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Abstract

The high level of security and the fast hardware and software implementations of the

Advanced Encryption Standard (AES) have made it the first choice for many critical

applications. Since its acceptance as the adopted symmetric-key algorithm, the AES has

been utilized in various security-constrained applications, many of which are power and

resource constrained and require reliable and efficient hardware implementations.

In this thesis, first, we investigate the AES algorithm from the concurrent fault de-

tection point of view. We note that in addition to the efficiency requirements of the

AES, it must be reliable against transient and permanent internal faults or malicious

faults aiming at revealing the secret key. This reliability analysis and proposing efficient

and effective fault detection schemes are essential because fault attacks have become a

serious concern in cryptographic applications. Therefore, we propose, design, and im-

plement various novel concurrent fault detection schemes for different AES hardware

architectures. These include different structure-dependent and independent approaches

for detecting single and multiple stuck-at faults using single and multi-bit signatures.

The recently standardized authentication mode of the AES, i.e., Galois/Counter Mode

(GCM), is also considered in this thesis. We propose efficient architectures for the AES-

GCM algorithm. In this regard, we investigate the AES algorithm and we propose low-

complexity and low-power hardware implementations for it, emphasizing on its nonlinear

transformation, i.e., SubByes (S-boxes). We present new formulations for this transfor-

mation and through exhaustive hardware implementations, we show that the proposed

architectures outperform their counterparts in terms of efficiency. Moreover, we present

parallel, high-performance new schemes for the hardware implementations of the GCM

to improve its throughput and reduce its latency.

The performance of the proposed efficient architectures for the AES-GCM and their

fault detection approaches are benchmarked using application-specific integrated circuit

(ASIC) and field-programmable gate array (FPGA) hardware platforms. Our compar-

ison results show that the proposed hardware architectures outperform their existing

counterparts in terms of efficiency and fault detection capability.

Keywords: Advanced Encryption Standard, finite field, Galois/Counter Mode, high

performance, concurrent fault detection.
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Chapter 1

Introduction and Preliminaries

IN this chapter, we present an introduction for this thesis. We also provide the pre-

liminaries, motivations, and thesis outline.

Symmetric key cryptography uses a shared key in both sender and receiver ends during

encryption and decryption for secure communications. For the drawbacks of the previous

symmetric-key cryptographic standards such as the DES and the 3DES, they have been

replaced by the Advanced Encryption Standard (AES) [1]. In particular, the AES has

overcome the drawbacks of the previous standards in terms of vulnerability to brute

force attacks and slow software implementations. The AES was accepted by the National

Institute of Standards and Technology (NIST) in 2001 and since its acceptance, it has

been utilized in a variety of security-constrained applications. For instance, it has been

included in wireless standards of Wi-Fi [2] and WiMAX [3] and many other applications,

ranging from the security of smart cards to the bitstream security mechanisms in FPGAs

[4].

The Advanced Encryption Standard-Galois/Counter Mode (AES-GCM) provides au-

thentication and confidentiality for sensitive data simultaneously. In the AES-GCM,

data confidentiality is provided by the AES [1]. The authentication of the AES-GCM is

provided by the Galois/Counter Mode (GCM) [5] using a universal hash function. The

AES-GCM has been used for a number of applications such as the new LAN security

standard WLAN 802.1ae (MACSec) [6] and Fibre Channel Security Protocols (FC-SP)

[7]. Moreover, it has been utilized in a number of cores from industry, see, for example,

[8], [9], and [10]. In addition, two AES-GCM software-based implementations have been

presented in [11] and [12].

In what follows, we present the details on the AES and the GCM algorithms.

1
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1.1 Advanced Encryption Standard

In the AES encryption, the input and the output blocks are limited to 128 bits. However,

based on the security requirements, the key size could be determined as 128 (AES-128),

192 (AES-192) or 256 (AES-256). For each of these three types of the AES, different

number of rounds corresponding to different levels of security objectives is utilized, i.e.,

for the AES-128, 10 rounds, for the AES-192, 12 rounds and for the AES-256, 14 rounds

are processed [1]. In the AES encryption, four transformations in all the rounds, except

for the last round which has three transformations, are utilized.

The AES encryption transformations for the typical round j are depicted in Fig. 1.1.

The 128 bits of the input and output of each transformation are considered as four by four

matrices, called states (shown in dotted rectangles in Fig. 1.1), whose entries are eight

bits. The first transformation in each round is SubBytes (S-boxes), which is implemented

by 16 S-boxes. In the S-box, each byte of the input state (Xi, 0 ≤ i ≤ 15, in Fig. 1.1)

is substituted by a new byte (Yi, 0 ≤ i ≤ 15, in Fig. 1.1). ShiftRows is the second

transformation in which the first row of the state remains intact and the four bytes of

the last three rows of the input state are cyclically shifted. The third transformation

is MixColumns in which each column is modified individually. As shown in Fig. 1.1,

the columns are considered as polynomials over GF (28) and are multiplied by a fixed

polynomial. The final transformation is AddRoundKey which performs the modulo-2

addition of the input state and the key of the corresponding round, i.e., kj, 1 ≤ j ≤ 10,

12 or 14 for the AES-128, 192 or 256, respectively [1]. In the AES decryption, the reverse

procedure of the AES encryption is performed [1].

For realizing the S-box, the irreducible polynomial of P (x) = x8 + x4 + x3 + x + 1

is used to construct the binary field GF (28). Let Xi ∈ GF (28) and Yi ∈ GF (28) be the

input and the output of the S-box. Then, the S-box consists of finding the multiplicative

inversion, i.e., Xi
−1 ∈ GF (28) with the exception of mapping the zero input to the zero

output, followed by the affine transformation in GF (28) [1]. For the inverse S-boxes of

the AES decryption, inverse affine transformation precedes the multiplicative inversion

[1].

Among the four different transformations in the AES, only the S-box and the inverse

S-box are non-linear. Additionally, all the S-boxes (resp. the inverse S-boxes) occupy
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Figure 1.1: The AES encryption round transformations [1].

much of the total AES encryption (resp. decryption) area and their power consumption

is around three fourths of that of the entire AES [13]. In what follows, we present the

preliminaries regarding the hardware implementations of the S-boxes and the inverse

S-boxes within the AES using look-up tables (LUTs) and composite fields.

1.1.1 LUT-Based Architectures

The AES S-boxes and inverse S-boxes can be implemented using LUTs. For this purpose,

256×8 memory cells are used to store the 256 possible 8-bit outputs of each S-box/inverse

S-box. The LUT-based implementation is suitable for the field-programmable gate array

(FPGA) platforms in which block memories are available, see, for example, [14], [15],

and [16]. However, although this implementation reaches high-speed architectures, it is

not suitable for applications requiring low-complexity AES application-specific integrated

circuit (ASIC) implementations [17].

The S-box and the inverse S-box are nonlinear operations which take 8-bit inputs and

generate 8-bit outputs. In the S-box, the irreducible polynomial of P (x) = x8+x4+x3+

x+1 is used to construct the binary field GF (28). The usage of arithmetic in composite

fields reduces the space complexity of the S-box. Moreover, it allows us to use pipelining

and therefore the effective speed of the AES is increased while processing independent

messages. Consequently, the S-boxes and inverse S-boxes implemented using composite

fields can lead to area-efficient and high-performance structures [17]. In the following,

the preliminaries on composite field realizations are presented.
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1.1.2 Composite Field Architectures

In this section, we describe the composite field arithmetics to calculate the multiplicative

inversion over GF (28). This approach has received much attention in the literature, see,

for example, [13], [17], [18], [19], [20], [21], [22], [23], [24], and [25]. Moreover, there have

been low-power implementations for the S-boxes (resp. the inverse S-boxes) such as the

ones in [13] and [26]. It is noted that the low-power S-box (resp. inverse S-box) presented

in [13] uses composite fields.

The composite fields can be represented using normal basis [23] or polynomial basis

[18], [20], [21], [22]. The composite field realizations of the S-box using polynomial

and normal bases are presented in Fig. 1.2. As seen in this figure, a transformation

matrix transforms a field element X ∈ GF (28) to the corresponding representation in

the composite field GF (162), i.e., η. We consider the irreducible polynomial of u2 +

u + ν, where ν is chosen over GF (16) depending on the composite fields. Then, the

multiplicative inversion generates the inverse as ψ = η−1. Finally, as seen in Fig. 1.2,

the inverse transformation matrix transforms the composite field element to the one in

the binary field, i.e., Y ∈ GF (28).

Using polynomial basis constructed by the irreducible polynomial of u2 + u + ν,

one can obtain the coordinates of ψ as ψh = ηh(η
2
hν + ηhηl + η2l )

−1 and ψl = (ηl +

ηh)(η
2
hν + ηhηl + η2l )

−1 [20]. This multiplicative inversion in composite fields using poly-

nomial basis is shown in the top part of Fig. 1.2 by a dotted rectangle. Similarly, for

normal basis, the coordinates of ψ are obtained as ψh = (ηhηl + (ηh
2 + ηl

2)ν)−1ηl and

ψl = (ηhηl + (ηh
2 + ηl

2)ν)−1ηh [23], shown in the dotted rectangle in the bottom of Fig.

1.2. One can refer to [20] and [23] for more details on the composite field S-box architec-

tures. As seen in Fig. 1.2, the above multiplicative inversions consist of composite field

multiplications, additions and inversion in the sub-field GF (16). In this figure, the sub-

field multiplications are shown by crossed circles. Moreover, the circle with plus inside

represents GF (24) addition using 4 XOR gates.

1.2 The Galois/Counter Mode

Authenticated encryption and decryption are the two functions within the GCM. The

authenticated encryption performs two tasks; encrypting the confidential data and com-
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Figure 1.2: The composite field S-box architecture using polynomial basis [20] and normal
basis [23].

puting an authentication tag. The authenticated decryption function decrypts the con-

fidential data and verifies the tag [5]. The data flow of the authenticated encryption is

shown in Fig. 1.3. As seen in this figure, the mechanism for the confidentiality of data is

a variation of the block cipher counter mode of operation, denoted by GCTRK (Galois

Counter with the key K) [5]. For the AES-GCM, the block cipher encryption with the

specific key K is shown by AESK in Fig. 1.3. Then, the function GCTRK performs

the block cipher counter mode with the Initial Counter Block (ICB) and its increments

(CB2 − CBi) and the plaintext blocks (P1 − Pi) as the inputs.

As shown in Fig. 1.3, the Galois Hash (GHASHH) function within the GCM provides

the authentication for the confidential data. This function is constructed by GF (2128)

multiplications with a fixed parameter, called the hash subkey (H). The GHASHH

function calculates
n∑

j=1

XjH
n−j+1 = X1 ·Hn ⊕X2 ·Hn−1 ⊕ . . .⊕Xn ·H, (1.1)

where X1 to Xn are the n, 128-bit blocks of the input [5]. It is noted that the hash subkey



Chapter 1 6

ICB INC INCCB2 CBi-1 CBi

AESK

P1 P2 Pi-1 P
*
iA1 Am

H
H H H H H

LA,C

H

MSBtT

J0

GCTRK

GHASHH

X1 Xm Xm+1 Xm+2 Xn-2 Xn-1 Xn

H

0

128 128

128 128 128

128 128

128 128 128 128 128 128

128

128 128 128 128

128

128

128

128

128

128

128

t

AESK

AESK AESK AESK

AESK

Figure 1.3: The GCM authenticated encryption data flow [5].

is generated by applying the AES to the zero block, i.e., 0 = (0, 0, ..., 0) ∈ GF (2128).

Then, the GHASHH function calculates (1.1) [5]. All the arithmetic operations in (1.1),

i.e., additions, GF multiplications, and exponentiations are performed over GF (2128)

constructed by the irreducible polynomial P (x) = x128 + x7 + x2 + x+1. As seen in Fig.

1.3, the total number of input blocks to GHASHH is n = m + i + 1, where m and i are

the number of blocks for the additional authenticated data (A1 − Am) and the output

of GCTRK , respectively. Eventually, the authentication tag T with length of t bits is

derived. In the authenticated decryption, the same GHASHH procedure is performed on

the authenticated data and ciphertext blocks to verify the tag. For the entire description

of the GCM, one can refer to [5] and Algorithms 1 and 2.

Algorithm 1 shows the GCM authenticated encryption [5]. In this algorithm, IV is the

Initialization Vector, P is the Plaintext, A is the Additional Authenticated Data, and K

is the Key. It is noted that the authentication in the GCM is performed based on the hash

function GHASHH . After deriving J0, GHASHH is applied to (A∥0v∥C∥0u∥[len(A)]64∥
[len(C)]64) to obtain block S, from which the authentication tag T with length of t is

derived.

Algorithm 2 depicts the GCM authenticated decryption [5]. This algorithm uses the

same functions as Algorithm 1, in which another authentication tag (T ′) is derived. Al-
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Algorithm 1 The Authenticated Encryption GCM-AEK(IV, P, A)

1: Let H = CIPHK(0
128).

2: Define a block, J0, as follows: If
If len(IV ) = 96, then let J0 = IV ∥031∥1.
If len(IV ) ̸= 96, then let s = 128⌈len(IV )/128⌉ − len(IV ), and let
J0 = GHASHH(IV ∥0s+64∥[len(IV )]64).

3: Let C = GCTRK(inc32(J0), P ).
4: Let u = 128⌈len(C)/128⌉ − len(C) and v = 128⌈len(A)/128⌉ − len(A).
5: Define a block, S, as follows: S
S = GHASHH(A∥0v∥C∥0u∥[len(A)]64∥[len(C)]64).

6: Let T =MSBt(GCTRK(J0, S)).
7: Return (C, T ).

Algorithm 2 The Authenticated Decryption GCM-ADK(IV, C, A, T)

1: If the bit lengths of IV , A or C are not supported, or if len(T ) ̸= t, then return
FAIL.

2: Let H = CIPHK(0
128).

3: Define a block, J0, as follows: If
If len(IV ) = 96, then let J0 = IV ∥031∥1.
If len(IV ) ̸= 96, then let s = 128⌈len(IV )/128⌉ − len(IV ), and let
J0 = GHASHH(IV ∥0s+64∥[len(IV )]64).

4: Let P = GCTRK(inc32(J0), C).
5: Let u = 128⌈len(C)/128⌉ − len(C) and v = 128⌈len(A)/128⌉ − len(A).
6: Define a block, S, as follows: S
S = GHASHH(A∥0v∥C∥0u∥[len(A)]64∥[len(C)]64).

7: Let T ′ =MSBt(GCTRK(J0, S)).
8: If T = T ′, return P otherwise return FAIL.

gorithm 2 performs the verification of authenticity by checking if the sent authentication

tag T is the same as T ′.

1.3 Motivation

Using the AES, the sender and the receiver of the sensitive data share a secret key to

ensure the confidentiality of the information. Nonetheless, a malicious attacker can take

over the secret key and compromise the standard. One of the methods for extracting

the side-channel information is the fault attacks for which several approaches have been

introduced, see, for instance, [27], [28], [29], [30], [31], [32], and [33]. It is noted that

the internal hardware failures may also result in malfunctioning of the AES encryp-

tion/decryption. This has been the motivation for the first contribution of this thesis to
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develop high-performance and low-overhead fault detection schemes for the AES.

Different GCM architectures have been presented in the literature, the details of

which are provided throughout this thesis. These methods of realization mostly need

many clock cycles to execute, reducing the performance of the GCM architectures and

resulting in low throughput. This has been a motivation for the second contribution of

this thesis to propose high-performance parallel methods for obtaining the GCM and

developing efficient structures for the AES-GCM. The proposed methods are suitable for

high-performance applications.

1.4 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we review some of the

existing works in the literature. In Chapter 3, different AES S-boxes are evaluated

and benchmarked in terms of area, delay, and simulation-based power consumption. In

Chapter 4, a high-performance fault detection scheme for the composite field S-boxes

and inverse S-boxes of the AES is presented and benchmarked. Chapter 5 presents a

concurrent low-overhead fault detection method for the AES with emphasis on burst

fault detection. In Chapter 6, a structure-independent fault detection approach for the

entire AES encryption and decryption is presented. Chapter 7 covers the proposed high-

performance parallel hardware architecture for the AES-GCM. Finally, in Chapter 8, we

summarize our contributions.
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Literature Review

THIS chapter presents some previous works on both fault detection and hardware

implementations of the AES-GCM.

2.1 Fault Detection Schemes

Several fault detection schemes have been proposed to date to counteract the fault attacks

and detect the natural faults in cryptographic algorithms and the AES, see, for example,

[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], and

[51].

For fault detection of the encryption or decryption in AES one may use redundant

units [34], [42], where algorithm-level, round-level and operation-level concurrent error

detection for the AES are used. In the algorithm-level, comparing the plain text with

the output of a decryption after an encryption is proposed. The round-level error de-

tection uses similar ideas in the rounds, where, the output of a round in encryption is

applied to a round in decryption and is compared with the input. The operation-level (or

transformation-level) error detection uses the inversion of a transformation in each round

and compares the output with the input. Fig. 2.1 shows the operation-level concurrent

error detection for S-box and inverse S-box presented in [34]. In this figure, the 8-bit

input X of the S-box (8-bit input Y of the inverse S-box) is compared with the output

of two consecutive transformations, S-box and inverse S-box (inverse S-box and S-box)

using an 8-bit comparator to generate the error indication flag.

There exist a number of fault detection schemes based on the error detecting codes,

see, for example, [35], [36], [37], [38], [39], [40], and [41]. Using one parity bit for each

9
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Figure 2.1: Redundant unit fault detection structure for S-box (inverse S-box) [34], [42].

byte of a transformation, one can obtain the structure shown in Fig. 2.2 for the round

i, 1 ≤ i ≤ 9, of the encryption of the AES-128 (128-bit key) to achieve a parity-based

fault detection scheme. Similar structure can be obtained for the AES-128 decryption.

The AES-128 encryption/decryption has 10 consecutive rounds which are similar except

for the last one in which one of the transformations is not used. As seen in Fig. 2.2,

the output parity bits of each transformation in every round of the AES encryption are

predicted from the inputs using the prediction boxes denoted by P̂ notations. Then, the

comparisons between the predicted parities (shown by a matrix with 16-bit entries) and

the actual parities (obtained using the actual parity block) in Fig. 2.2 can be scheduled

so that the desired fault detection capability is obtained.

Parity predictions of ShiftRows, InvShiftRows, and AddRoundKey are straightfor-

ward and those of MixColumns and InvMixColumns can be done using the equations

given in [35], [36], [40], and [41]. It is noted that the parity predictions of the S-box and

the inverse S-box proposed in [36] are based on LUTs implementations in which 512× 9

memory cells are used to generate the predicted parity bit as well as the 8-bit output.

In Fig. 2.2, let k0 be the 128-bit input key to the key expander. Then, all the modified

keys, i.e., k′i, 0 ≤ i ≤ 10, consist of the 128-bit expanded key ki and 16-bit parities, if

one bit parity is used for each byte.

The parity-based scheme proposed in [35] is one of the first fault detection schemes and

has received attention in the literature. Although the approach in [35] is a good scheme

in terms of the fault detection capability, it has two drawbacks. First, this approach
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Figure 2.2: Parity-based fault detection structure of the ith round in the AES-128 en-
cryption.

is based on using the expanded S-boxes and inverse S-boxes for parity predictions, i.e.,

two blocks of 256 × 9 memory cells. Not only does this restrict the AES encryption

and decryption implementations to LUT-based S-boxes and inverse S-boxes, but it has

the area overhead of greater than 100% for either the S-box or the inverse S-box. The

second drawback of the approach in [35] is the relatively high area complexity of the

parity predictions of MixColumns in the AES encryption. For the AES decryption, the

area complexity of the predicted parities of InvMixColumns is even more [36].

In [37] and [39], instead of using one parity bit or two signatures in case of using the

scheme presented in [38] for each byte, one bit parity is used for 128-bit data using the

LUT S-boxes. The multiplication-based fault detection scheme [38] for the multiplicative

inversion of the S-box is shown in Fig. 2.3. In this scheme, the 8-bit input of the

multiplicative inversion is multiplied by the 8-bit output and the n-bit result, 1 ≤ n ≤ 8,

of the multiplication is compared with the n-bit actual result, i.e., 1 ∈ GF (28) if X ̸= 0

and 0 ∈ GF (28) if X = 0. Because the multiplicative inversion is also used in the inverse

S-box, the same scheme can be used for the inverse S-box.

The schemes presented in [34] and [42] use the redundant unit fault detection ap-

proach. It is noted that this results in the area, power, and delay overheads of approx-

imately 100%. In addition, the scheme in [43] proposes using the transformations in an

AES round twice for the same data to detect the transient errors. In [44], a concurrent
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fault detection scheme based on the merged S-box and inverse S-box is proposed. It is

also noted that the scheme presented in [49] uses double-data-rate computation for coun-

teracting the fault attacks. Additionally, a fault detection scheme based on the Hamming

and Reed-Solomon codes for protecting the storage elements within the AES is proposed

in [50]. Furthermore, for the logic elements, the scheme in [36] and the use of the partial

duplication of the most vulnerable elements are proposed in [50]. Moreover, the approach

in [51] is based on implementing functional redundancy in the AES.

There exist a number of fault detection approaches which are specific to composite

field S-boxes and inverse S-boxes, see, for example, [52], [53], [54], [55], and [56]. In

the scheme of [52], the fault detection of the multiplicative inversion of the S-box is

considered for two specific composite fields. The transformation and affine matrices are

excluded in this approach. Moreover, in [53], predicted parities have been used for the

multiplicative inversion of a specific S-box using composite field and polynomial basis.

Furthermore, the transformation matrices are also considered. In [54], [55], and [56], the

composite field S-boxes and inverse S-boxes (using polynomial basis) have been divided

into sub-blocks and parity predictions are used for their fault detection. Moreover, FPGA

implementations have been performed in [56] to benchmark the presented method. It is

noted that the approaches in [55] and [56] (for single fault detection) have been extended
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in the work in [57]. This work presents new structures for the S-box and the inverse S-box

with higher complexities compared to the original structures for detecting 100% of single

faults. We note that unlike the schemes presented in [55] and [56], this work focuses on

the stuck-at faults injected not only at the outputs but at any net in the circuit. The

results in [57] have been benchmarked using ASIC platform.

2.2 AES-GCM Architectures

As mentioned in the previous chapter, the S-boxes and the inverse S-boxes are the only

nonlinear transformations in the AES, whose hardware implementations affect that of

the AES significantly. A low-power implementation of the S-box (resp. inverse S-box)

has been presented in [13] which uses the composite field in [20]. For reaching a low-

power architecture with acceptable hardware complexity, it is suggested in [13] that the

structures are partitioned into three blocks (see Fig. 2.4). Then, the logic gates within

each of these blocks are implemented using two-level logics consisting of the arrays of

ANDs and XORs. Although this method increases the area of the composite fields

implementation, it reduces the power consumption significantly [13].

The AND-XOR structure of each block shown in Fig. 2.4 results in the low number

of transitions and thus low power consumption. This is because the AND array has 50%

propagation probability of signal transitions. In [13], similar to many other publications

such as [17], [18], [20], and [22], the irreducible polynomials u2 + u + ν and v2 + v + Φ,

where ν = {1100}2 and Φ = {10}2, are used for the composite fields. As seen in

Fig. 2.4, for block 1, a field element X for the S-box (Y for the inverse S-box) in the

binary field GF (28) is converted to the corresponding representation in the composite
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field GF (28)/GF (((22)2)2). The output of block 1 is then obtained as γ ∈ GF (24)

(γ′ ∈ GF (24) for the inverse S-box). As seen in Fig. 2.4, θ ∈ GF (24) (θ′ ∈ GF (24) for the
inverse S-box) is then derived as the output of block 2. Eventually, using the irreducible

polynomials u2+u+ ν and v2+ v+Φ, the output of the S-box, i.e., Y (X for the inverse

S-box), is obtained after conversion from the composite field GF (28)/GF (((22)2)2) to the

binary field GF (28).

In some previous works such as [13], [20], [22], [27], and [58], one specific S-box and

in [59], three reported S-boxes have been synthesized on ASIC. However, exhaustive

search has not been performed for all suitable composite fields to evaluate their perfor-

mance metrics using the same technology. It is also noted that in some other works,

see, for instance, [23], [24], [30], [60], [61], and [62], the hardware and timing complexi-

ties of different composite field S-boxes have been evaluated in terms of logic gates (in

[63], software implementations have been performed). However, benchmarking the per-

formance (including power consumptions through simulation-based approaches) of the

S-boxes implementations on hardware platforms has not been performed in these works.

Different GCM architectures have been presented in the literature. In [64], [65], and

[66], the sequential method for the hardware implementation of the GCM function is

adopted. The sequential method is shown in Fig. 2.5, where one GF multiplier, a set

of 128 XOR gates, and a 128-bit register (R) are utilized to perform the operation. Let

the register R in Fig. 2.5 be cleared initially. Let n be the number of input blocks to
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the GHASHH function, i.e., Xi, 1 ≤ i ≤ n. Then, after n clock cycles, register R in Fig.

2.5 contains the result. Although this method of realization is area-efficient, it needs

many clock cycles (equal to the number of input blocks), reducing the performance of

the architecture.

Because of the low throughput of the sequential method, a parallel method is proposed

in [67] which uses two GF (2128) multipliers to perform this operation in parallel. This

parallel implementation has been generalized in [68] and [69] so that q, q ≥ 2, parallel

GF (2128) multiplications are performed concurrently. In the most efficient method in [68]

and [69], for the case of q = 4 and n = 8, the operation in the GCM is realized according

to the following calculation steps:

j=4︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X1H

4⊕X5)H
4︸ ︷︷ ︸

j=2 ...

×1× 1⊕

j=4︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X2H

4⊕X6)H︸ ︷︷ ︸
j=2 ...

×H ×H ⊕

j=4︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X3H

4⊕X7)H︸ ︷︷ ︸
j=2 ...

×H × 1⊕

j=4︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X4H

4⊕X8)H︸ ︷︷ ︸
j=2 ...

×1× 1, (2.1)

where all operations are performed over GF (2128) constructed by the irreducible polyno-

mial P (x) = x128 + x7 + x2 + x + 1 and
⊕

comprises 128 XOR gates. Consecutive GF

multiplications with H are performed for deriving the powers of the hash subkey used.

Recently, a high-performance approach for computing the GHASHH function for long

messages has been proposed in [70]. However, in this scheme the hardware complex-

ity is increased. Therefore, a high-performance parallel method for obtaining the GCM

by relying on the low-complexity powers of the hash subkey is needed so that with-

out pre-computing the hash subkey exponents, compact realizations of these exponents

are obtained and implemented. This results in high-throughput and low-latency GCM

hardware architectures, suitable for high-performance applications.
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Performance Evaluations and
Comparisons of the AES S-boxes

IN this chapter, different ASIC architectures of building blocks of the AES S-boxes,

the only nonlinear AES transformation, are evaluated and optimized to identify high-

performance and low-power architectures. We evaluate the performance of more than 40

S-boxes utilizing a fixed benchmark platform in 65-nm CMOS technology. To obtain the

least-complexity S-box, the formulations for the Galois Field (GF) sub-field inversions in

GF (24) are optimized. By conducting exhaustive simulations for the input transitions,

we analyze the average and peak power consumptions of the AES S-boxes considering

the switching activities, gate-level netlists, and parasitic information.

In this chapter, we logic-gate optimize and perform comprehensive ASIC syntheses

of more than 40 different S-boxes for deriving their performance metrics. This bench-

marking, which is done on the same platform, results in having a clear picture of the

performance metrics of different designs. We synthesize the structures of different AES

S-boxes using the Synopsys R⃝ Design Vision R⃝ (which is the graphical user interface to

Synopsys R⃝ Design Compiler R⃝) [73] in STM 65-nm CMOS standard technology [74].

Then, the areas and delays of these hardware architectures are derived and compared.

To achieve the least dynamic power-consuming AES S-box, we obtain the average and

peak power consumptions of the S-boxes through exhaustive searches considering the

possible input transitions. These derivations are based on a timing simulation-based

analysis using the switching activities of internal nodes with Synopsys R⃝ PrimeTime R⃝

PX [73] and ModelSim R⃝ [75].

The implementation complexities of the S-boxes using composite fields are dependent

16



Chapter 3 17

on the choice of the coefficients ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible polynomi-

als u2+u+ν and v2+v+Φ used for the composite fields, respectively. The composite fields

GF (((22)2)2) in polynomial basis use iterations to construct the S-box. For these compos-

ite fields, the constants ν ∈ GF (24) and Φ ∈ GF (22) are over GF ((22)2)/v2 + v +Φ and

GF (22)/x2+x+1, respectively. According to [24], after exhaustive search for finding the

possible choices for ν ∈ GF (24) and Φ ∈ GF (22), the following 16 combinations are ob-

tained: Φ ∈ {{10}2, {11}2} and ν ∈ {{1000}2, {1001}2, {1010}2, {1011}2, {1100}2, {1101}2
, {1110}2, {1111}2}. Similarly, for normal basis, it can be derived that the only two ac-

ceptable values for Φ are Φ = {10}2 and Φ = {01}2. The following 8 values of ν are ac-

ceptable: ν ∈ {{0100}2, {0001}2, {1000}2, {0010}2, {0111}2, {1101}2, {1011}2, {1110}2}.

Based on the possible values of ν and Φ in polynomial basis representation, the (in-

verse) transformation matrices can be constructed using the algorithm presented in [22].

In this algorithm, using an exhaustive search, the transformation matrix is constructed

using eight base elements in GF (((22)2)2), i.e., 1, ξ, ξ2, . . . , ξ7, to which eight base ele-

ments of GF (28) are mapped. We note that for each combination of ν and Φ, there

exist eight possible (inverse) transformation matrices. These are constructed according

to the base element ξ and the conjugates of this base element, i.e., ξ2
i
, i = 1, 2, . . . , 7.

In what follows, for each combination of ν and Φ, one of these possible matrices is con-

sidered. As suggested in [22], we have also used subexpression sharing for obtaining

the low-complexity implementations for these matrices. We note that different (inverse)

transformation matrices in normal basis are derived simply by reordering the columns.

The organization of this chapter is as follows. In Section 3.1, logic-gate optimizations

for the inversions in GF (24) within the S-boxes are presented. In Section 3.2, we present

the results of our syntheses for different S-boxes. Power consumption derivations and

comparisons of the S-boxes through a simulation-based method are presented in Section

3.3. The results presented in this chapter can also be found in [71] and [72].

3.1 Logic-gate Optimizations

In this section, first we present the architecture of the low-complexity S-box using normal

basis. The previously presented low-complexity S-box using normal basis [23] is improved

and the hardware complexity of the inversion in GF (24) is reduced.
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Let γ = (γ3, γ2, γ1, γ0) be the input and θ = (θ3, θ2, θ1, θ0) be the output of an inverter

in GF (24) using normal basis. Then, the formulations for the inversion in GF (24) using

the low-complexity normal basis (Φ = {10}2) presented in [23] are obtained as follows

θ3 = γ2γ1γ0 + γ3γ1 + γ2γ1 + γ1 + γ0,

θ2 = γ3γ1γ0 + γ3γ1 + γ2γ1 + γ2γ0 + γ0,

θ1 = γ3γ2γ0 + γ3γ1 + γ3γ0 + γ3 + γ2, (3.1)

θ0 = γ3γ2γ1 + γ3γ1 + γ3γ0 + γ2γ0 + γ2,

where, “+” represents the modulo-2 addition which uses an XOR gate in hardware.

Considering the formulations above, we present the following lemma for reaching a

low-complexity architecture of an inverter in GF (24).

Lemma 3.1 The low-complexity formulations for the inversion in GF (24) using normal

basis can be written as follows.

θ3 = (γ2γ1 ∨ γ0) + γ3γ1,

θ2 = γ0(γ1 ∨ γ2) ∨ γ1(γ2 + γ3),

θ1 = (γ3γ0 ∨ γ2) + γ3γ1, (3.2)

θ0 = γ2(γ3 ∨ γ0) ∨ γ3(γ1 + γ0),

where, “+” and “∨” represent the XOR and OR operations, respectively.

Proof For having low-complexity structures for θ3 and θ1, we use the fact that for two

Boolean variables x and y, we have

x+ y + xy = x ∨ y. (3.3)

Then, using θ3 in (3.1) and considering x = γ2γ1 and y = γ0 in (3.3), one can find

θ3 = γ2γ1γ0 + γ3γ1 + γ2γ1 + γ1 + γ0θ3

= (γ2γ1 ∨ γ0) + γ1(γ3 + 1)

= (γ2γ1 ∨ γ0) + γ3γ1. (3.4)

Similarly, one can consider x = γ3γ0 and y = γ2 in (3.3) for θ1 in (3.1) to obtain

θ1 = γ3γ2γ0 + γ3γ1 + γ3γ0 + γ3 + γ2

= (γ3γ0 ∨ γ2) + γ3(γ1 + 1)

= (γ3γ0 ∨ γ2) + γ3γ1. (3.5)
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We now prove the formulations for θ2 and θ0. According to (3.1) and noting that γi+1 =

γi, we obtain

θ2 = γ3γ1γ0 + γ3γ1 + γ2γ1 + γ2γ0 + γ0

= γ1(γ2 + γ3(γ0 + 1)) + γ0(γ2 + 1)

= γ1(γ2 + γ3γ0) + γ0γ2. (3.6)

By the definition of the XOR we have γ2 + γ3γ0 = γ2γ3γ0 ∨ γ2(γ3 ∨ γ0). Then, (3.6) can
be written as

θ2 = γ1(γ2γ3γ0 ∨ γ2(γ3 ∨ γ0)) + γ0γ2

= (γ1γ2γ3 ∨ γ2γ1γ0 ∨ γ3γ2γ1γ0) + γ0γ2. (3.7)

It is noted that for having a low-complexity structure for θ2, we use the fact that for two

Boolean variables x and y, one can prove that

x+ xy = x ∨ y. (3.8)

Then, by distributing the XOR in (3.7) and using (3.8), the following terms are obtained

γ3γ2γ1γ0 + γ0γ2 = γ2(γ3γ1γ0 + γ0) = γ2(γ3γ1 ∨ γ0), (3.9)

γ2γ1γ0 + γ0γ2 = γ0(γ2γ1 + γ2) = γ0(γ2 ∨ γ1), (3.10)

γ3γ2γ1 + γ0γ2 = γ3γ2γ1 ∨ γ0γ2. (3.11)

Then, according to (3.7), by ORing (3.9)-(3.11) and noting that γ3γ2γ1∨γ3γ2γ1 = γ1(γ2+

γ3), it is straightforward to obtain θ2 in (3.2).

We obtain the following for θ0

θ0 = γ3γ2γ1 + γ3γ1 + γ3γ0 + γ2γ0 + γ2

= γ3(γ0 + γ1(γ2 + 1)) + γ2(γ0 + 1)

= γ3(γ0 + γ1γ2) + γ2γ0. (3.12)

By the definition of the XOR for γ0 + γ1γ2, (3.12) can be written as

θ0 = γ3(γ2γ1γ0 ∨ γ0(γ1 ∨ γ2)) + γ2γ0

= (γ3γ0γ1 ∨ γ3γ2γ0 ∨ γ3γ2γ1γ0) + γ2γ0. (3.13)
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Then, by distributing the XOR in (3.13) and using (3.8), the following terms are obtained

γ3γ2γ1γ0 + γ2γ0 = γ0(γ3γ1γ2 + γ2) = γ0(γ3γ1 ∨ γ2), (3.14)

γ3γ2γ0 + γ2γ0 = γ2(γ3γ0 + γ0) = γ2(γ0 ∨ γ3), (3.15)

γ1γ3γ0 + γ2γ0 = γ1γ3γ0 ∨ γ2γ0. (3.16)

Then, according to (3.13), by ORing (3.14)-(3.16) and noting that γ0γ3γ1 ∨ γ3γ1γ0 =

γ3(γ1 + γ0), one can obtain θ0 in (3.2).

It is noted that for reaching a low-complexity architecture, the formulations in (3.2) can

be implemented using only NOR, NAND, and XOR gates as follows

θ3 = XOR(NOR(NOR(γ2, γ1), γ0), NAND(γ3, γ1)),

θ2 = NAND(NAND(γ0, NAND(γ2, γ1)), NAND(γ1, XOR(γ2, γ3))),

θ1 = XOR(NOR(NOR(γ3, γ0), γ2), NAND(γ1, γ3)), (3.17)

θ0 = NAND(NAND(γ2, NAND(γ0, γ3)), NAND(γ3, XOR(γ1, γ0))).

In what presented above, the field inversion in GF (24) of the most compact composite

field in [23] has been modified to decrease its hardware complexity. This field uses normal

basis with Φ = {10}2 and ν = {0001}2. Now, we consider polynomial basis to further

optimize the S-boxes using polynomial basis. We present the following lemma through

which the hardware complexity of the composite field inversion in GF (24) is decreased.

This is performed by presenting low-complexity formulations for the inversion in GF (24)

through logic-gate minimization. Moreover, these formulations are implemented using

NAND, NOR, and XOR gates for reducing the complexity.

Lemma 3.2 Let γ = (γ3, γ2, γ1, γ0) be the input and θ = (θ3, θ2, θ1, θ0) be the output

of an inverter in GF (24). Then, the formulations for the low-complexity inversion in

GF (24) using polynomial basis with Φ = {11}2 are as follows:

θ3 = γ2γ3γ1 + γ3γ0,

θ2 = γ3γ0 ∨ γ2(γ3 ∨ γ1),

θ1 = γ2γ0 ∨ γ3γ1γ0 ∨ γ3γ1γ2, (3.18)

θ0 = γ3 ∨ γ1γ0 ∨ γ2γ0γ1 + γ1(γ2 ∨ γ3γ0).
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Moreover, for Φ = {10}2, one reaches the following:

θ3 = γ2γ3γ1 + γ3γ0,

θ2 = γ2γ1 ∨ γ3(γ2 ∨ γ0), (3.19)

θ1 = γ3γ1(γ2 ∨ γ0) ∨ γ2γ0 + γ3 + γ2 + γ1,

θ0 = γ0 ∨ γ2γ3 ∨ γ1γ3γ2 + γ2(γ1 ∨ γ0γ3).

where “+” and “∨” represent the XOR and OR operations, respectively.

Proof For γ = (γ3, γ2, γ1, γ0) as the input and θ = (θ3, θ2, θ1, θ0) as the output of an

inverter in GF (24), the formulations for the inversion in GF (24) using the polynomial

basis with Φ = {11}2 and Φ = {10}2 are obtained as follows, respectively, [24], [22]:

θ3 = γ3γ2γ1 + γ3γ0 + γ2,

θ2 = γ3γ2γ1 + γ3γ2γ0 + γ3γ0 + γ2γ1 + γ3,

θ1 = γ3γ2γ1 + γ3γ1γ0 + γ3γ0 + γ3γ1 + γ2γ0+

γ2γ1 + γ2 + γ1, (3.20)

θ0 = γ3γ2γ1 + γ3γ2γ0 + γ3γ1γ0 + γ2γ1γ0+

γ2γ0 + γ3γ0 + γ2γ1 + γ3 + γ1 + γ0,

θ3 = γ3γ2γ1 + γ3γ0 + γ3 + γ2,

θ2 = γ3γ2γ1 + γ3γ2γ0 + γ3γ0 + γ2γ1 + γ2, (3.21)

θ1 = γ3γ2γ1 + γ3γ1γ0 + γ2γ0 + γ3 + γ2 + γ1,

θ0 = γ3γ2γ1 + γ3γ2γ0 + γ3γ1γ0 + γ2γ1γ0 + γ3γ1+

γ3γ0 + γ2γ1 + γ2 + γ1 + γ0.

One can obtain θ3-θ0 in (3.18) and (3.19) from those of (3.20) and (3.21), respectively.

For performing this, we note that γi+1 = γi and γi+γj+γiγj = γi∨γj. For instance, now
obtain θ3 in (3.18) from that of (3.20) as θ3 = γ3γ2γ1 + γ3γ0 + γ2 = γ2(γ3γ1 +1)+ γ3γ0 =

γ2γ3γ1 + γ3γ0. Using similar methods, one can obtain (3.18). As another example,

one can obtain θ3 in (3.19) from that of (3.21) as θ3 = γ3γ2γ1 + γ3γ0 + γ3 + γ2 =

γ2(γ3γ1 + 1) + γ3(γ0 + 1) = γ2γ3γ1 + γ3γ0. By verifying the 16 combinations of the input

γ, same results are obtained for (3.18) and (3.20) ((3.19) and (3.21)).
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Table 3.1: Evaluation of the performance metrics of the S-boxes on ASIC using the STM
65-nm CMOS standard technology.

Structure Specifications Area Delay [Freq.] Thro’put Effic.

Φ ν (µm2) GEa (ns) [MHz] (Gbps) (Mbps
µm2

)

1000 [30], [24]b 525.2 252.5 1.31 [763] 6.1 11.6
1000 (proposed, (3.19)) 518.9 249.4 1.15 [869] 7.0 13.53

1001 537.2 258.2 1.43 [699] 5.6 10.4
1010 535.6 257.5 1.36 [735] 5.9 11.0
1011 540.8 260.0 1.43 [699] 5.6 10.3

10 1100 [13], [20], [22]c 540.3 259.7 1.37 [730] 5.8 10.8
1101 548.6 263.7 1.34 [746] 6.0 10.9
1110 524.7 252.3 1.40 [714] 5.7 10.9

1110 (proposed, (3.19)) 510.23 245.2 1.25 [800] 6.4 12.5
Polynomial 1111 535.6 257.5 1.40 [714] 5.7 10.6

basis 1000 528.3 253.9 1.39 [719] 5.8 10.9
1000 (proposed, (3.18)) 516.3 248.2 1.11 [900]3 7.23 13.92

1001 534.6 257.0 1.56 [641] 5.1 9.6
1010 [24]b 519.0 249.5 1.42 [704] 5.6 10.9

1010 (proposed, (3.18)) 498.42 239.6 1.11 [900]3 7.23 14.41

11 1011 531.0 255.2 1.45 [690] 5.5 10.4
1100 548.1 263.5 1.49 [671] 5.4 9.8
1101 546.5 262.7 1.42 [704] 5.6 9.8
1110 542.8 260.9 1.52 [657] 5.3 9.7
1111 542.9 261.0 1.52 [657] 5.3 9.7

0001 [23]b 569.4 273.7 1.59 [629] 5.0 8.8
0001 [23] (3.17)d 511.7 246.0 1.45 [690] 5.5 10.7

0010 564.2 271.2 1.42 [704] 5.6 10.0
0100 576.7 277.2 1.57 [637] 5.1 8.8

10 1000 579.3 278.5 1.46 [685] 5.5 9.4
0111 575.1 276.5 1.56 [641] 5.1 8.9
1011 589.2 283.2 1.55 [645] 5.2 8.7
1101 572.0 275.0 1.60 [625] 5.0 8.7

Normal 1110 588.6 282.0 1.57 [637] 5.1 8.6
basis 0001 564.2 272.2 1.58 [633] 5.1 9.0

0010 577.2 277.5 1.51 [662] 5.3 9.2
0100 564.2 271.2 1.59 [629] 5.0 8.9

01 1000 570.9 274.4 1.58 [633] 5.1 8.9
0111 583.9 280.7 1.49 [671] 5.4 9.2
1011 572.5 275.2 1.58 [633] 5.1 8.9
1101 583.9 280.7 1.48 [676] 5.4 9.3
1110 571.9 274.9 1.59 [629] 5.0 8.8

Normal basis - 0001 [60]e 403.21 193.8 1.64 [610] 4.9 12.1

Polynomial basis - 1110 [27]f 554.3 266.5 1.26 [794] 6.4 11.5

Mixed basis [62]g - - 571.1 274.5 1.30 [769] 6.2 10.9

LUT/ROM [77], [59]h - - 1,407.1 676.4 0.60 [1666]1 13.31 9.5

LUT/ROM-MI [59]i - - 1,434.6 689.4 0.68 [1470]2 11.82 8.2

1, 2, and 3 are the best cases for each performance metric.

aGate equivalent in terms of two-input NAND.
bAmong all fields considered, the presented composite field has the least hardware complexities in

terms of logic-gate counts.
cThese are some works in which this composite field is used.
dThe hardware complexity of this composite field has been improved by (3.17).
eThis implementation is based on a minimization method at the expense of more timing complexity.
fThis architecture is based on the composite field GF ((24)2).
gHas been presented very recently based on mixed polynomial and normal bases and only focuses on

decreasing the critical path delay.
hUsing synthesized ROM-based LUTs.
iLUTs for the multiplicative inversion (MI) and logic gates for the affine transformation.



Chapter 3 23

In what follows, we evaluate and compare the performance metrics of different S-

boxes. The presented results confirm efficiency increase using (3.18) and (3.19).

3.2 Area and Delay Evaluations

In the following, we evaluate and compare the areas, delays, throughputs, and efficiencies

of different S-boxes, including the ones presented in [13], [20], [22], [23], [24], [27], [30],

[60], and [62]. It is noted that the implementation in [61] is for the inversion in GF (24)

and does not provide the entire S-box architecture.

Using MATLABR⃝ [76], we have derived the low-complexity transformation and mixed

inverse and affine transformation matrices for the syntheses. We have used the STM 65-

nm CMOS standard technology and CORE65LPSVT standard cell library [74]. This

library is optimized for using in low-power applications. The nominal junction temper-

ature is 25 ◦C and VHDL has been used as the design entry to the Synopsys R⃝ Design

Vision R⃝ [73]. We note that the presented results are post synthesis and do not consider

the post layout routing.

The results of our syntheses are presented in Table 3.1. As seen in this table, for

different S-boxes, the areas (in terms of µm2), critical path delays (in terms of ns),

maximum working frequencies (in terms of MHz), throughputs (in terms of Gbps), and

efficiencies (in terms of Mbps
µm2 ) have been obtained. According to the STM 65-nm standard

cell library information, the lowest and nominal drive strength for the cells is two. It

is noted that the area of a NAND gate in the utilized STM 65-nm CMOS library for

the drive strength of two is 2.08µm2. Then, using this area, we have also provided the

gate equivalent (GE) measure for different S-boxes in the table. Note that if we increase

the area effort, lower areas are usually achieved mostly at the expense of more delay

overhead.

Memory macros tend to be expensive in hardware for implementing the S-boxes,

resulting in high hardware complexity and power consumption. Therefore, this imple-

mentation is not considered in this chapter. We have considered two different methods

of realization of the LUT S-boxes. In these methods, read-only LUTs are used for im-

plementing the S-box, see, for instance, [77] and the hw-lut/hybrid-lut architectures in

[59]. This allows us to logic-optimize the S-box architecture by synthesis of hardware
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description languages, leading to low-area implementations. In the first method (denoted

by LUT/ROM), the entire S-box is implemented using LUTs. Moreover, we consider the

S-boxes in which only the multiplicative inversion (MI) in GF (28) is implemented using

LUTs and the affine transformation is implemented separately (denoted by LUT/ROM-

MI). This enables the designers to share the multiplicative inversion in GF (28) for the

S-box and the inverse S-box in the merged structures.

In some of the previous works such as [20], [23], [27], and [30], the area of the S-

box has been presented in terms of GE. For instance, in [20] and [30], the areas of the

implemented S-boxes have been provided as 294 GE and 272 GE using 0.11µm and

0.18µm technologies, respectively. Based on the information of the cell library in a

0.18µm technology, the gate count of the S-box has been converted to gate equivalent as

180 GE in [23]. We note that the result in [23] (unlike those in [20], [27], [30], and this

chapter) is the direct conversion of the gate count (without synthesis) to GE. In addition,

the conversion factor of 1.75 has been used in [23] for obtaining the GE for XOR/XNOR

and MUX21. However, in the cell library used in this chapter, these conversion factors

are 2.25 and 2, respectively. Another factor causing the reported areas in terms of GE in

different works to vary is the type of the synthesis tools used and the map effort specified.

Using (3.18) and (3.19) of Lemma 3.1, we have also presented the results of the logic-

gate optimized S-boxes in Table 3.1. Specifically, we have used (3.18) and (3.19) for two

most compact S-boxes using polynomial basis for Φ = {11}2 and Φ = {10}2 in Table

3.1. It is also noted that for each of the evaluated performance metrics, the three best

cases among different results for the S-boxes have been marked with superscripts 1, 2,

and 3. As shown in Table 3.1, the areas for the composite field S-boxes range from 403.2-

589.2 µm2 (difference of 46.1%), the working frequencies from 625-900 MHz (difference

of 44.0%), the throughputs from 5.0-7.2 Gbps (difference of 44.0%), and the efficiencies

from 8.6-14.4 Mbps
µm2 (difference of 67.4%).

As seen in Table 3.1, the S-boxes using LUTs (last two rows) are the fastest S-boxes.

However, their efficiencies are not the highest among other S-boxes in Table 3.1. Among

the composite field S-boxes, the one using normal basis presented in [60] is the most

compact one (see the area column in Table 3.1). However, it has the worst working

frequency and throughput. The S-boxes using polynomial basis (optimized using (3.18))

have the highest frequency and throughput among the composite field S-boxes. Finally,
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the highest efficiency (see the last column in Table 3.1) is obtained for the one using

polynomial basis with Φ = {11}2 and ν = {1010}2 (optimized using (3.18)).

3.3 Power Consumptions and Comparisons

In the following, the power consumption results for different S-boxes are presented. We

have derived the power consumptions of the S-boxes within the AES through a simulation-

based analysis method. In what follows, we present the power derivation method as well

as the results of our analysis and comparison.

3.3.1 Power Derivation Method

We use VHDL as the design entry to the Synopsys R⃝ Design Vision R⃝. After obtaining

the gate-level netlists of the S-boxes, timing simulations are performed using ModelSim R⃝

SE 6.2d [75]. The testbench used for timing simulations covers all the 256× 255 = 65280

possible transitions for the 8-bit input of the S-box. This exhaustive input pattern

assertion includes all the possible transitions between each two different pairs of the

possible 256 inputs. Then, for each and every S-box, the results of the switching activities

of all internal nodes have been logged in the VCD (Value Change Dump) files. We have

set the resolution of the timing simulations to high so that the VCD files contain the

switching activities of glitches (dynamic hazards) occurring in the logic gates. Then, as

the final step, the power consumption of the circuit is computed from the VCD logs,

gate-level netlists, cell information, and parasitics of the target ASIC library. We have

utilized the Synopsys R⃝ PrimeTime R⃝ PX [73] to obtain the average power (including net

switching power, cell internal power, and cell leakage power), peak and instantaneous

power consumption details. It is noteworthy that the power consumption results are for

the working frequency of 50 MHz and for the high resolutions for both timing and power

consumption.

3.3.2 Analysis and Comparison

The results of our simulation-based power computations are presented in Table 3.2. As

depicted in this table, for different S-boxes, we have derived the average power (in terms

of µW), peak power (in terms of mW), and the input pattern transition for which the
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peak power happens. As shown in Table 3.2, the average powers for the composite field

S-boxes range from 44.39-58.96 µW (difference of 32.8%) and the peak powers from 1.013-

1.324 mW (difference of 30.7%). We have also marked (with superscripts 1, 2, and 3)

the three cases for which the lowest power consumptions are achieved.

Comparing the results in Tables 3.1 and 3.2 shows that generally and with few ex-

ceptions, the S-boxes with more hardware complexities consume more power. As seen

in Table 3.2, the highest and lowest average power consumptions are achieved for the

LUT-based (using memories) S-box and the normal basis S-box presented in [60], respec-

tively. Based on our results in Table 3.1, these two S-boxes have the highest and lowest

hardware complexities, respectively. On the other hand, according to the results of Table

3.1, the normal basis S-box presented in [60] has the highest timing complexity among

the composite field S-boxes.

The transitions of the inputs of the S-boxes when the peak powers occur have been

also shown in Table 3.2. As shown in this table, most of the peak powers occur when the

S-box input changes to the all-zero input.
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Table 3.2: Evaluation of the power consumptions of the S-boxes on ASIC using the STM
65-nm CMOS standard technology and the Synopsys R⃝ PrimeTime R⃝ PX [73].

Structure Specification Averagea Peakb

Φ ν (µW) (mW) Transition
1000 [30], [24]c 54.99 1.283 78 → 00

1001 55.77 1.184 1C → 00
1010 54.91 1.165 F4 → 58

10 1011 56.45 1.262 79 → 00
1100 [13], [20] 55.98 1.283 C0 → 00

, [22]d

1101 56.63 1.324 D5 → 01
1110 55.28 1.313 B5 → 00

Polynomial 1111 55.87 1.161 C3 → 07
basis 1000 54.69 1.1342 27 → 00

1000 (proposed, 54.15 1.188 B8 → 00
using (3.18))

1001 55.44 1.214 54 → 01
1010 [30]c 54.12 1.1453 71 → 00

1010 (proposed, 53.782 1.229 C9 → 00
using (3.18))

11 1011 54.80 1.218 55 → 00
1100 55.13 1.178 D7 → 00
1101 56.51 1.244 BA → 00
1110 55.91 1.239 3B → 00
1111 55.40 1.185 9C → 00

0001 [23]c 58.02 1.268 46 → 00
0001 [23] (3.17)e 54.033 1.189 46 → 0A

0010 58.51 1.291 41 → 00
0100 58.03 1.283 46 → 00

10 1000 58.15 1.290 41 → 00
0111 58.79 1.299 F2 → 00
1011 58.35 1.247 91 → 00
1101 58.81 1.300 73 → 00

Normal 1110 58.96 1.309 91 → 00
basis 0001 58.19 1.323 68 → 00

0010 58.07 1.284 92 → 00
0100 57.90 1.292 68 → 00

01 1000 58.17 1.292 92 → 00
0111 58.54 1.291 43 → 00
1011 57.88 1.231 E7 → 00
1101 58.70 1.282 42 → 00
1110 58.23 1.246 5B → 00

Normal basis - 0001 [60]f 44.391 1.0131 27 → 00

Polynomial basis - 1110 [27]g 55.48 1.208 22 → 00

Mixed basis [62] - - 58.06 1.242 46 → 00

LUT/ROM [77], [59] - - 63.18 1.337 91 → 00
LUT/ROM-MI [59] - - 66.20 1.344 91 → 00

1, 2, and 3 are the best cases for each performance metric.

aIncludes net switching, cell internal, and cell leakage power.
bObtained from the instantaneous power values for each case.
cAmong all fields considered, the presented composite field has the least hardware complexities in

terms of logic-gate counts.
dThese are some works in which this composite field is used.
eThe power consumption of this composite field has been improved using (3.17).
fThe lowest-power yet the slowest composite field S-box.
gThis architecture is based on the composite field GF ((24)2).
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A Lightweight Fault Detection
Scheme for the (Inverse) S-box
Using Composite Fields

IN this chapter, we present a lightweight concurrent fault detection scheme for the

AES. In the proposed approach, the composite field S-box and inverse S-box are

divided into blocks and the predicted parities of these blocks are obtained. Through

exhaustive searches among all available composite fields, we find the optimum solutions

for the least overhead parity-based fault detection structures. Moreover, through our

error injection simulations for one S-box (resp. inverse S-box), we show that the total

error coverage of 99.998% for 16 S-boxes (resp. inverse S-boxes) can be achieved. Fi-

nally, it is shown that both the ASIC and FPGA implementations of the fault detection

structures using the obtained optimum composite fields, have better hardware and time

complexities compared to their counterparts.

We present a low-cost parity-based fault detection scheme for the S-box and the in-

verse S-box using composite fields. In the presented approach, for increasing the error

coverage, the predicted parities of the five blocks of the S-box and the inverse S-box are

obtained (three predicted parities for the multiplicative inversion and two for the transfor-

mation and affine matrices). It is interesting to note that the cost of our multi-bit parity

prediction approach is lower than its counterparts which use single-bit parity. It also

has higher error coverage than the approaches using single-bit parities. We implement

both the proposed fault detection S-box and inverse S-box and other counterparts. Our

both ASIC and FPGA implementation results show that compared to the approaches

presented in [52] and [53], the complexities of the proposed fault detection scheme are

28
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lower. Through exhaustive searches, we obtain the least area and delay overhead fault

detection structures for the optimum composite fields using both polynomial basis and

normal basis. The proposed fault detection scheme is simulated and we show that the

error coverages of 99.998% for 16 S-boxes (resp. inverse S-boxes) can be obtained. Fi-

nally, we have implemented the fault detection hardware structures of the AES using

both 0.18µ CMOS technology and on Xilinx R⃝ VirtexTM-II Pro FPGA [80]. It is shown

that the fault detection scheme using the optimum polynomial and normal bases have

lower complexities than those using other composite fields for both with and without

fault detection capability.

The organization of this chapter is as follows. In Section 4.1, some preliminaries re-

lated to the composite fields are presented. The proposed fault detection approach for

the S-box and the inverse S-box is presented in Section 4.2. Furthermore, the time and

hardware complexities analysis is preformed in this section. In Section 4.3, the results of

the simulations of the proposed approach are presented; through which, the fault detec-

tion capabilities are derived. In Section 4.4, through FPGA and ASIC implementations,

the performance metrics of the proposed fault detection scheme and the previously re-

ported ones are compared. The results presented in this chapter can also be found in

[78] and [79].

4.1 Some Notes on Polynomial and Normal Bases

The composite fields can be represented using normal basis [23] or polynomial basis [18],

[20], [21], [22]. The S-box and inverse S-box for the polynomial and normal bases are

shown in Figs. 4.1 and 4.2, respectively. As shown in these figures, for the S-box using

polynomial basis (resp. normal basis), the transformation matrix Ψ (resp. Ψ′1) trans-

forms a field element X in the binary field GF (28) to the corresponding representation

in the composite fields GF (28)/GF (24). It is noted that the result of X = ηhu + ηl in

Fig. 4.1 (resp. X = η′hu
16 + η′lu in Fig. 4.2) is obtained using the irreducible polynomial

of u2 + τu+ ν (resp. u2 + τ ′u+ ν ′).

The multiplicative inversion in Fig. 4.1 consists of composite-field multiplications,

additions and an inversion in the sub-field GF (24) over GF (2)/x4 + x + 1 [21]. The

1We use prime notations for the composite fields using normal basis.
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Figure 4.1: The S-box (the inverse S-box) using composite fields and polynomial basis
[20] and their fault detection blocks.

decomposition can be further applied to represent GF (24) as a linear polynomial over

GF (22) and then GF (2) using the irreducible polynomials of v2+Ωv+Φ and w2+w+1,

respectively. As a result, it is understood that the implementation of the multiplicative

inversion can be performed using the field represented by GF ((24)2), see for example, [18]

and [21], or the field represented by GF (((22)2)2) and has been used in the literature, see

for example [20] and [22]. Finally, as seen in Fig. 4.2 for normal basis, the decomposition

is performed using the irreducible polynomials of v2 + Ω′v + Φ′ and w2 + w + 1.

For calculating the multiplicative inversion, the most efficient choice is to let Ω = τ =

1 (Ω′ = τ ′ = 1) in the above irreducible polynomials [23]. Then, we have the following

for the multiplicative inversion of the S-box using polynomial basis (Fig. 4.1) and normal

basis (Fig. 4.2), respectively, [20], [23]

(ηhu+ ηl)
−1 = (4.1)

[((ηh + ηl)ηl + ηh
2ν)−1ηh]u+ ((ηh + ηl)ηl + ηh

2ν)−1(ηh + ηl),

(η′hu
16 + η′lu)

−1 = (4.2)

[(η′hη
′
l + (η′h

2
+ η′l

2
)ν ′)−1η′h]u

16 + [(η′hη
′
l + (η′h

2
+ η′l

2
)ν ′)−1η′l]u.

It is noted that one can replace η (η′) with σ (σ′) to obtain (4.1) and (4.2) for the inverse

S-box. In the next section, we propose the low-cost fault detection scheme for the S-box

and the inverse S-box.
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Figure 4.2: The S-box (the inverse S-box) using composite fields and normal basis [23]
and their fault detection blocks.

4.2 Fault Detection Scheme

To obtain low-overhead parity prediction, we have divided the S-box and the inverse

S-box into 5 blocks as shown in Figs. 4.1 and 4.2. In these figures, the modulo-2

additions, consisting of 4 XOR gates, are shown by two concentric circles with a plus

inside. Furthermore, the multiplications in GF (24) are shown by rectangles with crosses

inside. Let bi be the output of the block i denoted by dots in Figs. 4.1 and 4.2 for the

S-box. As seen in Fig. 4.1, b1 = ηh + ηl, b2 = γ, b3 = θ, b4 = σ, and b5 = Y . Similarly,

from Fig. 4.2, b1 = η′h + η′l, b2 = γ′, b3 = θ′, b4 = σ′, and b5 = Y . One can replace η (η′)

with σ (σ′) and X with Y for the inverse S-box. In the following, we have exhaustively

searched for the least overhead parity predictions of these blocks denoted by P̂b1-P̂b5 in

Figs. 4.1 and 4.2.

4.2.1 The S-box and the Inverse S-box Using Polynomial Basis

The implementation complexities of different blocks of the S-box and the inverse S-box

and those for their predicted parities are dependent on the choice of the coefficients

ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible polynomials u2 + u + ν and v2 + v + Φ

used for the composite fields. Our goal in the following is to find ν ∈ GF (24) and

Φ ∈ GF (22) for the composite fields GF (((22)2)2) and ν ∈ GF (24) for the composite

fields GF ((24)2) so that the area complexity of the entire fault detection implementations

becomes optimum. According to [24], 16 the possible combinations for ν ∈ GF (24) and
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Φ ∈ GF (22) exist. Moreover, for the composite fields GF ((24)2), we have exhaustively

searched and have found the possible choices for ν making the polynomial x2 + x + ν

irreducible. These parameters determine the complexities of some blocks as explained

below.

Blocks 1 and 5: Based on the possible values of ν and Φ in GF (((22)2)2) (ν in

GF ((24)2)), the transformation matrices in Fig. 4.1 in blocks 1 and 5 of the S-box and

the inverse S-box can be constructed using the algorithm presented in [24]. Using an

exhaustive search, eight base elements in GF (((22)2)2) (or GF ((24)2)) to which eight

base elements of GF (28) are mapped, are found to construct the transformation matrix.

In [81], the Hamming weights, i.e., the number of non-zero elements, of the trans-

formation matrices for the case Φ = {10}2 and different values of ν in GF (((22)2)2) are

obtained. It is noted that in [24], instead of considering the Hamming weights, subex-

pression sharing is suggested for obtaining the low-complexity implementations for the

S-box. Here, we have also considered these transformation matrices for Φ = {11}2 as

well as the transformation matrices for the inverse S-box for different values of ν and Φ

and have derived their area and delay complexities. Moreover, the gate count and the

critical path delay for blocks 1 and 5 and their predicted parities, i.e., P̂b1 and P̂b5, of the

S-box and the inverse S-box in GF ((24)2) have been obtained.

Blocks 2 and 4: As shown in Fig. 4.1, block 2 of the S-box and the inverse S-box

consists of a multiplication, an addition, a squaring and a multiplication by constant ν

in GF ((22)2). We present the following lemma for deriving the predicted parity of the

multiplication in GF ((22)2), using which the predicted parities of blocks 2 and 4 in Fig.

4.1 are obtained.

Lemma 4.1 Let λ = (λ3, λ2, λ1, λ0) and δ = (δ3, δ2, δ1, δ0) be the inputs of a multiplier

in GF ((22)2). The predicted parities of the result of the multiplication of λ and δ in

GF ((22)2) for Φ = {10}2 and Φ = {11}2 are as follows, respectively,

P̂π = λ3(δ3 + δ2 + δ0) + λ2(δ3 + δ1 + δ0) + λ1(δ2 + δ0)

+ λ0(δ3 + δ2 + δ1 + δ0) if Φ = {10}2. (4.3)

P̂π = λ3(δ3 + δ0) + λ2(δ2 + δ1 + δ0) + λ1(δ2 + δ0)

+ λ0(δ3 + δ2 + δ1 + δ0) if Φ = {11}2. (4.4)
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Proof One can perform modulo-2 addition of the coordinates of the result of the multipli-

cation over GF ((22)2) [20]. Then, by reordering and factoring of the result for Φ = {10}2
and Φ = {11}2, the predicted parities in (4.3) and (4.4) are obtained.

The predicted parity of block 2 of the S-box and the inverse S-box, i.e., P̂b2 = P̂ηh2ν +

P̂(ηh+ηl)ηl in Fig. 4.1, depends on the choice of the coefficients ν ∈ GF ((22)2) and Φ ∈
GF (22). Using Lemma 4.1, we have derived the complexity of the predicted parity of

block 2 for these coefficients. Furthermore, for block 4 in Fig. 4.1, which consists of two

multiplications in GF ((22)2), one can also use Lemma 4.1 to derive the predicted parity.

For block 2 of the S-box (resp. the inverse S-box) over GF ((24)2) in Fig. 4.1, only the

multiplication by constant ν is affected for different values of νs. For this block, we have

exhaustively searched for and obtained the optimum implementation for different values

of νs. Moreover, block 4 in Fig. 4.1 is independent of the value of ν. Therefore, the

complexity of the predicted parity for this block is the same for all possible νs.

Block 3: We present the following theorem for block 3 of the S-box and the inverse

S-box over GF ((22)2) in Fig. 4.1.

Theorem 4.1 Let γ = (γ3, γ2, γ1, γ0) be the input and θ = (θ3, θ2, θ1, θ0) be the output

of an inverter in GF ((22)2). The predicted parities of the result of the inversion in

GF ((22)2), i.e., P̂b3, for Φ = {10}2 and Φ = {11}2 are as follows, respectively,

P̂θ = (γ2 ∨ γ1)γ0 + (γ1 + γ0)γ3 if Φ = {10}2, (4.5)

P̂θ = (γ2γ1 ∨ γ0) + γ3γ1 if Φ = {11}2, (4.6)

where, ∨ represents an OR operation.

Proof ByModulo-2 addition of the coordinates of the result of the inversion inGF ((22)2)

for Φ = {10}2 in [20], one can obtain the predicted parity of θ as P̂θ = γ2γ0 + γ2γ1γ0 +

γ3γ1 + γ0 + γ3γ0 = γ0(γ2(γ1 + 1) + 1) + γ3(γ1 + γ0). By noting that γ1 + 1 = γ1 and

γ2γ1 = γ2 ∨ γ1, one can reach (4.5). Moreover, by XORing the result for Φ = {11}2, P̂θ

is obtained as P̂θ = γ3γ1+γ2γ1γ0+γ2γ1+γ0. Noting that γ2γ1γ0+γ2γ1+γ0 = γ2γ1∨γ0,
one can simplify P̂θ to reach (4.6) and the proof is complete.

It is noted that the inversion in GF (24) in Fig. 4.1 is independent of the value of ν.

Therefore, the complexity of the predicted parity for this block is the same for any

possible νs.
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Considering the discussions presented in this section for different combinations of ν

and Φ for polynomial basis, we present the following for the optimum parity predictions.

Proposition 4.1 The fault detection S-box using composite fields GF (((22)2)2) has the

least area complexity for Φ = {11}2 and ν = {1010}2. For this optimum S-box (PB1),

we have the following predicted parities for the 5 blocks in Fig. 4.1: P̂b1 = x0, P̂b2 =

η3(η7 + η4) + η2(η7 + Pηh) + η1(η6 + η4) + η0Pηh + η6 + η7, P̂b3 = (γ2γ1 ∨ γ0) + γ1γ3, P̂b4 =

η3(θ3 + θ0) + η2(PΘ + θ3) + η1(θ2 + θ0) + η0PΘ, P̂b5 = σ7 + σ5 + σ3 + σ2 + σ0, where,

Pηh = η7 + η6 + η5 + η4 and PΘ = θ3 + θ2 + θ1 + θ0. Additionally, among all the possible

values for ν using composite fields GF ((24)2), ν = {1010}2 yields to the least-complexity

architecture for the optimum S-box (PB2), respectively. Then, for the S-box we have:

P̂b1 = x7 + x0, P̂b2 = η3η4 + η2(η5 + η4) + η1(Pηh + η7) + η0Pηh + Pηh + η4, P̂b3 = γ3γ2γ0 +

γ0(γ1∨(γ2 + γ3)), P̂b4 = η3θ0+η2(θ1+θ0)+η1(PΘ+θ3)+η0PΘ, P̂b5 = σ4+σ3+σ2+σ1+σ0.

Furthermore, we have the following for the inverse S-box.

Proposition 4.2 For the inverse S-box using composite field GF (((22)2)2), choosing Φ =

{11}2 and ν = {1011}2 and for the one using composite field GF ((24)2) having ν =

{1001}2 yields to the lowest area complexity architecture. It is noted that blocks 3 and 4

have the same predicted parities as the S-box by swapping η and σ. For other blocks of

the optimum inverse S-box (PB1) we have: P̂b1 = y7 + y6 + y5 + y2, P̂b2 = σ3(σ7 + σ4) +

σ2(σ7+Pσh
)+σ1(σ6+σ4)+σ0Pσh

+σ4, P̂b5 = η7+ η6+ η3+ η2+ η0. Additionally, for the

optimum inverse S-box (PB2) we have: P̂b1 = y7 + y6 + y3, P̂b2 = σ3σ4 + σ2(σ5 + σ4) +

σ1(Pσh
+ σ7) + σ0Pσh

+ σ7, P̂b5 = η0.

4.2.2 The S-box and the Inverse S-box Using Normal Basis

Based on the possible values of ν ′ and Φ′, the transformation matrices in blocks 1 and

5 of the S-box, denoted as Ψ′ and Ψ′−1/affine, can be constructed using the algorithm

presented in [24] with a slight modification for normal basis. One possible way to find

the least complex transformation matrices is to calculate the Hamming weights, i.e.,

the number of non-zero elements, of the matrices Ψ′ and Ψ′−1/affine. It is noted in

[23] that instead of considering the Hamming weights, subexpression sharing is used for

obtaining the low complexity implementations. We have exhaustively searched for the

least overhead transformation matrices and their parity predictions combined, the results
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Table 4.1: Area/delay complexities of blocks 1 and 5 of the S-box and their predicted
parities for possible values of ν ′s and Φ′s.

H(Ψ′)+H Total area of Total delay of Total area of Total delay of

Φ′ ν′ (Ψ′−1/affine) blocks 1 and 5 blocks 1 and 5 P̂b1 and P̂b5 P̂b1 and P̂b5

0001 57 28X 5X
0010 57 32X 5X
0100 57 34X 5X

10 1000 57 30X 5X
0111 67 34X 3X
1011 65 30X 5X
1101 67 34X 3X
1110 65 31X 7TX 5X 4TX

0001 57 32X 5X
0010 57 32X 5X
0100 57 29X 5X

01 1000 57 34X 5X
0111 65 34X 5X
1011 67 37X 3X
1101 65 34X 5X
1110 67 32X 3X

X = XOR, TX= Delay of an XOR

of which are presented in Table 4.1. In this table, for every possible combination of ν ′ and

Φ′, the Hamming weights of Ψ′ and Ψ′−1/affine for the least complex cases are tabulated

in column 3. Also, the number of gates needed for the low complexity implementation

of blocks 1 and 5 are presented in column 4 of the table. Furthermore, the total number

of XOR gates needed for the predicted parities of blocks 1 and 5 of the S-box, i.e., P̂b1

and P̂b5, and the delays associated with them are also shown in the table (see Fig. 4.2).

Block 2: As shown in Fig. 4.2, block 2 of the S-box consists of a multiplication, an

addition, a squaring and a multiplication by constant ν ′ in GF (24). The multiplication

in GF (24) consists of three multiplications, additions and a multiplication by constant

Φ′ in GF (22). The following lemmas are used for deriving the predicted parity of the

multiplication in GF (24) and block 2, respectively.

Lemma 4.2 Let λ′ = (λ′3, λ
′
2, λ

′
1, λ

′
0) and δ

′ = (δ′3, δ
′
2, δ

′
1, δ

′
0) be the inputs of a multiplier

in GF (24). The predicted parity of the result of the multiplication of λ′ and δ′ in GF (24)

is independent of Φ′ and can be derived as

P̂ ′
π = λ′3δ

′
3 + λ′2δ

′
2 + λ′1δ

′
1 + λ′0δ

′
0. (4.7)

Proof For the inputs Λ′ = (Λ′
1,Λ

′
0) and ∆′ = (∆′

1,∆
′
0), the two-bit result of the multi-

plication in GF (22), Π′ = (Π′
1,Π

′
0), can be derived as Π′

1 = ∆′
1Λ

′
0 + ∆′

0Λ
′
1 + ∆′

0Λ
′
0 and
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Π′
0 = ∆′

1Λ
′
0 + ∆′

0Λ
′
1 + ∆′

1Λ
′
1. Furthermore, multiplication by two possible values of Φ′,

i.e., Φ′ = w2 = {10}2 and Φ′ = w = {01}2, can be obtained by putting ∆′ = Φ′. Then,

we have Π′
1 = Λ′

0 and Π′
0 = Λ′

1 +Λ′
0 for Φ

′ = w2 = {10}2 and Π′
1 = Λ′

1 +Λ′
0 and Π′

0 = Λ′
1

for Φ′ = w = {01}2. Consequently, one can derive the coordinates of π′. Therefore, for

Φ′ = w2 = {10}2 we have

π′
3 = λ′3(δ

′
3 + δ′1 + δ′0) + λ′2(δ

′
1 + δ′2) + λ′1(δ

′
3 + δ′2 + δ′1 + δ′0) + λ′0(δ

′
3 + δ′1),

π′
2 = λ′3(δ

′
2 + δ′1) + λ′2(δ

′
3 + δ′2 + δ′0) + λ′1(δ

′
3 + δ′1) + λ′0(δ

′
2 + δ′0),

π′
1 = λ′3(δ

′
3 + δ′2 + δ′1 + δ′0) + λ′2(δ

′
3 + δ′1) + λ′1(δ

′
3 + δ′2 + δ′1) + λ′0(δ

′
3 + δ′0), (4.8)

π′
0 = λ′3(δ

′
3 + δ′1) + λ′2(δ

′
2 + δ′0) + λ′1(δ

′
3 + δ′0) + λ′0(δ

′
2 + δ′1 + δ′0).

Also, for Φ′ = w = {01}2 we have the result as

π′
3 = λ′3(δ

′
3 + δ′2 + δ′1) + λ′2(δ

′
3 + δ′0) + λ′1(δ

′
3 + δ′1) + λ′0(δ

′
2 + δ′0),

π′
2 = λ′3(δ

′
3 + δ′0) + λ′2(δ

′
2 + δ′1 + δ′0) + λ′1(δ

′
2 + δ′0) + λ′0(δ

′
3 + δ′2 + δ′1 + δ′0),

π′
1 = λ′3(δ

′
3 + δ′1) + λ′2(δ

′
2 + δ′0) + λ′1(δ

′
3 + δ′1 + δ′0) + λ′0(δ

′
2 + δ′1), (4.9)

π′
0 = λ′3(δ

′
2 + δ′0) + λ′2(δ

′
3 + δ′2 + δ′1 + δ′0) + λ′1(δ

′
2 + δ′1) + λ′0(δ

′
3 + δ′2 + δ′0).

Modulo-2 adding the coordinates of (4.8) or (4.9) gives (4.7) and the proof is complete.

Lemma 4.3 The predicted parity of block 2, i.e., P̂b2, depends on the choice of the co-

efficients ν ′ ∈ GF (24) and Φ′ ∈ GF (22) in the irreducible polynomials u2 + u + ν ′ and

v2 + v + Φ′ used for the composite field.

Proof Considering the fact that P̂b2 = P̂(η′h+η′l)
2ν′ + P̂η′hη

′
l
, one can use Lemma 4.2 to

obtain P̂η′hη
′
l
independent of the values of ν ′ and Φ′. However, P̂(η′h+η′l)

2ν′ depends on the

elements ν ′ and Φ′. This is because of having squaring in GF (24), i.e., (η′h + η′l)
2, and

also a multiplication by ν ′ to obtain P̂(η′h+η′l)
2ν′ . Therefore, the predicted parity of block

2 is also dependent on these values and the proof is complete.

Using these lemmas, we can state the following to predict the parity of block 2.

Lemma 4.4 The predicted parity of block 2, i.e., P̂b2, can be derived as shown in Table

4.2.
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Table 4.2: Parity predictions and complexities of block 2 of the normal basis S-box for
possible values of ν ′ and Φ′.

Area of Delay of Predicted Area of Delay of

Φ′ ν′ block 2 block 2 parity (P̂b2) P̂b2 P̂b2

0001 28X+9A (η′7 ∨ η′3) + (η′6 ∨ η′2) + (η′4 ∨ η′0) + η′5η
′
1 3X+3O+1A

0010 29X+9A (η′7 ∨ η′3) + (η′5 ∨ η′1) + (η′4 ∨ η′0) + η′6η
′
2 3X+3O+1A

0100 28X+9A (η′6 ∨ η′2) + (η′5 ∨ η′1) + (η′4 ∨ η′0) + η′7η
′
3 3X+3O+1A

10 1000 29X+9A (η′7 ∨ η′3) + (η′6 ∨ η′2) + (η′5 ∨ η′1) + η′4η
′
0 3X+3O+1A

0111 28X+9A (η′4 ∨ η′0) + η′7η
′
3 + η′6η

′
2 + η′5η

′
1 3X+3A+1O

1011 29X+9A (η′7 ∨ η′3) + η′6η
′
2 + η′5η

′
1 + η′4η

′
0 3X+3A+1O

1101 28X+9A (η′6 ∨ η′2) + η′7η
′
3 + η′5η

′
1 + η′4η

′
0 3X+3A+1O

1110 29X+9A 6TX (η′5 ∨ η′1) + η′7η
′
3 + η′6η

′
2 + η′4η

′
0 3X+3A+1O 2TX

0001 29X+9A +1TA (η′6 ∨ η′2) + (η′5 ∨ η′1) + (η′4 ∨ η′0) + η′7η
′
3 3X+3O+1A +1TA

0010 28X+9A (η′7 ∨ η′3) + (η′6 ∨ η′2) + (η′5 ∨ η′1) + η′4η
′
0 3X+3O+1A

0100 29X+9A (η′7 ∨ η′3) + (η′6 ∨ η′2) + (η′4 ∨ η′0) + η′5η
′
1 3X+3O+1A

01 1000 28X+9A (η′7 ∨ η′3) + (η′5 ∨ η′1) + (η′4 ∨ η′0) + η′6η
′
2 3X+3O+1A

0111 29X+9A (η′6 ∨ η′2) + η′7η
′
3 + η′5η

′
1 + η′4η

′
0 3X+3A+1O

1011 28X+9A (η′5 ∨ η′1) + η′7η
′
3 + η′6η

′
2 + η′4η

′
0 3X+3A+1O

1101 29X+9A (η′4 ∨ η′0) + η′7η
′
3 + η′6η

′
2 + η′5η

′
1 3X+3A+1O

1110 28X+9A (η′7 ∨ η′3) + η′6η
′
2 + η′5η

′
1 + η′4η

′
0 3X+3A+1O

A = AND, {+, X} = XOR, {∨, O} = OR

TX= Delay of an XOR, TA= Delay of an AND= Delay of an OR

Proof One can use Lemma 4.2 to obtain P̂(η′h+η′l)
2ν′ and P̂η′hη

′
l
in P̂b2 = P̂(η′h+η′l)

2ν′ + P̂η′hη
′
l
.

P̂η′hη
′
l
can be easily found using Lemma 4.2. Furthermore, using Lemma 4.2 with the

inputs being λ′ = (η′h + η′l)
2 and δ′ = ν ′ one can obtain P̂(η′h+η′l)

2ν′ . Noting that the

possible values for Φ′ are Φ′ = w2 = {10}2 and Φ′ = w = {01}2, one can find the

corresponding possible (η′h + η′l)
2 using (4.8) and (4.9). This is achieved by putting both

inputs in (4.8) or (4.9) as η′h + η′l. Then, for Φ
′ = w2 = {10}2 we have

(η′h + η′l)
2 =(η′7 + η′6 + η′5 + η′3 + η′2 + η′1, η

′
6 + η′5 + η′4 + η′2 + η′1 + η′0,

η′7 + η′5 + η′4 + η′3 + η′1 + η′0, η
′
7 + η′6 + η′4 + η′3 + η′2 + η′0), (4.10)

and for Φ′ = w = {01}2 we have

(η′h + η′l)
2 =(η′7 + η′5 + η′4 + η′3 + η′1 + η′0, η

′
7 + η′6 + η′4 + η′3 + η′2 + η′0,

η′7 + η′6 + η′5 + η′3 + η′2 + η′1, η
′
6 + η′5 + η′4 + η′2 + η′1 + η′0). (4.11)

One can obtain the predicted parities of block 2, i.e., P̂b2 = P̂(η′h+η′l)
2ν′ + P̂η′hη

′
l
, for all the

possible combinations of ν ′ and Φ′. The results are presented in Table 4.2.

Table 4.2 shows the predicted parities for different combinations of ν ′ and Φ′ and

their area/delay complexities. Moreover, the complexities for block 2 are shown in this
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table. As seen in Table 4.2, the delay overhead for both the original block and its parity

prediction is the same for all the cases. Whereas, the area in terms of the number of

gates are different for different values of ν ′ and Φ′.

Block 3: Block 3 in Fig. 4.2 consists of an inversion in GF (24). The inversion in

GF (24) is dependent on the two possible choices of Φ′ and is the same for different values

of ν ′. Therefore, depending on the choice of Φ′, there are two possible choices for this

block and its parity prediction. It is noted that for both of these implementations, the

area and the critical path delay are the same. The following theorem is used for obtaining

the predicted parity of block 3, i.e., P̂b3.

Theorem 4.2 Let γ′ = (γ′3, γ
′
2, γ

′
1, γ

′
0) be the input and θ′ = (θ′3, θ

′
2, θ

′
1, θ

′
0) be the output

of an inverter in GF (24). Then, for Φ′ = w2 = {10}2, the predicted parity of block 3,

i.e., P̂b3, can be found as

P̂b3 = P̂θ′ = γ′2γ
′
0(γ

′
3 + γ′1) + γ′3γ

′
1(γ

′
2 + γ′0). (4.12)

Also, for Φ′ = w = {01}2 we have

P̂b3 = P̂θ′ = γ′3γ
′
1(γ

′
2 + γ′0) + γ′2γ

′
0(γ

′
3 + γ′1). (4.13)

Proof According to [23], we have P̂θ′ = P̂Υ−1γ′
h
+ P̂Υ−1γ′

l
= P̂Υ−1(γ′

h+γ′
l)
. Then, according

to the predicted parity of the multiplication in GF (22) in the proof of Lemma 4.2, we

have P̂Υ−1(γ′
h+γ′

l)
= Υ−1

1 (γ′3 + γ′1) + Υ−1
0 (γ′2 + γ′0). Moreover, considering the fact that the

inversion in GF (22) is free, i.e., Υ−1 = (Υ0,Υ1), we reach P̂θ′ = Υ0(γ
′
3+γ

′
1)+Υ1(γ

′
2+γ

′
0).

Then, according to the formulations for the multiplication in GF (22) and knowing that

the squaring in GF (22) is free, finding the coordinates of Υ for two values of Φ′ is

straightforward and the proof is complete.

Block 4: Block 4 of the S-box consists of two multiplications in GF (24). According

to Lemma 4.2, the area/delay overhead of the multiplications in GF (24) and that of their

predicted parity are the same for both Φ′ = w = {01}2 and Φ′ = w2 = {10}2. Moreover,

we have P̂b4 = P̂η′hθ
′ + P̂η′lθ

′ = P̂(η′h+η′l)θ
′ . Then, according to (4.7) in Lemma 4.2 with the

inputs of η′h + η′l and θ
′, one can find P̂b4 as

P̂b4 = (η′7 + η′3)θ
′
3 + (η′6 + η′2)θ

′
2 + (η′5 + η′1)θ

′
1 + (η′4 + η′0)θ

′
0. (4.14)
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It is noted that for the implementation of P̂b4, the modulo-2 additions of η′7 + η′3, η
′
6 +

η2, η
′
5 + η′1, and η′4 + η′0 are already available at the input of block 2. Therefore, this

implementation only needs 3 XORs and 4ANDs.

Above, the optimum fault detection S-box using normal basis in Fig. 4.2 has been

derived. In the following, we have also performed an exhaustive search for finding the

optimum predicted parities based on the choice of the coefficients ν ′ ∈ GF (24) and

Φ′ ∈ GF (22) for the five blocks of the inverse S-box using normal basis. We have

exhaustively searched for the least overhead transformation matrices and their parity

predictions combined for the inverse S-box and have derived the total complexity for the

predicted parities of blocks 1 and 5, i.e., P̂b1 and P̂b5, and the delays associated with them.

These are used to obtain the optimum S-box inverse S-box and its parity predictions in

this section. It is also noted that as shown in Fig. 4.2, blocks 2, 3, and 4 of the S-box

and the inverse S-box are the same. Therefore, the predicted parities of these blocks can

be obtained for the inverse S-box. Using the discussions presented in this section, we

present the following for the optimum parity predictions.

Proposition 4.3 For different combinations of ν ′ and Φ′ for normal basis, for the S-

box and the inverse S-box, Φ′ = {10}2 and ν ′ = {0001}2 have the least area for the

operations and their fault detection circuits combined. The following is the predicted

parities for the S-box: P̂b1 = x7 + x5, P̂b2 = (η′′7 ∨ η′3) + (η′6 ∨ η′2) + (η′4 ∨ η′0) + η′5η
′
1, P̂b3 =

γ′2γ
′
0(γ

′
3+γ

′
1)+γ

′
3γ

′
1(γ

′
2+γ

′
0), P̂b4 = (η′7+η

′
3)θ

′
3+(η′6+η

′
2)θ

′
2+(η′5+η

′
1)θ

′
1+(η′4+η

′
0)θ

′
0, P̂b5 =

σ′
7 + σ′

5 + σ′
4 + σ′

3 + σ′
2. Moreover, for the inverse S-box, P̂b2 − P̂b4 are the same as those

for the S-box by swapping η′ and σ′. For the other blocks, we have: P̂b1 = y7+y6+y2+y1

and P̂b5 = η′7 + η′5 + η′4 + η′3 + η′2.

It is noted that the area overhead of the proposed scheme for the optimum structures

consists of those of the optimum parity predictions. In addition, 23 XORs for the actual

parities (3 XORs for adding the coordinates of each of η′h + η′l, γ
′, and θ′ and 7 XORs

each for those of σ′ and Y ) are utilized. Moreover, the delay overhead of the predicted

parities of 5 blocks can overlap the delays for the implementations of 5 blocks in Figs.

4.1 and 4.2. The only delay overhead for this scheme is the delay of the actual parity of

block 5, which is 3TX , where, TX is the delay of an XOR gate.
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Table 4.3: Error simulation results of the optimum S-box and inverse S-box after injecting
500, 000 errors.

Operations Field Errors covered Error Coverage
S-box PB1 485,008 (485,106) 97.002% (97.021%)

(Inverse S-box) PB2 485,039 (485,015) 97.008% (97.002%)
NB 485,015 (485,174) 97.003% (97.035%)

4.3 Error Simulations

If exactly one bit error appears at the output of the S-box (resp. inverse S-box), the

presented fault detection scheme is able to detect it and the error coverage is about

99.998%. This is because in this case, the error indication flag of the corresponding block

alarms the error. However, due to the technological constraints, single stuck-at error may

not be applicable for an attacker to gain more information [82]. Thus, multiple bits will

actually be flipped and hence multiple stuck-at errors are also considered in this chapter

covering both natural faults and fault attacks [82].

For the calculation of the error coverage for the multiple errors, we define pi as the

probability of error detection in block i, 1 ≤ i ≤ 5, in Figs. 4.1 and 4.2. Then, the

probability of not detecting the errors in block i is (1 − pi). For randomly distributed

errors in the S-box (resp. inverse S-box), this probability for each block is independent

of those of other blocks. Therefore, one can derive the equation for the error coverage of

the randomly distributed errors as

EC% = 100× (1−
∏
i∈S

(1− pi))%, (4.15)

where S is the set of the block numbers where the faults are injected. For randomly

distributed errors, the error coverage for each block is pi ≈ 1
2
. Then, the representation

of (4.15) can be simplified as EC% = 100×(1−(1
2
)n)%, where, n is the number of blocks.

Therefore, if multiple errors are randomly distributed in all blocks, the error coverage

reaches 97% using n = 5 error indication flags.

We have performed error simulations for the S-boxes and the inverse S-boxes using the

optimum composite field obtained in the previous section to confirm our above theoretical

computation. In our simulations, we use stuck-at error model at the outputs of the five

blocks forcing one or multiple nodes to be stuck at logic one (for stuck-at one) or zero (for
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stuck-at zero) independent of the error-free values. We use Fibonacci implementation of

the LFSRs for injecting random multiple errors, where, the numbers, the locations and

the types of the errors are randomly chosen. In this regard, the maximum sequence

length polynomial for the feedback is selected. The injected errors are transient, i.e.,

they last for one clock cycle. However, the results would be the same if permanent errors

are considered.

The results of the error simulations using Xilinx R⃝ ISETM version 9.1i Simulator (ISim)

[80] are presented in Table 4.3. As seen in this table, up to 500, 000 random errors are

injected for both the S-box and the inverse S-box. It is noted that in these tables, the

optimum polynomial basis GF (((22)2)2) denoted by PB1, GF ((2
4)2) denoted by PB2 and

normal basis (NB) are presented. As shown in the table, using 5 parity bits of the 5 blocks,

the error coverage for random faults reaches 97% which is the same as our theoretical

computation in this section. This error coverage will be increased if the outputs of more

than one S-box (resp. inverse S-box) of the AES implementation are erroneous. In this

case, the errors detected in any of 16 S-boxes (resp. inverse S-boxes) contribute to the

total error coverage. Thus, error coverage of very close to 100% (99.998%) is achieved.

4.4 ASIC and FPGA Implementations and Compar-

isons

In this section, we compare the areas and the delays of the presented scheme with those

of the previously reported ones in both ASIC and FPGA implementations. We have im-

plemented the S-boxes using memories and the ones presented in [21], [22] (the hardware

optimization of [20]), and [81] which use polynomial basis representation in composite

fields. We have also implemented the fault detection schemes proposed in [34], [36], and

[42] (both united and parity-based) which are based on the ROM-based implementation

of the S-box. The results of the implementations for both original and fault detection

scheme (FDS) in terms of delay and area have been tabulated in Tables 4.4 and 4.5. As

seen in these tables, the original structures are not divided into blocks and full optimiza-

tion of the original entire architecture as a single block is performed in both ASIC and

FPGA. This allows us to find the actual overhead of the presented fault detection scheme

as compared to the original structures which are not divided into five blocks. We have
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Table 4.4: ASIC implementations of the fault detection schemes for the S-box (SB) and
the inverse S-box using 0.18µ CMOS technology.

Operation Architecture Area (µm2) , Delay (ns)
Structure FDS Original FDS

ROM United S-box [34], [42] 169× 103 344× 103

SB , 5.4 , 7.7
ROM Two 256× 9 ROMs 169× 103 378× 103

SB [36] , 5.4 , 5.8
ROM Parity-based SB [42] 185× 103 191× 103

(mult. inv.) , 5.8 , 5.9
PB [22] [52] (mult. inv.) 5315 , 12.0 6869 , 12.8

S-box PB [22] [53] 5315 , 12.0 7047 , 14.1
PB [22] [57] for the original SB 5315 , 12.0 6763 , 14.1
PB [21] Proposed scheme applied 5642 , 11.3 7113 , 13.0
PB [81] Proposed scheme applied 5547 , 13.2 7034 , 13.8
NB [78] 5179 , 12.9 6712 , 14.7
PB1 [79] 5217 , 10.6 6723 , 12.5
PB2 [79] 5290 , 9.2 6739 , 11.5

Inverse NB [79] 5187 , 13.2 6480 , 14.5
S-box PB1 [79] 5225 , 10.9 6537 , 13.0

PB2 [79] 5274 , 9.4 6619 , 11.3

used 0.18µ CMOS technology for the ASIC implementations. These architectures have

been coded in VHDL as the design entry to the Synopsys Design Analyzer. The results

are tabulated in Table 4.4. Moreover, for the FPGA implementations in Table 4.5, the

Xilinx R⃝ VirtexTM-II Pro FPGA (xc2vp2-7) [80] is utilized in the Xilinx R⃝ ISETM version

9.1i. Furthermore, the synthesis is performed using the XSTTM.

As seen in Tables 4.4 and 4.5, we have implemented the fault detection scheme pre-

sented in [34] and [42] based on using redundant units for the S-box (united S-box).

Furthermore, the fault detection scheme proposed in [36] is implemented. This scheme

uses 512 × 9 memory cells to generate the predicted parity bit and the 8-bit output of

the S-box [36]. One can obtain from Tables 4.4 and 4.5 that for both of these schemes,

the area overhead is more than 100%. As mentioned in the introduction, the approach

in [50] utilizes the scheme in [36] for protecting the combinational logic elements, whose

implementation results are also shown in Tables 4.4 and 4.5. Additionally, for certain

AES implementations containing storage elements, one can use the error correcting code-

based approach presented in [50] in addition to the proposed scheme in this chapter to

make a more reliable AES implementation. Moreover, the parity-based scheme in [42]

which only realizes the multiplicative inversion (mult. inv.) using memories is imple-
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Table 4.5: Xilinx R⃝ VirtexTM-II Pro FPGA implementations (xc2vp2-7) of the fault de-
tection schemes for the S-box (SB) and the inverse S-box.

Operation Architecture Slice , Delay (ns)
Structure FDS Original FDS

ROM (SB) United SB [34], [42] 69 , 3.826 150 , 5.398
ROM (SB) Two 256× 9 ROMs [36] 69 , 3.826 159 , 4.287

ROM Parity-based SB [42] 88 , 5.734 100 , 6.370
(mult. inv.)
PB [22] [52] (mult. inv.) 33 , 9.375 44 , 9.869
PB [22] [53] 33 , 9.375 47 , 9.996

S-box PB [22] [57] for the original SB 33 , 9.375 42 , 10.317
PB [21] Proposed scheme applied 38 , 8.285 50 , 9.582
PB [81] Proposed scheme applied 37 , 9.986 47 , 10.832
NB [78] 31 , 9.339 39 , 10.026
PB1 [79] 31 , 7.284 40 , 7.465
PB2 [79] 32 , 7.356 41 , 8.150

Inverse NB [79] 31 , 7.736 38 , 7.964
S-box PB1 [79] 32 , 6.992 42 , 7.423

PB2 [79] 32 , 7.550 44 , 8.181

mented. As seen in these tables, we have also implemented the schemes in [52] and [53].

It is noted that the scheme in [52] is for the multiplicative inversion and does not present

the parity predictions for the transformation matrices. Moreover, we have applied the

presented fault detection scheme to the S-boxes in [21] and [81]. As seen in bold faces

in Tables 4.4 and 4.5, with the error coverage of 99.998%, the presented low-complexity

fault detection S-boxes are the most compact ones among the other S-boxes. The op-

timum S-box and inverse S-box using normal basis have the least hardware complexity

with the fault detection scheme. Moreover, as seen in the tables, the optimum structures

using composite fields and polynomial basis (PB1 and PB2) have the least post place

and route timing overhead among other schemes. It is noted that using sub-pipelining

for the presented fault detection scheme in this chapter, one can reach much more faster

hardware implementations of the composite field fault detection structures.

We have also implemented the AES encryption using the presented optimum S-boxes

excluding the key expansion. Then, we have added the proposed scheme for SubBytes

and ShiftRows considering that ShiftRows is the rewiring from the output of SubBytes.

The results are presented in Tables 4.6 and 4.7. As one can notice, the S-boxes occupy

more than three fourths of the AES encryption. As shown in these tables, the most com-
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Table 4.6: ASIC implementations of the fault detection schemes of the AES encryption
using 0.18µ CMOS technology.

AES Optimum Area (µm2) Freq.
encryption S-box S-boxes All (MHz)

Original without PB1 692781 (80%) 859471 79.4
fault detection PB2 704490 (80%) 871180 91.8

NB 680590 (80%) 845426 73.5

Presented scheme for PB1 956233 - 78.8
SubBytes (ShiftRows) PB2 972217 - 89.2

NB 946476 - 69.5

Presented scheme for PB1 - 1268520 68.2
SubBytes (ShiftRows) PB2 - 1280412 70.1

scheme in [36] for others NB - 1256812 60.3

Table 4.7: Xilinx R⃝ VirtexTM-II Pro FPGA implementations of the fault detection
schemes of the AES encryption.

AES Optimum Slice Freq.
encryption S-box S-boxes All (MHz)

Original without PB1 5248 (77%) 6760 81.1
fault detection PB2 5417 (78%) 6913 89.8

NB 5112 (78%) 6579 75.8

Presented scheme for PB1 6896 - 79.3
SubBytes (ShiftRows) PB2 6958 - 84.0

NB 6342 - 73.2

Presented scheme for PB1 - 9881 65.8
SubBytes (ShiftRows) PB2 - 9921 64.8

scheme in [36] for others NB - 9405 60.8

pact AES encryption with and without the fault detection scheme is for normal basis.

Furthermore, the frequency degradation is negligible. Moreover, the original AES encryp-

tion for PB2 and the ones with fault detection for PB1 and PB2 have the highest working

frequencies. In addition, as seen in the tables, we have applied the presented scheme to

SubBytes and ShiftRows and used the scheme in [36] for the other transformations.

In this chapter, we have presented a high performance parity-based concurrent fault

detection scheme for the AES using the S-box and the inverse S-box in composite fields.

Using exhaustive searches, we have found the least complexity S-boxes and inverse S-

boxes as well as their fault detection circuits. Our error simulation results show that very

high error coverages for the presented scheme are obtained. Moreover, a number of fault

detection schemes from the literature have been implemented on ASIC and FPGA and

compared with the ones presented here. Our implementations show that the optimum
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S-boxes and the inverse S-boxes using normal basis are more compact than the ones

using polynomial basis. However, the ones using polynomial basis result in the fastest

implementations. We have also implemented the AES encryption using the proposed

fault detection scheme. The results of the ASIC and FPGA mapping show that the costs

of the presented scheme are reasonable with acceptable post place and route delays.
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A High-Performance Concurrent
Fault Detection Approach for the
Composite Field (Inverse) S-box

IN the previous chapter, an exhaustive search-based fault detection scheme for the

AES S-boxes and inverse S-boxes was presented. In this chapter, we also present a

concurrent fault detection scheme for the S-box and the inverse S-box based on the low-

cost composite field implementations of the S-box and the inverse S-box. However, we

divide the structures of these operations into three blocks and find the predicted parities

of these blocks. Our simulations show that except for the redundant units approach which

has the hardware and time overheads of close to 100%, the fault detection capabilities

of the proposed scheme for the burst and random multiple faults are higher than the

previously reported ones. Finally, through ASIC implementations, it is shown that for

the maximum target frequency, the proposed fault detection S-box and inverse S-box in

this chapter have the least areas, critical path delays, and power consumptions compared

to their counterparts with similar fault detection capabilities.

In this chapter, we present a low-power and high-performance parity-based fault de-

tection approach for the S-box, the inverse S-box, and the merged S-box/inverse S-box

within the AES using composite fields. We obtain new formulations for the five predicted

parities for three blocks of the S-box and the inverse S-box. To reach high multiple and

burst fault detection capabilities, multiple-bit signatures are obtained within the blocks

constituting more area in the structures of the S-box and the inverse S-box. Our sim-

ulation results show higher burst fault detection capability for the proposed scheme

compared to the previously presented schemes with similar comparable overheads. This

46
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can be used as an effective countermeasure against the fault attacks noting that in real-

istic fault attacks, multiple adjacent bits are actually flipped [82]. Moreover, using the

proposed scheme, for multiple random faults, the entire SubBytes and inverse SubBytes

are capable of detecting 99.998% of the injected faults. Through ASIC implementations,

it is shown that for the maximum target frequency, the timing, power and area of the

proposed scheme are the least compared to the schemes with similar fault detection ca-

pabilities. It is noted that the fault detection scheme proposed in this chapter can also

be applied to both the low-area S-box and inverse S-box presented in [17], [18], [20], [22],

and the low-power one proposed in [13].

The organization of this chapter is as follows. In Section 5.1, preliminaries related to

the S-box and the inverse S-box arithmetic used in this chapter are presented. The pro-

posed fault detection approach for the S-box, the inverse S-box, and the merged structures

is presented in Section 5.2. Furthermore, the time and hardware complexities analysis is

preformed in this section. In Section 5.3, the results of the simulations of the proposed

approach are presented; through which, the fault detection capabilities are derived. In

Section 5.4, through ASIC implementations, the areas, power consumptions, and critical

path delays of the proposed fault detection scheme and the previously reported ones are

compared. We also present the formulations for the mixes S-box in Section 5.5. The

results presented in this chapter can also be found in [83] and [84].

5.1 S-box and Inverse S-box Arithmetic Used in This

Chapter

The structures of the S-box and the inverse S-box using composite field and polynomial

basis are shown in Fig. 5.1. As seen in Fig. 5.1, for the S-box, the transformation

matrix Ψ transforms a field element X =
∑7

i=0 xiα
i in the binary field GF (28) to the

corresponding representation in the composite field GF (28)/GF (((22)2)2) for performing

the multiplicative inversion. Then, using the inverse transformation matrix Ψ−1, the

result of the multiplicative inversion, i.e., X−1, is obtained. This is performed using the

irreducible polynomial of u2 + u + ν. It is noted that the decomposition can be further

applied to represent GF ((22)2) as a linear polynomial over GF (22) and then GF (2) using

the irreducible polynomials of v2 + v + Φ and w2 + w + 1, respectively. Eventually, as
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Figure 5.1: The architecture of the S-box (resp. the inverse S-box) using composite field
and polynomial basis [20].

seen in Fig. 5.1, using the affine transformation, the 8-bit output of the S-box, i.e., Y ,

is derived. Furthermore, as seen in Fig. 5.1, for the inverse S-box, the reverse procedure

is performed to obtain the output X from the input Y . It is noted that in Fig. 5.1, the

notations for the inverse S-box are presented in parentheses.

All arithmetic operations including the multiplications, the inversion and the squaring

in Fig. 5.1 are over GF ((22)2). In Fig. 5.1, the two concentric circles with a plus inside

represent 4 XOR gates which perform the modulo-2 addition. Moreover, the three finite

field multiplications and the inversion in GF ((22)2) are shown by crossed rectangles and

(.)−1, respectively. Furthermore, the multiplication by constant ν and squaring (.)2 in

GF ((22)2) are shown in this figure. As seen in Fig. 5.1 for the S-box, for the output of

the multiplicative inversion σhx+ σl = (ηhx+ ηl)
−1 we have the following [20]

σh = ((ηh + ηl)ηl + ηh
2ν)−1ηh,

σl = ((ηh + ηl)ηl + ηh
2ν)−1(ηh + ηl). (5.1)

Moreover, for the inverse S-box in Fig. 5.1, one can swap η and σ to derive the relation

for the multiplicative inversion.

5.2 Proposed Fault Detection Approach

The parity-based fault detection scheme has received much attention in the literature,

see, for example, [85], [86], [87], [88], [89], and [90]. In such schemes, the parity of a block

is predicted and compared with the actual parity of the block. The result is the error
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indication flag of the corresponding block which alarms the detected faults. Let τ and ρ

be the input and the output of the block under test, respectively. Then, the predicted

parity of ρ is obtained from the input τ , i.e., P̂ρ(τ), and the actual parity is implemented

from the output ρ, i.e., Pρ(ρ). The comparison between the actual and predicted parities

is implemented by an XOR gate to generate the error indication flag eρ = P̂ρ(τ)+Pρ(ρ).

In the presented parity-based fault detection scheme, we divide the structures of the

S-box and the inverse S-box using polynomial basis into 3 blocks as shown in Fig. 5.1 so

that it can also be used for the low-power structures presented in [13] (see Fig. 2.4). One

can obtain that for the S-box and inverse S-box presented in Fig. 5.1 [20], blocks 1 and 3

occupy around 86% of the area of the entire operations. Therefore, these two blocks are

more susceptible to the internal faults and more prone to fault attacks. Consequently, we

propose using two bits predicted parities for each of these two blocks. Furthermore, one

predicted parity is used for block 2. The details of the proposed schemes are presented

below.

5.2.1 S-box

In the proposed scheme, five predicted parities are derived for 3 blocks of the S-box.

Then, by comparing these with the five actual parities, five error indication flags are

obtained. All five flags should be zero for the error free computations. The proposed

fault detection scheme for the S-box is shown in Fig. 5.2. As seen in this figure, for block

1, two predicted parities, i.e., P̂ 1
b1 and P̂ 2

b1, are obtained using the parity prediction unit

(PP1). As seen from Fig. 5.2, the predicted parity of the second block P̂b2 is obtained by

the parity prediction unit (PP2). Furthermore, for block 3, two predicted parities, i.e.,

P̂ 1
b3 and P̂ 2

b3, are derived using the parity prediction unit (PP3).

The derivations of the actual parities are also shown in Fig. 5.2. As seen from Fig.

5.2, two actual parities for the two most and least significant bits of γ, i.e., P 1
b1 =

∑3
i=2 γi

and P 2
b1 =

∑1
i=0 γi, have been derived from the output of block 1 using two trees of

XOR gates. Similarly, as shown in Fig. 5.2, the two actual parities for block 3 are

obtained from the output of block 3 for the four most and least significant bits of Y , i.e.,

P 1
b3 =

∑7
i=4 yi and P

2
b3 =

∑3
i=0 yi. In addition, one actual parity is obtained for block 2

as Pb2 =
∑3

i=0 θi. Then, as shown in Fig. 5.2, by comparing the predicted and actual

parities, the error indication flags of three blocks, i.e., e1-e5, are obtained.
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Figure 5.2: The proposed parity-based fault detection scheme for the S-box (resp. inverse
S-box).

The following lemma is used from [20] for the multiplication in GF ((22)2) used in

blocks 1 and 3. Then, using this lemma, the predicted parities for the S-box in Fig. 5.2

are derived.

Lemma 5.1 [20] Let U = (u3, u2, u1, u0) and V = (v3, v2, v1, v0) be the inputs of a

multiplier in GF ((22)2). Then, the result of multiplication, i.e., Z = UV , is

z3 = u3(v3 + v2 + v1 + v0) + u2(v3 + v1) + u1(v3

+ v2) + u0v3,

z2 = u3(v3 + v1) + u2(v2 + v0) + u1v3 + u0v2,

z1 = u3v2 + u2(v3 + v2) + u1(v1 + v0) + u0v1, (5.2)

z0 = u3(v3 + v2) + u2v3 + u1v1 + u0v0.

Using Lemma 5.1, we present the formulations for these five predicted parities in the

following theorem.

Theorem 5.1 Let X ∈ GF (28) be the input of the S-box. Then, the five predicted parities

of the three blocks of the S-box in Fig. 5.2, i.e., P̂ 1
b1, P̂

2
b1, P̂b2, P̂

1
b3, and P̂

2
b3, are obtained

as follows

P̂ 1
b1 = x7(D + x5) + x4B + x3(B + x4) + x0D + x1x2, (5.3)

P̂ 2
b1 = x7(G+ x6) + x4I + x1(C + E) + x2 ∨ x5 + PX , (5.4)
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P̂b2 = (γ2 ∨ γ1)γ0 + Pγlγ3, (5.5)

P̂ 1
b3 = θ3H + θ2(G+ x7) + θ1(J + C) + θ0J, (5.6)

P̂ 2
b3 = θ3(C + x0) + θ2(H + x3) + θ1(I + x7) + θ0(A+ x2), (5.7)

where x1 + x6 = A, x5 + A = B, x3 + x2 = C, PX +H = D, x0 + x6 = E, x2 + x5 = F ,

F +x4 = G, x0+x7 = H, B+C = I, and E+F = J . Furthermore, “+” and ∨ represent

the modulo-2 addition using an XOR gate and the OR operation, respectively. Moreover,

PX =
∑7

i=0 xi and Pγl = γ1 + γ0.

Proof First, we obtain the two predicted parities of block 1, i.e., P̂ 1
b1 = P̂γh and P̂ 2

b1 = P̂γl

in (5.3) and (5.4). As seen from Fig. 5.1, block 1 consists of the transformation matrix

Ψ, a field multiplication, modulo-2 additions, and squaring followed by the multiplication

by the constant ν. From [20], one can obtain that for the input of ηh = (η7, η6, η5, η4),

the result of the squarer-ν is

ηh
2ν = (η7 + η4, η7 + η6 + η5, η4, η5). (5.8)

Moreover, using (5.2) with the inputs u = ηl and v = ηh+ηl, one can obtain the result of

the field multiplication in this block. By modulo-2 adding the coordinates of γh = (γ3, γ2)

and γl = (γ1, γ0), i.e., two most and least significant bits of (5.8) and that of the result

of the multiplication, respectively, one can obtain

P̂ 1
b1 = η3(η6 + η4) + η2(η7 + η6 + η5 + η4) + η1η6

+ η0(η7 + η6) + η7 + η6 + η5 + η2, (5.9)

P̂ 2
b1 = η3η7 + η2η6 + η1η4 + η0(η5 + η4) + η6 + η2 + η0. (5.10)

By substituting the coordinates of η with those of X and reordering the results in (5.9)

and (5.10), one reaches the following

P̂ 1
b1 = x7(x6 + x4 + x3 + x2 + x1) + x4(x6 + x5 + x1)

+ x3(x6 + x5 + x4 + x1) + x0(x6 + x5 + x4 + x3

+ x2 + x1) + x1x2, (5.11)

P̂ 2
b1 = x7(x6 + x5 + x4 + x2) + x4(x6 + x5 + x3 (5.12)

+ x2 + x1) + x1(x6 + x3 + x2 + x0) + x2 ∨ x5 + PX .
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Using subexpression sharing, it is straightforward to obtain (5.3) and (5.4) from (5.11)

and (5.12), respectively. It is also noted that the predicted parity of block 2 in (5.5) is

derived from that of block 3 in the scheme in [57] noting that Pγl = γ1 + γ0.

Now, we derive the two predicted parities of block 3, i.e., P̂ 1
b3 = P̂Yh

and P̂ 2
b3 = P̂Yl

. As

seen from Fig. 5.1, block 3 consists of the mixed inverse and affine transformation ma-

trices and two field multiplications. It is straightforward that we obtain the formulations

for these mixed transformation matrices as follows

y= AΨ−1σ + b

=



1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 1
1 0 1 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1


σ +



1
1
0
0
0
1
1
0


. (5.13)

Eventually, P̂Yh
and P̂Yl

, i.e., two predicted parities of block 3 in Fig. 5.2, are obtained as

follows P̂Yh
= σ6+σ5+σ3+σ1+σ0 and P̂Yl

= σ5+σ4+σ3+σ2. Then, by multiplying u = θ

and v = ηh + ηl and also u = θ and v = ηh using (5.2), one can obtain the coordinates of

σ. Substituting these in above, the following is obtained for the two predicted parities of

block 3 of the S-box in Fig. 5.2:

P̂ 1
b3 = θ3(x7 + x0) + θ2(x7 + x5 + x4 + x2) (5.14)

+ θ1(x6 + x5 + x3 + x0) + θ0(x6 + x5 + x2 + x0),

P̂ 2
b3 = θ3(x3 + x2 + x0) + θ2(x7 + x3 + x0) (5.15)

+ θ1(x7 + x6 + x5 + x3 + x2 + x1) + θ0(x6 + x2 + x1).

Then, using subexpression sharing for (5.14) and (5.15), one can obtain (5.6) and (5.7)

and the proof is complete.

5.2.2 Inverse S-box

As seen in Fig. 5.2, similar to the S-box, for blocks 1-3 of the inverse S-box, five predicted

parities are derived using the parity prediction units. This is also depicted in Fig. 5.2.

It is noted that the notations for the inverse S-box are denoted by parentheses to be

contrasted from those for the S-box. Additionally, similar to the S-box, the actual parities
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of the three blocks for the inverse S-box are derived using XOR trees. It is noted that

for blocks 1 and 3, the actual parities are obtained as P 1
b1 =

∑3
i=2 γ

′
i and P

2
b1 =

∑1
i=0 γ

′
i

for block 1 and P 1
b3 =

∑7
i=4 xi and P

2
b3 =

∑3
i=0 xi for block 3. Then, as seen in Fig. 5.2,

by comparing the predicted and actual parities, five error indication flags of three blocks,

i.e., e′1-e
′
5, are obtained.

Using Lemma 5.1 and considering Theorem 5.1, we present the formulations for the

five predicted parities of the inverse S-box for the 3 blocks shown in Fig. 5.2 in the

following theorem.

Theorem 5.2 Let Y ∈ GF (28) be the output of the inverse S-box. The five predicted

parities of the three blocks of the inverse S-box in Fig. 5.2 are obtained as follows.

P̂ 1
b1 = y0e+ y5(y4 + y3 + a) + y2b+ y7y4 + b, (5.16)

P̂ 2
b1 = y1(y7 + y5 + h) + y2a+ y3(y5 + y4) + y5h+ y0 + e, (5.17)

P̂b2 = (γ′2 ∨ γ′1)γ′0 + Pγ′
l
γ′3, (5.18)

P̂ 1
b3 = θ′3f + θ′2(PY + d+ y7) + θ′1(c+ y7 + y4) + θ′0(a+ y4 + y2), (5.19)

P̂ 2
b3 = θ′3(y1 + d) + θ′2(y0 + g) + θ′1(y6 + g) + θ′0(y1 + f), (5.20)

where y6 + y7 = a, y1 + a = b, y1 + y2 = c, y3 + y6 = d, c + d = e, PY + y4 + y6 = f ,

PY + y2 = g, and y4 + y0 = h. Furthermore, “+” and ∨ represent the modulo-2 addition

using an XOR gate and the OR operation, respectively. Moreover, PY =
∑7

i=0 yi and

Pγ′
l
= γ′1 + γ′0.

Proof As seen in Fig. 5.2, the S-box and the inverse S-box share block 2. Therefore,

the predicted parity of this block is the same for them.

Now, we obtain the two predicted parities of block 1, i.e., P̂ 1
b1 and P̂ 2

b1 in (5.16) and

(5.17). As seen from Fig. 5.1, block 1 consists of the transformation matrix Ψ preceded

by the inverse affine transformation. Moreover, as seen in Fig. 5.1, similar to the S-box,

a field multiplication, modulo-2 additions, and squaring followed by the multiplication

by the constant ν are utilized in this block. Similar to the S-box, using (5.2) with the

inputs u = σl and v = σh + σl, one can obtain the result of the field multiplication in

this block. Moreover, one can obtain that the result of the squarer-ν in Fig. 5.1 is

σh
2ν = (σ7 + σ4, σ7 + σ6 + σ5, σ4, σ5). (5.21)
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By modulo-2 adding the two most and least significant bits of the result of the squarer-ν

in (5.21) and that of the result of the multiplication, respectively, one can obtain

P̂ 1
b1 = σ3(σ6 + σ4) + σ2(σ7 + σ6 + σ5 + σ4) + σ1σ6

+ σ0(σ7 + σ6) + σ7 + σ6 + σ5 + σ2, (5.22)

P̂ 2
b1 = σ3σ7 + σ2σ6 + σ1σ4 + σ0(σ5 + σ4) + σ6 + σ2 + σ0. (5.23)

One can substitute the coordinates of σ with those of Y . This is performed by utilizing

the following as the result of mixing the inverse affine and transformation matrices.

σ= ΨA−1y +ΨA−1b

=



0 0 1 0 0 0 1 1
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 1 1 1 0 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 1 1
0 1 1 0 0 0 1 1


y +



1
0
1
1
1
1
1
0


. (5.24)

Then, by reordering the result in (5.22) and (5.23), the following is derived.

P̂ 1
b1 = y0(y6 + y3 + y2 + y1) + y5(y7 + y6 + y4 + y3)

+ y2(y7 + y6 + y1) + y7y4 + y7 + y6 + y1, (5.25)

P̂ 2
b1 = y1(y7 + y5 + y4 + y0) + y2(y7 + y6) + y3(y5 + y4)

+ y5(y4 + y0) + y6 + y3 + y2 + y1 + y0. (5.26)

Using subexpression sharing, it is straightforward to obtain (5.16) and (5.17) from (5.25)

and (5.26), respectively.

Now, we derive the two predicted parities of block 3 of the inverse S-box in Fig. 5.2,

i.e., P̂ 1
b3 = P̂Xh

and P̂ 2
b3 = P̂Xl

. As seen from Fig. 5.1, block 3 consists of the inverse

transformation and two field multiplications. It is straightforward that considering the

inverse transformation matrix we obtain P̂Xh
and P̂Xl

as follows P̂Xh
= η7 + η5 + η4 + η1

and P̂Xl
= η7 + η6 + η5 + η2 + η0. Then, by multiplying u = θ′ and v = σh + σl and also

u = θ′ and v = σh using (5.2), the coordinates of η are obtained. Substituting these in
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above, the following is derived

P̂ 1
b3 = θ′3(PY + y6 + y4 + 1) + θ′2(PY + y7 + y6 + y3 + 1)

+ θ′1(y7 + y4 + y2 + y1 + 1) + θ′0(y7 + y6 + y4 + y2 + 1), (5.27)

P̂ 2
b3 = θ′3(y6 + y3 + y1) + θ′2(PY + y2 + y0 + 1)

+ θ′1(PY + y6 + y2 + 1) + θ′0(PY + y6 + y4 + y1). (5.28)

Then, using subexpression sharing for (5.27) and (5.28), one can obtain (5.19) and (5.20)

and the proof is complete.

5.2.3 Merged S-box and Inverse S-box

In some low-complexity implementations that use encryption or decryption at a time,

multiplicative inversions of the S-box and the inverse S-box are shared (see, for example,

the joint encrypter/decrypter in [20] and [22] and the merged encryption and decryption

S-boxes/inverse S-boxes in [21]). The multiplicative inversion in the finite field GF (28)

is needed for both the S-box and the inverse S-box. Therefore, one can merge them in

order to reuse the multiplicative inversion and its parity predictions. It is noted that

when there is no need to utilize both the S-box and the inverse S-box at the same time,

this merged structure leads to a low-area design. Fig. 5.3 shows the merged S-box (SB)

and inverse S-box (ISB) and their corresponding predicted parities for the three blocks.

As seen in this figure, the multiplicative inversion in Fig. 5.1 is used for both the S-box

and the inverse S-box. On the other hand, as seen in Fig. 5.3, two multiplexers are used

for choosing the transformation matrix and the inverse and affine transformations (for the

S-box with the select input SB = 1) and the inverse affine and transformation matrices

and the inverse transformation (for the inverse S-box with the select input ISB = 1). The

parity prediction unit is also shown in Fig. 5.3. As seen in this figure, these multiplexers

also choose between the predicted parities of blocks 1 and 3 for the S-box and the inverse

S-box. As a result, a parity-based fault detection merged structure is obtained.

5.2.4 Complexity Analysis

In what follows, we obtain the hardware and time complexities of the proposed schemes

for the S-box and the inverse S-box. We use two-input gates in the implementation of

the predicted parities of the proposed schemes. We have obtained the number of gates
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Figure 5.3: Merged S-box (SB) and inverse S-box (ISB) and the corresponding predicted
parities for different blocks.

needed for implementing the predicted parities of the S-box in (5.3)-(5.7) as 33 XORs,

19 NANDs, 2 XNORs, and one NOR gate. Moreover, for the inverse S-box, one needs 40

XORs and 19 NANDs to implement (5.16)-(5.22). Furthermore, for obtaining the actual

parities of blocks 1-3, 2 XORs (one XOR for each of P 1
b1 and P 2

b1), 3 XORs (for Pb2),

and 6 XORs (three XORs for each of P 1
b3 and P 2

b3) are needed, respectively. Moreover,

5 XOR gates are used for comparing the five predicted and actual parities to obtain the

indication flags. Later in this chapter, through ASIC implementations, we derive the

chip area of the proposed schemes for the S-box and the inverse S-box. Furthermore, the

area, critical path delay, and power consumption overheads are derived.

The timing overhead of the proposed scheme can be overlapped by the time needed

for performing the operations in blocks 1-3. In other words, as seen in Fig. 5.2, the

predicted parities are obtained concurrently with the time needed for the blocks. Table

5.1 presents the details of the timings of the three blocks for the S-box and the inverse

S-box (presented in Fig. 5.1) as well as those for obtaining the predicted parities of

these blocks. As seen in this table, for all the blocks, the times needed for deriving the
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Table 5.1: The timing details of the proposed concurrent scheme for the S-box and the
inverse S-box.

Operation Block 1 Block 2 Block 3
original predicted parity original predicted parity original predicted parity

S-box 10TX + 1TA 5TX + 1TA 3TX + 2TA 2TX + 1TA 8TX + 1TA 6TX + 1TA

Inverse S-box 10TX + 1TA 5TX + 1TA 3TX + 2TA 2TX + 1TA 7TX + 1TA 4TX + 1TA

predicted parities are less than those of the operations. Therefore, no overhead exists for

obtaining these predicted parities. It is also noted that the actual parities are obtained in

the time allotted to the next block. Therefore, the only timing overhead is for obtaining

the actual parity of block 3 and comparing it with the corresponding predicted parity

(see Fig. 5.2). These are equal to 2TX and 1TX , respectively. Therefore, the total timing

overhead is 3TX for both operations.

The implementations of the S-box and the inverse S-box using composite fields are

area efficient in comparison with those using LUTs. Moreover, the critical path delay

can be reduced using sub-pipelining. In [17], sub-pipelining of the S-box and the in-

verse S-box is done by placing one, two, and three-stage registers between the blocks.

Although the sub-pipelining techniques used in [17] are based on the implementations

of the S-box and the inverse S-box over GF ((24)2), similar pipelining techniques can be

used for the composite field GF (((22)2)2) (see, for example, [22]). The proposed fault de-

tection scheme can take advantage of sub-pipelining without adding delay to the original

pipelined structure. In the pipelined fault detection scheme, we use the parity prediction

units of each pipelined block and obtain the error indication flag. According to Table

5.1, one can observe that the critical path delays of the predicted parity bits of each

block of the S-box and the inverse S-box is less than the critical path delay of that block.

Therefore, we can use the parity prediction schemes in the pipelined structures of the

blocks without affecting the frequency of the clock signal; the predicted parity bits of the

blocks are obtained in the same clock cycle as the outputs of the blocks are calculated.

Calculating the actual parity and comparing it with predicted parity to obtain the error

indication flag can be done in the next clock cycle. Using the above-mentioned pipelined

structure, one can see that the time overhead will be only one extra clock cycle which may

be overlapped with other computations in the pipelined fault detection implementation

of AES.
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5.3 Simulation Results

In the following, we evaluate the proposed fault detection scheme for single stuck-at

errors, burst faults, and multiple random faults to model both natural faults and fault

attacks.

The single stuck-at errors are at the output of the S-box (the inverse S-box). Such

errors are covered 100% in the proposed scheme which is the same as those of the schemes

in [57] and [78]. However, due to the technological constraints, injecting single stuck-

at errors may not be applicable in practice [82]. Therefore, we rely on simulations to

consider both the burst and the multiple permanent and transient faults; the details of

which are presented in the following.

Burst Faults

Although the fault attacker gains more information through injecting single faults, due

to the technological constraints, injecting single stuck-at faults may not be applicable in

the practical fault attacks [82]. Therefore, in realistic fault attacks, multiple adjacent

bits are actually flipped. Moreover, natural failures can be of the correlated type causing

neighboring faults [82]. Consequently, in what follows, we consider the fault detection

capability of the proposed scheme for neighboring faults referred to as burst faults.

Because of the nonlinear structure of the S-box (resp. the inverse S-box), the burst

faults in a block of the S-box (resp. the inverse S-box) appear as random multiple errors

at the output of that block. Moreover, the burst faults that occur in two adjacent blocks

appear as multiple random errors at the outputs of the adjacent blocks. For deriving

the burst fault detection capability of the proposed scheme, we have performed error

simulations for blocks 1-3 of the S-box and the inverse S-box in Fig. 5.2; the details of

which are presented in the following.

Linear Feedback Shift Registers (LFSRs) are used for injecting the errors at the output

of one block or two adjacent blocks for modeling the burst faults. The stuck-at error

model used forces multiple output bits to be stuck at logic one (for stuck-at one) or zero

(for stuck-at zero) independent of the error-free values. We use Fibonacci implementation

of the LFSR with 4 (for the outputs of blocks 1 and 2) or 8 (for the random input and

output of block 3) output taps for injecting the errors, where the numbers, locations
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and types of the errors are randomly chosen. In this regard, according to the maximum

sequence length taps presented in [91], the maximum sequence length polynomial for the

feedback are selected as L1(X) = X4+X and L2(X) = X8+X4+X3+X2 for the 4 and

8 output taps, respectively. Moreover, for our simulations, we use the ModelSim R⃝ SE

6.2d [75]. We have injected 100,000 burst faults at the outputs of the blocks for 100,000

random 8-bit inputs of the S-box and the inverse S-box. Then, we have used the five

error indication flags at the outputs of three blocks of the S-box and the inverse S-box to

detect the burst faults. The results of our simulations show that for the S-box and the

inverse S-box 71,257 and 72,321 of the faults are detected, respectively. This yields to

71.3% and 72.3% burst fault detection capabilities for these two structures, respectively.

It is noted that these are higher compared to the scheme in [57] for the original S-box

and the one in [78], which have the burst fault detection capability of close to 50%. The

complete comparison of the fault detection capabilities of the proposed schemes and the

previous ones are presented in the next section.

Multiple Faults

The fault detection capability of the presented scheme depends on the number of the

S-box and the inverse S-box blocks and the number of the predicted parities used for

them. Two predicted parities have been used for blocks 1 and 3 of the S-box and the

inverse S-box which constitute much of the area. Because at least one predicted parity

is used for each block of the S-box and the inverse S-box, all odd number of errors in

each of three blocks can be detected using the error indication flags. The error indiction

flags of blocks 1 and 3 can also detect certain even number of errors comprising two odd

number of errors in two partitions of these blocks. In the remaining of this section, it is

shown that for the entire SubBytes, the error coverage is very close to 100% (99.998%).

For the randomly distributed multiple faults in the entire S-box and inverse S-box,

the fault detection capabilities can be obtained. It is noted that in our simulations,

we use a transient stuck-at error model. Nonetheless, the simulation results are also

the same for the permanent errors, including the permanent internal failures and the

malicious fault attacks aiming at destroying the chip. Similar to the burst faults, we

use LFSRs for injecting the errors. This is performed using a 16-output tap LFSR for

injecting the random multiple errors at the outputs of three blocks utilizing L3(X) =
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Table 5.2: Fault detection capabilities of the proposed schemes after injecting 1,000,000
random multiple faults.

Operation Initial Detected Fault Coverage
values (%)

L2 = {9D}h 966,324 ≈ 97%
L3 = {AFA2}h

S-box L2 = {B0}h 972,198 ≈ 97%
L3 = {3DA9}h
L2 = {73}h 968,775 ≈ 97%

L3 = {2BBF}h
L2 = {9D}h 977,760 ≈ 98%

L3 = {AFA2}h
Inverse L2 = {B0}h 969,139 ≈ 97%
S-box L3 = {3DA9}h

L2 = {73}h 971,815 ≈ 97%
L3 = {2BBF}h

X16 +X12 +X3 +X and an 8-bit LFSR for applying the random input of the S-box or

the inverse S-box using L2(X) = X8 +X4 +X3 +X2 [91].

The results of our simulations for three different initial values of the LFSRs L2 and

L3 polynomials are depicted in Table 5.2. As seen in this table, after injecting 1,000,000

random multiple faults, the fault detection capabilities for one S-box or inverse S-box are

close to 97%. It is interesting to note that for the entire SubBytes or inverse SubBytes,

i.e., 16 S-boxes or inverse S-boxes, respectively, injecting this number of multiple faults

resulted in the fault detection of very close to 100% (99.998%). As a matter of fact,

in this case, the faults are detected by the 5 × 16 = 80 flags for the entire SubBytes

or inverse SubBytes transformations, yielding to approximately complete fault detection

capabilities, i.e., approximately 100× (1− 2−80)%.

5.4 ASIC Implementations and Comparisons

In this section, we present the results of the syntheses we have performed for the proposed

and previously presented fault detection schemes of the S-box and the inverse S-box. We

have used the STM 65-nm CMOS standard technology [74] for the syntheses. Moreover,

VHDL has been used as the design entry to the Synopsys Design Vision [73]. We have

set the target frequency as 500 MHz, 1 GHz, and 1.1 GHz corresponding to the delays of

2 ns, 1 ns, and 0.91 ns, respectively. Using Synopsys Design Vision, we have obtained the
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maximum target frequency in which our fault detection structure can operate without

violating the timing constraints. This maximum target frequency has been obtained as

1.1 GHz in the 65-nm technology. The proposed fault detection schemes and the ones

presented in [34], [36], [38], [39], [42], [57], [78], [79], and [92] have been synthesized and

their areas, delays and power consumptions are derived. The results for different target

frequencies are shown in Table 5.3 (for the S-box) and Table 5.4 (for the inverse S-box).

As seen in these tables, areas (µm2), critical path delays (ns), total power consumptions

(µW ), and fault coverages (%) are shown. In the following, the syntheses details of the

structures are explained.

As seen in Table 5.3 for the S-box, the first three schemes, i.e., the schemes presented

in [34], [42], [39], and [36], use the LUT S-box in their structures. The schemes in [34]

and [42] use the S-box followed by the inverse S-box. These can be implemented using

two 256×8 LUTs. Then, the result is compared with the input to detect the faults in the

structure of the S-box or the inverse S-box. It is noted that although its fault detection

capability reaches 100%, this method has the critical path delay and the area overheads

of close to 100%. Furthermore, as seen in Table 5.3, because of the use of LUT S-box,

areas and power consumptions are higher than the schemes using composite fields.
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Additionally, the schemes in [39] and [36] use the error detecting codes (parity) for the

LUT S-box, where the S-box is expanded. Similar to the scheme in [34] and [42], using the

LUT S-box increases the areas and power consumptions of these schemes considerably.

In the low-cost scheme presented in [39], the modulo-2 addition of the predicted parities

of the input and output of the S-box along with the S-box itself are stored in a 256× 9

LUT. Then, a comparison with the actual parities is performed for deriving the error

indication flags. As seen in Table 5.3, the burst and multiple fault detection capabilities

of this scheme for the entire SubBytes (not each S-box) is around 50%. The parity-

based scheme presented in [36] utilizes a 512× 9 LUT to store the predicted parities as

well as the output of the S-box. This results in reaching the burst and multiple fault

detection capability of approximately 50% for each S-box at the cost of more area and

power consumption and slightly more delay compared to the scheme in [39].

As presented in Table 5.3, the last six fault detection schemes use the S-box using

composite fields; represented either in polynomial basis or normal basis. It is noteworthy

that sub-pipelining of these fault detection S-boxes has not been performed and these

syntheses are only intended to compare different presented schemes. The scheme in

[38] uses two flags for the fault detection of the non-linear part of the S-box, i.e., the

multiplicative inversion. This is performed by comparing the result of multiplying the

input and the output of the multiplicative inversion with the actual result, i.e., {01}2. As
seen in Table 5.3, this yields to the fault detection capability of approximately 75%. The

structure-independent scheme in [92] uses one-bit parity in the multiplication scheme for

obtaining the fault detection capability of around 50% for the S-box. Although the fault

detection capability is less than that of [38], as seen in Table 5.3, better area and power

consumption results are obtained.

The results for the proposed scheme in this chapter are shown in bold face in Table

5.3. As depicted in the table, for the target frequency of 1.1 GHz, the proposed scheme in

this chapter for the S-box has the least area, power consumption, and critical path delay

among the schemes that have similar or slightly more fault detection capabilities, i.e., the

schemes presented in [34], [42], [57], [79] and [78]. Specifically, compared to the schemes

presented in [57], [78], and [79], for the low frequency of 500 MHz, the presented scheme

in this chapter is faster at the expense of more area. Nonetheless, as seen from the table,

the maximum target frequency of 1.1 GHz cannot be achieved for the schemes of [57]
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and [78]. Nevertheless, in higher frequencies, e.g., 1.1 GHz in Table 5.3, the presented

scheme outperforms the one proposed in [79] in terms of area, power consumption and

delay. It is also noted that the schemes proposed in [57], [78], and [79] yield to the fault

detection capability of around 50% for the burst faults which is less compared to the

presented scheme in this chapter.

It is also noted that compared to the schemes with lower fault detection capability

in Table 5.3, for this maximum target frequency, the proposed scheme is more com-

pact. Moreover, it has less power consumption except for the scheme presented in [92].

Nonetheless, the fault detection capabilities of the structure-independent scheme in [92]

for burst and multiple faults are around 50%, i.e., approximately half of that of the

proposed scheme for the multiple faults and less for burst faults. Finally, using sub-

pipelining, the critical path delay of the proposed scheme can be considerably reduced.

This can result in even better critical path delays compared to the schemes using LUTs

at the expense of more hardware utilizations for the pipelining registers. It is noted

that the sub-pipelined composite field structures are still much more compact than the

schemes taking advantage of LUTs.

We have also implemented the proposed scheme for the inverse S-box for the three

target frequencies; the results of which are presented in Table 5.4 in bold face. As seen

in this table, in addition, the schemes for the inverse S-box presented in [34], [42], [36],

[39], [92], [57], [79] and [78] have been synthesized and their areas, delays and power

consumptions are derived. As seen from Table 5.4, similar to the S-box, for the low

frequency of 500 MHz, the presented scheme for the inverse S-box is the fastest compared

to [57], [78], and [79]. Additionally, for the maximum target frequency of 1.1 GHz, it has

the lowest area, delay and power consumption compared to those of [57], [78], and [79].

It is also noted that as presented in Table 5.4, the target frequency of 1.1 GHz cannot

be achieved by the scheme in [79].
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As depicted in Table 5.4, for the highest frequency to achieve, i.e., 1.1 GHz, the

proposed scheme in this chapter is the most compact scheme with the lowest power

consumption compared to the schemes presented in [34], [42], [36], [39], [57], [79] and

[78]. It is also noted that similar to the S-box, the fault detection structure of the inverse

S-box can be sub-pipelined so that with a reasonable hardware overhead, the critical

path delay is highly reduced. The proposed scheme in this chapter has more area and

less power consumption compared to the one in [92]. As mentioned previously, however,

the fault detection capability of the scheme in [92] for the burst and multiple faults is

around 50%. This is less than the fault detection capabilities of 97% and 72.3% for the

proposed scheme for the multiple and burst faults, respectively.

Furthermore, we have compared the areas, critical path delays, and power consump-

tions of the proposed schemes for the S-box and the inverse S-box with those for the

original ones presented in [22]. For this purpose, we have implemented both the original

and the fault detection S-box and inverse S-box for several target frequencies ranging

from 500 MHz to 1.1 GHz. The results are shown in Fig. 5.4. As seen in Fig. 5.4a

and Fig. 5.4d for the S-box and the inverse S-box, respectively, the areas of both the

original structures (solid lines with ◦ marks) and the fault detection ones (dotted lines

with + marks) for different target frequencies are depicted. As seen in these figures, as

the target frequency increases, it is reached by increasing the occupied area. This yields

to having the areas ranging from 698 µm2 - 1338 µm2 and 662 µm2 - 1334 µm2 for the

original S-box and inverse S-box, respectively. Moreover, for the fault detection S-box

and inverse S-box presented in this chapter, the areas of 953 µm2 - 1730 µm2 and 916

µm2 - 1709 µm2 are achieved, respectively.

Moreover, the results of our implementations for the power consumptions of the orig-

inal and the fault detection S-box and inverse S-box are depicted in Fig. 5.4b and Fig.

5.4e, respectively. As seen from these figures, for the low target frequencies, the power

consumptions of the original structures and the fault detection ones are close to each

other. Nonetheless, as seen in Fig. 5.4b and Fig. 5.4e, these differences increase after

applying tighter critical path delay constraints. As an example, for the target frequency

of 1.1 GHz, the power consumption for the original S-box (resp. inverse S-box) becomes

2.2 mW (2.3 mW ). Moreover, for the fault detection S-box (resp. inverse S-box) it

reaches 2.9 mW (2.8 mW ). Finally, the critical path delays of the original structures
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Figure 5.4: The areas, critical path delays, and power consumptions of the original [22]
and the proposed fault detection S-box and inverse S-box.

and those for the proposed scheme in this chapter for the S-box and the inverse S-box are

presented in Fig. 5.4c and Fig. 5.4f. As seen in these figures, for the target frequency of

500 MHz, the critical path delays of the original and the fault detection S-box are 1.54

ns (working frequency of 649 MHz) and 1.80 ns (working frequency of 555 MHz), respec-

tively. Furthermore, for the inverse S-box, the critical path delays of 1.44 ns (working

frequency of 694 MHz) and 1.68 ns (working frequency of 595 MHz) are obtained for

the original and fault detection structures, respectively. It is also noted that, for the

maximum target frequency to achieve, the original and fault detection S-box (inverse

S-box) reaches the critical path delay of 0.87 ns (0.88 ns), i.e., the working frequency of

1.15 GHz (1.14 GHz). As seen in Fig. 5.4, this is for the cost of the increased areas and

power consumptions for the structures.

We conclude this section by deriving the area, delay, and power consumption over-
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Figure 5.5: The Area, delay, and power consumption overheads of the proposed schemes
for the S-box and the inverse S-box.

heads of the proposed scheme for the S-box and the inverse S-box. To this end, we

have considered the areas, delays, and power consumptions of the original operations

presented in [22] and the fault detection structures shown in Fig. 5.4. Then, we have

obtained the overheads; the results of which are presented in Fig. 5.5. The results in this

table show that for the low frequency of 500 MHz for the S-box (see the dotted lines with

◦ marks) and the inverse S-box (see the solid lines with + marks), the area overheads are

approximately 36% and 38%, respectively (see Fig. 5.5a). Moreover, in this frequency,

the overheads for the critical path delays and the power consumptions for the S-box are

16% and 40%, respectively. Additionally, for the inverse S-box, for the target frequency

of 500 MHz, the critical path delay and the power consumption overheads of 16% and

25% are obtained, respectively. However, as we increase the target frequency, the critical

path delay overhead decreases (see Fig. 5.5c). It is noted that as seen in Fig. 5.5c, no

timing overhead is observed for the target frequencies higher than 1 GHz. Finally, as

presented in earlier in this chapter, with the mentioned overheads, the fault detection

scheme proposed in this chapter achieves high fault coverages. This makes the presented

fault detection S-box and inverse S-box suitable choices in counteracting the fault attacks

and detecting the internal failures.
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5.5 Formulations for Mixed Bases

The hardware implementation of the S-box using mixed bases has been presented recently

in [62]. In this S-box, in contrast to the conventional works, polynomial and normal bases

are used in mixture (mixed bases). The theoretical analysis in [62] shows lower timing

complexity for this S-box compared to the ones using polynomial and normal bases pre-

sented in [20] and [23]. In what follows, we present a multi-bit parity-based fault diagnosis

approach for the S-box using mixed bases. We derive formulations for these multi-bit

parities and optimize them to reach low complexity. Based on the presented formulations,

we present two different flavors for our fault detection scheme considering compromise

between fault detection capability and resources needed. Moreover, we evaluate the fault

detection capabilities of the proposed reliable architectures.

We present the formulations for the five predicted parities of the mixed bases S-box

of Fig. 5.6 in the following theorem.

Theorem 5.3 For X ∈ GF (28) as the input of the S-box, the predicted parities of block

1 (P̂1-P̂2), block 2 (P̂3), and block 3 (P̂4-P̂5) of the S-box in Fig. 5.6 are obtained as

follows

P̂1 = x6(x7 + x5 + x0) + x5Z3 + x4(Z7 + Z1 + x2)

+ x2(x5 + x3) + x1Z1 + (x7 ∨ x4) + (x5 ∨ x1), (5.29)

P̂2 = x6(Z4 + x1 + x0) + x4Z6 + x3x7 + x0Z2+

(x7 ∨ x5) + (x2 ∨ x1), (5.30)

P̂3 = (γ3γ1 ∨ γ2) + γ3γ2γ0, (5.31)

P̂4 = θ3(Z4 + Z3 + x6) + θ2(Z8 + x4) + θ1(Z6

+ x6) + θ0(Z5 + Z2 + x2), (5.32)

P̂5 = θ3(Z8 + Z4) + θ2(Z7 + x7) + θ1(Z9 + Z5)+

θ0(Z5 + x7 + x1), (5.33)

where Z1 = x3+x0, Z2 = x5+x1, Z3 = Z2+Z1, Z4 = x7+x2, Z5 = x6+x3, Z6 = Z1+x5,

Z7 = x6+x1, Z8 = Z7+x0, and Z9 = Z5+Z2. Moreover, “+” and ∨ represent modulo-2

addition using an XOR gate and the OR operation, respectively.
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8

4

4 4

4

4

4

4

8

4

4

4 4

X Y

l

h

1
e

2
e 3

e
5

e
4

e

Block 1 Block 2 Block 3

Figure 5.6: The presented fault detection structure for the mixed bases S-box [62].

Proof The two predicted parities of block 1, i.e., P̂1 and P̂2 in (5.29) and (5.30), are

obtained according to Fig. 5.6. As seen in Fig. 5.6, block 1 consists of a transformation

matrix (T ) which transforms the coordinates of X in binary field to η in composite field

and is defined as [62]:

T =



1 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0
0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 0


. (5.34)

Moreover, considering [62] and Fig. 5.6, for the input (η7+η3, η6+η2, η5+η1, η4+η0),

we obtain the merged S4-λ̂ in Fig. 5.6 as (η6 + η2, η7 + η3, η7 + η5 + η3 + η1, η7 + η6 + η5 +

η4 + η3 + η2 + η1 + η0). In addition, according to [62] and for inputs ηl and ηh, one can

obtain the result of the field multiplication (M̂4) in this block as

c′0 = η7(η3 + η1 + η0) + η6(η2 + η1) + η5(η3 + η2 + η1 + η0) + η4(η3 + η1),

c′1 = η7(η3 + η2 + η0) + η6(η3 + η1 + η0) + η5(η2 + η0) + η4(η3 + η2 + η1 + η0),

c′2 = η7η2 + η6(η3 + η2) + η5(η1 + η0) + η4η1,

c′3 = η7η3 + η6η2 + η5η0 + η4(η1 + η0). (5.35)
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Therefore, by modulo-2 adding the coordinates of (γ3, γ2) and (γ1, γ0), i.e., two most

and least significant bits of squarer-λ̂ in Fig. 5.6 and result of the multiplication in (5.35),

one can obtain

P̂1 = η7(η3 + η2) + η6η3 + η5η1 + η4η0 + η7+

η6 + η3 + η2, (5.36)

P̂2 = η7(η2 + η1) + η6(η3 + η2 + η0) + η5(η3+

η1) + η4(η2 + η0) + η6 + η4 + η2 + η0. (5.37)

By substituting the coordinates of η with those of X using (5.34), reordering, and using

subexpression sharing, it is straightforward to obtain (5.29) and (5.30) from (5.36) and

(5.37), respectively.

Block 2 of the S-box in Fig. 5.6 consists of an inversion in GF ((22)2). According to

[62], we have obtained the formulations for the inversion of the input γ ∈ GF ((22)2) as
θ ∈ GF ((22)2) = (γ)−1 according to the following

θ0 = (γ2 + γ0)I1 + (γ3 + γ1)(I1 + I0),

θ1 = (γ2 + γ0)(I1 + I0) + (γ3 + γ1)I0,

θ2 = γ0I1 + γ1(I1 + I0), (5.38)

θ3 = γ0(I1 + I0) + γ1I0.

where I1 = γ3(γ1 + γ0) + γ2γ1 + γ0 and I0 = γ3γ0 + γ2 ∨ γ1 + γ0γ2. Then, one can obtain

from (5.38) that P̂3 = γ2I0+γ3I1 which leads to P̂3 = γ2+γ3γ1+γ3γ2γ1+γ3γ2γ0. Noting

that γ2 + γ3γ1 + γ3γ2γ1 = γ2 ∨ γ3γ1, one can obtain (5.31).

Now, we derive the two predicted parities of block 3, i.e., P̂4 and P̂5. Let U =

(u3, u2, u1, u0) and V = (v3, v2, v1, v0) be the inputs of a multiplier in GF ((22)2) in block

3 (M4). Then, the result of multiplication is

c0 = u3v2 + u2(v3 + v2) + u1(v1 + v0) + u0v1,

c1 = u3v3 + u2v2 + u1v0 + u0(v1 + v0),

c2 = u3(v3 + v2 + v1 + v0) + u2(v3 + v1)+

u1(v3 + v2) + u0v3, (5.39)

c3 = u3(v2 + v0) + u2(v3 + v2 + v1 + v0) + u1v2+

u0(v3 + v2).
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Moreover, as seen from Fig. 5.6, block 3 consists of the mixed inverse (T−1) and affine

(A) transformation matrices. The formulation for this mixed transformation (which is

added later with constant {63}h) is as follows [62].

A× T−1 =



0 0 0 1 1 1 0 1
0 0 0 0 0 1 1 1
0 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1
0 1 0 0 0 1 1 0
1 0 1 0 1 0 0 0
1 0 1 1 0 0 0 1
0 1 0 0 0 1 1 1


. (5.40)

Finally, according to (5.40), the two predicted parities of block 3 in Fig. 5.6 are obtained

by adding the multiplications output coordinates 3 and 4 (for P̂4) and 1, 3, 5, 6, and

7 (for P̂5). Then, according to (5.39), by multiplying U = θ and V = ηh + ηl and also

U = θ and V = ηl, one can obtain these coordinates. The following is obtained for the

two predicted parities of block 3 of the S-box in Fig. 5.6:

P̂4 = θ3(η6 + η0) + θ2(η7 + η6 + η1 + η0)+ (5.41)

θ1(η5 + η4 + η2 + η1 + η0) + θ0(η5 + η3 + η2 + η1),

P̂5 = θ3(η5 + η3 + η2 + η1 + η0) + θ2(η4 + η3+

η1) + θ1(η7 + η4 + η3 + η2) + θ0(η6 + η5+

η4 + η3). (5.42)

Then, using subexpression sharing and by substituting the coordinates of η with those

of X in (5.41) and (5.42) using (5.34), one can obtain (5.32) and (5.33) and the proof is

complete.

The critical path delay of the structure presented in Fig. 5.6 is determined by that

of the S-box and the fault detection scheme. Because of the concurrency of the scheme

in Fig. 5.6, the predicted parities of all the three blocks and the actual parities of

blocks 1 and 2 are obtained during the computations of the S-box itself. Thus, the only

delay that the scheme in Fig. 5.6 adds to the architecture is the delay of computing

the actual parities of block 3 and their corresponding comparisons with the predicted

parities for obtaining the error indication flags e4 and e5. It is interesting to note that
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having two predicted parities for the last block (instead of one) reduces the critical path

delay overhead. Based on these observations, the critical path delay of the presented

fault detection structure in Fig. 5.6 is just 3TX (2TX for computing the actual parities

of block 3 and 1TX for obtaining their error indication flags).

5.5.1 Other Variants

An advantage for the scheme proposed in Theorem 5.3 is that based on the reliability

requirements and the available resources, one may use different number of predicted

parities for different blocks. For instance, for applications which have tight resource

constraints, one may use one predicted parity for each block, i.e., three predicted parities

in total for the entire S-box, to reduce the performance metrics overheads at the expense

of reducing the error coverage. This can be performed by modulo-2 adding (5.29) and

(5.30) to obtain one predicted parity for block 1 and (5.32) and (5.33) for the one for

block 3 (see also Fig. 5.6). In other words we can use P̂1+2 = P̂1 + P̂2 (using (5.36) and

(5.37)), P̂4+5 = P̂4 + P̂5 (using (5.41) and (5.42)), and P̂3 as three predicted parities for

the S-box in Fig. 5.6. For P̂1+2 and P̂4+5 we have

P̂1+2 = η7(η3 + η1) + η6(η2 + η0) + η5η3 + η4η2+

η7 + η4 + η3 + η0, (5.43)

P̂4+5 = θ3(η6 + η5 + η3 + η2 + η1) + θ2(η7 + η6+

η4 + η3 + η0) + θ1(η7 + η5 + η3 + η1 + η0)+

θ0(η6 + η4 + η2 + η1). (5.44)

Our simulations (if the entire SubBytes is considered) show multiple random error

coverage of very close to 100% (99.998%) for mixed bases S-box. In addition, we have

performed ASIC syntheses using a 65-nm CMOS standard technology for the proposed

concurrent fault detection architectures and some of the previous ones. Compared to the

approaches with similar error coverage, the proposed approach in this section is the most

efficient one, reaching the efficiency of 5.02 Mbps
µm2 while maintaining the throughput of 5

Gbps. Based on the error coverage needed and the performance requirements, one may

use the proposed high-speed concurrent fault detection approach to reach the desired

coverage/performance goals.
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Concurrent Structure-Independent
Fault Detection Schemes for the
AES

IN the previous two chapters, we proposed two methods for fault detection of the

S-boxes and inverse S-boxes using composite fields. In this chapter, we propose a

structure-independent fault detection scheme for the entire AES encryption and decryp-

tion. Specifically, we obtain new formulations for the fault detection of SubBytes and

inverse SubBytes using the relation between the input and the output of the S-box and

the inverse S-box. The proposed schemes are independent of the way the S-box and the

inverse S-box are constructed. Therefore, they can be used for both the S-boxes and

the inverse S-boxes using look-up tables and those utilizing logic gates based on com-

posite fields. Our simulation results show the error coverage of greater than 99% for the

proposed schemes. Moreover, the proposed and the previously reported fault detection

schemes have been implemented on the most recent Xilinx R⃝ VirtexTM FPGAs. Their

area and delay overheads have been compared and it is shown that the proposed schemes

outperform the previously reported ones.

As presented before (see Fig. 2.3), a multiplication-based scheme is presented in

[38]. In this scheme, the result of the multiplication of the input and the output of the

multiplicative inversion is compared with the predicted result of unity. However, this

scheme is not suitable for the S-boxes and inverse S-boxes implemented using look-up

tables (LUTs). This is because the output (the input) of the multiplicative inversion

in the S-box (the inverse S-box) may not be accessible in the LUT-based implementa-

tions. Therefore, the fault detection scheme presented in [38] is not applicable for these

74
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implementations.

In this chapter, we present structure-independent fault detection schemes for ob-

taining a reliable AES implementation. We present a systematic method for obtaining

the fault detection signatures for the multiplicative inversion of the S-boxes (inverse

S-boxes). We propose new formulations resulting in novel fault detection schemes for

checking SubBytes, inverse SubBytes, and the other transformations in the encryption

and the decryption of the AES. The proposed schemes are independent of the method

the S-box (resp. the inverse S-box) is implemented. Thus, they can be applied to both

the LUT and composite fields implementations. Moreover, we simulate the proposed

fault detection structures for the AES encryption and decryption. Through our simula-

tions after injecting up to 700,000 random stuck-at errors, we show that the proposed

low cost schemes reach the error coverage of greater than 99%. Finally, our proposed

fault detection schemes and almost all of the previously reported ones are implemented

on the recent Xilinx R⃝ VirtexTM FPGAs and their area and delay overheads have been

derived and compared. The FPGA implementation results show the low area and delay

overheads for the proposed fault detection schemes.

The organization of this chapter is as follows: In Section 6.1, we present some brief

preliminaries regarding the AES algorithm. The proposed structure-independent schemes

for the fault detection of the S-boxes and the inverse S-boxes are presented in Section

6.2. Then, the fault detection schemes for the entire AES encryption and decryption

are considered in Section 6.3. In Section 6.4, the results of the simulations of the pro-

posed schemes are presented and their error coverages are obtained. In Section 6.5, the

presented fault detection schemes and the previously reported ones are implemented on

FPGAs and they are compared in terms of time and space complexities. The results

presented in this chapter can also be found in [92] and [93].

6.1 Notations Used in This Chapter

In this section, we briefly present the notations and preliminaries used throughout this

chapter for the four transformations of each round of the encryption and the decryption

in the AES.

Each transformation in every round acts on its 128-bit input denoted as the state. The
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states are considered as four by four matrices whose entries are eight bits. For example,

the input state S with its 8-bit entries, i.e., sr,c, 0 ≤ r, c ≤ 3, is represented as follows:

S = [sr,c]
3
r,c=0. (6.1)

6.1.1 AES Encryption

Considering (6.1) as the input state of an encryption round, the transformations in each

round of encryption (except for the last round) are as follows [1]:

• SubBytes: The first transformation in each round is the bytes substitution (Sub-

Bytes) implemented by 16 S-boxes. Let sr,c ∈ GF (28) and s′r,c ∈ GF (28) be the

8-bit input and output of each S-box, respectively. Then, the S-box consists of a

multiplicative inversion, i.e., s−1
r,c ∈ GF (28), followed by an affine transformation

consisting of the matrix Γ and the vector γ to generate the output as

s′
r,c = Γs−1

r,c + γ =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


s−1
r,c +



1
1
0
0
0
1
1
0


. (6.2)

The 8-bit outputs of 16 S-boxes are used to obtain the output state of the SubBytes

transformation as

S′ = [s′r,c]
3
r,c=0. (6.3)

• ShiftRows: In the second transformation, ShiftRows, four bytes of the rows of the

input state are cyclically shifted to the left and the first row is left unchanged to

obtain the output state, i.e., SR(S′), as

SR(S′) =


s′0,0 s′0,1 s′0,2 s′0,3
s′1,1 s′1,2 s′1,3 s′1,0
s′2,2 s′2,3 s′2,0 s′2,1
s′3,3 s′3,0 s′3,1 s′3,2

 = [s′r,(r+c)mod 4]
3
r,c=0. (6.4)

• MixColumns: In the third transformation, MixColumns, the output state is ob-

tained by multiplying a constant matrix with the output state of ShiftRows, SR(S′)
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in (6.4), to obtain the output state of MixColumns, i.e., the matrix S′′, as

S′′ = [s′′r,c]
3
r,c=0 =


{2}h {3}h {1}h {1}h
{1}h {2}h {3}h {1}h
{1}h {1}h {2}h {3}h
{3}h {1}h {1}h {2}h

SR(S′). (6.5)

• AddRoundKey: The final transformation is AddRoundKey in which the input

state is added (modulo-2) with the key of the round. Considering the roundkey

input state as the matrix K = [kr,c]
3
r,c=0, with entries kr,c, 0 ≤ r, c ≤ 3, the output

state of the AddRoundKey transformation, i.e., O, is obtained as

O = [or,c]
3
r,c=0 = S′′ +K. (6.6)

6.1.2 AES Decryption

In the AES decryption rounds, four transformations, i.e., InvShiftRows, InvSubBytes,

AddRoundKey and InvMixColumns are utilized. Considering S′ as the input state of

a decryption round, in the first transformation, InvShiftRows, similar to ShiftRows in

encryption, the first row of the input state remains unchanged. However, the other rows

entries are cyclically shifted to the right as follows

ISR(S′) =


s′0,0 s′0,1 s′0,2 s′0,3
s′1,3 s′1,0 s′1,1 s′1,2
s′2,2 s′2,3 s′2,0 s′2,1
s′3,1 s′3,2 s′3,3 s′3,0

 . (6.7)

The next transformation in each round is InvSubBytes implemented by 16 inverse S-

boxes. In the inverse S-box, the inverse affine transformation precedes the multiplicative

inversion in GF (28) to generate s−1
r,c = Γ−1s′r,c + Γ−1γ, where, Γ and γ are presented in

(6.2). The 8-bit outputs of 16 inverse S-boxes are used to obtain the output state of the

InvSubBytes transformation as S = [sr,c]
3
r,c=0.

The next transformation is AddRoundKey in which the input state is added with

the key of the round. Then, the output state of AddRoundKey is obtained as S′′ =

[s′′r,c]
3
r,c=0 = S + K. Finally, the last transformation, InvMixColumns, is equivalent to

multiplying the input state with a constant matrix with hexadecimal entries to obtain

the output state of the round as

O = [or,c]
3
r,c=0 =


{0e}h {0b}h {0d}h {09}h
{09}h {0e}h {0b}h {0d}h
{0d}h {09}h {0e}h {0b}h
{0b}h {0d}h {09}h {0e}h

S′′. (6.8)
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6.2 A New Fault Detection Scheme for the S-box

and the Inverse S-box

In this section, first we present a systematic method for the fault detection of the mul-

tiplicative inversion of the S-box and the inverse S-box. Then, the new scheme for the

entire S-box and the inverse S-box is presented.

6.2.1 The Systematic Scheme for the Multiplicative Inversion

In what follows, we present a systematic method for the fault detection scheme for the

multiplicative inversion by deriving the matrix-based formulations for the multiplicative

inversion in the S-box/inverse S-box.

We use the following theorem from [94] to obtain the multiplication of field elements

A =
∑m−1

i=0 aiα
i and B =

∑m−1
i=0 biα

i in the finite field GF (2m) constructed by the irre-

ducible polynomial of P (x) with the primitive root of α.

Theorem 6.1 [94] Let C =
∑m−1

i=0 ciα
i be the multiplication of A and B ∈ GF (2m).

Then, the coordinates of C can be obtained from

[c0, c1, · · · , cm−1]
T = (L+QTU )b, (6.9)

where, b = [b0, b1, · · · , bm−1]
T ,

L =


a0 0 0 0 . . . 0
a1 a0 0 0 . . . 0
a2 a1 a0 0 . . . 0
...

...
. . .

. . .
. . .

...
am−2 am−3 . . . a1 a0 0
am−1 am−2 . . . a2 a1 a0

 , (6.10)

U =


0 am−1 am−2 . . . a2 a1
0 0 am−1 . . . a3 a2
...

...
. . .

. . .
...

...
0 0 . . . 0 am−1 am−2

0 0 . . . 0 0 am−1

 , (6.11)

and the m− 1 by m binary matrix Q is obtained as follows

[αm, αm+1, . . . , α2m−2]
T
=

Q[1, α, α2, . . . , αm−1]
T
(modP (α)). (6.12)
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Let s = s7α
7 + s6α

6 + s5α
5 + s4α

4 + s3α
3 + s2α

2 + s1α + s0 and s−1 = s−1
7 α7 +

s−1
6 α6 + s−1

5 α5 + s−1
4 α4 + s−1

3 α3 + s−1
2 α2 + s−1

1 α + s−1
0 be the 8-bit input and output of

the multiplicative inversion in the binary field GF (28), respectively. Considering the fact

that the result of the multiplication of the 8-bit input s, s ̸= 0, and the output s−1 of

the multiplicative inversion is the unity polynomial 1 ∈ GF (28), the following is derived

from Theorem 6.1 for the relation between s and s−1.

Corollary 6.1 Let s = [s0, s1, s2, s3, s4, s5, s6, s7]
T and

s−1 = [s−1
0 , s−1

1 , s−1
2 , s−1

3 , s−1
4 , s−1

5 , s−1
6 , s−1

7 ]T be the vectors corresponding to the input and

output of the multiplicative inversion. Then, the matrix formulation of the multiplicative

inversion of the S-box (resp. the inverse S-box) is as follows

Zs−1 = u, (6.13)

where,

Z =



s0 s7 s6 s5 s4 s7,3 s7,6,2 s6,5,1
s1 s7,0 s7,6 s6,5 s5,4 s7,4,3 s6,3,2 s7,5,2,1
s2 s1 s7,0 s7,6 s6,5 s5,4 s7,4,3 s6,3,2
s3 s7,2 s6,1 s7,5,0 s7,6,4 s7,6,5,3 s7,6,5,4,2 s7,6,5,4,3,1
s4 s7,3 s7,6,2 s6,5,1 s7,5,4,0 s6,4,3 s5,3,2 s7,4,2,1
s5 s4 s7,3 s7,6,2 s6,5,1 s7,5,4,0 s6,4,3 s5,3,2
s6 s5 s4 s7,3 s7,6,2 s6,5,1 s7,5,4,0 s6,4,3
s7 s6 s5 s4 s7,3 s7,6,2 s6,5,1 s7,5,4,0


(6.14)

u = [u, 0, 0, 0, 0, 0, 0, 0]T , and u is obtained by logical OR operations of all inputs and

outputs, i.e., u = (s0∨s1∨ . . . s7)∨ (s−1
0 ∨s−1

1 ∨ . . . s−1
7 ). Moreover, in (6.14), the modulo-

2 additions (XOR operations) of the coordinates of s are shown with commas in indices,

e.g., s7,0 = s7 + s0.

Proof We prove (6.13) for two cases of s ̸= 0 and s = 0, separately. Let the input

s be a non-zero field element in GF (28) generated by P (x) = x8 + x4 + x3 + x + 1.

Then, the multiplicative inversion should generate s−1. Using (6.12) in Theorem 6.1 and

considering the irreducible polynomial of P (x), the 7× 8 matrix Q can be obtained as

Q =


1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
1 1 0 1 0 1 0 1
1 0 1 1 0 0 1 0
0 1 0 1 1 0 0 1

 . (6.15)

This matrix is obtained by using the representations of α8, α9, . . . , α14 with respect to

the polynomial basis for different rows of Q. Considering A = s ̸= 0 and B = s−1 in
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Theorem 6.1, the matrices L and U in (6.10) and (6.11) are functions of the 8-bit input

vector s as

L =


s0 0 0 0 0 0 0 0
s1 s0 0 0 0 0 0 0
s2 s1 s0 0 0 0 0 0
s3 s2 s1 s0 0 0 0 0
s4 s3 s2 s1 s0 0 0 0
s5 s4 s3 s2 s1 s0 0 0
s6 s5 s4 s3 s2 s1 s0 0
s7 s6 s5 s4 s3 s2 s1 s0

 , (6.16)

U =


0 s7 s6 s5 s4 s3 s2 s1
0 0 s7 s6 s5 s4 s3 s2
0 0 0 s7 s6 s5 s4 s3
0 0 0 0 s7 s6 s5 s4
0 0 0 0 0 s7 s6 s5
0 0 0 0 0 0 s7 s6
0 0 0 0 0 0 0 s7

 . (6.17)

Substituting Q, L, and U from (6.15)-(6.17) into (6.9) and denoting Z = L+QTU ,

one can obtain the matrix Z presented in (6.14). Since s ̸= 0 = (0, 0, ..., 0) ∈ GF (28),
u = 1 and the result of multiplication is C = A.B mod P (x) = 1 ∈ GF (28), i.e.,

[c0, c1, ..., c7]
T = [1, 0, ..., 0]T . Therefore, using (6.9), one can prove that (6.13) is valid

for s ̸= 0. Moreover, for s = 0, the output of the multiplicative inversion generates

0 = (0, 0, ..., 0). Thus, all entries of the matrix Z and hence all 8 entries of the left hand

side vector of (6.13) are equal to zero. In such a case, the vector u = [0, 0, ..., 0]T since

the result of the OR operation among all sis and s−1
i s are zero, i.e., u = 0. Therefore,

the proof is complete.

The validity of (6.13) can be used to detect specific faults in the inversion block. Let

us consider (6.13) for 3 special cases. If both the input and the output are zero, i.e.,

s = s−1 = 0 ∈ GF (28), the output is error-free. Then, both sides of (6.13) are zero and

thus it holds which means no fault is detected. On the other hand, the left hand side

of (6.13) is zero while in the right hand side, u = 1 in the following two cases: (i) the

input is zero (s = 0) and the erroneous output is not zero, i.e., s−1 ̸= 0, (ii) the input

is not zero, i.e., s ̸= 0, but the erroneous output is zero (s−1 = 0). Thus, in both cases

(6.13) does not hold which indicates that the errors in the output of the multiplicative

inversion have been occurred.

One can figure out that implementing (6.13) needs 64 ANDs, 15 ORs, and 143 XOR

gates. It is noted that using subexpression sharing, one can reduce the number of XOR

gates to 84. If one implements the S-box using the composite field presented in [22], it

requires 36 AND gates and 123 XOR gates for the original S-box implementation. Then,

adding this fault detection scheme would require approximately 91% area overhead. This
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is derived assuming that an XOR gate is implemented by 10 transistors [95] and the silicon

area of an AND is 0.6 of that of an XOR gate. Furthermore, the upper bound delay of the

multiplication can be derived as TM ≤ TA +5TX , where TA and TX are the delays for an

AND and an XOR gate, respectively [94]. This is the delay overhead after the derivation

of the output of the SubBytes transformation. As a result of this high overhead, this

scheme may not be applied for the area/delay-constrained applications.

As mentioned above, comparing the actual result of the multiplication of the input

and the output of the multiplicative inversion with the predicted one is not area efficient.

Therefore, considering our derivations of matrix Z in (6.14), the complexity of the fault

detection scheme of the multiplicative inversion can be reduced by deriving the partial

result of the multiplication of the input and the output based on the rows that have

the lowest overhead. Therefore, one can use this low-complexity signature for the fault

detection of the multiplicative inversion.

6.2.2 The Proposed Scheme for the S-box and the Inverse S-box

The scheme in [38] does not take the affine transformation into account and checks it

separately with an additional overhead. Furthermore, if one implements SubBytes in

the AES using LUTs, there is no access to the output of the multiplicative inversion.

Therefore, the above mentioned scheme cannot be used. In what follows, we propose

a new scheme which is independent of the way the S-box and the inverse S-box are

implemented. First, we obtain the matrix-based S-box formulations as follows:

Theorem 6.2 Let s = s7α
7 + s6α

6 + s5α
5 + s4α

4 + s3α
3 + s2α

2 + s1α + s0 and s′ =

s′7α
7 + s′6α

6 + s′5α
5 + s′4α

4 + s′3α
3 + s′2α

2 + s′1α + s′0 be the 8-bit input and output of the

S-box. Then, one can obtain the relation between the input and output of the S-box as:

Ms′ +m = u′, (6.18)

where, u′ = [u′, 0, 0, 0, 0, 0, 0, 0]T , u′ = (s0∨s1∨. . . s7)∨(s′0∨s′1∨s′2∨s′3∨s′4∨s′5∨s′6∨s′7), s′ =
[s′0, s

′
1, s

′
2, s

′
3, s

′
4, s

′
5, s

′
6, s

′
7]

T , and m = [s6,0, s7,6,1, s7,2,0, s6,3,1, s7,6,4,2, s7,5,3, s6,4, s7,5]
T .
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Furthermore, the 8× 8 matrix M is denoted as follows

M =



s6,5,2 s5,4,1 s7,5,3,0 s6,4,2 s7,5,3,1 s7,6,5,2,0 s7,6,5,4,1 s7,6,3,0
s7,5,3,2,0 s6,4,2,1 s7,6,5,4,3,1 s7,6,5,4,3,2,0 s7,6,5,4,3,2,1 s5,3,2,1 s4,2,1,0 s6,4,3,1
s6,4,3,1 s7,5,3,2,0 s7,6,5,4,2 s7,6,5,4,3,1 s7,6,5,4,3,2,0 s6,4,3,2 s5,3,2,1 s7,5,4,2,0
s7,6,4,0 s6,5,3 s6,0 s7,5 s6,4 s6,4,3,2,0 s7,5,3,2,1 s7,5,1
s7,6,2,1 s7,6,5,1,0 s5,3,1 s4,2,0 s3,1 s6,4,3,2,1 s7,5,3,2,1,0 s7,3,2
s7,3,2 s7,6,2,1 s6,4,2,0 s5,3,1 s4,2,0 s7,5,4,3,2 s6,4,3,2,1 s4,3,0
s4,3,0 s7,3,2 s7,5,3,1 s6,4,2,0 s5,3,1 s6,5,4,3,0 s7,5,4,3,2 s5,4,1
s5,4,1 s4,3,0 s6,4,2 s7,5,3,1 s6,4,2,0 s7,6,5,4,1 s6,5,4,3,0 s6,5,2


.(6.19)

Proof We prove (6.18) for two cases of s ̸= 0 and s = 0, separately. Let the 8-bit input

s be a non-zero field element in GF (28). Considering (6.2), one can obtain

s−1 = Γ−1s′ +Γ−1γ =



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0


s′ +



1
0
1
0
0
0
0
0


. (6.20)

By substituting s−1 from (6.20) in (6.13), one reaches ZΓ−1s′ + ZΓ−1γ which is the

same as the left hand side of (6.18). Now, let us denote ZΓ−1 = M and ZΓ−1γ = m.

Then, the left hand side of (6.18) is obtained. Since s ̸= 0 = (0, 0, ..., 0) ∈ GF (28),

u′ = 1. Moreover, according to the proof of Corollary 6.1, for s ̸= 0, the left hand side of

(6.13) is [1, 0, ..., 0]T , i.e., the result of multiplication C = A.B mod P (x) = 1 ∈ GF (28).
This implies that the left hand side of (6.13) be Zs−1 = [1, 0, ..., 0]T = u′. Furthermore,

because we have Zs−1 = Ms′ + m, one can prove that (6.18) is valid for s ̸= 0.

Moreover, according to (6.2), for the input s = 0 = (0, 0, ..., 0) ∈ GF (28), we have

the output as s′ = [s′0, s
′
1, ..., s

′
7]

T = [1, 1, 0, 0, 0, 1, 1, 0]T which corresponds to the field

element s′ = {63}h = (0, 1, 1, 0, 0, 0, 1, 1) ∈ GF (28). Therefore, as seen in Theorem 6.2,

u′ = [0, 0, ..., 0]T since we have u′ = (s0∨s1∨. . . s7)∨(s′0∨s′1∨s′2∨s′3∨s′4∨s′5∨s′6∨s′7) = 0.

In addition, for s = 0, all the entries of the matrix M and the vector m in the left hand

side of (6.18) are equal to zero. This results in the vector [0, 0, ..., 0]T = u′ for the left

hand side of (6.18). Therefore, the proof is complete.

Let us consider (6.18) for the input s = 0 = (0, 0, ..., 0) ∈ GF (28). For this input, the

correct output is s′ = {63}h = (0, 1, 1, 0, 0, 0, 1, 1) ∈ GF (28) (see (6.2)). If the erroneous

output is not s′ = {63}h = (0, 1, 1, 0, 0, 0, 1, 1) ∈ GF (28), in the right hand side of (6.18)

we have u′ = 1, whereas, the left hand side is zero. Therefore, the erroneous output is

detected.
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Figure 6.1: The proposed structure-independent fault detection scheme of the S-box.

Proposition 6.1 Using subexpression sharing, the implementation of the left hand side

of (6.18) needs 64 AND gates and 111 XOR gates. Furthermore, the upper bound delay

of the relation in the left hand side of (6.18) is TA + 6TX , where, TA and TX are the

delays for an AND and an XOR gate, respectively.

Although checking the formulation of (6.18) detects all errors in the output of the

S-box, its implementation is very costly (see Proposition 6.1). To reduce the overhead of

the fault detection scheme, as seen in Fig. 6.1, we have obtained the single-bit parity for

the formulation of (6.18). As shown in this figure, this is obtained in order to compare

only one bit for an 8-bit data to detect any combination of odd number of erroneous bits

at the result of the left hand side of (6.18). Thus, one can check the parity of two sides

of (6.18) to obtain one bit equation for checking the S-box as follows:

Theorem 6.3 Let s = s7α
7 + s6α

6 + s5α
5 + s4α

4 + s3α
3 + s2α

2 + s1α + s0 ∈ GF (28),
and s′ = s′7α

7 + s′6α
6 + s′5α

5 + s′4α
4 + s′3α

3 + s′2α
2 + s′1α+ s′0 ∈ GF (28) be the 8-bit input

and output of the S-box. Then, the following equation holds for all the possible patterns
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of s and s′.

P(Ms′+m) = s0(s
′
b + s′c) + s1s

′
b + s2s

′
d + s3s

′
4 + s4(s

′
c + s′3)

+ s5s
′
a + s6(s

′
d + s′6) + s7(s′5 + s′4) = u′, (6.21)

where, s′a = s′0 + s′2 + s′3 + s′5, s
′
b = s′a + s′7, s

′
c = s′1 + s′4 + s′6, and s

′
d = s′2 + s′7.

Proof After obtaining the parity of two sides of (6.18) we have

P(Ms′+m) = Pu′ = u′, (6.22)

where, M , m and u′ are presented in Theorem 6.2. Considering the fact that parity is

a linear operation, one can obtain the left hand side of (6.22) as P(Ms′+m) = PMs′ +Pm.

Then, using M and m defined in Theorem 6.2, one can obtain PMs′ = s′0sa + s′1sb +

s′2sc+s
′
3(sa+s4)+s

′
4(sb+s3+s7)+s

′
5(sa+s7)+s

′
6(sb+s6)+s

′
7(s5+sc) and Pm = s6+s7,

where, sa = s0 + s1 + s5, sb = s0 + s4, sc = sa + s2 + s6. After rearranging, one reaches

(6.21) and the proof is complete.

To implement (6.21), 18 XOR gates and 8 AND gates and two NOT gates are needed.

Also, the delay overhead associated with this implementation is the delay of 6 XORs

and one AND after the completion of the S-box. It is noted that this delay can be

overlapped by other AES round transformations and hence it will not reduce the speed

of the entire fault detection AES implementation. More details on this will be presented

later in this chapter. The parity obtained by the parity circuit is then compared with

u′ (see Theorems 6.2 and 6.3) to obtain the error indication flag of each S-box, i.e., er,c,

0 ≤ r, c ≤ 3. It is noted that using an OR tree for the error indication flags of 16 S-boxes,

the final error indication flag of the entire SubBytes transformation is obtained. The final

error indication flag of the SubBytes transformation signals the errors if at least one of

the error indication flags of 16 S-boxes detect errors.

Now, we want to present the fault detection scheme for the inverse S-box in the AES

decryption. The inverse S-box of the decryption consists of the inverse affine transfor-

mation (the inverse of the affine transformation in (6.2)) followed by the multiplicative

inversion. In other words, one can obtain the inverse S-box by removing the affine trans-

formation and adding the inverse affine one. This uses the input of s′ and the output of

s−1 with the following multiplicative inversion having the input of s−1 and the output of
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s. Therefore, Theorems 6.2 and 6.3 are also valid for the inverse S-box and hence we can

conclude the following for the inverse S-box.

Corollary 6.2 For the fault detection of the inverse S-box, one can use (6.21) by chang-

ing the place of the input and output, i.e., swapping the coordinates of s with s′.

6.3 Proposed Fault Detection Schemes for the AES

As mentioned before, the parity-based scheme proposed in [35] is one of the first fault

detection schemes and has received attention in the literature. Although the approach

in [35] is a good scheme in terms of the fault detection capability, it has two drawbacks.

First, this approach is based on using the expanded S-boxes and inverse S-boxes for

parity predictions, i.e., two blocks of 256 × 9 memory cells. Not only does this restrict

the AES encryption and decryption implementations to LUT-based S-boxes and inverse

S-boxes, but it has high area overhead. To counteract this drawback, one may use the

proposed fault detection scheme for the S-box or the inverse S-box. As an example, for

the AES encryption one may use (6.21) for the S-boxes. This results in obtaining the

output parity of each S-box concurrently without having an extra circuit for deriving

it, i.e., Ps′ =
∑7

i=0 s
′
i = s′b + s′c in (6.21). This simplifies the fault detection circuit of

the AES when the output parities of the S-boxes are utilized for the fault detection of

other transformations in the AES rounds in [35]. More specifically, if one uses the scheme

presented in [35] for the fault detection of the MixColumns transformation, the predicted

parities of this transformation become functions of the output parities of the ShiftRows

(SubBytes) transformation. Using the proposed scheme for the S-box in this chapter,

one can easily utilize the output parities of the S-boxes to predict the parities of the

MixColumns transformation.

The second drawback of the approach in [35] is the relatively high area complexity of

the parity predictions of MixColumns in the AES encryption. For the AES decryption,

the area complexity of the predicted parities of InvMixColumns is even more [36]. The

implementation results presented later in this chapter show the high area overhead of

this scheme. Considering the fact that a low-cost fault detection scheme for the AES

encryption and decryption is preferred, in this section, we propose signature-based low

complexity fault detection schemes for the transformations in the AES encryption and
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decryption. We consider AES-128 (which is denoted as AES in the remaining of this

chapter) for the sake of brevity. It is noted that the proposed schemes can be also

applied to AES-192 and AES-256. The proposed schemes for the AES transformations

are based on deriving the low-cost output signatures of the transformations in the AES

rounds and comparing them with their actual signatures for reaching the error indication

flags.

6.3.1 AES Encryption

We present the new fault detection structure for the AES encryption in the following. A

typical AES encryption round (except for the last round) consists of four transformations,

the fault detection schemes are shown in Fig. 6.2 and presented in details below.

SubBytes and ShiftRows

In the AES encryption, the SubBytes transformation consists of 16 S-boxes (see (6.3)).

Let er,c, 0 ≤ r, c ≤ 3, be the error indication flag for the S-box with the input and the

output of sr,c and s
′
r,c, respectively. The output state of such flags can be re-written as

16 formulations as follows

er,c = P(Mr,cs′r,c+mr,c) + u′r,c, 0 ≤ r, c ≤ 3, (6.23)

where, u′r,c is defined in Theorem 6.2 and for a typical S-box, P(Mr,cs′r,c+mr,c) is presented

in (6.21).

The 128-bit output of the SubBytes transformation acts as the input to ShiftRows.

As seen in (6.4), the output state of ShiftRows is obtained by shifting the state entries in

(6.3). Therefore, by considering the corresponding output of ShiftRows in (6.4), one can

check two transformations of SubBytes and ShiftRows together using 16 error indication

flags. According to (6.4) and considering (6.23), for row r and column c, the output state

of the flags can be re-written as 16 formulations as follows

er,c = P(Mr,c∗s′r,c∗+mr,c∗ ) + u′r,c∗ , 0 ≤ r, c ≤ 3, (6.24)

where, c∗ = (r + c)mod 4.

According to (6.24), 16 error indication flags for the SubBytes and ShiftRows trans-

formations, i.e., one error indication flag for each byte, are obtained. This is shown in
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Figure 6.2: The proposed fault detection scheme for the ith round of the AES encryption.

Fig. 6.2. As seen in this figure, (6.24), i.e., instances of the hardware implementation of

(6.21), is utilized for obtaining 16 error indication flags.

MixColumns and AddRoundKey

The third and the fourth transformations in a typical AES encryption round are Mix-

Columns and AddRoundKey. It is noted that MixColumns is constructed using (6.5).

Furthermore, according to (6.6), AddRoundKey is the modulo-2 addition of the input

state with the roundkey. In what follows, we present a key formulation that is used for

deriving a low-complexity fault detection scheme for MixColumns and AddRoundKey

combined.

Theorem 6.4 Let SR(S′) = [s′r,c∗ ]
3
r,c=0 and K = [kr,c]

3
r,c=0 be the input and the round-

key input of MixColumns and AddRoundKey in round i, respectively. Let the output of

AddRoundKey be O = [or,c]
3
r,c=0 (see (6.6)). Then, the following holds:

3∑
r=0

(s′r,c∗ + kr,c + or,c) = 0 ∈ GF (28), 0 ≤ c ≤ 3, (6.25)
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where, c∗ = (r + c)mod 4, and each summation is over GF (28) which consists of eight

modulo-2 additions.

Proof After adding the columns of S′′ in (6.5), one reaches the following:

s′′0,0 + s′′1,0 + s′′2,0 + s′′3,0 = (6.26)

({2}16 + {1}16 + {1}16 + {3}16)(s′0,0 + s′1,1 + s′2,2 + s′3,3),

s′′0,1 + s′′1,1 + s′′2,1 + s′′3,1 = (6.27)

({2}16 + {1}16 + {1}16 + {3}16)(s′0,1 + s′1,2 + s′2,3 + s′3,0),

s′′0,2 + s′′1,2 + s′′2,2 + s′′3,2 = (6.28)

({2}16 + {1}16 + {1}16 + {3}16)(s′0,2 + s′1,3 + s′2,0 + s′3,1),

s′′0,3 + s′′1,3 + s′′2,3 + s′′3,3 = (6.29)

({2}16 + {1}16 + {1}16 + {3}16)(s′0,3 + s′1,0 + s′2,1 + s′3,2).

Considering the fact that {3}16 = {1}16+{2}16, we have ({2}16+{1}16+{1}16+{3}16) =
{1}16. Moreover, the right hand sides of (6.26)-(6.29) are the additions of the columns

of matrix SR(S′) in (6.4). Therefore, the addition of the column elements of S′′ is equal

to that of the corresponding column of SR(S′), i.e.,
∑3

r=0 s
′′
r,c =

∑3
r=0 s

′
r,c∗ , 0 ≤ c ≤ 3.

Furthermore, according to (6.6), we have

3∑
r=0

or,c =
3∑

r=0

s′′r,c +
3∑

r=0

kr,c, 0 ≤ c ≤ 3. (6.30)

Therefore, considering (6.30) we reach

3∑
r=0

or,c =
3∑

r=0

s′r,c∗ +
3∑

r=0

kr,c, 0 ≤ c ≤ 3. (6.31)

Considering (6.31), we have
∑3

r=0(s
′
r,c∗+kr,c+or,c) = (0, 0, ..., 0) ∈ GF (28) and the proof

is complete.

Now, let us introduce the four 8-bit error indication flags for four columns of the state

as

Ec =
3∑

r=0

(s′r,c∗ + kr,c + or,c), 0 ≤ c ≤ 3. (6.32)
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One can use Theorem 6.4 to verify that for the error-free situation, all 32 bits of such

flags in (6.32) are zero, i.e., Ec = 0 = (0, 0, ..., 0) ∈ GF (28), 0 ≤ c ≤ 3. These 32 error

indication flags can be used for the MixColumns and AddRoundKey transformations

combined, i.e., 8 error indication flags for each column of the state matrix. This is shown

in Fig. 6.2. It is noted that in Fig. 6.2, [kr,c]
3
r,c=0 is the round i key. As seen in this figure,

using (6.32), 32 error indication flags are obtained. It is noted that these error indication

flags can be compressed so that n, 1 ≤ n ≤ 32, error indication flags for these two

transformations are achieved. This can be performed by ORing different combinations

of the 32 error indication flags obtained in (6.32) as denoted by the compressor block in

Fig. 6.2. This gives us the freedom in the number of the error indication flags used in

the fault detection scheme of the MixColumns and AddRoundKey transformations. It is

interesting to note that although up to 32 flags can be used, our simulations show that

using 16 error indication flags (the same number as the flags derived for SubBytes and

ShiftRows), greater than 99% of the errors are covered.

The last round of the AES encryption (round 10 in AES-128 encryption) consists of

three transformations, i.e., SubBytes, ShiftRows and AddRoundKey. In other words,

compared to the other encryption rounds, the MixColumns transformation has been

removed. We present the following for the fault detection of this round.

Remark Similar to the fault detection scheme for the other rounds of the AES en-

cryption, one can use (6.24) for the last encryption round to derive 16 error indication

flags for SubBytes and ShiftRows combined. Furthermore, one can use (6.31) for the

relation of the inputs and the output of AddRoundKey (see also Fig. 6.2 by removing

MixColumns). Therefore, (6.32) can also be used for the last round. Consequently, by

removing the MixColumns transformation, one can also utilize the fault detection scheme

in Fig. 6.2 for the last encryption round of the AES.

Further Improvements

The proposed fault detection scheme for a typical round of the AES encryption can be

modified so that the complexity of the scheme is reduced. This improvement is based

on the fact that using subexpression sharing, one can reduce the number of logic gates

utilized in obtaining two sets of the error indication flags shown in Fig. 6.2. Specifically,

in this chapter, we propose a fault detection scheme for the MixColumns transformation
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which has 25% less area overhead than the scheme presented in [35] and [36].

As seen in Fig. 6.2, the error indication flags of SubBytes and ShiftRows are obtained

utilizing the output state of ShiftRows, i.e., SR(S′) in (6.4). Furthermore, as shown in

this figure, this state is also used in obtaining the error indication flags of MixColumns

and AddRoundKey. This leads us to perform subexpression sharing in deriving these two

sets of error indication flags to have low-complexity fault detection scheme of the AES

encryption. We use (6.32) to derive 16 low-complexity signatures for the MixColumns

and AddRoundKey transformations, i.e., 4 signatures for each column of the state matrix.

This is performed by modulo-2 addition of two sets of four coordinates of (6.32) for each

column, i.e., Ec = (ec,7, ec,6, ..., ec,0) ∈ GF (28), 0 ≤ c ≤ 3. Let Êc = (ec,4, ec,2, ec,1, ec,0)

and Ěc = (ec,5, ec,7, ec,6, ec,3). Then, the four error indication flags for column c of the

state are

Ec = Êc + Ěc, 0 ≤ c ≤ 3. (6.33)

One can utilize four sets of modulo-2 additions of the output bits of each S-box pre-

computed in (6.21), i.e., s′4+s
′
5, s

′
2+s

′
7, s

′
1+s

′
6, and s

′
0+s

′
3, to obtain the low-complexity

error indication flags in (6.33). This is shown in Fig. 6.3. As seen in this figure, the

Common Subexpressions (CS) unit has been utilized to obtain 64 common subexpressions,

i.e., 4 for each of the 16 S-boxes in the SubBytes transformation. As depicted in Fig.

6.3, these outputs are then used in obtaining the two sets of 16 error indication flags

for SubBytes and ShiftRows combined, i.e., er,c, 0 ≤ r, c ≤ 3, and for MixColumns and

AddRoundKey combined, i.e., Ec, 0 ≤ c ≤ 3, respectively. In Fig. 6.3, realizing (6.24)

is less complex than the one in Fig. 6.2. This is because (6.24) utilizes the hardware

implementation of (6.21) which is less complex when the common subexpressions are

used. It is noted that if any of the derived two sets of error indication flags are one, the

error is detected. Whereas, if all of them are zero, no error has been detected although

the output can be erroneous or correct.

One can compare the complexity of the proposed fault detection scheme for Mix-

Columns with that of [35] and [36]. For comparison, we consider the error indication

flags of this transformation separately, i.e., without considering AddRoundKey. In the

fault detection scheme of MixColumns, we only need 3 XOR gates for each signature,

i.e., modulo-2 adding of the 4 common subexpressions presented above, e.g., s′4 + s′5, in

four rows. Therefore, we have the following remark:
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Figure 6.3: The proposed low-complexity fault detection scheme for the ith round of the
AES encryption utilizing subexpression sharing.

Remark For having 16 signatures for the MixColumns transformation, 48 XOR gates

are needed. Comparing this with the parity-based scheme presented in [35] and [36] which

needs 64 XOR gates for the predicted parities, this is a 25% area overhead reduction.

Moreover, there are two XORs in the critical path delay of the proposed scheme for

MixColumns compared to 3 XORs for the scheme in [35] and [36] which is a 33% reduction

in the critical path delay.

6.3.2 AES Decryption

We present the fault detection scheme for the AES decryption in what follows. It is noted

that the AES decryption rounds (except for the last round) consist of four transforma-

tions, i.e., InvShiftRows, InvSubBytes, AddRoundKey and InvMixColumns. The fault

detection schemes of these transformations are presented in details in the following.
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InvShiftRows and InvSubBytes

As seen in (6.7), in the AES decryption, the 128-bit input to InvShiftRows, i.e., the

state matrix S′ entries, are cyclically shifted to the right with the first row remained

unchanged. Therefore, this transformation is just a re-wiring in hardware.

The output state of the InvShiftRows transformation, i.e., ISR(S′) in (6.7), acts

as the input to InvSubBytes. The InvSubBytes transformation in the AES decryption

consists of 16 inverse S-boxes. One can use Corollary 6.2 for the fault detection scheme of

the inverse S-boxes. Then, the fault detection scheme for InvShiftRows and InvSubBytes

combined can be derived so that we are able to check these two transformations together.

Let er,c, 0 ≤ r, c ≤ 3, be the error indication flag of each byte of these two transformations

combined with the input and the output of s′r,c and sr,c, respectively. Then, according to

(6.18), the output state of such flags can be re-written as 16 formulations as follows

er,c = P(Mr,cs′r,c∗∗+mr,c) + u′r,c, 0 ≤ r, c ≤ 3, (6.34)

where, c∗∗ = |r − c|.
According to (6.34), 16 error indication flags for the InvShiftRows and InvSubBytes

transformations, i.e., one error indication flag for each byte, are obtained. This is shown

in Fig. 6.4. As seen in this figure, (6.34), i.e., instances of the hardware implementation

of (6.21), is utilized for obtaining these 16 error indication flags.

AddRoundKey and InvMixColumns

As seen in Fig. 6.4, the third and the forth transformations in a typical AES decryption

round are AddRoundKey and InvMixColumns. In the AddRoundKey transformation,

the input state, i.e., S, is added with the roundkey input state, i.e., K. Furthermore,

the InvMixColumns transformation is equivalent to multiplying the input state with the

constant matrix in (6.8). In what follows, we present a key formulation used for deriving

a low-complexity fault detection scheme for these two transformations combined.

Theorem 6.5 Let K = [kr,c]
3
r,c=0 and S = [sr,c]

3
r,c=0 be the roundkey input and the

input of AddRoundKey in round i, respectively. Let the output of InvMixColumns be

O = [or,c]
3
r,c=0 (see (6.8)). Then, the following holds:

3∑
r=0

(sr,c + kr,c + or,c) = 0 ∈ GF (28), 0 ≤ c ≤ 3, (6.35)
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Figure 6.4: The proposed fault detection scheme for the ith round of the AES decryption.

where, each summation is over GF (28) which consists of eight modulo-2 additions.

Proof After adding the columns of O, according to (6.8) one reaches

o0,0 + o1,0 + o2,0 + o3,0 = (6.36)

({e}16 + {9}16 + {d}16 + {b}16)(s′′0,0 + s′′1,0 + s′′2,0 + s′′3,0),

o0,1 + o1,1 + o2,1 + o3,1 = (6.37)

({e}16 + {9}16 + {d}16 + {b}16)(s′′0,1 + s′′1,1 + s′′2,1 + s′′3,1),

o0,2 + o1,2 + o2,2 + o3,2 = (6.38)

({e}16 + {9}16 + {d}16 + {b}16)(s′′0,2 + s′′1,2 + s′′2,2 + s′′3,2),

o0,3 + o1,3 + o2,3 + o3,3 = (6.39)

({e}16 + {9}16 + {d}16 + {b}16)(s′′0,3 + s′′1,3 + s′′2,3 + s′′3,3).

We have {e}16 + {9}16 + {d}16 + {b}16 = {1}16. Noting that the right hand sides of

(6.36)-(6.39) are the additions of the columns of the output state of InvMixColumns,
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the addition of the column elements of S′′ is equal to that of the corresponding column

of O, i.e.,
∑3

r=0 s
′′
r,c =

∑3
r=0 or,c, 0 ≤ c ≤ 3. Furthermore, for the AddRoundKey

transformation we have
3∑

r=0

s′′r,c =
3∑

r=0

sr,c +
3∑

r=0

kr,c, 0 ≤ c ≤ 3. (6.40)

Therefore, according to (6.40) we reach

3∑
r=0

or,c =
3∑

r=0

sr,c +
3∑

r=0

kr,c, 0 ≤ c ≤ 3. (6.41)

Considering (6.41), one can obtain
∑3

r=0(sr,c + kr,c + or,c) = (0, 0, ..., 0) ∈ GF (28) and

the proof is complete.

Similar to the AES encryption, for the AES decryption, we introduce the four 8-bit error

indication flags for four columns of the state as

Ec =
3∑

r=0

(sr,c + kr,c + or,c), 0 ≤ c ≤ 3. (6.42)

These 32 error indication flags for four columns of the state can be utilized for the fault

detection of the AddRoundKey and InvMixColumns transformations combined. This is

shown in Fig. 6.4. It is noted that like the AES encryption, these error indication flags can

be compressed so that n, 1 ≤ n ≤ 32, error indication flags for these two transformations

are achieved. This gives us the freedom in the number of the error indication flags used

in the fault detection scheme of the AddRoundKey and InvMixColumns transformations.

It is interesting to note that our simulations for the AES decryption show that using 16

error indication flags more than 99% of the errors are covered.

Similar to the AES encryption, in the last round of the AES decryption, three trans-

formations are used, i.e., InvMixColumns is removed. We present the following for the

fault detection of this round.

Remark Similar to the fault detection scheme for the other rounds of the AES decryp-

tion, one can use (6.34) for the last decryption round to derive 16 error indication flags

for InvShiftRows and InvSubBytes combined. Furthermore, one can use (6.41) for the

relation of the inputs and the output of AddRoundKey (see also Fig. 6.4 by removing

InvMixColumns). Therefore, (6.42) can also be used for the last round. Consequently,

by removing the InvMixColumns transformation, one can also utilize the fault detection

scheme in Fig. 6.4 for the last decryption round of the AES.
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Further Improvements

Using subexpression sharing, the proposed fault detection scheme for a typical AES

decryption round can be modified so that its hardware complexity is reduced. As seen

in Fig. 6.4, the error indication flags of InvShiftRows and InvSubBytes are obtained

utilizing the output state of InvSubBytes, i.e., S. As shown in Fig. 6.4, this output state

is also used in obtaining the error indication flags of AddRoundKey and InvMixColumns.

Therefore, similar to the fault detection scheme for the AES encryption, we can perform

subexpression sharing to obtain these two sets of error indication flags to have low-

complexity fault detection scheme of the AES decryption. First, we present the following

for the inverse S-boxes by rearranging Corollary 6.2 so that we are able to present a

low-complexity fault detection scheme for the AES decryption.

Corollary 6.3 Let s′ = s′7α
7 + s′6α

6 + s′5α
5 + s′4α

4 + s′3α
3 + s′2α

2 + s′1α + s′0 ∈ GF (28),
and s = s7α

7 + s6α
6 + s5α

5 + s4α
4 + s3α

3 + s2α
2 + s1α+ s0 ∈ GF (28) be the 8-bit input

and output of the inverse S-box. Then, the following equation holds for all the possible

patterns of s and s′.

P(Ms′+m) = s′0sa + s′1sb + s′2sc + s′3(sa + s4) + s′4(sb + s3

+ s7) + s′5(sa + s7) + s′6(sb + s6) + s′7(s5 + sc) + s6

+ s7 = u′, (6.43)

where, sa = s0 + s1 + s5, sb = s0 + s4, sc = sa + s2 + s6, and u
′ = (s0 ∨ s1 ∨ . . . s7)∨ (s′0 ∨

s′1 ∨ s′2 ∨ s′3 ∨ s′4 ∨ s′5 ∨ s′6 ∨ s′7).

Proof According to Theorem 6.3 and Corollary 6.2, one can re-write (6.21) and swap

the input and the output to derive (6.43). Therefore, the proof is complete.

To implement the signature presented in the left hand side of (6.43), 20 XOR gates and

8 AND gates are needed. Then, it is compared with u′ to obtain the error indication flag

of each inverse S-box.

Using Corollary 6.3 and Theorem 6.5, we derive 16 low-complexity signatures for the

AddRoundKey and InvMixColumns transformations, i.e., 4 signatures for each column of

the state matrix. This is performed by modulo-2 addition of two sets of four coordinates

of (6.42) for each column, i.e., Ec = (ec,7, ec,6, ..., ec,0) ∈ GF (28), 0 ≤ c ≤ 3. For the
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Figure 6.5: The proposed low-complexity fault detection scheme for the ith round of the
AES decryption utilizing subexpression sharing.

AES decryption, let Éc = (ec,3, ec,2, ec,1, ec,0) and Èc = (ec,7, ec,6, ec,5, ec,4). Then, the

four error indication flags for column c of the state are

Ec = Éc + Èc, 0 ≤ c ≤ 3. (6.44)

One can utilize four sets of modulo-2 additions of the output bits of each inverse S-box

pre-computed in Corollary 6.3, i.e., s0 + s4, s1 + s5, s2 + s6 and s3 + s7, to obtain the

low-complexity error indication flags in (6.44). This is shown in Fig. 6.5. As seen in this

figure, similar to the AES encryption, the Common Subexpressions (CS) unit has been

utilized to obtain 64 common subexpressions. Then, these outputs are used in obtaining

the two sets of 16 error indication flags for the AES decryption, respectively. It is noted

that in Fig. 6.5, the hardware implementation of (6.43) is used in (6.34) which is less

complex when the common subexpressions are used.

The proposed fault detection scheme for InvMixColumns requires 48 XOR gates with

two XOR gates in the critical path. Compared to the scheme presented in [36] for the

InvMixColumns transformation, the proposed scheme has less area and critical path

delay. It is noted that the authors in [36] have not presented the equations for the



Chapter 6 97

parity-based fault detection scheme of InvMixColumns, mentioning that they have the

same structure as those of MixColumns but they are more complicated. Therefore, at

least a 25% area overhead reduction and a 33% reduction in the critical path delay are

expected for the proposed scheme.

6.4 Error Simulations

We have considered both single and multiple stuck-at errors for the proposed scheme.

These models cover both natural faults and fault attacks [82]. If exactly one bit error

appears at the output of the AES encryption or decryption rounds, the presented parity-

based fault detection scheme is able to detect it and the error coverage of the proposed

scheme is about 100%. This is because in this case, one of the 8-bit four error indication

flags in (6.33) or (6.44) alarms the error. However, due to the technological constraints,

single stuck-at error may not be applicable for an attacker to flip exactly one bit to gain

more information [82]. Thus, multiple bits will actually be flipped and hence multiple

stuck-at errors are also considered in this chapter.

For the multiple stuck-at error models, we rely on simulations for both burst and

random errors. In the case of fault attacks, it is more likely that a transient burst

error appears instead of one-bit flips due to the present constraints [82]. Moreover, most

internal faults are modeled by transient random errors [82]. It is noteworthy that the

results of our simulations are valid for the transient errors. Furthermore, in case of

occurring permanent internal faults, the same simulation results are achieved.

We use stuck-at error model at the outputs of the AES transformations. This type

of error forces multiple nodes to be stuck at logic one (for stuck-at one) or zero (for

stuck-at zero) independent of the error-free values. It is noted that we use Fibonacci

implementation of the Linear Feedback Shift Registers (LFSR) with 128 output taps

for injecting random multiple errors, where, the numbers, locations and types of the

errors are randomly chosen. In this regard, maximum sequence length polynomial for

the feedback is selected as L(X) = X128+X29+X27+X2+1 according to the maximum

sequence length taps presented in [91].

We use the fault detection schemes presented in the previous section and shown in Fig.

6.3 and Fig. 6.5 for the AES encryption and decryption, respectively. In our simulations
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using Xilinx R⃝ ISETM version 9.1 Simulator [80], we use the error indication flags at the

outputs of ShiftRows (cover the errors for SubBytes and ShiftRows) and AddRoundKey

(cover the errors for MixColumns and AddRoundKey) for the AES encryption in Fig.

6.3. Moreover, for the AES decryption in Fig. 6.5, we obtain the error indication flags

at the outputs of InvSubBytes (cover the errors for InvShiftRows and InvSubBytes) and

InvMixColumns (cover the errors for AddRoundKey and InvMixColumns). The results of

our simulations show that by having these two sets of error indication flags, an acceptable

error coverage is achieved.

In our simulations, we inject errors in two manners, i.e., burst and random errors,

and obtain the error coverage for these two cases, the details of which are as follows.

Burst Errors

The first type of errors that we consider is the burst errors. For this type of errors, we

assume that stuck-at errors occur at the output of only one transformation at a time,

i.e., the errors are injected at the 128-bit output of only one transformation in the AES

encryption/decryption in Fig. 6.3 and Fig. 6.5. This includes both stuck-at zero and

stuck-one errors. Then, using two series of 16-bit signatures shown in these figures, the

error coverage is obtained. The results of our simulations for the burst errors in the AES

encryption and decryption are shown in Fig. 6.6. In this figure, the solid and dashed

lines represent the error coverage for the AES encryption and decryption, respectively.

As seen in this figure, we have injected up to 700, 000 burst errors at the transformation

outputs, one at a time, and have monitored the errors that are covered by the error

indication flags. It is noted that because the errors are injected only at the output of

one transformation, only one of the two series of the error indication flags can detect

them. As seen in this figure, after injecting up to 700, 000 burst errors, for both the AES

encryption and decryption, the error coverage for the two sets of error indication flags is

greater than 99.996%.

Random Errors

The second type of errors is random errors, where errors are injected at random locations,

i.e., four 128-bit outputs of the transformations. Our simulations show that after inject-

ing up to 700, 000 random errors, the higher error coverages of very close to 100% are
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Figure 6.6: Simulation results for the error coverages of the proposed fault detection
schemes.

obtained, i.e., all the errors are covered by at least one of the two series of the error indi-

cation flags. We also expect the error coverage of close to 100% if we increase the number

of errors injected. The high error coverages of the proposed scheme for the AES rounds

is suitable for the security-constrained applications on FPGAs. These include any AES

algorithms implemented on the FPGAs as well as the bitstream security mechanisms.

6.5 AES FPGA Implementations and Comparisons

The proposed schemes in this chapter are structure-independent and can be applied to

the AES using both the LUT-based and the composite field S-boxes and inverse S-boxes.

In this section, we have implemented both of these structures so that we are able to

compare the results for the presented schemes with those using LUTs and composite

fields. In what follows, we consider the implementation of both the AES encryption and

decryption.

For the FPGA implementations, we have used VHDL as the design-entry for ISETM

version 9.1. Furthermore, the synthesis is performed using Xilinx R⃝ Synthesis Tool

(XSTTM) on VirtexTM-4 and VirtexTM-5 families [80]. It is noted that the results of

the implementations in this section, i.e., the number of occupied slices and the minimum

periods (maximum working frequencies), are all post place and route results.
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We have implemented the original AES using LUT-based S-boxes and inverse S-boxes

on VirtexTM-4 (xc4vlx160-12) and VirtexTM-5 (xc5vlx110-3) devices. These larger devices

are chosen to have enough number of slices needed for the fault detection scheme in [35]

and [36]. We have used pipelined distributed memories for the LUT-based S-boxes and

inverse S-boxes in the AES to increase the design speed and the overall frequency. The

XSTTM uses the LUT resources in the FPGAs in order to implement the distributed

memories. Furthermore, pipelining is achieved by describing the necessary registers in

the design-entry language. The schemes in [34], [35], [36], [39], Hardware Redundancy

and the proposed ones in this chapter have been implemented and the results are depicted

in Table 6.1. As seen in this table, the Error Coverage (EC %), the number of occupied

slices, the maximum working frequency (MHz), the throughput (Gbps) and the efficiency

(Mbps/slice) for the original schemes and the Fault Detection (FD) ones are derived.

Moreover, the slice overheads (overheads for the number of occupied slices) are presented.

It is noted that there is a difference in the implementations of the LUT-based S-boxes

and inverse S-boxes using distributed memories for the selected FPGAs. Specifically, for

VirtexTM-5 and VirtexTM-4, 256 and 64 bits per CLB are specified for the distributed

memories, respectively. This causes the LUT implementations for VirtexTM-5 to be more

compact as compared to those on VirtexTM-4 [80]. This can be observed in Table 6.1. In

this regard, the number of slices for the original AES encryption and decryption using

LUTs and the slice overhead for the scheme in [35] and [36] whose area overhead is

dominated by the expansion of the S-box to 512 × 9 memories is less on VirtexTM-5.

This makes VirtexTM-5 a suitable family for the AES using memory-based S-boxes and

inverse S-boxes and their fault detection schemes. Because of the higher number of slices

for the original AES encryption and decryption on VirtexTM-4, the slice overheads of the

proposed schemes and the scheme in [39] are less as compared to those for VirtexTM-5.
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As seen in Table 6.1, the number of slices for the original decryption is more than

that of the encryption. This is mainly because of the InvMixColumns transformation

which is more complex than MixColumns in the AES encryption. Furthermore, the slice

overhead for the scheme in [36] in which the LUTs sizes are expanded to 512 × 9 is

less on VirtexTM-5 family compared to VirtexTM-4. As seen in Table 6.1 in bold faces,

the proposed structure-independent scheme for the AES decryption is the most efficient

and the most compact one among the other schemes. Moreover, for the VirtexTM-5, the

proposed scheme for the AES encryption has the least slice overhead. However, the slice

overhead of the proposed scheme implemented on VirtexTM-4 is slightly more than that

of the scheme in [39]. It is noted that the low overhead of the scheme in [39] is because

it uses one-bit signatures for the 128-bit block of data. While, the proposed schemes and

the one in [35] and [36] use 16 bits for each 128-bit block. As seen in Table 6.1, this leads

to much higher error coverage.

The scheme in [38] is based on using the output of the multiplicative inversion (not

that of the S-box) to obtain a signature for fault detection. This scheme cannot be

applied to the S-boxes using LUTs where the output of the multiplicative inversion is

not accessible. Therefore, we have implemented the original AES encryption which uses

the S-boxes using polynomial basis and composite fields in order to have access to the

output of the multiplicative inversion. For this reason, we utilize the AES presented in

[22]. This implementation of the AES is a hardware optimization for the scheme in [20],

which is extensively used in the literature, see for example [13], [15]. Then, we have

implemented the scheme of [38] and compared it with the proposed scheme presented

in this chapter. Moreover, the scheme in [34] and Hardware Redundancy have been

implemented.

The results of the implementations are shown in Table 6.2. It is worth noting that in

[38], the fault detection scheme for the AES decryption is not presented. Therefore, no

comparison for the AES decryption with this scheme is presented in this table. It is noted

that we have not used sub-pipelining for the implementations and registers are only used

at the output of each round. Using sub-pipelining for the S-boxes using composite fields,

one can reach higher working frequencies compared to those for LUT-based S-boxes. As

seen in this table, the number of slices for the original AES encryption using S-boxes

in composite fields is less than those of the LUTs for VirtexTM-4 (compare Tables 6.1
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and 6.2 for VirtexTM-4). However, the original AES using LUT-based S-boxes is more

compact when VirtexTM-5 is used. As mentioned before, this is due to the low number

of slices needed for the implementation of the memories in this device family. As seen

in Table 6.2, the proposed scheme is the most compact and the most efficient scheme

compared to the scheme in [38], i.e., the efficiency degradations (percent degradation

from the efficiency of the original operations) and the slice overheads are the least for

two devices. It is noted that the proposed scheme in this chapter uses 16 error indication

flags for the 128-bit output states of the transformations. However, the scheme in [38]

utilizes 32 error indication flags for each output state. Therefore, more slice overhead

and greater error coverage are expected for that scheme. However, as discussed earlier,

this scheme cannot be applied to the AES using LUTs.

Furthermore, we have compared the proposed schemes in this chapter with the light

weight concurrent fault detection scheme for the AES S-boxes presented in [78]. This

scheme is based on using normal basis for logic gate implementations of the S-boxes in the

AES encryption. In this fault detection scheme, the structure of the S-box using normal

basis has been divided into 5 blocks. Then, the predicted parities of these blocks are

obtained. Moreover, through an exhaustive search among all available composite fields,

the optimum solution for the least overhead S-box and its parity predictions is achieved.

We have implemented the AES encryption with the original S-boxes using normal basis

in composite fields proposed in [23] and verified with the FPGA implementations in

[78]. Then, the fault detection scheme for the S-boxes in [78] has been utilized for

the SubBytes transformation while the proposed scheme in this chapter is used for the

other transformations. In other words, we derive 5 error indication flags for each S-

box in SubBytes (5 × 16 = 80 flags for the entire SubBytes transformation), while the

scheme in Fig. 6.3 is used for other AES encryption transformations using 16-bit flags.

Moreover, the proposed signature-based structure-independent scheme in this chapter,

i.e., the scheme in Fig. 6.3, has been implemented for the AES encryption with the

S-boxes using normal basis. The results of these implementations are also presented and

compared in Table 6.2. As seen in this table, the FPGA implementations of the original

AES encryption with the S-boxes using normal basis representation in composite fields

have less area compared to the traditional ones using polynomial basis, i.e., 6752 and

3692 compared to 7498 and 3718 for two devices, respectively.
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In addition, the proposed structure-independent scheme in this chapter has the least

area overhead complexities and the most efficiencies for both FPGA families. At this

point, we would like to mention that for the scheme in [78], higher error coverage and

slightly higher throughput are achieved compared to the proposed scheme in this chapter.

However, this is at the cost of the higher area overhead complexity. It is also noted that

the fault detection scheme in [78] not only can be only applied for the composite field

S-boxes but it is also dependent on the composite fields and normal basis chosen, i.e.,

the parity predictions would be different if other composite fields are used. Whereas, the

proposed scheme in this chapter is independent of the structures of the S-boxes used in

the AES encryption.

Recently, a fault tolerant approach which is resistant to fault attacks is proposed

in [50]. This approach is based on protecting the logic blocks and memories of the

AES. To protect the combinational logic blocks used in the four rounds of the AES,

either the parity-based scheme proposed in [36] or the duplication one presented in [96]

is implemented. Furthermore, to protect the memories used for storing the expanded

key and the state matrix either the Hamming or Reed-Solomon error correcting code is

implemented. The results of the comparison of the proposed scheme in this chapter with

the parity-based scheme of [35] and [36] for protecting the combinational logic elements of

the AES are depicted in Table 6.1. Moreover, for certain AES implementations containing

storage elements, one can use the error correcting code-based approach presented in

[50] in addition to the proposed scheme in this chapter to make a more reliable AES

implementation.

To conclude, in this chapter, we have studied a number of fault detection schemes

for the encryption and the decryption of the AES. New fault detection schemes which

are independent of the structures of the S-boxes and the inverse S-boxes have been

proposed. Our simulations show that for the AES encryption and decryption, these

structure-independent schemes reach high error coverage.

Furthermore, our proposed fault detection schemes and almost all of the previously

reported ones have been implemented on the recent Xilinx R⃝ VirtexTM FPGAs. Their

area and delay overheads for the AES encryption and decryption have been derived and

compared. In our implementations, we have considered using both the look-up table-

based and the composite field AES structures. Our FPGA implementations show that
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for the AES encryption, the slice overhead of the proposed scheme is around 9.8% to

26.9%, depending on the FPGA family and the AES implementation. In addition, for

the AES decryption, lower slice overhead is achieved. These slice overheads are less than

those for the other schemes which have the same error coverages.

According to our simulation and implementation results, with acceptable error cov-

erages, the structure-independent schemes proposed in this chapter have the highest

efficiencies, showing reasonable area and time complexity overheads. Based on the AES

structure chosen, the performance goals to achieve, and the resources available, one can

use combinations of the presented schemes in order to have much more reliable AES

encryption and decryption structures.
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Efficient and High-Performance
Parallel Hardware Architectures for
the AES-GCM

IN the previous chapters, we have proposed different high-performance fault diagnosis

approaches for the AES. These approaches help making the AES hardware architec-

tures reliable. In this chapter, we present high-speed, parallel hardware architectures for

reaching low-latency and high-throughput structures of the GCM. By investigating the

high-performance GF (2128) multiplier architectures, we benchmark the proposed AES-

GCM architectures using quadratic and sub-quadratic hardware complexity GF (2128)

multipliers. It is shown that the performance of the presented AES-GCM architectures

outperforms the previously reported ones in the utilized 65-nm CMOS technology.

In this chapter, using a complexity reduction technique, the hardware complexities

of different architectures for the subkey exponentiations in the GCM are reduced. Then,

by utilizing these low-complexity exponentiations, we propose efficient architectures for

the GCM, yielding high throughput and low latency. The proposed hardware architec-

tures for the AES-GCM are synthesized considering two types of GF (2128) multipliers.

We investigate the performance of quadratic and six different sub-quadratic complex-

ity GF (2128) multipliers. It is shown that the proposed architectures for the AES-GCM

have higher throughput and efficiency and reach lower latency compared to the previously

reported ones.

The organization of this chapter is as follows. In Section 7.1, the proposed high-

performance architectures for implementing the GCM are presented. Section 7.2 presents

the ASIC syntheses and comparisons of the proposed architectures and the previously

107
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reported ones. The results presented in this chapter can also be found in [72].

7.1 High-Performance GCM Parallel Architecture

In this section, we propose high-performance parallel architectures for the GCM. These

architectures improve the throughput and the latency of the structures presented in [68]

and [69] for GHASHH . They also remove the need for consecutive GF (2128) multiplica-

tions with H for deriving (1.1). We also derive the hardware implementations of the ex-

ponentiations of the hash subkey to the powers of 2, i.e., in the form of H2j , needing only

XOR gates. Because of the low complexity of the implementations of these exponents, we

take advantage of these low-cost hash subkey powers in the proposed high-performance

architectures. We utilize the powers in the form of H2j to obtain the other powers of

the hash subkey with the least number of GF multiplications over GF (2128) for proposed

architectures. For instance, we derive H3 = H2 ×H or H6 = H4 ×H2.

7.1.1 High-Performance GHASHH Function

Algorithm 3 is used for obtaining the key formulation for the proposed GHASHH func-

tion. Although there is no restriction in choosing q, i.e., the number of parallel adder-

multipliers, we use q = 2j, 1 ≤ j ≤ ⌊log2(n)⌋. This leads to lower number of clock cycles

and higher throughput needed for the implementations. In Algorithm 3, the output

GHASH (X,H) is obtained as follows:

X1 ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
times

⊕X2 ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
−1 times

×Hq−1 ⊕ . . .

⊕Xj ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
−1 times

×Hq−j+1 ⊕ . . .

⊕Xq ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
−1 times

×H ⊕Xq+1 ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
−1 times

⊕Xq+2 ·Hq × . . .×Hq︸ ︷︷ ︸
n
q
−2 times

×Hq−1 ⊕ . . .⊕XnH, (7.1)

where all operations are performed over GF (2128) constructed by the irreducible polyno-

mial P (x) = x128 + x7 + x2 + x+ 1 and
⊕

comprises 128 XOR gates.

One can re-write (7.1) so that only the exponentiations of the hash subkey to the

powers of 2 in the form of H2j are utilized. This method of exponentiation is based on
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Algorithm 3 The proposed high-performance approach for implementing the GCM.

Inputs: Xp ∈ GF (2128), 1 ≤ p ≤ n, and H2j ∈ GF (2128), 0 ≤ j ≤ log2(q).
Output: GHASH (X,H)=

∑n
j=1XjH

n−j+1.

1: for i = 1 to q do
2: tempi ← Xi

3: for j = 1 to n
q
− 1 do

4: tempi = (tempi ×Hq ⊕Xi+jq)
5: end for
6: Let q − i+ 1 = (a0

(i), . . . , alog2(q)
(i))2

7: tempi = tempi × (Ha
(i)
0 q ×H

a
(i)
1 q

2 × . . .×Ha
(i)
log2(q))

8: end for
9: GHASH(X,H) =

∑q
i=1 tempi

10: return GHASH(X,H).

the binary exponentiation, see, for example, [97]. As seen from this algorithm, for the

exponentiations Hq−i+1, 1 ≤ i ≤ q, one can use the binary representation of q − i+ 1 as

(a0
(i), . . . , alog2(q)

(i))2 .

The hardware implementation of Algorithm 3 has been presented in Fig. 7.1. For

implementing Algorithm 3 in hardware, in total, n
q
+ log2(q) clock cycles are needed. For

the first n
q
− 1 clock cycles, the GF (2128) multiplications by Hq are performed. This is

achieved by a simple control unit selecting Hq. Then, for the next log2(q) clock cycles,

the other exponentiations are used. These include the powers of the hash subkey in the

form of H2j and a number of field elements 1 = (0, 0, ..., 1) ∈ GF (2128) for bypassing the

GF (2128) multiplication operations. We note that if n is not a multiple of q, one needs

to add q −mod (n, q) blocks containing 0 = (0, 0, ..., 0) ∈ GF (2128) to the beginning of

the n blocks to make the total blocks processed multiple of q. Performing this, the hash

computation can be done normally based on the presented procedure. As seen in Fig.

7.1, q adder-multipliers are required and multiplexers are also utilized to select different

exponentiations.

To illustrate the proposed scheme, we use the case with n = 16 and q = 8. In the first

clock cycle (j = 1), the outputs of all the multiplexers in Fig. 7.1 are H8 for this case.

Then, according to the following, the outputs of the multiplexers in the other cycles can
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Figure 7.1: The hardware architecture of the proposed high-performance GCM GHASHH

function.

be found.

j=3︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X1H

8⊕X9)H
8︸ ︷︷ ︸

j=2

×1×1

︸ ︷︷ ︸
j=4

⊕

j=3︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X2H

8⊕X10)H
4︸ ︷︷ ︸

j=2

×H2×H

︸ ︷︷ ︸
j=4

⊕

. . .⊕

j=3︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
XiH

8⊕Xi+8)H
4a

(i)
1︸ ︷︷ ︸

j=2

×H2a
(i)
2 ×Ha

(i)
3

︸ ︷︷ ︸
j=4

⊕ (7.2)

. . .⊕

j=3︷ ︸︸ ︷
(

j=1︷ ︸︸ ︷
X8H

8⊕X16)H︸ ︷︷ ︸
j=2

×1×1

︸ ︷︷ ︸
j=4

,

where (a1, a2, a3)2 is the binary representation of q− i+1 = 9− i, 1 ≤ i ≤ 8. Five cycles

are required to implement (7.2); 4 cycles are shown in (7.2) with j = 1 to j = 4, and the

last one is used for the addition of the results of the registers R1 − R8 to have the final

result in RT .
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Table 7.1: Performance analysis and comparison of GHASHH within the GCM for n
blocks and q parallel structures.

Approach Latency Throughput

Sequential
[64], [65], [66] n 128

(Tmul+TX)n

[68], [69] n
q + q − 1 128

(Tmul+TX)(n
q +q−1)

Proposed n
q + log2(q)

128
(Tmul+TX)(n

q +log
2
(q))

According to Fig. 7.1, the working frequency of the proposed scheme is obtained as

Tmul + TX (we note that this delay is larger than that of the XOR tree). It is noted

that Tmul is the time delay of the used multiplier and TX is the time delay of one set

of modulo-2 additions in the critical path. Furthermore, according to Algorithm 3, the

number of clock cycles needed for the GHASHH function is n
q
+ log2(q). Latency and

throughput of the proposed scheme are compared with the ones presented in [64], [65],

[66], [68], and [69] in Table 7.1. As seen in this table, the sequential approach has the least

throughput which leads to low-performance hardware implementations. The throughput

of the proposed scheme, i.e., 128
(Tmul+TX)(n

q
+log2(q))

, is higher than that of the scheme in [68]

and [69], i.e., 128
(Tmul+TX)(n

q
+q−1)

, especially for high values of parallel structures, i.e., high

values of q. For example, for the case presented in (7.2), the proposed architectures of

this chapter need n
q
+ log2(q) = 2 + 3 = 5 clock cycles to obtain the result. This can

be compared with the linear relation of the scheme in [68] and [69] with q, leading to

n
q
+ q − 1 = 2 + 8 − 1 = 9 clock cycles needed. The complete comparison in terms of

hardware and timing complexities of the proposed architectures with the previous ones

is presented later in this chapter using ASIC syntheses.

As discussed earlier, with the change in the block cipher key, the re-calculations of

the hash subkey and then raising it to different powers are inevitable. In the following,

we present different methods in obtaining the hash subkey powers required in the pro-

posed architectures of this section, i.e., H2j . Moreover, through complexity reduction

techniques, low-complexity structures for the exponentiations are obtained in which the

timing complexities are remained unchanged.
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7.1.2 High-Speed Structures for Hash Subkey Powers

In the following, using squaring operations, we present three methods for implementing

the hash subkey exponentiations. Using a complexity reduction algorithm, we also derive

their hardware-optimized architectures.

According to [5], it is less likely that the GCM is invoked with the same key on

distinct sets of input data. Thus, a new hash subkey and its powers need to be obtained

in each invocation. It is known that the squaring operation in binary extension fields

leads to a linear structure, see, for example, [98]. In other words, implementing squaring

in hardware is less costly than GF (2128) multiplications. The squaring of a field element

over GF (2128) in the GCM uses the irreducible polynomial P (x) = x128+x7+x2+x+1.

Utilizing P (x), we have obtained the formulations for the squaring after performing

modular reduction. It is noted that MATLAB R⃝ [76] has been utilized to verify the

formulations used for squaring. For the GCM, the critical path delay of squaring is

obtained as 3TX , where TX is the XOR gate delay. Moreover, it requires 202 XOR gates.

To implement H2j , 2 ≤ j ≤ ⌊log2(q)⌋, one can cascade j squaring architectures or

use a feedback for deriving them. We refrain using the feedback structure because of its

low throughput and high latency. According to the hardware and timing complexities of

squaring derived in this section, for H2j , the cascade structure yields to the hardware and

timing complexities of 202j XOR gates and 3j TX , respectively. This leads to low-speed

implementations which are not desirable in applications requiring high performance. It

is possible to reduce the delay of the implementations of these exponentiations for the

high-performance hardware implementations. To achieve this, we do not cascade the

squaring implementations. Instead, we find the squaring exponentiations separately so

that their derivations become in parallel. This reduces the critical path delay of the

realizations. We present the following lemma for obtaining the exponentiations of the

hash subkey within the GCM.

Lemma 7.1 The squaring exponentiations of the hash subkey, i.e., H2j , 2 ≤ j ≤
⌊log2(q)⌋, are obtained using the following.

H2j mod P (x) = d+
2j−1∑
i=1

ẽi, (7.3)
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Figure 7.2: The derivation of H4 of the GCM hash subkey.

where, d and ẽi, 1 ≤ i ≤ 2j − 1, are field elements in GF (2128) defined as follows

d =

128

2j
−1∑

s=0

hsx
2j×s, ẽi = (

128(i+1)

2j
−1∑

s= 128i

2j

hsx
2j×s) mod P (x)

Proof Let H =
∑127

s=0 hsx
s ∈ GF (2128) be the hash subkey of the GHASH function.

Then, we have H2j = (
∑127

s=0 hsx
2j×s) mod P (x) =

∑ 128

2j
−1

s=0 hsx
2j×s + (

∑127
s= 128

2j
hsx

2j×s

mod P (x)) = d + (
∑2j−1

i=1

∑ 128(i+1)

2j
−1

s= 128i

2j

hsx
2j×s) mod P (x) = d +

∑2j−1
i=1 ẽi and the proof

is complete.

For clarifying the method, we present the structure for deriving H4 in Fig. 7.2.

We obtain the polynomials d and e1-e3 in (7.3) as: d = h31x
124 + h30x

120 + . . . + h0,

e1 = h63x
252 + h62x

248 + . . . + h32x
128, e2 = h95x

380 + h94x
376 + . . . + h64x

256, and e3 =

h127x
508 + h126x

504 + . . .+ h96x
384. As seen in this figure, the coefficients of d are added

with the reduced coefficients of e1-e3 using P (x).

The complexity reduction techniques use different methods for decreasing the number

of gates needed in the implementations, see, for example, the ones in [99] and [100].

Because it is not guaranteed that the delay of the method in [99] is maintained, we have

implemented the complexity reduction algorithm presented in [100] using a C code. In
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Figure 7.3: (a) Cascade, (b) parallel, and (c) hybrid realization methods for the hash
subkey exponentiations.

our program, the procedure suggested in [100] (to find the shared XOR terms) has been

utilized for the case study of q = 8, which requires implementing H2, H4 and H8. It is

noted that through the employed technique, we reach low hardware complexities without

changing the critical path delays.

We have performed three experiments for implementing H2, H4 and H8. These are

shown in Fig. 7.3. As seen in Fig. 7.3a, in the cascade method, three identical squaring

architectures are used consecutively. This method has the lowest hardware complexity

and the highest timing complexity. In Fig. 7.3b, the parallel method of implementation

of the hash subkey exponentiations is utilized. Compared to the other methods, this

method has the lowest critical path delay while its hardware complexity is the highest.

On the other hand, in the hybrid method which is shown in Fig. 7.3c, a compromise

between hardware and timing complexities is achieved.

The timing and hardware complexities of these methods and the results of the com-

plexity reduction technique utilized for them are depicted in Table 7.2. In this table,

for three methods presented in Fig. 7.3, the hardware complexities before and after

complexity reduction are derived. The timing complexity is remained unchanged after
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Table 7.2: Complexities of the realizations of the hash subkey exponentiations for q = 8
parallel architectures for GHASHH .

Method Hardware Hardware Complexity Complexity Timing
Complexity after complexity reduction reduction(%) Complexity

Cascade (Fig. 7.3a) 606 XORs 594 XORs ≈ 2% 9TX

Parallel (Fig. 7.3b) 1986 XORs 1099 XORs ≈ 45% 5TX

Hybrid (Fig. 7.3c) 1627 XORs 1062 XORs ≈ 35% 6TX

applying the complexity reductions. As seen in Table 7.2 in bold face, the least hardware

complexity is achieved for the cascade method after the complexity reduction, i.e., 594

XOR gates. However, the timing complexity of this method is the highest among the

three methods as depicted in this table. On the other hand, the timing complexity of

the parallel method is the lowest, i.e., 5TX . As shown in Table 7.2, this is at the expense

of higher hardware complexity which is 1099 XOR gates after about 45% complexity

reduction.

7.1.3 GF (2128) Multipliers for the GCM

Different types of GF (2128) multipliers are utilized in the literature for implementing the

GF (2128) multiplications in the GCM. In [64], [68], and [69], the multiplications have

been performed using bit-parallel, digit-serial, and hybrid multipliers in composite fields.

Furthermore, in [65] and [101], the efficiency of different multipliers, including the sub-

quadratic ones, are compared. Moreover, in [102] a high-speed AES-GCM core has been

presented. It is noted that the considered GF (2128) multipliers in these works include

the Mastrovito multiplier [103] with quadratic space complexity, the Karatsuba-Ofman

multiplier [104] and the GF (2128) multiplier in [105].

We have considered the bit-parallel GF (2128) multiplier presented in [94] which has

quadratic hardware complexity. It is noted that this GF (2128) multiplier has lower tim-

ing complexity compared to the sub-quadratic hardware complexity GF (2128) multipli-

ers. However, we note that according to the latency of the proposed architectures, i.e.,

n
q
+ log2(q), increasing the number of parallel structures (q) results in having higher

throughputs. On the other hand, having higher values for q increases the hardware

complexities of GHASHH . Therefore, for reducing the hardware complexity, using sub-

quadratic hardware complexity GF (2128) multipliers is beneficial when high values of q

are utilized.
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Table 7.3: Hardware and timing complexities analysis of the utilized bit-parallel multi-
pliers for the GCM.

Multiplier GEa Delay Efficiencyb

Complexity Type (103 × Throughput
GE

)

Quad. [94] - 56,957 TA + 10TX 0.21/TX
KO1 44,338 TA + 12TX 0.23/TX
KO2 34,660 TA + 14TX 0.25/TX

Sub-quad. KO3 28,195 TA + 16TX 0.27/TX
[106] KO4 24,517 TA + 18TX 0.28/TX

KO5 23,443 TA + 20TX 0.27/TX
KO6 24,961 TA + 21TX 0.24/TX

aGate equivalent in terms of two-input NAND.
bConsidering TX = 1.99TA according to the utilized technology.

For reducing the hardware complexity of the AES-GCM, we have also used the efficient

realization of the Karatsuba-Ofman multiplier presented in [106] as the sub-quadratic

hardware complexity GF (2128) multiplier. It is noted that the gate count of different

steps for one Karatsuba-Ofman multiplier has been presented in [106]. Based on our

technology hardware and timing specifications, we have presented the performance of

the GF (2128) multipliers in Table 7.3. As shown in this table, six different steps for

the Karatsuba-Ofman multipliers are considered. We denote these realizations by KO1

(for the case that only one step is performed) to KO6 (for which the 128-bit GF (2128)

multiplier is broken all the way to 2-bit multiplications using Karatsuba-Ofman method).

Applying the Karatsuba-Ofman method recursively to obtain KOi, 2 ≤ i ≤ 6 for the

GCM would result in low-area implementations with higher timing complexities. As

seen from this table, although the sub-quadratic multiplier KO5 is the most compact

implementation, the sub-quadratic multiplier KO4 reaches the best efficiency. In the

next section, we present the synthesis results of these sub-quadratic multipliers for our

proposed architectures. We also compare the power consumptions and the efficiencies of

different methods for realizing these multipliers.

7.2 AES-GCM Performance Comparisons

In this section, first different AES architectures are presented and then we present and

compare the ASIC synthesis results of the proposed and the previously presented archi-
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Table 7.4: The proposed architecture for the AES-GCM.

AES GCM (Proposed using Algorithm 3)
(Unrolled pipelined) Exponents Multiplier
PB S-box (Φ = {11}2, Complexity-reduced Quad. and six

ν = {1010}2) parallel method sub-quad. (KO1

optimized using (3.18) (Table 7.2 and Fig. 7.3b) -KO6) in Table 7.3

tectures for the AES-GCM function.

We have presented different AES-128 architectures in Fig. 7.4. As seen in the AES

simple loop structure (Fig. 7.4a), the AES rounds are executed serially (in the last round

MixColumns is bypassed). This architecture is the most compact AES architecture and

has been used in the literature, see, for instance, [20]. However, it suffers from low

throughput. In Fig. 7.4b, the AES unrolled pipelined structure is shown in which

the pipeline stages are shown by dotted lines (see, for instance, [17]). As seen in this

figure, 10 AES rounds are duplicated, with the last round without the MixColumns

transformation. Although this architecture needs 10 AES rounds to be implemented, it

allows the designers to use pipelining and hence process multiple inputs sequentially for

achieving high throughput. For further increasing the throughput, sub-pipelining of the

AES transformations can be used as depicted in Fig. 7.4c.

Sub-pipelining is useful in increasing the working frequency of the AES at the expense

of more area used for the pipeline registers. However, it increases the latency of structures.
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Figure 7.5: The proposed AES-GCM high-performance architecture for q = 8.

For instance, the latency of a 3-stage sub-pipelined AES is 3 times more than that

of the unrolled pipelined. We also note that if the critical path delay is determined

by the multipliers in the GCM architecture, sub-pipelining of the AES transformations

cannot increase the working frequency. Although both pipelined and sub-pipelined AES

architectures can be utilized, in this chapter, for the syntheses and comparisons, we use

pipelined AES architecture presented in Fig. 7.4b. Moreover, for analyzing the effect of

sub-pipelining, we have used sub-pipelined AES for two AES-GCM architectures. The

details of our implementations are presented later in this section.

According to Table 7.4, we use the most efficient S-box, i.e., the one using polynomial

basis (PB) based on (3.18), to reach the AES-GCM with the highest performance. The

AES-128 encryption is considered as the block cipher for the GCM and as indicated in

Table 7.4, the 10 rounds of the AES-128 are unrolled and pipelined. Moreover, as seen in

Table 7.4, we use the proposed Algorithm 1 for the GCM and utilize the parallel method
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in Fig. 7.3b for hash subkey exponentiations (hardware optimized through complexity

reduction methods in the previous section). Finally, As seen in this table, we use both

quadratic and sub-quadratic multipliers presented in Table 7.3.

Fig. 7.5 presents the proposed architecture for the AES-GCM for q = 8 parallel

structures. The AES-128 pipeline registers are shown by dashed lines in Fig. 7.5. As

seen in this figure, 10 clock cycles are needed for obtaining the ciphertext. After these

first 10 clock cycles, the results are obtained after each clock cycle. According to Fig.

7.5, 8 parallel AES-128 structures are implemented as part of GCTRK to provide inputs

to GHASHH . As seen in this figure, the function GCTRK performs the AES counter

mode with the Initial Counter Block (ICB) and its one-increments (CBi). Moreover,

q = 8 increments (using INC 8 module) and the plaintext blocks (Pi) are used as the

inputs. It is assumed that the data is encrypted and the IV in the GCM is 96 bits which

is recommended for high throughput implementations [5].

The results of our syntheses for the AES-GCM using the STM 65-nm CMOS tech-

nology [74] are presented in Table 7.5. The architectures have been coded in VHDL as

the design entry to the Synopsys R⃝ Design Vision R⃝ [73]. The proposed architectures in

this chapter and the ones in [64], [65], [66], [68] and [69] have been synthesized. The

syntheses are based on the case for q = 8 parallel addition-multiplications using the bit-

parallel GF (2128) multiplier presented in [94] which has quadratic hardware complexity.

For achieving low hardware complexity for the AES-GCM, we have also synthesized six

different steps for the Karatsuba-Ofman multipliers. As seen in Table 7.5, areas, power

consumptions, and maximum working frequencies are tabulated. From the discussions in

this chapter, for n input blocks and q parallel structures, the latency for the architecture

in [64], [65] and [66] is n, for the one in [68] and [69] is n
q
+ q − 1, and for our proposed

architectures is n
q
+ log2(q). According to these, for different architectures presented in

Table 7.5, throughputs and efficiencies are also presented.

As presented in Table 7.5, the sequential approach in [64], [65], and [66] has the

lowest hardware complexity compared to other approaches. However, it has the least

throughput leading to low-performance hardware implementations. As depicted in Table

7.5, lower areas and power consumptions are achieved for the sub-quadratic hardware

complexity GF (2128) multipliers used in our proposed architectures compared to the one

in [94]. As seen in this table, the maximum working frequency is decreased as we increase
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Table 7.5: ASIC synthesis comparisons of the AES-GCM using the STM 65-nm CMOS
technology.

Schemea Total Area [AES]b Power Freq. Thro. Eff.

(mm2) K-GEc (mW) (MHz) (Gbps) (Gbps
mm2 )

[64], [65], 0.23 110
[66] [0.12] [57] 19.6 568 72.7

n
316.0
n

1.86 894
[68], [69]d [1.02] [490] 144.3 568 72.7

n
8
+7

39.1
n
8
+7

Proposed 1.82 875
(quad.)e [0.92] [442] 142.5 641 82.0

n
8
+3

45.1
n
8
+3

Proposed 1.62 779
(KO1)

e [0.92] [442] 124.6 641 82.0
n
8
+3

50.6
n
8
+3

Proposed 1.46 702
(KO2)

e [0.92] [442] 113.0 641 82.0
n
8
+3

56.2
n
8
+3

Proposed 1.34 644
(KO3)

e [0.92] [442] 104.8 621 79.4
n
8
+3

59.3
n
8
+3

Proposed 1.31 630
(KO4)

e [0.92] [442] 101.2 613 78.4
n
8
+3

59.8
n
8
+3

Proposed 1.30 625
(KO5)

e [0.92] [442] 102.0 595 76.1
n
8
+3

58.5
n
8
+3

Proposed 1.33 639
(KO6)

e [0.92] [442] 105.2 578 73.9
n
8
+3

55.6
n
8
+3

aFor the case of q = 8 parallel structures.
bThe area of the AES is shown inside brackets.
c103 gate equivalent in terms of two-input NAND.
dThe better scheme in [68] and [69], in terms of timing and hardware complexities has been synthe-

sized.
eThe quadratic and six sub-quadratic multipliers used in the proposed AES-GCM.

the number of multiplication steps. However, this trend is not observed for the hardware

complexity, i.e., it is decreased up to KO5 as the optimum value and then rises for KO6.

The highest throughput is achieved for the proposed architectures in this chapter, i.e.,

82.0
n
8
+3

Gbps using quadratic and KO1/KO2 sub-quadratic multipliers. As seen in Table

7.5, the highest efficiency is derived for KO4, i.e.,
59.8
n
8
+3

Gbps
mm2 . As seen in this table, the

working frequencies and throughputs for KO1 and KO2 are similar. We have observed

that this is because for these two multipliers, the critical path delay is dominated by

the AES rounds and not the sub-quadratic multiplier. Inner-round pipelining can be

performed to increase the working frequencies of the implementations. Nevertheless, this

sub-pipelining increases the area and latency of the AES-GCM architectures. We have

performed experiments by sub-pipelining the AES rounds for the architectures using KO1
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n1 101 100 115 129 143 151 152 149 141
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Figure 7.6: Comparison of the efficiencies of nine different AES-GCM architectures for
n1 = 232 − 2 and n2 = 210.

and KO2 multipliers. This is achieved by adding one pipeline stage after ShiftRows and

right before MixColumns. The results of our experiments show no major difference in the

maximum working frequency of the design utilizing KO2 multiplier and increase in its

hardware complexity. However, for the architectures using KO1 multipliers, the working

frequency of 689 MHz with the increased area of 1.70 mm2 is achieved. Therefore, for

this architecture which uses KO1 multipliers, the best speed is obtained compared to the

results in Table 7.5. However, its efficiency is obtained as 51.9
n
8
+3

Gbps
mm2 which is less than

that of the architectures with KO4 multipliers (see Table 7.5).

For comparing the efficiencies of the schemes presented in Table 7.5, we have presented

Fig. 7.6. Based on the derived values for efficiencies in the last column of Table 7.5, two

different graphs for two values of n are presented in Fig. 7.6. We consider two different

values of n, i.e., n1 = 232 − 2 (the largest encrypted message size allowed) and n2 = 210.

It is noted that considering the normalized efficiency (%) of the scheme in [68], [69] as

100, the relative efficiencies for different architectures are presented in this figure. As

seen in Fig. 7.6, for n1 = 232− 2 and n2 = 210, KO4 has the highest efficiencies (51% and

44% more than the sequential method, respectively).

We conclude this chapter by a summary of the work presented. In this chapter,

we have obtained optimized building blocks for the AES-GCM to propose efficient and
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high-performance architectures. For the AES, through logic-gate minimizations for the

inversion in GF (24), the areas of the S-boxes have been reduced. We have also evaluated

and compared the performance of different S-box architectures using an ASIC 65-nm

CMOS technology. Furthermore, through exhaustive searches for the input patterns, we

have performed simulation-based average and peak power derivations for different S-boxes

to reach more accurate results compared to the statistical power derivation methods.

We have also proposed high-performance and efficient architectures for the GCM. For

the case study of q = 8 parallel structures in GHASHH , we have performed a hardware

complexity reduction technique for the hash subkey exponentiations, having their timing

complexities intact. For comparison, the proposed architectures and the previous ones

have been synthesized on ASIC. The results show that better efficiencies are achieved for

the proposed architectures. Moreover, according to our results, the structures using the

four-step Karatsuba-Ofman GF (2128) multiplier are the most efficient ones for our pro-

posed architectures. Based on the available resources and performance goals to achieve,

one can choose the proposed AES-GCM architectures to fulfill the constraints needed for

the required applications.
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Summary and Future Work

8.1 Thesis Summary

IN this thesis, we have proposed reliable and high-performance hardware implementa-

tions for the AES-GCM. This includes novel lightweight and concurrent fault detec-

tion schemes for the AES for making it reliable and high-performance hardware archi-

tectures for the AES-GCM for reaching efficient VLSI implementations. The following

summarizes the contributions of this work.

In Chapter 3, which has been presented in [71] and [72], we have evaluated the

performance of more than 40 S-boxes utilizing a fixed benchmark platform in 65-nm

CMOS technology. To obtain the least-complexity S-box, the formulations for the Galois

Field (GF) sub-field inversions in GF (24) have been optimized. By conducting exhaustive

simulations for the input transitions, we have analyzed the average and peak power

consumptions of the AES S-boxes considering the switching activities, gate-level netlists,

and parasitic information.

In Chapter 4, which has been presented in [78] and [79], we have proposed a lightweight

concurrent fault detection scheme for the AES. In the presented approach, for increasing

the error coverage, the predicted parities of the five blocks of the S-box and the inverse

S-box have been obtained (three predicted parities for the multiplicative inversion and

two for the transformation and affine matrices). Through exhaustive searches among all

available composite fields, we have found the optimum solutions for the least overhead

parity-based fault detection structures. Moreover, through our error injection simulations

for one S-box (resp. inverse S-box), we have shown that the total error coverage of almost

100% (99.998%) for 16 S-boxes (resp. inverse S-boxes) can be achieved. Finally, it is

123
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shown that both the ASIC and FPGA implementations of the fault detection structures

using the obtained optimum composite fields, have better hardware and time complexities

compared to their counterparts.

In Chapter 5, which has been presented in [83] and [84], we have proposed a concur-

rent fault detection scheme for the S-box and the inverse S-box based on the low-cost

composite field implementations of the S-box and the inverse S-box. We have divided the

structures of these operations into three blocks and found the predicted parities of these

blocks. We have obtained new formulations for the five predicted parities for three blocks

of the S-box and the inverse S-box. To reach high multiple and burst fault detection ca-

pabilities, multiple-bit signatures have been obtained within the blocks constituting more

area in the structures of the S-box and the inverse S-box. Our simulations have shown

that except for the redundant units approach which has the hardware and time overheads

of close to 100%, the fault detection capabilities of the proposed scheme for the burst and

random multiple faults are higher than the previously reported ones. Finally, through

ASIC implementations, it has been shown that for the maximum target frequency, the

proposed fault detection S-box and inverse S-box in this chapter have the least areas,

critical path delays, and power consumptions compared to their counterparts with similar

fault detection capabilities.

In Chapter 6, which has been presented in [92] and [93], we have proposed a structure-

independent fault detection scheme for the entire AES encryption and decryption. Specif-

ically, we have obtained new formulations for the fault detection of SubBytes and inverse

SubBytes using the relation between the input and the output of the S-box and the in-

verse S-box. The proposed schemes are independent of the way the S-box and the inverse

S-box are constructed. Therefore, they can be used for both the S-boxes and the inverse

S-boxes using look-up tables and those utilizing logic gates based on composite fields.

Our simulation results have shown very high error coverage for the proposed schemes.

Finally, our proposed fault detection schemes and almost all of the previously reported

ones have been implemented on FPGAs and their area and delay overheads have been

derived and compared. The FPGA implementation results have shown the low area and

delay overheads for the proposed fault detection schemes.

Finally, in Chapter 7, which has been presented in [72], we have presented high-speed,

parallel hardware architectures for reaching low-latency and high-throughput structures
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of the GCM. Having investigated the high-performance GF (2128) multiplier architec-

tures, we have benchmarked the proposed AES-GCM architectures using quadratic and

sub-quadratic hardware complexity GF (2128) multipliers. It has been shown that the per-

formance of the presented AES-GCM architectures outperforms the previously reported

ones in the utilized 65-nm CMOS technology.

Based on the above summary, the contributions of this thesis are

• Optimization and benchmarking the AES S-boxes on a fixed hardware platform

• Devising lightweight concurrent exhaustive search-based fault detection schemes for

the AES S-boxes using polynomial and normal bases

• Proposing multi-bit signature-based fault diagnosis approaches for the AES S-

boxes, inverse S-boxes, and mixed operations

• Presenting structure-independent schemes for fault detection of the entire AES

encryption and decryption

• Proposing high-speed, parallel hardware architectures for the GCM

8.2 Future Work

As future works for this thesis, the followings can be pursued.

• The fault detection schemes proposed in this thesis have been evaluated using

extensive simulations and benchmarked on ASIC hardware platforms. As a future

work for this thesis, our proposed fault diagnosis approaches and corresponding

original architectures can be fabricated on chip and actual error injections can be

performed. This error injection to the fabricated chip verifies the effectiveness of

the proposed fault detection approaches one level beyond the simulation level.

• Another future work for the FPGA platform can be explored noting that the AES

is utilized for bitstream security mechanisms. Specifically, the AES decryption

is hardware-implemented in many recent FPGAs. Incorporating the proposed

hardware countermeasures and evaluating their effectiveness in counteracting in-

ternal/malicious faults on FPGAs would be an interesting future research topic.
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• As an extension for this thesis, one can integrate reliability into the design of recent

cryptographic data authentication algorithms. One can carry out research on devel-

oping reliable architectures for the third-round SHA-3 (Secure Hash Algorithm-3)

candidates, one of which containing the AES algorithm as its building blocks. This

development will be a promising advancement in cryptography research and will

result in selecting the final candidates of the ongoing competition to choose the

winning function for SHA-3 in 2012.

• Finally, one can work on devising reliable architectures for the recently standard-

ized GCM, which provides data authentication to block ciphers such as the AES.

To the best of our knowledge, the aforementioned research on reliability of these

architectures will be carried out for the first time.
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