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Abstract 
 

Pulmonary imaging using computed tomography (CT) and magnetic resonance imaging (MRI) 

provide a method to measure airway and parenchymal pathologic information that cannot be 

provided using spirometry. Currently, it remains difficult to predict which chronic obstructive 

pulmonary disease (COPD) patients will worsen using spirometry, which although safe and 

inexpensive, does not provide small airway information where COPD is believed to initiate. 

Quantitative CT and MRI measurements provide regional structure and function information but 

are not included in mortality risk assessments, prognosis, or COPD staging. Therefore, my 

overarching hypothesis is that CT and MRI ventilation texture measurements combined with 

machine learning will classify at-risk ex-smokers, as well as predict accelerated lung function 

decline and mortality in ex-smokers with and without COPD. I first accurately detected the 

presence of abnormal diffusing capacity in ex-smokers without COPD or CT evidence of 

emphysema, by quantifying visually unapparent CT textures and applying machine-learning 

models. Next, using baseline MR imaging textures, I evaluated longitudinal data to predict 

accelerated lung function decline in ex-smokers across 3-years. I identified a subset of MRI texture 

features that independently predicted rapid worsening, where the longitudinal changes of these 

texture features correlated with changes in lung function. Finally, I used baseline CT and MRI 

texture measurements and accurately predicted 10-year mortality, which is the ultimate patient 

outcome. The series of studies presented here are among the first to demonstrate the feasibility of 

predicting clinically-relevant outcomes exclusively using CT and MR imaging textures. In 

addition, machine-learning models trained on established clinical and demographic measurements 

were outperformed by models trained only using texture features. Taken together, these results 
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suggest that quantitative imaging measurements provide additional prognostic value and perhaps 

should be considered as potential biomarkers for early detection of COPD and evaluating disease 

progression and longitudinal patient outcomes. 
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Summary for Lay Audience 
 

It is hard to predict how chronic obstructive pulmonary disease (COPD) will progress and 

ultimately affect patients in the long run. The limitation arises from the fact that conventional 

clinical metrics, such as spirometry, offer a global perspective on lung function and may not 

adequately capture nuances in disease progression. Similarly, established clinical risk factors in 

such assessments may often capture extra-pulmonary manifestations of the lung disease. The small 

airways are considered the major site of airflow limitation in COPD, which spirometry measured 

at the mouth is not sensitive to. In contrast, quantitative computed tomography (CT) measurements 

allow for the evaluation of airway structural changes, while magnetic resonance imaging (MRI) 

can provide complementary information on regional ventilation within the lungs. Unfortunately, 

measurements obtained from chest imaging modalities are currently not included in widely 

accepted clinical assessments, diagnosis, prognosis, or staging of COPD. Consequently, to address 

this gap, I developed texture analysis and machine learning algorithms to predict longitudinal 

clinical outcomes and quantify structural and functional changes occurring in the lungs of ex-

smokers with and without COPD. First, I demonstrated the sensitivity of CT texture measurements 

by detecting abnormal diffusing capacity in patients with clinically-normal CT images. Next, I 

evaluated MRI texture features at baseline and 3-year follow-up to predict an accelerated lung 

function decline in ex-smokers with and without COPD. Notably, changes in select texture features 

over time also correlated with changes in lung function, emphasizing the sensitivity of texture 

features. Lastly, I predicted 10-year mortality using CT and MRI textures, outperforming all other 

clinical measurements available to physicians. Together, these results tell us that quantitative 

imaging textures provide additional prognostic value and perhaps should be considered for 

evaluating disease progression and clinical outcomes in COPD.   
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CHAPTER 1 
 

1 INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is characterized by non-reversible airflow 

limitation resulting from airway obstruction and/or parenchymal destruction, which causes the 

lung to be heterogeneously ventilated. In this thesis, machine-learning and texture analysis tools 

are applied to hyperpolarized gas magnetic resonance imaging (MRI) to study the ventilation 

heterogeneity and patchiness, and to thoracic computed tomography (CT) imaging to study the 

parenchyma and structural changes within the lung. Parts of this chapter were adapted from a 

published review article in Appendix A – Quantification of Pulmonary Functional MRI: State-of-

the-Art and Emerging Image Processing Methods and Measurements (Sharma et al. 2022). The 

extracted texture measurements were investigated and used to predict clinically-relevant outcomes 

in COPD. 

1.1 Motivation and Rationale 

Chronic obstructive pulmonary disease (COPD) is one of the most common pulmonary diseases, 

which affects hundreds of millions of lives worldwide and accounts for millions of deaths every 

year. Furthermore, the statistics presented by the World Health Organization (WHO) indicate that 

COPD is the third leading cause of death globally, as shown in Figure 1-1. COPD is also the 

leading cause of death among all other chronic respiratory diseases and caused over 3.2 million 

deaths in 2019 alone.1,2 Tobacco smoking accounts for over 70% of COPD cases in high-income 

countries, and about 40% in low and middle-income, where household air pollution is a major risk 

factor.1 
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Statista2 and World Health Organization1 statistics on the leading causes of death worldwide in 

2019 (in millions). 

In Canada, COPD caused 4.4% of all deaths in 2011.3 Among those aged 35 to 79 years, only 

about 3% of individuals reported a COPD diagnosis by a health care professional in 2013, while 

11% of Canadians in this age range had a measured airflow obstruction consistent with COPD.4 

Furthermore, of the 11% with measured airflow obstruction, 90% reported not being diagnosed by 

a health care professional previously. This disparity between reported and measured COPD 

highlights the underdiagnosis of COPD in Canada. In 2006, the Canadian Institute for Health 

Information determined that COPD accounted for the highest rate of hospital admissions among 

Figure 1-1. Leading causes of death worldwide in 2019 
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other major chronic illnesses.5 There was also an increase in hospitalization rates due to COPD 

from 83 per 100,000 Canadians from 2006 to 2010 to 86 per 100,000 Canadians in the period from 

2011 to 2015.6 These rates also include repeat hospitalizations, where COPD has much higher rate 

of readmissions among other chronic diseases especially due to exacerbations, as summarized in 

Figure 1-2. These hospitalizations impose a significant economic burden on the healthcare system 

in Canada, where, on average, the hospital stay is about $10,000 for a COPD patient, and the total 

cost is approximately $1.5 billion per year.7,8 

The graph shows number of patients by condition with single, one repeat, and tow or more repeat 

hospitalizations. Adapted from Canadian Institute of Health Information publication entitled 

Health Indicators 2008.5 

These alarming COPD statistics and the overwhelming economic and health care burden indicates 

that a clinical gap still remains in the treatment and management of patients. COPD is an umbrella 

term encompassing progressive lung disorders that are characterized by irreversible airflow 

Figure 1-2. Hospitalizations by chronic illness condition at first admission in Canada 
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limitation and difficulty in breathing.9 The disease process includes remodelling of the small 

airway compartment and emphysematous destruction of the lung parenchyma,10 or combination of 

both.11 The ‘gold-standard’ measurements used to diagnose, stage, and determine treatment effect 

in COPD are the lung volumes derived from pulmonary function tests measured at the mouth. 

Airflow obstruction is primarily measured using forced expiratory volume in one second (FEV1), 

which represents the maximum amount of air forcefully exhaled within a single second. Recently, 

symptom severity and exacerbation risk have been considered for COPD management since 

individuals with the earliest symptoms of COPD often ignore them, making COPD a ‘silent killer’ 

disease.12,13 Although these measurements are straightforward, inexpensive and easy to obtain, 

they cannot directly provide any regional information about the small airway compartment that is 

believed to drive COPD pathogenesis.13-15 This is one of the major limitations of such clinical 

measurements of lung function that has motivated the development of pulmonary magnetic 

resonance imaging (MRI) and computed tomography (CT) imaging approaches to generate 

regional measurements of pulmonary structure and function for a better understanding of the 

underlying disease pathophysiology. 

Although COPD is diagnosed and staged using pulmonary function testing,16 CT provides a way 

to quantify abnormal changes in lung parenchyma that overlap with COPD severity.17 

Furthermore, changes visible on CT predate those detected with spirometry and pathological 

studies demonstrate that up to one-third of the lung tissue may be destroyed by emphysema before 

spirometry becomes abnormal.18 CT is used as the cornerstone modality in the evaluation of 

emphysema. CT measurements of emphysema have been shown to correlate with histologic 

findings,19 are associated with symptoms among smokers and the general population,20 and used 

to independently predict mortality in subjects with and without COPD.21 However, radiologist-
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based and the established quantitative CT measurements are limited by the associated time 

requirements, training, reproducibility, and are often categorical in nature, not capturing the full 

spectrum of the signal and spatial information available on CT. Emergent imaging methods based 

on pulmonary hyperpolarized gas MRI have also been developed to visualize and quantify the 

ventilation within the lungs. Ventilation defects can be quantified as ventilation defect percent 

(VDP),22 which has been show to predict future COPD exacerbations,23 longitudinal changes in 

quality-of-life and exercise capacity.24 Importantly, MRI measurements are sensitive to COPD 

disease-related changes in patients in whom CT and pulmonary function test results have not 

changed.25,26 However, VDP is also a categorical measurement and does not provide any 

information regarding ventilation ‘quality’ (i.e., heterogeneity or size and arrangement of defects 

within the lung).  

CT and MR images can also undergo computerized extraction of quantitative ‘radiomic’ features, 

which machine-learning systems use to learn how to differentiate and/or predict clinically-relevant 

outcomes in COPD patients. Texture analysis provides a way to quantify patterns within an image, 

which may be related to various determinants of the underlying pathophysiology. Image texture 

analysis provides the advantage of rapidly generating automated quantitative measures, which are 

continuous and simultaneously capture the signal intensities, as well as their spatial arrangement 

within the image at voxel level. The utility of this approach in pulmonary imaging has been 

demonstrated in the detection and classification of tumours,27-31 and recently in COPD, has been 

shown to be associated with lung function and disease severity,32 predictive of COPD 

exacerbations,33 and provides complementary information to quantitative CT measurements.34,35 

However, despite the plentiful studies that have demonstrated the conclusive opportunities for 

clinically-relevant imaging biomarkers, the translation of such pulmonary CT and MR imaging 
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approaches into the clinical setting has been extremely limited. This is driven by the fact that very 

few analytic tools exist capable of generating validated imaging features that capture the 

underlying structural complexity of the lung and the relationships between these complex 

structures. Therefore, there is an urgent need to develop sensitive CT and MRI measurements that 

can inform on early-stage COPD pathophysiology and the pulmonary structural and functional 

changes occurring in the lungs of patients.  

In this chapter, the relevant background knowledge for this thesis is provided in order to motivate 

the original research presented in Chapters 2 to 4. First, an overview of the structure and function 

of the lung organ will be presented (1.2), followed by the underlying pathophysiology of COPD 

(1.3). The established clinical tools and measurements for the management of COPD (1.4), 

followed by a summary of the currently available imaging approaches and measurements 

developed to provide a better understating of lung diseases (1.5), are provided. Texture analysis of 

medical images as well as the recent developments and applications in pulmonary imaging will be 

introduced next (1.6). Finally, I will introduce and summarize the hypothesis and objectives of this 

thesis (1.7). 

1.2 Structure and Function of the Lung 

The lung is an essential organ in the sustainment of human life, where the complex structure-

function relationships allow for an efficient transfer of oxygen into the bloodstream. The airways, 

parenchyma, and vasculature compose the structural base that works cohesively to provide optimal 

functioning of gas exchange within the lung and bloodstream. The automatic and rhythmic act of 

breathing is driven by networks of neurons in the hindbrain (pons and medulla) that together direct 

the thoracic and abdominal muscles to actively produce pressure gradients that help move ambient 

air into and out of the lungs. As depicted in Figure 1-3, this activity drives the exchange of oxygen 

https://www.britannica.com/science/neuron
https://www.britannica.com/science/thorax
https://www.britannica.com/science/lung
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from outside the body with carbon dioxide waste produced inside the body at the alveolar-capillary 

membrane (~0.2-0.5 μm thickness).36 The lungs are also necessarily elastic, allowing for the 

respiratory system to undergo complex biomechanical changes that enable breathing and highly 

efficient gas exchange. 

In a healthy human adult, the end of the bronchioles in the lung is where gas exchange occurs and 

it involves approximately 300-500 million alveoli, which are themselves wrapped in 

approximately 500-1000 pulmonary capillaries per alveolus.37,38 In humans, the heart and lung 

systems work together at two different frequencies (~1 Hz for heart and 0.25 Hz for lungs) to move 

approximately 6L of blood and 6L of air through the body every minute.  
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Figure 1-3. Structural and functional lung components 

Respiratory system structure showing the airway tree generations that provide passage for air to 

travel from the nose through the large and small airways to the alveoli. Subsegmental airways 

branch from larger airway segments and are composed of the airway wall and lumen, which may 

be occluded with a mucus plug. Bronchopulmonary segments are richly supplied with red blood 

cells by the segmental bronchi and its vessels to participate in pulmonary gas exchange and 

perfusion. Oxygen travels through the airways into the alveoli, where gas exchange occurs, and 

carbon dioxide is removed from the body. Reproduced from Sharma et al. 2022.39 

1.2.1 Airways  

As shown in Figure 1-3 in the top left panels, air is transported through bulk flow and then diffuses 

through the airway tree through as many as 23 branch-point generations. Bronchi decrease in 

diameter, but increase dramatically in number, as the asymmetrical branching of the airway tree 

continues. The first 16 generations of the airway tree is referred to as the conducting zone, which 
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contains no alveoli and thus does not participate in the gas exchange with the pulmonary capillary 

red blood cells (RBC). Since the mixed venous blood does not come in contact with air, the 

conducting airways therefore constitute the anatomic dead space, which is approximately 150mL 

in a healthy individual.40 Overall, the total length of the airways running through the lungs is 

approximately 2400 kilometers.41 

In contrast, alveoli start to populate the terminal airways from the 17th through 19th airway 

generations in the so-called respiratory bronchioles, which constitute the transitional zone. The air 

now moves through the branches via diffusion and not bulk flow. These alveolar ducts are followed 

by the airway sacs, which are the last airway structures that have the alveoli budding off or 

enveloping to maximize the surface area available for gas exchange. Therefore, once air arrives at 

the 20th to 23rd airway generations, the terminal airways are completely populated with alveoli that 

are available for gas exchange.42 

1.2.2 Alveoli 

The alveolus is the fundamental unit of the lung and the site where gas exchange occurs, as shown 

in Figure 1-3. The lungs contain approximately 300-500 million alveoli, with a combined surface 

area of about 130m2 to facilitate gas exchange.43 Alveoli contain two types of cells to maximize 

diffusion (Type I and Type II cells). Type I cells (pneumocytes) are thin, flat cells that form the 

majority of the alveolar surface area and allow for gas exchange to occur. The alveoli are also lined 

by a thin fluid film called surfactant. The type II cells are cuboidal-shaped cells interspersed among 

the Type I cells and can produce surfactant. Additionally, type II cells can serve as progenitor cells, 

capable of proliferating and differentiating into Type I cells. The surfactant is composed of 

phospholipids and proteins and reduces surface tension to prevent collapse of the alveolus.44 The 
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walls of the alveolar sacs are often called the alveolar septa (or barrier or membrane). The alveoli 

are covered in a thin mesh of capillaries, where one layer of cells from the alveolar epithelium and 

another from the capillary endothelium, separate the alveolar cavity from the blood stream.45 

1.2.3 Ventilation and Perfusion 

To move air into or out of the alveoli, a pressure difference between the atmosphere and the alveoli 

must be established first. During inspiration, the contraction of the diaphragm causes it to descend 

and contractions of the intercostal muscles causes the ribs to rise, which increases the thoracic 

cavity volume and decreases the alveolar pressure. In contrast, during expiration the respiratory 

muscles passively relax and alveolar pressure increases. Approximately 500 mL of air is taken into 

the lungs during normal breathing, but 150 mL of this resides in the conducting zone and does not 

participate in gas exchange (anatomic dead space). Total ventilation is the total volume of air that 

leaves the lung per minute, which is known to be about 7.5L/min for an individual with an average 

breathing rate (~15 breaths/min).46,47 Adjusting for dead space, the volume of air that participates 

in gas exchange is about 5.25L/min, which is referred to as alveolar ventilation.46 

As shown in the right panels of Figure 1-3, the pulmonary vascular tree runs parallel to the 

airways, and many of the structural properties that affect flow are common to both tree structures. 

Similar to airways, the muscular arteries consist of a smooth muscle layer that can contract and 

relax in order to regulate blood pressure within the pulmonary circuit. The bronchopulmonary 

segments and capillary network are richly supplied with blood containing red blood cells, each 

packed with hemoglobin tetramers. Gas exchange occurs at the alveolar-capillary tissue 

membrane, which itself is one cell thick (~0.2-0.5 μm),36 where oxygen binds to the hemoglobin. 

This diffusion is governed by Fick’s law, where the rate of gas transfer through a surface is 
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proportional to the area of the surface, the partial pressure deference of the gas across the surface, 

and inversely proportional to the thickness.48 Reaction of O2 with hemoglobin is fast, but because 

of the little time available in the capillary, the rate of reaction may become a limiting factor and 

depends on the resistances offered by the blood-gas membrane and that attributable to the time 

taken for O2 to react with hemoglobin. 

1.3 Pathophysiology of Chronic Obstructive Pulmonary Disease  

Any abnormality or dysfunction in the components discussed above can lead to lung disease by 

preventing the optimal delivery of oxygen to the bloodstream. The persistent airflow limitation 

that characterizes COPD is caused by a combination of parenchymal destruction (emphysema) and 

airways disease (chronic bronchitis and/or small airways disease),49 as shown in Figure 1-4. 

COPD is a result of exposure to exogenous irritants such as cigarette smoke, environmental factors 

and pollution, occupational irritants, or genetic conditions such as alpha-1 antitrypsin deficiency, 

and is progressive over time.49 
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Top panels depict small airway in healthy and COPD participants, adapted from Hogg 2004.10 

Bottom panels depict healthy and emphysematous destruction of parenchyma, adapted from 

Woods et al. 2006.50 

1.3.1 Airflow Obstruction and Small Airways Disease  

At the pathological level, exposure to smoke leads to infiltration of the mucosa, submucosa, and 

glandular tissue by inflammatory cells. As a result, increased mucus content and disturbed tissue 

repair with wall thickening in the small conducting airways are hallmark features of COPD. In 

COPD, chronic bronchitis is defined as a productive cough lasting more than 3-months and 

occurring within a span of 2-years. It is thought to be caused by overproduction and hypersecretion 

of mucus by goblet cells and there is a strong causal association with smoking. There is excessive 

production of mucus in the large airways, specifically the epithelium of the central airways and 

Figure 1-4. Airways and parenchyma histology for Healthy vs COPD patient 
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extending to the mucous gland ducts.51 Excess mucous can cause airway obstruction, cough, and 

can prevent regions of the lung to be ventilated, causing reduced lung function.52 The small airways 

(<2mm in diameter) contain the bronchioles, as shown in Figure 1-3, which are the major site of 

airflow obstruction in COPD.53 However, small airway disease may go unnoticed at first and 

accumulate due to their large number and cross-sectional area, which consequently contributes 

very little to the overall measured airflow resistance.54  

1.3.2 Emphysema  

Emphysema is characterized by the destruction of parenchymal tissue and irreversible enlargement 

of airspaces, which leads to loss of alveolar walls, reduced number of small airways, and reduced 

surface area for gas exchange.55 This destruction of alveolar walls causes a loss of elastic recoil of 

the lungs. As shown in Figure 1-5, there are three main types of emphysema: centrilobular, 

panlobular, and paraseptal. Centrilobular emphysema begins in the respiratory bronchioles and 

mainly spreads in the upper regions of the lungs, since the upper lobes of the lungs receive a greater 

proportion of the inspired air. This is the most common type of emphysema and is usually linked 

to cigarette smoking. It can be recognized on CT by the presence of round lucencies of varying 

size, sometimes associated with a visible central artery.56 Importantly, progression of emphysema 

on quantitative CT scan imaging is greater in those with higher degrees of centrilobular 

emphysema at baseline.57 Panlobular emphysema, unlike centrilobular, involves the entire 

pulmonary lobule and ‘Pan’ means ‘all’ or ‘entire’. It commonly resides in the lower half of the 

lungs and destroys the tissue of the air sacs, causing a uniform enlargement of air spaces. This is 

because the lower lobes receive a greater blood flow and are therefore more exposed to circulating 

irritants, which contribute to the development of emphysema. It is mainly associated with 

homozygous alpha-1 antitrypsin deficiency, a genetic mutation that results in the development of 
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emphysema in patients irrespective of smoking history.58 Paraseptal emphysema tends to localize 

around the septa or pleura and comprises of focal lucencies that can be relatively large. It is 

characterized by cyst-like lucencies along the pleural margin, usually within the upper lobes. It is 

often associated with inflammatory processes, such as prior lung infections, smoking, 

pneumothorax and fibrosis. Bullae (an air-filled space of > 1 cm in diameter within the lung 

because of emphysematous destruction) are most common with paraseptal emphysema.56 

A) Absence of emphysema; B) Centrilobular emphysema; C) Paraseptal emphysema; D) 

Panlobular emphysema. Adapted from Smith et al. 2014.59 

1.3.3 Pulmonary Vascular Changes 

In the later stages of COPD, cardiovascular function may be impaired and the gas exchange 

becomes less efficient.60-63 Thus, pulmonary hypertension is an important comorbidity of COPD 

as it is linked to worse mortality and morbidity and typically develops late in COPD. In response 

to low blood oxygen, the intrapulmonary arteries constrict to optimize ventilation and perfusion 

efficiency (hypoxic pulmonary vasoconstriction).64 There is an inner wall thickening of the arteries 

adjacent to the bronchioles due to smooth muscle proliferation and deposition of elastin and 

collagen. These arteries are unable to dilate fully in response to exercise, acetylcholine, or 

Figure 1-5. Axial CT images for absence of emphysema and different emphysema subtypes 
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increases in airflow.65 Increases in pulmonary arterial pressure become pathological in instances 

of chronic hypoxic vasoconstriction. Oxygen therapy is used in the treatment of COPD to 

overcome this chronic hypoxemia and assist in decreasing pulmonary arterial pressure. pulmonary 

arterial pressure.66,67 Recent studies in COPD showed that vascular remodelling results in a loss of 

small vessels and decreased vessel density, which was validated by histology.68 This vascular 

remodeling has been shown to be a direct result of exposure to cigarette smoke.69,70 

1.4 Clinical Measures of Global Lung Function 

Clinicians primarily rely on pulmonary function tests to diagnose and monitor COPD. Pulmonary 

function tests include spirometry, plethysmography, and the diffusing capacity of the lung for 

carbon monoxide (DLCO). These tests are measured at the mouth and rely on simple breathing 

maneuvers in order to assess flow rates, calculate lung volumes, and evaluate gas exchange 

efficiency, providing information about lung function. The measured values are typically 

expressed as a percent of the predicted value, which compare values to an average for a person of 

the same ethnicity, sex, height, weight and age.71 Quality-of-life questionnaires and exercise 

capacity tests can also be useful in measuring the impact of obstructive lung disease on patients. 

1.4.1 Spirometry 

Spirometry is the simplest and most widely used of the currently available breathing tests.72,73 

Spirometry can be performed using a handheld device, where the patient is asked to breathe 

normally through the device, making a tight seal around the mouthpiece. After taking a couple of 

tidal breaths, the patient takes a deep inspiration up to total lung capacity (TLC) and then forcefully 

exhales by blasting the air out until no more can be expelled. A sample lung volume-time curve 

from a spirometer is shown in Figure 1-6. The volume of air the patient can expel from TLC in 1 
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second is known as the FEV1 measurement, and the volume expelled from TLC to full exhalation 

is known as the forced vital capacity (FVC).  

Volume-time curve measured via a spirometer to determine the forced expiratory volume in one 

second (FEV1) and the forced vital capacity (FVC) volumes. 

The normal ranges for FEV1 and FVC is >80%predicted, for a healthy adult with a TLC of about 6 

Litres. The clinical diagnosis of COPD is based on these two lung volume measurements of FEV1 

and FVC obtained via spirometry, as shown in Table 1-1. A post-bronchodilator ratio of FEV1 to 

FVC of less than 70 percent is the diagnostic cut-off for COPD according to the Global Initiative 

for Chronic Lung Disease (GOLD) criteria.74,75 COPD severity can then be graded based on four 

Figure 1-6. Pulmonary function test using spirometry 
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FEV1 thresholds, where a lower percent of predicted value is indicative of increased airflow 

obstruction and disease severity.  

Table 1-1. COPD severity stages based on GOLD criteria 

 

 

 

Adapted from GOLD Global Strategy for the Diagnosis, Management, and Prevention of Chronic 

Obstructive Pulmonary Disease 2020 report.76 

1.4.2 Plethysmography  

Plethysmography can be used to measure additional lung volumes and it operates based on the 

principles from Boyle’s Law.77 The lung volume measurements are performed in a body 

plethysmograph, which is a controlled and sealed chamber. The patient sits upright inside the 

sealed chamber and performs a set of breathing maneuvers, including tidal breathing, full 

inspiration, and full expiration. A sample volume-time curve, including lung volumes and 

capacities, is displayed in Figure 1-7. The primary volume measured is the functional residual 

capacity (FRC), from which the TLC and residual volume (RV) can be quantified.78 FRC is the 

amount of air remaining in the lungs at the end of a normal expiration, RV is the volume of air 

remaining in the lungs after a maximal expiration, while TLC represents the maximum volume of 

air contained in the lungs at the end of a maximal inspiration. Inspiratory capacity (IC) is the sum 

of tidal volume and inspiratory reserve volume, representing the amount of air a person can breathe 

in after a normal breath. Tidal volume (VT) represents the amount of air moved in and out of the 

lungs with each breath during regular, non-forced breathing. Vital capacity (VC) is the maximum 

amount of air a person can expel from the lungs after a maximum inhalation. It represents the sum 

of TV, inspiratory reserve volume, and expiratory reserve volume. 

FEV1/FVC < 0.70: 

GOLD I        Mild FEV1 %pred ≥ 80% 

GOLD II       Moderate 50% ≤ FEV1 %pred < 80% 

GOLD III      Severe 30% ≤ FEV1 %pred < 50% 

GOLD IV      Very Severe FEV1 %pred < 30% 
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In the context of COPD, the RV and FRC are often increased due to gas trapping from the collapse 

of airways and/or loss of elastic recoil. The IC and VT may be decreased, especially during 

exacerbations or advanced stages of COPD. The reduction in VC is a result of factors such as 

airway obstruction, loss of lung elasticity and increased airway resistance. These alterations in 

lung volumes contribute to the characteristic symptoms of COPD, including shortness of breath, 

difficulty breathing, and reduced exercise tolerance. The hyperinflation is measured as an increase 

in RV as well as a decrease in VC, therefore monitoring lung volumes such as VC, is essential in 

the management of COPD. 

Volume-time curve measured via the plethysmograph and used to determine airflows at the mouth, 

lung volumes and capacities. 

Figure 1-7. Pulmonary function test using plethysmography 
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1.4.3 Diffusing Capacity of the Lung 

The DLCO is an indirect measure of gas exchange efficiency across the alveolar-capillary barrier 

and can be used to probe alveolar tissue integrity in patients with emphysema. This test is 

performed in the plethysmograph chamber, where the patient is instructed to exhale to RV, then 

inhale a specific gas mixture to TLC, which contains room air, a tracer gas (neon or helium), and 

a small amount of carbon monoxide (typically 0.3% CO). Then for about 10 seconds the patient 

holds their breath, allowing for CO to diffuse into the bloodstream, and then exhales. The exhaled 

gas mixture is analyzed, accounting for anatomic dead space, and the difference in the 

concentration of CO between the inhaled and exhaled gas mixtures is used to calculate the 

diffusing capacity of the lung for carbon monoxide.79 The uptake of CO is not only determined by 

the diffusion properties of the alveolar-capillary barrier, but also the volume of blood and the rate 

of combination of CO with blood. 

Carbon monoxide is used for this test as it has about 200 times high affinity for hemoglobin than 

oxygen, and it follows the same pathway as that of oxygen to finally bind with hemoglobin. In 

summary, DLCO measures the uptake of CO per unit time per mm of driving pressure of CO (cc of 

CO/sec/mm of Hg), according to Fick’s law for gas diffusion.48 Based on Equation 1-1,48 the 

factors influencing the gas uptake are: surface area of the barrier (A), barrier thickness (T), 

diffusivity of the gas in the barrier (D), and partial pressure difference of the gas across the 

alveolar-capillary barrier (∆P). 

Equation 1-1. Fick's law equation. 

𝑉𝑔 =
𝐷 ∗ 𝐴 ∗ ∆𝑃

𝑇
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In conjunction with spirometry, DLCO can be indicated in the evaluation of parenchymal and non-

parenchymal lung diseases. Preoperative risk and the severity of obstructive lung diseases and 

pulmonary vascular disease can be evaluated using DLCO.80 In terms of severity and classification, 

a normal DLCO is considered to be >75% of the predicted value (about 25 ml/min/mmHg) and up 

to 140%pred.
81 Studies indicate that asymptomatic ex-smokers with abnormal DLCO are at a 

significantly increased risk of developing COPD within just four years.82 Furthermore, DLCO 

strongly predicted all-cause mortality in COPD, independent of BODE index and CT 

measurements.83 Nevertheless, it is important to acknowledge that such pulmonary function test 

measurements require significant cooperation from patients, which may pose challenges, 

particularly for children and patients with severe lung disease. Additionally, they lack 

reproducibility and only provide global rather than regional measurements of pulmonary 

complications, which are believed to be notably heterogeneous.84,85 Despite these limitations, 

pulmonary function tests are routinely performed in clinical settings and continue to serve as the 

primary method for clinical lung disease management largely due to the low cost, wide availability, 

and relative ease of use. 

1.4.4 Six Minute Walk Test 

The six-minute walk test is an exercise test that measures the distance a person can walk, self-

paced based on their comfort and ability, on a flat surface in six minutes. In individuals with 

respiratory disease, this test is thought to reflect their functional exercise level for daily physical 

activities. Unlike pulmonary function testing, there is a strong correlation between six-minute walk 

distance (6MWD) and clinical outcomes in COPD,86 it is recognized as a strong predictor of 

mortality,87-89 and it is believed that 6MWD captures both the pulmonary and extra-pulmonary 

manifestations of the disease.87 Studies observing changes in 6MWD over a 2-year period found 
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improved survival per 100-meter increment increases in 6MWD,90,91 and they reported that the 

rate of decline in 6MWD between survivors and non-survivors was significantly different; 

however, they did not detect a parallel change in FEV1 measurement.91 

1.4.5 St. George’s Respiratory Questionnaire 

The St. George’s Respiratory Questionnaire (SGRQ) is a questionnaire that consists of three 

component scores: the symptom frequency and severity records, activities that cause or are limited 

by breathlessness, and impact components like social functioning and psychological disturbances. 

The total score is also calculated out of 100, where a higher score indicates worse health. The 

SGRQ score is standardized,92,93 and captures information that typical physiologic or radiologic 

measures do not, partly due to its comprehensiveness and focus on the impact of illness and 

treatment. In COPD, SGRQ score at baseline is a significant predictor of exacerbations, hospital 

admissions, and death.94 

1.4.6 Lung Function Decline 

1.4.6.1 Normal Lung Aging 

As we age, the physiological changes occurring in the lung result in changes of clinical 

measurements of lung function such as airflow, gas exchange, lung volumes, and capacities. The 

reduction in lung elasticity observed with aging is believed to stem from alterations in the lung 

connective tissue.95 Likewise, the decrease in chest wall compliance is attributed to structural 

modifications occurring within the rib cage, which results in stiffening of the chest.96 In addition, 

respiratory muscle strength is known to decline with age, which is also related to a decrease in 

muscle mass and number of muscle fibers.97-99 
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Structural changes that occur within the lung parenchyma during aging are also known as ‘senile 

emphysema’. It is associated with risk factors such as cigarette smoking, air pollution, and genetic 

predisposition and the pathogenesis involves chronic inflammation, oxidative stress, and 

imbalance in proteolytic enzyme activity, leading to tissue destruction. While senile emphysema 

primarily affects older individuals, it can also occur in younger individuals with significant 

exposure to risk factors such as smoking. Recent studies in healthy individuals over the age of 60 

showed that there is a uniform increase in the size of airspaces within the lungs, which occurs 

without a loss of alveolar attachments or the presence of chronic inflammation.100 Additionally, 

studies indicate that there is a thickening of alveolar walls and a decrease in the number of small 

airways located in the periphery of the lungs.100 This may lead to a tendency for collapse of the 

small airways at high lung volumes.  

Studies have shown that during normal lung aging, the RV increases with a constant TLC.101,102 

This can be attributed to the decreased expiratory muscle strength and a tendency for the small 

airways to collapse, which is a consequence of the reduction in supporting tissues around the 

airways. There is also an increase in anatomic dead space with age due to the calcification of 

bronchial cartilage or cartilage in the walls of large airways.103 Studies104 on gas exchange 

efficiency have also demonstrated a decline in DLCO with age, which is likely due to the reduction 

of alveolar surface area and a decline in pulmonary capillary blood volume.96 

1.4.6.2 COPD: Accelerated Lung Aging 

The hallmark study by Fletcher and Peto in 1977105 provided the foundation for our current 

understanding of lung function decline with aging. As shown in Figure 1-8, the study shows that 

FEV1 measurement continuously declines with age, both in healthy individuals and those who 
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smoked regularly. In this study, FEV1 was measured every 6 months for a period of 8 years in a 

cohort of 792 men, where FEV1 was expressed as a percentage of the value calculated by backward 

extrapolation to the age of 25. Among many inferences, this study demonstrated the unavoidable 

progression of lung function decline once COPD is established, the possibility of reducing the 

decline in FEV1 after smoking cessation, and that the rate of FEV1 decline increased progressively 

with time.105 The rate of decline in FEV1 in healthy never smokers was 42 ± 6 mL/year, while this 

rate was accelerated in light smokers and heavy smokers to 47 ± 3 mL/year and 66 ± 4 mL/year, 

respectively.105 These findings were also extended to include the evaluation of a female population, 

where studies have shown an FEV1 decline of 22 mL/year in females who quit smoking at the 

beginning of the study, while those females who continued to smoke had an FEV1 decline of 54 

mL/year.106 However, when it was expressed as a percentage of the predicted value, there were no 

significant differences in FEV1 decline between males and females.106 

In individuals who smoke regularly and are susceptible to its effects, smoking-related lung 

function decline (blue) has an accelerated trajectory towards disability, and ultimately death. 

Figure 1-8. Lung Function Decline 
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Smokers who quit at age 45, the decline is slowed and may return to a more normal trajectory 

(green). In smokers that quit after age 65, the decline can also be slowed (yellow) but to a lesser 

extent. Never-smoker lung function decline trajectory is shown in red. Adapted from Fletcher and 

Peto 1977.105 

According to the GOLD recommendations, a post-bronchodilator FEV1/FVC < 0.70 confirms the 

presence of COPD, and the percent predicted of FEV1 defines disease severity.74,107 The rationale 

for using the fixed threshold is its simplicity. However, there is an ongoing discussion about the 

fixed threshold value since it is being criticized for leading to misdiagnosis.108 In middle-aged and 

elderly individuals, using the decades-old fixed ratio leads to over-diagnosis, and in younger 

individuals, it leads to under-diagnosis.109 Other causes for misdiagnosis include: errors linked to 

primary care and spirometry tests, differential diagnoses, and patient-related factors such as 

ethnicity, obesity, consumption of drugs, absence of obvious symptoms, etc.110 More recent studies 

also confirm that misdiagnosis is common in primary care,111,112 with a lack of precision in COPD 

diagnosis leading to over-diagnosis rates ranging from 16% in Canada113 to 43% in the USA,114 

and under-diagnosis rates ranging from 14-70% in Canada115,116 and 12-72% in USA.117,118 The 

significant underdiagnosis of COPD shown in these studies indicates that there is a much higher 

prevalence of the disease than previously thought and, thus, exposing a clinical gap where those 

not diagnosed are not being treated. 

Although the reasons behind why certain smokers develop COPD while others do not remain 

uncertain, it is now recognized that the inflammatory response in COPD is amplified and it persists 

long after smoking cessation.101 Notably, the pathological processes affecting the airways and lung 

parenchyma can manifest in tandem or in isolation. While the pulmonary function tests described 

above are simple and cost-effective, they do not have the ability to provide highly sensitive, 

quantitative, or regional measurements of lung disease. In healthy individuals, the small airways 
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contribute only a minor portion of the total lung resistance. However, in COPD, the small airways 

are believed to be the primary site of disease onset,119 and therefore may not be detected by 

measuring lung volumes, exercise tolerances and health-related questionnaires. 

 

1.5 Imaging Pulmonary Structure and Function 

As previously discussed, the structure and function of the lungs are closely interconnected with 

each other. Unlike conventional clinical assessments, pulmonary imaging techniques offer an 

opportunity to measure regional abnormalities in the lung. Imaging modalities focusing on 

pulmonary anatomy present provide a unique opportunity to visualize and quantify the structural 

abnormalities that occur within the lung. These findings may play a crucial role in determining the 

functional abnormalities, which can be measured using functional imaging methods.  

1.5.1 Planar Chest X-ray 

Chest X-rays are among the most common methods used to evaluate lung abnormalities, 

particularly due to universal availability, rapid image acquisition at low cost, and low radiation 

dose. However, planar chest X-rays are limited to a two-dimensional projection of lung structure. 

Chest X-rays in posterior-anterior direction are performed in the upright position, where the patient 

places the hands on the back of the hips, and the scapulae are removed from the field of view by 

rolling elbows slightly forward. X-rays are absorbed to varying extents by different tissues, a 

phenomenon known as X-ray attenuation.120 Highly attenuating tissues appear as bright areas, 

while low attenuating tissues appear darker on the X-ray images. 

In COPD, hyperinflation can be detected in patients with moderate-to-severe emphysema that 

presents with a flattened diaphragm, elongated lung volumes, and a change in the cardiac 

silhouette.121 Limiting factors such as poor depth information and contrast have motivated the 
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development of X-ray CT imaging, which is a three-dimensional imaging method, discussed in 

the next section. 

1.5.2 X-ray Computed Tomography 

First introduced in the late 1970s, X-ray CT allows for visualization of the structure within the 

lung.122 Through continuous improvements with new generations, multi-detector technology 

allows imaging of the entire lung volume at a millimeter-scale and within a single breath-hold, 

with three-dimensional reconstruction capabilities. CT images are generated via an opposing X-

ray source and detector array that rotate around the patient and acquire multi-angle X-ray 

projection images. Typical image reconstruction techniques include iterative reconstruction and 

filtered back projection, which generate three-dimensional image volumes.123 

The Hounsfield scale is based on the linear attenuation coefficients of X-rays, represented by μ, as 

they pass through tissues. The scale is determined using Equation 1-2 and anchored by assigning 

water a value of 0 Hounsfield Units, while air is assigned a value of approximately -1000 

Hounsfield Units.124 Thoracic CT can be acquired at full inspiration, full expiration, and under 

breath-hold conditions, where a patient is instructed to inhale a pre-determined gas volume. CT 

can map the attenuation within the lung, where -1000 Hounsfield units (HU) indicate the presence 

of air, while HU density thresholds on inspiratory and expiratory CT may indicate regions of tissue 

destruction and gas trapping, respectively. Clinical chest CT protocols impart about 7-8 mSv of 

radiation dose,125 while research protocols are low-dose and can achieve doses on the order of 

~1mSv.126-128 

Equation 1-2. Hounsfield Units (HU) 

Hounsfield Unit (HU) = 1000× (
μ

tissue
-μ

water

μ
water

) 



 

27 

 

Anatomical measurements of the lung airways, blood vessels, and parenchyma may be generated 

using chest CT on a regional (apex, base, central, peripheral), lobar, and slice-by-slice basis. The 

coronal central slice for a representative ex-smoker is shown in Figure 1-9, which enables the 

generation of quantitative measurements through computational analysis. Deriving CT 

measurements of tissue density, volumes, perfusion, ventilation, and structural mechanics is 

referred to as quantitative CT. Several commercial CT analysis software platforms are available, 

such as VIDAvision from VIDA Diagnostics Inc. (Coralville, Iowa, USA), which was used for 

analysis in this thesis. 

Quantitative CT measurements are related to the airways, including airway lumen area (LA),129 

airway wall thickness (WT),129 total airway count (TAC),15,130 and wall area percent (WA%).129 

Typical breath-hold CT measurements include the relative area of the lung with attenuation below 

-950 Hounsfield Units (RA950),
131 generated from inspiratory CT acquisition, and similarly, the 

relative area of the lung with attenuation below -856 Hounsfield Units (RA856) from expiratory 

CT.132 Emphysema on CT is quantified using the RA950 HU threshold, where a threshold of >6.8% 

indicates a presence of emphysema,131,133 while air-trapping is quantified on an expiratory CT 

using the RA856 threshold. Furthermore, parametric response maps (PRM)134 can be generated on 

a voxel-by-voxel basis by co-registering inspiratory and expiratory CT scans, providing novel 

emphysema and gas-trapping phenotypes of small airways disease beyond simple thresholds. 
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From left to right: quantitative CT measures of parenchyma for emphysema and/or air-trapping; 

quantitative CT airway measurements (pink); and quantitative CT vessel measurements (purple). 

In COPD, such evaluations of the airways have provided novel insights into understanding 

structural abnormalities and the small airways. Recent work involving airway measurements 

suggested loss of airways in severe emphysema,135 which was shown to be an independent 

predictor of quality-of-life.136 Studies have shown that a percentage of emphysema and airway 

wall thickening are risk factors for exacerbations and are both associated with exacerbation 

frequency in COPD.137 Furthermore, a recent study in ex-smokers with and without COPD has 

shown that TAC worsens over time, with potential airway narrowing and obliteration.138 

Pulmonary vasculature can also be quantified on CT using automated methods, such as Chest 

Imaging Platform, to generate measures of total blood volume (TBV), the volume of blood in 

vessels with a cross-sectional area less than 5 mm2 (BV5), between 5 and 10 mm2 (BV5-10), and 

greater than 10 mm2 (BV10).
139,140 In COPD, studies have shown evidence of pulmonary CT 

vascular remodelling or vessel pruning and a decrease in small vessel blood volume in patients 

across COPD severity.140-146 In addition, these vascular abnormalities were associated with 

exacerbations and worse patient outcomes.141-146 

Figure 1-9. Coronal high resolution CT quantitative measurements 
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Four-dimensional CT (4DCT) can measure changes in volume by reconstructing images at many 

points throughout the breathing cycle and has shown that deformation throughout the respiratory 

cycle is nonlinear and demonstrates hysteresis.147 Pulmonary vascular measurements from 

dynamic perfusion CT can be generated by analyzing the temporal change in injected iodine 

concentration within the lung parenchyma and vascular spaces as a function of time.148,149 The 

temporal data of iodine concentration is combined with kinetic models to derive physiological 

measurements such as blood flow, total blood volume, and mean transit time.150,151  

Chest X-ray CT has demonstrated its capability to offer detailed insights into the anatomical 

structures within the lungs. However, it is crucial to acknowledge that the application of X-ray-

based methods is limited, particularly in treatment response studies and longitudinal investigations, 

especially in the context of children and younger adults with chronic lung diseases. This is partly 

due to the potential risks related to radiation doses from ionizing X-ray radiation.152-154 

1.5.3 Magnetic Resonance Imaging 

Unlike CT, MRI is attractive for longitudinal studies due to its use of non-ionizing radiation and 

flexibility for acquiring rapid, dynamic, multidimensional signals in response to changes in lung 

function by involving complex image processing techniques. Using conventional proton (1H) MRI, 

without special echo time adjustments, the thoracic cavity appears dark because the typical density 

of lung tissue (or 1H density) is relatively low in comparison to air density.155 Additionally, the 

tissue signal in 1H MRI may be degraded due to the presence of air-tissue interfaces, which 

introduce local magnetic field inhomogeneities, as well as due to respiratory and cardiac motion. 

In pulmonary imaging, there are multiple approaches and advanced techniques for MRI acquisition 

to obtain structural and functional measurements, some of which are discussed below. 
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1.5.3.1 Proton MRI 

The lung parenchyma has a short transverse magnetization relaxation time (T2), which is the time 

taken by excited protons to lose phase coherence. This results in a reduction in this transverse 

magnetization and a much faster MRI signal decay for the lung parenchyma in comparison to other 

tissues.156 The difference in magnetic susceptibilities between air and alveolar wall tissue leads to 

local magnetic field inhomogeneity and results in faster spin dephasing (shorter T2*). High spatial 

resolution images of the lung parenchyma can be obtained by maximizing signal strength and 

minimizing degradation due to susceptibility dephasing, which can be achieved by minimizing the 

time between excitation and acquisition of the signal called echo time (TE).157 Short,158 ultra-short 

(UTE)159,160 and zero (ZTE)161 echo time 1H lung MRI as well as advanced MR hardware (such as 

multi-element RF coil arrays) have since significantly improved the visualization of lung 

parenchyma. 

The enhancements in spatial resolution due to shorter TE sequences and advancements in MR 

hardware have also been coincident with new ways to perform free-breathing 1H MRI to capture 

dynamic information as well as with multi-volume static breath-hold approaches. One such multi-

volume approach utilizes 3D cones UTE sequence to acquire MR images at four lung volumes in 

order to evaluate the signal changes and generate voxel-wise dynamic proton-density maps that 

reflect the change of lung signal intensities.162 Analyzing MRI signal variations in the lung 

resulting from respiration also lies at the heart of Fourier decomposition (FD) MRI, first proposed 

in 2009.163 In FD-MRI, the dynamically acquired images of the lung are elastically registered, 

preserving the signal variations in the individual voxels from respiration. The time series is then 

analyzed in the temporal domain, separating the high-frequency signals of pulsating blood from 

the low-frequency signals of respiratory motion on a voxel-by-voxel level. Finally, the magnitudes 
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of the appropriate respiratory and cardiac peaks of the Fourier spectrum are calculated in order to 

generate corresponding ventilation and perfusion maps.164 

1.5.3.2 Hyperpolarized Noble Gas MRI 

Hyperpolarized gas MRI uses an exogenous noble gas, which is polarized to have an additional 

atomic spin. Spin exchange optical pumping,165 first reported in the 1950s and recently 

reviewed,166-168 is the method of choice for polarization of noble gases for MRI studies. An 

intermediary rubidium vapor is exploited where the valence electrons of the rubidium vapor are 

polarized by absorption of circularly polarized light from the laser source, and it was shown that 

angular momentum from electron spins could be transferred to nuclear spins of high-pressure noble 

gases.169,170 This technique generates polarizations of about 40–70% for 3He and 10–40% for 129Xe 

in a typical dose of 1 L or less for breath-holds.171-173 This enhances the MRI signal by a factor of 

up to 100,000 above thermal equilibrium levels.174 In 1994,175 the first ex-vivo hyperpolarized 

129Xe MRI study in animals was completed, which initiated a cascade of critical developments in 

the field,176,177 including the first 3He MRI studies in patients with lung disease in 1996.178,179 Most 

of the initial human studies were performed using 3He,180 which has a greater gyromagnetic ratio 

than 129Xe (-32.43 MHz/T for 3He vs -11.77 MHz/T for 129Xe) and offered greater polarization and 

SNR. 

In breath-hold ventilation MRI, sensitive biomarkers such as ventilation defect percent (VDP),181 

ventilated volume (VV),182 and ventilation coefficient of variation (CV) can be quantified. VDP 

quantifies the ventilation abnormalities within the lung, which is calculated by normalizing the 

total volume of ventilation defects to the thoracic cavity volume.22 To probe the microstructure of 

the lung, the Brownian motion under diffusion gradients of hyperpolarized gas can be utilized to 

calculate the apparent diffusion coefficient (ADC) or airway morphometry.183-186 The ventilation 
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patterns and microstructure measured using hyperpolarized 3He MRI in an ex-smoker and a mild 

COPD participant are shown in Figure 1-10. The cyan regions reflect the ventilated volume in the 

lungs, within a single breath-hold, whereas the corresponding dark regions indicate no ventilation. 

Hyperpolarized 3He MRI Static Ventilation and ADC Map in a representative ex-smoker without 

and with COPD. 

In COPD, several pivotal studies have identified the hallmark finding of regional ventilation 

defects, even in those with normal clinical measurements on spirometry and CT.187-190 

Hyperpolarized 3He and 129Xe MRI VDP reflects airway abnormalities such as narrowing and 

remodeling,130,191 and is associated with disease exacerbations,23,192 symptoms and 

severity,187,193,194 CT-derived emphysema measurements.195 MRI VDP is also strongly correlated 

with clearance index,196 which is thought to be reflective of ventilation heterogeneity caused by 

small airway abnormalities, even in those with normal spirometry.197,198 Ventilation defects are 

also sensitive to bronchodilation for both asthma and COPD patients,199 and to bronchoconstriction 

Figure 1-10. Inhaled hyperpolarized gas MR imaging 
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in asthma patients.200,201 The minimal-clinically-important-difference (MCID) in VDP has been 

established to be 2-4%202 using the gold-standard FEV1 measurement as an anchor, which equates 

to about 110-200 mL of ventilation defect volume.202 

The recent scarcity and corresponding increased price of 3He gas has driven the development of 

improved 129Xe gas polarization methods,203 which have become the mainstay method in the field. 

In 1980,204 investigations showed that xenon displayed increased solubility in body tissues and 

blood with increased hematocrit, compared to helium gas, due to its modest Ostwald 

solubility.205,206 Thus, 129Xe is also capable of transmembrane diffusion, and in the timeframe of 

an MRI acquisition, it may be independently detected in three pulmonary compartments: the gas, 

alveoli-capillary membrane, and the blood RBC in the capillary network, where it exhibits distinct 

resonance frequencies. This was initially shown in animal studies,207 and later demonstrated in 

human studies.176,208,209 In more recent years, the developments in this technique have been focused 

on visualizing and quantifying lung airspaces, and measuring gas exchange and uptake.208,210-212 

Dissolved-phase MR images are typically quantified in terms of the normalized ratio of the 

membrane to gas and RBC to gas signal ratio maps. This provides an opportunity to evaluate 

pulmonary microvasculature and perfusion beyond the larger vessels.211,213 

1.5.4 Nuclear Medicine Imaging 

In the realm of nuclear medicine, the utilization of radioisotopes or radiolabelled tracers is 

instrumental for capturing detailed images of lung function parameters such as ventilation, 

perfusion, and the intricate interplay observed in ventilation-perfusion mismatches. These images 

are commonly integrated with anatomical representations, such as planar X-ray or CT, facilitating 

the correlation of pulmonary functional data with corresponding structural information. Advanced 
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hybrid nuclear medicine imaging systems, incorporating CT or MRI, have emerged more recently 

to enable concurrent assessment of lung function and structure.214-216 The most common nuclear 

medicine imaging techniques that were developed and used to generate ventilation images are 

positron emission tomography (PET) and single photon emission computed tomography (SPECT). 

SPECT imaging involves patients inhaling radioisotopes, which emit a single gamma ray upon 

decay. Patients lie on a bed, while a ring of gamma cameras or the rotation of single/multiple 

gamma cameras around them captures various projections from diverse angles. This process 

enables the reconstruction of projections to generate volumetric data on the distribution of 

radioisotopes in the lungs. In PET imaging, three-dimensional information is also obtained. In 

contrast to SPECT, PET utilizes positron-emitting isotopes to visualize metabolic activity. 

Following injection or inhalation, the radionuclide undergoes decay, emitting a positron. The 

ensuing annihilation process generates two gamma photons of equal energy, emitted 180° apart, 

detected coincidentally by circumferentially arranged gamma cameras. The spatial location of the 

source particle is determined along the straight line between the two detectors, and all detected 

sources are reconstructed into a volumetric image.217,218 While both SPECT and PET provide 

three-dimensional imaging and functional insights, they share inherent limitations related to low 

spatial resolution and potential risks associated with radiation exposure, distinguishing them from 

scintigraphy. Consequently, SPECT and PET have unique applications in physiological studies 

involving ventilation, perfusion, and ventilation-perfusion mismatch. Nevertheless, they continue 

to serve as research tools rather than routine evaluation methods for COPD. A summary Table 1-2 

is provided below that summarizes the advantages and disadvantages of various pulmonary 

modalities and the associated quantitative imaging measurements. 
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Table 1-2. Summary of pulmonary imaging techniques and their quantitative measurements, 

strengths and challenges 

CT=computed tomography; MRI=magnetic resonance imaging; UTE=ultra-short echo time; 

SNR=signal-to-noise ratio; RBC=red blood cells; PET=positron emission tomography; SPECT= 

single photon emission computed tomography. 

1.6 Texture Analysis in Pulmonary Imaging 

In the realm of medical imaging, texture analysis provides a quantitative approach that 

systematically characterizes inherent patterns within an image, potentially indicative of various 

underlying pathophysiological determinants. This analytical method has been significantly 

Method Measurements Strengths Challenges 

X-ray CT 

-Total airway count (TAC) 

-Wall area percent (WA%) 

-Lumen area percent (LA%) 

-Wall thickness percent (WT%) 

-Mucus score 

 Morphologic information 

 Widely available 

 Inexpensive 

 Radiation exposure 

 Extensive manual analysis 

Inspiratory-

Expiratory CT 

-Relative area of the lung with 

attenuation < -950 Hounsfield 

Units (RA950) 

-Relative area of the lung with 

attenuation < -856 Hounsfield 

Units (RA856) 

-Parametric response map 

(PRM) 

-Jacobian determinant (Jdet) 

 Morphologic information 

 Widely available 

 Inexpensive 

 Radiation exposure 

 Relies on thresholds 

 Complex registration and 

post-processing 

4D CT 
-Deformation anisotropy 

-Ventilation measure 

 Morphologic and 

functional information 

 Radiation exposure 

 Indirect interpretation 
1H MRI UTE, free 

breathing Fourier 

decomposition 

and other related 

methods 

-Proton density measures 

-Ventilation defect percent 

(VDP) 

-Ventilated Volume (VV) 

-Perfusion defect percent (QDP) 

 Radiation free 

 Morphologic and 

functional information 

 Non-contrast enhanced 

 Complex post-processing 

 Longer scan times 

 Cardiac artefacts 

 

3He/129Xe MRI 

-Ventilation defect percent 

(VDP) 

-Ventilated Volume (VV) 

-Ventilation Coefficient of 

Variation (CV) 

-Apparent Diffusion Coefficient 

(ADC) 

 Radiation free 

 Functional information 

 High SNR 

 Expensive 

 Requires specialized 

equipment and personnel 

129Xe MRI 

-RBC to Gas ratio 

-Membrane to RBC ratio 

-Membrane to Gas ratio 

 Radiation free 

 Functional information 

 Cheaper than 3He 

 Gas exchange parameters 

 Requires specialized 

equipment and personnel 

 Lower SNR than 3He 

PET/SPECT 

-Pulmonary blood flow 

-Perfusion 

-3D perfusion changes 

 Functional information 

 Ventilation and perfusion 

evaluation 

 

 Radiation exposure 

 Low spatial resolution 
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instrumental in the domain of computer-aided diagnosis, wherein biomedical images undergo 

thorough scrutiny to extract information reflective of the underlying pathophysiological processes. 

The insights derived from texture analysis are subsequently harnessed for the purpose of disease 

detection and diagnosis.219 The Conventional image interpretation process is time-consuming and 

error-prone since the clinicians or researchers have to exhaustively browse image series having 

upwards of a thousand slices. As a consequence, computerized analysis has become one of the 

major research subjects in medical imaging, particularly in radiology, known as computer-aided 

diagnosis. In pulmonary imaging, there has been rapid growth in texture analysis and machine 

learning applications, particularly using the CT modality.33-35,220-225 Applications using the MRI 

modality have been limited, partly due to its availability, with much fewer applications using the 

hyperpolarized gas MR imaging approach.28,226-229  

The image analysis involves image segmentation, image transformation, pattern classification, and 

feature extraction. Texture is a perceptual quality that, while easily recognizable, presents a 

considerable challenge in terms of precise definition. Primarily associated with spatially repetitive 

structures on surfaces, texture emerges from the recurrence of specific elements or multiple 

elements arranged in diverse spatial positions. The conceptualization of texture revolves around 

three fundamental components: (i) the repetition of local order across a region significantly larger 

than the size of the order itself; (ii) the nonrandom disposition of elementary components 

comprising the order; and (iii) the roughly uniform nature of these components, exhibiting 

approximately consistent dimensions throughout the textured region.31,230 Thus, texture cannot be 

defined for a point, but can be defined as a repeating pattern of local variations in image intensity. 

Texture consists of texture primitives or texture elements, sometimes called texels. If texels are 

small and tonal differences between texels are large, it results in a fine texture, whereas a coarse 
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texture results when the texels are large and consist of several pixels. Such features are found in 

the tone and structure of a texture. Image tone is based on pixel intensity properties in the texel, 

whilst structure represents the spatial relationship between texels. 

Texture features are useful in many applications in medical imaging,231 remote sensing232,233 and 

content-based image retrieval (CBIR) systems. There are many approaches to quantifying texture 

differences and similarities, where typical methods rely on comparing values of features known as 

second-order statistics that are calculated from images. Briefly, they calculate the relative 

brightness or signal intensity of selected pairs of pixels across the image. The data is typically 

stored in a matrix form that accounts for the spatial distribution of intensities. From these, it is 

possible to determine underlying textures such as the contrasts within the image, coarseness, 

directionality and regularity,234 or periodicity and randomness.235 Features can be extracted either 

directly from the raw input images or after applying different filters or transforms (such as 

Gaussian and Gabor filters, wavelet transforms, Laplacian transforms, fractal analysis, 

etc.).29,31,230,232,236,237 The research presented here endeavors to contribute to the expanding body 

of knowledge at the intersection of medical imaging and computational analysis. 

1.6.1 Typical Workflow 

A typical texture analysis workflow is outlined in Figure 1-11. It begins with image acquisition, 

followed by segmenting the region of interest, extracting features from this region, and conducting 

feature analysis and post-processing. Feature analysis may encompass determining unique features 

specific to certain regions through feature selection methods or incorporating features into a 

machine learning algorithm. The subsequent section elaborates on the methodologies employed 

for each of these steps. Segmentation and registration serve to delineate the regions of interest, 
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while feature selection and machine learning techniques are employed to analyze the extracted 

features. 

The typical workflow for texture analysis include image acquisition, pre-processing, region of 

interest definition, feature extraction, feature selection followed by classification or regression.  

Segmentation 

Medical image segmentation involves the division of an image into distinct regions guided by a 

specified similarity characteristic. The conventional manual segmentation method relies on an 

observer outlining the desired structure. However, this approach is time-consuming and subject to 

significant variability based on the observer. To mitigate these limitations, medical imaging has 

transitioned towards semi-automated or fully automated segmentation techniques. Segmentation 

of the lung cavity is relatively straightforward owing to the discernible density contrast between 

lung tissue and surrounding structures. Nonetheless, challenges arise from the presence of 

vasculature, diseased tissue, and the need to differentiate the trachea from lung tissue.  

A fundamental computer-aided segmentation strategy involves thresholding the image. This 

approach partitions the image into distinct regions based on a predetermined set or algorithmically 

Figure 1-11. Standard image processing and texture analysis pipeline 
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determined signal intensity. This shift towards automated methods enhances efficiency and 

reduces variability, particularly in complex segmentation tasks like delineating the lung cavity 

amid anatomical intricacies.238,239 Another segmentation method involves the utilization of region-

growing techniques, where regions connected by intensity similarities are segmented. This process 

can be performed by manually or automatically selecting a seed location and iteratively expanding 

the region by including neighboring pixels that meet specific similarity criteria.240,241 These 

techniques have been previously used to segment proton MRI thoracic cavity.22 More advanced 

methods including watershed,242 clustering,243,244 and model based techniques245 have also been 

utilized. Numerous iterations of these techniques have been employed to develop automated lung 

segmentation algorithms, serving as a pivotal component in the workflow of computer-aided 

diagnosis pipelines.246-248 

Registration 

Image registration is primarily used to determine the transform function to map one image onto 

the domain of the other. Rigid registration methods are limited to rotation, translation, scaling, and 

other linear or affine transformations. In contrast, elastic or deformable registration with reduced 

restrictions on the transform function allows local adjustments to register the input images. 

However, other restrictions in deformable registration tasks may be applied in order to preserve 

the original structural characteristics and anatomy in the input image. This method deforms 

acquired images by applying transformations and allows discontinuous sliding window motion, 

designed to specifically accommodate motion present during respiration. These methods are 

typically used in free-breathing acquisitions or for inter-modality co-registrations, such as between 

CT and MRI.249-251 Image registration enhances the utility of texture analysis in medical images 
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by providing a means to integrate information from various sources, compare images over time, 

and facilitate more comprehensive and accurate analysis in clinical and research settings.252-255 

Feature Extraction 

The process of feature extraction is employed to characterize inherent patterns within an image. 

The most straightforward features can be derived from the histogram of values within the region 

of interest. These primary or first-order features encompass statistics such as mean, median, mode, 

standard deviation, skewness, etc. In the context of CT imaging, these features pertain to tissue 

density and encompass quantitative CT measures discussed earlier, such as the relative area of the 

lung below a set threshold value.  

While first-order features provide information on voxel values within a region of interest, they 

lack insights into the spatial distribution of voxels. To address this limitation, commonly employed 

approaches are rooted in second-order statistics that quantify voxel relationships. Two extensively 

used second-order statistical features include gray level co-occurrence matrix (GLCM)256 and run 

length matrix (RLM)257 derived texture features.258 The GLCM records the frequency of gray-level 

values appearing in proximity to each other, with each element indicating the number of times 

pixel values appear sequentially. Consequently, a GLCM with prominent values near the diagonal 

suggests an image with fewer sharp edges. The RLM records the number of runs within an image, 

with row indices representing pixel values, column indices representing the length of a run, and 

each element indicating the number of runs. A predominant presence of values in the first columns 

of the RLM indicates an image with substantial heterogeneity in appearance.  

Numerous additional texture features can be computed, encompassing filter-based methods, local 

binary patterns, spherical harmonics, Markov models, and wavelets.258 To mitigate noise and 

optimize computational efficiency, it is essential to bin values when creating both RLM and 
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GLCM. Failure to perform binning could lead to an absence of runs within the RLM, as the 

likelihood of exact same values appearing is exceedingly low. A parallel issue may arise with the 

GLCM. The bin width serves as a critical determinant influencing how effectively features 

describe the region of interest. If the bin width is too narrow, features may become noisy, while 

an excessively large bin width may result in insensitivity to physiologically relevant differences. 

Careful consideration, typically through experimental determination, is necessary when selecting 

the bin width as a parameter. This ensures optimal adaptation to the specific task at hand. 

Additionally, to address these challenges, image filtering and smoothing techniques can be 

employed. Recent advances in texture analysis methods continue to refine these processes, offering 

more sophisticated approaches for noise reduction and feature extraction while optimizing 

hyperparameters for standardized feature extraction.233,259,260 

Feature Selection 

Many of the extracted features would typically be redundant. Therefore, initial efforts should focus 

on identifying appropriate endpoints with a potential clinical application to select information 

useful for a specific task via feature selection and dimensionality reduction methods.39 Feature 

selection is a process that either includes or excludes some features without modifying them, while 

dimensionality reduction transforms original features into a lower dimension that creates an 

entirely new feature space representation of the original input. There are three main types of feature 

selection methods – filter, wrapper, and embedded approaches. 

Filter methods select features from a dataset independently, and such methods rely only on the 

characteristics of the input variables and a subset of features are filtered out in this relatively quick 

step to continue the analysis. Filter methods include analyses like the Pearson/Spearman 

coefficient correlations and statistical/ranking methods based on measures like mutual 
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information, chi-square or uni- and multi-variate ANOVA tests. Wrapper methods function by 

evaluating a subset of input features using a machine learning algorithm. This approach employs 

a search strategy to navigate through the space of possible feature subsets, evaluating each subset 

based on the performance of a given computational algorithm. Typically such methods are known 

as greedy algorithms, since they assume that input features are independent and aim to find the 

best possible combination of features that would result in the best-performing model. Unlike filter 

methods, this method is able to detect the interaction between variables or features and then find 

the optimal feature subset for the desired classifier and task.261 The embedded methods perform 

the selection of features within the construction of the machine learning algorithm itself.262 A 

machine learning algorithm has the advantage of using its own variable selection processes and 

perform feature selection and classification/regression tasks simultaneously. These are faster than 

wrapper methods and are as accurate, but they are also able to find the feature subset for the specific 

algorithm being trained and are also significantly less prone to overfitting. There is a myriad of 

methods available, but the most common seem to be either using regularization methods (like 

lasso/ridge regression or elastic nets) in which a penalty is added to different parameters of the 

model to reduce its freedom.262,263 

Machine-learning Modelling 

After selecting features that effectively represent an image or a region within an image, the 

application of machine learning becomes instrumental in determining optimal combinations of 

information to minimize a specified cost function. This process is pivotal for enhancing the 

interpretability and predictive capabilities of the analysis. Traditional linear regression serves as a 

fundamental example, aiming to minimize the sum of the squares of the distance from the line that 
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best fits each data point. However, as the number of features increases, the complexity of this task 

escalates. 

Advancements in machine learning and texture analysis methods have significantly expanded the 

repertoire of approaches for feature integration. These contemporary methodologies leverage the 

power of supervised and unsupervised learning paradigms. In unsupervised learning, the focus is 

on identifying patterns within a feature set, leading to the creation of feature clusters without prior 

knowledge of associated labels for each cluster. On the other hand, supervised learning aims to 

partition the feature space based on known labels associated with each data point.  

A multitude of supervised machine learning algorithms have gained prominence in medical 

imaging applications. These include but are not limited to support vector machines, logistic 

regressions, linear discriminants, decision trees, and neural networks.264 These algorithms 

facilitate the extraction of meaningful information from complex datasets, enabling the 

development of predictive models and enhancing the diagnostic and prognostic capabilities of 

medical image analysis. Ongoing advancements in machine learning continue to refine these 

techniques, paving the way for more sophisticated and accurate analyses in the realm of medical 

imaging and texture analysis.264-269  

Applications and Challenges 

The applications of such techniques in hyperpolarized gas MRI have been scarce. In 2012, texture 

analysis was shown to quantify changes in hyperpolarized 3He MRI ventilation after therapeutic 

intervention in rat asthma-model226 and this has more recently been implemented in 

humans.34,227,263,270,271 Due to advancements in computational hardware, it is now possible to 

combine texture analysis and machine-learning classifiers in order to generate predictive models. 

The realm of computer-aided diagnosis predates the digitization of medical images, incorporating 
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a pattern recognition approach for image preprocessing, feature extraction, and classification.272 

This methodology has been employed extensively in lung imaging, with numerous studies 

leveraging feature analysis on chest X-ray images. Within lung imaging, a series of studies have 

been conducted titled "Image Feature Analysis and Computer-Aided Diagnosis in Digital 

Radiography," contributing significantly to the advancement of this approach.273-280 This approach 

shows a lot of promise with applications in tumor segmentation,281 image registration282 and 

outcome predictions.30,34,283-285 

In recent years, texture analysis tools in CT imaging have been applied to detect and classify 

pulmonary nodules,286-289 typically referred to as radiomics. These investigations concluded that, 

apart from examining the tumor volume alone, it is also beneficial to analyze the parenchymal 

tissue as well.290,291 Texture analysis has also been utilized to develop automated classification 

models for various lung diseases, including fibrosis,292 pneumonia293 and obstructive lung diseases 

such as emphysema.222,294-297 Several efforts have been made to standardize the texture analysis 

process and the resultant extracted textural features. Recently, twenty-five research teams have 

come together to address this limitation as part of their Image Biomarker Standardization Initiative 

(IBSI). They have found an agreement for the calculation of 167 standardized radiomics features 

derived from an MR image of a patient and validated across other modalities, achieving good to 

excellent reproducibility.260 

1.7 Thesis Hypotheses and Objectives 

In patients with COPD, progressive worsening of expiratory airflow occurs over time and it is 

believed to stem from deterioration of airway wall and lumen microstructure, as well as irreversible 

destruction of the lung parenchyma.10 COPD is a complex and heterogeneous disease and it 

remains difficult to predict patients with obstruction measured using FEV1 that will experience 
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accelerated disease progression over short time-periods. While spirometry is the cornerstone of 

COPD diagnosis,74 they cannot directly provide spatial nor functional information about the small 

airway compartment, that is believed to drive COPD pathogenesis.298 CT enables quantification of 

abnormal changes in lung parenchyma that overlap with COPD severity.17 Hyperpolarized gas 

MRI provides highly sensitive and unique microstructural and functional information in COPD,180 

and can quantify ventilation defects that stem from abnormalities in large and small airways as 

well as emphysema.299 MRI biomarkers are highly reproducible,300 associated with clinically 

relevant outcomes in COPD301 and have shown to detect disease related changes before CT or 

FEV1 measurements.25,302 Currently, COPD is the third leading cause of death worldwide1 and 

there are approximately 20% of patients misdiagnosed or undetected for COPD.303 It remains 

difficult to predict disease progression and longitudinal outcomes, such as mortality, in these 

patients using currently established clinical and demographic measurements, which emphasizes 

the need to develop novel imaging tools and thereby promote a better understanding of structure-

function relationships in COPD.  

The overarching objective of this thesis work was to develop original tools for the extraction of 

additional measurements from CT and hyperpolarized 3He MR image textures to better understand 

the underlying pathophysiology and predict longitudinal outcomes in ex-smokers with and without 

COPD. Therefore, the overarching hypothesis is that CT and MRI ventilation texture 

measurements combined with machine learning will classify at-risk ex-smokers, as well as predict 

accelerated lung function decline and mortality in ex-smokers with and without COPD. 

In Chapter 2, the objective was to develop a CT texture analysis pipeline using machine learning 

and detect unexplainably reduced lung diffusion from a structural CT, in order to differentiate ex-

smokers with mild emphysematous or gas trapping abnormalities from regular ex-smokers. We 
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also wanted to evaluate the association of selected CT texture features with clinical outcomes and 

examine correlations of CT measurements with DLCO, not previously observed in these at risk ex-

smokers.25 Given the known variability and insensitivity of DLCO measurements,304 their reliance 

on technique and calibration,305 and the absence of other abnormal cardiovascular or pulmonary 

measurements,306 it remains difficult to explain mildly abnormal DLCO measurements in these ex-

smokers. We hypothesized that texture features extracted from CT images of regular ex-smokers 

will be significantly different from ex-smokers with lowered DLCO and will accurately (>80%) 

differentiate these ex-smokers with subclinical disease, who otherwise have conventional CT and 

spirometry measures. 

Next, we wanted to investigate clinically-relevant outcomes across two time points and investigate 

whether changes in imaging texture correspond with changes in disease state. Thus, in Chapter 3, 

the objective was to develop a different pipeline for extracting unique texture features residing 

within hyperpolarized 3He MR ventilation images in order to identify COPD participants at risk 

of accelerated lung function decline, defined by annual FEV1 worsening. We hypothesized that 

texture features extracted from baseline hyperpolarized MR images of COPD participants with 

stable FEV1 worsening will be significantly different from those with rapid FEV1 decline (≥60 

ml/year)307 observed over a 2-3 year period, and will accurately (>80%) differentiate these at-risk 

participants from otherwise regular COPD participants.  

To further understand the prognostic value and importance of imaging textural features, we 

endeavored to predict the ultimate patient outcome of mortality. In Chapter 4, the objective was 

to evaluate conventional MRI and CT measurements and employ imaging texture analysis to 

predict all-cause mortality in ex-smokers with and without COPD after 10-years. We hypothesized 

that incorporating chest MRI and CT measurements and image texture analysis in combination 
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with machine-learning would provide unique prognostic information and improve mortality risk 

assessments in ex-smokers. 

In Chapter 5, I provide an overview and summary of the important findings and conclusions from 

Chapters 2 to 4. Next, the general limitations of this work as well as specific limitations of each 

chapter are discussed. This thesis concludes with an outline of future investigations that can build 

on the work presented in this thesis. 
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CHAPTER 2 
 

2 MACHINE LEARNING AND CT TEXTURE FEATURES IN 

EX-SMOKERS WITH NO CT EVIDENCE OF EMPHYSEMA 

AND MILDLY ABNORMAL DIFFUSING CAPACITY 

To better understand the structural determinants of abnormal diffusing capacity in ex-smokers 

without COPD, we evaluated and compared the sensitivity of CT texture features with established 

clinical measurements at detecting ex-smokers with mildly abnormal gas-exchange process. 

The contents of this chapter were previously published in the Academic Radiology journal: M 

Sharma, M Kirby, DG McCormack and G Parraga. Machine Learning and CT Texture Features 

in Ex-smokers with no CT Evidence of Emphysema and Mildly Abnormal Diffusing Capacity. 

Academic Radiology Journal (2023). This article is available under the terms of the Creative 

Commons CC BY-NC License. 

2.1 Introduction 

In some ex-smokers without chronic obstructive pulmonary disease (COPD),1 the diffusing 

capacity of the lungs for carbon monoxide (DLCO) can be mildly abnormal.2 These are clinically 

challenging patients that typically lack hallmark COPD characteristics such as symptoms, exercise 

limitations or quality-of-life impairments, and CT evidence of emphysema.2 It remains difficult to 

explain this mildly abnormal DLCO due to the variability and insensitivity of DLCO measurements,3 

reliance on technique and calibration,4 and the unusual absence of abnormal cardiovascular or 

pulmonary measurements in these patients.5 Furthermore, because these ex-smokers do not meet 

COPD criteria, they are systematically excluded from clinical studies. Thus, their longitudinal 

outcomes, disease progression, and the persistence of abnormalities over time remain poorly 

understood. 

Structural lung changes may take place in the very early stages of COPD and remain undetected 

by spirometry.6 Previously, significant exercise and quality-of-life impairments and abnormal 

terminal airspace enlargement measured using hyperpolarized 3He MRI apparent diffusion 
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coefficient (ADC)7 were reported in ex-smokers with mildly abnormal DLCO.8 These abnormally 

enlarged terminal airspaces, quantified using 3He MRI and not identified using conventional CT 

measurements, may point to the underlying pathology responsible for mildly abnormal DLCO. 

However, hyperpolarized gas MRI is not widely available and a high level of expertise and 

specialized equipment is required. 

In contrast, CT imaging is inexpensive and routinely used as a clinical imaging tool in COPD. 

Expert radiologists typically look beyond the low attenuation areas for more complex signs of 

emphysema,9 resulting in a stronger association between visual qualitative CT scoring and 

pulmonary function relative to conventional quantitative CT.10 Nonetheless, CT images consist of 

electron densities of parenchymal tissue, providing an opportunity to simultaneously quantify the 

spatial relationships of voxels and their attenuation values (signal intensity).11 However, current 

quantitative CT methods are time-consuming and do not capture the full spectrum of spatial 

information available from visual subtyping of emphysema. 

A machine-learning and texture analysis approach12 has a broad range of utility in medical imaging 

including image segmentation, classification, registration, and outcome prediction.13 Previous 

work in COPD has shown that CT texture analysis and machine-leaning can predict severe COPD 

exacerbations,14 progression,15 Global Initiative for Obstructive Lung Disease (GOLD) grade,16 

and are more strongly associated with lung function than conventional quantitative CT measures.17 

We questioned whether CT texture analysis may help identify patterns that are indicative of mildly 

abnormal airspace enlargement and diffusing capacity in ex-smokers without conventional 

spirometry or CT evidence of COPD. Hence, we hypothesized that CT texture analysis and 

machine-learning models would accurately differentiate ex-smokers with normal from abnormal 

DLCO (<75%pred). We also aimed to determine whether CT texture features and generated principal 
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components would outperform established quantitative CT and clinical variables at detecting ex-

smokers with abnormal diffusing capacity. 

2.2 Methods 

2.2.1 Participants 

All participants provided written informed consent to a local research ethics board (Institutional 

Ethics Board #00000984) approved and registered protocol in compliance with Health Canada 

(clinicaltrials.gov NCT02279329). The Thoracic Imaging Network of Canada (TINCan) study was 

compliant with the Personal Information Protection and Electronic Documents Act (PIPEDA, 

Canada) and the Health Insurance Portability and Accountability Act (HIPAA, USA). This study 

was prospectively planned and performed between 2009 and 2022, and ex-smoker participants 

were recruited from a tertiary-care academic center and by advertisement in London, Ontario, 

Canada. We retrospectively evaluated 71 ex-smokers without COPD at baseline, all of whom were 

50-85 years of age and had a history of cigarette smoking ≥10 pack-years. Ex-smokers were 

included who ceased smoking ≥1 year prior to the study visit, with no maximum cut-off for pack-

years. Participants with claustrophobia, COPD according to the GOLD severity criteria,1 any 

contraindications for MRI or CT, and current smokers were excluded from this analysis. All 

evaluations were performed 20 minutes after administering Novo-Salbutamol HFA using a 

metered dose inhaler (four doses of 100 μg, Teva Novopharm Ltd., Toronto, ON, Canada) through 

a spacer device (AeroChamber Plus spacer, Trudell Medical International, London, ON, Canada). 

Participants evaluated in the TINCan study cohort have been previously reported.2,18,19 
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2.2.2 Pulmonary function tests and questionnaires 

Spirometry, plethysmography, and measurement of DLCO were performed according to the 

American Thoracic Society/European Respiratory Society guidelines20 using a whole-body 

plethysmography system (MedGraphics Corporation, St Paul, MN, USA) with an attached gas 

analyzer.2 The six-minute walk distance (6MWD) test and St. George’s respiratory questionnaire 

(SGRQ)21 were administered under the supervision of study personnel. Participants were 

dichotomized based on DLCO ≥75%pred threshold into normal and abnormal subgroups, as 

previously defined.2,22 

2.2.3 CT acquisition and analysis 

Thoracic CT scans were acquired using a 64-slice Lightspeed VCT scanner (GE Healthcare, 

Milwaukee, WI, USA) (64 × 0.625 mm, 120 kVp, 100 effective mA, tube rotation time = 500 ms, 

pitch = 1.0, slice thickness = 1.25 mm, slices = 200-250), as previously described.23 Images were 

acquired in the supine position under breath-hold after inhalation of a 1.0 L bag of N2 from 

functional residual capacity,19 for volume-matching to MRI. CT images were reconstructed using 

a standard convolution kernel to 1.25 mm. Using the ImPACT CT patient dosimetry calculator 

(based on Health Protection Agency [UK] NRBP-SR250), the total effective dose was estimated 

as 1.8 mSv. CT data were quantitatively evaluated by a single expert (MS) using VIDAvision 

software (VIDA Diagnostics Inc., Coralville, IA, USA) to generate relative area of lung less than 

-950 Hounsfield Units (RA950), 15th percentile of the CT density histogram (HU15th Perc), total 

lung cavity volume, and binary lung mask. 
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2.2.4 MRI acquisition and analysis 

Anatomical proton (1H) and hyperpolarized 3He MR images were acquired using a whole-body 

3.0 T Discovery MR750 (GE Healthcare, Milwaukee, WI, USA), a whole-body radiofrequency 

coil and a fast gradient recalled echo (FGRE) sequence with a partial echo implementation (total 

acquisition time =16 seconds, repetition time (TR)/echo time (TE)/flip angle = 4.7 ms/1.2 ms/30°, 

field of view (FOV) = 40 × 40 cm2, matrix 256 × 128, 14 slices, 15 mm slice thickness, 0 gap), as 

previously described.19 Hyperpolarized 3He MRI was acquired using a linear bird‐cage 

transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg, Germany) and a 2D multi-

section FGRE sequence (partial echo acquisition; total acquisition time = 11 seconds, TR/TE/flip 

angle = 3.8 ms/1.0 ms/7°, FOV = 40 × 40 cm2, bandwidth = 48.8 kHz; 128 × 80 matrix, zero 

padded to 128 × 128, partial echo percentage = 62.5%, 15–17 slices, slice thickness = 15 mm, no 

gap). A turn‐key system (HeliSpin™, Polarean Inc, Durham, NC, USA) was used to polarize 3He 

gas to 30–40% and doses (5 mL/kg body weight) diluted with N2 were administered in 1.0 L 

Tedlar® bags. Hyperpolarized 3He MRI diffusion‐weighted imaging was performed using a 2D 

multi-slice FGRE (total acquisition time = 14 seconds, TR/TE/flip angle = 7.6 ms/3.7 ms/8°, FOV 

= 40 × 40 cm2, matrix 128 × 128, seven slices, 30 mm slice thickness), as previously described,19 

during breath-hold for acquisition of two interleaved images with and without additional diffusion 

sensitization with b = 1.6 sec/cm2 (maximum gradient amplitude [G] = 1.94 G/cm, rise and fall 

time = 0.5 ms, gradient duration = 0.46 ms, diffusion time = 1.46 ms).  

Participants were positioned supine in the MR scanner, and arterial oxygen saturation (SaO2) was 

used to monitor arterial blood oxygenation levels during all MRI maneuvers. MR images were 

analyzed by co-registering the anatomic 1H and functional 3He images using a landmark-based 

registration and a k-means clustering approach was used to generate ventilation clusters, with the 
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lowest cluster representing ventilation defects, as previously described.19 Diffusion-weighted 

images were automatically processed to generate lung ADC images, as previously described.2 

2.2.5 CT feature extraction, selection and machine-learning 

The complete image analysis and extraction pipeline are depicted in Figure 2-2. Briefly, CT 

images were segmented using VIDAvision (VIDA Diagnostics Inc., Coralville, IA, USA) to obtain 

the total cavity volume and generate regions of interest (ROI) for feature extraction. Wavelet 

filtering was used to pre-process the CT images, using four high- and low-pass filter combinations 

applied to the original image in x- and y-directions for wavelet decomposition.24 Low-pass filtering 

in both directions (LL) assesses the lowest frequencies, low-pass filtering followed by high-pass 

filtering (LH) assesses horizontal edges, high-pass filtering followed by low-pass filtering (HL) 

assesses vertical edges, and high-pass filtering in both (HH) assesses diagonal details. Next, we 

computed histogram and shape, first-order, and higher-order texture features from gray level run-

length, tone-difference, size-zone, neighborhood-dependence, and co-occurrence matrices from 

the original and pre-processed images using the open-sourced PyRadiomics package (version 

2.2.0), compliant with the Image Biomarker Standardization Initiative (IBSI) recommendations.25 

All CT images were normalized and a fixed bin number approach was used for voxel intensity 

quantization into 100 bins (PyRadiomics suggested resulting amount of bins between 30 and 130 

after discretization step), as previously described.12,26 Gray-level matrices were populated by 

binning CT data between -300 and -1024 HU, where all voxels with values greater than -300 HU 

or less than -1024 HU were collapsed into a single bin. All 486 texture features were extracted in 

a voxel-by-voxel manner using PyRadiomics in Python 3.6.5 environment (Numpy 1.17.4, 

SimpleITK 1.2.4, PyWavelet 1.0.0).12  
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To maximize the model generalizability and avoid overfitting, a combination of principal 

component analysis (PCA) and Boruta analysis was implemented for feature selection. PCA is 

capable of generating principal component scores for each participant using a Varimax rotation 

method with Kaiser-normalization with multiple iterations. All variables, including the texture 

features and emergent components generated for every participant, were subjected to Boruta 

analysis for ranking. Boruta algorithm generated shadow features for comparisons and used a two-

step correction for multiple testing, with an optimizable Random Forest classifier for iterations.27 

Once all the features and parameters were selected, five-fold cross-validation was performed 

where all the data were randomly and evenly divided into five groups. Each fold utilizes different 

combinations of testing and training groups and no information was carried over from training to 

testing. Single (Naïve Bayes,28 Support Vector Machines,29 Decision Trees,30 K-Nearest 

Neighbours30) and ensemble (Bagged Trees,31 subspace Discriminant,32 subspace K-Nearest 

Neighbours,32 and Random Under-Sampling Boosted (RUSBoosted) Trees33) machine-learning 

classifiers were implemented for dichotomizing ex-smokers with abnormal lung diffusion (DLCO 

<75%pred). Machine-learning models were generated using the top-ranking features, selected via 

Boruta analysis, and also compared with alternative classification models trained exclusively using 

the emergent component scores from PCA. The data were standardized and a hyperparameter 

search was performed using MATLAB2021a (Classification Learner App) for each model. 

2.2.6 Statistical analysis 

Statistical analysis was performed using SPSS Statistics v28.0 (SPSS Inc., Chicago, Il, USA) and 

GraphPad Prism (Prism v8; La Jolla, CA, USA). The performance of machine-learning models 

was evaluated using mean cross-validation area under the receiver-operator curve (AUC), 

sensitivity, specificity, and F1 measure calculated from model’s confusion matrix. Shapiro-Wilk 
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tests were used to determine the normality of the data and non-parametric tests were performed 

for non-normally distributed data. The p-value significance was determined using the Mann-

Whitney U-test for non-parametric data, followed by post-hoc analysis using Holm-Bonferonni 

corrections. All results were considered statistically significant when the probability of making a 

Type I error was less than 5% (p<0.05). 

2.3 Results 

A CONSORT diagram provided in Figure 2-1 shows that 266 ex-smokers were enrolled and 94 

were excluded from analysis due to enrollment in another sub-study (n =33) or due to cancellation 

or not completing all required tests per protocol (n =61). In addition, 101 participants were 

excluded following their visit for having COPD (n =100) or having artifacts in acquired images (n 

=1).  

Of the 266 participants enrolled in the TINCan study, 33 were enrolled in a sub-study and 61 
either cancelled or did not complete all required tests during Visit 1. Of the 172 participants that 
completed Visit 1, 100 participants had COPD and one had artifacts present in their images, 
which were excluded from further analysis. Seventy one ex-smoker participants with Visit 1 
were analyzed in this study, of which 42 had DLCO ≥75%pred and 29 had DLCO <75%pred. 

Figure 2-1. CONSORT Flow Diagram 
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2.3.1 Demographics, pulmonary function and imaging measurements 

Demographic data and pulmonary function test results for all ex-smokers, and for DLCO subgroups, 

are provided in Table 2-1. Baseline participant demographics and pulmonary function 

measurements. Imaging measurements are summarized in Table 2-2. Imaging measurements of 

ex-smokers with normal and mildly abnormal DLCO. There were 42 ex-smokers (14 females/28 

males, 69 ± 10 years) with normal (DLCO≥75%pred) and 29 ex-smokers (17 females/12 males, 71 

± 9 years) with abnormal DLCO (DLCO<75%pred). As summarized in Table 2-1. Baseline 

participant demographics and pulmonary function measurements, ex-smokers with DLCO ≥75%pred 

were mostly male (67 % vs 42 %, p =.03), had lesser residual volume to total lung capacity 

(RV/TLC) ratio (p =.003), SGRQ score (p =.03), MRI ADC (p<0.001), and greater 6MWD 

(p<0.001) compared to those with DLCO <75%pred. The RV/TLC ratio in five participants from 

each group (5/42 [12%] vs 5/29 [17%]) was reported RV/TLC>upper limit of normal,34 indicative 

of plethysmography-based air-trapping. None of the 71 participants had emphysema as defined by 

RA950 >6.8%.35 

Table 2-1. Baseline participant demographics and pulmonary function measurements 
Parameter 
Mean (±SD) 

All Ex-smokers 
(n=71) 

DLCO ≥75%pred 
(n=42) 

DLCO <75%pred 
(n=29) 

p-value 

Age 69 (10) 68 (10) 71 (9) .2 
Female n(%) 31 (43) 14 (33) 17 (58) .03* 
Pack Years 28 (18) 24 (17) 31 (19) .09 
BMI kg/m2 29 (4) 29 (4) 29 (5) .3 
Pulmonary function and QoL     

FEV1 %pred 99 (18) 101 (17) 95 (19) .1 
FVC %pred 92 (17) 94 (15) 87 (20) .08 
FEV1/FVC % 82 (8) 81 (6) 83 (10) .4 
RV %pred 110 (25) 108 (25) 114 (24) .3 
TLC %pred 103 (14) 103 (13) 102 (15) .8 
RV/TLC % 42 (9) 39 (9) 45 (7) .007* 
DLCO %pred 78 (20) 91 (12) 58 (12) ND 
6MWD m 402 (91) 437 (67) 361 (98) <.001* 
SGRQ 24 (22) 19 (20) 31 (22) .02* 

BMI=body mass index; QoL=quality-of-life; FEV1=forced expiratory volume in 1 second; 
%pred=percent of predicted value; FVC=forced vital capacity; RV=residual volume; TLC=total 
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lung capacity; DLCO=diffusing capacity of lung for carbon-monoxide; 6MWD=six minute walk 
distance; SGRQ=St. George’s respiratory questionnaire. 
p=uncorrected values showing significant differences between DLCO≥75%pred and DLCO<75%pred 
groups. 
*Indicates a significant difference (p<0.05) between subgroups. 
 
 
Table 2-2. Imaging measurements of ex-smokers with normal and mildly abnormal DLCO 

Parameter 
Mean (±SD) 

All  
Ex-smokers 

(n=71) 

DLCO≥75%pred  
Ex-smokers 

(n=42) 

DLCO<75%pred 
Ex-smokers 

(n=29) 
p-value 

RA950 % 1.2 (1.0) 1.2 (1.1) 1.1 (1.0) .7 
LAC -2.1 (0.2) -2.1 (0.2) -2.0 (0.3) .1 
HU15th Perc -888 (22) -888 (21) -887 (23) .8 
MRI ADC cm2/s 0.28 (0.04) 0.26 (0.03) 0.30 (0.03) <.001* 
MRI VDP % 7 (5) 6 (3) 9 (7) .07 

Selected Texture Features    

Shape-M2DDC 290 (31) 297 (34) 279 (22) .01* 
Shape-M3DD 409 (36) 418 (32) 395 (37) .008* 
GLCM-Correlation .69 (.03) .68 (.03) .70 (.03) .048* 
Wavelet-filtered      

HL-FO-Energy 6.5×109 (1.3×109) 6.7×109 (1.3×109) 6.3×109 (1.5×109) .03* 
LL-GLCM-Imc2 .898 (.014) .895 (.014) .901 (.013) .04* 
HH-FO-Range 878 (66) 851 (41) 901 (71) .002* 
HH-RLM-HGLRE 2.1×105 (.3×105) 2.1×105 (.2×105) 2.3×105 (.3×105) .03* 

RA950=relative area of lung less than -950 Hounsfield Units; LAC=lowest attenuating cluster; 
HU15th Perc.=15th percentile of the CT density histogram; ADC=apparent diffusion coefficient; 
VDP=ventilation defect percent; FO=first order features; M2DDC=maximum 2D diameter 
column; M3DD=maximum 3D diameter; RLM=run length matrix; Imc2=informational measure 
of correlation; HH=high-high-pass filter; HL=high-low-pass filter; LL=low-low-pass filter; 
HGLRE=high gray level run emphasis; GLCM=gray level co-occurrence matrix; All texture 
feature abbreviations and descriptions can be found in Supplementary Table 2-4 and Table 2-5. 
P Value=uncorrected values showing significant differences between DLCO≥75%pred and 
DLCO<75%pred groups. 
*Indicates a significant difference (p<0.05) between groups. 

2.3.2 Texture feature extraction and selection 

Figure 2-2 summarizes the CT texture analysis workflow and supplementary Table 2-4 and Table 

2-5 summarize the resulting extracted texture features and their descriptions. Table 2-2 shows the 

subset of seven selected texture features, while supplementary Table 2-6 summarizes features that 

were significantly different between DLCO subgroups. Overall, there were significant differences 

observed using seven unfiltered features and 19 wavelet-based texture features extracted from CT 

scans, as summarized in supplementary Table 2-7. 
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Thoracic CT images were segmented using commercial software VIDAvision. Raw CT images 

were multiplied by generated lung mask to obtain regions of interest (ROI), which were analyzed 

using PyRadiomics platform to calculate first- and higher-order texture features. Feature selection 

Figure 2-2. Image Processing and Model Generation Pipeline 
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was performed using the training set, combined with principle component analysis (PCA) and 

Boruta analysis. Classification learner application was used for model generation. Machine-

learning models were trained using a 5-fold cross validation scheme, with 80/20 split for training 

and testing sets. 

 

Figure 2-3 shows the central slices of diffusion-weighted MRI ADC and CT, along with the 

corresponding ROI texture homogeneity description, for two representative ex-smokers in each 

DLCO subgroup. In ex-smokers with normal DLCO (top panel: S53 and S98), there was no CT 

evidence of emphysema (RA950 <6.8%)35 and the CT texture was visually homogeneous (eg: HH-

HGLRE =192505). In contrast, for ex-smokers with abnormal DLCO (bottom panel: S50 and S72), 

MRI ADC was abnormal (ADC >0.25 cm2/s)36,37 and there was no CT evidence of emphysema 

(RA950 <6.8%)35 but CT textures appeared more heterogeneous and visually patchy (eg: HH-

HGLRE =235711).  
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Coronal center-slice of 3He MRI ADC, volume-matched coronal center-slice of high-resolution 
CT imaging and the corresponding qualitative CT texture. 
S53: Ex-smoker with normal DLCO is a 51 year old female with baseline FEV1=103%pred, 
BMI=35kg/m2, DLCO=86%pred, VDP=3.6%, ADC=0.21cm2/s, RA950=0.7%, wavelet-HH-
HGLRE=212228, wavelet-HH-FO-Range=834.; S98: Ex-smoker with normal DLCO is a 70 year 
old female with baseline FEV1=93%pred, BMI=27kg/m2, DLCO=90%pred, VDP=1.9%, 
ADC=0.23cm2/s, RA950=0.7%, wavelet-HH-HGLRE=192505, wavelet-HH-FO-Range=801.  
S50: Ex-smoker with abnormal DLCO is a 64 year old female with baseline FEV1=111%pred, 
BMI=36kg/m2, DLCO=60%pred, VDP=4.6%, ADC=0.29cm2/s, RA950=1.2%, wavelet-HH-
HGLRE=256863, wavelet-HH-FO-Range=914.; S72: Ex-smoker with abnormal DLCO is a 76 year 
old female with baseline FEV1=116%pred, BMI=26kg/m2, DLCO=30%pred, VDP=10.3%, 
ADC=0.36cm2/s, RA950=3.5%, wavelet-HH-HGLRE=235711, wavelet-HH-FO-Range=949. 

Figure 2-3. Diffusion weighted MRI ADC and CT imaging for representative ex-smokers in 

normal and abnormal DLCO subgroups 
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PCA and Boruta analysis were used for dimensionality reduction and feature selection. The first 

nine components generated from PCA explained >93% of variance in the data, with their 

constituent texture features and factor loadings summarized in supplementary Table 2-8. Boruta 

analysis (number of trees in the forest =150, maximum iterations =200, maximum tree depth =7 

[branches], percentage of shadow feature threshold =95%, alpha =0.05) selected the following 

texture features and components as input for the models: Shape-based maximum 2D diameter 

column (M2DDC), Shape-based maximum 3D diameter (M3DD), gray level co-occurrence matrix 

(GLCM) Correlation, LL GLCM Informational measure of correlation (Imc2), HH gray level run 

length matrix (GLRLM) high gray level run emphasis (HGLRE), HL first-order energy, HH first-

order range and component #9 from PCA. Clinical measurements and CT measurements such as 

RA950, LAC, and HU15th Perc were not selected as they did not rank among the top performing 

features. 

2.3.3 Machine-learning classification 

As shown in Table 2-3, the best performance was achieved by a logistic regression mixed-model 

with 87.3% accuracy, AUC of 0.87, 83% sensitivity, 91% specificity and 86% F1 score, calculated 

from the model’s confusion matrix. Overall, linear and single classifiers outperformed ensemble-

based models at classifying abnormal diffusing capacity compared to ground-truth. In Figure 2-4, 

independent logistic regression models of abnormal DLCO are shown in receiver operator 

characteristic (ROC) curves that individually compare the classification power of single clinical 

(top panel), imaging and textural measurements (bottom panel). The best performing textural 

feature was wavelet-based HH GLRLM HGLRE (AUC =0.81), while the best imaging 

measurement was MRI ADC (AUC =0.73), outperforming established CT measures such as RA950 

(AUC =0.54).  
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Table 2-3. Machine-learning model classification accuracies 

Classifiers AUC (95% CI) Sens. (%) Spec. (%) F1-score (%) Acc. (%) 

Decision Tree 0.55 (0.50, 0.59) 31 79 57 60 
Logistic Regression* 0.87 (0.84, 0.89) 83 91 85 87 
Subspace KNN 0.81 (0.78, 0.84) 62 86 75 79 
Weighted KNN 0.76 (0.72, 0.80) 66 83 74 77 
Linear SVM 0.84 (0.81, 0.87) 76 88 81 82 
Quadratic SVM 0.73 (0.68, 0.77) 55 81 67 70 
Naïve Bayes 0.71 (0.65, 0.76) 66 69 65 67 
Bagged Trees 0.73 (0.67, 0.80) 81 72 71 76 
Subspace Discriminant 0.81 (0.78, 0.83) 66 88 77 78 
RUSBoosted Trees 0.69 (0.59, 0.77) 55 67 59 62 

AUC=area under the receiver-operating curve; CI=confidence interval; Sens.=sensitivity; 
Spec.=specificity; Acc.=accuracy; KNN=K-nearest neighbours; SVM=support vector machine; 
RUS=random under sampling.  
Selected features used for training the models included: shape-maximum 2D diameter column, 
shape-maximum 3D diameter, gray level co-occurrence matrix (GLCM)-correlation, high-low-
first-order-energy, low-low-GLCM-informational measure of correlation (Imc2), high-high-first-
order-range, high-high-gray level run length matrix-high gray level run emphasis (HGLRE) and 
component #9.  
*Indicates the best performing classification model.  
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Top Panel: Logistic regression analysis of individual top-performing clinical and/or imaging 
variables at classifying abnormal DLCO observed in ex-smoker participants. 
Bottom Panel: Logistic regression of selected top-performing CT imaging and texture features at 
classifying abnormal DLCO. Individual texture features clearly outperformed conventional 
variables available to physicians at classifying ex-smokers with abnormal DLCO. 
HH=high-high pass filter; LL=low-low pass filter; HGLRE=high gray level run emphasis; 
FO=first-order; M2DDC=maximum 2D diameter column; M3DDD=maximum 3D diameter; 
GLCM=gray level co-occurrence matrix; Imc2=informational measure of correlation. 
 

Figure 2-4. Receiver-operator characteristic curves of texture features and clinical variables 
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An alternative classification model was generated exclusively using the emergent component 

scores from PCA (Table 2-8) for training the models, with results summarized in supplementary 

Table 2-9. Training data were used from selected components #1, #2, #4, #6 and #9 exclusively. 

Similarly to the previous approach, the best performance was achieved by logistic regression 

mixed-model with 76% accuracy, with the greatest AUC =0.73 and specificity =78%. 

2.3.4 Relationships 

Spearman correlations of two top-ranking representative texture features with DLCO, 6MWD, MRI 

ADC, TLC, RV/TLC, FEV1, SGRQ and RA950 are shown in Figure 2-5, with a complete summary 

of correlations with selected texture features in supplementary Table 2-10. The best performing 

wavelet-based texture feature HH GLRLM HGLRE significantly correlated with 6MWD (ρ =-.25, 

p =.02), DLCO (ρ =-.29, p =.02), and MRI ADC (ρ =.23, p =.048), while an original CT texture 

feature shape-based M3DD correlated with TLC (ρ =.75, p =.001), RV/TLC (ρ =-.49, p =.001), 

DLCO (ρ =.39, p =.001), FEV1 %pred (ρ =.31, p =.009), SGRQ score (ρ =-.26, p =.04), and RA950 

(ρ =.24, p =.04). Overall, DLCO was significantly correlated (p<.05) with all the selected texture 

features, and showed the strongest correlations with M3DD (ρ =.39, p =.001), and diffusion 

weighted MRI ADC (ρ =-.44, p =.009), as well as with 6MWD (ρ =.47, p =.001). 
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Top Panel: A) Spearman correlation for HH-GLRLM-HGLRE with 6MWD (ρ=-.25, p=.02); B) 
and with DLCO %pred (ρ=-.29, p=.02); C) and with MRI-ADC (ρ=.22, p<.05).  
Middle Panel: D) Spearman correlation for Shape-Maximum 3D diameter with TLC (ρ=.75, 
p=.001); E) and with RV/TLC (ρ=-.49, p=.001); F) and with DLCO %pred (ρ=.39, p=.001). 
Bottom Panel: G) Spearman correlation for Shape-Maximum 3D diameter with FEV1 %predicted 
(ρ=.31, p=.009); H) and with SGRQ score (ρ=-.26, p=.04); I) and with CT-RA950 (ρ=.24, p=.04).  
GLCM=gray level co-occurrence matrix; 6MWD=six minute walk distance; ADC=apparent 
diffusion coefficients; DLCO =diffusing capacity of the lung for carbon monoxide; GLRLM=gray 
level run length matrix; HGLRE=high gray level run emphasis; TLC=total lung capacity; 
RV=residual volume; FEV1=forced expiratory volume in 1 second; SGRQ=St. George’s 
respiratory questionnaire; RA950= relative area of lung less than -950 Hounsfield Units. 

Figure 2-5. Relationships between selected texture features and clinical measurements 
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2.4 Discussion  

It has been shown that asymptomatic ex-smokers with mildly abnormal DLCO values are at a 

significantly increased risk of developing COPD within four years.22 In addition, DLCO strongly 

predicted all-cause mortality in participants with COPD, independent of BODE index and CT 

measurements.38 Despite this evidence, DLCO is not currently part of the GOLD criteria and cannot 

be directly inferred from CT. Here, we developed a CT texture analysis pipeline using machine-

learning to reveal a subset of CT tissue patterns that could help classify ex-smokers with abnormal 

DLCO, despite clinically-normal CT and spirometry. We observed that a logistic regression mixed-

model trained solely on seven CT texture features outperformed all other models at detecting ex-

smokers with abnormal DLCO (87% accuracy). Overall, single machine-learning classifiers 

outperformed ensemble-based classifiers, consistent with previous findings in COPD,39 indicating 

the existence of straightforward linear structure-function relationships between CT textures and 

diffusing capacity. Our findings suggest that texture-based features provide additional information 

about early structural changes occurring in the lungs, which may be used alongside conventional 

CT measurements to identify ex-smokers at-risk of developing COPD.  

In agreement with machine-learning output, individual AUC-ROC values indicated that selected 

texture features outperformed standard clinical and quantitative imaging variables available to 

physicians at detecting ex-smokers with abnormal diffusing capacity. Furthermore, conventional 

CT measurements such as RA950 (AUC =0.54), were outperformed by CT texture features (best 

performing feature AUC =0.81). Previous studies reported abnormally elevated 3He ADC in 

asymptomatic ex-smokers without spirometry or CT evidence of COPD.2 In prior work, 3He ADC 

correlated with DLCO, whilst CT RA950 did not.5,7 Taken together, these findings suggested that 

elevated 3He ADC may reflect mild emphysema not detected by CT or DLCO. Because of these 
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previous and compelling results, we included 3He ADC as a comparator with CT textures. In the 

current study, 3He ADC was the strongest (AUC =0.73) individual non-radiomics parameter for 

differentiating ex-smokers with normal versus abnormal DLCO. However, the relationship between 

DLCO and other structural and functional markers remains poorly understood. The selected texture 

features measure the homogeneity and complexity of CT image texture, and were also correlated 

with established clinical measurements. Together, these results suggest that these features provide 

unique and clinically-relevant information that could identify ex-smokers with abnormal DLCO, 

at-risk of progressing to COPD.  

Selected texture features M2DDC and M3DD extracted from original unfiltered CT images were 

related to lung sizes and volumes, as well as CT emphysema, plethysmography-based air-trapping, 

diffusing capacity, and airflow obstruction. Wavelet-based feature HH GLRLM HGLRE uniquely 

correlated with DLCO (ρ =-0.29, p =0.02) and ADC (ρ =0.22, p =0.048), suggesting that this texture 

may be related to mild emphysematous disease. In addition, wavelet-based HH-FO-Range was 

significantly related to plethysmography air-trapping (ρ =0.24, p =0.01), which were both 

represented in PCA component #9, suggesting that this feature may provide unique information 

related to mild air-trapping. This also aligns with previous work showing that CT textures predict 

progression to COPD,15 and the size and arrangement of emphysematous clusters can differentiate 

patients even with similar COPD GOLD grade.40 

We also note that high-pass filtering (HH) generated the highest number of unique texture feature 

differences, indicating the benefits of pre-processing and assessment of the highest frequencies 

and diagonal signal variances in the sharpened images. However, the filtered CT images have 

altered tissue attenuation values, which may not accurately represent patient’s lung 

pathophysiology, and significantly impacts texture feature interpretability and clinical relevance. 
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In addition, our sub-analysis showed that combining texture features via dimensionality reduction 

techniques such as PCA may not be beneficial for this specific task. The emphysematous clusters 

and heterogeneity detected using CT texture features provide additional evidence beyond simple 

binary CT emphysema or air-trapping measurements. However, individual texture features may 

not fully capture the heterogeneity present in COPD, hence machine-learning algorithms are 

instrumental for integrating multiple aspects of the early disease state detected using texture 

analysis tools. In addition, previous work showed that picking an optimal combination of feature 

selection and machine-learning algorithms is paramount for accurate radiomics-based predictions 

in COPD.39 

We were surprised to observe significant differences between DLCO subgroups for RV/TLC ratio. 

Furthermore, 12% of participants with normal DLCO and 17% of participants in the abnormal DLCO 

subgroup had plethysmography-based air-trapping (RV/TLC>ULN).34 While abnormal ADC in 

ex-smokers and patients with COPD has largely been attributed to emphysematous destruction,41 

previous work in asthma has demonstrated that abnormal ADC is likely caused by air-trapping.42 

It has also been shown that air-trapping may aid in early diagnosis of small airways disease,43 and 

COPD typically starts with the small airways and precedes emphysematous parenchymal 

destruction.44 Worse 6MWD, SGRQ and MRI ADC in ex-smokers with abnormal DLCO are 

consistent with previous work,2 which further underscores the importance of considering air-

trapping measurements in relation to the observed ADC abnormalities. The high sensitivity of 

ADC measurements45 also suggests that abnormally enlarged terminal airspaces may be due to 

mild air-trapping, emphysema, or their combination,7 perhaps pointing towards the underlying 

pathology responsible for mildly abnormal DLCO in this subgroup. 
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We acknowledge several study limitations. First, our study included a relatively small sample size 

in comparison to COPD studies such as Genetic Epidemiology of COPD (COPDGene),46 

Subpopulations and intermediate outcome measures in COPD study (SPIROMICS),47 and 

Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE).48 

However, we employed statistical techniques to prevent overfitting (5-fold cross-validation, PCA, 

Boruta Analysis, etc.) and our machine-learning algorithms may be generalized using larger 

datasets and multicenter data. Second, expiratory CT was not available and we did not make small 

airways disease measurements, thus we are unable to comment on whether small airway 

abnormalities have already initiated in these ex-smokers without COPD. Third, CT and MRI were 

both acquired at the same inspiratory lung volume, however, quantitative measurements are 

influenced by lung volumes.49 Future studies may address this variability via inclusion of 

standardized features normalized to total lung volume. Fourth, other feature selection methods, 

such as hybrid feature selection and deep-learning approaches, were not evaluated in this study, 

although these are less efficient in terms of computational cost and time. Finally, CT images were 

acquired using the same scanner and protocol, which may lead to weaker generalizability when 

considering data from other scanners and/or sites. 

Until now, it has been impossible to measure mild airspace enlargements using only conventional 

CT lung tissue attenuation values, and to accurately detect ex-smokers that have an abnormal DLCO 

by quantifying visually unapparent CT textures. This difficult-to-detect group of at-risk ex-

smokers,50 with both unrecognized mild emphysema and air-trapping, may be quantifiable through 

CT tissue-density heterogeneity features alone. This work may bridge the gap between CT and 

MRI modalities and provide a way to automatically generate sensitive, quantitative measurements 

of mild parenchymal abnormalities beyond specialized hyperpolarized gas MRI centers. CT 
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texture measurements provide a way to reveal CT lung pathologies that are not visible to the human 

eye and may help detect ex-smokers at-risk of developing COPD. This method may also provide 

subclinical phenotypes responsible for abnormal DLCO in asymptomatic ex-smokers, adding 

unique clinical information to CT modality for early detection and aggressive intervention for this 

at-risk group. This is important because quantitative CT is more universally available for clinical 

measurements and may help explain such at-risk patients in whom typical CT measurements do 

not help. 
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2.6 Supplemental Material 

2.6.1 Supplementary Tables 

Table 2-4. Texture analysis matrices and CT features extracted from each participant 

Category 
Level/ 
Order 

Description Texture Features 

Intensity 
histogram 

(n=19) 

First-
order 

Distribution of pixel or voxel 
intensities within the image 
ROI defined by the mask 

Energy, Total energy, Entropy, Minimum, 
Maximum, 10th, 90th percentile, Mean, 
Median, Interquartile range, range, MAD, 
rMAD, RMS, SD, Skewness, Kurtosis, 
Variance, Uniformity 

Shape-
based 
(n=26) 

First-
order 

2D and 3D size and shape 
features of the ROI; 
independent of the pixel or 
voxel gray level intensity 
distribution 

Mesh volume, Mesh surface, Pixel surface, 
Perimeter, Perimeter to surface, Surface to 
volume, Voxel volume, Surface area, SAV, 
sphericity, Compactness, Spherical 
disproportion, M2DD, M3DD, M2DDS, 
M2DDC, M2DDR, Elongation, Flatness, 
Minor, Major, and Least axis length 

GLRLM 
(n=16) 

Second-
order 

Quantifies consecutive pixels 
or voxels of the same gray 
level in a given direction 

SRE, LRE, GLN, GLNN, RLN, RLNN, 
RP, GLV, RV, RE, LGLRE, HGLRE, 
SRLGLE, SRHGLE, LRLGLE, LRHGLE 

GLCM 
(n=24) 

Second-
order 

Examines the spatial 
relationship among pixels and 
defines how frequently pairs 
of pixels are present in an 
image in a given direction 

Autocorrelation, Joint average, Cluster 
prominence, Cluster shade, Cluster 
tendency, Contrast, Correlation, 
Difference average, Difference entropy, 
Difference variance, Joint energy, Joint 
entropy, IMC1, IMC2, IDM, MCC, 
IDMN, ID, IDN, Inverse variance, 
Maximum probability, SA, SE, SS 

GLSZM 
(n=16) 

Second-
order 

Quantifies the number of 
homogeneous connected 
voxels that share the same gray 
level intensity in an image 

SAE, LAE, GLN, GLNN, SZN, SZNN, 
ZP, GLV, ZV, ZE, LGLZE, HGLZE, 
SALGLE, SAHGLE, LALGLE, LAHGLE 

NGTDM 
(n=5) 

Second-
order 

Quantifies the difference 
between a gray value and the 
average gray value of its 
neighbours within a specific 
distance and direction 

Coarseness, Contrast, Busyness, 
Complexity, Strength 

GLDM 
(n=14) 

Second-
order 

Quantifies the number of 
connected voxels within a 
specific distance that are 
dependent on the center voxel 
in the ROI of an image 

SDE, LDE, GLN, GLNN, DN, DNN, 
GLV, DV, DE, LGLE, HGLE, SDLGLE, 
SDHGLE, LDLGLE, LDHGLE 

Wavelet-
based 

(n=376) 

Higher-
order 

Applies combinations of high-
pass and low-pass wavelet 
filters to the input image axes 
to yield the space-frequency 
decompositions 

Four high/low-pass filter combinations 
applied across the image; Excluding the 16 
Shape-based features: 
 

4×(19+16+24+16+5+14) = 376 
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n=number of unique extracted texture features; GLRLM=Gray-level Run Length Matrix; 
GLCM=Gray-level Co-occurrence Matrix; GLSZM= Gray-level Size-zone Matrix; NGTDM= 
Neighbourhood Gray Tone Difference Matrix; GLDM=Gray-level Dependence Matrix; 
MAD=Mean Absolute Deviation; rMAD=Robust MAD; RMS=Root Mean Squared; 
SD=Standard deviation; SAV=Surface area to volume ratio; M3DD=Maximum 3D diameter; 
M2DDS=Maximum 2D diameter Slice; M2DDC=M2DD Column; M2DDR=M2DD Row; 
SRE=Short Run Emphasis; LRE=Long Run Emphasis; GLN=Gray Level Non-Uniformity; 
GLNN=GLN Normalized; RLN=Run Length Non-Uniformity; RLNN=RLN Normalized; 
RP=Run Percentage; GLV=Gray Level Variance; RV=Run Variance; RE=Run Entropy; 
LGLRE=Low Gray Level Run Emphasis; HGLRE=High Gray Level Run Emphasis; 
SRLGLE=Short Run Low Gray Level Emphasis; SRHGLE=Short Run High Gray Level 
Emphasis; LRLGLE=Long Run Low Gray Level Emphasis; LRHGLE=Long Run High Gray 
Level Emphasis; IMC=Informational Measure of Correlation; IDM=Inverse Difference Moment; 
MCC=Maximal Correlation Coefficient; IDMN=IDM Normalized; ID=Inverse Difference; 
IDN=ID Normalized; SA=Sum Average; SE=Sum Entropy; SS=Sum of Squares; SAE=Small 
Area Emphasis; LAE=Large Area Emphasis; SZN=Size-Zone Non-Uniformity; SZNN=SZN 
Normalized; ZP=Zone Percentage; ZV=Zone Variance; ZE=Zone Entropy; LGLZE=Low Gray 
Level Zone Emphasis; HGLZE=High Gray Level Zone Emphasis; SALGLE=Small Area Low 
Gray Level Emphasis; SAHGLE=Small Area High Gray Level Emphasis; LALGLE=Large Area 
Low Gray Level Emphasis; LAHGLE=Large Area High Gray Level Emphasis; SDE=Small 
Dependence Emphasis; LDE=Large Dependence Emphasis; DN=Dependence Non-Uniformity; 
DNN=DN Normalized; DV=Dependence Variance; DE=Dependence Entropy; LGLE=Low Gray 
Level Emphasis; HGLE=High Gray Level Emphasis; SDLGLE=Small Dependence Low Gray 
Level Emphasis; SDHGLE=Small Dependence High Gray Level Emphasis; LGLGLE=Large 
Dependence Low Gray Level Emphasis; LDHGLE=Large Dependence High Gray Level 
Emphasis.  
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Table 2-5. CT texture feature descriptors for machine-learning modelling 

Texture Feature Name Description 

FO-M2DDC Measures the maximum 2D diameter (Column) defined as the 

largest pairwise Euclidean distance between ROI surface 

mesh vertices in the row-slice (coronal) plane 

FO-M3DD Measures the maximum 3D diameter defined as the largest 

pairwise Euclidean distance between ROI surface mesh 

vertices. Also known as the Feret Diameter 

GLCM-Correlation Measures the linear dependency of gray level values to their 

respective voxels in the GLCM 

HH-RLM-HGLRE Measures the distribution of the higher gray-level values, with 

a higher value indicating a greater concentration of high gray-

level values in the image 

HH-FO-Range Measures the distribution of ranges of gray values in the given 

image region of interest (ROI) 

HL-FO-Energy Measures the magnitude of voxel values in an image and the 

uniformity of the distribution. Reaches its maximum for a ROI 

with only one grey level intensity 

LL-GLCM-Imc2 Measures the correlation between the probability of grey level 

distributions between different extraction directions 

FO=first order features; GLCM=gray level co-occurrence matrix; Idn=inverse difference 

normalized; LL=low-low-pass filter; HH=high-high-pass filter; RLM=run length matrix; 

Imc1=informational measure of correlation; GLDM=gray level dependence matrix; 

DV=dependence variance. 
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Table 2-6. Extracted texture feature differences between DLCO subgroups 

Parameter 
Mean (±SD) 

All  
Ex-smokers 

(n=71) 

DLCO≥75%pred  
Ex-smokers 

(n=42) 

DLCO<75%pred 
Ex-smokers 

(n=29) 

p- 
value 

p-** 
value 

Shape-M2DDC 290 (31) 297 (34) 279 (22) .01* .07 
Shape-M3DD 409 (36) 418 (32) 395 (37) .008* .04* 
RLM-LRE 1.071 (.009) 1.081 (.009) 1.057 (.008) .03* .06 
RLM-Run Percentage .975 (.003) .979 (.003) .971 (.002) .04* .1 
GLCM-Imc2 .76 (.04) .73 (.03) .68 (.04) .02* .05 
GLCM-Correlation .69 (.03) .68 (.03) .70 (.03) .048* .3 
GLSZM-ZP .955 (.007) .958 (.006) .951 (.004) .04* .05 

Wavelet-based Features     

First-Order      
HH-Maximum 410 (44) 393 (33) 420 (42) .001* .004* 
HH-Minimum -461 (35) -455 (24) -476 (34) .04* .07 
HH-Range 878 (66) 851 (41) 901 (71) .002* .006* 
LL-Minimum -277 (16) -274 (14) -283 (16) .03* .06 

GLRLM      
HH-HGLRE 2.1×105 (.3×105) 2.1×105 (.2×105) 2.3×105 (.3×105) .03* .048* 
HH-LRHGLE 2.2×105 (.3×105) 2.2×105 (.2×105) 2.3×105 (.3×105) .047* .1 
HH-SRHGLE 2.1×105 (.3×105) 2.1×105 (.2×105) 2.2×105 (.3×105) .04* .07 

GLCM      
HH-AC 2.2×105 (.3×105) 2.1×105 (.2×105) 2.3×105 (.3×105) .04* .3 
HH-SA 927 (66)  918 (43) 948 (67) .04* .3 
HH-JA 463 (33) 459 (21) 474 (33) .04* .3 
HH-Imc2 .43 (.03) .42 (.02) .44 (.02) .04* .3 
HH-Idm .043 (.008) .044 (.008) .051 (.009) .04* .3 
HL-Imc2 .56 (.03) .56 (.02) .58 (.03) .049* .4 
HL-Energy 6.5×109 (1.3×109) 6.7×109 (1.3×109) 6.3×109 (1.5×109) .03* .2 
LL-Imc2 .898 (.014) .895 (.014) .901 (.013) .04* .3 

GLSZM      
HH-HGLZE 2.2×105 (.3×105) 2.1×105 (.2×105) 2.2×105 (.3×105) .04* .08 
HH-SAHGLE 2.1×105 (.3×105) 2.0×105 (.2×105) 2.2×105 (.3×105) .04* .08 

GLDM      
HH-HGLE 2.2×105 (.3×105) 2.1×105 (.2×105) 2.3×105 (.3×105) .04* .08 
HH-SDHGLE 2.0×105 (.3×105) 2.0×105 (.2×105) 2.1×105 (.3×105) .048* .08 

FO=first order features; M2DDC=maximum 2D diameter column; M3DD=maximum 3D 
diameter; RLM=run length matrix; LRE=long run emphasis; Imc2=informational measure of 
correlation; ZP=zone percentage; HH=high-high-pass filter; HL=high-low-pass filter; LL=low-
low-pass filter; HGLRE=high gray level run emphasis; LRHGLE=long run high gray level 
emphasis; SRHGLE=short run high gray level emphasis; GLCM=gray level co-occurrence matrix; 
AC=autocorrelation; SA=sum average; JA=joint average; Idm=inverse difference moment; 
SZM=size-zone matrix; HGLZE=high gray level zone emphasis; SAHGLE=small area high gray 
level emphasis; GLDM=gray level dependence matrix; HGLE=high gray level emphasis; 
SDHGLE=small dependence high gray level emphasis; All texture feature abbreviations and 
descriptions can be found in Table 2-5. 
P Value=uncorrected values showing significant differences between DLCO≥75%pred and 
DLCO<75%pred groups. 
*Indicates a significant difference (p<0.05) between groups 
P** Value=Holm-Bonferroni corrected values showing significant differences between 
DLCO≥75%pred and DLCO<75%pred groups. 
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Table 2-7. Distribution of significant texture features based on extraction method and 

matrices 

Matrix Name 
Unique 

Features 
Significant 

features 
LH-filter 
features 

HL-filter 
features 

HH-filter 
features 

LL-filter 
features 

First Order 19 0 0 0 3 1 
Shape-based 26 2 0 0 0 0 
GLCM 24 2 0 2 5 1 
GLRLM 16 2 0 0 3 0 
GLSZM 16 1 0 0 3 0 
NGTDM 5 0 0 0 0 0 
GLDM 14 0 0 0 3 0 
TOTAL COUNT 120 7 0 2 15 2 

GLCM=Gray Level Co-occurrence Matrix; GLRLM=Gray Level Run Length Matrix;  
GLSZM=Gray Level Size-Zone Matrix; NGTDM=Neighboring Gray Tone Difference Matrix; 
GLDM=Gray Level Dependence Matrix; Significance level is given by p<0.05.  
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Table 2-8. Top PCA components from orthogonally rotated correlation matrix 
Texture 
Features 

Component  
1 2 3 4 5 6 7 8 9 

Idm  0.990 0.014 -0.005 -0.075 0.051 0.068 0.036 0.000 0.045 
LL-SZNU -0.989 0.027 0.023 0.054 -0.040 -0.064 -0.014 0.029 -0.055 
M3DDC 0.984 -0.061 -0.022 0.008 -0.041 -0.010 0.069 -0.040 -0.028 
LL-SAE 0.983 -0.062 -0.021 0.008 -0.042 -0.011 0.069 -0.041 -0.028 
BMI 0.643 -0.311 0.174 0.252 -0.160 0.045 -0.163 -0.060 -0.272 
LL–LDLGLE -0.004 0.953 0.088 0.186 0.003 0.127 0.029 -0.002 -0.105 
RunVariance 0.002 0.952 0.195 0.128 0.054 0.140 -0.047 -0.007 0.032 
JointEnergy -0.003 0.949 0.179 0.095 0.088 0.109 -0.050 0.064 0.100 
LAE -0.119 0.945 0.160 0.167 0.020 0.141 -0.025 -0.015 -0.082 
ZoneVariance -0.113 0.945 0.161 0.169 0.019 0.142 -0.026 -0.016 -0.085 
HH–DNU -0.015 0.107 0.977 0.121 -0.114 0.028 0.004 0.002 -0.020 
HH–SZNU -0.046 0.116 0.974 0.124 -0.118 0.023 0.006 0.000 -0.021 
DNU -0.093 0.086 0.969 0.137 -0.144 0.003 0.008 -0.009 -0.034 
SZNU -0.107 0.109 0.966 0.137 -0.140 0.004 0.009 -0.006 -0.029 
TLC -0.155 0.393 0.732 0.127 0.115 0.144 -0.038 -0.118 0.182 
LH–SDHGLE -0.131 0.169 0.185 0.934 -0.186 0.034 -0.047 0.024 0.029 
LH–SA -0.181 0.173 0.186 0.931 -0.172 0.043 -0.053 0.010 0.005 
LH-SAHGLE -0.158 0.178 0.184 0.929 -0.183 0.033 -0.045 0.022 0.028 
LH-HGLRE -0.183 0.184 0.182 0.925 -0.181 0.031 -0.043 0.019 0.027 
HL-SDLGLE -0.067 -0.096 0.154 0.180 -0.956 0.035 -0.014 -0.033 -0.032 
HL-SALGLE -0.090 -0.089 0.155 0.181 -0.955 0.032 -0.014 -0.031 -0.032 
HL-SRLGLE -0.101 -0.090 0.159 0.181 -0.953 0.029 -0.013 -0.030 -0.032 
HL-LGLZE -0.108 -0.088 0.158 0.181 -0.952 0.028 -0.013 -0.029 -0.032 
HH-SDLGLE -0.016 -0.174 -0.083 -0.058 0.114 -0.968 0.034 0.016 -0.017 
HH-SALGLE -0.087 -0.162 -0.082 -0.054 0.108 -0.967 0.035 0.016 -0.014 
HH-SRLGLE -0.132 -0.158 -0.077 -0.049 0.102 -0.964 0.035 0.015 -0.013 
HH-LGLZE -0.150 -0.155 -0.078 -0.049 0.100 -0.962 0.036 0.015 -0.012 
6MWD 0.214 0.146 0.003 -0.179 -0.280 -0.502 -0.341 0.137 0.158 
LL-Imc2 -0.214 0.399 -0.073 -0.343 -0.098 -0.233 0.836 -0.071 0.057 
HH-HGLRE 0.328 -0.424 0.120 0.305 0.065 0.218 -0.802 0.102 -0.038 
Imc2 0.014 0.442 -0.241 -0.388 -0.010 -0.139 0.688 -0.134 0.048 
RA950 % -0.345 -0.260 0.058 0.191 -0.161 0.129 0.616 -0.105 -0.008 
HL-CP 0.058 0.151 -0.259 0.120 0.243 -0.166 -0.248 0.802 0.171 
LL-DV 0.552 0.054 -0.273 0.003 0.200 -0.046 -0.162 0.664 0.194 
Elongation -0.114 -0.151 -0.146 -0.444 -0.165 -0.098 0.054 0.657 -0.260 
Flatness -0.503 0.022 0.100 0.445 -0.129 -0.043 0.037 0.609 -0.134 
HH-Range 0.537 -0.024 0.042 0.053 -0.012 -0.009 0.166 0.236 0.802 
RV/TLC % -0.178 -0.099 -0.334 0.214 0.112 0.097 -0.239 0.487 0.616 
LL-Minimum 0.160 -0.069 0.119 0.155 -0.209 -0.186 0.218 0.078 0.506 
Idm=inverse difference moment; LL=low-low pass; HH=high-high pass; HL=high-low pass; 
LH=low-high pass; SZNU=size zone non uniformity; LDLGLE=large dependence low gray level 
emphasis; SDHGLE=small dependence high gray level emphasis; SA=sum average; 
SAHGLE=small area high gray level emphasis; HGLRE=high gray level run emphasis; 
LAE=large area emphasis; DNU=dependence non uniformity; SZNU=size zone non uniformity; 
TLC=total lung capacity; SALGLE=short area low gray level emphasis; SRLGLE=short run low 
gray level emphasis; LGLZE=large gray level zone emphasis; 6MWD=six minute walk distance; 
Imc2=informational measure of correlation; RA950=relative area of lung less than -950 Hounsfield 
Units; CP=cluster prominence; DV=difference variance; RV=residual volume; Following 9 
components explain >93% of variance in data and highlighted values show highest texture feature 
factor loadings that compose the underlying component.  



 

99 

 

Table 2-9. Machine-learning model accuracies using only PCA and emergent components 

for classification 
Classifiers (n =10) AUC Sensitivity(%) Specificity(%) Accuracy(%) 

Decision Tree 0.57 45.0 66.6 59.7 
Logistic Regression* 0.73 74.5 77.7 76.1 
Subspace KNN 0.69 76.9 73.5 74.2 
Weighted KNN 0.65 50.0 65.3 66.2 
Linear SVM 0.71 66.6 71.4 71.0 
Quadratic SVM 0.70 57.9 72.1 69.4 
Naïve Bayes 0.69 66.6 70.0 69.4 
Bagged Trees 0.58 36.8 62.8 54.8 
Subspace Discriminant** 0.50 0 62.3 61.3 
RUSBoosted Trees 0.63 46.1 69.5 57.5 

AUC = Area under the receiver-operating curve; RUS = Random Under-Sampling; KNN = K-

Nearest Neighbours; SVM = Support Vector Machines; Training data was used from selected PCA 

components #1, #2, #4, #6 and #9 exclusively. *Indicates the best performing classification model. 

**indicates classifiers that failed and classified all subjects as one class. 
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CHAPTER 3 

3 MACHINE LEARNING AND MR IMAGE TEXTURE 

ANALYSIS PREDICTS ACCELERATED LUNG FUNCTION 

DECLINE IN EX-SMOKERS WITH AND WITHOUT COPD 

To investigate disease progression in ex-smokers with and without COPD, we evaluated the MRI 

ventilation measurements and texture features at baseline and 3-year follow-up visit to predict an 

accelerated lung function decline. The best imaging predictors of worsening were compared and 

correlated with pulmonary function and quality-of-life measurements in ex-smokers with and 

without COPD. 

The contents of this chapter were submitted to the journal of Medical Imaging: M Sharma, A 

Fenster, DG McCormack and G Parraga. Machine-learning and Texture Analysis of 

Hyperpolarized gas MRI Predicts Accelerated Disease Progression Across 3-years in COPD. 

Submitted to Journal of Medical Imaging. (Manuscript ID: JMI 24004G). 

3.1 Introduction 

Pulmonary hyperpolarized 3He gas magnetic resonance imaging (MRI) provides a means to 

quantify ventilation abnormalities using ventilation defect percent (VDP)1 that stem from 

abnormalities in the large and small airways as well as emphysema.2 Using forced expiratory 

volume in 1 s (FEV1) it is difficult to predict patients with chronic airflow obstruction that will 

worsen with an accelerated decline in lung function. MRI-VDP measurements were previously 

shown to progressively worsen in patients with a stable FEV1 and predict worse outcomes over 

short time-periods.3,4 While spirometry measurements of lung function are straightforward and 

cost-efficient to implement, they do not provide information about the small airways, which are 

believed to drive COPD pathogenesis.  

In contrast, airway structural changes can be evaluated using established quantitative computed 

tomography (CT) measurements.5 Conversely, MRI VDP1 provides functional information and 

has been shown to predict COPD exacerbations6 and longitudinal changes in quality of life as well 

as exercise capacity.7 Recent studies have shown that CT radiomics features are associated with 
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lung function in COPD,8 emphysema severity,9 and provide complementary information to 

established quantitative CT measurements.10,11 Despite these advantages, current predictive 

models of COPD progression are usually based on clinical measurements but none incorporate 

information derived from pulmonary CT or MRI.12  

Texture analysis provides a unique opportunity to reveal and quantify hyperpolarized 3He MRI 

ventilation patchiness. Several recent investigations in COPD9,11,13 have clearly demonstrated the 

advantages of using radiomics approaches on CT images. Since binary VDP measurements do not 

exploit the full spectrum of information and spatial content that is inherent to hyperpolarized gas 

MRI, our main objective was to develop a texture-based machine learning model to identify 

ventilation features that can predict patients with an accelerated annual FEV1 decline. Our 

secondary objective was to generate novel measurements of MRI ventilation heterogeneity and 

test their performance at predicting accelerated FEV1 decline.  

In COPD, rapid decliners have been previously defined as patients with a decline in FEV1 ≥4014,15 

or ≥60mL/year.11,16-19 In general, the annual FEV1 decline is larger in patients with mild COPD 

stages and less pronounced airflow limitation.17,19 Therefore, we tested multiple single and 

ensemble classifiers to determine the best model for predicting COPD patients who would 

experience an FEV1 decline ≥60mL/year, over a three-year period. Such predictive models may 

serve as tools for an early detection of rapidly progressing patients and facilitate early treatment 

options for this subgroup of patients that are at a higher risk of progressing to a greater disease 

severity. 
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3.2 Materials and Methods 

3.2.1 Study Design and Participants  

All participants provided informed written consent to a study protocol approved by local research 

ethics board and in compliance with the Health Canada approved and registered protocol20 

(clinicaltrials.gov NCT02279329). Inclusion criteria were a history of cigarette smoking >10 pack 

years, age between 50 and 85 years at baseline. Ex-smoker participants were included who had 

ceased smoking ≥1-year prior to the study visit, with no cut-off in terms of smoking cessation. 

COPD subjects were classified according to the Global Initiative for Chronic Obstructive Lung 

Disease (GOLD) grades.21 Participants also completed a longitudinal follow-up visit at 24±6 

months after the baseline visit.20 The CONSORT diagram for the Thoracic Imaging Network of 

Canada (TINCan) study cohort participants is depicted in Figure 3-1. 
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Of the 266 participants enrolled in the TINCan study, 33 were enrolled in a sub-study and 61 either 

cancelled or did not complete all required tests during Visit 1. Of the 172 participants that 

completed Visit 1, 79 participants did not complete a 3-year follow-up Visit 2 and five had artifacts 

present in their images, which were excluded from further analysis. Eighty-eight ex-smoker 

participants with Visit 1 and Visit 2 data were analyzed in this study, of which 31 had ∆FEV1 ≥ 

60mL/year and 57 had ∆FEV1 < 60mL/year. 

3.2.2 Pulmonary Function Tests and Image Acquisition 

Spirometry, plethysmography, and the diffusing capacity of the lungs for carbon monoxide (DLCO) 

were measured according to the American Thoracic Society/European Respiratory Society 

guidelines22 using a whole-body plethysmography system (MedGraphics Corporation, St Paul, 

MN, USA) and attached gas analyzer.23 COPD was defined as post-bronchodilator spirometry 

according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria.21 The 

6MWD24 test and St. George’s Respiratory Questionnaire (SGRQ)25 were administered under 

supervision.  

Figure 3-1. CONSORT Flow Diagram 
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Anatomic proton (1H) and hyperpolarized 3He MR images were acquired using a whole-body 3.0 

Tesla Discovery MR750 system (GE Healthcare, Milwaukee, WI, USA), a whole-body 

radiofrequency coil and a fast gradient recalled echo (FGRE) sequence with a partial echo 

implementation, with acquisition parameters as previously described.26 Hyperpolarized 3He MRI 

was acquired using a linear bird‐cage transmit/receive chest coil (RAPID Biomedical GmbH, 

Wuerzburg, Germany). A turn‐key system (HeliSpin™, Polarean Inc, Durham, NC, USA) was 

used to polarize 3He gas to 30–40% and doses (5 mL/kg body weight) diluted with N2 were 

administered in 1.0 L Tedlar® bags. Hyperpolarized 3He MRI diffusion‐weighted imaging was 

performed using a 2D multi-slice fast gradient-echo method, as previously described,26 during 

breath-hold for acquisition of two interleaved images with and without additional diffusion 

sensitization with b=1.6 sec/cm2 (maximum gradient amplitude [G]=1.94 G/cm, rise and fall-

time=0.5 ms, gradient duration=0.46 ms, diffusion time=1.46 ms).20 Pulmonary function data and 

imaging were acquired during both baseline and follow-up visits. 

3.2.3 Image Analysis and Proposed Algorithm  

Baseline and follow-up visit 1H and 3He MR images were processed by a single observer where 

the thoracic cavity was segmented from the 1H images using a seeded region-growing algorithm, 

and the 3He ventilation region was segmented using k-means clustering.1 The generated maximum 

entropy mask was then applied to identify the ventilated region-of-interest (ROI) for feature 

extraction. Diffusion-weighted images were automatically processed to generate apparent 

diffusion coefficient (ADC) values and images, as previously described.23 

MRI VDP was generated using a semi-automated segmentation approach, as previously 

described.1 Ventilation defect cluster percent (VDCP), which is the sum of ventilation-defect 

cluster volume normalized to the total lung volume, and defect cluster sizes were generated by an 
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automated in-house custom-developed algorithm, as described in the prior proceedings paper.27 

Briefly, the proposed cluster algorithm iteratively segments unventilated MRI volumes until the 

maximum sphere fit (or multiple spheres of the same size) within the unventilated volume is 

identified. This sphere volume(s) is then removed from the non-ventilated region and the process 

is iteratively repeated until the non-ventilated region is filled by spheres. This is similar in approach 

to sphere packing previously investigated for radio-surgical treatment planning.28 

The approach was implemented using a naïve greedy algorithm where 𝑆 = [𝑏1, 𝑏2, … , 𝑏𝑛] is a set 

with 𝑛 elements, where each element 𝑏𝑛 = 𝐵𝑛(𝑟, 𝑙) is an open sphere of radius 𝑟 at locations 𝑙. 

Determining the required minimum number of spheres of unequal sizes resulted in the following 

minimization problem: 

𝑚𝑖𝑛
𝑆

{‖𝑆‖0}  ∶  𝑆 ∈ 𝑹𝑛     (1) 

Where the cardinality of the set 𝑆 and ∀ (𝑏 ∈ 𝑆) ∃ (𝑟, 𝑙) is minimized. To ensure that the spheres 

completely fill the unventilated region-of-interest 𝑅, and are within the thoracic cavity, several 

constraints were implemented. First, the intersection between the region that is being filled with 

spheres (𝑅) and the spheres (𝑏) was set to 𝑏. Furthermore, to prevent spheres from overlapping, 

the overlap between two spheres (𝑏 and 𝑏′) was fixed to result in a null set: 

𝑏 ∩ 𝑅 = 𝑏    &    𝑏 ∩ 𝑏′ = ∅      (2) 

A volume constraint was also imposed such that the total volume of spheres was equal to the 

volume of the specified unventilated region 𝑅:   

∑ 𝑉(𝑏) = 𝑉(𝑅)𝑏∈𝑆      (3) 

The specified regions were filled with spheres, where the minimum sphere diameter was equal to 

one voxel (5x5x5 mm3), such that the total volume of spheres with diameter equal to one voxel 
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was equal to be the total residual volume not clustered into large (>one voxel) sphere sizes. To 

further simplify the problem, there were no location constraints on the sphere spatial position. 

We used MATLAB R2021a (MathWorks) to solve the minimization problem and generated 

VDCP in order to calculate cluster-defect-diameter voxel size one (CDD1), which is the 

cumulative number of defect clusters of one voxel, shown in Figure 3-2. Low ventilation cluster 

(LVC) slopes were also calculated based on the log-log relationship between the cumulative 

number of spheres and cluster size.29,30 
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A representative 66-year old male ex-smoker participant with COPD: FEV1=1.93 L, VDP=25%, 

∆FEV1=-0.22 L and ∆VDP=1% between visits. Three-dimensional isotropic ventilation volume 

shown in cyan and ventilation defects represented by different sphere sizes ranging from small 

(yellow=sphere diameters of 3-5 voxels) to large (red=sphere diameters of 9-13 voxels). 

Further texture feature extraction was conducted using an open-source PyRadiomics software, 

detailed in the next section. Unlike the proposed algorithm that analyzes the unventilated region, 

texture features were extracted from the inhaled hyperpolarized gas distribution within the thoracic 

cavity. 

Figure 3-2. Ventilation Defect Cluster Volume Output from Custom-developed Algorithm 
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3.2.4 Feature Extraction and Selection Pipeline 

The complete pipeline for processing the baseline and follow-up visit images is summarized in 

Figure 3-3. First, we generate a maximum entropy mask by segmenting the 3He ventilation image 

as previously described.1 We then use a custom-developed algorithm to calculate the ventilation 

defect clusters, described above, and the PyRadiomics platform31 for extracting texture features. 

Texture features were calculated from gray-level histograms and matrices generated from the ROI 

of the original image. 

Hyperpolarized noble gas MR images were analyzed using custom-developed algorithms to 

calculate ventilation defect clusters and texture features. Raw MR images and corresponding 

binary lung masks were used to generate the regions-of-interest (ROI), which were analyzed via 

the PyRadiomics platform to calculate shape, first- and higher-order texture features. Feature 

selection was performed using the training set, combined with principal component analysis (PCA) 

and Boruta analysis. Classification learner application was used for model generation, which 

were trained using a 5-fold cross-validation scheme, with 20% of data reserved for the testing set.  

We generated first-order texture features from the gray-level histograms and also evaluated the 

texture features calculated from run-length, gap-length, co-occurrence, size-zone, dependence and 

neighborhood gray tone matrices using the PyRadiomics open-sourced platform (version 2.2.0) in 

Python environment (version 3.7.5).31 Image processing filters were also applied for the extraction 

Figure 3-3. Image Processing and Model Generation Pipeline 
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of wavelet band-pass filtering texture features. This further quadrupled the number of extracted 

features due to permutations of high-pass and low-pass filters for wavelet decomposition, resulting 

in 376 additional MRI texture features. Low-pass filtering in both directions (LL) assesses the 

lowest frequencies, low-pass filtering followed by high-pass filtering (LH) assesses horizontal 

edges, high-pass filtering followed by low-pass filtering (HL) assesses vertical edges and high-

pass filtering in both directions (HH) assesses diagonal details.32  

The resulting data and 496 extracted features were randomly assigned into training and testing sets 

with 80%/20% data split. Feature selection was performed on the training set using principal 

component analysis (PCA) and Boruta analysis to rank and determine texture features significantly 

contributing to the predictive power of the machine learning models. The Boruta algorithm 

generated shadow features for comparisons and used a two-step correction for multiple testing, 

with an optimizable random forest classifier for iterations (number of trees in the forest=200, 

maximum iterations=300, maximum tree depth=10 [branches], percentage of shadow feature 

threshold=95%, alpha-level=0.05). We utilized all wavelet band-pass filtering features that were 

available in the PyRadiomics platform (version 2.2.0), with the detailed mathematical descriptions 

of all the extracted and selected features provided in Table 3-5.31  

3.2.5 Machine learning and Statistical Analysis 

Once all the features and parameters were selected, machine learning models were generated based 

on 1) Demographic measurements alone; 2) Spirometry measurements alone; 3) Imaging and 

texture measurements alone; and 4) Combination of all available measurements. Five-fold cross-

validation training was performed using several machine learning algorithms including single 

classifiers and ensemble classifiers to determine the best model for identifying accelerated disease 

progression. The data were standardized and hyper-parameter optimization was performed through 
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MATLAB R2021a (Classification Learner App) for each model individually. We compared the 

performance of multiple machine learning algorithms including variations of: Logistic regression, 

Naïve Bayes,33 Support Vector Machines (SVM),34 Decision trees,35 K-nearest neighbours 

(KNN),36 and four ensemble-classifiers: bagged and boosted trees,37 subspace discriminant,38 

subspace K-nearest-neighbours,38 and Random Under-Sampling Boosted (RUSBoosted) Trees. 

Model performance was evaluated using the mean cross-validation area under the receiver-

operator curve (AUC), as well as sensitivity, specificity, and F1-score using the models’ confusion 

matrix. The DeLong’s test was used to compare the performance of all machine learning models.39 

Statistical analysis was performed using SPSS Statistics v28.0 (IBM Statistics, Armonk, New 

York, USA). Shapiro-Wilk tests were used to determine the normality of the data and non-

parametric tests were performed for data that were not normal. Differences between subject groups 

were determined using analysis of variance (ANOVA) with post-hoc analysis using the Benjamini-

Hochberg correction. The relationship between measurements was determined using Pearson and 

Spearman coefficients for parametric and non-parametric data, respectively. Results were 

considered significant when the probability of two-tailed type I error was less than 5% (p<.05). 

3.3 Results  

A CONSORT diagram provided in Figure 3-1 shows that 266 ex-smokers were enrolled and 94 

were excluded from analysis due to enrollment in another sub-study (n=33) and due to cancellation 

or not completing all required tests per protocol (n=61). Of the 172 participants that completed 

Visit 1, 79 participants did not complete a 3-year follow-up visit and five had poor image quality 

and were excluded from further analysis. 
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3.3.1 Participant Demographics 

We evaluated 88 ex-smoker participants, of which 49 had spirometry evidence of COPD and 39 

with no spirometry evidence of COPD. As shown in Table 3-1, 57 participants (22 Females/35 

Males, 70±9 years) demonstrated a smaller FEV1 decline (<60mL/year) and 31 participants (7 

Females/24 Males, 68±9 years) demonstrated a rapid decline in FEV1 (≥60mL/year), between 

baseline and follow-up visit 31 ± 7 months later. At baseline there were significant differences 

only in forced vital capacity (FVC) between subgroups (FVC L p=.003 and FVC %pred p=.03, 

respectively). As summarized in Table 3-2, these subgroups did not have any statistically 

significant differences at follow-up. 

Table 3-1. Baseline participant demographics and pulmonary function measurements 
Parameter 
Mean (±SD) 

All Participants 
(n=88) 

∆FEV1 <60mL/yr 
(n=57) 

∆FEV1 ≥60mL/yr 
 (n=31) 

p-value 

Age 69 (9) 70 (9) 68 (9) .2 
Female n(%) 29 (33) 22 (39) 7 (23) .1 
Height m 169 (8) 168 (8) 171 (7) .2 
BMI kg/m2 28 (4) 28 (4) 29 (5) .4 
SpO2 % 96 (3) 95 (4) 96 (2) .8 
Pack Years 36 (26) 37 (26) 35 (21) .8 
Years Since Quit 15 (13) 14 (14) 16 (13) .7 
Pulmonary function and QoL    

FEV1 L 2.3 (0.8) 2.2 (0.8) 2.5 (0.8) .1 
FEV1 %pred 84 (26) 82 (26) 86 (27) .5 
FVC L 3.6 (0.9) 3.4 (0.9) 3.9 (0.8) .003 
FVC %pred 95 (17) 92 (16) 100 (17) .03 
FEV1/FVC % 65 (17) 66 (17) 63 (17) .5 
TLC L 6.7 (1.3) 6.5 (1.3) 7.0 (1.2) .06 
TLC %pred 109 (16) 108 (17) 111 (14) .4 
RV/TLC % 43 (10) 45 (10) 42 (9) .2 
DLCO %pred 68 (21) 67 (21) 70 (23) .6 
6MWD m 405 (81) 404 (84) 405 (75) .9 
SGRQ 28 (21) 28 (20) 28 (23) .9 

BMI=body mass index; SpO2=blood oxygen saturation; QoL=quality-of-life; FEV1=forced 
expiratory volume in 1 second; %pred=percent of predicted value; FVC=forced vital capacity; 
RV=residual volume; TLC=total lung capacity; DLCO=diffusing capacity of lung for carbon-
monoxide; 6MWD=six minute walk distance; SGRQ=St. George’s respiratory questionnaire. 
p=uncorrected values showing significant differences between ∆FEV1 <60mL/yr and ∆FEV1 

≥60mL/yr groups. Significance level p<0.05. 
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Table 3-2. Participant demographics and pulmonary function measurements at follow-up 

visit 
Parameter 
Mean (±SD) 

All Participants 
(n=88) 

∆FEV1 <60mL/yr 
(n=57) 

∆FEV1 ≥60mL/yr 
 (n=31) 

p-value 

Age 72 (9) 73 (9) 70 (9) .2 
Female n(%) 29 (33) 22 (39) 7 (23) .1 
Height m 169 (8) 168 (8) 170 (7) .2 
BMI kg/m2 28 (4) 28 (4) 29 (5) .3 
SpO2 % 95 (3) 95 (4) 95 (2) .9 
Pack Years 36 (26) 37 (26) 35 (21) .6 
Years Since Quit 17 (14) 17 (14) 17 (13) .9 
Pulmonary function and QoL    

FEV1 L 2.2 (0.8) 2.2 (0.8) 2.1 (0.7) .4 
FEV1 %pred 84 (25) 87 (29) 77 (27) .07 
FVC L 3.3 (0.9) 3.3 (0.9) 3.4 (0.8) .5 
FVC %pred 94 (19) 95 (19) 92 (19) .4 
FEV1/FVC % 65 (16) 66 (17) 62 (17) .5 
TLC L 6.4 (1.3) 6.3 (1.3) 6.6 (1.2) .3 
TLC %pred 105 (16) 105 (17) 106 (14) .8 
RV/TLC % 45 (10) 45 (10) 45 (9) .7 
DLCO %pred 80 (21) 77 (25) 84 (28) .6 
6MWD m 398 (83) 396 (84) 400 (75) .8 
SGRQ 30 (21) 27 (20) 37 (23) .08 

BMI=body mass index; QoL=quality-of-life; SpO2=blood oxygen saturation; FEV1=forced 
expiratory volume in 1 second; %pred=percent of predicted value; FVC=forced vital capacity; 
RV=residual volume; TLC=total lung capacity; DLCO=diffusing capacity of lung for carbon-
monoxide; 6MWD=six minute walk distance; SGRQ=St. George’s respiratory questionnaire. 
p=uncorrected values showing significant differences between ∆FEV1 <60mL/yr and ∆FEV1 

≥60mL/yr groups. Significance level p<0.05. 

3.3.2 Imaging Measurements and Texture Features 

Table 3-3 summarizes quantitative MR imaging measurements and ranked texture features after 

feature selection step. Ex-smokers with accelerated lung function decline had significantly 

different gray level co-occurrence matrix (GLCM)-inverse difference moment normalized (Idmn) 

feature (p=.048), wavelet-low-low-pass (LL)-size zone matrix (SZM)-low gray level zone 

emphasis (LGLZE) feature (p=.01), wavelet-LL-run length matrix (RLM)-short run low gray level 

emphasis (SRLGLE) feature (p=.007), wavelet-LL-gray-level dependence matrix (GLDM)-short 

distance low gray level emphasis (SDLGLE) feature (p<.001). As summarized in Table 3-4, these 

subgroups did not have any statistically significant differences between imaging measurements at 

follow-up. Table 3-5 summarizes the texture feature descriptions and definitions.  
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Table 3-3. Imaging measurements of participants with stable and accelerated lung function 

decline 

Parameter 
Mean (±SD) 

All Participants 
(n=88) 

∆FEV1 <60mL/yr 
(n=57) 

∆FEV1 ≥60mL/yr 
 (n=31) 

p-
value 

MRI VDP % 12 (9) 11 (8) 14 (11) .2 
MRI ADC cm2/s 0.34 (0.10) 0.33 (0.08) 0.36 (0.12) .1 
∆VDP % 4 (5) 3 (5) 4 (5) .9 
∆ADC cm2/s 0.02 (0.04) 0.02 (0.04) 0.02 (0.05) .3 

Selected Texture Features    

Shape-MajorAxisLength 98.9 (7.5) 97.7 (7.7) 101.4 (7.1) .1 
CDD1 4771 (3212) 4316 (2751) 5528 (3097) .1 
GLCM-Idn .956 (.008) .958 (.008) .954 (.007) .095 
GLCM-Idmn .995 (.002) .995 (.002) .997 (.001) .048 
Wavelet-filtered      
   LL-SZM-LGLZE .00017 (.00010) .00015 (.00008) .00020 (.00010) .01 
   LL-RLM-SRLGLE .00017 (.00009) .00015 (.00008) .00020 (.00009) .007 
   LL-GLDM-SDLGLE .00016 (.00007) .00014 (.00006) .00019 (.00007) <.001 

MRI VDP=ventilation defect percent; ADC=apparent diffusion coefficient; CDD1=cluster-defect 
diameter of one voxel; GLCM=gray level co-occurrence matrix; SZM=size zone matrix; 
RLM=run length matrix; GLDM=gray-level dependence matrix; LL=low-low-pass filter; 
Idn=inverse difference normalized; Idmn=inverse difference moment normalized; LGLZE=low 
gray level zone emphasis; SRLGLE=short run low gray level emphasis; SDLGLE=small 
dependence low gray level emphasis.  
p=uncorrected values showing significant differences between ∆FEV1 <60mL/yr and ∆FEV1 
≥60mL/yr groups. Significance level p<0.05. 

 

Table 3-4. Imaging measurements of participants with stable and accelerated lung function 

decline at follow-up visit 

Parameter 
Mean (±SD) 

All Participants 
(n=88) 

∆FEV1 <60mL/yr 
(n=57) 

∆FEV1 ≥60mL/yr 
 (n=31) 

p-
value 

MRI VDP % 16 (13) 15 (9) 18 (14) .1 
MRI ADC cm2/s 0.35 (0.11) 0.34 (0.07) 0.36 (0.10) .4 
∆VDP % 4 (5) 3 (5) 4 (5) .9 
∆ADC cm2/s 0.02 (0.04) 0.02 (0.04) 0.02 (0.05) .3 

Selected Texture Features    

Shape-MajorAxisLength 97.9 (7.7) 97.5 (7.5) 99.8 (7.3) .6 
CDD1 5037 (3866) 4616 (2951) 6128 (3298) .2 
GLCM-Idn .956 (.008) .954 (.008) .957 (.007) .3 
GLCM-Idmn .995 (.002) .995 (.002) .996 (.001) .1 
Wavelet-filtered      
   LL-SZM-LGLZE .00016 (.00010) .00015 (.00008) .00019 (.00010) .2 
   LL-RLM-SRLGLE .00016 (.00010) .00015 (.00008) .00019 (.00010) .1 
   LL-GLDM-SDLGLE .00015 (.00008) .00014 (.00007) .00018 (.00008) .07 

MRI VDP=ventilation defect percent; ADC=apparent diffusion coefficient; CDD1=cluster-defect 
diameter of one voxel, GLCM=gray level co-occurrence matrix; SZM=size zone matrix; RLM=run 
length matrix; GLDM=gray-level dependence matrix; LL=low-low-pass filter; Idn=inverse 
difference normalized; Idmn=inverse difference moment normalized; LGLZE=low gray level zone 
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emphasis; SRLGLE=short run low gray level emphasis; SDLGLE=short distance low gray level 
emphasis. 
p=uncorrected values showing significant differences between ∆FEV1 <60mL/yr and ∆FEV1 
≥60mL/yr groups. Significance level p<0.05 

 

Table 3-5. MRI texture feature descriptors for machine-learning modelling 

Texture Feature Name Description 

Shape-Major Axis Length Measures the largest axis length of the ellipsoid within the ROI, 
calculated using the largest principal component, generated using 
the physical coordinates of the voxel centers defining the ROI. 

CDD1 Measures the number of spheres with diameter of one voxel that 
can fit within the unventilated region of the lung, as visualized on 
hyperpolarized gas MR imaging. 

GLCM-Idn Measures the local homogeneity of an image by normalizing the 
differences between the neighboring intensity values and dividing 
over the total number of discrete intensity values. 

GLCM-Idmn Measures the local homogeneity of an image by normalizing the 
square of the differences between neighboring intensity values and 
dividing over the square of the total number of discrete intensity 
values. 

LL-SZM-LGLZE Measures the distribution of low intensity gray-level size zones, 
with a higher value indicating a greater proportion of low gray-
level intensity values and size zones in the image. 

LL-RLM-SRLGLE Measures the joint distribution of shorter run lengths with low 
gray-level intensity values. 

LL-GLDM-SDLGLE Measures the joint probability distribution of small dependences 
with low gray-level intensity values. 

CDD1=cluster-defect diameter of one voxel; GLCM=gray level co-occurrence matrix; SZM=size 

zone matrix; RLM=run length matrix; GLDM=gray-level dependence matrix; Idn=inverse 

difference normalized; Idmn=inverse difference moment normalized; LL=low-low-pass filter; 

LGLZE=low gray level zone emphasis; SRLGLE=short run low gray level emphasis; 

SDLGLE=short distance low gray level emphasis.  

3.3.3 Machine learning Modeling 

As summarized in Table 3-6, the best performing machine learning model trained on demographic 

measurements (Age, Sex, BMI, % SpO2, Pack years and Years since quit) achieved 64% prediction 

accuracy. Best performing spirometry model (FVC, TLC, FEV1, %pred IC, SVC, and RV/TLC) 

was cosine KNN algorithm with 68% accuracy, which was not statistically different from the 

models based on demographics measurements. The texture-based model achieved the highest 

sensitivity (86%) and an 81% accuracy via the ensemble RUSBoosted trees algorithm, exclusively 
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trained on selected MR image texture features. The combined model achieved the highest accuracy 

of 82% using the Medium-Gaussian SVM algorithm, trained on FVC, Age, Shape-major axis 

length, GLCM-Idn, wavelet-LL-SZM-LGLZE, wavelet-LL-GLDM-SDLGLE.  

Table 3-6. Machine-learning performance at predicting accelerated lung function decline 

Best Performing Models AUC Sens. % Spec. % F1-score Acc. % 

Demographics model†      
Logistic Regression 0.64 66.7 46.2 75.7 63.6 
      
Spirometry model‡      
Cosine KNN 0.68 68.9 63.6 79.1 68.2 
      
Texture-based model§      
RUSBoosted Trees 0.80 85.7 71.9 85.5 80.7 
      
Combined model⸸      
Medium Gaussian SVM 0.81 80.6 85.7 87.1 81.8 

AUC=area under the receiver-operating curve; KNN=K-nearest neighbours; RUS=random 
under sampling; SVM=support vector machine. *Bold values indicate highest performance in a 
specific metric. 
†Variables used for training included: Age, Sex, BMI, % SpO2, Pack years and Years since quit. 
‡Variables used for training included: FVC, TLC, FEV1, %pred IC, SVC, and RV/TLC. 
§Features selected for training included: MRI cluster-defect diameter of one voxel (CDD1), 
Shape-major axis length, Gray Level Co-occurrence Matrix-Inverse difference normalized, Gray 
Level Co-occurrence Matrix-Inverse difference moment normalized, wavelet-low-low-Size Zone 
Matrix-Low Gray Level Zone Emphasis, wavelet-low-low-Run Length Matrix-Short Run Low Gray 
Level Emphasis, wavelet-low-low-Gray Level Dependence Matrix-Small Dependence Low Gray 
Level Emphasis. 
⸸Combined model included: FVC, Sex, Shape-major axis length, Gray Level Co-occurrence 

Matrix-Inverse difference normalized, wavelet-low-low-Size Zone Matrix-Low Gray Level Zone 

Emphasis, wavelet-low-low- Gray Level Dependence Matrix-Small Dependence Low Gray Level 

Emphasis. 

As summarized in Table 3-7, the machine learning models trained exclusively on MRI texture 

features outperformed the machine learning models trained using participant demographic and 

spirometry measurements (p<.05). In addition, the combined model trained on all available 

measurements also outperformed the demographic and spirometry-based models (p<.05); 

however, the performance of the combined model failed to show a significant difference (p=.9) to 

the machine learning models trained exclusively on MRI texture features.  
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Table 3-7. DeLong’s test for comparing the models for predicting accelerated disease 

progression in ex-smokers 

Best Model Comparisons p-value 

Demographics model vs Spirometry model 0.7 
Demographics model vs Texture-based model <.001 
Demographics model vs Combined model <.001 
Spirometry model vs Texture-based model .04 
Spirometry model vs Combined model .03 
Texture-based model vs Combined model 0.9 

Significance level p<0.05. 

The ensemble models outperformed the single machine learning models, indicating the presence 

of more complex and non-linear relationships of texture features and accelerated lung function 

decline. Logistic regression models for predicting accelerated lung function decline were 

generated for individual clinical and imaging texture measurements with the receiver-operator 

characteristic curve AUC, which is summarized in Figure 3-4. The best performing clinical 

measurements for predicting patients with accelerated FEV1 decline were FVC (AUC=.68) and 

TLC (AUC=.65). The overall best predictive measurement was wavelet-LL-GLDM-SDLGLE 

(AUC=.77), which also outperformed standard imaging measurements such as MRI VDP 

(AUC=.63). 
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Top Panel: Logistic regression analysis of individual top-performing demographic and spirometry 
variables at predicting ∆FEV1 ≥ 60mL/year in ex-smoker participants. 
Bottom Panel: Logistic regression of selected top-performing MR imaging and texture features at 
predicting ∆FEV1 ≥ 60mL/year. Individual texture features clearly outperformed established 
clinical variables available to physicians at predicting accelerated lung function decline. 
FVC=forced vital capacity; TLC=total lung capacity; FEV1=forced expiratory volume in 1 

second; LL=low-low pass filter; SDLGLE=short distance low gray level emphasis; 

SRLGLE=short run low gray level emphasis; Idmn=inverse difference moment normalized; 

CDD1=cluster-defect diameter of one voxel; LGLZE=low gray level zone emphasis; MAL=major 

axis length. 

Figure 3-4. Receiver-operator Characteristic Curves of Clinical and Texture Measurements 
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3.3.4 Relationships with Clinical Measurements 

Spearman correlations were used to evaluate the relationships between well-established clinical 

measurements and MRI texture features identified as significant predictors of clinically relevant 

FEV1 changes. As shown in Figure 3-5, the best performing clinical measurements of FVC and 

TLC correlated with ∆FEV1 between visits (ρ=-.24, p=.01; ρ=-.23, p=.03, respectively). Similarly, 

texture features from the original unfiltered image CDD1 and Shape-major axis length correlated 

with ∆FEV1 (ρ=-.20, p=.047; ρ=-.21, p=.046, respectively). The best performing wavelet-based 

texture feature LL-GLDM-SDLGLE exhibited the strongest correlation with ∆FEV1 (ρ=-.29, 

p=.006), and only the longitudinal change in this specific texture correlated with the clinically 

relevant changes in FEV1 (ρ=.27, p=.041). 
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Top Panel: Spearman correlation for FVC and TLC with ∆FEV1 (ρ=-.24, p=.01; ρ=-.23, p=.03, 

respectively) between baseline and follow-up visits. 
Middle Panel: Spearman correlation for custom CDD1 feature and Shape-Major Axis Length with 
∆FEV1 (ρ=-.20, p=.047; ρ=-.21, p=.046, respectively) between baseline and follow-up visits. 
Bottom Panel: Spearman correlation for Wavelet-LL-filtered-GLDM-SDLGLE and ∆Wavelet-
LL-filtered-GLDM-SDLGLE with ∆FEV1 (ρ=-.29, p=.006; ρ=.27, p=.041, respectively) between 
baseline and follow-up visits. 
FEV1=forced expiratory volume in 1 second, FVC=forced vital capacity, TLC=total lung 
capacity, CDD1=cluster-defect diameter of one voxel, LL=low-low pass filter, GLDM=gray level 
dependence matrix, SDLGLE=short distance low gray level emphasis. 
 

Figure 3-5. Relationships between Selected Texture Features and Change in FEV1 
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3.4 Discussion 

In this study, we developed an MRI texture analysis pipeline to reveal a subset of ventilation 

patterns that can help predict ex-smokers that will experience accelerated lung function decline. 

We observed that RUSBoosted trees algorithm trained solely on texture features outperformed all 

other existing models at predicting clinically relevant change in FEV1 (81% accuracy). Overall, 

ensemble machine learning classifiers outperformed single classifiers, indicating the existence of 

complex non-linear relationships between ventilation patterns and lung function. Our findings 

suggest that texture-based features provide unique information about early functional changes 

occurring in the lungs, which may be used alongside established clinical measurements to identify 

ex-smokers at-risk of accelerated lung function decline. 

We identified seven unique texture features residing within hyperpolarized 3He MR ventilation 

images in order to predict ex-smokers at risk of accelerated lung function decline. Standard MRI-

derived measurements were outperformed by MRI texture features during the feature selection 

step. While model test accuracy was moderate, sensitivity remained high, which underscores the 

potential of this approach and hyperpolarized noble gas MRI. The values and equations31 of 

extracted LGLZE, SRLGLE and SDLGLE texture features indicate that they collectively measure 

the distribution of low intensity values, or the clusters and sizes of poorly-ventilated regions. 

GLCM-Idn and Idmn texture features are measures of heterogeneity and may reflect ventilation 

patchiness and non-uniformity. The novel extracted CDD1 feature reflects the cumulative number 

of defect clusters of one voxel in size (5x5x5mm3) and describes defect clusters of low gray-level, 

or signal void regions. MRI texture analysis provides quantitative information related to the 

patterns of gas distribution in the ventilated lung; in contrast, the proposed novel measurements 
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analyze the unventilated regions of the lung, providing a holistic evaluation of the entire thoracic 

cavity volume on MRI. 

Our results showed that MRI ventilation texture features were often selected as the most important 

features for predicting rapid lung function decline, even in the combined model. Previous studies 

have shown that CT radiomics features are associated with lung function in COPD,8 emphysema 

severity,9 and provide additional complementary information to established quantitative CT 

measurements.10 In more recent COPD studies, CT texture features were able to predict rapid lung 

function decline,11 while the combination of CT and MR imaging texture features were able to 

predict 10-year mortality risk.40 To our knowledge, this study is the first to show that MRI 

ventilation texture features predict accelerated lung function decline across a relatively short three-

year period. Compared to previous studies predicting a clinically-relevant decline in FEV1 of 

≥60mL/year,17,18 our proposed model trained exclusively on MRI texture features exhibited a 

higher performance (AUC=.80) than existing clinical models by Lindberg et al. (AUC=.68)41 and 

CT radiomics-based models proposed by Makimoto et al. (AUC=.74).11 Furthermore, the best 

performing texture feature independently predicted and significantly correlated with longitudinal 

worsening in lung function. Interestingly, upon investigation only the longitudinal changes in this 

specific MRI wavelet-based SDLGLE texture feature corresponded and correlated with 

longitudinal worsening in lung function. We showed that MRI texture features change along with 

changes in lung function and can differentiate rapid progressors, while previous work showed that 

MRI textures can also predict future mortality.40 Taken together this suggests that MRI texture 

features offer unique information, not provided by established clinical measurements, and may 

serve as sensitive imaging biomarkers for early detection of patients at-risk of rapid worsening. 
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There were several study limitations. Our study included a relatively small sample size and 

regardless of statistical techniques to prevent overfitting (Univariate analysis, 5-fold cross-

validation, Boruta Analysis, etc.), the machine learning classifiers could be optimized using larger 

datasets in the future. The generalizability could be further enhanced by incorporating an external 

dataset; thus the generalizability of the machine learning models remains to be evaluated in future 

studies. Finally, the MR modality use in clinical settings is limited due to the availability and 

associated costs. Utility of hyperpolarized gas MRI is further limited due to additional personnel 

and equipment requirements. Therefore, although MRI-derived measurements provide unique 

prognostic value and are radiation-free, they are not nearly as readily available. However, with the 

recent FDA regulatory approval for the clinical use of 129Xe and associated equipment, we may 

see a shift in the near future in the utilization of MRI-derived measurements and biomarkers for 

evaluating lung diseases. 

3.5 Conclusions 

For the first time, machine learning and novel texture features from hyperpolarized 3He MRI 

ventilation images were used to predict ex-smokers who would experience accelerated FEV1 

decline over a short three-year period. Our work contributes to the growing body of evidence and 

is an important step for using imaging measurements to generate predictive models of lung 

function decline in ex-smokers with and without COPD. 
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CHAPTER 4 
 

4 CHEST MRI AND CT PREDICTORS OF 10-YEAR ALL-

CAUSE MORTALITY IN COPD 

To better understand the predictors of mortality, we evaluated conventional MRI and CT 

measurements and employed imaging texture analysis to predict all-cause mortality in ex-smokers 

with and without COPD after 10-years. We investigated if the incorporation of chest MRI and CT 

texture measurements would provide unique prognostic information and improve mortality risk 

assessments in these ex-smokers. 

The contents of this chapter were previously published in the journal of Chronic Obstruvtive 

Pulmonary Disease: M Sharma, PV Wyszkiewicz, AM Matheson, DG McCormack and G Parraga. 

Chest MRI and CT Predictors of 10-Year All-cause Mortality in COPD. Journal of Chronic 

Obstructive Pulmonary Disease (2023). https://doi.org/10.1080/15412555.2023.2259224. This 

article is available under the terms of the Creative Commons CC BY-NC License. 

4.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is among the leading causes of global mortality.1 

Currently, mortality risk is predicted using a variety of clinical-based models,2-4 the most common 

being the BODE index5 (Body-mass-index, Obstruction measured via forced-expiratory-volume-

in-one-second (FEV1), Dyspnea-score and Exercise limitation measured via six-minute-walk-

distance (6MWD)). A meta-analysis comparing various prognostic clinical models showed that 

compared to BODE, models based on the Age-Dyspnea-score-FEV1 (ADO) index4 may be 

stronger, but these were not statistically significantly different at predicting three-year survival.6 

Decades after the predictions of the Fletcher-Peto model,7 the spirometry measurement of FEV1 

remains the clinical measurement of global lung function that helps diagnose and stratify COPD 

severity.8-10  

The small airways are considered the major site of airflow limitation in COPD11 and spirometry 

measured at the mouth is not sensitive to small airway measurements. However, currently chest 

imaging measurements are not included in clinically-accepted mortality risk assessments, 
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diagnosis, prognosis, nor staging of COPD. Chest X-ray computed tomography (CT) provides 

quantitative measurements of airway wall thinning,12 luminal narrowing and obliteration,13 and 

parenchymal measurements of gas-trapping and terminal airspace enlargement or emphysema.14 

Recent studies stemming from the COPD Genetic Epidemiology study (COPDGene) cohort 

showed that in ever-smokers with emphysema, emphysema progression over 5-years was 

associated with all-cause mortality.15 Emphysema also worsened more quickly in COPD patients 

with pre-existing emphysema who continued to smoke.16 In addition, decreased number of distal 

vascular branches (i.e. pruning) on CT was associated with an increased mortality risk in both 

COPD and healthy adults.17 CT measurements of ex vivo lung tissue cores with micro-CT also 

suggested that COPD may initiate in the small airways and that small airway abnormalities precede 

the development of emphysema and airflow obstruction.18-21  

Qualitative visual CT scoring by radiologists shows a stronger association with both pulmonary 

function and mortality than standard quantitative CT measurements.22,23 This could, in part, be 

explained by visual estimates of emphysema describing both decreased tissue density and 

complexity of emphysema distribution (and the predominant emphysema type), which may only 

be identified by a highly-trained chest radiologist.24 Importantly, CT images consist of embedded 

electron-density textural features, which can be exploited using texture analysis tools to map voxel 

intensity (attenuation) and spatial relationships25 that are not easily identified by expert observers. 

In this regard, CT texture analysis and machine-learning tandems have been shown to predict 

COPD severity,26 progression,27 and showed stronger association with lung function compared to 

conventional densitometry measures.28,29 Imaging textures have also been shown to differentiate 

emphysema types30,31 and provided improved radiological finding assessments as a second-

reader.32 
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Pulmonary functional magnetic resonance imaging (MRI) using hyperpolarized helium (3He) and 

xenon (129Xe) gases provides a way to measure pulmonary microstructure, ventilation, perfusion, 

and gas-exchange.33-35 In patients with COPD, such MRI measurements of ventilation and 

parenchyma microstructure36,37 are predictive of acute exacerbations,38 airway narrowing and 

remodeling,39 and symptoms and severity;40,41 these measurements also correlate with longitudinal 

changes in quality-of-life.42 Importantly, MRI measurements are sensitive to COPD disease-

related changes in patients in whom CT and pulmonary function test results have not changed.43,44 

In addition, MRI ventilation texture features have been shown to predict longitudinal lung-function 

decline in ex-smokers with and without COPD.45 However, to the best of our knowledge, 

ventilation and diffusion-weighted MRI measurements and radiomics-based CT/MRI textures 

have not been investigated for the prediction of 10-year all-cause mortality in ex-smokers with and 

without COPD. 

Given all of this previous evidence, we hypothesized that, regardless of COPD status, 

incorporating chest MRI and CT measurements and image texture analysis in combination with 

machine-learning would provide unique prognostic information for mortality risk assessments in 

ex-smokers. Hence, here we evaluated MRI and CT measurements and employed imaging texture-

analysis to predict all-cause mortality in ex-smokers with and without COPD after 10-years. 

4.2 Materials and Methods 

4.2.1 Study Participants  

All participants provided written informed consent to a study protocol approved by a local research 

ethics board (Institutional Ethics Board #00000984) in compliance with the Health Canada 

approved and registered protocol (clinicaltrials.gov NCT02279329). All participants were 

recruited from a tertiary-care academic center and by advertisement in London, Canada between 
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2009 and 2012 as a convenience sample. These participants were followed for 10-years. Inclusion 

criteria were age of 50-85 years and a history of cigarette smoking >10 pack-years at baseline visit. 

Exclusion criteria included current smokers, claustrophobia and any contraindications for MRI or 

CT. Death dates were obtained from the health electronic record and survival time was calculated 

from the participant’s baseline visit date. Some longitudinal results from this study were previously 

reported.46-48 In contrast to previous evaluations, this study quantified CT and MR imaging texture 

features at baseline and their association with 10-year all-cause mortality.  

4.2.2 Pulmonary Function Tests and Questionnaires 

Spirometry, plethysmography and the diffusing capacity of the lungs for carbon monoxide (DLCO) 

were measured according to the American Thoracic Society/European Respiratory Society 

standardization document49 using a whole-body plethysmography system (MedGraphics 

Corporation, St Paul, MN, USA) and attached gas analyzer.46 COPD was defined as post-

bronchodilator spirometry according to the Global Initiative for Chronic Obstructive Lung Disease 

(GOLD) criteria.50 Abnormal DLCO was defined as DLCO <75%pred as previously reported.51 The 

6MWD52 test and St. George’s Respiratory Questionnaire (SGRQ)53 were administered under the 

supervision of study personnel. 

4.2.3 CT Acquisition and Analysis 

Thoracic CT was acquired using a 64-slice Lightspeed VCT scanner (GE Healthcare, Milwaukee, 

WI, USA) (64 × 0.625 mm, 120 kVp, 100 effective mA, tube rotation time= 500 ms, pitch= 1.25, 

reconstructed using a standard convolution kernel to 1.25 mm slice thickness, slices= 200-250), as 

previously described.54 Images were acquired in the supine position under breath-hold after 

inhalation of a 1L bag of N2 (from FRC lung volume) in order to match the lung volume for MRI. 
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Total effective dose was estimated as 1.8 mSv using the ImPACT CT patient dosimetry calculator 

(Health Protection Agency [UK] NRBP-SR250). CT data were quantitatively evaluated using 

VIDAvision2.2 software (VIDA Diagnostics Inc., Coralville, IA, USA) to quantify lung density 

using the relative area of lung less than -950 Hounsfield units (RA950), total lung volume (TLV) 

and create a binary lung mask. CT vessel measurements were automatically generated using Chest 

Imaging Platform (Brigham and Women’s Hospital, Boston MA).55 

4.2.4 MRI Acquisition and Analysis 

Anatomic proton (1H) and hyperpolarized 3He MR images were acquired using a whole-body 3.0 

Tesla Discovery MR750 system (GE Healthcare, Milwaukee, WI, USA), a whole-body 

radiofrequency coil and a fast gradient recalled echo (FGRE) sequence with a partial echo 

implementation, with acquisition parameters as previously described.56 Hyperpolarized 3He MRI 

was acquired using a linear bird‐cage transmit/receive chest coil (RAPID Biomedical GmbH, 

Wuerzburg, Germany). A commercial system (HeliSpin™, Polarean Inc, Durham, NC, USA) was 

used to polarize 3He gas to 30–40% and doses (5 mL/kg body weight) diluted with N2 were 

administered in 1L Tedlar® bags (from FRC lung volume). Hyperpolarized 3He MRI diffusion‐

weighted imaging was performed using a 2D multi-slice fast gradient-echo method, as previously 

described,56 during breath-hold for acquisition of two interleaved images with and without 

additional diffusion sensitization with b=1.6 sec/cm2 (maximum gradient amplitude [G]=1.94 

G/cm, rise and fall-time=0.5 ms, gradient duration=0.46 ms, diffusion time=1.46 ms).48 

MR images were evaluated for the measurement of ventilation defect percent (VDP) using semi-

automated custom-built software, as previously described.36 Briefly, the anatomic 1H and 

functional 3He images were first co-registered to segment and remove the large airways (trachea), 

then a k-means clustering approach was used to generate ventilation clusters, with the lowest 
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cluster representing ventilation defects as previously described.36 Ventilation abnormalities were 

quantified as the ventilation defect volume (VDV) and VDP was calculated as VDV normalized 

to the MRI-measured volume of the thoracic cavity.36 Diffusion-weighted images were 

automatically processed to generate apparent diffusion coefficient (ADC) values and images, after 

the removal of the large airways, as previously described.46 Abnormal 3He ADC was defined as 

ADC >0.25 cm2/s, as previously reported.57,58 

4.2.5 Texture Feature Extraction, Selection and Machine-learning 

CT images were first pre-processed by extracting the lungs and removing the large airways using 

the binary lung mask generated from the segmented CT images. Signal normalization was applied 

to the MR images, while a threshold between -1000 Hounsfield Units (HU) and 0 HU was applied 

to the CT images. The binary mask was applied to the segmented CT images in order to create 

regions of interest (ROI) for feature extraction. Similarly, the ROI from MR images was generated 

using the binary lung mask created by co-registering the 1H and 3He MRI acquisitions, as 

previously described.45 Next, 110 unique, unfiltered texture features were extracted in a voxel-by-

voxel manner from CT and MR images using the open-source PyRadiomics platform (version 

2.2.0).59 For the best compromise between differentiation and resolution, a fixed bin number 

(FBN) discretization approach60 was utilized to extract features between CT and MR modalities 

and ensure that textures are assessed against similar contrasts within the modality ROI, as 

previously described.61 Histogram and shape, first-, and higher-order texture features from run-

length, gap-length, size-zone, neighborhood-dependence and co-occurrence matrices were 

computed. In addition, 376 wavelet-based texture features were extracted using four high- and 

low-pass filter combinations applied to the original image in x- and y-directions for wavelet 

decomposition.62  
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To maximize the model generalizability and avoid overfitting, a combination of principal 

component analysis (PCA) and Boruta analysis63 were implemented for feature selection. Feature 

selection step is primarily required for removing any redundant features and/or misleading data 

for improved modelling accuracy and also used for dimensionality reduction of data, enabling 

more efficient computations. Feature selection included the generation of nine components from 

PCA, which explained >94% of the variance in the data. Components were generated using 

principal component scores for each participant using a Varimax rotation method with Kaiser-

normalization that converged after 38 iterations.  

All variables in the models, including the texture features and emergent components generated for 

every participant, were subjected to Boruta analysis for ranking. The Boruta algorithm generated 

shadow features for comparisons and used a two-step correction for multiple testing, with an 

optimizable random forest classifier for iterations (number of trees in the forest=150, maximum 

iterations=200, maximum tree depth=10 [branches], percentage of shadow feature threshold=95%, 

alpha-level=0.05). 

Once all the features and parameters were selected, four machine-learning models were generated 

using: 1) clinical measurements, 2) imaging measurements, 3) image texture measurements, and 

4) a combination of all available measurements. Five-fold cross-validation was performed to avoid 

overfitting or selection bias of the machine-learning models during the training step. During cross-

validation, all participant data (n=162) were randomly and evenly divided into five groups 

(n=32/33) and for each of the “folds”, one group was withheld for testing and remaining groups 

were used for training iteratively. Each fold utilized a different combination of testing and training 

groups in order to avoid data contamination and insure that no information was carried over from 

training to testing steps. Single (Naïve Bayes,64 Support Vector Machines [SVM],65 Decision 
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Trees,66 K-Nearest Neighbours [KNN]66) and ensemble (Bagged Trees,67 subspace Discriminant,68 

subspace K-Nearest-Neighbours,68 and Random Under-Sampling Boosted Trees [RUSBoosted]69) 

machine-learning classifiers were implemented for predicting 10-year all-cause mortality in ex-

smokers. Data were standardized and hyperparameter search was performed using 

MATLAB2021a (Classification Learner App) for every machine-learning model. Classification 

performance was evaluated using the mean of the respective 5-fold cross-validation area under the 

receiver-operator characteristic curve (AUC), as well as sensitivity and specificity calculated from 

model’s confusion matrix. 

4.2.6 Statistical Analysis 

Statistical analysis was performed using SPSS Statistics v28.0 (IBM Statistics, Armonk, New 

York, USA). Predictors of 10-year all-cause mortality were evaluated using binary logistic 

regression to generate odds ratios (OR). Shapiro-Wilk tests were used to determine the normality 

of the data. The p-value significance was determined using the Mann-Whitney U-test for non-

parametric data, and a post-hoc analysis using Holm-Bonferroni correction was applied for 

multiple comparison tests for the selected texture features. Statistical significance was considered 

using a 5% Type-I error threshold (p<0.05).  

4.3 Results 

4.3.1 Participant Demographics and Mortality 

A CONSORT diagram provided in Figure 4-1 shows that 266 ex-smokers were enrolled and 99 

were excluded from analysis due to enrollment in a sub-study using oscillatory positive expiratory 

pressure device (n=33), due to cancellation or not completing all protocol tests (n=61), and due to 

poor image quality (n=5). In addition, five participants were excluded because 10-year follow-up 
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was outside the Dec 2009-2022 window. As shown in Figure 4-2, the last participant enrolled on 

December 12th 2012 and the mortality data window closed on December 13th, 2022.  

 

Of the 266 participants enrolled in the TINCan study, 33 were enrolled in a sub-study, 61 either 
cancelled or did not complete all required tests during visit 1, and five had CT or MRI artifacts 
which precluded analysis. Of the 167 participants who completed Visit 1, five were not yet within 
their 10-year follow-up timeframe. At follow-up, there were 52 deceased participants, of whom 14 
were ex-smokers and 38 were ex-smokers with COPD. 

Figure 4-1. CONSORT flow diagram 
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Arrows showing the timeline of participant enrolment and follow-up period for mortality data 
collection within 10-years from the initial visit in all ex-smoker participants. Of the 162 ex-
smokers analyzed, the first participant completed the baseline visit on December 1st, 2009 and the 
last participant completed their baseline visit on December 12th, 2012.  

Demographic, clinical and imaging data for survivor and deceased ex-smoker subgroups are 

provided in Table 4-1 and summarized by COPD status in Table 4-5 (online supplement). In total, 

162 ex-smokers were evaluated, including 93 ex-smokers with spirometry evidence of COPD and 

69 ex-smokers without COPD. As shown in Table 4-1, 52/162 (32%) ex-smokers died within the 

10-year window. Just over half of these (20/52, 53%) had CT evidence of emphysema, defined by 

the published threshold, RA950 >6.8%.70 There were no significant differences between survivors 

and deceased participants for sex, pack-years, total lung capacity, and the CT measurements of 

emphysema (lowest attenuating cluster) and the pulmonary vasculature (total blood volume, 

volume of blood in small and mid-sized vessels). 

Figure 4-2. Participant enrollment and follow-up timeframe 
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Table 4-1. Participant demographics, pulmonary function and imaging measurements in 

survivors and deceased ex-smokers 

Parameter  

mean(±SD) 

All 

 (n=162) 

Survivors 

(n=110)  

Deceased  

 (n=52) 
p-value 

Age [years] 71 (9) 69 (9) 73 (8) .001 
Females [n(%)]  62 (37) 42 (36) 20 (38) .3 
Pack Years  39 (25) 37 (23) 41 (27) .4 
BMI [kg/m2] 28 (4) 28 (4) 26 (5) .01 
FEV1 [%pred] 80 (22) 81 (25) 65 (30) .001 
FEV1/FVC  60 (18) 66 (16) 53 (21) <.001 
TLC [L] 6.6 (1.3) 6.7 (1.2) 6.5 (1.5)  .3 
RV/TLC 47 (11) 44 (12) 52 (11) .001 
DLCO [%pred] 63 (22) 70 (21) 49 (19) <.001 
6MWD [meters] 384 (97) 407 (81) 335 (104) <.001 
SGRQ [score] 33 (21) 29 (20) 44 (19) <.001 
Without COPD [n(%)] 69 (41) 55 (48) 14 (27) .007 
With COPD [n(%)] 98 (59) 60 (52) 38 (73) .01 
GOLD Severity     
   GOLD I [n(%)] 22 (14) 17 (15) 5 (9) .3 
   GOLD II [n(%)] 42 (26) 29 (26) 13 (25) .7 
   GOLD III [n(%)] 22 (14) 8 (7) 14 (27) .004 
   GOLD IV [n(%)] 7 (4) 1 (1) 6 (11) - 

CT and MR Imaging Measurements   
3He VDP [%] 13 (10) 11 (9) 16 (11) .002 
3He ADC [cm2/s] .35 (.11)  .32 (.09) .41 (.12) <.001 
HU15th Percentile -914 (33) -908 (29) -927 (26) .005 
LAC -1.9 (.3) -1.9 (.3) -1.8 (.3) .1 
TBV [ml] 265 (59) 264 (57) 272 (73) .2 
BV5 [ml] 115 (28) 117 (26) 109 (31) .07 
BV5-10 [ml] 60 (16) 59 (14) 62 (20) .3 
BV10 [ml] 89 (32) 86 (3) 101 (4) .007 
BV5/TBV [%] 44 (8) 45 (7) 40 (9) .003 
BV5-10/TBV [%] 22 (3) 22 (3) 22 (4) .7 
BV10/TBV [%] 33 (6) 32 (5) 36 (8) <.001 
RA950 [%] 6.8 (9.2) 4.6 (6.1) 11.7 (12.5) <.001 
Emphysema [n(%)] 50 (31) 30 (25) 20 (53) .03 

BMI=body mass index; FEV1=forced expiratory volume in 1 second; %pred=percent of predicted 
value; FVC=forced vital capacity; RV=residual volume; TLC=total lung capacity; 
DLCO=diffusing capacity of lung for carbon-monoxide; 6MWD=six minute walk distance; 
SGRQ=St. George’s respiratory questionnaire; GOLD= Global Initiative for Chronic Obstructive 
Lung Disease; TBV=Total blood volume; BV5=vessel volume for vessels less than 5 mm2; BV5-
10=vessel volume for vessels between 5-10 mm2; BV10=vessel volume for vessels greater than 10 
mm2; LAC=lowest attenuating cluster; RA950=relative area of lung less than -950 Hounsfield 
Units; ADC=apparent diffusion coefficient; VDP=ventilation defect percent. 
p=uncorrected values showing significant differences between survivor and deceased ex-smokers. 
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4.3.2 Texture Extraction and Selection 

Table 4-2 shows the six MRI and seven CT texture features which were the highest performing 

machine-learning predictors of 10-year all-cause mortality. Texture feature predictors were 

grouped into fine and coarse textures based on their mathematical definitions and are described in 

Table 4-6. As shown in Table 4-7, most of these texture features were significantly correlated 

with clinically-relevant measures (BMI, FEV1, 6MWD, and SGRQ). Figure 4-3 and Figure 4-4 

provide context for the CT and MRI textures respectively. Figure 4-3 shows coronal chest CT 

slices and in the inserts, representative ROI and example textures. In the survivor with COPD (top 

panel: S13), there was negligible CT evidence of emphysema (RA950=10.8%) and the CT texture 

was visually homogeneous (eg. GLCM-Imc2=.77) similar to a survivor without COPD (top panel: 

S11, GLCM-Imc2=.76). In contrast, for the deceased ex-smoker with COPD and quantitative 

evidence of emphysema (RA950=24.9%) (bottom panel: S35, GLCM-Imc2=.84) and deceased ex-

smoker with no evidence of COPD (bottom panel: S50, GLCM-Imc2=.82), CT textures appeared 

patchy and heterogeneously coarse.  

Table 4-2. MRI and CT texture features in survivors and deceased ex-smokers 

Parameter 
Mean (±SD) 

All 
(n=162) 

Survivors 
(n=110)  

Deceased  
 (n=52) 

 *p-value 

Coarse textures     

MRI FO-Skewness .77 (.46) .63 (.38) 1.06 (.49) <.001 
MRI Shape-SVR .49 (.10) .47 (.09) .52 (.13) .02 
MRI W-LL-FO-Kurtosis 3.68 (2.06) 3.25 (0.99) 4.58 (3.17) .01 
MRI W-LL-Cluster Shade 673 (765) 465 (539) 1110 (970) <.001 
MRI W-LL-FO-Skewness .75 (.47) .61 (.38) 1.04 (.49) <.001 
MRI GLCM-Idn .996 (.001) .996 (.001) .995 (.001) <.001 
CT Shape-Sphericity .455 (.069) .447 (.060) .473 (.084) .052 
CT RLM-Run Percentage .944 (.009) .948 (.010) .940 (.013) .001 

Fine textures     

CT GLCM-Imc1 -.09 (.03) -.09 (.02) -.11 (.02) <.001 
CT GLCM-Imc2 .79 (.06) .77 (.05) .82 (.06) <.001 
CT W-HH-GLDM-DV .80 (0.24) .74 (0.21) .92 (0.26) <.001 
CT W-HH-Run Variance .12 (.05) .11 (.04) .15 (.05) <.001 
CT W-LL-GLCM-Imc1 -.12 (.02) -.12 (.01) -.14 (.02) <.001 
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VDP=ventilation defect percent; ADC=apparent diffusion coefficient; LAC=lowest attenuating 
cluster; TBV=Total blood volume; BV5=vessel volume for vessels less than 5 mm2; BV5-10=vessel 
volume for vessels between 5-10 mm2; BV10=vessel volume for vessels greater than 10 mm2; 
RA950=relative area of lung less than -950 Hounsfield Units; FO=first order features; SVR=surface 
to volume ratio; W=wavelet; GLCM=gray level co-occurrence matrix; Idn=inverse difference 
normalized; LL=low-low-pass filter; HH=high-high-pass filter; RLM=run length matrix; 
Imc2=informational measure of correlation; GLDM=gray level dependence matrix; 
DV=dependence variance; All selected texture feature abbreviations and descriptions can be found 
in supplementary Table 4-6. 
*Holm-Bonferroni corrected p-values. 

Coronal center-slice of chest CT and the corresponding qualitative CT texture heterogeneity. Top 
panel: A 63 yo male ex-smoker with COPD: FEV1=72% pred, FEV1/FVC=50, BMI =27 kg/m2, 
DLCO=79%pred, ADC=0.38 cm2/s, VDP=10%, RA950=10.8%, GLCM-Imc2=.77, Wavelet-HH-
GLDM-DV=.812; And a 66 yo female ex-smoker: FEV1=80%pred, FEV1/FVC=76, BMI =36 

Figure 4-3. Chest CT for representative surviving and deceased ex-smokers with and without 

COPD 
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kg/m2, DLCO=80%pred, ADC=0.24 cm2/s, VDP=5.4%, RA950=2.3%, GLCM-Imc2=.76, Wavelet-
HH-GLDM-DV=.766; Bottom panel: A 78 yo male ex-smoker with COPD that died: 
FEV1=38%pred, FEV1/FVC=39, BMI =20 kg/m2, DLCO=30%pred, ADC=0.55 cm2/s, VDP=28%, 
RA950=24.9%, GLCM-Imc2=.84, Wavelet-HH-GLDM-DV=1.14; And a 64 yo female ex-smoker 
that died: FEV1=111%pred, FEV1/FVC=82, BMI=36 kg/m2, DLCO=68%pred, ADC=0.26 cm2/s, 
VDP=4.5%, RA950=1.2%, GLCM-Imc2=.82, Wavelet-HH-GLDM-DV=1.02. 

Figure 4-4 shows coronal MRI ADC and ventilation slices and in the inserts, representative ROI 

and example MRI ventilation textures. In the representative survivor with COPD (top panel: S13, 

mean ADC=0.38 cm2/s, VDP= 10%, Wavelet-LL-FO-Skewness=.58) and survivor without COPD 

(top panel: S11, mean ADC=0.24 cm2/s, VDP=5.4%, Wavelet-LL-FO-Skewness=.81), MRI 

ventilation textures were visibly homogenous. In contrast, in the deceased ex-smoker with COPD 

(bottom panel: S35, mean ADC=0.55 cm2/s, VDP=28%, Wavelet-LL-FO-Skewness=2.1) and ex-

smoker without COPD (bottom panel S50, mean ADC=0.26 cm2/s, VDP=4.5%, Wavelet-LL-FO-

Skewness=1.25), MRI ventilation textures were heterogeneous and patchy. 
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Coronal center-slice of MRI ADC and ventilation with corresponding qualitative and quantitative 
MRI texture heterogeneity. Top panel: A 63 yo male ex-smoker with COPD: FEV1=72%pred, 
FEV1/FVC=50, BMI=27 kg/m2, DLCO=79%pred, ADC=0.38 cm2/s, VDP=10%, RA950=10.8%, 
Shape-SVR=.43, Wavelet-LL-Skewness=0.58; And a 66 yo female ex-smoker: FEV1=80%pred, 
FEV1/FVC=76, BMI=36 kg/m2, DLCO=80%pred, ADC=0.24 cm2/s, VDP=5.4%, RA950=2.3%, 
Shape-SVR=.45, Wavelet-LL-Skewness=.81; Bottom panel: A 78 yo male ex-smoker with COPD 
that died: FEV1=38%pred, FEV1/FVC=39, BMI=20 kg/m2, DLCO=30%pred, ADC=0.55 cm2/s, 
VDP=28%, RA950=24.9%, Shape-SVR=.62, Wavelet-LL-Skewness=2.1; And a 64 yo female ex-
smoker that died: FEV1=111%pred, FEV1/FVC=82, BMI=36 kg/m2, DLCO=68%pred, ADC=0.26 
cm2/s, VDP=4.5%, RA950=1.2%, Shape-SVR=.48, Wavelet-LL-Skewness=1.25. 

Figure 4-4. Hyperpolarized gas MRI for representative surviving and deceased ex-smokers 

with and without COPD 
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4.3.3 Predicting 10-year All-cause Mortality 

As shown in Table 4-3, machine-learning prediction models for 10-year all-cause mortality were 

generated using: 1) clinical measurements, 2) imaging measurements, 3) image texture 

measurements, and 4) a combination of clinical and imaging measurements. The best performing 

clinical model (77% accuracy) was based on age, pack years, BMI, FEV1 %pred, TLC, DLCO %pred, 

6MWD and SGRQ score. The best performing imaging-based model (77% accuracy), included 

MRI VDP and ADC as well as CT HU15th percentile, TBV, BV5/TBV, BV10, BV10/TBV, and 

%RA950. The predictive model based exclusively on imaging texture features outperformed both 

clinical and imaging-based models (80% accuracy). Finally, the combined clinical-imaging model 

had the overall best performance (83% accuracy) which included: DLCO, MRI ADC, as well as 

MRI and CT texture features.  

Table 4-3. Machine-learning performance at predicting all-cause mortality after 10-years 

Best Performing Models     AUC       Sensitivity (%)     Specificity (%)     Accuracy (%) 

Clinical model†     
Medium Gaussian SVM 0.76 76.8 79.1    77.2 
     
Imaging model‡     
Cosine KNN 0.75 77.7 71.8    76.5 
     
Texture-based model§     
Subspace KNN 0.80 80.4 79.4    80.2 
     
Combined model⸸     
Subspace Discriminant 0.82 82.8 84.3    83.3 

AUC=area under the receiver-operating curve; KNN=K-nearest neighbours; SVM=support vector 
machine. 
†Variables used for training included: Age, Pack years, BMI, %pred FEV1, TLC, %pred DLCO, 
6MWD and SGRQ score. 
‡Variables used for training included: 3He VDP, 3He ADC, HU15th percentile, TBV, BV5/TBV, 
BV10, BV10/TBV, and % RA950. 
§Features selected for training included: MRI wavelet-low-low-First-order-Skewness, MRI 
wavelet-low-low-kurtosis, CT gray level co-occurrence matrix (GLCM)-informational measure of 
correlation (Imc2), CT wavelet-high-high-gray-level dependence matrix (GLDM)-dependence 
variance, CT wavelet-high-high-Run variance, CT wavelet-low-low-first-order-skewness, CT 
wavelet-low-low-GLCM-Imc1. 
⸸Combined model included: DLCO, ADC, MRI Wavelet-LL-FO-Skewness, CT LL-GLCM-Imc1, 
CT Shape-Sphericity, CT Wavelet-HH-GLDM-Dependence variance and MRI Wavelet-LL-FO-
Kurtosis. 
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In Figure 4-5, logistic regression models are shown in receiver operator characteristic (ROC) 

curves of all-cause mortality for individual clinical (top panel), imaging (middle panel) and 

imaging texture (lower panel) measurements. The best performing individual measurements 

included DLCO (AUC=.736), MRI ADC (AUC=.738) and CT Wavelet-LL-GLCM-Imc1 

(AUC=.787).  
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Top Panel: Logistic regression analysis of individual clinical variables at predicting 10-year all-
cause mortality in ex-smoker participants. DLCO had the best AUC=.736. 
Middle Panel: Logistic regression analysis of standard imaging measurements at predicting 10-
year all-cause mortality in ex-smoker participants. 3He ADC had the best AUC=.738. 
Bottom Panel: Logistic regression analysis of imaging texture features at predicting 10-year all-
cause mortality in ex-smoker participants. CT Wavelet-LL-GLCM-Imc1 had best AUC=.787. 

 

Figure 4-5. Receiver-operator characteristic curves of texture features and clinical variables 



 

145 

 

Figure 4-6 shows a forest plot for associations adjusted for confounders (age, BMI, sex, and pack-

years). The increased risk of 10-year all-cause mortality was strongly associated with the CT 

texture feature GLCM-Imc2 (OR=3.546 [per 0.1 change], p=.001) and MRI ADC (OR=1.843 [per 

0.1 cm2/s change], p<.001).  

 

All-cause mortality assessment was conducted in 162 ex-smokers, of whom 52 deceased across 
the longitudinal study duration (10-years). Bolded values indicate categories where 95% CI did 
not include 1.0 (P<0.05). *All odds ratios were adjusted for age, BMI, sex, and pack-years. 
GLCM=gray level co-occurrence matrix; 6MWD=six minute walk distance; ADC=apparent 
diffusion coefficients; DLCO=diffusing capacity of the lung for carbon monoxide; GLDM=gray 
level dependence matrix; HH=high-high pass filter; LL=low-low pass filter; SVR=Surface volume 
ratio; DV=dependence variance; RV=run variance; FEV1=forced expiratory volume in 1 second; 
FVC=forced vital capacity; SGRQ=St. George’s respiratory questionnaire; LAC=lowest 
attenuating cluster; RA950=relative area of lung less than -950 Hounsfield Units; All texture feature 
abbreviations and descriptions can be found in supplementary Table 4-6. 

Figure 4-6. Logistic regression models for associations between all-cause mortality and 

clinical, imaging and textural measurements 
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Kaplan-Meier curves provided in Figure 4-7 show that ex-smokers with abnormal DLCO, (log-

rank χ2=11.95, p<.001), MRI ADC (log-rank χ2=6.38, p=.01) and an MRI texture (highest tertile 

wavelet-LL-FO-Skewness; χ2=21.81, p<.001) had a significantly greater risk of death.  

Orange: All-cause mortality analysis in ex-smokers with normal vs abnormal MRI ADC 

(ADC<0.25cm2/s). Log-rank (Mantel-Cox) test χ2=6.38; P=.01. 
Black: All-cause mortality analysis in ex-smokers with normal vs abnormal DLCO 
(DLCO<75%pred). Log-rank (Mantel-Cox) test χ2=11.95; P <.001. 
Green: All-cause mortality analysis in ex-smokers with tertiles of the MRI Wavelet-LL-FO-

Skewness texture feature. Log-rank (Mantel-Cox) test across all tertiles: χ2=22.43; P <.001. Log-

rank test between tertile-Low and tertile-Medium: χ2=7.86; P=.005. Log-rank test between tertile-

Medium and tertile-High: χ2=4.99; P=.02. Log-rank test between tertile-Low and tertile-High: 

χ2=21.81; P <.001. 

Table 4-4 summarizes the best performing measurements in descending order, across the key 

statistical tests and models generated. The common top performing measurements were DLCO, 

MRI-ADC, MRI-Wavelet-LL-FO-Skewness and CT-GLCM-Imc2. 

Figure 4-7. Kaplan-Meier survival curves of 10-year all-cause mortality in ex-smokers 
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Table 4-4. Summary of top performing measurements for the key statistical analyses 

Statistical Test Measurement Result 

ROC analysis CT-W-GLCM-Imc1 
MRI-W-Skewness 
CT-GLCM-Imc2 

ADC 
DLCO 
RA950 

AUC=0.787 
AUC=0.771 
AUC=0.744 
AUC=0.738 
AUC=0.736 
AUC=0.691 

Logistic regression 
analysis 

CT-GLCM-Imc2 
ADC 

MRI-W-Skewness 
MRI-SVR 

MRI-W-Kurtosis 
DLCO 

OR=3.55 
OR=1.84 
OR=1.63 
OR=1.60 
OR=1.59 
OR=0.955 

Kaplan-Meier analysis MRI-W-Skewness 
CT-GLCM-Imc2 

DLCO 
ADC 

χ2=21.81 (1st vs 3rd tertile) 
χ2=17.67 (1st vs 3rd tertile) 

χ2=11.95 
χ2=6.38 

Combined ML model MRI-W-Skewness 
CT W-GLCM-Imc1 
CT Shape-Sphericity 

CT W-GLDM-Dependence variance 
MRI W-FO-Kurtosis 

ADC 
DLCO 

AUC=0.82 
Sensitivity=82.8% 
Specificity=84.3% 
Accuracy=83.3% 

ADC=apparent diffusion coefficient; DLCO=diffusing capacity of lung for carbon-monoxide; 
RA950=relative area of lung less than -950 Hounsfield Units; FO=first order features; SVR=surface 
to volume ratio; W=wavelet; GLCM=gray level co-occurrence matrix; Idn=inverse difference 
normalized; Imc2=informational measure of correlation; ML=machine-learning; GLDM=gray 
level dependence matrix; DV=dependence variance; All selected texture feature abbreviations and 
descriptions can be found in supplementary Table 4-6. 

4.4 Discussion 

A recent investigation in patients with COPD71 showed that unsupervised learning of chest CT 

measurements improved predictions of progression, exacerbation, and mortality risk. Another 

recent study72 showed that machine learning models of clinical and CT imaging measurements 

outperformed the current standard (BODE and ADO indices) for predicting all-cause mortality.  

Our investigation focused on predicting 10-year all-cause mortality in ex-smokers at risk of COPD 

and those with spirometry evidence of COPD and provides a number of key advantages relative to 
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previous work including: 1) the addition of volume-matched MRI ventilation and ADC 

measurements, 2) MRI and CT texture features generated from images acquired within a few 

minutes of one another to capture structural and functional information, 3) inclusion of ex-smokers 

at-risk of COPD, and, 4) 10-year follow-up. 

We applied machine-learning algorithms to generate models for predicting all-cause mortality 

using clinical, CT, MRI and imaging textures. We observed that a combined model consisting of 

DLCO, MRI ADC and image textures, outperformed all other models. Surprisingly, none of the 

individual components of the BODE index were included in the “best performing” model after the 

feature selection step. Ensemble machine-learning models outperformed single machine-learning 

models, suggestive of complex, non-linear relationships between the individual imaging textures 

and mortality. 

We were surprised to observe that the strongest individual imaging predictor was MRI ADC 

(AUC=.74), which outperformed all the individual components of the BODE index (except 

mMRC which was not measured) and all CT measurements. In fact, mortality risk increased by 

84% for every 0.1 cm2/s increase in the ADC value, which underscores the high sensitivity of ADC 

measurements to terminal airspace enlargement due to air-trapping, emphysema or both.43,46 This 

result also agrees with the COPDGene study results, whereby emphysema progression over 5-

years was associated with mortality in ever-smokers with trace emphysema.15 This result also 

agrees with the finding that the MRI ADC measurement is highly sensitive to terminal airspace 

enlargement as previously shown43 and by comparison with histological measurements of the 

mean linear intercept.73  

We observed that one of the “fine” CT textures (GLCM-Imc2) had the strongest independent 

association with 10-year all-cause mortality, which after adjusting for confounders resulted in a 
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three-fold increased mortality risk (OR=3.55, p=.001). Such “fine” CT textures may be intuitively 

considered as reflecting tissue attenuation heterogeneity. To provide context, previous work 

demonstrated that the spatial arrangement of low attenuating voxels, or the size and arrangement 

of emphysematous clusters can differentiate patients with similar COPD disease severity.74 

However, unlike a more commonly used CT measurement of emphysema, RA950, CT texture 

features reflect complex spatial heterogeneity, which may be argued is more sensitive to 

emphysema31,75 and perhaps similar to what is often visually interpreted as emphysema by expert 

chest CT radiologists.24 In contrast throughout this study, all MRI texture features selected were 

“coarse” and could be considered as reflecting the compactness and asymmetry of the ventilation 

distribution in the lungs.  

Underscoring the power of MRI and CT measures as predictors of all-cause mortality, forest plots 

revealed significant associations with mortality for all selected MRI/CT textures, CT vascular 

measurements and MRI ADC. These results are consistent with those of recent studies reporting 

that CT emphysema15,71,72 and vascular17,55,76 measurements are associated with mortality and 

disease progression in COPD. Our findings contribute to the growing body of evidence about the 

utility of imaging for the management of patients at risk for, and with, a diagnosis of COPD. 

In agreement with the ROC analysis and forest plots, Kaplan-Meier curves revealed that ex-

smokers with abnormal DLCO, MRI ADC and a specific MRI texture were at greatest risk of 

mortality. Of note, across all models, the measurements which remained significant and highly 

associated with 10-year mortality were DLCO, MRI ADC, MRI Wavelet-LL-FO-Skewness and CT 

GLCM-Imc2. These consistent observations are indicative of the added-value of imaging 

measurements and textures for mortality risk assessments in ex-smokers with and without COPD. 
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We acknowledge a number of study limitations. First, direct comparison of our results with the 

BODE index should be undertaken with caution because we did not acquire the modified Medical 

Research Council dyspnea-score component of the BODE index. Second, our study included a 

relatively small sample size compared to other CT studies.77,78 Fortunately, we employed methods 

to avoid overfitting so the machine-learning methods we used may be generalized with larger 

datasets and multicenter data in the future. We also acknowledge that lung imaging measurements 

are influenced by lung volume,79 and in this study, data were captured at FRC+1L which for many 

ex-smokers is within 90% of TLC.79,80 Finally, the availability of functional MRI for chest imaging 

is still limited to research sites. Thus, while such quantitative MR measurements are very helpful, 

CT measurements are certainly more readily available and generalizable to most clinical centres. 

Inclusion of at risk ex-smokers may help identify individuals who are at high-risk of death and can 

potentially be included in clinical trials.81 It is well established that asymptomatic ex-smokers with 

mildly abnormal DLCO are at-risk of developing COPD within four years.51 The abnormal MRI 

ADC values reported here have been shown to reflect mild air-trapping and/or subclinical 

emphysema.82 Unfortunately, we did not make small airways disease measurements, so we are 

unable to comment on whether small airway abnormalities have already initiated in these 

participants with normal spirometry.18-21 What we do know is that 14/69 (20%) of ex-smokers and 

38/93 (41%) of COPD participants were deceased after 10 years and that similar MRI and CT 

measurements and textures indicative of emphysema helped explain risk. The results presented 

here expand on previous CT findings in COPD15,17,55,71,72,76 and extend the application of such 

imaging measurements to ex-smokers without, but at risk of COPD. 



 

151 

 

4.5 Conclusion 

In ex-smokers, regardless of COPD status, DLCO, CT and MR imaging measurements and textures 

resulted in high accuracy models for predicting mortality risk. Texture measurements provide a 

way to reveal MRI and CT lung pathologies that are not visible to the human eye and may help 

predict 10-year all-cause mortality in ex-smokers. 
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4.7 Supplemental Material 

4.7.1 Supplementary Tables 

Table 4-5. Participant demographics, pulmonary function and imaging by COPD status 

Parameter  

mean(±SD) 

All 

 (n=162) 

COPD 

(n=93)  

Ex-smokers  

 (n=69) 
p-value 

Age [years] 71 (9) 70 (9) 69 (9) .2 
Females [n(%)]  62 (37)  31 (33) 29 (42) .3 
Pack Years  39 (25) 46 (27) 29 (16) <.001 
BMI [kg/m2] 28 (4) 26 (4) 29 (4) <.001 
FEV1 [%pred] 80 (22) 62 (24) 99 (18) <.001 
FEV1/FVC  60 (18) 50 (12) 80 (6) <.001 
TLC [L] 6.6 (1.3) 7.1 (1.3) 6.1 (1.1)  <.001 
RV/TLC 47 (11) 50 (11) 41 (11) <.001 
DLCO [%pred] 63 (22) 54 (20) 78 (20) <.001 
6MWD [meters] 384 (97) 372 (90) 404 (94) .03 
SGRQ [score] 33 (21) 40 (20) 24 (22) <.001 
GOLD Severity     
   GOLD I [n(%)] 22 (14) 22 (23) -  
   GOLD II [n(%)] 42 (26) 42 (45) -  
   GOLD III [n(%)] 22 (14) 22 (23) -  
   GOLD IV [n(%)] 7 (4) 7 (7) -  

CT and MR Imaging Measurements   
3He VDP [%] 13 (10) 18 (10) 7 (5) <.001 
3He ADC [cm2/s] .35 (.11)  .41 (.10) .28 (.04) <.001 
HU15th Percentile -914 (33) -934 (25) -887 (23) <.001 
LAC -1.9 (.3) -1.8 (.4) -2.0 (.3) .1 
TBV [ml] 265 (59) 270 (59) 259 (60) 1.0 
BV5 [ml] 115 (28) 114 (30) 116 (27) 1.0 
BV5-10 [ml] 60 (16) 61 (16) 59 (18) 1.0 
BV10 [ml] 89 (32) 94 (33) 83 (29) .2 
BV5/TBV [%] 44 (8) 42.7 (8.6) 45.5 (7.7) .2 
BV5-10/TBV [%] 22 (3) 22.4 (3.6) 22.6 (3.4) 1.0 
BV10/TBV [%] 33 (6) 34.8 (6.7) 31.7 (5.2) .01 
RA950 [%] 6.8 (9.2) 10.9 (10.3) 1.2 (1.1) .001 

BMI=body mass index; FEV1=forced expiratory volume in 1 second; %pred=percent of predicted 
value; FVC=forced vital capacity; RV=residual volume; TLC=total lung capacity; 
DLCO=diffusing capacity of lung for carbon-monoxide; 6MWD=six minute walk distance; 
SGRQ=St. George’s respiratory questionnaire; GOLD= Global Initiative for Chronic Obstructive 
Lung Disease; TBV=Total blood volume; BV5=vessel volume for vessels less than 5 mm2; BV5-

10=vessel volume for vessels between 5-10 mm2; BV10=vessel volume for vessels greater than 10 
mm2; LAC=lowest attenuating cluster; RA950=relative area of lung less than -950 Hounsfield 
Units; ADC=apparent diffusion coefficient; VDP=ventilation defect percent. 
p=significant difference between ex-smokers with and without COPD 
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Table 4-6. MRI and CT texture feature descriptors 

Texture Feature Name Description 

MRI texture features  

FO-Skewness Measures asymmetry of the distribution of intensity values 

about the mean gray level value [coarse] 

Shape-SurfaceVolumeRatio Measures surface area to volume ratio, where a lower value 

indicates a more compact (sphere-like) shape [coarse] 

GLCM-Idn Measures local homogeneity by normalizing the difference 

between the neighboring intensity values and dividing by total 

number of discrete intensity values [coarse] 

Wavelet-LL-FO-Kurtosis Measures the ‘peakedness’ or ‘tailedness’ of the distribution 

of values in the image ROI [coarse] 

Wavelet-LL-Cluster Shade Measures the skewness for the grey levels from the mean 

grey level and uniformity of the GLCM [coarse] 

Wavelet-LL-FO-Skewness Measures the asymmetry of the distribution of intensity values 

about the mean gray level value [coarse] 

CT texture features 
 

Shape-Sphericity Measures roundness of ROI shape relative to a sphere, where 

a value of 1 indicates a perfect sphere [coarse] 

RLM-Run Percentage Measures coarseness of the texture via ratio of number of 

consecutive runs and number of voxels in the ROI [coarse] 

GLCM-Imc1 Measures the correlation between the probability of grey level 

distributions between different directions using the mutual 

information metric [fine] 

GLCM-Imc2 Measures the correlation between the probability of grey level 

distributions between different extraction directions [fine] 

Wavelet-HH-GLDM-DV Measures the variance of the number of connected voxels 

within a unit distance that are dependent on the center voxel in 

the ROI [fine] 

Wavelet-HH-Run Variance Measures the variance in runs for the run lengths, where a run 

is the length in number of consecutive pixels that have the 

same gray level value [fine] 

Wavelet-LL-GLCM-Imc1 Measures the correlation between the probability of grey level 

distributions between different directions using mutual 

information metric [fine] 

FO=first order features; GLCM=gray level co-occurrence matrix; Idn=inverse difference 

normalized; LL=low-low-pass filter; HH=high-high-pass filter; RLM=run length matrix; 

Imc1=informational measure of correlation; GLDM=gray level dependence matrix; 

DV=dependence variance. 
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Table 4-7. Correlations of selected CT and MRI predictor variables in machine-learning 

models 

Selected MRI and CT  

texture features 

BMI FEV1 %pred 6MWD SGRQ 

ρ p ρ p ρ p ρ p 

FO-Skewness -.23 .002 -.46 <.001 -.39 <.001 .44 <.001 

Shape-SurfaceVolumeRatio .05 .5 -.50 <.001 -.33 <.001 .41 <.001 
GLCM-Idn -.50 <.001 -.15 .06 -.11 .1 .16 .05 

Wavelet-LL-FO-Kurtosis -.15 .04 -.26 .001 -.34 .001 .29 <.001 

Wavelet-LL-Cluster Shade -.27 <.001 -.43 <.001 -.28 <.001 .37 <.001 

Wavelet-LL-FO-Skewness -.25 <.001 -.50 <.001 -.40 <.001 .45 <.001 

CT Shape-Sphericity -.44 <.001 -.66 <.001 -.23 .003 .37 <.001 
CT RLM-Run Percentage -.26 <.001 -.42 <.001 -.39 .002 .36 <.001 
CT GLCM-Imc1 .60 <.001 .58 <.001 .19 .01 -.39 <.001 

CT GLCM-Imc2 -.53 <.001 -.57 <.001 -.20 .01 .40 <.001 

CT Wavelet-HH-GLDM-DV -.69 <.001 -.58 <.001 -.17 .03 .32 <.001 

CT Wavelet-HH-Run Variance -.66 <.001 -.60 <.001 -.18 .02 .33 <.001 

CT Wavelet-LL-GLCM-Imc1 .55 <.001 .58 <.001 .19 .02 -.39 <.001 

p-value represents significance values for spearman correlations; Bolded values are statistically 

significant (p<.05). 

BMI=body mass index; FEV1=forced expiratory volume in 1 second; %pred=percent of predicted 

value; 6MWD=six minute walk distance; SGRQ=St. George’s respiratory questionnaire; FO=first 

order features; GLCM=gray level co-occurrence matrix; Idn=inverse difference normalized; 

LL=low-low-pass filter; HH=high-high-pass filter; RLM=run length matrix; Imc1=informational 

measure of correlation; GLDM=gray level dependence matrix; DV=dependence variance. 



 

CHAPTER 5 
 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

In the final thesis chapter, the motivation and research questions related to this work are 

summarized, along with important results and conclusions from Chapters 2 to 4. The general and 

specific study limitations are also discussed, with an outline of potential future projects that stem 

from this thesis. 

5.1 Overview and Research Questions 

COPD is characterized by irreversible airflow limitation, and while treatment can alleviate 

symptoms and provide quality-of-life improvements, they do not resolve the underlying 

pathologies and cannot fully restore lung function. Thus, the clinical picture is usually progressive 

with symptoms such as exertional dyspnea and chronic cough. Furthermore, COPD is frequently 

diagnosed in the later stages when significant irreversible lung damage has already occurred. In 

this regard, the importance of early detection in COPD is supported by a multitude of studies 

indicating that timely identification and intervention leads to better outcomes,1 improved quality-

of-life,2 and reduced healthcare costs.3,4 Early detection also empowers healthcare providers to 

implement effective strategies, tailor treatment plans, and engage in proactive management to 

benefit individuals at risk for or diagnosed with COPD. Such preventative measures reduce the 

frequency and severity of exacerbations,5,6 which are strongly associated with long-term patient 

outcomes and mortality.7-9 However, GOLD/ATS recommendations have been proposed and 

modified over the decades that now include symptoms severity and exacerbation risk,10 yet 

misdiagnosis rates have remained high throughout this period,11-16 indicating there are missing 

parts to this puzzle. Typically, structure and function of COPD are clinically characterized using 

the FEV1 measurement taken at the mouth; while FEV1 is simple and cost-effective to implement, 

it does not provide regional measurements of lung function and cannot capture the heterogeneity 
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of abnormalities present in COPD, specifically the small airway compartment where COPD is 

believed to initiate.17-20 

Quantitative pulmonary imaging methods have been developed to visualize the regional 

abnormalities directly and quantify the structure and function of the lung. Recent advancements in 

imaging techniques provide an opportunity for qualitative and quantitative analyses of the lung 

parenchymal, airways and vascular manifestations of COPD.21-23 Pulmonary imaging has been 

used to provide novel insights into COPD, with 40 years of advances in CT clearly indicating that 

COPD, in fact, is a heterogeneous disease.24 Currently, the only clinical means for imaging lung 

ventilation is with lung scintigraphy; however, this method is limited by radiation exposure risks, 

similar to CT, and also has low spatial resolution.25,26 In contrast, hyperpolarized 3He and 129Xe 

MRI provide in vivo images of regional gas distribution without imparting any ionizing radiation, 

with the potential for longitudinal patient monitoring. In COPD, MRI ventilation defects have been 

shown to be reproducible,27,28 reflect airway abnormalities such as narrowing and remodeling,29,30 

and are associated with disease exacerbations,31,32 CT emphysema,33 symptoms and severity.34-36 

Many studies have identified the hallmark finding of regional ventilation defects in COPD, even 

in those with normal clinical measurements, including CT and spirometry.34,37-39 Improved 

characterization of COPD imaging traits is beginning to impact the diagnosis and management of 

COPD,24 and it is becoming clear that imaging features are important and may even be used for 

prognostication and longitudinal outcome predictions in COPD.  

Image texture analysis tools have been recently investigated in COPD.40-45 These methods have an 

advantage of providing automatic, continuous and non-categorical measurements that can 

simultaneously evaluate the signal intensities and their spatial distribution or arrangement of 

clusters.46,47 Unlike the established CT and MR imaging measurements, texture features assess the 
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full spectrum of information present within the images and can extract additional unique 

information. MRI texture features have not yet been evaluated in COPD, while CT texture features 

can predict COPD progression,41 exacerbations,44 severity,48 and have shown stronger associations 

with lung function compared to conventional quantitative CT measures.45 Previous studies have 

shown that the incorporation of structural and functional information from multiple imaging 

methods49,50 and the use of high-level prior knowledge51 may benefit image analysis. Therefore, 

the overarching objective of this thesis was to first develop and then apply texture analysis and 

machine learning pipelines to pulmonary CT and MR images in order to characterize structural 

and functional lung patterns and predict clinically-relevant outcomes in COPD. The specific 

research questions were: 1) Can texture analysis identify otherwise “hidden” CT imaging evidence 

of subclinical parenchymal abnormalities that were detected by MRI ADC in ex-smokers with 

decreased DLCO but without CT or spirometry evidence of COPD? (Chapter 2); 2) Are there 

visually-unapparent MRI ventilation features that can predict accelerated lung function decline 

across three years and correlate with clinically-relevant measures, potentially providing insights 

into underlying mechanisms of disease progression in ex-smokers? (Chapter 3); 3) Are there 

structural CT and functional MR imaging textural features that can improve the performance for 

predicting all-cause mortality (the ultimate patient outcome) across 10 years in ex-smokers with 

and without COPD? (Chapter 4). 

5.2 Summary and Conclusions 

In Chapter 2, we evaluated 71 ex-smokers without COPD in order to extract CT imaging texture 

features and apply machine learning algorithms to dichotomize ex-smokers based on abnormal gas 

exchange. Ex-smokers without COPD often present with a mildly abnormal DLCO and are shown 

to be at a higher risk of developing COPD.52 We developed a CT texture analysis pipeline using 
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machine learning to detect unexplainably reduced lung diffusion and were able to differentiate ex-

smokers with mild emphysematous or gas-trapping abnormalities from regular ex-smokers with 

87% accuracy. All available clinical and imaging measurements were outperformed by high-high-

pass filter high-gray-level-run-emphasis texture-feature (AUC=0.81), which correlated with DLCO 

(ρ=-0.29, p=.02), MRI ADC (ρ=0.23, p=.048) and 6MWD (ρ=-0.25, p=.02). These results indicate 

that an early predictor of COPD development may be detected on a clinically normal CT scan. 

Identifying these ex-smokers at high risk of worsening to COPD,53 with severe exacerbations,54 is 

critical given the high health-care costs,55 and evidence that severe impairments in DLCO are 

independently associated with increased rates of severe exacerbations requiring an emergency 

department visit or hospitalization.56 Insights from quantitative CT textures into these ex-smokers 

with MRI evidence of mild emphysema may bridge the gap between modalities and provide 

subclinical phenotypes responsible for an abnormal DLCO in ex-smokers, adding unique 

information and clinical utility to a conventional CT scan. 

In Chapter 3, we retrospectively evaluated 88 ex-smokers with and without COPD and developed 

another pipeline for extracting unique texture features residing within hyperpolarized 3He MR 

ventilation images in order to identify COPD participants at risk of accelerated lung function 

decline, defined by annual FEV1 worsening ≥60mL/year. Hyperpolarized gas MRI provides highly 

sensitive and unique microstructural and functional information in COPD,57 and can quantify 

ventilation defects that stem from abnormalities in large and small airways as well as 

emphysema.58 MRI biomarkers are highly reproducible,59 associated with clinically-relevant 

outcomes in COPD60, and have shown to detect disease-related changes before computed 

tomography (CT) or FEV1 measurements.61,62 Unfortunately, current predictive models of COPD 

progression rarely include MRI-derived measurements and typically use standard clinical 
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characteristics.32,63,64 We generated models to predict FEV1 decline using demographics, 

spirometry, and texture features, with the latter yielding an 81% classification accuracy. The 

combined model achieved the overall best classification accuracy of 82%; however, it was not 

significantly different from the model trained on MRI texture features alone. A novel imaging 

measurement was also created, which outperformed clinical variables and independently predicted 

(AUC=0.71) accelerated lung function decline in ex-smokers. For the first time, machine learning 

and texture features from hyperpolarized 3He MR images were used to predict ex-smokers who 

would experience accelerated FEV1 decline over a short three-year period. Identifying such COPD 

patients at a higher risk of accelerated disease progression is critical due to observed associations 

with increased mortality and worse outcomes in these patients.54 There is a lack of studies showing 

that currently developed CT biomarkers reflect changes in outcomes that are important to patients 

with COPD;65,66 while noble gas MRI provides additional information to CT and spirometry, 

which is important because MRI is acquired without ionizing radiation and can be safely used for 

longitudinal monitoring in compromised populations. 

In Chapter 4, we applied, improved, and optimized the methods developed in previous chapters 

and evaluated baseline CT and MR imaging measurements and texture features in 162 ex-smokers 

to predict 10-year all-cause mortality risk. Pulmonary imaging measurements have deepened our 

understanding of COPD by measuring airway and parenchymal pathologic information,67,68 which 

cannot be provided by spirometry. Mortality risk prediction models have been historically 

developed and widely used for other diseases or processes, but pulmonary imaging measurements 

are not included in clinically-accepted mortality risk assessments, diagnosis, prognosis, or staging 

of COPD.69 We demonstrated that predictive models incorporating quantitative structural and 

functional imaging measurements at the site of the pathologies that drive symptoms and 
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progressive worsening provided more accurate predictions of 10-year all-cause mortality than 

models trained using clinical features alone (accuracy=83% vs 77%). CT GLCM-Imc2 texture 

feature had the strongest independent association with mortality, where a unit change in this texture 

resulted in a 3-fold increase in mortality risk. In addition, Kaplan-Meier survival curves showed 

that an MRI wavelet-based feature FO-skewness achieved the best mortality risk stratification 

among all selected predictors. Taken together, these findings suggest that chest CT and MRI 

texture analysis in combination with machine learning is able to provide additional, unique 

prognostic information to conventional clinical and imaging measurements that could be leveraged 

for accurate 10-year all-cause mortality prediction in ex-smokers. Therefore, regardless of COPD 

status, the inclusion of imaging texture measurements within current clinical models provides 

unique additional information about disease progression, which can allow for a better 

understanding and clinical management of COPD. Future work with datasets on the scale needed 

for regulatory approval is essential, along with methods for texture feature interpretation in clinical 

research studies and approaches to test the link to underlying pathophysiology. 

In summary, we have provided 1) evidence that structural CT texture features can sensitively detect 

ex-smokers without COPD and/or CT evidence of emphysema that have an abnormal gas-

exchange; 2) over a relatively short 3-year period, we showed that MR imaging texture features at 

baseline predict accelerated lung function decline in ex-smokers with and without COPD and 

outperform models based on clinical and/or demographic measurements. Evidence was provided 

that the effect of accelerated lung function decline is reflected in a corresponding change in MRI 

texture, and 3) evidence to support that CT and MRI texture features provide unique prognostic 

information for mortality risk assessments, which is not available using established clinical 
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measures and spirometry. These results indicate the potential for approaches presented in this 

thesis to be applied for predicting longitudinal and clinically-relevant outcomes in COPD.  

5.3 Limitations 

5.3.1 Study Specific Limitations 

Chapter 2: Machine Learning and CT Texture Features in Ex-smokers with no CT Evidence of 

Emphysema and Mildly Abnormal Diffusing Capacity 

The study presented in Chapter 2 included a relatively small sample size in comparison to other 

COPD studies,70-72 which have provided hallmark findings responsible for our current 

understanding of COPD. However, we employed statistical techniques to prevent overfitting (5-

fold cross-validation, Regression analysis, principal component analysis, Boruta Analysis, etc.), 

and our trained machine-learning algorithms may be further generalized using larger datasets and 

multicenter data. We were unable to comment on whether small airway abnormalities have already 

been initiated in these ex-smokers without COPD since expiratory CT was not available and small 

airways disease measurements could not be investigated. Next, the CT images were acquired at 

the same lung volume as the MR images (FRC+1L); however, it has been established that 

quantitative imaging measurements are influenced by lung volumes.73 To address this limitation, 

future studies may include a set of standardized features that are normalized to the total lung 

volume in an attempt to mitigate this issue. Furthermore, CT images were acquired using the same 

scanner and protocol, and we did not evaluate the models using data from other scanners or sites, 

which may lead to weaker generalizability of the models. Therefore, it is necessary to apply this 

approach to a multi-site dataset in order to fully quantify the translatability of the trained models 

to clinical settings with diverse scanners. Finally, we did not directly quantify the impact of feature 

selection methods on model prediction accuracy, and other methods, such as hybrid feature 
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selection and deep-learning approaches, should be investigated in the future. Such approaches, 

although more computationally complex and time-consuming, have the ability to provide 

additional components for generating stronger predictions and potentially improve our 

understanding of the disease pathology.  

Chapter 3: Machine Learning and MR Image Texture Analysis Predicts Accelerated Lung 

Function Decline in Ex-smokers with and without COPD 

In the study presented in Chapter 3, we were once again limited by the small sample size, 

particularly due to a high dropout at follow-up. These machine learning classifiers could be better 

optimized using larger datasets in the future. The generalizability could be further enhanced by 

incorporating an external dataset and/or with different MRI protocol acquisitions. Furthermore, 

the TINCan cohort is comprised of a large number of mild to moderate patients compared to the 

general COPD population. Therefore, the generalizability of the models must also be considered 

in this context and remains to be validated in future studies. MR image segmentation was 

conducted by a single experienced observer using a semi-automated approach, which may have an 

impact on the generation of proposed imaging measurements and texture feature extraction. The 

generation of such ground-truth data may not be perfect due to the involved user interactions, and 

as a result, the sources of disagreement between the algorithm and ground-truth data cannot be 

ascertained. Finally, the availability of functional MRI for chest imaging is currently very limited 

in a clinical setting, and while such MRI texture measurements are very effective and beneficial, 

CT measurements are much more readily available. 

Chapter 4: Chest MRI and CT Predictors of 10-year All-cause Mortality in COPD 
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In the study presented in Chapter 4, a limited number of participants from the TINCan cohort 

returned for a follow-up visit, and the time to follow-up was relatively short. Another consideration 

is the follow-up bias and loss to follow-up, where participants who did not return may have been 

in worse health and/or with comorbidities. Therefore, this study would greatly benefit from a larger 

sample size and longer follow-up timeframes. Despite a similar emphysema and ventilation defect 

percent, there may be substantial physiological differences between ex-smokers in the training and 

testing datasets. Thus, it is difficult to confirm whether the observed reduction in performance 

from training to testing sets was due to a substantially different disease manifestation or due to 

suboptimal selection of extraction parameters and overfitting. To address these limitations, we 

employed several methods to avoid overfitting such that the models used may be generalizable 

with larger, more heterogeneous datasets, which may allow for a more thorough investigation into 

the optimal model parameters. Unfortunately, we did not acquire the modified Medical Research 

Council dyspnea-score component of the BODE index in these ex-smokers. As a result, the direct 

comparison of our results with the BODE index should be undertaken with caution. We also 

acknowledge that lung imaging measurements are influenced by lung volume during acquisition;73 

however, the imaging data were acquired at FRC+1L lung volume, which for many ex-smokers is 

within 90% of TLC.73,74 Although, abnormal DLCO and MRI ADC values reported here have been 

shown to reflect mild air-trapping and/or subclinical emphysema,75 we did not make small airways 

disease measurements. Nonetheless, about 20% of ex-smokers and 41% of COPD participants 

were deceased within 10 years and CT and MR imaging textures indicative of mild emphysema 

helped explain mortality risk.  
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5.3.2 General Limitations 

This thesis focused on developing and evaluating novel imaging measurements and image 

processing algorithms for pulmonary MRI and CT. The sample sizes in our TINCan study cohort 

were small relative to other COPD studies,76-80 and the participants were recruited as a convenience 

and not a random population-based sample, which may have biased the results to participants with 

milder COPD and better health. However, study participants who did not return for follow-up 

reported worse values for pulmonary function, exercise capacity, and quality-of-life at baseline 

compared to those who returned, suggesting that these results provide a conservative estimate of 

potential longitudinal differences. We did not have a healthy control population and were unable 

to capture an equally distributed spectrum of the disease. Heterogeneous study cohorts and diverse 

datasets may provide better discriminatory ability and enhance machine learning model 

generalizability. The interpretation of results presented in these preliminary studies must be 

undertaken with caution in regard to the broader population of COPD patients. Regardless, these 

exploratory studies provide the foundation for future studies, which should be aimed at evaluating 

larger groups of patients to confirm the results observed. 

One key limitation is that CT was acquired at FRC+1L lung volume, while full inspiratory and 

expiratory CT images were not acquired; thus, we were unable to quantify CT air-trapping and/or 

generate CT parametric response maps (PRM)74,81 to evaluate the relative contributions of 

emphysema and air-trapping to disease progression. In addition, the use of MR modality in clinical 

settings remains very limited due to the availability and associated costs. The utility of 

hyperpolarized 3He MRI is even further limited due to additional personnel, image processing 

complexity, equipment requirements, and the depleting global supply of 3He gas. Therefore, 

although MRI-derived measurements provide unique prognostic value and are radiation-free, they 
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are not readily available. However, with the recent FDA regulatory approval for the clinical use of 

129Xe and associated equipment, we may see a shift in the near future in the utilization of MRI-

derived measurements and biomarkers for evaluating lung diseases. Therefore, the results 

presented in this thesis using 3He MRI must be compared and validated using equivalent 129Xe 

MRI measurements; fortunately, preliminary work using 129Xe MRI texture analysis methods has 

already been conducted and published with several promising results in asthma and COVID-

19.82,83 

Finally, the developed measurements and methods heavily rely on sophisticated image processing 

approaches and require substantial computational power, which may impact the clinical translation 

of the results presented here. This also implies that the proposed methods may be influenced by 

any errors in the image processing pipeline (particularly segmentation/registration) and, thereby, 

should be robustly accurate and reproducible. For instance, a semi-automated approach was used 

for MR image segmentation, which may be influenced by the level of training and subjective user 

input. This variability in the input images will undoubtedly impact the resultant texture features; 

however, this can be mitigated by minimizing user interactions and using automated 

segmentation/registration approaches. We also recognize the lack of normal ranges or 

measurements in healthy populations as well as a minimal clinically important difference in 

quantitative texture measurements. These measurements are highly sensitive to signal and spatial 

variations within the image and, therefore, require robust analyses to determine sensitivity limits, 

normal versus abnormal ranges of values, as well as characteristic disease features by designing 

lung phantoms with varying pathologies that are approved by clinicians. Although the differences 

in texture measurements between patient groups presented in these studies were statistically 

significant, it is unclear whether these changes are clinically-relevant. Therefore, future studies 
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should necessarily focus on the validation and standardization of the proposed texture analysis 

tools, particularly using pulmonary imaging methods.  

5.4 Future Directions 

5.4.1 Generating synthetic MRI ventilation maps using CT and Deep-learning 

Hyperpolarized gas MRI provides valuable insights into lung function yet is not widely available, 

whereas thoracic CT protocols are cost-effective and universally available.84 There is structural 

information contained in CT, but it is only part of the picture and does not directly inform on lung 

function. Advanced image registration and processing techniques have been developed to glean 

functional information from contrast-enhanced dual-energy and multi-volume CT protocols, but 

despite their recent success, these techniques require specialized, complex analyses and additional 

scans.85 The ability to robustly extract functional information from a single volume, non-contrast-

enhanced, breath-hold CT is the next challenge towards broadening the impact of regional 

functional lung information. Such a prediction model will further deepen our understanding of the 

interactions between structural and functional determinants of physiological processes.  

Recent advances in deep learning using convolutional neural networks (CNN) and generative 

adversarial networks (GAN) have resulted in ground-breaking performance in various medical 

imaging applications, including image segmentation and classification.86-90 This success has 

translated into medical image analysis, where deep learning is being used for tissue classification 

and, recently, image synthesis.91 The combination of volume-matched hyperpolarized noble gas 

MRI and CT provides a unique yet challenging opportunity to predict functional ventilation using 

information from structural CT. Also, despite the TINCan study cohort not having thousands of 

images available, the CT and MR images are volume-matched and it does provide benefits as the 
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data is very focused, extensively studied, and well understood,92 thus can adequately serve for this 

preliminary research. Additionally, utilizing ventilation images as ground-truth provides a more 

spatially and quantitatively rich measure when compared to training models to predict a single 

subject measure such as disease stage. 

This work will enable a deeper understanding of the structure-function relationships in the ex-

smoker cohort by generating functional information from a structural CT image. The underlying 

principles for the ventilation image synthesis will use texture analysis and combine the knowledge 

gained from the previous chapters in this thesis in order to generate a predicted lung ventilation 

map within seconds. The overarching objective will be to develop competing algorithms to classify 

tissue in a breath-hold CT into well- versus abnormally-ventilated regions and evaluate the 

accuracy of each model. The specific objectives are to: 

 Optimize the existing texture analysis and machine-learning pipeline for classification of 

abnormal versus well-ventilated tissue from CT images. 

 Develop a voxel-wise classification between normal and abnormal ventilation using fully 

connected CNN and segmented MR images as ground-truth. 

 Develop a GAN with input as CT images and volume-matched co-registered MRI ventilation 

scans as ground-truth. 

 Evaluate the outputs of all the approaches by calculating the Dice similarity coefficient 

(DSC), structural similarity (SSIM) index, and intraclass correlation coefficient (ICC) 

between the predicted and ground-truth MRI ventilation maps.  

 Develop a semantic label fusion method and incorporate the texture-based pipeline output 

with the CNN layers to generate a superior ventilation map, and then evaluate the new output 

maps using MRI ground-truth. 

Proposed Image Processing Workflow 
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Thoracic CT volumes will be subdivided into isotropic 15×15×15mm three-dimensional regions 

of interest (ROI) and labeled as well- or abnormally-ventilated based on co-registered 

hyperpolarized gas MRI. A set of texture features based on first and second-order statistics will be 

generated to describe each ROI,93,94 which will be used to train a classification model by testing a 

simple logistic regression, a support vector machine, and a random forest classifier. Another 

competing method will also be developed in tandem, using Keras with a Tensorflow backend to 

build a fully convolutional network (CNN) to classify voxels using the entire CT image as the 

input layer and the binary MR ventilation mask as the output or ground-truth, layer for training. 

This U-net architecture will utilize transfer learning by building off established networks such as 

AlexNet before converting the network to focus on segmentation and, finally, fine-tuning for CT 

classification, as previously described.95 

The CNN will be built based on the U-net architecture96 and will be comprised of two branches: 

an encoding and a decoding path. Each layer in the two paths will use a 3×3 convolution, a 

Rectified Linear Unit (ReLU), to introduce nonlinearity, max-pooling/un-pooling, and skip 

connections between the branches. The encoder branch will be similar to traditional CNNs and 

will extract a hierarchy of increasingly complex features from the input CT image. The decoding 

branch will transform the features extracted from the encoding branch and then, step-by-step, will 

reconstruct a synthetic output image. The network parameters will be optimized using the cross-

entropy loss, or log-loss, as the loss function between the predicted ventilation image and 

corresponding ground-truth 3He MR image. The model based on ROIs will have more training 

data, due to data augmentation, at the cost of information about the spatial relationships between 

ROIs. In contrast, the image-to-image synthesis method will be able to account for the relationship 

between different regions more fully as the neural network is trained on the entire lung volume. 
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These limitations in both methods can be negated by fusing the labels of the segmented output 

from the texture-based method with the outputs from the deep-learning-based segmentation 

method. 

Models will be developed on the same well-characterized set of male and female ex-smokers with 

and without COPD (n>200), with training/validation/test datasets with 70%/15%/15% split. 

Shapiro-Wilk tests will be used for checking the normality of the data, non-parametric tests will 

be used for not normally distributed data, and a one-way ANOVA or a Kruskal-Wallis will be used 

to look at between-group differences. In cases of multiple significant predictors for ventilation 

banalization, Boruta Analysis will be deployed to rank the features. The network will be trained 

using ten-fold cross-validation and evaluated with DSC, SSIM, and ICC measurements between 

ground-truth and predicted ventilation maps. Additionally, the final generated ventilation maps 

will be assessed for synthesized VDP measurements and compared to ground-truth MRI VDP. 

5.4.2 Texture Analysis and Machine Learning for Predicting Quality-of-life 

Worsening and Exercise Limitation 

CT-based measurements of emphysema and airways disease have shown to provide prognostic 

information, yet none of the currently developed CT biomarkers are able to reflect longitudinal 

changes in clinically-relevant outcomes in patients with COPD.2 This is important because 

longitudinal changes in quality-of-life are associated with changes in lung function and mortality. 

Pulmonary hyperpolarized 3He MRI provides a way to measure lung ventilation and parenchyma 

microstructure in patients with COPD, which are associated with COPD outcomes,97,98 correlate 

with longitudinal changes in quality-of-life,66 and are sensitive to disease-related changes earlier 

than either CT or standard pulmonary function tests.99,100 Currently, no imaging measurements 

except VDP have shown to predict changes in quality-of-life.66  
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The 6MWD measurement is associated with worse COPD long-term outcomes, greater risk of 

exacerbations, and increased mortality. Nevertheless, it remains difficult, if not impossible, to 

identify the pathological drivers of the 6MWD, which typically is weakly correlated with lung 

function measurements. To date, there are only a few reliable measurements that may be used to 

predict the significant risk of reduced exercise capacity in COPD participants.  

The pipeline developed in this thesis can be used to extract texture features from participants’ 

ventilation images and predictive models generated for longitudinal worsening in quality-of-life 

and exercise limitation. Building on the results within this thesis, which focuses on disease 

progression, a similar evaluation of improvements and response to treatment using clinically-

relevant measurements can be conducted. For instance, in patients with asthma, the minimal 

clinically important difference (MCID) in FEV1 and asthma quality-of-life questionnaires (AQLQ) 

can be investigated. Similarly, in patients recovering from COVID-19, the MCID improvements 

in lung function metrics and perceived quality-of-life measured using SGRQ could be investigated. 

In COPD, the predictive power of clinical, ventilation imaging, first-, higher-order and, transform 

texture features9 can be evaluated for identifying participants with longitudinal change in SGRQ 

as well as 6MWD greater than the well-established MCID.101,102  
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A representative 70-year-old male ex-smoker participant without a COPD diagnosis, with 22 pack 
years and rapid quality-of-life worsening, with no abnormalities in standard imaging and clinical 
measurements. FO=First-order; LH=low-high pass; HL=High-low pass; GLCM=Gray Level Co-
occurrence Matrix.  

 

Figure 5-1. Baseline and follow-up visit 3He MRI ventilation images with associated texture 

and imaging measurements 
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The predictors (purple lines) selected for generating machine-learning classification models is 

compared with standard imaging (cyan) and clinical (black) measurements at predicting MCID 

change in SGRQ. The above ROC curve represents the predictive power of individual variables 

used for machine-learning modeling, where individual MRI texture features outperformed 

standard variables that are available to physicians in a clinical setting. 

Overall, the clinical translation of PyRadiomics and radiomic-based analysis faces several 

potential challenges that need to be addressed for successful integration into clinical practice. 

Some of these challenges include: 1) large and diverse datasets, with prospective studies providing 

evidence on the scale needed for regulatory approval; 2) standardization and reproducibility of 

radiomic features across different imaging platforms, protocols and software; 3) conducting robust 

validation studies to demonstrate the clinical utility and predictive value of radiomic features; 4) 

integrating texture analysis tools into existing clinical workflows and electronic health record 

systems; 5) addressing regulatory requirements and reimbursement considerations for radiomic 

analyses in clinical practice; 6) providing education and training to healthcare providers, 

radiologists, and other stakeholders on the principles and applications of radiomics tools, as well 

as the interpretation of imaging texture measurements.  

Figure 5-2. Logistic regression analysis of individual 3He MRI ventilation features 
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5.5 Significance and Impact 

COPD is a complex and heterogeneous disease, and it remains difficult to predict patients with 

obstruction measured using FEV1 that will experience accelerated disease progression or mortality, 

which is an ultimate example of a clinical outcome. While spirometry is the cornerstone of COPD 

diagnosis103 and FEV1 measurements are straightforward and cost-efficient to implement, they 

cannot directly provide spatial nor functional information about the small-airway compartment 

that is believed to drive COPD pathogenesis along with emphysema.104 Therefore, early detection 

of COPD in patients in the early stages is of paramount importance for several reasons, especially 

given the historical context of COPD management. Early detection allows for timely intervention 

and the implementation of strategies to slow the progression of COPD, reduce the frequency and 

severity of exacerbations, and improve longitudinal outcomes while reducing healthcare costs.3,4 

However, early detection of COPD has been challenging even using the currently established 

imaging methods, which are capable of capturing regional measurements of lung function and 

structure. This is in part because early-stage COPD may go unnoticed due to the absence of 

prominent symptoms or oversight, while the absence of proactive screening methods further 

exacerbates the delay in diagnosis. Moreover, COPD lacks highly specific biomarkers for early 

detection since currently developed measurements do not evaluate the full spectrum of signal and 

spatial information present within images.  

In this thesis, we have developed and evaluated methods for obtaining quantitative CT and MR 

imaging measurements of structure and function using machine-learning and texture analysis tools. 

The work presented here confirms that, indeed, there are subtle and unique imaging features that 

can be automatically quantified and potentially provide valuable insight into disease progression 

in ex-smokers with and without COPD. I have demonstrated that such imaging texture features 
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can detect subclinical emphysematous changes on CT and can be used to improve the performance 

for predicting lung function decline as well as all-cause mortality, which are critical longitudinal 

outcomes in COPD. I showed that beyond MRI VDP, which quantifies ventilation defects, the 

quality and heterogeneity of ventilation within the lungs are strong contributing factors when 

evaluating disease progression. Furthermore, I showed that it is possible to quantify mild airspace 

enlargements using conventional CT and that clustering of sub-clinical emphysema may provide 

a better understanding of the underlying pathology responsible for previously undetected abnormal 

DLCO and MRI ADC. Taken together, the results presented in this thesis suggest that pulmonary 

imaging textures provide unique sensitive information that can be used to evaluate disease 

progression and potentially improve clinical decision-making. If these methods become widely 

accepted, lung imaging will have a greater importance in the early detection of COPD and facilitate 

timely interventions to impede disease progression. 
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APPENDICES 

Appendix A – Quantification of Pulmonary Functional MRI: State-of-the-Art and 

Emerging Image Processing Methods and Measurements 

In this review article, we provided a summary of the current state-of-the-art and emerging 

quantitative image processing methods and measurements, which have advanced or have the 

potential to provide a better understanding of respiratory disease pathologies.  

The contents of this appendix were previously published in the Physics in Medicine & Biology 

journal: M Sharma, PV Wyszkiewicz, V Desaigoudar, F Guo, DPI Capaldi and G Parraga. 

Quantification of pulmonary functional MRI: state-of-the-art and emerging image processing 

methods and measurements. Physics in Medicine & Biology 2022. https://doi.org/10.1088/1361-

6560/ac9510. Permission to reproduce this article is provided in Appendix D.  

RATIONALE 

1.1 Background 

The structure and the function of our lungs are essential for human life. As the Lung Association 

clearly states, “when you can’t breathe, nothing else matters”.1 The automatic and rhythmic act of 

breathing is necessarily driven by networks of neurons in the hindbrain (pons and medulla) that 

together direct the thoracic and abdominal muscles to actively produce pressure gradients that help 

move ambient air into and out of the lungs. This activity drives the exchange of oxygen from 

outside the body with carbon dioxide waste produced inside the body at the alveolar-capillary 

membrane (~0.2-0.5 μm thickness).2 In a healthy human adult, the end of the bronchioles in the 

lung is where gas-exchange occurs and it involves approximately 300-500 million alveoli, which 

are themselves completely wrapped in approximately 500-1000 pulmonary capillaries per 

alveolus.3 

The structure and the function of this marvelous system can be captured simultaneously, in real- 

time, with unprecedented spatial resolution (~1.5mm isotropic voxels with ultra-short echo time 

[UTE] MRI). For ventilation imaging, pulmonary functional magnetic resonance imaging (PfMRI) 

methods and measurements can provide ~4x4x10mm voxel resolution. PfMRI is currently 

https://www.britannica.com/science/neuron
https://www.britannica.com/science/thorax
https://www.britannica.com/science/lung
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dominated by hyperpolarized gas imaging but involves all pulmonary MRI techniques capable of 

quantifying lung function. Using such PfMRI approaches, the spatial distribution of pulmonary 

ventilation and gas-exchange with the pulmonary vascular tree can be non-invasively mapped and 

measured in three-dimensions (3D), throughout the whole lung or by regions of the lung, including 

the lung lobes after co-registration with CT. Importantly, this approach does not rely on the use of 

ionizing radiation because while 3He and 129Xe atoms can be thermodynamically polarized, their 

nuclei are stable. Recent reviews4-14 have focused on the history and development of MRI 

hardware and image acquisition methods needed to routinely provide reproducible hyperpolarized 

3He and 129Xe measurements. Until now however, there has been no evaluative review of current 

image processing methods and the requirements needed to enable rapid, reproducible and 

physiologically relevant measurements. 

1.2 Knowledge gap 

Whilst there is international agreement on the need to standardize PfMRI acquisition methods,15,16 

progress towards standardized image analysis methods including those that employ machine and 

deep learning has been limited. Hence here we examine and review the quantitative image analysis 

and processing methods that are required to extract clinically meaningful, reproducible and rapid 

PfMRI measurements.  

1.3 Why read on? 

In this invited review we focus on quantitative image processing methods for PfMRI using 

hyperpolarized noble gases, which has become the dominant acquisition method in the field. We 

review historical progress and the state-of-the-art applications of these computational techniques 

to measurements of obstructive lung disease, where arguably, most progress has been made. We 

will discuss the basic structural and physiologic underpinnings of pulmonary functional imaging 
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using this modality and highlight the various imaging techniques that have been historically 

developed to quantify and generate functional biomarkers for ventilation, gas exchange and 

distribution in the lungs. Throughout the review we summarize the hallmark developments in the 

image processing and analysis domain, with their current applications, challenges, gaps in 

knowledge, and future directions of development of these methods for pulmonary imaging. These 

are discussed in the context of the most common types of obstructive pulmonary diseases, focusing 

on hyperpolarized gas MRI and image processing techniques for ventilation MRI. We conclude 

this article with an appraisal of how such quantification methods have helped our understanding 

of pulmonary diseases and how they can be translated to the clinic and applied for enhanced patient 

monitoring and management. 

II INTRODUCTION 

2.1 Pulmonary Structure and Function 

 In humans, the respiratory system is one of two inter-communicating linearly arranged systems 

(shown in Figure 1) that ensure blood is oxygenated and circulated to the two actively involved 

heart and lung organ systems and the rest of the body systems. The heart and lung systems work 

together at two different frequencies (~1 Hz for heart and 0.25 Hz for lungs) to move 

approximately 6L of blood and 6L of air through the body every minute. Over the course of an 80-

year life, the heart will have beaten about 2.5 billion times and the lungs will have taken 640 

million breaths.  
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Figure 1. The heart and the lung as interconnected linearly arranged systems 

The respiratory and cardiovascular systems are depicted as two inter-communicating linearly 

arranged systems that collectively enable the blood oxygenation and circulation to the rest of the 

body systems. The relevant constituents of the heart ensuring the transfer of oxygenated-blood 

from the lung to the rest of the body are shown. 

 

Here we focus on the adult human lung which is shown in Figure 2 in physiologic schematic and 

again with an imaging lens in Figure 3. The lungs typically occupy about 30×30×20 cm3 within 

the thoracic cavity of a healthy fully-grown adult,17 as shown in Figure 3. These dimensions vary 

somewhat, based on sex, body frame size and other factors, but the overarching function of the 
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lung remains the same- delivery of oxygen to the blood for distribution to the body while 

simultaneously removing carbon dioxide from the body tissues, back to the environment.  

 

Figure 2. Lung components 
Respiratory system structure showing the airway tree generations that provide passage for air to 

travel from the nose through the large and small airways to the alveoli. Subsegmental airways 

branch from larger airway segments and are composed of the airway wall and lumen, which may 

be occluded with a mucus plug. Oxygen binds to the red blood cells in the pulmonary vessels to 

deliver oxygen into the bloodstream. Bronchopulmonary segments are richly supplied with red 

blood cells by the segmental bronchi and its vessels, in order to participate in pulmonary gas 

exchange and perfusion. Oxygen (O2) travels through the airways into the alveoli where gas 

exchange occurs and carbon dioxide (CO2) is removed from the body. 

 

As shown in Figure 2 in the top left panels, air flows and then diffuses through the airway tree, 

through as few as 10 or as many as 23 branch-point generations. The first 16 generations of the 
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airway tree, which is the conducting zone where air flows, contain no alveoli and thus are 

anatomically incapable of gas-exchange with the pulmonary capillary red blood cells (RBC). 

However, alveoli do populate the terminal airways from the 17th through 19th airway generations 

in the so-called respiratory bronchioles that constitute the transitional zone, where air moves 

through the branches via diffusion and not flow. Once air arrives at the 20th to 23rd airway 

generations, the airway termini are completely populated with alveoli that are available for gas-

exchange.18  

As shown in the right panels of Figure 2, the pulmonary arterial tree runs in parallel to the airways 

and many of the structural properties that affect flow are common to both tree structures. The 

bronchopulmonary segments and capillary network are richly supplied with blood containing RBC 

each packed with hemoglobin tetramers. Gas-exchange occurs at the alveolar-capillary tissue 

membrane, which itself is one cell and ~0.2-0.5 μm thick.2 The lungs are also necessarily elastic, 

allowing for the respiratory system to undergo complex biomechanical changes that enable 

breathing and highly efficient gas-exchange.  
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Table 1. Quantitative pulmonary CT and MRI measurements 

 

2.2 Current Clinical Imaging Approaches 

2.2.1 Anatomical imaging 

Method Measurements Applications 

X-ray CT 

-Total airway count (TAC) 

-Wall area percent (WA%) 

-Lumen area percent (LA%) 

-Wall thickness percent (WT%) 

-Mucus score 

-Total number of CT visible airways, related to abnormal 

airway structure and function19,20  

-Airway wall and lumen measures strongly related to 

airflow obstruction21 

-Mucus plugs associated with airflow limitation22,23 

Inspiratory-

Expiratory CT 

-Relative area of the lung with 

attenuation < -950 Hounsfield 

Units (RA950) 

-Relative area of the lung with 

attenuation < -856 Hounsfield 

Units (RA856) 

-Parametric response map 

(PRM) 

 

-Jacobian determinant (Jdet) 

 

-Inspiratory CT RA950 reflects terminal airspace 

destruction and emphysema24 

 

-Expiratory CT RA856 reflects expiratory air trapping, 

related to small airway obstruction25  

 

-PRM classifies voxels based on co-registered Insp/Exp 

attenuation, providing novel emphysema and gas-

trapping phenotypes26  

-Jdet measures local lung expansion and contraction 

during breathing reflecting lung mechanics27,28 

4D CT 

-Deformation anisotropy 

 

-Ventilation measure 

-Anisotropic deformation quantifies non-linearity and 

hysteresis of the lung29 

-Deformable image registration of lung voxels from the 

inhale to the exhale phases to calculate the Jacobian30 

1H MRI UTE Proton density  

-Metric for structural tissue density quantification, signal 

intensity is related to pulmonary function and CT density 

measurements31,32 

1H MRI free 

breathing Fourier 

decomposition 

and other related 

methods 

-Ventilation defect percent 

(VDP) 

 

-Ventilated Volume (VV) 

 

-Perfusion defect percent 

(QDP) 

 

-Fourier decomposition separates signal changes at the 

breathing frequency from signal changes at the cardiac 

frequency to generate ventilation and perfusion maps 

respectively33-35 

-VDP is ratio of ventilation defect volume (VDV) to the 

thoracic cavity volume; VV is volume of ventilated lung36 

-QDP is the ratio of the perfusion defect volume to the 

thoracic cavity volume37 

3He/129Xe 

-Ventilation defect percent 

(VDP) 

-Ventilated Volume (VV) 

-Ventilation Coefficient of 

Variation (CV) 

-Apparent Diffusion Coefficient 

(ADC) 

-VDP is the ratio of ventilation defect volume to the 

thoracic cavity volume 

-VV is the volume of ventilated lung36 

-Ventilation CV reflects ventilation heterogeneity38 

 

-ADC quantifies terminal airspace and alveolar 

morphology and size, and is related to emphysema39-42  

129Xe 

-RBC to Gas ratio 

 

-Membrane to RBC ratio 

-Membrane to Gas ratio 

-RBC:M is a metric of gas exchange function and 

parenchymal tissue thickening43-45 

-RBC:Gas is a metric of gas uptake and perfusion43,46 

-M:Gas is a metric of tissue thickening43,47 

Dynamic Contrast 

Enhanced (DCE) 

MRI 

-Pulmonary blood flow 

-Perfusion 

-3D perfusion changes 

-Pharmacokinetic analysis of the administered 

paramagnetic contrast agent48,49 

-Can separately assess the macro-and microvasculature 

when used together with MR angiography50 
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As shown in Figure 3 in schematic, the lung may be viewed strictly from an image acquisition 

framework as five independent pulmonary lobes (three in the right lung and two in the left lung) 

in three-dimensional (3D) space. When imaging data are acquired in 3D using tomographic 

methods such as x-ray CT or MRI, the coronal, sagittal and axial views may be independently 

generated, visualized and evaluated quantitatively. As shown in Table 1, anatomical measurements 

of the lung airways, blood vessels and parenchyma may be generated using chest CT on a regional 

(apex, base, central, peripheral), lobar and slice-by-slice basis. CT measurements are related to the 

airways, including airway lumen area (LA),21 airway wall thickness (WT),21 total airway count 

(TAC)19,20 and airway wall thickness as a fraction of the total airway area (WT%).21 Typical 

breath-hold CT measurements include the relative area of the lung with attenuation below -950 

Hounsfield Units (RA950),
24 generated from inspiratory CT acquisition, and similarly, the relative 

area of the lung with attenuation below -856 Hounsfield Units (RA856) from expiratory CT.25 

Furthermore, parametric response maps (PRM)26 can be generated on a voxel-by-voxel basis by 

co-registering inspiratory and expiratory CT scans, providing novel emphysema and gas-trapping 

phenotypes of small airways disease. 

The lung parenchyma has a short transverse magnetization relaxation time (T2), which is the time 

taken by excited protons to lose phase coherence. This results in a reduction in this transverse 

magnetization and a much faster MRI signal decay for the lung parenchyma in comparison to other 

tissues.51 The difference in magnetic susceptibilities between air and alveolar wall tissue leads to 

local magnetic field inhomogeneity and results in faster spin dephasing (shorter T2*). High spatial 

resolution images of the lung parenchyma can be obtained by maximizing signal strength and 

minimizing degradation due to susceptibility dephasing, which can be achieved by minimizing the 

time between excitation and acquisition of the signal called echo time (TE).52 Short,53 ultra-short 
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(UTE)32,54 and zero (ZTE)55 echo time 1H lung MRI as well as advanced MR hardware (such as 

multi-element RF coil arrays) have since significantly improved the visualization of lung 

parenchyma, as described in Table 1. 

2.2.2 Functional Imaging 

Table 1 also provides an overview of pulmonary functional imaging measurements made possible 

using CT and MRI – although these methods are less-well established for clinical use than 

anatomic imaging methods. Four-dimensional CT (4DCT) can measure changes in volume by 

reconstructing images at many points throughout the breathing cycle and has shown that 

deformation throughout the respiratory cycle is nonlinear and demonstrates hysteresis.56 

Pulmonary vascular measurements from dynamic perfusion CT can be generated by analyzing the 

temporal change in injected iodine concentration within the lung parenchyma and vascular spaces 

as a function of time.57,58 Changes throughout the breathing cycle can also be quantified using 

Oxygen-enhanced (OE) 1H MRI and Fluorine-19 (19F) MRI. OE-MRI can provide the combined 

information about lung ventilation, perfusion from oxygen getting dissolved in blood and oxygen 

diffusion across the alveolar-capillary membrane.59 19F-MRI can quantify lung function with only 

a multinuclear capable MR system with a dedicated 19F coil, without the need for a specialized 

polarizer equipment and personnel, which makes it cost efficient and less demanding in research 

and clinical settings.60 PET on its own or in combination with CT and MRI are additional 

techniques that can be used to evaluate and quantify lung function, perfusion, inflammation, and 

metabolic changes.61-64 Various radiotracers can be used to detect activity of pulmonary 

inflammation in multiple respiratory diseases,62,65,66 but this discussion is beyond the scope of this 

review. 
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In breath-hold ventilation MRI, sensitive biomarkers such as ventilation defect percent (VDP),67 

ventilated volume (VV),68 and ventilation coefficient of variation (CV) can be quantified. In 

contrast to ventilation, CT and MR angiography69 as well as dynamic contrast-enhanced (DCE) 

MR techniques48,70 are typically used to visualize vessels and provide functional information on 

perfusion.71,72 Such perfusion measurements are most commonly performed using DCE-MRI, in 

which pharmacokinetic analysis of the administered paramagnetic contrast agent is used to 

quantify perfusion, and when used together with MR angiography, these can separately assess the 

macro- and microvasculature. The 129Xe gas has been shown to dissolve in body tissues and the 

dissolved 129Xe exhibits distinctly different resonance frequency shifts for the air spaces, the lung 

tissues and RBC,43 making it an intriguing alternative technique that may be used clinically in the 

future.  
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Figure 3. Image acquisition and analysis requirements 

Typical coronal field-of-view of 40x40cm in the left-right and superior-inferior directions, with 

slice thickness shown in the anterior-posterior direction. Three standard acquisition planes are 

depicted in the coronal (sliced anterior-posterior), sagittal (sliced left-right), and axial planes 

(superior-inferior). Right and left pulmonary lobes and fissures are shown in coronal view. 

 

2.3 Emerging Functional MRI Methods 

2.3.1 Dynamic and multi-volume 1H MRI 

The enhancements in spatial resolution due to shorter TE sequences and advancements in MR 

hardware have also been coincident with new ways to perform free-breathing 1H MRI to capture 

dynamic information as well as with multi-volume static breath-hold approaches. One such multi-

volume approach utilizes 3D cones UTE sequence to acquire MR images at four lung volumes in 

order to evaluate the signal changes and generate voxel-wise dynamic proton-density maps that 

reflect the change of lung signal intensities.73  

Analyzing MRI signal variations in the lung resulting from respiration also lies at the heart of 

Fourier decomposition (FD) MRI, first proposed in 2009.74 In FD-MRI, the dynamically acquired 

images of the lung are elastically registered, preserving the signal variations in the individual 

voxels from respiration. The time series is then analyzed in the temporal domain, separating the 

high-frequency signals of pulsating blood from the low-frequency signals of respiratory motion on 

a voxel-by-voxel level. Finally, the magnitudes of the appropriate respiratory and cardiac peaks of 

the Fourier spectrum are calculated in order to generate corresponding ventilation and perfusion 

maps.75 The applicability of this method has been demonstrated at 1.5 T,74 and using a spoiled-

gradient echo (SPGR) sequence at 3 T MR systems.34,76-78 Another recently developed method79 

forgoes FD to obtain specific ventilation maps, using the phase component of the respiratory signal 

where each imaging time point is linked to a respiratory phase (one cycle [-π, π]) using Hilbert 

transform.80 A 3D dataset for a single respiratory cycle is then created with 10 respiratory-phase 
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bins, similar to 4DCT.81,82 Tidal inspiration and expiration volumes are then co-registered with the 

reference phase (halfway between these volumes) in order to generate the specific ventilation 

maps.79 

In recent years, the development of phase sorting methods according to both the cardiac and 

ventilation phase has led to developments of self-gated non contrast-enhanced functional lung 

(SENCEFUL)83 and phase-resolved functional lung (PREFUL) MRI.74 SENCEFUL sorts the 

respiratory phases using a direct current (DC) signal acquired immediately after the signal readout, 

while PREFUL estimates the respiratory and cardiac phases for each image using the MRI signal 

of a SPGR sequence and then interpolates the complete respiratory and cardiac cycles. PREFUL 

and SENCEFUL MRI methods calculate regional flow-volume loops, specific ventilation and 

perfusion maps,84,85 without requiring respiratory bellows.   

2.3.2 Hyperpolarized 3He and 129Xe MRI  

Figure 4 outlines the main developments in the historical timeline for hyperpolarized 3He and 129Xe 

MRI. As shown in the schematic, spin exchange optical pumping86 first reported in 1950s and 

recently reviewed,87-89 is the method of choice for polarization of noble gases for MRI studies. An 

intermediary rubidium vapor is exploited where the valence electrons of the rubidium vapor are 

polarized by absorption of circularly polarized light from the laser source, and it was shown that 

angular momentum from electron spins could be transferred to nuclear spins of high-pressure noble 

gases.90,91 This technique generates polarizations of about 40–70% for 3He and 10–40% for 129Xe 

in a typical dose of 1 L or less for breath-holds.92-94 This enhances the MRI signal by a factor of 

up to 100,000 above thermal equilibrium levels.95 In 1994,96 the first ex-vivo hyperpolarized 129Xe 

MRI study in animals was completed, which initiated a cascade of critical developments in the 

field,97,98 including the first 3He MRI studies in patients with lung disease in 1996.99,100 Most of 
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the initial human studies were performed using 3He,7 which has a greater gyromagnetic ratio than 

129Xe (-32.434 MHz/T for 3He vs -11.777 MHz/T for 129Xe) and offered greater polarization and 

SNR. However, the recent scarcity and corresponding increased price of 3He gas has driven the 

development of improved 129Xe gas polarization methods,101 which have become the mainstay 

method in the field. In 1980,102 investigations showed that xenon displayed increased solubility in 

body tissues and blood with increased hematocrit, compared to helium gas, due to its modest 

Ostwald solubility.103,104 Thus, 129Xe is also capable of transmembrane diffusion and in the 

timeframe of an MRI acquisition it may be independently detected in three pulmonary 

compartments: the gas, alveoli-capillary membrane and the blood RBC in the capillary network, 

where it exhibits distinct resonance frequencies. This was initially shown in animal studies,105 and 

later demonstrated in human studies.13,97,106 In more recent years, the developments in this 

technique have been focused on visualizing and quantifying lung airspaces, as well as measuring 

gas exchange and uptake.43,106-108 Dissolved-phase MR images are typically quantified in terms of 

the normalized ratio of the membrane to gas and RBC to gas signal ratio maps, as shown in Table 

1. This provides an opportunity to evaluate pulmonary microvasculature and perfusion beyond the 

larger vessels.43,46  

2.4 Chasms and Limitations 

MRI offers several important strengths compared to x-ray and nuclear medicine modalities as it 

provides high soft tissue contrast and is rapid (8-15 seconds in hyperpolarized gas MRI), radiation-

free and well-tolerated in acute and chronic/longitudinal investigations, making it well suited for 

very compromised and/or pediatric populations. MRI signal intensity is derived from multiple 

factors including acquisition sequence and time, tissue proton density, system gain, local field 

inhomogeneity. There is a fundamental limitation of conventional 1H MRI. This stems from the 
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limited number of spins per unit volume and the millions of air-tissue boundaries which create 

local field inhomogeneities contributing to a very short T2* (on the order of 0.5–2.5 ms).13,109,110 

Therefore, such techniques work best at relatively lower magnetic fields (1.5T) because these 

inherent air-tissue interfaces can create susceptibility artifacts,111 whereas depending on the 

geographical location, the current drive for clinical imaging is headed towards higher (>3T) 

magnetic field strengths and thus the optimization of protocols at 3T is the next step.112,113 Further 

factors that contribute to the challenges for clinical translation are the limited availability of MR 

systems in clinical settings, increased expenses for operation and the necessity of additional trained 

personnel (such as operating polarizer equipment and required MRI coils). 

 

Figure 4. Timeline of key 3He and 129Xe MRI developments 
A timeline depicting hallmark and key historical developments for quantitative hyperpolarized 
129Xe/3He MR image evaluation, ranging from the introduction of spin-exchange optical pumping 

methods for noble gas polarization to the more recent advances in image processing approaches of 

the 129Xe/3He MRI field. 

 

Despite the many applications and benefits of hyperpolarized gas imaging, integration into clinical 

settings has been limited globally, yet has been performed clinically in United Kingdom.114-116 The 

modality-based extrinsic variation caused due to the diversity of equipment platforms, field 
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strengths, sequences and protocols represent a major concern in the field. This further exacerbates 

the diversity of image processing and analysis techniques that are required to process these diverse 

image acquisitions to quantify biomarkers. 129Xe gas suffers from decreased polarization 

percentages and yields inferior SNR compared to 3He gas for imaging.87,117 The universal 

standardization of both the image acquisition, processing methods and regulatory approval for 

hyperpolarized 129Xe MRI is still pending globally, which constitutes a vital step towards clinical 

translation since even the level of lung inflation can influence quantitative measurements of lung 

function.118,119 This is especially important as the analysis of hyperpolarized gas images has moved 

away from initial qualitative visual approaches towards computational, objective and quantitative 

image processing methods. However, for clinical translation, interpretation of extracted 

measurements and rigorous mechanistic explanations are of paramount importance for potentially 

connecting the MRI gas signals and defects to specific structural changes and well-understood, 

established physiological processes. 

III  METHODS 

3.1 Introduction 

The MRI field has been steadily moving away from scoring systems and manual analysis over the 

past few decades, as depicted in Figure 4, to reliably obtain quantitative measurements. Unlike 

CT, MRI is attractive for longitudinal studies due to its use of non-ionizing radiation and flexibility 

for acquiring rapid, dynamic, multidimensional signals in response to changes in lung function by 

involving complex image processing techniques. Here, we discuss the hallmark approaches used 

to generate reproducible functional imaging biomarkers, through the lens of the historical timeline 

of developments in the image processing domain of PfMRI, as illustrated in Table 2 and Figure 4. 

Table 2. Hyperpolarized 129Xe/3He MRI segmentation methods 
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 Example References Methods Strengths Weaknesses 
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 Donnelly et al. 
1999 - Scoring 
System68 
 
McMahon et al. 
2006120 

Categorical Scoring 
Systems 
 
Expert observers, 
Radiologists – 
Defects-based 
Binary Scoring 

-Qualitative 
assessment of 
visual ventilation 
defects 
-Enables analysis 
of lung function 

-Categorical 
scores: mild, 
moderate, severe 
-Variability and 
reproducibility of 
measurements 
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Woodhouse et al. 
2005121 

1H - Manual 
segmentation of 
signal void region 
 
3He - Mean signal 
intensity 
thresholding 

-Quantification of 
ventilation and 
defect volumes 
-Continuous 
variable (%) for 
assessments 
 

-Reliance on 
highly trained 
observers 
-Relatively long 
segmentation 
time 
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 Kirby et al. 
201236 
 
Lui et al. 2013122 
 
Zha et al. 2016123 
 
Hughes et al. 
2018124 

Hierarchical K-
Means Clustering 
 
Fuzzy C-Means 
 
Adaptive K-Means 
 
Spatial Fuzzy C-
Means 

-High intra- and 
inter-observer 
reproducibility 
-Improvement in 
segmentation 
time 
 

-Dependence on 
expert observers 
-Intra- and inter-
user variability as 
well as 
differences in 
analysis time 
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 Kirby et al. 
201067 
 
Tustison et al. 
2011125 
He et al. 2014126 
 
Tustison et al. 
2019127 

Otsu’s 
Thresholding 
 
Multi Atlas-Labeling 
 
Histogram Linear-
Binning Techniques 
CNN, U-net 
architecture 

-No reader/user 
input required for 
segmentation 
-Extended the 
semi-automated 
method126 
-Fully automated 
and rapid 
analysis 

-Registration step 
requires a user 
seed for initiation 
-Bin thresholds 
visually estimated  
-Model 
complexity and 
computational 
power 

Manual segmentation figure adapted from Woodhouse et al (2005),121 Copyright © 2005 John 

Wiley and Sons Inc. All rights reserved. Automated segmentation figure adapted from Tustison et 

al (2019),127 Copyright © 2019 Elsevier Inc. All rights reserved. 

 

3.2 Qualitative Approaches and Scoring Systems 

 Today, radiologists use scoring systems to visually score various pulmonary abnormalities (such 

as emphysema in COPD and Brody score in cystic fibrosis) on CT scans. However, the causes for 

disagreement between visual scores and quantitative scores remain uncertain.128 Visual CT scoring 

by a radiologist is more indicative of pulmonary function and critical patient outcomes, such as 

mortality,129 compared with quantitative analysis methods, although the superiority of visual 

scoring over quantitative measurements in predicting mortality has not yet been reported.130,131 
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Quantitative CT analysis is less time-consuming, more reproducible, correlates with pulmonary 

function132 and is superior to visual scoring for prognosis.133 

Reader-based visual scoring was also initially used to quantify the distribution of inhaled 

hyperpolarized gases. In 1999, researchers developed a scoring system68 that was widely adopted 

for MR images, although other ventilation defect scoring systems were also developed and 

used.134,135 However, the variables reported were categorical (mild, moderate, severe) and were 

limited to subjective analysis. Intra-/inter-user variability and reproducibility of these 

measurements remain as significant challenges. Scoring systems also change through time, 

introducing challenges to retrospective analyses and constraining the future developments to 

preferentially similar scoring systems with incremental deviations. Deep-learning models may 

have shed additional light on this problem, since they critically require extremely large datasets 

with objective, sensitive, accurate and precise labels as ground-truth for algorithm training, but 

these are not readily available.136-138 The revolutionary merging of structural images for anatomical 

referencing, such as 1H MRI or CT, to functional hyperpolarized gas images through co-

registration techniques occurred at the start of this century. These in combination with the 

challenges described above have advanced the development of the field towards rigorous semi- 

and fully-automated quantification methods.  

3.3 MRI and CT Co-Registration 

Image registration is primarily used to determine the transform function to map one image onto 

the domain of the other. Rigid registration methods are limited to rotation, translation, scaling and 

other linear or affine transformations. These methods are typically used when image acquisition is 

performed under constant level of lung inflation or breath-hold conditions, such as using a one-

liter bag of hyperpolarized gas mixture for functional ventilation or air for 1H MR acquisition,139,140 
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simplifying the co-registration. Such intra-modality image registrations are crucial since the co-

registered structural image provides the necessary anatomical references and characteristic 

features to quantify the pulmonary function. 

In contrast, elastic or deformable registration with reduced restrictions on the transform function 

allows local adjustments to register the input images. However, other restrictions in deformable 

registration tasks may be applied in order to preserve the original structural characteristics and 

anatomy in the input image. This method deforms acquired images by applying transformations 

and allows discontinuous sliding window motion, designed to specifically accommodate motion 

present during respiration.141 These methods are typically used in free-breathing acquisitions or 

for inter-modality co-registrations, such as between CT and MRI.79,142 Several modality-

independent methods, where the co-registration is performed by pairing corresponding fiducial 

points within MR and CT volumes, have been developed.143-146 A key feature of elastic registration 

is the ability to account for differences in local deformations between MRI and CT modalities, 

which may be caused by one or both modalities, time elapsed between MR and subsequent 

procedures, as well as warping or scaling changes. Although, it should be noted that some elastic 

co-registration algorithms may compromise data integrity and change its distribution relative to 

original image.147 Nonetheless, the marriage of image registration and segmentation approaches 

between 1H and hyperpolarized gas MRI, further discussed in the next section, was pivotal in the 

development of the field to such extent that these two methods are now considered inseparable for 

generating reliable and quantifiable measurements in PfMRI. 

The co-registration of a central coronal CT slice with a corresponding static ventilation image can 

be performed in order to generate a 3D structure-function model automatically, with high-spatial 

resolution and functional information, as shown in the second-step of Figure 5. This unique method 
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provides a visual map across the entire lung volume of normally and abnormally functioning areas 

with either well-ventilated regions or ventilation defects that are localized within the 3D structure 

of the lung. We note that none of this information can be gleaned using conventional clinical or 

research methods. A near-automated segmentation and registration technique for inhaled 

3He/129Xe MRI was developed in 2015148 by implementing a convex optimization-based co-

segmentation approach that exploits image features from both 1H and 3He/129Xe MRI for lung 

cavity segmentation. This method includes image resampling, 3He/129Xe to 1H rigid registration, 

user seeding of representative regions to generate the respective probability density functions and 

max-flow computation with a spatial consistency constraint.149 This research work was enhanced 

in 2016 to rapidly segment pulmonary 1H MRI using a convex optimization-based approach that 

incorporates the left-to-right lung volume proportion as a constraint for simultaneous left and right 

lung segmentation.150 The 3He/129Xe and 1H MRI co-segmentation and the volume-proportion 

preserved Potts model for left and right lung segmentation approaches were developed based on 

previous work,151 which provided the theory of max-flow/min-cut algorithms and developed 

efficient numerical solvers.  

The framework, utilized in the third-step of Figure 5, demonstrated strong agreement to expert 

manual segmentations with clinically acceptable reproducibility, and rapid implementation that 

aligns with clinical and research requirements.150 Such automated whole lung, lobar and segmental 

ventilation quantification methods provide an opportunity to incorporate functional lung 

biomarkers into clinical research and patient care. The registration of CT and hyperpolarized noble 

gas MR images has shown great promise by facilitating functionally weighted radiotherapy 

treatment planning for lung cancer patients152 while also enabling the differentiation of CT 

and 3He/129Xe MRI measures of ventilation.153 This multimodality image registration method can 
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potentially be deployed in a bronchoscopy suite154 and provides a unique approach to study and 

understand the structure-function relationships in obstructive lung diseases. Such methods enable 

the generation of regional structure-function measurements at lobar and segmental levels, which 

is not feasible using hyperpolarized gas MR images alone.147 However, the registration error is a 

crucial consideration when co-registering MR ventilation images to corresponding anatomic data, 

which is known to be notoriously difficult to evaluate quantitatively, especially in the presence of 

significant ventilation defects.142 

Registration error and its propagation through computational analyses required for generating 

PfMRI measurements remains a substantial challenge. Most automated image registration 

algorithms assume that the topology of target and source images is the same, which is frequently 

not true when considering hyperpolarized gas and 1H anatomical MR images, especially in patients 

with severe pulmonary diseases that substantially impact functional lung images. In-terms of 

manual registration approaches, the inherent spatial co-registration accuracy may be improved by 

acquiring volume-matched 1H and hyperpolarized gas MRI in breath-hold conditions,155 possibly 

alleviating the need for intricate post-acquisition image registration. Although, studies now suggest 

that a combination of both neural network-learned descriptors and handcrafted local descriptors 

and features produce the best registration results;138,156 however, machine and deep-learning 

approaches are infamous for requiring large amounts of carefully sorted training data.  

3.4 Segmentation Approaches 

Segmentation in essence is pixel-wise annotation of various regions in an input image with 

categories or labels, and is traditionally performed by experts or radiologists as previously 

discussed. PfMRI segmentation is an essential step in image analysis to precisely quantify inhaled 

gas distribution and pulmonary imaging biomarkers. The field used subjective and qualitative 
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scoring systems68,120,121 prior to the development and validation of quantitative MRI biomarkers, 

whose reproducibility was originally verified.123,140,157-159 Most segmentation approaches currently 

use anatomical data from 1H MRI to supplement the functional data residing in hyperpolarized gas 

MRI, which provides an opportunity to quantify inhaled gas ventilation patterns and generate 

imaging biomarkers, described in Table 1, that are associated with various disease states. As 

depicted in Figure 4 and Table 2, manual segmentation by expert observers was the successive 

approach that, for the first time, used 1H or anatomic MRI in conjunction with hyperpolarized gas 

MRI by applying various image registration techniques previously discussed. Yet, manual image 

segmentation still had limitations, such as being labor-intensive, time-consuming, and prone to 

intra- and inter-observer variability. These limitations restricted PfMRI translation and 

implementation in large-scale clinical and research studies.36 Moreover, observer expertise and 

training are always required for manual segmentation, yet segmentations between experts differ.160 
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Figure 5. A unified workflow for quantitative PfMRI measurements  
Step 1, multi-modality image acquisitions for mapping pulmonary structure-function relationships.  

Step 2, example of inter-modality registration between CT and pulmonary functional MRI for 

visualizing structure-function relaitonships in 3-dimensions (3D).  

Step 3, segmenting out the pulmonary function and structural determinants, with structural CT to 
1H MRI inter-modality registration for pulonary lobar and semental measurements, and a 

landmark-based inter-modality registration of 1H and 129Xe/3He MRI for the segmentation of 

thoracic cavity volume (TCV) and ventilated volume (VV), respectively. This provides a 

measurement of the ventilation defect percent (VDP) defined as the ratio of ventilation defect 

volume (VDV=TCV-VV) to TCV. 

 

Semi-automated segmentation was the next major development, which has proven to be 

advantageous over manual methods because of decreased segmentation time and greater intra- and 
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inter-observer reproducibility of PfMRI biomarker measurements.157 Briefly described in Table 2, 

these methods have a greater potential for large-scale multicenter clinical evaluations, where 

multiple users can generate reliable measurements independent of their experience level. As shown 

in the schematic diagrams in Figure 5, the quantification and analysis process of acquired multi-

modality images involves the essential combined utilization of registration and segmentation 

techniques, increasingly treated as inseparable for this purpose. Similar to CT airway tree co-

registration with PfMRI ventilation images to provide structure–function information by pairing 

the airways and ventilation abnormalities, 1H MRI co-registration with hyperpolarized gas MRI is 

capable of generating lung function biomarkers and regional measures such as ventilated volume 

(VV),161 and ventilation defect percent (VDP).36 

One of the most widely used semi-automated methods was introduced in 201236 that consists of 

automatic and semi-automatic segmentations of 1H and 3He/129Xe MR images, with the necessary 

steps involved depicted in the third-step of Figure 5. Briefly, 1H MRI anatomical images are 

segmented using a seeded-region growing algorithm, as the low 1H density in the lung produces 

weak MRI signal and thus provides sufficient contrast for the algorithm to automatically segment 

the thoracic cavity and differentiate ventilation defects from lung edges, although this may be a 

significant challenge in several disease processes such as fibrosis, mucus, atelectasis, where signal 

contrast in the lung cavity is not that high.36 3He/129Xe MR images are segmented automatically 

using a hierarchical K-means clustering algorithm. Expert observers can typically distinguish 

between four visually apparent classes of 3He/129Xe MRI signals, based on the expert chest 

radiologist’s interpretation of the clinical meaning of the visible signal intensity differences;67 this 

strategy was adopted in a hierarchical K-means clustering method to partition the signal intensities 
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into four clusters.36 The resulting 3He/129Xe clustering and 1H segmentation maps are registered 

using a landmark-based affine co-registration approach to quantify MRI ventilation heterogeneity. 

As indicated in the position paper from the 129Xe MRI Clinical Trials Consortium,94 multiple 

strategies have been employed by researchers to quantify VDP, and one other notable and popular 

method in the field uses histogram rescaling and binning approach.126 Briefly, the binning 

approach assigns pixels in the 129Xe ventilation scan to specific bins by rescaling the intensity 

histogram by its top percentile in the range from 0–1. Next, the standard deviation of a healthy 

reference population distribution126 is used to set thresholds for assigning pixels into four clusters 

referred to as: ventilation defect percentage (VDP), low-, medium, and high- ventilation 

percentage (LVP, MVP, HVP) respectively.162 Images are also subjected to two additional 

corrections: a bias-field correction to account for coil B1 inhomogeneity and an application of a 

‘vesselness’ filter to better account for the exclusion of 129Xe signal by the pulmonary vasculature. 

The bias-correction method assumes a spatially smooth and slowly varying intensity bias across 

the image, and estimates it using a B-spline approximation, which is iteratively adapted to correct 

the resulting images. The ‘vesselness’ filter algorithm exploits three properties of the vessel-like 

structure: intensity difference, tubular shape, and tree-like structure to indicate bifurcation and 

connectedness. Unlike the previous approach, this vasculature is accounted for when defining the 

thoracic cavity mask and will not contribute to a false increase in the VDP. However, studies 

indicate that both methods agree well in quantifying VDP, but there may be variability in LVP and 

MVP quantification.163 Researchers have proposed that an SNR threshold greater than 13.4 may 

be required for a robust quantification of the ventilated clusters.163  

These novel methods enable rapid generation of measurements such as VV121,161 and thoracic 

cavity volume (TCV), which can then be used to determine ventilation defect volume (VDV),164 
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from which percentage ventilation volume (PVV)68 and VDP36,67 can be calculated by normalizing 

VDV (or VV for calculating PVV) to the TCV obtained from 1H MRI, as summarized in Figure 

5. In particular, the emergent VDP measurement has proven to be a useful imaging biomarker 

through subsequent studies.19,165-167 VDP is highly reproducible across multiple sites157,168 and has 

also shown to detect disease related changes before standardized CT imaging or conventional 

clinical measures.169-171 However, we must note that segmentation times vary between methods, 

where manual 3He/129Xe segmentation typically requires 60-90 minutes for 8-16 slices with 4-15 

mm thicknesses per subject and semi-automated segmentation needs approximately 5-20 minutes 

of computational time with user input, while automated 1H as well as 3He/129Xe segmentation 

requires less than 25 seconds for the same task.36,120-122,126,127 

Multiple studies have compared the equivalency and repeatability of 3He and 129Xe MRI VDP, 

indicating that both methods show repeatable ventilation defects in asthma,172 showing 

repeatability in measures of pre and post-bronchodilator reversibility, and in COPD.173,174 

However, a bias exists whereby the 129Xe MRI VDP in the same individual is greater than the 

corresponding 3He MRI VDP. This was attributed to the greater density and lower diffusivity of 

xenon, occluded airspaces, slow filling regions and the snapshot representation of breath-hold 

imaging.175 Yet the relationships to lung disease and severity remain equivalent between 

methods.174 Therefore, interpretation of VDP is still a debated topic due to the representation of 

either distinct or a mixture of structural-functional processes.  

3.5 Diffusion Weighted Imaging and Alveolar Geometry 

Hyperpolarized 3He and 129Xe MRI also provides a way to generate alveolar microstructure and 

diameter measurements through PfMRI methods. In this technique, images are acquired with two 

different b-values, or with multiple b-values to generate ADC and morphometry measurements.176 
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However, due to the breath-hold constraints, compressed sensing acceleration strategies are often 

deployed.177,178 The b-value can be controlled experimentally since it depends on the diffusion 

gradient strength and the diffusion time. Higher b-values can be obtained by increasing 

experimental diffusion time or strength of the sensitizing gradient. The terminal airway and 

alveolar geometry measurements are generated based on the way the random Brownian motion (or 

diffusion) of noble gas is restricted within the terminal airspaces. The generated MRI apparent 

diffusion coefficient (ADC)179 measures the apparent distance of gas molecule diffusion since the 

free diffusion of the gas is limited by the alveolar walls, resulting in larger diffusion path lengths 

in enlarged or destroyed terminal acinar units.39  

In diffusion weighted imaging, the typically inhaled volume of 0.5 L polarized 3He or 129Xe gas is 

diluted upon inhalation into a ~6 L lung and results in a free diffusivity at atmospheric pressure 

and temperature of 0.88 cm2/s and 0.14 cm2/s, respectively.180 It has been shown that the ADC 

value in healthy subjects increases as they age, which probably reflects the enlargement of the 

terminal airways and onset of senile emphysema that occurs naturally as we age.181 Additionally, 

these ADC values can be evaluated across different timescales, where timescales on the order of 

milliseconds correspond to diffusion within a single alveolus and a timescale on the order of 

seconds would correspond to diffusion across multiple alveoli. Unfortunately, diffusion weighted 

imaging method typically requires a longer breath hold or larger voxel sizes than ventilation 

imaging since multiple b-value images are required to map ADC. 

In order to build computational models, various geometric assumptions and simplifications have 

been developed ranging from simple single branches to full acinar models. The first relationship 

between ADC values and airway geometry was derived using a simple model where airways were 

depicted as branches covered with alveoli.182 Based on previous work,183 this method adopted 



 

214 

 

airway dimensions as the internal airway radius r changing from 250 to 135 μm and the outer radius 

R (including the sleeve of the alveoli) remaining constant at 350 μm. The authors subsequently 

simplified this model to a periodic cylinder structure with each alveolus covering a quarter of an 

annular ring.184 The modified Weibel geometrical model of lung microstructure at the acinar level 

was well accepted, while some of the other proposed models developed included the Kitaoka 

model based on a 3D labyrinth filling a cubic volume,185 a cylindrical model with semi-spherical 

alveolar shape and two-dimensional grape-like structures,186 a porous medium approach,187,188 and 

tree-like branching structures.189,190 Despite simple cylindrical models demonstrating ADC values 

consistent with clinical findings,184 these are far from accurate models of realistic lung tissue 

organization as they represent a single airway.  

Currently, there are two established models of the whole acinar geometry that have been described 

for voxel-wise diffusion morphometry analysis. The first method uses a cylindrical model of acinar 

geometry to estimate alveolar-duct and alveolar dimensions,191 while the other method uses a 

stretched exponential model to characterize pulmonary morphometry.192 As a result, parametric 

maps for airway radii, alveolar depths, and physiologically important parameters such as the 

alveolar surface area (Sa), lung volume per alveolus (Va), their ratio (S/V), alveolar number density 

(Na) (the number of alveoli per unit lung volume based on geometry) and the mean linear intercept 

(Lm) can be generated.193 Provided that the diffusion time is set to ensure that images are acquired 

in the proper diffusion regime,191 both models can be used on the same set of diffusion weighted 

images and have been validated against conventional histology.193,194 Unfortunately, the research 

community has not yet reached an agreement as to which model is preferable, which is a vital 

aspect for future multi-site studies that involve diffusion morphometry, beyond simple ADC value 

calculations. 
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3.6 Machine Learning and Texture Analysis 

Here we focus on the clinical research and applications of machine and deep learning in pulmonary 

functional imaging. For many years the construction of a pattern-recognition or machine-learning 

systems required considerable knowledge and expertise in the field, and this initially limited the 

potential of employing conventional machine-learning approaches to process raw data. In addition, 

heedful engineering of the feature extractor module that would transform the raw pixel data into 

an appropriate internal representation, such as a feature vector, to be utilized by the pattern 

recognition and machine-learning systems for subsequent detection or classification of patterns 

within the input was necessary.137 In deep-learning models, a vast number of interconnected simple 

units or neurons are used to form multiple layers that are capable of extracting abstract features 

from input images of increasingly sophisticated level of details, auto-generating a representation 

of the imaging data. Unsupervised machine-learning methods, such as hierarchical k-means 

clustering already discussed, do not require training on a labeled dataset, while supervised learning 

methods require large quantities of training data with annotations used as ground-truth.  

Currently, one of the most popular architectures is deep convolutional neural networks (CNN) and 

recurrent neural networks (RNN). These are typically trained end-to-end in a supervised fashion 

in order to greatly simplify the training process. CNN architectures are most widely used in 

medical image analysis, although RNN have recently been gaining popularity as well. The recent 

explosion in popularity of deep-learning approaches may be attributed to the advent of graphics 

processing units (GPU) for fast computation and the availability of large quantities of data for 

algorithm training.195 The tremendous computational power further enabled the development of 

even more complex and deeper layered networks, ultimately leading to the eruption of state-of-art 

performance that rivals human expert readers.196  
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A novel fully automated functional lung image segmentation method was recently developed,127 

based on a U-net architecture. This was one of the first efforts of developing deep-learning based 

methods for functional lung image segmentation, with the proposed image processing pipeline 

depicted in Figure 6. Briefly, a U-net model architecture is trained on both the 1H and ventilation 

images in an offline mode using data augmentation to increase the size of the training data and the 

robustness of the algorithm. The individual participant image preprocessing modules include MR 

de-noising and bias correction197 and merge of 1H and ventilation images to predict a final 

ventilation segmentation map.127 Due to the sample size requirements of the model, a novel 

template-based data augmentation approach was also proposed, whereby the imaging data sampled 

from the population are used to construct a representative template that is optimal in terms of shape 

and intensity.198 The template building process also outputs the transformations associated with 

each individual image, which effectively enables the propagation of an individual training image 

to every other training image via the template, expanding the size of the training dataset from ‘x’ 

to ‘x2’. The resulting probability images were compared with other manual and semi-automated 

methods utilized in the field, with the proposed method outperforming the competition in terms of 

spatial agreement/overlap and computational time.127 
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Figure 6. Deep learning driven fully-automated registration-segmentation pipeline  

Offline training of U-net models for both 1H and 129Xe/3He MRI was performed using template-

based data augmentation and multiple atlas-labelling approach. Individual subject image 

processing includes MR denoising and N4 bias correction. In ventilation image processing, the 1H 

mask is included as a separate channel, merged with the ventilation model to predict the segmented 

ventilation map. Adapted from Tustison et al (2019),127 Copyright © 2019 Elsevier Inc. All rights 

reserved. 

 

Texture analysis generates quantitative features, which are descriptors extracted from the images 

by software implementing mathematical algorithms.199 They exhibit different levels of complexity 

and express properties firstly of the tissue or region shape and the voxel intensity histogram, 

secondarily of the spatial arrangement of the intensity values at voxel level (the texture).200 

Features can be extracted either directly from the images (such as first-order, shape-based features 

and second-order features using various gray level matrices) or after applying different filters or 

transforms (such as Gaussian filters, wavelet transforms, Laplacian transforms, fractal analysis, 

etc.).200,201 Many of the extracted features would typically be redundant. Therefore, initial efforts 

should focus on identifying appropriate endpoints with a potential clinical application, to select 

information useful for a specific task via feature selection and dimensionality reduction 
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methods.136,137,202 The applications of such techniques in hyperpolarized gas MRI have been 

scarce. In 2012, texture analysis was shown to quantify changes in hyperpolarized 3He MRI 

ventilation after therapeutic intervention in rat asthma-model203 and this has more recently been 

implemented in humans.204-206 Due to advancements in computational hardware, it is now possible 

to combine texture analysis and machine-learning classifiers in order to generate predictive 

models. 

Texture analysis of CT images has established that gray level run length matrix-based texture 

features200,207 extracted from CT volumes of interest are able to predict regional ventilation, and 

the predicted VDP strongly correlates with ground-truth 3He MRI VDP.206 A more recent 

method208 using a U-net architecture was developed to estimate hyperpolarized 3He MRI 

ventilation maps from free-breathing 1H MRI after respiratory phase sorting and interpolation, 

discussed previously.79 Predicted ventilation maps of participants with diverse pulmonary 

pathologic findings used in this study showed strong correlations with 3He MRI and pulmonary 

function measurements, with a strong spatial agreement of ventilation defects.208 Other deep 

learning approaches also demonstrated this promising potential to offer patient-specific 

information from structural modalities on pulmonary functional impairments.209-213 These 

hallmark developments and increasing automation seen in segmentation and quantification 

methods hold key strengths while at the same time address some of the weaknesses of the 

predecessor methods, although limitations still remain. 

In texture analysis, different measuring techniques produce different patterns in texture and these 

may vary across various centers and manufacturers, implying that texture features can be reliably 

used at one center with a specific imaging protocol but the same analysis methodology may not be 

directly applied to images acquired at different centers with different protocols.214 Several attempts 
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by international research groups are underway to harmonize and standardize the texture feature 

extraction and analysis process.215-217 The most common challenges for machine and deep-learning 

applications include the high computational cost, the lack of model interpretability (the black-box 

problem), and the lack of standardized data and accompanying labels. Although these are very 

important challenges, here we focus on more specific challenges in the context of pulmonary MR 

images as the intrinsic patient variability (such as patient position, lung sizes and heterogeneity) 

and the diversity of equipment and protocols indicate a major concern in the field. There is a large 

diversity in targeted ventilation and defect shapes for segmentation due to their heterogeneous 

appearances on MRI as well as different patient positions. The global and local context is typically 

needed to perform accurate segmentation and multi-stream algorithms with randomly sampled 

patches or different scales are used. In order to leverage both the global and local context in tissue 

segmentation, applications of U-net and similar architectures have been successfully deployed. 

An additional challenge for functional lung MRI segmentation is the class imbalance, as most 

voxels/pixels in an image are from the non-diseased class (ventilation) and the ventilation class is 

usually composed of multiple clusters ranging from hypo-ventilation to hyper-ventilation.67 This 

can be combatted with modifications to the loss function with a greater weight for the specificity 

to make it less sensitive to the data imbalance, or alternatively, using data augmentation with the 

imbalanced class (non-ventilated versus ventilated regions) of the data. Another aspect to be 

discussed is model hyper-parameter optimization (for example, learning rate, dropout rate, etc.), 

which can help squeeze out extra performance from a given network. Unfortunately, no clear 

recipe can be given to obtain the best set of hyper-parameters as it is a highly empirical exercise. 

Random search based on intuition works quite well and is perhaps the most common approach, 

where researchers137 have identified and provided several suggestions for successful 
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implementation. Detailed reviews of the deep-learning research related to the lung image analysis 

applications, such as reconstruction, segmentation, registration and image synthesis have been 

recently published.138,218-220 Nonetheless, the major challenge is the development of models that 

can leverage the full imaging data available in 3D, with further validation studies in different 

populations, and global standardization of the image processing methods without significantly 

increasing the computational complexity in order to facilitate successful clinical translation. 

3.7 Spectroscopic Quantification 

As the field rapidly transitions back toward 129Xe MRI due to the scarcity and costs associated 

with 3He research, the use of 129Xe presents a great opportunity to quantify alveolar tissue density 

and xenon dissolved in blood due to the modest Ostwald solubility of xenon gas.102 Xenon can 

bind to the hemoglobin in red blood cells in a manner similar to oxygen, and when dissolved, it 

exhibits distinctly different resonance frequency shifts for the xenon gas in the ventilated airspaces, 

xenon dissolved in the lung tissues and xenon dissolved in the RBC.43 Most of the inhaled 129Xe 

remains in the lung airspaces, while about 1-2% of the noble gas diffuses into the membrane and 

the RBC, dubbed dissolved-phase xenon.221 The gas phase peak of 129Xe spectrum is set at 0 ppm 

and is commonly used as the reference frequency; the smaller spectral peaks are at approximately 

198 ppm for xenon dissolved in the lung tissue and 218 ppm for the xenon dissolved in the RBC.43 

Therefore, the dissolved-phase signal and gas-phase signal can be differentiated using interleaved 

excitations, and analysis techniques may also be used to separate the dissolved-phase signals at 

their distinct frequency peaks and generate maps of alveolar tissue density and RBC distribution. 

Currently, there is a discrepancy in spectroscopic quantification that is performed differently by 

various research sites in the field. The choice of reference frequency is still up for debate, although 

the 0 ppm for the gas peak may become a convention and used as a reference frequency for other 
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phases of interest.222 Furthermore, even the number of pulmonary dissolved peaks is currently a 

debatable topic.223 There are also differences in the selection of curve fitting techniques, either in 

the time or the frequency domain. When curve fitting performed in the time domain, no line-

broadening or zero-padding is needed.222 Decomposition of a free induction decay (FID) into a 

series of additive Lorentzian components yields parameters such as amplitude, starting phase, 

resonant frequency and linewidth. These parameters are typically fitted to minimize the least 

squares error of the complex data using a trust-region-reflective algorithm.224 Additional 

components can be included until the residual error between measured and fitted data is unrelated. 

Alternative methods to fitting the data in time domain using a Lorentzian function have been 

developed, for instance a Voigt function for the various peak shapes may be used in order to 

determine spectroscopic gaseous contamination parameters.225  

Tissue damage detected using hyperpolarized 129Xe MRI has also been validated 

histologically.226,227 Dissolved-phase images have been interpreted as representing combined gas 

uptake and transport since there is a continual exchange of atoms between the airspaces and 

dissolved compartments, which also results in diffusion-limited localization where the 129Xe signal 

is restricted to the gas exchange units in the lung and the capillary beds. There is a small frequency 

gap between the two smaller peaks (20 ppm) and it is challenging to separate them. In 1H MRI, a 

similar problem exists for separating the adjacent water and fat peaks which was resolved via 

precise timing using the Dixon method.228 FID-based chemical shift imaging with Cartesian phase 

encoding enables spatially-resolved spectra acquisitions, but the speed and spatial resolution 

remained a limitation. The Dixon technique was successfully implemented to separate the two 

129Xe dissolved-phase resonances from each another using RF pulses designed to maximize the 

signal from phase. Dixon methods require calibration of the scan on a per-patient basis to ensure 
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that maximum signal is acquired and the sequence is properly timed (TE) to acquire data when 

tissue membrane and RBC signals are 90° out of phase.43 However, the 1-point Dixon method of 

imaging gas exchange provides only a single static “snapshot” of the gas uptake process, which is 

inherently dynamic.  

An alternative approach was developed based on iterative decomposition of water and fat with 

echo asymmetry and least-squared estimation (IDEAL).107,229-232 This technique does not require 

the assumption that tissue membrane and RBC signals are 90° out of phase but may sacrifice the 

comparatively high spatial resolution provided by 1-point Dixon imaging. Multi-echo techniques 

are more robust and achieve temporal sampling of gas exchange while maintaining sufficient 

spatial resolution. This is required to fully quantify the complex dynamics of the gas exchange 

process. Recent efforts have been focused on characterization of dissolved-phase resonance 

lineshapes,233 chemical shift reference,222 and novel techniques for imaging of the cardiogenic 

oscillations of the 129Xe RBC resonance.223,234 However, there are substantial limitations of the 

technique that need to be addressed. These include the high degree of undersampling, excitation 

pulse design, disregard of local phase variations, and chemical-shift-induced phase evolution 

during the radial read-out.94,235 

Images are typically quantified in terms of the normalized ratio of the alveolar-capillary membrane 

to gas and RBC to gas signal ratio maps on a voxel-by-voxel basis, and frequency distribution 

histograms analyses. Thus, a greater signal in the ventilation histograms would indicate a better 

ventilation, and a greater signal in the RBC histograms would indicate a better gas exchange into 

the RBC. In the alveolar-capillary membrane, a lower signal would suggest the presence of 

emphysema whereas a higher signal would indicate fibrotic thickening of the capillary bed.47 The 

ratio of 129Xe MRI signal intensity in the alveolar-capillary tissue to the signal intensity in the RBC 
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has been postulated to reflect pulmonary gas transfer efficiency, and such novel emergent 

hyperpolarized noble gas MRI measurements provide a unique opportunity for the evaluation of 

pulmonary microvasculature beyond only the larger vessels.  

IV PHYSIOLOGIC RELEVANCE AND FUTURE DIRECTIONS 

4.1 Inhaled gas Distribution and Ventilation 

Numerous pivotal studies have identified the hallmark finding of regional ventilation defects or 

ventilation heterogeneity in patients with asthma and chronic obstructive pulmonary disease 

(COPD), even in participants who report normal or nearly normal clinical measurements including 

CT and spirometry.135,171,236,237 This PfMRI finding is important because it showed, for the first 

time, the impact of highly sensitive regional functional measurements that enhanced our 

understanding of pulmonary diseases and the contribution of the small airways, which cannot be 

directly measured using CT or spirometry. In particular, ventilation defects and heterogeneity have 

shown to be robust and reproducible measures157 that are correlated with a multitude of clinically 

meaningful measurements. 

In COPD patients, hyperpolarized 3He and 129Xe MRI VDP reflects airway abnormalities such as 

narrowing and remodeling,19,165 and is associated with disease exacerbations,166,167 symptoms and 

severity,135,238,239 CT-derived emphysema measurements,175 and strongly correlates with lung 

clearance index,240 which is thought to be reflective of ventilation heterogeneity caused by small 

airway abnormalities, even in those with normal spirometry.40,241 In asthma, studies have identified 

a multitude of defect shapes using hyperpolarized gas MRI but in particular, the wedge- and 

pyramidal-shaped ventilation defects resulting from abnormalities in the bronchopulmonary 

segments shown in Figure 2, are correlated with asthma symptoms and severity.134,135,161,242 

Importantly, in patients with asthma, ventilation is characteristically heterogeneous compared with 
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healthy volunteers.38,135,243 Larger and more numerous ventilation defects are present in older 

asthma patients, with worse airway remodeling,244 and these defects correlated with asthma control 

and quality-of-life.240 Ventilation defects are also sensitive to bronchodilation for both asthma and 

COPD patients,245 and to bronchoconstriction in asthma patients.246,247 The minimal-clinically-

important-difference (MCID) in VDP has been established on the basis of ACQ score as an anchor 

and using the standard error of measurement (SEM) to estimate the distribution-based MCID for 

VDV. In contrast with gold-standard forced-expiratory volume in one second (FEV1), which is 

dominated by the large airways, MRI is sensitive to all airways. The MCID was found to be 2-4% 

for VDP (anchor-based) and 110-200 mL for VDV (distribution-based), 248 which is similar to 

FEV1 MCID in asthma at 110–200 mL.249 All of these findings suggest that PfMRI may be used 

to evaluate the consequences of structural abnormalities and reveal the underlying 

pathophysiological causes of lung diseases.  

The image processing framework, described in Figure 5, provides a unique opportunity to not only 

improve our understanding of disease pathogenesis by potentially incorporating lung functional 

biomarkers into clinical research and patient care, but also develop optimal localized therapy 

options for patients with respiratory diseases. For instance, airway bronchial thermoplasty, 

although invasive, may be considered for asthma patients in whom therapy approaches have not 

resulted in improved disease control.250 ln COPD, surgical intervention may be performed to 

remove diseased tissue in order to maximize the efficiency of the lung because hyper-inflated 

tissue and bullae compress surrounding healthy tissue, which reduces lung function.251 Hence, 

functional-avoidance in management and treatment planning for such patients is an important 

avenue that can be strengthened using PfMRI measurements. Hyperpolarized gas MRI is 

beautifully positioned to identify low-functioning regions, and clinical trials are currently 
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underway to evaluate the 129Xe MRI measurements of lung function (taken together with 

perfusion, alveolar microstructure and collateral ventilation) in advance of resection, bronchial 

thermoplasty and lung transplantation in cancer.252-255 

The results of several ventilation studies have clearly demonstrated the advantages and clinical 

applications of this technology, showing significant correlations between ventilation biomarkers 

and conventionally measured pulmonary function in patients with COPD,245 asthma,256 and cystic 

fibrosis (CF).6 CF was initially evaluated using 3He MRI68 and more recently, 129Xe MRI in mild 

CF patients revealed ventilation defects, even in those with normal spirometry.257 Both 129Xe and 

3He MRI methods showed early detection of CF, prior to abnormalities in CT and LCI,258,259 and 

were sensitive to disease progression.257,260 The feasibility of 129Xe MRI was also demonstrated as 

an endpoint when standard clinical measurements do not detect disease. Since nearly all pulmonary 

disorders are heterogeneously distributed in the lung, the ability of pulmonary functional imaging 

tools to spatially map and quantify the regional distribution of pulmonary ventilation (and probe 

functional processes even at the level of alveolar-capillary units) provides clinically applicable 

information not available through conventional pulmonary function tests, which provide only 

global measurements. Future implementation of these image processing tools to obtain on-demand 

quantifiable functional measurements are likely to substantially benefit the field, and efforts for 

clinical integration of these tools have already begun.261,262 

4.2 Alveolar-Capillary Interface 

PfMRI provides a way to generate volume-averaged measurements that stem from sub-voxel 

compartments including the alveolar space,47,263 the alveolar-capillary boundary45,105,264 and 129Xe 

bound to hemoglobin in the RBC.43,107,265 Pathological findings from histological analyses have 

shown that COPD stage progression is strongly associated with thickening of the airway wall and 
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its compartments by remodeling or repair process,266 including emphysematous changes,267-270 and 

that small airways become occluded by inflammatory exudates resulting in mucus plugs as COPD 

progresses.271 Histology analysis additionally suggest that airway inflammation and remodeling in 

asthma may cause airway wall thickening and induces increased airway smooth muscle mass that 

may generate asthma symptoms.272 Diffusion weighted imaging during breath-hold enables 

measurements of ADC,193 a sensitive marker of alveolar enlargement, which is significantly 

increased in subjects with emphysema,169,273,274 idiopathic pulmonary fibrosis,275 

lymphangioleiomyomatosis,276 congenital diaphragmatic hernia,277 and bronchopulmonary 

dysplasia.278 PfMRI ADC measures the apparent diffusion distance of the noble gases, whose 

inherent diffusion or Brownian motion is restricted by the alveolar wall and the terminal 

airspaces.193 3He MRI ADC in the lungs was shown to be related with the surface area to lung 

volume ratio (S/V) and Lm measurements, validated using histology.227 This technique has 

demonstrated high reproducibility,139,279 and was also used to validate 129Xe ADC 

measurements.168 

While both noble gases provide MRI ADC biomarker related to emphysema, the 129Xe acquisition 

uniquely provides measurements of alveolar-capillary membrane thickness45,105 due to its modest 

Ostwald solubility as previously discussed.103,104 Recent studies have now suggested that a 

decreased ratio of the 129Xe MRI signal intensity in the alveolar-capillary interface to the signal 

intensity in the RBC may reflect diminished pulmonary gas transfer efficiency.43,221,264 

Furthermore, alveolar thickness can be quantified by fitting the signals acquired over time to 

mathematical models of alveolar geometry to obtain alveolar thickness based on diffusion 

properties of the tissue.280-282 This emergent technique of 129Xe MRI provides a unique opportunity 
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to non-invasively estimate the alveolar thickness, which previously could only be measured using 

histologic analyses and invasive biopsy methods.280-282 

In pulmonary fibrosis patients, dissolved-phase 129Xe MRI revealed that the RBC to membrane 

ratio was much lower than in healthy controls. This suggests either a reduced RBC signal and/or 

that the 129Xe signal was enhanced in the alveolar tissue membrane221,280 which is normally 

thickened in patients with fibrosis. Quantification of the differences in 129Xe signal in RBC and 

membrane is performed by generating ratio maps, which showed that a combination of normal 

ventilation and high membrane signal was common in pulmonary fibrosis patients.46 The regions 

with decreased RBC-to-membrane signal correspond to greater CT density, suggesting the 

presence of fibrotic tissue that supports the notion that there is a relationship between the presence 

of fibrosis and a low RBC-to-membrane ratio.43 Furthermore, 129Xe RBC to membrane ratio has 

also shown to be sensitive to short-term disease progression in idiopathic pulmonary fibrosis.283 

129Xe MRI also revealed abnormal regions not observed using standard CT43 which suggests that 

129Xe MRI is sensitive to early-stage and subclinical alveolar thickening that is not revealed by 

CT. 

A lower signal intensity in the ratio of membrane and RBC distributions relative to the gas was 

observed in COPD patients with multiple characteristic ventilation defects.46 Emphysema in such 

patients typically causes parenchymal destruction that may explain the observed lower dissolved-

phase signal intensity relative to the gas signal. This is further supported by preliminary studies 

that reported decreased RBC-to-gas ratios and abnormal mean MRI-ADC in severe COPD 

patients.45,107 Due to the radiation-free nature of this method, there is a great opportunity for its 

implementation in larger-scale clinical studies of 129Xe gas-exchange MRI in obstructive and 

interstitial lung diseases. Unlike phase-resolved and Fourier-decomposition based 1H MRI 
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methods that measure signal changes at the cardiac frequency, dissolved-phase 129Xe MRI is 

capable of capturing microvasculature changes at the capillary level (without requiring contrast 

injection like in DCE-MRI) and consequently measures a different part of the vascular process. 

Therefore, this relatively recent method holds a unique and unexplored value for the field, and also 

provides an exciting opportunity for visualizing the entire gas exchange process in the lung.  

4.3 Future Clinical Translation 

Image processing applications have substantially enhanced our understanding of lung disease. 

MRI-derived biomarkers correlate well with clinical measures of lung disease pathology, which in 

some cases correspond to disease state and progression better than well-established clinical 

measures. Despite this, clinical translation has been minimal and to date has occurred only in the 

United Kingdom.114-116 Several technical limitations and major challenges remain to be addressed 

for universal, widespread clinical translation. 

First, the image acquisition and analysis must be standardized, which has been recently initiated.94 

The parameters for image acquisition such as the level of lung inflation can influence quantitative 

measurements of lung function.118 Moreover, the research conducted and methods of analysis used 

are typically developed in-house using varied MRI software and hardware, which leads to non-

standardized measurements in the field.284 Stemming from this is the need for validation of such 

MRI-derived measurements, as well as the subsequent establishment of ranges of normal values, 

which is currently lacking and needs to be further investigated.118 Interpretation of extracted 

measurements and rigorous mechanistic explanations are still needed to connect MRI gas signals 

and defects to specific structural changes and well-understood, established physiologic processes. 

There is a prevalence of unfamiliarity among clinicians with hyperpolarized noble gas MRI 

measurements and a comprehensive, interdisciplinary approach connecting the physicists, 
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physiologists, and clinicians will be essential for clinical translation. The efficient integration into 

routine clinical workflow would also require specialized polarization equipment, as well as the 

training and knowledge of image analysis software for automated or manual quantification and 

interpretation. 

In Figure 7, we highlight a pipeline and propose several approaches for potential integration of 

these complex image processing methods discussed thus far into the clinical workflow. The first 

module deals with the input of the imaging data, which can consist of a 1H scan, a calibration scan 

for dissolved phase imaging, and all hyperpolarized 129Xe MRI acquisitions. There is also an 

option for including imaging using other modalities, which can be co-registered with functional 

MR images for a detailed interpretation of the structure-function relationships. This step would 

require MR trained personnel for acquisition and transfer of data. The next module operates using 

the information from the previous module and completes most of the image processing in an 

automated manner. The images are then used for registration, total lung volume segmentation and 

quantification of the gas distribution. This can be done: A) on a virtual server or a cloud-based 

system for offline image processing, which benefits from substantial computational power for very 

rapid analysis, or B) on a tablet or laptop for real-time analysis and bed-side visualization of results 

using an embedded graphical user interface. When using a cloud-based server, the final module 

documents and stores the reports for physician interpretation of results. On the other hand, the 

tablet-based approach allows for real-time interpretation of results, where the main function of the 

final module is report generation for continuing care. Centralized implementation of this pipeline 

and its rapid and automated outputs can be leveraged for secure generation of patient reports online 

or offline without the need for human intervention. Similar software platforms and environments 
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should be further investigated and developed to integrate various automated image processing 

pipelines for routine clinical use. 

 

Figure 7: Schematic diagram of a pipeline for real-time image processing and quantitative 

reporting of 129Xe MRI ventilation, 129Xe MRI gas exchange and CT-129Xe/3He structure-

function relationships  
Proposed pipeline consists of three modules: 1) Data input module for calibration of 129Xe disolved 

phase spectroscopy. 2) Image processing module for registration, segmentation and ventilation 

quantification from 1H-129Xe MRI. 3) Patient report generation module for physician interpretation 

and continuing care. 

 

Despite these challenges, there is now a surmounting evidence about the various advantages and 

utility of imaging biomarkers in observational and interventional studies that is enabled through 

PfMRI. There still exists a great opportunity for collaboration and standardization between the 

pulmonary and other research sites, vendors and clinical trial sponsors to address the current 

limitations and move past them into a brighter future. In general, the field currently lacks large 

scale multi-center repeatability studies and this should likely be the main focus of future research 

conducted in the field, given the substantial benefits of PfMRI methods. Currently, it is very likely 
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that in the near future different techniques will have different applications that would depend on 

the availability of required hardware equipment and MR system model and type since access to 

advanced MR technologies is not necessarily consistent within the disease populations. 

Alternatively, the long term future seems to be headed towards an establishment of a single method 

for quantifying various pulmonary functional measurements using MRI, such as ventilation, 

perfusion, etc. Although this may require a strong clinical motivation for such measurements that 

would likely come from applications in pediatric populations. The ongoing dissemination of 

PfMRI methods beyond the specialized centers where they were developed would enable a better 

characterization of the strengths and weaknesses of methods that have been discussed throughout 

the review.  

In recent years, the advent of improved polarizer technology for 129Xe gas93,285 had accelerated the 

research in the field and enabled an even greater diversity of applications of hyperpolarized gas 

MRI.4,87 Current improvements in commercial availability of noble gas hyperpolarization methods 

and greater polarization levels with reduced gas doses and isotopic ratio, make the translation of 

129Xe ventilation imaging to the clinic economically feasible. Furthermore, the lung is known to 

be over-engineered to perform daily tasks, which results in patients often not experiencing 

symptoms until the disease is in later and more severe stages. This provides a unique venue for 

PfMRI to step-in with its great advantage in early detection, monitoring and also in enhanced 

phenotyping of patients once they are diagnosed.  

Currently, the gap between research workbench and clinical workflow translation of MRI methods 

is still significant, primarily due to the small-scale collaborations typically found in most clinics 

and academic centers. Thus, multicenter large-scale clinical trials and collaborations are required 

to bridge this gap by providing large amounts of data required to fully understand and validate 
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PfMRI biomarkers. As the coronavirus disease 2019 (COVID-19) pandemic is currently unfolding, 

there is a great opportunity to unite the lung imaging community through global collaborations 

and highlight the role of functional imaging by integrating and applying novel PfMRI biomarkers 

to enhance our understanding of this disease.286-288 We are approaching the threshold for 

widespread implementation of the necessary steps towards the validation and translation of 

clinically meaningful PfMRI biomarkers into clinical settings globally, with an ultimate objective 

to improve patient outcomes. With the ongoing attempts for regulatory approval of 129Xe and the 

required polarization equipment, currently under FDA review, this should be possible in North 

America within the next 2-3 years. 

V CONCLUSIONS 

For at least 30 years, chest CT imaging has been the clinical imaging mainstay for pulmonary 

disease diagnosis and monitoring. In the past decade or so, PfMRI methods have been developed 

that provide a way to visualize and quantify MR-visible inhaled gas as it flows and then diffuses 

to the terminal airways and alveoli, across the alveolar tissue to the capillaries and into red blood 

cells. While much of the focus has been on image acquisition and polarization improvements, 

PfMRI image processing methods have also been developed for the regional quantification of 

pulmonary ventilation, gas-exchange and perfusion. 

The results of such image processing developments have generated novel pulmonary biomarkers, 

some of which are now regarded as hallmark features of obstructive lung disease.157-159,245 Now, 

research must focus on how this new information about mechanisms and physiology can be used 

in clinical workflows towards improving patient outcomes8,16,166,169 including those potential 

approaches261,262 summarized here. The development and validation of rapid, reproducible, point-

of-care quantitative methods embedded within clinical workflows is aimed at leading to new 
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treatments, and to improved outcomes including quality-of-life in patients with various pulmonary 

diseases. 
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Appendix B – Hyperpolarized Gas Magnetic Resonance Imaging Texture Analysis and 

Machine Learning to explain Accelerated Lung Function Decline in Ex-smokers with and 

without COPD 

In this proof-of-concept study, we developed and evaluated a novel MRI ventilation measurement 

alongside texture features to predict ex-smokers with and without COPD that will experience an 

accelerated lung function decline across 3-years. 

The contents of this appendix were previously published in the proceedings of the international 

society for optics and photonics (SPIE): M Sharma, AR Westcott, DG McCormack and G Parraga. 

Hyperpolarized gas magnetic resonance imaging texture analysis and machine learning to explain 

accelerated lung function decline in ex-smokers with and without COPD. Proc. SPIE 11600, 

Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional 

Imaging, 116000E (14 February 2021). https://doi.org/10.1117/12.2580451. Permission to 

reproduce this article is provided in Appendix D. 

INTRODUCTION 

Pulmonary hyperpolarized 3He gas magnetic resonance imaging (MRI) provides a way to quantify ventilation 

abnormalities using ventilation defect percent (VDP)1 that stem from abnormalities in the large and small airways as 

well as emphysema.2 It is difficult to predict those with obstruction measured using forced expiratory volume in 1 s 

(FEV1) that will worsen to Chronic Obstructive Pulmonary Disease (COPD). MRI-VDP measurements were 

previously shown to progressively worsen in FEV1 stable patients and predict worse outcomes over short time-

periods.3,4 While spirometry measurements of lung function are straightforward and cost-efficient to implement, they 

do not provide information about the small airways, which are believed to drive COPD pathogenesis. In contrast, MRI 

VDP,1 has been shown to predict COPD exacerbations5 and longitudinal changes in quality of life as well as exercise 

capacity.6 Despite these advantages, current predictive models of COPD progression are usually based on clinical 

measurements but none incorporate information derived from pulmonary computed tomography (CT)7 or MRI.5 

Texture analysis provides a unique opportunity to reveal and quantify hyperpolarized 3He MRI ventilation patchiness. 

This approach shows promise for data classification,8 tumor segmentation,9 image registration10 and outcome 

predictions.11 Since VDP measurements do not fully exploit the full information and spatial content that is inherent to 

hyperpolarized gas MRI, our main objective was to develop a novel texture-based machine-learning model to identify 

ventilation features that can predict patients with accelerated annual FEV1 decline. To achieve this we tested multiple 

single and ensemble classifiers to determine the best model for predicting COPD patients who would experience an 

FEV1 decline >30ml/year12 over a three year period. Such predictive models may serve as tools for an early detection 

of rapidly-progressing patients and facilitate timely treatment for this subgroup of patients that are at a higher risk of 

progressing to a greater disease severity. 

 

MATERIALS AND METHODS 

Study participants and image acquisition 

Pipeline performance was evaluated using 42 subjects with and without COPD diagnosis including at-risk ex-smokers 

and elderly never-smokers that provided informed written consent to a study protocol approved by research ethics 

board and Health Canada.13 Inclusion criteria were a history of cigarette smoking >10 pack years, age between 50 and 

85 years at baseline. Ex-smoker participants had ceased smoking ≥1-year prior to the study visit with no cut-off in 

terms of ceasing smoking. COPD subjects were classified according to the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) grades.14 Long-term follow-up was prospectively planned for 24±6 months and 120±12 months 

after the baseline visit.13 1H and 3He MRI was performed on a 3T whole-body system (MR750 Discovery, GEHC, 

Milwaukee, WI) as previously described.13 The consort diagram for the TINCan study cohort participants is shown in 

Figure 1 below. 
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Figure 1. Consort diagram for participants from the TINCan study cohort (January 2010–February 2017). 

Proposed extraction pipeline 

The proposed pipeline is summarized in Figure 2. First we generate a maximum entropy mask by segmenting the 3He 

ventilation image as previously described.1 We then use a custom-built algorithm to calculate ventilation defect 

clusters and PyRadiomics platform15 for extracting texture features. The data was split into a 70% training set, a 15% 

validation set and the remaining 15% was used as the testing set. Feature selection was performed on the training set 

using principle component analysis (PCA) and logistic regression to determine significant features contributing to the 

machine learning models. Significant features were tested and applied to final machine learning predictive models 

from the validation set. The performance of machine learning algorithms in the 5-fold cross validation training and 

testing set were evaluated and compared via receiver operating characteristic curves.  

 

Figure 2. Overview of the proposed texture-based image processing pipeline for hyperpolarized gas MRI. 

Image analysis and custom algorithm 

1H and 3He MR images were segmented by a single observer where the thoracic cavity was segmented from the 1H 

images using a seeded region-growing algorithm, and the 3He ventilation was segmented using k-means clustering.1 

The generated maximum entropy mask was then applied to identify the ventilated region of interest (ROI) for feature 

extraction. 

Ventilation-defect-percent (VDP) was generated by a semi-automated segmentation using a custom-built software, as 

previously described.1 Ventilation-defect-cluster-percent (VDCP) was generated by an automated custom-built 

algorithm that was previously presented at an international conference.16 The approach was implemented using a naïve 

greedy algorithm where 𝑆 = [𝑏1, 𝑏2, … , 𝑏𝑛] is a set with 𝑛 elements, where each element 𝑏𝑛 = 𝐵𝑛(𝑟, 𝑙) is an open 

sphere of radius 𝑟 at locations 𝑙. Determining the required minimum number of spheres of unequal sizes resulted in 

the following minimization problem: 

𝑚𝑖𝑛
𝑆

{‖𝑆‖0}  ∶  𝑆 ∈ 𝑹𝑛     (1) 

Where the cardinality of the set 𝑆 and ∀ (𝑏 ∈ 𝑆) ∃ (𝑟, 𝑙) is minimized. To ensure that the spheres completely fill the 

region of interest 𝑅, (ventilation defect) a constraint was implemented so that the intersection between the region filled 

with spheres 𝑅 and the spheres 𝑏 is just 𝑏 and to prevent overlap between two spheres (𝑏 and 𝑏′), this was set to result 

in the null set: 

        𝑏 ∩ 𝑅 = 𝑏    &    𝑏 ∩ 𝑏′ = ∅      (2) 
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A volume constraint was also imposed so that the total volume of spheres was equal to the volume of the specified 

region 𝑅:  
∑ 𝑉(𝑏) = 𝑉(𝑅)𝑏∈𝑆      (3) 

We then used MATLAB R2019a (MathWorks) to solve the minimization problem and generated VDCP, which is the 

sum of ventilation-defect cluster volume normalized to the total lung volume. From VDCP we calculated cluster-

defect-diameter voxel size one (CDD1) which is the cumulative number of defect clusters of one voxel (5x5x5 mm3), 

shown in Figure 3 below. Low ventilation cluster (LVC) slopes were also calculated based on the log-log relationship 

between the cumulative number of spheres and cluster size (LVC).17 

 

Figure 3. Ventilation defect cluster volume output from custom-built algorithm in MATLAB (R2019a). 

 

Further texture feature extraction was conducted using a well-tested radiomic software called PyRadiomics, detailed 

in the next section. We utilized all available higher-order texture features as well as wavelet band-pass filtering 

features that were available in the PyRadiomics platform (version 2.2.0) and the detailed mathematical descriptions 

of all the features are provided online.15 

Feature extraction and Statistics 

Texture features were calculated and extracted from gray-level histograms and the gray-level matrices generated from 

the ROI of the original image. We evaluated first-order texture features from the gray-level histogram such as mean, 

range, minimum, standard deviation, etc. We also evaluated the texture features calculated from run-length, gap-

length, size-zone, dependence and co-occurrence matrices using the open-sourced PyRadiomics platform (version 

2.2.0) in Python environment.15 Image filters were also applied for the extraction of wavelet band-pass filtering texture 

features that further quadrupled the number of extracted features due to permutations of high-pass and low-pass filters 

for wavelet decomposition, resulting in 368 additional texture features. Low-pass filtering in both directions (LL) 
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assesses the lowest frequencies, low-pass filtering followed by high-pass filtering (LH) assesses horizontal edges, 

high-pass filtering followed by low-pass filtering (HL) assesses vertical edges and high-pass filtering in both directions 

(HH) assesses diagonal details.8 The resulting 474 features underwent PCA and forward selection logistic regression 

analysis to identify factors contributing to the predictive power of the models and for simultaneously generating 

components that comprised from a combination of texture features with a commonality. Shapiro-Wilk tests were used 

to determine the normality of the data and non-parametric tests were performed for not normally distributed data. 

Differences between subject groups were determined using analysis of variance (ANOVA) with post-hoc analysis 

using the Benjamini-Hochberg correction. The relationship between measurements was determined using Pearson and 

Spearman coefficients for parametric and nonparametric data, respectively. Results were considered significant when 

the probability of two-tailed type I error was less than 5% (p<.05). All of the statistical analysis was performed using 

SPSS Statistics v26.0 (SPSS Inc., Chicago, Illinois, USA). 

Machine learning algorithms 

The entire texture dataset was randomly split into training/validation/testing sets in 70/15/15 percent distribution. 

Once all the features were extracted and selected, 5-fold cross-validation training was performed using a number of 

machine learning algorithms including four types of single classifiers and four ensemble classifiers in an attempt to 

determine best model for identifying accelerated disease progression. The data were standardized and hyper-parameter 

optimization was performed through MATLAB R2019a (Classification Learner Application) for each model 

individually. We compared the performance of multiple machine learning algorithms including variations of: Naïve 

Bayes,18 Support Vector Machines,19 Decision trees,20 K-nearest neighbours,21 and four ensemble-classifiers: bagged 

trees22 subspace discriminant,23 subspace K-nearest-neighbours (subspace KNN),23 and Random Under-Sampling 

Boosted Trees (RUSBoosted). Model performance was evaluated using the mean cross-validation area under the 

receiver-operator curve (AUC), as well as sensitivity and specificity using the confusion matrix outputs.  

RESULTS 

Subject demographics and significant features 

We evaluated 42 participants who were ex-smokers including 23 participants with spirometry evidence of COPD and 

19 with no spirometry evidence of COPD. As shown in Table 1, 27 participants (9 Females/18 Males, 66±7 years) 

reported stable FEV1 decline and 15 participants (5 Females/10 Males, 71±8 years) reported a rapid decline in FEV1 

greater than -30ml/year, or about -5%pred decline, between baseline and follow-up visit 30 ± 8 months later. There 

were 11 significantly different texture features out of 120 unique extracted features and only four of them significantly 

contributed to the accuracy of the models. The p-value was corrected using the Mann-Whitney U test and also 

corrected for false discovery rate using the Benjamini-Hochberg correction. The dichotomized group differences and 

significantly different texture features that also contributed to the machine-learning models are shown in Table 1. 

Table 1. Demographics and texture features by subgroup. 

Parameter Mean (±SD) 
Stable FEV1 

(n=27) 

Change in FEV1 >5% 

(n=15) 

Sig. Difference 

(p-value) 

Age  66 (7) 71 (8) 0.64 

# Females (%) 9 (30) 5 (33) ND 

Pack Years 49 (29) 50 (27) 0.79 

BMI kg/m2 28.1 (3.8) 28.3 (4.5) 0.65 

FEV1 %pred  82 (25) 71 (25) 0.16 

FEV1/FVC %pred 85 (22) 77 (25) 0.09 

DLCO %pred 66 (20) 59 (22) 0.06 
3He VDP % 11 (8) 16 (9) 0.03 

CDD1 4935 (1000) 7293 (1000) <0.01 

FO-Minimum 85 (57) 48 (41) 0.03 

SZM-LGLZE 0.0003(0.0002) 0.0004(0.0002) 0.04 

RLM-Run Percentage 0.997 (0.009) 0.985 (0.009) 0.05 
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BMI=Body Mass Index; FVC=Forced Vital Capacity; DLCO=Diffusing capacity of lung for Carbon-monoxide; 3He-

VDP=ventilation defect percent; CDD1=Cluster defect diameter size 1 voxel; FO =First-Order features; SZM =Size-Zone Matrix; 

LGLZE = Low Gray Level Zone Emphasis; RLM =Run Length Matrix. 

Feature selection and component generation 

Feature extraction was performed using a custom-built algorithm as well as PyRadiomics.15 All the extracted features 

underwent PCA followed by forward selection multivariate logistic regression analysis for determination of 

significantly different features. PCA was used to generate component scores for each subject, where the emergent 

components consist of factor loadings from original texture features and the first 7 components explained >90% of 

the variance in the entire data set, shown in Table 2. The emergent components were orthogonal to one another and 

were designed so as to maximize their own factor loadings while minimizing it for other components. A score was 

also generated for each of the components on a per patient basis and resulting components #1 and #6 contributed to 

model prediction accuracy, in addition to texture features shown in Table 1. 

Table 2. Resultant components from orthogonally rotated correlation matrix from PCA (SPSS). 

 
Texture Features 

Component 

1 2 3 4 5 6 7 

SALGLE 0.931 0.321 -0.045 -0.101 -0.011 -0.088 -0.026 

LGLZE 0.930 0.320 -0.046 -0.101 -0.013 -0.093 -0.023 

SDLGLE 0.930 0.322 -0.043 -0.107 -0.008 -0.086 -0.032 

Autocorrelation 0.930 0.320 -0.046 -0.103 -0.014 -0.090 -0.024 

Zone Variance -0.291 -0.935 0.074 0.055 0.033 0.007 -0.015 

LAE -0.333 -0.924 0.081 0.066 0.027 -0.010 -0.027 

Maximum Probability -0.219 -0.918 0.004 0.044 0.062 0.170 -0.063 

SZNU -0.007 0.158 0.972 0.067 0.097 -0.062 -0.033 

DNU -0.135 -0.131 0.961 0.089 0.106 -0.068 0.035 

RLNU 0.039 0.228 0.959 0.054 0.097 -0.055 0.027 

Idm -0.166 -0.364 0.267 0.804 0.029 -0.073 0.111 

Idmn -0.229 -0.265 0.325 0.785 0.055 -0.103 0.028 

Cluster Shade 0.356 0.237 -0.089 0.692 -0.065 0.370 0.012 

Maximum2DDiameterSlice -0.138 0.001 0.223 0.047 0.869 0.122 0.111 

Maximum3DDiameter -0.134 0.055 0.195 0.026 0.820 0.065 0.077 

Flatness -0.017 -0.065 0.359 0.025 -0.799 -0.103 0.056 

Sphericity 0.138 0.098 0.014 -0.142 -0.269 -0.892 0.043 

Surface Volume Ratio -0.046 0.037 -0.376 0.067 0.189 0.857 -0.078 

Correlation 0.092 -0.317 0.091 0.440 -0.380 -0.184 0.607 
SALGLE =Small Area Low GrayLevel Emphasis; LGLZE =Low GrayLevel Zone Emphasis; SDLGLE =Small- Dependence Low 

GrayLevel Emphasis; LAE =Large Area Emphasis; DNU =Dependence Non-Uniformity; RLNU =Run Length Non-Uniformity; 

SZNU =Size Zone Non-Uniformity; Idm =Inverse Difference Moment. The bolded values show highest factor loadings that explain 

and constitute the underlying component. 

Machine learning models 

The entire extracted texture data was randomly split into training/validation/testing sets in 70/15/15 percent 

distribution. Once all the features were extracted and selected, a 5-fold cross-validation training was performed using 

four types of single classifiers and four ensemble classifiers, with their prediction performances shown in Table 3 

below. The ensemble classifiers outperformed single classifiers, with Bagged trees algorithm providing nearly 85% 

classification accuracy. The bagged-trees model was the most sensitive, specific and had the best AUC metric out of 

all tested models and is depicted in Figure 4. Multi-variate modelling revealed that CDD1, FO-Minimum, LGLZE 

and Run Percentage features are significant contributors to predictions of a clinically relevant change in FEV1 in these 

ex-smokers. 
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Figure 4. ROC curve and confusion matrix of the best performing model utilizing bagged-trees. 

Table 3. Performance of single and ensemble machine-learning models trained using all selected texture features. 

     Model Name (n =10) AUC Sensitivity (%) Specificity (%) Accuracy (%) 

Logistic Regression 0.76 83.6 75.0 81.4 

Decision Trees* 0.53 75.0 0 75.0 

Naïve Bayes 0.63 78.3 42.8 66.3 

Medium KNN 0.75 78.3 75.0 77.9 

Bagged Trees 0.81 87.5 80.0 84.6 
Boosted Trees 0.73 78.3 54.6 77.9 
Subspace Discriminant 0.72 74.1 63.6 73.7 
Subspace KNN 0.79 80.0 75.0 78.3 
RUSBoosted Trees 0.63 78.3 21.4 76.7 
Fine Gaussian SVM 0.73 83.6 66.6 79.1 

AUC = Area under the receiver-operating curve; RUS = Random Under Sampling; KNN = K-Nearest Neighbours; SVM = 

Support Vector Machines; *indicates classifiers that simply predicted all subjects as one class. 

Alternative predictive models were also tested using only the emergent components as inputs to the machine learning 

algorithms. The resultant model classification accuracy was lower than using the selected texture features individually. 

Addition of generated components to extracted texture feature increased the model performance with components #1 

and #6 selected as significant predictors. The highest performance achieved by models trained on PCA components 

was Medium-KNN with a 75.6% accuracy and AUC of 0.70 as shown in Table 4 below. 

Table 4. Performance of single and ensemble machine-learning models trained only on selected PCA components. 

     Model Name (n =10) AUC Sensitivity (%) Specificity (%) Accuracy (%) 

Logistic Regression 0.68 74.1 40.5 70.9 

Decision Trees* 0.56 75.0 0 75.0 

Naïve Bayes 0.66 74.1 36.3 69.8 

Medium KNN 0.70 78.3 56.5 75.6 

Bagged Trees 0.65 78.3 43.2 73.7 
Boosted Trees 0.58 72.3 10.0 66.3 
Subspace Discriminant 0.62 74.1 17.0 69.8 
Subspace KNN 0.67 80.0 40.5 73.7 
RUSBoosted Trees 0.63 75.0 34.3 62.8 
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Fine Gaussian SVM 0.60 74.1 20.0 70.9 

AUC = Area under the receiver-operating curve; RUS = Random Under Sampling; KNN = K-Nearest Neighbours; SVM = 

Support Vector Machines; *indicates classifiers that simply predicted all subjects as one class. 

 

Correlations with clinical measurements 

The texture features identified as significant predictors of clinically relevant FEV1 changes were correlated with well-

established clinical measurements. Spearman’s correlations between the hyperpolarized 3He MRI and pulmonary 

function measurements with a sample texture feature of GLSZM-LGLZE are shown in Figure 5 below. All other 

significant texture features except FO-Minimum, provided weak-to-moderate correlations (r=0.2-0.5, p<.05) with the 

established clinical measurements. The generated texture components #1 and #6 from PCA did not show significant 

correlations with majority of the clinically relevant measurements shown below.  
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Figure 5. Spearman correlations of LGLZE texture feature with MRI and lung function measurements. 

NEW OR BREAKTHROUGH WORK TO BE PRESENTED 

For the first time, machine learning and texture features from hyperpolarized 3He MRI ventilation images were used 

to predict ex-smokers who would experience accelerated FEV1 decline over a short three-year period. This is an 

important first step in generating predictive models of pulmonary function decline in ex-smokers with and without 

COPD, which has not been possible so far. 



 

261 

 

DISCUSSION AND CONCLUSION 

In this study, we developed a pipeline to identify unique texture features residing within hyperpolarized 3He MR 

ventilation images in order to identify ex-smokers at risk of accelerated lung function decline. While model test 

accuracy was moderate, sensitivity remained high, which underscores the potential of this approach and 

hyperpolarized noble gas MRI. Standard MRI-derived measurements were outperformed by MRI-derived texture 

features during the feature selection step. From Tables 3 & 4, using individual texture features for training has 

generated a superior predictive model (85%) compared to models including only generated components from PCA 

(76%). Extracted CDD1 feature reflects the cumulative number of defect clusters of one voxel (5x5x5mm3) and 

described defect clusters ~1 voxel, and of low gray-level, or small to no signal, based on the values and equations15 of 

extracted FO-minimum, LGLZE and run percentage texture features which were all significant predictors of 

accelerated FEV1 decline in ex-smokers. Features extracted directly from the original images were correlated with 

well-established clinical measurements shown using LGLZE texture feature in Figure 5. All higher-order texture 

features significantly correlated with these clinically relevant measurements, whereas the first-order statistical features 

and the generated components #1 and #6 did not show correlations, suggesting that higher-order features can 

potentially becoming imaging markers that can significantly correlate and independently predict clinically relevant 

endpoints. 

Future work will include a more robust analysis of extraction parameters and relative stability of extracted textures, 

using a larger and more heterogeneous dataset to improve performance and clinical efficacy of the pipeline. The 

developed algorithms use a computationally expensive optimization approach through the naïve greedy algorithm, 

whereas alternatives such as dynamic parallel processing24 will also be explored. We will implement Boruta analysis 

for the feature selection step and also compare multiple feature selection approaches to increase the classification 

accuracy of the machine-learning models. Boruta analysis uses a random forest classifier for performing iterations of 

features considered all together and also uses a two-step correction for multiple testing. This allows all features that 

carry information usable for prediction to be identified, rather than finding a potential compact subset of features for 

which classifiers have minimal error. 
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Appendix C – Don’t Forget the Kids!: Novel Pulmonary MRI and AI of Neonatal Lung 

Disease 

In this editorial, we critically evaluated a provided comments on an innovative deep learning 

ensemble approach for pulmonary MRI segmentation in neonates, where custom intensity-spatial-

distribution features were evaluated.  

The contents of this appendix were previously published in the Radiology: Artificial Intelligence 

journal as editorial commentary: G Parraga and M Sharma. Don’t forget the kids! Novel 

pulmonary MRI and AI of neonatal lung disease. Radiology: Artificial Intelligence (2023). 

https://doi.org/10.1148/ryai.230400. Permission to reproduce this article was granted by the 

Radiological Society of North America (RSNA) and is provided in Appendix D. 

 

Neonatal pulmonary disease, including bronchopulmonary dysplasia (BPD), is the final frontier 

for modern medical imaging. Neonatal lungs are tiny and, in cases that require hospital-based care, 

usually they are not fully developed. Neonates themselves cannot respond to instructions or lie 

still easily; those who are acutely ill need critical care support. The structure and function of the 

respiratory system at birth and at hospital discharge play an enormous role in the long-term 

achievement of optimal lung structure and function in growing children as they approach 

adulthood (1). In other words, the impact of neonatal care can last a lifetime. 

Unfortunately, the diagnosis of lung abnormalities in premature and full-term neonates still relies 

mainly on clinical signs and observations, which typically are managed in the intensive care unit 

with the aid of chest radiography. Repeat chest CT generally is not performed because of the risk 

of ionizing radiation to patients who are so early in life. As such, it remains difficult to provide a 

framework to understand potential long-term outcomes and prognoses so that the parents of 

neonatal patients can plan for expected hurdles and aftereffects. 

Into this clinical care gulf has emerged a cadre of pioneering researchers and clinicians dedicated 

to improving neonatal imaging using the radiation-free methods of US (2) and MRI (3). They bring 

the hope that if we discover and develop novel ways to rapidly acquire whole-lung images with 

clinically meaningful data, better outcomes and a better understanding of future outcomes will 

emerge. 

Free-breathing hydrogen 1 (1H) MRI methods can generate simulated ventilation and perfusion 

maps based on the small periodic change in 1H signal intensity that occurs as the lungs fill and 

empty with air during tidal breathing (4). Another method, based on ultra-low- and zero-echo-time 

methods (5,6), has been developed to visualize the structural information, including airways and 

parenchyma, similar to chest CT images (7). These techniques have been studied in children, 

including neonates (8,9), but generally remain in the research domain. Image analysis and 

interpretation can be quite involved for quantitative results and have not yet been translated to 

clinical use. 

In this issue of Radiology: Artificial Intelligence, Mairhörmann and Castelblanco and colleagues 

(10) address these limitations head on. The authors employed an innovative deep learning 

ensemble approach for pulmonary MRI segmentation, with multiple cross-validation schemes to 

avoid overfitting. In combination with custom intensity-spatial-distribution features, the ensemble 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698590/#r10
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deep learning convolutional neural network models were highly consistent with expert MRI 

neonatal lung segmentations (cross-validation volumetric Dice coefficient = 0.91). Their model 

performed segmentation without time-consuming expert observer interaction, which provides a 

very large advantage. The authors evaluated neonates from two different study cohorts. Three 

expert observers performed manual MRI annotations, and two trained experts evaluated 

morphologic abnormalities. In addition to segmentation, a three-dimensional (3D) reconstruction 

approach quantified MRI features, including lung volume, surface, shape, and intensity. These 3D 

MRI features were highly accurate as compared with the reference standard (clinical diagnosis) 

for differentiating neonates with and without BPD; the area under the receiver operating 

characteristic curve (AUC) was 0.92 ± 0.02 for diagnosing BPD. 

Although these results are worth considering for clinical applications, unfortunately the 3D MRI 

lung features alone did not outperform patient and clinical features. Supplementary analysis that 

ranked all features revealed that clinical measurements, such as gestational age, outperformed the 

MRI lung features. From a clinical and patient-centered perspective, it is important to note that the 

3D MRI features, such as lung volume normalized by birth weight, correlated with continuous 

BPD indicators such as duration of mechanical ventilation (ρ = 0.74, P < .001) and oxygen 

supplementation (ρ = 0.66, P < .001). There is room for optimism that this approach is on the right 

track. 

Certainly, these results take us some distance toward a future where MRI becomes a mainstay 

imaging method in neonates. In general, however, artificial intelligence (AI) segmentation 

approaches are not intuitive, and, in many cases, the clinical relevance of the algorithm output is 

not directly relatable or obviously relevant to the clinical problem. For implementation in clinical 

workflows, such approaches need to be more than highly accurate and rapid, but also trustworthy, 

transparent, interpretable, and explainable. Ultimately, as clinicians and radiologists, we want to 

understand more deeply how AI algorithms can improve patient care within clinical workflows. 

Future work likely will focus on developing standardized methods to improve interpretability of 

AI-generated predictions and their relationship with disease pathologies. In addition, model 

performance measures will need to be developed to reflect what is most important to neonatal 

patients and their parents, namely whether the use of an AI approach results in changes to patient 

care that improve long-term outcomes. Fortunately, the proposed MRI features extracted here 

correlated with key BPD indicators and added unique information to predict BPD severity. Hence, 

the algorithmic results were certainly relatable to BPD, and the approach was not completely a 

"black box." 

In summary, the study by Mairhörmann and Castelblanco and colleagues addresses an important 

clinical challenge in neonatal medicine and radiology by automating MRI lung segmentation and 

enabling rapid generation of quantitative MRI features. Automated segmentation and extraction of 

imaging features helped predict the development of BPD and its severity. To accelerate clinical 

translation, prospective studies should investigate relationships between algorithmic outputs and 

long-term clinical outcomes. As researchers continue to develop novel combinations of MRI and 

AI methods dedicated to neonatal health, it becomes less likely that we will forget the kids! 
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Appendix B – Hyperpolarized Gas Magnetic Resonance Imaging Texture Analysis and Machine 

Learning to explain Accelerated Lung Function Decline in Ex-smokers with and without COPD 

– Article was reproduced with the permission granted by the international society for optics and 

photonics (SPIE).  
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Figure 1-4. Permission to reproduce. 
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Submitted to Radiology (Manuscript ID: RAD-23-2762). 

 
11. M Sharma, A Fenster, DG McCormack and G Parraga. Machine-learning and Texture Analysis of 
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Submitted to Journal of Medical Imaging. (Manuscript ID: JMI 24004G) 
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Nicholson, I Dhaliwal, S Jeimy, C Licskai, CA Mackenzie, M Kuprowski, A Bhalla, C Yamashita and G 
Parraga. 129Xe Ventilation MRI and Asthma Control After Six-Weeks ICS/LABA/LAMA in Poorly-
Controlled Asthma. 2024. Submitted to CHEST. (Manuscript ID: CHEST-D-24-00014) 
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Parraga. MRI and CT Measurements Uniquely Explain All-cause Mortality in Ex-smokers with and 
without COPD. Robarts Research Retreat. London, ON. June 28, 2023. (Institutional) 

2. PV Wyszkiewicz, M Sharma, HK Kooner, DG McCormack, M Kirby and G Parraga. Terminal 
Airspace Enlargement Measured Using Pulmonary Functional MRI Predicts CT Airway Loss in 
COPD. Annual International Society of Magnetic Resonance in Medicine Scientific Meeting 2023, 
Toronto, Canada. June 3-8, 2023. (International) 

3. MJ McIntosh, M Sharma, HK Kooner, H Serajeddini, A Bhalla, C Yamashita, and G Parraga. 
Hyperpolarized 129Xe MRI ventilation textures predict short and long-term response to Anti-IL-5Rα 
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Medicine Scientific Meeting 2023, Toronto, Canada. June 3-8, 2023. (International) 

4. HK Kooner, M Sharma, MJ McIntosh, I Dhaliwal, JM Nicholson, and G Parraga. 129Xe MRI Ventilation 
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14. PV Wyszkiewicz, M Sharma, DG McCormack, IA Cunningham, and G Parraga. CT Pulmonary 
Airways in Chronic Obstructive Pulmonary Disease: Longitudinal Worsening in the TINCan Cohort 
Study. Robarts Research Retreat. London ON, Canada. June 16 2022. (Institutional) 

15. HK Kooner, MJ McIntosh, AM Matheson, M Sharma, PV Wyszkiewicz, I Dhaliwal, M Abdelrazek, M 
Nicholson, and G Parraga. 129Xe MRI Ventilation Defects in People with Post-Acute COVID-19 
Syndrome. Robarts Research Retreat. London ON, Canada. June 16 2022. (Institutional) 

16. M Sharma, MJ McIntosh, HK Kooner, AM Matheson, PV Wyszkiewicz, DG McCormack, and G 
Parraga. Texture Analysis and Machine Learning of Hyperpolarized 3He MRI Ventilation Predicts 
Quality-of-life Worsening in Ex-smokers with and without COPD. London Imaging Discovery Day. 
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19. M Sharma, HK Kooner, MJ McIntosh, DG McCormack and G Parraga. Quality-of-life Worsening 
Predicted Using Baseline Hyperpolarized 3He MRI Ventilation Texture Features and Machine-
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England, UK May 7-12 2022. (International) 

20. MJ McIntosh, M Sharma, AM Matheson, HK Kooner, RL Eddy, C Licksai, DG McCormack, M 
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Biology (ISMRM-ESMRMB) Scientific Meeting 2022, London, England, UK May 7-12, 2022. 
(International) 

21. HK Kooner, MJ McIntosh, M Sharma, GV Singh, N Nasir, E Blake, I Dhaliwal, M Nicholson, M Kirby 
and G Parraga. Post-Acute COVID-19 Syndrome: Longitudinal 129Xe MRI Ventilation Heterogeneity 
Measurements. Joint annual International Society of Magnetic Resonance in Medicine-European 
Society for Magnetic Resonance in Medicine and Biology (ISMRM-ESMRMB) Scientific Meeting 
2022, London, England, UK May 7-12, 2022. (International) 

22. MJ McIntosh, AM Matheson, M Sharma, HK Kooner, RL Eddy, DG McCormack, C Yamashita and G 
Parraga. Pulmonary 1H MRI Lobar Classification using Convolutional Neural Networks. 67th annual 
Canadian Organization of Medical Physicist scientific meeting, June 22-25, 2021, Virtual. (National) 

 
23. M Sharma, AM Matheson, DG McCormack, DA Palma and G Parraga. Hyperpolarized 3He MRI ADC 
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Virtual. (International) 

 
24. HK Kooner, MJ McIntosh, M Sharma, AM Matheson, Y Rajapaksa, I Dhaliwal, M Nicholson and G 

Parraga. Hyperpolarized 129Xe MRI Ventilation Texture Features to Characterize Long-haul COVID-
19 Survivors. 29th annual International Society for Magnetic Resonance in Medicine scientific 
meeting, May 15-20, 2021, Virtual. (International) 

 
25. M Sharma, MJ McIntosh, AM Matheson, HK Kooner, DG McCormack, DA Palma and G Parraga. 

6MWD worsening in COPD predicted using CT and MRI Texture Features and Machine Learning. 
117th annual American Thoracic Society scientific meeting, May 14-19, 2021, Virtual. (International) 

 
26. M Sharma, MJ McIntosh, AM Matheson, HK Kooner, DG McCormack, DA Palma and G Parraga. Six 

Minute Walk Distance worsening in COPD predicted using CT and MRI Texture Features and 
Machine Learning. Annual Robarts Research Retreat, June 17, 2021, Virtual. (Institutional) 

 
27. HK Kooner, MJ McIntosh, M Sharma, AM Matheson, Y Rajapaksa, I Dhaliwal, M Nicholson and G 
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19 Survivors. Annual Robarts Research Retreat, June 17, 2021, Virtual. (Institutional) 
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Parraga. Pulmonary 1H MRI Lobar Classification using Convolutional Neural Networks. Annual 
Robarts Research Retreat, June 17, 2021, Virtual. (Institutional) 

 
29. M Sharma, AR Westcott, A Fenster, DG McCormack and G Parraga. Hyperpolarized Gas Magnetic 

Resonance Imaging Texture Analysis and Machine Learning Explains Accelerated Lung Function 
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meeting, July 12-16, 2020, Virtual. (International) 

 
31. M Sharma, AR Westcott, JL MacNeil, DG McCormack and G Parraga. Machine Learning with 
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2020, Virtual. (International) 

33. JL MacNeil, B Hou, M Sharma, DG McCormack and G Parraga. Ex-smokers with Abnormal Diffusing 
Capacity and Normal CT: Multi-parametric Response Map Phenotypes. 116th annual American 
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34. M Sharma, AR Westcott, JL MacNeil, DG McCormack and G Parraga. Extracting Computed 
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35. M Sharma, AR Westcott, A Fenster, DG McCormack and G Parraga. Can Hyperpolarized Gas MRI 

and Machine Learning Predict Longitudinal Changes in Airflow Limitation in Ex-smokers? 28th annual 
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3. A Mozaffaripour, S Tcherner, M Sharma, HK Kooner, MJ McIntosh, N Paul, C Yamashita and G 
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7. HK Kooner, M Sharma, A Mozaffaripour, S Tcherner, C Yamashita, and G Parraga. 129Xe MRS 
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for Magnetic Resonance in Medicine Annual Meeting & Exhibition. Singapore. May 4-9, 2024. 
(International) 

8. M Sharma, HK Kooner, A Mozaffaripour, S Tcherner, C Yamashita, and G Parraga. 129Xe MR 
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9. A Mozaffaripour, S Tcherner, M Sharma, HK Kooner, MJ McIntosh, C Yamashita, and G Parraga. 
129Xe MRI Ventilation Texture Features and Machine Learning to Predict Response to 
ICS/LABA/LAMA in Moderate Asthma. International Society for Magnetic Resonance in Medicine 
Annual Meeting & Exhibition. Singapore. May 4-9, 2024. (International) 
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without COPD. American Thoracic Society Annual Scientific Meeting. Washington, DC. May 19-24, 
2023. 

3. MJ McIntosh,* M Sharma, HK Kooner, H Serajeddini, A Bhalla, C Yamashita, and G Parraga. 
Hyperpolarized 129Xe MRI ventilation textures predict short and long-term response to Anti-IL-5Rα 
Biologic Therapy in Eosinophilic Asthma. Imaging Network of Ontario Annual Symposium, London 
Ontario. March 23-24, 2023. 
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Airway Wall Thinning and Loss of Total Airway Count after Three-Years in COPD. Imaging Network 
Ontario Annual Symposium. London, ON. March 23-24, 2023. 

5. V Desaigoudar,* PV Wyszkiewicz, AM Matheson, M Sharma, MJ McIntosh, HK Kooner, DG 
McCormack and G Parraga. CT Pulmonary Vascular, Airway, Pulmonary Artery and Aorta 
Measurements in Ex-Smokers with and without COPD. Canadian Undergraduate Medical Physics 
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6. M Sharma,* MJ McIntosh, HK Kooner, DG McCormack and G Parraga. Machine-Learning and 
Texture Analysis of Hyperpolarized 3He MRI Ventilation Predicts Quality-of-life Worsening in Ex-
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Parraga. Texture Analysis and Machine Learning of Hyperpolarized 3He MRI Ventilation Predicts 
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8. M Sharma,* HK Kooner, MJ McIntosh, DG McCormack and G Parraga. Quality-of-life Worsening 

Predicted Using Baseline Hyperpolarized 3He MRI Ventilation Texture Features and Machine-
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Magnetic Resonance in Medicine and Biology (ISMRM-ESMRMB) Scientific Meeting 2022, London, 
England, UK May 7-12 2022. 
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Nicholson, C Yamashita and G Parraga. Respiratory System Resistance Explained using 
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10. HK Kooner,* MJ McIntosh, M Sharma, GV Singh, N Nasir, E Blake, I Dhaliwal, M Nicholson, M Kirby 
and G Parraga. Post-Acute COVID-19 Syndrome: Longitudinal 129Xe MRI Ventilation Heterogeneity 
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Society for Magnetic Resonance in Medicine and Biology (ISMRM-ESMRMB) Scientific Meeting 
2022, London, England, UK May 7-12, 2022. 
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Parraga. Texture Analysis and Machine Learning of Hyperpolarized 3He MRI Ventilation Predicts 
Quality-of-life Worsening in Ex-smokers with and without COPD. London Imaging Discovery Day. 
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13. HK Kooner,* MJ McIntosh, AM Matheson, M Sharma, PV Wyszkiewicz, I Dhaliwal, M Nicholson, M 
Abdelrazek, and G Parraga. 129Xe MRI Ventilation Defects in People with Post-Acute COVID-19 
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Airways in Chronic Obstructive Pulmonary Disease: Longitudinal Worsening in the TINCan Cohort 
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Resonance Imaging Texture Analysis and Machine Learning Explains Accelerated Lung Function 
Decline in Ex-smokers with COPD. Annual Society for Photo-optical Instrumentation Engineers 
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16. HK Kooner,* MJ McIntosh, M Sharma, AM Matheson, Y Rajapaksa, I Dhaliwal, M Nicholson and G 

Parraga. Hyperpolarized 129Xe MRI Ventilation Texture Features to Characterize Long-haul COVID-
19 Survivors. 29th annual International Society for Magnetic Resonance in Medicine scientific 
meeting. May 15-20 2021, Virtual. 
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17. M Sharma,* MJ McIntosh, AM Matheson, HK Kooner, DG McCormack, DA Palma and G Parraga. 
6MWD worsening in COPD predicted using CT and MRI Texture Features and Machine Learning. 
117th annual American Thoracic Society scientific meeting, May 14-19 2021, Virtual. 

 
18. MJ McIntosh,* AM Matheson, M Sharma, HK Kooner, RL Eddy, DG McCormack, C Yamashita and G 

Parraga. Pulmonary 1H MRI Lobar Classification using Convolutional Neural Networks. 67th annual 
Canadian Organization of Medical Physicist scientific meeting, June 22-25 2021, Virtual. 

 
19. M Sharma,* MJ McIntosh, AM Matheson, HK Kooner, DG McCormack, DA Palma and G Parraga. 

Six Minute Walk Distance worsening in COPD predicted using CT and MRI Texture Features and 
Machine Learning. Annual Robarts Research Retreat, June 17 2021, Virtual. 

 
20. MJ McIntosh,* AM Matheson, M Sharma, HK Kooner, RL Eddy, DG McCormack, C Yamashita and G 

Parraga. Pulmonary 1H MRI Lobar Classification using Convolutional Neural Networks. Annual 
Robarts Research Retreat, June 17 2021, Virtual. 

 
21. M Sharma,* AR Westcott, JL MacNeil, DG McCormack and G Parraga. Machine Learning and 

Texture Analysis of Thoracic X-ray Computed Tomography to Reveal Subclinical Emphysema. The 
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Robarts Research Retreat, June 19th 2020, Virtual. 
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Biologic Therapy in Eosinophilic Asthma. Annual International Society of Magnetic Resonance in 
Medicine Scientific Meeting 2023, Toronto, Canada. June 3-8, 2023. 

4. PV Wyszkiewicz,* M Sharma, HK Kooner, DG McCormack, M Kirby and G Parraga. Terminal 
Airspace Enlargement Measured Using Pulmonary Functional MRI Predicts CT Airway Loss in 
COPD. Annual International Society of Magnetic Resonance in Medicine Scientific Meeting 2023, 
Toronto, Canada. June 3-8, 2023. 
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Quality-of-life Worsening in Ex-smokers with and without COPD. Robarts Research Retreat. London 
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Airways in Chronic Obstructive Pulmonary Disease: Longitudinal Worsening in the TINCan Cohort 
Study. Robarts Research Retreat. London ON, Canada. June 16 2022. 
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