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Abstract

Polyvinyl alcohol (PVA) is a hydrophilic, biocompatible polymer which can be made into

physically cross-linked hydrogels by freezing and thawing PVA solution. These hydrogels

can be made with anisotropic mechanical properties closely matching those of porcine

aorta, making them a promising material for producing artificial heart valves and heart

valve stents.

Small- and ultra small-angle neutron scattering has been used to study the structure of

isotropic and anisotropic PVA hydrogels at length-scales of 2 nm to 10 µm. By supplement-

ing the neutron data with data from atomic force microscopy, a large range of length-scales

have been probed, within which structural changes responsible for bulk anisotropy occur.

The gel is modelled as interconnected PVA blobs of size 20 to 50 nm arranged in fractal

aggregates extending to micrometers or tens of micrometers. Bulk mechanical anisotropy

appears to be due to the alignment of blobs and connections between blobs.

To further understand the connection between structure and bulk mechanical proper-

ties, the uniaxial extension behaviour of isotropic PVA hydrogels was modelled using the

3-chain and 8-chain models, and anisotropic versions of the models were developed for

modelling the behaviour of anisotropic PVA hydrogels. The mechanical models are com-

patible with the structural model described above. The models show that the most highly

extended strands dominate the entropy and that there are more dominant strands aligned in

the direction for which the gel is strongest than in the other directions.

Nanostructures can be used to reinforce materials, such as PVA hydrogels, providing
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a new method to alter the properties of materials. The spider mite genome was recently

sequenced, possibly allowing for spider mite silks with bioengineered properties and new

polymer-silk nanocomposite materials. Despite this progress, little is known about the

properties of natural spider mite silks. The fibres have diameters of tens of nanometres in

comparison to typical spider silk fibres with diameters of several microns. 3-point bending

tests were performed with an atomic force microscope to determine the mechanical prop-

erties of single spider mite fibres and a new model which accounts for bending, stretching,

and an initial tensile stress was developed. Adult and larval fibres have Young’s moduli of

24 ± 3 GPa and 15 ± 3 GPa, respectively. Both adult and larval fibres have an estimated

ultimate strength of 200–300 MPa and a toughness of order 9 MJ/m3.

Keywords: polymer, polyvinyl alcohol, hydrogel, anisotropic, soft tissue, neutron scat-

tering, small-angle neutron scattering, ultra small-angle neutron scattering, atomic force

microscopy, mechanical properties, spider mite, silk, nanofibre, modulus, ultimate strength,

toughness
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Chapter 1

Introduction

1.1 Motivation

The human body is a marvel of evolution, and its complexity and robustness are aston-

ishing, but it has limitations. For instance, our bodies cannot consistently eliminate and

recover from all infections and diseases, and cannot fully repair all types of tissue damage

caused by injury. These limitations are so pervasive that in Canada in 2008, each Canadian

had an average of five to six consultations with doctors during the year and total health-

care expenditure was 10.4% of the gross domestic product [1]. The natural sciences and

engineering provide materials, such as hydrogels, which are used for diagnosis, drug deliv-

ery, and tissue repair, helping medicine to achieve its goal of improving our longevity and

quality of life.

Hydrogels are viscoelastic solids with cross-linked networks, commonly comprised of

proteins or polymers, that are swollen with water. The vast number of proteins and poly-

mers capable of forming hydrogels yields many materials which are useful to medicine and

engineering. In medicine, hydrogels are used for testing and calibrating medical imaging

devices, for delivering drugs, and for aiding healing and tissue repair.

Polyvinyl alcohol (PVA) is a biocompatible polymer that has been used to make hy-

1
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drogels for many medical applications. PVA can be made into a hydrogel by dissolution

in water and cross-linking to create a polymer network. PVA is very hydrophilic and as a

result its hydrogels exhibit a high degree of swelling and can contain greater than 90% w/w

water. Cross-links may be chemical or physical. Physically cross-linked hydrogels are gen-

erally the most biocompatible because they are free of residual cross-linking agents. One

promising physically cross-linked PVA hydrogel is made by freezing and thawing PVA so-

lution. During the freeze/thaw thermal cycle, formation of PVA crystallites is induced as

the concentration of PVA increases in the spaces between ice crystals. The crystallites act

as cross-links and are essentially permanent at physiological temperatures. This particular

PVA hydrogel is significant because the mechanical properties are similar to those of soft

biological tissue. The mechanical properties of this hydrogel can be controlled by changing

the PVA concentration, the PVA molecular weight, the time held frozen during a thermal

cycle, the thawing rate, and the number of thermal cycles [2–4].

The ability to control mechanical properties is critical for many applications. For in-

stance, compliance mismatch between the the aortic root and an artificial heart valve can

lead to tissue fatigue and premature failure [5–8]. Cardiovascular tissue exhibits nonlinear

elastic behaviour due to strain stiffening and is anisotropic. With suitable thermal cycle

parameters, PVA hydrogels can be made to match the nonlinear mechanical properties of

porcine aorta [4]. Further, by producing a one-cycle hydrogel in the form of a cylindrical

shell, stretching the hydrogel over a cylinder with larger diameter, and subjecting the hy-

drogel to at least one additional thermal cycle, it is possible to produce an anisotropic PVA

hydrogel whose longitudinal and axial tensile properties simultaneously match those of

porcine aorta [9]. Therefore, the material is a good candidate for producing cardiovascular

prosthesis such as aortic stents.

Greater variety and control of mechanical properties can be obtained by reinforcing

PVA hydrogels with, e.g., bacterial cellulose nanofibres, hydroxyapatite, or clay nanopar-

ticles [10–16]. Spider mite silk is another biocompatible material which may be useful
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for creating new nanocomposite materials, but whose mechanical properties have not been

characterized. In order to develop new composite PVA materials, it is important to under-

stand both the microstructure and the relationship between structure and bulk properties of

PVA hydrogels, to determine the mechanical properties of the reinforcing material, and to

understand the interaction between the polymer network and the reinforcing material.

1.2 Objective

The overall goal of this research is to characterize the microstructure of PVA hydrogels, to

make a quantitative connection between microstructure and bulk properties of PVA hydro-

gels, and to measure the mechanical properties of silk nanofibres which have potential use

in biomedical engineering.

The specific objectives are:

1. To characterize the microstructure of isotropic and anisotropic PVA hydrogels using

small-angle neutron scattering (SANS), ultra small-angle neutron scattering (USANS),

and atomic force microscopy (AFM);

2. To identify the structural features that determine bulk mechanical properties includ-

ing anisotropy of the modulus;

3. To further our understanding of the link between structure and bulk mechanical prop-

erties by developing a model of the bulk mechanical properties which is motivated

by the observed microstructure; and

4. To measure the mechanical strength of silk nanofibres using AFM.
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1.3 Thesis Organization

Chapter 2 gives a review of literature relevant to this thesis. The properties of hydrogels

useful to medicine are discussed. Afterwards, examples of hydrogels used for medical

diagnosis, for drug delivery, and for tissue repair are reviewed. Next, the foundation of

this work is established by reviewing available literature on the structure and mechanical

properties of PVA hydrogels. Finally, the experimental techniques and theoretical concepts

used in this study are described.

Chapter 3 presents SANS, USANS, and AFM experiments and modelling of isotropic

and anisotropic PVA hydrogel structure. The structural features responsible for anisotropy

are discussed. The content is adapted from a published journal article [17].

Chapter 4 presents a mechanical model, motivated by the structural model developed

in Chapter 3, which explains the observed stress versus strain behaviour of isotropic and

anisotropic PVA hydrogels. The content is adapted from a manuscript which is being pre-

pared for publication.

Chapter 5 presents a model for determining the mechanical properties of pretensioned

nanofibres from three-point bending tests. The model is applied to AFM measurements of

spider mite silk nanofibres to determine the Young’s modulus and to estimate the ultimate

strength and toughness of the fibres. The content is adapted from a manuscript which is

being prepared for publication.

Finally, Chapter 6 summarizes the results of the presented research and discusses how

they address the objectives outlined above and how the results impact the relevant fields.

Recommendations for future work are made.
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Chapter 2

Literature Review

2.1 Hydrogels

2.1.1 Diverse Compositions and Properties

Hydrogels can be made from a large number of natural and synthetic polymers. Some

biocompatible natural polymers are chitosan, polylysine, collagen, fibrin, dextran, and

aragose, while some biocompatible synthetic polymers are polyethylene glycol, polylac-

tic acid, polyacrylamide, polyvinyl acetate, and polyvinyl alcohol [1].

Hydrogels may be chemically cross-linked through covalent bonds or physically cross-

linked by entanglements, ionic bonding, hydrogen bonding, or crystallite formation. Typ-

ically, physical gelation is reversible and may be controlled with temperature, pH, or ion

concentration [1–3].

2.1.2 Applications in Medicine

Diagnosis and Dosimetry

Magnetic resonance and ultrasound imaging systems are commonly used for imaging anatomic

structure and function. Accurate imaging is always desired, and in some cases, it is crit-

7
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ically important. For instance, the location and shape of tumours must be accurately de-

termined prior to radiation therapy. The dose received by the tumour must be maximized

and the dose received by vital organs and neighbouring healthy tissue must be minimized.

The water content, density, and bulk modulus of thermally cycled polyvinyl alcohol (PVA)

hydrogels are similar to those of biological tissue, giving them a proton density suitable for

magnetic resonance imaging (MRI) phantoms and a speed of sound suitable for ultrasound

phantoms [4, 5].

Assisted by the author, Tamie Poepping’s ultrasonics group at The University of West-

ern Ontario, Canada produced PVA hydrogel ultrasound phantoms for field-interaction

measurements. The moulds used to produce the phantoms are shown in Fig. 2.1. Fur-

ther, metallic implants and prostheses pose a threat to patient safety and imaging accuracy

in MRI and x-ray scanners [6]. The author assisted Prof. Blaine Chronik’s magnetic reso-

nance systems development lab with the production of PVA hydrogel MRI phantoms used

to measure image artifacts caused by aluminum, stainless steel, and titanium as shown in

Fig. 2.2.

Proliferation of radiotherapy techniques for specific medical applications has created

demand for specialized dosimeters which can be used to verify the dose of photons, neu-

trons, or ions. Radiation-sensitive polymer gels provide a method for three-dimensional

dose verification.

Boron neutron capture therapy (BNCT) is an experimental treatment for head and neck

cancers. Boron-10 is tagged with a chemical that preferentially binds to tumour cells and

injected into a patient. The patient is irradiated with neutrons which react with the boron

and produce lithium-7 nuclei and alpha particles which are intended to kill nearby cancer

cells. Methacrylic and ascorbic acid in gelatin initiated by copper (MAGIC) gels may be

used as dosimeters for BNCT. A hydrogel gel phantom put into the neutron beam in place

of the patient is irradiated and dose is determined by measuring the decay rate of transverse

relaxation with magnetic resonance imaging (MRI) [7].
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Figure 2.1: Moulds used to produce PVA hydrogel ultrasound phantoms
for Prof. Tamie Poepping’s ultrasonics group at The University of Western
Ontario, Canada.

Intensity-Modulated Radiation Therapy (IMRT) is a promising radiotherapy technique

that provides higher precision than older radiotherapy techniques. Treatment of tumours

near the spinal cord or vital organs is often deemed too dangerous, but IMRT may allow

treatment in some of these cases. PVA hydrogels containing ferrous sulfate are suitable

for measuring gamma irradiation from IMRT and dose may be measured using MRI or

spectrophotometry on the irradiated gel [8].
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a) b)

c) d) e)

Figure 2.2: PVA hydrogel MRI phantoms used to measure image artifacts
caused by metals commonly used in implants and prostheses. The top row
shows a) a photograph and b) a MRI image of a reference phantom with-
out metal. The bottom row shows MRI images of phantoms containing c)
aluminum, d) stainless steel, and e) titanium. MRI images courtesy of the
B. A. Chronik group, The University of Western Ontario, Canada.

,
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Drug Delivery

An ideal drug delivery system will deliver a drug at a predictable rate for a known length

of time. Further, the rate of drug release should remain in the therapeutic range for as long

as possible. A release rate that is too high can be toxic and one that is too low will be

ineffective. Polymer hydrogels are useful because the polymer, the molecular weight, the

degree of cross-linking, the porosity and, and the connectivity of pores can all be modi-

fied to select the desired diffusive properties. Many biocompatible hydrogels with suitable

diffusive properties are already used in commercial drug delivery products. These include

topical, oral, injectable, implantable, anal, and vaginal drug delivery systems [9].

Wound Healing and Tissue Repair

Hydrogels are used for reasons other than their desirable diffusive properties. One example

is a wound dressing material. Hydrogel wound dressings have high water content and can

keep a wound moist for a long time. Their flexibility allows them to stay firmly in contact

with the wound, preventing bacteria from reaching the wound. Further, the aqueous com-

ponent may be loaded with dissolved antibiotics and growth factors that that will prevent

infection and speed healing and they can be made with diffusive properties suitable for

nearly uniform release of the drugs to the wound over time [9–11].

Hydrogels are also capable of acting as cell scaffolds for tissue regeneration. They

may contain live cells in addition to the growth factors used in wound dressings. To re-

pair internal tissues, injectable cell scaffolds are desirable. Numerous injectable hydrogels,

which are designed to cross-link after injection via either chemical or physical bonds, have

been developed [3, 12]. Some injectable hydrogel precursors begin to gel immediately af-

ter preparation, while others only gel in response to a change in pH or temperature after

injection [3].
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Tissue Augmentation and Replacement

In a few cases, hydrogels are used to augment healthy tissue. For example, silicone hy-

drogels are used to make commercially available contact lenses. They are desirable be-

cause they provide moisture to prevent the eye from drying, they allow oxygen to permeate

through the lens to the eye, they can be machined and polished into the desired shape, and

they are reasonably durable [13–15]. Hydrogels may even be used to replace damaged tis-

sue when repair is not possible. Substantial progress has been made towards producing

artificial cartilage which has compressive behaviour, durability, and lubrication similar to,

or better than, natural cartilage [16–19].

The thermally cycled PVA hydrogel introduced in Chapter 1 shows promise for use

as heart-valves when reinforced with bacterial cellulose (BC) fibres [20]. Recently, the

dynamics of a PVA-BC hydrogel trileaflet aortic heart valve were simulated using the finite

element method [21]. The simulated valve was found to behave very similarly to a natural

heart valve imaged with ultrasound at various stages of opening, as shown in Fig. 2.3.

A strong understanding of the structure of PVA hydrogels and the relationship between

structure and bulk mechanical properties will aid the development of prostheses such as

heart valves and aortic stents.

The structure of isotropic freeze-thaw PVA hydrogels has been studied by a variety of

techniques including neutron scattering, solid-state nuclear magnetic resonance, and confo-

cal laser scanning microscopy [22, 23]. Prior to the work presented here in Chapter 3, only

one study has looked at the structure of anisotropic PVA hydrogels. Millon et al. performed

small-angle neutron scattering (SANS) on anisotropic PVA hydrogels and determined that

anisotropy was not due to structural changes at the scale of tens of nanometres, but must

be due to changes at scales larger than 100 nanometres [24]. Much remains to be learned

about the structure of PVA hydrogels and its relationship to bulk elastic properties.
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Figure 2.3: Comparison of the finite element method results and the ul-
trasound images in support of the simulation in the opening phase: (a) the
initial state of opening phase; (b) the boomerang shape of the free edges
at the beginning of the opening phase; (c) the triangular shape of the free
edges; (d) the hexagonal shape of the free edges which closely match the ul-
trasound images. Reproduced from Mohammadi et al. [21] with permission
from Sage Publications.

2.2 Neutron Scattering

The neutron was predicted by Rutherford and reported by Chadwick in 1932. It has a

mass of approximately mn = 1.67 × 10−27 kg and a magnetic moment, but does not have

electric charge and its electric dipole moment is zero or negligibly small. As a result,

neutrons interact with the nuclei of atoms via the short-ranged nuclear force or dipole-

dipole interactions and do not interact significantly with electrons.

A thermal neutron is a neutron in equilibrium with room temperature surroundings.

From the equipartition theorem, we expect it to have, on average, a kinetic energy K of

K =
3
2

kBT ≈ 6 × 10−21 J ≈ 40 meV
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where kB = 1.38 × 10−23 J/K is Boltzmann’s constant and T is the temperature. At this

energy, the magnitude of the neutron’s velocity is

v =

√
2K
mn
≈ 2700 m/s.

The de Broglie wavelength of this thermal neutron, given by λ = h/mv, is 1.5 Å and is

the same order of magnitude as the interatomic spacings in crystals. Therefore, thermal

neutrons are good probes of structure at atomic scales.

Since the range of the nuclear force is small compared to the de Broglie wavelength of

the neutron, nuclei behave as point scatterers and neutrons scatter isotropically. The ease

with which neutrons scatter varies by nuclear species and depends on the cross-section, σs,

of the nuclei which can be thought of as the effective area presented by the nucleus to the

passing neutron. The cross-section is typically measured in barns where 1 barn = 10−28 m2.

Neutron scattering is ideal for studying opaque hydrogels. Such hydrogels cannot be

studied with light scattering, which requires high transmittance. Further, typical hydrogels

made with organic molecules are difficult to study with x-ray scattering because their low

atomic-number atoms provide low electron densities and poor electron density contrast.

Another advantage of neutron scattering is that hydrogen and deuterium nuclei have signif-

icantly different scattering cross-sections, so the contrast of scattering cross-sections can be

controlled by varying the ratio of hydrogen to deuterium in a sample. In hydrogels, contrast

between the cross-linked network we wish to investigate and the surrounding fluid is easily

achieved by substituting heavy water for regular water.

Structure is investigated using neutron scattering by measuring the differential scatter-

ing cross-section with a detector and finding a structural model whose calculated differ-

ential scattering cross-section best matches the observed scattering. The scattering cross-

section is calculated from the total number of neutrons scattered per second divided by the

total number of incident neutrons arriving per second. The differential scattering cross-
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section, dσs/dΩ, is the total number of neutrons scattered per second into the small solid

angle dΩ, also scaled by the incident neutron rate.

2.2.1 Scattering Theory

Scattered Intensity

Numerous textbooks on scattering theory are available and the notation can vary signifi-

cantly, especially between the x-ray and neutron scattering disciplines. The derivations and

notation used here are based on the clearly presented work of R.-J. Roe [25].

Neutrons of wavelength λ travelling in the positive x direction can be considered as

plane waves described by

A(x, t) = A0ei2π(νt−x/λ) (2.1)

where A0 is the amplitude and ν is the linear frequency. We now consider an incident wave

which scatters from a pair of identical nuclei, M and P, as shown in Fig. 2.4. The vector r

Q P

M N

x
y

r

S0

S

source

detector

Figure 2.4: Incident wave of neutrons scattered towards a detector by the
nuclei located at positions M and P.

defines the position of nucleus P with respect to nucleus M and unit vectors S0 and S define

the directions of the incident and scattered waves, respectively. Here, and in Chapters 3
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and 4, we only consider elastic scattering. In this case, the wavelength is constant and the

phase difference between two waves scattered from nuclei M and P is

∆φ =
2π
λ

(QP − MN) (2.2)

where QP−MN is the path length difference between the two waves. Using vector projec-

tions, we may rewrite Eq. 2.2 as

∆φ =
2π
λ

(S0 · r − S · r) . (2.3)

We define a scattering vector

s =
S − S0

λ
(2.4)

which, when substituted into Eq. 2.3 yields

∆φ = −2πs · r. (2.5)

An alternative definition of the scattering vector,

q = 2πs, (2.6)

is commonly found in the neutron scattering literature and will be used below and in Chap-

ters 3 and 4. Customarily, the scattering angle is defined to be 2θ. The definition of the

scattering vector and the scattering angle are shown in Fig. 2.5.

With these definitions, and recalling that S0 and S are unit vectors, the magnitude of the

scattering vector is

q = 2πs =
4π
λ

sin θ. (2.7)

We now endeavour to determine the sum of the waves scattered from nuclei M and P at
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S/λ

–S0/λ

s
2θ

Figure 2.5: Illustration of the scattering vector defined by Eq. 2.4 and the
scattering vector 2θ.

the detector. The spherical wave scattered by nucleus P is

AP(x, t) = A0bei2π(νt−x/λ) (2.8)

where b is called the scattering length of the nucleus. Since nuclei M and P are identical,

the wave scattered from nucleus M differs only in phase by the amount given by Eqs. 2.5

and 2.6, and has amplitude

AM(x, t) = A0bei2π(νt−x/λ)ei∆φ

= A0bei2π(νt−x/λ)e−iq · r. (2.9)

The sum of the amplitudes at the detector, A(x, t), is

A(x, t) = AP(x, t) + AM(x, t)

= A0bei2π(νt−x/λ)
(
1 + e−iq · r

)
.
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The intensity or flux of neutrons detected is given by

J = |A|2

= A(x, t)A∗(x, t)

= A2
0b2

(
1 + e−iq · r

) (
1 + eiq · r

)
.

The factors dependent on time and position have cancelled out and do not need to be con-

sidered hereafter. We redefine the amplitude with only the phase component as

A(q) = A0b
(
1 + e−iq · r

)
.

If we consider a collection of N identical scatterers at positions r j, the total amplitude

becomes

A(q) = A0b
N∑

j=1

e−iq · r j . (2.10)

It is often convenient to treat a sample as a continuous substance with a scatterer number

density of n(r) at position r. Using this definition, the number of scatterers in a volume dr

located at position r is n(r)dr and Eq. 2.10 may be written as

A(q) = A0b
∫

V
n(r)e−iq · rdr

where V is the volume of sample material exposed to the incident neutron beam. We

identify the scattered amplitude as being the Fourier transform of the number density of

scatterers. For a material comprised of more than one species of nuclei, the scattering

length b will vary with position. By defining a scattering length density distribution ρ(r) =

b(r)n(r), the scattered amplitude becomes

A(q) = A0

∫
V
ρ(r)e−iq · rdr. (2.11)
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Finally, the intensity normalized to the amplitude of the incident wave A0 is

I(q) =
1
A2

0

A(q)A∗(q)

=

∣∣∣∣∣∫
V
ρ(r)e−iq · rdr

∣∣∣∣∣2 . (2.12)

Since we detect only the magnitude squared of the amplitudes and cannot measure the

individual phases of scattered waves, we cannot invert Eq. 2.12 to determine the scattering

length density ρ(r) from the measured intensity. Therefore, in order to determine structure

from neutron scattering, it is necessary to make an educated guess of the scattering length

density, make a prediction for the scattered intensity, and compare the predicted intensity

to the measured intensity.

Form Factors and Structure Factors

For particulate samples, it is advantageous to calculate the scattered intensity from a sin-

gle particle before calculating the scattered intensity from an ensemble of particles. The

scattering from a single particle is called a form factor. As an example, consider a sphere

of radius R with uniform scattering length density ρ0. Rewriting Eq. 2.11 in spherical

coordinates, the amplitude of scattering from the sphere is

A(q) = ρ0

∫ 2π

Φ=0

∫ π

Θ=0

∫ R

r=0
e−iq · rr2 sin ΘdrdΘdΦ.

Choosing q to be aligned along the z axis, q · r = qr cos Θ and

A(q) = 2πρ0

∫ π

Θ=0

∫ R

r=0
e−iqr cos Θr2 sin ΘdrdΘ.
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If we let u = cos Θ,

A(q) = 2πρ0

∫ 1

u=−1

∫ R

r=0
e−iqrur2drdu

= 2πρ0

∫ R

r=0

e−iqr − eiqr

−iqr
r2dr

= 2πρ0

∫ R

r=0

eiqr − e−iqr

iqr
r2dr

= 4πρ0

∫ R

r=0

sin (qr)
qr

r2dr.

Integration by parts yields

A(q) = 3ρ0v
sin(qR) − qR cos(qR)

(qR)3

where v is the volume of the sphere. The form factor, or scattered intensity from one

particle, is

P(q) = |A(q)|2 = 9ρ2
0v2

[
sin(qR) − qR cos(qR)

]2

(qR)6 .

Once the scattering from a single particle is known, the scattering from a sample com-

prised of many particles may be found. If the sample is dilute and the positions of particles

are uncorrelated, the scattering from the sample is simply the number of particles exposed

to the incident neutron beam multiplied by the form factor of a single particle.

However, if the sample is not dilute and there is correlation between the positions of

the particles, interference of the waves scattered from individual particles must be taken

into account. The preferred method is to find a function f (r) such that the scattering length

density of the sample, ρ(r), can be expressed as the convolution of the scattering length

density of a single particle, ρ1(r), with the function f :

ρ(r) = ρ1(r) ∗ f (r).
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The Fourier transform of the convolution of two functions is the product of the individual

Fourier transforms of the functions. Therefore,

A(q) = P(q)S (q)

where the form factor P(q) is the Fourier transform of ρ1(r) and S (q), the Fourier transform

of f (r), is called the structure factor.

2.2.2 Small-Angle Neutron Scattering

Small-angle neutron scattering (SANS) provides information on structure at length-scales

of nanometres to hundreds of nanometres. Neutrons may be obtained from a spallation

source or from a fission reactor. In a typical instrument with a fission reactor neutron

source, neutrons are collimated in a neutron guide, passed through a velocity selector, and

further collimated before reaching a sample. The velocity selector truncates the distribution

of velocities to a narrow range about the chosen mean velocity. After scattering from

a sample, the neutrons enter a vacuum chamber and travel several meters to a detector

containing 3He gas. 3He gas has a high absorption cross-section for thermal neutrons. Upon

absorption, the helium nucleus and neutron become 3H and a proton which can be detected

in a proportional counter. To make efficient use of neutrons, an area detector is commonly

used to detect neutrons scattered at different angles simultaneously. A schematic diagram

of the NG-3 SANS instrument used in Chapter 3 is shown in Fig. 2.6 [26].

2.2.3 Ultra Small-Angle Neutron Scattering

The smallest angle a SANS instrument can measure is limited by its ability to differentiate

scattered neutrons from unscattered neutrons. To achieve smaller angles, the neutron beam

must be collimated to smaller cross-sectional areas and the detector must be moved farther

from the sample. In addition, spread of neutron wavelengths must be decreased by further
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Figure 2.6: A schematic diagram of the NG-3 30 m SANS instrument lo-
cated at the NIST, Gaithersburg, Maryland, USA. Reproduced from Glinka
et al. [26] with permission from the International Union of Crystallography.

reducing the range of neutron velocities. Reduced neutron flux, due to increased collima-

tion and reduced velocity spread, and space requirements make this approach impractical.

Double-crystal ultra small-angle neutron scattering (USANS) diffractometers such as

the BT-5 instrument at the NIST offer a better solution [27]. A schematic diagram of the

BT-5 instrument is provided by Fig. 2.7. Reflection of neutrons from a pair of perfect crys-

tals (the monochromator) provide a nearly monochromatic neutron beam because only the

neutrons meeting the Bragg condition pass through the instrument. The beam scatters from

the sample to another pair of perfect crystals called an analyzer. Only neutrons meeting

the Bragg condition of the analyzer are reflected to the detector. The sensitivity of Bragg

reflection to the incident angle of neutrons allows the instrument to measure the differen-

tial scattering cross-section with higher angular resolution and at smaller angles than is

possible in the SANS instrument described above.

2.3 Atomic Force Microscopy

The atomic force microscope was invented in 1986 by Binnig, Gerber, and Quate [28]. By

measuring extremely small deflections of a cantilever beam with a small effective spring

constant, the inventors suggested that forces as small as 10−18 N could be measured. In

http://journals.iucr.org/
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Figure 2.7: A schematic layout of the BT-5 perfect crystal diffractometer
located at the NIST, Gaithersburg, Maryland, USA. The dashed line indi-
cates the beam path. The main instrument components are: sapphire filter
(SF), pyrolytic graphite filter (GF), graphite premonochromator (PM), sili-
con monochromator (M), beam monitor (BM), sample changer (S), silicon
analyzer (A), transmission detector (TD), vibration isolation table (T), beam
apertures (AP), and the main detector (MD). Both MD and A are mounted
on precision slides, allowing placement of large ancillary equipment on a
hidden sample table. Reproduced from Barker et al. [27] with permission
from the International Union of Crystallography.

http://journals.iucr.org/


2.3. ATOMIC FORCE MICROSCOPY 24

practice, thermal noise limits the force resolution to values larger than 10−18 N [29, 30].

The original atomic force microscope proposed by Binnig et al. used a scanning tunnelling

microscope to measure the deflection of its cantilever while a modern atomic force micro-

scope measures deflections by detecting the displacement of a beam of laser light reflected

from the end of its cantilever, as illustrated in Fig. 2.8. A typical multipurpose atomic force

microscope can acquire force measurements with piconewton resolution.

In its most basic mode of operation, contact imaging, a cantilever with a sharp tip

is brought into contact with a sample positioned on top of a piezoelectric scanner. The

sample is raster scanned line-by-line over a rectangular area under the cantilever tip with

the scanner. Cantilever deflections are measured as a difference in voltage between the top

and bottom halves of a photodetector. A proportional-integral controller adjusts the height

of the sample to maintain a constant cantilever deflection. By recording the vertical position

of the piezoelectric scanner as a function of the horizontal coordinates, a topographical map

of the sample is constructed. Unlike scanning tunnelling microscopy (STM), atomic force

microscopy (AFM) maybe be used to image both conducting and insulating materials, in a

variety of environments.

Sometimes, as is done in Chapter 5, AFM is used to make force measurements. Force

measurements may be repeated at a single location or performed at many locations over

an area to construct a so-called force volume image. During each force measurement, the

sample is moved up and down under the cantilever, bringing it in and out of contact with the

tip of the cantilever, and the cantilever deflection is recorded as a function of the scanner’s

vertical position. The deflection of the cantilever is converted to force by multiplying by

the effective spring constant of the cantilever. Additionally, deformations of the sample can

be found by subtracting the cantilever displacement from the vertical displacement of the

scanner, allowing measurement of the mechanical properties of a variety of samples [31].

AFM has been used to determine the mechanical properties of nanofibres, nanowires,

and nanotubes such as bacterial cellulose[32], carbon nanotubes [33, 34], gold and silicon
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Figure 2.8: Schematic of an atomic force microscope. A piezoelectric
scanner moves a mounted sample both horizontally and vertically beneath
a mounted cantilever. Forces between the tip of the cantilever and the sam-
ple cause the cantilever to deflect. A laser beam, reflected from the end
of the cantilever to a four-part area detector, allows vertical deflection to
be recorded via the voltage signal (A+B)−(C+D) and torsion via the signal
(A+C)−(B+D). A computer sends instructions to a hardware control unit
and receives and records force imaging data.
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nanowires [35], silicon dioxide nanowires [36], and zinc oxide nanowires [37]. In addition

to measuring mechanical properties, AFM can measure magnetic force, friction, protein

folding, and receptor-ligand interactions [31].

2.4 Equilibrium of Beams and Fibres

When external forces, bending moments, or distributed loads act on a beam, the beam will

deform to a new equilibrium shape for which internal stresses balance the external stresses.

Consider a straight beam made of a linearly elastic material with no external stresses which

is parallel to the x axis when in equilibrium. Upon application of external stresses which

cause the beam to bend to a new equilibrium configuration, small elements of the beam

can be described by their position in x and y and their radius of curvature R as shown in

Fig. 2.9. The arc length, ds, of the element is

ds = Rdθ

and the curvature, κ, of the element is

κ =
1
R

=
dθ
ds
. (2.13)

The slope of the element is

dy
dx

= tan θ. (2.14)

We now consider only very small deflections, such that that θ � 1, with the goal of

solving for the beam displacement y(x) in terms of external forces, bending moments, and

distributed loads. In the limit of very small deflections, ds ≈ dx and tan θ ≈ θ. Equa-
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Figure 2.9: Small element of a deflected beam or fibre. The element has
length ds = Rdθ where R is the radius of curvature of the element.

tions 2.13 and 2.14 may be rewritten as

κ =
1
R
≈

dθ
dx

(2.15)

and

dy
dx
≈ θ, (2.16)

respectively. Substitution of θ from Eq. 2.16 into Eq. 2.15 yields

κ ≈
d2y
dx2 . (2.17)
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2.4.1 Bending Moments

We first consider the effect of bending moments M on the beam element in Fig. 2.10.

The moments induce stresses which compress and stretch the material above and below a

M M
σxσx

neutral axis

y

x

Figure 2.10: Small element of a beam bent by bending moments M at each
end. The beam has a neutral axis whose length is unchanged by the mo-
ments. The bending moments create stresses which compress the material
above the neutral axis and stretch the material below the neutral axis.

neutral axis whose length remains unchanged. Here, y is the position across the diameter

of the fibre, measured with respect to the neutral axis. Before deformation, the length of

the element is dx at all positions y within the element. After deformation, the length of the

element varies vertically, becoming shorter where the material is compressed and longer

where the material is stretched. The length at position y equals the arc length at position y

and is given by ds = (R− y)dθ since R− y is the radius of curvature at position y. The strain

in the x direction is

εx =
ds − dx

dx

=
(R − y)dθ − dx

dx
.
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Assuming small deformations, Eq. 2.15 applies and

εx =
(R − y)dx

R − dx
dx

=
R
R
−

y
R
− 1

= −
y
R
. (2.18)

The stress in the x direction is

σx = Eεx

= −
Ey
R

= −Eκy (2.19)

where E is the Young’s modulus of the material.

There is no net force acting on the ends of the beam element, so the stress must satisfy

∫
A
σxdA = 0 (2.20)

where A is the cross-sectional area of the beam. For symmetric cross-sections such as

rectangles and circles, Eq. 2.20 requires that the neutral axis passes through the centre of

the beam.

In order to relate the stress σx to the bending moment M, we recognize that the moment

acts to rotate the end of the fibre about the axis defined by the intersection of the cross-

section and the neutral axis. The elemental bending moment dM acting on area element

dA located at position y above or below the neutral axis is

dM = −σxydA.
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Integration over the entire cross-sectional area A yields the total bending moment

M = −

∫
A
σxydA.

Upon substitution of Eq. 2.19,

M =
E
R

∫
A

y2dA

=
EI
R

(2.21)

where we have defined the area moment of inertia

I =

∫
A

y2dA (2.22)

which depends on the shape of the beam’s cross-section. We rearrange Eq. 2.21 as

κ =
1
R

=
M
EI
,

equate the result with Eq. 2.17, and obtain

d2y
dx2 ≈

M
EI
. (2.23)

The equilibrium shape of a beam deformed by moment M acting on its ends may be found

from Eq. 2.23, provided that the deformation remains small.

2.4.2 Shear Forces and Distributed Loads

In the final case, we consider a small beam element subjected to moments M, shear forces

V , and a distributed load q (force per unit length) as shown in Fig. 2.11. The moments

and shear forces may differ between the left and right edges due to stresses internal to the
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M V

V + dV

M + dM

dx

q

Figure 2.11: Illustration, used for finding equilibrium of torques and forces,
of bending moments M and M + dM (blue), shear forces V and V + dV

(green) and a distributed load q (orange) acting on a small element of a
beam or fibre.

element. In order for the element to be in equilibrium, the sum of forces acting in the

vertical direction must be zero and the sum of moments acting about a rotation axis in the

element must be zero. Taking the up direction as positive, the sum of vertical forces is

V − qdx − (V + dV) = 0

qdx + dV = 0

or

dV
dx

= −q. (2.24)

If clockwise moments are positive, the sum of the moments acting on a rotation axis on the

left hand edge is

M + qdx
(
dx
2

)
+ (V + dV)dx − (M + dM) = 0.
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In the limit that dx goes to zero, dV and dM also go to zero. Therefore, products of

differentials may be discarded. The remaining terms are

M + Vdx − M − dM = 0

or

dM
dx

= V. (2.25)

Differentiation of Eq. 2.23 and substitution of Eq. 2.25 yields

V =
d
dx

(
EI

d2y
dx2

)

or

V = EI
d3y
dx3 (2.26)

when both E and I are uniform along the length of the beam. Differentiation of Eq. 2.26

and substitution of Eq. 2.24 yields

q = −
d2

dx2

(
EI

d2y
dx2

)

or

q = −EI
d4y
dx4 (2.27)

in the case of constant E and I.

In summary, Eqs. 2.23, 2.26, and 2.27 define the equilibrium shape of a beam, fibre,

or other structural element subjected to any combination of a distributed load, bending
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moments at its ends, and shear forces at its ends, provided that the deflections are small.

These equations form the basis for the model used to determine the mechanical properties

of silk fibres from AFM measurements in Chapter 5.
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Chapter 3

Characterization of Anisotropic

Polyvinyl Alcohol Hydrogel by Small-

and Ultra Small-Angle Neutron

Scattering

3.1 Introduction

Polyvinyl alcohol (PVA) hydrogel is a hydrophilic, biocompatible material that has re-

ceived recent attention for a variety of applications. For instance, physically cross-linked

PVA hydrogels can be tailored to have mechanical properties similar to those of cardio-

vascular tissue [1–5], raising the possibility of its use in cardiovascular prostheses with a

reduced risk of failure due to compliance mismatch [6, 7].

Physically cross-linked PVA hydrogels are formed from PVA solution during freeze/thaw

thermal cycling or quenching. The mechanism by which PVA solution gels during thermal

Reprinted with permission from Hudson, S. D. et al. “Characterization of anisotropic poly(vinyl alco-
hol) hydrogel by small- and ultra-small-angle neutron scattering.” J. Chem. Phys. 130, 034903-1–9 (2009).
Copyright 2009, American Institute of Physics.

37



3.2. MATERIALS AND METHODS 38

cycling has received much attention [1, 3, 8–10]. The generally accepted model is that cy-

cling to low temperatures causes the formation of ice crystals, which increases the polymer

concentration in the surrounding unfrozen regions, inducing PVA crystallization. Using

solid-state nuclear magnetic resonance, differential scanning calorimetry, and small-angle

X-ray scattering, Willcox et al. showed that PVA crystallites of size 3–8 nm and average

separation 30 nm form in the concentrated polymer regions. Cryogenic transmission elec-

tron microscopy showed that the dense, crystallite-filled regions surround much larger ice

crystals where little polymer is found [10].

Recently, an anisotropic PVA hydrogel has been reported in which anisotropy is induced

by stretching a weak isotropic gel, formed by a single thermal cycle, and following with

further cycling [4]. The authors were able to optimize the stress-strain properties of the

anisotropic PVA hydrogel to match those of porcine aorta in the physiological range, raising

the possibility of use for cardiovascular tissue replacement. Small-angle neutron scattering

(SANS) studies of this anisotropic hydrogel showed that its anisotropic properties were due

to structural changes at a scale larger than 100 nm [5].

In this study ultra small-angle neutron scattering (USANS) is used to extend the length-

scale probed to approximately 10 µm and to measure a wide range of gels formed by

varying the number of thermal cycles and the amount of processing strain. Here a combined

SANS and USANS study of thermally cycled anisotropic PVA hydrogels is presented.

3.2 Materials and Methods

3.2.1 Sample Preparation

PVA solutions were prepared by dissolving atactic PVA with an average molecular weight

of 146000–186000 (99+% hydrolyzed, Sigma-Aldrich, Canada) in Deuterium Oxide (D2O)

(99.9 atom%, Sigma-Aldrich, Canada) to achieve a D2O:PVA molar ratio of 21.9:1, closely

matching the molar ratio used in previous studies [4, 5], in which H2O was the solvent. The
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solutions were held at 90 ◦C while stirring for 3 h as reported previously [5] to fully dissolve

the PVA. A reflux column and drying tube containing anhydrous calcium sulphate (Drierite,

Sigma-Aldrich, Canada) were used to prevent the loss of D2O and to minimize exchange

with H2O in the air.

Cooled PVA solution was used to fill moulds comprised of 17.8 cm × 17.8 cm plates of

aluminum separated by a 1.6 mm thick rubber gasket. The solution was carefully added to

the moulds using a syringe to prevent the introduction of air bubbles. Moulds were sealed

and submerged in a water bath for thermal cycling. Each cycle consisted of ramping the

temperature from 20 ◦C to −20 ◦C at 0.1 ◦C/min, holding the temperature at −20 ◦C for

1 h, ramping the temperature back to 20 ◦C at 0.1 ◦C/min, and holding the temperature at

20 ◦C for 1 h. This cycle was repeated as required.

Anisotropic gels were made by stretching cycle-one gels and securing them in mod-

ified aluminum moulds with clamps. The extension required for the desired strain was

determined before stretching and measured with a ruler during stretching. Each clamp

consisted of a thin aluminum strip that could be screwed, through the gel, into the bot-

tom aluminum plate [5]. Further cycling with this setup resulted in gels with permanent

anisotropic properties.

3.2.2 Neutron Scattering

Small-angle neutron scattering (SANS) experiments were performed on the NG3 beamline

at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD [11].

Three sample-to-detector distance (SDD) and wavelength (λ) combinations were used to

cover a scattering vector (q) range from 0.0013–0.3 Å
−1

, as shown in Table 3.1. The cor-

responding length-scales r = 2π/q range from 2.1–480 nm. At the large scattering angles

of the shortest SDD configuration, the geometry of the titanium sample holders caused a

reduction in neutron counts at scattering vectors above a magnitude of 0.3 Å
−1

. For this

reason, data above this scattering vector magnitude were not used. At the longest SDD
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Table 3.1: NG3 SANS configurations.

SDD (m) λ (Å) q (Å
−1

) r (nm)

1.33a 6.0 0.033 – 0.3b 2.1 – 19

5.0a 6.0 0.0099 – 0.11 5.7 – 63

13.19ac 8.4 0.0013 – 0.031 20 – 480
a Detector offset 20 cm from centre to achieve a larger

q-range at a particular SDD
b Maximum q limited by sample cell geometry
c Lens configuration used to achieve low q

configuration, a focusing lens system consisting of concave MgF2 lenses was used to pro-

vide better low-q resolution and higher flux than could be attained using a conventional

pinhole collimation system [12]. Examples of raw data from isotropic and anisotropic gels

are shown in Fig. 3.1.

USANS experiments were performed at NIST on the BT5 instrument, which is an ultra-

high resolution small-angle neutron scattering double-crystal diffractometer [13]. This in-

strument collects one dimensional data, so anisotropic samples were run twice: once with

the processing strain direction parallel with the measured q-axis, and once with the sample

rotated in plane by ninety degrees, i.e., with the processing strain direction perpendicular

to the measured q-axis. Neutrons of wavelength 2.38 Å are selected by Bragg reflection

from perfect-crystal monochromators and reflected towards the sample. Behind the sam-

ple, an analyzer, also consisting of a perfect crystal monochromator, is rotated to reflect

scattered neutrons into a detector. Due to the high angular sensitivity of Bragg reflection,

only neutrons that are scattered through a very narrow range of angles are diffracted by the

analyzer into the detector, providing excellent angular resolution extending to very small

angles. By rotating the analyzer to a maximum angle of 0.046 degrees, scattering vectors

up to 0.0021 Å
−1

and length-scales down to 300 nm were studied, providing overlap with

the SANS data.
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Figure 3.1: Raw SANS data for isotropic (left column) and anisotropic
(right column) cycle-six PVA hydrogels using the NG3 configurations
shown in Table 3.1. The scale bars indicate the scattering vector, q, with
the largest q range occurring at the nearest detector position (1 metre) and
the smallest q range occurring at the farthest detector position (lens, 13 me-
tre). The brightness represents the logarithm of the total number of neutrons
counted on the detector (arbitrary scale), and is not corrected for background
or the contribution of the sample cell. Sixteen grayscale colours have been
used in order to show contours of constant neutron counts, elucidating the
anisotropy. Note that a beamstop is used to prevent detector damage due
to the unscattered beam, resulting in dark spots centred at q = 0. The
strain induced during cycling for the anisotropic gel was 75%, resulting in
an anisotropy that is most obvious at the largest length-scales (smallest q).
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Table 3.2: PVA samples produced and scattering techniques
used. The number of thermal cycles, N, and the processing
strain, ε0, used to produce each sample are shown.

N ε0 Scattering Techniques

1 0 SANS, USANS

3 0 SANS, USANS

0.25 SANS

0.50 SANS

0.75 SANS, USANS

6 0 SANS, USANS

0.25 SANS, USANS

0.50 SANS

0.75 SANS, USANS

Data were collected for hydrogel samples made with various numbers of thermal cycles

and processing strains. However, due to time constraints, not all of the samples studied by

SANS could be studied with USANS. Table 3.2 shows the combinations of thermal cy-

cles, N, processing strains, ε0, and scattering techniques employed. Priority was given to

samples produced with a strain of 0.75, as a cycle-three hydrogel produced with a strain of

0.75 was previously shown to closely match the stress-strain properties of porcine aorta [4].

Isotropic samples were not stretched and are indicated with processing strains of zero. Sam-

ples were considered fresh, as they were prepared less than one month before the neutron

scattering experiments and it has been previously verified that the mechanical properties of

anisotropic PVA hydrogels do not change significantly after aging for thirteen months [5].
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3.2.3 Data Reduction

Differential scattering cross-sections (dΣ/dΩ(q)) were extracted from the SANS data in

Igor Pro (WaveMetrics, Inc., Portland, OR) using routines provided by NIST [14]. Briefly,

the data were corrected for background and empty sample cell scattering, divided by the

sensitivity of the detector, and converted to absolute scaling in units of cm−1. One-dimensional

differential scattering cross-sections were extracted by circularly averaging the isotropic

data about the q = 0 position. In the case of anisotropic gels, two one-dimensional

cross-sections were obtained by sector averaging parallel and perpendicular to the direc-

tion of applied strain. An angular width of 45◦ was chosen for all sector averages be-

cause there was negligible difference from 30◦ sector averages. For each sample, data

from the three q-ranges were combined into a single SANS data set spanning a range of

0.0013 < q < 0.3 Å
−1

.

USANS data were also reduced using Igor Pro routines provided by NIST [14]. Similar

to SANS data reduction, this also involved subtraction of background and empty cell scat-

tering and conversion to absolute scaling. In order to facilitate simultaneous fitting to SANS

and USANS data, NIST’s implementation [14] of the Lake algorithm [15] was used to de-

convolve the smearing due to the finite angular range of neutrons outside of the nominal

scattering plane. The Lake algorithm uses an iterative algorithm to deduce what the scatter-

ing observed using an infinitesimally small pinhole would be, given the smeared scattering

observed using a collimation slit of known dimensions. In practice, unscattered neutrons

are detected at very low q-values, creating large background and limiting the maximum

length-scale that can be probed. For a few data points at low q, the empty cell scattering

counts outnumber the sample scattering counts. After subtraction and absolute scaling,

these points show negative scattered intensity. While desmearing, these low q data points

with negative intensities were masked. No data smoothing was used prior to desmearing.

After desmearing, the remaining noisy points at low q were eliminated, leaving useable

data up to approximately 10 µm.
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3.2.4 Atomic Force Microscopy

A PVA hydrogel was studied using a BioScope II atomic force microscope (Veeco Metrol-

ogy Inc., Santa Barbara, CA). A cycle-ten hydrogel was imaged because it was stiffer than

hydrogels made with fewer thermal cycles, thus allowing higher resolution imaging. NP-S

silicon nitride cantilevers with nominal spring constants of 0.06 N/m (Veeco Metrology

Inc., Santa Barbara, CA) were used. Imaging was performed in water with unmodified

cantilevers and cantilevers modified by 20 µm glass beads (Duke Scientific Corporation,

Palo Alto, CA) glued to their ends, using the procedure described in Appendix A, with

NOA 81 ultraviolet-curing optical adhesive (Norland Products Inc., New Brunswick, NJ).

Modified glass bead tips greatly reduced sample damage and imaging artifacts at the ex-

pense of imaging resolution, and were reserved for imaging at the largest scan size where

imaging resolution was less important.

3.3 Theory and Data Analysis

Neutron scattering results from variations of the scattering length density in the sample.

In PVA hydrogels, there is good contrast between the polymer and solvent, so variation

in polymer concentration results in variation in the scattering length density. The goal is

to deduce the polymer concentration as a function of position from the scattered neutrons.

However, as with most scattering techniques, only the intensity of the scattered waves

is measured while the amplitudes and phases of individual scattered waves are unknown,

making it impossible to directly deduce the polymer concentration as a function of position.

Instead, one generally hypothesizes a structure and compares the predicted scattering to that

observed. Care must be taken because a concentration distribution that gives the measured

scattering is not unique.
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3.3.1 Solution

First, scattering from the solution is considered. By approximating the PVA as freely

jointed polymer chains comprised of nk = 1530 links of Kuhn length bk = 6.2 Å, n−4/5
k /b3

k

yields an estimate of the overlap concentration of roughly 0.2% by mass in a good solvent

[16–18]. At 10% polymer by mass, the concentration of the PVA solution is well above the

overlap concentration but well below 100%. Scattering from a neutral, ungelled polymer

solution in this “semi-dilute” regime is expected to exhibit Ornstein-Zernicke (Lorentzian)

behaviour described by (
dΣ

dΩ

)
sol

(q) =
Asol

1 + (qξsol)2 + bg (3.1)

where Asol is a constant incorporating the osmotic compression modulus, the inherent D2O–

PVA contrast, and the volume fraction; ξsol is the density-density correlation or screening

length [18]; and bg includes background and incoherent scattering.

A fit of Eq. 3.1 to the differential scattering cross-section of the uncycled solution yields

a screening length of 2.9 nm and is shown in Fig. 3.2. The model and experimental data

closely match, except at low q where the data systematically show higher scattering than

the model. Some gelation of the solution is expected to occur as the solution ages, even

without freeze/thaw cycling, and is likely responsible for the increase in scattering at low

q. The screening length may be estimated from the sum of the contour lengths of polymer

per cubic metre of solution. Assuming a molecular weight of 166 kg/mol, the total contour

length of polymer per cubic centimetre is approximately 3.4×1013 cm, which can be divided

into 3.4×1013 straight pieces of polymer, each 1 cm in length. These pieces divide the cubic

centimetre into a cubic lattice with a lattice spacing of 3 nm. The lattice spacing, which

equals the distance between adjacent chains, is in close agreement with the screening length

of 2.9 nm.



3.3. THEORY AND DATA ANALYSIS 46

2

3

4

5

6
7
8
9

1

D
iff

. c
ro

ss
-s

ec
tio

n,
 d
Σ

/d
Ω

 (c
m

–1
)

3 4 5 6 7 8
0.01

2 3 4 5 6 7 8
0.1

2 3

Scattering vector, q (Å
–1

)

Figure 3.2: Differential scattering cross-section from PVA solution after
reduction to an absolute scale and circular averaging. The solid line is the
fit to Eq. 3.1.

3.3.2 Hydrogel

When the PVA solution is thermally cycled, PVA crystallites form and act as cross-linking

sites [1, 8, 10]. The model for the hydrogel structure is motivated by previous studies that

suggest the crystallites are a few nanometers in size and separated by tens of nanometres

[5, 10, 19, 20].

The gel is modelled as a combination of polymer that is cross-linked and fixed, and

polymer that is free to move [21–25]. This approach has been applied successfully to a

variety of chemically cross-linked polymer gels [21, 23, 26], including chemically cross-

linked PVA [25] (see [24] for a good review.) This model is referred to as the Horkay-

Geissler model.

Scattering from the free polymer, e.g., polymer in solution without cross-links, is still
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described by an Ornstein-Zernicke term and will be referred to as free polymer scattering.

Thus (
dΣ

dΩ

)
free

(q) =
Afree

1 + (qξfree)2 (3.2)

where Afree and ξfree are expected to differ from the corresponding values in the ungelled

solution because the PVA density in regions containing free polymer will be different than

the density in the initial solution.

Permanent density fluctuations in cross-linked polymer gels are often described by a

Gaussian density correlation function

Γρ(r) ∝ exp
(
−r2/2ξ2

fixed

)
,

resulting in scattering of the form

(
dΣ

dΩ

)
fixed

(q) = Afixed exp
(
−q2ξ2

fixed/2
)

where ξfixed is the average size of the fixed density fluctuations and the amplitude Afixed

depends on the scattering contrast and concentration [21, 26]. Scattering from other gels,

including this one, is better described by the more general and empirical equation

(
dΣ

dΩ

)
fixed

(q) = Afixed exp
[
− (qξfixed)b

]
(3.3)

where b is a constant that determines how abruptly the density changes with distance [23–

25].

While the Horkay-Geissler model [23–25] successfully describes the data at high q,

significant excess scattering is seen at low q (Fig. 3.4), which is attributed to scattering

from large polymer-poor voids where ice crystals have melted. The polymer structure

surrounding the pores is modelled as a network of dense polymer knots or blobs, each of

which has an internal structure described by the small-scale gel structure discussed above.



3.3. THEORY AND DATA ANALYSIS 48

The PVA blobs cannot be considered sparse and non-interacting, so it is necessary to

consider interference effects from scattering between the blobs. This is accomplished by

modelling the data as the product of a form factor, P(q), that describes the scattering from

a single blob, and a structure factor, S (q), that describes the arrangement of all of the blobs

and the resulting interference.

The blobs are expected to be irregular and to have a distribution of sizes, but without

evidence that indicates what the distribution should be, it is difficult to justify increasing

the number of parameters by integrating a basic form factor (e.g., the form factor for a

sphere) over a distribution of radii. Instead, a form factor similar to the Debye-Anderson-

Brumberger form factor

P(q) ∝
1[

1 + (qξ)2]2 (3.4)

that was derived for a randomly distributed phase of correlation length ξ is used [27]. For

non-uniform objects that are approximately spherical, ξ is proportional to the average radius

of the objects [28]. However, the low-q contribution to the scattering data does not obey the

Porod power law (dΣ/dΩ ∝ q−4) in the high-q limit [29]. For all samples made with three

or six thermal cycles, the power law exponent, which can be determined from the slope

on a log-log plot, is shallower than −4, indicating that the interface has a rough or surface

fractal structure. The exponent is therefore modified to obtain the form factor [30]

P(q) =
A1[

1 + D+1
3 (Rq)2

]D/2 (3.5)

where R is the average size of the blobs, D is related to the surface fractal dimension ds by

D = 2(4 − ds), and A1 is a scattering amplitude. The surface fractal dimension can vary

from 2 for a perfectly smooth surface to 3 for a surface with maximum roughness. For this

range of ds, D can vary between 2 and 4.

The USANS and atomic force microscopy (AFM) data (see below) indicate that struc-

tures extend to length-scales of at least 10 µm. To capture this behaviour, the mass-fractal
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structure factor

S (q) = 1 +
DmΓ(Dm − 1)

(qR)Dm

[ (
1 +

1
(qξ1)2

)(1−Dm)/2

× sin
[
(Dm − 1) arctan (qξ1)

]]
(3.6)

is used where Dm is the mass-fractal dimension, Γ is the gamma function, R is the average

blob size from Eq. 3.5, and ξ1 is the upper limit of the fractal structure [31]. This allows the

scattering to roll off as q decreases to values corresponding to the aggregate size ξ1.

The complete model for the hydrogel structure is then

dΣ

dΩ
= P(q)S (q) +

(
dΣ

dΩ

)
fixed

+

(
dΣ

dΩ

)
free

+ bg. (3.7)

The first term is for scattering from the large structure of PVA blobs, the second term de-

scribes the density fluctuations in the blobs due to cross-linking of the polymer molecules,

and the free scattering term has been included to determine if there is any remaining free

polymer (i.e., polymer that has not been cross-linked). Finally, a constant term has been

included to account for background and incoherent scattering, giving a total of eleven pa-

rameters A schematic of the structure showing aggregates, blobs, and the fixed polymer

length-scale is shown in Fig. 3.3.

An example fit is shown in Fig. 3.4, in which the full model of Eq. 3.7 is shown with a

solid line, and the contributions of individual terms are indicated by dashed lines. Fig. 3.4

also shows the slopes that are determined by the mass and surface fractal dimensions, as

well as the transitions between slopes that are determined by the fractal aggregate size and

the blob size. Fig. 3.5 shows how the neutron data change with the number of thermal cy-

cles and Fig. 3.6 shows neutron data for an isotropic cycle-six hydrogel, and an anisotropic

cycle-six hydrogel produced with a processing strain of 75%.
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ξfixed

Rξ1

Figure 3.3: Schematic of the structure showing aggregates of size ξ1, blobs
of size R, and the fixed polymer length-scale ξfixed

3.3.3 Data Fitting

The blob size R determines where the transition between the slopes of Dm and D occurs.

The overlap between USANS and SANS data occurs at approximately the same magnitude

of q as this transition, and neither data are sufficient to determine R alone. For this reason,

the fitting is performed in two steps. In the first, ξ1, Dm, and R are determined by fitting to

Eq. 3.7 for samples in which both SANS and USANS data were acquired. In the second,

ds, ξfixed, b, ξfree, and bg are determined by fitting Eq. 3.7, with the larger scale parameters

held constant, for samples in which only SANS data were acquired.

Fractal aggregate sizes determined by fitting combined SANS and USANS data sets

to the full model of Eq. 3.7 are shown in Table 3.3. Blob sizes versus number of thermal

cycles are shown in Table 3.4 for isotropic and anisotropic gels. While there is a wide

variation in parameters, it is clear that for anisotropic gels both R and ξ1 show a significant

difference between the perpendicular and parallel directions. The mass fractal dimension

showed no clear trends with the number of thermal cycles or with direction in anisotropic

gels and had an average value of 2.2 ± 0.2. Although the scattering in the limit of q = 0

must be the same in both directions, the presence of structures much larger than the length

scales accessible by USANS does not permit us to add this constraint to our fitting.
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Table 3.3: Fractal aggregate sizes as determined by fit-
ting Eq. 3.7 to combined SANS and USANS data. For
anisotropic gels, the initial processing strain was 75% unless
noted otherwise.

Aggregate Size, ξ1 (µm)

Cycle Isotropic Perpendicular Parallel

1 0.9 —— ——

3 ∼ 10 3.4 > 10

6 2.4 2.9a > 10a

6 4.3 > 10
a Processing strain of 25%

Table 3.4: Blob sizes as determined by fitting Eq. 3.7 to
combined SANS and USANS data. For anisotropic gels, the
initial processing strain was 75% unless noted otherwise.

Blob Size, R (nm)

Cycle Isotropic Perpendicular Parallel

1 18 —— ——

3 51 46 76

6 40 27a 34a

6 29 78
a Processing strain of 25%
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Figure 3.4: Differential scattering cross-section from a cycle-one PVA hy-
drogel. The solid line is the model fit to the data, i.e., the sum of the in-
dividual scattering terms in Eq. 3.7. The contributions of individual terms
are indicated by dashed lines. Triangles are shown to mark the slopes that
determine the mass fractal dimension, Dm, and surface fractal dimension,
ds = 4 − D/2. The positions where the slope changes determine the mass
fractal aggregate size, ξ1, and blob size, R.

Where supplementary USANS data do not exist, the large scale fractal aggregate pa-

rameters cannot be determined because the fractal aggregate size is well beyond the range

of the SANS data, and the transition between the slopes Dm and D (Fig. 3.4) occurs ap-

proximately at the lower limit of the SANS data. No clear trend was observed for the mass

fractal dimension versus the number of thermal cycles, so Dm is held constant at the value

of 2.2 determined above. For this value of Dm, the structure factor (Eq. 3.6) reduces to

S (q) = 1 +
1.92

(qR)2.2 (3.8)
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Figure 3.5: Differential scattering cross-sections from cycle-one, -three,
and -six PVA hydrogels. Four-fifths of the data points have been omitted for
clarity, and data for solution are included for comparison. Inset: Expanded
view of the high-q scattering data dominated by the small-scale fixed poly-
mer scattering. The solid lines are the model fit to the data.

in the limit qξ1 >> 1. The smallest product qξ1 occurs for the cycle-one gel (smallest ξ1),

and in this case, the full structure factor differs from Eq. 3.8 by 2.6%. Therefore, for all

SANS data, Eq. 3.8 differs from Eq. 3.6 by 2.6% or less, justifying the elimination of ξ1

and the use of Eq. 3.8 for the structure factor during fitting.

Although R was allowed to vary as a fit parameter, it was deemed that the values re-

turned were not reliable except from cycle one where R is smallest. Plots of ds, ξfixed, and b

versus the processing strain ε0 are shown in Figs. 3.7, 3.8, and 3.9, respectively. ξfree shows

no anisotropy and little or no dependence on N and has the average value 2.7 ± 0.2 nm.
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Figure 3.6: Differential scattering cross-sections from cycle-six PVA hy-
drogels. Data are shown for an isotropic gel and for an anisotropic gel pro-
duced with a processing strain of 75%. The anisotropic data are from sector
averages parallel and perpendicular to the direction of the processing strain.
Four-fifths of the data points have been omitted for clarity.

3.4 Discussion

It is well established that PVA hydrogels are cross-linked by polymer crystallites formed

during thermal processing. The modelling of SANS and USANS data and AFM imaging

show that the cross-linked polymer is concentrated into relatively dense blobs with a length-

scale of a few nanometres assembled in a structure with mass-fractal characteristics up to a

length-scale of at least several micrometres. Anisotropic gels show similar characteristics,

but exhibit longer length-scales in the direction of the strain applied during processing.
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Figure 3.7: Surface fractal dimension versus processing strain. Data for
cycles one, three, and six are represented by small, medium, and large sym-
bols, respectively. Trends versus processing strain are shown for cycle three
(dashed lines) and cycle six (solid lines). Error bars (not shown for clarity)
range from 0.02 to 0.09.

3.4.1 Isotropic Gels

The smallest length-scales (highest q) show a feature that is well modelled by the density

correlation function previously applied to cross-linked gels by Horkay and Geissler. The

characteristic length of the density fluctuations, 4.7 nm, obtained by a fit to this model

for a weak, cycle-one gel, is larger than the screening length of 2.9 nm obtained for the

ungelled solution, but the relative sharpness of the feature (see Fig. 3.5) and exponential

(vs. power-law) decay of the correlation function indicates a more compact structure. This

argues that the gelation process has concentrated the PVA into clumps, which are taken to

be crystallites surrounded by dangling chains. This necessarily means that other regions

have been depleted of polymer, consistent with the structure of polymer-poor pores that
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Figure 3.8: Fixed gel length-scale versus processing strain. Data for cycles
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respectively. Average values are shown for cycle three (dashed lines) and
cycle six (solid lines). Error bars (not shown for clarity) range from 0.02 to
0.1.

has been previously described.

Continued cycling systematically decreases the length-scale ξfixed of the density fluctu-

ations and sharpens the fall-off of the correlation function parameterized by the exponent b

as shown in Figs. 3.8 and 3.9 versus processing strain, respectively (the present discussion

focuses on a processing strain of 0 only). It is thus apparent that the freeze/thaw process

enhances the density fluctuations and expels water from the polymer-rich regions, possibly

by increasing the size and perfection of existing crystallites and/or by nucleating additional

crystallites, as described previously [32]. This indicates that thermal cycles promote sepa-

ration between water and PVA on nanometre scales.

Larger length-scales, represented by q values below 0.01 Å
−1

in Fig. 3.5, show that the
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Figure 3.9: Gel exponent versus processing strain. Data for cycles one,
three, and six are represented by small, medium, and large symbols, respec-
tively. Trends versus processing strain are shown for cycle three (dashed
lines) and cycle six (solid lines). Error bars (not shown for clarity) range
from 0.01 to 0.07.

density fluctuations are organized into large structures. The observation that the scattering

data do not level off for small q, except possibly for the weakest gel, indicates features

extending from ∼ 1 µm for cycle-one gels to at least several µm for cycle-three and -six

gels. The low-q regime was not successfully modelled using structures described by a

single length-scale (e.g., the Debye-Anderson Brumberger form factor), so a structure of

blobs of characteristic size R and surface fractal dimension ds arranged in a mass fractal

aggregate of dimension Dm and extent ξ1 was considered.

The modelling reveals that the blob size increases abruptly from 18 nm to ∼ 50 nm

between cycles 1 and 3, with little change thereafter. The surface fractal dimension of

these blobs is 1.9 for cycle-one gels and fairly uniform at ∼ 2.1 for cycle-three and -six
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gels. A fractal dimension less than 2 indicates that the surface is diffuse. This suggests

that there is a significant amount of loosely bound polymer available at the surfaces of the

blobs to reinforce the gel structure during later thermal cycles. It is noteworthy that the

gel correlation length ξfixed and blob size R are similar to the principal length-scales of the

gel phase described in a previous study [5], albeit determined from a different model. The

interpretation is that the gel phase consists of polymer crystallites of size no more than a

few nanometres surrounded by uncrystallized polymer. As is usual in polymer crystalliza-

tion, significant portions of chains participating in crystallization are expected to extend

from the crystallite surfaces. These may extend to other crystallites or be entangled with

chains extending from other crystallites, creating a gel. It is noted that the natural length-

scales of the PVA stock—a radius of gyration of 13–15 nm, as determined from a simple

self-avoiding random-walk model [18], and contour length of 830–1060 nm based on its

molecular weight—is consistent with the gel length-scales measured here.

The maximum size of the mass-fractal aggregates is at or above the largest length-

scale probed by the USANS data, limiting the ability to determine the large-scale structure

accurately. However, it is clear from the data of Fig. 3.5 that the maximum length-scale

increases abruptly between cycles 1 and 3, but likely does not change much between cycles

3 and 6.

The hierarchy of structures described above is corroborated by direct imaging. The

AFM images shown in Fig. 3.10 reveal structures on several scales. At the smallest scales

imaged, seen in Fig. 3.10(a), dense regions with sizes ∼ 100 nm are seen surrounding

randomly distributed regions with sizes from several 100 nm to ∼ 1 µm. Although the

softness of the gel limits the resolution of the images so that no structure can be seen inside

the denser regions, the pictures are consistent with the model of connected polymer blobs

forming an aggregate around polymer poor pores. At larger scales, Fig. 3.10(b), it is seen

that the dense regions form structures of at least a few micrometres. It is only at very large

scales, as in Fig. 3.10(c), that a more uniform structure exists, though even then ridges and
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furrows, which may be relics of dendritic ice crystals, are evident.

100 µm1 µm 10 µm

(a) (b) (c)

Figure 3.10: Contact mode atomic force microscopy images of a cycle-ten
PVA hydrogel that were taken under fluid. Images (a) and (b) were acquired
with unmodified tips and image (c) was acquired with a 20-micron glass
bead tip. Brighter shading corresponds to higher features.

It is noted that structures similar to those shown by the AFM have been demonstrated

by Fergg, et al. using confocal microscopy [33], although in that case the pores were con-

siderably larger (∼ 6 µm), perhaps due to the limited ability of optical techniques to resolve

smaller details in such a complicated material.

Previous mechanical studies [1, 2, 4, 34] show that the Young’s modulus of PVA hy-

drogels increases monotonically with the number of thermal cycles. This increase could

result from both the increased crystallinity indicated by the decrease in the gel length-scale

ξfixed and exponent b, and the increased size of the largest gel aggregates, as shown by the

USANS data. However, the observation that the main change in the large structure occurs

between cycles one and three while the mechanical strength continues to increase at least

up to cycle six suggests that the increase is mainly due to strengthening of the gel phase

within the blob structures.
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3.4.2 Anisotropic Gels

Anisotropic gels—i.e., those subjected to a strain during thermal cycling—show clear dif-

ferences in scattering between the directions parallel and perpendicular to the strain direc-

tion, thus producing the elliptical patterns in the 2D SANS data shown in Fig. 3.1. Fig. 3.6

shows the differential scattering cross-sections determined by SANS and USANS for the

two principal directions measured for a sample subjected to a strain of 75% after one ther-

mal cycle and cycled an additional 5 times (the corresponding isotropic scattering from

Fig. 3.5 is shown for comparison).

It is immediately evident that the most striking differences between scattering from

isotropic and anisotropic samples are seen at low q. This is quantified by the fits of com-

bined SANS/USANS data to the functional form of Eq. 3.7, which show that while the

size of the fractal aggregates in the direction perpendicular to the processing strain remain

somewhat constant at a few micrometres, the aggregates are consistently larger than the

maximum size that can be probed by USANS in the parallel direction (see Table 3.3). The

blob sizes determined from the combined data sets also show a markedly larger value in the

direction parallel to the processing strain. Note, though, that this increase is certainly less

than the strain itself, suggesting some relaxation during the remaining cycles. Together,

these observations suggest that, while the blobs are elongated along the strain direction

(and possibly slightly contracted in the perpendicular direction), the main source of the

permanent anisotropic mechanical properties is at the largest length-scales, as has been

suggested previously [5].

In order for the structural rearrangements that take place upon stretching to become

permanent after further cycling, additional cross-links must form to prevent the structure

from collapsing back to an isotropic state after the strain is released. To study anisotropy

at small length-scales, SANS data were acquired for samples having applied strains from 0

(isotropic) to 0.75 at intervals of 0.25. For each of the small length-scale parameters—gel

length-scale, gel exponent, blob size, and blob surface fractal dimension—linear fits versus
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strain were performed to determine whether there was a significant trend.

Fig. 3.7 shows no significant change in the surface fractal dimension between cycles

three and six for isotropic gels. However, there is a significant trend versus the processing

strain in the parallel direction of the anisotropic samples. In this direction, p-values of 0.032

and 0.035 for cycles three and six, respectively, indicate that the observed trend is less than

4% likely to have occurred by chance. No significant trend is seen in the perpendicular

direction, so these data are fit to constant values (horizontal lines in Fig. 3.7), resulting in

very nearly the same values for cycles 3 and 6.

No systematic dependence on the processing strain is evident in Fig. 3.8, showing that

the gel phase itself does not exhibit significant anisotropy. However, Fig. 3.9 shows that the

gel exponent increases slightly between cycles three and six. There may be slight depen-

dence on the processing strain for the parallel direction as one linear trend was significant

at the 5% level, but not the perpendicular direction: the p-values are 0.041 and 0.13 in

the parallel direction and 0.61 and 0.18 in the perpendicular direction, for cycles 3 and 6

respectively.

The relatively minor change in gel length-scale and exponent as a function of pro-

cessing strain argues that rearrangements at this scale are unimportant to the anisotropy

in mechanical properties that has been previously reported [4]. It is hypothesized that the

dense polymer network inside the blobs is much stronger than the bulk gel so that when

strain is applied it is easier to change the position of blobs in the gel than to stretch the blobs

themselves. This would cause a net alignment of connections between blobs in the direc-

tion of strain, increasing the roughness of blob surfaces, and hence the associated fractal

dimension, in that direction. It is interesting that the mechanical data show no significant

dependence on processing strain of the Young’s modulus in the perpendicular direction, in

agreement with the lack of structural change in that direction seen here.
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3.5 Conclusion

By applying a stress during thermal processing, anisotropic PVA hydrogels can be pro-

duced. Previous results have shown that with proper selection of processing parameters,

the bulk anisotropic elastic properties can be made to closely match those of cardiovascular

tissue, making the material suitable for the manufacture of grafts and other cardiovascular

prostheses. However an understanding of the structural features resulting in this anisotropy

is important.

Small- and ultra small-angle neutron scattering was performed to study anisotropic hy-

drogels at length-scales from 2 nm to 10 µm, extending previous neutron scattering work

[5] to larger length-scales. The structure was modelled as blobs of size ∼ 50 nm arranged

in an aggregate with mass-fractal characteristics up to a maximum length-scale of several

micrometres. The polymer inside the blobs was described by a Horkay-Geissler stretched-

exponential correlation function. Systematically varying the number of thermal cycles re-

vealed that the resulting increase in gel strength at macroscopic scales is due to an increase

in aggregate size, especially for early cycles, as well as an increase in strength of the gel

phase, perhaps due to increased crystallinity. It is also evident that mechanical anisotropy

resulting from strain applied during processing is due to stretching of the mass fractal ag-

gregates and alignment of the aggregate building blocks. The building blocks themselves

are slightly elongated in the direction parallel to the applied processing strain, but little or

no anisotropy is observed in the polymer arrangement at the smallest scales.
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Chapter 4

Anisotropic Polyvinyl Alcohol Hydrogel:

Connection Between Structure and Bulk

Mechanical Properties

4.1 Introduction

PVA is a versatile hydrophilic polymer that can be made into hydrogels using numerous

solvents and cross-linking methods. Soon after the discovery of biocompatible physically

cross-linked PVA hydrogel produced by freezing and thawing aqueous PVA solution [1],

efforts to adapt PVA hydrogel for biomedical applications began.

The structure and properties of freeze-thaw PVA hydrogels can be controlled with pro-

cessing parameters such as the initial PVA concentration [2, 3], the PVA molecular weight

[2], the freeze temperature [2, 3], the freeze rate or freeze time [2], and the number of

freeze-thaw cycles [4]. Another method for controlling the mechanical properties is to in-

corporate reinforcing structures into the PVA solution before freeze/thaw cycling. Bacterial

cellulose fibres and carbon nanotubes have been added to PVA hydrogel, allowing greater

control over strength [5–7].

66
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Here, PVA hydrogels containing of order 10% w/w PVA in water that are physically

cross-linked using several slow freeze-thaw cycles are discussed, because they can be pro-

duced with mechanical properties closely matching those of cardiovascular tissues [8, 9].

Recently, a method for producing these PVA hydrogels with anisotropic mechanical proper-

ties was discovered, potentially allowing for manufacture of cardiovascular prostheses that

mimic the nonlinear and anisotropic mechanical response of natural cardiovascular tissues

[9]. The microscopic structure of these anisotropic PVA hydrogels has been characterized

using small- and ultra-small-angle neutron scattering [10, 11], but the connection between

the microscopic structure and the bulk elasticity is not well understood.

Both physical and phenomenological models are widely used to explain the elastic re-

sponse of materials. Most materials, in the small deformation limit, obey Hooke’s law and

thus exhibit a restoring force proportional to deformation [12]. Further, the entire range of

elastic response of many of these materials, prior to yielding or fracturing, is adequately

modelled by Hooke’s law because they yield or fracture within the small deformation limit.

However, Hooke’s law is not sufficient for elastomers, which remain elastic beyond the

small deformation limit and exhibit nonlinear stress-strain curves.

One approach for predicting the mechanical response of an elastomer is to evaluate

its Helmholtz free energy and differentiate with respect to strain. For many elastomers,

the internal energy varies negligibly with deformation so the free energy varies mainly

with entropy, which decreases as the network is deformed from equilibrium. The entropy

of polymer networks may be estimated from model networks constructed with idealized

freely-jointed polymer chains [13]. Remarkably, simple network models with repeated unit

cells of 3, 4, or 8 chains have proven useful for modelling the elastic response of elas-

tomers [13–15]. In cases where a suitable physical model cannot be found, or an analytic

expression for the strain energy is desired, phenomenological models are used. For in-

stance, if one desires to perform finite element analysis on a complex geometry such as a

tri-leaf replacement heart valve [16] to determine its response to blood flow, an analytic



4.1. INTRODUCTION 68

expression for the strain energy is preferred over a calculation involving integration or nu-

merical simulation. The successful Mooney-Rivlin model writes the strain energy density

as a sum of strain invariants of the deformation tensor without giving consideration to the

macromolecular structure of the material [17, 18].

In Chapter 3, it was shown that the polyvinyl alcohol (PVA) hydrogel structure could

be modelled as interconnected PVA blobs of size 20 to 50 nm arranged in fractal aggre-

gates extending to micrometers or tens of micrometers. Furthermore, it was shown that

anisotropy was due to elongation of the fractal aggregates and alignment of blobs, but that

individual blobs and their internal structures showed only slight anisotropy. The full model

fit to the data was
dΣ

dΩ
= P(q)S (q) +

(
dΣ

dΩ

)
static

+

(
dΣ

dΩ

)
dyn

+ bg. (4.1)

The form factor

P(q) =
A1R3[

1 + D+1
3 (Rq)2

]D/2 (4.2)

describes scattering from an average polymer blob of size R, surface fractal dimension

ds = 4 − D/2, and scattering amplitude A1 [19]. The structure factor

S (q) = 1 +
DmΓ(Dm − 1)

(qR)Dm

[ (
1 +

1
(qξ1)2

)(1−Dm)/2

× sin
[
(Dm − 1) arctan (qξ1)

] ]
(4.3)

describes interference effects of polymer blobs in a fractal aggregate of extent ξ1 and mass

fractal dimension Dm [20]. The term

(
dΣ

dΩ

)
fixed

(q) = Astatic exp
[
− (qξstatic)b

]
(4.4)

describes scattering from permanent, polymer density fluctuations of average size ξfixed
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resulting from physical cross-linking [21]. Finally,

(
dΣ

dΩ

)
free

(q) =
Afree

1 + (qξfree)2 (4.5)

describes Ornstein-Zernicke scattering from density fluctuations of size ξfree of free, uncross-

linked polymer and the constant bg accounts for incoherent and background scattering.

Here, a more thorough examination of the small-scale gel phase using small-angle neu-

tron scattering (SANS) is conducted to motivate physical models that improve the under-

standing of the relationship between structure and mechanical properties in anisotropic

PVA hydrogel. The models provide insight about the elastic deformation limits of the hy-

drogel and may assist in the development and durability testing of cardiovascular prostheses

such as artificial heart valves.

4.2 Materials and Methods

4.2.1 Neutron Scattering

PVA solutions were prepared by dissolving PVA with an average molecular weight of

146–186 kDa (99+% hydrolyzed, Sigma-Aldrich, Canada) in Deuterium Oxide (D2O)

(99.9 atom%, Sigma-Aldrich, Canada) to achieve a D2O:PVA molar ratio of 21.9:1, which

matches the molar composition used below for mechanical testing. The solution was held

at 95 ◦C while stirring for 1 h to fully dissolve the PVA, similar to the procedures reported

previously [9–11]. The stirring assembly included a water-cooled condenser surrounding

its shaft to prevent the loss of D2O.

Cooled PVA solution was used to fill aluminum moulds comprised of 10 cm × 10 cm

plates of aluminum separated by a 1.6 mm thick poly(tetrafluoroethylene) (PTFE) gasket.

The solution was carefully added to the moulds using a syringe to prevent air bubbles from

being introduced to the solution. Moulds were sealed and submerged in a Neslab RTE-
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Table 4.1: NG7 SANS configurations.

SDD (m) λ (Å) q (Å
−1

) r (nm)

1.0 6.0 0.050 – 0.54 1.2 – 13

5.0 6.0 0.0099 – 0.11 5.7 – 63

15.3a 8.09 0.0011 – 0.026 24 – 570
a Lens configuration to achieve low q

111 water bath (Thermo Fisher Scientific, Inc., Waltham, MA) for thermal cycling using

temperature control software implemented in Igor Pro (WaveMetrics, Portland, OR). Each

cycle consisted of ramping the temperature from 20 ◦C to −20 ◦C at 0.1 ◦C/min, holding

the temperature at −20 ◦C for 6 h, ramping the temperature back to 20 ◦C at 0.1 ◦C/min,

and holding the temperature at 20 ◦C for 1 h. This cycle was repeated as required.

SANS experiments were performed on the NG7 beamline at the National Institute of

Standards and Technology (NIST) in Gaithersburg, MD [22]. Three sample-to-detector

distance (SDD) and wavelength (λ) combinations were used to cover a scattering vector

(q) range from 0.0011–0.54 Å
−1

, as shown in Table 4.1. The corresponding length-scales

r = 2π/q range from 1.2–570 nm. At each SDD configuration, the detector was offset 20 cm

from centre to achieve a larger q-range. At the longest SDD configuration, a focusing lens

system consisting of concave MgF2 lenses was used to provide better low-q resolution and

higher flux than could be attained using a conventional pinhole collimation system [23, 24].

Data were collected for isotropic samples prepared with one, two, three, four, six, and ten

thermal cycles.

Differential scattering cross-sections (dΣ/dΩ(q)) were extracted from the SANS data

in Igor Pro (WaveMetrics, Inc., Portland, OR), using routines provided by NIST [25]. The

data were corrected for background and empty sample cell scattering, divided by the sensi-

tivity of the detector, and converted to absolute scaling in units of cm−1. One-dimensional

differential scattering cross-sections were extracted by circularly averaging the isotropic
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data about the q = 0 position. For each sample, data from the three q-ranges were com-

bined into a single SANS data set spanning a range of 0.0011 < q < 0.54 Å
−1

.

4.2.2 Mechanical Testing

10% (w/w) PVA solution was prepared by dissolving PVA from the same batch used in

Section 4.2.1 in distilled water. The solution was held at 90 ◦C while stirring for 3 h to

fully dissolve the PVA, similar to the procedures reported previously [9–11].

PVA hydrogels were prepared by filling aluminum moulds with cooled PVA solution

and thermal cycling the moulds in a heated/refrigerated circulator (VWR Model 1180S).

For each thermal cycle, the temperature was ramped from 20 ◦C to −20 ◦C at 0.1 ◦C/min,

held at −20 ◦C for 1 h, and ramped to 20 ◦C at 0.1 ◦C/min. Samples were moulded into

sheets 1.6 mm thick. Anisotropic gels were made by stretching cycle-one sheets to 75%

strain and securing them in modified aluminum moulds with clamps. While stretched, these

sheets were subjected to 1–5 additional thermal cycles.

Uniaxial extension testing was performed with a servo-hydraulic INSTRON 8872 test-

ing system (Norwood, MA) with samples mounted inside a Plexiglas tank filled with dis-

tilled water. Unless stated otherwise, the temperature of the water bath was maintained at

310 K (37 ◦C). Strips of gel of width 5 mm were punched out of the hydrogel sheets and

secured in a custom-designed tissue grip with initial grip-to-grip distance of 10 mm and at-

tached to the 1 kg load cell of the material testing system. All samples were preconditioned

with 10 loading and unloading cycles between 0 and 65% strain before load-extension data

were acquired at an extension rate of 40 mm/s to 65% strain.

To test the temperature dependence of stress versus strain, uniaxial extension tests were

made repeatedly on isotropic cycle-two and -six hydrogels while slowly heating a pre-

chilled bath from 277 K (4 ◦C) to 314 K (41 ◦C) over a period of 3 h. The bath was stirred

between measurements and small amounts of water were frequently added to maintain the

water level in the bath.
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In all cases, sample dimensions were measured using a Mitutoyo thickness tester and

deformation versus load data were converted to engineering stress versus engineering strain.

Engineering stress is defined as the tension in the sample divided by the initial cross-

sectional area of the sample and engineering strain is defined as the change in length of

the sample divided by the equilibrium length of the sample.

4.3 Theory and Data Analysis

4.3.1 Neutron Scattering

The largest length-scales of the fractal aggregates, ξ1 and Dm, are beyond the range of

the SANS data and, without ultra small-angle neutron scattering (USANS) data, cannot be

determined by fitting Eq. 4.1. From the previous neutron scattering study, it was determined

that the aggregate size has a minimum of 0.9 µm for cycle one and that Dm has an average

value of 2.2 ± 0.2 [11]. With these values, the SANS data satisfy qξ1 >> 1 over the full

q-range and the structure factor (Eq. 4.3) is accurately approximated by [11]

S (q) = 1 +
1.92

(qR)2.2 . (4.6)

With Eq. 4.6 as the structure factor, Eq. 4.1 was fit to the reduced SANS data, allowing

the PVA blob size (R), blob surface fractal dimension (ds), fixed polymer gel length-scale

(ξfixed), fixed polymer gel exponent (p), and free polymer length-scale (ξfree) to be deter-

mined. Reduced data and fits of the model from cycle-one and cycle-ten gels are shown in

Fig. 4.1.

Values of the polymer blob size, R, versus the number of thermal cycles, N, is shown

in Table 4.2. The blob size jumps between thermal cycle one and two, but remains con-

stant thereafter with a weighted mean and variance of 46.8 ± 0.8 nm. The surface fractal

dimension of the blobs, ds, does not have a significant dependence on N, as the slight trend
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Figure 4.1: Differential scattering cross-sections from cycle-one and cycle-
ten hydrogels. The solid lines are the model fit to the data. Four-fifths of the
data points have been omitted for clarity.

observed had probabilities of 16% or more of occurring by chance. The weighted mean

and variance of the surface fractal dimension is 2.140 ± 0.002.

4.3.2 Stress of Entropic Polymer Networks

To determine elastic properties arising from entropy, a model network is constructed from

entropic chains and the total entropy of the network, S , is found as a function of the net-

work’s configuration. The entropy of a network of cross-linked polymer strands can be

found by summing the entropies of individual strands. At constant temperature T and with

negligible change in internal energy during deformation, the engineering stress of a sample

deformed along axis α is

σα = −T
∂S
∂λα

. (4.7)
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Table 4.2: Blob size R versus the number of thermal cycles.

Number of thermal cycles, N Blob size, R (nm)

1 21.4 ± 0.7

2 54 ± 6

2 47 ± 3

3 48 ± 2

4 46 ± 1

6 46 ± 2

10 47 ± 2

where λα is the fractional deformation along axis α. The fractional deformation is defined

as sample length divided by equilibrium length and is related to the engineering strain, εα,

by

λα = εα + 1. (4.8)

PVA chains have short persistence lengths and can be adequately modelled as freely-

jointed chains. A freely-jointed polymer chain experiences a tension that pulls its ends

together because the entropy of the chain increases as the end separation decreases. The

entropy of a single freely-jointed chain is

s = c − kBn
[

r
nl
L−1

( r
nl

)
+ ln

L−1 (r/nl)
sinhL−1 (r/nl)

]

where c is a constant, kB is the Boltzmann constant, n is the number of steps in the idealized,

freely jointed chain, r is the distance between the endpoints of the chain, l is the link or

step size of the chain, and L−1 is the inverse Langevin function [13]. The product nl is

the contour length of the polymer chain and determines the maximum separation of the

endpoints. Hence the fraction r/nl is referred to as the fractional extension of the chain.
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Letting x = r/nl,

s(x) = c − kBn
[
xL−1 (x) + ln

L−1 (x)
sinhL−1 (x)

]
. (4.9)

Entropy is maximized when each strand has zero end-to-end length, so an unconstrained

network will collapse to a single point. This behaviour is commonly avoided by constrain-

ing the network to have fixed non-zero volume [13, 14]. Since the compressibility of water

is negligible and extrusion of water from the hydrogel during extension is not observed,

volume conservation is employed here. To honour the volume conservation constraint, the

fractional deformations must satisfy

λxλyλz = 1. (4.10)

For isotropic PVA hydrogels, the utility of the isotropic 3-chain model of Treloar [13]

and the 8-chain model of Arruda and Boyce [14] for modelling uniaxial extension is eval-

uated. Both models are considered because they have fundamental differences. Polymer

strands in the 3-chain model undergo affine deformation, meaning that the fractional de-

formation of each chain equals the fractional deformation of the bulk sample, λα, in the

corresponding direction α, and may have different fractional extensions in different direc-

tions. Strands in the 8-chain model do not undergo affine deformation and all have the same

fractional extension. For anisotropic PVA hydrogels, anisotropic versions of the 3-chain

and 8-chain models are developed. Finally, the temperature dependence of the elasticity is

tested to verify that entropy dominates the mechanical behaviour.

4.3.3 Uniaxial Extension of Isotropic Hydrogels

3-Chain Model

The simplest polymer network model is the 3-chain model which is constructed by re-

peating a cubic unit cell containing three polymer chains. The chains are placed on three
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edges of the unit cell with one strand parallel to each of the Cartesian coordinate axes and

cross-linked at the vertices of the cube as shown in Fig. 4.2 [13]. In order to solve for

stress versus fractional deformation, the network is deformed in the x-direction, making

the fractional deformation parallel to the x axis, λx, the independent variable. The network

responds to elongations in the x-directions by contracting in the other two directions by

fractional deformations λy and λz. λy and λz are dependent variables that assume the values

that maximize the entropy, subject to the volume conservation constraint of Eq. 4.10.

x

y

z
edge of unit cell

cross-link
polymer chain

Figure 4.2: Unit cell of the isotropic 3-chain network model.

The entropy per cubic metre of the isotropic 3-chain network is

S =
N
3

[
s(xx) + s(xy) + s(xz)

]
, (4.11)

where N is the total number of strands per cubic metre and s(xα) is the entropy of a single

strand parallel to axis α with fractional extension xα. In the isotropic case, all chains start
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with the same equilibrium chain length, r0, and equilibrium fractional extension, x0. As a

result of affine deformation, the fractional extension of chains along axis α in the deformed

network is xα = λαx0.

Due to symmetry, an isotropic network contracts equally in the y and z directions when

elongated in the x direction so

λz = λy =
1
√
λx

when volume is conserved. The entropy of the deformed network from Eq. 4.11 is then

S =
N
3

[
s(λxx0) + 2s

(
x0
√
λx

)]
. (4.12)

Substitution of Eq. 4.12 into Eq. 4.7 gives [13], for the stress,

σx(λx) =
NkBTnx0

3

[
L−1 (λxx0) − λ−3/2

x L−1
(

x0
√
λx

)]
. (4.13)

Before fitting the experimental data, it is noted that only two of three parameters N, n, and

x0 are independent and none are independently known in the material.

To proceed, Eq. 4.13 is expanded to first order in λx using L−1 (x) ≈ 3x to obtain

σx(λx) = NkBTnx2
0

(
λx − λ

−2
x

)
.

This is equivalent to replacing finitely extensible Langevin chains with infinitely extensible

Gaussian chains. At large fractional extension, stress is proportional to fractional extension

with elastic modulus

G = NkBTnx2
0. (4.14)

Further, it is noted that if the equilibrium length of the chains is assumed to be their random

walk length as Treloar did, the result is r0 =
√

nl and nx2
0 = 1 and the elastic modulus of

NkBT for a network of Gaussian chains is recovered [13]. Using Eq. 4.14, Eq. 4.13 is
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rewritten as

σx(λx) =
G

3x0

[
L−1 (λxx0) − λ−3/2

x L−1
(

x0
√
λx

)]
(4.15)

which has two independent free parameters: x0 and an effective elastic modulus, G.

Fits of Eq. 4.15 to engineering stress versus engineering strain for isotropic PVA hy-

drogels produced with one through six thermal cycles are shown in Fig. 4.3. The model

describes the data well, but tends to slightly overestimate the stress at small strains.
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Figure 4.3: Engineering stress versus engineering strain for isotropic hy-
drogels produced with one through six thermal cycles. Points are experi-
mental data and lines are fits of the isotropic 3-chain model to the data.

8-Chain Model

The unit cell of the 8-chain model of Arruda and Boyce [14, 15] is constructed by connect-

ing a polymer strand from each of the eight corners of a rectangular prism to a central node

as shown in Fig. 4.4. Each chain has the same fractional extension regardless of deforma-
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tion state because the equilibrium position of the central node is at the centroid of the unit

cell [14]. For fractional deformations λx, λy, λz of the network, the fractional deformation

of polymer strands is

λchain =

√
1
3

(
λ2

x + λ2
y + λ2

z

)
and the entropy of the network is

S = Ns (λchainx0) .

For uniaxial extension in the x direction,

λchain =

√
1
3

(
λ2

x +
2
λx

)

and the engineering stress is

σx(λx) =
NkBTnx0

3

L−1 (λchainx0)
(
λx − λ

−2
x

)
λchain

. (4.16)

Using Eq. 4.14 as for the 3-chain model,

σx(λx) =
G

3x0

L−1 (λchainx0)
(
λx − λ

−2
x

)
λchain

. (4.17)

Fits of Eq. 4.17 to engineering stress versus engineering strain for isotropic PVA hy-

drogels produced with one through six thermal cycles are shown in Fig. 4.5. The 8-chain

model, much like the 3-chain model, matches the data well but also tends to slightly over-

estimate the stress at small strains.
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Figure 4.4: Unit cell of the isotropic 8-chain network model.

4.3.4 Uniaxial Extension of Anisotropic Hydrogels

Examples of engineering stress versus engineering strain for uniaxial extension of isotropic

and anisotropic cycle-two samples are shown in Fig. 4.6. The isotropic sample underwent

two consecutive thermal cycles: once to form a weak gel, and once more with the gel

under tension. The resulting anisotropic sample was tested in directions parallel and per-

pendicular to the direction of the processing tension. Relative to the isotropic sample, the

anisotropic sample is much stronger in the parallel direction and slightly weaker in the

perpendicular direction.

The anisotropic network is modelled by stretching and clamping an isotropic “base”

network model and superimposing a second isotropic “reinforcement” network model onto

the stretched network. The deformation of the base network is made equal to the frac-

tional deformation λp by which real anisotropic hydrogels were stretched during produc-
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Figure 4.5: Engineering stress versus engineering strain for isotropic hy-
drogels produced with one through six thermal cycles. Points are experi-
mental data and lines are fits of the isotropic 8-chain model to the data.

tion. Once superimposed, the two isotropic networks deform in conjunction and behave as

a single anisotropic network. Additional thermal cycles after the second thermal cycle are

assumed to further strengthen the base and reinforcement networks and not to introduce

additional networks. Once unclamped, the anisotropic network relaxes to equilibrium by

fractional deformation λr which is determined by maximizing the total entropy.

Below, the mechanical properties for such a compound network is determined when

deformed in the directions along, and perpendicular to, the direction of the strain applied

during processing.

3-Chain Model

Prior to elongation and addition of the reinforcement network, the base network is isotropic.

It is assumed that the reinforcement network, which forms after the base network is stretched,
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Figure 4.6: Engineering stress versus engineering strain for isotropic and
anisotropic hydrogels produced with two thermal cycles.

is isotropic prior to relaxation. However, once the two networks are joined to act as an

anisotropic network, neither appears isotropic after the compound anisotropic network is

relaxed to equilibrium.

If x1,0 is let to be the equilibrium fractional extension of strands in the isotropic base

network prior to elongation, the equilibrium fractional extension of strands along the x

direction after elongation by factor λp and relaxation by factor λr will be u1,0 = λrλpx1,0. If

x2,0 is let to be the equilibrium fractional extension of strands in the reinforcement network

prior to relaxation, the fractional extension of strands along the x direction after relaxation

by factor λr, will be u2,0 = λr x2,0. Due to symmetry, when the compound network is

elongated or contracted in the x direction, it will contract or elongate equally in the y and z

directions. Applying Eq. 4.10, the equilibrium fractional extension of strands in the y and z

directions in the base network after elongation and relaxation is v1,0 = x1,0/
√
λrλp and the
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equilibrium fractional extension of strands in the reinforcement network after relaxation is

v2,0 = x2,0/
√
λr.

Therefore, the entropy of an anisotropic network constructed from two 3-chain net-

works is

S =
N1

3

[
s
(
λxu1,0

)
+ s

(
λyv1,0

)
+ s

(
λzv1,0

)]
+

N2

3

[
s
(
λxu2,0

)
+ s

(
λyv2,0

)
+ s

(
λzv2,0

)]
(4.18)

where N1 and N2 are the number of polymer strands per cubic metre in the base and rein-

forcement networks, respectively. For deformations in the x direction, the strand entropies

in the y and z directions are the same, and the engineering stress found using Eq. 4.7 is

σx = −
N1T

3

[
∂s(x1,x)
∂x1,x

∂x1,x

∂λx
+ 2

∂s(x1,y)
∂x1,y

∂x1,y

∂λy

∂λy

∂λx

]
−

N2T
3

[
∂s(x2,x)
∂x2,x

∂x2,x

∂λx
+ 2

∂s(x2,y)
∂x2,y

∂x2,y

∂λy

∂λy

∂λx

]

where x1,α = λxu1,0, x1,y = λyv1,0, x2,α = λxu2,0, and x2,y = λyv2,0. The partial derivatives

needed are

∂s(xi,α)
∂xi,α

= −kBniL
−1 (

xi,α
)
,

∂xi,x

∂λx
= ui,0,

∂xi,y

∂λy
= vi,0, and

∂λy

∂λx
=

∂

∂λx

(
1
√
λx

)
= −

1

2λ3/2
x

.

Also, note that

v1,0 =
u1,0(

λrλp

)3/2
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and

v2,0 =
u2,0

λ3/2
r

.

After substitution of the partial derivatives, the engineering stress for deformations parallel

to the x direction is

σx(λx) =
N1kBTn1u1,0

3

[
L−1 (

λxu1,0
)
−

(
λxλrλp

)−3/2
L−1

(
v1,0
√
λx

)]
+

N2kBTn2u2,0

3

[
L−1 (

λxu2,0
)
− (λxλr)−3/2

L−1
(

v2,0
√
λx

)]
. (4.19)

As for the isotropic case, the sample is characterized by the fractional extension of

strands at equilibrium and the effective modulus representing the limiting behaviour of a

network made up of infinitely extensible Gaussian chains. The elastic moduli of the base

and reinforcing networks, in the x direction, are

G1,x = N1kBTn1u2
1,0 (4.20)

and

G2,x = N2kBTn2u2
2,0,

respectively. The elastic modulus of the combined anisotropic network, in the x direction,

is Gx = G1,x + G2,x.

The y and z directions are equivalent for elongations perpendicular to the direction of the

processing strain. In the following, the y direction is taken to be the direction of an applied

stress. When the sample is extended in the y direction, it does not contract equally in the

x and z directions. The dependent variables λx and λz could not be solved for analytically.

Instead, λz is constrained using Eq. 4.10, the engineering stress is calculated by numerically

differentiating Eq. 4.18, and λx is determined by numerically minimizing the stress for each
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value of the independent variable λy. The elastic modulus for elongations in the y direction

is Gy = G1,y + G2,y where

G1,y = N1kBTn1v2
1,0

and

G2,y = N2kBTn2v2
2,0. (4.21)

The two moduli of the base network, G1,x and G1,y, and of the reinforcement network,

G2,x and G2,y, are not independent of each other. They may be written in terms of the

independent moduli G1 = N1kBTn1x2
1,0 and G2 = N2kBTn2x2

2,0 of the base and reinforcing

networks, respectively, that would be found were the two networks decoupled and allowed

to relax to equilibrium. The relationships are G1,x = (λrλp)2G1, G2,x = λ2
rG2, G1,y =

G1/λrλp, G2,y = G2/λr.

The anisotropic 3-chain model is simultaneously fit to experimental data for elongations

parallel and perpendicular to the x direction to determine the four free parameters G1, G2,

x1,0, and x2,0. After fitting, these parameters were used to calculate the moduli Gx, Gy, G1,x,

G1,y, G2,x, and G2,y and the equilibrium fractional extensions u1,0, v1,0, u2,0, and v2,0 given

above. Engineering stress versus engineering strain, where points to the left of zero are

perpendicular data and points to the right of zero are parallel data, and fits of the anisotropic

3-chain model are shown in Fig. 4.7.

8-Chain Model

The anisotropic 8-chain derivation is similar to the 3-chain derivation. As before, a base

isotropic network is extended by factor λp, a reinforcement isotropic network is super-

imposed, and the compound anisotropic network is relaxed by factor λr parallel to the x

direction. The entropy of the anisotropic network in this case is

S = N1s
(
λ1,chainx1,0

)
+ N2s

(
λ2,chainx2,0

)
(4.22)
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Figure 4.7: Engineering stress versus engineering strain for anisotropic hy-
drogels for uniaxial extension a) perpendicular and b) parallel to the pro-
cessing strain with solid and dashed curves showing fits of the anisotropic
3-chain model. Points to the left of zero are perpendicular data (σy vs. εy)
and points to the right of zero are parallel data (σx vs. εx).

where subscript indices 1 and 2 denote parameters belonging to the base and the rein-

forcement networks, respectively. The relationships between the fractional extension of

the sample in the x direction, λx, and the fractional extensions of chains are

λ1,chain =

√
1
3

[(
λrλpλx

)2
+

λ2
y

λrλp
+

λ2
z

λrλp

]

and

λ2,chain =

√
1
3

[
(λrλx)2 +

λ2
y

λr
+
λ2

z

λr

]
.
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The stress for deformations parallel to the x direction is

σx = −N1T
∂s

(
x1,chain

)
∂x1,chain

∂x1,chain

∂λ1,chain

∂λ1,chain

∂λx
− N2T

∂s
(
x2,chain

)
∂x2,chain

∂x2,chain

∂λ2,chain

∂λ2,chain

∂λx
.

In this case, each network contracts equally in the y and z directions so

λ1,chain =

√
1
3

[(
λrλpλx

)2
+

2
λrλpλx

]
,

λ2,chain =

√
1
3

[
(λrλx)2 +

2
λrλx

]
and the stress is

σx =
N1kBTn1λrλpx1,0

3

L−1 (
λ1,chainx1,0

) [
λrλpλx −

(
λrλpλx

)−2
]

λ1,chain

+
N2kBTn2λr x2,0

3

L−1 (
λ2,chainx2,0

) [
λrλx − (λrλx)−2

]
λ2,chain

. (4.23)

Elongations perpendicular to the direction of the processing strain are chosen to be par-

allel to the y direction and, as for the 3-chain model, the sample does not contract by the

same amounts in the x and z directions, preventing us from solving for the stress analyt-

ically. The numerical routines used for the 3-chain model are used to constrain λz using

Eq. 4.10, find λx by maximizing the entropy, and differentiate the entropy to find stress.

The modulus coefficients in the 8-chain model are identical to those in the 3-chain

model and the experimental data are again fit with four free parameters. The final analysis

differs slightly from the 3-chain analysis because all of the chains in the base and reinforc-

ing portions of the compound network have equilibrium fractional extensions

u1,0 =

√
1
3

[(
λrλp

)2
+

2
λrλp

]
x1,0
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and

u2,0 =

√
1
3

[
λ2

r +
2
λr

]
x2,0,

respectively. G1,x, G2,x, G1,y, G2,y, u1,0, and u2,0 are calculated after fitting. As for the

3-chain model, engineering stress versus engineering strain and fits of the anisotropic 8-

chain model are shown with perpendicular data on the left and parallel data on the right in

Fig. 4.8. Both the 3-chain and 8-chain anisotropic models are capable of simultaneously fit-

ting the stress versus strain data for deformations parallel and perpendicular to the direction

of the processing strain. Much like the isotropic models, the anisotropic models slightly

over estimate the stress at small strains. At high strain, particularly for higher numbers of

thermal cycles, both models have higher curvature than do the experimental data.
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Figure 4.8: Engineering stress versus engineering strain for anisotropic hy-
drogels for uniaxial extension a) perpendicular and b) parallel to the pro-
cessing strain with solid and dashed curves showing fits of the anisotropic
8-chain model. Points to the left of zero are perpendicular data (σy vs. εy)
and points to the right of zero are parallel data (σx vs. εx).
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4.3.5 Temperature Dependence of Stress Versus Strain

Eq. 4.14 predicts an effective modulus that is proportional to temperature. To test this

dependence, 3-chain and 8-chain isotropic models were fit to uniaxial extension data ob-

tained as a function of temperature to determine effective elastic moduli and equilibrium

fractional extension versus temperature. The effective elastic moduli for the 3-chain and 8-

chain models, together with solid lines which are proportional to temperature and fit to the

data, are shown in Figs. 4.9 and 4.10, respectively. The equilibrium fractional extensions

for the 3-chain and 8-chain models are shown in Figs. 4.11 and 4.12, respectively.
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Figure 4.9: Effective elastic moduli of cycle-two and cycle-six PVA hydro-
gels as a function of temperature. Moduli were found by fitting the 3-chain
isotropic model to uniaxial extension engineering stress versus engineering
strain data. The black and grey solid lines are fits of a modulus proportional
to temperature for the cycle-two and cycle-six data, respectively.
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Figure 4.10: Effective elastic moduli of cycle-two and cycle-six PVA hy-
drogels as a function of temperature. Moduli were found by fitting the 8-
chain isotropic model to uniaxial extension engineering stress versus engi-
neering strain data. The black and grey solid lines are fits of a modulus
proportional to temperature for the cycle-two and cycle-six data, respec-
tively.
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Figure 4.11: Equilibrium fractional extension of polymer strands in cycle-
two and cycle-six PVA hydrogels as a function of temperature determined
by fitting the 3-chain isotropic model to uniaxial extension engineering
stress versus engineering strain data.
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Figure 4.12: Equilibrium fractional extension of polymer strands in cycle-
two and cycle-six PVA hydrogels as a function of temperature determined
by fitting the 8-chain isotropic model to uniaxial extension engineering
stress versus engineering strain data.
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4.4 Discussion

4.4.1 Isotropic Hydrogels

Both the 3-chain and 8-chain models adequately fit the engineering stress versus engineer-

ing strain data of isotropic PVA hydrogels as shown in Figs. 4.3 and 4.5. The models

perform best with fewer thermal cycles. At high strains, both models increase more rapidly

than the experimental data.

One possible explanation for the difference is non-affine deformation of polymer strands

with polydisperse lengths in the real hydrogel network. Though the 8-chain model fea-

tures non-affine deformation of the polymer strands, they all have the same length and are

forced to elongate at the same rate. In the real hydrogel, some strands will approach their

maximum fractional extension sooner than others. When this occurs, these strands will

henceforth deform by less than the assumed affine deformation. Meanwhile, strands that

have not yet begun to stiffen will deform by more than the assumed affine deformation. As

a result, the network as a whole will stiffen more gradually.

A second possible explanation is that as polymer strands become highly extended and

their entropy decreases, it becomes energetically favourable for monomers to unreel from

the crystallites at the ends of the strands [26–28]. This would increase the number of links

in the strands and decrease their fractional extensions, resulting in strands that stiffen more

gradually. Again, the entire network would stiffen more gradually.

The equilibrium fractional extensions of the polymer strands in the two models increase

slightly during the first few thermal cycles as shown with black circles for the 3-chain and 8-

chain models in Figs. 4.13 and 4.14, respectively. This may be caused by repeated thermal

cycling inducing crystallites to consume some of the monomers comprising the strands

between crystallites, increasing the size of crystallites produced by earlier cycles, without

decreasing the distance between the crystallites.

Due to the non-affine extension of strands in the 8-chain model, strand equilibrium frac-
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tional extensions increase more slowly as a function of strain. For strands in the isotropic

8-chain model to stiffen at low enough strain for the model to match the experimental data,

they must start with a higher equilibrium fractional extension than the strands in the 3-chain

model as seen in Figs. 4.13 and 4.14.
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Figure 4.13: Equilibrium fractional extensions of strands for isotropic, x0,
and anisotropic, u1,0, v1,0, u2,0, and v2,0, hydrogels determined by fitting the
3-chain model to experimental engineering stress versus engineering strain
data. In the anisotropic model, u1,0 and v1,0 are fractional extensions of the
base network and u2,0 and v2,0 are fractional extensions of the reinforcement
network.

The effective elastic moduli obtained with the two models increase significantly with

the number of thermal cycles as shown by the black circles for the 3-chain and 8-chain

models in Figs. 4.15 and 4.16, respectively. The effective modulus depends on the number

of strands per cubic metre, N, the number of random walk steps per strand, n, and the

equilibrium fractional extension, x0, as given by Eq. 4.14. The slight increase in x0 is
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Figure 4.14: Equilibrium fractional extensions of strands for isotropic, x0,
and anisotropic, u1,0 and u2,0, hydrogels determined by fitting the 8-chain
model to experimental engineering stress versus engineering strain data.

insignificant and n for any given strand should decrease as crystallites grow, suggesting

that the increase in effective modulus is almost entirely due to an increase in the number of

strands per cubic metre participating in the network.

4.4.2 Anisotropic Hydrogels

Both models adequately fit the engineering stress versus engineering strain of anisotropic

PVA hydrogels as shown in Figs. 4.7 and 4.8. As for the isotropic models, the fits are

best at fewer thermal cycles and exhibit the same systematic error for higher numbers of

thermal cycles as described above. To successfully fit the anisotropic data, the parameters

characterizing the base networks of both models could not be fixed at the values obtained

by fitting the corresponding isotropic models to cycle-one data. For both the 3-chain and



4.4. DISCUSSION 96

60

40

20

0

E
ffe

ct
iv

e 
el

as
tic

 m
od

ul
us

 (k
P

a)

654321

Number of thermal cycles

Anisotropic
Base  Reinforcement    Compound
G1,x         G2,x                 Gx
G1,y          G2,y                  Gy

Isotropic
    G

Figure 4.15: Effective elastic moduli for isotropic, G, and anisotropic hy-
drogels determined by fitting the 3-chain model to experimental engineering
stress versus engineering strain data. In the anisotropic network, G1,x and
G1,y are the moduli of the base network, G2,x and G2,y are the moduli of
the reinforcement network, and Gx and Gy are the moduli of the compound
network.

8-chain models, the effective moduli of the base and reinforcement networks increase with

the number of thermal cycles as seen in Figs. 4.15 and 4.16. This suggests that the number

of strands in the base network increases with the number of thermal cycles.

For both the 3-chain and 8-chain models, the effective elastic moduli in the x and y

directions, Gx and Gy, are nearly identical as seen in Figs. 4.15 and 4.16. Therefore, the

effective elastic moduli of the compound networks are not responsible for the anisotropy.

It is noted that, by substituting the first order approximation L−1 (x) ≈ 3x which is valid for

small fractional extensions of strands into Eq. 4.19 or 4.23 at equilibrium, the relationship

Gx = Gy is obtained. Here, the equilibrium fractional extensions are less than, but not much
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Figure 4.16: Effective elastic moduli for isotropic, G, and anisotropic hy-
drogels determined by fitting the 8-chain model to experimental engineering
stress versus engineering strain data. In the anisotropic network, G1,x and
G1,y are the moduli of the base network, G2,x and G2,y are the moduli of
the reinforcement network, and Gx and Gy are the moduli of the compound
network.

smaller than, one. Even so, the data show Gx ≈ Gy.

As the 3-chain model is elongated, the importance of strands parallel to the direction of

elongation increases as the strands stiffen and the importance of strands perpendicular to

the direction of elongation diminishes as 1/
√
λ. Therefore, the strands parallel to the x axis

with equilibrium fractional extensions u1,0 and u2,0 are the most important for elongations

in the x direction and the strands parallel to the y axis with equilibrium fractional extensions

v1,0 and v2,0 are the most important for elongations in the y direction. Further, of strands

aligned in the direction of elongation, those starting with higher equilibrium fractional ex-

tension will dominate the stress at high elongation because they stiffen first. Therefore, the
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base network strands of equilibrium fractional extension u1,0 dominate the stress for elon-

gations along x and the reinforcement network strands of equilibrium fractional extension

v2,0 dominate the stress for elongations along y, as seen in Fig. 4.13. The figure also shows

that the equilibrium fractional extensions of the dominant strands in the x and y directions,

u1,0 and v2,0, are the same, and therefore not the source of the anisotropy. The compound

network is anisotropic because the effective elastic modulus of the dominant strands in the

x direction, G1,x, is higher than the effective elastic modulus of the dominant strands in the

y direction, G2,y, as seen in Fig. 4.15. Since u1,0 is approximately equal to v2,0, Eqs. 4.20

and 4.21 show that G1,x is greater than G2,y because N1 is greater than N2. There are more

highly extended strands in the x direction than in the y direction.

In the 8-chain model, all strands in the base network have the same fractional extension

and all strands in the reinforcement network have the same fractional extension. When the

compound network is in equilibrium, the fractional extension of strands in the reinforce-

ment network is slightly higher than in the base network as shown in Fig. 4.14. However,

if the network begins to elongate in the x direction, the fractional extension of polymer

strands in the base network will immediately begin to increase, while the fractional ex-

tension of polymer strands in the reinforcement network will decrease to a minimum at

λx = 1/λr before increasing. At this time, the strands in the base network will have higher

fractional extension and will dominate the stress. Similarly, for elongations of the network

in the y direction, the equilibrium fractional extension of strands will always increase in the

reinforcement network and initially decrease before increasing in the base network. There-

fore, the strands of the reinforcement network dominate the stress for elongations in the y

direction. Similar to the 3-chain model, the network is stronger in the x direction because

the modulus of the dominant strands for deformation in the x direction, G1,x, is higher than

for the dominant strands for deformations in the y direction, G2,y, as seen in Fig. 4.16. Much

like the 3-chain model, there are more highly extended strands that immediately elongate

for deformations in the x direction than for the y direction.
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4.4.3 Temperature Dependence of Stress Versus Strain

The effective moduli of the cycle-two hydrogel, as determined from the 3-chain and 8-

chain models, increases with temperature at a rate equal to or greater than the expected

proportional dependence, assuming the network is unaltered, as shown in Figs. 4.9 and

4.10, respectively. However, the effective moduli of the cycle-six hydrogel remain constant

or increases at less than the expected rate. The equilibrium fractional extensions decrease

slightly with increasing temperature as shown in Figs. 4.11 and 4.12. This could be caused

by monomers leaving crystallites and increasing the average number of monomers per

strand or by water leaving the network and decreasing the distance between cross-links.

The decrease in the equilibrium fractional extension lowers the effective modulus but is

not sufficient to explain the discrepancy between actual cycle-six moduli and the expected

moduli. Eq. 4.14 predicts that the number of strands per cubic metre, N, and/or the number

of links per strand, n, must also be decreasing with temperature. All hydrogels show a

decrease in modulus at the warmest temperatures. This may be caused by partial melting

of crystallites which reduces the number of cross-links and thus the number of polymer

strands contributing to the entropy, weakening the network.

4.4.4 Connection Between Structural and Mechanical Models

In Chapter 3, the structure was modelled as a fractal aggregate composed of polymer blobs.

Here, the compatibility of the previous isotropic structural model and this isotropic 3-chain

mechanical model is evaluated. It is assumed that each blob contains one crystallite and

dangling chains associated with it, that blobs are packed closely together, and that blobs

connect to their immediate neighbours with one or more polymer strands. Under these

assumptions, the equilibrium length of strands that connect blobs, r0, is comparable to the

size of the blobs, R, which was earlier found to have the average value of 46.8 nm from

Table 4.2. Finally, it is assumed that the blob size is smaller for cycle-one because the blobs
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Table 4.3: Estimates of the number of links per strand nK ,
the number of strands per cubic metre N, and the percentage
of monomers contained in strands that contribute to network
strength.

Number of thermal cycles nK N (×1023/m3) monomers in strands (%)

1 156 0.19 0.5

2 149 0.94 2.5

3 142 1.50 3.8

4 142 1.94 4.9

5 141 2.15 5.4

6 140 2.59 6.4

are not fully formed, and not that the strands are shorter than for later thermal cycles.

The statistical theory for the entropy of polymer strands assumes freely jointed links.

PVA is not freely jointed due to the constraint on carbon-carbon bond angles. However, it is

possible to divide a polymer chain into fewer, longer links such that the orientations of the

links are uncorrelated and the links may be considered freely jointed. The length of each

link at which a chain may be considered freely jointed is known as the Kuhn length and has

been measured to be 6.2 Å for PVA [29]. PVA strands are therefore replaced with equivalent

freely jointed strands having nK freely jointed links of Kuhn length bK = 6.2 Å. It is now

possible to estimate the number of links between the two ends of a polymer strand using

nK = r0/x0bK , the number of strands per cubic metre from Eq. 4.14, and the total number

of Kuhn lengths per cubic metre from NnK . Finally, each Kuhn length is equivalent to

2.47 monomers, allowing calculation of the number of monomers per cubic metre which

make up the strands as a percentage of the total number of monomers per cubic metre in

the hydrogel. The results obtained by using G and x0 from the isotropic 3-chain model are

shown in Table 4.3.
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The modelling suggests that less than 10% of the polymer present in the sample con-

tributes to the tensile strength. It is also estimated that, prior to cross-linking, there are

3.7 × 1023 polymer chains per cubic metre. Though each polymer chain could be cross-

linked many times and be divided into multiple polymer strands, the number of polymer

chains per cubic metre remains comparable to, but larger than, the number of strands per

cubic metre as determined in Table 4.3. Therefore, the amount of polymer required to ob-

tain the observed mechanical properties, as estimated from the structural and mechanical

models, is compatible with the amount of polymer available in the hydrogels. Further, the

models suggest that only a small percentage of the monomers in the sample are contained

in the strands that contribute to mechanical strength via connections to neighbouring blobs.

To create a continuous, three-dimensional network, each blob must connect to several

neighbouring blobs. The unit cell of the 3-chain model has volume r3
0 and the volume

fraction of the gel phase made of strands can be estimated from (N/3)r3
0. This estimate

yields a volume fraction increasing from 0.7 to 9 with the number of thermal cycles. Since

the volume fraction must be less than one, strands in the real hydrogel must be packed more

tightly than in the 3-chain unit cell. To achieve this without decreasing the average distance

between PVA blobs requires multiple connections between connected crystallite pairs. In

the case of the 3-chain network, connected pairs would require roughly a single connection

for cycle-one and roughly twenty connections for cycle-six to achieve a volume fraction of

50% polymer-free pores.

4.5 Conclusion

The uniaxial extension behaviour of PVA hydrogels has been successfully modelled us-

ing the 3-chain model of Treloar [13] and the 8-chain model of Arruda and Boyce [14].

Anisotropic versions of the models were developed to provide insight into the origin of

anisotropy in the stress-strain behaviour of PVA hydrogels produced by stretching a weak
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cycle-one gel parallel to the x direction and performing additional thermal cycles. These

anisotropic gels are stronger when elongated in the x direction than in the y or z directions.

The mechanical models are much simpler than structure observed by SANS and could

be made to more closely resemble the structural model, but they exhibit nonlinear and

anisotropic behaviour closely matching the experimental data. Although the large-scale

fractal aggregate structure was not considered and was not needed to explain the stress-

strain relationships or the anisotropy, the possibility that it plays a role has not been ex-

cluded. For each number of thermal cycles, there is more than sufficient polymer available

for entropy to account for the measured mechanical strength.

The observed strain stiffening of the bulk material is adequately explained by the stiff-

ening of polymer strands as they become highly extended. The stress of an anisotropic

PVA hydrogel is dominated by the polymer strands parallel to the direction of the strain

that have the highest equilibrium fractional extension. In the 3-chain model, the number of

strands with high fractional extension in the x direction outnumber those in the y direction,

making it stronger in the x direction than in the y direction. In the 8-chain model, strands

undergo non-affine deformation, but similarly to the 3-chain model, there are more strands

of high fractional extension for elongations in the x direction than in the y direction.

To test that entropy is the dominant source of elasticity, the effective moduli of cycle-

two and cycle-six hydrogels were found as a function of temperature. According to both

the 3-chain and 8-chain models, the effective modulus of the cycle-two hydrogel increased

with temperature at or slightly above the expected rate. However, the effective modulus

of the cycle-six hydrogel remains approximately constant through most of the temperature

range and at the warmest temperatures, both hydrogels rapidly weaken. The lack of depen-

dence on temperature for the cycle-six hydrogel and the weakening at high temperature for

both hydrogels may be due to unreeling of monomers from the cross-links. As unreeling

progresses, strands connecting cross-links may eventually detach.
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Chapter 5

Measurement of the Elastic Modulus of

Spider Mite Silk Fibres Using the

Atomic Force Microscope

5.1 Introduction

Silk is an exceptionally strong natural material produced by spiders, silkworms, spider

mites, and many other creatures. Natural silkworm silk has long been exploited for textiles

and, more recently, suture materials [1–3]. Silk also shows promise as a scaffold material

for tissue repair and for generation of artificial tissue [2–4]. For this reason, there is great

interest in characterizing the physical, chemical, and biological properties of silk, and in

producing synthetic silk fibres. However, the properties of artificially produced fibres are

usually inferior to those of their natural counterparts [5]. Further, the properties of natural

and artificial silk fibres vary considerably and depend on the silk proteins utilized, temper-

ature, degree of hydration, and rate of deformation [6].

Due to the scale of lengths and magnitude of forces involved, atomic force microscopy

(AFM) is well suited to measuring the mechanical properties of silk fibres. The atomic

106
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force microscope can be used to measure the mechanical properties of nanofibres by sus-

pending the fibres over trenches and pushing on them laterally or vertically with the tip of

an atomic force microscope cantilever, thus performing a three-point bending test. This

technique has been used on a variety of materials including Au, Si, SiO2, TiO2, and ZnO

nanowires [7–11]; carbon nanotubes [12–14]; and cellulose and assorted polymer nanofi-

bres [7, 15–18]. In some cases, elastic moduli that increased with decreasing nanofibre or

nanowire diameter were reported [17, 19]. However, Heidelberg et al. showed that tensile

stress, due to elongation of a deformed fibre, must be considered when the lateral displace-

ment of the fibre is comparable to or larger than its radius [9]. In the cases of Si and ZnO

nanowires, deformation-induced tensile stress could fully explain the apparent increase in

modulus with decreasing nanowire diameter, and the moduli were found to equal the bulk

moduli of Si and ZnO [9, 11].

Recently, the Tetranychus urticae spider mite genome was fully sequenced, the proteins

involved in silk production were identified, and a summary of the mechanical results pre-

sented here were published, clearing the way for production and characterization of spider

mite silks with genetically tailored mechanical properties [20]. To model the AFM data

and determine the Young’s modulus of the fibres, the model of Heidelberg et al. described

above had to be modified to account for an initial axial tension which is present in the ab-

sence of applied forces from the AFM cantilever tip. Here, a detailed account of the AFM

technique used and the derivation of the model used to determine the Young’s modulus

from force versus lateral displacement of suspended fibres.

5.2 Materials and Methods

Trenches were fabricated on silicon substrates, using a custom-designed mask produced at

the University of Alberta NanoFab facility (Edmonton, Canada), by photolithography and

reactive ion etching at the Western Nanofabrication Facility (London, Canada). Silk fibres
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were deposited by allowing adult and larval Tetranychus urticae spider mites to walk on

the silicon wafers for two to eight hours. Before performing measurements on the fibres,

spider mites were removed from the silicon wafers with a fine brush. To reduce the time

needed to find single fibres crossing trenches, areas of spider mite activity were located by

searching for bundles of fibres using an optical microscope.

AFM measurements were made using a Multimode atomic force microscope with a

Nanoscope IIIa controller using control software version 5.30 (Digital Instruments, Santa

Barbara, CA). NP-S silicon nitride cantilevers (Veeco, Plainview, NY) with nominal spring

constants of 0.06 N/m and 0.35 N/m were used for measurements on larval and adult

fibres, respectively. Actual spring constants of 0.083 ± 0.003 N/m and 0.347 ± 0.009 N/m

were measured using the thermal noise method [21–24]. Measurements were performed

at an ambient atomic force microscope temperature of approximately 32 ◦C and relative

humidities of 14–30%, though the relative humidity was usually less than 20%.

Single silk fibres and bundles of several fibres were located by performing large-area,

high-speed contact AFM imaging on flat areas in the vicinity of the large fibre bundles

located with the optical microscope. Contact imaging was used to track fibres to trenches,

to verify that each fibre was firmly stuck to the plateau on each side of the trench, to

measure the fibre lengths and diameters, and, in a few cases, to deliberately break fibres

after acquiring force-volume data.

Once located, mechanical testing of fibres was performed by measuring force curves. A

force curve records cantilever deflection versus the vertical position of the sample under the

cantilever. Force-volume (FV) data are comprised of a matrix of force curves acquired over

an area. For each force curve, a relative trigger instructs the atomic force microscope to

retract the sample when the cantilever deflection reaches a trigger threshold value, ensuring

a consistent range of forces at each point. Here, FV data of 64 × 64 force curves were

captured where fibres crossed the gratings. Image sizes large enough to capture force curves

over the entire length of suspended fibres and on the plateaus at both ends were selected.
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Each force curve was acquired using a vertical ramp of 1 µm, a scan rate of 4 Hz, and a

relative trigger threshold of approximately 250 nm or less. Height images can be created

from FV data by constructing a map of the vertical piezoelectric scanner position at which

each force spectrum reaches the trigger threshold value. Example contact and FV height

images of the same fibre are shown in Figs. 5.1 and 5.2, respectively.

2 µm
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Figure 5.1: 5.3 µm× 5.3 µm contact AFM image of a spider mite silk fibre
suspended over a trench. The bottom of the trench has been moved off-scale
in order to highlight the edges of the trench and the fibre. The fibre appears
much wider than its true diameter due to convolution with the pyramidal
AFM tip.

5.3 Theory and Data Analysis

An AFM three-point bending test measures fibre restoring force versus fibre deflection at

the point where the cantilever tip touches the fibre. These data are modelled by finding the



5.3. THEORY AND DATA ANALYSIS 110

Figure 5.2: AFM FV height image of the same spider mite silk fibre shown
in Fig. 5.1. The bottom of the trench has been moved off-scale in order to
highlight the edges of the trench and the fibre. The grey scale for each pixel
represents the trigger point of the force curve recorded at that location. The
circles indicate the locations of force curves on the fibre chosen for analysis.

mechanical equilibrium of model fibres and calculating the expected restoring force versus

displacement. The restoring force results from a combination of bending, shear, and tensile

stresses. However, when the aspect ratio (length divided by diameter) of a fibre is much

greater than one, the shear stress is negligible in comparison to the bending stress [25]. As

this is the case here, shear stress is not considered in the analysis below.

The material is assumed to be linearly elastic for axial strains. Further, the radius of

curvature due to deformation is assumed to be large relative to the fibre diameter every-

where on the fibre, which is satisfied for fibre displacements much smaller than the length

of the fibre. To simplify the analysis, only the case when the cantilever tip pushes at the
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centre of the fibre is considered. Below, the models which account for bending only and

bending with deformation-induced tension are reviewed, and a model which accounts for

bending, deformation-induced tension, and an initial tension is derived.

5.3.1 Pure Bending

For deformations much smaller than the radius of the fibre, tensile stress caused by elon-

gation may be neglected [9] and, in the absence of an initial tension, deformation can be

adequately modelled by considering bending alone, so that

EI
d3δ(x)

dx3 = −
Fcentre

2
, (5.1)

where x is the position along the fibre, E is the Young’s modulus of the fibre, and I is the

area moment of inertia of the fibre [26]. With clamped boundary conditions, and noting

that the solution must be symmetric about the centre, the solution must satisfy

δ(0) = 0

and

δ′(0) = δ′(L0/2) = 0,

where L0 is the length of fibre between the clamped boundaries. The solution, after isolation

of the magnitude of the force at the centre, Fcentre, is

Fcentre =
192EI

L3
0

δcentre (5.2)

where δcentre is the displacement of the fibre at the centre [26]. The fibre is shown in Fig. 5.3.

Here, in the absence of an initial tension, T0 = 0, Leq = L0, and the deformation induced

tension T is assumed to be negligible.
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Figure 5.3: Diagram of the segment of fibre under analysis a) before clamp-
ing and without initial tension, b) after application of initial tension and
clamping to grating but before contact with AFM cantilever tip, and c) after
contact with AFM cantilever tip. The fibre is shown in grey and the segment
under analysis is dark grey. Leq is the equilibrium length before application
of an initial tension. L0 is the distance between the clamping points. T0 is
the magnitude of the initial tension. T is the sum of the initial tension and
the tension due to elongation of the fibre. δcentre is the displacement of the
centre of the fibre when the cantilever tip exerts a force of magnitude Fcentre

at the centre.
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5.3.2 Bending With Deformation-Induced Tension

For deformations comparable to or larger than the fibre radius, the tensile stress caused

by elongation becomes significant [9]. When an axial tension of magnitude T is present,

the vertical components of the tension in infinitesimal elements of the fibre act as shear

forces on the ends of the elements. In the small deflection limit where the slope of the fibre

remains small, the vertical component of the tension at position x is Tdδ(x)/dx and new

equation for equilibrium of the fibre becomes [26]

EI
d3δ(x)

dx3 = −
Fcentre

2
+ T

dδ(x)
dx

. (5.3)

Heidelberg et al. solved Eq. 5.3 for clamped boundary conditions and obtained the

relationship

Fcentre =
192EI

L3
0

f (α)δcentre (5.4)

where

f (α) =
α

48 − 192 tanh(
√
α/4)

√
α

(5.5)

and α is defined by

α =
T L2

0

EI
. (5.6)

The tension due to stretching is given by [26]

Ts = EA
L − L0

L0
=

EA
2L0

∫ L0

0

(
dδ
dx

)2

dx =
EA
L0

∫ L0/2

0

(
dδ
dx

)2

dx,

which yields the relationship between α and δcentre:

α cosh2(
√
α/4)

2 + cosh(
√
α/2) − 6 sinh(

√
α/2)

√
α

(
1 − 4

tanh(
√
α/4)

√
α

)2

=
A
I
δ2

centre (5.7)

where A is the cross-sectional area of the fibre and T = Ts is the magnitude of the tension
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due to stretching of the fibre [9]. The function f (α), which is greater than or equal to one,

is the factor by which tensile stress increases the fibre’s resistance to deformation relative

to Eq. 5.2 which considers only bending stress. An analytic expression for α cannot be

found from Eq. 5.7, but α may be solved for numerically or approximated using a Padé

approximant [9]. This model is described by Fig. 5.3 in the case that T0 = 0, Leq = L0, and

T = Ts which is not negligible.

5.3.3 Bending With Both Deformation-Induced Tension and an Initial

Tension

The model of Heidelberg et al. is extended by considering a constant initial tension, T0,

applied to the fibre. Equation 5.3 defines the equilibrium shape of the fibre with T = T0+Ts.

A fibre clamped between x = 0 and x = L0 is symmetric about the centre. The solution for

the displacement of the fibre between x = 0 and x = L0/2 was found with assistance from

Maple (Maplesoft, Waterloo, Canada), and is

δ(x) =
Fcentre

2T

x −
L0
√
α

sinh
[√
α(x/L0 − 1/4)

]
+ sinh(

√
α/4)

cosh(
√
α/4)

 . (5.8)

Restoring force versus deformation can still be expressed using Eqs. 5.4–5.6. However, the

relationship between α and δcentre has changed as is found below. Since the suspended fibre

segment of length L0 is under tension, its relaxed equilibrium length, Leq, is less than L0.

The tension due to stretching, relative to the relaxed equilibrium length, is given by [26]

Ts = EA
L − L0

Leq
=

EA
2Leq

∫ L0

0

(
dδ
dx

)2

dx =
EA
Leq

∫ L0/2

0

(
dδ
dx

)2

dx. (5.9)

Substitution of Eq. 5.8 into Eq. 5.9 yields

Ts

T
Leq

L0

 α cosh2(
√
α/4)

2 + cosh(
√
α/2) − 6 sinh(

√
α/2)

√
α

(
1 − 4

tanh(
√
α/4)

√
α

)2
 =

A
I
δ2

centre. (5.10)
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By definition

T0 = EA
L0 − Leq

Leq

so

Leq = L0

(
EA

T0 + EA

)
. (5.11)

Using Eq. 5.11 and Ts = T − T0, Eq. 5.10 may be written as

(
1 −

T0

T

) ( EA
T0 + EA

)  α cosh2(
√
α/4)

2 + cosh(
√
α/2) − 6 sinh(

√
α/2)

√
α

(
1 − 4

tanh(
√
α/4)

√
α

)2
 =

A
I
δ2

centre,

(5.12)

providing a relationship between α and δcentre different from that of Eq. 5.7 in the previous

model. Note that when T0 = 0, Eq. 5.7 is recovered. The important quantities are indicated

in Fig. 5.3.

5.3.4 Analysis of Force Curves

Data were imported into Igor Pro (WaveMetrics, Portland, USA) for analysis. Force curves

were calibrated by dividing by the magnitude of the mean slope of force curves acquired on

the hard substrate where the cantilever deflection equals the piezo displacement. A force

curve on the substrate exhibits a linear relationship between piezo position and cantilever

deflection after contact is made and, after normalization, has a slope of minus one. In con-

trast, a force curve on the fibre requires a larger piezo displacement, ∆z, to reach the same

cantilever deflection, ∆y, due to the displacement of the fibre. In many AFM studies of

other fibres, force curves on the fibre are linear, corresponding to deflection due to bending

and/or shear. In this case, force curves on the fibre are found to be non-linear, indicating

a need to include tensile stress. Example force curves from the substrate and the fibre are

shown in Fig. 5.4.

For each force curve, the point at which the cantilever tip makes contact with the fibre

was manually found and the flat baseline was truncated to obtain only the portion of the
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Figure 5.4: AFM force curves obtained by pushing against a fibre (solid
curve) and a hard substrate (dashed curve). The sample approaches the
cantilever with decreasing piezo position and the positions have been offset
to place the points of contact at zero.

curve in which the tip and the fibre are in contact. After truncation, the curves of can-

tilever deflection versus piezo position were converted to fibre restoring force versus fibre

displacement. The restoring force is equal to the cantilever deflection multiplied by the ef-

fective spring constant of the cantilever, and the fibre displacement is equal to the difference

between the piezo displacement and the cantilever deflection. Fibres were assumed to have

circular cross-sections for which I = πd4/64 and A = πd2/4 where d is the diameter of the

fibre. The system of equations, Eqs. 5.4, 5.5, and 5.12, was fit to force-versus-displacement

curves with only the Young’s modulus, E, and the initial tension, T0, as free parameters.

Example force versus displacement curves, one with low initial tension and one with high

initial tension, and least-squares fits of the model are shown in Fig. 5.5. For comparison,

fits to both the pure bending model and the model including bending and stretching without
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an initial tension are shown. The range of the pure bending fits was restricted to δcentre less

than 50 nm to fit only the linear region. Fits of the other two models were restricted to less

than 150 nm in the case of high initial tension to fit only the region of elastic deformation.
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Figure 5.5: Experimental force versus displacement curves of single silk
fibres with relatively low and relatively high initial tensions. For clarity,
two-thirds of the points have been omitted. Fits of the model which accounts
for bending, stretching, and an initial tension are shown with solid curves.
For comparison, fits of the pure bending and bending plus stretching models
are shown with dashed and dotted curves, respectively. The range of the
pure bending fits was restricted to δcentre less than 50 nm. Fits of the other
two models were restricted to less than 150 nm in the case of high initial
tension.

Though the model was developed for loads applied at the centre of the fibre, the moduli

given by the model are fairly constant for at least the middle 20% of force curves as shown

in Fig. 5.6. The modulus of the fibre is found by averaging values obtained from force

curves located within ±10% of the centre of the fibre. The Young’s moduli and initial
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tensions of fibres and fibre bundles, obtained using the method described above for samples

prepared with a mixture of adults and larvae, adults only, and larvae only, are recorded in

Table 5.1. The diameters suggest three cases in which a measurement was made on a small

bundle with a few fibres and four cases in which a measurement was made on a larger fibre

bundle with a height above the substrate greater than 100 nm. In a few cases, consecutive

measurements were made to test the repeatability of the experiments. Averages of the

results for repeated measurements are recorded.
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Figure 5.6: The Young’s Modulus, obtained from fitting individual force
curves, displayed versus the position of the force curve on the fibre as a
fraction of the fibre length. The modulus of the fibre was determined by
averaging the middle 20% of measurements. The dashed line indicates the
average modulus.
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Table 5.1: Silk fibre lengths, diameters, moduli, and initial tensions
for samples prepared with adults and larvae, adults only, and larvae
only.

Sample Type Fibre Location L (µm) d (nm) E (GPa) T0 (nN)

Mixed 1 a 4.2 57 27.4 ± 7.6 486 ± 40

b 4.1 59 27.6 ± 4.1 205 ± 10

c 3.9 51 40.6 ± 3.3 80 ± 12

d 4.1 59 15.7 ± 0.7 255 ± 5

2 a 6.8 75a 39.9 ± 5.8 628 ± 39

3 a 4.2 170b 26.5 ± 1.0 201 ± 86

b 4.4 190b 19.3 ± 2.3 0.7 ± 0.5

c 4.4 200b 25.3 ± 0.9 510 ± 100

4 a 18 92a 25.4 ± 4.3 621 ± 28

bc 16 78a 31.6 ± 2.9 366 ± 21

Adult 5 a 3.8 33 24.2 ± 1.0 9 ± 4

6 a 3.4 108b 26.0 ± 1.2 231 ± 35

7 a 4.4 65 15.2 ± 1.1 91 ± 14

b 4.4 54 20.5 ± 0.5 79 ± 6

8 ad 4.0 54 19.6 ± 0.3 238 ± 2

Larval 9 a 3.6 23 20.3 ± 4.0 14 ± 4

10 ac 6.0 25 9.55 ± 0.48 32 ± 2

11 ae 4.3 22 15.16 ± 0.56 90 ± 2
a Likely multiple fibres
b Large fibre bundle
c Average of four consecutive measurements
d Average of three consecutive measurements
e Average of two consecutive measurements
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5.4 Discussion

Typical force versus displacement curves exhibit non-linear behaviour and a range of initial

slopes as shown in Fig. 5.5. Though the force versus displacement curves are non-linear,

agreement between the data and the model presented here, which assumes linear elastic

response, indicates that the silk initially behave as a linear elastic material. The fibre under

relatively high initial tension behaves linearly up to approximately 150 nm and the fibre

under relatively low initial tension behaves linearly through the full range of displacements.

In the examples shown, the pure bending model yields moduli of 167±2 and 580±20 GPa

and the model of Heidelberg et al. yields moduli of 46.7 ± 0.9 and 32 ± 0.2 GPa. Both

models significantly overestimate the modulus of the silk and provide inconsistent results.

Further, when an initial tension is present, the pure bending model may not be used, even

for very small deformations where the tension due to stretching is negligible. As shown by

Eqs. 5.4–5.6, an initial tension results in α greater than zero, f (α) greater than one, and an

increased slope of Fcentre versus δcentre.

From contact imaging on the substrate, adult fibres were found to have a diameter of

approximately 55 nm. Several of the fibres from the mixed adult and larval samples have

diameters matching those from the adult only samples. Fibres 1, 5, 7, and 8 from Table 5.1

are therefore classified as individual adult fibres. Their average diameter is 54 ± 3 nm.

The larval fibres, fibres 9, 10, and 11, have a significantly smaller average diameter of

23.3 ± 0.9 nm. The remaining fibres have diameters greater than 70 nm and are considered

to be bundles of fibres. These spider mite silk fibres have much smaller diameters than

typical spider silk fibres which have diameters of several microns [27].

The initial tensions of the strands vary from negligibly small to hundreds of nanonew-

tons. These tensions may arise from mites pulling on the silk as they lay it down or from

shrinkage of the silk after it has been deposited. The average of the moduli of the adult

fibres is 24 ± 3 GPa and the average of the moduli of the larval fibres is 15 ± 3 GPa.
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In cases of high initial tension, such as that shown in Fig. 5.5, the fibre was deformed

beyond its elastic limit. In these cases, the force versus displacement curves were converted

to stress versus strain and an estimate of the ultimate strength was made in cases where the

stress became flat. Both adult and larval fibres had ultimate strengths of approximately

200–300 MPa. The ultimate strength was typically reached at 1–1.5% strain. To obtain

an estimate of the toughness, several fibres were broken by repeating contact imaging with

gradually increasing imaging force. An estimate of the lateral deformation of the centre of

a fibre was made from the last contact image obtained before the fibre broke, allowing us

to estimate a maximum strain of 4%. The stress is assumed to increase linearly from 0 to

250 MPa between 0% and 1% strain and to remain constant thereafter until the fibre breaks

at 4% strain. This allows an order of magnitude estimate of 9 MJ/m3 for the toughness.

The elastic modulus, tensile strength, breaking strain, and toughness of the spider mite

silk fibres is compared to those of the Nephila clavipes spider and the Bombyx mori silk

worm silks in Table 5.2. The spider mite silk has a higher modulus than the spider and silk

worm silks. However, the tensile strength, breaking strain, and toughness of the spider mite

silk are lower than those of the spider and silk worm silks.

A technique where force measurements were recorded at many positions along the

length of the fibres was employed. In cases where the pure bending model applies, this

offers the potential to more accurately determine the modulus and to justify the use of the

pure bending model [16]. Here, applying the pure bending model to the small deformation

limit yielded unreasonably large and inconsistent values for the modulus. Also, the position

dependence of the slopes of the AFM force curves did not agree with the predictions of the

pure bending model [16], further indicating that the pure bending model was insufficient,

even for very small deformations. The disadvantage of this approach is that it may not be

sufficient for determining the ultimate strength and toughness of a material.

To obtain good estimates of the modulus, ultimate strength, and toughness, the tech-

nique of breaking a fibre by performing a single, large deformation measurement at the fi-



5.5. CONCLUSION 122

Table 5.2: Comparison of the elastic modulus, tensile
strength, breaking strain, and toughness of adult spider mite,
spider, and silkworm silks. The spider and silkworm data are
from Elices et al. [27].

Elastic Tensile Breaking

Modulus Strength Strain Toughness

Silk (GPa) (GPa) % (MJ/m3)

Adult Spider Mitea 24 ± 3 ∼0.2–0.3 ∼4 ∼9

Spiderb 1–10 1.8 30 ≥130

Silk Wormc 5 0.6 12 ≥50
a Tetranychus urticae
b Nephila clavipes
c Bombyx mori

bre’s centre may be used [9, 11]. The two techniques are complimentary and it is suggested

to first record many small elastic-limit deformation measurements to accurately measure

the modulus and to test the chosen mechanical model, then to perform one large deforma-

tion measurement at the centre to determine additional mechanical properties. Here the

open-loop scanner of the atomic force microscope did not allow the cantilever tip to be

accurately placed at the centre of fibres for single large deformation measurements.

5.5 Conclusion

The mechanical properties of adult and larval spider mite silk nanofibres deposited onto

silicon gratings were determined by measuring fibre restoring force versus vertical dis-

placement with an atomic force microscope. The fibres were modelled as clamped beams

made of a linear elastic material. Since the fibre displacement was greater than the fibre

radius, tensile stresses had to be considered [9]. Further, it was determined that an initial

tension in the fibres also had to be considered.
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A model has been presented, for determining the force versus displacement mechani-

cal behaviour of suspended nanofibres with clamped boundaries, that accounts for bending

stress, tensile stress due to elongation during deformation, and tensile stress due to an initial

tension. It appears that an initial tensile stress has never been considered in previous AFM

measurements of fibres. Despite force versus displacement curves ranging from nearly lin-

ear to highly nonlinear, the model provides consistent measurements of the elastic modulus

of spider mite silk fibres. Fibres produced by adult and larval spider mites have average

diameters of 54 ± 3 nm and 23.3 ± 0.9 nm, respectively. Adult fibres have a modulus of

24 ± 3 GPa while larval fibres have a modulus of 15 ± 3 GPa. Both adult and larval fibres

exhibit an ultimate strength of approximately 200–300 MPa which is reached at a strain of

approximately 1–1.5%. The fibre break at an estimated strain of 4% and their toughness is

of order 9 MJ/m3.
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Chapter 6

Conclusions

6.1 Thesis Summary

Polyvinyl Alcohol (PVA) is a hydrophilic and biocompatible polymer whose hydrogels

are used for magnetic resonance imaging (MRI) and ultrasound phantoms, drug delivery

systems, and wound dressings. Physically cross-linked PVA hydrogels produced by freez-

ing and thawing PVA solution can be made with mechanical properties matching those of

porcine aorta and are being investigated for use as heart valve stents and artificial heart

valves [1, 2]. The mechanical properties of hydrogels may be further controlled and im-

proved by addition of reinforcing material such as nanofibres, hydroxyapatite, or clay

nanoparticles [3–9]. Characterization of the structure of PVA hydrogels, understanding of

the connection between structure and bulk mechanical properties, and determination of the

mechanical properties of materials suitable for reinforcing PVA hydrogels may hasten the

development of biomedical prostheses used to improve our longevity and quality of life.

In Chapter 2, the structures of isotropic and anisotropic PVA hydrogels were charac-

terized using small-angle neutron scattering (SANS), ultra small-angle neutron scattering

(USANS), and atomic force microscopy (AFM). The structure was successfully modelled

as dense blobs of PVA arranged into fractal aggregates.
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In Chapter 3, entropy was identified as the dominant source of the observed stress ver-

sus strain. It was found that the simple 3-chain model of Treloar [10] and the 8-chain

model of Arruda and Boyce [11] were capable of modelling isotropic uniaxial extension

stress versus strain data. Further, anisotropic versions of the 3-chain and 8-chain mod-

els were developed and found to adequately model the uniaxial extension of anisotropic

PVA hydrogels. Though the mechanical models were simpler than the structural model of

Chapter 2, the models were found to be compatible.

In Chapter 4, the mechanical properties of spider mite silk nanofibres were measured

using AFM. Restoring force versus lateral displacement was recorded by pushing sus-

pended nanofibres with the tip of an atomic force microscope cantilever. Previously re-

ported models could not account for the varied curvature of force versus displacement

curves, and a new model, which accounted for an initial tension, was developed and found

to accurately model the data.

6.2 Future Work

The following recommendations for continued mechanical modelling of PVA hydrogels

and characterization of spider mite silk nanofibres are made.

6.2.1 Mechanical Modelling of PVA hydrogels

Mechanical modelling could be improved by performing numerical simulations of net-

works that more closely resemble the true structure. Improvements include:

1. arranging the crystallites in fractal aggregates,

2. superimposing a porous structure on the network,

3. adding polydispersity to the contour length of polymer strands,
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4. enforcing non-zero equilibrium fractional extension of polymer strands via a repul-

sive force between, crystallites

5. incorporating reinforcing structures such as nanofibres, and

6. simulating compression, torsion, biaxial extension, and shear.

6.2.2 Spider Mite Silk Fibres

High priority next steps for characterization of spider mite silk are to accurately determine

the ultimate strength and toughness of the fibres by acquiring force versus displacement

data to the breaking point and to measure the mechanical properties of synthetic electrospun

spider mite silk fibres. Ideally, a closed loop system would be used to accurately position

the atomic force microscope cantilever tip at the centre fibre before performing a single

force measurement. Vertical displacements would require gratings with deeper trenches.

Alternatively, horizontal displacements could be used [12].
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Appendix A

Attachment of Microspheres to Atomic

Force Microscope Cantilevers

Glass microspheres were glued onto the end of NP-S atomic force microscopy (AFM) can-

tilevers (Digital Instruments, Santa Barbara, CA) with ultraviolet (UV) curing, Norland

Optical Adhesive #81 (Norland Products Inc., New Brunswick, NJ). To achieve this, a thin

strip of glue was created on a silicon substrate using a fine wire. Functionalized micro-

spheres were dispersed onto a second silicon substrate, and the water was evaporated at

low heat with a hotplate. A cantilever was placed in the AFM cantilever holder and both

the glue substrate and holder were mounted on the AFM. The tip of the cantilever was low-

ered, moved into the glue strip, and raised. The holder and glue substrate were removed.

At this time, the bead substrate and the holder were mounted on the AFM. The cantilever

was lowered near a bead, then the cantilever was moved such that the tip made contact with

the bead. The cantilever holder was removed, and the bead placement was checked with an

optical microscope, as shown in Figure A.1. Finally, the cantilever was placed under a UV

lamp for 15 minutes to cure the glue.
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Figure A.1: Glass bead glued to a triangular NP-S cantilever.
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