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Abstract

Breast cancer is the most prevalent form of cancer globally, accounting for 12.5% of all new

cases annually. Research has found a significant correlation between breast bilateral

asymmetry and an increased risk of cancer, with women diagnosed with breast cancer having

higher levels of bilateral asymmetrical breast volume. Unfortunately, 87% of women with

breast asymmetry lack adequate tools for assessing their cancer risk. Early screening using

bilateral asymmetry to predict a woman's long-term risk of breast cancer can help physicians

make informed decisions about whether to recommend sequential imaging and the frequency

of screening. Another important factor in understanding the cause of breast cancer is the

association between long-term abnormal mechanical stress distribution in breast tissue and

the increased risk of developing breast lesions. Chronic stress promotes cancer development

through various molecular mechanisms. However, existing off-the-shelf symmetric bras do

not adequately address breast asymmetry, as they may not provide sufficient support for

smaller breasts while inducing high stress levels to larger breasts. Therefore, it is essential to

explore the relationship between concentrated stress from ill-fitted bras and its potential

contribution to breast cancer development. A more personalized and tailored bra fitting

technique could significantly reduce the risk of breast cancer associated with mechanical

stress. In this study, we developed an unsupervised machine learning algorithm to classify

breast bilateral asymmetry using bilateral magnetic resonance imaging. A clear link between

breast asymmetry and breast cancer risk has been established, providing a predictive tool for

proactive breast health assessment. We then developed two complementary computational

inversion techniques to determine the individual-specific hyperelastic parameters of breast

tissue, along with the breast's undeformed shape, using MRI images. This synergistic

algorithm addresses issues with preloading-induced errors, thereby providing a more precise

foundation for designing customized bras. The development of customized bras for cancer-

prone women with significant breast asymmetry is facilitated by the optimization of breast

tissue stress distribution. This is achieved through the accurate capture of breast shape and

tissue properties. By integrating these details with various textile options for bra modeling,

our study supports the natural state of the breast and reduces potentially harmful stress

concentrations. Our research contributes significantly to the understanding of breast cancer
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risk factors and offers potential for innovative approaches in preventive breast healthcare.

This study is a crucial step forward in the field and demonstrates the potential for improved

outcomes in breast health.

Keywords

Asymmetry, Bilateral, Biomechanics, Bra Design, Breast Cancer, Computer Assisted Medical

Procedures, Finite Element Analysis, Hyperelastic Parameter, Inversion Solution, MRI, Reference

Geometry, Machine Learning, Neural Networks, Optimization, Reconstruction, Stress-free Geometry
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Summary for Lay Audience

Breast cancer affects millions of women worldwide, making it a major health

threat. Scientists are uncovering surprising factors that impact risk of breast cancer

development, including those that many women are unaware of. In recent years, scientists

have investigated various factors that may contribute to this disease. One significant factor is

breast tissue density, a condition in which there is more fibrous tissue than fatty tissue in the

breasts. This increased density is associated with a higher risk of breast cancer, especially in

premenopausal women, making them up to six times more likely to develop the disease.

Another interesting aspect of this research focuses on the concept of breast bilateral

asymmetry, where one breast has a different size, shape or tissue distribution than the other.

Surprisingly, this condition is quite common, affecting approximately 87% of the women.

However, most bras available in stores are designed for symmetrical breasts, which means

that they do not fit well for women with this asymmetry. This poor fit can lead to uneven

pressure and stress on the breast. Studies have suggested that this uneven stress might

contribute to an increased risk of developing breast cancer.

To explore this further, this research delves into the relationship between breast asymmetry

and breast cancer risk. It looks at detailed breast MRI scans from a long-term study to

understand whether and how different breast sizes, shape and composition can affect the

likelihood of developing cancer, leading to a classification tool for determining the risk of

breast cancer using the woman’s breast MRI. This research also proposes an innovative

approach – designing custom-made bras that cater to the unique needs of women with breast

asymmetry. The goal is to provide better support and reduce the uneven stress caused by

standard bras. By doing so, it is hoped that this could be a step towards reducing the breast

cancer risk in these women.

In essence, this study aimed at understanding the nuances of breast health and how factors

such as tissue density and breast asymmetry can influence cancer risk. It also seeks to

provide practical solutions, such as custom-made bras, which could not only improve

comfort, but also potentially play a role in preventing breast cancer. By combining medical
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research with everyday products, this study aimed at making a meaningful impact on

women's health and well-being.
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Chapter 1

1 « Introduction»

1.1 « Background and Motivation »

1.1.1 Statistics

Cancer remains the leading cause of death in Canada. Breast cancer presents a

particularly significant burden, representing the most commonly diagnosed cancer in

Canadian women and the second leading cause of cancer-related death [1]. In 2023, it

was estimated that 27,700 women were diagnosed with breast cancer, and 5,300

Canadian women died from the disease [2]. This ranks breast cancer as a major

contributor to the overall impact of cancer on Canadians, alongside lung and other

cancers. While mortality rates are declining, the annual number of new breast cancer

cases remains substantial [2]. Figure 1-1 illustrates the comparative analysis of diagnosis

numbers and mortality rates between breast cancer and other cancers over the last five

years.

Figure 1-1: Comparative trends in diagnosis and mortality rates for breast cancer vs.

other cancers (2019-2023).
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Early detection is crucial for improving outcomes, with the World Health Organization's

Global Breast Cancer Initiative working to reduce mortality [3]. While screening has

proven effective for postmenopausal women and those in their forties, many younger

women at risk lack access to programs such as the Screen Project, available specifically

for those with a family history of BRCA1 and BRCA2 mutations [1]. Equitable

healthcare demands the development of more convenient and accessible cancer prediction

methods for the vulnerable young population.

Unlike lung cancer, breast cancer is not strongly associated with a single cause. Risk

factors include age, family history, genetics, and lifestyle. The breast cancer 5-year net

survival rate of 89% demonstrates the importance of early detection [4]. Survival rates

vary based on the stage at diagnosis, with localized breast cancer having significantly

higher survival rates than cancers that have spread to other parts of the body. Breast

cancer has various subtypes with differing implications for treatment: 1) ductal

carcinoma in situ (DCIS), a non-invasive form; 2) invasive ductal carcinoma (IDC), the

most common at 80% of diagnoses; and 3) invasive lobular carcinoma (ILC) [4]. Figure

1-2 provides a visual comparison of the proportion of diagnoses and survival rates among

the primary breast cancer subtypes.
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Figure 1-2: Distribution and survival rates of breast cancer subtypes.

Figure 1-3 is designed to show the structure and logical relationships within the

'Introduction' chapter of this thesis, visually summarizing key components and their

interconnections.

Figure 1-3: A fishbone diagram to visualize logical structure of this thesis

“Introduction” Chapter.
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1.1.2 Breast Anatomy and Physiology

A deep understanding of breast anatomy and physiology is crucial for analyzing how

mechanical forces interact with the breast tissues. The breast is a complex organ,

primarily composed of soft tissues, including glandular, fibrous, and adipose tissues, each

of which plays a crucial role in the organ's overall function and response to external and

internal forces. Figure 1-4 provides a detailed sagittal view of the breast anatomy,

highlighting the chest wall, pectoralis muscles, lobules, nipple, fatty tissue, and skin.

Figure 1-4: Anatomy of the breast. (Copyright Illustration 27676555 | Breast

Anatomy © Ermolaevamariya | Dreamstime.com)

The glandular tissue is responsible for milk production at the core of the breast anatomy.

This tissue is organized into lobes and lobules, with each lobe containing multiple lobules.

https://www.dreamstime.com/royalty-free-stock-photo-anatomy-breast-vector-image27676555
https://www.dreamstime.com/illustration/breast-anatomy.html
https://www.dreamstime.com/illustration/breast-anatomy.html
https://www.dreamstime.com/ermolaevamariya_info
https://www.dreamstime.com/stock-photos
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The lobules are milk-producing glands that connect to ducts that lead to the nipple,

allowing the passage of milk [5]. The dense nature of glandular tissue contributes

significantly to the overall density of the breast, a factor that influences the distribution

and absorption of mechanical forces. Surrounding and supporting glandular structures are

bands of fibrous tissue, also known as connective tissue. This component provides

structural support and maintains the shape and integrity of the breasts. Fibrous tissue is

also intertwined with glandular components, creating a scaffold that influences the

biomechanical properties of the breast [6]. Its elasticity and stiffness are key factors in the

response of the breast to mechanical stress, affecting the distribution of forces within the

breast tissue. Adipose tissue or fatty tissue fills the spaces between glandular and fibrous

tissues, contributing to the size and shape of the breast. The proportion of adipose tissue

relative to fibrous and glandular tissues varies greatly among individuals and can change

over time owing to factors such as age, hormonal changes, and overall body fat

percentage. Adipose tissue is somewhat softer than glandular and fibrous tissues [7]. Its

distribution and density play significant roles in the mechanical environment of the breast,

influencing its susceptibility to stress concentrations and potential tissue deformation.

Another critical component of breast anatomy is Cooper's ligaments, a web of

connective tissue that extends throughout the breast, anchoring it to the chest wall [8].

These ligaments provide additional support and help to maintain the structural integrity of

the breast. However, over time or under excessive mechanical force, these ligaments can

stretch, contributing to changes in the breast shape and sagging. As illustrated in Figure

1-5, the integrity of Cooper's ligaments plays a pivotal role in maintaining breast firmness,

with damage or stretching of these ligaments contributing to breast sagging.
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Figure 1-5: Comparative anatomy of firming and sagging breasts highlighting

Cooper's Ligaments. (Copyright

Illustration 153331644 | Breast © Yomogi1 | Dreamstime.com.)

The interplay between these diverse tissues within the breast determines how mechanical

forces are experienced and managed. Factors such as tightness of clothing, posture,

physical activity, and lack of proper support can introduce varying levels of mechanical

stress. Over time, these forces can influence tissue remodeling, potentially affecting the

risk of developing conditions such as breast pain and tissue damage, and even

contributing to the etiology of breast cancer through mechanisms that are still being

elucidated [7].

In summary, the intricate structure of the breast, with a mix of glandular, fibrous, and

adipose tissues supported by Cooper's ligaments, creates a complex biomechanical

environment. Understanding this environment, including the inherent errors introduced

https://www.dreamstime.com/firm-sagging-breasts-illustration-women-s-beauty-body-care-concept-cooper-s-ligaments-maintain-shape-structure-image153331644
https://www.dreamstime.com/illustration/breast.html
https://www.dreamstime.com/yomogi1_info
https://www.dreamstime.com/stock-photos
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by the initial stress pertaining to gravity force, is crucial for developing algorithms and

exploring the interaction of mechanical forces with breast tissue. This understanding has

implications for both physiological responses and potential pathological changes.

1.1.3 Breast Cancer and Asymmetry

A study published in the Journal of the American Medical Association found that breast

bilateral asymmetry is an independent risk factor for breast cancer [9]. Another study

followed over one million women and found that women with breast asymmetry had a

10% higher risk of developing breast cancer [10]. Breast tissue composition is a complex

factor that influences the initiation and progression of breast cancer. The human breast is

comprised of a heterogeneous mix of fibrous, glandular, and fatty tissues, with

individuals exhibiting unique compositional profiles. Importantly, dense breasts,

containing higher proportions of fibrous and glandular tissue, pose a significant risk of

breast cancer [11]. This elevated risk is partly attributable to the limitations of

conventional mammography in dense tissue, potentially obscuring malignancies and

hindering early detection. In contrast, Magnetic Resonance Imaging (MRI) provides

superior contrast resolution, facilitating a more accurate assessment of breast density and

revealing complex compositional landscapes relevant to cancer risk [12].

Dense breast tissue presents a distinct microenvironment in which epithelial cells, the

building blocks of ducts and lobules, reside in a crowded space with heightened

extracellular matrix stiffness [13]. This increased stiffness exerts mechanical forces on

individual cells, affecting cell shape, growth signaling, and gene expression. Importantly,

chronic alterations in cellular behavior due to abnormal mechanical stress have been

implicated in several hallmarks of cancer [14]. These include abnormal proliferation,

evasion of the immune response, and activation of oncogenic (cancer-promoting)

pathways [15]. Consequently, the dense breast environment not only obscures cancer

detection but may also be an active participant in creating conditions that promote

malignancy.
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Emerging research has revealed how chronic mechanical stress influences breast cancer

development at cellular and microenvironmental levels. Within breast tissue, forces such

as those heightened by asymmetry or poorly fitting bras can concentrate in specific areas,

disrupt tissue architecture, and induce potentially pathogenic changes [16]. This includes

altering cell-cell interactions, extracellular matrix organization, and crucial intracellular

signaling pathways [17]. Such persistent disruptions potentially drive abnormal tissue

stiffening and nodule formation, well-established factors that can hinder imaging-based

cancer detection and further promote carcinogenesis [11].

Similar to tissue stiffening caused by mechanical stress, it is worth noting that breast

bilateral asymmetry can also have a significant impact on breast tissue structure and

microenvironment. Breast bilateral asymmetry refers to asymmetry in the size, shape,

position, and internal tissue distribution of the breast [9]. While every woman exhibits

some degree of natural asymmetry, its potential link to breast cancer risk arises from

certain dynamic or clinically apparent variations [18]. Studies suggest that asymmetries

developing over time or marked discrepancies in size, shape, or tissue distribution may

indicate heightened cancer susceptibility [19]. However, using the current bilateral

asymmetry to predict the future development of tissue nodules is challenging. This

complexity highlights an often-overlooked area in breast cancer research, where the

progression from asymmetry to cancerous formation is not well understood [20]. In

summary, understanding the impact of mechanical stress induced by bilateral asymmetry

while a symmetric (ill-fitting) bra is worn is especially under-researched, representing a

major knowledge gap, with implications for both risk assessment and exploring

preventative strategies. Figure 1-6 visually represents the relationship between breast

asymmetry and increased risk of breast cancer.
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Figure 1-6: Pathways from breast asymmetry to increased breast cancer risk.

1.1.4 Biomechanical Modeling for Breast

Biomechanical modeling plays a crucial role in breast cancer research, aiding our

understanding of breast tissue structure, functionality, and mechanisms driving cancer

initiation and progression. Finite-element analysis (FEA) is the most commonly used

method. By employing numerical computation, FEA discretizes the complex shapes and

material properties into smaller elements. Solving the individual element equilibrium

equations yields an overall mechanical response. Owing to its ability to assign different

material properties to individual elements, FEA is capable of simulating the complex,

nonlinear, and heterogeneous nature of breast tissue and its stress-strain responses with

high fidelity. This accuracy extends to the prediction of breast deformation due to

external forces. In particular, the integration of biomechanically validated Virtual Reality

(VR) powered by FEA modeling has revolutionized preoperative planning [21]. This

synergy not only facilitates a deeper understanding of surgical procedures, but also

broadens the horizon of FEA's utility, showcasing its essential role in enhancing patient

engagement and decision-making processes through immersive, realistic simulations.
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The accurate modeling of breast biomechanics relies on the precise characterization of its

nonlinear mechanical behavior. This presents a significant challenge for breast tissue

because of its complex composition and structure. Breast tissue exhibits nonlinear

mechanical behavior, meaning that its response to mechanical forces is not proportional

to applied stress. This behavior arises from the multi-component structure of the tissue,

consisting of a heterogeneous mix of cells, extracellular matrix (ECM), and fluid [22].

The nonlinearity of breast tissue can be observed at multiple scales, from the molecular to

the macroscopic level. At the microscopic level, nonlinearity arises from the interactions

between individual cells and the ECM. Cells are active entities that can sense and

respond to mechanical forces, and the ECM provides a complex environment that

influences cellular behavior. At the macroscopic level, nonlinearity, which is attributed to

the ECM constituents, manifests itself in the stress–strain response of a tissue. The stress-

strain curve for breast tissue is typically nonlinear with toe, linear, and yield regions [23].

Figure 1-7 [6] shows a typical stress-strain curve. The toe region represents the initial

deformation of the tissue in which the collagen fibers are stretched slightly with little

impact on their coiled structure. The linear region represents the region where the tissue

is elastic after the collagen fibers reach their uncoiled state where deformation is almost

proportional to the applied stress. The yield region represents the region where the tissue

begins to plastically deform and does not return to its original shape after stress is

removed. Nonlinearity is key to accurately simulating how breast tissue deforms under

various conditions, directly impacting the precision of diagnostic imaging methods, such

as mammography and ultrasound. Furthermore, it significantly affects surgical planning

and the design of biomedical devices by providing a more realistic representation of the

tissue responses. Additionally, incorporating nonlinear behavior into models can shed

light on disease mechanisms and offer deeper insights into how conditions such as cancer

alter tissue properties, thereby advancing both diagnostic and therapeutic strategies.
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Figure 1-7: Stress-strain curve (Figure taken from [6]).

Given the intricate nature of breast tissue, characterized by its complex, nonlinear

mechanical behavior and heterogeneous composition, significant research efforts have

been devoted to developing various methodologies for mechanical testing. These efforts

have led to the emergence of a diverse array of experimental techniques, both ex-vivo

and in-vivo, aimed at accurately characterizing the mechanical properties of breast tissues.

Table 1-1 offers an intuitive summary of the literature for each mechanical test type.

Table 1-1: Overview of mechanical testing methods for breast tissue.

Test Type Experimental Condition Number of

Related

Researches

Representative

Author

Elastography

Techniques

In-vivo 9 Ophir et al.

(1991) [24]
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Magnetic

Resonance

Elastography

In-vivo 10 Sinkus et al.

(2000) [25]

Optical Coherence

Tomographic

Elastography

In-vivo 1 Srivastava et al.

(2011) [26]

Uniaxial

Compression and

Punch Indentation

Ex-vivo 7 Krouskop et al.

(1998) [23]

However, despite these advancements, the methodologies currently available for the

mechanical testing of breast tissue face several challenges. One of the primary concerns

is the difficulty in obtaining reliable hyperelastic parameters, particularly in the unloaded

state of the tissue [27]. This issue is compounded by the variability in tissue response due

to individual differences as well as the potential for tissue damage during testing, which

can lead to inaccuracies in the derived parameters [28]. Furthermore, the complex

interplay of different tissue components at various scales adds another layer of

complexity to the accurate modeling of breast tissue mechanics [29].

Machine learning has emerged as a potential game-changer. By leveraging its advanced

capabilities in pattern recognition and data analysis, machine learning offers a novel

approach for refining the hyperelastic parameters. It can systematically analyze the vast

amounts of data generated from mechanical tests, identify underlying patterns, and

establish robust relationships between measurable variables and model parameters [30].

This not only streamlines the process of parameter tuning but also opens new avenues for

improving the accuracy and reliability of biomechanical models.
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1.1.5 Breast Gravitational Deformation

Breast deformation under gravity is a complex process that is significantly influenced by

the unique composition and heterogeneity of breast tissues. The breast consists of

glandular, adipose, and connective tissues, each with distinct mechanical properties that

respond differently to gravity. This variance in tissue response is a pivotal factor in the

biomechanical behavior of the breast, leading to differential displacement and strain

across tissue types when subjected to a consistent gravitational field[30]. Biomechanical

models have shed light on this nonuniformity, demonstrating how variable deformation

across different tissue types complicates the prediction of overall breast deformation. The

challenge lies in the inability of simplistic mathematical models to accurately capture the

nuanced interplay of forces within the complex structure of the breast, necessitating more

sophisticated approaches to predict and understand the deformation patterns.

The role of Cooper's ligaments in breast mechanics is to provide structural support

against gravitational forces, acting as natural suspensory structures that help maintain the

breast shape. However, the effectiveness of these ligaments in countering gravitational

stress diminishes with increased breast size, leading to exacerbated strain on Cooper's

ligaments and surrounding tissues over time. In the context of breast modeling for various

biomedical applications, accuracy requires availability of stress-free reference geometry

of the breast and its mechanical properties. Since the breast tissue is known to be

hyperelastic with substantial nonlinearity, using the breast geometry based on images

inevitable acquired under gravity forces lead to model unreliability. The increased

biomechanical stress may lead to progressive deformation of the breast and can

contribute to changes in the internal architecture of breast tissue. Such alterations are not

merely cosmetic concerns but have been suggested to influence the development of

certain pathologies, including breast cancer. Therefore, adequate breast support extends

beyond comfort and aesthetics to play a crucial role in the biomechanical integrity of the

breast. Properly fitted bras can offer significant support and stability, helping distribute

and mitigate the stresses imposed by gravity. By providing a counterforce to the

gravitational pull, a well-designed bra can help maintain breast shape, reduce strain on
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Cooper's ligaments, and potentially minimize the biomechanical stresses that contribute

to tissue deformation and the evolution of breast pathologies.

In conclusion, understanding the biomechanical response of the breast to gravity requires

a multifaceted approach that considers the unique properties of breast tissues and the

potential for external support mechanisms such as bras to influence the breast mechanics.

This comprehensive perspective is essential for developing interventions that can

effectively support the breast, preserve its biomechanical integrity, and reduce the risk of

deformation-related pathologies.

1.1.6 Bra Design

Bras are designed to contain and support the breasts and shield them from movement

triggered by daily activities. A woman wears a bra for an average of 8-10 hours a day

[31]. A comfortable and supportive bra relies on finding a perfect fit. Unfortunately,

research shows that a staggering number of women wear the wrong bra size [32]. This is

not only about comfort as a poorly fitting bra can lead to serious health problems, such as

nerve pain, back and neck aches, poor posture, difficulty during exercise, and increase in

the risk of future development of breast cancer. In severe cases, women with large breasts

may even turn to reduction surgery. Off-the-shelf bras, which are designed based on

symmetrical breasts standards, fail to accommodate the widespread prevalence of breast

bilateral asymmetry in women. “Bilateral asymmetry problem” means that if the bra is

chosen based on fitting the larger breast, the smaller breast may sag, whereas if it is

chosen to fit the smaller breast, the larger breast may suffer from excessive compression.

The consequences of ill-fitting bras are particularly concerning for women who have

undergone breast mastectomy or lumpectomy surgery, as they may already experience

significant changes in breast appearance, density, and sensitivity.

There is still no unified standard for bra cup shape measurements. Current bra cup design

methods prioritize aesthetics rather than pressure analysis. The first approach, which

focuses on appearance, is commonly used in breast implant procedures [33]. The second
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approach involves analyzing the pressure distribution of breast tissue under different bra

cup shapes [34]. However, few studies have explored bra cup design from the perspective

of the breast itself, aiming for an optimal fit, uniform stress distribution, and prevention

of chronic stress related damage. This research direction is particularly important for

preventing tissue hyperplasia in large breasts, particularly in those with significant

bilateral asymmetry. Biomechanical modeling and stress analysis offer promising

solutions for shaping challenges. By creating digital simulations of breast mechanics,

these tools can map the areas of potential elevated stress caused by different bra shapes.

This information can be used to create customized brands that offer optimal support and

minimize discomfort. This synergistic study has the potential to improve comfort, reduce

pain, and promote healthy tissue recovery after breast surgery.

1.2 « Theory »

This thesis draws from multiple background topics. This section offers a summary of

these foundational concepts.

1.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a medical imaging technique that leverages

powerful magnetic fields and radiofrequency (RF) pulses to generate detailed images of

the body's internal structures [35]. Under a strong magnetic field, the hydrogen nuclei

within the body align their magnetic moments, forming a net magnetization vector. A

precisely timed RF pulse disrupts this alignment by causing nuclei to absorb energy and

flip their orientation. After the RF pulse ceases, the hydrogen nuclei return to their

original state via a process called relaxation. This relaxation releases energy, which is

detected by an RF receiver coil and used to construct an MR image [36]. The distinct

relaxation times of different tissues, along with variations in the hydrogen density, create

an image contrast that makes MRI exceptionally valuable for diagnostic purposes.
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MRI is a powerful medical imaging technique for the detection of breast cancer and other

breast diseases. Different breast tissues have distinct appearances on MRI: fat tissue

shows a high signal on T1-weighted images, appearing bright white, whereas glandular

tissue exhibits an intermediate signal, appearing gray-white. Fibrous tissue presents with

a low signal, appearing black, and ducts display a high signal, appearing bright white.

Breast tumors, on the other hand, typically manifest as a high-signal mass on T1-

weighted images, appearing bright white [37]. Figure 1-8 presents a breast MRI scan,

where the radiologist identified a region of interest with a white arrow, indicating the

presence of a cancerous lesion.

Figure 1-8: Breast MRI scan of a cancerous lesion.

For breast MRI, specifically, the contrast between different tissues and potential

abnormalities, such as tumors, is enhanced through the use of contrast agents. Contrast
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agents affect the relaxation times of the tissues, making the affected tissues appear

brighter on T1-weighted images. This is described by the equation for signal intensity

with contrast agent C:

�푐표푛푡���푡 = �(1 − �
− 푇�
푇1+�)�−

푇�
푇2 (1-1)

C is the effect of the contrast agent on the T1 relaxation time. Radiologists diagnose

breast cancer by considering factors such as signal intensity, tumor morphology (irregular

shapes and indistinct borders suggesting malignancy), and contrast enhancement [38].

While MRI offers advantages such as high sensitivity and being radiation-free, it has

limitations. Image artifacts caused by motion or metal implants as well as partial tissue

loss due to the slice-by-slice imaging nature of MRI are potential drawbacks. These

limitations can lead to false-positive results in the diagnosis of breast cancer [39].

1.2.2 Tissue Biomechanics

Soft tissues are the foundational building blocks of biological organisms that provide

various physiological functions, including motion generation, hormone production, milk

production etc. Examples include muscles, tendons, skin, and glandular tissues. Unlike

rigid materials such as metals or ceramics, soft tissues exhibit several unique

characteristics due to their high deformability.

Stress-strain Relationship：Soft tissues exhibit mechanical behaviors distinct from

traditional engineering materials. Their response to stress (a measure of internal force per

unit area, denoted as σ) and strain (the relative deformation they experience denoted as ϵ),

is represented by more complex models such as hyperelasticity, where the stress-strain

relationship is given by a strain energy density functionW that can be integrated to obtain

the stress:
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 σ = ∂W
∂ϵ

(1-2)

Nonlinearity: Soft tissues generally do not follow a linear stress-strain relationship

(Hooke's Law). Instead, they stiffen as they deform. The nonlinearity of soft tissues such

as breast tissue can be represented mathematically by a nonlinear stress-strain curve,

which is often described by the Neo-Hookean, Yeoh or other hyperelastic models [40].

The Neo-Hookean model can be expressed by the strain energy functionW, which is a

function of the invariants of the deformation gradient tensor. For incompressible

materials, the simplified form of the Neo-Hookean model is:

� = μ
2 (�1 − 3) (1-3)

whereW is the strain energy per unit of the reference volume, μ is the initial shear

modulus, and I1 is the first invariant of the Cauchy-Green deformation tensor, which is

related to the strain in the material.

Hyperelasticity: Soft-tissue materials exhibit nonlinear behavior under external loading,

deviating from the linear elastic response. This nonlinearity arises from two mechanisms:

Intrinsic nonlinearity: Stems from inherent material properties, leading to a

nonlinear relationship between the Cauchy stresses and strain tensor components.

Geometric nonlinearity: Large deformations (strains >5%) alter the internal

force distribution within the material, thereby changing its mechanical response.

In these materials, the strain energy function characterizes the behavior because the work

done during deformation can be stored as elastic energy. This strain energy function

(U(F)) is defined in the deformation gradient (F) space (energy per unit volume). The

constitutive law is derived from it:
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For isotropic hyperelastic materials, the constitutive law for isotropic hyperelastic

materials:

� = 2�−1[�3
휕�
휕�3
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휕�
휕�2
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where B is the left Cauchy-Green deformation tensor:

� = ��푇 (1-6)

I1, I2, I3 are strain invariants of the deformation tensor. The strain energy function (U)

depends on the strain invariants. Different hyperelastic models exist, each with a unique

strain energy function, chosen to match the mechanical test data of a specific material. In

this project, the Yeoh and the 1stOgden hyperelastic formula was chosen to model breast

tissue behavior, and corresponding strain energy functions are described in Chapter 3.

1.3 « Literature Review »

1.3.1 Breast Cancer Assessment based on Bilateral Asymmetry

According to the fourth edition of the Breast Imaging Reporting and Data System (BI-

RADS) [41], bilateral asymmetry is one of the four subtle signs of breast cancer. Various

studies have demonstrated its potential in improving detection and risk assessment. The

conventional diagnosis of breast asymmetry relies heavily on the doctor's experience.

This can contribute to both unnecessary recall and missed breast cancer diagnosis.

Additionally, overlapping breast tissues can obscure asymmetric lesions, making them

difficult to detect, especially in dense breasts. Many Machine Learning-based breast

cancer diagnosis methods have been proposed to address this limitation. One approach

leverages sequential mammograms analyzed via deep learning to detect masses and

microcalcifications within paired mammograms [42]. This method innovatively

integrates breast asymmetry evaluation to refine the cancer classification and detection
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accuracy. A contrasting methodology employs a non-learning-based strategy [43]. Using

breast thermograms and bilateral symmetry analysis, this technique offers effective

abnormality detection with 92% accuracy, providing an independent alternative to

complex deep learning models. Another valuable development highlights the crucial role

of multi-modality diagnostics [44]. Researchers emphasize correlating ultrasound, MRI,

and histopathological findings in patients showing the development of mammographic

asymmetry. Such thorough investigations can significantly aid in the determination of

malignancy. These integrated and computationally driven approaches demonstrate

outstanding potential for optimizing the accuracy and early detection of breast cancer

through a sophisticated bilateral asymmetry analysis. Alongside the advancements in

asymmetry-focused breast cancer prediction methods, researchers have pinpointed

potential areas for ongoing enhancement. [45] developed bilateral asymmetry-driven

breast cancer detection by introducing thermal imaging to the paradigm and highlighting

texture feature relevance. They examined various classification models (SVM, Decision

Tree, etc.) for thermogram assessment based on textural features and thermal imaging.

[46] developed a short-term breast cancer risk model by employing both global and local

asymmetry characteristics in mammograms. [47] focused on segmentation in an

asymmetry-focused analysis to refine cancer risk prediction. [48] developed a deep

learning model specifically for the detection of malignant breast lesions in digital

mammograms of Asian women. Other researchers [49-54] are involved heavily in

developing deep-learning algorithms specifically for breast cancer detection within

mammograms.

Although these studies have shown promising results, some limitations still need to be

addressed. First, most studies focus only on the detection of current cancer and do not

predict future cancer risk, precluding meeting the needs of early prevention and

intervention. Second, many deep learning studies rely on large amounts of data, which

are generally lacking in the medical field, resulting in insufficient model generalization

ability and difficulty in application to actual scenarios. In addition, traditional supervised

machine learning methods rely on manually designed features, which not only consume a

lot of manpower but also have strong subjectivity, resulting in poor model robustness and

difficulty in further application. To further improve the scalability and reliability of breast
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cancer prediction, future research needs to: (1) develop models that can predict future

cancer risk to help high-risk groups in early prevention and intervention; (2) explore

unsupervised learning or weakly supervised learning methods to alleviate the dependence

on labeled data and improve the generalization ability of the model; and (3) research

more robust and interpretable feature extraction methods to improve the performance and

reliability of the model. Nevertheless, these studies provide strong evidence that bilateral

asymmetry analysis can be a valuable tool for breast cancer prediction and early detection.

1.3.2 Biomechanical Properties of Breast Tissue

Biomechanical breast models, which primarily use finite-element methods, can predict

breast deformation under various conditions. They have been used to guide clinical

biopsies [55], simulate the compression of X-ray mammography [56], combine X-ray and

MR mammograms, test image registration algorithms [57], and evaluate elastography

reconstruction techniques [58]. These mechanical models offer vital insights into how

breasts are expected to deform. Capturing the nonlinear, large-strain behavior exhibited

by breast tissue necessitates the use of hyperelastic constitutive models. Researchers have

used widely differing values to represent the material properties of breast tissue in

biomechanical models. Experimental tests to determine the mechanical properties of

breast tissue fall into two main categories: in-vivo (conducted on a living person) which

often employ imaging and ex-vivo (performed on tissue samples removed from the body)

which use mechanical stimulation such as compression or indentation.

In-vivo methods offer a unique opportunity to calculate the mechanical properties of

breast tissue in its natural environment. Imaging techniques, such as elastography, play a

crucial role. These methods typically involve applying a controlled force or deformation

to the breast, and then using medical imaging to track the tissue response. For example, in

ultrasound elastography, images reveal how tissues deform under compression, with less

deformation indicating stiffer regions. By analyzing tissue displacement images with

sophisticated algorithms, researchers can map out variations in stiffness, translating that

information into quantitative measures of mechanical properties such as the elastic
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modulus. MR has demonstrated significant potential for the assessment of breast tissue

properties in-vivo. Early work by Lawrence et al. (1998) [59] confirmed its feasibility,

accurately mapping breast tissue stiffness, and revealed that glandular tissue is stiffer

(2.45 ± 0.2 kPa) than adipose tissue (0.43 ± 0.07 kPa). Subsequent research established

the capacity of MR elastography to distinguish benign and malignant tumors, with

malignant tissues consistently exhibiting higher elasticity [60-62]. Ultrasound (US)

elastography is a complementary technique. Sayed et al. (2013) [63] demonstrated its

diagnostic capabilities, with tumors appearing significantly stiffer than the normal tissues.

Han et al. (2003) [64] revealed the viscoelastic nature of breast tissue using US

elastography, emphasizing the need for preconditioning during testing to ensure

consistent results. Barr and Zhang (2012) [65] investigated how precompression levels

during elastography impact results. They determined that a slight precompression

(approximately 10%) maximized the contrast between normal and tumor tissue stiffness

and improved tumor detection accuracy. Elastography, especially MR elastography,

provides valuable insights into the mechanical properties of breast tissue. Variations in

stiffness offer a powerful tool for differentiating healthy, benign, and malignant tissues.

Ex-vivo experiments, such as uniaxial and indentation tests, offer valuable insights into

how factors such as precompression influence the mechanical behavior of soft tissues

[66-67]. These tests measure the displacement and force, which can then be used to

calculate the Young's modulus. Uniaxial tests can be hindered by irregularities in the

sample geometry and the difficulty in preparing uniform specimens without causing

damage. For the initial analysis, researchers often simplify the assumption that tissues are

elastic, isotropic, and near-incompressible to estimate the elastic modulus [68-69].

Sarvazyan et al. (1995) [70] found fibroadenomas and malignant tissues to be

significantly stiffer than normal tissues. Krouskop et al. (1998) [71] observed that adipose

tissue is the softest, with malignant tissues (particularly IDC) exhibiting the highest

stiffness. Importantly, this stiffness increased nonlinearly with the precompression. This

nonlinear behavior is underscored by Samani et al. (2003, 2007) [72][45], whose findings

highlight that stiffness differences between tissue types are most pronounced at high

strains. Matsumura et al. (2009) [72] and Umemoto et al. (2014) [73] further emphasized

this non-linearity, noting that while malignant tissues are generally stiffer, the contrast
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with normal tissue stiffness decreases as applied stress increases, likely due to normal

tissues' higher non-linearity.

However, under large deformations, the viscoelastic nature of these tissues became

apparent. This means that their mechanical response depends on the duration of the

applied load (visco), and they recover their initial state after load removal (elastic),

indicating the absence of permanent damage [74]. By combining indentation tests and

inverse FE modeling, Samani and Plewes (2004) [75] successfully measured the

hyperelastic properties of adipose and fibroglandular breast tissues. Dempsey et al. (2021)

[76] found no significant differences between the hyperelastic properties of adipose,

fibroglandular, and mixed breast tissues, supporting the use of homogenous models for

large strain simulations. Sun et al. [77-78] characterized adipose tissue's hyperelastic

behavior, highlighting similarities between human and porcine samples and emphasizing

the suitability of the Ogden hyperelastic model for representing these complex tissues.

There is no single agreed-upon model with various researchers favoring exponential,

hyperelastic, or even linear elastic models. These choices led to different material

parameters in the models. Nearly all recent researchers have assumed that the materials

are quasi-incompressible (i.e., their volume hardly changes when deformed). Tanner et al.

[79] found that the exact ratio of stiffness between fatty and glandular tissue has minimal

impact on the model's accuracy. Some researchers assume that the skin behaves in a

simple linear elastic fashion for deformations below 50% [38]. Others acknowledge that

skin properties such as anisotropy (having different responses based on the direction of

force) is location dependent [80]. Tanner et al. [81] concluded that for moderate

compression (20%), the choice of material properties matters less for breast model

accuracy than ensuring the model accurately represents how the breast interacts with its

surroundings. Using accurate surface displacement data, they achieved landmark

prediction errors under 2.5 mm.

Classic hyperelastic models provide a critical tool for the biomechanical characterization

of breast tissue. Although newer models are continually emerging Yeoh [82], Ogden [83]

and Veronda-Westmann models [84] remain powerful choices, facilitating advancements
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in breast health interventions. However, it is worth noting that the aforementioned models

do not consider the inherent initial stress present in the breast tissue. This preloading can

arise from various factors such as tissue growth, remodeling, and the presence of tumors.

Ignoring this residual stress can lead to inaccuracies in model predictions and potentially

affect the outcomes of clinical applications.

1.3.3 Stress Concentration and Cancer Risk

The interplay between mechanical stress and cancer risk is a critical area of investigation

that bridges the fields of biomechanics and oncology. Central to this field of study is the

concept of stress concentration, a condition in which mechanical stress is

disproportionately distributed within a material or tissue, leading to localized areas of

high strain. In the context of breast tissue, such stress concentrations can arise from

various sources, including physical compression, gravitational forces, and constriction

imposed by ill-fitting bras. Research has shown that mechanical stress can induce a

cellular response through mechanotransduction, whereby mechanical signals are

converted into biochemical signals [85]. This process can lead to the activation of

oncogenes and suppression of tumor suppressor genes, thereby promoting tumorigenesis.

For example, studies [86] have demonstrated that sustained mechanical compression of

mammary tissues can lead to increased epithelial density, which is a known risk factor for

breast cancer. This density can create an environment conducive to cellular anomalies by

physically constraining normal cell movement and function, thereby facilitating the

accumulation of genetic mutations. Beyond its direct effect on cellular structures,

mechanical stress influences the breast tissue microenvironment, which is an essential

factor in cancer progression. An altered mechanical environment can promote

inflammation, a critical mediator of tumorigenesis [87]. Chronic inflammation has been

associated with a range of cellular changes conducive to cancer development, including

DNA damage, promotion of angiogenesis, and suppression of apoptosis.

Mechanical stress can also affect the extracellular matrix (ECM), a complex network of

proteins and fibers that surrounds and supports cells. Changes in ECM stiffness and
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composition driven by uneven stress distribution can alter cellular behavior in ways that

promote cancer. For example, increased ECM stiffness has been linked to enhanced cell

proliferation and migration, which are integral to cancer invasion and metastasis.

Furthermore, remodeling of the ECM under mechanical stress can release growth factors

and other signaling molecules trapped within the matrix, further stimulating tumor

growth and progression. A growing body of empirical evidence supports the hypothesis

that mechanical stress contributes to cancer risk. For example, Plodinec et al. [88]

highlighted the role of ECM stiffness in breast cancer progression, illustrating how the

biomechanical properties of the tumor microenvironment influence cellular dynamics and

cancer outcomes. Similarly, Butcher et al. [89] explored how mechanical forces modulate

angiogenesis within the tumor microenvironment, offering insights into how stress-

induced changes in vascularization could support tumor growth and spread.

1.3.4 Bra Shape Optimization

The use of the Finite Element method (FEM) to analyze the stress distribution induced by

the breast-bra mechanical contact and refine the bra shape to achieve desirable stress

distribution based on the analysis results is an emerging research area. This approach can

provide more accurate information about stress distribution, which can help in designing

bras that are more fit, comfortable, and effectively support breasts. Early work such as

Bingham et al. (2005) who designed layered garment model [90] highlighted this

potential, even though its development has stalled. Bel-Brunon et al. (2014) [91]

demonstrated FEM's capabilities for studying bra stress distribution under various

conditions, including movement. Their model incorporated deformable skin and breast

elements, with parameters informed by experimental data. Some studies [92-94] indicate

that material matters much: stiffer bra cup materials offer enhanced breast reshaping and

may reduce neck pressure. However, there is a trade-off: potentially greater pressure

towards the breast base [95]. Research has highlighted the need to balance rigidity with

breathability and overall wear comfort. [96] proposed underwired bras that demonstrate

superior shaping abilities compared to their wireless counterparts, but this comes at the

cost of increased breast pressure. Their findings underscore the importance of
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personalizing fit with individual preferences. [97] utilized numerical modeling aids to

explore the impact of specific bra fabric parameters on the pressure distribution and

shaping. Through simulations, diverse materials and construction methods can be

virtually tested without the need for costly iterations of physical prototypes. Some

researchers have advanced tools for design optimization using criteria such as limited

strain, making them more stable under conditions that simulate real-world wear dynamics

[98]. FEA method addresses several key challenges within the intimate apparel field,

including the nonlinear behavior of breast tissue, varying properties of bra cup materials,

and complex body-bra interactions [99]. Zhang pioneered the use of finite element (FE)

methods in numerically modeling the body and garments [100]. However, their work

treated the body as a rigid object and focused on fabric properties, limiting its realism in

garment design. Wang [101] built an FE contact model based on the Mindlin-Reissner

shell theory, revealing the influence of fabric materials on garment fit. Similar studies

have used FE modeling to analyze the relationship between fabric choices and fit in other

garments, such as socks and insoles [102-104].

1.4 « Objectives »

The overarching objective of this study was to improve the survival rate and quality of

life of women at high risk of breast cancer by informing them of their high risk and

mitigating it by designing custom-made bras to prevent tissue stress concentration. Once

developed, the methods will be applied to a cohort of women with varying degrees of

asymmetry who have undergone comprehensive MRI. The results of this study can be

used to establish quantitative links between breast mechanics, customized bra design, and

future breast cancer risk assessment.

The focus of our work is on developing MRI-driven, patient-specific models of breast

biomechanics, where asymmetry is a central consideration. The first specific aim of the

research included in this thesis was to develop a machine learning algorithm that

classifies breast asymmetry using MRI and correlates it with breast cancer risk. The

second specific aim focuses on the structural inverse problem of determining an
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individual's state-free breast biomechanics. In this study, we developed two separate but

interconnected neural networks to reconstruct the unloaded hyperelastic tissue parameters

and undeformed breast geometry from MRI images. The third specific aim was to

establish an optimization framework for tailored bra design that minimizes stress

concentrations in breast tissue by considering tissue properties, breast geometry, and

textile characteristics.

1.5 « Thesis Outline »

1.5.1 Thesis Overview

This thesis is structured to elucidate a strategic approach for identifying individuals at a

heightened risk of breast cancer and to develop methodologies that effectively minimize

this risk. Chapter 2 identifies these high-risk groups through clustering techniques by

analyzing MRI data to classify bilateral breast asymmetry, a critical, yet underexplored

indicator of long-term cancer risk. Subsequently, three interlinked methodologies to

address this risk are developed in Chapters 3, 4, and 5. Chapter 3 introduces a

computational technique to precisely calculate breast tissue properties under state-free

conditions. This detailed understanding of breast tissue is then applied in Chapter 4 to

reconstruct the breast’s undeformed geometry of state-free conditon, which provides a

reference geometry for Chapter 5. This chapter is geared toward custom-made bra design

specific for the group of individuals classified as high risk individuals according to the

algorithms developed in Chapter 2. The design criteria in this chapter is minimizing

breast tissue local stress resulting from wearing the bra. hence directly addressing the

risks identified in Chapter 2. Each chapter intricately builds upon the previous one,

ensuring a comprehensive approach to risk assessment and mitigation, tied together

through innovative technological advancements. A structural diagram Figure 1-9 is

presented to illustrate the logical relationships between these chapters, further clarifying

the progression and integration of methodologies throughout the thesis.
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Figure 1-9: Logical flow diagram of thesis structure and methodology development.

This thesis addresses the objectives outlined in the subsequent sections. The final section

concludes the thesis with a summary and proposes future research directions. The

organization of each chapter is as follows.

1.5.2 Chapter 2

In the early detection of breast cancer, bilateral breast asymmetry, assessed primarily

based on magnetic resonance imaging (MRI), is an important but underutilized indicator.

Previous studies have shown a strong correlation between asymmetry and increased

breast cancer risk in the long-term. Furthermore, most existing methods rely on

supervised learning techniques, which require extensive labeled data and only focus on

predicting the presence of already-developed cancerous tissue rather than long-term risk

assessment. To account for these limitations, a novel unsupervised clusering method was

developed to assess breast cancer risk based on longitudinal bilateral MRI data, focusing
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on bilateral asymmetry classification. In this chapter, we present a novel unsupervised

clustering machine learning technique developed for breast bilateral asymmetry

classification and risk prediction. For a comprehensive MRI analysis, the model was

developed and trained on a two-level feature space: volume-by-volume and slice-by-slice

for clustering. Model validation employed cross-validation with sequentially labeled MRI

data (positive/negative). The results demonstrated significant clustering improvements in

accuracy and effectiveness for predicting future breast cancer risk.

1.5.3 Chapter 3

In this chapter, an innovative computational inversion technique to calculate patient-

specific breast tissue properties under stress-free conditions is introduced. To address the

inaccuracies introduced by gravity preloading, this approach focuses on determining

'preloading-free' parameters, which are essential for enhanced breast biomechanical

modeling. First, a comprehensive database covering the complete unloaded parameter

space was constructed. The experimental uniaxial testing data were used to inversely

populate the corresponding loaded parameter space. Next, a parameter-estimation neural

network was trained to calculate the unloaded counterparts using the loaded breast tissue

parameters. The technique was utilized using data acquired from previous studies in our

laboratory, and the results verified its efficacy in subsequent breast geometry

reconstruction (Chapter 4) and bra design efforts (Chapter 5). To the best of our

knowledge, this represents an easily implemented machine-learning-based algorithm

addressing the determination of stress-free hyperelastic tissue parameters in an effective

way.

1.5.4 Chapter 4

In this chapter, we further developed the methodology from the previous chapter to

obtain the undeformed shape of the breast using breast MRI data which is acquired under

gravity loaded state. First, two shape spaces were created to represent the loaded and

unloaded breast geometries using their surface point clouds. The unloaded space was

constructed using the unloaded hyperelastic parameters (obtained in Chapter 3) combined

with non-isotropic scaling, implemented via finite element modeling (FEM). A spatial
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configuration neural network was then trained to reconstruct the unloaded geometry

based on its loaded counterpart. The technique was validated using a reverse method

where the reconstructed unloaded geometry was loaded with gravity and compared to the

original MRI model. The results demonstrate the ability of the technique to accurately

reconstruct undeformed breast geometry. This technique is important for establishing a

more precise reference as the starting shape to be loaded through FE modeling for bra

design, ultimately leading to improved comfort and support.

1.5.5 Chapter 5

In this section, preliminary work carried out on an optimization framework for bra shape

design is presented, which focuses on breast stress uniformity. Other studies often rely on

3D scans of breasts already wearing bras, ignoring the initial unloaded state and the

subsequent preloading effects. This technique uniquely incorporates patient-specific

unloaded breast geometry (obtained in Chapter 4) and hyperelastic tissue parameters

(calculated in Chapter 3), yielding more individualized solutions. The technique

leverages the ability of the breast tissue to conform to a custom-fitted bra while ensuring

that the stress remains within a healthy range through iterative design optimization.

1.5.6 Chapter 6

This chapter provides a concise summary of this dissertation's core contributions. The

potential of this research was explored by proposing potentially impactful directions for

future investigations.
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Chapter 2

2 « Prediction Risk of Breast Cancer Development Using
Breast Bilateral Asymmetry Analysis within a Machine
Learning Framework »

2.1 « Introduction »

Breast cancer surpassed lung cancer in 2020 to become the leading cause of death among

women globally [1]. Early detection of breast cancer, paired with personalized treatment

strategies, has significantly reduced mortality and morbidity rates [2]. Tissue assessment

aiming at identifying abnormalities through medical imaging of the breast is a potent

method for early diagnosis. However, many young women at risk, particularly those

without a family history of BRCA1 and BRCA2 mutations, lack access to regular

screening programs like The Ontario Breast Screening Program (OBSP) [3].

Implementing a population-wide risk assessment protocol for breast cancer to identify

women with high-risk breast abnormalities before enrolling them in effective screening

programs could markedly improve survival rates.

Bilateral asymmetry, characterized by uneven size, shape, volume, and tissue distribution

in the breasts, has recently been recognized as a strong indicator of cancer risk [4]. This

asymmetry can be classified into four categories: natural asymmetry, global asymmetry,

focal asymmetry, and developing asymmetry [5]. While natural asymmetry is often

mistaken for cancerous asymmetry, developing asymmetry is a genuine cause for concern.

Despite numerous studies highlighting the strong correlation between asymmetry and

cancer risk [6-9], many focus on scenarios after breast cancer diagnosis or fail to exclude

false positives due to natural asymmetry. This underscores the need for computer assisted

methods that can accurately classify bilateral asymmetries associated with high cancer

risk.
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Magnetic Resonance Imaging (MRI), a key modality in breast cancer diagnosis, provides

valuable information about breast anatomical structures. However, the complex

differences in fibroglandular tissue distribution among individuals often complicate the

interpretation of screening mammograms due to overlapping dense fibroglandular tissues

(FGTs), leading to low true negative rates [10]. With the advent of machine learning,

many methods have started to treat medical images (e,g, MRI or X-ray mammograms) as

sets of pathology manifestation features and apply feature engineering to such images to

assist with cancer assessment. For example, Yan et al. (2017) improved the accuracy of

short-term breast cancer risk prediction by applying a new mammographic image

conversion method combined with a two-stage artificial neural network (ANN)-based

classification scheme [11]. Following a similar goal, Chaurasia (2018) developed

prediction models for breast cancer survivability using data mining techniques. The

research focused on utilizing machine learning algorithms to analyze medical imaging

data, such as MRI or X-ray mammograms, to predict the likelihood of a patient surviving

after a breast cancer diagnosis. This approach allows for more personalized and effective

treatment plans, ultimately improving patient outcomes [12]. Li (2018) aimed at

developing a new short-term breast cancer risk prediction model that applies a machine

learning approach to image data. This machine learning approach encompasses a locally

preserving projection (LPP)-based feature combination and regeneration algorithm [13].

However, these studies focus on short-term (0.5-1.5 years) cancer predictions where

tissue abnormalities are already evident, and the training data is typically labeled by

experienced physicians.

Among breast imaging modalities, MRI mammography is highly advantageous in clear

presentation of spatial distribution of breast tissue features that may carry information

about current pathology development and its future manifestation. Searching the topic of

MRI breast cancer assessment based on asymmetry analysis indicates that only a few

investigations have been conducted to develop effective pertinent algorithms. This

highlights a substantial need for an accurate automatic classifier for image-based breast

cancer risk assessment. In this study, we develop a ML-based classifier that estimates the
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risk of breast cancer accurately according to bilateral MRI images. Our objective in this

work is to investigate the feasibility of predicting the risk of developing breast cancer

based on quantitative assessment of the breasts’ asymmetry in MRI mammograms via a

ML algorithm. This investigation involves a longitudinal study to provide long-term

cancer risk prediction. Data pertaining to the study is used to train the algorithm which is

founded on automatic clustering framework.

2.2 «Materials and Methods »

2.2.1 Overview of Proposed Model

In this study, we propose an end-to-end framework for assessing a woman's risk of

developing breast cancer by analyzing her bilateral breast MRI images. The method is

essentially based on unsupervised learning and data clustering, and it includes four main

steps as shown in the block diagram of Figure 2-1. The steps are MRI mammogram

preprocessing, data augmentation, feature engineering, and finally clustering and risk

estimation using cross-fold validation.
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Figure 2-1: Block diagram of the clustering method proposed for breast cancer risk

assessment.

2.2.2 Data acquisition

In this study, a breast MRI scan dataset consisting of 55 patients with notable bilateral

asymmetry who participated in a longitudinal study was used. This study was conducted

with the approval of the ethics committee of The Second Affiliated Hospital, School of

Medicine, Zhejiang University. The inclusion criteria was women who had two

sequential bilateral breast MR scans previously acquired at the same center while the first

scans were all negative for breast cancer. The second scan was acquired between 6 to 36

months after the first scan was acquired. The dataset comprised MRI images acquired

using a 1.5T Siemens scanner equipped with a bilateral phased array breast coil. The

imaging protocol employed T1-weighted pulse sequences, designed to emphasize the

contrast differences between fatty and fibroglandular breast tissues. The specific

sequence with an in-plane resolution of 256 x 256. The number of slices varied from 15

to 23, accommodating different breast sizes and shapes. The utilized parameters are a

repetition time of 7.5 ms, a echo time of 4.2 ms, and a flip angle of 10 degrees to

optimize the visualization of breast tissues. The MRI protocol also included fat
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suppression techniques to further enhance the contrast between different tissue types and

to aid in the clear delineation of potential lesions. An example of an MRI scan pertaining

to a breast cancer case is shown in Figure 2-2. In the next sequential screening

examination, 50 of the 55 patients were diagnosed with different types of breast cancer.

Figure 2-2: Breast bilateral MRI images of two patients included in the study. (a)

depicts the first scan of a patient's breast, where the arrow highlights a region of

dense tissue initially not diagnosed as cancerous by the radiologist. (b) shows a

subsequent scan of the same patient, where the previously dense tissue area has

since developed into a cancerous tumor, as confirmed by biopsy. This is a good

example of a patient’s breasts with substantial bilateral asymmetry that is clearly

visible in the image. (c) presents the first scan of a breast that was correctly

identified as non-cancerous. Due to the rich blood supply in the nipple-areolar
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complex, this tissue was misinterpreted as a cancerous mass. In (d), the second scan

of the patient shows that the tissue at this location is non-cancerous, similar to the

tissue on the right side. This type of misdiagnosis often occurs in large-sized breasts.

Compared to the former patient, the breasts of the latter patient has less obvious

bilateral asymmetry.

2.2.3 Data Augmentation Using Finite Element (FE) Based Image
Warping

As indicated earlier, for developing a model for identifying the group of women who are

at high risk of developing breast cancer, we use breast MRI images of a cohort of 55

women who had two scans acquired sequentially within 6 to 36 months. This data is both

limited in size and imbalanced as only 5 women were breast cancer free according to the

second scan. To address these issues, we used a physics-based data augmentation

technique that produces highly realistic new breast MRI images using existing scans of

the dataset. Commonly used data augmentation techniques rely on geometric

transformations such as scaling, rotation, or translation. These techniques are insufficient

in the problem being tackled in this research as they are only intended to enhance the

ability of the classification model to learn general features existing in the available data.

In contrast, the method proposed in this work employs highly accurate FE modeling of

the breast to generate new image data. The core of the proposed FE warping workflow

involves a deformed image generation method based on a model-to-image technique. It

follows an image warping framework which uses a reference image along with realistic

tissue mechanical properties and loading to obtain a non-linear transformation founded

on the breast biomechanics to be combined with the reference image to produce a new

realistic image. The overall framework of image warping is illustrated in Figure 2-3. To

our knowledge, our group is the first to utilize this approach for breast MRI data

augmentation. Details of the augmentation methods are provided below.
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Figure 2-3: Block diagram of the proposed warping framework.

2.2.3.1 Segmentation

To build the 3D FE model, each breast was segmented separately from its MR image

slice by slice using 3D Slicer (www.slicer.org). The segmentation followed a region

growing-based technique before opening and closing operations employed for smoothing.

Since most of the breast tissue is concentrated in the anterior part of the breast, the

thoracic cavity was not included in the image segmentation. Before segmentation, some

of the MRI scans were enhanced by a Gaussian filter and normalized through histogram

normalization.

http://www.slicer.org
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2.2.3.2 FE Meshing

Using Altair HyperMesh (www.altair.com), a 3D FE mesh was created for each breast

volume obtained from segmentation using 10-noded second-order tetrahedral elements.

These elements are known to follow the geometry of the object being modelled closely

while providing good analysis accuracy. Typically, each breast was discretized into more

than 2000 tetrahedral elements. Mesh convergence analysis was performed on 5 typical

breast models selected from the dataset to ensure that the selected mesh size was

appropriate.

2.2.3.3 Loading and Tissue Mechanical Properties

The FE breast model employed in the data augmentation generates realistic tissue

deformation based on the model’s nodal displacement field pertaining to alteration in the

gravity loading orientation resulting from changes in the body position (e.g., rotation)

anticipated during MRI scanning. In this study, we considered a rotation variation of ±5ᵒ

around the superior-inferior axis with respect to the reference image. To generate

multiple cases, we considered a rotation angle increment of 1~3ᵒ. The loading consisted

of two steps where the first was considered to obtain the breast’s unloaded geometry

obtained by applying negative gravity loading. The second step was performed by

applying gravity loading with respect to the rotated configuration. The latter step is

intended to alter the breast’s shape and its tissue distribution in a realistic way. These

alterations are expected to lead to new and yet realistic breast image features. As the

breast is known to undergo large deformation under loading, the FE model adapted in this

study considers the breast tissue as a hyperelastic material with parameters obtained in

our lab [14]. For further increasing the size of the augmented data, we took advantage of

the known inter-patient variation of tissue stiffness characteristics. As such, we utilized

hyperelastic parameter values within the parameters range reported in [15].
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The FE simulation under loading alteration pertaining to body rotation was performed

using Abaqus solver (SIMULIA, Providence, RI, USA). Along with each original

undeformed MR image, the displacement field was used to generate a new image

pertaining to its deformed state. The combination of various body rotations and

hyperelastic parameters led to the generation of additional 50 and 109 healthy and cancer

cases, respectively.

2.2.3.4 Augmentation Convergence

To ascertain that enough cases were generated for data augmentation, we added 10%

more data to the baseline augmentation data before comparing the model performance

developed with the complemented and baseline augmented datasets. This 10% data

addition was made to each type of the baseline augmented data, including rotation and

assigning different hyperelastic parameters. We then applied feature engineering analysis

to the two complemented and baseline augmented datasets and compared their feature

distribution to determine whether the additional 10% data augmentation had substantial

effect on the clustering results [16][17].

2.2.4 Feature Engineering

Feature engineering is a crucial step in enhancing the performance of a machine learning

model. The aim of feature selection is to identify a subset of the most pertinent features

from the original feature space, evaluate the relationships between various input features,

remove noise, and reduce dimensionality to improve the model's interpretability by solely

using the most informative features. The primary contribution of feature engineering lies

in preventing overfitting and enhancing the model's generalization performance. In the

proposed ML model, we extracted several image features before selecting the most

effective ones for clustering.
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2.2.4.1 Feature Extraction

In this work, we extracted asymmetry features, statistical features, shape-based features

and high-order features. Because the breast is made up of lobules, ducts, adipose and

fibroglandular tissues in addition to fibrous connective tissue, the texture of tissue was

also considered as a likely effective feature in the breast MR image [18]. In the proposed

method, texture and density features were extracted using non-orthogonal Gabor wavelets

[19]. First, the MRI scans were enhanced by a Gaussian filter and normalized by

histogram normalization so that small differences in features relevant to tissue

abnormality can be detected. To compute the predominant features related to bilateral

tissue asymmetry, the Python toolbox PyRadiomics was used [20]. This package allows

extracting 19 first-order statistical features in addition to 16 shape-based features. To

account for the breast's natural asymmetries with no contribution to positive cancer

findings, high-order features were added, resulting in a complex-valued feature vector to

elucidate subtle developing asymmetry. Specifically, 75 other high-order features were

considered, including 24 features derived from the gray-level co-occurrence matrix

(GLCM), 16 from the gray-level run-length matrix (GLRLM), 16 from the gray-level size

zone matrix (GLSZM), 5 from the neighborhood gray-tone difference matrix (NGTDM),

and 14 from the gray-level dependence matrix (GLDM). Description of the extracted

features is summarized in Table 2-1.

Table 2-1: Features related to breast tissue density and texture with their

description.

Feature Type Feature

Number

Description

First-Order Statistics 19 Quantifies voxel intensity distribution in the

image region.

Shape-Based 16 Measures the 3D size descriptors.
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Features

GLCM 24 Details the second-order joint probability

function via Gray Level Co-occurrence

Matrix.

GLRLM 16 Quantifies gray level runs, or consecutive

pixels of identical gray level value, using

Gray Level Run Length Matrix.

GLSZM 16 Utilizes Gray Level Size Zone Matrix to

measure gray level zones or connected

voxels of identical gray level intensity.

NGTDM 5 Uses Neighbouring Gray Tone Difference

Matrix to determine the difference between a

gray value and its neighbours' average gray

value within a specific distance.

GLDM 14 Implements Gray Level Dependence Matrix

to calculate gray level dependencies, or the

count of connected voxels within a specific

distance that depends on the central voxel.

For the asymmetry feature, we separately delineated two breast volumes from MRI

images of the left and right breasts. Prior to comparing these volumes, a critical step of

deformable image registration was employed to ensure precise alignment of the left and

right breasts. These volumetric data were then used to represent the “bilateral asymmetry”

features in feature space. Normalized Mutual Information (NMI) is a measure derived

from the field of information theory and is used to assess the similarity between two sets

of data. It is particularly useful in medical imaging for comparing and evaluating the
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alignment of images from different modalities or taken at different times. The NMI can

be mathematically represented as follows:

푵��(�, �) = 2 × �(�;�)
[�(�) + �(�)] (2-1)

I(L,R) is the mutual information between the two left and right breast images L and R,

which measures the amount of information in one image through the other. H(L) and H(R)

are the entropy of the left and right images L and R, respectively, each representing the

amount of information in the respective image. The normalization factor: 2/[H(L) + H(R)]

adjusts the mutual information function such that a substantial part of each image overlap,

leading to reliable similarity measure. In essence, NMI evaluates how well one can

predict the content of one image by knowing the content of the other image, with values

closer to 1 indicating higher similarity or better alignment. A higher NMI value signifies

a lower degree of bilateral asymmetry, indicating a greater similarity between the left and

right breasts. In this work, negative samples, indicative of natural bilateral symmetry and

devoid of cancerous implications, were methodically segregated to establish a normative

baseline of asymmetry. The rationale behind this baseline is to refine the normalization

process for the asymmetry feature. Consequently, this ensures a uniform distribution of

NMI values across the feature space, preventing skewness towards any specific data

region. This methodological approach underscores the importance of distinguishing

between physiological asymmetry and aberrations suggestive of malignancy.

Beyond volume-level asymmetry features, we also extended asymmetry analysis to slice-

level in MRI images. Given the layered acquisition of MRI scans, where a volume

comprises a sequence of slices, the analysis at the slice level offers a finer granularity of

asymmetry assessment. Following bilateral breast contours' deformable registration to

align corresponding slices, we employed Pearson Correlation Coefficients (PCC) to

quantify the asymmetry between left and right breast slices. The PCC is defined by the

following:
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where L and R are the two slice images being compared, li and ri are the pixel image

intensity, and � �and � �are the mean image intensity values of L and R, respectively.
Values close to 1 indicate a strong positive correlation, whereas values near -1 suggest a

strong negative correlation (asymmetry). In our context, a diminished PCC underscores

pronounced asymmetry between the corresponding breast slices, characterizing each

breast volume pair by an array of 15-23 PCCs, corresponding to its slice count. This

nuanced approach enhances the detection of asymmetrical features, pivotal for early

cancer identification.

2.2.4.2 Feature Selection

To avoid potential redundancy in extracted features and complicate model interpretability,

it is essential to decrease the feature space's dimension through identifying the most

important features. To combat overfitting during training, we assessed various feature

selection techniques, such as wrapper, embedded, and filter methods [21]. Our

streamlined feature selection process consists of the following steps:

1. Removal of collinear features.

2. Selection of pertinent variables from the initial extracted features. The process

involved selecting relevant variables by employing Normalized Mutual Information

(NMI) from the feature selection module of the sklearn library [22] and the Minimum

Redundancy Maximum Relevance (mRMR) method via the pymrmr library [23]. These

techniques were instrumental in identifying features that significantly represent bilateral

asymmetry, which were then incorporated into the classification model. The mRMR

method aims to select features that are highly relevant to the target variable while also

being minimally redundant with each other. The core idea revolves around maximizing

the relevance of selected features for the prediction task while minimizing their

redundancy. Feature selection is highly effective to avert overfitting and ensure
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sensitivity to initialization. The selection criterion emphasizes intra-group rankings to

ensure a holistic representation of data aspects, effectively preventing the dominance of

any single feature group in the selection process. For instance, within the "First-Order

Statistics" group, which comprises 19 extracted features, the approach ensures that the

top-performing features from this group are considered for inclusion. After selection, the

features were normalized to adjust the scales of different variables, mitigating the risk

larger-scale features dominating the model's attention and potentially skewing the results.

2.2.5 Clustering

To fully utilize the features extracted from MRI images, we applied two methods for

classification.

2.2.5.1 Volume-by-Volume Clustering

Based on feature engineering, each medical image sample was represented as an n-

dimensional array where n is the number of features obtained using feature engineering

analysis following the concept of maximizing the amount of information provided by

features. Next, we grouped these samples using the unsupervised K-means clustering

method. The aim of the clustering here is to categorize breast asymmetry into different

classes based on their mammographic features extracted from bilateral MRI images to

compute a cancer risk or probability level for each case. The K-means clustering method

was selected because, compared to other unsupervised clustering algorithms such as

Mixture of Gaussians probabilistic clustering, it guarantees convergence, easily adapts to

new samples while it warm-starts the position of centroids [24]. To improve the

sensitivity of our auto-clustering model, we did not pre-label the negative/positive

samples and retained the known binary labels only for use in validating the proposed

method.
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To determine the optimal number of clusters, we started with K=10 classification clusters

as a starting point, since for practical applications, 10 asymmetry clusters are sufficient to

describe the commonalities of abnormal tissue [25]. We then applied the Elbow Criterion

to find the optimal number of clusters and subsequently verified this determination using

the Silhouette Score. Both criteria evaluate the cost function resulting from different

cluster counts (K). The Elbow Criterion involves plotting the sum of squared distances of

samples to their closest cluster center, represented as:

�(�) = �=1
푛 ( �� −�푐�

2)� (2-4)

J(K) is the cost function for K clusters, xi is a data point, and �푐� is the centroid of the

cluster assigned to xi. For each K, the sum of squared errors (SSE) within-cluster is

calculated. Plotting K against SSE typically reveals a point where the SSE decreases

sharply before it levels off. This "elbow" in the curve visually represents the optimal

cluster count as adding more clusters beyond this point offers minimal improvement in

fitting the data. Conversely, the Silhouette Score is calculated using the mean intra-

cluster distance a and the mean nearest-cluster distance b for each sample. The Silhouette

Score for a single sample is:

� = � − �
푚��(�, �) (2-5)

The overall Silhouette Score is the mean of all samples' Silhouette scores, providing a

perspective on the cohesion and separation of the formed clusters. In practice, the Elbow

Criterion often provides an initial cluster count estimate, while the Silhouette Score acts

as a validation tool for refinement.

After determining the importance of each class of features during clustering, the LASSO

(Least Absolute Shrinkage and Selection Operator) method is used to further refine the

feature space [25]. Rather than simply eliminating features, LASSO allows for the

selection of the most impactful attributes from each group during each clustering iteration.

This is achieved through its approach of minimizing the sum of squared errors (SSE)

while simultaneously penalizing the absolute size of regression coefficients. This
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technique enhances accuracy and reduces model complexity. This is mathematically

represented by Equation 2-6:

�����표 = ��푔푚�푛
�=1
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In this equation, x represents a set of input feature measurements, and y is the outcome

we're trying to predict. The LASSO method fits a linear model to this data. Here, β is the

vector of regression coefficients, and N is the number of observations or cases in the

dataset. By adjusting the tuning parameter, the LASSO method effectively reduces the

coefficients of less important features to zero dynamically, thereby selecting a more

compact and accurate set of features during this iteration of clustering. This makes the

LASSO method a valuable tool combining feature selection in high-dimensional datasets

classification process.

2.2.5.1 Slice-by-Slice Clustering

In our slice-based classification model, we integrated K-means clustering with a

specialized technique called contrastive loss to improve unsupervised classification

accuracy [26]. The contrastive loss technique is a fine-tuning tool within the learning

process; it encourages the model to group similar slices (asymmetry-wise) closer together,

while pushing dissimilar ones further apart. Ultimately, this makes the system better at

discerning subtle patterns indicative of breast asymmetry. The following pseudo-code

illustrates the details for the contrastive loss K-means used in slice-by-slice module.

Algorithm: Contrastive Loss-Augmented K-means Clustering

1: Initialize cluster centroids using standard K-means clustering on the dataset.

2: Set hyperparameters sigma (σ) and alpha (α).
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3: Repeat until convergence or maximum number of iterations is reached:

a. Compute pairwise distances between all data points and centroids.

b. Calculate similarity matrix S, with Sij = exp(-distanceij² / (2 * σ²)).

c. Calculate contrastive loss Lcontrastive for each point:

Lcontrastivei = -log(exp(-Sii / distancei) / sum(exp(-Si / distancei))).

d. Compute total loss Ltotal = Lkmeans + α * Lcontrastive.

e. Compute the gradient of Ltotalwith respect to centroids.

f. Update centroids using the gradients.

4: Assign each data point to the closest centroid based on the updated centroids.

5: Return the final cluster centroids and cluster assignments.

In the above, Lkmeans is the K-means loss, typically the sum of squared distances from

each point to its assigned centroid. distancei is the distance from point i to its nearest

centroid, Si is the ith row of the similarity matrix S, and Sii is the similarity of point i to its

own cluster. The contrastive loss is computed for each point and then used to adjust the

centroid positions.

To create a feature space specifically representing asymmetry between slices, we start by

applying the K-means clustering algorithm. This process automatically groups slices with

similar asymmetry features. Building on our previous volume-level analysis, we focus on

the six most common slice clusters that can be considered as six representative

asymmetry "profiles." To classify a whole MRI, each of its 15-23 slices are assigned to
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one of these six profiles using majority voting. This slice-by-slice assessment determines

the overall asymmetry categorization for the whole breast MRI.

2.2.6 Validation

In our model assessment, we conducted two steps of validation. Initially, in the clustering

step, we utilized the Silhouette score to gauge the quality of the K-Means clustering,

verifying the optimal number of clusters obtained from the Elbow Criterion [27][28].

This method was employed to both finding the optimal number of clusters and validating

the clustering.

Our clustering approach was assessed using cross-validation. The dataset, with 50

positive and 159 negative instances, was split into 10 subgroups. Each test involved

training on 9 and validating on 1 subgroup, assigning scores from 0 to 1 to indicate

cancer likelihood, with higher scores indicating higher likelihood and better model

performance. This cross-validation cycle was repeated 10 times, rotating the subgroup

used for validation to ensure thorough evaluation.

In the realm of unsupervised clustering, especially when tackling complex classifications,

such as asymmetry detection, we face the inherent challenge of validating the model

without definitive class labels. To overcome this challenge, we introduced a binary

validation framework using labels derived from the subsequent screening MRI. These

labels provide us with binary outcomes—'developed cancer' or 'remained healthy'—

which are pivotal for assessing the predictive accuracy of our clustering model. By

mapping the multifaceted clusters to these binary outcomes, we effectively created a

bridge between unsupervised clusters and a verifiable clinical endpoint. In doing so, we

employed metrics, such as true-positive rates, false-positive rates, and the area under the

ROC curve (AUC), to approximate the model's capacity for detecting anomalies.

This validation approach enables us to quantify the model's performance in terms of both

meaningfulness and clinical relevance. It is a methodological compromise that allows for

the evaluation of our model's discriminatory power, acknowledging the discrepancy that
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arises from the lack of a direct match between the unsupervised clusters in our training

data and the binary outcomes of subsequent screening. This validation strategy thereby

offers a feasible solution to demonstrate the model's potential utility in a clinical setting,

despite the absence of explicit labels within the training phase.

2.3 « Results »

2.3.1 Data Augmentation Validation

By simulating a reasonable amount of body rotation through finite element analysis and assigning

different hyperelastic parameters, we generated new realistic breast MR image data. Figure 2-4

showcases slice cross-sections as sample illustrations of synthetic images generated using the

developed augmentation techniques.While ensuring that the heterogeneous nature of the

breast tissue and it composition is retained, contrary to traditional augmentation

techniques, the proposed augmentation technique incorporates realistic redistribution of

the tissue components. This underscores the limitations of traditional slice-based data

augmentation methods, such as scaling and translation, which can result in loss or

introduction of spurious information.
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Figure 2-4: (a)(c) Original breast slice MRI images (b)(d) Slice images from the

volumes generated by assigning different hyperelastic parameters and applying

rotations at various angles.

2.3.2 Feature Engineering

We analyzed the importance of the extracted features during clustering and conducted

necessary feature selection. GLCM (Gray Level Co-occurrence Matrix) and shape-based

features emerge as particularly significant, given their higher median values and

interquartile ranges, suggesting these features' robust influence on clustering. Figure 2-5

delineates a comparative view of the initial number of extracted features against those

retained after the feature selection process. It is observed that both GLCM and shape-

based features not only have a higher initial count, indicative of their extensive extraction,

but also a significant proportion of these features are preserved post-selection. This

retention underscores the paramount relevance of these features, reflecting their essential

contribution to the clustering algorithm's ability to discern intricate patterns within the

data. The substantial proportion of GLCM features retained—amounting to 21 out of the

original 24—signifies their integral role in capturing textural information, which is

pivotal in volume analysis. Similarly, the complete retention of shape-based features,

with all 16 initially extracted features being selected, underscores their indispensable
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utility in characterizing the geometrical aspects of the volumes. This strategic selection of

features culminates in a refined set of attributes that possess a potent impact on clustering

outcomes. By focusing on features with high discriminative power, our methodology

ensures that the clustering is influenced by the most informative aspects of the data.

Consequently, GLCM and shape-based features are likely to be pivotal for the accurate

classification of volumes.

Figure 2-5: Comparative analysis of initially extracted and ultimately selected

features in volume-by-volume clustering.

2.3.3 Clustering

The robustness of our volume-by-volume clustering approach is exemplified by the ROC

curve (receiver operating characteristic curve) shown in Figure 2-6, which illustrates the

model’s ability to discriminate between two health states. By consolidating the six
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clusters derived from unsupervised clustering into two encompassing categories, we

computed the Area Under the Curve (AUC) for our model. An AUC of 0.85 denotes a

high level of accuracy in this binary validation, affirming the effectiveness of our

approach in categorizing volume data as indicative of cancer development or absence.

This binary validation, while simplified, it provides a pragmatic measure of the model's

predictive precision in a clinical context. In Figure 2-7, by comparing feature

distributions, we demonstrated the convergence of data augmentation. This violin plot

compares the distributions of eight different feature categories, both before and after

considering 10% additional data augmentation. Each pair of violins represents a feature

category, with the left half showing the original data and the right half showing the data

after augmentation. Differences in the distribution shapes and center locations reflect the

impact of the augmentation process on each feature category.

Figure 2-6: ROC curve comparison. The orange curve represents our completed

dataset of 210 cases examined on all positive and negative cases with AUC = 0.85

(reference AUC = 0.5).
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Figure 2-7: Comparison between two sets of features (used for model and additional

validation). Their centroids and distributions are very close, and the feature

distributions almost have the same tendency.

Figure 2-8 demonstrates the decision-making process for categorizing cases using a slice-

by-slice clustering algorithm. The x-axis represents each case number, and the left y-axis

shows the statistical value of the number of slices in different categories, depicted in six

colors layered from bottom to top within each case. The right y-axis indicates the final

classification of the case, determined by a majority vote, represented by green dots. For

instance, case P2 predominantly falls into Category 2 based on the highest number of

slices, hence it is classified under Category 2. Case P4 has an equal number of slices in

both Category 3 and Category 5; however, it is ultimately classified under Category 5.

This clarification reveals that higher category numbers suggest a greater likelihood of

developing cancer. Therefore, when there's a tie in the number of slices between two

categories, the case is assigned to the higher risk category to avoid missing a potential

positive diagnosis. This approach emphasizes caution, prioritizing the identification of

potential cancer risks even in closely contested categorizations.
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Figure 2-8: Example of classification for five cases using the slice-by-slice clustering

method, with the stacked bars representing the count of MRI slices in each risk

category and a green line indicating the final risk category determined by majority

vote.

Since the two clustering methods take into account the tissue distribution of breast

volumetric and the characteristics of each slice of MRI images respectively, we compared

the results of the two classification methods. As illustrated in Figure 2-9, a comparative

analysis of two distinct clustering methods—volume-by-volume clustering, which

evaluates breast tissue distribution across the entire volumetric data, and slice-by-slice

clustering, which considers the characteristics inherent to each individual MRI slice. The

scatter plot shows a strong correlation between the two methods, with a high degree of

consistency observable by the alignment of data points. Approximately 95% of the cases

fall into congruent classification regions across both methodologies, underscoring the

reliability of clustering outcomes when examining tissue characteristics from different

perspectives. The convergence of results suggests that both methods are robust.
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Figure 2-9: Detailed comparison of clustering results between volumetric and sliced

clustering methods, where the two classification methods have a high degree of

consistency, with 95% of the points falling within the same classification region.

In Table 2-2 we compared the performance of the two clustering methods for a

classification model in terms of True Positives (TP), True Negatives (TN), False

Negatives (FN), and False Positives (FP). We analyzed the performance by calculating

the following metrics for both models: Accuracy (the proportion of true results among the

total number of cases examined), Precision (the proportion of positive identifications that

were actually correct, Recall (Sensitivity) (the proportion of actual positives that were

identified correctly), and F1 Score (the harmonic mean of precision and recall). The

results reveal that the slice-by-slice method detected slightly more true positive cases

(142) than the volume-by-volume method (138), indicating a marginally higher capacity

for identifying breast cancer instances. However, it detected fewer true negative cases (20)

compared to the volume-by-volume method (26), which may suggest a reduced ability to

confirm non-cancerous cases. Both methods produced a similar number of false positives

(41 for volume-by-volume, 40 for slice-by-slice), which affects the number of patients

who might undergo unnecessary further testing. However, the volume-by-volume method
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resulted in fewer false negatives (4) compared to the slice-by-slice method (7), implying

it is less likely to miss cancer cases. The accuracy of the volume-by-volume method

stands at 78.47%, compared to 72% for the slice-by-slice method. This suggests that

overall, the volume-by-volume approach is more reliable for making the correct diagnosis.

The precision metric of the slice-by-slice approach (78%) was marginally more precise

than the volume-by-volume approach (77.1%). The recall for the volume-by-volume

method is 97.2%, which is higher than that of the slice-by-slice method at 95.3%. This

metric is critical in medical diagnostics, as a higher recall reduces the risk of missing true

cancer cases. The F1 Score of volume-by-volume method scored 86.1%, slightly higher

than the slice-by-slice method's 85.8%. This indicates a slight advantage in terms of the

overall balance between precision and recall. In summary, the volume-by-volume method

demonstrates a higher accuracy and F1 score, suggesting it may be more effective overall

compared to the slice-by-slice approach. However, the difference in F1 score between the

two methods is not substantial, indicating that both methods are reasonably effective. The

choice between methods may come down to specific clinical needs and the operational

context. For instance, if minimizing missed diagnoses is paramount, the higher recall of

the volume-by-volume method may be preferable. On the other hand, if precision is more

critical, the slice-by-slice method could be favored.
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Table 2-2: Comparative performance metrics of breast cancer detection models.

Volume-by-Volume Slice-by-Slice

True-Positive 138 142

True-Negative 26 20

False-Negative 4 7

False-Positive 41 40

Accuracy 78.47% 72%

Precision 77.1% 78.0%

Recall 97.2% 95.3%

F1 Score 86.1% 85.8%

2.4 « Discussion and Conclusions »

In this work, we presented an end-to-end framework for determining a woman's risk of

breast cancer development through the analysis of her bilateral breast MRI images. This

research approach also includes the development of methods for identifying high-risk

women based on their breast MRI images. It proposes a new perspective that links

machine learning architectures to the biomechanical characteristics of breast tissue for

medical image augmentation. The proposed clustering methods has the potential of being

impactful for breast cancer prevention in a substantial female population exhibiting

notable breast bilateral asymmetry.

To our knowledge, our study differentiates itself from previous works by incorporating

both asymmetry and longitudinal study analysis in predicting breast cancer development

risk. While Tao et al., 2021 [28] utilized Multiparametric MRI (mpMRI) to derive image
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radiomics features for breast cancer prediction, overlooking the asymmetry feature.

Additionally, the study faced two key constraints: it focused solely on women aged

42-50 and employed a cross-sectional, rather than longitudinal, methodology, thus

limiting observations to a single scan. The majority of similar studies conducted so far

have focused on classifying benign and malignant tumors using histopathological image

information, neglecting the estimation of developing cancerous tissue and not considering

bilateral asymmetry as a significant factor in cancer development [29-31]. Their

approaches primarily centered on classifying medical images that already displayed

obvious cancerous features, ignoring the identification of tissue that could potentially

develop into abnormal growths. Some works, like those carried out by [32-33], proposed

Computer-Aided Detection (CAD) systems based on deep neural networks. Nevertheless,

such algorithms inherently have high computational complexity and heavily rely on large

initial training data sets.In contrast, through refined feature engineering and fully

leveraging the distinctive characteristics of MRI imaging, we have addressed the

challenge of limited data availability. Traditional data augmentation approaches, such as

positive or negative 90° rotations to increase the training data size, have been employed

[34-36]. However, our experimental verification found that this traditional technique

contributed minimally to increasing the diversity of high-level features.

In our study, we applied Finite Element (FE) simulation for data augmentation with the

aim of improving the accuracy of machine learning methods and addressing the issue of

phantom introduction that is highly likely with traditional data augmentation techniques.

Compared to conventional augmentation methods limited to individual slice modification

(e.g., scaling, rotation), our technique excels in simulating the complex dynamics of true

breast deformation during the MRI acquisition process. Our data augmentation pipeline

produces synthetic MRI images that closely resemble real-world cases. This FE-based

warping MRI image method can retrofit successful medical image augmentation

frameworks in the biomedical image processing field, where data is scarce. This

significantly can potentially improve the accuracy of machine learning models. Our

physics-based warping image framework utilizes spatial references to achieve non-linear

transformations, considers tissue mechanical properties, and eliminates the risk of
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producing unrealistic images that could potentially distort the feature space used in

various machine learning algorithm development.

Building on the innovative Finite Element (FE) simulation for data augmentation

discussed previously, which notably enhances the realism of synthetic MRI images by

simulating the complex nature of breast deformation, the sufficiency of the dataset used

in our analysis is further supported by our comprehensive approach to data collection,

preparation and analysis. Firstly, the “slice-by-slice” approach employed in our analysis

provided a substantial amount of data. Each case in our dataset included an average of 20

slices, accumulating over 200 cases. This provided more than 4,000 slices of asymmetric

features to populate the feature space, ensuring a robust dataset. The richness of these

data, both in terms of quantity and granularity of detail per case, significantly contributes

to the reliability of our machine learning models by enhancing the representativeness of

the dataset across different variations of breast tissue and pathological conditions. It is

remarkable that the classification results obtained with the “volume-by-volume”

approach are similar to the “slice-by-slice” approach, lending credibility to the latter

approach results despite including only ~200-volume dataset. Second, the study

employed these data as part of a preliminary classifier development, aimed at assessing

its potential before advancing to clinical trials. The current stage is a pilot study aimed at

understanding the performance of the classifier under controlled conditions and setting

benchmarks for accuracy, sensitivity, and specificity. Although the results thus far are

promising, the progression to clinical implementation will necessitate further validation

with an expanded dataset. Finally, a common limitation in medical imaging analysis

pertains to the accessibility and availability of the type of data. Our data involved

sequential dual scans and biopsy check for double verification. Such data are not only

rare but also difficult to acquire because of the inherent challenges in convincing

asymptomatic individuals to undergo very likely unnecessary procedures.

In this work, we explored the potential of MRI-derived asymmetry features and achieved

consistent classification outcomes at both the volumetric and slice-based levels. To

consider the full spectrum of methodologies applied to feature extraction from MRI data,

we experimented with various machine learning networks for feature extraction,
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including convolutional neural networks (CNNs), which are notably proficient in image

analysis. Despite the potential of CNNs, we recognize a critical need for interpretability

in the medical imaging domain. The blackbox nature of such networks often obscures the

internal mechanics of their decision-making processes, rendering the analysis less

transparent to clinicians and researchers. Consequently, to bolster the interpretability of

our model and provide valuable insights into the asymmetric features that influence

breast MRI analysis, we opted for methodologies that allow a clearer understanding of

the feature-extraction process. This strategic decision augments the practical relevance of

our study as it bridges the gap between complex machine learning techniques and clinical

applicability. Although the amount of data used in this work does not satisfy complex

machine learning demands, the proof-of-concept study introduces a novel approach to

small-volume medical image analysis. Future studies will consider utilizing larger

datasets of public longitudinal breast MRI images for better performance.

In summary, breast cancer is primarily caused by anomalous growth of breast tissue,

accounting for an estimated 7% of all mortalities [37]. Identifying cancerous/malignant

lesions at an early stage is challenging due to the low traceability of small-sized tumors,

and late-stage diagnosis may not significantly prevent patient mortality. Therefore, our

efforts to provide an architecture for breast cancer risk estimation and provision for early-

stage diagnosis may be considered as an important step towards this crucial objective.
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Chapter 3

3 « Machine-Learning Based Inverse Problem Technique
to Determine Hyperelastic Parameters of Breast Tissue
Under Zero-gravity Conditions »

3.1 « Introduction »

Breast cancer remains a critical global health concern, driving extensive research to

advance diagnostic and treatment methods. Biomechanical modeling utilizing the Finite

Element Method (FEM) plays a valuable role in various breast cancer interventions. As

of November 2023, approximately 60% of the publications on biomechanical modeling

were published after 2015, indicating a rapidly growing field of research [1]. These

models assist in surgical planning (e.g., brachytherapy and needle biopsy), the

development of virtual reality surgical simulators, deformable image registration

techniques, breast reconstruction surgeries, and personalized bra design [2-5]. Accurate

FEM simulations depend heavily on precise modeling of breast tissue deformation and

stress distribution, underscoring the vital importance of this area of research.

Breast tissue's inherent complexities pose a significant challenge in biomechanical

modeling. Early models were often developed based on tissue linear elasticity

assumptions. However, these models fail to capture the nonlinear behavior of breast

tissue under the large strains common in medical procedures [6]. Consequently,

hyperelastic constitutive laws, designed to handle both geometric and material

nonlinearities, have become essential for accurate FEM simulation [7]. These

hyperelastic models are fundamentally dependent on precise material parameters, which

characterize the tissue's unique mechanical behavior. A diverse array of approaches exist

for measuring soft tissue hyperelastic parameters. For the parameters of excised,

homogenous tissue sample analysis, Samani et al. [8] developed an indentation technique

coupled with inverse finite element model. This enabled them to obtain hyperelastic

parameters for adipose and fibroglandular tissue using a 2nd order Polynomial model. The
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precision and advantages offered by indentation methods have led numerous researchers

to explore the mechanical properties of soft polymers and biological tissues. Zhang et al.

[9] developed a model to assess the effects of friction and deformation on Young's

modulus, introducing a kappa table for layered geometries. Lin [10] focused on

overcoming Hertzian model limitations, applying hyperelastic strain energy functions to

synthetic and biological tissues. Zhang [11] examined spherical indentation on

hyperelastic materials, assessing various models' relationships between load, depth, and

properties. Cao et al.[12] derived a load-depth expression for elastic layers, proposing a

method to evaluate viscoelastic properties. Rauchs et al. [13] used spherical indentation

on rubber, applying an inverse method to obtain material parameters modeled by the

Zener model. Suzuki et al. [14] developed an analytical contact model for spherical

indentation to estimate plantar soft tissue properties, offering a direct method without

iterative finite element analysis. Chen et al. [15] utilized Finite Element modeling to

compare hyperelastic models via nanoindentation, aiming to refine material property

measurements without depth limitation. They later conducted indentation tests on silicone

rubber, comparing results from indentation and tensile tests to validate hyperelastic

models, showcasing the effectiveness of indentation in characterizing material properties

[16]. Dempsey et al. [17] used data acquired from indentation testing of excised breast

tissue to determine the hyperelastic parameters of adipose, fibroglandular, and mixed

breast tissue. Collectively, these studies enhanced the precision of mechanical property

measurements through computational and experimental approaches.

A variety of methodologies have been explored to measure soft tissue hyperelastic

parameters, from indentation techniques to advanced computational models. These

methods have significantly contributed to our understanding of tissue mechanics, yet they

often overlook the crucial impact of gravity on tissue deformation and initial stress

distribution. [18]. The gravity effect is essential in mechanical characterization of highly

deformable tissues such as the breast. This is due to the substantial deformation of

samples of such tissues and their initial stress distribution before the mechanical testing is

initiated. Without accounting for the influence of gravity load, data pertaining to tissue
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mechanical stimulation through testing falls short in capturing the intrinsic mechanical

properties of the tissue, leading to incomplete understanding of its behavior. Given the

challenges mentioned above, some researchers have proposed alternative solutions to

mitigate error. Griesenauer et al. [19] leveraged MR imaging to ascertain patient-specific

stiffness properties of breast tissues under varied gravity-loaded configurations. This

approach bolstered the precision of biomechanical models utilized in image-guided breast

cancer surgery by fitting mechanical properties to these models. Conley et al. [20]

explored the potential of supine MR images and biomechanical modeling in enhancing

tumor localization during breast-conserving surgeries. By employing a combination of

laser range scanning, tracked ultrasound, and innovative registration routines, this study

demonstrated the utility of biomechanical models in improving the accuracy of tumor

localization, thus reducing the necessity for subsequent corrective surgeries. Gao et al.

[21] delved into experimental methods for evaluating the mechanical properties of very

soft tissues, with a particular focus on the effects of gravitational forces. By employing

global digital image correlation techniques, the study revealed the complexities of

measuring soft tissue behavior under tension, proposing a novel method to estimate the

zero-strain state. Collectively, a fundamental assumption underlying these

aforementioned studies is the consideration of residual stress. This concept recognizes

that tissues are not in a stress-free state even before any external diagnostic or surgical

manipulation commences. The presence of residual stress influences the manner in which

tissues respond to additional loads, such as those applied during mechanical testing or

surgical interventions.

To address the prevalent issue of inaccurate hyperelastic parameter estimation due to

overlooking initial stress and gravity impact, we introduce a machine-learning-based

inverse-problem solution. Our approach leverages Neural Networks to bridge the gap

between hyperelastic parameter sets obtained under different conditions. We carry out

numerous accurate uniaxial testing simulations to generate datasets representing

conventional testing conditions and stress-free states. Our innovative network seamlessly

converts hyperelastic parameters obtained from conventional mechanical testing to their

stress-free counterparts. To the best of our knowledge, this is the first work to employ
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such an easy-implemented machine-learning approach for estimating stress-free

hyperelastic parameters of soft tissue.

3.2 « Theory »

While breast tissue exhibits a complex composition, for the purposes of reasonable

simplification aligned with established literature [22], we model it as an isotropic solid.

Such an approach is known to capture mechanical responses under the external loads

typical of biomedical scenarios effectively. Typically, under such loading scenarios, the

breast exhibits large deformation which necessitates geometric nonlinearity consideration

in its modeling. Combined with the known breast tissue intrinsic nonlinearity, it is

imperative to model the breast tissue as hyperelastic and isotropic material. Central to

modeling the mechanical behavior of breast tissue in biomedical stress-loading

applications is the strain-energy function. This mathematical construct establishes the

relationship between stress and strain, providing a robust means to characterize the

material's response. This serves as the theoretical basis for the tissue uniaxial testing

simulation in proposed technique.

The strain energy stored within material as it undergoes deformation is known as the

strain-energy content [23]. Various constitutive models specifically tailored to breast

tissue mechanics have been put forward to describe this strain-energy relationship. Each

model leverages unique mathematical formulations and parameters to express the strain-

energy function. To accurately estimate hyperelastic parameters in an isotropic material,

a strain energy model is essential for relating the strain energy to the deformation

parameters of the material. Traditionally, for a hyperelastic isotropic material, the strain

energy is presented as a function of strain invariants: U(I1, I2, I3) , where Ii represents the

ith strain invariant. From this formulation, we can derive a constitutive relation as

Equation 3-1:
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σ = 2
�

휕�
휕�1

+ �1
휕�
휕�2

� − 2 휕�
휕�2
�2 − �� (3-1)

In this formula: σ represents the Cauchy stress tensor, J is the determinant of the

deformation gradient, indicating the volume change during deformation, B is the left

Cauchy-Green deformation tensor, and B2 is its square, p is the hydrostatic pressure, and

I is the identity tensor.

To model breast tissue mechanics, the strain-energy function provides a vital

mathematical framework relating stress and strain. Diverse constitutive models,

employing distinct equations and parameters, describe this function; prominent among

them are the Yeoh [24], Ogden [25], and Veronda-Westmann [26] models. To enable

seamless comparisons between models, we employ strain-based parameter translation.

For example, Ogden model parameters can be mapped onto Yeoh parameters, and

subsequently onto Veronda-Westmann parameters. This approach supports flexibility in

selecting constitutive models for breast tissue analysis.

Yeoh Model

The Yeoh model represents a simplified third-order polynomial form of the strain energy

function, specifically tailored for modeling the behavior of elastomers. The strain energy

functionW is given by:

� = �=1
3 ��0 �1 − 3 �� (3-2)

Here:

Ci0 are the material coefficients, with i indicating the order of the term.

I1 is the first invariant of the Cauchy-Green deformation tensor.
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The model utilizes three parameters: C10, C20, C30 corresponding to the coefficients of the

polynomial that represent the material properties. Using Equation 3-2, the derivative ofW

with respect to I1 is:

휕�
휕�1
= �=1

3 � ∙ ��0(�1 − 3)�−1� (3-3)

The stress-strain relationship for this model is as follows:

� = 2(�10 + 2�20(�1 − 3) + 3�30(�1 − 3)2)(λ − λ−2) (3-4)

where S is the nominal stess.

Ogden Model

The Ogden model is a hyperelastic material model that is also designed to accurately

capture the nonlinear stress-strain behavior of elastomers. The strain energy functionW

for the Ogden model is defined as:

� = �=1
� 2�i

�i
2 λ1

�i + λ2
�i + λ3

�i − 3� (3-5)

In this formula, μi and αi are material parameters that need to be determined

experimentally. λ1, λ2, λ3 are the principal stretch ratios. The sum runs over N terms,

where N defines the order of the model. For the 1st order formulation where N=1, 2

parameters (μ1, α1) are required to capture the tissue behavior. Using Equation 3-5, the

partial derivative ofW with respect to λjwithout considering the pressure term p is as

below, the pressure term p is included to enforce the incompressibility condition and

would need to be determined from the boundary conditions of the specific problem.

휕�
휕λ�

= �=1
� 2��

��
λ
�

��−1� (3-6)

The nominal stress S along the direction of stretch λ1 is as follows:

S1 = 2 i=1
N μi� (λ1

αi−1 −λ1
−αi2−1) (3-7)
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where S is the nominal stess. To ensure the reliability and accuracy of our material

models, particularly in the face of incomplete or sparse experimental data, it is crucial to

validate the chosen models against available experimental observations. Incomplete

datasets can lead to the estimation of unstable model coefficients, thereby introducing

potential inaccuracies into the modeling process. Such instabilities might not only affect

the predictive capability of the models but also compromise their applicability in

simulating real-world behaviors of materials under various loading conditions. To

mitigate the risk of modeling errors and to enhance the stability of our model coefficients,

we employ Drucker's stability inequality as a fundamental criterion for model validation.

Drucker's stability inequality, expressed mathematically as:

δσijδϵij ≥ 0 (3-8)

serves as a cornerstone for ensuring that the material models exhibit stable response

under all possible stress (σij) and strain (ϵij) states. This inequality suggests that for a

material to be considered stable, the incremental work done by the stress on the

corresponding strain increment must be non-negative. This condition is critical for

precluding physically unrealistic material responses that could arise due to the ill-

posedness of model coefficients derived from incomplete data sets. By adhering to

Drucker's stability criterion, we ensure that our modeling approach remains conservative

and grounded in physically plausible behavior.

3.3 « Methods »

Our modeling approach establishes a framework for constructing two distinct

hyperelastic parameter spaces representing the unloaded and loaded states of breast tissue.

The core of this framework lies in the implementation of a Neural Network (NN), an

advanced computational model that is adept at learning the intricate correspondences

between large datasets. By training the NN, we enabled it to discern and establish a

mapping relationship between the stress-free unloaded parameter space and its

corresponding parameters under gravity loading. This was achieved by first constructing
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comprehensive datasets that encapsulated the full spectrum of breast tissue behavior in

both states, thereby providing the NN with a rich learning foundation. Our methodology

comprises three core phases:

1. Construction of tissue hyperelastic parameter dataset of tissue under zero-state of stress

(unloaded tissue). Henceforth, these parameters will be referred to as unloaded

parameters. We carefully compile a comprehensive database of valid unloaded

parameters. Building on established research [8], we focus on the Yeoh and first-order

Ogden models. Our decision to prioritize the Yeoh model, characterized by parameters

(C1, C2, C3), is rooted in its proven efficacy for capturing realistic tissue behavior.

2. Generation of tissue hyperelastic parameters under nonzero-state of stress (loaded

tissue). Henceforth, these parameters will be referred to as loaded parameters. To

generate the corresponding loaded parameter space, we leveraged finite element analysis

(FEA). Specifically, we employ uniaxial test simulation to model the tissue mechanical

behavior under corresponding load.

Neural Network Training: The NN undergoes a rigorous training process to extract the

underlying relationship between the unloaded and loaded parameter spaces. This allows

the trained NN to accurately predict unloaded parameters from a given set of loaded

parameters. In essence, upon receiving a loaded parameter as input, the trained NN is

capable of identifying the corresponding stress-free, unloaded parameter following the

flowchart illustrated in Figure 3-1.
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Figure 3-1: Neural Network model for computing breast tissue stress-free (unloaded)

hyperelastic parameters from loaded parameter counterpart

3.3.1 Dataset Construction

The predictive power of our machine learning model is fundamentally supported by the

creation of a comprehensive dataset. This dataset forms the backbone of our finite

element analysis (FEA) and neural network (NN) training efforts, covering a wide array

of hyperelastic parameters. We sourced our initial hyperelastic parameters from an

extensive survey of well-established literature [8][27-28]. These studies are recognized

for their effectiveness in modeling the behavior of hyperelastic materials, mirroring the

characteristics of breast tissue. Among them, the Yeoh model stands out for its simplicity

and proven capacity to mimic realistic tissue mechanics. Characterized by the parameters
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C1, C2, and C3, the Yeoh model provides flexibility: C1 sets the initial material modulus,

C2 controls behavior under medium strain, and C3 influences the response under high

strain conditions [29].

To rigorously explore the unloaded hyperelastic parameter space, we strategically

modulated the values of C1, C2, and C3 pertaining to the loaded parameter space through

applying methodical incremental decreases of 5%. These adjustments spanned a spectrum

from 5% to 40%. For example, a specific loaded parameter set might be modified to

(0.7×C1, 0.8×C2, 0.95×C3), with each variation marking a distinct point within the stress-

free parameter landscape. This approach allowed us to craft a broad spectrum of

parameter configurations that represent the diverse mechanical behaviors of breast tissues

effectively. Such variation enhances the model’s ability to generalize across varying

tissue conditions.

The determination of specific increments and the range for each C1, C2, and C3 parameter

was a deliberate process, guided by the insights derived from extensive extreme testing

and sensitivity analysis conducted subsequently. Through extreme testing, we examined

the model's resilience and behavior at the extremities of the parameter ranges, seeking out

any potential vulnerabilities or atypical responses. Conversely, sensitivity analysis

provided a deep dive into the impact of varying specific parameters on the model's output.

By applying these robust methodologies, we refined our parameter selection and intervals,

solidifying the dataset's fidelity.

3.3.1.1 Determining Minimum and Maximum Parameter Values

To define a realistic and physically accurate parameter range for our unloaded dataset, we

embarked on an in-depth exploration of extreme value determination. This process

hinged on utilizing finite element analysis (FEA) to create a detailed model of breast
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tissue and to simulate the effects of gravitational forces, using a variety of hyperelastic

parameters to gauge their impact.

The decision to explore parameter reductions ranging from 5% to 40% was based on

thorough research and analysis, not mere conjecture. By adjusting parameters across

different scales and subjecting the tissue model to gravitational loading simulations, we

were able to observe the resultant changes in stress-strain behavior closely. A key

objective in this process was to adhere to Drucker's stability criterion, a cornerstone

principle for preserving the physical authenticity of our model across various loading

scenarios. This criterion helped us steer clear of unrealistic material responses. We

systematically adjusted the scaling factor for parameter reduction until reaching a

threshold beyond which the model exhibited signs of instability, thereby establishing a

40% reduction as the upper limit for parameter variability. This foundation allows us to

simulate breast tissue mechanics with confidence, knowing our models are both

scientifically robust and closely aligned with real-world behaviors.

3.3.1.2 Sensitivity Analysis

To refine the prediction of unloaded hyperelastic parameters, a detailed sensitivity

analysis was performed. This analysis focused on understanding the influence of changes

in the loaded Yeoh model coefficients C1loaded, C2loaded, and C3loaded on the stress-strain

behavior. The goal was to fine-tune our methodology, ensuring it avoids unrealistic

behaviors and accurately determines the parameter reduction increment for generating

new data points within our unloaded parameter space.

1. Baseline Parameters: Initial loaded Yeoh parameters for breast tissue (C1loaded_0,

C2loaded_0, C3loaded_0) were sourced from existing literature [17] to serve as our starting

point.
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2. Parameter Variation: We systematically reduced each parameter by 1% while keeping

the others constant. For example, one of the generated parameter sets was (0.99×C1loaded_0,

C2loaded_0, C3loaded_0) which represents an unloaded parameter set. To obtain the

corresponding loaded parameters, these adjusted sets of parameters were then utilized in

the uniaxial testing FE models described in Section 3.3.2 where gravity force was also

incorporated.

3. Output Analysis: Through fitting the stress-strain data generated from Step 2, we

derived new sets of loaded parameters (C1loaded_new, C2loaded_new, C3loaded_new). We quantified

the relative changes for each parameter as follows and assigned it to the corresponding

sensitivity parameters Sij. For example, for variation of C1loaded_0, we obtained the

following:

S1 � =
(�� �표�푑�푑_푛��−0.99�� �표�푑�푑_0)

0.01�1 �표�푑�푑_0
(3-9)

4. Sensitivity Matrix Creation: By repeating step 1-3 for C2loaded_0 and C3loaded_0, we

obtained the following sensitivity matrix S where Sij parameters were used to decide the

range of reduction of each of the Ci parameters to avoid generating unloaded Ci

parameters that lead to non-physical loaded Ci parameters.

� =
�11 �12 �13
�21 �22 �23
�31 �32 �33

(3-10)

The following pseudo code illustrates the step-by-step process of the sensitivity analysis

conducted to assess the impact of parameter variations on the stress-strain response of

hyperelastic materials.

Algorithm Sensitivity Analysis
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1: Initialize C1loaded_0, C2loaded_0, C3loaded_0

2: do

3: Assign a new set of parameters with (0.99C1loaded_0, C2loaded_0, C3loaded_0)

4: Simulate uniaxial test combined with gravity simulation

5: Generate simulated stress vs. strain

6: Obtain an estimate of a (loaded) set of hyperelastic parameters (C1loaded_new,

C2loaded_new, C3loaded_new)

7: Calculate the following:

�11 =
(�1�표�푑�푑푛�� − 0.99�1�표�푑�푑0)

0.01�1�표�푑�푑_0

�12 =
(�2�표�푑�푑푛�� −�2�표�푑�푑0)

0.01�1�표�푑�푑0

�13 =
(�3�표�푑�푑푛�� −�3�표�푑�푑0)

0.01�1�표�푑�푑0

8: Repeat with C2 then C3

9: Form S matrix

To define the boundaries for parameter reductions, we adhered to three key principles

during our sensitivity analysis:

1. Magnitude Assessment of Sensitivity Parameters within Each Row: This assessment

focuses on comparing the magnitudes of Sij values within each row of the sensitivity

matrix. Parameters leading to the highest absolute Sij values influence the model's

response significantly. Therefore, they demand tighter reduction limits. For instance, if
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∣S13∣ is thrice ∣S11∣ within the same row, it indicates that modifications to C3loaded_0

have a more substantial effect on the stress-strain relationship than similar changes to

C1loaded_0.

2. "Max" Value Significance: The element within each row with the highest absolute

value, referred to as the "max" value, sets the strictest upper limit for parameter reduction.

This ensures that adjustments remain within physically realistic boundaries, preventing

the model from producing non-physical outcomes.

3. Negative Values: Entries in the sensitivity matrix with negative values require special

attention. Negative Sij values indicate that reductions in certain parameters can inversely

affect the stress-strain curve, suggesting an opposite directional shift. Such findings

necessitate a nuanced approach to parameter adjustment, ensuring that respective

decreases do not inadvertently lead to unrealistic model behaviors.

3.3.2 Uniaxial Testing

In our research, uniaxial testing was conducted virtually through Finite Element Method

(FEM) simulations within the Abaqus solver (SIMULIA, Providence, RI, USA). The core

aim of employing this simulation technique was to construct the sensitivity matrix S

given in Equation 3-8. We initiated the process by creating a geometrically accurate

model of a cylindrical breast tissue sample with a diameter and length of 15” and 30”,

respectively. Then the material's hyperelastic parameters (e.g those obtained from Step 2

in Section 3.3.1.2 to represent the stress-free state of the breast tissue) were assigned. A

unidirectional load, including gravity loading applied before the uniaxial test external

loading, was simulated to apply along the axis of the cylinder model. This loading

condition aimed at simulating the effects of uniaxial tensile or compressive forces that a

sample would experience in actual laboratory testing. The uniaxial testing external

loading was incrementally increased to span a gravity magnitude, ensuring

comprehensive coverage of the material's behavior. Free sliding boundary condition was

considered at the two ends of the cylinder model. Following the simulation of the



92

unidirectional loading on the cylindrical model the stress distribution was obtained which

is illustrated in Figure 3-2. This visualization corroborates the simulated conditions and

illustrates the material's response throughout the deformation process.

The FEM simulation provided detailed data on the stress and strain experienced by the

model under each loading condition. At each incremental loading point, the stress was

calculated by dividing the sum of axial reaction forces by the sample’s cross-sectional

area. These data points were used to construct simulated stress-strain curves. The

collected stress-strain data served as a foundation for fitting new loaded parameters using

Equations 3-3 and 3-5, pertaining to the Yeoh and Ogden models, respectively. The

fitting process involved utilizing mathematical formulas to derive new Yeoh model

parameters C1, C2, and C3 from the observed stress-strain relationships. These newly

fitted loaded parameters, derived from the uniaxial testing simulations, subsequently

informed the next phase of our research: training a Neural Network (NN).

Figure 3-2: Axial stress distribution of the cylindrical breast tissue sample with

Yeoh hyperelastic parameters of C1, C2 and C3 obtained using Finite Element

Analysis.
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3.3.3 Neural Network for Mapping Loaded to Unloaded Parameters

The development of our Neural Network (NN) model for estimating stress-free breast

tissue hyperelastic parameters is grounded in a rigorous design process. This section

outlines the architecture, optimization strategies, and the rationale behind the selection of

activation functions, aiming to underscore the model's effectiveness and the

methodological basis for our design choices.

The architecture of the NN comprises an input layer dedicated for the loaded hyperelastic

parameters, several hidden layers, and an output layer. For training, the input layer is

tasked with receiving ~1600 sets of loaded hyperelastic parameters derived from the

simulated data obtained with corresponding ~1600 hyperelastic parameters dataset. The

output layer for the same includes the same number of unloaded hyperelastic parameters

dataset generated through scaling down loaded parameters obtained from the literature as

described in Section 3.3.1.1. Subsequent processing is conducted through multiple hidden

layers, which are instrumental in identifying patterns and navigating the complex

nonlinear relationships characteristic of breast tissue mechanics. The culmination of this

computational process is realized in the output layer, which delivers the estimated stress-

free hyperelastic parameters.

The integration of the Adam optimizer within the initial hidden layer boosts the

efficiency of the Neural Network (NN) significantly. Unlike traditional optimization

methods, Adam incorporates an adaptive learning rate mechanism, leveraging first and

second-order moment estimates of the gradients. This allows for the adjustment of the

learning rate on a per-parameter basis, hence enhancing the model's capacity to navigate

complex error landscapes effectively. The adaptive properties of Adam are particularly

beneficial in overcoming challenges associated with convergence. Furthermore, the

adoption of the Leaky Rectified Linear Unit (LeakyReLU) activation function across the
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network marks a strategic improvement. LeakyReLU is designed to mitigate the "dying

ReLU" problem, where neurons cease to activate and update during training. By

introducing a small, positive slope for negative input values, LeakyReLU ensures that all

neurons retain the potential for learning, thereby enhancing the network's training

efficiency and convergence speed. This choice of activation function is pivotal in

maintaining active gradient flow for near-zero inputs, facilitating faster learning and

supporting the NN's ability to discern complex patterns in input data. Figure 3-3

illustrates the NN's architecture, emphasizing the layer configuration and the flow of data

through the system.

Figure 3-3: Proposed NN architecture, illustrating the data flow and neuronal

interconnections.
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Following the methodological setup described, an ablation study was systematically

conducted to optimize the selection and configuration of neural network (NN) parameters

during training. This study was crucial for ensuring that each parameter choice positively

contributed to the overall performance and efficiency of the network. We began by

methodically adjusting the learning rate and testing commonly used values such as 0.01,

0.001, and 0.0001. The rationale behind selecting these values was to explore how

varying degrees of learning rates impact the validation error, which is a key indicator of

the model accuracy and training speed. Similarly, we experimented with different batch

sizes, including 8, 16, and 32, aiming to find the optimal balance between computational

efficiency and the network's ability to update weights effectively, thereby influencing

both the training dynamics and model performance. When configuring the network

architecture, we carefully considered the risk of overfitting associated with varying

numbers of hidden layers. The initial configurations ranged from one to four hidden

layers, enabling us to observe the effects of increasing complexity on the model

performance and the effectiveness of regularization strategies such as dropout.

Adjustments were made to the dropout rates during these experiments to identify how

different levels of regularization can help stabilize the training process and mitigate

overfitting. Through this rigorous data-driven approach, we refined the network

architecture to ensure that each component was necessary and optimally configured. A

detailed analysis of how specific changes in learning rates, batch sizes, and network

configurations affect key performance metrics provided invaluable insights into the

dependencies and sensitivities of different network parameters. This meticulous

methodology enabled our neural network to be effectively equipped to handle the

complexities of the dataset, avoiding common issues, such as overfitting or inadequate

learning capacity.
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3.3.4 Data Fitting

After developing two distinct Neural Networks (NNs) tailored to the Yeoh and Ogden

models, we embarked on a data fitting methodology to enhance the robustness of our

models. Initially, the unloaded Yeoh parameters, as derived from the Yeoh NN, were

utilized to generate a stress-strain curve. This curve was then employed to construct a

representative dataset for the unloaded states through an analytical model given in

Equation 3-3. Subsequently, this synthetic dataset was used to fit the Ogden model using

Equation 3-5, resulting in parameters that are calibrated to the unloaded tissue response.

A crucial step in our methodology involved validating the fitted Ogden parameters by

employing stress-strain values generated from the Yeoh model to fit the Ogden model.

This approach ensures that the Ogden model's parameters are finely tuned to mirror the

experimental observations captured by the Yeoh model, focusing on achieving a close

match across all evaluated strain points. This additional data fitting step significantly

bolsters confidence in both modeling pathways, while the capability to cross-verify

parameter sets obtained from different fitting techniques indirectly corroborates the

accuracy of our unloaded parameter estimations. This approach is particularly invaluable

given the experimental challenges associated with producing entirely stress-free breast

tissue for direct validation.

The essence of this numerical fitting lies in minimizing the discrepancies between the

stress-strain curves derived from Yeoh model and the Ogden model, formulated as

follows:

푚�푛�, � �=1
� �푌�표ℎ �� − �푂푔푑�푛 ��; �, � 2� (3-11)

In this equation, σYeoh(εi) represents the stress values derived from the Yeoh model-based

experiments for each strain (εi) , while σOgden(εi) denotes the stress values predicted by the

Ogden model for the same strain points, with μ and α being the Ogden model parameters

under optimization. The goal is to minimize the sum of squared differences across all
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data points N, ensuring the Ogden model parameters are accurately tuned to reflect the

experimentally observed behaviors.

3.4 « Results »

3.4.1 Sensitivity Analysis

To accurately model the behavior of unloaded breast tissue, we performed sensitivity

analysis as described in Section 3.3.1.2. This analysis scrutinized how adjustments to

loaded hyperelastic parameters (C1loaded_0, C2loaded_0, C3loaded_0) to obtain an unloaded

parameter set influence the outcomes of our simulations, particularly the stress-strain

curves derived from them. Through this structured examination, a sensitivity matrix,

denoted as “S”, was developed for the Yeoh model which is presented in Table 3-1.

Table 3-1: Sensitivity matrix (S) for 0.99 reduction factor.

Parameter (Ciloaded_0) S1 S2 S3

C1loaded_0 0.005579 4.80085 14.9344

C2loaded_0 -0.03783 0.68865 0.21669

C3loaded_0 -0.01973 1.87166 0.89055

From the table, we observed:

1. C3loaded_0: Overall, the terms in the 3rd row of the sensitivity matrix (S3i) have relatively

substantial magnitude. This indicates that even small alterations in C3loaded_0 result in

considerable stress-strain curve variations. This high sensitivity demands higher level of

scrutiny when utilizing C3loaded_0 parameters in generating the unloaded hyperelastic

parameter dataset.
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2. Parameter-Specific Reduction Limits: The maximum absolute value within each row

in the sensitivity matrix denotes the permissible upper reduction bound for the

corresponding loaded parameter. This guides us in maintaining physically realistic

behavior for C1loaded_0, C2loaded_0, C3loaded_0 across dataset creation.

3. Negative Shifts: Values such as S21 and S31 present an intriguing observation- reducing

some loaded parameters induces an opposite directional shift in the stress-strain curves.

These insights from the sensitivity matrix serve as a foundational step towards

constructing a well-defined and trustworthy data of unloaded hyperelastic parameter

space. To create an optimized, versatile dataset, careful attention must be paid to

variations in C3loaded_0 . Moreover, C1loaded_0 could potentially serve as a stable anchor

during the dataset generation process.

3.4.2 Parameters Fitting

Stress-strain data, derived from uniaxial testing experiments conducted in ten equally-

spaced increments, were instrumental in generating stress-strain curves. These curves not

only provided output values for a Neural Network (NN) analysis but also served as

essential inputs for calibrating hyperelastic models. The process involved in uniaxial

testing, along with the curve fitting techniques applied to the Yeoh and Ogden models.

Figure 3-4 showcases the fitting process, offering a clear visual representation of how the

derived hyperelastic parameters align with the experimental data.
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Figure 3-4: Yeoh and Ogden model fittings to uniaxial stress-strain data.

3.4.3 Evaluation of Neural Network Performance

The evaluation of the Neural Network's (NN) performance in predicting unloaded

hyperelastic parameters is grounded in two critical metrics: the R² score and the

explained variance. These metrics collectively provide a comprehensive assessment of

the model's predictive accuracy and its ability to capture the variability in the data.

R² Score: This parameter represents the proportion of variance in the dependent variable

that is predictable from the independent variables. An R² score of 1 indicates perfect

prediction with no error, while a score closer to 0 suggests that the model fails to

accurately predict the outcome. In the context of hyperelastic parameter prediction, a high

R² score signifies that the model has a high level of predictive accuracy. For example, an

R² score of 0.912 obtained with the Yeoh model demonstrates that the NN is highly

effective in predicting the unloaded parameters, capturing a significant majority of the

data's variance.
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Explained Variance: This metric quantifies the proportion of the total variation in the

data that is explained by the model. A higher explained variance percentage indicates a

model that closely mirrors the actual data trends. For example, the Yeoh model's

Explained Variance value of 0.914 underscores the NN's ability to account for most of

the variation in the actual unloaded parameter values, affirming its predictive strength.

While the Ogden model shows a slightly lower fit with an R² score of 0.86 and 0.88

explained variance, these figures still denote a strong model performance. They indicate

that the NN possesses a robust capacity to explain a substantial portion of the variation in

the parameters, albeit with a slight reduction in predictive accuracy compared to the Yeoh

model. Table 3-2 summarizes data pertaining to the NN’s performance. In the third row

of the table, the Ogden (Yeoh) model is evaluated by fitting its parameters to the stress-

strain data generated from the Yeoh model. This approach allows assessment of the

adaptability of the Ogden model in capturing the mechanical behavior originally

described by the Yeoh parameters. The resulting R² score of 0.827 and explained

variance of 0.814 serve as metrics to compare the performance of the adapted Ogden

model against its native parameterization, reflecting its ability to approximate the Yeoh

model's stress-strain relationship.

Table 3-2: Comparative Performance Metrics of Neural Network Predictions for

Hyperelastic Models.

R2 Score Explained_variance

Yeoh 0.912 0.914

Ogden 0.86 0.88

Ogden (Yeoh) 0.827 0.814
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3.4.4 Ablation study results on Neural Network configuration

Table 3-3 summarizes the ablation results for various configuration choices of the

proposed neural network model based on the Yeoh model. These results include

representative adjustments in the learning rates, batch sizes, dropout rates, and number of

hidden layers. Altering the number of hidden layers from two to three resulted in a

notable improvement. Adjustments in the learning rate demonstrated that a setting of 1e-3

was particularly effective, enhancing the model’s R² Score and Explained Variance,

especially when combined with a batch size of 32 and dropout rate of 0.3, achieving the

highest scores of 0.912 and 0.914, respectively. Furthermore, using a dropout rate of 0.3

significantly improved model robustness, enhancing both the R² Score and Explained

Variance by up to 2.5%, which greatly enhanced the model’s generalization ability on

unseen data. These parameter adjustments not only optimized the network's performance

but also ensured the model's reliability and accuracy in capturing the complexities of

breast tissue parameters.

Table 3-3: Ablation study results for optimizing Neural Network configurations.

Parameter Value Batch Size Dropout

Rate

R² Score Explained

Variance

Learning

Rate

1e-3 8 0.2 0.788 0.882

Learning

Rate

1e-3 8 0.3 0.815 0.887

Learning

Rate

1e-3 16 0.2 0.870 0.892

Learning

Rate

1e-3 16 0.3 0.895 0.837

Learning 1e-3 32 0.2 0.900 0.891
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Rate

Learning

Rate

1e-3 32 0.3 0.912 0.914

Learning

Rate

1e-4 8 0.2 0.835 0.867

Learning

Rate

1e-4 8 0.3 0.870 0.878

Learning

Rate

1e-4 16 0.2 0.825 0.897

Learning

Rate

1e-4 16 0.3 0.800 0.812

Learning

Rate

1e-4 32 0.2 0.895 0.897

Learning

Rate

1e-4 32 0.3 0.900 0.902

Hidden

Layers

2 - 0.3 0.790 0.802

Hidden

Layers

3 - 0.3 0.912 0.914

3.4.5 Examples of Stress-Free Hyperelastic Parameters

Table 3-4 provides examples of calculated stress-free hyperelastic parameters across

various stiffness levels in breast tissue, derived from established hyperelastic parameters
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in prior research [25]. This research presents average hyperelastic parameters values for

three breast tissue categories labelled “Stiff”, “Mean” and “Soft”. The table delineates the

parameters under zero-gravity conditions, offering a granular view of how material

behaviors adapt across different models. The parameters for the Yeoh model are

designated as C10, C20, and C30, each measured in units of N/m². In the 1st order Ogden

model, the μ parameters also have units of N/m² and dimensionless α coefficients. The

Veronda-Westman model includes a parameter for the shear modulus, denoted by μ,

which is also measured in equivalent units of N/m². Its second parameter, β, is

dimesnionless. This comprehensive dataset underscores the variability in tissue

mechanical properties and may serve as a foundational reference for modeling efforts.

Table 3-4: Stress-Free Parameters for Different stiffness tissue.

Yeoh 1st Ogden

C10 C20 C30 μ1 α1

“Stiff” 397.31 42688.01 20255.68 40801.21 1.65

“Mean” 242.89 18892.22 9814.05 116627.12 3.13

“Soft” 124.64 5992.94 524.83 193698.82 3.86

Veronda-Westmann 1st Ogden (Yeoh)

μ0 β μ1 α1

“Stiff” 1825.17 21.61 40201.08 1.65

“Mean” 1430.57 14.82 128133.68 3.14

“Soft” 973.78 6.50 185919.10 3.90
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3.5 « Discussion and Conclusion »

In this study, we developed an innovative approach, which integrates uniaxial testing

simulation with neural network-based estimation, marking a leap forward in our

understanding and application of stress-free hyperelastic parameters. Our approach to

data construction is carefully designed, incorporating extremum detection and sensitivity

analysis to ensure the robustness and relevance of the data. This preparatory step is

crucial for filtering out noise and anomalies that could skew the neural network training

process. The advantages of finite element (FE) simulation are seamlessly integrated into

our data construction process. By combining empirical data with simulations, we

enriched our dataset to include a wider range of mechanical behaviors and responses.

This comprehensive approach to data construction, combining statistical data analysis,

and finite element simulations, ensures the generation of a clean and representative

dataset. Such a dataset is instrumental in the successful training of neural networks,

laying the groundwork for advancements in high-fidelity breast biomechanical modeling

involved in computer assisted medical diagnosis and intervention.

Our methodology not only enhances accuracy but also simplifies implementation for

researchers. This robust, physics-based approach complemented by an optimized neural

network ensures that our estimations accurately reflect the complex behaviors of real-

world tissue. This system facilitates more reliable modeling and simulation of tissue

mechanics. Furthermore, our analyses reveal important trends that the unloaded

hyperelastic combinations generated using “stiff” tissues, due to less elasticity or

flexibility, tend to break under the strain of uniaxial tension sooner than tissues that are

not classified as stiff. This trend makes the “stiff” tissue combinations are less than other

two classes. These findings emphasize the importance of customizing stress-free

hyperelastic parameter adjustments to match the specific mechanical properties of the

tissue in question. Such nuanced understanding enhances the precision of computational
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tools used in diagnostics, surgery, and tissue engineering, ensuring they more accurately

mirror the actual responses of breast tissue.

Unlike other methods that approximate or simplistically calculate unloaded parameters as

part of their experiments, our method enables a more precise estimation and facilitates its

application across different materials. While Zhang et al. [30] achieved accurate results, it

can be computationally expensive for complex material models. In contrast, our approach

leverages neural network estimation, offering a potentially faster solution for real-time

applications. Another approach, proposed by Ghorbani et al. [31], relies on machine

learning techniques for material parameter identification based on indentation testing data.

However, our approach incorporates extremum detection and sensitivity analysis during

data construction, which might lead to improved robustness and generalizability

compared to using solely indentation data. Furthermore, the research by [32] provides

valuable insights into material behavior under complex loading conditions, it might

require specialized equipment and expertise for data acquisition. Our approach, based on

uniaxial testing simulation, offers a simpler and potentially more accessible solution for

researchers and clinicians.

Our study complements their work by providing a data-driven approach specifically

focused on characterizing stress-free hyperelastic parameters, which can be integrated

into multi-scale models for even more detailed biomechanical simulations. The

implications of our work extend well beyond the realm of breast tissue mechanics. By

offering a more accurate and efficient method for modeling tissue mechanics, our

research has the potential to improve tumor detection and characterization in the context

of elastography, surgical planning, and the development of biomaterials for

reconstruction. Furthermore, the generalizability of our approach sets a precedent for the

analysis of various soft tissues, highlighting its broad applicability across the field of

biomechanics.
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In conclusion, this study establishes a solid foundation for future endeavors in modeling,

simulation, and clinical innovation. The integration of uniaxial testing and neural network

estimation for characterizing breast tissue behavior paves the way for significant

improvements in computational models. These advancements have the potential to

improve healthcare outcomes by enhancing diagnostic accuracy, refining surgical

techniques, and improving biomaterials for reconstruction.
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Chapter 4

4 « A Machine Learning Based Algorithm to Determine
Unloaded Geometry of the Breast Using MRI Image
Data »

4.1 « Introduction »

Breast tissue demonstrates intricate mechanical behaviors characterized by high

deformability, necessitating careful consideration in biomedical applications such as

breast surgery and medical device design. Such considerations are also important in

relevant industries such as the bra industry where optimal bra design is pursued. More

specifically, this consideration is critical across a range of applications, including breast

reconstruction post-surgery, image co-registration towards accurate monitoring of tumor

developments, breast prosthesis design, and customizing bras to meet individual woman

needs [1-3]. A profound understanding of the mechanics of breast tissue is essential due

to its inherent non-linearity, where the tissue's response to applied forces depends

significantly on the extent of deformation. Traditional engineering modeling approaches

often fail to capture this complexity. Bret tissue hyperelastic modeling has emerged as a

solution to this challenge. By leveraging finite element (FE) modeling, we can accurately

predict changes in breast shape and how internal tissue stiffness, geometry, and stress

redistribution adjust in response to various conditions, such as the contact loading exerted

by the bra or surgical procedures loading.

For these models to deliver reliable outcomes, two critical input data are indispensable:

precise depiction of the breast's geometry and accurate data detailing the tissue's

mechanical characteristics, both under zero-state of stress. While Magnetic Resonance

Imaging (MRI) captures 3D breast tissue distribution with excellent accuracy, a key

limitation arises which is that MRI depicts the breast under gravity loading with the

patient in a prone position, i.e. with the breasts positioned naturally within a specialized

MR coil [4]. Given its high deformability, during imaging, the breast shape is



111

dramatically altered, causing significant internal tissue changes between different

orientations. This makes it difficult to track specific features across multiple images, as

no two images will perfectly match. Due to the substantial nonlinearity of breast tissue,

this deformed geometry compromises the accuracy of FE models unless the reference

breast geometry and its mechanical properties corresponding to its zero-stress state are

used as input. It is also important to recognize that the validity of hyperelastic models

describing tissue behavior hinges on their development under gravity-free conditions.

However, most breast FE models utilize hyperelastic models derived from experimental

data obtained from breast tissue samples subjected to gravity loading prior to mechanical

stimulation.

Several attempts to address breast stress-free configuration utilize finite element (FE)

modeling. Vavourakis et al. [5] employed an inverse finite element displacement/pressure

formulation to assume breast unloaded configuration. This approach relied on material

properties derived from transform matrices, potentially neglecting the complexities

introduced by non-homogeneous breast tissue distribution. In contrast, Pathmanathan et

al. [6] made strides with a complex finite element model incorporating realistic breast

geometry and varied tissue types. Their model used non-linear tissue behavior

formulations based on existing data. Rajagopal et al. [7] used water immersion and

neutral buoyancy to capture the unloaded shape with the assumption that breast tissue

density was close to that of water. While their approach leads to approximate cancellation

of the overall gravity loading it fails to account for its spatial distribution, leading to

breast geometry with questionable accuracy. Other researchers such as Lee et al. [8]

inverted gravitational forces to obtain an approximate undeformed state of breast while

Carter et al., Eiben et al. and Eder et al. [9,10,11] utilized iterative finite element methods

and iterative techniques to solve the problem. Sun et al. [12] directly applied gravity

upwards on a breast model to determine gravity-free model when modeling bra-breast

contact analysis. The accuracy of these techniques is questionable as a loaded reference

geometry was used. The extremely soft adipose and fibroglandular tissues in the breast

are difficult to represent due to mathematical limitations inherent in the Lagrangian
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approach employed in the FEM formulation. Since breast tissue undergoes significant

deformation, elements in the model can become substantially distorted, breast geometry

acquired through medical imaging is not a sufficiently accurate reference geometry.

Despite availability of some relevant insights, accurately determining the stress-free

geometry of the breast remains a challenging endeavor due to the diverse methodologies

employed.

Relevant to the research topic, other researchers have explored ways to determine the

unloaded configuration of various other organs. Nikou et al. [13] determined the

unloaded configuration of the left ventricle (LV) of the heart. This was achieved by

comparing two reference configurations: the early-diastolic filling configuration and the

unloaded reference configuration. Raghavan et al. [14] found the undeformed shape of

arterial aneurysms to determine how much stress could cause a rupture. Bols et al. [15]

and Riverous et al. [16] used similar methods to find the zero-pressure shape of blood

vessels, which helped calculate stress distribution within the vessel wall. Sellier [17]

introduced iterative methods with a fixed-point method for elastostatic problems to

determine the stress-free state of soft tissues. Gee et al. [18] proposed a method where

updates are made to the deformation gradient field instead of the traditional displacement

field. Weisbecker et al. [19] and Landkammer et al. [20] later proposed improved

iterative schemes based on the same concept. The computational burden associated with

these methods renders such developed methods both too complex and time-consuming.

To address these challenges and mitigate the above limitations, we introduce an easily

implementable technique that utilizes MRI images as input for determining unloaded

breast configuration. To account for the breast shape variability among women

population , we introduce a space-filling strategy to generate numerous conceivable

configurations. To tackle the issue of breast tissue hyperelastic parameters under stress-

free conditions, we employ the machine learning based algorithm developed in our

laboratory as described in Chapter 3 and Feng and Samani [21] where these parameters
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are derived from corresponding parameters obtained using current mechanical testing

techniques [22]. The integrated approach presented here allows for a more accurate and

comprehensive representation of breast tissue, enhancing the reliability of the model for

various clinical and research applications.

4.2 « Material and Methods »

Our algorithm establishes a comprehensive framework that incorporates a sophisticated

mapping scheme between distinct spaces representing breast geometry in both the

unloaded and gravity-loaded states. Utilizing Principal Component Analysis (PCA), we

condense these complex geometric spaces into a more manageable, compact

representation. Subsequently, a Neural Network (NN) is meticulously trained to act as a

function that discerns the complex, nonlinear correspondence between the loaded

geometries and their stress-free counterparts. This NN function is pivotal in our

framework, as it effectively learns and internalizes the transformation rules from high-

dimensional PCA-reduced spaces, thus facilitating an accurate and dynamic mapping of

the geometric changes of the breast tissue under different physical states. The ability of

an NN to adapt to the data-driven nuances of these transformations is crucial, enabling

the precise reconstruction of unloaded geometries from their loaded configurations. For

clarity, Figure 4-1 provides a visual breakdown of the steps involved in the proposed

algorithm.
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Figure 4-1: Block diagram outlining the proposed inversion algorithm for

reconstructing the breast stress-free geometry.

Our process includes three interconnected phases:

Stress-free geometry space creation: Finite Element (FE) modeling and non-isotropic

scaling are combined to generate a robust dataset of stress-free breast configurations.

Loaded geometry space construction: Using each generated breast unloaded geometry

sample, gravity loading is applied within FE simulations to produce a corresponding

dataset of breast geometries mirroring real-world MRI acquisition conditions under prone

body position.
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Neural Network mapping: PCA facilitates compact representation of both unloaded and

loaded geometry spaces. We then train the NN to uncover the complex relationships

between loaded and unloaded states. Once trained, the NN can accurately predict the

stress-free configuration associated with any loaded breast geometry input.

4.2.1 Stress-Free Geometry Space

Due to the inherently heterogeneous nature of breast tissue, accurately modeling its

unloaded, stress-free configuration hinges on robust simulation techniques. To generate a

shape space pertaining to a population of stress-free breasts, we initiated the process with

a deformed breast geometry obtained from MRI scans acquired in prone position. Each

image was then segmented and converted into a FE mesh. Subsequently, we identified

two sets of hyperelastic parameters: one derived from existing literature [22] (denoted by

C_loaded,i), which represent parameters estimated from tissue samples mechanically tested

while undergoing gravity loading, and the other obtained from our previous work

described in Chapter 3 and [2] for unloaded hyperelastic parameters estimation (denoted

by C_unloaded,i). These parameters were then paired to form loaded and unloaded

hyperparameter sets. To fill the first space with stress-free shapes using FE simulation,

each breast model was subjected to varying levels of anti-gravity loading, starting from

0.65×Gravity (0.65G) and incrementing by 0.05 up to 1.0G. For each level of anti-gravity

loading, we assigned corresponding hyperelastic parameters to the breast tissue using the

following linear interpolation Equation 4-1, thereby obtaining a set of geometries

corresponding to each simulation increment. This method is supported by theoretical

work emphasizing that in hyperelastic materials, complex strain energy formulations

necessitate stress-dependent adjustments to model parameters [23-25].

C0.x,unloaded,i = Cunloaded,i + 0. x × Cloaded,i − Cunloaded,i (4-1)

To enhance the variety and realism within our model of stress-free breast shapes, we

adopted non-isotropic simulations approach in adjusting the geometries. Imagine
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reshaping a balloon not uniformly but by stretching it differently in various directions

which is akin to our method but applied within a 3D cylindrical space. Specifically, we

adjusted the model shapes by stretching them more in one direction than in another,

acknowledging that breast tissue doesn't stretch uniformly due to its varied composition.

We utilized two distinct scaling factors: αr (radial) and αL (longitudinal), constrained by

the relationship αr = 0.5αL. The 0.5 coefficient is inspired by Poisson’s ratio of 0.5

corresponding to the breast’s near incompressible tissue. The transformation applied to a

breast model can be mathematically represented as:

For the radial dimension (width/depth): Scale by αr

For the longitudinal dimension (height): Scale by αL

where αL varies from 0.85 to 1.3 in increments of 0.05 to explore different breast shapes.

Figure 4-2 illustrates the cylindrical coordinate system utilized in the geometric

adjustments of our model. This visualization demonstrates how the radial (αr) and

longitudinal (αL) scaling factors are applied to represent the non-uniform deformation of

the breast tissue within a 3D cylindrical space.

Figure 4-2: Cylindrical coordinate system applied to breast model geometry.
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The range for scaling factor and increment size were established based on FEA

simulations. The chosen interval reflected the range within which the deformed models

consistently met convergence criteria, indicating reliable simulation outcomes.

Convergence in FEA ensured that the model's response is sufficiently accurate and

representative of real-world physical behavior. This results in a range of shapes that

accurately reflects the diversity of breast forms by adjusting the scale differently in two

primary dimensions. By experimenting with these adjustments, we identified a range of

shape changes that most accurately reflect the diversity of natural breast shapes. This

technique serves two critical roles: firstly, it significantly expands the variety of natural

breast shapes our model can represent, making our simulation space more diverse and

realistic. Secondly, it helps counterbalance some of the limitations of our computer

models, especially in mimicking how the breast tissue's stretching behavior can vary in

different directions due to its complex nature. This step provides a comprehensive yet

streamlined representation of stress-free breast geometries. Each generated breast

geometry is represented by a point cloud of its surface while the whole undeformed

breast shape space is denoted by S_undef. It is noteworthy that the purpose here is to fill a

space pertaining to unloaded breast specimens. While each specimen may not be derived

from a specific breast MR image precisely, the above computation procedure is expected

to generate an overall realistic space of unloaded breast geometries.

4.2.2 Loaded Geometry Space

Building upon the effective stress-free shape space (S_undef), we then established its

counterpart: a loaded geometry space mirroring realistic breast configurations under

gravity. To ensure precision, we extracted surface nodes (denoted by S_def), directly from

the finite element (FE) mesh models representing each distinct shape. The use of FE

modeling offers several key advantages in breast tissue simulation. It inherently

accommodates tissue intrinsic and geometric nonlinearities and complex boundary

conditions. For the FE simulation, we employed second-order tetrahedral elements that

are well-suited for capturing the complex curvature of the breast, enabling more accurate

modeling compared to simpler element shapes. On average the number of nodes of
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generated breast surface models was over 2000, ensuring both a detailed spatial

representation and facilitating effective comparison with the stress-free geometry space.

4.2.3 Neural Network Design

To efficiently manage the voluminous datasets derived from our comprehensive shape

analyses, we employed Principal Component Analysis (PCA). PCA is a robust statistical

technique designed for identifying patterns within high-dimensional data, facilitating the

extraction of principal components that encapsulate the majority of the dataset's variance

[26]. Utilizing PCA allowed us to distill our surface node sets (S_undef and S_def) into a

streamlined format. An extensive series of evaluations was undertaken to ascertain an

optimal PCA numbers between data fidelity and computational efficiency. We

meticulously examined PCA component counts ranging from 7 to 11, with the objective

of retaining no less than 95% of the original dataset's informational content while

maximizing data compression. This rigorous approach guaranteed that the dimensionally

reduced dataset retained indispensable geometric features, essential for the effective

training of neural networks.

Our neural network architecture was designed with a multi-layered approach, tailored to

the unique requirements of capturing geometric and material nonlinearities in breast

tissue modeling. The architecture integrates experimental loaded hyperelastic parameters

at the input layer, followed by multiple hidden layers featuring fully connected and

dropout layers, engaging approximately 1600 neurons to discern intricate patterns

indicative of the material's heterogeneous response to loading. The adoption of Rectified

Linear Unit (ReLU) activation functions enables efficient nonlinear modeling. Following

extensive testing, RMSprop was selected as the optimization algorithm, attributed to its

adaptive learning rate and minimal hyperparameters, making it particularly effective for

dimensionality-reduced datasets and mitigating the risk of overfitting within our neural

network. Figure 4-3 provides a schematic representation of our neural network structure,
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depicting a simplified example with a PC number of 7. This strategic approach is crafted

to discern the subtle, nonlinear interactions inherent in our geometric data.

Figure 4-3: Schematic of the proposed Neural Network architecture.

The development and refinement of our neural network architecture were rigorously

supported by a dedicated ablation study designed to validate and enhance each aspect of

the network configuration. This study is crucial for tailoring the network to the complex

demands of modeling unloaded breast geometry, which requires high fidelity in capturing

geometric nonlinearities and material behavior. Our ablation study focused on

systematically evaluating the impact of various architectural and parameter choices on

the network’s ability to accurately model geometry. Key elements, such as the number of
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hidden layers, the mix of fully connected and dropout layers, and the distribution of

neurons across these layers, were meticulously examined. Each variant of the network

architecture was assessed for its performance in accurately predicting the unloaded

geometry, with particular attention paid to the generalization capabilities across different

sets of geometric data. Special attention was paid to the choice of the optimization

algorithm during the ablation study. While RMSprop was ultimately selected for its

adaptive learning rate capabilities, other candidates, such as Adam and Stochastic

Gradient Descent (SGD), were also rigorously tested. These tests involved monitoring the

convergence behavior and the sensitivity of the model to the initial learning rate settings

and other hyperparameters. This aspect of the study was instrumental in confirming the

suitability of RMSprop for dealing with the specific challenges posed by the high-

dimensional data involved in breast tissue modeling. Furthermore, the activation

functions played a pivotal role in the network's performance, with ReLU chosen for its

efficiency in handling nonlinear data. However, variants, such as LeakyReLU and

Parametric ReLU, were also evaluated to ensure that the most effective function was

employed, particularly in terms of preventing neuron saturation and ensuring a steady

gradient flow during backpropagation. Through this study, we ensured that our network

was not only tailored to meet the specific requirements of the task, but also robust enough

to handle the intricacies of the data without overfitting.

4.2.4 Validation

To rigorously validate the accuracy of our predicted stress-free breast geometries, we

employ a multi-stage reverse simulation approach. Firstly, we imported the surface point

cloud representing the predicted stress-free geometry into a finite element (FE) modeling

environment (Abaqus solver, SIMULIA, Providence, RI, USA). A mesh representing this

shape was generated. Then we assigned previously determined unloaded hyperelastic

parameters to this model. Next, realistic gravity loading was simulated within the FE

framework, deforming the stress-free shape accordingly. We again extracted a surface

point cloud representing this FE-generated deformed state. Finally, a direct comparison
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was performed between this new deformed point cloud (derived from the predicted

stress-free geometry) and the original MRI-derived model.

Our assessment relied mainly on two quantitative evaluation metrics: Intersection over

Union (IoU) and Hausdorff Distance (HD). The IoU quantifies the degree of overlap

between two shapes, with higher IoU values indicating greater similarity. Thus, a high

IoU between our simulated deformed geometry and the actual MRI-derived shape

underscores the strong predictive accuracy of our reconstruction model. The Hausdorff

Distance measures the maximum distance between corresponding points on two shapes,

with a smaller Hausdorff Distance indicating greater geometric concordance. This

validates our algorithm's capability to accurately model tissue unloading.

4.3 « Results »

Table 4-1 summarizes our algorithm's accuracy and efficiency using a suite of

complementary chosen metrics. Based on varying selections of the number of PCA terms

(PCs), we evaluated Mean Squared Error (MSE) for prediction accuracy, Intersection

over Union (IoU) for object overlap, and Hausdorff Distance in millimeters to measure

shape discrepancies. Additional metrics including Mean Hausdorff Distance (mm) for

averaged shape differences under specific conditions and Reconstruction Time in minutes

are also included to assess computational efficiency. The presented results reveal a

multifaceted view of the performance metrics as a function of the number of principal

components (PCs) used in the analysis. Figure 4-4 provides a clear visualization of the

algorithm's performance across key metrics as a function of the number of principal

components (PCs) utilized. A clear downward trend in the Mean Squared Error (MSE) is

observed as the number of PCs increases, with MSE values plummeting from 0.142 when

7 PCs are used to a low of 0.0062 at 10 PCs, before a slight uptick to 0.0063 with 11 PCs.

This suggests an improvement in the precision of the model with more PCs, although the

marginal gain diminishes past 10 PCs. Concurrently, the Intersection over Union (IoU)
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metric shows a consistent upward trend, improving from 0.799 to 0.9041, which indicates

a progressively better overlap between the predicted and the actual values as the number

of PCs increases. The Hausdorff Distance (HD) in millimeters, which measures the

maximum distance of the set to the nearest point in the other set, significantly decreases

from 2.613 mm to 1.097 mm as the PCs increase from 7 to 11, demonstrating a

substantial enhancement in the model's accuracy in terms of edge delineation. However,

there is an observable tradeoff with computational time, which escalates from 4.8 minutes

to 18.5 minutes, a nearly fourfold increase. Incorporating Mean Squared Error (MSE)

with the consideration of Standard Deviation (STD) reveals a decrease in prediction error

as the number of PCs increases, with the lowest error observed at 10 PCs. The slight

increase in MSE with 11 PCs, accompanied by an increase in STD, suggests that adding

more PCs beyond 10 may not consistently improve model accuracy and can introduce

greater variability in the results. The sharp increase in both mean reconstruction time and

STD from 10 to 11 PCs illustrates the significant escalation in computational demand.

This tradeoff highlights the computational cost associated with increasing the number of

PCs. The decision on the optimal number of PCs to use must balance the improved

accuracy and overlap against the computational efficiency. While 10 PCs provide the

lowest MSE and a high IoU, going to 11 PCs offers negligible improvements in MSE and

IoU but at a significant cost in terms of computational time. Therefore, 10 PCs might be

considered the best choice when taking both performance and efficiency into account.
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Table 4-1: Evaluation metrics

PC

s

MSE(Mean±ST

D)

IoU(Mean±ST

D)

Hausdorff

Distance(m

m)

(Mean±STD)

Mean

Hausdorff

Distance(mm)

(Mean±STD)

Reconstructi

on

Time(minute

s)

(Mean±STD

)

7 0.142±0.0006 0.797±0.0027 2.63±0.061 0.247±0.009 4.49±0.52

8 0.018±0.0006 0.854±0.0052 2.307±0.070 0.221±0.083 5.66±0.35

9 0.0055±0.0008 0.894±0.0049 1.175±0.073 0.213±0.0057 7.14±0.7

10 0.0055±0.0006 0.902±0.0037 1.149±0.072 0.208±0.0058 13.40±1.41

11 0.0062±0.0009 0.903±0.0048 1.113±0.053 0.208±0.0065 18.55±3.85
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Figure 4-4: Comparison of performance metrics across principal component

numbers.

To succinctly demonstrate the outcomes of our neural network's performance in

predicting unloaded geometry, we have delineated a subset of our ablation study that

specifically pertains to a model configuration with 10 principal components. Table 4-2

samples the nuances of our network's behavior as we manipulate key hyperparameters --

learning rates and dropout rates -- across different architectural depths. Here, we present

mean performance metrics for a selection of learning rates of 1e-3 and 1e-4, alongside

dropout rates of 0.2, 0.3, and 0.5, and varying the number of layers among 3, 5, and 6

layers. In this table, performance metrics like MSE, IoU, Hausdorff Distance, and Mean

Hausdorff Distance vary across the different configurations, emphasizing that the

configuration with a learning rate of 1e-3, dropout rate of 0.2, and 5 layers performs best

among the illustrated examples. This data encapsulates the model's average output,

illustrating the direct effect of these hyperparameters on the network's capacity to

accurately reconstruct the unloaded geometry.
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Table 4-2: Comparative ablation study results for Neural Network performance

with 10 principal components.

Learning

Rate

Dropout

Rate

Number

of

Layers

MSE IoU Hausdorff

Distance

(mm)

Mean

Hausdorff

Distance

(mm)

1e-3 0.2 3 0.0070 0.890 1.200 0.220

1e-3 0.2 5 0.0055 0.902 1.149 0.208

1e-3 0.2 6 0.0056 0.898 1.180 0.212

1e-3 0.3 5 0.0065 0.905 1.190 0.215

1e-3 0.5 5 0.0074 0.878 1.250 0.230

1e-4 0.2 5 0.0075 0.892 1.210 0.222

To enhance the visualization of shapes reconstructed post-analysis and those extracted

from three-dimensional models generated by MRI, we employed the Open3D

visualization package [27]. Open3D is an open-source library designed to support the

processing and visualization of three-dimensional data, offering a wide array of

functionalities including point cloud processing, 3D reconstruction, and graphical

rendering. Figure 4-5 demonstrates a side-by-side comparison of the reconstruction

results of breast tissue, with subfigure (a) depicting the ground truth breast (deformed)

model derived from MRI scans, and subfigure (b) showcasing the reconstructed breast

deformed model by deforming our reconstructed state-free breast geometry with the

influence of gravity. In this example case, selecting 10 PCA components yields an

average Hausdorff Distance (HD) of 1.109 mm and a Mean Squared Error (MSE) of

0.0062, illustrating a balance between shape accuracy and parameter prediction while

maintaining reasonable computational demand. A noticeable difference between the two
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models is the more dispersed distribution of points in the reconstructed geometry (b)

compared to the ground truth (a). This dispersion in the reconstruction is generally

attributed to the FE simulation that led to downward stretching in gravity direction, hence

increasing the space between modal points.

Figure 4-5: Comparison of two breast surface point clouds of (a) the groundtruth

model extracted from MRI (under gravity loading state) and (b) reconstructed

breast surface model under gravity-loading derived from corresponding stress-free

state geometry generated using the proposed algorithm.
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4.4 « Discussion and Conclusion »

This study investigated a novel machine-learning-driven methodology for determining

the unloaded reference geometry of the breast. The technique relies on two breast shape

spaces generated to accurately capture corresponding populations of undeformed and

undeformed breasts where the deformation in the latter is due to gravity loading while the

woman in prone body position. It adapted finite element simulation and hyperelastic

modeling principles specifically for breast tissue mechanics. To account for breast tissue

heterogeneity and stress-induced anisotropy, we generated hyperelastic parameters

corresponding to different inverse gravity simulations and different interpolation

parameters. Combined with non-isotropic scaling, we generated the unloaded breast

shape space, providing a reliable basis for the input dataset of the subsequent steps in the

proposed technique. The space of deformed breast shapes was generated using each

shape specimen obtained in the previous step as a reference geometry along with reliable

tissue unloaded hyperelastic parameters as input to a breast FE model with high fidelity.

This model simulated the deformation of the breast in prone body position under gravity

loading. Our method was systematically validated across a range of parameters,

demonstrating robustness within reasonable physiological limits. The criteria used for

quantitative assessment included error reduction and reliability metrics for the predicted

reference geometry. Trends of increased accuracy with additional PCA components were

observed, particularly evident in Intersection over Union (IoU) and Hausdorff Distance

measures. Optimal performance trade-offs were noted based on dataset characteristics

and computational constraints.

Result analysis confirmed that increasing the number of PCA components generally

improves the accuracy of our breast geometry reconstruction. Specifically, Intersection

over Union (IoU) and Hausdorff Distance (HD) showed substantial improvement up to

10 PCs. The results of this study are indicative of an optimal balance between accuracy

and computational efficiency with this dataset when such parameters are carefully

selected. Notably, the results obtained in this study with 10 PCs demonstrate a small

Hausdorff Distance of approximately 1.149±0.072mm, suggesting our previously
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developed unloaded hyperelastic parameters yield realistic geometric predictions. This

result indicates that a significant reduction in error compared to other methods is

achieved. In previous experimental context [5], errors comparable to those observed in

our study were reported. However, due to a lack of detailed analysis regarding the error

metrics used in their publication, a direct comparison between our results and theirs

cannot be conclusively made. Although [7] achieved an experimental error of high

accuracy, their model's use of free nodes may not be directly applicable to simulating

tissues with complex geometries like the breast. Building upon the conclusion from the

prior study [28] that adopting a Poisson's ratio of 0.5 is feasible for simulations due to its

ability to accommodate the non-linear characteristics of soft tissues, our research further

extends this approach by employing an anisotropic parameter αr = 0.5αL. This anisotropy

captures the directional dependency of tissue deformation. Similar to the work of Cao et

al.[29], our study also applies a cylindrical coordinate system to meticulously simulate

the deformed behavior of soft tissues. Although our chosen Poisson's ratio of 0.5 extends

beyond their tested range, their application of cylindrical indentation on soft tissue

models validates the effectiveness of this approach in capturing complex material

behaviors, offering robust theoretical support for our methodology. The reconstruction

algorithm applied in this study takes into account breast tissue mechanics complexities

including hyperelasticity and incompressibility. It utilized non-isotropic scaling strategy,

which accounts for tissue incompressibility, to enrich the undeformed breast shape space,

leading to a more physiologically plausible unloaded state estimation and hence higher

prediction accuracy.

The fidelity of breast FE models depends strongly on the accuracy of the stress-free

breast shape reference geometry and the tissue mechanical properties. This chapter

tackles the former towards ensuring highly reliable breast FE models. Breast FE models

are used in several applications ranging from clinical to industrial applications. In the

clinical applications context, accurate unloaded breast geometry reconstruction be used to

improve planning of surgical procedures and improving breast implant design for

reconstructive or aesthetic procedures. Similarly, our approach presents opportunities for

advanced biomechanical simulations within radiation therapy or personalized medical

device development. A good example of industrial applications is bra design, specifically
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for custom-made bra design. Future work should rigorously validate our method across

diverse patient datasets and within specific clinical workflows. Beyond breast modeling,

our methods could inspire more in understanding and simulating other gravity-sensitive

organs, such as the liver or heat. Thorough investigation of our model's performance

under significantly intensified external forces would open avenues for modeling

traumatic events or exploring surgical manipulations.

Similar studies, such as ours, involving the unloaded geometry of breast tissue, a

prevalent approach in the literature, involves parameterizing the geometry of the breast

using a defined set of parameters, which are then incrementally adjusted. In this method,

the unloaded shape of the breast is parameterized and iteratively modified within an

optimization framework. The parameters are adjusted step-by-step, and at each step, the

loaded shape obtained by applying gravitational loading in the simulation software is

compared to the original medical data such as MRI data. This comparison drives the

optimization process, aiming to refine the parameters until the simulated unloaded

parameters accurately match the observed MRI images. However, this approach has

certain limitations. First, the geometry of the breast described by a finite number of

parameters can be overly simplistic and may not capture the complex natural variations in

breast tissue structure across different individuals. Such approximations can lead to a less

accurate representation of the actual breast geometry, potentially affecting the efficacy of

any medical or biomechanical application derived from the model. Second, the success of

this method depends significantly on the initial guess of the parameters. There is no

inherent guarantee within this approach that the optimization algorithm will converge to

the correct solution or that the solution converges to accurately represent the true

unloaded state of the breast. This dependency on the initial conditions can introduce

significant variability in the outcomes, making it less reliable for applications requiring

precise and consistent modeling. In contrast, our method, which utilizes a novel machine-

learning approach, does not suffer from these limitations.

In conclusion, this study demonstrated an easily implemented and transferable

methodology for representing the unloaded breast geometry. We successfully integrated

finite element simulations, unloaded hyperelastic parameter estimation, and machine
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learning techniques to address the often-neglected complexities of breast tissue

hyperelasticity. A meticulously validated reconstruction algorithm showcases high

accuracy supporting our prior work on stress-free hyperelastic parameter determination.

This study may inspire future works that involve reconstruction of accurate

biomechanical models of highly deformable organs for medical applications such as

medical intervention planning. Studies involving other deformation-sensitive organs or

simulations of traumatic events hold intriguing promise, demonstrating the far-reaching

potential of this approach within biomechanics.

References

[1] Samani A., Bishop J., Luginbuhl C., Plewes D.B.. Measuring the elastic modulus of

ex vivo small tissue samples. Physics in medicine and biology.2003;48:2183–2198.

[2] Palomar A.P., Calvo B., HerreroJ., L pez J.M., Doblar M.. A finite element model to

accurately predict real deformations of the breast. Medical engineering physics.

2008;30:1089–1097.

[3] Hajhashemkhani M., Hematiyan M.R.. The identification of the unloaded

configuration of breast tissue with unknown non-homogenous stiffness parameters using

surface measured data in deformed configuration. Computers in biology and medicine.

2021;128:104107.

[4] Millet, I., Pages, E., Hoa, D., Merigeaud, S., Curros Doyon, F., Prat, X., & Taourel, P.

(2012). Pearls and pitfalls in breast MRI. The British journal of radiology, 85(1011),

197–207.

[5] Vavourakis V., Hipwell J.H., Hawkes D.J.. An Inverse Finite Element u/p-

Formulation to Predict the Unloaded State of In Vivo Biological Soft Tissues. Annals of

biomedical engineering. 2016;44:187–201.

[6] Pathmanathan P., Gavaghan D., Whiteley J., others . Predicting tumour location by

simulating large deformations of the breast using a 3D finite element model and



131

nonlinear elasticity. International Conference on Medical Image Computing and

Computer-Assisted Intervention 2004. 8.

[7] Rajagopal, V., Chung, J., Nielsen, P. M. F., & Nash, M. P. (2006, January). Finite

element modelling of breast biomechanics: Finding a reference state. In 2005 IEEE

Engineering in Medicine and Biology 27th Annual Conference (pp. 3268-3271). IEEE.

[8] Lee A.W., Rajagopal V., Gamage T.P.B., others . Breast lesion colocalisation

between X-ray and MR images using finite element modelling Med Image Anal.

2013;17:1256–1264.

[9] Carter T., Tanner C., Beechey-Newman N., others . MR navigated breast surgery:

method and initial clinical experience in International Conference on Medical Image

Computing and Computer-Assisted In- tervention 2008.

[10] Eiben B., Vavourakis V., Hipwell J.H., others . Breast deformation modelling:

comparison of methods to obtain a patient specific unloaded configuration in Medical

Imaging 2014: Image-Guided Procedures, Robotic Interventions, and Modeling 2014.

[11] Eder M., Raith S., Jalali J., others . Comparison of different material models to

simulate 3-d breast deformations using finite element analy- sis Ann BiomedEng.

2014;42:843–857.

[12] Sun, Y., Yick, K. L., Cai, Y., Yu, W., Chen, L., Lau, N., & Zhang, S. (2021). Finite

element analysis on contact pressure and 3D breast deformation for application in

women’s bras. Fibers and Polymers, 22(10), 2910-2921.

[13] Nikou A, Dorsey SM, McGarvey JR, et al. Effects of using the unloaded

configuration in predicting the in vivo diastolic properties of the heart. Comput Methods

Biomech Biomed Engin. 2016;19(16):1714–1720.

[14] Raghavan M, Ma B, Fillinger MF. Non-invasive determination of zero-pressure

geometry of arterial aneurysms. Ann Biomed Eng. 2006;34(9):1414–1419. doi:

10.1007/s10439-006-9115-7



132

[15] Bols J, Degroote J, Trachet B, et al. A computational method to assess the in vivo

stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl

Math. 2013;246:10–17. doi: 10.1016/j.cam.2012.10.034

[16] Riveros F, Chandra S, Finol EA, et al. A pull-back algorithm to determine the

unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann

Biomed Eng. 2013;41(4):694–708. doi: 10.1007/s10439-012-0712-3

[17] Sellier M. An iterative method for the inverse elasto-static problem. J Fluids Struct.

2011;27(8):1461–1470. doi: 10.1016/j.jfluidstructs.2011.08.002

[18] M.W. Gee, C. Förster, W.A. Wall, A computational strategy for prestressing patient-

specific biomechanical problems under finite deformation, Int. J. Numer. Methods

Biomed. Eng. 26 (1) (2010) 52–72.

[19] H. Weisbecker, D.M. Pierce, G.A. Holzapfel, A generalized prestressing algorithm

for finite element simulations of preloaded geometries with application to the aorta, Int. J.

Numer. Methods Biomed. Eng. 30 (9) (2014) 857–872.

[20] P. Landkammer, M. Caspari, P. Steinmann, Improvements on a non-invasive,

parameter-free approach to inverse form finding, Comput. Mech. 61 (4) (2017) 433–447.

[21] Feng X., Samani A.. Reconstruction of the Stress-free Hyperelastic Pa- rameters of

Breast Tissue: Machine-Learning Based Inverse Problem Technique in CMBES Proc.;45

2023.

[22] Dempsey S.C.H., O’Hagan J.J., Samani A.. Measurement of the hyperelastic

properties of 72 normal homogeneous and heteroge- neous ex vivo breast tissue samples

J Mech Behav Biomed Mater. 2021;124:104794.

[23] Ogden, R. W. (1997). Non-linear elastic deformations. Dover Publications.

[24] Holzapfel, G. A. (2000). Nonlinear solid mechanics: A continuum approach for

engineering. Wiley.



133

[25] Gurtin, M. E. (2008). An introduction to continuum mechanics. Academic Press.

[26] Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in

Space". Philosophical Magazine. 2 (11): 559–572.

[27] https://www.open3d.org/

[28] Zhang, M., Zheng, Y. P., & Mak, A. F. T. (1997). Estimating the effective Young’s

modulus of soft tissues from indentation tests—nonlinear finite element analysis of

effects of friction and large deformation. Medical Engineering & Physics, 19(6), 512–517.

https://doi.org/10.1016/S1350-4533(97)00017-9

[29] Cao, Y., Ma, D., & Raabe, D. (2009). The use of flat punch indentation to determine

the viscoelastic properties in the time and frequency domains of a soft layer bonded to a

rigid substrate. Acta Biomaterialia, 5(1), 240–248.

https://doi.org/10.1016/j.actbio.2008.07.020

https://en.wikipedia.org/wiki/Karl_Pearson
https://zenodo.org/record/1430636
https://zenodo.org/record/1430636
https://www.open3d.org/


134

Chapter 5

5 « Biomechanics-driven Optimization of Bra Shape
Design for Women with Bilateral Asymmetry:
Leveraging Individual MRI Data and Hyperelastic
Parameters for Breast-Bra Contact Mechanics–
Preliminary Study »

5.1 «Introduction »

A significant portion of the female population experiences breast bilateral asymmetry,

with estimates suggesting as high as 87% of women are affected [1]. This asymmetry

goes beyond aesthetic differences. Research indicates a concerning correlation between

breast asymmetry and an increased risk of breast cancer development [2-3]. This was

confirmed through the study presented in Chapter 2. Within asymmetric breast tissue,

areas of concentrated stress within breast tissue have been linked to tumor formation and

the potential transformation of healthy tissue into cancerous growths [4]. Unfortunately,

traditional off-the-shelf bras typically adopt symmetrical designs which may lead to

discomfort and tissue stress concentration in the larger and/or stiffer breast. To avoid this

discomfort, affected women may choose to select the bra based on their larger breast’s

size. However, this may lead to inadequate support for the smaller breast. Improper

design parameters in bra shape can lead to serious consequences, such as stress

concentration or insufficient support which may lead to breast movement and friction on

the nipples. Other than increasing the risk of breast cancer, overly tight bra pressure may

generate excessive pressure on the shoulders, chest, and underbust area, affecting normal

breathing and blood circulation and potentially creating localized stress concentration and

hindering efforts to promote healthy breast tissue distribution.

A well-designed bra must fulfill two key functions: provide comfortable support by

closely matching breast contours and avoid applying excessive contact pressure [5].

Finite Element (FE) modeling has emerged as a powerful tool within bra design, allowing

for detailed analysis of bra-breast interaction. Bra design FE modeling involves the use of

complex anatomical structures and biomechanical models to simulate breast deformation
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and pressure and stress distribution. Analyzing the mechanical interaction between the

breasts and bra provides valuable insights for selecting the optimal bra shape and fabric.

The modeling process considers several factors such as material nonlinearity, geometric

nonlinearity, and the interaction between the bra and the breast. Some studies have

successfully developed FE models to analyze bra shape effects and pressure exerted by

different bra material [6-8]. These models construct three-dimensional FE models based

on 3D-scan data while they consider hyperelastic material models such as Mooney-Rivlin

model for breast deformation. One common limitation of these models pertains to using

inaccurate tissue mechanical properties. Current hyperelatic parameters, assigned to

breast tissue in these models, fail to account for individual variations and preloading bias.

Individual factors such as age, ethnicity, and breast size can all influence the tissue's

biomechanical properties [9]. This lack of personalization potentially limits a model's

accuracy and predictive capability. Moreover, ignoring the influence of gravity force on

the measured hyperelastic properties and the stress-free reference geometry of the breast

inevitably impacts the model accuracy as discussed in Chapters 3 and 4.

Although FE models are becoming increasingly prevalent in product design, limited

published literature explores their application in bra design analysis. Firstly, the focus has

largely been on simulating and understanding the effects of the conventional design

approach where the bra cup is typically segmented into two main parts: the lower half

forms a complete hemisphere to provide a foundational support, and the upper half

comprises two triangular sections derived from slicing the top of a sphere, designed to

encase and mold the upper portion of the breast. Due to the complexity of modeling

breast-bra contact mechanics and internal breast tissue variations, most studies

concentrate on sports bras that compress the breast significantly rather than everyday bras

[10-12]. Li et al. [13] proposed a biomechanical model of women's bodies and bra,

studying the impact of uniform walking on breast dynamic deformation. However, the

researchers did not develop their models based on actual human images and did not

consider gravity and the initial pressure of the underwear. The FE model of the breast and

bra established by Brunon et al.[14], which does not consider gravity, demonstrates that

due to the complex compound structure of women, the high degree of material non-

linearity, and the large deformations involved in motion, it is challenging to address the
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contact dynamics between women's breasts and their bra using FE analysis. Given the

above challenges, research on the biomechanical analysis of everyday bras is scarce.

Furthermore, existing FE models rarely address the issue of breast asymmetry while

overlooking this asymmetry in such models fail to capture potentially harmful stress

concentration. This leaves unanswered questions about whether everyday bra design

could be actively tailored to promote a more uniform and healthier stress distribution for

women with breast bilateral asymmetry.

To address these issues, we proposed an everyday bra design method that considers

comfort while reducing the risk of breast cancer development. It is focused on effectively

solving the stress concentration problem for women with breast bilateral asymmetry.

Specifically, essence of the proposed design approach is reflected in the following four

aspects:

1. We introduce the unloaded state of the breast obtained using the methods described in

Chapter 4 into the FE modeling. This leads to accurate estimation of the breast tissue

stress distribution while the bra is worn, thus providing a more reliable basis for

optimizing the bra design, including its shape and fabric.

2. We use the accurate tool developed for stress distribution estimation in conjunction

with machine learning algorithms to optimize bra design where to the major optimization

criteria is stress concentration minimization. This makes possible designing personalized

bras according to the shape, size, bilateral asymmetry and tissue hyperelastic parameters

of the woman if available.

3. We propose an alternative method for the breast-bra contact mechanics analysis, which

effectively addresses common convergence and low speed challenges of traditional

contact mechanics models. In addition to guaranteeing solution convergence, using the

proposed contact mechanics technique leads to acceleration of the optimization process

which is the primary part of the proposed bra design technique.
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4. We develop a bra shape design framework that takes breast contour as the starting

point and tailors the shape to the individual. This is in contrast to other design methods

that make limited modifications to existing bra shapes based on FE modeling.

It is anticipated that the proposed design technique leads to more comfortable, safe and

effective bra design options.

5.2 « Material and Methods »

This proposed bra design method is founded on an optimization algorithm which starts

with an initial guess for the bra (parameterized) geometry and its fabric mechanical

properties. Next the novel breast-bra contact mechanics technique briefly described in

Figure 5-1 is conducted. This technique outputs the breast tissue stress distribution which

is checked for its level of spatial uniformity. If this stress uniformity is not maximized,

the bra shape parameters and its fabric properties are changed within the optimization

process before the stress analysis process is carried out again. This process is repeated

until the stress uniformity is maximum. The contact mechanics technique developed for

the bra optimization method employs a two-step framework to compute the tissue breast

distribution. First, it aligns the breast and bra surfaces before the bra is moved towards

the breast to initiate contact. Essentially, this simulates how the bra is practically worn.

This step utilizes the unloaded breast geometry obtained from the technique described in

Chapter 4 as a starting int. Gravity force is applied while the woman is standing in

upright position before the contact is initiated. The second major block of the contact

mechanics algorithm formulates the contact loading in the FE model as a prescribed

boundary condition. This formulation drastically reduces the problems level of

nonlinearity involved in typical contact mechanics problems, hence address convergence

issues commonly encountered in contact mechanics problems.
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Figure 5-1: Flowchart of proposed breast-bra contact mechanics technique.

5.2.1 Geometry Alignment

Breast Sub-model:

Unlike other bra design approaches, our study focuses on personalized bras for those with

significant breast bilateral asymmetry. To achieve this goal, we started with the unloaded

geometry obtained from a previous project, which was reconstructed from MRI data.

Since the MRI-reconstructed geometry was acquired for prone body position, we first

rotated the breast geometry model 90 degrees to change it from a prone position to a

standing upright position. To simulate this rotation, we imported the rotated surface point

cloud into Abaqus FE solver (SIMULIA, Providence, RI, USA) and created a 3D solid

meshed part. After assigning the unloaded hyperelastic parameters to the part, a gravity
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loading in the -Z direction was applied to it where the Z-axis points downward when the

woman stands upright. This step aims to simulate the natural shape of the breast when a

woman stands upright. We extracted the surface point cloud of this deformed breast

shape and used it for subsequent breast-bra contact model.

Bra Parameterization Model:

For the bra shape optimization, it is necessary to mathematically represent the shape

using a reasonably small number of parameters. In the unloaded breast geometry

reconstruction study, which was presented on Chapter 4, we explored the unloaded shape

space and enriched the data through non-isotropic scaling. Observations from this process

showed that the deformation of the breast after loading exhibits a difference between the

upper and lower hemispheres (divided by the nipple), which is mainly influenced by

Cooper's ligaments [15]. Based on these observations, our design adopted bra shape

characterization based on the two different hemispheres where each is mathematically

presented by a paraboloid with distinct curvatures. This approach leverages the geometric

properties of paraboloids to achieve a tailored fit, by precisely merging two sections with

varying degrees of curvature to accommodate the natural shape and size variations of the

breast. It is crucial to emphasize that this approach merely sets the stage for the initial

shapes, which are then refined and optimized through an iterative process to achieve the

best possible fit and support. As such, the bra shell can be mathematically modeled using

two parabolic equations, each representing half of the shell. The general form of a

parabolic equation in three dimensions can be expressed as:

z = �(�2 − x2 − y2) +� (5-1)

where z is the height of the paraboloid at any point (x,y); R represents the radius of the

breast at its base, which is the maximum cross-sectional radius of the breast on the chest

plane; H denotes the height from the base of the breast to its apex, indicating the vertical

distance from the lowest to the highest point of the breast; and c is the curvature of the

paraboloid. The curvature of the bra’s upper half (cupper) was derived from the unloaded
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breast shape, representing the natural, unsupported form of the breast. This curvature

aims to mimic the breast's shape without the influence of gravity, providing a baseline for

the upper section of the bra shell. Lower half curvature (clower) was based on the breast

shape when deformed by gravity, indicating how the breast sags or changes shape under

its weight. This curvature was crucial for designing the lower section of the bra shell to

offer support and maintain the desired breast shape against gravitational pull. The

transition between the upper and lower halves required ensuring continuity and

smoothness at the boundary. ztransition represents the height at which the transition occurs,

we ensured zupper(ztransition)=zlower(ztransition) and their derivatives were also equal at this

point to maintain a smooth surface. The initial shape design of the bra provides an

excellent foundation for subsequent Finite Element Method (FEM) experiments. By

incorporating specific curvatures derived from both the natural state of the breast and its

shape under the influence of gravity, the model facilitates a nuanced analysis of the bra's

performance in terms of support, fit, and comfort.

Alignment of bra and breast surfaces:

Before initiating the contact between the two surfaces of the bra and breast, the two

surfaces must be aligned. In the proposed technique, this alignment is achieved using the

Iterative Closest Point (ICP) method [16] which is employed to achieve geometric

alignment of surface point clouds representing the shapes of the breast and bra.

Essentially, this step simulates the process of a person trying on a bra and adjusting it

from an initial misaligned state to a near-perfect fit.

The Iterative Closest Point (ICP) algorithm is a widely used method for aligning two

surfaces, typically 3D models or point clouds, by minimizing the distance between them.

After starting with an initial transformation, the ICP algorithm iteratively revises the

transformation needed to align a source shape to a target shape. It can be broken down

into several key steps: selecting corresponding points, determining the optimal

transformation, and applying this transformation to achieve alignment. Mathematically,

the ICP process seeks to find the rigid body transformation (rotation R and translation t)
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that minimizes the sum of squared distances between corresponding points across the two

datasets. Given a set of source points S={s1, s2,..., sn} and the corresponding set of target

points T={t1, t2, ..., tn}, the ICP algorithm minimizes the following objective function:

�(�, 푡) = �=1
푛 (��� + 푡) − 푡� 2� (5-2)

E is the error metric, a sum of squared distances, R is the rotation matrix, t is the

translation vector, si are the points of the source shape, ti are the corresponding points on

the target shape.

We applied ICP experiment with the initial separate point clouds gathered for both the

breast, which serves as the target shape, and the bra, designated as the source shape. The

bra's initial point cloud was approximately scaled to the size of the breast, which reflects

a realistic scenario of an individual selecting a bra with an almost suitable fit. Following

this, the ICP iterations commence, each embodying a sequence of steps to achieve

precision in alignment. The process initiated with a closest point search, where for each

point on the bra, a corresponding nearest point on the breast surface was identified, laying

the groundwork for point matching. Subsequently, transformation estimation was

conducted to compute the optimal rigid transformation, which involved calculating

rotation and scaling factors that minimize the distances between these newly established

point pairs.

With the transformation parameters at hand, we proceed to adjust the bra shape by

applying the calculated rotation and scaling, thus moving it into a closer alignment with

the breast shape. In parallel, the breast shape underwent a surface smoothing process,

utilizing a k-nearest neighbors algorithm (k-NN) [17]. The advantage of employing k-NN

in this context is its ability to smooth while conservatively preserving the geometrical

features of the breast shape. Specifically, the k-NN was applied to the top 1% of points

with the greatest distance discrepancy post-transformation, restricted to a neighborhood

of no more than 20 points. This constraint was critical as it ensured that the breast shape

does not lose its intrinsic curvatures due to excessive smoothing. The k-NN algorithm is

mathematically represented by:
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�(��) = 1 � �=1
� �� ∙ �푛�� (5-3)

where S(pi) is the smoothed position of point pi, k is the number of nearest neighbors, wj
are the weighting factors (based on distance), and pnj are the positions of the nearest

neighbor points. This iterative process of alignment and smoothing edges the bra shape

incrementally closer to the breast, iterating towards an objective where at least 70% of

the points are in complete alignment, reducing friction between the breasts and the fabric.

This alignment well simulated the act of a bra conforming to the contours of the body

when worn.

5.2.2 Finite Element Analysis

In the finite element analysis (FEA) phase of the simulation, we simulated the final

adjustments typical of wearing a bra, which includes fastening the back strap and

adjusting the shoulder straps. Normally, such adjustments would redistribute breast tissue

to achieve a snug fit. As simulating this detailed process within FEA is complex to the

high nonlinearity of the associated breast-bra contact mechanics problem, we modeled

the state of bra post-adjustment for simplicity. This modeling approach is founded on the

assumption that the bra deformation insignificant compared to the breast deformation.

The fastening and adjustment of the bra typically introduces two principal forces: F1 and

F2 shown on Figure 5-2. F1 is directed normal towards the torso, emulating the force

exerted by the lower edge of the back strap. F2, inclined at a 5- angle along the z-axis,

simulates the force exerted by the shoulder straps. To circumvent the challenges of

convergence in contact analysis within FEA, we adopted a method involving prescribed

boundary conditions as described below.

1.The bra surface was further displaced towards the chest by an initial trial value of 3mm.

This displacement value is refined through subsequent iterations. This surface motion

generates local compression (contact) at each point of the breast’s surface which is

consistent with the location of the point on the breast surface contour.
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2. Displacements of the breast surface in contact with the moving bra are calculated

before they are assigned as prescribed boundary conditions to the corresponding points

on the breast point cloud. Prescribed boundary conditions in finite element analysis (FEA)

are specific loading constraints applied to the model to simulate real-world physical

restrictions and forces. These conditions dictate how certain parts of the model can move

or react under simulated physical forces, ensuring the simulation accurately reflects the

expected behavior of the system under study. The reason for employing prescribed

boundary conditions in this scenario is twofold. Firstly, it allows for a reasonably realistic

simulation of how the bra applies forces to and interacts with the breast, capturing the

nuances of the bra wearing action where the garment exerts contact pressure and

displacement upon the body. Secondly, by assigning specific displacements to the bra

model based on expected behavior, the simulation can effectively decouple complex

interactions into manageable stages. This approach facilitates a more detailed and

accurate analysis of the impact of wearing a bra on breast tissue, where the bra

continually applies forces to the breast.

3. The FEA simulation yielded the reaction force at each point on the breast surface

subjected to the prescribed displacement boundary condition. We then aggregated the

reaction forces across all points on the breast based on static equilibrium to calculate the

counteracting forces, resulting in the determination of forces F1 and F2. Figure 5-2

sketches the Poisson’s of two forces apply.
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Figure 5-2: A sketch of two forces F1 and F2 which bra applies.

Following the generation of forces F1 and F2, we conducted an evaluation to determine if

the magnitude of these forces fall within a reasonable range. This assessment aimed at

ascertaining whether the initial 3mm displacement was excessive. Through an iterative

process, we optimize the displacement distance, ultimately identifying the most

appropriate values for F1, F2, and the bra displacement towards the chest that most

closely align with realistic garment fit. The optimization process ensured that the

positioning of the bra and breast was conducive to comfort. This was achieved by

adjusting the forces F1 and F2 to ideal levels [18], thereby ensuring that neither the lower

edge of the bra nor the shoulder straps exert undue pressure on the wearer. Subsequently,

we analyzed the stress distribution on the breast volume using Abaqus to ensure that it

was reasonably uniform and within acceptable limits. This step was for ensuring minimal

risk of future development of breast cancer and comfort of the bra's fit.
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5.3 « Preliminary Results »

5.3.1 Geometry Alignment and Displacement Mapping

Figure 5-3 presents the breast surface point cloud after aligning the geometry, where each

point is assigned a displacement vector. This vector represents the adjustment needed to

move each corresponding point on the bra closer to the chest, aiming for a more accurate

fit. The displacement vectors are illustrated as gray arrows, each pointing in the direction

where the point should move to align with the chest surface more closely. Due to the

three-dimensional nature of these displacement vectors, which consider the complex

topography of the breast surface, the arrows may appear somewhat scattered when

viewed collectively, as visualized using the Open3D toolkit.

Figure 5-3: Displacement mapping of breast surface points assigned with the

displacements of corresponding bra surface points.
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5.3.2 Resultant Forces from Repeated Experiments

We repeated experiments and continuously adjusted the specific motion of the bra

towards the chest, along with assessing the F1 and F2 forces with their components

reported in Table 5-1. This table indicates that when the bra is moved towards the chest

by 3mm, the resultant forces Fy are relatively large. As the bra movement decreases to

2.3mm, the two resultant forces reach more balanced levels. Further loosening of the

bra’s displacement towards the chest leads one of the resultant forces to become negative,

indicating that the bra at this position is no longer providing adequate support to the

breast.

In repeated experiments of bra displacement and its impact on breast support, the

occurrence of negative forces is a critical aspect to consider. Forces F1 and F2 are the

resultant forces derived from computing the reaction forces at each point on the breast

surface. These forces are decomposed into components along specific axes. In this

context, a negative value indicates that the force component in the negative direction of

the axis is greater than that in the positive direction. This results from the vector sum of

all the three-dimensional forces acting across the surface points of the breast. For instance,

when the bra is adjusted to a position where it is moved 2.0 mm towards the chest, F2

exhibits greater force in the negative y-direction, which corresponds to a movement away

from the body (the positive y-direction signifies a movement towards the trunk of the

body). Similarly, a negative force in the z-direction, where the negative indicates a

loosening effect (the positive z-direction represents an upward pulling force by the

shoulder straps), suggests that the straps do not provide adequate tension to support and

lift the breast effectively. The magnitude of F2 is a relatively small negative force, which

implies that under a bra motion of 2.0 mm, the corresponding strap does not generate

appreciable amount of resistance to the motion due to its inability to resist compression.

This analysis shows that a displacement of 2.3 mm towards the chest leads to a more

balanced level of force, indicating that this is a more optimal relative positioning between

the bra and breast for providing effective support. This highlights the importance of

precise adjustments in the bra fit to ensure that the forces exerted by the bra are neither

excessive nor insufficient. In practical terms, this ensures that the greatest pressure is
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applied where it is most needed at the base of the chest, especially for larger breasts

where the bra cup must counterbalance the gravitational pull and provide a substantial

level of support, thereby generating significant reactionary forces at these critical points.

Hence, we determine the optimal relative position of the breast and bra to correspond to

2.3mm motion towards the chest after alignment with the breast. It is evident that when

wearing an everyday bra, the greatest pressure is exerted on the base of the chest,

followed by the shoulder straps. This is particularly true for larger breasts as the bra cup

provides a certain level of support, resulting in a significant reactionary force at the base

of the chest.

Table 5-1: Optimal bra displacement and resultant forces analysis.

F1Backbend (N) F2Shoulder Strap (N)

Fx Fy Fz Fx Fy Fz

-3mm 0 26 0 0.56 20 4.16

-2.8mm 0 20 0 0.32 15 5.12

-2.3mm 0 6.16 0 0.43 0.91 4.96

-2.0mm 0 5 0 0.069 -0.93 -1.44

5.3.3 Stress Analysis at Optimal Position

A stress analysis of the breast at this optimal position reveals a more reasonable and

uniform stress distribution on the breast surface. Figure 5-4 demonstrates the stress

distribution over the breast surface, revealing that most regions experience low and

uniform stress levels. A closer inspection from the side reveals minor areas with slightly

elevated stress, which we attribute to the reactive forces from the torso. We plan to

further employ gradient descent optimization to refine the bra design with the aim of

minimizing stress nonuniformity within the breast volume.
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Figure 5-4: Stress Distribution Analysis on Breast Surface.

5.4 « Discussion and Conclusions »

This study was performed in pursuit of the long-term objective of the research presented

in this thesis, which is addressing elevated breast cancer risk among women with breast

bilateral asymmetry. One concept we pursued to mitigate this risk is founded on the

evidence of correlation between this bilateral asymmetry and breast cancer development

[19]. Evidence also exists that indicate that the underlying cause of this risk elevation

pertains to the biomechanical environment breast cells experience while women wear

their everyday bra [20]. The evidence points to stress concentration arising from contact

between the bra and breast surface. According to the principles of solid mechanics, the

stress distribution is dependent on the configuration of the breast and the bra’s fabric and

straps. The distribution also depends on the breast tissue distribution, its heterogeneity

and mechanical properties. The preliminary research presented in this chapter tackles the

shape and mechanical properties of the bra’s fabric and its straps by developing an
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everyday bra design method with the primary aim of minimizing the risk of future breast

cancer development. Ensuring exertion of minimum pressure of bra on the breast surface

while minimizing breast tissue stress concentration towards comfort and future breast

cancer risk minimization, this study proposes a methodology that guides the shape design

of everyday bra. In this preliminary study, we developed a biomechanics-driven

methodological approach based on fine-tuning of the bra's fit by adjusting the initial bra

displacement towards the chest to ensure comfort and structural compatibility of the

garment with the woman’s anatomy. Through iterative adjustments and detailed

biomechanical analysis, we were able to achieve an optimized fit that balances comfort

with support, highlighting the effectiveness of integrating ICP alignment and FEA in

garment fitting simulations.

Due to individual environmental differences, material selection limitations, and human

interference, most other relevant research [13-14,21-22] which utilized try-on testing

methods are time-consuming and prone to biased results. This study employs a finite

element numerical simulation method to provide a quantifiable assessment of clothing

pressure and to evaluate the performance of different design parameters. Further research

is necessary to complete the optimization algorithm necessary to determine optimal

parameters of bra shape and bra fabric and its straps mechanical properties.
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Chapter 6

6 « Conclusions and Future Work »

6.1 « Conclusions »

This study advances the field of personalized bra design for women with bilateral breast

asymmetry and those at elevated breast cancer risk, a population significantly

underserved by current approaches. With biomechanics-driven modeling at its core, we

broke this ambitious goal into key interconnected but independent projects. A novel

unsupervised machine learning framework was successfully developed for enhanced

breast cancer risk assessment based on longitudinal MRI data. This work surpassed prior

label-based supervised methods, providing a data-driven tool for long-term cancer-risk

prediction framework. To overcome inaccuracies introduced by gravity induced breast

tissue stresses, we developed a computational inversion technique for breast

biomechanics modeling. This innovation enabled us to estimate stress-free breast tissue

hyperelastic parameters from their loaded counterpart. Subsequently, a correlated

framework was established to reconstruct stress-free breast geometries from MRI,

leveraging our stress-free hyperelastic parameter work alongside Finite Element

modeling and Neural Network mapping. Lastly, utilizing these earlier results, an intricate

customization framework for bra design was devised. Our approach uses breast stress

uniformity as an objective function through patient-specific unloaded parameter and

geometry, offering customized fit and support. This dissertation comprises four chapters

detailing these research investigations. Each chapter's central contributions and resulting

insights are outlined below.

6.1.1 Chapter 2

This chapter delves into the pressing necessity for developing advanced, unsupervised

classifier for breast cancer risk prediction using a longitudinal MRI dataset, with a

particular emphasis on the analysis of asymmetry features. In addressing this critical need,

our machine learning pipeline has adeptly navigated the complexities of this challenge.
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By analyzing MRI data both volume-by-volume and slice-by-slice, our approach

facilitated an exhaustive exploration of MRI feature spaces and improved precision in

asymmetry analysis. The results demonstrated significant advancements in clustering

accuracy and effectiveness, as evidenced by rigorous cross-validation processes utilizing

sequentially labeled data (categorized as positive or negative). This validation not only

underscores the robustness of our machine learning model but also highlights its superior

capability in identifying nuanced patterns of asymmetry that are crucial for detecting the

tendency of a tumor to be cancerous. As a potential early warning system, our machine

learning technique outlined in this chapter not only addresses an urgent need in breast

cancer risk assessment but also paves the way for advances in the field of preventative

care.

6.1.2 Chapter 3

In this chapter, a novel computational inversion technique for determining patient-

specific stress-free breast tissue hyperelastic parameters was developed. The novelty of

this technique primarily stems from its ability to address parameter preloading-induced

inaccuracies often present in traditional biomechanical modeling. Through a rigorous

experimental protocol, a comprehensive dataset of unloaded hyperelastic parameter

values was generated. These parameters were then translated into their loaded counterpart

using accurate simulation technique. The accuracy of this parameter mapping was

rigorously assessed based on subsequent geometry reconstruction results, which is shown

in Chapter 4. Specifically, this computationally driven approach avoids the need for

direct, patient-specific measurement of stress-free hyperelastic parameters, which is

impractical. In conclusion, this study demonstrated a very good feasibility for predicting

stress-free breast hyperelastic parameters from more readily obtainable loaded

counterparts. The proposed technique is anticipated to be adapted into the modeling

processes of other soft tissues to enhance the precision of relevant biomedical

applications.
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6.1.3 Chapter 4

In this chapter, we developed an innovative methodology for reconstructing an

individual's stress-free breast geometry, addressing a key limitation in biomechanical

modeling. The core novelty of this work lies in overcoming the inaccuracies introduced

when using MRI-derived geometries that inherently reflect gravity-loaded breast shapes.

Combining Finite Element modeling with unloaded hyperelastic parameters (obtained

through the technique presented in Chapter 3), we generated a detailed 'shape space'

representing a realistic range of stress-free breast configurations. A neural network was

subsequently trained to establish a robust mapping from an individual's loaded breast

geometry to its unloaded counterpart within this space. Validation was performed using a

'reverse simulation' approach demonstrating high accuracy. Crucially, our method

successfully determines a realistic stress-free geometry without involving any

experimental work. In conclusion, the two interwoven projects presented in Chapters 3

and 4 related to the stress-free state of tissue and breast shape provide a foundation for

improving the precision in personalized breast modeling.

6.1.4 Chapter 5

This chapter presented a preliminary investigation pertaining to the development of a

computational framework for bra design, where breast tissue stress uniformity was

utilized as a fundamental design principle. To our knowledge, this has not been done

before. The iterative framework incorporated initial surface alignment (iterative closest

point algorithm), Finite Element breast stress modeling with prescribed boundary

conditions, and a tailored optimization strategy maximizing breast tissue stress

uniformity. The innovation of this study builds on our prior work by incorporating the

stress-free insights gained (through stress-free hyperelastic parameters and geometry

estimation). Crucially, this work directly addresses the unique needs of individuals with

significant breast bilateral asymmetry, a population currently underserved by the

traditional bra industry. The integration of insights from our early-stage breast bilateral

asymmetry classification and risk assessment work paves the way for bra designs that not
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only enhance support and comfort but could also play a vital role in long-term breast

health monitoring within this higher-risk population.

6.2 « Future Directions »

While the proposed investigations offer significant advances in personalized bra design

for asymmetric breasts and breast cancer risk prediction, further refinement and

expansion are necessary to maximize their translational potential. Firstly, expanding our

analysis to a larger, more diverse patient cohort and integrating a wider array of breast

features (including tissue density and hormonal variations) would solidify the robustness

of our model, ensuring inclusivity and broader applicability. Furthermore, developing

user-friendly interfaces for both medical professionals and patients would significantly

enhance the clinical use and accessibility of these powerful tools.

In Chapter 2, while successful in predicting cancer risk based on bilateral asymmetry, our

model would benefit significantly from validation across larger, more diverse datasets,

ideally representing various age groups and breast compositions. Refining prediction

based on specific patterns within asymmetry (e.g., volume vs. density differences) offers

significant potential to further individualized risk assessment. Finally, establishing

potential correlations between changes in asymmetry and genetic predisposition markers

through carefully designed collaborative studies could revolutionize our understanding of

how bilateral asymmetry relates to underlying breast cancer biology.

In Chapters 3&4, we anticipate further validation of our derived unloaded parameters and

geometry in a broader scope of biomechanical modeling. This includes assessing their

applicability to scenarios involving large deformations and dynamic monitoring.

Additionally, we consider the incorporation of dynamic penalty terms to continually

refine our Neural Network model.
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Chapter 5 aims to deploy this design framework within an industrial context, further

enhancing and optimizing the system through sensor-based monitoring and material

mechanical testing of bras. The objective is to make this system more compatible with

industrial operations and standards, ultimately fulfilling the goal of this research: to

provide comfortable and functional bras for women with breast bilateral asymmetry. We

also intend to extend the application of this design to support those who have recently

undergone breast surgery, whether it be resection or augmentation, as a form of

postoperative protection.

6.3 « Closing Remarks »

Customized bra design has the potential to be a powerful preventative tool for breast

health, especially in individuals with significant breast bilateral asymmetry. Our work

establishes a novel computational framework laying the groundwork for such integrated

strategies. While this personalized approach is still in its early stages, it carries great

promise. Even so, there are key technical challenges that remain to be addressed before

its broad clinical translation. Acquiring longitudinal medical imaging data, vital for

personalized modeling, poses limitations. In this thesis, this challenge was partially

mitigated by leveraging finite element-based data augmentation alongside rigorous

validation protocols. However, developing novel, streamlined imaging modalities tailored

to breast assessments could facilitate widespread adaptation of our methods. Through a

multi-faceted, interdisciplinary approach, further refinement is needed to ensure these

techniques achieve optimal levels of robustness and efficiency, ultimately impacting

early cancer detection and improving long-term breast health.
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