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Abstract 

 Breast cancer is one of the most common cancers, representing 25% of all new 

cancers and 13% of all cancer related deaths in Canadian women. Early detection before 

treatment of breast cancer is paramount as survival rates decrease significantly over time. 

Some of the most common diagnostic and screening procedures include breast manual 

examination, X-ray mammography, ultrasonography, and magnetic resonance imaging 

(MRI). These methods are either unreliable, associated with dangerous ionization or too 

costly, while they all have difficulty differentiating malignant tumors from benign ones 

without a follow-up biopsy. One technique that has shown a potential to minimize the 

number of biopsy cases is ultrasound elastography (USE), which images the breast tissue 

stiffness that is known to be substantially different for normal and pathological tissue. 

 One of the issues plaguing USE is the lack of data quality due to input tissue 

displacement data quality and quantity. This data are obtained through processing radio-

frequency data acquired at two compression states of the tissue that need to be acquired 

under the same ultrasound probe orientation to ensure high quality tissue stiffness image. 

Moreover, there exists no objective and automatic way to assess the quality and consistency 

of radio-frequency acquired throughout USE. Furthermore, methods capable of producing 

high-quality lateral displacements are limited. These issues compromise the practical 

utility of USE in clinical settings. As such, part of this research was dedicated to address 

these issues. This thesis introduces methodologies to tackle these issues, with the aim of 

optimizing USE for real time clinical settings, hence allowing reliable breast cancer 

assessment. It also introduces a series of metrics that can be used to objectively measure 

data quality. Finally, an open-source software solution was developed to guarantee data 

quality by generating it in-silico to facilitate the development and assessment of new 

displacement estimators. 

Keywords 

Elastography, Breast Cancer, Liver Cancer, Oncology, Ultrasound, Finite Element 

Modelling, Open-Source Software 
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Summary for Lay Audience 

 Breast cancer is one of the most common cancers, representing 25% of all new 

cancers and 13% of all cancer-related deaths in Canadian women. Early detection to enable 

treatment of breast cancer is paramount as survival rates decrease significantly over time. 

Some of the most common diagnostic and screening procedures include breast manual 

examination, X-ray mammography, ultrasonography and Magnetic Resonance Imaging 

(MRI). These methods are either unreliable, associated with dangerous ionization or too 

costly while they all have difficulty detecting or differentiating malignant tumors from 

benign ones without a follow-up biopsy. One technique that has shown a potential to 

minimize the number of biopsy cases is ultrasound elastography, which images the breast 

tissue stiffness that is known to be substantially different for normal and pathological 

tissue. 

 To perform ultrasound elastography, the clinician needs to take two ultrasound 

images, one before applying pressure, and one after applying pressure manually through 

the ultrasound probe. The differences between these two images are captured by an 

algorithm called a displacement estimator, which is then used to calculate tissue stiffness. 

One of the issues with this technique, however, is that it is almost impossible to guarantee 

that the pair of image frames will result in good quality stiffness imaging data without 

manually assessing the resulting images, making it too labor intensive to be used in the 

clinical setting. Moreover, it makes developing new algorithms difficult, as it can be nearly 

impossible to determine if the algorithm has failed, or the quality of the data is insufficient. 

Another relevant issue is most current displacement estimators fail to capture the tissue 

displacement completely, hence further degrading the stiffness image quality. 

 This thesis introduces methodologies to tackle these issues, towards developing 

accurate and real-time breast-stiffness imaging technique, which allows for effective breast 

cancer assessment. It also introduces a series of metrics that can be used to objectively 

measure data quality. Finally, an open-source software solution was developed to guarantee 

data quality by generating it completely on the computer to facilitate the development and 

assessment of new displacement estimation techniques. 
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Chapter 1  

1 Introduction 

 All figures in this chapter that are taken from other sources have been released 

under the creative commons license, or permission has been acquired from the respective 

copyright holders. 

1.1 Breast Cancer Statistics and Screening 

 Breast cancer is one of the most common cancers, representing 25% of all new 

cancers and 13% of all cancer deaths in Canadian women [1]. Worldwide, breast cancer 

represents 1 in 8 cancer diagnoses with a total of 2.3 million diagnoses across both sexes 

along with 685 000 deaths [2].  These numbers are predicted to increase to 3 million and 1 

million respectively, by 2040. Breast cancer is a cancer in which the stage of disease 

influences the 5-year survival rate massively. This survival rate ranges from nearly 100% 

down to <30% depending on the localization, covering local to metastatic breast cancers 

[3]. Therefore, screening procedures need to be robust, to attempt to capture these tumours 

as early as possible. 

 To catch these cancers as early as possible, many countries and organizations have 

created screening methodologies and guidelines for clinicians to follow [4], [5]. Guidelines 

vary but in general screening starts around the age of 50 years with X-ray mammography 

for average risk populations, though some guidelines recommend starting screening at the 

age of 40. For high-risk populations who have confirmed gene mutation or have had genetic 

counseling determining that they are at high risk for breast cancer, screening starts at the 

age of 30 years. For both groups, the major method is X-ray mammography, but in the 

high-risk category, supplemental screening is recommended, usually with MRI or breast 

ultrasound if the MRI is not appropriate. In general, MRI is very good for assessing the 

potential for surgery and the capability to get good margins around the tumour. 

Unfortunately, MRI is a very costly imaging technology which also results in a larger 
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number of false positive outcomes that represent lesions suspected to be malignant but are 

later proven to be benign [6], [7]. Ultrasound on the other hand, is an inexpensive and 

convenient modality that is effective at detection of breast cancer [8], [9]. In either scenario, 

secondary screening is recommended in high-risk individuals and those with dense breasts. 

 Moreover, there are other diseases which can benefit from the use of USE, namely 

liver cancer, which is the 5th most common cancer in men, and 8th most common in women, 

with total incidence per year at 564 000 cases per year, where rates in men are 2-4 times 

higher compared to women [10].  

 Screening for liver cancer is also a common practice, although for a much more 

restricted patient population, namely those with cirrhosis and hepatitis, to check for 

presence of tumours. The usual screening protocol involves ultrasonography and alpha-

fetoprotein [11], which implies that the integration of elastography into the screening 

workflow would be trivial. Note that while transient elastography is currently being used 

in the diagnosis of fatty liver disease and other liver conditions, this diagnosis criteria is 

based on an absolute value for the stiffness of the liver, which quasi-static elastography 

cannot provide as it can only image the stiffness ratio. 

1.2 Introduction to Elastography 

 One issue that is common in each screening procedure is a relatively low diagnosis 

accuracy without a follow-up biopsy. While minimally invasive biopsies are the gold 

standard, it is important to reduce the number of unnecessary biopsies, as imaging is 

entirely non-invasive, may be cheaper, while its results can be given immediately, reducing 

stress and accelerating time to treatment. One potential method to reduce the need for 

biopsy and allow for higher accuracy is elastography – imaging the stiffness of tissues via 

various means including MRI and ultrasound. This method is motivated by the fact that 

malignant tumors exhibit wildly different mechanical properties, including increased tissue 

stiffness and heterogeneity, which is necessary for their microenvironment adaptation and 

proliferation [12]–[33]. In general, there are many ways to perform elastography, each with 

their own strengths, weaknesses, and applications. One of the highest quality methods to 
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performing elastography is magnetic resonance elastography (MRE) [34]–[38]. 

Unfortunately, the issues with this method include low spatial resolution despite very high 

contrast-to-noise (CNR) – implying that larger lesions are easily seen while smaller lesions 

cannot be seen. Moreover, performing an MRI for breast or liver cancer screening is quite 

cost-prohibitive. USE on the other hand is cost effective and convenient to use, and has 

high spatial resolution, although it does not have very good CNR compared to MRE. In 

order to obtain high quality displacement estimates of the tissue, 3D USE has been 

performed with great success [39]–[42]. While high quality, 3D USE is less accessible than 

2D USE. Unfortunately, 2D USE introduces complications due to the compression of a 3D 

problem into 2D, which makes development challenging. This generally means that 

assumptions need to be made about the 3D mechanical behavior of tissues based on the 2D 

image data. Moreover, if there is any out-of-plane movement during acquisition like 

sliding, it introduces data quality problems. 

 In 2D USE, there are two major methods: strain imaging and shear wave 

elastography. Strain imaging has two methodologies: quasi-static and acoustic radiation 

force imaging  [43]–[45]. Both work on the same fundamental methodology, where the 

tissue is displaced by way of applied force, or by acoustic pulses generated by the probe 

(note that applied force may be internal movement such as blood pulsing). The advantage 

of this methodology is that the hardware required is relatively simpler and requires fewer 

assumptions than shear elastography. Shear wave elastography on the other hand generates 

shear waves propagating perpendicular to the ultrasound beam causing displacement 

stimulation [46], [47]. In this case, the speed of propagation of these tissue waves are 

measured and related to the shear modulus. In this case, the technique assumes that the 

tissue is linear, non-viscous and incompressible, which are not always reasonable 

assumptions and can lead to overestimation. One very large advantage to shear wave 

elastography techniques is that they provide quantitative measurement of the underlying 

shear modulus, whereas strain imaging can only give relative stiffness measurements at 

best. This makes shear wave elastography very well suited to diseases like hepatitis and 

fibrosis where an objective measurement is required [48], [49]. In the case of cancer, 

however, quasi-static and strain imaging allows for a good characterization of relative 
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stiffness. This investigation focuses on Quasi-static Ultrasound Elastography (QUSE), 

where the tissue is mechanically stimulated externally by the operator. 

 The methodology behind QUSE is generally a 3-step process: 

1. Provide an initial rough estimate of the displacement based on the acquired 

radiofrequency (RF) data pre- and post-manual compression, generally with a correlation 

metric or dynamic programming [50], [51]. This can be done in real-time or via comparison 

of frame pairs in a recorded video. 

2. Refine the resultant displacements and strains via some form of regularization [52]–

[55]. 

3. Iteratively reconstruct the Young’s Modulus (E) to measure the relative stiffness of 

the tumor [55]. 

1.3 Introduction to Ultrasound Physics 

 Ultrasound imaging is a convenient, low-cost, non-ionizing imaging modality that 

leverages the propagation and reflection of sound from a tissue. In general, ultrasound is 

performed by using a probe which emits a series of sound waves to stimulate the tissue. 

Then, the same probe listens to sound waves coming out of the tissue in order to analyze 

the radiofrequency (RF) signals and turn it into an image (B-Mode image). 

1.3.1 Sound Propagation 

 The propagation of sound within any given medium is governed by the acoustic 

wave equation, which is a second order partial differential equation derived from Newton’s 

law, the equation of state, continuity, conservation of mass, and the conservation of 

momentum. The derivation is omitted as it is out of scope, however the equation is shown 

as follows in general Laplacian form.  

∇ଶ𝑃 −
1 

𝑐଴
ଶ

 𝜕ଶ𝑃

𝜕𝑡ଶ
= 0 1.1  
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 where P is the acoustic pressure, t is time, and 𝑐଴ is the speed of sound in the 

stimulated medium. The consequences of this equation result in various properties of sound 

as it passes a boundary between two different media as illustrated in Figure 1.1: 

1. Absorption – Sound waves can be absorbed by the medium. 

2. Reflection – Some sound waves bounce back toward the source. 

3. Refraction – If the sound wave is incident on an angle compared to the normal of 

the surface being struck, the change in speed of sound will cause a change in wave 

direction. 

4. Scattering – In a heterogenous medium, sound waves are scattered as a result of 

both reflection and refraction as the sound keeps interacting with different media 

 

Figure 1.1 An illustration of absorption, reflection, scattering and refraction due to sound 

waves propagating through media; figure taken from [56]. 

 Equation 1.1 is a simplified version of the true wave equation, which does not 

account for reflection, attenuation, scattering, and refraction, as it is a highly idealized 

version. However, it is included to give a general sense of the equation and concepts while 

the “true” wave equation is far more complicated with many more terms. 
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1.3.2 Piezoelectric Effect and Transducer Design 

 To produce the sound waves required for imaging, transducers are designed to use 

the piezoelectric effect, a physical phenomenon where electric signals are turned into 

mechanical signals and vice-versa, allowing the same array to both transmit and receive 

signals. In general, this effect is a consequence of a material’s tendency to minimize 

internal energy. When an external electric field is applied, the piezoelectric material 

deforms, leading to force generation. The reverse is also true, when the crystal is deformed, 

a voltage is developed at the surface of the crystal, which can be measured. Figure 1.2 

taken from [57] illustrates the piezoelectric effect. 

 

Figure 1.2 An illustration of the changing charge distribution that causes the 

piezoelectric effect. Either by applied mechanical force or an electric field. The figure is 

taken from [57]. 

 To exploit this effect, transducers are designed with piezoelectric crystals arranged 

in a sensor array. Each sensor within the array is capable of both transmitting and receiving 

sound waves in the frequency range of 2 to 18 MHz [58]. While transducers are capable of 

a wider range of frequencies, this range is chosen as a good balance between resolution 

and tissue penetration, as higher frequencies yield higher resolution but lower tissue 

penetration. 
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1.3.3 Ultrasound Image Formation 

 Each ultrasound image is formed from radiofrequency information acquired from 

the sensor array in the form of A-lines. In order to form an A-line, the piezoelectric 

elements in the sensor array are pulsed in such a way to create a pressure beam in the area 

of interest. This pressure beam is swept through the tissue, using the resulting sound waves 

to form beamformed radiofrequency (RF) data as it goes. Then, the RF data is enveloped 

(the oscillations are removed, and the overall shape is extracted), which is turned into an 

A-line. The A-lines are then mathematically processed to form a B-Mode image usually by 

taking the log of the absolute value of the A-lines. A sample image is provided in Figure 

1.3. While A-Lines are generally understood to be specifically the enveloped signal, for 

the purposes of this thesis, A-Lines refer to the beamformed RF signal pre-enveloping. 

 

Figure 1.3 Sample RF data image acquired from a breast cancer case along with 

corresponding B-Mode ultrasound image . 

1.4 In-Silico Ultrasound Image Generation 

 One of the techniques used in this thesis is the generation of fully in-silico 

ultrasound image generation for the purposes of generating bespoke data for validation. 
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The overall process to achieve this follows the same concepts described in Section 1.3 

wherein the function of a transducer and the propagation of sound are simulated in silico. 

In general, there are 4 steps: 

1. Simulate the scatterers present in tissues by specifying location and scattering 

coefficients. 

2. Simulate the emission of pressure waves from the transducer. 

3. Simulate the propagation of sound by solving the wave equation. 

4. Calculate the received signal from the transducer. 

 The first step is easily done by randomizing the location of the desired number of 

scatterers in a field of view with a specified depth, width, and out-of-plane thickness. Each 

scatterer is given an amplitude or reflection coefficient. Next, the transducer emission is 

simulated based on the specified parameters. The exact details of the emission are not 

relevant for this thesis, but it should be noted that the computer simulator simulates the 

pressure propagation generated by the transducer. This pressure wave propagates through 

the tissues (Figure 1.4) before the returning pressure signal is calculated and recorded. This 

results in a set of radiofrequency signals that simulate what the transducer would see. The 

calculation of the returning signals however, has a significant limitation in its realism. 

Accurate calculation of the sound wave propagation is computationally highly demanding. 

As such, FIELD II approximates the signal as an incident sound wave that has only traveled 

through a homogenous medium. While this leads to good results overall, it is not capable 

of simulating the physics of artefacts that may be present in clinical examples (e.g acoustic 

shadowing). FIELD II was chosen because of a combination of computational efficiency 

and its presence in the existing literature, lending more credibility to its performance. 
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Figure 1.4 Sample pressure wave emission for a curvilinear probe. This process was 

performed with the open-source software FIELD II [59][60]. 

1.5 Time Delay Estimation 

 For elastography to be achieved, tissue displacements must be estimated to 

eventually calculate stiffness of the tissue. To do this, time delay estimation is used wherein 

the displacement of the tissue is related to the time delay difference in the radiofrequency 

data. This concept is illustrated in Figure 1.5 which is taken from [61]. 
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Figure 1.5 An illustration of time delay estimation on radiofrequency data taken from 

[61]. 𝒚𝟏(𝒕) and 𝒚𝟐(𝒕) are the RF – signals from the pre- and post-compression images 

that correspond to the same portion of the image. 𝑻𝒔 represents the sampling time for the 

RF signal (which has been interpolated). 

 As can be seen in Figure 1.5, corresponding A-lines (𝑦ଵand 𝑦ଶ) are compared based 

on a loss function to find the corresponding time delay between signals at every point along 

the A-line. This time delay can then be related to a depth measurement via the speed of 

sound (assumed to be 1540 m/s within tissue). The comparison can be done via many 

methods, but dynamic programming will be the basis of all further discussion in this thesis, 

where a loss function is evaluated recursively over the course of the A-line to determine 

displacements [52]. A primary issue with these methods is that they only yield integer 

displacements along the axial direction. More methodology must be employed to obtain 

sub-pixel axial displacements and lateral displacement estimates. In general, the 

displacement field should satisfy Equation (1.2) which maps the pre-compression image 𝐼ଵ 

to the post-compression image 𝐼ଶ where ∆𝑎௜,௝ and ∆𝑙௜,௝ are the axial and lateral 

displacement values of pixel (i,j) in the image. 

𝐼ଵ൫𝑖 + ∆𝑎௜,௝, 𝑗 + ∆𝑙௜,௝൯ − 𝐼ଶ(𝑖, 𝑗) = 0 1.2 
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1.6 Theory of Elasticity 

Before moving on to more sophisticated sub-pixel estimation techniques, the theory of 

elasticity must be discussed to motivate the methodology needed to improve the integer 

displacement techniques. In general, the theory of elasticity describes the way continuous 

materials deform under loading. The fundamental equation of interest to this thesis is 

Hooke’s law, which relates stress—the internal force per unit area as given in Equation 

(1.3) which is used to calculate the normal stress in the x direction. The corresponding 

strain, which represents the deformation of the material normal to the x direction is given 

by Equation 4 as described by the spatial derivative of displacement in the material under 

question. The stress and strain are tensor quantities that have 9 components in the 3D space. 

These tensors are symmetric under small deformation, leading to 6 independent 

components. As such, Hooke’s law, in its most general sense, is described by Equation 

(1.5) where 𝜀 represents the axial, lateral, and out-of-plane strains (xx, yy, and zz), 

𝛾 represents shear strains in different directions (𝛾xy, 𝛾yz, 𝛾xz), 𝜎 represents the stress tensor, 

and the 6x6 matrix represents the stiffness matrix, which is a 6x6 matrix that describes the 

material’s response to stresses in every direction where 𝐸 is the Young’s modulus and 𝑣 is 

the Poisson’s Ratio of the material. Curly brackets indicate that the quantity is a vector. 

Figure 1.6 illustrates some of the modes of strain that can occur in any axis of the material. 
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However, given that ultrasound elastography is a 2D modality, using the 3D form of 

Hooke’s law is unnecessary, and we can collapse the problem into two dimensions. 

Moreover, we may assume that the tissues under study are isotropic. Under these two 

conditions, we have 2 major ways of collapsing Hooke’s law into two dimensions—plane 

stress and plane strain—where it is assumed that either the out of plane stress or strain is 

0, respectively depending on which is more appropriate given the desired simulation. More 

generally, Hooke’s law can be expressed as a 2D problem using any assumption about the 

out of plane stress or strain, but the most popular are setting each to 0. Nonetheless, the 

plane stress and plane strain versions of the Hooke’s law are shown in Equations (1.6) and 

(1.7). 

൝
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Figure 1.6 An illustration of the mechanical stresses described in Hooke’s law illustrating 

the different modes of stress and strain that can occur in each direction. Note that shearing 

can occur in any combination of directions as well. This figure was taken from 

https://dewesoft.com/blog/measure-strain-and-pressure. 
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1.7 Regularization 

1.7.1 Mathematical Regularization 

 The first way to improve the displacement estimate given by dynamic programming 

is by applying some regularization metrics. These essentially attempt to enforce certain 

properties upon the displacement field to make it more reasonable, including smoothness. 

The first method to be proposed to this end is analytic minimization in 2D, also known as 

AM2D [49]. In this method, the displacements are enhanced by the following cost function: 

𝐶௝(∆𝑎௜ , … ∆𝑎௠, ∆𝑙ଵ … ∆𝑙௜)

=  ෍ ቄ[𝐼ଵ(𝑖, 𝑗) − 𝐼ଶ(𝑖 + 𝑎௜ + ∆𝑎௜ , 𝑗 + 𝑙௜ + ∆𝑙௜)]ଶ

௠

௜ୀଵ

+ 𝛼(𝑎௜ + ∆𝑎௜ − 𝑎௜ିଵ − ∆𝑎௜ିଵ)ଶ + 𝛽௔(𝑙௜ + ∆𝑙௜ − 𝑙௜ିଵ − ∆𝑙௜ିଵ)ଶ

+ 𝛽௟൫𝑙௜ − ∆𝑙௜ − 𝑙௜,௝ିଵ൯
ଶ

ቅ  

  1.8 

Where 𝐼ଵ, 𝐼ଶ are the RF images acquired pre- and post- compression, 𝑎௜ and 𝑙௜ are the 

𝑖௧௛axial and lateral initial displacement estimate for an A-Line in question, ∆𝑎௜ and ∆𝑙௜ 

represent the subpixel displacement components in the axial and lateral directions, 

respectively. 𝛼, 𝛽௔ and 𝛽௟ are all regularization coefficients for the displacement field. 

This cost function essentially has two components. The first is the [𝐼ଵ(𝑖, 𝑗) −

𝐼ଶ(𝑖 + 𝑎௜ + ∆𝑎௜ , 𝑗 + 𝑙௜ + ∆𝑙௜)]ଶ term which ensures that the displacement does not deviate 

too much such that the integrity of the displacement is destroyed. The other terms in the 

cost function ensures that the displacements between adjacent pixels does not change too 

much in the axial and lateral directions. This acts as a de-noising procedure and allows for 

smoother images. Equation (1.8) is then formed for each A-line, leading to a linear system 

of equations before it is solved for ∆𝑎௜ and ∆𝑙௜ values. 

 The next version of this method is called global ultrasound elastography (GLUE) 

which applies a similar cost function, but to the whole image simultaneously [51]. This 
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further increases the quality of the displacement image in both the axial and lateral 

directions. There are many other methods for improving the axial and lateral displacement 

estimates, such as window-based approaches and second order smoothing, but those will 

be discussed in later chapters [52, 53, 63, 64]. 

1.7.2 Tissue-Mechanics Based Regularization 

One of the limitations to the mathematical regularization methods is that they rely entirely 

on mathematical constraints on the displacement field without incorporating other known 

information about the behaviour of the tissue under study. This can lead to limited 

improvement of the displacement or a very high computational requirement while complex 

constraints are applied to the data. An effective way to circumvent these limitations is to 

use what is known about the intrinsic behavior of biological tissues. For instance, human 

soft tissues are known to be near-incompressible, and we know that the tissue must keep 

its integrity and remain free of tears throughout the compression process. From these two 

facts, the strain refinement algorithm (STREAL) was developed [65]. This algorithm uses 

both incompressibility and compatibility to improve the estimate of displacement and 

strain. Both incompressibility and compatibility equations are shown in Equations (1.9) 

through (1.15). Note that incompressibility can simply be written as the divergence of the 

vector field U which describes the 3D displacement of the tissue. 

∇ ∙ 𝑈 =
𝜕𝑢௫

𝜕𝑥
+

𝜕𝑢௬

𝜕𝑦
+

𝜕𝑢௭

𝜕𝑧
 = 0 1.9 

𝜕ଶ𝜀௫
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𝜕ଶ𝜀௬

𝜕𝑥𝜕𝑧
=

𝜕ଷ𝑢௬
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𝜕ଶ𝜀௭

𝜕𝑥𝜕𝑦
=

𝜕ଷ𝑢௭

𝜕𝑥𝜕𝑦𝜕𝑧
1.12 
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𝜕𝛾௫௬
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 The issue with these equations is that they require an assumption or a priori 

knowledge about the behaviour of the tissue in 3D, in order to be used with 2D QUSE  

modality. To address this issue, one can simply assume plane strain and ignore the impact 

of the third dimension, in which case all strain component in the z direction are 0. 

Furthermore, analytic assumptions can be made about the tissue and its geometry (e.g. 

idealizing it as a semi-infinite medium [66]. These methods can be very powerful as they 

are well motivated by underlying knowledge about the tissue, but require an understanding 

of the tissue behaviour, which may or may not be entirely known. 

1.8 Iterative Reconstruction 

The final step to elastography is to use the finite element method to reconstruct the stiffness 

or the Young’s modulus of the tissue. The fundamental method behind this is to construct 

a finite element simulation based on measured displacements from the displacement 

estimator. This can be performed through starting with an initial guess for the Young’s 

modulus distribution. Having this distribution facilitates conducting finite element analysis 

to calculate stresses. The strains calculated using the measured tissue displacements are 

used via Hooke’s law to update the estimation of the Young’s modulus image. This 

calculation process is repeated until the changes in the calculated Young’s moduli are 

negligible.  
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1.8.1 The Finite-Element Method 

One of the major techniques in engineering is called the finite element method (FEM) 

which was developed to provide approximate solutions to partial differential equations, 

including equations governing solid mechanics. This method is used to estimate the 

response to mechanical stimulation on arbitrary geometry, including internal stresses, 

allowing engineers to design arbitrary parts and shapes for any given application. It 

involves the decomposition of a continuous geometry of the object of interest into finite 

elements with specific geometry which are made up of nodes within the object’s geometry. 

From there, stiffness matrices are formed for each element, which are then assembled into 

a global stiffness matrix. Once that is assembled, boundary conditions are imposed, and 

the following equation (1.16) is solved [67]. 

𝐹 = 𝐾𝑈 1.16 

Where 𝐹 is the force vector, describing external forces on the geometry, 𝐾 in this case is 

the global stiffness matrix, and 𝑈 is the displacement vector of the nodes. From these 

vectors, element stresses and strains can be calculated. In other engineering applications, 

this can be used to determine if a given design can withstand certain prescribed load 

conditions. 

 In USE, a finite element analysis can be formulated to mimic the compression of 

the tissues. First, a grid is created and populated with elements. Then, stiffness is assigned 

to each element based on current estimate of the Young’s modulus distribution before the 

global stiffness matrix is assembled. Then, displacements from the border of the 

displacement field are taken from the estimation algorithm and are imposed as prescribed 

displacement boundary conditions in the finite element simulation. The displacements for 

the rest of the image are calculated, and the strain values for each element are calculated. 

1.8.2 Iterative Reconstruction of the Young’s Modulus 

 Solving for the Young’s modulus from the displacement and strains acquired from 

the displacement estimators is called an inverse problem, whereas applying the actual 
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mechanical stimulation is the “forward” problem. One method to solve inverse problems 

is by iteratively converging on the solution through successive calculations. In the case of 

Young’s modulus reconstruction, Hooke’s law can be used to re-calculate the Young’s 

modulus before updating the finite-element model. Figure 1.7 shows a flow chart of the 

iterative reconstruction while the full method is described in [58]. This methodology is also 

known as a full-inversion reconstruction, beacuse it takes into account the tissue actual 

nonuniform stress distribution and fully solves the inverse problem, rather than applying 

approximations. 

 

Figure 1.7 An overview of the iterative reconstruction algorithm used to calculate the 

Young’s modulus of the tissue being studied. This is an iterative technique whereby the 

Young’s modulus is calculated by repeatedly simulating the stress field and recalculating 

the E field using Hooke’s law until convergence is achieved. 

First, an initial guess of the Young’s modulus (E) is made before setting up the finite 

element model, using measured displacements. The finite element analysis is performed, 

and from the calculated stresses and measured strains, E is calculated, smoothed, and 

normalized and then convergence is checked based on the difference between the current 

and previous iterations. If the difference is less than a tolerance, the reconstruction is 

complete, otherwise the model is updated and recalculated. 
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1.9 Overview of Current Issues 

One of the greatest problems in the usage and development of QUSE is the problem of data 

quality. This is caused by the freehand nature of the procedure, which results in 

inconsistencies of the ultrasound probe orientation between the pre- and post-compression 

frames, resulting in poor image quality due to out-of-plane motion and inconsistent 

pressure application. In the case where good data are available, elastography produces good 

quality images with no extra hardware, which makes it a very attractive imaging modality. 

Unfortunately, there is no way to efficiently assess data quality automatically which means 

that data assessment needs to be done manually, making the technique clinically unfeasible. 

There are, however, three methods to deal with this problem, the latter two of those 

mentioned are explored in this thesis. The first method is to improve the protocol by which 

elastography is performed such that data quality is guaranteed. This can occur by way of 

training or through using an additional hardware device employed for force application. 

Unfortunately, both ways of improving the protocol decrease the clinical convenience of 

the method, which makes them unattractive as much of the value of QUSE is in its 

convenience. The second method addresses the issue by allowing for convenient manual 

assessment of data by optimizing the methodology to real-time rates, which allows 

clinicians to actively search for high-quality images and discarding the rest. The final 

method involves developing an automatic method by which data quality can be analyzed 

en masse, replacing manual assessment. This would allow a compression “video” to be 

taken and analyzing all options in the video for suitability for elastography. 

Moreover, one other issue with the lack of data quality is hampering the development of 

new displacement estimation algorithms. Without a well-founded method of data quality 

control, it can be very difficult, if not impossible to determine whether the algorithm has 

failed due to a fundamental flaw in the methodology or the lack of data quality, especially 

when dealing with clinical data. 

These issues with elastography have contributed to the formation of the research objectives 

this thesis sets out to achieve, which are outlined in the next section. 
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1.10   Research Objectives 

This thesis has the overarching objective to advance the tools available to implement 

ultrasound elastography, moving towards a new generation of real-time ultrasound 

elastography systems. More specifically, there are four major objectives: 

1. Categorization and comparison of existing displacement estimation algorithms at 

the full-inversion stiffness reconstruction level. 

2. Developing a new in-silico method to generate more realistic data. 

3. Developing a method to assess the quality of the underlying radiofrequency pair 

acquired for elastography to determine the suitability of the displacement estimate. 

1.11   Thesis Outline 

This work is presented in a total of 5 chapters, the current one being the introduction, 

followed by 3 chapters addressing the objectives outlined in the previous section. Then, a 

conclusion and discussion chapter will be provided. 

1.11.1 Chapter 2: Categorization and Comparison of Displacement 

Estimators at the Full Stiffness Reconstruction Level 

One major gap in the current literature is the lack of comparison and analysis of 

displacement estimators at the full stiffness reconstruction level rather than just at the strain 

level where the latter provides a crude estimate of the stiffness distribution. This has led to 

the development of increasingly complex and sophisticated displacement estimators that 

may or may not lead to better stiffness reconstruction results. Ultimately, the metric which 

is being measured is the change in stiffness of the lesion. The chief concern with the more 

sophisticated algorithms is the concern for over-smoothing, leading to a loss of potentially 

clinically relevant details in the image. Moreover, an assessment of computational 

complexity versus image quality needs to be done if the technique is to be implemented in 

a real-time system. The results show that the simpler and older algorithms have a high 
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quality to complexity ratio, and are recommended in a real-time system, with more 

sophisticated algorithms reserved for post-acquisition analysis. 

1.11.2 Chapter 3: Elastosynth - An Open-Source software package for the 

generation of realistic in-silico data for ultrasound elastography 

This chapter showcases a new software package that allows for the generation of more 

realistic synthetic ultrasound elastography data, and addressing the limitations associated 

with current synthetic techniques. Namely there are two major concerns: realism and run-

time. Current techniques are limited to homogenous phantoms which do not reflect the 

reality of clinical scenarios where the tissue is known to be highly heterogeneous. 

Moreover, current techniques require hours upon hours for the simulation of a single 

ultrasound acquisition, which makes it impossible to generate massive datasets necessary 

for interesting applications involving machine learning. In this chapter, I introduce a new 

method by which heterogeneity can be automatically generated. Moreover, a bespoke finite 

element solver is described which is designed for the express purpose of handling highly 

heterogeneous simulations. Finally, the ultrasound simulation process was optimized by 

ensuring that the only scatterers used in the simulation are the ones likely to contribute to 

the resulting signal. 

1.11.3 Chapter 4:  A Method to Quantitatively Assess the Quality of 

Displacement Estimations 

As discussed in Chapter 3 and in Section 1.9, one way of addressing the data quality issue 

is to allow for automatic assessment of radiofrequency data after acquiring a compression 

video. This chapter presents a methodology-agnostic way to objectively assess the quality 

of a displacement estimate automatically before triaging truly bad frame-pairs from ones 

that could potentially be good. The method we propose uses the displacement estimate to 

warp the pre-compression radiofrequency image to approximate the post-compression 

image, and then using correlation and mean squared error to compare the estimated post-

compression image to the actual post-compression image. The hypothesis is that given a 

very high-quality displacement estimate and good data, the correspondence between the 
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warped pre-compression image and the real post-compression image is near perfect, 

namely their correlation is above 0.9 and mean-squared errors is less than 0.5. 

1.11.4 Chapter 5: Discussion and Conclusions 

This chapter summarizes all that was discussed in previous chapters, proposes future 

work, and concludes this dissertation. 
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Chapter 2  

2 Comparative Study of Ultrasound Tissue Motion 

Tracking Techniques for Effective Breast Ultrasound 

Elastography 

A varant of this chapter has been published in journal of Applied Science 2023, 13(21), 11912; 
https://doi.org/10.3390/app132111912* under the creative commons license. 

2.1 Introduction 

To design a real-time imaging system for ultrasound elastography, an assessment needs to 

be done as to which displacement estimator should be used. Unfortunately, most 

displacement estimators currently do not run at real-time rates. Therefore, an assessment 

needs to be done to determine if the currently available real-time methods are of sufficient 

quality, or whether work needs to be put into optimizing the higher quality estimators. 

Moreover, due to the development of a real-time optimization of a tissue mechanics-based 

strain enhancement algorithm (STREAL), each studied motion estimator should be 

revisited with and without STREAL, as it may provide the needed boost to quality with 

very low computational requirement. 

Moreover, the strain images are not as good as the underlying stiffness distribution in terms 

of diagnostic quality, especially with highly heterogeneous tissues, and currently in the 

literature there has been no comparison of these displacement estimators at the full-stiffness 

reconstruction level. Due to the nature of the reconstruction algorithm, which has in-built 

de-noising and tissue mechanics elements, it may prove that more advanced displacement 

estimators add unjustifiable computational processing for highly diminishing returns in 

terms of image quality. 

The candidate algorithms of initial displacement estimation include analytic minimization 

in 2D (AM2D) [1,2], Global Ultrasound Elastography (GLUE) [3], OVERWIND [4], and 

SOUL [5]. These were chosen as candidates because they are well-motivated direct 
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calculation methods that vary in complexity and quality, while their codes are publicly 

available for use in research. They represent a wide range of methods, including first-order 

derivatives, second-order derivatives, and window-based approaches. This study provides 

unique insight into the performance of these displacement estimators considering 

computational time restrictions (real-time rates) and at a wholly new full reconstruction 

level. Full stiffness reconstruction leading to tissue Young’s modulus images is a much 

more direct method to interpret the results of elastography, which may vastly improve the 

readability of these images. 

2.2 Methods 
2.2.1 Strain Refinement Algorithm 

The strain-enhancement (STREAL) method presented in [6] has three major steps: 

Laplacian filtering, incompressibility enforcement, and compatibility enforcement. The 

first is the simplest: a Laplacian operator is applied to reduce the noise in the displacement 

image. Then the incompressibility of the tissues is enforced to further enhance the quality 

of the displacement field. Then the compatibility of tissues, which is interpreted as tissue 

displacement continuity enforcement, is enforced to compute high-quality axial and lateral 

strain images. The overall method is described in Figure 2.1. Tissue incompressibility 

enforcement relies on an assumption of the underlying tissue behavior. Sometimes this 

follows the plane strain behavior assumption, where out-of-plane strains are assumed to be 

negligible. In most cases, including clinical applications, the plain strain assumption is 

insufficient; hence, the Boussinesq model is used to approximate the 3D tissue deformation 

based on a semi-infinite medium mechanics [7]. 
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Figure 2.1 An overview of the STREAL methodology and its 3-step process. The first step 

is a second order derivative filtering procedure. The second step enforces the 

incompressibility of tissue. The third step enforces the compatibility of tissue (no apparent 

tearing). Note that this procedure requires an estimate of out-of-plane deformation. Figure 

taken from [7]. 

2.2.2 Data Generation 

 Three kinds of data were used for this investigation: fully in-silico ultrasound data, 

a tissue-mimicking phantom, and clinical data. 

 Full synthetic in-silico ultrasound data was generated by first running a simulation 

of tissue compression in ABAQUS (ABAQUS 2019, Dassault Systèmes Simulia Corp., 

Johnston, RI, USA) with a strain level of 1% and then using the FIELD II toolbox [8,9] 

using a central frequency of 5 MHz. To generate this data, scatterers were simulated and 

then displaced using the nodal displacements generated from the ABAQUS simulation. 

Twenty-three different phantom models, including uni-focal and multi-focal phantoms 

with inclusion stiffnesses ranging from 40 to 60 kPa and background stiffnesses from 18 

to 23 kPa, were simulated. The full method of generating in-silico ultrasound data is 

described in [10]. These phantoms reflect a “perfect” data acquisition scenario without any 

contamination with out-of-plane displacement or other irregularities.  The synthetic data 

also allow for a large enough data sample to conduct statistical analyses on the performance 
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of these displacement estimators, which is normally not possible with the handful of tissue 

mimicking phantoms usually presented in similar investigations. 

 For another level of validation on non-synthetic data, a tissue mimicking phantom 

manufactured by the Computerized Imaging Reference Systems (CIRS; Norfolk, VA, 

USA) was used as a second level of control. The ultrasound probe was controlled with a 

mechanical device to apply displacement in 2.54 mm (0.1 inch) increments. The probe used 

was a VF10-5 linear array with a central frequency of 6.67 MHz and a sampling frequency 

of 40 MHz (Antares Siemens System – Issaquah, WA, USA). Finally, radiofrequency frame 

pairs of 3 patients were used from [2] to compare the differences in performance on clinical 

data acquired with the same ultrasound machine and probe. Note that the clinical data was 

segmented by a clinician using the B-Mode image available in [2]. Since the underlying 

segmentations are not publicly available, it was not possible to include the figure in this 

thesis. The tissue mimicking phantom was used to bridge the gap between entirely idealized 

data and clinical data to assess the performance of the estimators on high-quality but 

nonetheless “real” data. 

2.2.3 Displacement Estimators 

 For each of the 23 models, the radiofrequency images were processed with the 

following displacement estimators: 

 Analytic Minimization in 2D [3] 

 Global Ultrasound Elastography [3] 

 OVERWIND [4] 

 Second-Order Ultrasound Elastography [5] 

 The resulting displacement and strain images were collected, and an estimate of 

run-time on an Intel i7 8700-based workstation was measured. The same was repeated on 

the tissue-mimicking phantoms and clinical data. Once these data were acquired, the 

displacements and strains were further improved using the STREAL algorithm in 

conjunction with the analytical Boussinesq model to estimate the out-of-plane strain [7,8]. 
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2.2.4 Young’s Modulus and Data Processing 

 An iterative reconstruction algorithm was used to recover the Young’s modulus of 

all the data [12,13]. In this algorithm, an initial guess of the Young’s modulus is made 

before a finite element (FE) model of the US field of view is generated, where the loading 

is provided as prescribed displacement boundary conditions obtained from the measured 

displacement field. The FE method is run, and based on the resulting stresses and the strain 

calculated from the US motion tracking, the Young’s modulus is recalculated. This is 

repeated until the Young’s modulus values converge. For the synthetic dataset, all generated 

data, including both pre- and post-STREAL, were used to reconstruct the Young’s modulus 

(E) images, while this image reconstruction method was also carried out using the ground 

truth displacements obtained through the FE simulation. The synthetic reconstructed data 

was processed as follows: 

1. The inclusion-to-background Young’s modulus ratio was calculated, and a percent 

difference was calculated between the measured ratio using displacement 

estimators and the reconstruction performed with the ground-truth displacement. 

This can provide an idea of the diagnostic power of each estimator, as the ratio is 

what determines potential malignancy. 

2. The Hausdorff distance was calculated between the border of the segmented 

inclusions of the synthetic data reconstruction and the ground truth reconstruction. 

This metric was chosen to measure the change in shape of the inclusion. 

Segmentation was performed with Otsu’s method. 

3. The mean squared error (MSE) between the resultant Young’s modulus images and 

the ground truth was calculated. 

4. The Young’s modulus ratios, Hausdorff distance, and MSE were then statistically 

compared using an ANOVA test with Bonferroni corrections. 

5. Using the same thresholding procedure as in step 2, the specificity, sensitivity, and 

kappa statistic were calculated for agreement with the ground truth for each 

displacement estimator. 
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 Sensitivity, Specificity and the Kappa statistic were included to provide more 

diagnostically relevant error metrics, as they provide information about the behaviour of 

the imaging system. In general, sensitivity measures the chance that an area of pathology 

appears in the image, specificity measures the extent to which areas that appear in the image 

are actually pathological, and the kappa statistic is an accuracy measure that takes into 

account random chance agreement. 

 For the tissue mimicking phantom and clinical examples, strain images for the axial 

and lateral images were also generated, along with CNR, SNR, and inclusion to the 

background Young’s modulus ratios. The CNR and SNR were calculated using two regions 

of interest, one on the inclusion and one on the background. Both regions were chosen 

manually based on the strain images and clinical segmentations such that the inclusion 

region encompasses the whole lesion while the background was chosen to be in the most 

homogenous region. Both regions were chosen to be as close in size as possible. One 

departure this thesis makes from normal practice is in the definition of SNR and CNR. In 

most cases, the denominator is the standard deviation of the signal, but in this investigation, 

we use the standard deviation of the background. This is because the lesions we observe 

are expected to be heterogenous, and so the normal formulation would be unfairly low, as 

the standard deviation would be high. However, the background is also heterogeneous, so 

CNR and SNR should be interpreted in a more qualitative manner, as a higher CNR and 

SNR may not actually reflect the underlying stiffness distribution. Therefore, CNR and 

SNR serve as more of a sanity check, and should not be discussed without mentioning or 

interpreting the resultant image. 

2.3 Results 

 For each displacement estimator, with and without refinement using the STREAL 

method, Figure 2.2 illustrates errors in the reconstructed inclusion-to-background Young’s 

modulus ratios, Hausdorff distances between the truth and reconstructed outlines of the 

inclusion, and MSE between ground truth and reconstructed Young’s modulus images 

obtained for the phantoms’ datasets. Statistical significance (p < 0.05) between results 

generated by pairs of displacement estimators, both with and without refinement using the 
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STREAL method, is also indicated in this figure. As seen in this figure, the AM2D 

displacement estimator with STREAL enhancement provides the most accurate inclusion-

to-background Young’s modulus reconstruction ratio, while, on average, the STREAL 

procedure reduces this error to less than one third compared to its pre-STREAL 

counterpart. The AM2D estimator with STREAL also leads to improved MSE, while its 

Hausdorff distance is not significantly different from other estimators. The latter implies 

that, compared to other estimators, while AM2D improves the quantitative distribution of 

the Young’s modulus ratio significantly, it does not improve the estimated shape of the 

inclusion significantly. More information and a visual representation of the effects of the 

different displacement estimations are presented in Figure 2.4. 

 

Figure 2.2 Errors in reconstructed inclusion-to-background Young’s modulus ratios, 

Hausdorff distances between truth and reconstructed outlines of the inclusion, and MSE 

between ground truth and reconstructed Young’s modulus images obtained using the four 

displacement estimation methods of AM2D, GLUE, OVERWIND, and SOUL with and 

without STREAL, The red and blue lines with stars indicate statistical significance (p < 

0.05) between results generated by pairs of estimators. In this comparison, pre- and post-

STREAL were separate groups; hence, the statistical comparisons are between estimators, 

not pre- and post-STREAL. 
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Table 2.1 Specificity, sensitivity, and kappa statistics for the agreement of thresholded 

inclusions of each displacement estimator compared to the ground truth. 

Displacement 

Estimator 

Specificity  

Pre-
STREAL 

Specificity  

Post-
STREAL 

Sensitivity  

Pre-
STREAL 

Sensitivity  

Post-
STREAL 

Kappa 
Statistic   

Pre-
STREAL 

Kappa 
Statistic    

Post-
STREAL 

AM2D 0.99 ± 0.00 0.99 ± 0.01 0.96 ± 0.02 0.97 ± 0.03 0.92 ± 0.02 0.91 ± 0.02 

GLUE 0.99 ± 0.00 0.98 ± 0.01 0.95 ± 0.04 0.95 ± 0.05 0.90 ± 0.02 0.88 ± 0.03 

OVERWIND 0.99 ± 0.00 0.98 ± 0.01 0.93 ± 0.03 0.93 ± 0.05 0.90 ± 0.03 0.88 ± 0.03 

SOUL 0.99 ± 0.01 0.98 ± 0.01 0.94 ± 0.02 0.94 ± 0.04 0.86 ± 0.03 0.85 ± 0.03 

 When applied to synthetic data, the AM2D estimator provides accurate inclusion to 

background Young’s modulus ratio estimation while preserving the quality of inclusion 

shape (Hausdorff distance). It generally compares well with the ground truth Young’s 

modulus distribution according to the small MSE values and very high specificity, 

sensitivity, and Kappa statistics, as can be seen in Table 2.1. In terms of runtime, however, 

AM2D runs in around 0.1 s, whereas GLUE, OVERWIND, and SOUL are approximately 

8 s, 20 s, and 40 s, respectively. To compare the quality of the reconstructed Young’s 

modulus, Figure 2.3 illustrates an example obtained through processing a synthetic data 

sample. As can be seen, the AM2D estimator provides a faithful reconstruction of the 

Young’s modulus when combined with STREAL enhancement. The “ground truth” 

reconstruction image was obtained by processing the ground truth displacement field, 

which was used to move the scatterers, using the iterative Young’s modulus reconstruction 

algorithm described earlier. 

 To further compare the quality of Young’s modulus reconstruction in conjunction 

with each of the displacement field estimators, Figure 2.4 shows images of reconstructed 

Young’s modulus in tissue mimicking phantoms. Reconstructed images are shown for each 

displacement estimator with and without STREAL enhancement. This figure also 



38 

demonstrates that the AM2D estimator provides an accurate reconstructed image as 

compared to the “ground truth” image, but at a very low computational cost. 

 

Figure 2.3  An example of Young’s modulus image reconstruction obtained with synthetic 

displacement data generated by each displacement field estimator with and without 

STREAL enhancement. The “ground truth” reconstruction image was obtained by 

processing the ground truth displacement field using the iterative Young’s modulus 

reconstruction algorithm. 

 

Figure 2.4  Reconstructed Young’s modulus images of a tissue mimicking phantom 

obtained with each displacement estimator with and without STREAL enhancement. 
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 To evaluate the performance and effectiveness of the four displacement estimators 

in the context of quality of reconstructed Young’s modulus images, contrast-to-noise ratio 

(CNR), signal-to-noise ratio (SNR), and inclusion-to-background Young’s modulus ratios 

for each reconstructed image were computed, and results pertaining to the tissue mimicking 

phantom are summarized in Table 2.2. This table indicates that all estimators lead to high 

CNR and SNR for reconstructed Young’s modulus images, while using STREAL 

enhancement with the AM2D and GLUE estimators leads to little change in the respective 

image CNR and SNR. The table shows that, among the estimators, OVERWIND 

consistently led to a substantial increase in the CNR and SNR of the reconstructed Young’s 

modulus images. The ground truth inclusion to background Young’s modulus ratio is 1.86. 

This indicates that the AM2D, GLUE, and SOUL displacement estimators lead to 

reasonably high accuracy, while the OVERWIND estimator shows poor performance in 

Young’s modulus reconstruction. 

Table 2.2 CNR, SNR, and inclusion to background Young's Modulus ratio values 

obtained for reconstructed Young's Modulus images of phantoms computed using each 

displacement estimator with and without STREAL. 

Displacement 

Estimator 

CNR   

Pre-

STREAL 

CNR   

Post-

STREAL 

SNR   

Pre-

STREAL 

SNR   

Post-

STREAL 

Ratio   

Pre-

STREAL 

Ratio   

Post-

STREAL 

AM2D 38.3 34.4 19.9 17.9 2.08 2.08 

GLUE 47.4 44.4 24.1 27.9 2.17 2.19 

OVERWIND 35.6 44.7 21.7 27.8 2.6 2.7 

SOUL 61.5 39.0 32.1 20.8 2.1 2.1 

 

 Strain imaging is common for obtaining approximate distribution tissue stiffness. 

To evaluate the performance and effectiveness of the four displacement estimators in the 
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context of strain image quality, axial and lateral strains pertaining to the phantoms’ dataset 

were analyzed. Figure 2.5 illustrates axial strain images of the tissue mimicking phantom 

obtained with each displacement estimator, with and without STREAL enhancement. Table 

2.3 presents results summary of corresponding CNR, SNR and Young’s modulus ratio 

values obtained for the phantom dataset using each displacement estimator with and 

without STREAL enhancement. The figure and table indicate that the AM2D estimator 

provides a reasonably good-quality axial strain image but at a very low computational cost 

compared to other estimators. The table also indicates that the CNR and SNR values of 

axial strain images were slightly improved through the application of STREAL 

enhancement. Furthermore, while they have further deviation from the true values, the 

Young’s ratio values obtained from these images once again shows that AM2D leads to the 

most accurate estimates. 

 

Figure 2.5 Axial Strain Images of the tissue mimicking phantom obtained using each 

displacement field estimator applied with and without STREAL enhancement. The 

differences between each image and its STREAL version are subtle. 
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Table 2.3 CNR and SNR values obtained for axial strain images of tissue mimicking 

phantom computed using each displacement estimator with and without STREAL. 

Displacement 

Estimator 

 CNR   

Pre-

STREAL 

CNR   

Post-

STREAL 

SNR   

Pre-

STREAL 

SNR   

Post-

STREAL 

Ratio   

Pre-

STREAL 

Ratio   

Post-

STREAL 

AM2D  12.6 14.55 1.15 1.4 2.22 2.19 

GLUE  11.6 11.7 4.7 4.8 2.88 2.87 

OVERWIND 
 

48.0 48.4 46.2 46.9 4.0 3.95 

SOUL  28.6 28.9 7.7 7.9 2.59 2.61 

 Similar analysis was performed to evaluate the quality of lateral strain images using 

each of the displacement estimators with and without STREAL. As an example, Figure 2.6 

illustrates lateral strain images of the tissue mimicking phantom obtained with each 

displacement estimator, with and without STREAL. Table 2.4 presents results summary of 

pertinent CNR and SNR values obtained for the phantom dataset using each displacement 

estimator with and without STREAL. The figure and table indicate that the CNR and SNR 

improvements of lateral strain achieved through STREAL are highly remarkable. More 

particularly, Figure 2.6 shows that, through STREAL, the lateral strain image obtained with 

the AM2D estimator transforms from almost an entirely noisy image to a relatively high-

quality image where the inclusion is highly distinguishable. This is confirmed by the data 

given in Table 2.4 which shows that the CNR and SNR were increased by factors of over 

20 and 5.3 times, respectively. It is noteworthy that the strain ratios are not reported in the 

table as lateral strains do not provide a good estimate of this ratio due to the high spatial 

variability of the stresses in the lateral direction. 
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Figure 2.6 Lateral strain images of the tissue mimicking phantom obtained using each 

displacement field estimator applied with and without STREAL. Lateral strain images 

obtained with STREAL enhanced show remarkable improvement over their pre-

enhancement counterparts. 

Table 2.4 CNR and SNR values obtained for lateral strain image of the tissue mimicking 

phantom computed using each displacement estimator with and without STREAL. 

Displacement 

Estimator 

CNR   

Pre-STREAL 

CNR   

Post-STREAL 

SNR   

Pre-STREAL 

SNR   

Post-STREAL 

AM2D 0.47 9.7 0.29 0.45 

GLUE 6.8 16.8 2.2 4.5 

OVERWIND 3.3 17.5 10.0 29.9 

SOUL 7.1 14.3 1.67 2.2 

 

 For evaluating the performance of the displacement estimators with and without 

STREAL on clinical data, constructed Young’s modulus, axial strain and lateral strain 

images pertaining to 3 patients in the dataset are presented. Figures 2.7, 2.8 and 2.9 show 

images of the reconstructed Young’s modulus, axial strain and lateral strain of, respectively 

for Patient 1. Similarly, Figures 2.10, 2.11 and 2.12 show images of the reconstructed 
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Young’s modulus, axial strain and lateral strain, respectively for Patient 2, while Figures 

2.13, 2.14 and 2.15 show images of the reconstructed Young’s modulus, axial strain and 

lateral strain, respectively for Patient 3. Each reconstruction is associated with a table of 

CNR, SNR and young’s modulus ratio (Tables 2.5-2.7). Generally, the quality of all images 

generated using the OVERWIND estimator is poor compared to images generated using 

other estimators. Except OVERWIND estimator, other estimators led to reasonably high-

quality images. Among AM2D, GLUE and SOUL estimators, AM2D led to noisier images 

while it preserved necessary information, including stiffness values and tumor shape. This 

once again indicates the advantage of the AM2D estimator which has much higher 

computational efficiency at the cost of losing little image quality. Like the phantom case, 

it is also observed that STREAL has the highest influence on lateral strain images with all 

estimators. Again, this enhancement transforms almost entirely noisy lateral strain images 

to high-quality images where both tumor shape and its stiffness can be estimated. For 

lateral strain images, the STREAL in conjunction with AM2D, GLUE and SOUL 

estimators demonstrates remarkable improvement as this enhancement transforms very 

low-quality images to images where the tumors are quite distinguishable. 

 

Figure 2.7  Reconstructed Young’s modulus images of Patient 1 computed from 

displacement fields obtained by each displacement estimator with and without STREAL. 

Approximate tumor ROI is highlighted in red based on outlines provided in [2]. AM2D 

provides reasonably high-quality images at a very low computational cost. 
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Table 2.5 CNR, SNR and Inclusion to background ratios obtained for stiffness images of 

Patient 1 computed using each displacement estimator with and without STREAL. 

Displacement 

Estimator 

CNR   

Pre-

STREAL 

CNR   

Post-

STREAL 

SNR   

Pre-

STREAL 

SNR   

Post-

STREAL 

Ratio   

Pre-

STREAL 

Ratio   

Post-

STREAL 

AM2D 32.9 658.0 14.7 416.7 1.8 2.7 

GLUE 15.2 15.7 5.5 5.9 1.6 1.6 

OVERWIND 42.0 42.2 15.3 15.0 1.6 1.6 

SOUL 9.8 10.6 2.1 2.2 1.3 1.3 

 

Figure 2.8 Axial strain images of Patient 1 computed from displacement fields obtained 

by each displacement estimator with and without STREAL. AM2D provides reasonably 

high-quality images at a very low computational cost. 
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Figure 2.9 Lateral strain images of Patient 1 computed from displacement fields obtained 

by each displacement estimator with and without STREAL. AM2D with STREAL 

provides reasonably high-quality images at a very low computational cost. 

 

Figure 2.10 Reconstructed Young’s modulus images of Patient 2 computed from 

displacement fields obtained by each displacement estimator with and without STREAL. 

Approximate tumor ROI is highlighted in red [2]. AM2D provides a reasonably high-

quality image at a very low computational cost. 
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Table 2.6 CNR, SNR and inclusion to background ratio values obtained for axial strain 

images of Patient 2 computed using each displacement estimator with and without 

STREAL. 

Displacement 

Estimator 

CNR   

Pre-

STREAL 

CNR   

Post-

STREAL 

SNR   

Pre-

STREAL 

SNR   

Post-

STREAL 

Ratio   

Pre-

STREAL 

Ratio   

Post-

STREAL 

AM2D 10.1 16.3 7.0 12.3 3.3 4.1 

GLUE 14.6 15.1 9.8 9.7 3.0 2.8 

OVERWIND 3.1 3.36 0.62 0.72 1.2 1.27 

SOUL 16.4 17.2 10.2 11.1 2.6 2.83 

 

 

Figure 2.11 Axial strain images of Patient 2 computed from displacement fields obtained 

by each displacement estimator with and without STREAL. AM2D provides reasonably 

high-quality images at a very low computational cost. 
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Figure 2.12  Lateral strain images of Patient 2 computed from displacement fields obtained 

by each dis-placement estimator with and without STREAL. AM2D with STREAL 

provides reasonably high-quality images at a very low computational cost. 

 

Figure 2.13 Reconstructed Young’s modulus images of Patient 3 computed from 

displacement fields obtained by each displacement estimator with and without STREAL. 

Approximate tumor ROI is highlighted in red [2]. AM2D provides a reasonably high-

quality image at a very low computational cost. 
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Table 2.7 CNR, SNR, and inclusion to background values obtained for stiffness images of 

Patient 3 computed using each displacement estimator with and without STREAL 

Displacement 

Estimator 

CNR   

Pre-

STREAL 

CNR   

Post-

STREAL 

SNR   

Pre-

STREAL 

SNR   

Post-

STREAL 

Ratio   

Pre-

STREAL 

Ratio   

Post-

STREAL 

AM2D 50.0 35.1 40.7 29.6 5.4 6.3 

GLUE 12.6 10.6 9.5 7.4 4.0 3.3 

OVERWIND 59.1 89.3 37.8 44.0 2.8 2.0 

SOUL 40.9 34.9 34.4 27.1 5.9 2.7 

 

 

Figure 2.14 Axial strain images of Patient 3 computed from displacement fields obtained 

by each displacement estimator with and without STREAL. AM2D provides reasonably 

high-quality images at a very low computational cost. 
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Figure 2.15 Lateral strain images of Patient 3 computed from displacement fields obtained 

by each displacement estimator with and without STREAL. AM2D with STREAL 

provides reasonably high-quality images at a very low computational cost. 

 Overall, in all images the AM2D estimator shows a good ability of clearly showing 

increased stiffness with clear heterogeneity within the tumor. GLUE and SOUL show much 

smoother versions of the same image in AM2D, while OVERWIND provides only some 

increase in the stiffness of the ROI. Figure 2.16 shows a hypothetical image fusion of B-

mode and Young’s modulus image generated for Patients 1, 2 and 3 that can be provided 

in the clinic. The Young’s modulus images are obtained through data inversion of 

displacements computed by the AM2D estimator with STREAL.  
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Figure 2.16  B-Mode images alongside Segmented Young’s modulus images computed 

from displacements estimated through the AM2D estimator with STREAL, which are 

overlayed on top of B-mode images of a) and b) Patients 1, c) and d) Patient 2 and e) Patient 

3. Highlighted are regions with Young’s modulus values larger than 1.5 times the median 

of Young’s modulus of respective background tissue. Apart from artefacts at the top of the 

images, the stiffness elevation in the tumor area is consistent with their respective ROIs. 

Moreover, the stiffness image reveals features that are not immediately obvious from the 

B-Mode. 

2.4 Discussion 

 This investigation evaluates the performance of four commonly used tissue 

displacement estimation methods developed for US elastography. The methods are, 

namely, AM2D, GLUE, OVERWIND, and SOUL. They were evaluated both as stand-

alone methods and in combination with the STREAL method, which was recently 

developed to enhance tissue displacement fields aimed at US elastography applications. 
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The assessment was performed using datasets consisting of data pertaining to in-silico and 

tissue mimicking phantoms undergoing US imaging in addition to clinical data. When 

applied to synthetic data, compared with the other measures, the AM2D displacement 

estimator, by far, provides the best quality of Young’s modulus reconstruction with much 

higher computational efficiency compared to other estimators. This estimator has the added 

benefit of substantially improving the inclusion-to-background Young’s modulus ratio 

when combined with the STREAL method founded on tissue mechanics regularization. 

The other displacement estimators tend to blur the edges of the inclusion, which may be 

the source of the ratio error as it leads to the underestimation of the inclusion’s Young’s 

modulus. The in-silico phantoms results indicate that both OVERWIND and SOUL 

estimators provide minimal improvements over GLUE but take much longer to compute 

compared to AM2D. This makes them difficult to recommend in a real-time scenario where 

run-time is of the utmost importance. Tissue mechanics-based regularization applied 

through the STREAL method provides the most improvement when applied to the AM2D 

estimator. This may be partially due to the displacement field over-smoothing effect applied 

in other methods, which can lead to excessive loss of actual displacement information. 

Furthermore, the more advanced and complicated displacement estimators have 

increasingly many parameters, which makes it more difficult to accurately tune the 

algorithm for maximum performance. Moreover, the sophisticated window-based 

approach in OVERWIND was designed to handle large changes in displacement and 

preserve value; however, it is possible that this same mechanism can sometimes allow 

artifacts and issues in the displacement field to pass through where they otherwise should 

be smoothed. SOUL, on the other hand, provides a much smoother image than GLUE; 

however, the former risks excessive smoothing, while the potential benefit is not worth the 

increased runtime and should be reconsidered if its algorithm implementation is optimized. 

 When applied to the tissue mimicking phantom, the AM2D estimator performed 

very well relative to the other estimator as it produces high-quality images for a very low 

runtime requirement. The quality of the reconstructed images measured by CNR and SNR 

is comparable, while the STREAL led to little change in these measures except for 

OVERWIND, where the enhancement led to substantial improvement. For strain images, 
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the STREAL led to only a little improvement of axial strain with all four displacement 

estimators, whereas the improvement achieved with the lateral strain was highly 

remarkable, especially with the AM2D estimator. This observation is consistent with [7]. 

Overall, the difference in reconstruction quality with and without STREAL is quite subtle 

and, in some cases, seems to decrease CNR and SNR. The decrease in metrics is of 

relatively trivial magnitude compared to the overall CNR and SNR and could be attributed 

to subtle changes in the noise content. Nonetheless, the idealistic nature of the tissue 

mimicking phantoms and indeed the in-silico phantoms means that the quality of the axial 

displacement alone is enough to reconstruct the Young’s modulus with high quality. While 

this indicates that STREAL has left little room for improvement in the studied phantoms, 

the impacts of STREAL are best exemplified in the clinical cases where the prominence of 

the inclusion was increased since the noise in these cases is substantial in both axial and 

lateral directions. 

 In the clinical cases presented in this investigation, the AM2D estimator provides 

Young’s modulus images with remarkable heterogeneity. While this is consistent with a 

heterogeneous stiffness distribution expected in tumor tissue, a lack of underlying ground 

truth makes this difficult to ascertain. The GLUE estimator provides a more homogenous-

appearing mass, which may be more appealing to clinicians. Moreover, the OVERWIND 

and SOUL estimators do not appear to provide a significant benefit as compared to the 

GLUE estimator, which has a significantly higher runtime. It must be noted that the 

CNR/SNR and ratios of the clinical reconstruction should be interpreted cautiously as the 

underlying stiffness distribution and, more importantly, its heterogeneity are unknown; 

hence naïve comparisons of SNR and CNR are not appropriate as the true variance in the 

background is not known. When looking at situations where STREAL seems to decrease 

SNR and CNR, this should not be taken to be an “inferior” image, as it is quite likely that 

increased heterogeneity being captured in the image could cause decreased SNR and CNR. 

Therefore, qualitative assessment of the produced images are of the utmost importance. 

When looking at sensitivity, specificity, and kappa statistics, all four displacement 

estimators perform extremely well (excess of 0.9), and none emerges as significantly 

superior, as with all metrics exceeding 0.9, differences are likely well beyond the point of 
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diminishing returns. Clinical investigation may be warranted to determine if these 

differences are clinically significant. 

 One important aspect of the AM2D estimator is its ability to create high quality 

strain images at high speed for real-time image assessment. This study indicates that the 

AM2D estimator with STREAL is vastly superior in its quality to runtime ratio, as can be 

seen in both the tissue mimicking phantom and clinical examples, where the inclusion or 

tumor is clearly visible. 

 It is noteworthy that with all of the tissue motion tracking techniques using US, the 

quality of the estimated displacement field is highly dependent on the consistency of the 

selected pair of RF frames corresponding to the pre- and post-compression states of the 

tissue. In other words, the two frames must represent the same tissue plane as much as 

possible. The greater the deviation from this situation, the lower the quality of the estimated 

displacement field. The recently developed method known as PCA-GLUE [14], which is a 

variant of the GLUE method optimized with machine learning, can be used for assessing 

RF frame pair quality. Given the high speed of the AM2D displacement estimator, it should 

also be possible to consider it a good candidate for real-time frame pair quality assessment 

before near imaging at near real-time rates. This concept is demonstrated in the flowchart 

shown in Figure 2.18. A clinician would use this system to image the breast or liver during 

a routine ultrasound screening procedure, potentially bypassing the need for biopsy. 

 

Figure 2.17 A hypothetical flow chart for a real-time US elastography system that could 

be deployed in the clinical setting. The red box indicates a real-time loop that the clinician 
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can use to assess the quality of images in real time, where once a sufficiently high-quality 

strain image is found, it can be processed to reconstruct a reliable Young’s modulus image. 

 This investigation clearly demonstrates the image quality superiority of full-

reconstruction imaging, where it is observed that SNR and CNR values are substantially 

higher for the tissue mimicking phantom at the reconstructed Young’s modulus level 

compared to their strain image counterparts. Moreover, Young’s modulus images are much 

easier to interpret, as can be seen in Figures 2.7, 2.10, and 2.13, with an overlay indicating 

substantially (1.5+ x than background tissue) stiffer tissue. 

 Some limitations of this study include the small number of tissue mimicking and 

clinical examples and the lack of underlying validation for the stiffness field of the clinical 

examples. Some future suggestions for this work would be to develop better tissue-

mimicking samples that include heterogeneity, whether synthetic or physical, to evaluate 

the preservation of heterogeneity in the sample. Another obvious future direction is 

including a large clinical study to achieve more concrete conclusions. Moreover, a 

prototype imaging system should be developed and taken to clinical trials to determine 

which displacement estimator results in improved decision-making ability. Alternatively, 

data could be collected along with biopsy-confirmed results to attempt to create a 

diagnostic criterion for this new generation elastography system. 

 Some notable non-inclusions in this study are normalized correlation coefficient 

methods and their variants, and deep-learning-based methods. Normalized correlation 

coefficient methods were not included in this investigation because the quality of the strain 

images; they produce low-quality displacement fields compared to the selected four 

estimators. The lack of sufficient quality associated with these methods is expected to 

impact reconstructed Young’s modulus images [15,16]. Moreover, Normalized correlation 

coefficient methods are not as computationally efficient as dynamic programming 

methods. Deep-learning-based methods were also not included in this investigation, as the 

performance of the network is highly dependent on the training data and the very specific 

architecture used [11,17–21], and deep learning methods should be evaluated on a case-

by-case basis. Moreover, this investigation is primarily a CPU-based comparison; hence, 
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including deep learning would lead to largely invalid conclusions about computation 

efficiency, as either they would be unfairly hampered by running on CPU or unfairly 

advantaged by running on GPU. 

 The diagnosis of breast cancer is an inherently multi-faceted and non-binary 

process where clinicians must consider many different sources of evidence and come to a 

probability of malignancy or benign findings, which will inform the clinical course of 

action. Mathematical tools have been developed for this precise situation, including 

Dempster-Shafer Theory (DS Theory) and Fuzzy Logic, which are meant to provide a 

mathematical framework for integrating multiple sources of evidence and to deal with 

“continuous” logic, where probabilities are used rather than Boolean values. 

 DS Theory is based upon Bayesian theories of subjective probability. It deals with 

mathematical constructs called “belief functions,” which integrate the answers to one 

question to influence the confidence or “belief” in a related question. In the domain of 

breast cancer diagnosis, it has been used to create new neural network methodologies that 

integrate multiple measures of breast lesion texture and pharmacokinetic parameters [22] 

to achieve superior results compared to traditional classifiers. 

 Fuzzy logic was developed specifically to handle situations in which the truth value 

of some statement is not a Boolean value and is in fact a continuum between 0 and 1. In 

the case of breast cancer, it is not simply enough to assign it malignant or benign, as it 

cannot be known whether all benign lesions will remain that way or whether a malignant 

lesion will necessarily become life-threatening (overdiagnosis). Fuzzy logic was developed 

to tackle such an issue and has been used in diagnostic methods specifically to diagnose 

breast cancers [23]. 

 The potential future direction of this work is to integrate the elastography technique 

identified as highly effective into such classification methodologies to improve the 

accuracy of breast cancer detection systems. Moreover, combination imaging systems 

could be explored, for instance using compression due to mammography to create a dual 

mammography-elastography system. 



56 

2.5 Conclusion 

 These results show that at the full-reconstruction level the choice of algorithm is 

highly data-quality dependent. If high quality data is reasonably available, simpler 

displacement estimators like AM2D may be used to great effect, however I hypothesize 

that when dealing with imperfect data, GLUE may be a better option with some 

optimization required. As it currently stands, OVERWIND and SOUL are too 

computationally intensive to be considered in a real-time system despite potentially 

yielding better results. 

2.6 References 

[1] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, 

“Ultrasound Elastography: A Dynamic Programming Approach,” IEEE Trans Med 

Imaging, vol. 27, no. 10, pp. 1373–1377, Oct. 2008, doi: 10.1109/TMI.2008.917243. 

[2] H. Rivaz, E. M. Boctor, M. A. Choti, and G. D. Hager, “Real-time regularized 

ultrasound elastography,” IEEE Transactions on Medical Imaging, vol. 30, no. 4, pp. 

928–945, Apr. 2011. doi:10.1109/tmi.2010.2091966  

[3] M. Ashikuzzaman, C. J. Gauthier, and H. Rivaz, “Global Ultrasound 

Elastography in Spatial and Temporal Domains,” IEEE Trans Ultrason Ferroelectr Freq 

Control, vol. 66, no. 5, 2019, doi: 10.1109/TUFFC.2019.2903311. 

[4] H. S. Hashemi and H. Rivaz, “Global Time-Delay Estimation in Ultrasound 

Elastography,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 64, no. 10, pp. 1625–

1636, Oct. 2017, doi: 10.1109/TUFFC.2017.2717933. 

[5] M. Mirzaei, A. Asif, and H. Rivaz, “Combining Total Variation Regularization 

with Window-Based Time Delay Estimation in Ultrasound Elastography,” IEEE Trans 

Med Imaging, vol. 38, no. 12, pp. 2744–2754, Dec. 2019, doi: 

10.1109/TMI.2019.2913194. 



57 

[6] M. Ashikuzzaman and H. Rivaz, “Second-Order Ultrasound Elastography With 

L1-Norm Spatial Regularization,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 

69, no. 3, 2022, Accessed: Aug. 23, 2022. [Online]. Available: 

https://ieeexplore.ieee.org/document/9674909/ 

[7] N. Kheirkhah, S. Dempsey, A. Sadeghi-Naini, and A. Samani, “A novel tissue 

mechanics-based method for improved motion tracking in quasi-static ultrasound 

elastography,” Med. Phys., vol. 50, no. 4, pp. 2176–2194, Apr. 2023, doi: 

10.1002/MP.16110. 

[8] N. Kheirkhah, A. Sadeghi-Naini, and A. Samani, “Analytical Estimation of Out-

of-plane Strain in Ultrasound Elastography to Improve Axial and Lateral Displacement 

Fields,” Proceedings of the Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, EMBS, vol. 2020-July, pp. 2055–2058, Jul. 2020, doi: 

10.1109/EMBC44109.2020.9176086. 

[9] J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med Biol 

Eng Comput, vol. 34, no. sup. 1, pp. 351–353, 1997, Accessed: Sep. 13, 2023. [Online]. 

Available: https://orbit.dtu.dk/en/publications/field-a-program-for-simulating-ultrasound-

systems 

[10] Jφ. A. Jensen and N. B. Svendsen, “Calculation of Pressure Fields from 

Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers,” IEEE Trans 

Ultrason Ferroelectr Freq Control, vol. 39, no. 2, pp. 262–267, 1992, doi: 

10.1109/58.139123. 

[11] A. K. Z. Tehrani and H. Rivaz, “Displacement Estimation in Ultrasound 

Elastography Using Pyramidal Convolutional Neural Network,” IEEE Trans. Ultrason. 

Ferroelectr. Freq. Control, vol. 67, no. 12, 2020, Accessed: Aug. 24, 2022. [Online]. 

Available: https://ieeexplore.ieee.org/document/8990076/ 



58 

[12] A. Samani, J. Bishop, and D. B. Plewes, “A constrained modulus reconstruction 

technique for breast cancer assessment,” IEEE Trans Med Imaging, vol. 20, no. 9, pp. 

877–885, Sep. 2001, doi: 10.1109/42.952726. 

[13] M. M. Doyley, P. M. Meaney, and J. C. Bamber, “Evaluation of an iterative 

reconstruction method for quantitative elastography,” Phys. Med. Biol, vol. 45, pp. 1521–

1540, 2000. 

[14] A. Zayed, S. Member, H. Rivaz, and S. Member, “Fast Strain Estimation and 

Frame Selection in Ultrasound Elastography Using Machine Learning,” IEEE Trans 

Ultrason Ferroelectr Freq Control, vol. 68, no. 3, 2021, doi: 

10.1109/TUFFC.2020.2994028. 

[15] J. Luo and E. Konofagou, “A fast normalized cross-correlation calculation 

method for motion estimation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 57, 

no. 6, pp. 1347–1357, 2010, doi: 10.1109/TUFFC.2010.1554. 

[16] M. Mirzaei, A. Asif, M. Fortin, and H. Rivaz, “3D normalized cross-correlation 

for estimation of the displacement field in ultrasound elastography,” Ultrasonics, vol. 

102, p. 106053, Mar. 2020. doi:10.1016/j.ultras.2019.106053  

[17] D. Perdios, M. Vonlanthen, F. Martinez, M. Arditi, and J. P. Thiran, “CNN-Based 

Ultrasound Image Reconstruction for Ultrafast Displacement Tracking,” IEEE Trans Med 

Imaging, vol. 40, no. 3, pp. 1078–1089, 2021, doi: 10.1109/TMI.2020.3046700. 

[18] A. K. Z. Tehrani, M. Sharifzadeh, E. Boctor, and H. Rivaz, “Bi-Directional Semi-

Supervised Training of Convolutional Neural Networks for Ultrasound Elastography 

Displacement Estimation,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 69, no. 

4, 2022, Accessed: Aug. 23, 2022. [Online]. Available: 

https://ieeexplore.ieee.org/document/9694663/ 

[19] A. Mallampati and M. Almekkawy, “Measuring Tissue Elastic Properties Using 

Physics Based Neural Networks,” in LAUS 2021 - 2021 IEEE UFFC Latin America 



59 

Ultrasonics Symposium, Proceedings, IEEE, 2021. doi: 

10.1109/LAUS53676.2021.9639231. 

[20] C. Hoerig, J. Ghaboussi, and M. F. Insana, “Data-Driven Elasticity Imaging Using 

Cartesian Neural Network Constitutive Models and the Autoprogressive Method,” IEEE 

Trans Med Imaging, vol. 38, no. 5, 2019, doi: 10.1109/TMI.2018.2879495. 

[21] A. K. Z. Tehrani, M. Amiri, and H. Rivaz, “Real-time and High Quality 

Ultrasound Elastography Using Convolutional Neural Network by Incorporating Analytic 

Signal,” in 2020 42nd Annual International Conference of the IEEE Engineering in 

Medicine & Biology Society (EMBC), IEEE, 2020. Accessed: Aug. 23, 2022. [Online]. 

Available: https://ieeexplore.ieee.org/document/9176025/ 

[22] Z. Liu et al., “A classifier-combined method for grading breast cancer based on 

Dempster-Shafer evidence theory,” Quant. Imaging Med. Surg., vol. 13, no. 5, pp. 3288–

3297, 2023, doi: 10.21037/qims-22-652. 

[23] N. F. Idris and M. A. Ismail, “Breast cancer disease classification using fuzzy-ID3 

algorithm with FUZZYDBD method: Automatic fuzzy database definition,” PeerJ 

Comput. Sci., vol. 7, pp. 1–22, 2021, doi: 10.7717/PEERJ-CS.427. 

 



60 

Chapter 3  

3 Elastosynth – An Open-source software package for 

the generation of realistic in-silico data for ultrasound 

elastography 

A variant of this chapter will be submitted as a journal paper for publication in Computer 

Methods and Programs in Biomedicine 

3.1 Introduction 

 As discussed in Section 1.10 on current issues with ultrasound elastography, the 

lack of data quality can affect the development of new displacement estimation techniques, 

as it becomes extremely difficult to determine if an algorithm fails due to a fundamental 

flaw, or due to a lack of data quality. Moreover, it is currently very difficult to properly 

evaluate the performance of displacement estimators as clinical data has no ground truth 

for comparison, and phantoms are too simple to draw definitive conclusions about 

performance on clinical data. 

 This has turned the literature towards synthetic or fully in-silico generation of tissue 

mimicking phantoms. To this end, other researchers have utilized finite element solvers 

like ABAQUS, combined with ultrasound simulation software like FIELD II [1,2]. This 

method is used to simulate the elastography procedure to generate “perfect data” with an 

underlying ground truth which provides a necessary accuracy assessment of displacement 

estimation. 

 These synthetic datasets have been used extensively, however, there are two major 

limitations. First, the FIELD II system is very computationally intensive, which limits the 

number of samples that can be generated. Moreover, ABAQUS or any other finite element 

solver does not normally support highly heterogeneous simulations in a user-friendly way. 
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This is generally because highly heterogeneous simulations are niche applications that do 

not appear in many other contexts. 

 To address this gap, I have developed an open-source code that solves both issues by 

optimizing the FIELD II system and creating a custom finite element solver which natively 

supports simulation of highly heterogenous tissue. I have also developed a procedural 

generation algorithm which, given some parameters, can randomly generate unique and 

heterogenous ultrasound elastography phantoms. The proposed US data generation 

algorithm employs an optimization procedure that reduces the run-time of the generation 

procedure by several orders of magnitude. This allows for the mass generation of many 

unique phantoms with heterogeneity that mimics clinical cases. This will allow for a 

realistic assessment of displacement algorithm quality that achieves statistical significance.  

3.2 Background 

The current state-of-the-art in “control” procedures in ultrasound elastography is quite 

meager, generally restricted to manufactured tissue mimicking phantoms or synthetic 

phantoms [3,4]. Tissue mimicking phantoms are essentially homogenous samples with a 

single of very few circular inclusions. Such phantoms suffer from two issues: 1) infeasible 

to manufacture a large number of tissue mimicking phantoms often necessary for 

developing machine learning based algorithms, 2) impracticality to manufacture phantoms 

with continuous heterogeneity which mimics biological tissues. As such, researchers have 

pursued US data generation in-silico where FIELD II [1,2] can be employed. In the context 

of such in-silico phantoms, the major reason behind the popularity of generating phantoms 

with homogenous tissue parts is the lack of a user-friendly way to specify highly 

heterogenous finite element simulation necessary to estimate post-compression scatterer 

displacements. This is largely because all major finite element solvers are not designed to 

support continuously variable stiffness fields and are mostly designed to deal with large 

sections of homogenous materials, which is a much more common workflow in other fields 

of engineering. This poses a major problem since biological tissues can be highly 

heterogeneous. This leads to a situation where it becomes very difficult to properly validate 

algorithms developed in a situation where a ground truth is unavailable for comparison. 
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This gives rise to the first design objective – achieve a user-friendly way to specify and 

simulate ultrasound interaction with arbitrarily complex material properties. This will 

allow researchers to generate high-fidelity synthetic data to properly assess the merits of 

developed ultrasound elastography techniques, including tissue motion tracking 

algorithms.  

3.3 Design Considerations 

As discussed in the previous section, this software package has two major design 

considerations that can be extended as follows: 

1. Create a convenient image-based way to specify arbitrarily heterogenous material 

properties field. 

2. Provide a convenient procedural simulation functionality to generate massive 

amounts of unique elastography samples. 

3. Devise an adaptable and convenient workflow support ranging from automatic data 

generation to customizable simulations. 

4. Accelerate the runtime of data generation. 
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3.4 Methods and Capabilities 

The overall capabilities of this software package are broken down into 3 major modules. 

Table 3.1 describes the 3 modules and their general roles and capabilities. 

Table 3.1 An overview of the three major modules contained within Elastosynth. Each 

module has a specific task and can be used independently of each other. The first is the 

procedural phantom generator, which is used to generate phantom geometry based on 

parameters provided. The second module performs finite element modelling, which is 

responsible for simulating the compression of the phantom. The final module generates the 

radiofrequency data using FIELD II. 

Procedural Phantom 

Generation 

Finite Element Modelling Radiofrequency Data 

Generation 

Responsible for generating 

unique phantoms based on 

pre-determined parameters 

for inclusion numbers, 

inclusion sizes, stiffnesses 

and tissue heterogeneity. 

Responsible for simulating 

the mechanical behaviour 

of specified phantoms 

based on specified 

boundary conditions, 

generating a displacement 

field for US data 

simulation. 

Uses FIELD II to simulate 

the radiofrequency data 

based on the simulated 

phantom and a specified 

transducer and image 

options. 

 

3.4.1 Procedural Phantom Generation 

The procedural phantom generator is chiefly responsible for the generation of unique 

phantoms for ultrasound elastography, capable of randomly generating phantoms based on 
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parameters that control the number of inclusions, their sizes, their stiffnesses, and the 

degree of heterogeneity on an inclusion-by-inclusion basis. The first major methodology 

innovation involves the randomization of inclusion locations, which uses a Monte-Carlo 

approach to make sure that the inclusions are in a valid configuration. Figure 3.1 describes 

the algorithm. 

 

Figure 3.1 The algorithm used to generate randomized inclusion locations for the 

elastography phantom uses a Monte-Carlo approach to finding valid locations. 

The algorithm begins with a set of inclusion sizes, minimum distances between inclusions 

and the number of inclusions. The function begins with a randomly generated point to 
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correspond to the location of the first inclusion. Then, for each subsequent inclusion, a 

random location is generated and checked for validity (non-overlapping, respecting 

minimum distance between inclusions), this continues until the location is accepted or the 

maximum attempts elapse. If successful, the inclusion location is appended to an array and 

the process is repeated until the desired number of inclusions is generated. If the maximum 

attempts elapse, the specified inclusion sizes are reduced and overwritten, and the 

algorithm is run again. 

 The next major capability of the procedural phantom generation module is the 

heterogeneity generator function, which takes homogenous inclusions and backgrounds 

and turns them into heterogenous stiffness fields based on specified parameters. Figure 3.2 

illustrates the process. 

 

Figure 3.2 Generation of a heterogenous stiffness field from an initially homogenous 

image (a). This was achieved through a three step process which begins with noise 

contamination of the homogenous phantom (b), followed by superpixel segmentation and  

then further changing the superpixel E values which results in a heterogenous phantom (c). 

The generation of heterogeneous phantoms is a 3-step process. It begins with a “clean” 

stiffness image with homogenous inclusions and background, with randomized stiffnesses. 

The second step is to contaminate the image with Gaussian noise to generate the first layer 

of heterogeneity. This noisy image is then segmented into a variable number of regions 

based on a super-pixel segmentation algorithm which groups pixels into larger regions 

based on proximity and similarity. The regions are then reassigned to generate the resultant 

image, however in each region the mean stiffness is changed based on a randomly 
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generated value which increases or decreases the local stiffness within the super-pixel. This 

allows for each super-pixel to have a slightly different Young’s modulus, leading to 

heterogenous regions in the resultant image. 

3.4.2 Finite Element Modelling 

 The finite element engine of the software is a bespoke solver written in C++, using 

the Armadillo matrix library, designed specifically for use with highly heterogenous 

stiffness images. The tradeoff for this stiffness heterogeneity is that the simulator only 

simulates 2D grid-based simulations to emulate ultrasound elastography. Moreover, 

because it does not require many of the preprocessing and validation, steps that normally 

precede an analysis in more traditional finite element software can be sidestepped, making 

it a light-weight solver module. Figure 3.3 illustrates a sample displacement and strain 

output from a plane stress phantom. In this phantom, a zero-displacement boundary 

condition was imposed at the bottom, and a prescribed displacement of 0.5 mm at the top. 

As can be seen, the heterogeneity of the inclusions and the background is apparent. 
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Figure 3.3 Finite element simulation of the phantom illustrated in Figure 3.2. See Figure 

4.1 for strain images simulated using a homogenous sample. 

3.4.3 Generation of Radiofrequency Data 

The overwhelming majority of the generation of radiofrequency data is performed by 

FIELD II [1,2], in terms of the radiofrequency data generation. A general overview of the 

method is given below: 

1. Generate a scatterer field with prescribed scattering coefficients. 

2. Specify transducer specification. 

3. Calculate the acoustic pressure field from the transducer emission. 

4. Solve the wave equation approximately to estimate the return signals. 

5. Repeat for each line in the radiofrequency data. 
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The code process is largely unaltered, however, to capture the deformation of the 

underlying tissues, two ultrasound images are generated, the first of which has unaltered 

scatterers, and the second is generated by moving the scatterers based on the finite element 

simulation where the displacement at each scatterer is interpolated from the finite element 

simulation. Figure 3.4 shows the scatterer-by-scatterer displacement values. 

 

Figure 3.4 Scatterer displacements used to move the scatterers in the generation of the 

second frame. These were taken from the finite element simulation and resampled to the 

location of the randomly generated scatterers. 

3.5 Comparison to Clinical Data 

Figure 3.5 illustrates a comparison of a synthetically simulated sample compared with a 

real clinical sample taken from Chapter 2 after being passed through AM2D, STREAL and 

the iterative reconstruction algorithm. As can be seen, the heterogeneity of the synthetic 

example is very realistic, although the background appears to be too heterogeneous. 

Moreover, the regions of heterogeneity in the clinical example seem to be larger. However, 

both parameters can be controlled in the generation of synthetic samples. The most 

unrealistic thing about these data is the shape of the inclusion, however that can be 

manually specified. This shows that displacement estimators can be used on synthetic data, 
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and it can be compared to the known ground truth. This addresses the problem that 

quantitative measurement is very difficult, as clinical scenarios have no ground truth. 

 

Figure 3.5 A comparison of Young’s modulus reconstruction using clinical data (a) with 

a tumor in the circled ROI versus a reconstruction with a synthetic data sample (b). As can 

be seen, both images show very similar heterogeneity patterns, illustrating that 

heterogeneity has been effectively captured. 

3.6 Optimization Procedure 

To address the issue of long compute times, an optimization procedure is introduced by 

which the scatterers involved in the calculation of the radiofrequency response of the 

tissues are truncated to only those within a certain distance of the query points. 

Normally, the entire response from all scatterers is calculated from the pressure wave 

emission, however the actual signal calculated in the post-beamformed data from the 

software is only influenced by the scatterers near the desired sampling points. As can be 

seen in Figure 3.6, there is no degradation of the displacement estimation even when only 

1% of scatterers on either side of the A-Line are used. Displacement degradation is only 

seen when 0.7% of the scatterers are used. Even so, 1% yields two orders of magnitude 

speed improvement, which allows for the generation of hundreds of thousands of samples 

in the time it took to generate several thousand, unlocking dataset sizes that may allow 

robust deep learning methodologies. 
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Figure 3.6 Displacement estimation using synthetic data where 100% (a), 1% (b), 0.7% 

(c), and 0.5% (c) of the scatterers are used, as can be seen, an artefact only appears at 0.7%, 

which means 1% can be safely used. 

3.7 Supported Workflows 

Figure 3.7 is a flow chart describing the currently supported workflows. Note that this may 

not be a complete list as of the publication of this document, as future updates may have 

led to added features. There is a main pathway that starts from the generation of a parameter 

dataset, which contains information required for creating phantoms, it then proceeds to a 

generator, which creates the underlying Young’s modulus distribution. Finally, the finite 

element results then flow from the finite element solver all the way to the radiofrequency 

generator. At each stage, however, the user can inject their own custom data into the 

process, bypassing the previous steps. 
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Figure 3.7 Currently supported workflows. The main workflow includes starting from a 

parameter dataset and flowing through the whole generation pipeline. However, at every 

opportunity, the user may input custom data into the process to avoid earlier steps, allowing 

for manual and custom phantom generation. 

In general, user inputs can be done at any step in the process. From left to right, the most 

general and automated workflow is to specify a series of parameters to generate any number 

of phantoms completely systematically. The next supported workflow allows manual 

specification of inclusion maps and using the in-built heterogeneity generator. If the 

material properties to be simulated are known, they may be specified explicitly. Finally, if 

the desired displacements are known, they may be specified to be used directly by the 

radiofrequency pair generator. 

3.8 Discussion and Significance 

This software sets out and successfully achieves the goal of creating a user-friendly 

package for the creation of synthetic ultrasound elastography data. We implemented a 

procedural RF data generation software which can generate data pertaining to randomly 

distributed, uniquely heterogenous inclusions within a specified field of view. Moreover, 

a finite element solver was implemented with the goal of dealing with continuously 

variable stiffness field, subject to the constraint that the finite element simulation is a square 

field of view. Moreover, the radiofrequency simulation portion of the process was 

optimized, leading to computation acceleration of two orders of magnitude, allowing for 

massive numbers of generated data. 
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By significantly expanding the capabilities of in-silico synthetic data generation, new 

datasets of arbitrarily heterogenous examples can be generated to properly compare 

performance of algorithms with statistical significance. Moreover, with these new 

capabilities, we can generate more realistic clinical examples including well-integrated 

tumors without well-defined boundaries whereas this was previously impossible. 

 Future work includes expanding the simulation capabilities of the finite element 

solver to include more element types than just plane strain and plane stress. Moreover, 

using real clinical data to train generative artificial intelligence to generate models with 

high fidelity. Finally, adding the capability to simulate purposeful data corruption would 

be very useful. 

3.9 Hardware/Software Specification and Distribution  

There are no hardware specifications set in stone, however, a minimum of 8 GB of RAM 

is recommended for the finite-element simulations. The software is currently available in 

source code format or in Matlab toolbox format, precompiled for Windows and Linux. 

While compilation for Mac is expected to work, this has not been validated, nor provided 

as a pre-compiled software. Documentation is available upon request. The package itself 

is as of yet unreleased and will be released with the paper accompanying this chapter. 
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Chapter 4  

4 Data Quality Analyzer – Towards Optimal Radio-
frequency Frame Pair Selection for Ultrasound 
Elastography 

A variant of this chapter will be submitted as a journal paper for publication in a yet to be 

decided journal. 

4.1 Introduction 

 In elastography, it is well established that the quality of the stiffness image is highly 

dependent on the accuracy of the measured displacement field generated by displacement 

estimation algorithms. Many methods have been developed for tissue motion tracking 

where tissue displacements are estimated by processing US radio-frequency (RF) data of 

the tissue as acquired at two states of pre- and post-mechanical stimulation [1]–[8]. This is 

either done in real time, where the current frame is compared to some frame in the past, or 

by the acquisition of an RF data video before assessing all possible and reasonable frame 

pairs. However, all such methods generally assume that there is no significant out-of-plane 

movement of the tissue scatterers. However, this assumption is rarely met, and only select 

RF data pairs successfully fulfill this assumption. This leads to a situation where most data 

are entirely insufficient for the purposes of diagnostic imaging, and due to the massive 

number of possible frame pairs, manually analyzing the data is a laborious process which 

makes quasi-static elastography difficult to use. 

 In general, there are three major ways of overcoming this issue. One is through 

improving the quality of the data by creating new techniques for acquisition. The second 

pursues developing displacement trackers that are robust to inferior data. Finally, the third 

involves assessing the data quality in more efficient ways by allowing real-time imaging 

or developing automatic assessment tools. The first solution is less often pursued as it 

detracts from the low-cost convenient nature of ultrasound elastography by complicating 

the hardware setup. The second method is also widely pursued by integrating tissue 
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mechanics, smoothing, multiple frame-pairs, and other such methods to create robust 

estimators [9]–[16]. In general, however, the more robust the displacement estimator, the 

more computationally intensive it is to solve, hence, without extensive optimization, such 

estimators are difficult to use in the clinical setting. The final solution of allowing real-time 

assessment of data allows clinicians to assess data in a far more convenient way, lessening 

the clinical burden of manual assessment. In this chapter we propose a new method by 

which automatic assessment of data quality can be performed, allowing for a quantitative 

measure of data quality, and the ability to assess a series of RF frame pairs for at least 

initial assessment and pruning. 

 There are currently very few methods proposed to assess the quality of a pair of RF 

data frames acquired for tissue motion-tracking. Most of these methods are not 

displacement estimator agnostic, hence they cannot be used independent of the estimators’ 

methodologies. For instance, PCA-GLUE was recently proposed for data quality 

assessment [17]. This is a machine learning based method developed using data pertaining 

to tissue mimicking phantoms and only 3 patients, thus it may not be rigorous for clinical 

applications. The current work seeks to develop a displacement-estimator agnostic 

methodology for assessing the quality of the displacement field for ultrasound 

elastography. Ideally, the methodology should run in near real-time rates to be useful as a 

data analyzer tool at the bedside. However, including automatic assessment of 

displacement quality allows for the analysis of an ultrasound RF-video after-the-fact. This 

relaxes the requirement for real-time operation, making the use of more computationally 

intensive displacement estimators more feasible. Moreover, this circumvents the 

requirement that the tool be installed on the ultrasound machine if RF data can be exported 

from the machine. These all make the clinical convenience and feasibility of the technique 

much better. Moreover, to provide a proper control protocol for this investigation, I aim to 

develop a way to purposefully contaminate synthetic data to simulate the effects of 

inadequate data acquisition. This data contamination method can also be used in the 

development of algorithms by checking their robustness against known data corruption. 

 To achieve the above proposal, a dataset pertaining to tissue-mimicking phantoms 

was created in-silico using finite element modelling and an ultrasound computer simulator 
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(FIELD II) facilitated by the methods proposed in Chapter 3. This data was generated to 

simulate various levels of data corruption generated by out-of-plane movement of 

scatterers. In addition to data quality assessment. this method can be employed for 

validating displacement estimators using data of more realistic quality, rather than relying 

on perfect in-silico synthetic data samples [9], [11], [18], [19]. This will allow for the 

development of more robust displacement estimators through quantifying the robustness 

of developed algorithms against out-of-plane displacement. Moreover, this method may 

allow for automatic tuning of user-defined parameters for other displacement algorithms. 

 In summary, this chapter seeks to provide two major contributions: A displacement 

estimator-agnostic methodology for assessing displacement quality and to provide a 

method for purposefully corrupting in-silico RF data to generate more realistic data for 

development of motion tracking methods. The methods proposed in this chapter can be 

further developed for optimal selection of paired frames of RF data aimed at generating 

high quality ultrasound elastography. Note that this method does not actually do anything 

to improve displacement estimates, but simply provides a quantitative way to evaluate the 

quality that already exists. 

4.2 Methods 

4.2.1 Overview of Proposed Method  

 The proposed method of displacement quality assessment assumes that RF signal 

decorrelation is the main contributor to the degradation of estimated displacement field. 

The source of this decorrelation is out-of-plane displacement of the tissue which results 

from the tissue mechanical stimulation in ultrasound elastography. The proposed 

assessment method is based on the premise that a perfect displacement field corresponding 

to two RF frames of pre- and post-deformation can be used to warp the pre-deformation 

RF frame to estimate the post-deformation RF frame with high accuracy. As such, to assess 

the accuracy of the displacement field, the ability of this field to regenerate the measured 

post-compression RF data frame can be assessed. This can be performed by measuring the 

similarity of the pre-deformation RF frame warped using the displacement field with the 
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measured post-compression RF frame used to estimate the displacement field. The higher 

this similarity the better the displacement field estimate. 

4.2.2 Evaluation Algorithm 

 The proposed methodology centers around Equation 4.1 that describes the “perfect” 

displacement field, which collapses into Equation 4.2 if no out-of-plane displacements of 

the scatterers is assumed in the generated image. 

𝑆ଶ(𝑥, 𝑦, 𝑧) = 𝑆ଵ൫𝑥 + 𝑑௫ , 𝑦 + 𝑑௬ , 𝑧 + 𝑑௭൯ 4.1 

𝐼ଶ(𝑖, 𝑗) = 𝐼ଵ൫𝑖 + 𝑑௜ , 𝑗 + 𝑑௝൯ 4.2 

Where 𝑑௫ , 𝑑௬ , 𝑑௭ , 𝑑௜ , 𝑑௝ are functions which describe the displacement of the signal 

produced by the scatterers (𝑆, which is the signal represented as a 3D function) and the 

change in location corresponding to the signal at the pixel described by (𝑖, 𝑗). 𝐼ଵ and 𝐼ଶ, are 

the pre- and post- compression RF data, respectively. The hypothesis is that the closer the 

displacement field in satisfying Equation (4.2), the better. This is well motivated as 

displacement estimators already  consider a version of Equation 2 when generating the 

initial estimate [11], [15], [18], [20]–[22]. To evaluate this metric, the forward 

displacement operation is performed on 𝐼ଵ, and is compared to the measured 𝐼ଶ using the 

correlation between the two images and the mean-squared-error between the two. 

 This forward operation is achieved by considering the estimated displacement field 

as a geometric operation and performing the image warping to generate the signal produced 

by 𝐼ଵ and the displacement field, which should be identical to 𝐼ଶ in the perfect case. This 

method uses computationally inexpensive metrics and processes by posing the problem as 

a geometric operation. 

4.2.3 Synthetic Data, Tissue Mimicking and Clinical Data 

 To verify that the algorithm works, FIELD II along with a finite element model to 

generate the ground truth displacements shown in Figure 4.1. The inclusion and 

background have a young’s modulus of [X] and [Y], respectively. Then, the radiofrequency 
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data were acquired by generating a random field of scatterers and solving the wave equation 

for the field of scatterers to generate the first RF frame 𝐼ଵ. Then, using the ground truth 

displacement, the scatterers were moved according to the displacement at their location to 

generate the second RF frame 𝐼ଶ (see Chapter 3 for more details). 

 

Figure 4.1 Axial and Lateral strain images for the ground truth finite element phantom 

with Young’s Moduli X and Y for the inclusion and background, respectively. 

 To corrupt the data of the first RF frame 𝐼ଵ with out-of-plane movement, a variable 

amount of out-of-plane displacement was added from a Gaussian distribution with 100 

standard deviations ranging from 0-15mm, where 0 represents perfect data with no out-of-

plane displacements. The forward model described earlier was used to warp frame 𝐼ଵ to 

generate the second RF frame 𝐼ଶ. As potential measures for accuracy and similarity with 

the target 𝐼ଵଶ, the MSE, Correlation, CNR, and SNR for each amount of corruption were 

recorded and analyzed. Moreover, the strain images generated from the displacement 

estimation was visualized for inspection of the degradation of quality. 

 To test the viability of this method in practice, RF videos of clinical breast cancer 

cases were analyzed pair-by-pair using the proposed method to find the best and worst 

frame pairs. Then the top 5 and bottom 5 pairs were visualized and manually assessed and 

compared in order to validate the capabilities of the algorithm. Histograms and tables for 

MSE and Correlation were generated for the clinical cases. 
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4.3 Results 

 Figure 4.2 illustrates the CNR, SNR, Correlation and MSE metrics for each 

corrupted synthetic data sample generated as described earlier, which henceforth is referred 

to as “warped” correlation and MSE. As expected, this figure shows that as the corruption 

increases, the metrics proposed for quality assessment decrease. As can be seen, the 

correlation and MSE worsen with corruption, and CNR and SNR become noisier with 

higher level of data corruption. Among the 4 metrics, CNR and SNR exhibit a highly 

oscillatory behavior at high level of decorrelation with no clear increase or decrease trend, 

indicating low reliability for RF frame pair quality assessment. 

 

Figure 4.2 Metrics of quality as the out-of-plane displacement increases (standard 

deviation of out-of-plane displacement in mm) for the synthetic data. As the out-of-plane 

corruption increases, SNR and CNR become unreliable, while MSE and Correlation scores 

progressively get worse. Interestingly, at higher corruption levels we see less consistent 

trends. 
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 Axial strain images were computed for various levels of out-of-plane displacement 

corruption. Figure 4.3 illustrates the progressive degradation of the generated axial strain 

images derived from the corrupted RF data of the synthetic data. 

 

Figure 4.3 The progressive degradation of axial strain image quality and increased 

artefacts with increasing out-of-plane displacement data corruption of synthetic 

phantoms. The artefacts appear in the form of unrealistically high- and low-strain areas. 

 One may speculate that assessing the correlation between unwarped  𝐼ଵ and 𝐼ଶ 

maybe sufficient for assessing the quality of RF data frame pair while being 

computationally less expensive. To test this hypothesis, we calculated the correlation and 

MSE of 𝐼ଶ and the unwarped 𝐼ଵ, which was corrupted by the same variable levels of out-

of-plane displacements this procedure without warping is henceforth known as naïve 

correlation. Figure 4.4 illustrates the variations of these parameters vs. out-of-plane 

displacement. As can be seen in this figure, “naïve” correlation and MSE show a similar 

pattern, however, the magnitudes of these parameters are much less desirable as they cover 
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small range of values, while the worsening pattern is much noisier and less reliable. As 

such, it can be concluded that using warping-based method is superior. 

 

Figure 4.4 Correlation without warping shows a similar pattern to the warped correlation 

where correlation and mean squared error become progressively worse with increased out-

of-plane displacement. Without warping however, the values for the errors are much less 

convincing, as correlation starts at 0.16. Therefore, warped correlation is a much more 

robust method than naïve correlation. 

 The following are two figures (Figures 4.6 and 4.9) which compare the top 5 ranked 

frame-pairs with the bottom 5 frame pairs. As can be seen, the top 5 frame pairs are far 

smoother and provide a much less obstructed view of the strain. In Figures 4.7 and 4.10 

the histograms for all valid frame combinations can be seen, which shows a large bias 

towards low-quality frame combinations in clinical example 2 (Figure 4.10) while clinical 

example 1 (Figure 4.7) has a larger proportion of frame pairs with better correlation. 

Figures 4.5 and 4.8 are B-Mode images of the patient tumors shown in the strain images. 
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Figure 4.5 B-Mode image of the patient breast tumour, segmented by a clinician.  

 

Figure 4.6 First clinical example for top 5 ranked frame-pairs (top) and bottom-5 frame-

pairs (bottom row) as can be seen the low bottom 5 frame-pairs are inferior compared to 

the top 5. The tumour boundary is outlined in white. 
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Figure 4.7 The histogram of mean squared error and correlation coefficients for each pair 

in clinical example 1. For this example, the majority of pairs are at least passable in terms 

of correlation coefficients, with the standard taken arbitrarily at 0.5 correlation and 1.4 

MSE. 
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Figure 4.8 B-Mode image of the patient breast tumour, segmented by a clinician. 

 

 

Figure 4.9 Second clinical example for top 5 ranked frame-pairs (top) and bottom-5 frame-

pairs (bottom row) as can be seen the low bottom 5 frame-pairs are inferior compared to 

the top 5. The tumour boundary is outlined in white. 
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Figure 4.10 The histogram of mean squared error and correlation coefficients for each pair 

in clinical example 1. For this particular example, the majority of pairs are of very low 

quality and should not be used for elastography, with the standard taken arbitrarily at 0.5 

correlation and 1.4 MSE. 

 Overall, as shown in Table 4.1, the top-5 frame pairs have overwhelmingly superior 

Correlations and MSE measures compared to the bottom-5 frame pairs, showing a high 

degree of contrast in the measures, especially with correlation coefficients, which range 

from 0 up to 0.8+ (Figures 4.6 and 4.8) 
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Table 4.1 Mean MSE and Correlation for top 5 and bottom 5 frame pairs for clinical 

examples 1 and 2, as can be seen, there is a considerable difference in error metrics 

between the two groups 

Clinical Example 
Mean MSE Top-

5 

Mean MSE 

Bottom-5 

Mean 

Correlation Top-

5 

Mean 

Correlation 

Bottom-5 

1 0.95 1.93 0.83 0.12 

2 1.12 1.95 0.75 0.04 

 

4.4 Discussion 

 The methodology presented has shown that it is quite sensitive to out-of-plane 

displacement contaminating the data acquired. Both the correlation and mean-squared-

error show clear variation with increasing out-of-plane corruption in the synthetic data 

sample, while the CNR and SNR metrics proved unreliable in data corruption assessment. 

It is interesting to note that when the out-of-plane displacement increases, it is not simply 

a degradation of the SNR, but in fact as seen in Figure 4.2, there are increasingly larger 

and more unrealistically high-strain regions of the image. The reason for this is unknown, 

however we hypothesize that when there is a significant string of scatterers which have an 

out of plane displacement, the displacement tracking algorithms are led astray, which leads 

to regions of extremely high strain values. This also explains why CNR and SNR do not 

simply decay but lead to extremely high or extremely low values. More investigation into 

this may yield new ways to deal with the issue of out-of-plane strain. Moreover, the 

correlation and MSE metrics may allow for automatic or semi-automatic determination of 

parameters for displacement estimators, which are currently determined using ad-hoc 

methods [10], [11], [18], [20], [21]. The standard in this thesis was arbitrarily chosen to be 
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0.5 and 1.4 for Correlation and MSE, respectively. However, this needs to be determined 

for clinical data based on agreement to biopsy gold standards. 

 Unlike other methods [17] which use machine learning and are displacement 

estimator-specific, the proposed method requires no manual data labelling and is 

displacement estimator agnostic. This is helpful going forward, as this method can be used 

on any displacement estimation methodology developed in the future. However, due to our 

advancement in generating synthetic data, new datasets can be developed for training new 

methods by labelling data as “good” or “bad” based on the degree of out-of-plane 

displacements applied. This would allow for far larger datasets to be used in a variety of 

situations to train new displacement evaluation algorithms. Alternatively, each example 

could be compared to the ground truth displacement as a label. Nonetheless, purposefully 

corrupting synthetic data in a realistic way may open many doors for progress in ultrasound 

elastography. 

 Another objective of this investigation is to introduce a new method to simulate 

data corruption in a synthetic data sample generated in-silico to improve the realism of data 

generated from in-silico methods. As can be seen in Figure 4.2, the method proposed 

indeed simulates data corruption due to out-of-plane displacement due to the progressive 

decrease in image quality as out-of-plane displacement increases. It can even be compared 

to Figures 4.6 and 4.9, in the bottom row where we see similar artefacts which include 

areas of unrealistic high strain regions, like what can be seen in the high-corruption 

examples of Figure 4.3. Seeing similar artefacts in both the simulated and clinical examples 

is a good indication that the corruption method can be used to inform algorithmic design, 

as it appears to be capable of simulating some artefacts. Admittedly, applying a normally 

distributed out-of-plane component to the displacement is not very realistic, however, it 

does demonstrate the decrease in data quality. Future investigations can be carried out with 

more realistic out-of-plane displacements generated by analytical approximations or finite 

element modelling. Moreover, realistic operator errors such as rotation of the probe can be 

applied to the data. This can help propel the progress of quasi-static elastography 

significantly, as it now allows for more realistic synthetic modelling of the technique, 

leading to larger datasets for development and testing of displacement estimators. 
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 Unfortunately, based on Figures 4.4 and 4.5, this methodology alone cannot 

definitively decide that a frame pair will generate a good diagnostic image, it can at least 

lessen the search window significantly by discarding obviously bad frame-pairs. Moreover, 

this allows for a second line of defense against false positives. As can be seen artefacts may 

erroneously appear very stiff, so the presence of inclusion can be disregarded if the scan 

quality metrics are low. Perhaps when combined with other methods such as [17], the 

performance will be improved. Moreover, methods could be developed which take into 

consideration manual outlining of an ROI from B-Mode images. For instance, SNR and 

CNR with outlining may distinguish between frames where the inclusion is visible and 

those that are not. There can also be filtering based on the number of frames which include 

non-physiologically high strain values, or measures of noise, like the norm of the Laplacian 

of the displacement field, or the divergence of the displacement field. The computed 

displacement field could also be checked against known tissue mechanical properties like 

incompressibility [26] using reasonable approximations for out-of-plane strain in order to 

punish significant deviations from plausible physical behaviour.  Another avenue could be 

to design a deep learning based displacement estimator that simultaneously estimates the 

displacement field and labels it as either suitable or unsuitable [5-6], [9],[19], [24-26].  

 While one of the initial objectives of this paper was to alleviate the real-time 

requirement of elastography, this methodology can also be applied to give the clinician a 

real-time objective measurement of the quality of the observed strain image, which can be 

highly valuable in determining if an inclusion in the image is an artefact or indeed a tumor. 

By leveraging metrics that are already used in the calculation of the displacement estimate, 

this method can be made computationally free by simply saving and outputting 

intermediate values from the displacement estimation algorithm, which means that it would 

not impact the usability of any imaging system it is incorporated in. 

 Some future work must include extending these metrics with more ways of 

determining quality, particularly looking at analyzing and detecting artefacts, assessing 

smoothness, incorporating machine learning in a displacement-agnostic manner, and even 

potentially incorporating manual segmentation into the analysis.  
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Chapter 5 

5 Conclusions and Future Work 

 The overarching goal of this thesis was to improve the practical feasibility of 

ultrasound elastography. The research aims include improving data quality, data collection 

workflow, and new algorithm development. In general, the problems with elastography 

stem from data quality issues, which are very difficult to address due to the lack of objective 

and automatic assessment. Another contributor to the problems is the lack of sufficient 

acquisition rates for real-time assessment. Moreover, this data quality issue plagues the 

development cycle of displacement estimators, as it is exceedingly difficult to tell whether 

the displacement algorithm does not perform, or if the data is of insufficient quality. This 

work proposes a series of optimizations, guides for algorithm selection, potential real-time 

imaging system design, a data quality analyzer module, and an open-source software 

package to generate highly realistic radiofrequency data. The summary of each chapter is 

summarized in the following sections. 

5.1 Chapter 3 – A Comparison of Displacement 
Estimators 

 This chapter explores the currently available displacement estimators in the 

literature and describes an analysis of the quality to runtime ratio they provide with respect 

to the Young’s modulus image. This is a novel and necessary investigation when going 

towards a clinically available system as more advanced displacement algorithms are too 

computationally intensive to run in real-time, and so an analysis of which displacement 

algorithm should be realistically implemented in a real system is a necessary question. Each 

displacement estimator was analyzed at the level of synthetic data, tissue-mimicking data, 

and clinical data. It was found that the simplest of the algorithms, AM2D preserves the 

most amount of detail in the Young’s Modulus image with the lowest computational cost. 

A theoretical imaging system flowchart was proposed for a real system. 
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 This chapter lays the groundwork for exploring what a design for a clinically viable 

imaging system would look like, a concept that is sorely lacking in the literature. Most 

publications look for increasingly complex algorithms which provide better results but are 

generally not considered in the context of what is technically, clinically, and commercially 

feasible. In this chapter, I showed that even very simple algorithms can produce clinically 

relevant images, at much lower computational requirements that are much more tractable 

for implementation into a prototype system. The construction of a clinical prototype also 

unlocks the realm of clinical validation for this technique, as the clinical and practical 

viability of quasi-static elastography remains unconvincingly validated. Moreover, clinical 

data usage allows researchers to target real bottlenecks in the imaging technique and can 

answer questions such as: Can QUSE actually avert the need for biopsy? Are clinicians 

comfortable relying on these images in lieu of a biopsy? Is the technique convenient 

enough to be integrated into the workflow seamlessly? All of which are essential questions 

to answer if QUSE is to be a widely used technique. 

5.2 Chapter 4 – Elastosynth - An Open-Source software 
package for the generation of realistic in-silico data for 
ultrasound elastography 

 This chapter included an exposition of a new open-source software package which 

can be used to generate realistic radiofrequency data in-silico. It contains a procedural 

generation module which allows for the generation of arbitrarily heterogeneous phantoms, 

which can be simulated using a custom finite element solver, and then the radiofrequency 

can be simulated using FIELD II to calculate the propagation of sound through the tissues. 

This allows for the generation of known high-quality data to develop new displacement 

estimators. 

 The package and proposed methods overcome some of the most challenging 

obstacles in the development of these algorithms, including the lack of quality data and 

lack of ground truth comparisons for complex images. Due to the freehand nature of QUSE, 

data quality is exceedingly difficult to guarantee without looking at the resultant images. 

This begs the question of how we can validate our algorithm implementation on a clinical 
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level, as undesirable results can be due to algorithmic issues, or data quality issues. We can 

keep re-using known good clinical data, but this leads to bias and does not entirely solve 

the problem, as there is no way of knowing if the problem lies in the quality of the 

transducer. The innovation in this chapter creates sufficiently complex synthetic data which 

allows for isolation of potential issues: Data quality can be guaranteed, underlying tissue 

differences can be exaggerated, and a ground truth can be used to compare to. This will 

allow for far more robust development of algorithms than is currently possible. Moreover, 

the increase in computational efficiency allows for the generation of sufficient data to train 

deep learning models, which unlocks a wider range of techniques for QUSE. 

5.3 Chapter 5 - Data Quality Analyzer – Towards Optimal 
Radio-frequency Frame Pair Selection for Ultrasound 
Elastography 

 This chapter proposes a methodology by which the underlying correspondence 

between pre-and post-deformation radiofrequency data can be compared to check the 

degree of decorrelation. This is proposed as a first-line assessment of data quality, as highly 

decorrelated frame-pairs are guaranteed to not yield quality data. The methodology 

includes a correlation metric which uses the estimated displacement field along with the 

pre-deformation RF data frame to generate a false post-deformation frame, and then 

compares it to the true post-deformation image RF data frame. In the ideal case, a perfect 

displacement image should yield a perfect correspondence to the post-compression image. 

Results show that on the aggregate, high correlation coefficient corresponds to smoother, 

higher quality images. This assessment can be performed in real-time and displayed at 

acquisition-time. 

 Whereas the previous work makes the development of arbitrarily complex 

phantoms possible, this work introduces ways to corrupt synthetic data in a more realistic 

manner. This is essential to quantifying the impact of out-of-plane movements in the 

formation of the QUSE image, to better understand how to perform QUSE, which was 

otherwise not possible. Moreover, by allowing for purposeful corruption of data, 

algorithms can be developed specifically to target this corruption, and in an environment 
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where the threshold at which the algorithm fails can be rigorously determined. This is a 

remarkable benefit compared to the current workflow, which does not allow for any 

quantitative analysis of robustness to out-of-plane movements. 

5.4 Future Work 
5.4.1 Chapter 2 

 This analysis has a significant flaw in the methodology, where the only synthetic 

samples used were homogenous inclusion with homogenous backgrounds. This leads to 

the problem where the algorithms’ robustness to heterogeneity cannot be determined 

quantitatively. Therefore, this assessment should be re-run with heterogeneous synthetic 

data generated from elastosynth. This will further validate if indeed the simpler algorithms 

can be used in lieu of more advanced algorithms. Moreover, this can quantify the transfer 

function of the imaging system with respect to heterogeneity, allowing for much more 

realistic and informed interpretation of the images QUSE produces, as any exaggerations 

or underestimations of heterogeneity can be quantified and used to inform clinical 

interpretation of QUSE images. Nonetheless, the chief goal of future work would be to 

implement a clinical system and begin trials to better understand the clinical value of these 

algorithms. 

5.4.2 Chapter 3 

 Generation of robust and realistic synthetic data is an essential capability to have 

when developing and validating the development of new elastography related algorithms. 

In this chapter a methodology for generating arbitrarily heterogeneous phantoms using 

custom transducers was presented as a novel way of creating extremely diverse in-silico 

datasets. This work could be expanded to include 3D finite element simulations using 

generic breast and liver anatomy, which would more accurately simulate a QUSE exam. 

Moreover, simulated inclusion shapes can be expanded using generative techniques to 

generate realistically shaped inclusions with clinically relevant features like integration 

into the tissues or highly irregular shapes. Moreover, there could be even further 

acceleration of the simulation process by involving GPU acceleration in the finite element 

simulation and the RF data simulation. Finally, different RF data simulators could be used 
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to more accurately solve the wave equation, although validation needs to be done to 

understand whether more accurate simulations have a material impact on the usefulness of 

the synthetic data. 

 Given the capacity of this software for large datasets, it is imperative that deep 

learning approaches to QUSE be explored in depth, ranging from displacement estimation, 

reconstruction, and potentially even diagnosis, as deep learning may have the potential to 

increase the clinical utility of this technique substantially, while leveraging GPU hardware 

accelerations. 

5.4.3 Chapter 4 

 This methodology can be expanded with more and better motivated error metrics 

such as tissue-mechanics inspired metrics or methods that include B-mode image 

segmentation. Moreover, by including an optional function to provide a region of interest, 

the data quality analysis can be greatly improved, and may lead to trivial-time analysis of 

large quantities of data. However, the inclusion of ROI based measurements is potentially 

detrimental to the clinical convenience of the technique, so this should be validated by 

clinical usage to determine if the increased consistency is worth the extra work.  

 Some lower hanging fruit would be to improve the data corruption procedure to 

involve more realistic methods for determining out-of-plane movement. For instance, a 

constant-term displacement can be applied to all scatterers, simulating simple sliding of the 

probe. Applying rotation of the scatterers about the simulated probe can also capture any 

rotations of the probe while applying force. Both of these should improve the realism of 

data corruption. That being said, the gold standard for this would be to mount an 

accelerometer on a probe being used, and actually measure what realistic perturbations are 

in the application of force and use this information to generate out-of-plane displacements. 
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5.5 Closing Remarks 

 Overall, this work improves and consolidates the methodologies available to 

perform elastography. Starting from orders of magnitude improvement in the runtime of 

image improvement algorithms which allows for real-time high-quality imaging, this new 

methodology could reduce the runtime of more sophisticated displacement estimators 

significantly. Moreover, by comparing currently available displacement estimators, we 

create a framework for the selection of algorithms in a clinical system. To further smooth 

out the development cycle of displacement estimators, I propose a software package to 

generate realistic in-silico data with an established ground truth. Finally, A data analyzer 

was developed for initial assessment of displacement estimates to improve the data quality 

problem. Overall, these advancements should facilitate the development of a clinically 

viable next generation quasi-static elastography system, which can then go on to clinical 

testing and validation.  
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