Skin permeation studies of chromium species - Evaluation of a reconstructed human epidermis model.

L Hagvall
M Munem
M Hoang Philipsen
M Dowlatshahi Pour
Yolanda S. Hedberg
Western University, yhedberg@uwo.ca

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/chempub

Part of the Chemistry Commons

Citation of this paper:
Hagvall, L; Munem, M; Hoang Philipsen, M; Dowlatshahi Pour, M; Hedberg, Yolanda S.; and Malmberg, P;
https://ir.lib.uwo.ca/chempub/279
Skin permeation studies of chromium species – Evaluation of a reconstructed human epidermis model

L. Hagvall a,b,*, M. Munem c, M. Hoang Philipse n c, M. Dowlatshahi Pour a, Y. Hedberg d,e,f, P. Malmberg c

a Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenskas Academy, University of Gothenburg, Gothenburg, Sweden
b Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden
c Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
d Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
e Surface Science Western, The University of Western Ontario, 999 Collip Circle, London, Ontario N6G 0W3, Canada
f Lawson Health Research Institute, London, Ontario N6C 2R5, Canada

A R T I C L E I N F O

Editor: Dr. P Jennings

A B S T R A C T

A reconstructed human epidermis (RHE) model, the EpiDerm, was investigated and compared to human skin ex vivo regarding tissue penetration and distribution of two chromium species, relevant in both occupational and general exposure in the population. Imaging mass spectrometry was used in analysis of the sectioned tissue. The RHE model gave similar results compared to human skin ex vivo for skin penetration of CrVI. However, the penetration of CrIII into the tissue of the RHE model compared to human skin ex vivo differed markedly, such that in the RHE model the CrIII species accumulated in the tissue layer corresponding to stratum corneum whereas in human skin ex vivo, the CrIII species penetrated evenly through the skin tissue. Further, skin lipids such as cholesterol were less abundant in the RHE model compared to the human skin tissue. Results presented here indicate that the RHE models do not possess the same fundamental properties as human skin tissue. As the RHE models appear to be able to give false negative results, experiments using RHE models for the study of skin penetration should be evaluated with caution.

1. Introduction

Chromium is an element with complex chemistry and toxicity. While having several oxidation states, the most discussed in terms of toxicology are trivalent (CrIII) and hexavalent (CrVI) chromium. Exposure to CrVI is an important risk factor for the development of lung cancer in occupational settings, i.e. in welding (Kauppinen et al., 2000; Stridsklev et al., 1993). CrIII can also cause allergic contact dermatitis. Occupational skin exposure to chromium species occurs mainly through wet cement, leather gloves and chromium plating (Bregnbak et al., 2015). Within the EU, CrVI in cement and leather is regulated by the REACH directive (2010/2014). However, the content of CrIII in leather is not regulated. Under typical environmental conditions, CrIII can form from CrVI, present in leather, in significant amounts (Hedberg and Liden, 2016). In addition, exposure to CrVI occurs still from cement that fully complies with current European regulations (Hedberg et al., 2014). Skin exposure to both CrIII and CrVI is thus still frequent.

Chromium is a common cause of irritant and allergic contact dermatitis both in occupational and domestic settings (Bregnbak et al., 2015). In order to induce contact allergy, which is a T-cell mediated immune response, sensitizers are believed to first penetrate the skin barrier through the stratum corneum, reaching into the epidermis where they bind to skin proteins or other macromolecules thus forming antigens distinguishable to dendritic cells (Karlberg et al., 2008). Previous animal studies of the sensitization potency of chromium species have suggested CrIII to be the actual hapten in chromium contact allergy, although the skin penetration of CrIII in guinea pigs was found to be very low (Siegenthaler et al., 1983). Patch test and use test studies in patients with contact allergy to CrVI have shown that CrIII is a relevant hapten in chromium contact allergy (Hansen et al., 2003; Hedberg et al., 2016). Further, CrVI has been shown to induce an innate immune response, which is necessary for the development of both irritant and allergic contact dermatitis (Adam et al., 2017).

* Corresponding author at: Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
E-mail address: lina.hagvall@med.lu.se (L. Hagvall).

https://doi.org/10.1016/j.tiv.2023.105636
Received 9 March 2023; Received in revised form 5 June 2023; Accepted 24 June 2023
Available online 26 June 2023
0887-2333/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Previously, skin penetration of metal salts has been studied using human skin ex vivo mounted in diffusion cells. The detail of the analysis has been limited to the receptor fluid and the different skin layers in their entirety as the skin tissue has been divided using thermal methods and homogenized. Gammelgaard et al. found higher skin permeation of CrVI than of CrIII (Gammelgaard et al., 1992). In exposure to cement suspensions with and without iron sulphate, chromium species were detected in dermis to a larger extent than the epidermis using atomic absorption spectrometry (Fullerton et al., 1993). No chromium species could be detected in the receptor fluid. Van Lierde et al. detected CrVI but not CrIII in the receptor fluid of human skin mounted in diffusion cells using inductively coupled plasma-sector field mass spectrometry (Van Lierde et al., 2006). Higher amounts of CrVI than CrIII were detected in the skin tissue, however, no detailed analysis was performed of different skin layers.

More recently, reconstructed human epidermis models (RHE) have been used in order to investigate skin permeation of drugs, such as cortisones and antimycotics, showing that the flux through the skin of these organic compounds was higher than for ex vivo human skin tissue (Schmook et al., 2001). RHEs have also been used in contact allergy research, investigating changes in gene expression and interleukin production (Gibbs et al., 2018; Rodrigues Neves and Gibbs, 2021). The sensitization potency of metal salts has been investigated using interleukin-18 production in RHE exposed to a series of sensitizers, both organic compounds and metal salts. The sensitization potency of several metal salts could not be determined and the degree of penetration of these compounds into the tissue was questioned (Gibbs et al., 2018). The issue of skin penetration was however not further investigated.

Mass spectrometry imaging (time of flight secondary ion mass spectrometry - ToF-SIMS) presents an alternative method for the study of skin distribution and penetration of metal ion sensitizers. This technique allows direct visualization of the distribution of the metal ions in skin tissue, simultaneously with endogenous compounds of the skin. We recently presented a mass spectrometry imaging-based alternative to these methods, providing detailed qualitative data on distribution of metal ions in the skin tissue and colocalization with endogenous compounds (Hagvall et al., 2021; Malmberg et al., 2018; Munem et al., 2021). Recent method development allows the analysis to be performed at nanometer-resolution, while maintaining a sufficient mass resolution (Henss et al., 2018).

The aim of this study was to investigate distribution and penetration of CrVI and CrIII species in a reconstructed human epidermis model compared to human skin ex vivo, focusing on skin uptake and distribution in the skin tissue layers. The previously used methodology of analysis of the receptor fluid of the diffusion cell was combined with imaging mass spectrometry, providing a detailed analysis of chromium species distribution in skin tissue.

2. Materials and methods

Chemicals. Ammonium formate (Sigma Aldrich, St Louis, MO, USA) was dissolved in deionized water to a concentration of 0.15 M to serve as the buffer solution. Potassium dichromate (CrVI) and chromium (CrIII) chloride hexahydrate (Sigma Aldrich, St Louis, MO, USA) were dissolved in ammonium formate buffer solutions to a concentration of 0.03 M, respectively.

Human skin tissue collection. Leftover full-thickness human skin was collected from breast reduction surgery at the Department of Plastic Surgery, Sahlgrenska University Hospital, and prepared as previously described (Hagvall et al., 2021). Donors gave consent to the use of their
surgical waste. Tissue was made anonymous upon collection in agreement with routines approved by the Regional Ethical Review Board in Gothenburg.

Reconstructed human epidermis. The EpiDerm™ skin model was purchased from MatTek Life Sciences Inc. and used within 24 h of delivery, in compliance with instructions from the company.

Exposure experiment. Sample treatment and diffusion cell experiments were performed according to our previous work (Hagvall et al., 2021). Accordingly, diffusion cells (Franz type, Laboratory Glass Apparatus, Berkley, CA, exposed surface area 1 cm²) were arranged such that skin samples (n = 2) and skin model samples (n = 2) were exposed to 1 ml of potassium dichromate (Cr⁶⁺) solution (0.03 M) and chromium (Cr³⁺) chloride hexahydrate (0.03 M) in sodium formate buffer (0.15 M), respectively. One sample each of human skin ex vivo and the EpiDerm skin model were exposed to ammonium formate buffer solution and served as controls, i.e., there were 2 exposed samples and 1 control for each experiment. The exposure time was 24 h, and the temperature was kept at 4 °C. At removal, tissue samples were gently rinsed with distilled water. Diffusion cells, utensils and sample vials for receptor and donor solutions were all acid washed (10% HNO₃, 24 h) as previously described (Hedberg and Liden, 2016) in order to avoid contamination of the samples. Plastic utensils for handling the skin tissue were used as much as possible to avoid chromium contamination. Exposure of human skin to Cr³⁺ was performed in a previous study (Hagvall et al., 2021). Line scan analysis was performed again, showing the same pattern of tissue distribution of Cr³⁺.

Tissue preparation for ToF-SIMS. Skin tissue samples were frozen in isopentane after removal from the diffusion cells. The frozen skin tissue sections were then sectioned vertically at a thickness of 10 μm. Four slices from the middle of the sample were collected and mounted on glass slides for ToF-SIMS analysis. One duplicate glass slide was prepared in each skin sectioning operation. Sections were freeze-dried prior to ToF-SIMS analysis.

ToF-SIMS analysis. The ToF-SIMS surface analysis was carried out using the ToF. SIMS 5 instrument (ION-ToF GmbH, Münster, Germany) equipped with a Bi cluster ion gun as a primary ion source. Mass spectra in positive ion mode were acquired by using the 25 keV Bi²⁺ primary ion source. To acquire images with high spatial respective mass resolution, the delayed extraction mode was used (Vanbellingen et al., 2015). The pulsed primary ion currents were in the range of 0.14pA ~ 0.17pA. Areas of about 150 × 150 μm on the skin section were selected with a raster of 256 × 256-pixels and analyzed with 1000 raster scans. Four different sections from the specimens of control and treated samples were analyzed, respectively. The spectra were internally calibrated to signals of common fragments as [C]⁺⁺, [CH₂]⁺⁺, [CH₃]⁺⁺, [C₆H₁₂PNO₄]⁺⁺, [C₂H₃]⁺⁺. The software SURFACELAB (version 7.1, ION-TOF) was used to process, record, analyze and evaluate images and mass spectra.

Analysis of Cr⁶⁺ in donor and receptor fluids. Cr⁶⁺ was analyzed using spectrophotometry (Jenway 6300, Staffordshire, UK), during which a reaction producing a pink colour (maximum peak at 540 nm) was utilized to quantify Cr⁶⁺ in aqueous samples. More details about the analysis are given in previous work (Hedberg et al., 2019). Five replicate readings for duplicate samples of donor and receptor fluids (after the exposure experiment) and corresponding blank fluids (no added Cr⁶⁺) were performed. The five-point calibration curve was linear and up to 1 mg/l. The blank concentrations were negligible, and they were...
The samples were diluted with a blank sample to fit within the calibration curve, and all samples significantly exceeded the detection limit (60 μg/l).

3. Results and discussion

In this study we chose the EpiDerm™ Reconstructed Human Epidermis (RHE) model as a representative model for the evaluation of the penetration of chromium species in RHE models compared to human skin tissue ex vivo, as it is composed of normal human keratinocytes and is one of the more widely used models among the 6 RHE models approved by the OECD for testing of skin irritation (OECD, 2021). The EpiDerm™ RHE consists of a “dermis” with fibroblasts embedded in a collagen I matrix, an “epidermis”, which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis (OECD, 2021).

The distributions of CrVI and CrIII in RHE exposed to each ion individually are presented in Figs. 1 and 2, respectively. The figures show single-ion images of chromium, cholesterol, and the phosphatidylcholine headgroup and a) RGB colour overlay ion images of chromium ions in red, phosphatidylcholine headgroup in green and cholesterol in blue. Field of view of 100 × 100 μm. The yellow arrow in a) shows the direction of penetration.

The distribution of CrVI in human skin ex vivo is presented in Fig. 3. CrVI was evenly distributed in the tissue. The signals were generally lower compared to CrVI exposure in the RHE model. The pattern of tissue penetration of CrVI in the RHE model was thus consistent with the results from human skin ex vivo. This chromium species was evenly distributed through the skin layers within the tissue area analyzed. No signal of CrVI was detected in the control (Fig. S3).

Analysis of CrVI concentrations in the donor fluids indicated no significant (>50%) reduction to CrIII despite storage and transport times between exposure experiment and chemical analysis, they were lower (about half) in the fluids in contact with the human skin ex vivo than the RHE model. This might indicate a reduction of CrVI due to the presence of certain biomolecules in skin, which are lacking or present in low abundance in the RHE model (Nikpour and Hedberg, 2021; Wright et al., 2022). Most importantly, the percentage that penetrated the human skin ex vivo and RHE model was <0.1% and between 1 and 10%, respectively. This further supports that human skin ex vivo has a reduction capacity for CrVI, resulting in lower penetration rates.

When exposed to CrVI, the receptor fluids of the RHE model appeared yellow and orange, which most likely correspond to CrO42− and Cr2O72−, respectively (Kozlica and Milosev, 2021). In contrast, the receptor fluid of the human skin ex vivo appeared pink, which indicates the formation of trivalent CrIII species, either pink CrIII-chloride complexes (Elving and Zemel, 1957) or purple, violet, or red CrIII-amino acid complexes (Budiasih et al., 2013; Mizuochi et al., 1971). This observation also supports a higher reduction capacity of CrVI for the human skin tissue compared with the RHE model.

In order to evaluate the difference in skin penetration of CrVI and CrIII in the RHE model compared to human skin ex vivo, line scan analysis was subtracted if positive. The samples were diluted with a blank sample to fit within the calibration curve, and all samples significantly exceeded the detection limit (60 μg/l).
performed. Here, a mean of the signal for chromium over a width of 10 pixels was plotted against the tissue depth for RHE and human skin ex vivo exposed to CrVI and CrIII, respectively. Results are shown in Fig. 4. Results of exposure of human skin ex vivo to CrIII has been previously published, Fig. 1e and 2b in (Hagvall et al., 2021). While the pattern of skin penetration of CrVI is similar between the RHE model and the human skin ex vivo, the pattern of skin penetration of CrIII is not. Here, the RHE model indicates that CrIII will not penetrate further than the layer corresponding to the stratum corneum, however, the results from the human skin ex vivo indicate that CrIII is able to penetrate well into the epidermis.

In comparing the results of skin uptake and penetration of CrIII and of CrVI in human skin ex vivo, the results are consistent with previous studies of skin penetration, as far as CrVI is generally seen to penetrate through the skin to a larger extent. However, Gammelgaard et al. observed a larger accumulation of CrVI in various skin layers compared to CrIII, and observed an about 10-fold difference in favour of CrVI (Gammelgaard et al., 1992). This was also observed by Van Lierde et al., detecting about 10 times more CrVI in the skin layers compared to CrIII, analyzed after separation and homogenization of the skin layers (Van Lierde et al., 2006). Further Van Lierde did not detect CrIII in the receptor fluid at all. In both these studies, a longer exposure time was used, and analysis methods were less sensitive than in the present study. The present study shows that although CrIII does not penetrate through the skin to the same extent as CrVI, it penetrates into human skin and is bioavailable in the upper skin layers.

In previous studies of penetration of topical drugs in RHE models compared to human cadaver skin and pig skin, all investigated drugs showed higher penetration through the RHE model (Schmook et al., 2001). Schmook et al. concluded that the barrier properties of the RHE models used are weak. Results from the present study only partly correlate with these previous findings. However, here, metal species were investigated instead of organic compounds such as topical drugs.

Fig. 4. Line scan analysis of ToF-SIMS ion images of tissue sections of a) RHE model exposed to CrVI, b) human skin ex vivo exposed to CrVI, c) RHE model exposed to CrIII and d) human skin ex vivo exposed to CrIII, showing the ion intensity of chromium species versus distance from the tissue surface. Stratum corneum layer thickness (20 μm) is marked with a red line along the x-axes. The data for each graph is based on the mean of line scans performed over 10 pixels (yellow lines in Figs. 1–3 a). Imaging data constituting the basis for the analysis in d) are previously published, Fig. 1e in (Hagvall et al., 2021).

In more recent studies on the sensitizing capacity of metals using RHE models, CrIII failed to induce a response (Gibbs et al., 2018). Gibbs et al. suggested that CrIII is unable to penetrate the layer corresponding to stratum corneum in the RHE model. Results from the present study support this theory. However, in comparison with results from exposure of human skin ex vivo, the pattern of skin penetration of CrIII is very different from the RHE model. Although there is differentiation of the keratinocytes, towards the tissue surface, a layer directly corresponding to the stratum corneum is not formed in the RHE model. Further, skin lipids such as cholesterol are less abundant in the RHE model compared to the human skin tissue (Figs. 1–3). Differences in lipid profiles between human skin and skin models have been observed previously (Netzlaff et al., 2007). This is in particular important for the penetration properties of CrIII species, which increase when bound to organic ligands due to a change in charge and higher solubility (Nikpour and Hedberg, 2021).

Results presented here indicate that the RHE models do not possess the same fundamental properties as human skin tissue. If these differences always resulted in a worst-case scenario when using RHE models, it would not be a significant risk for hazard and risk assessments of chemical substances. However, as the RHE models appeared to give false negative results in the case of CrIII in this study, experiments using RHE models should be evaluated with caution.

Funding

The Swedish skin foundation (Grant No.: 3037/2020:1 and 2906/2019:1), Canada Research Chairs Program (Grant No.: 950–233099), Wolfe-Western fellowship, Canada (Grant No.: 2020) and Swedish Fund.
for Research Without Animal Experiments (Grant No.: F2021–0004).

Declaration of Competing Interest

The authors hereby declare that there are no conflicts of interest.

Data availability

Data will be made available on request.

Acknowledgement

Zheng Wei (KTH Royal Institute of Technology and the University of Western Ontario) is highly acknowledged for assistance in chemical analysis. Ann-Charlott Lindberg is gratefully acknowledged for sectioning of tissue samples.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tiv.2023.105636.

References

Hedberg, Y.S., Liden, C., 2016. Chromium(III) and chromium(VI) release from leather during 8 months of simulated use. Contact Dermatitis 75, 82–88.

Hedberg, Y.S., Wei, Z., Moncada, F., 2019. Chromium(III), chromium(VI), and cobalt release from leathers produced in Nicaragua. Contact Dermatitis 80, 149–155.

