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Abstract 

Chronic Obstructive Pulmonary Disease (COPD) is a condition characterized by persistent 

inflammation and airflow blockages in the lungs, contributing to a significant number of deaths 

globally each year. To guide tailored treatment strategies and mitigate future risks, the Global 

Initiative for Chronic Obstructive Lung Disease (GOLD) employs a multifaceted assessment 

system of COPD severity, considering patient's lung function, symptoms, and exacerbation 

history. COPD staging systems, such as the high-resolution eight-stage COPD system and the 

GOLD 2023 three staging systems, have been later developed based on these factors. Lung 

Computed Tomography (CT) is becoming increasingly crucial in investigating COPD as it can 

detect various COPD phenotypes, such as emphysema, bronchial wall thickening, and gas 

trapping. Deep learning techniques show promise in leveraging CT imaging to assess the 

severity of COPD. This thesis uses lung CT data in conjunction with machine learning 

techniques to classify COPD patients according to these staging systems. For the eight-stage 

system, both Neural Network and Convolutional Neural Network (CNN) approaches were 

employed for classification. To develop the Neural Network model, features were extracted 

from lung CT scans at inspiration and expiration breathing phases, including lung air features 

and COPD phenotypes features. The CNN model utilized a single lung CT scan at the 

expiration phase. The GOLD 2023 three staging system involves training separate CNN 

models using lung CT scans at expiration to predict symptom levels and COPD exacerbation 

risk. In this thesis, in addition to models trained from scratch, Transfer Learning was also 

employed to develop models for the eight-stage COPD classification, Symptom level 

prediction, and exacerbation risk prediction. The developed classifiers demonstrate reasonably 

high classification performance, indicating their potential for deployment in clinical settings 

to enhance COPD assessment using image data. 
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Summary for Lay Audience 

Summary Chronic Obstructive Pulmonary Disease (COPD) is a health condition that affects 

the lungs and can cause inflammation and blockages in their airways. It is a leading cause of 

death worldwide. To help treat COPD, the Global Initiative for Chronic Obstructive Lung 

Disease (GOLD) uses three factors to assess the disease's severity: the patient's lung function, 

symptoms, and history of exacerbation (flare-ups). There are two classifications used to 

determine the stage of COPD: the eight-stage system and the GOLD 2023 three staging 

systems. These staging systems use the three factors to determine the severity of the disease. 

Lung computed tomography (CT) images can be used to investigate COPD because they can 

detect different types of conditions, including lung tissue destruction, airway wall thickening, 

and air trapping in the lungs. Machine learning techniques can be used to assess the severity 

of COPD automatically using CT imaging. In this study, machine learning was used to classify 

COPD patients according to the eight-stage and GOLD 2023 three staging systems. Two 

machine learning methods were used to develop the eight-stage classifiers: Neural Networks 

(NN) and Convolutional Neural networks (CNN). For the NN model, lung imaging algorithms 

were used to extract features from paired lung CT at the inhalation and exhalation breathing 

phases. To develop the GOLD2023 classifier, two separate CNN models were also trained to 

predict symptom levels and the risk of COPD exacerbation. The developed classifiers showed 

promising results, demonstrating their potential for clinical use in improving COPD 

assessment using image data. 
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Chapter 1  

1 « INTRODUCTION » 

Chronic obstructive pulmonary disease (COPD) is a prevalent and progressive lung 

condition. The management of COPD typically relies on data derived from lung function 

assessment through spirometry testing whereby symptom severity and risk of exacerbation 

is evaluated. This thesis explores visible and underlying structural information within CT 

images using quantitative measurements and deep learning techniques to enhance COPD 

diagnosis before facilitating treatment planning. 

 

1.1 Motivation and Rationale 

COPD is a debilitating and progressive lung disease that results in persistent coughing, 

respiratory difficulties, diminished physical capacity, and reduced lung performance in those 

afflicted. The manifestations of COPD, including breathlessness, coughing, and excessive 

mucus production, can have a significant impact on patients' daily lives, overall health, and 

functional abilities. Respiratory failure and exacerbations contribute significantly to COPD-

related deaths, making it the third leading cause of death worldwide in 2019 [1]. 

COPD disease significantly burdens individuals, healthcare systems, and societies at large. 

Approximately 4% of Canadians were diagnosed with COPD in 2020 [2]. This has increased 

the burden on the healthcare system through intensifying hospitalization frequency, emergency 

department visits, and healthcare provider consultations. Figure 1-1 displays the frequency of 

hospitalization for the primary causes of hospitalization in Canada where COPD has the highest 

rate of hospitalization. Notably, many patients are admitted for multiple hospital visits 

compared to other diseases responsible for significant hospitalizations [3].  
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Figure 1-1: The frequency of hospitalization for primary causes of hospitalization in 

Canada [3]. 

 

Experiencing a COPD exacerbation increases the risk of subsequent episodes of exacerbation. 

The frequency of severe exacerbations is associated with an increased risk of mortality [4]. 

Figure 1-2 shows that a higher frequency of exacerbations is associated with a lower 

probability of surviving. In clinical practice, managing symptoms is the primary focus of 

treatment rather than employing disease-modifying therapies [5]. 

 

 

Figure 1-2: The probability of surviving is decreased with increased exacerbation 

frequency [4]. 
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Addressing the multifaceted burden of COPD requires comprehensive management strategies 

aimed at improving outcomes and enhancing patients' quality of life. As of now, there is no 

cure for COPD [6]. Instead, the current management goal is to improve health status, prevent 

exacerbations and prevent related complications and mortality [6] [5].  

Spirometry tests, also known as Pulmonary Function Tests (PFT), are currently used to 

evaluate lung function. However, these tests only provide a general measure of the diverse 

nature of Chronic Obstructive Pulmonary Disease (COPD), which manifests in different 

forms, such as airway obstruction, lung tissue destruction, and physiological changes like 

vascular abnormalities. Furthermore, PFT is not sensitive enough to detect the disease in 

its early stages. Therefore, researchers are exploring pulmonary imaging techniques to 

provide a more localized understanding of the structural abnormalities of the disease and 

to detect it in its early stages to prevent further progression. It has been reported that the 

disease can be detected in the early stages through quantitative CT measurements before 

any noticeable changes are detected with PFT [7].  

This chapter provides background information for understanding the motivation and rationale 

behind the research work detailed in Chapters 2, 3, and 4. Section (1.2) offers an overview of 

lung structure and function, while Section (1.3) explores the pathophysiology of COPD. 

Section (1.4) outlines the clinical measures used to assess COPD, and Section (1.5) specifies 

the different staging systems used for COPD. Additionally, Section (1.6) introduces the current 

treatment options for managing the disease. The theoretical background for CT imaging and 

machine learning methods required to develop the proposed methods are provided in Section 

(1.7) and Section (1.8), respectively. Section (1.9) introduces the hypothesis and objectives of 

the thesis. Lastly, Section (1.10) presents the thesis outline. 

  

1.2 Lung Structure and Function  

The lung structure encompasses the airways, parenchyma, and vasculature. A well-organized 

network of these components is structured to facilitate the seamless distribution and exchange 

of oxygen into the bloodstream. 
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1.2.1 Lung Airways 

The human lung has an intricate airway network. The large airways are divided into generations 

0 to 7 and kept open by cartilage. The walls of airways have a smooth muscle layer that can 

dilate or constrict, and the innermost layer has cilia that eliminate mucus and dirt. The clearance 

of mucus is essential in protecting airway function by preventing and eliminating obstructions. 

Without proper clearance, obstructions could impede downstream ventilation, leading to 

regional loss of function. The airway bifurcates into each lung, lobe, and segment, which 

divides into 19 bronchopulmonary segments [8]. The first 16 generations are conducting 

airways, and the last 7 are where gas exchange occurs as illustrated in Figure 1-3. At the 

terminal end, the smallest airways, known as terminal bronchioles, terminate in clusters of air 

sacs called alveoli, where the crucial process of gas exchange occurs. 

 

Figure 1-3: Human Airways generation diagram  

Adapted from Respiratory Physiology: The Essentials [8], permission provided in 

Appendix C 
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1.2.2 Lung Parenchyma 

The lung parenchyma comprises the functional tissue of the lung, which performs gas 

exchange. This tissue includes the alveoli, alveolar ducts, and respiratory bronchioles (Figure 

1-3). The parenchyma comprises delicate structures that enable the exchange of oxygen and 

carbon dioxide between the bloodstream and the surrounding air. This exchange takes place 

through the thin walls of the alveoli, which are surrounded by a network of capillaries. The 

capillaries involved in gas exchange are only slightly larger than a single blood cell, and the 

alveolar-capillary membrane is incredibly thin, around 0.2-0.3 μm, facilitating fast diffusion of 

gases across it [8]. 

1.3 Pathophysiology of Chronic Obstructive Pulmonary 

Disease 

The pathophysiology of COPD is complex and multifactorial, involving inflammation, 

structural changes, and impaired gas exchange, typically caused by significant exposure to 

noxious particles or gases. There are two main pathologies: lung airway inflammation 

and/or obstruction which is called Chronic Bronchitis, and parenchymal lung destruction, 

which is called Emphysema [5].  

1.3.1 Chronic Bronchitis  

Chronic bronchitis is the inflammation and irritation of the bronchial tubes, resulting in an 

increase in mucus production and airway narrowing (Figure 1-4). As the inflammation 

continues, the bronchial glands may produce an excess of mucus, leading to a chronic 

cough with sputum production. This excess mucus can obstruct the airways, making it 

difficult for air to flow freely in and out of the lungs. This obstruction can cause wheezing, 

chest tightness, and shortness of breath, especially during physical activity. 

Over time, chronic inflammation and mucus production can cause structural changes in the 

airways, such as thickening of the bronchial walls, scar tissue formation, and narrowing of 

the airway lumen. These changes further worsen airflow limitation and reduce lung 

function [8]. 
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1.3.2 Emphysema  

Emphysema is a medical condition that causes the alveoli, where gas exchange occurs, to 

become enlarged due to damage to the lung tissue. This damage results in the loss of 

terminal bronchioles, reducing the lungs' ability to exchange gases [8].  

The extent of emphysematous lung volume is consistent with the decrease in lung capacity. 

The primary cause of this condition is the damage to alveolar walls and the loss of elastic 

recoiling ability in lung tissue, leading to decreased elasticity (Figure 1-4). These changes 

cause reduced lung compliance, resulting in symptoms such as dyspnea, wheezing, and 

chronic cough, which are characteristic of emphysema [8].  

 

Figure 1-4: Pathophysiology of the Chronic Obstructive Pulmonary Disease. Copyright 

Illustration 273493892 | Anatomy © Tetiana Pavliuchenko | Dreamstime.com 

1.4 Clinical Measures of Global Lung Function 

1.4.1 Pulmonary Function Testing  

The diagnosis of Chronic Obstructive Pulmonary Disease (COPD) depends primarily on 

the results of pulmonary function testing. A handheld spirometer is used to measure airflow 

obstruction and the results are reported as a percentage of predicted values. These predicted 

values are determined based on the patient's race, sex, age, and height. Forced Expiratory 

Volume in One Second (FEV1) is a measure of the percentage of total lung volume that a 
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person can exhale in the first second of expiration, whereas Forced Vital Capacity (FVC) 

is the total amount of air that a person forcefully exhales. If the ratio of FEV1/FVC is less 

than 70%, it indicates airflow obstruction. The severity of airflow obstruction is classified 

based on FEV1 into four stages, with a lower percentage of predicted values indicating 

increased obstruction [5]. The four stages that represent the severity of COPD are presented 

in Table 1-1.  

Table 1-1: GOLD cut-off values for diagnosing COPD via pulmonary function tests.  

GOLD Stages  Pulmonary Function Test  

FEV1 

GOLD Stage 1 (Mild) FEV1 > 80% predicted 

GOLD Stage 2 (Moderate) 50% < FEV1 < 80% predicted 

GOLD Stage 3 (Severe) 30% < FEV1 < 50% predicted 

GOLD Stage 4 (Very Severe) FEV1 < 30% predicted 

 

The criteria used in pulmonary function tests (PFTs) are not capable of differentiating 

among the various causes of obstruction of airway inflammation or emphysema. 

Additionally, they do not provide any insights into the heterogeneous nature of the disease 

across different lung regions. Although this testing process is standardized to ensure 

consistent outcomes, it can be challenging to obtain accurate results in certain populations 

such as children or patients who struggle with following instructions or completing testing, 

which may lead to inaccuracies. To address this limitation, imaging technologies have been 

employed to enhance disease diagnosis.  

 

1.4.2 Symptoms Reporting  

Various tests are available to assess the level of symptoms in patients suffering from 

COPD. These tests are aimed at evaluating symptoms such as shortness of breath, cough, 

sputum production, and their impact on daily activities. One commonly used test is the 
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COPD Assessment Test (CAT), which is a simple questionnaire that assesses the severity 

and impact of symptoms on an individual's life. Another commonly used tool is the 

Modified Medical Research Council (mMRC) Dyspnea Scale, which measures the severity 

of breathlessness (Appendix B) [5].  

The St. George's Respiratory Questionnaire (SGRQ) is another questionnaire that evaluates 

the impact of COPD on the quality of life of the patient (Appendix A) [5]. It considers 

various aspects such as daily activities, symptoms, and the overall impact of the disease on 

the individual's life. The questionnaire provides scores for symptoms, activity, impact, and 

an overall score. A lower score indicates a lower burden of the disease. 

However, a limitation of using such self-report tests to evaluate chronic disease is that these 

tests may introduce a bias in the results. Factors such as the patients' sex may affect 

symptom reporting, leading to inaccurate results [9]. Moreover, patients with chronic 

disease may have unconsciously modified their activities over time to manage their disease 

and may not identify specific limitations related to their COPD, such as not taking the stairs 

due to exercise limitations. 

 

1.4.3 Exacerbation Frequency  

Exacerbations in COPD are episodes where symptoms worsen and require medical 

intervention, significantly impacting patients' quality of life. These episodes are an 

important measure used to assess the severity and progression of the disease. Evaluating 

the frequency of exacerbations involves monitoring the number of episodes experienced 

by a patient over a specific period, such as one year. This information helps healthcare 

providers determine the appropriate treatment strategies, including medication adjustments 

and preventive measures, to minimize exacerbation risk and improve patient outcomes. 

In clinical settings, patients are considered at high risk based on the number of 

hospitalizations they required in the prior year. However, this criterion is not always 

reliable, as not all COPD exacerbations result in hospitalization. Furthermore, the rate of 

hospitalization for COPD exacerbations has decreased by 53% compared to the pre-

COVID pandemic period [10]. This reduction may be due to changes in treatment strategies 
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caused by avoiding emergency room visits during the pandemic. Therefore, other 

assessment tools are essential to detect the severity of COPD exacerbation.  

 

1.4.4 Computed Tomography Imaging 

Computed Tomography (CT) imaging is crucial in assessing chronic obstructive pulmonary 

disease (COPD). It provides detailed information about the structure and pathology of the 

lungs. CT generates an attenuation map of the lungs, which shows the density of different 

regions. A density of -1000 Hounsfield units (HU) indicates the presence of air, thus voxels 

with a density near -1000 HU indicate regions of tissue destruction. These measurements can 

be used to measure emphysema, which has a low density of lung tissue. Therefore, a threshold 

of -950 HU is commonly used to identify the destruction of tissue.  

Other quantitative CT measurements have been used to investigate changes in the structure and 

volumes of the lungs, including changes in airway and blood vessels [11], [12], [13], [14]. 

Parametric response mapping is a technique that applies multiple methods of quantitative CT 

analysis to identify different imaging phenotypes of COPD [11]. By generating voxel-wise 

maps of emphysema, gas trapping, and functional small airways disease from inspiration-

expiration CT scans, researchers can identify relative volumes of each phenotype in 

participants with COPD. 

1.5 COPD Staging Systems  

COPD staging systems have undergone several updates to enhance disease management 

and prevent progression. Initially, a four-stage system based on pulmonary function tests 

(PFTs) was developed and utilized. In 2011, the GOLD committee introduced the ABCD 

classification system for COPD, which considers symptom severity and exacerbation 

history alongside lung function assessment, providing a more comprehensive evaluation of 

disease severity [2]. However, this system introduced some heterogeneity within groups C 

and D, as the risk factors were not clearly delineated [16]. Subsequently, a high-resolution 

eight-stage system was developed by the COPDGene study to address this issue [17], [18]. 

More recently, in 2023, an ABE three-stage system was proposed, focusing primarily on 



10 

 

symptom severity and COPD risk [5]. This system emerged from studies highlighting the 

significant contribution of exacerbations to disease progression and COPD mortality [4]. 

 

1.6 Clinical Management for COPD 

Inhaled bronchodilators are an important part of the management of COPD. The choice of 

bronchodilator is based on the patient's symptoms, lung function, and risk of exacerbation. 

Combining bronchodilators with different mechanisms and durations of action can improve 

bronchodilation and reduce side effects compared to increasing the dose of a single 

bronchodilator [19] [5]. Studies have shown that combining short-acting β2-agonists (SABAs) 

and short-acting muscarinic antagonists (SAMAs) is more effective in improving FEV1 and 

symptoms than using either medication alone [20]. There are many combinations of long-

acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) available in a 

single inhaler. Clinical trials have shown that using a LABA+LAMA combination improves 

lung function and symptoms compared to using only one inhaler, especially in patients with a 

low exacerbation risk who are not receiving inhaled corticosteroids [19]. A lower-dose, twice-

daily regimen of LABA+LAMA has also been shown to improve symptoms and health status 

in COPD patients [21]. 

While most studies on LABA+LAMA combinations have been conducted in patients with a 

low exacerbation rate, evidence suggests that this combination may be more effective than 

monotherapy in preventing exacerbations, particularly in patients with a history of frequent 

exacerbations [22], [23]. However, studies have produced mixed results regarding the 

comparative efficacy of LABA+LAMA versus LABA+inhaled corticosteroid (ICS) 

combinations, with some indicating that LABA+ICS may reduce exacerbations to a greater 

extent [24]. 

 

1.7 Lung CT Image Processing and Analysis Methods 

In order to accurately extract lung information from CT images, various image processing 

methods are utilized, including lung volume segmentation, registration, and thresholding. 
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1.7.1  Lung Volume Segmentation  

Image segmentation involves dividing an image into distinct segments, where each 

segment represents voxels sharing similar properties. This process finds applications in 

computer vision, facilitating tasks like object recognition, image database searches, and 

image compression. In medical image analysis, segmentation is crucial for isolating 

specific organs or structures from surrounding tissue. For instance, in lung imaging, 

segmentation is used to delineate the lung volume from the background. Medical image 

segmentation enables comparison across datasets or modalities, tracks changes in 

structures over time (e.g., treatment response), and facilitates quantitative analysis of 

images. 

There are several automatic lung segmentation methods to extract lung volumes from CT 

scans. Rayan's method combines thresholding and region-growing segmentation to extract 

left and right lung volumes. The lung is detected using Hounsfield unit (HU) thresholding, 

and large airways are identified by a lower HU region near the mid-line. A region-growing 

technique is then used to exclude the large airways from the lung [25].  

Another method for lung segmentation utilizes deep learning, specifically a network 

architecture called U-net. U-net is a convolutional neural network (CNN) structure 

commonly used for image segmentation tasks [26]. It consists of an encoder-decoder 

architecture, where the encoder captures features from the input image at multiple scales, 

and the decoder generates the segmentation mask based on these features. U-net is 

particularly well-suited for medical image segmentation tasks due to its ability to capture 

detailed spatial information and handle complex structures. 

 

1.7.2 Lung Volumes Registration  

Image registration refers to the process of aligning two or more images of the same scene 

captured under different conditions. This can include images taken from slightly different 

angles, viewpoints or state, such as lung CT scans at different breathing phases, or using 

different image modalities. In image registration, one of the images is designated as the 

fixed, target or reference image, while the other is considered the moving image. Geometric 
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transformations or local displacement fields are then applied to the moving image to bring 

it into alignment with the target image [27], [28]. Image registration is usually performed 

as a preparatory step before applying other image processing algorithms such image 

subtraction. For example, in medical imaging, CT images of a patient’s lungs taken at 

different phases of the respiratory cycle may be registered to quantify certain 

pathophysiological conditions accurately [11] [29]. 

Image registration process requires a combination of different transformations, depending 

on the differences between the acquired images. These transformations can include rigid 

transformations, which involve translation and rotation, affine transformations, which 

include rigid transformations along with scaling and shearing, or deformable registration, 

which allows for more complex transformations with 2-3 degrees of freedom for each 

pixel. By applying these transformations, the images can be accurately aligned, taking into 

account variations in position, orientation, and deformation between them. 

There are several essential components in any image registration algorithm that play crucial 

roles in achieving accurate alignment between the moving and target images [30]. Firstly, 

a metric is utilized to assess the similarity or closeness between the two images after 

applying a transformation. The choice of metric, such as mean squared errors, normalized 

cross correlation, or normalized mutual information, significantly influences the 

effectiveness of the registration process. Secondly, an optimizer is employed to optimize 

the chosen similarity metric, aiming to maximize it to achieve the best alignment. Selecting 

the appropriate optimizer and adjusting its parameters, such as step size and relaxation 

factor, is essential for optimizing the registration algorithm's performance. Lastly, 

interpolators are required to determine the grayscale values of pixels in the transformed 

image. Interpolators help reconstruct the transformed image accurately by estimating pixel 

values at non-integer locations because transformed pixels may not align perfectly with the 

target image grid. Collectively, these components contribute to the successful alignment of 

images during the registration process. 

Due to significant changes in lung volume shape across breathing phases, deformable 

image registration methods are necessary. Free Form Deformation (FFD)) emerges as a 
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suitable approach for lung image registration because it can capture complex deformations 

and variations in lung morphology) [31]. 

 

1.8 Machine Learning 

Machine learning is a specific area of study within artificial intelligence, which aims to 

develop and understand methods for computer systems to learn similarly to humans. By 

utilizing various statistical models and mathematical techniques, machines can extract 

meaningful information from data to perform complex tasks and recognize patterns. 

Deep learning is a type of machine learning that focuses on learning hierarchical 

representations of data. Deep learning algorithms, particularly artificial neural networks 

(ANNs), consist of interconnected nodes, called neurons or units, organized into layers. 

The most basic version of this consists of an input layer, followed by one or more hidden 

layers, and finally, an output layer (Figure 1-5). Each neuron in a layer is connected to 

every neuron in the subsequent layer, with each connection having an associated weight 

that determines the strength of the connection. These weights are adjusted iteratively 

through optimization algorithms such as the gradient descent [32].  

 

Figure 1-5: Diagram of a simple neural network with an input layer, two hidden layers 

and an output layer. 
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Gradient descent is a technique used to minimize the cost or loss function of a model. The 

cost function represents the relationship between the predicted output of the model and the 

actual output. By lowering the cost, the prediction becomes more accurate and aligns 

closely with the expected outcome. In simple convex functions, the goal is to reach the 

local minimum value of the cost function. To achieve this, an arbitrary starting point is 

chosen, and the steepest slope of the function is computed before a new point is determined 

through moving along this slope. However, in machine learning, functions are often more 

complex, with multiple local minima and maxima. To address this complexity, various 

optimization techniques have been devised to facilitate greater optimization efficiency, 

such as momentum, adaptive learning rates (e.g., Adam), and different variants of gradient 

descent (e.g., stochastic gradient descent). These techniques help accelerate convergence 

and improve the robustness of optimization in complex and high-dimensional optimization 

landscapes [32]. 

1.8.1 Convolutional Neural Network (CNN) 

Convolutional Neural Networks, or CNNs, are a type of deep neural network that is 

exceptionally efficient at processing and analyzing visual data, including images and 

videos. They are highly effective in tasks such as image classification, object detection, 

and image segmentation [33]. CNNs have the unique ability to automatically and 

adaptively learn hierarchical feature representations directly from pixel values and their 

spatial organization, making them ideal for tasks that require an understanding of the 

spatial structure of the input data. A typical structure of CNN is illustrated in Figure 1-6. It 

consists of multiple layers, including convolutional layers, pooling layers, and fully 

connected layers, which work together to extract meaningful features from raw input data 

and utilize them to make accurate predictions [32]. 

Convolving an image at a specific pixel location entails summing up the products of the 

filter values with the corresponding neighbouring pixel values of the image. 

Mathematically, this process can be represented as:  
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 𝑦(𝑖, 𝑗) =  ∑ ∑ 𝐹(𝑢, 𝑣) . 𝐼(𝑖 − 𝑢, 𝑗 − 𝑣)𝑘
𝑣=−𝑘

𝑘
𝑢=−𝑘     (1-1)      

where 𝑦(𝑖, 𝑗) denotes the output pixel value at location (i ,j) in the resulting feature map. 

The summation iterates over the spatial extent of the filter, with 𝑢 and 𝑣 from -𝑘 to 𝑘, 

where 𝑘 represents half of the filter size. At each iteration, the product of the filter 

coefficient 𝐹(𝑢,𝑣) and the corresponding pixel value from the input image 𝐼(𝑖−𝑢, 𝑗−𝑣) is 

computed and accumulated. The result of this operation is termed a feature extraction 

operation, which leads to a feature map. During training, the filters' weights are adjusted 

to achieve the correct label [32]. 

 

 

Figure 1-6: Typical CNN architecture [34]  

 

1.8.2 Residual Network (ResNet) 

When training deep learning models, gradients are computed for each weight with respect 

to the loss function to update the weights. However, due to the chain rule for derivative 

multiplication, gradients may approach zero if associated gradients are small, causing the 

vanishing gradient problem. This issue is particularly prevalent in the lower layers of deep 

models. 
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ResNet is a state-of-the-art architecture designed to tackle the vanishing gradient issues 

that arise in deep CNN networks [35]. ResNet incorporates skip connections, also known 

as "identity shortcut connections," which allow gradients to flow more freely during 

backpropagation without impeding the learning process Figure 1-7. This approach 

effectively mitigates the vanishing gradient problem, enabling the successful training of 

very deep networks without sacrificing performance. 

ResNet has various depths, including 10, 18, 34, 50, and 110 layers, providing flexibility 

for different applications and computational resources. 

 

Figure 1-7: Residual learning block with the skip connection [35] 

 

1.8.3 Model Hyperparameters 

Hyperparameters play a crucial role in the configuration of machine learning models. They 

have a significant impact on the performance and behaviour of the model during both 

training and inference. These parameters are predetermined and not learned from the data.  

Some of the key hyperparameters include the batch size, which is the number of training 

examples processed in each iteration. This parameter affects the speed and stability of 

training. Another important hyperparameter is the epoch, which refers to the number of 

passes through the training set during one training cycle [36]. 

 The learning rate is a critical factor in determining the size of each step taken to update a 

model's parameters during optimization. Its value can be adjusted to control the speed and 

effectiveness of the gradient descent's movement towards the cost function's minimum. A 

higher learning rate results in more significant steps being taken, leading to faster 
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convergence, but it may cause the algorithm to overshoot or miss the optimum [37]. On 

the other hand, a lower learning rate allows for more precise convergence, but it may 

significantly increase training time. To achieve better performance, it is essential to tune 

this parameter by evaluating the model's loss after training and evaluation. Learning rate 

schedules can further refine the learning rate over time to optimize convergence. 

Additionally, the choice of optimizer (such as SGD, Adam, or RMSprop), which adjusts 

the network's weights during training, can also be fine-tuned for improved performance 

[37]. 

To prevent overfitting during training and enhance the model's ability to generalize to new 

data, different regularization techniques can be employed. The dropout rate is one such 

technique that can be used to regulate the fraction of neurons randomly dropped out during 

training [32], [36]. This encourages robust feature representations across different samples.  

Other regularization techniques such as L1 or L2 regularization can be employed to 

penalize large weights in the neural network. L1 regularization adds an absolute value 

penalty to the weights, while L2 regularization adds a squared value penalty. Both methods 

discourage the model from relying too heavily on any single feature, promoting simplicity 

and stability in the learned model [36]. Ultimately, these regularization techniques lead to 

better generalization performance of the model. 

Architectural design choices are crucial in determining the performance and capabilities of 

a neural network. These choices include the number of layers, which determines the depth 

and complexity of the network architecture, and the number of neurons or filters in each 

layer. The selection of activation functions is also essential as they introduce non-linearity 

into the model's outputs, enabling the network to learn complex patterns and relationships 

within the data. Common activation functions are ReLU (Rectified Linear Unit), sigmoid, 

and tanh, each with its own characteristics and suitability for different types of data and 

tasks. These architectural design decisions significantly affect the network's capacity to 

learn and generalize from the data. Careful consideration of these factors is essential to 

achieve optimal performance in neural network applications.  

Tuning these hyperparameters effectively is crucial to achieve optimal performance and 

generalization across various tasks and datasets in neural network applications. 
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1.8.3.1 Model Hyperparameters Optimization 

Optimizing model hyperparameters can be achieved through various methods with unique 

strengths and applications. Grid search systematically explores a predefined grid of 

hyperparameter values, evaluating each combination to identify the best-performing one. 

On the other hand, random search randomly samples hyperparameter values from specified 

distributions, providing a simple and efficient option [38]. Bayesian optimization, which 

uses surrogate models and acquisition functions, selects hyperparameters that maximize 

performance through an iterative process, making it well-suited for expensive objective 

functions [39]. Hyperband, a bandit-based algorithm, combines random search with 

successive halving, effectively allocating resources to promising hyperparameter 

configurations [40]. Ultimately, the choice of optimization method depends on a range of 

factors, including the complexity of the search space, available computational resources, 

and desired optimization level, ensuring that the model achieves the best possible 

performance within the given constraints. 

1.8.4 Data Partitioning and Evaluation Metrics 

When working with machine learning models, it is important to divide the dataset into three 

parts: training, testing, and validation sets. The training set is used to fit the model, the 

testing set evaluates the model's performance, and the validation set helps tune the model's 

performance. Cross-validation is an effective technique for evaluating the model when the 

dataset is limited. It involves dividing the dataset into multiple subsets or folds, training 

the model on one subset, and evaluating it on the remaining data. The evaluation scores 

from each iteration are averaged to obtain a more reliable estimate of the model's 

performance. 

When evaluating a machine learning model performance, a variety of metrics are employed 

to compare its predictions with the ground truth labels in test data. By examining true 

positives, false positives, true negatives, and false negatives, valuable insights into the 

model's overall effectiveness can be gained, which are often depicted through a confusion 

matrix (Figure 1-8).  
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Figure 1-8: Illustration of Confusion Matrix. 

In classification tasks, a True Positive (TP) occurs when the positive label is accurately 

predicted by the model, while a False Positive (FP) counts when the model predicts the 

positive class incorrectly. Conversely, a False Negative (FN) indicates that the model fails 

to predict the positive class, and a True Negative (TN) indicates correct negative 

predictions. The accuracy score provides a comprehensive assessment of the model's 

performance across all classes, and it can be calculated as:  

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(1-2) 

 

Precision, recall, and F1 Score are other metrics for evaluating a classification task. 

Precision measures the accuracy of positive predictions by calculating the proportion of 

true positive predictions among all positive predictions made by the model. This metric 

emphasizes the quality of positive predictions and is sensitive to false positives, providing 

insight into the reliability of the model's positive predictions.  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1-3) 

 



20 

 

On the other hand, recall, also known as sensitivity or true positive rate, assesses the 

model's ability to capture all positive instances by calculating the rate of true positive 

predictions among all positive instances. Recall is sensitive to false negatives and 

highlights the model's ability to avoid missing positive instances.  

 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(1-4) 

 

The F1 Score is a single metric often used to evaluate model performance by combining 

precision and recall into a harmonic mean. This balanced measure considers both false 

positives and false negatives.  

 

 
F1 Score = 

2 ∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 

(1-5) 

 

These metrics play crucial roles in assessing the overall effectiveness of classification 

models and understanding the trade-offs between false positives and false negatives. 

 

1.8.5 Transfer Learning 

Transfer learning is a powerful machine learning technique that leverages pre-trained 

models with access to large amounts of labeled data to expedite the training process for 

new tasks. The approach transfers knowledge from one task to another, enabling models to 

improve performance on smaller datasets. Generating large, labeled datasets can be a 

daunting and time-consuming process, making transfer learning particularly beneficial.  

 Pretrained models possess knowledge garnered from complex tasks and large datasets. 

Starting with a pre-trained model makes the training process for a new task faster and more 

efficient, as the model has already learned valuable features and representations. As a 

result, transfer learning assists models in better generalizing novel and unseen data. 
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State-of-the-art architectures, including Alex Net [41], VGG16 [42], ResNet34 [35], often 

provide robust starting points for transfer learning. Their ability to learn sophisticated 

representations on large datasets renders them outstanding candidates for fine-tuning on 

specific tasks, contributing to the success of transfer learning approaches. 

 

1.9 Thesis Hypotheses and Objectives 

COPD is a long-term and irreversible disease that is associated with increased morbidity 

and mortality due to exacerbations. To combat the progression of the disease and the risk 

of exacerbations, GOLD has developed staging systems based on three severity factors. 

Implementing these systems in the clinic requires evaluating each severity factor 

individually. We hypothesize that by applying neural network and convolutional neural 

network (CNN) algorithms to lung CT scans, we can quantify severity factors associated 

with COPD. This will result in the development of image-based tools that accurately assess 

COPD and facilitate treatment planning. Our research aims to achieve the following 

objectives: 

- Overcoming the limitations of PFT in assessing lung function by employing quantitative 

CT measurements for lung function assessment. 

- Improving the detection of COPD exacerbation risk and symptom severity by 

automatically identifying them from CT scans. 

- Making COPD staging systems more accessible and reproducible by providing an 

automatic and accurate assessment of patient COPD severity based on the high-resolution 

eight staging system and GOLD's 2023 guidelines.  

 

1.10 Thesis Outline 

This thesis is structured into five chapters. The current chapter serves as an introduction, 

providing relevant background information. The subsequent three chapters delve deeply 

into the research methodology employed to achieve the outlined objectives. In conclusion, 
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the final chapter offers a comprehensive summary of the findings, accompanied by 

conclusive remarks. 

 

1.10.1 Chapter 2: Neural Network for COPD Eight Staging System 

Based on Features Extracted from Inspiratory/ Expiratory 

Lung 3D CT  

In this chapter, we employed lung CT volumes at the inspiration and expiration breathing 

phases to extract features representing lung pathologies, lung air volume and distribution 

within the lung. These extracted features formed the basis for constructing two distinct 

neural network models tailored to the eight-stage COPD classification system. In the first 

model, these features were leveraged to predict the three severity factors and subsequently 

classify COPD subjects into the respective eight stages. Conversely, in the second neural 

network model, the extracted features primarily contributed to predicting lung function, 

while symptom level and exacerbation frequency were provided as additional inputs. 

 

1.10.2 Chapter 3: CNN with a Single Lung 3D CT Volume for COPD 

Eight Staging System 

In this chapter, advanced deep convolutional neural network (CNN) techniques were 

utilized to extract features from a single lung CT volume at the expiration phase for an 

accurate eight-stage classification of COPD.  The approach also utilized transfer learning 

by incorporating pre-trained ResNet architectures with depths of 18 and 34 for the eight-

stage COPD classification task.  

Additionally, a separate CNN model was developed for predicting lung function, which 

used symptom level and exacerbation frequency as supplementary inputs to classify COPD 

into the eight stages. 
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1.10.3 Chapter 4:  CNN with a Single Lung 3D CT Volume for COPD 

Classification Based on The GOLD 2023 Staging System 

This chapter employed convolutional neural networks (CNNs) with single lung CT scans 

taken at the expiration phase to classify COPD patients according to the GOLD 2023 

staging system. The CNNs were utilized to predict symptom severity and exacerbation risk 

independently, employing both training from scratch and transfer learning approaches. 

Subsequently, the models developed for the symptom severity and exacerbation risk were 

integrated to develop an algorithm for the GOLD 2023 staging system. 

1.10.4 Chapter 5: Summary, Conclusion, and Future Work 

In this chapter, we summarize the findings presented in the thesis and critically examine 

the limitations of the proposed algorithms. Additionally, we explore potential future 

research directions and offer suggestions for further studies in this area. Finally, this section 

provides a concluding remark to encapsulate the key insights gained from the dissertation. 
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Chapter 2  

2 « Neural Network for COPD Eight Staging System 

Based on Features Extracted from Inspiratory/ 

Expiratory Lung 3D CT» 

A draft of this chapter has been prepared for peer review and potential publication in the 

Expert Systems with Applications journal. 

 

2.1 Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition that causes 

persistent inflammation and obstruction of airflow, resulting in difficulty breathing. COPD 

contributes to a significant number of deaths globally each year. According to the World 

Health Organization (WHO), COPD was the third leading cause of death worldwide in 

2019, accounting for approximately 3.23 million deaths, or 5.7% of all deaths [1] 

There is a growing interest in improving diagnostic techniques for COPD, given its high 

mortality rate. The primary goals of COPD assessment include determining the extent of 

airflow limitation, its impact on the patient's health, and the risk of future exacerbations. 

To assess the severity of airflow limitation, healthcare providers use a spirometry test - also 

known as PFT - which measures airflow during breathing. The severity of the disease is 

then categorized based on the results of the PFT, using the guidelines established by the 

Global Initiative for Chronic Lung Disease (GOLD) [2]. The GOLD staging system 

classifies the severity of chronic obstructive pulmonary disease (COPD) into four stages 

based on the ratio of forced expiratory volume in 1 second (FEV1) and forced vital capacity 

(FVC). If the FEV1/FVC ratio is less than 70%, it indicates airflow limitation, and the four 

GOLD stages of mild, moderate, severe, and very severe are applicable, with FEV1 values 

progressively decreasing with each stage. However, this staging system only measures the 

severity of airflow limitation in the entire lung and doesn’t provide the necessary critical 

information for determining the appropriate treatment course to manage the disease or 

prevent its progression. 



30 

 

In 2011, the GOLD committee proposed a new classification system called ABCD for 

COPD [3]. This system is more reliable in assessing disease severity by taking into account 

the level of symptoms and exacerbation history in addition to the lung function assessment 

data. The symptom level can be measured by using either the modified Medical Research 

Council (mMRC) dyspnea score (Appendix B), the COPD Assessment Test (CAT) score 

or the St. George’s Respiratory Questionnaire (SGRQ)(Appendix A) [2].  Exacerbation 

history is a measure of how often a patient requires assessment in the Emergency 

Department or hospital admission in the previous year. This information, along with the 

patient's symptoms, can help clinicians develop a personalized treatment plan. According 

to Lange et al., using the ABCD GOLD classification is a better predictor of future 

exacerbations than the PFT assessment only. This suggests that symptoms and 

exacerbation history play a significant role in the progression of COPD [4].  

Utilizing the above-mentioned three factors of COPD assessment, an eight-stage COPD 

system was developed in the COPDGene study [5], [6], which aims to provide essential 

information for guiding therapy decisions. In this system, COPD subjects are categorized 

into eight classes based on symptoms and risk, with risk determined by exacerbation 

history and airflow limitation measured by PFT (FEV1%<50). The eight stages are defined 

as follows: A, low symptoms/low risk; B, high symptoms/low risk; C, low symptoms/high 

risk; and D, high symptoms/high risk. Classes C and D are further subdivided based on the 

cause of high risk: C1 and D1 have high risk due to lung function only (FEV1%<50); C2 

and D2 meet exacerbation criteria only; and C3 and D3 meet both exacerbation and FEV1 

criteria.  

Several studies have investigated the necessity of subgrouping C/D patients according to 

factors contributing to risk elevation [7], [8]. Augsti et al. reported that different therapeutic 

options must be considered for the sub-groups within C and D [9].  Depending on the 

severity of the disease, different types of bronchodilators are utilized for treatment. For 

Class A individuals with low symptoms, short-acting bronchodilators are recommended, 

while those with high symptoms require long-acting bronchodilators. Patients at high risk 

of lung function decline and/or exacerbation require combinations of two or three types of 

long-acting bronchodilators, depending on the underlying cause of risk. 
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Quantitative assessment of COPD using lung CT plays a crucial role in various aspects of 

disease management. These measures aid in diagnosing COPD by providing objective and 

detailed information about lung structure and function. Additionally, they help assess 

disease severity by quantifying the extent of emphysema, airway remodelling, and lung 

parenchymal abnormalities. Moreover, lung CT allows for monitoring disease progression 

over time, enabling clinicians to track changes in lung morphology and density. 

Various quantitative methods that rely on lung CT data have been developed to improve 

the assessment of lung diseases. These image-based techniques are more reliable in 

quantifying lung pathologies such as emphysema, airway disease, and air trapping. The 

presence of emphysema can also predict the progression of both physiological and 

structural disease [10]. Furthermore, it is possible to detect disease progression through 

quantitative CT measurements even before any noticeable changes are detected with PFT. 

In a study by Pompe et al. [11], longitudinal changes in emphysema and air-trapping were 

investigated by measuring them quantitatively from lung CT and FEV1 in cigarette smoker 

subjects with and without COPD. The results showed that emphysema and air-trapping 

significantly increased during the 5-year follow-up in both smokers with and without 

COPD. The study also found that the progression of emphysema and air-trapping was 

partly correlated with FEV1. However, the authors concluded that a significant proportion 

of emphysema and air-trapping progression was not correlated with FEV1. Another study 

was conducted on smokers who were part of the COPDGene study and had normal 

spirometry readings, with FEV1/FVC > 70%, which is labeled as GOLD stage 0. The study 

investigated these subjects after a 5-year follow-up period and found that they had 

developed progressive airflow obstruction (FEV1/FVC, P = .005) and showed greater 

progression in quantitative emphysema [10]. 

By integrating image data with powerful machine learning (ML) approaches, the 

quantitative assessment of COPD and its accuracy of diagnosis can be significantly 

improved. Various ML-based methods have been developed in recent years for disease 

diagnosis, which support physicians in making accurate diagnoses and devising effective 

treatment plans. Nimura et al. [12] have developed a classification model that assesses 

COPD severity based on six features extracted from CT image analysis in addition to PFT 

features. Recently, a more effective classification model was proposed to assess COPD 
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severity [13]. The model uses features extracted from the lung air volume variation and 

distribution throughout the respiration cycle. A highly accurate lung air segmentation 

technique was used to segment lung air volume using end-inhale and end-exhale phases 

[14]. Ho et al. developed a model that extracts two 3D volumes from 4D-CT data to create 

a 3D parametric response map (PRM) [15]. The PRM categorizes the lung voxels into three 

groups: emphysema, functional small-airway disease (fSAD), and healthy tissue. These 

PRM maps are then used to train a convolutional neural network to identify the presence 

of COPD. 

Our approach in this investigation utilizes a Neural Network approach to accurately 

classify COPD, based on the eight-stage COPD system. This was achieved by training our 

models on features extracted from lung CT data, namely lung air volume features and 

COPD phenotype features. The efficacy of such COPD classification and staging systems 

has been demonstrated by their high accuracy in assessing COPD severity using the high-

resolution COPD staging scheme. These systems provide valuable diagnostic information 

that can aid in the planning of appropriate treatments. 

 

2.2 Materials & Methods 

2.2.1 Dataset 

The NIH COPDGene study is a vast research project that includes a dataset which was 

used for this project [6]. The study involves 21 clinical centers and using different multi-

detector CT scanners. It aims to investigate COPD, which is one of the most common lung 

diseases. The dataset used in our investigation includes data from 10,192 participants with 

COPD from both genders and with age ranging from 45 to 80 years. It contains volumetric 

lung CT image data, captured during both inhalation and exhalation phases, with voxel 

resolutions ranging from (512 × 512 × 100) to (512 × 512 × 736).  

The COPDGene study labels COPD subjects according to the Eight COPD Staging System. 

The distribution of subjects among these classes is detailed in Table 2-1. It is worth noting 

that the dataset has class imbalance, particularly for classes C2 and C3. To address this 
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issue, we utilized paired lung CT scans (inspiration and expiration) from 320, ensuring a 

balanced distribution of 40 subjects per class. 

To enrich the data in classes C2 and C3, we used a novel augmentation method based on 

deformable image registration. 

Table 2-1:Distribution of COPD subjects among the Eight classes 

A B C1 C2 C3 D1 D2 D3 

1425 1118 174 38 10 1192 254 410 

2.2.2 Lung CT data preprocessing  

This approach involves image preprocessing steps to extract morphological features from 

thoracic CT data. It includes image segmentation to segment the lung region, image 

registration to spatially align the paired inhale and exhale scans, in addition to other image 

processing techniques to extract the features. 

2.2.2.1 Lung Volume Segmentation  

To extract lung volumes, we used a fully automated image segmentation method [16].  In 

this method, the left and right lung volumes are extracted from lung CT using a 

combination of thresholding and region-growing segmentation methodology. The lung is 

first detected from the original CT scan by Hounsfield unit (HU) thresholding (lung<-300 

HU). Then, large airways are detected by identifying region near their mid-line that has 

lower HU than normal lung tissue (-500 HU). Last, a region growing is applied to exclude 

the large airways from the lung. Figure 2-1shows an example slice of a segmented lung 

from a coronal view. 
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Figure 2-1: An example of segmented lung mask from a coronal view  

2.2.2.2 Lung Volume Image Registration  

Image registration is the process of aligning two or more images or volumes of the same 

scene captured at different times/conditions, from different viewpoints or using different 

modalities. In this project, we used Free Form Deformation (FFD) to apply registration on 

lung volumes.  

In FFD image registration, a deformation field is used to warp or deform one image to 

match the other image. This deformation field is represented by a grid of control points, 

and each control point has associated displacement vectors that define how much the point 

should move in the x, y, and z directions. We optimized the displacement vectors of the 

control points to minimize the difference between the two images using mutual information 

as a similarity metric. By iteratively adjusting the displacement vectors, the algorithm 

deforms one volume until it aligns with the other volume as closely as possible as illustrated 

in Figure 2-2. ITK, an open-source library with extensive tools for medical image analysis, 

was used for lung volume registration [17]. 
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Lung CT scan at inspiration phase Lung CT scan at expiration phase Lung CT scan registered at 

inspiration to the expiration 

phase. 

Figure 2-2: An example of a lung CT scan at inspiration, expiration, and the registered 

image at inspiration to expiration. 

2.2.2.3 Lung Volume Image Augmentation   

We have developed a new method to augment lung CT images that involves two main 

steps: image deformable registration and image warping. To align the inspiration scan with 

the expiration one and vice versa, we used Free Form Deformation (FFD) for image 

registration. We then extracted the resulting transformation matrices that align the paired 

scans. Subsequently, three additional scans, representing scans between the two inspiration 

and expiration phases, were generated from each original scan (moving image) by applying 

image warping with different fractions of the obtained transformation matrix. For the 

inspiration scan, we used the transformation matrix that aligns it as a moving image with 

the expiration scan. We applied image warping at 10%, 15%, and 20% of the 

transformation matrix to produce three new inhale scans. Similarly, for the exhale scan, we 

generated three new scans using the transformation matrix that aligns the expiration scan 

as a moving image to the inspiration counterpart. We only applied this image augmentation 

step to data samples of classes C2 and C3 to ensure that the total number of samples in 

these classes reached 40.  

Figure 2-3 shows two samples from the augmentation results. Although visually, the 

difference between the original volume and the corresponding augmented one may not 

seem substantial, the change in the internal structure of the image is significant. For 

instance, the ratio of damaged volume to the total volume of the lung show measurable 
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increase or decrease. Therefore, extracted features exhibit measurable difference between 

original and augmented volumes. 

 

  

  

Original Image Deformed image by 20% of the 

transformation matrix 

Figure 2-3: Examples of coronal views of original and corresponding lung CT scans. 

 

2.2.3 Feature Extraction 

To train the NN model, two sets of imaging features were used. The first set consisted of 

lung air volume features developed by Moghadas et al. [13]. The second set consisted of a 

set of COPD phenotypes data which included emphysema, air trapping, and fSAD 

measured from PRM[15].  These two sets of features were derived and combined to train 

the NN models.  
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2.2.3.1 Lung Air Features  

Lung air features were extracted by segmenting lung air volumes using a highly accurate 

lung air segmentation technique [14]. In this technique, first, the image intensity of pure 

air and lung tissue are calculated for each pair of scans. This is performed by computing 

the histogram difference between the inspiration and expiration volumes, resulting in the 

initial lower threshold A and upper threshold B (refer to Figure 2-4). The lower threshold 

separates background air from lung air/tissue, while the upper threshold distinguishes 

between lung air/tissue and lung tissue only.  

 

Figure 2-4: Inspiration and expiration histograms and the initial thresholds A and B in the 

lung air segmentation technique. 

The two thresholds are further optimized in order to obtain accurate thresholds. The 

lower threshold is optimized based on air mass conservation between background air and 

lung air, while the upper threshold is optimized based on tissue incompressibility. This 

optimization process ensures that the thresholds delineate different tissue components in 

the lung scan accurately before obtaining the image intensity of pure air and pure tissue. 

These air and tissue intensities are then utilized to calculate the air volume portion 

coefficients for each voxel which, together, construct the lung air map (Figure 2-5)  
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Figure 2-5: An example of a lung air map for inspiration and expiration scans. 

Three groups of features were extracted from lung air maps of inspiration and expiration 

scans. These groups include features related to lung volume variation, inspiration and 

expiration air distribution, and overall air distribution in the lung. The first group, lung 

volume variation features, was calculated based on the difference in lung air volume 

between inspiration and expiration images in relation to the expiration volume (Vexh) or 

inspiration volume (Vinh).  

The second group of features, inspiration and expiration air distribution features, was 

calculated as the air percentage per voxel. It includes seven percentages of air in voxels, 

which are 95%, 90%, 85%, 80%, 75%, 70%, and 65%. High concentrations of air in voxels 

from inspiration scans are related to emphysema, while high concentrations of air in voxels 

from expiration scans are related to air-trapping. 

Lastly, the third group of features pertained to the overall air distribution in the lung. This 

group included the mean and standard deviation for each of the inspiration (MVinh, 

SDVinh) and expiration (MVexh, SDVexh) air distribution features. 

2.2.3.2 COPD Phenotyping Features 

 COPD encompasses a range of lung pathologies, known as phenotypes, each with 

distinct characteristics. Emphysema is characterized by damage to the lung's air sac  
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walls, leading to reduced elasticity and impaired gas exchange. Air trapping occurs when 

air becomes trapped in the lungs during expiration, contributing to hyperinflation and 

airflow limitation. Chronic bronchitis involves inflammation and narrowing of the 

airways due to chronic irritation, resulting in excessive mucus production and persistent 

coughing. Identifying the specific phenotype of COPD present in a patient is crucial to 

tailor treatment strategies and optimize management approaches. 

To assess emphysema and air trapping within the lung, we employed thresholding based 

on Hounsfield Units (HU). For the inspiration scan, a threshold value of -950 HU was 

applied to quantify the extent of emphysema present in the lung tissue [18]. Conversely, 

for the expiration scan, a threshold value of -856 HU was utilized to evaluate the degree of 

air trapping within the lung [18]. These threshold values were chosen to accurately 

delineate between healthy lung tissue and areas affected by emphysema or air trapping, 

providing valuable insights into lung pathology associated with COPD. 

We have also utilized a technique called Parametric Response Mapping (PRM) [15] to 

extract additional phenotype features. PRM is used to evaluate the impact of airway 

destruction in the lungs by analyzing air trapping in expiration scans. First, lung volumes 

at both the inspiration and expiration phases were segmented. Next, the Free Form 

Deformation (FFD) registration was applied to align the expiration and inspiration scans. 

Then, thresholding was applied to the joint histogram formed using all voxel pairs within 

the registered inspiration-expiration lungs. This process resulted in three distinct 

categories: healthy lung tissue, designated by green; functional small airway disease 

(fSAD), represented by yellow; and emphysema, indicated by red. Figure 2-6 depicts two 

examples of voxel distribution, where the concentration of voxels forms an elongated 

elliptical pattern. The voxels are highly concentrated in the center and coded by red color, 

while decreasing towards the periphery, as shown in blue. The first example shown in 

Figure 2-6a was generated for a healthy subject, where the voxels are primarily located in 

green areas. The second example shown in Figure 2-6b was generated for a COPD patient 

with a severe lung pathology measured with PFT (FEV1 = 18). 
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Figure 2-6: The distribution of voxels with varying values at inspiration and expiration for an 

individual with normal lung function (a), and another with severe lung function, FEV1 = 18 (b) 

[11]. 

2.2.4 NN Model Training  

Two neural network models were considered in this project: the NN-CT and NN_Hybrid 

models. The NN-CT model was trained using only lung CT features, while the NN_Hybrid 

model incorporated the level of symptoms and the frequency of COPD exacerbation. 

The NN-CT model architecture consisted of six layers: the input layer, four hidden layers, 

and the output layer. Two dropout layers were included to prevent overfitting. 

Hyperparameters such as activation function, batch size, optimizer, epochs, and patience 

for Early Stopping were optimized using the Bayesian optimization algorithm. The ReLU 

activation function and Categorical Cross Entropy loss function were employed. The model 

was trained with the Adam optimizer for 250 epochs and a batch size of 32. 

On the other hand, the NN_Hybrid model comprised five layers: the input layer, three 

hidden layers, and the output layer. A dropout layer was added to mitigate overfitting. 

Similarly, hyperparameters were optimized using Bayesian optimization. The Sigmoid 
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activation function and Categorical Cross Entropy loss function were utilized. The model 

was trained with the Adam optimizer for 199 epochs and a batch size of 16. 

Both models were trained to perform multiclassification of the eight-stage COPD using 

extracted features from 320 subjects, including lung air features and phenotype features. 

The NN_Hybrid model included two additional inputs: exacerbation frequency and 

symptom level. The dataset was balanced, with 40 subjects used for each class. 

 

2.3 Results  

2.3.1 Features Cross-Correlation Coefficients. 

The effectiveness of the extracted features was evaluated by calculating their correlation 

with PFT measurements. Table 2-2 displays the correlation coefficients between PFT 

measurements and the extracted lung air features. Notably, features such as Vexh80, 

Vexh75, Vexh70, Vexh65, Vin, MVexh, and Vinh90 exhibit high correlation values with 

PFT features. 

Furthermore, the correlation coefficients between phenotypic features and PFT 

measurements are summarized in Table 2-3. The results indicate that the air-trapping 

feature demonstrates a greater correlation with both FEV1 and FEV1/FVC (0.70 and 0.65, 

respectively). Additionally, the two emphysema features derived from inhalation and PRM 

mapping exhibit a high correlation with PFT measurements. 

Table 2-2: Correlation coefficients between the lungs’ air features and corresponding PFT 

measurements. 

Exhalation 

features 

FEV1/FVC FEV1 Inhalation 

features 

FEV1/FVC FEV1 

Vexh 0.63 0.72 Vinh  0.65 0.62 

V95exh  0.60 0.72 V95inh  0.58 0.54 

V90exh  0.68 0.71 V90inh  0.64 0.56 

V85exh  0.74 0.71 V85inh  0.59 0.48 
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V80exh 0.78 0.71 V80inh 0.52 0.40 

V75exh 0.81 0.72 V75inh 0.46 0.34 

V70exh  0.83 0.72 V70inh  0.42 0.30 

V65exh  0.83 0.71 V65inh  0.39 0.26 

MVexh 0.81 0.72 MVinh 0.58 0.47 

SDVexh 0.76 0.64 SDVinh 0.33 0.37 

 

Table 2-3: Correlation coefficients between phenotype features and PFT measurements. 

Features Emphysema Air Trapping PRM Emphysema PRM fSAD 

FEV1/FVC 0.68 0.70 0.64 0.59 

FEV1 0.62 0.65 0.60 0.52 

 

2.3.2 Neural Network Models Evaluation 

The neural network models were evaluated with Stratified fold cross-validation with K =7. 

This method was used to preserve the class distribution in the training and test sets. The 

performance of the model was evaluated in terms of Accuracy, Precision, Recall, and F1 

score for each fold. The mean of the 7 folds was calculated to present the overall 

performance of the model. 

Figure 2-7 illustrates the results obtained for the NN-CT model. The model achieved an 

accuracy of 0.63, with an average calculated from 7 folds. The accuracy scores varied 

from 0.54 to 0.76 among the folds. The mean precision was determined to be 0.68, 

ranging from 0.57 to 0.81. The average recall and F1 score were 0.63 and 0.62, 

respectively. The recall and F1 score consolidate the accuracy results, with a recall range 

from 0.54 to 0.78 and an F1-score range from 0.49 to 0.77. The confusion matrix for the 

NN-CT is presented in Figure 2-9-a, indicating that most misclassifications occur among 

neighboring classes, i.e., classes that share one or two severity factors in common. 
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a- Accurecy  

 

b- Precison  

 

c- Recall 

 

d- F1-score 

Figure 2-7: NN-CT Performance in terms of Accuracy, Precision, Recall, and F1 score. 

Figure 2-8-a displays the accuracy results of NN-Hybrid in each of the 7 folds, ranging 

from 0.81 to 0.94, with an average of 0.88. The precision scores of the model in the 7 folds 

are illustrated in Figure 2-8-b, ranging from 0.84 to 0.96. The average precision score 

across the 7 folds is 0.90, indicating that 90% of the samples classified to a certain class 

are correctly assigned to the true classes. The recall of the model in the 7 folds is 0.88, as 

shown in Figure 2-8-c, indicating that 88% of the samples in a certain class are classified 

to the true class. Lastly, Figure 2-8-d illustrates the F1 scores in the 7 folds, ranging from 

0.81 to 0.94 with an average of 0.88. The recall and F1 score corroborate the accuracy 

results in each fold in addition to the resulting mean value. The confusion matrix for the 8 

classes is presented in Figure 2-9-b. Misclassifications were observed mainly between 

classes D2 and D3, C2 and C3, and D1 and B. 
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a- Accurecy  

 

b- Precison  

 

c- Recall 

 

d- F1-score 

Figure 2-8: NN-Hybrid Performance in terms of Accuracy, Precision, Recall, and F1 

score. 

 

a- NN-CT 

 

b- NN-Hybrid 

Figure 2-9: Confusion Matrices for NN-Ct and NN-Hybrid 



45 

 

We conducted a comparison of our model's accuracy with three other four-stage COPD 

classification models, as presented in Table 2-4. Error! Reference source not found.   

Table 2-4: Comparison between our proposed COPD classification model and the other 

COPD classification techniques. 

Method Nimura 

Four-staging 

Lung Air 

Four-staging 

2D-CNN 

Four-

staging 

NN-CT 

Eight-

staging  

NN-

Hybrid 

Eight-

staging  

# of 

subjects 

49 69  7,983 320 320 

Accuracy 53% 84% 51% 63% 88% 

 

2.4 Discussion  

The GOLD guidelines recommend an approach to COPD treatment that considers lung 

function, symptom severity, and exacerbation risk. To put these guidelines into practice, 

an eight-stage COPD system has been developed. 

Our novel classification models are designed to perform an eight-stage COPD assessment. 

They utilize lung air features and phenotype features from paired lung CT volumes to train 

NN models. These features detect lung pathology and assess disease severity accurately. 

This means that, using these models, patients would no longer have to undergo PFT to 

determine the severity of their disease. Instead, lung CT scans taken during inspiration and 

expiration would be employed to automatically assess disease severity. This method has 

the advantage of detecting the disease accurately in its early stages while not being 

dependent on patient compliance. 

The effectiveness of the extracted features was validated by calculating the correlation 

coefficients between these features and clinical measurements. Both the lung air features 

and the phenotype features demonstrated reasonably high correlation values with PFT 
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measurements, indicating the efficacy of the extracted features. Lung pathologies are 

primarily characterized by a high concentration of air in certain parts of the lung. Therefore, 

pathology detection can be more effectively accomplished from expiration scans compared 

to inspiration scans. Consequently, lung air features extracted from expiration scans 

exhibited higher correlation values than those extracted from inspiration scans.  

Out of the two neural network models, the NN-CT model presents a low classification 

accuracy. Upon observing the confusion matrix of NN-CT, it becomes evident that there is 

high misclassification among classes that share one or more severity factors, such as D1 

and D3. Both of these classes demonstrate a high level of symptoms and severe lung 

function; the only discernible difference between them lies in the risk of exacerbation. 

Furthermore, Class C1 is misclassified with classes C3, D1, D2, and D3, all of which pose 

a high risk of either exacerbation or lung function impairment. 

To enhance the model's performance, we proposed incorporating exacerbation frequency 

and symptom level as additional inputs. These factors are more accessible to measure in 

clinical settings than PFT. By doing so, the features extracted from CT scans can solely 

assess lung function, while exacerbation frequency and symptom level serve as 

complementary indicators. These experiments were conducted on the NN-Hybrid model, 

which achieved a much higher classification accuracy of 0.88. 

The NN-Hybrid model exhibits high misclassification between classes that share two 

severity factors, namely C2 and C3, D2 and D3, or one severity factor, such as class D1 

with class B. One common distinguishing factor among these classes is the severity of lung 

function. For instance, C2 and D2 are classes with a high risk of exacerbation but low lung 

function. Similarly, D1 and B are classes with a high level of symptoms, but class B has 

low lung function. This discrepancy could be attributed to limitations in PFT's ability to 

assess lung function accurately. Samples in classes C2, D2, and B may indeed have severe 

lung function impairment, which has not been adequately detected through PFT testing. 

Among the various COPD classification models, the 2D-CNN [43] and Nimuramodel [44] 

achieved the lowest accuracy results. For Nimura model, the outcome could be attributed 

to the dominance of pulmonary function test (PFT) features over the image-based features 

in their model, indicating that PFT features are not highly discriminative. Furthermore, 
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beside the low discriminative features utilized, the Nimura model was trained with a small 

number of samples (49 subjects), which may have impacted its performance negatively. 

On the other hand, in the 2D-CNN model, a large number of subjects (more than 7000 

subjects) were used to build their classification model. However, it yielded a low accuracy 

result of 51%. This can be attributed to the fact that only a limited portion of the lung was 

considered, whereas COPD severity should ideally be measured by assessing the amount 

of destruction in the entire lung. The Lung Air model developed by Moghadas et al. [45] 

demonstrates high accuracy, owing to its utilization of highly discriminative features. 

Trained with a small number of samples (69), it focuses on four COPD staging only, in 

contrast to our models, which combine lung air and PRM phenotype features. Our proposed 

models have been trained with 320 subjects to perform eight COPD staging. While the lung 

air four staging model may excel in its specific scope of disease severity assessment, our 

developed models represent a valuable tool for identifying COPD severity and 

incorporating the disease phenotype based on image data, facilitating the formulation of 

effective therapy plans. 

 

2.5 Conclusions   

To make this eight-stage system accessible and repeatable, two neural network (NN) 

models for the eight-stage COPD scheme have been developed based mainly on features 

extracted from thoracic CT image data. These features include lung air features and COPD 

phenotypes features.  

The extracted features achieved reasonably high correlation values with PFT 

measurements and were used to train the two NN models. The first model was trained 

solely with features extracted from lung CT scans, while the subsequent model 

incorporated exacerbation frequency and symptom level alongside other extracted features. 

The latter model achieved high classification accuracy, primarily because the extracted 

features were specifically tailored to predict lung function severity. 

The developed COPD classification and staging systems have achieved high accuracy in 

assessing COPD severity, making them valuable tools for identifying COPD severity 
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primarily based on image data. Such a staging system could potentially replace the need 

for Pulmonary Function Tests (PFT) and enable physicians to develop treatment plans 

based on lung CT data alone. Although CT imaging is not yet a standard practice for 

diagnosing mild to moderate COPD, our developed models can be a strong incentive to 

include CT scanning as a routine diagnostic tool for COPD patients, particularly for 

smokers. 
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Chapter 3  

3 « CNN with a Single Lung 3D CT Volume for COPD Eight 

Staging System» 

A version of this chapter will be submitted to the Expert Systems with Applications 

journal for peer review and potential publication. 

 

3.1 Introduction 

Chronic obstructive pulmonary disease (COPD) represents a significant global health 

challenge, contributing to substantial morbidity and mortality rates. It is currently the third 

leading cause of death and was responsible for the loss of 3.23 million lives in 2019 [1]. 

Due to its significant impact, there is an increased interest in improving diagnostic methods 

for COPD. The main objectives of assessing COPD are to determine the extent of airflow 

restriction, how it affects the patient's health, and the likelihood of future exacerbations. 

Airflow limitation severity is typically evaluated using the Pulmonary Function Test (PFT), 

which measures airflow during breathing. This test helps assessing disease severity 

following the Global Initiative for Chronic Lung Disease guidelines (GOLD) [2]. The 

GOLD staging system classifies COPD severity into four stages —mild, moderate, severe, 

and very severe— based on the forced expiratory volume in 1 second (FEV1) and the 

forced vital capacity (FVC). While this staging system provides a framework for assessing 

the severity of whole lung airflow limitation, it lacks critical information necessary for 

determining the treatment course required to manage the disease and prevent its 

progression. As such, a revised ABCD classification system for COPD was introduced in 

2011 by the GOLD committee [2]. The degree of symptoms and history of exacerbations 

are considered in this system to provide more reliable criteria for determining the severity 

of the disease. The St. George's Respiratory Questionnaire (SGRQ) (Appendix A), the 

COPD Assessment Test (CAT) score, or the modified Medical Research Council (mMRC) 

dyspnea score can all be used to assess the severity of symptoms(Appendix B) [2]. An 

individual's history of exacerbations is determined by the frequency of emergency room 
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visits and/or hospital admissions during the preceding year. Clinicians use this information 

to develop treatment plans tailored to the symptoms and exacerbation history of their 

patients. As per Lange et al., the ABCD GOLD classification demonstrated better accuracy 

in predicting future exacerbations compared to the PFT GOLD staging, highlighting the 

significant role of symptoms and past exacerbations in the progression of COPD [3].  

Another COPD staging system was developed through the COPDGene study which is an 

Eight COPD Staging System that incorporates three key factors for guiding COPD therapy 

[5]. This system classifies COPD patients into eight stages based on their symptoms and 

risk, where risk is determined by their exacerbation history and airflow limitation as 

measured by PFT (FEV1%<50). The eight stages are defined as A, low symptoms/low risk; 

B, high symptoms/low risk; C, low symptoms/high risk; and D, high symptoms/high risk. 

The C and D classes are subdivided according to the cause of the high risk as C1 and D1 

are high risk due to lung function only (FEV1%<50); C2 and D2 meet exacerbation criteria 

only; C3 and D3 meet both exacerbation and FEV1 criteria. While more complex, the 

eight-staging system is advantageous over other simpler staging systems as, unlike other 

systems that provide information pertaining to disease severity, it can also be used 

effectively for treatment guidance. Based on this system, depending on the cause of the 

disease severity, different kinds of bronchodilators are used for treatment. A short-acting 

bronchodilator is recommended for class A with low symptoms, while a long-acting 

bronchodilator is required for high symptoms. Patients with a high risk of lung function 

and/or exacerbation require combining two or three kinds of long-acting bronchodilators 

depending on the risk cause. Different studies investigated the necessity of subgrouping 

C/D patients according to factors contributing to risk elevation [7], [8]. Ferreira et.al. 

reported that different therapeutic options must be considered for the sub-groups in C and 

D [7].   

Generally, COPD staging systems require evaluation of 1) lung function in the clinic based 

on the Pulmonary Function Test (PFT) and 2) symptom severity and exacerbation. The 

former requires a higher level of patient cooperation, understanding of instructions and 

compliance compared to evaluating symptom severity and the risk of exacerbation. Lung 

function strongly depends on lung pathology, which can be captured effectively through 

assessment and can be effectively performed using lung Computed Tomography (CT). This 
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imaging modality has been increasingly used for COPD assessment [8], [9]. This imaging 

modality can detect various COPD phenotypes, such as emphysema, bronchial wall 

thickening, and gas trapping. Moreover, lung CT enables physicians to monitor changes in 

lung morphology and density as the disease advances, providing valuable insights into 

disease progression and treatment efficiency. 

Deep learning techniques can be integrated to leverage CT imaging for assessing the 

severity of COPD. Several deep learning models have been developed to assess COPD 

severity. Gonzalez et al. developed a 2D-CNN network based on lung 3D CT data to 

classify COPD into four stages [10]. In their proposed model, from each scan, four slices 

are extracted: an axial slice, a coronal slice, and two sagittal slices at the level of the right 

and left lung. These slices are concatenated to form an image of size 512 × 512, which 

serves as input for training the CNN model. Another deep learning model has been 

developed to assess the severity of parenchymal emphysema as trace, mild, moderate, 

confluent, and advanced destructive emphysema [11]. The model combines CNN and 

LSTM (Long Short-Term Memory) architectures and was trained using 2407 participants 

from the COPDGene study. More recently, Li et al. developed an unsupervised 3D 

convolutional autoencoder model, which was integrated with a feature constructor to build 

a classifier. Exploratory factor analysis was applied to explore latent traits (factors) among 

pattern clusters. Two of these factors were utilized to train a logistic regression model, 

enabling the prediction of COPD exacerbation severity [12]. 

For this project, we employed deep learning 3D CNN techniques in combination with 

thoracic CT images to evaluate the severity of COPD based on the high-resolution 8-

staging system. We developed four deep learning models for the COPD 8-staging system. 

Two of these models utilize ResNet-18 and ResNet-34 architectures with pre-trained 

weights. The remaining two models were 3D-CNN models trained from scratch. One of 

the scratch-trained models takes only lung CT scans as input while the other model 

incorporates additional features along with lung CT scans. 
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3.2 Materials & Methods 

3.2.1 Dataset 

The dataset for this project is obtained from the NIH COPDGene study [6], one of the 

largest investigations involving 21 clinical centers dedicated to COPD research. It 

encompasses imaging and PFT data of 10,192 participants, including both COPD patients 

and controls. Participants were included from both genders with an age range between 45 

and 80 years. The dataset comprises volumetric lung CT images acquired during both 

inhalation and exhalation phases. The voxel resolution varies from (512 × 512 × 100) to 

(512 × 512 × 736). COPDGene labels COPD subjects according to the Eight COPD Staging 

System. The distribution of subjects among these classes is provided in Table 3-1. The 

dataset exhibits class imbalance, particularly notable for class C2 and C3.   

Table 3-1: Distribution of COPD subjects among the Eight classes 

A B C1 C2 C3 D1 D2 D3 

1425 1118 174 38 10 1192 254 410 

 

3.2.1.1 Data Augmentation Method 

For this project, we utilized 326 lung CT scans taken from the COPDGene. To ensure 

balanced class data distribution, each of the 8 classes must have ~40 subjects which are 

available except with classes C2 and C3. To address the data imbalance issue observed in 

these classes, a novel lung CT image augmentation method has been developed, 

comprising two primary steps: image deformable registration and image warping. In the 

first step, Free Form Deformation (FFD) was employed for image registration to align the 

lung CT scan at expiration with the one at inspiration, and vice versa. This process yielded 

transformation matrices that aligned the paired scans. 

In the second step, three new scans were generated from each original scan through image 

warping using incrementally varying fractions of the transformation matrix. For expiration 

scans, the transformation matrix aligning the expiration scan to the inspiration one was 
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utilized. Subsequently, image warping at 10%, 15%, and 20% of the transformation matrix 

was applied to produce three new post expiration scans. This image augmentation step was 

applied to data samples belonging to classes C2 and C3, ensuring that the total number of 

samples in these classes becomes 40 samples. Detailed descriptions of the methodology 

can be found in Chapter 2. 

3.2.2 Data Preprocessing 

The 326 lung CT scans used in this project were separated into three portions: a training 

set, a validation set, and a testing set (divided 60:20:20). To maintain the distribution of 

classes within the training, validation, and test sets, we employed a Stratified split. The 

class representation for A, B, C1, C2, C3, D1, D2, and D3 was preserved in each set, with 

40 subjects in each class except for D1 and D2, which had 43 subjects each. 

To prepare the data for training, several preprocessing steps were applied. These steps 

included lung segmentation using a fully automated image segmentation method [14] to 

separate the lungs from surrounding tissues, volume cropping to eliminate surrounding 

areas, and Hounsfield unit normalization to adjust the voxel values to a range between 0 

and 1. The volumes were resampled to a size of 128×128×128 using cubic spline 

interpolation. 

Other than the previously described data augmentation employed to address the data 

imbalance issue, another data augmentation was applied during training to enrich the data 

and further empower the classifier being developed. This augmentation included rotation, 

flipping, and blurring of the selected scans. ITK (Insight Toolkit), which is an open-source 

library renowned for its extensive tools for medical image analysis [15], was used for data 

preprocessing and augmentation.  

3.2.3 Transfer Learning for COPD Eight Staging 

State-of-the-art architectures such as Alex Net [16], VGG16 [17], and ResNet34 [18] often 

serve as robust starting points for transfer learning. Their capacity to learn intricate 

representations from large datasets renders them well-suited for fine-tuning on specific 

tasks, thereby contributing to the efficacy of transfer learning approaches. Given the 
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exceptional performance of Residual Neural Networks (ResNet) in the computer vision 

domain, we opted to utilize ResNet architectures. 

Acquiring a pretrained 3D-CNN model specifically trained on medical images was not a 

straightforward task. However, the Med3D [19] framework addresses this challenge by 

providing pretrained models based on the ResNet architecture with varying depths (10, 18, 

34, 50, 101). These models were trained on a diverse set of publicly available medical 

datasets, comprising 23 different medical datasets used in various competitions. The 

datasets encompass different medical imaging modalities, such as magnetic resonance 

imaging (MRI) and computed tomography (CT), covering a range of scan regions, target 

organs, and pathologies. 

Two versions of ResNet were employed in this project: ResNet-18 and ResNet-34. Since 

the models were initially trained for segmentation tasks, the decoder components were 

replaced with fully connected layers to perform classification. 

Both models underwent fine-tuning using our training data, consisting of 230 lung CT 

scans. Validation sets were utilized during training for fine-tuning the hyperparameters, 

including optimizer selection, learning rate adjustment, and the implementation of early 

stopping techniques. In both models, Adam optimizer was used along with an initial 

learning rate of 0.0001.  

3.2.4 3D-CNN model for COPD Eight Staging 

The architecture of the 3D-CNN model comprises eight 3D convolutional layers and four 

max-pooling layers, as shown in Figure 3-1. The initial two convolutional layers employ 

16 filters each, while the remaining six layers utilize 32 filters each, enabling optimal 

feature extraction from the input data. To reduce spatial dimensions while retaining vital 

information, max-pooling layers are utilized to down-sample the feature maps. Finally, 

after the convolutional and pooling layers, five fully connected layers utilize the learned 

features to produce predictions.  
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Figure 3-1: 3D-CNN architecture for the proposed eight staging schemes. 

The 3D-CNN utilizes ReLU (Rectified Linear Unit) activation functions, except for the 

final layer, which uses SoftMax activation for multi-class classification. To prevent 

overfitting, early stopping is implemented by monitoring the validation set's performance, 

and training is optimized using the Adam optimizer. Hyperband optimization is used to 

tune hyperparameters, including the activation function, learning rate, number of filters per 

layer, and number of neurons in dense layers. 

3.2.5 3D-CNN model with hybrid inputs for COPD Eight Staging 

The eight-stage system for COPD considers three key factors: lung function, symptom 

severity, and the likelihood of future exacerbation. As such, for enhanced accuracy, we 

have integrated two inputs: lung CT scan and features. These features comprise two 

variables reflecting the frequency of exacerbations and the severity of symptoms.  

The frequency of exacerbation is assessed based on the number of times a patient 

experienced exacerbation in the previous year, and whether these episodes necessitated a 

visit to the emergency room or resulted in hospitalization. Symptom severity is evaluated 

using the St. George's Respiratory Questionnaire (SGRQ) test (Appendix A), which yields 

a score ranging from 0 to 100. SGRQ employs a threshold of 25 to distinguish between 

high and low symptom levels. To align the model with other symptom questionnaires 

commonly utilized in clinical settings, we have categorized symptom scores as either high 

(>25) or low (<25). 

The lung CT scan is used as an input to the convolutional layers, which maintain the same 

model structure described in Section 3.2.4. This consists of eight 3D convolutional layers 

with a kernel size of 333, alongside four max-pooling layers. Following extraction, 

features derived from the convolutional layers are flattened and merged with the two input 

features representing symptom severity and exacerbation frequency. Subsequently, this 
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concatenated feature set is forwarded through five fully connected layers to process the 

classification (Figure 3-2).  

 

 

Figure 3-2: Diagram showing the illustration of the classification model 

 

3.3 Results 

3.3.1 Transfer Learning for COPD Eight Staging Evaluation 

Our evaluation of model performance involved assessing classification accuracy and 

examining the confusion matrix. We found that the ResNet-18 model had classification 

accuracy rates of 0.70, 0.62, and 0.54 in the train, validation, and test sets, respectively. A 

visual representation of the confusion matrix for ResNet-18 can be found in Figure 3-3-a. 

The ResNet-34 model achieved a classification accuracy of 0.8, 0.65, and 0.51 on the 

training, validation, and test sets, respectively. The confusion matrix for the ResNet-34 

model, depicting its performance across 8 classes, is also presented in Figure 3-3-b. The 

number of test samples in each class is 8, except for classes D1 and D2, which have 9 

samples each. 
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(a) ResNet-18 Confusion Matrix.  

 

(b) ResNet-34 Confusion Matrix. 

Figure 3-3: Confusion matrices for the eight staging models using transfer learning. 

3.3.2 3D-CNN model for COPD Eight Staging Evaluation 

Classification accuracy and confusion matrix have been used to assess the 3D-CNN model 

classification performance. We found that the 3D-CNN model has classification accuracy 

rates of 0.84, 0.54, and 0.46 in the training, validation, and test sets, respectively. Figure 

3-4a presents the confusion matrix for the eight classes where the number of samples in 

each class is 8 except classes D1 and D2 which have 9 samples each.  

3.3.3 3D-CNN model with hybrid inputs for COPD Eight Staging 

Evaluation 

The 3D-CNN model that used hybrid inputs achieved the highest classification accuracy 

when compared to the other eight staging models. In the test set, the classification accuracy 

score was 0.80, while training and validation had an accuracy of 0.87 and 0.83, 

respectively. A confusion matrix was created for the eight classes, where each class had 8 

samples except for classes D1 and D2, which had 9 samples each. Figure 3-4b displays the 

confusion matrix for these classes. 
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(a) 3D-CNN Confusion Matrix 

 

(b) 3D-CNN with hybrid input Confusion 

Matrix 

Figure 3-4: Confusion matrices for the eight staging models using the proposed 3D CNN 

model 

 

3.4 Discussion 

Deep learning techniques have been utilized to evaluate the severity of COPD according 

to the high-resolution eight-stage system. This staging system assists in treatment planning 

as different types of bronchodilators are used depending on the cause of the disease's 

severity. For example, patients with a high risk of lung function and/or exacerbation require 

the combination of two or three kinds of long-acting bronchodilators depending on the risk 

factor.  

To facilitate using the eight-staging system, we developed four different deep-learning 

models. The first two models used transfer learning, leveraging the ResNet-18 and ResNet-

34 structures. The other two models we developed from scratch, with optimized model 

structures and parameters. One of these models integrates two input modalities: 1) images, 

which capture lung function, and 2) exacerbation and symptoms features. It achieved a 

classification accuracy of 0.8, the highest among the four models. In this model, the 

convolutional layers were specifically trained to predict lung function, with exacerbation 

frequency and symptom level provided as additional inputs. Using CT image data in the 

model as an effective alternative to PFT was pursued for two reasons. First, it is becoming 
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increasingly common to use CT imaging for COPD assessment. Second, PFT requires 

patient’s cooperation, understanding of instructions and their compliance. The level of 

patient compliance in PFT compared to evaluating symptom severity and the risk of 

exacerbation is known to be higher. Moreover, our results indicate that image information 

is less capable of capturing symptom severity and exacerbation. 

Although the other three models did not perform well in terms of classification accuracy, 

they still provide valuable information. The models perform an eight-class classification, 

hence random guessing would yield an accuracy of only 0.12 whereas the classification 

accuracies attained in the test set are 0.54, 0.51, and 0.46 for ResNet-18, ResNet-34, and 

the 3D-CNN trained with a single input, respectively. This indicates that these models are 

achieving performance levels approximately 4 to 5 times better than random guessing. 

The confusion matrix supports this observation as most of the misclassifications occur 

between classes that have at least one factor in common. For instance, the samples 

belonging to class D2 are frequently misclassified as class D3 in all four models. These 

two classes share two factors: severe symptoms and a high risk of exacerbation. The only 

difference between them is that class D2 indicates moderate lung pathology while class D3 

indicates severe lung pathology. This highlights one of the limitations of our data. The 

samples that are classified as D3 instead of D2 might have severe lung pathology, but the 

lung function test fails to accurately capture it.  

An important advantage of using CT over PFT for COPD assessment is the observation 

that quantitative CT measurements can detect disease progression before any measurable 

change is detected with PFT (Pulmonary Function Test). A study conducted by Pompe et 

al. [20] investigated longitudinal changes in emphysema and air-trapping, which were 

quantitatively measured from lung CT scans, alongside PFT measurements in cigarette 

smoker subjects with and without COPD. Their findings revealed a significant increase in 

emphysema and air-trapping over a 5-year follow-up period in both smokers with and 

without COPD. However, they found that a substantial proportion of the progression in 

emphysema and air-trapping was not correlated with PFT. Therefore, assessing lung 

function with lung CT is crucial for detecting the disease in its early stages. 
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Previous studies have been conducted to evaluate the severity of Chronic Obstructive 

Pulmonary Disease (COPD). The 2D-CNN model developed by Gonzalez et al. for 4-stage 

classification achieved a classification accuracy of 51.1% [10]. It was trained using data 

from 7,983 COPDGene participants. The CNN-LSTM model developed by Humphries et 

al. classified COPD in terms of emphysema level into 5 levels using data from 2407 

participants [11]. However, only 45% of the classification results matched the correct 

emphysema level.  

Our deep learning models are the first to perform eight-stage classifications for COPD 

severity. Moreover, our models' classification performance is comparable to 4 and 5-stage 

models. When hybrid inputs are used, our 3D-CNN model achieves high classification 

accuracy, potentially making it suitable for clinical settings. 

 

3.5 Conclusions 

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) uses a combination 

of three factors to assess COPD, which are lung function, symptoms, and exacerbation 

history. This helps to determine the severity of the disease and create a treatment plan that 

is tailored to the individual's needs. The COPDGene study has designed an eight COPD 

staging system that classifies COPD patients into eight different categories to provide 

critical information necessary for guiding therapy. In this study, we used deep learning 

models we developed from scratch in addition to transfer learning techniques to assess 

COPD severity based on the high-resolution eight-stage system. This involves analyzing 

the thoracic CT images of patients to provide a more accurate assessment of their condition. 

Three of the models were developed for COPD eight-stage system utilizing only lung CT 

scan data as input. The first two models employed transfer learning, utilizing the state-of-

the-art architectures ResNet-18 and ResNet-34. The third model is the 3D-CNN model, 

which was trained from scratch using optimized model parameters. 

The hybrid model integrated additional features related to symptom level and the risk of 

exacerbation along with lung CT scan data. It achieved high classification accuracy, 
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primarily because the convolutional layers were trained specifically to predict lung 

function. 

Given that the eight-stage system requires physicians to conduct three tests for devising an 

appropriate treatment plan, our deep learning models streamline the physician's task, 

eliminating the need for multiple tests and enabling a more efficient and effective treatment 

plan. 
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Chapter 4  

4 « CNN with a Single Lung 3D CT Volume for COPD 

Classification Based on The GOLD 2023 Staging System» 

A version of this chapter will be submitted to the Expert Systems with Applications 

journal for peer review and potential publication. 

 

4.1 Introduction 

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous lung disease that is 

characterized by airflow limitation which causes difficulty breathing. Forced expiratory 

volume in one second (FEV1) and forced vital capacity (FVC) are often measured by 

pulmonary function tests (PFTs) to diagnose COPD. However, in the early stages of 

COPD, these measurements are unable to detect local structural and functional changes. 

Moreover, while requiring patient’s understanding and compliance with instructions given 

in the tests, spirometry has a poor correlation with the degree of breathlessness or any other 

COPD symptoms [1]. Therefore, using spirometry measures to diagnose the disease and 

provide individualized treatment in clinical settings is lacks desirable reliability. 

Different updates have been designed by the Global Initiative for Chronic Lung Disease 

(GOLD) committee to manage the disease and prevent its progression. Toward higher level 

of practicality in the clinic, in 2023, a new ABE staging system for COPD was designed 

[2]. Compared to the eight-staging system, this system is substantially lower resolution and 

relies on the level of symptoms and COPD Exacerbation history to assess the disease 

severity (Figure 4-1). The symptoms level can be measured using a dyspnea measure (the 

modified Medical Research Council [mMRC] dyspnea score (Appendix B) or a health 

status measure (the COPD Assessment Test [CAT] score), or the SGRQ (St. George's 

Respiratory Questionnaire)(Appendix A). COPD Exacerbation is defined as the acute 

worsening of symptoms resulting in the necessity of additional therapy; it is measured as 

the frequency of requiring assessment in the Emergency Department or hospital admission 

in the prior year. Patients’ symptoms and exacerbation history allow clinicians to initiate a 
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treatment plan at the individual patient level. Lange et al. stated that symptoms and 

exacerbation history can be used as good predictors of future COPD exacerbation, and can 

be effective in devising therapy plans aiming at preventing or slowing down COPD 

progression as it has [3]. The frequency of severe exacerbations is associated with an 

increased risk of mortality, especially if it requires hospital admission [4]. Therefore, it is 

crucial to determine whether the patient is at high risk of experiencing COPD exacerbation. 

 

Figure 4-1: COPD staging scheme based on GOLD2023 staging system. 

The criterion used to assess the severity of exacerbation is not reliable as not all patients 

who experience COPD exacerbation and require hospitalization visit the hospital. The rate 

of hospitalization for COPD exacerbations is known to decrease where patients perceive 

higher risk for hospitalization compared to its potential benefits. For example, COPD 

exacerbation-related hospitalization was reduced by 53% compared to the pre-COVID 

pandemic [5]. Avoiding visiting emergency rooms during COVID-19 possibly caused a 

change in the treatment of COPD exacerbations from inpatient to outpatient. To cope with 

such situations, other assessment tools are essential to detect the severity of COPD 

exacerbation in the GOLD2023 staging system.  

Computed tomography (CT) has a rapidly developing role in COPD investigation as it can 

reveal valuable information pertaining to the lung pathology. It can detect the different 

COPD phenotypes of emphysema, bronchial wall thickening and gas trapping. As COPD 

symptoms and exacerbation are a manifestation of these phenotypical pathologies, it is 

conceivable that lung CT data can encode information pertaining to COPD symptoms and 

exacerbation. As a potentially viable tool for decoding this information, deep learning can 

be employed to take advantage of CT imaging in assessing COPD severity based on the 

framework of GOLD2023 staging system. Given the pitfalls of PFTs, this approach can be 

used as a more effective alternative in this staging system. 
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While to our knowledge, so far no studies have attempted to incorporate deep learning to 

develop classifiers for the GOLD2023 staging system. However, relevant investigations   

studies have been conducted to assess COPD severity using deep learning and thoracic CT. 

Gonzalez et al. developed a 2D-CNN network that utilizes 3D CT scans of lungs [6]. The 

network was trained using lung CT scans from the COPDGene study. Four slices were 

extracted from each scan, including an axial slice, a coronal slice, and two sagittal slices at 

the level of the left and right lung. These four slices were used as input to train the CNN 

model. The model was trained to perform multi-classification of 1) COPD vs. non-COPD 

(binary classification), and 2) to the disease staging. Another deep learning model was 

developed to assess the severity of parenchymal emphysema as trace, mild, moderate, 

confluent, and advanced destructive emphysema [7]. The model combines CNN and LSTM 

(Long Short-Term Memory) architectures and was trained using data pertaining to 2407 

participants from the COPDGene study. Axial slices were extracted from each scan and 

used as input to train the CNN. Feature vectors obtained from all slices were concatenated 

and used as an input to the LSTM model. Then, A composite feature vector was produced 

by this LSTM model which was used as input to the fully connected layers to produce the 

predicted emphysema level. In the model developed by Ho et al. paired 3D volumes were 

extracted from 4D-CT data and used to create a 3D Parametric Response Map (PRM) 

before a 3D-CNN model was trained [8]. More recently, an unsupervised 3D convolutional 

autoencoder model was developed and integrated with a feature constructor as a classifier. 

An exploratory factor analysis was applied to explore the latent traits (factors) among 

pattern clusters. Two of the factors were used to train a logistic regression model to predict 

the severity of COPD exacerbation [9].  

 In this research project, we developed a classification technique based on the GOLD2023 

staging system. To develop this model, we used lung CT images integrated with deep 

learning to measure the symptoms level and the severity of COPD exacerbation. Toward 

this goal, five models were trained and evaluated for this measurement. The first model 

was trained from scratch with optimized model parameters, while the other four were 

trained using transfer learning from the state-of-are-the-art architectures ResNet18 and 

ResNet34.   
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4.2 Materials & Methods 

4.2.1 Proposed GOLD2023 based COPD classification 

GOLD2023 The staging system is based on the patient's symptom severity and future 

exacerbation risk. To determine the stage of COPD according to this system, we developed 

deep learning models for symptom and exacerbation measurement using CT scans. We 

employ both of the developed models concurrently to determine COPD staging based on 

the scheme illustrated in Figure 4.1. The classification process begins with the lung CT 

scan being passed through the exacerbation deep learning model. If the model indicates a 

high risk of exacerbation, the patient is classified as GOLD stage E. If the model indicates 

a low risk, then the lung CT scan is passed to the symptom detection model. If the symptom 

detection model indicates a positive result, the patient is classified as GOLD stage B, and 

if it indicates a negative result, the patient is classified as GOLD stage The diagram of the 

classification scheme is illustrated in Figure 4-2. 

4.2.2 Dataset: 

The data required for this project is available through the NIH COPDGene (COPD Genetic 

Epidemiology) study [10]. It is one of the largest studies exploring COPD. COPDGene is 

a multicenter study that collected data from 21 clinical centers and using different multi-

detector CT scanners. It includes volumetric lung CT data, subjects' PFT measurements, 

exacerbation frequency, and symptom levels of 10,192 participants aged between 45 to 80 

years from both genders. The voxel volume in the lung CT varied from 0.244 mm3 to 1.376 

mm3, with image resolution ranging from (512 ×512 ×100) to (512 ×512 ×736).  

In this project, we utilized thoracic CT scans at the expiration phase. The lung CT scan in 

the expiration phase is valuable for detecting air trapping. This approach is particularly 

relevant when assessing lung pathology in patients with COPD. Air trapping, a 

characteristic feature of COPD, provides a more comprehensive assessment of overall lung 

pathology, including emphysematous lung damage and airway obstruction. We selected 

562 subjects to develop the symptoms models. Among them, 284 and 278 subjects belong 

to the high and low symptom classes, respectively. Exacerbation models were developed 
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using 468 subjects, where 234 subjects belonged to the high exacerbation class and another 

234 subjects belonged to the low exacerbation class. 

 

 

Figure 4-2: Proposed GOLD2023 classification scheme. 

 

4.2.3 Transfer Learning 

Deep Learning models developed in this investigation were trained wither from scratch or 

using Transfer Learning.  Transfer Learning allows models to use information from one 

task to improve performance on another related task. Pretrained models contain knowledge 

learned from large datasets and complex tasks. By starting with a pre-trained model, the 

training process for a new task can be faster and more efficient as the model has already 

learned useful features and representations. Thus, it helps models generalize better to new 

and unseen data. 
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State-of-the-art architectures like Alex Net [11], VGG16 [12], ResNet34 [13] often serve 

as strong starting points for transfer learning. Their ability to learn rich representations on 

large datasets makes them excellent candidates for fine-tuning on specific tasks, 

contributing to the success of transfer learning approaches. Due to the outstanding 

performance of Residual Neural Networks in the computer vision domain, we used 

Residual Network (ResNet) architectures. 

4.2.4 Thoracic CT Preprocessing  

Several preprocessing steps were applied to the lung CT volume. First, each lung volume 

was segmented using a fully automated image segmentation method [14].  The segmented 

lung volume was used to apply volume cropping and remove background area. Volumes 

were resampled to size 128×128×128 using cubic spline interpolation. Lastly, the 

Hounsfield unit (HU) of each voxel was normalized to values in the range of [0, 1]. All 

data preprocessing was applied using ITK, an open source toolkit that has extensive tools 

for processing medical images [15].   

4.2.5 Pretrained Models for Transfer Learning 

Several pre-trained 2D CNN models with downloadable parameters are readily available. 

These models have been pretrained using millions of natural images from the ImageNet 

dataset. However, there is a scarcity of pre-trained 3D CNN models available for 

download. Med3D [16] used varying depths to train multiple ResNet models (10, 18, 34, 

50, 101). Med3D used 23 different medical datasets for training, which is a collection of 

several publicly available 3D segmentation datasets from different medical imaging 

modalities, e.g., magnetic resonance imaging (MRI) and computed tomography (CT), with 

various scan regions, target organs and pathologies.  

In this project, we used two versions of ResNet: ResNet-18 and ResNet-34. The decoder 

was replaced with fully connected layers to perform the classification. ResNet-18 is a deep 

neural network architecture consisting of 18 layers, where 17 of them are convolutional 

layers followed by a fully connected layer and the output layer. The model begins with a 

convolutional layer followed by eight residual blocks. Each residual block is made up of 
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two convolutional layers. The convolutional layers in the model use 3×3×3 kernels, and 

the fully connected layer has 512 neurons.  

ResNet-34, on the other hand, is a deeper neural network architecture consisting of 34 

layers, where 33 of them are convolutional layers with a kernel size of 3×3×3. It is followed 

by a fully connected layer with 512 neurons. The last output layer uses the SoftMax 

activation function to perform classification. 

4.2.6 Symptoms Detection 

In the COPDGene study, the level of symptoms was evaluated using two questionnaires- 

the mMRC questionnaire (Appendix B) and the SGRQ questionnaire (Appendix A). The 

mMRC questionnaire is a simple questionnaire with only 5 items while the SGRQ 

questionnaire is more comprehensive with several questions. To minimize errors from both 

questionnaires, we redefined the level of symptoms as follows: If both questionnaires 

indicated a high level of symptoms, then the symptoms' level was considered high. 

Conversely, if both questionnaires indicated a low level of symptoms, then the symptoms' 

level was considered low. However, if one of the questionnaires indicated a high level of 

symptoms while the other indicated a low level of symptoms, then other data such as 

increased medication in the prior year and frequency of using antibiotics or steroids at 

home were considered to assess the level of symptoms. If the subject used antibiotics, 

steroids, or increased medication at home in the prior year, their sample is considered high-

symptom. 

We used five models to determine the level of symptoms from lung CT scans. The first 

model, called Symptoms-CNN, was trained from scratch using optimized model 

parameters. The other four models were trained using pre-trained, state-of-the-art 

architectures called ResNet-18 and ResNet-34. To train the models, the dataset was split 

into training, validation, and testing sets using a ratio of 75:25. Specifically, 75% of the 

dataset, comprising 422 CT scans, was allocated for training the models. The remaining 

25% of the dataset was evenly split between validation and testing sets, resulting in 70 CT 

scans allocated to each set. The models were trained to perform binary classification to 

categorize COPD subjects based on the level of symptoms as either high or low. 
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4.2.6.1 Symptoms-CNN Model for Symptoms Detection 

 Symptoms-CNN was trained from scratch where the model parameters were optimized.  

The CNN starts with a 3D convolutional layer (CONV3D) with a kernel size of 7×7×7 and 

8 filters (Figure 4-3). Four Residual Blocks follow the first layer, where each Residual 

Block consists of two CONV3D with a kernel size of 3×3×3, two ReLU activations, and 

one addition. The number of filters in these blocks are 16, 16, 32, and 32, respectively. The 

resulting features are flattened and passed to three fully connected layers. The total 

trainable parameters are ~2M and the model was trained with Adam optimizer in 89 epochs 

(Loss learning curve is shown in Figure 4-5-a). Model hyper parameters were assigned 

using the Hyperband optimization method, which is a hyperparameter optimization 

method. It employs a concept called "successive halving" to simultaneously explore 

multiple configurations of hyperparameters and allocate resources to promising 

configurations across the entire network. Hyper parameters included in the optimization 

are activation function, learning rate, number of filters in each of the fully connected layers, 

and number of neurons in each of the fully connected layers.   

 

Figure 4-3: Proposed symptoms-CNN model structure. 

 

4.2.6.2 Pretrained Models for Symptom Detection  

State-of-the-art architectures, namely ResNet-18 and ResNet-34, are being used for 

symptom detection with pre-trained weights. Two transfer learning approaches have been 

implemented. The first approach involves using the convolutional layers as a feature 

extractor while keeping the pre-trained weights frozen and fine-tuning the fully connected 

layers only. The second approach involves initializing the network with pre-trained weights 
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and fine-tuning the entire network. In both approaches, Adam optimizer is used in 

conjunction with the Early Stopping technique used to determine the number of epochs. 

4.2.7 Exacerbation Detection  

The severity of COPD exacerbation has been measured by evaluating the frequency of 

experiencing exacerbation over a year. If the patient has undergone at least one 

exacerbation that led to hospital admission or two or more exacerbations that led to 

emergency room visits, then it is considered a severe exacerbation. Otherwise, it is 

considered a low exacerbation The training dataset comprised 356 CT scans, while the 

remaining 112 samples were evenly split between validation and testing, with 56 scans 

allocated to each. The model was trained to perform binary classification, categorizing the 

risk of future exacerbation as high or low. 

4.2.7.1 Exacerbation-CNN Model for Exacerbation Detection 

The lung CT scan data is fed into a CONV3D layer that uses a 7x7x7 kernel with 16 filters 

(as shown in Figure 4-4). After the first layer, four Residual Blocks are employed, each 

with a different number of filters (16, 16, 32, and 128). The resulting features are then 

flattened and passed to three fully connected layers for classification. The model, which 

has approximately 8 million trainable parameters, was trained using the Adam optimizer 

in 86 epochs (Loss learning curve is shown in Figure 4-5-b). The Hyperband optimization 

method was used to determine the hyperparameters for the model, which include the 

activation function, learning rate, number of filters in each fully connected layer, and 

number of neurons in each fully connected layer. 

 

Figure 4-4: Exacerbation-CNN Model Structure 
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a) Symptoms-CNN training loss 

 

b) Exacerbation -CNN training loss 

 

Figure 4-5:  Loss learning curve for training and validation sets 

 

4.2.7.2 Pretrained Models for Exacerbation Detection  

State-of-the-art ResNet-18 and ResNet-34 architectures, which come equipped with pre-

trained weights, were used to detect exacerbation. Two transfer learning approaches were 

employed. In the first approach, the convolutional layers function as a feature extractor, 

utilizing pre-trained weights. In this approach, the weights in the convolutional layers are 

frozen, and fine-tuning is only applied to the fully connected layers. The second approach 

involves initializing the entire network with pre-trained weights, and then fine-tuning is 

carried out across the whole network. For both methods, training utilizes the Adam 

optimizer. The Early Stopping technique is employed to determine the optimal number of 

epochs required for training. 

 

4.3 Results 

4.3.1 Symptoms Detection Evaluation  

4.3.1.1 Symptoms-CNN model evaluation 

The accuracy score is used to evaluate the Symptoms-CNN model classification 

performance. The model achieved a classification accuracy of 0.8, 0.71, and 0.7 in training, 

validation, and test sets, respectively. The precision, recall, and F1-score were employed 

to assess the model's classification performance. For precision, recall, and F1-score, values 
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of 0.74, 0.66, and 0.70 were attained, respectively (Table 4-1). The Confusion Matrix and 

the Receiver Operating Characteristic (ROC) were calculated for the test set. The test set 

has 70 samples where 35 samples belong to each of high and low symptom classes. The 

Confusion Matrix is shown in Figure 4-6-e; it shows that 0.74 of samples with high 

symptoms are predicted correctly as high symptoms samples. The ROC curve with Area 

Under the Curve (AUC) of 0.73 was achieved in the Symptoms-CNN model as illustrated 

in Figure 4-6-f.  

4.3.1.2 ResNet-18 models evaluation 

Two approaches were considered with ResNet-18 pretrained model. The first approach 

where the ResNet-18 model was used as a feature extractor, resulted in accuracy scores of 

0.62, 0.55, and 0.5 for the train, validation, and test sets, respectively. For the test set, 

precision, recall, and F1-score values of 0.5, 0.54, and 0.52 were attained as given in Table 

4-1. The fine-tuned ResNet-18 demonstrated improved classification scores, with values 

of 0.66, 0.68, and 0.66 achieved for classification accuracy in the train, validation, and test 

sets, respectively. Precision, recall, and F1-score achieved values of 0.74, 0.47, and 0.58 

respectively, as shown in Table 4-1. The confusion matrix for the fine-tuned model is 

illustrated in Figure 4-6-a. The ROC curve, depicted in Figure 4-6-b, indicates an AUC of 

0.68 for the fine-tuned ResNet-18 model. 

4.3.1.3 ResNet-34 model evaluation 

Pretrained ResNet-34 models were evaluated in terms of accuracy, precision, recall, and 

F1-score. The accuracy scores for the train, validation, and test sets were 0.65, 0.6, and 

0.54 in the first approach, which used the ResNet-34 model as the feature extractor. A value 

of 0.56 was attained across all three metrics of precision, recall, and F1-score in the test 

set. The second approach exhibits higher classification performance, with accuracy scores 

of 0.9, 0.70, and 0.71 achieved for the training, validation, and test sets, respectively. In 

Table 4-1, precision, recall, and F1-score metrics are reported for the test set as 0.74, 0.69, 

and 0.71, respectively. Figure 4-6-c presents the confusion matrix for the two methods. The 

fine-tuned ResNet-34 has an AUC of 0.73 according to the ROC curve shown in in Figure 

4-6-d. The classification evaluation metrics for all symptoms models are reported in Table 

4-1. 
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Table 4-1: Symptoms' models classification metrics.  

Evaluation 

Metrics  

ResNet-18 

“Feature 

extractor” 

ResNet-18 

“fine-tuned” 

ResNet-34 

“Feature 

extractor” 

ResNet-34 

“fine-tuned” 

Symptoms-

CNN 

Accuracy  0.50 0.66 0.54 0.71 0.70 

Precision  0.5 0.74 0.56 0.74 0.74 

Recall 0.54 0.47 0.56 0.69 0.66 

F1-score 0.52 0.58 0.56 0.71 0.70 

AUC 0.51 0.68 0.55 0.73 0.73 

Training 

epochs 

20 epochs 16 epochs 38 epochs 13 epochs  139 epochs 

Training 

time  

1 min 4 min 5 min  5 min 13 min + 5 

hours 

optimization 

 

 
 

 

(a) (b) 
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(c) (d) 

 
 

(e) (f) 

Figure 4-6: Confusion Matrix and ROC curve for symptoms models: (a) fine-tuned ResNet-18 

Confusion Matrix, (b) fine-tuned ResNet-18 ROC curve, (c) fine-tuned ResNet-34 Confusion 

Matrix, (d) fine-tuned ResNet-18 ROC curve, (e) Symptoms-CNN Confusion Matrix, (f) 

Symptoms-CNN ROC curve. 

4.3.2 Exacerbation Detection Evaluation  

4.3.2.1 Exacerbation-CNN model evaluation 

The Exacerbation-CNN model was evaluated in terms of accuracy score, Confusion Matrix 

and ROC curve. The model’s classification accuracy scores in training, validation and 

testing sets are 0.84, 0,76, and 0.75, respectively. Precision, recall, and F1-score were used 

to evaluate model classification performance. As shown in Table 4-2, values of 0.72, 0.82, 
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and 0.77 were achieved for precision, recall, and F1-score, respectively. The confusion 

matrix for the test set is shown in Figure 4-7-e, where the number of samples in the test sets 

is 56 samples (28 samples for each of the low and high risk categories). The confusion 

matrix shows that 23 out of 28 samples were correctly identified as high exacerbation risk, 

and only 5 samples were misclassified as low exacerbation risk. Figure 4-7Figure 4-7-f 

shows the ROC curve for the Exacerbation-CNN model. The model achieved an AUC of 

0.78 in the test set.  

4.3.2.2 ResNet-18 models evaluation 

The accuracy scores for the train, validation, and test sets were 0.71, 0.62, and 0.62 in the 

first approach, which used the ResNet-18 model as the feature extractor. Precision, recall, 

and F1-score values for the test set were 0.67, 0.5, and 0.57, respectively. With 

classification accuracy of 0.74, 0.76, and 0.76 in the train, validation, and test sets, 

respectively, the fine-tuned ResNet-18 showed improved classification scores. Precision, 

recall, and F1-score in the fine-tuned ResNet-18 were reported as 0.86, 0.64, and 0.73, 

respectively (Table 4-2). The Confusion Matrix for the fine-tuned ResNet-18 is shown in 

Figure 4-7-a. The ROC curve in Figure 4-7-b indicates that the AUC of the fine-tuned 

ResNet-18 is 0.83. 

4.3.2.3 ResNet-34 models evaluation 

In the first approach, which utilized the ResNet-34 model as a feature extractor, accuracy 

scores of 0.72, 0.64, and 0.6 were achieved for the train, validation, and test sets, 

respectively. As shown in Table 4-2, precision, recall, and F1-score values pertaining to 

the test set were calculated at 0.65, 0.46, and 0.54, respectively. In the fine-tuned ResNet-

43, values of 0.68, 0.71, 0.73 were achieved for model classification accuracy in train, 

validation, and test sets, respectively. Also, for the same test set, values of 0.76, 0.68, and 

0.72 were calculated for precision, recall, and F1-score, respectively. Figure 4-7-c shows 

the Confusion Matrix for the fine-tuned ResNet34 while the AUC of this model was 

calculated at 0.77, according to the ROC curve shown in Figure 4-7-d.  The classification 

evaluation metrics for all exacerbation models are illustrated in Table 4-2. 
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Table 4-2: Exacerbation detection models evaluation metrics 

Evaluation 

Metrics  

ResNet-18 

“Feature 

extractor” 

ResNet-18 

“fine-tuned” 

ResNet-34 

“Feature 

extractor” 

ResNet-34 

“fine-

tuned” 

Exacerbation-

CNN 

Accuracy  0.62 0.76 0.60 0.73 0.75 

Precision  0.67 0.86 0.65 0.76 0.72 

Recall 0.50 0.64 0.46 0.68 0.82 

F1-score 0.57 0.73 0.54 0.72 0.77 

AUC 0.62 0.83 0.61 0.73 0.78 

Training 

Epochs 

19 epochs 18 epochs 21 epochs 16 epochs 189 epochs 

Training 

Time  

1 min 3 min 2 min 5 min 21 min + 4 

hours 

optimization  
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 4-7: Confusion Matrix and ROC curve for the exacerbation models: (a) fine-tuned ResNet-

18 Confusion Matrix, (b) fine-tuned ResNet-18 ROC curve, (c) fine-tuned ResNet-34 Confusion 
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Matrix, (d) fine-tuned ResNet-18 ROC curve, (e) Exacerbation-CNN Confusion Matrix, (f) 

Exacerbation-CNN ROC curve. 

4.3.3 Evaluation of the GOLD2023 COPD Staging Model  

To evaluate the classification performance of the classification algorithm developed for the 

GOLD2023 COPD staging, we utilized samples from the test sets used to evaluate 

symptoms and exacerbation models, totaling 98 samples. These samples were distributed 

as follows: 35 samples for each of classes A and B, and 28 samples for class E of the GOLD 

2023 stages. The classification accuracy score was used as the evaluation metric. The 

classification performance is reported for models trained from scratch and the fine-tuned 

models ResNet-18 and ResNet34. Table 4-3 shows the accuracy score for all models’ 

configurations. This table shows that, using the Symptoms-CNN model for symptoms 

assessment and the Exacerbation-CNN model for exacerbation assessment achieved a 

classification accuracy score of 0.72. The fine-tuned Symptom ResNet-18 and 

Exacerbation ResNet-18 achieved classification accuracy of 0.70. A value of 0.73 was 

achieved when using the fine-tuned Symptom ResNet-34 and Exacerbation ResNet-34. 

The highest classification accuracy is 0.74, which was obtained by using Exacerbation 

ResNet-18 for exacerbation assessment, and Symptom ResNet-34 for symptoms 

assessment, these are the two models with the highest classification performance for 

exacerbation and symptoms, respectively.  

Table 4-3: GOLD2023 classification accuracy 

Models Configuration 
Accuracy score 

Exacerbation-CNN + Symptoms-CNN   
0.72 

Fine-tuned Exacerbation ResNet-18 + Symptom ResNet-18 
0.70 

Fine-tuned Exacerbation ResNet-34 + Symptom ResNet-34  
0.73 

Fine-tuned Exacerbation ResNet-18 + Symptom ResNet-34 
0.74 
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4.4 Discussion  

Deep learning of lung CT images has been applied to enhance COPD assessment. In this 

investigation, we developed a deep learning based classification algorithm in conjunction 

with the recently developed GOLD2023 staging system where a single lung 3D CT scan is 

used as input to predict the patient’s COPD stage. The algorithm utilizes two deep learning 

classifiers we developed to determine symptom’s severity and exacerbation. Different deep 

learning models have been developed to determine the severity of COPD symptoms. 

Among these models, the fine-tuned ResNet-34 exhibited the highest classification 

performance, followed by the Symptoms-CNN model. In the latter, the optimization of 

model hyperparameters, which was specifically carried out for COPD symptoms 

determination using limited lung CT data, allowed the model to achieve classification 

accuracy comparable to that of a prominent deep learning model pretrained with extensive 

medical datasets. 

For predicting the risk of future exacerbation, the fine-tuned ResNet-18 demonstrated the 

highest classification accuracy, followed by the fine-tuned ResNet-34 and Exacerbation-

CNN. While ResNet-18 and ResNet-34 were pretrained with extensive medical datasets, 

Exacerbation-CNN achieved comparable classification performance due to the 

optimization of model hyperparameters specifically for COPD exacerbation determination 

using lung the limited CT data. It is worth mentioning that while the optimized model 

achieved comparable performance to the pretrained models, it required more computational 

time and cost as shown in Table 4-2. As such, it is conceivable that both the Symptoms-

CNN and Exacerbation-CNN models can lead to substantially higher accuracy if they are 

trained using substantially larger subset of the COPDGene dataset.   

The higher recall of Exacerbation-CNN makes it more effective in identifying true 

positives, although it may result in more false positives. Fine-tuned ResNet18, on the 

other hand, excels in distinguishing between classes, as indicated by its higher AUC. 

However, in a medical diagnosis scenario, it is important to reduce false negatives as 

overlooking a positive case can have serious consequences if the disease progresses. 
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Therefore, even though Exacerbation-CNN has a lower AUC, its higher recall makes it 

more suitable for this task. 

It is worth noting that in the context of exacerbation determination, a deeper neural network 

does not always perform better. In fact, ResNet-18 was found to perform better than 

ResNet-34. This could be because the underlying pathology of exacerbation, which results 

from severe lung parenchyma destruction, is simple enough to be effectively determined 

by a relatively shallower neural network. The developed exacerbation models demonstrate 

overall higher classification performance compared to the symptom models. This, once 

again, could be attributed to the severity of lung parenchyma destruction being the primary 

cause of exacerbation. Lung CT scans, being highly detailed and capable of capturing 

structural abnormalities, may more effectively detect features indicative of exacerbation 

related pathologies, which often involves substantial lung tissue damage or inflammation. 

This emphasizes the importance of leveraging advanced imaging techniques like lung CT 

scans in developing accurate diagnostic models for COPD exacerbation. In contrary, the 

underlying pathologies of COPD symptoms are more complex, hence possibly requiring 

deeper neural networks in conjunction to larger training datasets. 

Combing the Symptoms-CNN Exacerbation-CNN models trained with a limited subset of 

the COPDGene dataset led to an overall accuracy of COPD stage determination of 0.72 

while the best accuracy score achieved through transfer learning was 0.74. While these 

accuracy scores are quite comparable, it is conceivable that training the Symptoms-CNN 

Exacerbation-CNN models using a substantially larger data subset may improve the 

accuracy substantially. Among previous different studies that used lung CT to assess the 

COPD severity, the binary 3D-CNN classifier trained with the PRM maps obtained from 

paired lung scans to classify subjects to COPD and non-COPD [8] achieved a classification 

accuracy 0.89. Moreover, the lung air model developed by Moghadas [17] classifies COPD 

subjects based on a previous four-class GOLD staging system designed using PFT data. 

That model achieved a classification accuracy of 0.84.  While both previous methods 

achieved high accuracy, it should be noted that they use paired 3D CT images pertaining 

to inhalation and exhalation phases in contrast to the proposed technique that uses a single 

3D CT scan which is more accessible in the clinic. Another classifier is the unsupervised 
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model of Li et al. [9] which achieved a classification accuracy of 0.66 for classifying COPD 

patients based on the risk of future exacerbation. 

Identifying the severity of COPD exacerbation using image information is crucial as not 

all patients who experience exacerbation visit the hospital while the tool used to measure 

COPD exacerbation is based on the history of visiting the hospital. The recent GOLD2023 

guidelines recommend classifying patients with COPD by the severity of their symptoms 

and exacerbations before recommending proper medications following these 

measurements. The recommendations aim at minimizing disease progression. To our 

knowledge, the proposed classification algorithm is the first classifier used to perform 

GOLD2023 COPD staging through inputting a single 3D CT scan. The developed 

algorithm can potentially serve as a valuable tool for identifying COPD stage/severity 

based on image data before devising a therapy plan.   

 

4.5 Conclusions  

A COPD GOLD2023 staging model was developed using 3D lung CT data in conjunction 

with deep learning. While sufficiently simple for clinical assessment of COPD, the 

GOLD2023 staging system can be used effectively for devising treatment. To develop the 

model, CNNs were developed and utilized along with lung CT scans at expiration phase to 

detect the two main predictors, symptom and exacerbation, that were then used for COPD 

staging. Five different CNNs were trained/fine-tuned to detect each of the predictors. For 

symptoms level determination, the Symptoms-CNN model was developed using residual 

blocks and model hyper parameters were optimized to obtain the model’s optimal 

parameters. Pretrained ResNet-18 and ResNet-34 were used following two approaches of 

feature extraction with and without and fine-tuning. Models obtained from both approaches 

were employed for symptoms detection. Symptoms-CNN and the fine-tuned ResNet-18 

were superior to the other approaches for detecting symptoms level. Similarly, the risk of 

future exacerbation was determined using five models, where four of them were the 

pretrained ResNet-18 and ResNet-34 employed in the same two approaches of feature 

extractors with and without fine-tuning. The Exacerbation-CNN model was developed 
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using residual blocks, with model hyperparameters optimized to obtain the optimal 

parameters for determining the risk of future exacerbation.  

The GOLD2023 classification model was developed by utilizing the models developed for 

symptoms and exacerbation determination. This classifier showed ability of effective 

COPD staging with reasonably high accuracy score of 0.74, hence holding the potential to 

be deployed in clinical settings for COPD assessment using image data. 
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Chapter 5  

5 « Summary, Conclusion, and Future Work» 

The overarching objective of this thesis is to leverage lung CT imaging in conjunction with 

deep learning techniques for assessing COPD. This framework utilizes two staging 

systems: the high-resolution eight-stage system and the recently introduced GOLD2023 

three-stage system. The models developed for classifying COPD according to these staging 

systems are detailed in Chapters 2, 3, and 4 of this thesis. Below, a summary and 

concluding remarks for each chapter are provided. 

 

5.1 Summary 

In Chapters 2 and 3, the focus was on training models to classify COPD using the eight-

stage COPD system while Chapter 4 delves explicitly into the GOLD 2023 three-stage 

COPD staging system. 

In Chapter 2, we employed the Neural Network (NN) approach in conjunction with 

features extracted from lung CT scans to develop a classification system founded on the 

eight-stage COPD system. Two sets of imaging features were derived: lung air volume 

features and COPD phenotypes features. The lung air volume features included three 

groups: lung volume variation features, inspiration and expiration air distribution features, 

and lung overall air distribution features. The phenotype features measured emphysema, 

air trapping, and function small airway disease (fSAD) using Parametric Response 

Mapping (PRM). Two NN models were developed for the eight-stage COPD classification 

system which we referred to as NN-CT and NN-Hybrid. The NN-CT model was trained 

solely using lung imaging features, while the NN-Hybrid model incorporated two 

additional features related to exacerbation frequency and symptom level.  

The eight-stage COPD system is based on the three severity factors of lung function, 

exacerbation frequency, and symptom level. As such, the NN-CT model essentially 

predicted the three severity factors before performing staging accordingly. In contrast, the 

NN-Hybrid model focused exclusively on predicting lung function, with exacerbation 



90 

 

frequency and symptom level provided as inputs. This decision was made because lung 

function assessment requires more time and effort to predict among the three severity 

factors, as it involves spirometry tests or radiologists to identify the severity from CT scans.  

The results revealed that the NN-CT model had a relatively low classification accuracy. It 

was noted that most misclassifications occurred among classes that shared severity factors. 

In order to enhance the model's performance, we proposed integrating exacerbation 

frequency and symptom level as supplementary inputs. This approach was tested on the 

NN-Hybrid model, which yielded a significantly higher classification accuracy of 0.88. 

The relatively low accuracy and high accuracy of the NN-CT and NN-hybrid models 

indicate that while CT image data was capable of capturing pulmonary function 

characterized by PFT accurately, it was incapable of capturing symptoms severity or 

exacerbation frequency accurately. This may have been achievable through the 

development of separate NNs to predict the latter two severity factors. 

Our contribution in Chapter 2 focused on the development of classification systems for the 

eight-stage COPD system employing the Neural Network (NN) approach. We explored 

two approaches: one utilizing only lung imaging features and the other incorporating 

additional features related to exacerbation frequency and symptom level. Both approaches 

required paired lung CT scans for feature extraction and model development. 

In Chapter 3, we utilized the Convolutional Neural Network (CNN) approach for COPD 

eight-stage classification, presenting two CNN models: 3D-CNN and 3D-CNN-Hybrid. 

The 3D-CNN model used only lung CT scan data as input, while the hybrid model 

integrated additional features related to symptom level, exacerbation frequency, and lung 

CT scan data. Consequently, the 3D-CNN model predicted the three severity factors and 

performed eight-stage classification accordingly, whereas the convolutional layers in 3D-

CNN-Hybrid focused exclusively on predicting lung function. In addition to these models, 

a transfer learning approach was employed for the eight-stage COPD classification. State-

of-the-art architectures ResNet-18 and ResNet-34 were utilized, and the models were fine-

tuned with training data to perform the classification. 

Out of the four CNN models developed for eight-stage COPD, the 3D-CNN_Hybrid model 

achieved the highest classification accuracy of 0.8. Although the other three models did 
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not achieve high classification results, they still provided valuable information. These 

models achieved accuracy levels approximately 4 to 5 times better than random guessing 

in an eight-class classification. Once again, the observations of the classification models 

developed in this chapter indicate that the developed single CNN was incapable of 

capturing symptoms severity or exacerbation frequency accurately as well as lung function 

through the lung CT data. This may have been achievable through the development of 

separate NNs to predict the latter two severity factors. 

Our contribution in Chapter 3 focuses on utilizing the Convolutional Neural Network 

(CNN) approach for COPD eight-stage classification, employing either single lung CT 

scans at the expiration phase or integrating additional features related to symptom level 

and exacerbation frequency. Additionally, we incorporated transfer learning approach for 

eight-stage COPD classification, leveraging the 3D versions of state-of-the-art 

architectures ResNet-18 and ResNet-34, fine-tuned with our training data to perform the 

classification. 

In Chapter 4, we applied the Convolutional Neural Network (CNN) approach to classify 

COPD based on the GOLD2023 staging system. CNN models were developed to predict 

the two severity factors essential for the GOLD2023 system: symptom severity and the risk 

of exacerbation. For symptom level prediction, Symptoms-CNN was developed using 

residual blocks with optimized model hyperparameters. Additionally, pretrained ResNet-

18 and ResNet-34 architectures were utilized in two approaches: feature extraction and 

fine-tuning. Similarly, we utilized five models, including four pretrained ResNet-18 and 

ResNet-34 models, to detect the risk of future exacerbation. These models were employed 

in two different ways: as feature extractors and with fine-tuning. We also developed the 

Exacerbation-CNN, which utilized residual blocks and optimized hyperparameters to 

detect future exacerbation risks. The GOLD2023 COPD classification algorithm was 

generated using the developed models for symptom and exacerbation detection. 

Among the different models developed for symptom detection and future exacerbation 

prediction, fine-tuned ResNet-34 exhibited the highest classification performance for 

detecting symptom severity, while fine-tuned ResNet-18 demonstrated the highest 

accuracy for predicting future exacerbation risk. The optimized symptom detection and 
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exacerbation prediction models achieved comparable performance to the pretrained models 

but required more computational time. 

In Chapter 4, we have three main contributions: Firstly, we utilize the Convolutional Neural 

Network approach to detect the risk of COPD exacerbation. Secondly, we employ the 

Convolutional Neural Network approach to detect the level of symptoms. Lastly, we utilize 

the two developed models for exacerbation detection and symptom detection to classify 

COPD based on the GOLD2023 staging system. 

 

5.2 Conclusions and Future Work 

Given that COPD staging systems require physicians to conduct two or three tests to devise 

an appropriate treatment plan, with available CT scans, the proposed deep learning models 

can be more effective as it eliminates the need for multiple tests and enables a more 

efficient and effective treatment plan. 

Our novel eight-stage classification models show promising potential in assessing lung 

function mainly based on image data, particularly the Hybrid models (NN-Hybrid and 

CNN-Hybrid), which achieved high classification performance by exclusively utilizing 

lung imaging information to assess lung function. This suggests that COPD patients may 

not have to undergo pulmonary function tests (PFTs) to determine the severity of their 

disease, as lung CT scans can automatically assess disease severity. Utilizing lung CT in 

evaluating lung function offers the advantage of accurately detecting the disease in its early 

stages and not being dependent on patient compliance. 

Comparing the NN-Hybrid and CNN-Hybrid in terms of classification performance, the 

NN-Hybrid achieved higher classification performance as it was trained with features 

extracted using lung imaging methods. However, it requires paired lung CT scans at 

inspiration and expiration breathing phases to extract these features. In contrast, the CNN-

Hybrid only requires a single lung CT scan at the expiration phase for classification. 

COPD assessments and treatment planning are mainly based on three severity factors: lung 

function, symptom severity, and the risk of exacerbation. In this thesis, we successfully 

developed models capable of predicting all three severity factors with reasonably high 
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performance; the symptom's severity and exacerbation risk have been predicted with 

different CNN models, while the lung function is implicitly predicted with the NN and 

CNN parts of the hybrid models, NN-Hybrid 3D-CNN-Hybrid. Predicting the severity of 

COPD exacerbation from images is crucial. Some patients may not visit the hospital despite 

experiencing exacerbation, while traditional methods for measuring COPD exacerbation 

rely on hospital visits. 

COPD staging systems have been created using these factors, with the eight-stage COPD 

system utilizing all three factors of COPD severity, while the GOLD 2023 staging system 

uses only symptom severity and exacerbation risk. As such, all eight staging models 

implicitly predict the three severity factors but to various accuracy levels. By utilizing 

specialized algorithms for lung imaging, the NN-CT model achieved superior classification 

performance compared to other CNN models trained exclusively on image data. 

Additionally, the NN-Hybrid model delivered the highest classification performance in 

comparison to all models, utilizing both solely image data and image data with additional 

features as input. The algorithms used to extract features in NN-CT and NN-Hybrid models 

integrate both image information and physics-based knowledge. Specifically, they 

incorporate the concept of tissue incompressibility and air exchange dynamics between the 

background air and lung air to extract lung air features. By combining these principles, the 

algorithms aim to capture essential aspects of lung physiology and pathology, enhancing 

the models' ability to extract relevant information from CT scans for accurate assessment 

of lung function and pathology. 

Transfer learning has proven to be an effective technique for computer vision tasks, as 

models trained with transfer learning demonstrate superior classification performance 

compared to models developed from scratch. In addition, fine-tuning time for transfer 

learning models is significantly shorter than for models undergoing hyperparameter 

optimization. It is worth noting that the pretrained models were initially trained with 

medical images, which made the source dataset similar to a great extent to the target 

dataset. This similarity likely contributed to the effectiveness of transfer learning in this 

context, allowing for efficient knowledge transfer from the source domain to the target 

domain, ultimately improving model performance. 
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There were some limitations to our study: 

• COPDGene, being conducted across multiple clinical centers, resulted in CT 

scanner heterogeneity, with varying models and manufacturers. Although 

protocols were designed to minimize this variability, it is possible that slight 

discrepancies in quantitative imaging measurements may have arisen as a result.  

• Another limitation was related to the dataset is that PFT may not be sensitive 

enough to identify early stage lung pathology. To enhance the accuracy of lung 

function prediction models utilizing imaging data, a possible solution is to conduct 

a thorough review of lung CT scans for any signs of lung pathology prior to model 

training. This approach could enable the models to detect even the most subtle lung 

abnormalities and significantly improve their sensitivity in predicting lung 

function. It is an area that warrants further research and attention. 

For future works: 

• Re-developing hybrid models using the CNN models developed for detecting 

symptom levels and exacerbation severity, instead of relying on clinical data 

features. This approach allows us to create fully automated models that are solely 

based on image data, which eliminates the need for separate tests to evaluate 

symptoms or exacerbation severity. By integrating these CNN-based assessments 

directly into the hybrid models, we can simplify the COPD assessment process, 

potentially improving efficiency and accuracy in diagnosis and treatment 

planning. 

• A large training dataset is always beneficial in deep learning, and our developed 

models could be further improved by utilizing more samples. Increasing the size 

of the training dataset can enhance the models' ability to learn complex patterns 

and generalize well to unseen data. With a larger and more diverse dataset, our 

models may capture a broader range of variations and nuances present in lung 

imaging data, leading to improved performance and robustness. Therefore, 

incorporating a larger number of samples in future iterations of our models can 
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contribute to their continued advancement and refinement for a more accurate and 

reliable assessment of lung function and pathology. 
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Appendices 

Appendix A: St. George’s Respiratory Questionnaire (SGRQ) 
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Here is a list of other activities that your respiratory problems may prevent you from doing.
(You do not have to check these, they are just to remind you of ways your shortness of breath
may affect you.)

Going for walks or walking the dog

Doing activities or chores at home or in the garden

Sexual intercourse

Going to a place of worship, or a place of entertainment

Going out in bad weather or into smoky rooms

Visiting family or friends or playing with children

Please write in any other important activities that your respiratory problems may stop you from
doing.

42.  Now please check the box (one only) that you think best describes how your respiratory
       problems affect you.

It does not stop me from doing anything I would like to do

It stops me from doing one or two things I would like to do

It stops me from doing most of the things I would like to do

It stops me from doing everything I would like to do

COPDGene St. George's Respiratory Questionnaire: 30 October 2007
Page 6 of 6

Thank you for completing this questionnaire. Before you finish, would you please make sure that
you have answered all the questions?

Section 8

Copyright reserved
P.W. Jones, PhD FRCP
Professor of Respiratory Medicine,
St. George's University of London,
Jenner Wing,
Cranmer Terrace,
London SW17 ORE, UK.

COPDGene ID

7144

7144
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Appendix B: Modified Medical Research Council) Dyspnea Scale 
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