-
verging to the target location under the proposed hybrid navigation scheme.
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Figure 3.11: The left figure shows the robot trajectories obtained using the hyperplane
approach [Arslan and Koditschek, 2019]. The right figure shows the robot trajectories
obtained using our proposed sensor-based hybrid feedback approach.

while strictly decreasing the Euclidean distance from the robot to the target location [Ar-
slan and Koditschek, 2019, Theorem 3], see Fig. 3.11(left). This feature is advantageous
compared to our approach. When the robot operates using our approach, it may travel
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away from the target when operating in the obstacle-avoidance mode, as seen in Fig.
3.11(right) for the robot trajectory initialized at [−7.5,−10.5]T , around the obstacle O1.

3.7 Conclusions

In this chapter, we proposed a hybrid feedback controller for safe autonomous navigation
in two-dimensional environments with arbitrary convex obstacles. The obstacles can have
nonsmooth boundaries and large sizes and can be placed arbitrarily provided that some
mild disjointedness requirements are satisfied as per Assumption 1. The proposed hybrid
feedback controller guarantees almost global asymptotic stability of the target location
in the obstacle-free workspace, as stated in Theorem 3.1. The mode-switching strategy
along with the geometric construction of the flow and jump sets ensures the continuity
of the control input, which is one of the interesting practical features of the proposed
hybrid control scheme. Since the obstacle avoidance part of the control law depends on
the projection of the center of the robot on the nearest obstacle, the proposed hybrid
control scheme can be applied in a priori unknown environments, as discussed in Section
VI.

𝒪1 𝒪2 𝒪1 𝒪2 
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𝒟𝛼 𝒪𝒲  

Figure 3.12: The left figure illustrates an obstacle-occupied workspace OW = O1 ∪ O2

that satisfies Assumption 3.1. The right figure depicts an obstacle-occupied workspace
that does not satisfy Assumption 3.1

We require obstacles to be sufficiently separated such that the robot can pass in
between any pair of obstacles, as stated in Assumption 3.1. As a result, by carefully
selecting the parameter γ1, the robot tackles one obstacle at a time. However, in most of
the realistic environments, wherein obstacles may have non-convex shapes, the satisfac-
tion of Assumption 3.1 is not always guaranteed. One of the main reasons that restrict
the direct application of the proposed hybrid feedback controller to environments that
do not satisfy Assumption 3.1 is the presence of multiple closest points from the center of
the robot to the obstacle-occupied workspace in the proximity of the unsafe region. For
example, consider Fig. 3.12 (left) which depicts an environment that satisfies Assumption
3.1. There exists α−neighborhood around the obstacles, where α > ra such that for any
location x ∈ Dα(OW) the projection of the center of the robot on the obstacle-occupied



43

workspace is unique. On the other hand, consider Fig. 3.12 (right) which depicts an
environment that does not satisfy Assumption 3.1. For any location on the line segment
Ls(x1,x2) there exist two closest points on the obstacle. Since the rotational control vec-
tor v(x,m), defined in (3.5), requires a unique projection Π(x,OW), the proposed hybrid
feedback controller (3.4) is not applicable for the environment in Fig. 3.12 (right).

To address this issue, in the next chapter, we propose an instrumental workspace
transformation operator which allows us to extend the applicability of the proposed hy-
brid feedback control law (3.4) to two-dimensional environments with arbitrarily shaped
non-convex obstacles.



Chapter 4

Autonomous Navigation in Planar
Environments with Non-Convex
Obstacles

4.1 Introduction

In this chapter, we propose an instrumental workspace transformation operator that al-
lows us to extend the applicability of the hybrid feedback control law proposed in Chap-
ter 3 to environments with arbitrarily-shaped non-convex obstacles. As discussed earlier,
the NF-based approaches [Koditschek and Rimon, 1992], [Filippidis and Kyriakopoulos,
2012], [Verginis and Dimarogonas, 2021], which with proper parameter tuning provide
almost global convergence to the target location, can be directly applied to the sphere
worlds and the point worlds. To extend the applicability of the NF approach to environ-
ments containing more general convex and star-shaped obstacles, one can employ diffeo-
morphic mappings developed in [Koditschek and Rimon, 1992] and [Li and Tanner, 2018].
However, the application of these diffeomorphic mappings requires a global knowledge
of the environment. The NF-based approach was extended in [Paternain et al., 2017] to
environments containing curved obstacles. The authors established sufficient conditions
on the curvature of the obstacles’ boundaries to guarantee almost global convergence to
a neighborhood of the a priori unknown target location. This approach is applicable to
convex, smooth, and sufficiently curved obstacles. In [Arslan and Koditschek, 2019], a
reactive power diagram-based approach was introduced for robots navigating in a priori
unknown environments. This approach guarantees almost global asymptotic stabilization
of the target location, provided that the obstacles are sufficiently separated and strongly
convex. This approach was further extended in [Vasilopoulos and Koditschek, 2018] to
handle partially known non-convex obstacles, where it is assumed that the robot has
the geometrical information about the non-convex obstacles but lacks knowledge of their
precise locations within the workspace. However, due to the topological obstruction in-
duced by the motion space in the presence of obstacles for any continuous time-invariant
vector fields [Koditschek and Rimon, 1990], the above-mentioned approaches provide at
best almost global convergence guarantees.

44
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In [Braun et al., 2020], the authors proposed a hybrid control law to globally asymp-
totically stabilize a class of linear systems while avoiding neighborhoods of unsafe points.
In [Matveev et al., 2011] and [Berkane et al., 2021a], hybrid control techniques were
employed to enable the robot to operate in the obstacle-avoidance mode when it is close
to an obstacle or in the move-to-target mode when located away from obstacles. These
strategies bear resemblance to bug algorithms [Lumelsky and Stepanov, 1986], which are
commonly used for point robot path planning. In [Berkane et al., 2021a, Definition 2],
the proposed hybrid controller is applicable in a priori known n−dimensional environ-
ments with sufficiently disjoint elliptical obstacles. On the other hand, in [Matveev et al.,
2011, Assumption 10], the obstacles are assumed to be smooth and sufficiently separated
from each other. In [Loizou et al., 2003], the authors proposed a discontinuous feed-
back control law for autonomous robot navigation in partially known two-dimensional
environments. When a known obstacle is encountered, the control vector aligns with
the negative gradient of the Navigation Function. However, when close to an unknown
obstacle, the robot moves along its boundary, relying on the local curvature information
of the obstacle. This method is limited to point robots and, similar to [Matveev et al.,
2011], assumes smooth obstacle boundaries without sharp edges.

In this chapter, we consider the autonomous robot navigation problem in a two-
dimensional space with arbitrarily-shaped non-convex obstacles which can be in close
proximity to each other. Unlike [Arslan and Koditschek, 2019], [Berkane et al., 2021a],
and [Sawant et al., 2023a], wherein the robot is allowed to pass between any pair of
obstacles, we require the existence of a safe path joining the initial and the target location,
as stated in Assumption 4.1. The main contributions of this chapter are as follows:

1) Asymptotic stability: The proposed autonomous navigation solution ensures asymp-
totic stability of the target location for the robot operating in planar environments
with arbitrary non-convex obstacles.

2) Arbitrarily-shaped obstacles: There are no restrictions on the shape of the non-
convex obstacles such as those mentioned in [Paternain et al., 2017], [Arslan and
Koditschek, 2019], [Berkane et al., 2021a], and their proximity with respect to
each other e.g., see [Matveev et al., 2011, Assumption 10], [Berkane et al., 2021a,
Definition 2], except for the mild feasibility assumptions 4.1 and 4.2.

3) Applicable in a priori unknown environments: The proposed obstacle avoidance
approach can be implemented using only range scanners (e.g., LiDAR) without an
a priori global knowledge of the environment which satisfies Assumption 4.1.

The results presented in this chapter have been published in [Sawant et al., 2022b] and
[Sawant et al., 2023b].

4.2 Problem formulation

We consider a disk-shaped robot operating in a two-dimensional, compact, arbitrarily-
shaped (possibly non-convex) subset of the Euclidean space W ⊂ R2. The workspace
is cluttered with a finite number of compact, pairwise disjoint obstacles Oi ⊂ W , i ∈
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Figure 4.1: Two examples of workspaces that do not satisfy Assumption 4.1.

{1, . . . , b}, b ∈ N. We define obstacle O0 := (W◦)c as the complement of the interior of
the workspace. The robot is governed by single integrator dynamics

ẋ = u, (4.1)

where x is the location of the center of the robot and u ∈ R2 is the control input. The
task is to reach a predefined obstacle-free target location from any obstacle-free region
while avoiding collisions. Without loss of generality, consider the origin 0 as the target
location.

We define the obstacle-occupied workspace as OW :=
⋃

i∈IOi, where the set I :=
{0, 1, ..., b}, contains indices corresponding to the disjoint obstacles. The obstacle-free
workspace is denoted by W0, where, given y ≥ 0, the y−eroded version of the obstacle-
free workspace i.e., Wy is defined as

Wy := R2 \ Dy(O◦
W) ⊂ W0. (4.2)

Let r > 0 be the radius of the robot and rs > 0 be the minimum distance that
the robot should maintain with respect to any obstacle for safe navigation. Hence,
Wra , with ra = r + rs, is a free workspace with respect to the center of the robot i.e.,
x ∈ Wra ⇐⇒ Bra(x) ⊂ W0. Since the obstacles can be non-convex and can be in close
proximity to each other, to maintain the feasibility of the robot navigation, we make the
following assumption:

Assumption 4.1 The interior of the obstacle-free workspace w.r.t. the center of the
robot, namely W◦

ra, is pathwise connected, and 0 ∈ W◦
ra.

According to Assumption 4.1, from any location in the set Wra , there exists at least
one feasible path to the target location. We require the origin to be in the interior of
the set Wra to ensure its stability, as discussed later in Theorem 4.1. Since we require
the interior of the set Wra to be pathwise connected, the environments, such as the ones
shown in Fig. 4.1, which do not satisfy Assumption 4.1, are invalid.

The obstacle-avoidance strategy, which will be detailed later in Section 4.4, requires
a unique closest point on the obstacle-occupied workspace from the robot’s center. This
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Figure 4.2: (a) The original obstacleOi ⊂ R2. (b) Dilation of obstacleOi by a structuring
element B◦

α(0), α > 0. (c) Erosion of the dilated obstacle Oi ⊕ B◦
α(0) by the same

structuring element B◦
α(0).

condition is not always satisfied in the case of non-convex and closely positioned ob-
stacles. Constructing convex hulls around the non-convex obstacles is a conservative
solution since it makes much of the obstacle-free workspace non-available for navigation.
Therefore, in Section 4.3, we will introduce an obstacle-reshaping technique that gener-
ates a modified obstacle-occupied workspace OM

W , in a less conservative manner (without
necessarily convexifying the obstacles), in a way that ensures uniqueness of the closest
point on OM

W from the robot’s center.
Similar to Wy in (4.2), the y−eroded modified obstacle-free workspace, which is de-

noted by Vy, is defined as
Vy := R2 \ Dy(OM

W )◦, (4.3)

where y ≥ 0. Hence, the set Vra denotes the modified obstacle-free workspace with
respect to the center of the robot. We construct OM

W such that the modified obstacle-free
workspace Vra is a subset of the original obstacle-free workspaceWra , as stated with more
details later in Remark 4.6.

Given a target location in the interior of the obstacle-free workspace, i.e., 0 ∈ (Wra)
◦,

as stated in Assumption 4.1, we aim to design a hybrid feedback control law such that:

1. the set Vra is forward invariant.

2. the target location x = 0 is globally asymptotically stable.

As it is going to be shown later, the obstacle reshaping procedure guarantees that if
the target location belongs to (Wra)

◦ then it also belongs to Vra .
The design process can be summarized as follows:

1. the proposed hybrid navigation scheme involves two modes of operation for the
robot: move-to-target and obstacle-avoidance. The design of the obstacle avoid-
ance strategy requires a unique projection onto the unsafe region within its prox-
imity. However, ensuring this uniqueness can be challenging in cases where ob-
stacles have arbitrary shapes and are in close proximity to one another. Hence,
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before implementing the hybrid navigation scheme, we first transform the obstacle-
occupied workspace using an obstacle-reshaping operator, as discussed later in
Section 4.3, to obtain the modified obstacle-occupied workspace. This operator
transforms the obstacle-occupied workspace and guarantees the uniqueness of the
projection of robot’s center onto the modified obstacle-occupied workspace in its
α-neighbourhood, where the parameter α is chosen as per Lemma 4.3.

2. when the center of the robot is outside the α-neighbourhood of the modified
obstacle-occupied workspace or the nearest disjoint modified obstacle does not
intersect with its straight path to the target location, the robot moves straight
towards the target in the move-to-target mode.

3. when the center of the robot enters the α−neighbourhood of the modified obstacle
that is obstructing its straight path towards the target location, the robot switches
to the obstacle-avoidance mode.

4. in the obstacle-avoidance mode, to avoid collision, the robot moves parallel to the
boundary of the nearest modified obstacle until it reaches the location at which the
following two conditions are satisfied: 1) the robot is closer to the target location
than the location where it entered in the obstacle-avoidance mode; 2) the straight
path towards the target from that location does not intersect with the nearest
disjoint modified obstacle. At this location, the robot switches back to the move-
to-target mode.

5. later in Lemma 4.4, we show that the target location belongs to the modified
obstacle-free workspace, and from any location away from the interior of the mod-
ified obstacle-occupied workspace, there exists a feasible path towards the target
location. Hence, with a consecutive implementation of steps 2 − 4 for the envi-
ronment with a modified obstacle-occupied workspace, we guarantee asymptotic
convergence of the center of the robot to the target location.

In the next section, we provide the transformation that modifies the obstacle-occupied
workspace OW which satisfies Assumption 4.1, such that the robot always has a unique
closest point on the modified obstacle-occupied workspace inside its α−neighbourhood.

4.3 Obstacle reshaping

Given an obstacle-occupied workspace OW that satisfies Assumption 4.1, the objective of
the obstacle-reshaping task is to obtain a modified obstacle-occupied workspace OM

W such
that every location less than α−distance away from the set OM

W has a unique closest point
on the set. The choice of the parameter α is crucial for the successful implementation
of the proposed navigation scheme, as stated later in Lemma 4.3. For now, we assume
that α > 0 such that the α−eroded obstacle-free workspaceWα is not an empty set. The
obstacle-reshaping operator M is defined as

M(OW , α) = (OW ⊕ B◦
α(0))⊖ B◦

α(0) =: OM
W . (4.4)
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The operator M first dilates the obstacle-occupied workspace OW using the open Eu-
clidean ball of radius α centered at the origin as the structuring element, and then erodes
the dilated set using the same structuring element, resulting in the modified obstacle-
occupied workspace OM

W . This process is similar to the closing operator commonly used
in the field of mathematical morphology [Haralick et al., 1987]. Note that the proposed
modification scheme is applicable to n−dimensional environments. Next, we discuss some
of the features of the obstacle-reshaping operator M.

Remark 4.1 Consider the modified obstacle-occupied workspace OM
W obtained after ap-

plying the operator M on the obstacle-occupied workspace OW with α > 0. Some of the
features of the obstacle-reshaping operator M, as stated in [Serra, 1986, Table 1], are as
follows:
Idempotent: the application of the transformation M to a modified obstacle OM

W with
the same structuring element (the open Euclidean ball B◦

α(0)), does not change the set
OM

W i.e.,
M(M(OW , α), α) = M(OW , α) = OM

W . (4.5)

Extensive: the modified set always contains the original set i.e., OW ⊂ OM
W .

Increasing: for any subset A ⊂ OW , the modified set AM always belongs to the modified
set OM

W i.e., AM ⊂ OM
W .

Notice that, by duality of dilation and erosion [Haralick et al., 1987, Theorem 25], the
dilation of a set, with an open Euclidean ball centered at the origin as the structuring
element, is equivalent to the erosion of the complement of that set with the same struc-
turing element. This allows us to provide alternative representations of the proposed
obstacle-reshaping operator, as stated in the next remark.

Remark 4.2 The α−eroded obstacle-free workspace Wα, defined according to (4.2), is
equivalent to the complement of the set obtained after dilating the obstacle-occupied
workspace OW with the open Euclidean ball of radius α centered at the origin B◦

α(0)
i.e., Wα = (OW ⊕B◦

α(0))
c. Therefore, by duality of dilation and erosion [Haralick et al.,

1987, Theorem 25], the modified obstacle-occupied workspace is equivalent to the comple-
ment of the set obtained after dilating Wα by the open Euclidean ball of radius α centered
at the origin B◦

α(0). In other words,

M(OW , α) = (Wα ⊕ B◦
α(0))

c =Wc
α ⊖ B◦

α(0). (4.6)

The operator M does not guarantee a unique projection onto the modified obstacle
from every point in its α−neighbourhood. To illustrate this fact, we consider an envi-
ronment with two obstacles OW = Oi ∪ Oj such that d(Oi,Oj) < 2α, as shown in Fig.
4.3. In Fig. 4.3b, one can see that the operation M(OW , α) has fused these obstacles
into a single set, represented in blue. However, depending on the arrangement of the ob-
stacles, it may happen that even though d(Oi,Oj) < 2α, the modified obstacle-occupied
workspace OM

W contains two disjoint modified obstacles which are less than 2α distance
apart from each other, as shown in Fig. 4.3a. In this case, it is possible to find a location
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Figure 4.3: Workspace with two obstacles OW = Oi ∪Oj such that d(Oi,Oj) < 2α. The
left figure shows that the set OM

W is not a connected set. The right figure shows that the
set OM

W is a connected set.

x less than α distance away from the set OM
W which has multiple closest points on the

set OM
W , as shown in Fig. 4.3a.

Observe that in Fig. 4.3a, the open Euclidean balls of radius α centered at the
locations c1 and c2 intersect each other. Hence, when the set OW ⊕ B◦

α(0) is eroded to
obtain the modified obstacle-occupied workspace (4.4), two disjoint modified obstacles
are obtained, even though d(Oi,Oj) < 2α. As a result, at the location x inside the
α−dilated modified obstacle, one can get multiple projections, as shown in Fig. 4.3a.

To guarantee a unique projection onto the modified obstacle from all locations in-
side its α−neighbourhood, we require the following assumption on the obstacle-occupied
workspace:

Assumption 4.2 For all x ∈ ∂Wα and for every n ∈ NWα(x) with ∥n∥ = 1, the
intersection B◦

α(x+ αn) ∩Wα is an empty set, where α > 0 such that Wα ̸= ∅.

According to Assumption 4.2, for all x on the boundary of the α−eroded obstacle-free
workspace Wα and for every unit normal vector n to Wα at x, the open Euclidean ball
Bα(x + αn) does not intersect with the set Wα. Figure 4.4a shows a two-dimensional
workspace that does not satisfy Assumption 4.2, whereas the inter-obstacle arrangement
shown in Fig. 4.4b satisfies Assumption 4.2.

Unlike [Arslan and Koditschek, 2019, Assumprtion 1], [Verginis and Dimarogonas,
2021, Assumprtion 2], and [Berkane et al., 2021a, Section V-C3], Assumption 4.2 does
not impose restrictions on the minimum separation between any pair of obstacles and
allows obstacles to be non-convex. If one assumes (as in the above-mentioned references)
that the obstacles are convex and the minimum separation between any pair of obstacles
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Figure 4.4: Workspace with two obstacle OW = Oi ∪ Oj such that d(Oi,Oj) < 2α. (a)
OW does not satisfy Assumption 4.2. (b) OW satisfies Assumption 4.2.

is greater than 2ra, then Assumption 4.2 along with Assumption 4.1 are satisfied, as
stated later in Proposition 4.1.

Next, we show that if the obstacle-occupied workspace OW satisfies Assumptions
4.1 and 4.2, then from any location in the α−neighbourhood of the modified obstacle-
occupied workspace OM

W , obtained using (4.4), the projection onto this modified obstacle-
occupied workspace is always unique.

Lemma 4.1 Under Assumption 4.2, for all locations x less than α distance away from
the modified obstacle-occupied workspace, there is a unique closest point from x to the set
OM

W i.e., ∀x ∈ Dα((OM
W )◦), card(PJ (x,OM

W )) = 1.

Proof See Appendix C.1.

Notice that in Fig. 4.3b, even though initially the obstacles were disjoint, the obstacle-
reshaping operator combined them into one pathwise connected set. In fact, for the
obstacle-occupied workspace that satisfies Assumption 4.2, if two obstacles are less than
2α distance apart, then the modified obstacle set obtained for the union of these two
obstacles is a connected set. Next, we elaborate on this feature of the proposed obstacle-
reshaping operator.

For each obstacle Oi, i ∈ I, we define the following set:

Oi,α =
⋃

k∈Ii,α

⋃
j∈Ik,α

Oj, (4.7)

where, for k ∈ I, the set Ik,α, which is defined as

Ik,α = {j ∈ I|d(Ok,Oj) < 2α}, (4.8)

contains the indices corresponding to obstacles that are at distances less than 2α from
obstacle Ok. According to (4.7) and (4.8), the distance between any proper subset of
the obstacle set Oi,α and its relative complement with respect to the same set, is always
less than 2α. In other words, if OC ⊂ Oi,α and OD = Oi,α \ OC, then the distance
d(OC,OD) < 2α. If Oj ⊂ Oi,α, j ∈ I \ {i}, then Oi,α = Oj,α. Next, we show that the
modified obstacle-occupied set OM

i,α, for any i ∈ I, is a connected set.
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Lemma 4.2 Under Assumption 4.2, the modified obstacle-occupied set OM
i,α, for any

i ∈ I, is a connected set.

Proof See Appendix C.2

According to Lemma 4.2, if the modified obstacle-occupied workspace contains two
disjoint modified obstacles, then the distance between these two modified obstacles will
always be greater than or equal to 2α.

Remark 4.3 When the obstacle is non-convex, the modified obstacle obtained using the
operator M, defined in (4.4), always occupies less workspace as opposed to the convex hull
[Boyd et al., 2004, Section 2.1.4] of the same obstacle. Although one obtains a unique
projection onto the convex hull of a given obstacle within its α−neighbourhood, the use
of the convex hull renders most of the obstacle-free workspace unavailable for the robot’s
navigation, as shown in Fig. 4.5. Moreover, if a given obstacle Oi is convex, then the
modified obstacle OM

i obtained using (4.4) for any α > 0 is equal to the original obstacle
Oi i.e., OM

i = Oi.

Since, as per Lemma 4.1, from any location less than α distance away from the
modified obstacle-occupied workspace OM

W , the projection on the set OM
W is unique, one

can roll up a Euclidean ball of radius at most α on the boundary ∂OM
W , as stated in [Thäle,

2008, Definition 11]. This motivates an alternative procedure to obtain the boundary of
the modified obstacle-occupied workspace when the obstacle-occupied workspace OW is
two-dimensional, by having a virtual ring of radius α rolling on the boundary of the set
OW , as stated in the next remark.

 
𝑐𝑜𝑛𝑣 𝒪𝒾  𝒪i  𝒪𝒾

M
 

𝛼 

𝒪i  

Figure 4.5: Left figure shows the original obstacle Oi ⊂ R2. Middle figure shows the
modified obstacle OM

i = M(Oi, α) obtained using (4.4). Right figure shows the convex
hull conv(Oi) for the obstacle Oi.

Remark 4.4 Given an obstacle-occupied workspace OW ⊂ R2, satisfying Assumptions
4.1 and 4.2, one can construct the modified obstacle OM

i,α = M(Oi,α, α), where i ∈ I, by
rotating a virtual ring, of radius α and center c, around the set Oi,α, just touching the set
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Figure 4.6: The left figure shows an original workspace where a feasible path exists from
location x to the origin. The right figure shows the modified workspace obtained using
(4.4) with some α > ra, where there is no feasible path from the location x to the origin.

Oi,α, while ensuring that the ring does not intersect with the interior of that set, as shown
in Fig. 4.7. Then, based on the number of projections of the location c on the obstacle
set Oi,α i.e., card(PJ (c,Oi,α)), we construct the boundary of the modified obstacle set
∂OM

i,α as follows:

• If the ring ∂Bα(c) is touching the set Oi,α at a single location, then include that
location in the set ∂OM

i,α. That is, if card(PJ (c,Oi,α)) = 1, then Π(c,Oi,α) ∈
∂OM

i,α.

• If the ring ∂Bα(c) is simultaneously touching the set Oi,α at more than one location,
then include in the set ∂OM

i,α the part of the ring ∂Bα(c) which intersects the conic
hull of the set PJ (c,Oi,α) with its vertex at c. That is, if card(PJ (c,Oi,α)) > 1,
then Y(c) ⊂ ∂OM

i,α, where the set Y(c) is given by

Y(c) = CH(c,PJ (c,Oi,α)) ∩ ∂Bα(c). (4.9)

We consider the modified obstacle-occupied workspace OM
W ⊂ W to be the region that

the robot should avoid. The set Vra , defined in (4.3), represents the modified obstacle-free
workspace for the center of the robot. We require the set Vra to be a pathwise connected
set. However, the pathwise connectedness of the set Vra mainly depends on the value of
the parameter α. For example, see Fig. 4.6 in which the set Vra is not connected due to
improper selection of the parameter α. To that end, we require the following lemma:

Lemma 4.3 Under Assumption 4.1, there exists ᾱ > ra such that for all α ∈ (ra, ᾱ] the
following conditions are satisfied:

1. the α−eroded obstacle-free workspace Wα is a pathwise connected set,

2. the distance between the origin and the set Wα is less than α− ra.
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Proof See Appendix C.3.

Next, we show that if we choose the parameter α, which is used in (4.4) and (4.3) to
obtain the set Vra , as per Lemma 4.3, then the set Vra is pathwise connected and the
origin belongs to its interior.

Lemma 4.4 If the parameter α, which is used in (4.4), is chosen as per Lemma 4.3,
then the modified obstacle-free workspace Vra is pathwise connected and 0 ∈ V◦

ra .

Proof See Appendix C.4

This concludes the discussion on the formulation and features of the obstacle-reshaping
operator M (4.4), which is applicable to n−dimensional Euclidean subsets of Rn. Next,
we provide the hybrid control design for the robot operating in a planar workspace i.e.,
W ⊂ R2.

𝜕ℬ𝛼 𝐜  

Figure 4.7: An obstacle-occupied workspace OW with three obstacles Oi,Oj and Ok, and
the boundary of the modified obstacle OM

i,α obtained using a virtual ring with radius α,
where Oi,α = Oi ∪ Oj ∪ Ok, see (4.7). A video can be seen here https://youtu.be/

mylrTOtYOSY

.

4.4 Hybrid control for obstacle avoidance

We consider planar environments that satisfy Assumptions 4.1 and 4.2. The proposed
obstacle-avoidance strategy requires a unique closest point on the nearest obstacle from

https://youtu.be/mylrTOtYOSY
https://youtu.be/mylrTOtYOSY
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the center of the robot. To achieve this, we first modify the obstacles using the obstacle-
reshaping operator (4.4). This modification guarantees that, for all locations in the
α−neighbourhood of the modified obstacles, there will be a unique closest point on
the nearest modified obstacle from the robot’s center, as stated in Lemma 4.1. In the
proposed scheme, similar to [Berkane et al., 2021a], depending upon the value of the
mode indicator m ∈ {−1, 0, 1} =: M, the robot operates in two different modes, namely
the move-to-target mode (m = 0) when it is away from the modified obstacles and the
obstacle-avoidance mode (m ∈ {−1, 1}) when it is in the vicinity of a modified obstacle.
In the move-to-target mode, the robot moves straight towards the target, whereas during
the obstacle-avoidance mode the robot moves around the nearest modified obstacle, either
in the clockwise direction (m = 1) or in the counter-clockwise direction (m = −1). We
utilize a vector joining the center of the robot and its projection on the modified obstacle-
occupied workspace to select between the modes and assign the direction of motion while
operating in the obstacle-avoidance mode.

4.4.1 Hybrid control design

The proposed hybrid control u(x,h,m) is given by

u(ξ) = −κs(1−m2)x+ κrm
2v(x,m), (4.10a)

ḣ
ṁ

= 0
= 0︸ ︷︷ ︸

ξ∈F

,

[
h+

m+

]
∈ L(ξ)︸ ︷︷ ︸

ξ∈J

, (4.10b)

where κs > 0, κr > 0 and ξ = (x,h,m) ∈ Vra × Vra ×M =: K, is the composite state
vector. In (4.10a), x ∈ Vra is the location of the center of the robot. The state h ∈ Vra ,
referred to as a hit point, is the location of the center of the robot when it enters in
the obstacle-avoidance mode. The discrete variable m ∈ M is the mode indicator. The
update law L(ξ), used in (4.10b), which allows the robot to switch between the modes, is
discussed in Section 4.4.3. The symbols F and J denote the flow and jump sets related to
different modes of operations, respectively, whose constructions are provided in Section
4.4.2. Next, we provide the design of the vector v(x,m) ∈ R2, used in (4.10a).

The vector v(x,m) is defined as

v(x,m) =

[
0 m
−m 0

]
x− Π(x,OM

W )

∥x− Π(x,OM
W )∥

, (4.11)

where Π(x,OM
W ) is the point on the modified obstacle-occupied workspace OM

W which is
closest to the center of the robot x, as defined in Section 2.2.1. As per Lemma 4.1, if
the center of the robot x is inside the α−neighbourhood of the set OM

W , then Π(x,OM
W )

is unique. When the robot operates in the obstacle-avoidance mode, the vector v(x,m)
allows it to move around the nearest obstacle either in the clockwise direction (m = 1)
or in the counter-clockwise direction (m = −1). Next, we discuss the design of the flow
set F and the jump set J , used in (4.10).
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Figure 4.8: The left figure shows the partitioning of the region Nγ(Dra(OM
i )) into the

landing region Rl = Rl,1 ∪ Rl,2 ∪ Rl,3, and the exit region Re = Re,1 ∪ Re,2 ∪ Re,3,
using (4.12) and (4.14). The right figure shows the partitioning of the exit region into
three sub-regions namely the always exit region Ra, the clockwise exit region R1, and
the counter-clockwise exit region R−1, using (4.15), (4.17) and (4.18), respectively.

4.4.2 Geometric construction of the flow and jump sets

When the robot operates in the move-to-target mode, in the modified free workspace,
its velocity is directed towards the target location. If any connected modified obsta-
cle OM

i,α, i ∈ I, is on the line segment joining the robot’s location with the target lo-
cation Ls(x,0), then the robot, operating in the move-to-target mode, will enter the
α−neighbourhood of that modified obstacle (i.e., d(x,OM

i,α) ≤ α) from the landing re-
gion Rl, as depicted in Fig. 4.8. The parameter α is chosen as per Lemma 4.3. The
landing region is defined as

Rl :=
⋃
i∈I

Ri
l, (4.12)

where, for each i ∈ I, the set Ri
l is given by

Ri
l := {x ∈ Nγ(Dra(OM

i,α))|x⊺(x− Π(x,OM
i,α)) ≥ 0,

Ls(x,0) ∩
(
Dra(OM

i,α)
)◦ ̸= ∅}, (4.13)

where γ ∈ (0, α − ra). Given a set A ⊂ Rn and a scalar r > 0, the r−neighbourhood of
the set A is denoted by Nr(A) = Dr(A) \ (A)◦.

Notice that for a connected modified obstacle OM
i,α, i ∈ I, the landing region Ri

l,
defined in (4.13), is the intersection of the following two regions:

1. the region where the line segment Ls(x,0), which joins the center of the robot
and the target location, intersects with the interior of the ra−dilated connected
modified obstacle D◦

ra(O
M
i,α). Hence, if the robot moves straight towards the target

in this region, it will eventually collide with the modified obstacle OM
i,α.
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Figure 4.9: Partitions of the neighborhood of the modified obstacle OM
i,α based on the

value of the inner product between the two vectors −x and x−Π(x,OM
i,α) and the tangent

cone to the set Dd(x,OM
i,α)

(OM
i,α) at x. (a) The vector −x is pointing inside the tangent

cone. (b) The vector −x is pointing outside the tangent cone.

2. the region where the inner product between the vectors x and x − Π(x,OM
i,α) is

non-negative, as shown in Fig. 4.9. Notice that, when the robot moves straight
towards the target in this region, its distance from the modified obstacle OM

i,α i.e.,
d(x,OM

i,α) does not increase. To understand this fact, observe that if for any x ∈
Nγ(Dra(OM

i,α)), x
⊺(x − Π(x,OM

i,α)) ≥ 0, then −x ∈ TD
d(x,OM

i,α
)
(OM

i,α)
(x) = P≤(0,x −

Π(x,OM
i,α)) i.e., the robot, moving straight towards the target in this region, does

not leave the region Dd(x,OM
i,α)

(OM
i,α). The notation TD

d(x,OM
i,α

)
(OM

i,α)
(x) denotes the

tangent cone to the set Dd(x,OM
i,α)

(OM
i,α) at x.

According to (4.13), due to the intersection of the above-mentioned two regions, the
landing region Ri

l excludes a set of locations from the region Nγ(Dra(OM
i,α)), for which the

inner product between the vectors x and x−Π(x,OM
W ) is negative and the line segment

Ls(x,0) intersects with the interior of the set Dra(OM
i,α), for example, see the regions

Re,1 and Re,2 in Fig. 4.8. Even though the robot does not have a line-of-sight towards
the target location, as long as it moves straight towards the target in these regions, its
distance from the modified obstacle OM

i,α i.e., d(x,OM
i,α) increases. To understand this

fact, observe that if for any x ∈ Nγ(Dra(OM
i,α)), x⊺(x − Π(x,OM

i,α)) is negative, then
−x /∈ TD

d(x,OM
i,α

)
(OM

i,α)
(x) = P≤(0,x−Π(x,OM

i,α)) i.e., the robot, moving straight towards

the target in this region, does not enter the region Dd(x,OM
i,α)

(OM
i,α). Due to this property,

we include these locations in the region called an exit region, wherein the robot can
operate in the move-to-target mode, as discussed next.

When the robot operates in the obstacle-avoidance mode in the γ− neighborhood
of the modified obstacle-occupied workspace, it will switch to the move-to-target mode
from the exit region, which is defined as follows:

Re := Nγ(Dra(OM
W )) \ Rl. (4.14)
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According to (4.12), (4.13) and (4.14), the exit region is a combination of following two
regions:

1. the region where the inner product x⊺(x−Π(x,OM
W )) is non-positive. As discussed

earlier, when the robot moves straight towards the target in this region, its distance
from the unsafe region does not decrease.

2. the region where the inner product x⊺(x−Π(x,OM
W )) is positive and the line segment

Ls(x,0), which joins the robot’s location and the target location, does not intersect
with the nearest modified obstacle. Hence, the robot can move straight towards the
target and safely leave the α−neighbourhood of this connected modified obstacle.

As shown in Fig. 4.8 (left), for a modified non-convex obstacle OM
i,α, i ∈ I, the exit

region is not a connected set. Consider a situation, wherein the robot is moving in the
clockwise direction with respect to the set OM

i,α in the landing region Rl,1. If the robot
were to start moving straight towards the target after entering the exit region Re,1, it
will re-enter the region Rl,1, resulting in multiple simultaneous switching instances. A
similar situation can occur for the robot moving in the counter-clockwise direction with
respect to the set OM

i,α in the landing region Rl,2, if it moves straight towards the target
after entering the exit region Re,2. On the other hand, if the robot enters in the region
Re,3, then, irrespective of the direction of motion around the obstacle, it can safely move
straight towards the target and leave the γ−neighbourhood of the modified obstacle OM

i,α.
Hence, as shown in Fig. 4.8 (right), based on the angle between the vectors x and

x − Π(x,OM
W ), and the presence of a line-of-sight to the target location with respect to

the nearest disjoint modified obstacle, we divide the exit region Re into three sub-regions
Ra, R1 and R−1, referred to as the always exit region, the clockwise exit region and the
counter-clockwise exit region, respectively, as follows:

The always exit region Ra is defined as

Ra :=
⋃
i∈I

Ri
a, (4.15)

where, for each i ∈ I, the set Ri
a, which is given by

Ri
a := {x ∈ Re|Ls(x,0) ∩

(
Dra(OM

i,α)
)◦

= ∅}, (4.16)

contains the locations from the exit region Re such that the line segments joining them to
the origin do not intersect with the interior of the ra−dilated modified obstacle Dra(OM

i,α).
The clockwise exit region R1 is defined as

R1 :=
{
x ∈ Re \ Ra|ψ(x,x− Π(x,OM

W )) ∈ [π, 2π]
}
, (4.17)

and the counter-clockwise exit region R−1 is defined as

R−1 :=
{
x ∈ Re \ Ra|ψ(x,x− Π(x,OM

W )) ∈ [0, π]
}

(4.18)

where, given two vectors p,q ∈ R2, the notation ψ(p,q) indicates the angle measured
from p to q. The angle measured in the counter-clockwise direction is considered positive,
and vice versa.
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While moving in the clockwise direction around the modified obstacle, the robot
is allowed to move straight towards the target only if its center is in the region R1 ∪
Ra. Whereas, the robot moving in the counter-clockwise direction around the modified
obstacle should move straight towards the target only if its center is in the region R−1 ∪
Ra. Next, we provide the geometric constructions of the flow set F and the jump set J ,
used in (4.10).

Flow and jump sets (move-to-target mode)

As discussed earlier, if the robot, which is moving straight towards the target, is on a
collision path towards a connected modified obstacle OM

i,α, for some i ∈ I, then it will
enter the γ−neighbourhood of this modified obstacle through the landing region. Hence,
the jump set of the move-to-target mode for the state x is defined as

JW
0 := Nγs(Dra(OM

W )) ∩Rl, (4.19)

where γs ∈ (0, γ). For robustness purposes (with respect to noise), we introduce a
hysteresis region by allowing the robot, operating in the move-to-target mode inside the
γ−neighbourhood of the set OM

W , to move closer to the set OM
W before switching to the

obstacle-avoidance mode.
The flow set of the move-to-target mode for the state x is then defined as

FW
0 :=

(
W \

(
Dra+γs(OM

W )
)◦) ∪Re. (4.20)

Notice that the union of the jump set (4.19) and the flow set (4.20) exactly covers the
modified robot-centered obstacle-free workspace Vra (4.3). Refer to Fig. 4.11 for the
representation of the flow and jump sets related to the obstacle-occupied workspace OM

W .
Next, we provide the construction of the flow and jump sets for the obstacle-avoidance
mode.

Flow and jump sets (obstacle-avoidance mode)

The robot operates in the obstacle-avoidance mode only in the γ−neighbourhood of
the modified obstacle-occupied workspace OM

W . The mode indicator variable m = 1 and
m = −1 prompts the robot to move either in the clockwise direction or in the counter-
clockwise direction with respect to the nearest boundary of the set OM

W , respectively. As
discussed earlier, for some m ∈ {−1, 1}, the robot should exit the obstacle-avoidance
mode and switch to the move-to-target mode only if its center belongs to the exit region
Rm ∪Ra.

To that end, we make use of the hit point h (i.e., the location of the center of the
robot when it switched from the move-to-target mode to the current obstacle-avoidance
mode) to define the jump set of the obstacle-avoidance mode JW

m for the state x as
follows:

JW
m :=

(
W \ (Dra+γ(OM

W ))◦
)
∪ ERh

m ∪ Bδ(0), (4.21)

where m ∈ {−1, 1} and the parameter δ ∈ (0, d(0,OM
W ) − ra). Note that, according to

Lemma 4.4, the target location 0 ∈ V◦
ra . As a result, the distance d(0,OM

W ) > ra, which
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guarantees the existence of the parameter δ. In (4.21), the inclusion of the set Bδ(0) in
the set JW

m allows us to ensure the stability of the origin, as stated later in Theorem 4.1.
For some m ∈ {−1, 1} and the hit point h ∈ Vra , the set ERh

m is given by

ERh
m := {x ∈ Rm ∪Ra

∣∣∥h∥ − ∥x∥ ≥ ϵ}, (4.22)

where ϵ ∈ (0, ϵ̄], with ϵ̄ > 0. This set contains all locations x from the exit regionRm∪Ra

for which the target location 0 is at least ϵ units closer to x than to the current hit point
h.
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Figure 4.10: Effects of ϵ, used in (4.22), on the construction of the sets ERh
m, for m ∈

{−1, 1} and a hit point h ∈ JW
0 . The left figure shows that when ϵ = ϵ1, the sets

ERh
m,m ∈ {−1, 1}, are non-empty. The right figure shows that when ϵ = ϵ2, the sets

ERh
m,m ∈ {−1, 1}, are empty.

Since, according to Lemma 4.4, the target location belongs to the interior of the
modified obstacle-free workspace w.r.t. the center of the robot i.e., 0 ∈ (Vra)◦, the
existence of a positive scalar ϵ̄ can be guaranteed. However, if one selects a very high value
for ϵ, then for some connected modified obstacles OM

i,α, i ∈ I, the set ERh
m∩Nγ(Dra(OM

i,α))
will become empty, as shown in Fig. 4.10, and the robot might get stuck (indefinitely)
in the obstacle-avoidance mode in the vicinity of those modified obstacles. Therefore, in
the next lemma, we provide an upper bound on the value of ϵ̄.

Lemma 4.5 Under Assumptions 4.1 and 4.2, we consider a connected modified obstacle
OM

i,α, i ∈ I. If ϵ̄ ∈ (0, ϵh], where

ϵh =
√

(d(0,OM
W )2 − r2a)−

(
d(0,OM

W )− ra
)
, (4.23)

then, for every h ∈ JW
0 with d(h,OM

i,α) = β ∈ [ra, ra + γ], and any location p ∈
PJ (0, ∂Dβ(OM

i,α)), the set Hp := Bδ(p) ∩ Nγ(Dra(OM
i,α)) ⊂ ERh

m, for some m ∈ {−1, 1}
and δ = min{β − ra, d(0,OM

W )− ra}, where the set ERh
m is defined in (4.22).
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Figure 4.11: Flow and jump sets FW
m , JW

m , related to the set Oi,α shown in Fig. 4.8.
The left figure (m = 0) illustrates the case where the robot operates in the move-to-
target mode and moves straight toward the target location. The middle figure (m = 1)
illustrates the case where the robot, operating in the obstacle-avoidance mode, moves in
the clockwise direction with respect to ∂OM

i,α. The right figure (m = −1) illustrates the
case where the robot, operating in the obstacle-avoidance mode, moves in the counter-
clockwise direction with respect to ∂OM

i,α.

Proof See Appendix C.5.

According to Lemma 4.5, if the hit point belongs to the jump set of the move-to-target
mode associated with a connected modified obstacle OM

i,α and ϵ ∈ (0, ϵ̄], where ϵ̄ is chosen

as per Lemma 4.5, then the set ERh
m ∩Nγ(Dra(OM

i,α)) is non-empty. Hence, we initialize
the robot in the move-to-target mode so that the hit point will always belong to the jump
set of the move-to-target mode, as stated later in Theorem 4.1.

According to (4.21) and (4.22), while operating in the obstacle-avoidance mode with
some m ∈ {−1, 1}, the robot can switch to the move-to-target mode when its center
belongs to the exit region Rm ∪Ra and the target location 0 is at least ϵ units closer to
x than to the current hit point h. This creates a hysteresis region and ensures Zeno-free
switching between the modes. This switching strategy is inspired by [Kamon et al., 1998],
which allows us to establish convergence properties of the target location, as discussed
later in Theorem 4.1.

We then define the flow set of the obstacle-avoidance mode FW
m for the state x as

follows:

FW
m := Rl ∪R−m ∪Rm ∪Ra \ ERh

m, (4.24)

where m ∈ {−1, 1}. Notice that the union of the jump set (4.21) and the flow set (4.24)
exactly covers the modified robot-centered free workspace Vra (4.3). Refer to Fig. 4.11
for the representation of the flow and jump sets related to the modified obstacle-occupied
workspace OM

W .

Finally, the flow set F and the jump set J , used in (4.10), are defined as

F :=
⋃
m∈M

Fm, J :=
⋃
m∈M

Jm, (4.25)
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Figure 4.12: The left figure illustrates a case in which the robot, operating in the obstacle-
avoidance mode, moves initially in the clockwise direction from h1 to l1, and then in
the counter-clockwise direction from h2 to l2 with respect to the nearest point on the
modified obstacle OM

i,α. The right figure illustrates a case in which the robot, operating in
the obstacle-avoidance mode, moves in the clockwise direction with respect to the nearest
point on the modified obstacle OM

i,α.

where for m ∈M, the sets Fm and Jm are given by

Fm := FW
m × Vra × {m}, Jm := JW

m × Vra × {m}, (4.26)

with FW
m ,JW

m defined in (4.20), (4.19) for m = 0 and in (4.24), (4.21) for m ∈ {−1, 1}.

Remark 4.5 Let us look at the case where the robot is moving in the γ−neighbourhood
of a connected modified obstacle OM

i,α, for some i ∈ I. If the robot needs to switch between
the modes of operation multiple times before leaving the γ−neighbourhood of the modified
obstacle OM

i,α, then it should move in the same direction in the obstacle-avoidance mode
i.e., either in the clockwise direction or in the counter-clockwise direction, to avoid re-
tracing the previously traveled path, as shown in Fig. 4.12b. In fact, if the robot does not
maintain the same direction of motion in the obstacle-avoidance mode, while operating
in the γ−neighbourhood of the connected modified obstacle OM

i,α, then it will retrace the
previously traveled path, as shown in Fig. 4.12a.

Next, we provide the update law L(x,h,m), used in (4.10b).

4.4.3 Update law L(x,h,m)

The update law L(ξ), used in (4.10b), updates the value of the hit point h and the mode
indicator m when the state (x,h,m) belongs to the jump set J which is defined in (4.25)
and (4.26). When the robot, operating in the move-to-target mode, enters in the jump
set J0, which is defined according to (4.19) and (4.26), the update law L(x,h, 0) is given
as

L(x,h, 0) =

{[
x
z

] ∣∣∣∣z ∈ {−1, 1}} . (4.27)
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Notice that, when the robot switches from the move-to-target mode to the obstacle-
avoidance mode, the coordinates of the hit point get updated to the current value of
x.

On the other hand, when the robot operating in the obstacle-avoidance mode, en-
ters in the jump set Jm,m ∈ {−1, 1}, defined in (4.21) and (4.26), the update law
L(x,h,m),m ∈ {−1, 1}, is given by

L(x,h,m) =

[
h
0

]
. (4.28)

When the robot switches from the obstacle-avoidance mode to the move-to-target mode,
the value of the hit point remains unchanged.

Control design summary: The proposed hybrid feedback control law can be sum-
marized as follows:

• Parameters selection: the target location is set at the origin with 0 ∈ W◦
ra . The

parameter α is set such that α > ra and it satisfies the conditions in Lemma 4.3.
The gain parameters κs and κr are set to positive values. The parameter ϵ̄, used in
(4.22), is chosen as per Lemma 4.5. The scalar parameter γ, used in the construction
of the flow set F and the jump set J , is selected such that γ ∈ (0, α− ra), and the
parameter γs is set to satisfy 0 < γs < γ.

• Obstacle modification: the obstacle reshaping operator (4.4) is used to obtain
the modified obstacle-occupied workspace OM

W . The state vector is initialized in
the set K i.e., ξ(0, 0) ∈ K.

• Move-to-target mode m = 0: this mode is activated when ξ ∈ F0. As per
(4.10a), the control input is given by u(ξ) = −κsx, causing x to evolve along the
line segment Ls(0,x) towards the origin. If, at some instance of time, ξ enters in
the jump set J0 of the move-to-target mode, the state variables (h,m) are updated
using (4.27), and the control input switches to the obstacle-avoidance mode.

• Obstacle-avoidance mode m ∈ {−1, 1}: this mode is activated when ξ ∈ Fm for
some m ∈ {−1, 1}. As per (4.10a), the control input is given by u(ξ) = κrv(x,m),
causing x to evolve in the γ−neighborhood of the nearest modified obstacle until
the state ξ enters in the jump set Jm, m ∈ {−1, 1}. When ξ ∈ Jm, m ∈ {−1, 1},
the control input switches to the move-to-target mode by setting m = 0, as per
(4.28).

This concludes the design of the proposed hybrid feedback controller (4.10).

4.5 Stability analysis

The hybrid closed-loop system resulting from the hybrid control law (4.10) is given by

ẋ

ḣ
ṁ

= u(ξ)
= 0
= 0︸ ︷︷ ︸

ξ̇=F(ξ),ξ∈F ,

x+[
h+

m+

]= x

∈ L(ξ)︸ ︷︷ ︸
ξ+∈J(ξ),ξ∈J ,

(4.29)
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where u(ξ) is defined in (4.10a), and the update law L(ξ) is provided in (4.27), (4.28).
The definitions of the flow set F and the jump set J are provided in (4.25), (4.26). Next,
we analyze the hybrid closed-loop system (4.29) in terms of the forward invariance of the
obstacle-free state space K := Vra × Vra ×M along with the stability properties of the
target set A, which is defined as

A := {0} × Vra ×M. (4.30)

We analyze the forward invariance of the modified obstacle-free workspace, which then
will be followed by the convergence analysis.

First, we show that the hybrid closed-loop system (4.29) satisfies the hybrid basic
conditions, as stated in Assumption 2.1, which guarantees the well-posedness of the
hybrid closed-loop system.

Lemma 4.6 The hybrid closed-loop system (4.29) with the data (F ,F,J ,J) satisfies the
hybrid basic conditions stated in Assumption 2.1.

Proof See Appendix C.6.

For safe autonomous navigation, the state x must always evolve within the set Vra
(4.3). This is equivalent to having the set K := Vra × Vra ×M forward invariant for the
hybrid closed-loop system (4.29). This is stated in the next Lemma.

Lemma 4.7 Under Assumptions 4.1 and 4.2, for the hybrid closed-loop system (4.29),
the obstacle-free set K := Vra × Vra ×M is forward invariant.

Proof See Appendix C.7.

Next, we show that if the robot is initialized in the move-to-target mode, at any
location in Vra and the parameter ϵ̄, used in (4.22), is chosen as per Lemma 4.5, then it
will safely and asymptotically converge to the target location at the origin.

Theorem 4.1 Consider the hybrid closed-loop system (4.29) and let Assumption 4.1
hold true. Also, let Assumption 4.2 hold true for the parameter α chosen as per Lemma
4.3. If the parameter ϵ̄, used in (4.22), is chosen as per Lemma 4.5, then

i) the obstacle-free set K is forward invariant,

ii) the set A is stable and attractive from all initial conditions ξ(0, 0) ∈ Vra×Vra×{0},

iii) the number of jumps is finite.

Proof See Appendix C.8.

According to Theorem 4.1, we initialize the robot in the move-to-target mode to
ensure that when it switches to the obstacle-avoidance mode, the hit point h belongs to
the set JW

0 . This allows us to establish an upper bound on the value of the parameter
ϵ̄ as given in Lemma 4.5, which is crucial to ensure that the robot, which moving in
the obstacle-avoidance mode always enters in the move-to-target mode, and to guarantee
convergence of the robot to the target location.
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Remark 4.6 Theorem 4.1 guarantees global asymptotic stability of the target location in
the modified set Vra and not in the original setWra. Since the obstacle reshaping operator
M is extensive, as stated in Remark 4.1, the set Vra is a subset of the original set Wra

i.e., Vra ⊂ Wra . Interestingly, if one chooses the value of the parameter α close to ra,
then the region occupied by the set Vra approaches the original set Wra. In other words,
if V1

ra and V2
ra are two modified sets obtained for two different values of the parameter α1

and α2, respectively, using (4.4) and (4.3), where α1, α2 ∈ (ra, ᾱ], α1 > α2 and ᾱ defined
as per Lemma 4.3, then the set V1

ra ⊂ V
2
ra ⊂ Wra. Hence, by selecting a smaller value of

the parameter α one can implement the proposed hybrid feedback controller (4.10) in a
larger area.

Unlike [Arslan and Koditschek, 2019, Assumprtion 1], [Verginis and Dimarogonas,
2021, Assumprtion 2], and [Berkane et al., 2021a, Section V-C3], Assumptions 4.1 and
4.2 do not impose restrictions on the minimum separation between any pair of obstacles
and allow obstacles to be non-convex. In particular, Assumptions 4.1 and 4.2 are satisfied
in the case of environments with convex obstacles where the minimum separation between
any pair of obstacles is greater than 2ra, as discussed next.

Proposition 4.1 Let the workspaceW be a compact, convex subset of R2. Let the obsta-
cles Oi, i ∈ I\{0}, be compact and convex, d(Oi,Oj) > 2ra,∀i, j ∈ I, i ̸= j, and 0 ∈ W◦

ra.
Then Assumptions 4.1 and 4.2 hold true for all α ∈ (ra, ᾱ], where the parameter ᾱ is
defined as

ᾱ = min
i,j∈I,i ̸=j

d(Oi,Oj)/2. (4.31)

Proof See Appendix C.9.

The workspace that satisfies the conditions (commonly used in the literature) in
Proposition 4.1, also satisfies Assumptions 4.1 and 4.2. Notice that, since the internal
obstacles are convex, if one chooses α ∈ (0, ᾱ], which is used in (4.4), where ᾱ is defined
in (4.31), then the shapes of the internal convex obstacles remains unchanged in the
modified obstacle-occupied workspace. Hence, for any α ∈ (ra, ᾱ], the set of locations
that do not belong to the modified obstacle-free workspace Vra always belong to the
α−neighborhood of the boundary of the workspace i.e., the set Wra \ Vra ⊂ Dα(O0),
where O0 = (W◦)c.

However, since the workspace W is convex, if the robot is initialized in the move-to-
target mode, in the set Wra \ Vra , it will initially move straight towards the target and
enter the set Vra . Then, according to Lemma 4.7, the robot will continue to move inside
the set Vra and according to Theorem 4.1, will asymptotically converge to the target
location. Next, we provide procedural steps to implement the proposed hybrid feedback
controller (4.10) for safe autonomous navigation in a priori known and a priori unknown
environments.
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4.6 Sensor-based implementation procedure

We choose the origin as the target location. We initialize the center of the robot in the
interior of the set Wra and assume that the value of parameter α, defined in Lemma 4.3,
is a priori known. The robot is initialized in the move-to-target mode i.e., m(0, 0) = 0, as
stated in Theorem 4.1, and the hit point is initialized at the initial location of the robot.
We choose ϵ ∈ (0, ϵ̄], where ϵ̄ is selected as per Lemma 4.5. The obstacles can have
arbitrary shapes and can be in close proximity with each other as long as Assumptions
4.1 and 4.2 are satisfied.

Notice that the robot can have multiple closest points in the proximity of non-convex
obstacles, in which case, the obstacle avoidance term v(x,m), defined in (4.11), is not
viable, since it requires a unique closest point. Moreover, in an unknown environment,
the modified obstacle-occupied workspace cannot be obtained in advance. Therefore,
motivated by the method described in Remark 4.4, a virtual ring ∂Bvr(c) is constructed
whenever the robot enters the obstacle-avoidance mode, as described in Section 4.6.1.
One should ensure that the robot’s body is always enclosed by the ring, that the ring
does not intersect with the interior of the obstacle-occupied workspace, and that the ring
moves along with the robot in the obstacle-avoidance mode. Using this ring, the robot
can then anticipate the possibility of multiple projections of its center onto the obstacle-
occupied workspace and locally modify the obstacle-occupied workspace to ensure that
the projection of its center onto the modified workspace is always unique, as discussed
later in Section 4.6.2.

Note that if the robot is initialized on the boundary of the obstacle-occupied workspace
such that its center has multiple closest points on the obstacle-occupied workspace, then
one cannot construct a virtual ring with a radius greater than ra that not only encloses
the robot’s body but also does not intersect with the interior of the obstacle-occupied
workspace. Consequently, one should initialize the robot in the interior of the obstacle-
free workspace.

For safe navigation in a priori unknown environments, we assume that the robot is
equipped with a range-bearing sensor with an angular scanning range of 360◦ and sensing
radius Rs > 2α. Similar to [Sawant et al., 2023a] and [Berkane, 2021], the range-bearing
sensor is modeled using a polar curve rg(x, θ) :Wra × [−π, π]→ [0, Rs], which is defined
as

rg(x, θ) = min

Rs, min
y ∈ ∂OW

atan2v(y − x) = θ

∥x− y∥

 . (4.32)

where atan2v(q) = atan2(q2, q1),q = [q1, q2]
⊺. The function rg(x, θ) provides the distance

between the center of the robot x and the boundary of the unsafe region ∂OW , measured
by the sensor, in the direction defined by the angle θ. Given the location x, along with
the bearing angle θ, the mapping λ(x, θ) :Wra × [−π, π]→W0, which is given by

λ(x, θ) = x+ rg(x, θ)[cos(θ), sin(θ)]
⊺, (4.33)

evaluates the Cartesian coordinates of the detected point.
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Using (4.32) and (4.33), the distance between the center of the robot x ∈ Wra and
the unsafe region OW i.e., d(x,OW) is calculated as follows:

d(x,OW) = rg(x, θ), (4.34)

where θ ∈ Θ. The set Θ, which is defined as

Θ =

{
θp ∈ [−π, π]

∣∣∣∣θp = arg min
θ∈[−π,π]

rg(x, θ)

}
, (4.35)

contains bearing angles such that the range measurement (4.32) in the directions defined
by these bearing angles gives the smallest value when compared to the values obtained
in any other directions. Then, the set of projections of the location x onto the unsafe
regions i.e., PJ (x,OW) is given by

PJ (x,OW) = {λ(x, θ)|∀θ ∈ Θ} . (4.36)

For a given location of the robot x, the set ∂O, which is defined as

∂O = {λ(x, θ), θ ∈ [−π, π]|rg(x, θ) < Rs}, (4.37)

contains the locations in the sensing region that belong to the boundary of the unsafe
region. The robot moving straight towards the target will collide with the obstacle-
occupied workspace if the following condition holds:

∂O ∩□(x,0) ̸= ∅, (4.38)

where the notation □(x,0) represents a rectangle, as shown in Fig. 4.13, with its vertices
located at x1,x−1,01 and 0−1, which are evaluated as[

xz

0z

]
=

[
x
0

]
+ zra

[
I
I

] [
cos θd
sin θd

]
, z ∈ {−1, 1}, (4.39)

where I is a 2×2 identity matrix and θd = π/2+atan2v(x) The robot moving in themove-
to-target mode can infer the possibility of collision with the unsafe region by verifying the
condition in (4.38). Next, we provide a procedure, summarized in Algorithm 2, which
allows the robot to identify whether the state (x,h,m) belongs to the jump set or not.

4.6.1 Switching to the obstacle-avoidance mode

Since the robot is initialized in the move-to-target mode, it will initially move towards the
target, under the influence of the stabilizing control vector −κsx, κs > 0. Suppose, there
exists an obstacle-occupied workspace OW such that the line segment Ls(x,0) intersects
with the landing region i.e., Ls(x,0) ∩ Rl ̸= ∅. This can be identified by evaluating the
inner product between the vectors x and x− Π(x,OW), according to (4.13) and (4.36),
and by verifying the condition given in (4.38). Eventually, the robot moving straight
towards the target will enter the β−neighbourhood of the obstacle-occupied workspace,
where β ∈ (ra, α), i.e., d(x,OW) = β such that one of the following two cases holds:
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Figure 4.13: Construction of the rectangle □(x,0) based on the location of the robot and
the target location at the origin.

Case A: there is a unique projection of the robot’s center onto the obstacle-occupied
workspace i.e., card(PJ (x,OW)) = 1.

Case B: there is more than one projection of the robot’s center onto the obstacle-
occupied workspace i.e., card(PJ (x,OW)) > 1, and −x ∈ CH(x,PJ (x,OW)).

First, we consider case A. Since Ls(x,0) ∩ Rl ̸= ∅, the robot has to switch to the
obstacle-avoidance mode. However, before that, it needs to construct a virtual ring
∂Bvr(c) to locally modify the obstacle-occupied workspace to ensure the uniqueness of
the projection of its center onto the unsafe region. We locate the center of the virtual
ring ∂Bvr(c) i.e., c using the following formula:

c = Π(x,OW) + (ra + γ)
x− Π(x,OW)

∥x− Π(x,OW)∥
, (4.40)

where γ ∈ (β − ra, α − ra) such that card(PJ (c,OW)) = 1 and Π(c,OW) = Π(x,OW).
Then, the radius vr of the virtual ring ∂Bvr(c) is set to ra + γ. The robot then sets
γs = β − ra, and enters in the obstacle-avoidance mode i.e., switches m to +1 or −1. At
this instance, we assign the current location as the hit point h, as per (4.27). Case A is
illustrated in Fig. 4.14a.

Now, we consider case B. We set c to be the current location of the robot’s center
i.e., c = x, and vr = β. Since the robot has multiple projections on the obstacle-occupied
workspace OW , it indicates the presence of a non-convex obstacle in its immediate neigh-
borhood, as shown in Fig. 4.14b. Hence, to ensure the uniqueness of the projection of
the center of the robot onto the unsafe region, we augment the boundary of the obstacle-
occupied workspace with a curve Y , which is defined as

Y = ∂Bvr(c) ∩ CH(c,PJ (c,OW)). (4.41)

The curve Y is the section of the virtual ring ∂Bvr(c) that belongs to the conic hull
CH(c,PJ (c,OW)). Notice that the curve Y belongs to the boundary of the modified
obstacle M(OW , vr), as per Remark 4.4. We treat this curve as a part of the boundary
of the unsafe region i.e., ∂OW ← ∂OW ∪ Y .

The robot has not yet switched to the obstacle-avoidance mode and is moving straight
towards the target inside the previously constructed virtual ring ∂Bvr(c), along the line
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Figure 4.14: Illustration of two possible situations that can occur when the robot, while
operating in the move-to-target mode, enters in the β−neighbourhood of obstacles OW ,
for some β ∈ (ra, α). (a) When card(PJ (x,OW)) = 1. (b) When card(PJ (x,OW)) > 1.

segment Ls(c,0). Since Bra(x) ⊂ Bvr(c), after moving straight towards the target, the
robot will have a unique projection on the curve Y and hence on the unsafe region OW .
Then the robot will switch to the obstacle-avoidance mode, according to case A.

4.6.2 Moving in the obstacle-avoidance mode

We use a virtual ring ∂Bvr(c) to ensure a unique projection in the obstacle-avoidance
mode. This ring anticipates multiple projections and enables local modification of the
obstacle-occupied workspace to maintain the uniqueness of the projection of the robot’s
center.

Note that when the robot switches from the move-to-target mode to the obstacle-
avoidance mode, it is enclosed by the virtual ring i.e., Bra(x) ⊂ Bvr(c). Hence, if the
virtual ring ∂Bvr(c) touches the obstacle-occupied workspace OW at only one location
i.e., card(PJ (c,OW)) = 1, then Π(x,OW) = Π(c,OW). Then, the robot can successfully
implement the rotational control vector v(x,m). To ensure that the robot’s body is
always enclosed by the virtual ring, we update the location of the center c as follows:

c = Π(x,OW) + vr
x− Π(x,OW)

∥x− Π(x,OW)∥
, (4.42)

where vr is defined when the robot switches from the move-to-target mode to the current
obstacle-avoidance mode, as discussed in Section 4.6.1.

When the virtual ring touches the obstacle-occupied workspace at multiple locations,
it indicates the presence of a non-convex obstacle in the immediate neighborhood of the
robot, as shown in Fig. 4.15. In this case, the robot should use the projection of its center
onto the part of the ring that intersects with the conic hull CH(c,PJ (c,OW)) i.e., onto
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the set Y , defined in (4.41), as the closest point. Note that since Bra(x) ⊂ Bvr(c), the
projection Π(x,Y), which is used to implement the rotational control vector v(x,m), is
unique.

𝐱 𝐜 

𝑟𝑎  

𝛾𝑠  

𝒴 

𝒪𝒾  

𝑣𝑟  

𝒞ℋ 𝐜,𝒫𝒥 𝐜,𝒪𝒲   

𝜕ℬ𝑣𝑟
 𝐜  

Figure 4.15: A scenario in which, for the robot operating in the obstacle-avoidance mode,
the virtual ring ∂Bvr(c) encounters more than one intersection point with the obstacle-
occupied workspace OW i.e., card(PJ (c,OW)) > 1.

4.6.3 Switching to the move-to-target mode

When the robot, operating in the obstacle-avoidance mode, with some m ∈ {−1, 1},
reaches the location x, which is ϵ units closer to the target location than the current hit
point h, and belongs to the exit region Rm ∪Ra, defined in (4.15), (4.17) and (4.18), it
switches to the move-to-target mode by setting m = 0.

4.7 Simulation results

In this section, we present simulation results for a robot navigating in a priori unknown
environments. In simulations discussed below, the robot is assumed to be equipped with
a range-bearing sensor (e.g., LiDAR) with an angular scanning range of 360◦ and sensing
radius Rs = 3m. The angular resolution of the sensor is chosen to be 1◦. The simulations
are performed in MATLAB 2020a.

In the first simulation scenario, we consider an unbounded workspace i.e., O0 = ∅,
with 3 non-convex obstacles, as shown in Fig. 4.16. The robot with radius r = 0.3m is
initialized at [−16, 4]⊺. The target is located at the origin. The minimum safety distance
rs = 0.1m. The parameter α = 0.8m is known a priori, as per Lemma 4.3. We set the
gain values κs and κr, used in (4.10), to be 0.5 and 2, respectively. The parameter ϵ,
which is essential for the design of the jump set of the obstacle-avoidance mode as given
in (4.21) and (4.22), is set to be 0.1m.
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Algorithm 3 General implementation of the proposed hybrid control law (4.10).

1: Set target location at the origin 0.
2: Initialize x(0, 0) ∈ Wra , h(0, 0) = x(0, 0) and m(0, 0) = 0. Choose ϵ̄ according to

Lemma 4.5, and initialize ϵ ∈ (0, ϵ̄]. Select α > 0 according to Lemma 4.3, and choose
β ∈ (ra, α).

3: Measure x.
4: if m = 0, then
5: Implement Algorithm 4.
6: if ξ ∈ J0, then
7: Update (h,m)← L(x,h,m) using (4.27).
8: end if
9: end if
10: if m ∈ {−1, 1}, then
11: Implement Algorithm 4.
12: if ξ ∈ Jm, then
13: Update (h,m)← L(x,h,m) using (4.28).
14: end if
15: end if
16: if m ∈ {−1, 1}, then
17: Measure Π(x,OW) using (4.36).
18: Locate c using (4.42).
19: if card(PJ (c,OW)) > 1, then
20: Construct Y using (4.41).
21: Assign ∂OW ← ∂OW ∪ Y .
22: end if
23: end if
24: Execute u(x,h,m) (4.10), used in (4.29).
25: Go to step 3.
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Algorithm 4 Sensor-based identification of the jump set.

1: Measure d(x,OW) (4.34), and PJ (x,OW) (4.36).
2: if m = 0, then
3: if d(x,OW) ≤ β then
4: if card(PJ (x,OW)) = 1, then
5: if x⊺(x− Π(x,OW)) ≥ 0, then
6: Identify ∂O using (4.38).
7: Construct □(x,0) using (4.39).
8: if ∂O ∩□(x,0) ̸= ∅ then
9: ξ ∈ J0.
10: Set γs = β − ra.
11: Choose γ ∈ (γs, α− ra).
12: Set vr = ra + γ.
13: Locate c using (4.40).
14: end if
15: end if
16: else
17: if −x ∈ CH(x,PJ (x,OW)), then
18: Set c = x and vr = β.
19: Construct Y using (4.41).
20: Assign ∂OW ← ∂OW ∪ Y .
21: end if
22: end if
23: end if
24: end if
25: if m ∈ {−1, 1} then
26: if d(x,OW) < ra + α, then
27: if x ∈ Rm ∪Ra, defined in (4.15), (4.17) and (4.18), then
28: if ∥x∥ ≤ ∥h∥ − ϵ, then
29: ξ ∈ Jm.
30: end if
31: end if
32: else
33: ξ ∈ Jm.
34: end if
35: end if
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The robot’s motion in the move-to-target mode is represented by the blue-coloured
curves, whereas the red-coloured curves depict its motion in the obstacle-avoidance mode.
The locations h1 to h6 are the hit points where the robot switches from the move-to-
target mode to the obstacle-avoidance mode. Notice that the location of each hit point is
closer to the target location than the previous one, which ensures global convergence of
the robot to the target location, as stated in Theorem 4.1. Since the robot moves parallel
to the boundary of the unsafe region in the obstacle-avoidance mode, it maintains a safe
distance from the unsafe region, as shown in Fig. 4.17. To avoid multiple projections onto
the unsafe region, while operating in the obstacle-avoidance mode, the robot constructs
a virtual ring, as explained in Section 4.3, and moves along its boundaries around the
obstacles O1 and O2. The complete simulation video can be found at https://youtu.
be/tRRUQNjLtGU.

Figure 4.16: Trajectory of a robot, initialized at x0, safely converging to the target
location at the origin while avoiding non-convex obstacles.

In the next simulation scenario, as shown in Fig. 4.18, we consider an environment
consisting of arbitrarily-shaped non-convex obstacles, and apply the proposed hybrid
controller (4.10) for a point robot navigation initialized at 10 different locations in the
obstacle-free workspace. The target is located at the origin. The minimum safety distance
rs = 0.1m and the parameter α = 0.5m. We set the gains κs and κr, used in (4.10a), to
be 0.25 and 2, respectively. The parameter ϵ is set to be 0.05m.

Since the environment is a priori unknown and contains non-convex obstacles, the
robot maintains the same direction of motion when it moves in the obstacle-avoidance
mode to avoid retracing the previously travelled path, as discussed in remark 4.5. This
does not necessarily result in the robot trajectories with the shortest lengths. The com-
plete simulation video can be found at https://youtu.be/OtHt-oQPg68.

Next, we consider an environment with unsafe region OW , consisting of 2 non-convex
obstacles O1 and O2, that does not satisfy Assumption 4.2, as shown in Fig. 4.19. The
robot with radius r = 0.3m is initialized at [−6, 3]⊺. The target is located at the origin.
The minimum safety distance rs = 0.1m. The parameter α = 1m is known a priori,

https://youtu.be/tRRUQNjLtGU
https://youtu.be/tRRUQNjLtGU
https://youtu.be/OtHt-oQPg68
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Figure 4.17: Distance of the robot’s center from the boundary of the obstacle-occupied
workspace for the simulation results shown in Fig. 4.16.

as per Lemma 4.3. We set the gain values κs and κr, used in (4.10), to be 0.5 and 2,
respectively. The parameter ϵ, used in (4.22), is set to be 0.1m.

Notice that even though the distance between the obstacles O1 and O2 is less than
2α, the modified obstacle-occupied workspace OM

W , obtained using (4.4), is not con-
nected. However, using the virtual ring construction mentioned in Section 4.6.2, the
robot maintains the uniqueness of its projection and moves safely across the gap in the
obstacle-avoidance mode, as shown in Fig. 4.19. The complete simulation video can be
found at https://youtu.be/T4xzo01_mkc.

4.7.1 Gazebo simulation

The next simulation is performed using the Turtlebot3 Burger model in Gazebo. The
simulation runs on a computer, equipped with 4 GB RAM, running Ubuntu 20.04 with
the ROS Noetic distribution installed, which we refer to as Computer 1. The proposed
hybrid controller is run in Matlab R2020a on another computer running Windows 10,
equipped with an Intel(R) i5-5200U CPU with a clock speed of 2.20 GHz and 12 GB
RAM, referred to as Computer 2.

The Turtlebot is equipped with a two-dimensional LiDAR scanner with a sensing
range of 1m. The angular scanning range and angular resolution are set to 360 degrees
and 1 degree, respectively. The sensor measurements are assumed to be affected by
Gaussian noise with zero mean and a standard deviation of 0.01 m. The maximum
bounds on the linear velocity and angular velocity, denoted as νmax and ωmax respectively,

https://youtu.be/T4xzo01_mkc
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Figure 4.18: Robot trajectories starting from different locations

are set to 0.15 m/s and 2.84 rad/s. The LiDAR scanning rate is set to 5 Hz.
At each iteration, the LiDAR measurements and pose information are sent from

Computer 1 to Computer 2. The control commands are then sent from Computer 2 to
Computer 1. The execution time of the proposed hybrid controller is approximately 5
ms. The sensor-based implementation of the proposed hybrid navigation algorithm only
requires the measurements acquired via a range-bearing sensor. Since the size of the
acquired sensor data is independent of the surrounding environment, the code execution
time will remain approximately the same regardless of changes in the environment.

The Turtlebot can be represented with the following nonholonomic model:

ẋ1 = ν cos θ,

ẋ2 = ν sin θ,

θ̇ = ω,

(4.43)

where x = [x1, x2]
⊺ is the location of the center of the robot and θ ∈ [−π, π) is the

heading direction. The scalar control variables ν and ω represent the linear and angular
velocities, respectively.

In practical applications, due to the discrete implementation of the control law de-
signed for a point-mass robot, the nonholonomic Turtlebot (when operating in the
obstacle-avoidance mode) may get very close to the obstacle or exit the α-neighborhood
of the obstacle before getting closer to the target location than the current hit point.
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Figure 4.19: Robot safely navigating towards the target (red dot) in an environment that
does not satisfy Assumption 4.2

To avoid this situation, we introduce some minor modifications to the proposed hybrid
control law to ensure that the Turtlebot stays inside the α-neighborhood of the nearest
obstacle when operating in the obstacle-avoidance mode. We replace the vector v(x,m),
used in (4.10a), with a modified vector vmod(x,m), which is defined as

vd(x,m) =

[
λ(ϱ(x)) m(1− λ(ϱ(x))2)

−m(1− λ(ϱ(x))2) λ(ϱ(x))

]
f(x,m), (4.44)

where the vector-valued function f(x,m) is given by

f(x,m) =
x− Π(x,OM

W )

∥x− Π(x,OM
W )∥

. (4.45)

The scalar-valued function λ(ϱ(x)) is evaluated as

λ(ϱ(x)) =


0.25η−ϱ(x)

0.25η
, 0 ≤ ϱ(x) ≤ 0.25η,

0, 0.25η ≤ ϱ(x) ≤ 0.75η,
0.75η−ϱ(x)

0.25η
, 0.75η ≤ ϱ(x) ≤ η,

(4.46)

where η = α − ra and ϱ(x) = d(x,OM
W ) − ra. The continuous scalar-valued function

λ(ϱ(x)) ∈ [−1, 1], for all ϱ(x) ∈ [0, η].
Notice that when λ(ϱ(x)) = 0, the vector vd(x,m) equals to the vector v(x,m),

used in (4.10a). When the Turtlebot, while operating in the obstacle-avoidance mode,
moves closer to the boundary of the modified obstacle-occupied workspace i.e., ϱ(x) →
0, λ(ϱ(x)) → 1. As a result, the vector vd(x,m) → f(x,m) and the Turtlebot is
steered away from the unsafe region. On the other hand, if the center of the Turtlebot
moves closer to the boundary of the α−neighbourhood of the modified obstacle-occupied
workspace i.e., ϱ(x) → η, λ(ϱ(x)) → −1. Due to this, the vector vd(x,m) → −f(x,m)
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and the Turtlebot is steered back inside the α−neighbourhood of the modified obstacle-
occupied workspace.

Finally, given the modified hybrid control law umod, obtained by replacing v(x,m)
by vmod(x,m) in (4.10a), the linear velocity ν and the angular velocity ω to be applied
to the Turtlebot are obtained as follows:

ν = κν min

{
∥umod∥ cos2n

(
θ − θd

2

)
, νmax

}
, (4.47)

ω = −κωωmax sin(θ − θd), (4.48)

where n > 1, κν > 0 and κω > 0. The angle θ represents the heading direction
of the robot. The desired heading direction is denoted by θd, which is evaluated as
θd = atan2v(umod). The expression 1+cos(θ−θd)

2
in (4.47) reduces the linear velocity of the

Turtlebot based on the disparity between its current heading direction θ and the desired
heading direction θd.

We set the gains κs, κr, used in (4.10a), and κν , κω, used in (4.47) and (4.48), to 1.
The minimum safety distance rs = 0.03 m and the parameter α = 0.3 m. Additionally,
the parameter ϵ, used in (4.22), is set to 0.15 m. The target location is set to the origin,
represented by the light green dot, as shown in Fig. 4.20. In Fig. 4.20a, the left figure
shows the workspace setup in Gazebo with the initial location of the Turtlebot, and the
right figure shows the LiDAR sensor measurements. The desired heading direction is
denoted by the blue arrow, while the red arrow represents the current heading direction
of the Turtlebot. The Turtlebot and the target location are connected via a dotted
red line. When the Turtlebot moves straight towards the target location, it eventually
enters the α−neighbourhood of the unsafe region and switches to the obstacle-avoidance
mode. In the obstacle-avoidance mode, it constructs a virtual ring represented using
the red dotted circle, as shown in Fig. 4.20b. When the nearby obstacle workspace
is convex in nature, the projection of the center of the Turtlebot onto this workspace
matches the intersection point between the virtual ring and the nearby obstacle, which
is represented by the magenta coloured dot. In Fig. 4.20b, the blue-dotted curve is
a partial boundary of the circle with its center at the origin and a radius of ∥h∥ − ϵ,
where h is the current location of the hit point. According to (4.21), (4.22) and (4.26),
the Turtlebot can switch back to the move-to-target mode only if it is inside this circle.
When the nearby unsafe region is non-convex, the virtual ring, which is larger compared
to the robot’s body, will have multiple intersections with the obstacles, as shown in Fig.
4.20c. This prompts the Turtlebot to project on the boundary of the virtual ring instead
of the obstacle-occupied workspace to maintain the uniqueness of the projection. In other
words, the boundary of the virtual ring acts as the boundary of the modified obstacle,
as discussed in Remark 4.4. Finally, in Fig. 4.20d we can see the Turtlebot approaching
towards the target location at the origin. The complete simulation video can be found
at https://youtu.be/ZNeiS5qE00k.

https://youtu.be/ZNeiS5qE00k
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t = 0 sec

t = 30 sec

t = 64 sec

t = 192 sec

(a)

(b)

(c)

(d)

Figure 4.20: Autonomous navigation of the Turtlebot in the non-convex environment.
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4.8 Conclusions

In this chapter, we proposed a hybrid feedback controller for safe autonomous navigation
in two-dimensional environments with arbitrary-shaped obstacles (possibly non-convex).
The obstacles can have non-smooth boundaries and large sizes and can be placed arbi-
trarily close to each other provided the feasibility requirements stated in Assumptions
4.1 and 4.2 are satisfied. The proposed hybrid controller relies on an instrumental trans-
formation that virtually modifies the obstacles’ shapes such that the uniqueness of the
projection of the robot’s center onto the closest obstacle is guaranteed; a feature that
helps in the design of our obstacle-avoidance strategy. The obstacle avoidance compo-
nent of the control law (4.11) utilizes the projection of the robot’s center onto the nearest
obstacle. Hence, it is possible to apply the proposed hybrid control scheme in a priori
unknown environments, as discussed in Section 4.6.

It should be noted that the autonomous navigation schemes proposed in Chapters
3 and 4 are applicable only to two-dimensional environments. Consequently, when the
robot enters the obstacle-avoidance mode, it can move either in a clockwise direction or
in a counter-clockwise direction with respect to the nearest obstacle’s boundary. Since
obstacles are compact, this ensures that the robot will eventually reach a location from
which the line segment joining the center of the robot to the target location does not
intersect with the nearest obstacle.



Chapter 5

Autonomous Navigation in
Environments with
Three-dimensional Convex Obstacles

5.1 Introduction

This chapter deals with the problem of autonomous robot navigation in three-dimensional
environments with arbitrarily-shaped convex obstacles. One of the widely explored tech-
niques in this regard is the Navigation Function (NF) approach [Koditschek and Rimon,
1990], which guarantees almost1 global convergence of the robot to a target location in
sphere words. To apply the NF approach in environments with general convex and star-
shaped obstacles, diffeomorphic mappings from [Koditschek and Rimon, 1992] and [Li
and Tanner, 2018] can be used assuming global knowledge of the environment. The NF-
based approach has been extended in [Paternain et al., 2017] to environments containing
convex obstacles with smooth boundaries. The authors established sufficient conditions
on the curvature of the obstacles’ boundaries to guarantee almost global convergence to
a neighborhood of the a priori unknown target location. However, it is assumed that the
shapes of the obstacles avoided by the robot are known.

In [Berkane, 2021], the authors proposed a feedback controller based on Nagumo’s
theorem [Blanchini et al., 2008, Theorem 4.7], for autonomous navigation in environments
with general convex obstacles. The forward invariance of the obstacle-free space is ensured
by projecting the ideal velocity control vector (pointing to the target) onto the tangent
cone at the boundary of the obstacle whenever it points to the obstacle. In [Reis et al.,
2020], a control barrier function-based approach was used for robot navigation in an
environment with a single spherical obstacle.

In [Arslan and Koditschek, 2019], the authors proposed a separating hyperplane-based
autonomous navigation algorithm for autonomous navigating in environments with con-
vex obstacles with smooth boundaries. This approach was extended in [Vasilopoulos
and Koditschek, 2018] to handle partially known environments with non-convex obsta-

1Almost global convergence here refers to the convergence from all initial conditions except a set of
zero Lebesgue measure.
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cles, where it is assumed that the robot possesses geometrical information about the
non-convex obstacles but lacks knowledge of their precise locations in the workspace.
However, due to the topological obstruction to global asymptotic stability, with contin-
uous time-invariant vector fields, in sphere words [Koditschek and Rimon, 1990], the
above-mentioned approaches provide at best almost global asymptotic stability guaran-
tees.

In [Berkane et al., 2021a], hybrid control techniques were employed to achieve global
stabilization of the target location in environments with sufficiently separated ellipsoidal
obstacles. In [Matveev et al., 2011], the authors proposed a hybrid autonomous navi-
gation technique for a nonholonomic robot operating in environments with non-convex
obstacles under some restrictions on the inter-obstacle arrangements. In [Loizou et al.,
2003], the authors proposed a discontinuous feedback control law for autonomous robot
navigation in partially known two-dimensional environments. When a known obstacle is
encountered, the control vector aligns with the negative gradient of the navigation func-
tion. When close to an unknown obstacle, the robot moves along its boundary, relying
on the local curvature information of the obstacle. Similar to [Matveev et al., 2011], this
approach is applicable in two-dimensional environments and assumes smooth obstacle
boundaries without sharp edges. In our earlier work [Sawant et al., 2023a], we proposed
a hybrid feedback control strategy for autonomous robot navigation in two-dimensional
environments with arbitrarily-shaped convex obstacles.

In this chapter, we propose a hybrid control strategy, endowed with global asymptotic
stability guarantees, for autonomous robot navigation in three-dimensional environments
containing arbitrarily-shaped convex obstacles. We also propose a sensor-based version
of our approach for autonomous navigation in a priori unknown three-dimensional envi-
ronments with arbitrarily-shaped convex obstacles.

The main contributions of this chapter are as follows:

1. Global asymptotic stability: the proposed autonomous navigation algorithm ensures
global asymptotic stability of the target location for the robot operating in three-
dimensional environments with convex obstacles.

2. Arbitrarily-shaped three-dimensional obstacles: the proposed hybrid feedback con-
troller is applicable to environments consisting of three-dimensional convex obsta-
cles with arbitrary shapes. Compared to this work, the research work [Arslan and
Koditschek, 2019] is restricted to convex obstacles with smooth boundaries, which
satisfy some curvature conditions. Similarly, in [Berkane et al., 2021a], the obstacles
are assumed to be ellipsoids.

3. Arbitrary interobstacle arrangements: there are no restrictions on the interobstacle
arrangement such as those in [Matveev et al., 2011, Assumption 10], [Berkane et al.,
2021a, Theorem 2], except for the widely used mild feasibility Assumption 5.1, the
robot can pass in between any two obstacles while maintaining a positive distance.

4. Applicable in a priori unknown environments: the proposed autonomous navigation
algorithm can be implemented using range scanners (e.g., LiDAR) and/or vision
sensors without a priori global knowledge of the environment.
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The results presented in this chapter have been published in [Sawant et al., 2024].

5.2 Problem formulation

We consider a spherical robot with radius r ≥ 0 operating in a convex, three-dimensional
Euclidean space W ⊆ R3. The workspace W is cluttered with finite number of compact,
convex obstacles Oi ⊂ W , i ∈ {1, . . . , b}, b ∈ N. We define obstacle O0 := (W◦)c as
the complement of the interior of the workspace. Collectively, the obstacle-occupied
workspace is denoted by OW =

⋃
i∈IOi, where I = {0, . . . , b}. We make the following

workspace feasibility assumption:

Assumption 5.1 The minimum separation between any pair of obstacles should be greater
than 2r i.e., for all i, j ∈ I, i ̸= j, one has

d(Oi,Oj) := min
p∈Oi,q∈Oj

∥p− q∥ > 2r. (5.1)

According to Assumption 5.1 and the compactness of the obstacles, there exists a
minimum separating distance between any pair of obstacles r̄ = min

i,j∈I,i ̸=j
d(Oi,Oj) > 2r.

Moreover, for collision-free navigation we require d(0,OW)− r > 0. We define a positive
real r̄s as

r̄s = min
{ r̄
2
− r, d(0,OW)− r

}
. (5.2)

We then pick an arbitrarily small value rs ∈ (0, r̄s) as the minimum distance that the
robot should maintain with respect to any obstacle.

The obstacle-free workspace is then defined as W0 := W \ OW . Given y ≥ 0, a
y−eroded obstacle-free workspace, Wy is defined as

Wy :=W \
⋃
i∈I

D◦
y(Oi) ⊆ W0. (5.3)

Hence, Wra with ra = r + rs is the obstacle-free workspace with respect to the center of
the robot i.e., x ∈ Wra ⇐⇒ Bra(x) ⊂ W0.

The robot is governed by a single integrator dynamics

ẋ = u, (5.4)

where u ∈ R3 is the control input. The task is to design a feedback control law u such
that:

1. Safety: the robot-centered obstacle-free workspace Wra is forward invariant,

2. Global Asymptotic Stability: The target location x = 0 ∈ W◦
ra is globally

asymptotically stable for the closed-loop system.
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5.3 Hybrid control for obstacle avoidance

In the proposed scheme, the robot operates in two modes based on the value of a mode
indicator variable m ∈ M := {0, 1}. The move-to-target mode (m = 0) is adopted
when the robot is away from the obstacles and the the obstacle-avoidance mode (m = 1)
is adopted when the robot is close to an obstacle obstructing its motion towards the
target location. In the move-to-target mode, the robot moves straight towards the target
location. In the obstacle-avoidance mode, the robot navigates around the obstacle while
staying within its γ−neighborhood, where γ ∈ (0, r̄s − rs). When the robot operates in
the obstacle-avoidance mode, the robot’s center has a unique closest point on the nearest
obstacle. Furthermore, to prevent the robot from getting trapped in a loop around
an obstacle, the proposed obstacle-avoidance strategy confines the robot’s center to a
hyperplane that passes through the target location. This ensures that the robot will
eventually reach a position where the nearest obstacle does not intersect with the line
segment joining the center of the robot and the target location.

5.3.1 Hybrid control design

The proposed hybrid control u(x,h, a,m, s) is given as

u(ξ) = −κs(1−m)x+ κrmv(x, a), (5.5a)

ḣ
ȧ
ṁ
ṡ

= 0,
= 0,
= 0
= 1,︸ ︷︷ ︸

(x,h,a,m,s)∈F


h+

a+

m+

s+

 ∈ L(x,h, a,m, s),

︸ ︷︷ ︸
(x,h,a,m,s)∈J

(5.5b)

where κs > 0, κr > 0, and ξ = (x,h, a,m, s) ∈ K := Wra × Wra × S2 × M × R≥0.
The variable h denotes the hit point, which is the location where the robot switches
from the move-to-target mode to the obstacle-avoidance mode. The vector a ∈ S2 is
instrumental for the construction of the avoidance control vector v(x, a), used in (5.5a).
The scalar variable s ∈ R≥0 allows the robot to switch from the obstacle-avoidance mode
to the move-to-target mode when initially in the obstacle-avoidance mode. Details of
this switching process are provided later in Section 5.3.2. The sets F and J are the flow
and jump sets related to different modes of operation, respectively, whose constructions
are provided in Section 5.3.2. The update law L, which allows the robot to update the
values of the variables h, a, m and s based on the current location of the robot with
respect to the nearest obstacle and the target location, will be designed later in Section
5.3.3. Next, we provide the design of the vector v(x, a) ∈ R3.

The vector v(x, a), used in (5.5a), is defined as

v(x, a) =
[
η(x)I+ (1− |η(x)|)R(a)

]
P(a)xπ (5.6)

where I ∈ R3×3 is the identity matrix and xπ := x− Π(x,OW). The operator Π(x,OW)
provides the closest point on the obstacle-occupied workspace from the location of the
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center of the robot x, as defined in Section 2.2.1. Notice that, since the obstacles Oi, i ∈
I \ {0} are convex and the parameter γ ∈ (0, r̄s − rs), according to (5.2), the robot
will have a unique closest point to the obstacles whenever its center is in the (ra +
γ)−neighborhood of these obstacles. On the other hand, there may be some locations in
the (ra + γ)−neighborhood of the obstacle O0 = (W◦)c for which the uniqueness of the
closest point from robot’s center to the obstacle O0 cannot be guaranteed. However, as
discussed later in Remark 5.1, the design of the flow sets and jump sets guarantees that
the obstacle-avoidance control vector v(x, a) is never activated in the region Nra+γ(O0).

The rotation matrix R(a) := R(π
2
, a) ∈ SO(3), with R(θ, a) being the rotation by an

angle θ about the unit vector a, defined as follows:

R(θ, a) := I3 + sin(θ)a× + (1− cos(θ))(a×)2,

which, for θ = π
2
, leads to

R(a) = aa⊤ + a×,

where we used the fact that (a×)2 = aa⊤− I3, with a× being the skew-symmetric matrix
associated to the unit vector a = [a1 a2 a3]

⊤, defined according to (2.1).
The matrix P(a) ∈ R3×3, which is used in (5.6), is given by

P(a) := I3 −
aa⊺

∥a∥2
. (5.7)

For any vector x ∈ R3, the vector P(a)x corresponds to the projection of x onto the
hyperplane orthogonal to a. As discussed later in Section 5.3.3, the coordinates of the
unit vector a are updated when the robot switches from the move-to-target mode to
the obstacle-avoidance mode according to the update law L(ξ), whose design is provided
later in Section 5.3.3.

Finally, the scalar function η(x) ∈ [0, 1] is given by

η(x) =


−1, d(x,OW)− ra ≥ γs,

1− d(x,OW )−ra−γa
0.5(γs−γa)

, γa ≤ d(x,OW)− ra ≤ γs,

1, d(x,OW)− ra ≤ γa,

(5.8)

where 0 < γa < γs < γ. The scalar function η is designed to ensure that the center of the
robot remains inside the γ−neighborhood of the ra−dilated obstacle-occupied workspace
Nγ(Dra(OW)) when it operates in the obstacle-avoidance mode in the set Nγ(Dra(OW)).
This feature allows for the design of the jump set of the obstacle-avoidance mode, as
discussed later in Section 5.3.2, and ensures convergence to the target location, as stated
later in Theorem 5.1. Next, we provide the construction of the flow set F and the jump
set J used in (5.5).

5.3.2 Geometric construction of the flow and jump sets

When the robot operates in the move-to-target mode, its velocity is directed towards
the target location. Hence, if the path joining the robot’s location and the target is
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Figure 5.1: Geometrical representation of the landing region and the exit region.

obstructed by an obstacle, let’s say Oi for some i ∈ I i.e., Ls(x,0) ∩ D◦
ra(Oi) ̸= ∅, then

the center of the robot enters the (ra+ γ)− neighborhood of the obstacle Oi through the
landing region Ri

l, which is defined as

Ri
l :=

{
x ∈ Nγ(Dra(Oi))|Ls(x,0) ∩ D◦

ra(Oi) ̸= ∅
}
. (5.9)

The union of the landing regions over all obstacles is defined as

Rl :=
⋃
i∈I

Ri
l. (5.10)

Next, we define an exit regionRe as the part of the γ−neighborhood of the ra−dilated
obstacles that do not belong the landing region. The exit region Re is defined as

Re = Nγ(Dra(OW)) \ Rl. (5.11)

Note that when the robot’s center at x belongs to the exit region, the line segment
connecting its location to the target location Ls(x,0) does not intersect with the interior
of the nearest ra−dilated obstacle. Hence, the robot should move straight towards the
target location only if it is in the exit region. Next, we provide the geometric construction
of the flow set F and the jump set J , used in (5.5).

Flow and jump sets (move-to-target mode)

When the robot operating in the move-to-target mode, enters in the landing region Rl

(5.10), it should switch to the obstacle-avoidance mode to avoid collision. Hence, the
jump set of the move-to-target mode for the state x is defined as

JW
0 := Nγs(Dra(OW)) ∩Rl, (5.12)

where γs ∈ (0, γ). For robustness purposes (with respect to noise), we introduce a hys-
teresis region by allowing the robot, operating in the move-to-target mode inside the
(ra + γ)− neighborhood of the set OW , to move closer to the set OW before switching to
the obstacle-avoidance mode.
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The flow set of the move-to-target mode for the state x is then defined as

FW
0 :=

(
W \ (D◦

ra+γs(OW))
)
∪Re. (5.13)

Notice that the union of the jump set JW
0 and the flow set FW

0 covers the robot-centered
obstacle-free workspace Wra .

The overall flow and the jump set F0 and J0, for the move-to-target mode are given
by

F0 := {ξ ∈ K|x ∈ FW
0 ,m = 0},

J0 := {ξ ∈ K|x ∈ JW
0 ,m = 0}.

(5.14)

Flow and jump sets (obstacle-avoidance mode)

The robot operates in the obstacle-avoidance mode inside the γ−neighbourhood of the
obstacle-occupied workspace. Since the robot can safely move straight towards the target
location and exit the γ−neighborhood of the nearest obstacle, whenever it is in the exit
region (5.11), it should switch back to the move-to-target mode only if it is in the exit
region. To that end, we make use of the hit point h (i.e., the location of the center of the
robot when it switched from the move-to-target mode to the current obstacle-avoidance
mode) to define the jump set of the obstacle-avoidance mode JW

1 for the state x as
follows:

JW
1 :=

(
W \D◦

ra+γ(OW)
)
∪ ERh∪Nγ(Dra(O0)). (5.15)

For a hit point h ∈ Wra , the set ERh is given by

ERh := {x ∈ Re

∣∣∥h∥ − ∥x∥ ≥ ϵ}, (5.16)

with ϵ ∈ (0, ϵ̄] where ϵ̄ is a sufficiently small positive scalar. The set ERh contains
the locations from the exit region Re which are at least ϵ units closer to the target
location than the current hit point h. Since the obstacles are compact and convex,
and the target location 0 is within the interior of the obstacle-free workspace Wra , it
is possible to guarantee the existence of the parameter ϵ̄ such that the intersection set
ERh ∩ Nγ(Dra(Oi)) is non-empty for every h ∈ JW

0 ∩ Nγ(Dra(Oi)) for each i ∈ I, as
stated in the following lemma:

Lemma 5.1 Let Assumption 5.1 hold. Then, for any location h ∈ JW
0 ∩ Nγ(Dra(Oi)),

there exists ϵ̄ > 0 such that for any ϵ ∈ (0, ϵ̄] the set ERh ∩ Nγ(Dra(Oi)) ̸= ∅, where the
set ERh is defined in (5.16).

Proof See Appendix D.1.

According to (5.15) and (5.16), the robot operating in the obstacle-avoidance mode,
can switch to the move-to-target mode only when its center belongs to the exit region
Re and the target location 0 is at least ϵ units closer to x than the current hit point h.

The flow set of the obstacle-avoidance mode for the state x i.e., FW
1 is defined as

follows:
FW

1 := Nγ(Dra(OW)) \ (ERh ∪Nγ(Dra(O0))). (5.17)

Notice that the union of the jump set (5.15) and the flow set (5.17) exactly covers the
robot-centered obstacle-fee workspace Wra .
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Remark 5.1 Given that the workspace W is both convex and compact, there may exist
some locations x ∈ Nγ(Dra(O0)) from which the nearest point to the robot’s center on
the obstacle O0 = (W◦)c is not unique. This scenario prevents the implementation of
the obstacle-avoidance term v(x, a) in the control law, at such locations. However, by
excluding the set Nγ(Dra(O0)) from the set FW

1 , as defined in (5.17), it is ensured that
the obstacle-avoidance mode is never activated within the set Nγ(Dra(O0)).

The overall flow and jump sets F1 and J1, for the obstacle-avoidance mode are given
by

F1 := {ξ ∈ K|x ∈ FW
1 ,m = 1, s ̸= s0},

J1 := Jx ∪ Js,
(5.18)

where Jx := {ξ ∈ K|m = 1,x ∈ JW
1 } and Js := {ξ ∈ K|m = 1, s = s0} with s0 ∈ R≥0

being the initial value of the state s, i.e., s(0, 0) = s0.

Remark 5.2 The definition of sets in (5.18) enables the control to immediately switch to
the move-to-target mode if it is initialized in the obstacle-avoidance mode (i.e., ξ(0, 0) ∈
J1). This ensures that the hit point h always belongs to the set JW

0 before the robot starts
moving in the obstacle-avoidance mode, thus guaranteeing the existence of the parameter
ϵ̄, as stated in Lemma 5.1.

Finally, the overall flow and jump sets F and J , used in (5.5), are defined as

F :=
⋃
m∈M

Fm, J :=
⋃
m∈M

Jm, (5.19)

where F0,J0 defined in (5.14) for m = 0 and in (5.18) for m = 1. Next, we provide the
update law L(x,h, a,m, s) used in (5.5b).

5.3.3 Update law L(x,h, a,m)

The update law L(ξ), used in (5.5b), updates the value of the hit point h, the unit vector
a, the mode indicator m and the variable s when the state (x,h, a,m, s) belongs to the
jump set J defined in (5.19) and is given by

L(ξ) =

{
L0(ξ), ξ ∈ J0,

L1(ξ), ξ ∈ J1.
(5.20)

When the state ξ enters in the jump set J0 (5.14), the update law L0(x,h, a, 0, s) is given
as

L0(x,h, a, 0, s) =


x

A(x)
1

s+ 1

 , (5.21)

Given x ∈ Nγ(Dra(OW)), the set-valued mapping A : R3 ⇒ S2 is defined as

A(x) =

{
q ∈ P⊥(x), x×xπ = 0,

q ∈ x×xπ

∥x×xπ∥ , x×xπ ̸= 0,
(5.22)
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where for any p ∈ R3, the set P⊥(p), which is defined as

P⊥(p) := {q ∈ S2|q⊺p = 0}, (5.23)

contains unit vectors that are perpendicular to the vector p.
According to (5.21), when the robot switches from the move-to-target mode to the

obstacle-avoidance mode, the coordinates of the hit point h get updated to the current
value of x. Moreover, according to (5.22), the unit vector a is updated such that it is
perpendicular to the vector h and the resulting hyperplane P(h, a) intersects with the
interior of the nearest ra−dilated obstacle. Since the target location 0 ∈ P(h, a) and the
hit point h ∈ JW

0 , the hyperplane intersects with both the landing region Rl and the exit
region Re associated with the nearest obstacle. This feature is then used to ensure that
the robot, operating in the obstacle-avoidance mode, always enters in the move-to-target
mode. This allows one to ensure global convergence to the target location, as stated later
in Theorem 5.1.

When the state ξ enters in the jump set J1, defined in (5.18), the update law
L1(x,h, a, 1, s) is given by

L1(x,h, a, 1, s) =


h
a
0

s+ 1

 . (5.24)

According to (5.24), when the robot switches from the obstacle-avoidance mode to the
move-to-target mode, the coordinates of the hit point h and the unit vector a remain
unchanged.

Remark 5.3 Since the parameter γ ∈ (rs, r̄s − rs), where r̄s is defined in (5.2), the
(ra + γ)−dilated obstacles Dra+γ(Oi), ∀i ∈ I, are disjoint, and the target location 0 ∈
W◦

ra+γ. Furthermore, according to (5.17), the flow set of the obstacle-avoidance mode
associated with the state x, denoted as FW

1 , is contained within the region Nγ(Dra(OW)).
Hence, the proposed control law enables the robot to avoid one obstacle at a time.

Control design summary: The proposed hybrid feedback control law can be sum-
marized as follows:

• Parameters selection: the target location is set at the origin with 0 ∈ W◦
ra ,

and ξ(0, 0) ∈ K. The gain parameters κs and κr are set to positive values, and a
sufficiently small positive value is chosen for ϵ̄, used in (5.16). The scalar parameter
γ, used in the construction of the flow set F and the jump set J , is selected such
that γ ∈ (0, r̄s− rs), where r̄s is defined in (5.2). The parameters γa and γs are set
to satisfy 0 < γa < γs < γ.

• Move-to-target mode m = 0: this mode is activated when ξ ∈ F0. As per
(5.5a), the control input is given by u(ξ) = −κsx, causing x to evolve along the
line segment Ls(0,x) towards the origin. If, at some instance of time, ξ enters in the
jump set J0 of the move-to-target mode, the state variables (h, a,m, s) are updated
using (5.21), and the control input switches to the obstacle-avoidance mode.
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• Obstacle-avoidance mode m = 1: this mode is activated when ξ ∈ F1. As
per (5.5a), the control input is given by u(ξ) = κrv(x, a), causing x to evolve in
the γ−neighborhood of the nearest obstacle along the hyperplane P(h, a) until the
state ξ enters in the jump set J1 of the obstacle-avoidance mode. When ξ ∈ J1,
the state variables (m, s) are updated using (5.24), and the control input switches
to the move-to-target mode.

This concludes the design of the proposed hybrid feedback controller (5.5). Next, we
analyze the safety, stability, and convergence properties of the proposed hybrid feedback
controller.

5.4 Stability analysis

The hybrid closed-loop system resulting from the hybrid feedback control law (5.5) is
given by

ẋ

ḣ
ȧ
ṁ
ṡ

= u(ξ)
= 0
= 0
= 0
= 1︸ ︷︷ ︸

ξ̇=F(ξ), ξ∈F ,

x+
h+

a+

m+

s+


= x

∈ L(ξ)

︸ ︷︷ ︸
ξ+∈J(ξ), ξ∈J ,

(5.25)

where u(ξ) is defined in (5.5a), and the update law L(ξ) is provided in (5.20). Definitions
of the flow set F and the jump set J are provided in (5.19). Next, we analyze the hybrid
closed-loop system (5.25) in terms of forward invariance of the obstacle-free state space
K, along with the stability properties of the target set

A := {ξ ∈ K|x = 0}. (5.26)

The next lemma shows that the hybrid closed-loop system (5.25) satisfies the hybrid
basic conditions, as stated in Assumption 2.1, which guarantees the well-posedness of the
hybrid closed-loop system.

Lemma 5.2 The hybrid closed-loop system (5.25) with data (F ,F,J ,J) satisfies the
hybrid basic conditions stated in Assumption 2.1.

Proof See Appendix D.2.

For safe autonomous navigation, the state x must always evolve within the obstacle-
free workspace Wra , defined in (5.3). This is equivalent to having the set K forward
invariant for the hybrid closed-loop system (5.25). This is stated in the next Lemma.

Lemma 5.3 Under Assumption 5.1, for the hybrid closed-loop system (5.25), the obstacle-
free set K :=Wra ×Wra × S2 ×M× R≥0 is forward invariant.

Proof See Appendix D.3.
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Next, we provide one of our main results which establishes the fact that for all initial
conditions in the obstacle-free set K, the proposed hybrid controller not only ensures safe
navigation but also guarantees global asymptotic stability of the target location at the
origin.

Theorem 5.1 Under Assumption 5.1, for the hybrid closed-loop system (4.29), the fol-
lowing holds true:

i) the obstacle-free set K is forward invariant,

ii) the target set A is globally asymptotically stable over the set K,

iii) the number of jumps is finite.

Proof See Appendix D.4.

5.5 Application to sphere worlds

Obviously, the hybrid feedback controller (5.5), which is designed for safe autonomous
navigation in 3-D environments with arbitrary convex obstacles, is applicable in sphere
words i.e., environments with spherical obstacles. However, in this section, we will take
advantage of the simplified geometry of the obstacles to redesign the control law (5.5) in
a way that ensures a monotonic decrease of the distance between the robot and the target
location–a feature that is not guaranteed with the control law (5.5) in environments with
arbitrary convex obstacles.
Let us consider environments with spherical obstacles as defined in [Koditschek and
Rimon, 1990]. The workspace W := Br0(c0) is a compact sphere with radius r0 ∈ R>0

and center c0 ∈ R3. In addition, the workspace W contains disjoint, compact spherical
obstacles Oi := Bri(ci), i ∈ I \ {0}, where ri ∈ R≥0 and ci ∈ W represent the radius and
the center of obstacle Oi. Similar to [Koditschek and Rimon, 1990], the workspace W
satisfies Assumption 5.1.
Taking advantage of the spherical geometry of the obstacles, we will modify the obstacle-
avoidance control vector v(x, a) in (5.6), to ensure that in the obstacle-avoidance mode,
the inner product between the modified velocity control vector and the vector x remains
non-positive. This will ensure that the distance, between the target location and the
robot, monotonically decreases when the robot operates according to the proposed hybrid
feedback controller (5.5) with modifications, as stated later in Theorem 5.2.

When the control law switches from themove-to-target mode to the obstacle-avoidance
mode, the unit vector a is updated using (5.22) such that the hyperplane P(0, a) inter-
sects the current hit point h and the interior of the nearest ra−dilated obstacle D◦

ra(Oi).
Since obstacle Oi is a sphere, it can be shown that the hyperplane P(0, a) passes through
the center ci of obstacle Oi. This ensures that for all x ∈ Nγ(Dra(Oi)) ∩ P(0, a),
Π(x,OW) = Π(x,Oi) ∈ P(0, a). As a result, if h ∈ ∂Dβ(Oi) for β ∈ [ra, ra + γ],
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and x(t0, j0) ∈ ∂Dβ(Oi) ∩ P(h, a) for some (t0, j0) ∈ dom ξ, where a = A(h), then
under the control input u(ξ) = vs(x, a), where

vs(x, a) = R(a)xπ, (5.27)

one has x(t, j) ∈ ∂Dβ(Oi) ∩ P(0, a) for all time (t, j) ⪰ (t0, j0), ensuring robot’s safety,
as stated later in Theorem 5.2
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Figure 5.2: The left figure depicts the set Nγ(Dra(Oi))∩P(h, a)∩P≥(0,R(a)ci), shaded
in a dark blue color. The right figure shows the direction of the modified obstacle-
avoidance control vector, vs(x, a), at x ∈ Nγ(Dra(Oi)) ∩ P(h, a) ∩ P≥(0,R(a)ci).

Now, for a given h ∈ Nγ(Dra(Oi)), consider the hyperplane P(0,R(a)ci), where
a = A(h) and ci is the center of obstacleOi. Notice that, for all x in the setNγ(Dra(Oi))∩
P(h, a) ∩ P≥(0,R(a)ci), which is depicted in Fig. 5.2, the inner product between
the modified obstacle-avoidance control term v(x, a) and the vector x is always non-
positive. This allows one to show that if one has h ∈ Nγ(Dra(Oi)), a = A(h) and
x ∈ Nγ(Dra(Oi))∩P(h, a)∩P≥(0,R(a)ci), then the control input vector u(ξ) = vs(x, a)
will ensure monotonic decrease of the distance ∥x∥ as long as the state x remains in the
set P≥(0,R(a)ci), as stated later in Theorem 5.2.

Next, motivated by the preceding discussion, we modify the proposed hybrid feedback
control law (5.5) using the modified obstacle-avoidance control vector vs(x, a), defined
in (5.27), as follows:

• the modified hybrid control input vector us(ξ), which is obtained by replacing
the obstacle-avoidance control vector v(x, a) with the modified obstacle-avoidance
control vector vs(x, a) in (5.5a), is given as

us(ξ) = −κs(1−m)x+ κrmvs(x, a), (5.28)

where κs > 0 and κr > 0.
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The hybrid closed-loop system resulting from the modified hybrid feedback control
law is given by

ẋ

ḣ
ȧ
ṁ
ṡ

= us(ξ)
= 0
= 0
= 0
= 1︸ ︷︷ ︸

ξ̇=Fs(ξ),ξ∈F ,

x+
h+

a+

m+

s+


= x

∈ L(ξ)

︸ ︷︷ ︸
ξ+∈J(ξ),ξ∈J ,

(5.29)

where the control input vector us is defined in (5.28) and the update law L(ξ) is given
in (5.20).

The next lemma shows that the hybrid closed-loop system (5.29) with the data
(F ,Fs,J ,J) satisfies the hybrid basic conditions, as stated in Assumption 2.1.

Lemma 5.4 The hybrid closed-loop system (5.29) with data (F ,Fs,J ,J) satisfies the
hybrid basic conditions stated in Assumption 2.1.

The proof of Lemma 5.4 is similar to the proof of Lemma 5.2, therefore, it is omitted.
Next, we demonstrate that for the robot operating in a sphere world, which satisfies

Assumption 5.1, the modified proposed hybrid feedback controller ensures safe naviga-
tion. It also guarantees global asymptotic stability of the target location at the origin,
with a monotonic decrease in the distance between the robot’s center and the target
location.

Theorem 5.2 Under Assumption 5.1, for the hybrid closed-loop system (5.29), the fol-
lowing holds true:

i) the obstacle-free set K is forward invariant,

ii) the target set A is globally asymptotically stable over the set K,

iii) the number of jumps is finite.

iv) ∥x(t, j)∥ ≤ ∥x(t0, j0)∥, for all (t, j) ⪰ (t0, j0) ∈ dom ξ.

Proof See Appendix D.5.

5.6 Implementation procedure

We consider a workspace with convex obstacles that satisfies Assumption 5.1 with some
r̄s > 0, as discussed in Section 5.2. The target location is set at the origin within the
interior of the obstacle-free workspace W◦

ra . The center of the robot is initialized in
the obstacle-free workspace Wra . The variables h, a,m and s are initialized in the sets
Wra ,S2,M and R≥0, respectively. The parameter γ ∈ (0, r̄s − rs) enables the algorithm
to avoid one obstacle at a time, as discussed in Remark 5.3. The parameters γa and γs
are set to satisfy 0 < γa < γs < γ. A sufficiently small value for ϵ̄ is selected as stated
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in Lemma 5.1, and the parameter ϵ ∈ (0, ϵ̄]. We set a sensing radius Rs > ra + γ such
that the robot can detect the boundary of the obstacles within its line-of-sight inside the
region BRs(x).

When the control input is initialized in the move-to-target mode, according to (5.5a),
it steers the robot straight towards the origin. The robot should constantly measure the
distance between its center and the surrounding obstacles to identify whether the state ξ
has entered in the jump set J0 of the move-to-target mode. To do this, the robot needs
to identify the set ∂O which contains the locations from the boundary of the surrounding
obstacles that are less than Rs units away from the center of the robot and have clear
line-of-sight to the center of the robot, where Rs > ra + γ represents sensing radius. In
other words, the set ∂O is defined as

∂O = {p ∈ ∂OW |∥x− p∥ ≤ Rs,Ls(x,p) ∩ D◦
ra(OW) = ∅}. (5.30)

Then, one can obtain the distance between the robot’s center and the surrounding ob-
stacles by evaluating d(x, ∂O) according to Section 2.2.1. If d(x, ∂O) ≤ ra + γs, the
algorithm should identify whether the robot can move straight towards the target loca-
tion without colliding with the nearest obstacle. In other words, the algorithm should
evaluate whether the center of the robot belongs to the landing region Rl, defined in
(5.9), associated with the nearest obstacle. To that end, the algorithm identifies the set
∂Oc ⊂ ∂O which contains the locations from the set ∂O that belong to the boundary of
the closest obstacle. Let Oi for some i ∈ I be the closest obstacle to the center of the
robot, then the set ∂Oc is defined as

∂Oc = ∂Oi ∩ ∂O. (5.31)

Once the set ∂Oc has been identified, one needs to determine whether the center of the
robot x belongs to the landing region Rl by evaluating the intersection between the set
∂Oc and the set D◦

ra(Ls(x,0)). If ∂Oc ∩ D◦
ra(Ls(x,0)) ̸= ∅, then the center of the robot

belongs to the landing region Rl and the state ξ has entered in the jump set of the
move-to-target mode J0. Otherwise, the robot continues to operate in the move-to-target
mode.

When the state ξ enters in the jump set of the move-to-target mode J0, the algorithm
updates the state ξ as per (5.21) and (5.25), and the control input switches to the
obstacle-avoidance mode. According to Lemma D.1, when the robot operates in the
obstacle-avoidance mode, it stays inside the γ−neighborhood of the closest obstacle. As
the robot operates in the obstacle-avoidance mode, the algorithm continuously evaluates
the intersection ∂Oc∩D◦

ra(Ls(x,0)) to check whether the center of the robot has entered
in the exit region Re. If ∂Oc ∩ D◦

ra(Ls(x,0)) = ∅, then the center of the robot belongs
to the exit region Re. If the robot’s center in the exit region is ϵ units closer to the
target location than the current hit point h, it implies that the state ξ has entered in the
jump set J1 of the obstacle-avoidance mode. Then the algorithm updates the value of
the variables m and s as per (5.24) and the control input switches to the move-to-target
mode.

Finally, if the control input is initialized in the obstacle-avoidance mode, according
to (5.18), the state ξ(0, 0) belongs to the jump set of the obstacle-avoidance mode J1.
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As a result, according to (5.24) the algorithm updates the value of the variables h, a,m
and s, and switches the control input to the move-to-target mode.

The above-mentioned implementation procedure is summarised in Algorithm 5.

Algorithm 5 Implementation of the proposed hybrid control law (5.5) in a priori un-
known environment.
1: Set target location at the origin 0.
2: Initialize x(0, 0) ∈ Wra , h(0, 0) ∈ Wra , a(0, 0) ∈ S2, m(0, 0) ∈M and s(0, 0) ∈ R≥0.

Choose sufficiently small value of ϵ̄ according to Lemma 5.1, and initialize ϵ ∈ (0, ϵ̄].
Identify the parameter r̄s, as discussed in Section 5.2, and set parameters γ, γs and
γa such that 0 < γa < γs < γ < r̄s − rs. Choose Rs > ra + γ, used in (5.30).

3: Measure x and the set ∂O as defined in (5.30).
4: if m = 0, then
5: if d(x, ∂O) ≤ ra + γs, then
6: Identify the set ∂Oc ⊂ ∂O as defined in (5.31).
7: if ∂Oc ∩ D◦

ra(Ls(x,0)) ̸= ∅, then
8: Update ξ ← J(ξ) using (5.21) and (5.25).
9: end if
10: end if
11: end if
12: if m = 1, then
13: if s = s(0, 0), then
14: Update ξ ← J(ξ) using (5.24) and (5.25).
15: else
16: if d(x, ∂O) ≤ ra + γ, then
17: Identify the set ∂Oc ⊂ ∂O as defined in (5.31).
18: if ∂Oc ∩ D◦

ra(Ls(x,0)) = ∅, then
19: if ∥x∥ ≤ ∥h∥ − ϵ, then
20: Update ξ ← J(ξ) using (5.24) and (5.25).
21: end if
22: end if
23: else
24: Update ξ ← J(ξ) using (5.24) and (5.25).
25: end if
26: end if
27: end if
28: Execute F(ξ) given (5.5), used in (5.25).
29: Go to step 3.

5.7 Simulation results

In the first simulation, we consider a single three-dimensional convex obstacle, as shown
in Fig. 5.3. The initial location of the robot x(0, 0) is represented by the green diamond
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symbol and the origin is selected as the target location. The radius of the robot r = 0.15m
and the safety distance rs = 0.1m. The parameter γ = 0.4m and the parameter ϵ, used
in (5.16), is set to 0.1m. The gains κs and κr, used in (5.5a), are set to 1 and 0.5,
respectively. The sensing radius Rs, used in (5.30), is set to 1m. The simulations are
performed in MATLAB 2020a. In Fig. 5.3, the red-colored trajectory represents the
motion of the robot in the move-to-target mode, whereas the blue-colored trajectory
represents the motion of the robot in the obstacle-avoidance mode. When the robot
switches from the move-to-target mode to the obstacle-avoidance mode, the algorithm
updates the coordinates of the hit point h and the unit vector a according to (5.21).
Then, the robot moves in the γ−neighborhood of the nearest obstacle with its center in
the hyperplane P(h, a), as shown in Fig. 5.3. When the center of the robot enters in the
jump set of the obstacle-avoidance mode, it switches back to the move-to-target mode
and converges to the target location at the origin.

Figure 5.3: Trajectory of the robot safely converging to the origin.

We consider an unbounded workspace i.e., obstacle O0 = ∅, with 2 three-dimensional,
convex obstacles, as shown in Fig. 5.4. We apply the proposed hybrid feedback controller
(5.5) for the robot initialized at 8 different locations in the obstacle-free workspace. The
target is located at the origin. The radius of the robot is set to 0.15m. The minimum
safety distance rs = 0.05m and the parameter γ = 0.2m. The gains κs and κr, used in
(5.5a), are set to 0.5 and 1, respectively. The sensing radius Rs, used in (5.30), is set to
1m. The parameter ϵ, used in (5.16), is set to 0.05m. From Fig. 5.4, it can be observed
that the robot converges to the target location while simultaneously avoiding collisions
with the obstacles. Fig. 5.5 shows that the center of the robot stays at least ra meters
away from the boundary of the obstacles. The complete simulation video can be found
at https://youtu.be/67eDVXH1wbw.

https://youtu.be/67eDVXH1wbw
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Figure 5.4: Robot trajectories starting from different locations.

In the next simulation scenario, as shown in Fig. 5.6, we consider 2 three-dimensional
spherical obstacles and apply the proposed hybrid controller (5.5) with modifications
mentioned in Section 5.5, for a point robot initialized at 8 different locations in the
obstacle-free workspace. The safety distance is set to 0.15m and the parameter γ =
0.15m. The gains κs and κr, used in (5.5a), are set to 0.5. The sensing radius Rs, used
in (5.30), is set to 1m. The parameter ϵ, used in (4.22), is set to 0.05m. Similar to the
previous simulations, it can be observed from Fig. 5.7 that the robot converges asymptot-
ically to the target location without colliding with the obstacles. Since the obstacles are
spheres, the distance between the robot and the target location monotonically decreases
as the robot converges to the target location, as stated in Theorem 5.2 and as shown in
Fig. 5.7(right).

5.8 Conclusions

In this chapter, we proposed a hybrid feedback controller for safe autonomous robot
navigation in three-dimensional environments with arbitrarily-shaped convex obstacles.
These obstacles may have nonsmooth boundaries, large sizes, and can be placed arbi-
trarily, provided they meet certain mild disjointedness requirements, as per Assumption
5.1. The proposed hybrid controller guarantees global asymptotic stability of the target
location in the obstacle-free workspace. The obstacle-avoidance component of the control
law relies on the projection of the robot’s center onto the nearest obstacle, enabling ap-
plications in a priori unknown environments, as discussed in Section 5.6. In general, the
proposed hybrid feedback control law generates non-smooth trajectories when switching
between modes. Incorporating a smoothing mechanism in our proposed hybrid feedback
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Figure 5.5: Distance of the center of the robot x from the boundary of the obstacle
occupied workspace OW .

Figure 5.6: Robot trajectories safely navigating around spherical obstacles and converg-
ing to the target location at the origin.

would be an interesting practical extension.
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Figure 5.7: The left figure shows the change in the distance between the robot x and the
boundary of the obstacle-occupied workspace OW . The right figure shows a monotonic
decrease of the distance between the robot x and the target location at the origin.



Chapter 6

Conclusions

6.1 Summary

In this thesis, we utilized hybrid feedback control techniques to design autonomous robot
navigation algorithms in obstacle-cluttered environments. In Chapter 3, we considered
planar environments with arbitrarily-shaped convex obstacles. Unlike [Paternain et al.,
2017], [Arslan and Koditschek, 2019] and [Berkane et al., 2021a], the obstacles are allowed
to have non-smooth boundaries. The proposed autonomous navigation approach relies
on an appropriately designed switching mechanism between the move-to-target mode and
the obstacle-avoidance mode, resulting in safe navigation and global asymptotic stability
of the target location. Additionally, it is shown that when the robot is initialized away
from the obstacles boundaries, the proposed navigation approach generates continuous
control inputs. A procedure for the implementation of the proposed hybrid feedback
controller in a priori unknown environments is provided.

Chapter 4 deals with the problem of autonomous robot navigation in planar environ-
ments with arbitrarily-shaped obstacles, including non-convex obstacles. An instrumen-
tal obstacle reshaping operator, which guarantees the uniqueness of the closest point on
the modified obstacles from the robot’s center when it is near the modified obstacles, is
proposed to facilitate the obstacle-avoidance mechanism design. Similar to Chapter 3,
the proposed hybrid navigation approach relies on an appropriately designed switching
mechanism between the move-to-target mode and the obstacle-avoidance mode. When
initialized in themove-to-target mode, the proposed control scheme guarantees safe global
convergence to the target location in the modified workspace. It is shown that the effect
of the obstacle reshaping operator can be replicated with a virtual ring rolling along the
obstacles’ boundaries. A sensor-based implementation of the proposed navigation scheme
in a priori unknown environments has been discussed in Section 4.6.

Chapter 5 is dedicated to the design of a hybrid feedback controller for safe au-
tonomous robot navigation in three-dimensional environments with arbitrarily-shaped
convex obstacles. When the robot is away from the obstacles, the control input operates
in the move-to-target mode, steering the robot towards the target location. When the
robot gets close to an obstacle and has no clear line-of-sight to the target location, the
control switches to obstacle-avoidance mode, steering the robot along the hyperplane,

99
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passing through the center of the robot and the target location, without moving far away
from the obstacle. The proposed navigation scheme guarantees global asymptotic sta-
bility of the target location and forward invariance of the obstacle-free workspace. A
procedure for the implementation of the proposed autonomous navigation controller, in
a priori unknown three-dimensional environments, is also provided.

6.2 Perspective

The proposed solutions in this work constitute a good platform for several future ex-
tensions. The hybrid feedback controllers proposed in this dissertation are applicable
to robots modeled as first-order integrator with velocity input. However, the motion of
mechanical systems is actually governed by second-order dynamics with torque/force in-
puts. In [Arslan and Koditschek, 2017], the authors proposed a reference governor-based
approach to extend the single integrator-based navigation controllers to second-order dy-
namics, assuming that the robot is not very close to the obstacles boundaries. In [Verginis
and Dimarogonas, 2021], the authors proposed an adaptive navigation function-based
control design for robots with uncertain second-order dynamics navigating in sphere
worlds. Since the navigation function is allowed to grow unbounded near the obstacles
boundaries, the control input in this region can grow unbounded. Moreover, this work
has several restrictions in terms of the initial and final locations of the robots.
The development of autonomous navigation control strategies, endowed with safety and
global asymptotic stability guarantees, for second-order dynamical systems navigating
in environments containing arbitrarily-shaped obstacles is a challenging open problem
worth investigating.

Extending our developed framework to multi-robot autonomous navigation with col-
lision and obstacle avoidance is an interesting future work. Most of the existing strategies
for multi-robot navigation rely on the navigation function-based approach and they are
applicable in obstacle-free environments, e.g., [Dimarogonas et al., 2006], [Tanner and
Boddu, 2012]. In [Roussos and Kyriakopoulos, 2013], the authors proposed an almost
global priority-based multi-robot navigation approach in environments with circular ob-
stacles. In [Verginis and Dimarogonas, 2021], with certain restrictions on the initial
and final locations of the robots in environments with stationary spherical obstacles, the
authors provided a leader-follower-based approach for almost global convergence of the
robots to their predefined target locations. To the best of the author’s knowledge, the
development of a globally convergent collision-free autonomous navigation algorithm for
multi-robot systems, even in a known environment consisting of obstacles with complex
geometries, is still an open problem.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma 2.1

We consider a closed convex set A ⊂ Rn and q ∈ Rn\A. According to [Boyd et al.,
2004, Section 8.1] the projection of q on the closed convex set Dr(A), r ∈ [0, d(q,A)],
[Rockafellar, 1997, Theorem 3.1] in the sense of the Euclidean norm i.e., Π(q,Dr(A)) is
unique. Since Bd(q,Dr(A))(q) just touches the set Dr(A) at Π(q,Dr(A)), the vector q −
Π(q,Dr(A)) is normal to the set Dr(A) at Π(q,Dr(A)). Hence, according to [Boyd et al.,
2004, Section 2.5.2], the hyperplane P(Π(q,Dr(A)),q − Π(q,Dr(A))) is a supporting
hyperplane to the set Dr(A) at Π(q,Dr(A)).

If we show that the points q,Π(q,A) and Π(q,Dr(A)), r ∈ (0, d(q,A)), are collinear,
then the proof is complete. We next consider Br(Π(q,A)) with r ∈ [0, d(q,A)]. Let p
be the projection of q on the set Br(Π(q,A)) i.e., p = Π(q,Br(Π(q,A))). It is straight-
forward to notice that p ∈ Ls(q,Π(q,A)). Hence p ∈ ∂Dr(A), where the set Dr(A) is
convex according to [Rockafellar, 1997, Theorem 3.1]. Moreover, p = Π(q,Dr(A)), oth-
erwise ∃p1 ∈

(
Ls(p,Π(q,Dr(A)))

)◦ ⊂ Dr(A) such that p1 ∈
(
B∥q−Π(q,Dr(A))∥(q)

)◦
which

is a contradiction. Hence, the points q,Π(q,Dr(A)) with r ∈ (0, d(q,A)), and Π(q,A)
are collinear.

A.2 Proof of Lemma 2.2

This proof is by contradiction. Let us assume that there exists x ∈ Rn \ A such that
d(x,A) = β, where β ∈ (0, α). We further assume that d(x,G) = η and the set PJ (x,G)
is not a singleton, where the closed set G = (A⊕ B◦

α(0))
c.

Since we have reach(A) ≥ α, the set PJ (x,A) is a singleton. As a result, according

to [Rataj and Zähle, 2019, Lemma 4.5], it follows that x−Π(x,A)
∥x−Π(x,A)∥ ∈ NA(Π(x,A)), where

NA(Π(x,A)) denotes the normal cone to the set A at the point Π(x,A). Furthermore,

according to [Rataj and Zähle, 2019, Lemma 4.5], for q = Π(x,A) + α x−Π(x,A)
∥x−Π(x,A)∥ , the

open Euclidean ball B◦
α(q) does not intersect with the set A i.e., B◦

α(q) ∩A = ∅. Hence,
as the set ∂G contains all points in Rn that are exactly at α distance away from the set
A, one can conclude that q ∈ ∂G ∩L(x,Π(x,A)). Now, we consider two cases depending
on the location of the point q on the line L(x,Π(x,A)) as follows:
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Case 1: when d(q,Π(x,A)) = α ≥ β + η. Since α ≥ β + η, one has Bη(x) ⊂
Bα(Π(x,A)) ⊂ Dα(A). Additionally, as card(PJ (x, ∂G)) > 1, there exist p1 ∈ G and
p2 ∈ G such that {p1,p2} ⊂ ∂Bη(x) ∩ ∂G. Hence, there should be at least two points of
contact between the sets ∂Bη(x) and ∂Bα(Π(x,A)). Since α ≥ β + η, the Euclidean ball
Bη(x) can only touch the boundary of the Euclidean ball Bα(Π(x,A)) at no more that
one point, resulting in a contradiction.

Case 2: when d(q,Π(x,A)) = α ∈ (β, β + η). Since q ∈ ∂G ∩ L(x,Π(x,A)) and
α ∈ (β, β+η), one has q ∈ B◦

η(x). This implies that d(x,G) < η, which is a contradiction.

A.3 proof of Lemma 2.3

The cases where β = 0 and β = α are trivial. We analyze the case where β ∈ (0, α).
This proof is by contradiction. Let us assume that there exists x such that d(x,A) = η,
where η ∈ (β, α), and the set PJ (x,Dβ(A)) is not a singleton. Therefore, there exist at
least two distinct points p1 and p2 such that p1,p2 ⊂ ∂Dβ(A) ∩ PJ (x,Dβ(A)).

Since reach(A) ≥ α, the points p1 and p2, which belong to the set ∂Dβ(A), have
unique projection on the set A and d(p1,Π(p1,A)) = d(p2,Π(p2,A)) = β. Moreover, as
x ∈ ∂Dη(A), one has d(x,p1) = d(x,p2) = η − β, and d(x,A) = η. Therefore, one has
d(x,Π(p1,A)) = d(x,Π(p2,A)) = η. As a result, Π(p1,A) and Π(p2,A) belong to the
set PJ (x,A). Since η ∈ (0, α) and reach(A) ≥ α, it is clear that card(PJ (x,A)) = 1.
Hence, Π(p1,A) = Π(p2,A) = Π(x,A). This, by the application of triangular inequality,
implies that p1 = p2, which is a contradiction.



Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.1

The flow set F and the jump set J , defined in (3.21), (3.26), are closed subsets of
R2×M×I. The flow map F, given in (3.28), is continuous on F0×{0}×I. In (3.28), due to
the structure of the scalar function σ(ξ) in (3.6)-(3.8), the rotational vector v(ξ), defined
in (3.5), is active only within the γs−neighbourhood of any obstacle, which according to
Assumption 3.1, is valid for at most one obstacle at a time, namely Ok, k ∈ I. Also, as
Ok is convex, the projection of x on Ok i.e., Π(x,Ok) is continuous with respect to x.
As a result, F is continuous on Fm × {m} × I, m ∈ {−1, 1}. Hence F is continuous on
F . The jump map J, defined in (3.28), is single-valued on Jm × {m} × I, m ∈ {−1, 1}.
Also, J has a closed graph relative to J0 × {0} × I as M, defined in (3.23), is allowed
to be set-valued whenever x ∈ P(0, s). Hence, according to [Goebel et al., 2012, Lemma
5.10], J is outer semi-continuous and locally bounded relative to J .

B.2 Proof of Lemma 3.2

First, we prove that the union of the flow and jump sets covers exactly the obstacle-
free state space K. Inspired by [Berkane et al., 2021b, Appendix 11], for all i ∈ I and
m ∈ {−1, 1}, the satisfaction of the following equation:

F0 ∪ J0 = F i
m ∪ J i

m =Wra , (B.1)

along with (3.21) and (3.26) implies F ∪ J =Wra ×M× I =: K. Next, we prove (B.1).
It is clear that

F0 ∪ J0
(3.16)
=

(⋂
i∈I

F i
0

)
∪

(⋃
i∈I

J i
0

)
=
⋂
i∈I

[ (
F i

0 ∪ J i
0

)
∪

( ⋃
i′∈I,i′ ̸=i

(
F i

0 ∪ J i′

0

))]
(3.14),(3.15)

=
⋂
i∈I

(
Wra ∪ F i

0

) (3.15)
=
⋂
i∈I

Wra =Wra .

Similarly, for each i ∈ I and m ∈ {−1, 1}, according to (3.17), (3.19), by construction
F i

m ∪ J i
m =Wra .
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Now, inspired by [Berkane et al., 2021b, Appendix 1], for the hybrid closed-loop
system (3.28), with data H = (F ,F,J ,J), define SH(K) as the set of all maximal
solutions ξ to H with ξ(0, 0) ∈ K. Since F ∪ J = K, each ξ ∈ SH(K) has range
rge ξ ⊂ K. Additionally, if every maximal solution ξ ∈ SH(K) is complete, then the set
K will be forward invariant [Sanfelice, 2021, Definition 3.13]. Since the hybrid closed-
loop system (3.28) satisfies hybrid basic conditions, as stated in Lemma 3.1, one can use
[Goebel et al., 2012, Proposition 6.10], to verify the following viability condition:

F(x,m, k) ∩TF(x,m, k) ̸= ∅,∀(x,m, k) ∈ F\J , (B.2)

which will allow us to establish the completeness of the solution ξ to the hybrid closed-
loop system (3.28). In (B.2), TF(x,m, k) represents the tangent cone1 to the set F at
(x,m, k). Let (x,m, k) ∈ F\J , which implies by (3.21) that (x, k) ∈ (Fm\Jm) × I for
some m ∈M. We consider two cases corresponding to m = 0 and m ∈ {−1, 1}.

When m = 0, according to (3.16), there exists k ∈ I such that ξ ∈ F0\J0×{0}×{k}.
For x ∈ (F0)

◦\J0, TF(ξ) = R2×{0}× {0}, and (B.2) holds. According to (3.14), (3.15)
and (3.16), one has

∂F0\J0 ∈
⋃
k∈I

(
∂Dra(Ok) ∩Rk

b

)
,

and for every k ∈ I, according to Lemma 2.1, P(Π(x,Dra(Ok)),x − Π(x,Ok)) is a sup-
porting hyperplane to Dra(Ok) at Π(x,Dra(Ok)), hence ∀x ∈ ∂F0\J0

TF(x, 0, k) = P≥(0, (x− Π(x,Ok))× {0} × {0}.

Also, for m = 0, u(x, 0, k) = −κx, κ > 0, (3.4a). Hence, according to (3.9), for
x ∈ ∂Dra(Ok) ∩Rk

b , u
⊺(x−Π(x,Ok)) ≥ 0, hence u(x, 0, k) ∈ P≥(0, (x−Π(x,Ok)), and

(B.2) holds for m = 0.
When m ∈ {−1, 1}, according to (3.20), there exists k ∈ I such that x ∈ Fk

m\J k
m.

For x ∈ (Fk
m)

◦\J k
m, TFm(x) = R2, so that TF(ξ) = R2 × {0} × {0}, and (B.2) holds.

According to (3.17), (3.19) and (3.20), one has

∂Fk
m\J k

m ∈ ∂Dra(Ok),

and according to Lemma 2.1, P(Π(x,Dra(Ok)),x−Π(x,Ok)) is a supporting hyperplane
to Dra(Ok) at Π(x,Dra(Ok)), hence ∀x ∈ ∂Fk

m\J k
m

TF(x,m, k) = P≥(0, (x− Π(x,Ok))× {0} × {0},

and according to (3.4a), u(x,m, k) = κv(x,m, k), κ > 0. Since Π(x,OW) equals Π(x,Ok),
v(x, k,m)⊺(x− Π(x,Ok)) = 0, and the condition in (B.2) holds true for m = {−1, 1}.

Hence, according to [Goebel et al., 2012, Proposition 6.10], since (B.2) holds for all
ξ ∈ F\J , there exists a nontrivial solution to H for each initial condition in K. Finite
escape time can only occur through flow. They can neither occur for x in the set Fk

−1∪Fk
1 ,

k ∈ I, as these sets are bounded by definition (3.17)-(3.20), nor for x in the set F0 as

1The tangent cone to a set K ⊂ Rn at a point x ∈ Rn, denoted TK(x), is defined as in [Goebel et al.,
2012, Def. 5.12 and Fig. 5.4].
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this would make x⊺x grow unbounded, and would contradict the fact that d
dt
(x⊺x) ≤ 0

in view of the definition of u(x, 0, k). Therefore, all maximal solutions do not have finite
escape times. Furthermore, according to (3.28), x+ = x, and from the definition of the
update laws in (3.22), (3.27), it follows immediately that J(J ) ⊂ K. Hence, solutions
to the hybrid closed-loop system (3.28) cannot leave K through the jump and, as per
[Goebel et al., 2012, Proposition 6.10], all maximal solutions are complete.

B.3 Proof of Lemma 3.3

Let ξ := (x,m, k) be the solution to the hybrid closed-loop system (3.28). Notice that
for the robot operating in the move-to-target mode (m = 0), if x(t0, j0) /∈ L>(0, ν−1(s))
at some (t0, j0) ∈ dom ξ, then x(t, j) /∈ L>(0, ν−1(s)),∀(t, j) ⪰ (t0, j0), as long as it does
not encounter any obstacle in the way, since L(0,x(t0, j0)) ∩ L>(0, ν−1(s)) = ∅, where

νz(p) :=

[
0 z
−z 0

]
p, with p ∈ R2 and z ∈ {−1, 1}. Hence, we investigate the case where

the solution ξ evolves in the obstacle-avoidance mode (m ∈ {−1, 1}).

Lemma B.1 Under Assumption 3.1, each maximal solution x to the flow-only system

ẋ = u(x,m, k), x ∈ Fk
m, (B.3)

with m ∈ {−1, 1} and k ∈ I, has T = supt dom x < +∞ and x(T ) ∈ Gkm.

Proof See Appendix B.4.

Lemma B.1 indicates that the solution x(t) to the flow-only system (B.3), evolving
in the obstacle-avoidance flow set Fk

m related to some obstacle Ok, k ∈ I with some
m ∈ {−1, 1}, will enter in the gate region Gkm in finite time. As Gkm × {m} × {k} ⊂
Jm × {−1, 1} × I, according to Lemma B.1, the solution ξ evolving in the obstacle-
avoidance mode with some mode indicator m ∈ {−1, 1}, with respect to some obstacle
Ok, k ∈ I, will ultimately enter in the move-to-target mode. Next, we introduce several
notations to denote the instances where the solution ξ enters and leaves the obstacle-
avoidance mode with respect to some obstacle Ok, k ∈ I.

Let (tkF , j
k
F) ∈ dom ξ such that ξkF = ξ(tkF , j

k
F) = (xk

F ,m, k) ∈ Fk
m×{−1, 1}×{k} be

the state at the instant when a solution ξ to the hybrid closed-loop system (3.28), earlier
flowing in the move-to-target mode, enters in the flow set of the obstacle-avoidance mode
related to obstacle Ok, k ∈ I, for some m ∈ {−1, 1}. Similarly, let (tkJ , j

k
J ) ∈ dom ξ such

that ξkJ = ξ(tkJ , j
k
J ) = (xk

J ,m, k) ∈ J k
m × {−1, 1} × {k} be the state at the instant when

the solution ξ, earlier flowing in the obstacle-avoidance mode with respect to the obstacle
Ok, enters the jump set of the obstacle-avoidance mode associated with the respective
obstacle.

We partition the obstacle-free state space K (3.25) into three subsets, based on the
location of the vector s ∈ R2\{0} used in the update law (3.23), as follows:

K = K̃1(M) ∪ K̃−1(M) ∪ K̃0(M), (B.4)
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where
K̃1({z}) = (P>(0, s) ∩Wra)× {z} × I,
K̃−1({z}) = (P<(0, s) ∩Wra)× {z} × I,
K̃0({z}) = (P(0, s) ∩Wra)× {z} × I,

furthermore, let
K̃>({z}) = L>(0, ν1(s))× {z} × I,
K̃<({z}) = L>(0, ν−1(s))× {z} × I,

where {z} ⊆ M, such that K̃0(M) = A ∪ K̃>(M) ∪ K̃<(M). Now, we proceed with the
proof.

Given ξ(t0, j0) ∈ Wra\L>(0, ν−1(s))×{0}× I, we further assume ξ(t0, j0) ∈ K̃m∗({0})
for some m∗ ∈ {−1, 1} and that ∃(tkF , jkF − 1) ⪰ (t0, j0) such that ξ(tkF , j

k
F − 1) ∈ J0 ×

{0} × I, k ∈ I. According to (3.22) and (3.23), ξ(tkF , j
k
F) ∈ Fk

m∗ × {m∗} × {k}. Then
according to Lemma B.1, ∃(tkJ , jkJ ) ≻ (tkF , j

k
F) such that ξ(tkJ , j

k
J + 1) ∈ F0 × {0} × I.

Now, to prove our claim, we show that

u(x(t, j),m∗, k) ∈ P≥(0, νm∗(x(t, j))), (B.5)

for all (t, j) ∈ ([tkF , t
k
J ] × [jkF , j

k
J ]). Since ξ(t0, j0) ∈ K̃m∗({0}), one has L>(0, ν−1(s))

∩P≥(0, νm∗(xk
F)) = ∅. The satisfaction of (B.5) ensures that the component x of the

solution ξ always evolves towards the positive half-space generated by the hyperplane
P(0, νm∗(x(t, j))), as shown in Fig. B.1, such that

ξ(t, j) /∈ K̃<(M),∀(t, j) ∈ ([tkF , t
k
J ]× [jkF , j

k
J ]).

To that end, we analyze the behavior of the solution ξ(t, j), ∀(t, j) ∈ ([tkF , t
k
J ]× [jkF , j

k
J ]).

For (t, j) ∈ ([tkF , t
k
J ]× [jkF , j

k
J ]), consider the flow-only system (B.3) for x ∈ Fk

m∗ . Accord-
ing to (3.4a), the control input vector for the robot operating in the obstacle-avoidance
mode is given by

u(x,m∗, k) = −κσ(ξ)x+ κ[1− σ(ξ)]v(x,m∗, k), (B.6)

where κ > 0. Since x⊺νm∗(x) = 0, −κσ(ξ)x ∈ P≥(0, νm∗(x)). Next, we consider the
rotational vector κ[1− σ(ξ)]v(x,m∗, k), κ[1− σ(ξ)] ≥ 0 such that

v(ξ)⊺νm∗(x) =
∥x∥νm∗(x− Π(x,Ok))

⊺νm∗(x)

∥x− Π(x,Ok)∥
,

=
∥x∥(x− Π(x,Ok))

⊺x

∥x− Π(x,Ok)∥
.

(B.7)

According to Lemma B.1, the solution x will evolve within the set Fk
m∗ for all (t, j) ∈

([tkF , t
k
J ] × [jkF , j

k
J ]), and at (tkJ , j

k
J ) will enter in the gate region Gkm∗ . Hence, as per

Remark 3.1 and (3.10), for all (t, j) ∈ ([tkF , t
k
J ]× [jkF , j

k
J ]), one has

v(ξ)⊺νm∗(x) =
∥x∥(x− Π(x,Ok))

⊺x

∥x− Π(x,Ok)∥
≥ 0,

i.e., the vector κ[1− σ(ξ)]v(ξ) in (B.6) belongs to the positive half-space P≥(0, νm∗(x)),
and (B.5) is satisfied.
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Figure B.1: Illustration of a robot trajectory (blue curve) not intersecting the half-line
L>(0, ν−1(s)) (red line) while operating in the obstacle-avoidance mode in the flow set
Fk

1 × {1} × {k}. The velocity vector at the current location of the robot (green dot)
always points to the positive half-space P≥(0, ν1(x)) (shaded blue region).

B.4 Proof of Lemma B.1

We consider the flow-only system (B.3) for the robot operating in the obstacle-avoidance
mode with respect to some obstacle Ok, k ∈ I i.e., x ∈ Fk

m andm ∈ {−1, 1}. We partition
the set ∂Fk

m into several subsets, as shown in Fig. B.2, based on the similarity between
the tangent cones to the set Fk

m at these regions, as follows:

∂Fk
m = S1 ∪ S2 ∪ S3 ∪ S4 ∪ Gkm,
S1 =

(
∂Dra+γ(Ok) ∩ Fk

m

)
\Gkm,

S2 = L
(
0,n

(−m,k)
ra+γa

)
∩ Fk

m,

S3 = Gk−m ∩ Fk
m,

S4 = ∂Dra(Ok) ∩ Fk
m.

(B.8)

We proceed to prove the claims in two parts.

1. We show that if the solution x to the flow-only system (B.3) leaves the set Fk
m, it

cannot leave via the boundary ∂Fk
m\Gkm i.e., it can only leave the set Fk

m via Gkm.
To that end, for all x ∈ ∂Fk

m\Gkm, according to Nagumo’s theorem [Aubin et al.,
2011, Theorem 11.2.3], we verify the following condition:

u(x,m, k) ∈ TFk
m
(x) (B.9)

where TFk
m
(x) is the tangent cone to the set Fk

m at x.
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Figure B.2: The geometric representation of the obstacle-avoidance mode flow set Fk
1

related to an obstacle Ok, k ∈ I. The left figure shows the partitions of the set ∂Fk
1 . The

right figure depicts the partitions of the set Fk
1 .

2. We show that the solution x to the flow-only system (B.3), flowing in the set Fk
m,

away from the region Gkm, will always enter in the set Gkm in finite time. We show
that, if x(t0) ∈ Fk

m\Gkm for some t0 ≥ 0, then ∃T = supt dom x < +∞, T > t0,
such that x(T ) ∈ Gkm.

For x ∈ (S1)•, according to Lemma 2.1, the vector (x − Π(x,Ok)) is normal to the
convex set Dra+γ(Ok) at x. Hence, the tangent cone to the set Fk

m at x ∈ (S1)• is given
as

TFk
m
(x) = P≤(0,x− Π(x,Ok)).

Also, for x ∈ (S1)•, u(ξ) = −κx, κ > 0. Since (S1)• /∈ Rk
b , according to Remark 3.1,

−κx⊺(x− Π(x,Ok)) ≤ 0. Hence, one has

∀x ∈ (S1)•,u(x,m, k) ∈ TFk
m
(x). (B.10)

For x ∈ (S2\S3)•, the tangent cone to the set Fk
m at x is given by

TFk
m
(x) = P≥(0, νm(n

(−m,k)
ra+γa )),

and u(ξ) = −κσ(ξ)x + κ[1 − σ(ξ)]v(ξ), κ > 0. For x ∈ (S2\S3)•, x⊺νm(n
(−m,k)
ra+γa ) = 0,

hence −κσ(ξ)x ∈ P≥
(
0, νm(n

(−m,k)
ra+γa )

)
. We know that κ[1− σ(ξ)] ≥ 0, and

v(ξ)⊺νm(n
(−m,k)
ra+γa ) =

∥x∥νm(x− Π(x,Ok))
⊺νm
(
n
(−m,k)
ra+γa

)
∥x− Π(x,Ok)∥

,

=
∥x∥(x− Π(x,Ok))

⊺n
(−m,k)
ra+γa

∥x− Π(x,Ok)∥
.
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Since for x ∈ (S2\S3)•, the vectors n
(−m,k)
ra+γa and x point in the same direction and

(S2\S3)• /∈ Rk
b , according to Remark 3.1, x⊺(x−Π(x,Ok)) ≥ 0. Hence, for x ∈ (S2\S3)•,

κ[1− σ(ξ)]v(ξ) ∈ P≥
(
0, νm(n

(−m,k)
ra+γa )

)
, and

∀x ∈ (S2\S3)•,u(x,m, k) ∈ TFk
m
(x). (B.11)

For x ∈ (S4)•, the tangent cone to the set Fk
m at x is given by

TFk
m
(x) = P≥(0,x− Π(x,Ok)),

and u(ξ) = κv(ξ). Since v(ξ)⊺(x− Π(x,Ok)) = 0, one has

∀x ∈ (S4)•,u(x,m, k) ∈ TFk
m
(x). (B.12)

For x ∈ S1 ∩ S2, the tangent cone to the set Fk
m at x is given as

TFk
m
(x) = P≤(0,x− Π(x,Ok)) ∩ P≥(0, νm(n

(−m,k)
ra+γa )),

and u(ξ) = −κx, κ > 0. Since S1 ∩ S2 /∈ Rk
b and the fact that the vectors n

(−m,k)
ra+γa and

−κx are collinear, ensures that

∀x ∈ S1 ∩ S2,u(x,m, k) ∈ TFk
m
(x). (B.13)

Next, to show that the vector u(x,m, k) evaluated at x ∈ S3, for some k ∈ I and
m ∈ {−1, 1}, does not point outside the set Fk

m, we require the following lemma.

Lemma B.2 Consider the following flow-only system:

ẋ = v(x,m, k), x ∈ Dra+γa(Ok)\(Dra(Ok))
◦, (B.14)

for some k ∈ I and m ∈ {−1, 1}. Let d(x(t0),Dra(Ok)) = β ∈ [0, γa] for some t0 ≥ 0,
then x(t) ∈ ∂Dra+β(Ok) for all t ≥ t0.

Proof According to Lemma 2.1, for x ∈ ∂Dra+β(Ok), P(x, (x−Π(x,Ok))) is a supporting
hyperplane to the set Dra+β(Ok) at x. Hence, the tangent cone to the set ∂Dra+β(Ok) at
x ∈ ∂Dra+β(Ok) is given as T∂Dra+β(Ok)(x) = P(0, (x−Π(x,Ok))). Since v(x,m, k)

⊺(x−
Π(x,Ok)) = 0, one has v(x(t),m, k) ∈ T∂Dra+β(Ok)(x(t)), for all t ≥ t0, which implies
that the solution x(t) to the flow-only system (B.14) belongs to the set ∂Dra+β(Ok) for
all t ≥ t0.

According to Lemma B.2, the solution x(t) to the flow-only system (B.14), which
belongs to the obstacle-free workspace within the (ra+γa)−neighbourhood of an obstacle
Ok, k ∈ I, at some time t0 ≥ 0, will revolve around the obstacleOk in the direction decided
by the parameter m ∈ {−1, 1}, while maintaining the same proximity d(x(t),Ok) for all
t ≥ t0.

Now, for x ∈ S3, according to (3.4), u(x,m, k) = κv(x,m, k). Since the set S3 ⊂
Dra+γa(Ok)\(Dra(Ok))

◦, according to Lemma B.2, for x ∈ S3, the vector u(x,m, k)
points in the direction which is tangential to the curve ∂Dd(x,Ok)(Ok) at x. Also, for
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x ∈ S2 ∩ S3, according to Lemma 2.1, and (3.9), the tangent to the set ∂Dd(x,Ok)(Ok)

lies along the line L(0,n(−m,k)
ra+γa ). Moreover, as S3 ⊂ Gk−m, v(x,m, k) evaluated for x ∈ S3

points in the direction of the vector x, radially outward from the origin. Hence, it is
straightforward to notice that for x ∈ S3, u(x,m, k) does not point outside the set Fk

m.
According to (B.10)-(B.13), and Lemma B.2, if the solution x to the flow-only system

(B.3) leaves the set Fk
m, it cannot leave from the region ∂Fk

m\Gkm. Next, we show that
the solution x to the flow-only system (B.3), flowing in the set Fk

m, away from the region
Gkm, will always enter in the set Gkm in finite time.

We partition the set Fk
m, k ∈ I, into three subsets as follows:

Fk
m = F̃1(m, k) ∪ F̃2(m, k) ∪ F̃3(m, k), (B.15)

where
F̃1(m, k) =

(
Fk

m ∩ C(n
(−m,k)
ra+γa ,n

(m,k)
ra+γs)

)
∩ (Dra+γs(Ok))

◦,

F̃2(m, k) =
(
Fk

m ∩ C(n
(−m,k)
ra+γa ,n

(m,k)
ra+γs)

)
\(Dra+γs(Ok))

◦,

F̃3(m, k) = Fk
m ∩ C(n

(m,k)
ra+γs ,n

(m,k)
ra+γ ).

(B.16)

For x ∈ F̃3(m, k), the control law u(x,m, k), according to (3.4a), is given as −κx, κ >
0, i.e., the solution x(t) will evolve along the line L(0,x) towards the origin. Since
0 /∈ F̃3(m, k), it is straightforward to verify that if for some t0 ≥ 0, x(t0) ∈ F̃3(m, k),
then there exists a finite time at which x(t) will leave the set F̃3(m, k) via Gkm, see Fig.
B.2.

According to (3.4a), for x ∈ F̃2(m, k), u(x,m, k) = −κx, κ > 0, hence in this region
the solution will evolve towards the origin on a straight line L(0,x) which implies that
eventually, it will enter F̃1(m, k), see Fig. B.2.

Now, consider the case where x ∈ F̃1(m, k). We show that,

∀x ∈ F̃1(m, k)\Gkm,u(x,m, k) ∈ P>(0, νm(x)). (B.17)

The satisfaction of (B.17) implies that, if at some t0 ≥ 0, x(t0) ∈ F̃1(m, k), the solu-
tion x to the flow-only system (B.3) cannot live indefinitely in the positive half-space
P>(0, νm(x)) since, in view of Lemma 3.1, the set Fk

m is closed and bounded as the
obstacles are compact.

For all x ∈ F̃1(m, k), the control input vector u(x, k,m) is given by

u(x,m, k) = −κσ(ξ)x+ κ[1− σ(ξ)]v(x,m, k),

where κ > 0. Since the vectors−κσ(ξ)x and νm(x) are orthogonal, −κσ(ξ)x ∈ P(0, νm(x)).
In order to check whether, u(x,m, k) belongs to P>(0, νm(x)), let us evaluate

νm(x)
⊺u(x,m, k) = κ[1− σ(ξ)]νm(x)⊺v(x,m, k),

where ∀x ∈ F̃1(m, k), κ > 0, [1− σ(ξ)] > 0. Hence, we consider

νm(x)
⊺v(x,m, k) = ν−m(νm(x))

⊺ν−m(v(x,m, k)),

=
∥x∥x⊺(x− Π(x,Ok))

∥x− Π(x,Ok))∥
.
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Since
(
F̃1(m, k)\Gkm

)
∩ Rk

b = ∅, according to Remark 3.1, ∀x ∈ F̃1(m, k)\Gkm, x⊺(x −
Π(x,Ok)) > 0, hence (B.17) is satisfied.

B.5 Proof of Theorem 3.1

The forward invariance of the obstacle-free set K defined in (3.25), for the hybrid closed-
loop system (3.28), is immediate from Lemma 3.2. We next prove stability of A using
[Goebel et al., 2012, Definition 7.1]. Since Wra is compact by construction and 0 ∈
(Wra)

◦, ∃δ̄ > 0, such that Bδ̄(0) ∩
(
Dra(Ok)

)◦
= ∅, ∀k ∈ I. It can easily be shown that

for each δ ∈ [0, δ̄], the set S := Bδ(0) × M × I is forward invariant because Bδ(0) is
disjoint from J0 as for all k ∈ I, Dra(Ok) is situated between the set J k

0 and the target;
see Fig. 3.3. Therefore, x ∈ Bδ(0) of the solutions evolves, after at most one jump, in
the move-to-target mode ẋ = −κx, κ > 0. Hence, similar to [Berkane et al., 2021b,
Appendix 2], the stability of A for the hybrid closed-loop system (3.28) is immediate
from [Goebel et al., 2012, Definition 7.1]. Next, we proceed to establish almost global
convergence properties of the set A.

The next lemma helps establish the fact that the solution ξ to the hybrid closed-loop
system (3.28) can enter the set Z only if it is initialized in the set Z0.

Lemma B.3 Consider the hybrid closed-loop system (3.28) and let Assumption 3.1 hold.
If ξ(t0, j0) ∈ K\Z0 for some (t0, j0) ∈ dom ξ, then ξ(t, j) /∈ Z0 for all (t, j) ⪰ (t0, j0).

Proof See Appendix B.5.1.

Lemma B.3 indicated that the solution ξ that does not belong to the set Z0 at some
time (t0, j0) ∈ dom ξ can never enter in the set Z0 for all (t, j) ⪰ (t0, j0). SinceM⊂M0

(3.30), it is straightforward to conclude that the solution ξ can enter the set Z only if
ξ(0, 0) ∈ Z0.

We proceed to prove that all solutions ξ to the hybrid closed-loop system (3.28) with
ξ(0, 0) ∈ K\Z0 converge towards the set A. Towards that end, we require the following
lemma.

Lemma B.4 Consider the hybrid closed-loop system (3.28) and let Assumption 3.1 hold.
If ξ(t0, j0) ∈ K̃m∗({0})\Z0 with some m∗ ∈ {−1, 1} for some (t0, j0) ∈ dom ξ, then one
of the following holds true:

1. ξ(t, j) /∈ K̃>(M) for all (t, j) ⪰ (t0, j0), and lim
t→∞,j→∞

ξ(t, j)→ A.

2. there exists (T, J) ⪰ (t0, j0) such that ξ(T, J) ∈ K̃>({−1, 1})\Z0 where T + J <
+∞.

Proof See Appendix B.5.2.
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Figure B.3: 1) Trajectory x(t) starting from x1, illustrates the property stated in (B.18)
i.e., with consecutive intersections with the half-line L>(0, ν1(s)), the state x approaches
towards the origin. 2) Trajectory x(t) starting from x2, does not intersect with the half-
line L>(0, ν−1(s)), as x(0, 0) /∈M0 and m(0, 0) = 0, as per Lemma 3.3.
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Lemma B.4 shows that for the solution ξ operating in the move-to-target mode within
the obstacle-free workspace, if x belongs to the interior of one of the half-spaces gener-
ated by the hyperplane P(0, s) away from the set M0, then the solution ξ will either
directly converge to the set A or enter the set K̃>(M) ∪ K̃−m∗(M) only through the set
K̃({−1, 1})\Z0 in finite time while flowing in the obstacle-avoidance mode. For the for-
mer case, it is straightforward to establish the convergence of the solution ξ to the set
A. Therefore, focus on the latter case.

We show that for the solution ξ, initialized in the set K\Z0, if x intersects the half-
line L>(0, ν1(s)) more than once, then with each consecutive intersection with the set
K̃>({−1, 1})\Z0, the solution ξ moves closer to the set A.

Let cl ∈ Wra , be the location where the solution ξ enters in the set K̃>({−1, 1})\Z0,
as shown in Fig. B.3. The parameter l ∈ N indicates the instance of occurrence, for
example c1 ∈ Wra represents the location where the solution ξ, flowing in the obstacle-
avoidance mode, first entered in the set K̃>({−1, 1})\Z0. Let (t

c
l , j

c
l ) ∈ dom ξ such that

ξ(tcl , j
c
l ) ∈ cl × {−1, 1} × I.

We assume ξ(t0, j0) ∈
(
K̃m∗(M)\Z0

)
∩ ((F∗

0\J ∗
0 )×{0}× I) for some (t0, j0) ∈ dom ξ

and m∗ ∈ {−1, 1}, which can always be the case by virtue of Lemma B.1 and Lemma
B.3. Furthermore, assume that for some i ∈ I, ∃(tiF , jiF) ≻ (t0, j0) such that, according
to (3.22),(3.23) and (3.27), ξ(tiF , j

i
F) = (xi

F ,m
∗, i) ∈ K̃m∗(M)\Z0. Hence, according to

Lemma B.1 and Lemma B.3, ∃(tiJ , jiJ ) ≻ (tiF , j
i
F) such that ξ(tiJ , j

i
J ) = (xi

J ,m
∗, i) ∈

K\Z0. We assume ξ(tiJ , j
i
J ) ∈ K̃−m∗(M) i.e., ∃(tcl , jcl ) ∈ ((tiF , t

i
J ] × [jiF , j

i
J ]). This case

is similar to the evolution of the robot position around obstacle O1 in Fig. B.3. After
(tiJ , j

i
J ), according to Lemma B.4, the solution will either directly converge to the set

A, or will again enter the set K̃>({−1, 1})\Z0. We assume ∃(tcl+1, j
c
l+1) ≻ (tiJ , j

i
J ), then

according to (3.22),(3.23) and (3.27), ξ(tcl+1, j
c
l+1) = (cl+1,−m∗, i′), i′ ∈ Il+1

l \{i}, where
the set Il+1

l ⊂ I consists of the indices of the obstacles encountered by the solution ξ(t, j),
for all (t, j) ∈ ([tcl , t

c
l+1]× [jcl , j

c
l+1]).

We show that ∃µcl > 0 such that

∥cl+1(t
c
l+1, j

c
l+1)∥ ≤ ∥cl(tcl , jcl )∥ − µcl . (B.18)

The satisfaction of the (B.18) ensures that if x crosses the half-line L>(0, ν1(s)) more than
once while operating in the obstacle-avoidance mode, then each consecutive intersection
with the half-line L>(0, ν1(s)) is closer to the origin than the previous one. Then, by
virtue of Lemma B.4 and the satisfaction of (B.18), it is straightforward to show that
any solution ξ which belongs to K\Z0, at some instant of time will converge to the target
set A.

For ξ(tcl , j
c
l ) = (cl,m

∗, i), we define a set KT l := Xl × M × I, where the set Xl is
defined as

Xl := C(ν1(s),xi
J ) ∩ P≥(cl, νm∗(xi

J − cl)),

and show that ξ(t, j) ∈ KT l, ∀(t, j) ∈ ([tiJ , t
c
l+1] × [jiJ , j

c
l+1]). This would imply that for

all (t, j) ∈ ([tiJ , t
c
l+1] × [jiJ , j

c
l+1]), the solution ξ evolves in the set KT l until it enters

K̃>({−1, 1})\Z0 according to Lemma B.4, and (B.18) holds.
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First, we consider a special scenario wherein xi
J = cl. In this case, the set Xl can be

represented by a line segment Ls(0,x
i
J ). At (tiJ , j

i
J + 1) the robot enters in the move-

to-target flow set and moves along the line segment Ls(0,x
i
J ) towards the origin. Then

it is straightforward to verify (B.18). Next, we consider the case wherein xi
J ̸= cl.

Since ξ(t0, j0) ∈
(
K̃m∗(M)\Z0

)
∩ ((F∗

0\J ∗
0 )× {0} × I), according to Lemma B.3, the

solution ξ(t, j) /∈ Z0,∀(t, j) ⪰ (t0, j0). The boundary of the set Xl is defined as

∂Xl = Ls(0, cl) ∪ Ls(0,x
i
J ) ∪ Ls(cl,x

i
J ),

where Ls(cl,x
i
J ) ⊂ Dra+γ(Oi). According to Assumption 3.1 and (3.20), F q

m ∩ F s
m =

∅,∀q, s ∈ I, q ̸= s, for some m ∈ {−1, 1}. Hence, at (tiJ , jiJ + 1), the solution ξ starts to
flow in the move-to-target mode and x evolves along the line segment Ls(x

i
J ,0). Since

Ls(cl,x
i
J ) ∩ Ls(x

i
J ,0) = xi

J , it is clear that x cannot enter the line segment Ls(cl,x
i
J )

from within the set KT l using the stabilizing feedback −κx, κ > 0.
At (tiJ , j

i
J + 1), the solution ξ starts to evolve towards the origin along the line

L(0,xi
J ) in the move-to-target mode. This solution (i.e., flowing in the move-to-target

mode) cannot leave the line segment Ls(0,x
i
J ) unless it encounters J0 × {0} × I. Let

us assume ∃(ti+1
F , ji+1

F ) ≻ (tiJ , j
i
J ) for some i + 1 ∈ Il+1

l \{i, i′}, hence, according to
(3.22), (3.23) and (3.27), ξi+1

F = (xi+1
F ,−m∗, i + 1) ∈ F i+1

−m∗ × {−1, 1} × I. At this

instance, since xi+1
F ∈ F̃1(−m∗, i+ 1), defined in (B.15), (B.16), according to (B.17),

x(t, j) ∈ P>(0, ν−m∗(xi+1
F )),∀(t, j) ∈ ((ti+1

F , ti+1
J ], [ji+1

F , ji+1
J ]), and x enters in the inte-

rior of the set Xl. The solution ξ does not enter the set Ls(0,x
i
J ) × M × I,∀(t, j) ∈

((ti+1
F , ti+1

J ], [ji+1
F , ji+1

J ]).

Now, if Il+1
l \{i, i + 1} ≠ ∅, then for each i′′ ∈ Il+1

l \{i, i + 1}, according to (3.23),
m(t, j) = −m∗,∀(t, j) ∈ ([ti

′′
F , t

i′′
J ] × [ji

′′
F , j

i′′
J ]). Hence, if the solution ξ(t, j) enters in the

obstacle-avoidance mode at any (t, j) ∈ ([ti+1
J , tcl+1] × [ji+1

J , jcl+1]), it will evolve in the
interior of the set KLl. Hence, as per Lemma B.4, it follows that the solution can only
leave the set KT l through Ls(0, cl)\{cl}, which ensures that there exists some µcl > 0,
such that (B.18) is satisfied. Hence, every solution starting in K\Z0 will converge to A.

Finally, if we remove the jump set J from the flow set F to obtain the hybrid system
with data (F \ J ,F,J ,J), and thus forcing the flows over jumps [Sanfelice and Teel,
2010], the Zeno solution starting from Z0 is no longer a valid solution for the closed-loop
system with these new data. In fact, for ξ(0, 0) ∈ Z0, the solution will flow with the
obstacle-avoidance mode until it reaches Z and then flows with the move-to-target mode
afterward.

B.5.1 Proof of Lemma B.3

According to (3.16) and (3.30), asM0 ⊂ J0, the solution ξ with ξ(t0, j0) ∈ K\Z0, cannot
enter the set Z0 ∀(t, j) ⪰ (t0, j0), while flowing in the move-to-target mode.

We consider the flow-only system (B.3), where x ∈ Fk
m,m ∈ {−1, 1}, k ∈ I i.e., the

case wherein the solution is flowing in the obstacle-avoidance mode, in the vicinity of an
obstacle Ok, k ∈ I, and show that if x(t0) ∈ Fk

m\M0, then x(t) /∈ M0,∀t ≥ t0. Since,
according to Assumption 3.1, (3.19) and (3.20), the flow sets of the obstacle-avoidance
modes for the state x, related to different obstacles, are disjoint i.e., Fp

m ∩F q
m = ∅, p, q ∈
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I, p ̸= q, one can repeat the analysis for the solution evolving in the flow set obstacle-
avoidance mode, related to the remaining obstacles.

Assume that x(t0) ∈ Fk
m such that d(x(t0),Dra(Ok)) = β1 ∈ (0, γ]. Let β2 =

min{γa, β1}. According to (3.17) and (3.30), it is easy to see that the solution can enter
the setM0 only via ∂Dra+β3(Ok)∩Fk

m, where β3 ∈ (0, β2). For all x ∈ ∂Dra+β3(Ok)∩Fk
m,

according to (3.4), the control input u(x,m, k) = κv(x,m, k), κ > 0. Hence, according
to Lemma B.2, the solution x(t) to the flow-only system (B.3) cannot enter the setM0

for all t ≥ t0, and according to Lemma B.1, it will ultimately enter in the move-to-target
in finite time.

B.5.2 Proof of Lemma B.4

We consider ξ(t0, j0) ∈
(
K̃m∗(M)\Z0

)
∩ ((F∗

0\J ∗
0 ) × {0} × I) where m∗ ∈ {−1, 1} for

some (t0, j0) ∈ dom ξ, which can always be the case by virtue of Lemma B.1 and
Lemma B.3. Also, according to Lemma B.3, ξ(t, j) /∈ Z0,∀(t, j) ⪰ (t0, j0). Then at
(t0, j0), the state x will evolve along the line L(0,x(t0, j0)) in the move-to-target mode.
Since L(0,x(t0, j0)) ∩ (P(0, s)\0) = ∅, the control input, in the move-to-target mode,
cannot steer ξ to the set K̃0(M) from the set K̃m∗(M). Moreover, according to Lemma
3.3, the solution will never enter the set K̃<(M) for all (t, j) ⪰ (t0, j0). Hence, according
to Lemma B.4, the only remaining possibilities, which we need to prove, are that the
solution ξ with ξ(t0, j0) ∈ K̃m∗(M) will either enter the set K̃>({−1, 1})\Z0 while flowing
in the obstacle-avoidance mode or directly converge to A without entering the set K̃>(M).

Let α−1(a,b) and α1(a,b) denote the absolute values of an angle measured from
vector a to vector b in the counter-clockwise and clockwise directions, respectively. If
ξ(t, j) /∈ J0 × {0} × I, ∀(t, j) ⪰ (t0, j0), then the x component of the solution ξ, under
the influence of the stabilizing vector −κx, κ > 0, will asymptotically converge to the
origin.

On the other hand, assume that the solution ξ encounters the jump set J i
0 × {0} × I

for some i ∈ I i.e., ∃(tiF , jiF) ∈ dom ξ, (tiF , j
i
F) ≻ (t0, j0). According to (3.22),(3.23) and

(3.27), ξiF = (xi
F ,m

∗, i). Then according to Lemma B.1, ∃(tiJ , jiJ ) ≻ (tiF , j
i
F) such that

ξiJ = (xi
J ,m

∗, i). According to Lemma B.3, the solution cannot enter the set Z0, hence

the locations xi
F and xi

J belong to the set (F̃1(m∗, i)\M0) ⊂ F i
m∗ , defined in (B.15),

(B.16). Then, according to (B.17), xi
J ∈ P>(0, νm∗(xi

F)). Assuming ξ(tiJ , j
i
J ) ∈ K̃m∗(M),

one has

αm∗(xi
F , ν1(s)) > αm∗(xi

J , ν1(s)) > 0. (B.19)

Hence, for any solution ξ to the hybrid closed-loop system (3.28) with ξ(t0, j0) ∈(
K̃m∗(M)\Z0

)
∩ (F∗

0\J ∗
0 )× {0} × I for some (t0, j0) ∈ dom ξ, if there exists (tiF , j

i
F) ≻

(t0, j0) for some i ∈ I with ξiJ ∈ K̃m∗(M), then the angle between the vectors x and ν1(s)
i.e., αm∗(x(t, j), ν1(s)) reduces, otherwise, if there does not exist (tiF , j

i
F) ≻ (t0, j0) for

any i ∈ I, i.e., if the solution does not encounter the move-to-target mode jump set after
(t0, j0), then it will asymptotically converge to the target set A, under the influence of
the stabilizing control input −κx, κ > 0.
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Next, assume that the solution ξ again encounters the jump set J0 × {0} × I for
i+1 ∈ I\{i}. Hence, ∃(ti+1

F , ji+1
F ) ≻ (tiJ , j

i
J ) and according to Lemma B.1, ∃(ti+1

J , ji+1
J ) ≻

(ti+1
F , ji+1

F ) such that ξi+1
F = (xi+1

F , i + 1,m∗) and ξi+1
J = (xi+1

J , i+ 1,m∗). Again assume

ξi+1
J ∈ K̃m∗(M). Hence, similar to the previous case,

αm∗(xi+1
F , ν1(s)) > αm∗(xi+1

J , ν1(s)) > 0. (B.20)

Also, as the control input corresponding to the move-to-target mode steers x straight to
the origin, one has αm∗(x(t, j), ν1(s)) = αm∗(xi

J , ν1(s)), ∀(t, j) ∈ ([tiJ , t
i+1
F ] × [jiJ , j

i+1
F ]).

As a result, one has

αm∗(xi
F , ν1(s)) > αm∗(xi+1

F , ν1(s)) > αm∗(xi+1
J , ν1(s)) > 0

The angle αm∗(ν1(s),x) = 0 implies that the state ξ ∈ K̃0(M)\K̃<(M).
This implies that with each hybrid sequence of jumps from the move-to-target mode

to the obstacle-avoidance and vice versa, the solution ξ, which belongs to K̃m∗({0})\Z0,
evolve towards the set K̃(M)∪K̃−m∗(M), in the sense that the angle between the vectors
x and ν1(s) i.e., αm∗(x, ν1(s)) decreases. Also, according to Lemma B.1, the control
input corresponding to the obstacle-avoidance mode, always switches back to the move-
to-target mode in finite time. Hence, it can be concluded that the solution, which belongs
to the set K̃m∗({0}),m∗ ∈ {−1, 1}, at some time, either directly converges to the set A
or intersects the set K̃>({−1, 1}) in finite time.

B.6 Proof of Proposition 3.1

According to Lemma 3.1, the control input u(x,m, k) in (3.4) is continuous while the
robot is operating not only in the move-to-target mode i.e., when (x,m, k) ∈ F0×{0}×I
but also in the obstacle-avoidance mode i.e., when (x,m, k) ∈ Fz×{z}× I, z ∈ {−1, 1}.
We only need to verify the continuity of the control input u(ξ) at instances when the
solution ξ to the hybrid closed-loop system (3.28) leaves the move-to-target mode and
enters the obstacle-avoidance mode, and vice versa.

Note that since ξ(t0, j0) ∈ K\Z0 for some (t0, j0) ∈ dom ξ, according to Lemma B.3,
the solution ξ cannot enter the set Z0 for all (t, j) ⪰ (t0, j0), and hence cannot get stuck
in the Zeno behavior for all future times.

During themove-to-target mode, the state x evolves along the line joining the center of
the robot and the origin. Hence, as can be observed from Fig. 3.3, for the robot operating
in the move-to-target mode, a solution ξ can enter in the jump set of the move-to-target
mode for some obstacle Oi, i ∈ I, only via the region (∂Dra+γs(Oi) ∩ J i

0)×{0}×{i}. Let
(t0, j0) ∈ dom ξ such that ξ(t0, j0) ∈

(
∂Dra+γs(Oi) ∩ J i

0

)
× {0} × {i}. Hence, according

to (3.4), the control input vector at (t0, j0) is given as

u(ξ(t0, j0)) = −κx(t0, j0). (B.21)

According to (3.22), ξ(t0, j0 + 1) ∈
(
∂Dra+γs(Oi) ∩ J i

0

)
× {−1, 1} × {i}, and the control

input u(ξ(t0, j0 + 1)), according to (3.4)-(3.8), is given as

u(ξ(t0, j0 + 1)) = −κx(t0, j0 + 1). (B.22)
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Since, according to (3.28), x(t0, j0 +1) = x(t0, j0), when the solution leaves the move-to-
target mode and enters in the obstacle-avoidance mode, the control vector trajectories
remain continuous.

Next, we consider the case where the robot operating in the obstacle-avoidance mode
enters in the move-to-target mode. According to Lemma B.1, the component x of the
solutions, evolving in the obstacle-avoidance mode in the flow set F i

z, i ∈ I, for some
z ∈ {−1, 1}, will eventually leave the obstacle-avoidance mode via the gate region Giz.
Let ξ(t1, j1) ∈ Fz × {z} × I, z ∈ {−1, 1} for some (t1, j1) ∈ dom ξ, then according
to Lemma B.1, ∃(t2, j1) ⪰ (t1, j1) such that x(t2, j1) ∈ Giz. Then according to (3.19)
and (3.22), at (t2, j1 + 1) the solution enters in the move-to-target mode flow set i.e.,
ξ(t2, j1 + 1) ∈ F0 × {0} × I. Hence, at (t2, j1), the control input vector u(ξ(t2, j1)) is
evaluated as

u(ξ(t2,j1)) = −κσ(ξ(t2, j1))x(t2, j1)
+ κ[1− σ(ξ(t2, j1))]v(ξ(t2, j1)).

(B.23)

According to the definition of the vector v(ξ) in (3.5) and the gate region Giz in (3.10), it is
evident that at (t2, j1) the vectors −x(t2, j1) and v(ξ(t2, j1)) are equal. Hence, u(ξ(t2, j1))
can equivalently be expressed as

u(ξ(t2, j1)) = −κx(t2, j1). (B.24)

At (t2, j1 + 1), according to (3.22), ξ(t2, j1 + 1) ∈ F0 × {0} × I. Hence, the control input
vector u(ξ(t2, j1 + 1)) is given as

u(ξ(t2, j1 + 1)) = −κx(t2, j1 + 1). (B.25)

Since, according to (3.28), x(t2, j1) = x(t2, j1 + 1), u(ξ(t2, j1)) = u(ξ(t2, j1 + 1)). As
a result, when the solution flowing in the obstacle-avoidance mode, enters the move-to-
target mode, the control vector trajectories remain continuous.



Appendix C

Proofs of Chapter 4

C.1 Proof of Lemma 4.1

Note that the following statement: “for all locations x with d(x,OM
W ) < α, where α ≥ 0,

the set PJ (x,OM
W ) is singleton”, is equivalent to having reach(OM

W ) ≥ α, as defined in
Section 2.2.2. According to Remark 4.2, OM

W = M(OW , α) = (Wα ⊕ B◦
α(0))

c, where the
closed set Wα is defined as per (4.2) for some α ≥ 0. If one proves that reach(Wα) ≥ α,
then, according to Lemma 2.2, one has reach(OM

W ) ≥ α. To that end, we make use
of [Rataj and Zähle, 2019, Proposition 4.14] to show that Assumption 4.2 implies that
reach(Wα) ≥ α.

We know that for x ∈ W◦
α, TWα(x) = R2, where TWα(x) denotes the tangent cone to

the set Wα at x. Therefore, for all p ∈ Wα, one has p− x ∈ TWα(x). This implies that
for all x ∈ W◦

α and for all p ∈ Wα, d(p− x,TWα(x)) = 0.

Next, we consider the case where x ∈ ∂Wα and p ∈ Wα. If p − x ∈ TWα(x),
then d(p − x,TWα(x)) = 0. On the other hand, when p − x /∈ TWα(x), we define
T (x,p) := {t ∈ TWα(x)|t = argmin

q∈TWα (x)\{0}
|ψ(p− x,q)|} as the set of all non-zero tangent

vectors t ∈ TWα(x) such that the absolute value of the angle measured from p− x to t
is the smallest. Since Wα =W \Dα(O◦

W), for all x ∈ ∂Wα, the set NWα(x) \ {0} is not
empty, where NWα(x) represents the normal cone to the set Wα at x. Therefore, there
exists n ∈ NWα(x) such that ∥n∥ = 1 and n⊤t = 0 for some t ∈ T (x,p).

Now, one can construct the ball Bβ(x + βn) for some β > 0 such that p ∈ ∂Bβ(x +
βn), as shown in Fig. C.1. It is clear that β ≥ α, otherwise, it will imply that p ∈
B◦
α(x + αn), which does not satisfy Assumption 4.2. Therefore, it can be shown that

d(p − x,TWα(x)) = ∥p − x∥2/2β ≤ ∥p − x∥2/2α for any x,p ∈ Wα. Hence, according
to [Rataj and Zähle, 2019, Proposition 4.14], one can conclude that reach(Wα) ≥ α.

C.2 Proof of Lemma 4.2

Let us assume that the modified obstacle OM
i,α is not a connected set, then it implies that

there exists two disjoint subsetsM1 ⊂ OM
i,α andM2 ⊂ OM

i,α such thatM1 ∪M2 = OM
i,α

and M1 ∩ M2 = ∅, [Willard, 2012, Definition 16.1]. By construction in (4.4), there
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Figure C.1: Illustration of the case where x ∈ ∂Wα and p ∈ Wα such that p − x /∈
TWα(x).

exists two non-empty set OC ⊂ Oi,α and OD ⊂ Oi,α such that OC ⊂ M1, OD ⊂ M2

and OC ∪ OD = Oi,α. Note that, the distance d(M1,M2) can not be greater than or
equal to 2α. Otherwise, as the operator M is extensive, see Remark 4.1, it implies that
d(OC,OD) ≥ 2α. However, according to (4.7), one has d(OC,OD) < 2α. Hence, one can
conclude that 0 < d(M1,M2) < 2α. Therefore, there exists q1 ∈ M1 and q2 ∈ M2

such that 0 < d(q1,q2) = d(M2,M2) < 2α. This implies that for q = 0.5q1 + 0.5q2 ∈
Dα(OM

i,α), one has card(PJ (q,OM
i,α)) > 1, which cannot be the case as per Lemma 4.1.

Hence, the modified obstacle OM
i,α is a connected set.

C.3 Proof of Lemma 4.3

According to Assumption 4.1, the set W◦
ra is a pathwise connected set. Hence, it is

evident that there exist a scalar δ̄1 > ra such that for all δ ∈ (ra, δ̄1], the δ−eroded
obstacle-free workspace Wδ is pathwise connected. Assumption 4.1 also assumes that
the target location at the origin is in the set W◦

ra . Hence, the distance d(0,Wra) > 0.
Then, it is straightforward to notice that there exists δ̄2 > ra such that for any δ ∈ (ra, δ̄2]
the distance d(0,Wδ) < δ − ra. Then, one can choose ᾱ = min{δ̄1, δ̄2} to satisfy Lemma
4.3.

C.4 Proof of Lemma 4.4

Since the obstacle reshaping operator M is idempotent, we have M(OW , α) = M(OM
W , α).

Therefore, according to (4.4), OW ⊕ B◦
α(0) = OM

W ⊕ B◦
α(0). As a result, according to

(4.2) and (4.3), the α−eroded obstacle-free workspaceWα is equivalent to the α−eroded
modified obstacle-free workspace Vα. Hence, if one chooses α as per Lemma 4.3, then
the set Vα is pathwise connected. As a result, the modified obstacle-free workspace Vra
is also pathwise connected. Moreover, according to Lemma 4.3, the distance between
the origin and the set Vα is less than α − ra. Since the distance between the sets ∂Vα
and ∂Vra is α − ra, it is evident that the origin belongs to the interior of the modified
obstacle-free workspace Vra .
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C.5 Proof of Lemma 4.5

We consider a connected modified obstacle OM
i,α, i ∈ I, as stated in Lemma 4.2, and

proceed by proving the following two claims:
Claim 1: For every h ∈ JW

0 ∩∂Dβ(OM
i,α), β ∈ [ra, ra+γs] and any p ∈ PJ (0, ∂Dβ(OM

i,α)),
one has d(h,B2δ(p)) ≥ ϵh, where

ϵh =
√
(d(0,OM

W )2 − r2a)− d(0,Dra(OM
W )),

and δ = min{d(0,OM
W )− ra, β − ra}.

Claim 2: For m ∈ {−1, 1}, one has Hp := Bδ(p) ∩ Nγ(Dra(OM
i,α)) ⊂ Ra, where the

location p and the scalar parameter δ are defined in claim 1 above.
Claim 1 states that for any connected modified obstacleOM

i,α, the distance between any
point h, which is located in the jump set of the move-to-target mode associated with this
modified obstacle at some distance β ∈ [ra, ra+γs] from it i.e., h ∈ JW

0 ∩∂Dβ(OM
i,α), β ∈

[ra, ra + γs], and the Euclidean balls of radius 2δ centered at the set of projections of the
target onto the set ∂Dβ(OM

i,α) is always greater than or equal to ϵh i.e., d(h,B2δ(p)) ≥ ϵh,
where p ∈ PJ (0,Dβ(OM

i,α)) and the scalar parameter δ = min{β − ra, d(0,OM
i,α)− ra}.

Claim 2 states that the set Hp, which represents the intersection between the δ-
neighbourhood of the set of projections of the target onto the set ∂Dβ(OM

i,α) i.e., Bδ(p),p ∈
PJ (0,Dβ(OM

i,α)) and the γ−neighbourhood of the dilated modified obstacle, represented
by Nγ(Dra(OM

i,α)) is a subset of the always exit region Ra (4.15). This implies that if

ϵ̄ ∈ (0, ϵh], then Hp ⊂ ERh
m, where the set ERh

m is defined in (4.22).

C.5.1 Proof of claim 1

We aim to obtain an expression for ∥hβ∥ − ∥pβ∥, for β ∈ [ra, ra + γs], where

hβ = argmin
h∈JW

0 ∩∂Dβ(OM
i,α)

∥h∥, (C.1)

and the location pβ ∈ PJ (0, ∂Dβ(OM
i,α)).

Now, depending on the shape of the obstacle there can be two possibilities as follows:
Case A: When hβ ∈ ∂Dβ(OM

i,α)∩CH(0,OM
i,α), as shown in Fig. C.2. Notice that the

line segment joining the location hβ and the origin passes through the modified obstacle
OM

i,α i.e., Ls(hβ,0)∩OM
i,α ̸= ∅. Hence, a part of this line segment belongs to the modified

obstacle OM
i,α. In other words, there exist locations b and e, where b, e ∈ ∂OM

i,α such
that Ls(b, e) ⊂ Ls(hβ,0) ∩ OM

i,α, as shown in Fig. C.2. We further consider two more
sub-cases based on the distance between the target 0 and the modified obstacle OM

i,α.
Note that, as per Assumption 4.1, d(0,OM

i,α) > ra.
Case A1: When d(0,OM

i,α) ≥ β, as shown in Fig. C.2a, one has ∥hβ∥ − ∥pβ∥ ≥
∥hβ∥ − ∥e∥+ ∥b∥ − ∥pβ∥.

Since hβ ∈ ∂Dβ(OM
i,α), {b, e} ⊂ ∂OM

i,α and d(0,OM
i,α) ≥ β, one has ∥hβ∥ − ∥e∥ ≥ β

and ∥b∥ ≥ β + ∥pβ∥. Hence,

∥hβ∥ − ∥pβ∥ ≥ 2β = 2(β − ra) + 2ra,
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d(hβ,B2(β−ra)(pβ)) ≥ 2ra. (C.2)

Case A2: When ra < d(0,OM
i,α) < β, as shown in Fig. C.2b, one has ∥hβ∥− ∥pβ∥ ≥

∥hβ∥ − ∥e∥+ ∥b∥ − ∥pβ∥.
Since hβ ∈ ∂Dβ(OM

i,α), {b, e} ⊂ ∂OM
i,α, ra < d(0,OM

i,α) < β and by construction, as
shown in Fig. C.2b, one has ∥hβ∥ − ∥e∥ ≥ β and ∥b∥ ≥ β − ∥pβ∥ = ra + ∥pra∥. Hence,
as ∥pra∥ = d(0,Dra(OM

i,α)), one has

∥hβ∥ − ∥pβ∥ ≥ 2β − 2∥pβ∥ = 2∥pra∥+ 2ra,

d(hβ,B2d(0,Dra (OM
i,α))

(pβ)) > 2ra. (C.3)
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𝑀  

Figure C.2: The diagrammatic representation for Case A in the proof of Lemma 4.5. (a)
d(0,OM

i,α) ≥ β, (b) ra < d(0,OM
i,α) < β.

Case B: When hβ ∈ G, where the set G :=
(
∂Dβ(OM

i,α) ∩ CH(0,Dra(OM
i,α))

)
\

CH(0,OM
i,α). In other words, when the line segment joining the locations hβ and the

target at the origin does not intersect with the interior of the modified obstacle OM
i,α i.e.,

Ls(hβ,0) ∩ (OM
i,α)

◦ = ∅, as shown in Fig. C.2. To proceed with the proof, we use the
following fact which states that the projection of the target location onto the set G always
belongs to the intersection between the boundary of the conic hull CH(0,Dra(Dra(OM

i,α)))
and the set G.

Fact 2: One has PJ (0,G) ⊂ G ∩ ∂CH(0,Dra(OM
i,α)).

Sketch of the proof : The proof is by contradiction. We assume that there exists
a location x in the set PJ (0,G) that does not belong to the intersection between the
set G and the boundary of the conic hull to the set Dra(OM

i,α) i.e., x ∈ PJ (0,G) and
x /∈ G ∩ ∂CH(0,Dra(OM

i,α)). We know that the curve G belongs to the boundary of the
β−dilated modified obstacle i.e., G ⊂ ∂Dβ(OM

i,α). As a result, there exists a partial section
of the boundary of the modified obstacle OM

i,α, let’s say M ⊂ ∂OM
i,α with x ∈ Dβ(M)
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Figure C.3: The diagrammatic representation for Case B in the proof of Lemma 4.5. (a)
d(0,OM

i,α) ≥ β, (b) ra < d(0,OM
i,α) < β.

such that this curveM belongs to the relative complement of the conic hull CH(0,OM
i,α)

with respect to the conic hull CH(0,Dra(OM
i,α)) i.e.,M∈ CH(0,Dra(OM

i,α))\CH(0,OM
i,α).

However, by construction of the set G, the intersection between the modified obstacle
OM

i,α and the region CH(0,Dra(OM
i,α)) \ CH(0,OM

i,α) must be an empty set. Therefore, we
arrive at a contradiction.

According to Fact 2, hβ ∈ G ∩ ∂CH(0,Dra(Dra(OM
i,α))), as shown in Fig. C.3. Similar

to case A, we consider two sub-cases based on the distance between the target 0 and the
modified obstacle OM

i,α.
Case B1: When d(0,OM

i,α) ≥ β, as shown in Fig C.3a, one has

∥hβ∥ − ∥pβ∥ = ∥hβ∥ − ∥hra∥+ ∥hra∥ − ∥pβ∥. (C.4)

Since hβ ∈ ∂Dβ(OM
i,α) and hra ∈ ∂Dra(OM

i,α), one has ∥hβ∥−∥hra∥ ≥ β−ra. Let a ∈ ∂OM
i,α

be the location such that the lines L(a,hra) and L(hra ,0) are perpendicular

∥hra∥ =
√
∥a∥2 − d(hra , a)

2 ≥
√
d(0,OM

i,α)
2 − r2a. (C.5)

After substituting (C.5) in (C.4), one gets

∥hβ∥ − ∥pβ∥ ≥ β − ra +
√
d(0,OM

i,α)
2 − r2a − ∥pβ∥.

Since d(0,OM
i,α) ≥ β, ∥pra∥ − ∥pβ∥ = β − ra. Hence, one has

∥hβ∥ − ∥pβ∥ ≥ 2(β − ra) +
√
d(0,OM

i,α)
2 − r2a − ∥pra∥,

d(hβ,B2(β−ra)(pβ)) ≥
√
d(0,OM

i,α)
2 − r2a − ∥pra∥. (C.6)

Case B2: When ra < d(0,OM
i,α) < β, as shown in Fig. C.3b. According to (C.4),

(C.5) and the fact that ∥hβ∥ − ∥hra∥ ≥ β − ra, one has

∥hβ∥ − ∥pβ∥ ≥ β − ra +
√
d(0,OM

i,α)
2 − r2a − ∥pβ∥,
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Since ra < d(0,OM
i,α) < β, ∥pβ∥+ ∥pra∥ = β − ra. Hence, one has

∥hβ∥ − ∥pβ∥ ≥ 2∥pra∥+
√
d(0,OM

i,α)
2 − r2a − ∥pra∥,

d(hβ,B2∥pra∥(pβ)) ≥
√
d(0,OM

i,α)
2 − r2a − ∥pra∥. (C.7)

Now, considering all the obstacles i.e., for all i ∈ I, according to (C.2), (C.3), (C.6)
and (C.7), one has

d(hβ,B2δ(pβ)) ≥ ϵh, (C.8)

where δ = min

{
β − ra,min

i∈I
{d(0,OM

i,α)− ra}
}

= min{β − ra, d(0,OM
W ) − ra} and ϵh is

evaluated as

ϵh = min

{
2ra,min

i∈I

{√
d(0,OM

i,α)
2 − r2a − d(0,Dra(OM

i,α))
}}

,

= min{2ra,
√
d(0,OM

W )2 − r2a − d(0,Dra(OM
W ))}. (C.9)

It is clear that for n > 0, the function f(k) =
√
k2 − n2 − (k − n), d ∈ [n,∞), is

monotonically increasing and lim
k→∞

f(k) = n. Hence, according to Assumption 4.1, as

d(0,OM
W ) > ra > 0, one has√

(d(0,OM
W )2 − r2a)− d(0,Dra(OM

W )) < ra,

irrespective of the locations of obstacles relative to the target location. As a result,

ϵh = min{2ra,
√
d(0,OM

W )2 − r2a − d(0,Dra(OM
W ))}

=
√
(d(0,OM

W )2 − r2a)− d(0,Dra(OM
W )).

C.5.2 Proof of claim 2

In this proof, our goal is to show that the set Hp = Bδ(p)∩Nγ(Dra(OM
i,α)) belongs to the

always exit regionRa, for any p ∈ PJ (0, ∂Dβ(OM
i,α)) and δ = min{d(0,OM

W )−ra, β−ra},
where β ∈ [ra, ra + γs]. Based on the distance of the target location from the modified
obstacle OM

i,α, we consider two cases as follows:
Case 1: When d(0,OM

i,α) ≥ β, as shown in Fig. C.2a and Fig. C.3a. Since
d(0,OM

i,α) ≥ β, for any p ∈ PJ (0,Dβ(OM
i,α)), one has B∥p∥+δ(0) ⊂ Bd(0,Dra (OM

i,α))
(0),

where δ = min{β − ra, d(0,OM
i,α)− ra} = β − ra. Hence, for any p ∈ PJ (0,Dβ(OM

i,α)), it

is clear that Bδ(p) ⊂ Bd(0,Dra (OM
i,α))

(0). Moreover, Bd(0,Dra (OM
i,α))

(0)∩
(
Dra(OM

i,α)
)◦

= ∅. As
a result, Bδ(p)∩(Dra(OM

i,α))
◦ = ∅. Additionally, as p ∈ ∂Dβ(OM

i,α), where β ∈ [ra, ra+γs],
one has Bδ(p) ∩ Nγ(Dra(OM

i,α)) ̸= ∅. Hence, according to (4.15), one can conclude that
Hp ⊂ Ra.

Case 2: When ra < d(0,OM
i,α) < β, as shown in Fig. C.2b and Fig. C.3b. According

to Lemmas 2.3 and 4.1, card(PJ (0,Dra(OM
i,α))) = 1, i.e., Π(0,Dra(OM

i,α)) is unique.
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Since, as per Lemma 2.3, reach(Dra(OM
i,α)) = α − ra, according to [Rataj and Zähle,

2019, Lemma 4.5], one has (Bα−ra(q))
◦ ∩ Dra(OM

i,α) = ∅, where q = Π(0,Dra(OM
i,α)) +

(α − ra)
0−Π(0,Dra (OM

i,α))

∥0−Π(0,Dra (OM
i,α))∥

. Now, notice that, for the location p in the set ∂Dβ(OM
i,α) ∩

Ls(q,Π(0,Dra(OM
i,α))), one has Bδ(p) ⊂ Bα−ra(q), where δ = min{β − ra, d(0,OM

i,α) −
ra} = d(0,OM

i,α)− ra < α− ra. As a result, if one shows that p ∈ PJ (0, ∂Dβ(OM
i,α)) and

card(PJ (0, ∂Dβ(OM
i,α))) = 1, then, according to (4.15), it is straightforward to prove

that Hp ⊂ Ra, where the set Hp is defined in claim 2.
Let us assume that d(0,OM

i,α) = η, where ra < η < β < α. Notice that, 0 ∈
L(q,Π(0,Dra(OM

i,α))). Since, p ∈ Ls(q,Π(0,Dra(OM
i,α))) ∩ ∂Dβ(OM

i,α), it is clear that
d(p,Π(0,Dra(OM

i,α))) = β − ra. Therefore, one has d(0,p) = β − η. Moreover, accord-
ing to Lemmas 2.2 and 4.1, the set M := (OM

i,α ⊕ Bα(0))c has the reach equal to α,
i.e., reach(M) = α. Now, notice that, for β ∈ [ra, ra + γs], ∂Dβ(OM

i,α) = ∂Dα−β(M).
Hence, 0 ∈ ∂Dα−η(M) and p ∈ ∂Dα−β(M). Then, according to Lemma 2.3, one has
card(PJ (0, ∂Dα−β(M))) = card(PJ (0, ∂Dβ(OM

i,α))) = 1. Moreover, as d(0,p) = β−η,
one can conclude that p ∈ PJ (0, ∂Dβ(OM

i,α)).

C.6 Proof of Lemma 4.6

The flow set F and the jump set J , defined in (4.25) and (4.26) are closed subsets
of R2 × R2 × M. The flow map F, given in (4.29), is continuous on F0. For each
x ∈ Nβ(Dra(OM

W )), β ∈ [ra, α), according to Lemma 4.1, the set PJ (x,OM
W ) is a singleton.

Then, for x ∈ Nβ(Dra(OM
W )), β ∈ [ra, α), Π(x,OM

W ) is continuous with respect to x. As
a result, F is continuous on Fm,m ∈ {−1, 1}. Hence F is continuous on F . The jump
map J, defined in (4.29), is single-valued on Jm,m ∈ {−1, 1} (4.28). Also, J has a closed
graph relative to J0 (4.26), as it is allowed to be set-valued whenever x ∈ J0. Hence,
according to [Goebel et al., 2012, Lemma 5.10], J is outer semi-continuous and locally
bounded relative to J .

C.7 Proof of Lemma 4.7

First, we prove that the union of the flow and jump sets covers exactly the obstacle-
free state space K. For m = 0, according to (4.20) and (4.19), by construction we
have FW

0 ∪ JW
0 = Vra . Similarly, for m ∈ {−1, 1}, according to (4.24) and (4.21), by

construction we have FW
m ∪JW

m = Vra . Inspired by [Berkane et al., 2021b, Appendix 11],
the satisfaction of the following equation:

FW
m ∪ JW

m = Vra ,m ∈M, (C.10)

along with (4.25) and (4.26) implies F ∪ J = K.
Now, inspired by [Berkane et al., 2021b, Appendix 1], for the hybrid closed-loop

system (4.29), with data H = (F ,F,J ,J), define SH(K) as the set of all maximal
solutions ξ to H with ξ(0, 0) ∈ K. Since F ∪ J = K, each ξ ∈ SH(K) has range
rge ξ ⊂ K. Additionally, if every maximal solution ξ ∈ SH(K) is complete, then the set
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K will be forward invariant [Sanfelice, 2021, Definition 3.13]. Since the hybrid closed-
loop system (4.29) satisfies hybrid basic conditions, as stated in Lemma 4.6, one can use
[Goebel et al., 2012, Proposition 6.10], to verify the following viability condition:

F(x,h,m) ∩TF(x,h,m) ̸= ∅,∀(x,h,m) ∈ F \ J , (C.11)

which will allow us to establish the completeness of the solution ξ to the hybrid closed-
loop system (4.29). In (C.11), TF(x,h,m) represents the tangent cone to the set F at
(x,h,m), as defined in Section 2.3.7.

Let (x,h,m) ∈ F\J , which implies by (4.25) and (4.26) that (x,h) ∈ (FW
m \JW

m )×Vra
for some m ∈M. For x ∈ (FW

m )◦ \ JW
m ,m ∈M, TF(ξ) = R2 ×TVra

(h)× {0}, where the
set TVra

(h) is given by

TVra
(h) =

{
R2, if h ∈ (Vra)◦,

P≥(0, (h− Π(h,OM
W ))), if h ∈ ∂Vra ,

(C.12)

where, according to Lemma 4.1, for h ∈ ∂Vra , the projection Π(h,OM
W ) is unique. Since,

according to (4.29), ḣ = 0, ḣ ∈ TVra
(h) and (C.11) holds,

For m = 0, according to (4.19) and (4.20), one has

∂FW
0 \ JW

0 ⊂ ∂Dra(OM
W ) ∩Re, (C.13)

and according to Lemma 4.1, for x ∈ ∂FW
0 \ JW

0 , the set PJ (x,OM
W ) is a singleton i.e.,

the projection Π(x,OM
W ) is unique. Hence, ∀x ∈ ∂FW

0 \ JW
0 ,

TF(x,h, 0) = P≥(0, (x− Π(x,OM
W )))×TVra

(h)× {0}, (C.14)

where TVra
(h) is defined in (C.12). Also, according to (4.10a), for m = 0, u(x,h, 0) =

−κsx, κs > 0. According to (4.14), u(x,h, 0) ∈ P≥(0, (x−Π(x,OM
W ))) and, according to

(4.29), ḣ = 0 ∈ TVra
(h). As a result, viability condition (C.11) holds for m = 0.

For m ∈ {−1, 1}, according to (4.24) and (4.21) one has

∂FW
m \ JW

m ⊂ ∂Dra(OM
W ), (C.15)

and according to Lemma 4.1, for x ∈ ∂FW
m \ JW

m ,m ∈ {−1, 1}, the set PJ (x,OM
W ) is a

singleton i.e., the projection Π(x,OM
W ) is unique and the circle B∥x−Π(x,OM

W )∥(x) intersect

with ∂OM
W only at the location Π(x,OM

W ). Hence, ∀x ∈ ∂FW
m \ JW

m ,m ∈ {−1, 1},

TF(x,h, 0) = P≥(0, (x− Π(x,OM
W )))×TVra

(h)× {0}, (C.16)

whereTVra
(h) is defined in (C.12). Also form ∈ {−1, 1}, according to (4.10a), u(x,h,m) =

κrv(x,m), κr > 0. Since, according to (4.11), u(x,h,m)⊺(x − Π(x,OM
W )) = 0 and, ac-

cording to (4.29), ḣ = 0 ∈ TVra
(h), the viability condition in (C.11) holds true for

m ∈ {−1, 1}.
Hence, according to [Goebel et al., 2012, Proposition 6.10], since (C.11) holds for

all ξ ∈ F \ J , there exists a nontrivial solution to H for each initial condition in K.
Finite escape time can only occur through flow. They can neither occur for x in the set
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FW
−1 ∪FW

1 , as this set is bounded as per definition (4.24), nor for x in the set FW
0 as this

would make x⊺x grow unbounded, and would contradict the fact that d
dt
(x⊺x) ≤ 0 in view

of the definition of u(x,h, 0). Therefore, all maximal solutions do not have finite escape
times. Furthermore, according to (4.29), x+ = x, and from the definition of the update
law in (4.27) and (4.28), it follows immediately that J(J ) ⊂ K. Hence, the solutions
to the hybrid closed-loop system (4.29) cannot leave K through the jump and, as per
[Goebel et al., 2012, Proposition 6.10], all maximal solutions are complete.

C.8 Proof of Theorem 4.1

Forward invariance and stability: The forward invariance of the obstacle-free set K,
for the hybrid closed-loop system (4.29), is immediate from Lemma 4.7. We next prove
stability of A using [Goebel et al., 2012, Definition 7.1].

According to Lemma 4.4, the target location 0 ∈ (Vra)◦. As a result, there exists
µ1 > 0 such that Bµ1(0)∩ (Dra(OM

W ))◦ = ∅. According to (4.19), there exists µ2 > 0 such
that Bµ2(0)∩JW

0 = ∅. We define a set Sµ := Bµ(0)×Vra×M, where µ ∈ (0,min{µ1, µ2}).
According to (4.21), the set Bµ(0) ⊂ JW

m for m ∈ {−1, 1} and µ ∈ (0,min{µ1, µ2}). As
a result, for all initial conditions ξ(0, 0) ∈ Sµ, the control input, after at most one jump
corresponds to the move-to-target mode and the algorithm steers the state x towards
the origin according to the control input vector u(ξ) = −κsx, κs > 0. Hence, for each
µ ∈ (0,min{µ1, µ2}), the set Sµ = Bµ(0) × Vra ×M is forward invariant for the hybrid
closed-loop system (4.29).

Consequently, for every ρ > 0, one can choose σ ∈ (0,min{µ1, µ2, ρ}) such that
for all initial conditions ξ(0, 0) with d(ξ(0, 0),A) ≤ σ, one has d(ξ(t, j),A) ≤ ρ for
all (t, j) ∈ dom ξ, where d(ξ,A)2 = inf

(0,h̄,m̄)∈A
(∥x∥2 + ∥h− h̄∥2 + ∥m− m̄∥2) = ∥x∥2.

Additionally, the target set A, as defined in (4.30), is compact. Hence, according to
[Goebel et al., 2012, Definition 7.1], the target set A is stable for the hybrid closed-loop
system (4.29)

Convergence: Since the target set A is obtained by only restricting the x component
of the state space K to 0, one can prove claim 2 in Theorem 4.1 by showing that for all
solutions ξ to the hybrid closed-loop system (4.29) initialized in the move-to-target mode
(m(0, 0) = 0), the x component of the solution ξ converges to the origin 0. For the closed-
loop system (4.29), let ξ(t0, j0) ∈ F0, for some (t0, j0) ∈ dom ξ. If ξ(t, j) /∈ J0,∀(t, j) ⪰
(t0, j0), then due to the stabilizing control of the form u(x,h, 0) = −κsx, κs > 0, the state
x will converge to the origin. Now, assume that there exists (t1, j1) ⪰ (t0, j0) such that
ξ(t1, j1) ∈ J0, then the control law switches to the obstacle-avoidance mode. According
to (4.27), h(t1, j1 + 1) = x(t1, j1) and m(t1, j1 + 1) ∈ {−1, 1} i.e., the state x will evolve
either in the clockwise direction (m = 1) or in the counter-clockwise direction (m = −1).
To that end, we use the following lemma to show that if the solution ξ to the hybrid
closed-loop system (4.29), which has been initialized in the move-to-target mode, evolves
in the obstacle-avoidance mode, then it will always enter in the jump set of that mode
only through the set ERh

m × Vra × {−1, 1}, where, according to (4.22), the location x is
closer to the target location than the current hit point.
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Lemma C.1 Let Assumptions 4.1 and 4.2 hold, and the parameter ϵ̄, used in (4.22), is
chosen as per Lemma 4.5, then for all solutions ξ = (x,h,m) to the hybrid closed-loop
system (4.29) with ξ(t, j− 1) ∈ J0, ξ(t, j) ∈ Fl, for some l ∈ {−1, 1} and (t, j) ∈ dom ξ,
there exists (p, j) ∈ dom ξ, (p, j) ≻ (t, j) such that following conditions hold true:

1. ξ(p, j) ∈ ERh(t,j)
l × Vra × {l} ⊂ Jl,

2. ξ(v, j) ∈ Fl,∀(v, j) ∈ ([t, p)× j).

Proof See Appendix C.8.1.

According to Lemma C.1, there exists (t2, j1+1) ⪰ (t1, j1+1) such that ξ(t2, j1+1) ∈
ERh(t1,j1+1)

m(t1,j1+1) × Vra × {−1, 1} ⊂ Jm(t1,j1+1). Notice that, according to (4.21) and (4.22),

∥x(t2, j1 + 1)∥ < ∥h(t1, j1 + 1)∥, where, according to (4.27), h(t1, j1 + 1) = x(t1, j1).
In other words, according to Lemma C.1, the proposed navigation algorithm ensures
that, at the instance where the control switches from the obstacle-avoidance mode to
the move-to-target mode, the target location 0 is closer to x than to last point where
the control switched to the obstacle-avoidance mode. Furthermore, when the control
input corresponds to the move-to-target mode, the algorithm steers the state x towards
the origin under the influence of the stabilizing control vector u(ξ) = −κsx, κs > 0.
Consequently, given that the workspaceW and the obstacles Oi, i ∈ I\{0}, are compact,
it can be concluded that the solution ξ will contain a finite number of jumps and the
state x will converge to the origin.

C.8.1 Proof of Lemma C.1

We consider a connected modified obstacleOM
i,α ⊂ OM

W , for some i ∈ I, as stated in Lemma
4.2, where α is selected according to Lemma 4.3. Let ξ(t, j) ∈ FW

l ∩ Nγ(Dra(OM
i,α)) ×

Vra × {l}, for some l ∈ {−1, 1}. Since m(t, j − 1) = 0 and m(t, j) ∈ {−1, 1}, according
to (4.19), x(t, j) = h(t, j) ∈ ∂Dβ(OM

i,α) ∩ JW
0 , where β ∈ [ra, ra + γs]. To proceed with

the proof, we need the following fact:
Fact 3: Under Assumptions 4.1 and 4.2, consider the following flow-only system:

ẋ = κrv(x,m),x ∈ Nγ(Dra(OM
i,α)), (C.17)

for somem ∈ {−1, 1}, where κr > 0 and v(x,m) is given by (4.11). If x(t0) ∈ ∂Dβ1(OM
i,α),

β1 ∈ [ra, ra + γ], for some t0 ≥ 0, then x(t) ∈ ∂Dβ1(OM
i,α) for all t ≥ t0.

Proof According to Lemma 4.1, for x ∈ ∂Dβ1(OM
i,α) with β1 ∈ [ra, ra + γ], the closest

point from x onto the modified obstacle OM
i,α is unique i.e., card(PJ (x,OM

i,α)) = 1.
Hence, according to [Rataj and Zähle, 2019, Lemma 4.5], the vector x − Π(x,OM

i,α) is
normal to the set ∂Dβ(OM

i,α) at x. As a result, the tangent cone to the set ∂Dβ1(OM
i,α) at

x ∈ ∂Dβ1(OM
i,α) is given by

T∂Dβ1
(OM

i,α)
(x) = P(0,x− Π(x,OM

i,α)). (C.18)
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Since v(x,m)⊺(x − Π(x,OM
i,α)) = 0, v(x(t),m) ∈ T∂Dβ1

(OM
i,α)

(x(t)), for all t ≥ t0, which

implies that the solution x(t) to the flow-only system (C.17) belongs to the set ∂Dβ1(OM
i,α)

for all t ≥ t0.

According to Fact 3, if x belongs to the set Nγ(Dra(OM
i,α)) at some time t0 ≥ 0, and

is solely influenced by the obstacle-avoidance control vector κrv(x,m), κr > 0, for some
m ∈ {−1, 1}, then x(t) will continue to evolve within the set Nγ(Dra(OM

i,α)) for all t ≥ t0,
without changing its distance from the set OM

i,α.
According to (4.10a), for l ∈ {−1, 1}, u(x,h, l) = κrv(x, l), κr > 0. Since ξ(t, j) ∈ Fl,

for some l ∈ {−1, 1}, with x(t, j) ∈ ∂Dβ(OM
i,α), β ∈ [ra, ra + γs], according to Fact 3,

the state x will evolve along the curve ∂Dβ(OM
i,α). Since the workspace W and the

obstacles Oi, i ∈ I \ {0}, ∃(p, j) ∈ dom ξ, (p, j) ≻ (t, j) such that at (p, j), the x
component of the solution ξ will enter the set Hp = Bδ(p) ∩ Nγ(Dra(OM

i,α)), where δ =
min{β− ra, d(0,OM

W )− ra}. Since the parameter ϵ̄ ∈ (0, ϵh], where ϵh is defined in (4.23),

according to Lemma 4.5, x(p, j) ∈ ERh(t,j)
l . Hence, according to (4.21) and (4.25),

ξ(p, t) ∈ ERh
l × Vra × {l} ⊂ Jl, and condition 1 in Lemma C.1 holds true.

Since ξ(t, j) ∈ Fl, for some l ∈ {−1, 1}, with x(t, j) ∈ ∂Dβ(OM
i,α), β ∈ [ra, ra + γs],

according to Fact 3, the state x evolves in the region Nγ(Dra(OM
i,α)), along the curve

∂Dra+β(OM
i,α), until it enters the set ERh

l , which guarantees that condition 2 in Lemma
C.1 holds true.

C.9 Proof of Proposition 4.1

Since the obstacles Oi, i ∈ I \ {0}, are convex and compact, and the pairwise distance
between any two obstacles d(Oi,Oj) > 2ra,∀i, j ∈ I, i ̸= j, the ra−dilated versions of the
obstacles do not intersect with each other i.e., d(Dra(Oi),Dra(Oj)) > 0,∀i, j ∈ I, i ̸= j.
This ensures the pathwise connectedness of the interior of the obstacle-free workspace
W◦

ra . In addition, since 0 ∈ W◦
ra , Assumption 4.1 is satisfied.

Define ᾱ = min
i,j∈I,i ̸=j

d(Oi,Oj)/2. Since the pairwise distance between any two obstacles

is greater than 2ra, it follows that ᾱ > ra, and for any α ∈ (ra, ᾱ], the α−dilated versions
of the obstacles do not intersect with each other i.e., d(Dα(Oi),Dα(Oj)) > 0. Therefore,
Wα, defined using (5.3), is not an empty set. Then, it is straightforward to see that
for every x ∈ Dα(OW) \ O◦

W , there is a unique closest point on the boundary of the set
Dα(OW) from x. Hence, reach(Wα) ≥ α, where α ∈ (ra, ᾱ]. Finally, by virtue of [Rataj
and Zähle, 2019, Lemma 4.5], Assumption 4.2 is satisfied.



Appendix D

Proofs of Chapter 5

D.1 Proof of Lemma 5.1

Since the origin 0 belongs to the interior of the obstacle-free workspaceW◦
ra , there exists

some distance between the target location and the ra−dilated obstacle Dra(Oi). In other
words, since 0 ∈ W◦

ra , there exists δ̄ > 0 such that d(0,Dra(Oi)) = δ̄. Notice that, since
the workspace satisfies Assumption 5.1, according to (5.12), the set JW

0 ∩ Nγ(Dra(Oi))
belongs to the landing region associated with obstacle Oi i.e., JW

0 ∩Nγ(Dra(Oi)) ⊂ Ri
l.

According to (5.9), the location Π(0,Dra(Oi)) does not belong to the landing region Ri
l.

As a result, one has d(0,Ri
l) > δ̄. Hence, it is clear that Bδ̄(0)∩Nγ(Dra(Oi))∩JW

0 = ∅,
where Bδ̄(0) ∩ Nγ(Dra(Oi)) ̸= ∅. Hence, one can set ϵ̄ ∈ (0, d(0,Ri

l) − δ̄] to ensure that
ERh ∩Nγ(Dra(Oi)) ̸= ∅ for all h ∈ JW

0 ∩Nγ(Dra(Oi)), for any ϵ ∈ (0, ϵ̄].

D.2 Proof of Lemma 5.2

The flow set F and the jump set J , defined in (4.25) are by construction closed subsets
of R3 × R3 × R3 × R× R. Hence, condition 1 in Lemma 5.2 is satisfied.

Since the flow map F(ξ) is defined for all ξ ∈ F , F ⊂ dom F. The flow map
F, given in (5.25), is continuous on F0. Next, we verify the continuity of F on F1.
Since γ ∈ (0, r̄s − rs), the sets Nγ(Dra(Oi)), for all i ∈ I, are disjoint. Since obstacles
Oi, i ∈ I \ {0} are convex, for all locations x ∈ Nγ(Dra(Oi)), i ∈ I \ {0}, the closest
point from x on the boundary of the nearest obstacle Π(x,Oi) is unique. Furthermore,
according to (5.17), the set FW

1 ⊂
⋃

i∈I\{0}Nγ(Dra(Oi)). Hence, according to [Rataj and

Zähle, 2019] [Lemma 4.1] and (5.17), Π(x,OW) is continuous for all x ∈ FW
1 . Hence, the

obstacle-avoidance control vector κrv(x, a), used in (5.5a), is continuous for all locations
x ∈ FW

1 with the unit vector a chosen as per (5.21). As a result, F is continuous on F1,
and as such it is continuous on F . This shows fulfillment of condition 2 in Lemma 5.2.

Since the jump map J(ξ) is defined for all ξ ∈ J , J ⊂ dom J. The jump map
J, defined in (4.29), is single-valued on J1. Hence, according to [Goebel et al., 2012,
Definition 5.9 and 5.14], the jump map J is outer semicontinuous and locally bounded
relative to J1.

Finally, we prove that the jump map J is outer semicontinuous and locally bounded
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relative to J0. According to (4.27) and (4.29), the jump map J is single-valued for the
state vector (x,h,m, s) on J0. Consider the jump map J for the state a on J0. We
show that the set-valued mapping A : R3 ⇒ S2, used in (5.21), is outer semicontinuous
and locally bounded relative to JW

0 . To that end, consider any sequence {qi}i∈N ⊂ JW
0

that converges to some q ∈ JW
0 . According to (5.22), pi = A(qi) ∈ P⊥(qi) ∩ P⊥(qi −

Π(qi,OW)), where for all qi ∈ JW
0 , Π(qi,OW) is unique. Let us assume that the sequence

{pi}i∈N converges to some p ∈ S2. Note that p⊤
i qi = 0 and p⊤

i (qi − Π(qi,OW)) = 0
for all i ∈ N. Additionally, according to (5.22), when q×

i (qi − Π(qi,OW)) = 0, one has
pi ∈ P⊥(qi). Therefore, one can conclude that p⊤q = 0 and p⊤(q−Π(q,OW)) = 0 and
as such p = A(q). Hence, according [Goebel et al., 2012, Definition 5.9], the mapping A
is outer semicontinuous relative to JW

0 . Since rge A = S2 ⊂ R3 is bounded, according
to [Goebel et al., 2012, Definition 5.14], the set-valued mapping A is locally bounded,
where the range of A is defined as per [Goebel et al., 2012, Definition 5.8]. Hence, J is
outer semi-continuous and locally bounded relative to J0. This shows the fulfillment of
condition 3 in Lemma 5.2.

D.3 Proof of Lemma 5.3

First, we prove that the union of the flow and jump sets covers exactly the obstacle-
free state space K. For m = 0, according to (5.12) and (5.13), by construction we have
FW

0 ∪JW
0 =Wra . Similarly, form = 1, according to (5.15) and (5.17), by construction one

has FW
m ∪ JW

m =Wra . Inspired by [Berkane et al., 2021a, Appendix 11], the satisfaction
of the following equation:

FW
m ∪ JW

m =Wra ,m ∈M, (D.1)

along with (5.14), (5.18) and (5.19) implies F ∪ J = K.
Now, inspired by [Berkane et al., 2021a, Appendix 1], for the hybrid closed-loop

system (5.25), with data H = (F ,F,J ,J), define SH(K) as the set of all maximal
solutions ξ to H with ξ(0, 0) ∈ K. Since F ∪ J = K, each ξ ∈ SH(K) has range
rge ξ ⊂ K. Additionally, if every maximal solution ξ ∈ SH(K) is complete, then the set
K will be forward invariant [Sanfelice, 2021, Definition 3.13]. Since the hybrid closed-loop
system (5.25) satisfies the hybrid basic conditions, as stated in Lemma 5.2, one can use
[Goebel et al., 2012, Proposition 6.10], to verify the following viability condition:

F(ξ) ∩TF(ξ) ̸= ∅,∀ξ ∈ F \ J , (D.2)

which will allow us to establish the completeness of the solution ξ to the hybrid closed-
loop system (5.25). In (D.2), TF(ξ) represents the tangent cone to the set F at ξ.

Let (x,h, a,m, s) ∈ F\J , which implies by (5.14), (5.18) and (5.19) that (x,h, a, s) ∈
(FW

m \ JW
m )×Wra × S2 ×R≥0 for some m ∈M. For x ∈ (FW

m )◦ \ JW
m with (h, a,m, s) ∈

Wra ×S2×M×R≥0 the tangent cone TF(ξ) = R3×TWra
(h)×P(0, a)×{0}×TR≥0

(s),
where the set TWra

(h) is given by

TWra
(h) =

{
R3, if h ∈ (Wra)

◦,

P≥(0, (h− Π(h,OW))), if h ∈ ∂Wra ,
(D.3)
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where for h ∈ ∂Wra , the projection Π(h,OW) is unique. For s ∈ R≥0, the set TR≥0
(s) is

defined as

TR≥0
(s) =

{
R, if s ∈ R>0,

R≥0, if s = 0.
(D.4)

Since, according to (5.25), ḣ = 0 and ṡ = 1, we have ḣ ∈ TWra
(h) and ṡ ∈ TR≥0

(s),
respectively, and (D.2) holds.

For m = 0, according to (5.12) and (5.13), one has

∂FW
0 \ JW

0 ⊂ ∂Dra(OW) ∩Re, (D.5)

and for x ∈ ∂FW
0 \ JW

0 , the projection Π(x,OW) is unique. Hence, ∀x ∈ ∂FW
0 \ JW

0 ,

TF(ξ) = P≥(0,xπ)×TWra
(h)× P(0, a)× {0} ×TR≥0

(s), (D.6)

where TWra
(h) and TR≥0

(s) are defined in (D.3) and (D.4), respectively, and xπ =
x − Π(x,OW). Also, according to (5.5a), for m = 0, one has u(ξ) = −κsx, κs > 0.
According to (5.11) and (D.5), for ξ ∈ F0 \ J0 with x ∈ ∂FW

0 \ JW
0 , one can conclude

that u(ξ) ∈ P≥(0,xπ). Moreover, according to (5.25), it is clear that ḣ = 0 ∈ TWra
(h),

ṡ = 1 ∈ TR≥0
(s) and ȧ = 0 ∈ P(0, a). Therefore, the viability condition (D.2) holds for

m = 0.
For m = 1, according to (5.15) and (5.17) one has

∂FW
1 \ JW

1 ⊂ ∂Dra(OW), (D.7)

and for x ∈ ∂FW
1 \ JW

1 , the projection Π(x,OW) is unique and the circle B∥xπ∥(x)
intersect with ∂OW only at the location Π(x,OW). Hence, ∀x ∈ ∂FW

1 \JW
1 , the tangent

cone
TF(ξ) = P≥(0,xπ)×TWra

(h)× P(0, a)× {0} ×TR≥0
(s), (D.8)

where TWra
(h) and TR≥0

(s) are defined in (D.3) and (D.4), respectively. Also, according
to (5.5a), for m = 1, one has u(ξ) = κrv(x, a), κr > 0. From (5.8), it follows that
η(x) = 1 for x ∈ ∂FW

1 \ JW
1 . As a result, according to (5.5a) and (5.6), the control

vector is simplified to u(ξ) = κrP(a)xπ. It can be shown that for any a ∈ S2, the inner
product x⊺

πP(a)xπ is always non-negative. Therefore, for ξ ∈ F1 \J1 with x ∈ FW
1 \JW

1 ,
one has u(x,h, a, 1, s)⊺(x − Π(x,OW)) ≥ 0. Moreover, according to (5.25), it is clear
that ḣ = 0 ∈ TWra

(h), ṡ = 1 and ȧ = 0 ∈ P(0, a). Hence, the viability condition in
(D.2) holds for m = 1.

Hence, according to [Goebel et al., 2012, Proposition 6.10], since (D.2) holds for all
ξ ∈ F \ J , there exists a nontrivial solution to H for each initial condition in K. Finite
escape time can only occur through flow. They can neither occur for x in the set FW

1 , as
this set is bounded as per definition (5.17), nor for x in the set FW

0 as this would make
x⊺x grow unbounded, and would contradict the fact that d

dt
(x⊺x) ≤ 0 in view of the

definition of u(x,h, a, 0, s). Therefore, all maximal solutions do not have finite escape
times. Furthermore, according to (5.25), x+ = x, and from the definition of the update
law in (5.21) and (5.24), it follows immediately that J(J ) ⊂ K. Hence, the solutions
to the hybrid closed-loop system (5.25) cannot leave K through the jump and, as per
[Goebel et al., 2012, Proposition 6.10], all maximal solutions are complete.
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D.4 Proof of Theorem 5.1

Forward invariance and stability: The forward invariance of the obstacle-free set K,
for the hybrid closed-loop system (5.25), is immediate from Lemma 5.3. We next prove
the stability of A using [Goebel et al., 2012, Definition 7.1].

Since 0 ∈ (Wra)
◦, there exists µ1 > 0 such that Bµ1(0) ∩ (Dra(OW))◦ = ∅. According

to (5.12), there exists µ2 > 0 such that Bµ2(0) ∩ JW
0 = ∅. We define the set Sµ :=

{ξ ∈ K|x ∈ Bµ(0)}, where µ ∈ (0,min{µ1, µ2}). Notice that for all initial conditions
ξ(0, 0) ∈ Sµ, the control input, after at most one jump corresponds to the move-to-target
mode and it steers the state x towards the origin according to the control input vector
u(ξ) = −κsx, κs > 0. Hence, for each µ ∈ (0,min{µ1, µ2}), the set Sµ is forward invariant
for the hybrid closed-loop system (5.25).

Consequently, for every ρ > 0, one can choose σ ∈ (0,min{µ1, µ2, ρ}) such that
for all initial conditions ξ(0, 0) with d(ξ(0, 0),A) ≤ σ, one has d(ξ(t, j),A) ≤ ρ for all
(t, j) ∈ dom ξ, where d(ξ,A)2 = inf

(0,h̄,ā,m̄,s)∈A
(∥x∥2 + ∥h− h̄∥2 + ∥a− ā∥2 + (m− m̄)2 +

(s − s̄)2) = ∥x∥2. Hence, according to [Sanfelice, 2021, Definition 3.1], the target set
A is stable for the hybrid closed-loop system (5.25). Next, we proceed to establish the
convergence properties of the set A.

Attractivity: We aim to show that for the proposed hybrid closed-loop system
(5.25), the target set A is globally attractive in the set K using [Sanfelice, 2021, Defintion
3.1 and Remark 3.5]. In other words, we prove that for all initial conditions ξ(0, 0) ∈
F ∪ J = K, every maximal solution ξ to the hybrid closed-loop system is complete and
satisfies

lim
(t,j)∈ dom ξ,t+j→∞

d(ξ(t, j),A) = ∥x(t, j)∥ = 0. (D.9)

The completeness of all maximal solutions to the hybrid closed-loop system (5.25)
follows from Lemma 5.3. Next, we prove that for all initial condition ξ(0, 0) ∈ K, every
complete solution ξ to the hybrid closed-loop system (5.25), satisfies (D.9). We consider
two cases based on the initial value of the mode indicator variable m(0, 0).

Case 1: m(0, 0) = 0. For the hybrid closed-loop system (5.25), consider a solution ξ
initialized in the move-to-target mode. Let us assume ξ(t0, j0) ∈ F0 for some (t0, j0) ∈
dom ξ, (t0, j0) ⪰ (0, 0). If ξ(t, j) /∈ J0, for all (t, j) ⪰ (t0, j0), then the control input
u(x,h, a, 0, s) = −κsx will steer the state x straight towards the origin, where κs > 0. On
the other hand, assume that there exists (t1, j1) ⪰ (t0, j0) such that ξ(t1, j1) ∈ J0. Then,
according to (5.21), the control law switches to the obstacle-avoidance mode. As per
(5.12), it is clear that x(t1, j1) ∈ JW

0 ∩Nγs(Dra(Oi)), for some i ∈ I and d(x(t1, j1),Oi) =
β for some β ∈ [ra, ra+γs]. At this instance, according to (5.21), the proposed navigation
algorithm updates the values of the state variable h(t1, j1 + 1) = x(t1, j1), a(t1, j1 + 1) ∈
P⊥(x(t1, j1)), m(t1, j1 + 1) = 1 and s(t1, j1 + 1) = s(t1, j1) + 1. According to (4.29),
h(t1, j1 + 1) = h(t, j), a(t1, j1 + 1) = a(t, j) and m(t1, j1 + 1) = m(t, j) for all (t, j) ∈
(Ij1+1 × j1 + 1), where Ij1+1 = {t|(t, j1 + 1) ∈ dom ξ}. To proceed with the proof, we
need the following lemma:

Lemma D.1 Under Assumption 5.1, consider a solution ξ to the hybrid closed-loop
system (5.25). If ξ(t1, j1) ∈ J0 at some (t1, j1) ∈ dom ξ such that x(t1, j1) ∈ JW

0 ∩
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Nγ(Dra(Oi)) for some i ∈ I, then for all (t, j) ∈ (Ij1+1× j1+1), the following statements
hold true:

1. x(t, j) ∈ Nγ(Dra(Oi)) ∩ P(h, a),

2. there exists t2 > t1 such that t2 <∞ and ξ(t2, j1 + 1) ∈ J1,

where h = h(t1, j1 + 1) = h(t, j) and a = a(t1, j1 + 1) = a(t, j).

Proof See Appendix D.4.1.

According to Lemma D.1, when a solution ξ to the hybrid closed-loop system (5.25)
evolves in the obstacle-avoidance mode, the state ξ eventually enters in the jump set of
the obstacle-avoidance mode J1 (5.18) and the control law switches to the move-to-target
mode.

According to Lemma D.1, there exists (t2, j1 + 1) ≻ (t1, j1 + 1) with t2 < ∞ such
that ξ(t2, j1 + 1) ∈ J1. Notice that, according to (5.15) and (5.16), one has ∥x(t2, j1 +
1)∥ < ∥x(t1, j1 + 1)∥. In other words, according to Lemma D.1, the proposed navigation
algorithm ensures that, at the instance where the control switches from the obstacle-
avoidance mode to the move-to-target mode, the origin is closer to the point x than to
the last point where the control switched to the obstacle-avoidance mode. Furthermore,
when the control input corresponds to the move-to-target mode, it steers the state x
towards the origin under the influence of control u(ξ) = −κsx, κs > 0. Consequently,
given that the workspace W and the obstacles Oi, i ∈ I \ {0}, are compact, it can be
concluded that the solution ξ(t, j) will contain finite number of jumps and will satisfy
(D.9).

Case 2: m(0, 0) = 1. For the hybrid closed-loop system (5.25) consider a solution
ξ initialized in the obstacle-avoidance mode. Since m(0, 0) = 1, according to (5.18),
ξ(0, 0) ∈ J1. Therefore, according to (5.24), the control input switches to the move-to-
target mode and m(0, 1) = 0. One can now use arguments similar to the ones used for
case 1 to show that the solution ξ(t, j) will contain a finite number of jumps and will
satisfy (D.9).

Hence, the target set A is globally attractive in the set K for the proposed hybrid
closed-loop system (5.25). In addition, since the set A is stable for the hybrid closed-loop
system (5.25), it is globally asymptotically stable in the set K for the hybrid closed-loop
system (5.25) as per [Sanfelice, 2021, Remark 3.5].

D.4.1 Proof of Lemma D.1

First, we prove that when the control input corresponds to the obstacle-avoidance mode,
one has x(t, j) ∈ Nγ(Dra(Oi)) for all (t, j) ∈ (Ij1+1, j1 + 1). To that end, we make use of
Nagumo’s theorem [Blanchini et al., 2008, Theorem 4.7] and show that when the control
input corresponds to the obstacle-avoidance mode, one has

u(ξ) ∈ TNγ(Dra (Oi))(x), (D.10)

for all ξ ∈ K1, where K1 := {ξ ∈ K|x ∈ ∂Nγ(Dra(Oi)),m = 1}. This, combined
with the fact that the control input vector u(ξ) is continuous on K2 := {ξ ∈ K|x ∈
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Nγ(Dra(Oi)),m = 1}, as stated in Lemma 5.2, ensures that x(t, j) ∈ Nγ(Dra(Oi)) for all
(t, j) ∈ (Ij1+1 × j1 + 1).

Note that ∂Nγ(Dra(Oi)) = ∂Dra(Oi) ∪ ∂Dra+γ(Oi). For all x ∈ ∂Dra(Oi), one has
TNγ(Dra (Oi))(x) = P≥(0,xπ), where xπ = x − Π(x,OW) with Π(x,OW) = Π(x,Oi).
When the control input vector (5.5a) corresponds to the obstacle-avoidance mode, for
x ∈ ∂Dra(Oi), it is given by u(ξ) = κrP(a)xπ. Now, for any p ∈ R3 and a unit vector
q ∈ S2, it can be shown that p⊤P(q)p ≥ 0. Therefore, for all x ∈ ∂Dra(Oi), one has
xπP(a)xπ ≥ 0. This implies that u(ξ) ∈ P≥(0,xπ) ⊂ TNγ(Dra (Oi))(x) for x ∈ ∂Dra(Oi),
and condition (D.10) holds true.

Next, for x ∈ ∂Dra+γ(Oi), one has TNγ(Dra (Oi))(x) = P≤(0,xπ). When the control
input corresponds to the obstacle-avoidance mode, for x ∈ ∂Dra+γ(Oi), the control vector
(5.5a) is given by u(ξ) = −κrP(a)xπ. As mentioned earlier, for all x ∈ ∂Dra+γ(Oi), one
has xπP(a)xπ ≥ 0. Therefore, u(ξ) ∈ P≤(0,xπ) ⊂ TNγ(Dra (Oi))(x) for x ∈ ∂Dra+γ(Oi),
and condition (D.10) holds true. As a result, since x(t1, j1 + 1) ∈ Nγ(Dra(Oi)), one can
conclude that

x(t, j) ∈ Nγ(Dra(Oi)), (D.11)

for all (t, j) ∈ (Ij1+1, j1 + 1).
Next, we show that when the control input corresponds to the obstacle-avoidance

mode, x(t, j) ∈ Nγ(Dra(Oi)) ∩ P(h, a) for all (t, j) ∈ (Ij1+1, j1 + 1). When the con-
trol input corresponds to the obstacle-avoidance mode, it is given by u(ξ) = κrv(x, a),
which, as per (5.6), can be expressed as a linear combination of the vectors P(a)xπ

and R(a)P(a)xπ. Since P(a), defined in (5.7), is an orthogonal projection operator and
0 ∈ P(h, a), for all x ∈ Nγ(Dra(Oi)) ∩P(h, a), one has P(a)xπ ∈ P(h, a). Additionally,
one can show that R(a)P(a)xπ ∈ P(h, a). Therefore, for all x ∈ Nγ(Dra(Oi))∩P(h, a),
one has v(x, a) ∈ P(h, a). As a result, since x(t1, j1 +1) ∈ Nγ(Dra(Oi))∩P(h, a), using
(D.11), one can conclude that

x(t, j) ∈ Nγ(Dra(Oi)) ∩ P(h, a),
for all (t, j) ∈ (Ij1+1, j1 + 1) and claim 1 in Lemma D.1 is satisfied.

Next, we proceed to prove claim 2 in Lemma D.1 which states that when ξ(t1, j1+1) ∈
F1 for some (t1, j1 + 1) ∈ dom ξ, the control input steers the state ξ to the jump set J1

of the obstacle-avoidance mode in finite time (t2, j1 + 1) ≻ (t1, j1 + 1) with t2 <∞.
Let us define the set OS

i = Dra(Oi) ∩ P(h, a), as shown in Fig. D.1. Since ob-
stacle Oi is convex, the set OS

i is also convex. As a result, the target location has
a unique closest point on the set OS

i , represented by Π(0,OS
i ). Let us define the set

LS := Ls(0,Π(0,OS
i ))∩Nγ(Dra(Oi)). According to Remark 5.3, one has 0 /∈ Dra+γ(Oi).

Therefore, it is clear that LS ∩ ∂Dra+β(Oi) ̸= ∅ for all β ∈ [0, γ]. Since 0 ∈ P(h, a), the
line segment LS belongs to the plane P(h, a). Since LS ∩D◦

ra(Oi) = ∅, the line segment
LS also belongs to the exit region Re (5.11). Since the hit point h belongs to Ri

l, the
target location 0 is closer to the location Π(0,OS

i ) than to the hit point h. Hence, for
a sufficiently small value of ϵ̄, used in (4.22), one can ensure that the set LS belongs to
the set JW

1 (5.15).
Now, if one ensures that the state x, which belongs to the set Nγ(Dra(Oi))∩P(h, a)

after time (t1, j1), in the obstacle-avoidance mode around obstacle Oi, eventually inter-
sects the set LS at some finite time (t2, j1 + 1) ≻ (t1, j1 + 1), then it will imply that
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Figure D.1: The partition of the set Nγ(Dra(Oi)) ∩ P(h, a).

ξ(t2, j1 + 1) ∈ J1, and claim 2 in Lemma D.1 will be proven. To that end, let us divide
the set Nγ(Dra(Oi)) ∩ P(h, a), as shown in Fig. D.1, into 3 separate subsets as follows:

Nγ(Dra(Oi)) ∩ P(h, a) = S1 ∪ S2 ∪ S3, (D.12)

where the sets S1,S2 and S3 are defined as follows:

S1 = Nγa(Dra(Oi)) ∩ P(h, a),
S2 = N ◦

γs−γa(Dra+γa(Oi)) ∩ P(h, a),
S3 = Nγ−γs(Dra+γs(Oi)) ∩ P(h, a),

(D.13)

where 0 < γa < γs < γ.
We show that when the control input corresponds to the obstacle-avoidance mode and

the state x belongs either in the set S1 or in the set S3, the control eventually steers the
state x to the set S2. Then, we show that for all x ∈ S2, the control vector u(ξ) belongs
to the open positive half-space P>(0,R(a)P(a)xπ). This implies that the state x, which
belongs to the setNγ(Dra(Oi))∩P(h, a) after time (t1, j1), in the obstacle-avoidance mode
around obstacle Oi, is always steered to the open positive half-space P>(0,R(a)P(a)xπ)
and will eventually reach the set LS at some finite time (t2, j1 + 1) ≻ (t1, j1 + 1).

First, we show that when the control input corresponds to the obstacle-avoidance
mode and the state x is either in the set S1 or in the set S3, the control will eventually
steer the state x to the set S2.

When the control input corresponds to the obstacle-avoidance mode and x belongs
to the set S1, the control vector u(ξ) in (5.5a) becomes

u(ξ) = κrP(a)xπ, κr > 0. (D.14)
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Let x ∈ ∂Dra+β(Oi) ∩ S1 for some β ∈ [0, γa]. We know that for x ∈ ∂Dra+β(Oi) ∩ S1,
the tangent cone to the set Nγ−β(Dra+β(Oi)) at x is given by

TNγ−β(Dra+β(Oi))(x) = P≥(0,xπ).

If we show that for all x ∈ ∂Dra+β(Oi) ∩ S1, one has xπP(a)xπ > 0, then it implies that
the control input vector (D.14) steers x to the interior of the set Nγ−β(Dra+β(Oi)). This,
combined with the fact that x(t, j) ∈ P(h, a), for all (t, j) ∈ (Ij1+1× j1+1), as per claim
1 in Lemma D.1, ensures that the control input vector (D.14) steers x to the interior of
the set (S1 ∪ S2) \ D◦

ra+β(Oi) and eventually x will enter in the set S2. To proceed with
the proof we require the following fact:

Fact 1: Let us consider a hyperplane P(p,q), where p ∈ JW
0 ∩ Nγ(Dra(Oi)), for

some i ∈ I and q = A(p), where the mapping A is defined in (5.22). Then, for all
x ∈ Nγ(Dra(Oi)) ∩ P(p,q), one has x⊤

πP(q)xπ > 0.

Proof This proof is by contradiction. First, note that for any vector s ∈ R3, one has
s⊤P(q)s ≥ 0. Let us assume that there exists x ∈ Nγ(Dra(Oi)) ∩ P(p,q) such that
x⊤
πP(q)xπ = 0. Since xπ ̸= 0, one has P(q)xπ = 0. Therefore, the vector xπ is

normal to the hyperplane P(p,q). This implies that the plane P(p,q) is a supporting
hyperplane [Boyd et al., 2004, Section 2.5.2] to the convex set Dra+β(Oi) at x, where
β = d(x,Oi)− ra ∈ [0, γ]. Therefore, the set D◦

ra(Oi) ∩ P(p,q) is an empty set.
However, since q = A(p), according to (5.22), one has pπ ∈ P(p,q) and 0 ∈ P(p,q).

Therefore, L(p,Π(p,Oi)) ⊂ P(p,q). As a result, L(p,Π(p,Oi)) ∩ D◦
ra(Oi) ̸= ∅. This

implies that D◦
ra(Oi) ∩ P(p,q) ̸= ∅, which is a contradiction.

According to Fact 1, for all x ∈ ∂Dra+β(Oi) ∩ S1, where β ∈ [0, γa], one has
x⊤
πP(a)xπ > 0. Therefore, as discussed earlier, the control input vector (D.14) steers

x to the interior of the set (S1∪S2)\D◦
ra+β(Oi) and eventually x will enter in the set S2.

Similarly, when the control input corresponds to the obstacle-avoidance mode and x
belongs to the set S3, the control vector u(ξ) in (5.5a) is given by

u(ξ) = −κrP(a)xπ, κr > 0. (D.15)

Let x ∈ ∂Dra+β(Oi) ∩ S3 for some β ∈ [γs, γ]. We know that for x ∈ ∂Dra+β(Oi) ∩ S3,
the tangent cone to the set Dra+β(Oi) at x is given by

TDra+β(Oi)(x) = P≤(0,xπ).

According to Fact 1, for all x ∈ ∂Dra+β(Oi)∩S3, where β ∈ [γs, γ], one has x
⊤
πP(a)xπ > 0.

This implies that the control input vector (D.15) steers x to the interior of the set
Dra+β(Oi). This, combined with the fact that x(t, j) ∈ P(h, a), for all (t, j) ∈ (Ij1+1 ×
j1 +1), as per claim 1 in Lemma D.1, ensures that the control input vector (D.15) steers
x to the interior of the set (S3 ∪ S2) ∩ D◦

ra+β(Oi) and eventually x will enter in the set
S2.

Finally, we show that when the control input corresponds to the obstacle-avoidance
mode and the state x belongs to the set S2, the control vector u(ξ) belongs to the open
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positive half-space P>(0,R(a)P(a)xπ). When the control law operates in the obstacle-
avoidance mode and the state x ∈ S2, according to (5.5), one has u(ξ) = κrv(x, a), κr >
0. Note that for all x ∈ S2, one has η(x) ∈ (−1, 1). Therefore, for every x ∈ S2, the vector
v(x, a) can be expressed as a linear combination of the vectors P(a)xπ and R(a)P(a)xπ

given by

v(x, a) = k1P(a)xπ + k2R(a)P(a)xπ, (D.16)

where k1 ∈ R and k2 > 0. Additionally, according to Fact 1, for all x ∈ S2, one has
P(a)xπ ̸= 0. As a result, it can be confirmed that v(x, a)⊺R(a)P(a)xπ > 0, when the
state x belongs to the set S2, and the proof is complete.

D.5 Proof of Theorem 5.2

Forward invariance (Safety): Note that, according to Lemma 5.4, the hybrid closed-
loop system (5.29) satisfies the hybrid basic conditions. Furthermore, the modified control
input vector us(ξ), as defined in (5.28), is obtained by replacing the avoidance control
vector v(x, a) (5.6) with vs(x, a) (5.27) in (5.5a). Hence, demonstrating that the hybrid
closed-loop system (5.29) satisfies the viability condition, as mentioned in (D.2), for
m = 1, allows one to employ similar arguments from the proof of Lemma 5.3 to establish
the forward invariance of the set K for the hybrid closed-loop system (5.25). In other
words, we want to show that for all ξ ∈ F1 \ J1

Fs(ξ) ∩TF1(ξ) ̸= ∅. (D.17)

For all ξ ∈ K such that x ∈ (FW
1 )◦ \ J1 and m = 1, the tangent cone TF1(ξ) =

R3×TWra
(h)×P(0, a)×{0}×TR≥0

(s), where the sets TWra
(h) and TR≥0

(s) are defined

in (D.3) and (D.4), respectively. Since, according to (5.29), ḣ = 0 ∈ TWra
(h), ṡ = 1 ∈

TR≥0
(s) and ȧ = 0 ∈ P(0, a), the viability condition in (D.17) holds true for all ξ ∈ K

such that x ∈ (FW
1 )◦ \ J1 and m = 1.

Finally, for all ξ ∈ K such that x ∈ ∂F1 \ J1 and m = 1, the tangent cone TF1(ξ) is
given by

TF(ξ) = P≥(0,xπ)×TWra
(h)× P(0, a)× {0} ×TR≥0

(s), (D.18)

where the sets TWra
(h) and TR≥0

(s) are defined in (D.3) and (D.4), respectively. Ac-
cording to (5.28), for m = 1, us(ξ) = κrR(a)P(a)xπ, κr > 0. Note that, for all x ∈
Nγ(Dra(Oi)), for each i ∈ I \ {0}, one has xπ ∈ P(0,R(a)P(a)xπ), where a ∈ S2,
and consequently us(ξ)

⊤xπ = 0. Additionally, according to (5.29), ḣ = 0 ∈ TWra
(h),

ṡ = 1 ∈ TR≥0
(s) and ȧ = 0 ∈ P(0, a). Hence, the viability condition in (D.17) holds

true for all ξ ∈ K such that x ∈ ∂F1 \ J1 and m = 1, and as such it holds true for all
ξ ∈ F1 \ J1.

Stability: When the mode indicator variable m = 0, one has us(ξ) = u(ξ) =
−κsx, κs > 0. Additionally, the target location at the origin 0 belongs to W◦

ra , and the
definitions of the flow set F and the jump set J are the same for (5.25) and (5.29). Hence,
one can use similar arguments from the proof of Theorem 5.1 to prove the stability of
the target set A.
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Attractivity: If we prove that all solutions ξ to the hybrid closed-loop system (5.29)
satisfy Lemma D.1, then one can use arguments similar to the ones in the proof of
Theorem 5.1 to prove the attractivity of the target set A from any point in K for the
hybrid closed-loop system (5.29). Consequently, we proceed to prove that every solution
ξ to the hybrid closed-loop system (5.29) satisfies Lemma D.1.

Since ξ(t1, j1) ∈ J0, one has h ∈ JW
0 ∩∂Dra+β(Oi) for some i ∈ I \{0} and β ∈ [0, γ],

where h = h(t1, j1 + 1) = h(t, j) for all (t, j) ∈ (Ij1+1 × j1 + 1). First, we show that
x(t, j) ∈ Nγ(Dra(Oi)) for all (t, j) ∈ (Ij1+1× j1+1). For all x ∈ ∂Dra+β(Oi), the tangent
cone to the set ∂Dra+β(Oi) at x is given by

T∂Dra+β(Oi)(x) = P(0,xπ), (D.19)

where xπ = x − Π(x,OW). When the control input vector (5.28) corresponds to the
obstacle-avoidance mode, for all x ∈ ∂Dra+β(Oi), it is given by us(ξ) = κrvs(x, a), where
κr > 0 and a = a(t1, j1+1) = a(t, j) for all (t, j) ∈ (Ij1+1×j1+1). Now, using (5.27), one
can conclude that for all x ∈ ∂Dra+β(Oi), vs(x, a)

⊤xπ = 0 and us(ξ) ∈ T∂Dra+β(Oi)(x).
Additionally, as per Lemma 5.4, the control input trajectory u(ξ(t, j)) is continuous
when it corresponds to the obstacle-avoidance mode. Therefore, using Nagumo’s theorem
[Blanchini et al., 2008, Theorem 4.7], one can conclude that for all (t, j) ∈ (Ij1+1× j1+1)

x(t, j) ∈ ∂Dra+β(Oi), (D.20)

where β ∈ [0, γ]. Therefore, x(t, j) ∈ Nγ(Dra(Oi)) for all (t, j) ∈ (Ij1+1 × j1 + 1).
Next, we show that x(t, j) ∈ Nγ(Dra(Oi)) ∩ P(h, a) for all (t, j) ∈ (Ij1+1 × j1 + 1).

Since a = A(h) and obstacle Oi is a sphere, the hyperplane P(h, a) passes through the
origin and the center ci of obstacle Oi. As a result, for all x ∈ Nγ(Dra(Oi)) ∩ P(h, a),
one has xπ ∈ P(h, a). Now, when the control input vector corresponds to the obstacle-
avoidance mode, it is given by us(ξ) = κrvs(x, a), where κr > 0. According to (5.27),
it is clear that for all x ∈ Nγ(Dra(Oi)) ∩ P(h, a), vs(x, a) ∈ P(h, a). As a result, since
x(t1, j1 + 1) ∈ Nγ(Dra(Oi)) ∩ P(h, a), using (D.20), one can conclude that

x(t, j) ∈ Nγ(Dra(Oi)) ∩ P(h, a), (D.21)

for all (t, j) ∈ (ij1+1 × j1 + 1) and claim 1 in Lemma D.1 is satisfied.
We proceed to prove claim 2 in Lemma D.1. We know that h ∈ ∂Dra+β(Oi) for some

i ∈ I\{0} and β ∈ [0, γ]. Additionally, according to (D.20) and (D.21), it is clear that for
all (t, j) ∈ (Ij1+1 × j1 + 1), x(t, j) ∈ ∂Dra+β(Oi) ∩ P(h, a), where a = A(h). Moreover,
for all (t, j) ∈ (Ij1+1 × j1 + 1), one has us(ξ(t, j)) ∈ P>(0,R(a)xπ), where us(ξ(t, j)) =
κrvs(x(t, j), a), κr > 0. Therefore, since obstacle Oi is compact, there exists t2 <∞ and
t2 > t1 such that x(t2, j1 + 1) = Π(0, ∂Dra+β(Oi)). Notice that Π(0, ∂Dra+β(Oi)) ∈ Re

and d(0,Π(0, ∂Dra+β(Oi))) < d(0,h). Hence, for a sufficiently small value of ϵ̄, used in
(5.16), one can ensure that x(t2, j1 + 1), which equals to Π(0, ∂Dra+β(Oi)), belongs to
the set JW

1 . This, according to (5.15) and (5.18), implies that there exists t2 ∈ Ij1+1

such that t2 <∞ and ξ(t2, j1 + 1) ∈ J1, and claim 2 in Lemma D.1 holds true.
Monotonic decrease of the distance ∥x∥: Monotonic decrease of ∥x∥ is trivial

in the move-to-target mode, thus, we focus on proving the monotonic decrease in the
obstacle-avoidance mode.
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Consider a solution ξ to the hybrid closed-loop system (5.29). Let us assume that
there exists (t1, j1) ∈ dom ξ such that ξ(t1, j1) ∈ J0. Therefore, according to (5.14),
(5.12) and (5.20), one has h(t1, j1 + 1) ∈ JW

0 ∩ ∂Dra+β(Oi), for some i ∈ I \ {0} and
β ∈ [0, γs], and a(t1, j1 + 1) = A(h(t1, j1 + 1)). Let h = h(t1, j1 + 1) = h(t, j) and
a = a(t1, j1 + 1) = a(t, j) for all (t, j) ∈ (Ij1+1 × j1 + 1). Consequently, according to
Lemma D.1 and (D.20), under the control input us(ξ(t, j)), the state x(t, j) belongs to the
set ∂Dra+β(Oi)∩P(h, a) for all (t, j) ∈ (Ij1+1×j1+1).Moreover, ξ(t2, j1+1) ∈ J1 , where
t2 = sup

t∈Ij1+1

t. If one shows that for all (t, j) ∈ ([t1, t2]×j1+1), us(ξ(t, j))
⊤x(t, j) ≤ 0, then

it will imply that the control input vector us(ξ(t, j)) guarantees a monotonic decrease of
the distance ∥x∥ as the solution ξ(t, j1 + 1) flows during the interval Ij1+1.
Let us divide the set ∂Dra+β(Oi)∩P(h, a) into two mutually exclusive subsets as follows:

∂Dra+β(Oi) ∩ P(h, a) = U1 ∪ U2, (D.22)

where

U1 := ∂Dra+β(Oi) ∩ P(h, a) ∩ P≥(0,R(a)ci), (D.23)

U2 := ∂Dra+β(Oi) ∩ P(h, a) ∩ P<(0,R(a)ci), (D.24)

with ci being the center of obstacle Oi.
Since a and h are chosen as per (5.20), and obstacle Oi is a sphere, the hyperplane
P(h, a) intersects both the center ci of obstacle Oi and the target location at the origin.
As a result, for all x ∈ ∂Dra+β(Oi) ∩ P(h, a), one has vs(x, a) = R(a)xπ. Moreover,
since obstacle Oi is a sphere, for all x ∈ U1, one can conclude that xπ ∈ P≥(0,R(a)x).
Therefore, for all x ∈ U1, it is true that vs(x, a)

⊤x ≤ 0. Now, if one shows that
x(t, j) ∈ U1, for all (t, j) ∈ (Ij1+1 × j1 + 1), one can conclude that us(ξ(t, j))

⊤x(t, j) ≤ 0
for all (t, j) ∈ (Ij1+1 × j1 + 1)

Note that, for every x(t1, j1 + 1) ∈ JW
0 ∩ Nγ(Dra(Oi)), the choice of the unit vector

a, as per (5.22), ensures that x(t1, j1 + 1) ∈ U1. We know that, under the control input
us(ξ(t, j)), the state x(t, j) belongs to the set ∂Dra+β(Oi)∩P(h, a) for all (t, j) ∈ (Ij1+1×
j1 + 1), where h ∈ JW

0 ∩ ∂Dra+β(Oi), for some β ∈ [0, γs]. Since x(t1, j1 + 1) ∈ U1
and vs(x, a)

⊤x ≤ 0,∀x ∈ U1, under control input us(ξ) = κrvs(x, a), the state x can
enter in the set U2 only from the location Π(0, ∂Dra+β(Oi)). Therefore, there exists
(t2, j1 + 1) ≻ (t1, j1 + 1) such that x(t2, j1 + 1) = Π(0, ∂Dra+β(Oi)) ∈ U1. Moreover,
as proved earlier, for sufficiently small value of ϵ̄, used in (5.16), one can guarantee that
Π(0, ∂Dra+β(Oi)) ∈ JW

1 , where the set JW
1 is defined in (5.15). Hence, at (t2, j1 + 1),

one has ξ(t2, j1 + 1) ∈ J1, which implies that t2 = sup
t∈Ij1+1

t. As a result, for all time

(t, j) ∈ (Ij1+1 × j1 + 1), one has x(t, j) ∈ U1, and the proof is complete.
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