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Abstract 

 Variable mineral chemistry and textures of basal Negaunee iron ores mined in the Main Tilden 

Pit have led to metallurgical difficulties.  Core-logging and detailed petrography supported by microprobe 

investigations, identify three upward fining lithofacies within the Main Pit Carbonate and overlying 

Martite ore domains: 1) Basal Clastics; 2) Medial BIF; and 3) Granular Iron Formation.  Growth fault 

related subsidence controlled deposition of the Basal Clastics, comprised of detrital quartz dispersed in a 

matrix of chlorite, cemented by ferri-hydrite, chert and Mg-siderite.  Subsequent starvation of any clastic 

input led to cyclic iron-silica precipitation throughout the deposition of Medial BIF.  Increasing wave 

action accompanied marine transgression caused deposition of granular rip-up clasts to form the Upper 

Granular Iron Formation.  These domains are cross-cut by numerous chloritized feeder dykes and are 

capped by a greenstone Pillar, indicating overlapping mafic magmatism.   

Low grade regional metamorphism attending the 1850 Ma Penokean arc-continent collision led to 

magnetite growth, carbonate grain coarsening and chlorite crystallization.  Metamorphic fluids facilitated 

martite replacement of magnetite and deformation led to developing local platy specularite schists.  A late 

retrograde hydrothermal overprint post-dates peak thermal conditions that accompanied the development 

of the 1750 Ma Republic Metamorphic Node.  This is expressed by high-Fe chlorite, Fe-

dolomite/ankerite, zoned Mn-rich siderite with associated trace Cu-Fe sulphide and REE bearing fluro-

apatite and monazite, diagnostic of an “IOCG” type signature. 

 This complex paragenetic history accounts for the unpredictable geometallurgical response of the 

basal Negaunee iron ores.  Treatment difficulties relate to: 1) variable silica-iron separation occurs due to 

liberation from detrital quartz versus massive mosaic and granular textured chert; 2) the bulk iron content 

is expressed not only in iron oxide but in iron carbonate and iron chlorite; and 3) the intense late IOCG 

overprint proximal to the Southern Shear Zone. 

Keywords: Negaunee, Iron Formation, Tilden Mine, Iron Ore Paragenesis, Menominee Group, 

Marquette Range Supergroup, Iron Formation Paleoenvironment, Penokean Orogeny. 
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Chapter 1: Introduction 
 

1.1 Opening Statement 
 
Pricing of iron ore is measured by US cents per dry metric tonne per iron unit which is 

equivalent to US cents per 1000 kilograms.  Iron unit prices have increased from 0.279 

$US /dry metric tonne in 2001 to 2.10 $US/dry metric tonne in 2010 (Figure 1.0).  This 

rise in price is largely due to the increased demand by the industrial development of Asia, 

most notably China (Reuters, 2010).  The jump in demand and price of iron ore has 

rejuvenated exploration programs throughout North America, South America as well as 

Australia.  It has sparked numerous mergers and takeover attempts, including Cliff’s 

recent 4.9 billion dollar acquisition of the Consolidated Thompson Bloom Lake Mine, 

Quebec and the recent ArcelorMittal takeover of Baffinland Iron Mine Corp. which holds 

the Mary River iron deposits situated on northern Baffin Island.   
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Figure 1.0: A graph depicting the change in iron ore prices from 2000 
to 2011 (Mongabay, 2011). 
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The three largest global iron ore producing companies include Vale, Rio Tinto 

and BHP Billiton.  The increased demand for iron has also prolonged the life of many 

producing iron ore deposits, such as Cliffs Natural Resources Ltd. Empire and Tilden 

iron ore operations at Ishpeming, Michigan (Figure 1.1).  Current open pit mining of the 

Empire and Tilden pits are among the largest producing iron mines in North America, 

supplying iron ore pellets to North American customers.  The operating Tilden pit 

extracts iron ore from the Negaunee Iron Formation and is the subject of this thesis.  

Cliffs Natural Resources Ltd. is the oldest operating iron ore company in North America 

and has shaped the historical development of northern Michigan and the Great Lakes 

region. 

 

 

 

 

 

 

 

 

 

 
 Figure 1.1: Map of the Lake Superior Region including the villages of 

Negaunee and Ishpeming (Exploring the North, 2011). 
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1.2 Mining History of the Region and Cliffs Natural Resources 
Ltd. 
 
The first notable iron ore discovery in the Lake Superior Region was reported from the 

Marquette Mineral District in 1844 (Boyum, 1975).  The town of Negaunee 23 

kilometers east of Marquette is the site of the Jackson Mine, the first iron ore mine 

brought into production in the United States in 1845.  Formed initially as the Cleveland 

Iron Mining Company in 1847, the current Cliffs Natural Resources Ltd. still has its head 

office in Cleveland, Ohio.  It now has diversified holdings that include iron ore, coal and 

chromite.  The operations located at Ishpeming made its first substantial shipment (1,479 

tonnes) in 1855.  The first Soo Lock was opened in 1855 in Sault Ste. Marie, Michigan to 

facilitate production and shipping (Boyum, 1975).  Initial mining efforts such as those at 

the Jackson Mine and at Carp River focused on producing ore from charcoal furnaces to 

make pig iron.  Until the 1950’s production included both open pit and underground 

methods to recover high grade direct-shipping iron ore.  Since the 1950’s there has been 

mining of lower grade taconite followed by pelletization, as from Cliffs’ Eagle Mills, 

Humboldt, Republic and Empire mines (Boyum, 1975).   

A joint program with the U.S. Bureau of Mines at Minneapolis led to the 

successful development of selective flocculation-flotation process, a procedure used 

today in the pellitization process (Boyum, 1975).  The Tilden Mine came on stream in 

1974, mining the basal oxidized portion of the Negaunee Iron Formation.  Although other 

minor iron formations of the Marquette Range Supergroup contributed to iron ore 

production within the Marquette Mineral District, the Negaunee Iron Formation remains 

the principal producer.  As of 2011, the Empire, Tilden and CDIII open pit mines at 

Ishpeming are all currently active. 

 

1.3 Definitions: Banded Iron Formations and Iron Ores 
 
Iron ores in the Tilden Pit are not high-grade direct shipping but low grade taconite ores 

processed to form iron pellets.  The pelletization process enriches the iron grade from less 

than 40% Fe in banded iron formation extracted from the pit up to 60% Fe in the final 
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pellet product.  Classically, banded iron-formations are considered a sedimentary rock 

type that is typically Archean or Paleoproterozoic in age.  A banded iron formation is a 

chemical precipitate characterized by alternating amorphous silica-rich and iron-rich 

layers.  James (1955) initially defined an iron formation as a “chemical sediment 

typically thin-bedded or laminated, containing 15% or more Fe of sedimentary origin, 

commonly but not necessarily containing layers of chert”.  Trendall (1983) revised the 

definition to “anomalously high Fe content” and removed the minimum 15% lower limit.  

It is the large quantity of iron that makes these rocks particularly economic.   

James (1954) identified four main iron-formation facies comprising all iron 

formations including: 1) oxide; 2) carbonate; 3) silicate; and 4) sulphide.  Oxide facies 

are considered the most economic, typically containing 30-35% Fe.  This can be further 

subdivided into magnetite and hematite according to the dominant oxide.  The Main 

Tilden Pit was originally considered an example of an oxide facies iron formation that is 

dominantly comprised of hematite.  However, portions of the pit may in fact represent 

oxide-carbonate facies iron formation.  There is a transition in oxide species from 

stratigraphically lower magnetite, to martite, to stratigraphically higher hematite ores.     

Both existing mining terminology and lithofacies division developed herein are 

employed in defining ore domains in this thesis.  Informal use of several common terms 

can be found in Appendix A.  The metallurgical Main Pit Carbonate and Martite 

Domains, delineated through mine development, are defined in the following chapter 2.  

A lithofacies classification was applied to these same metallurgical domains over the 

course of the current research.  Lithofacies descriptions including textural and mineral 

chemical variations are addressed in chapters 3 and 4. 

 

1.4 Location and Access 
 
The Marquette Range Supergroup is a thick Paleoproterozoic metasedimentary 

succession that contains multiple banded iron formations, including the Negaunee Iron 

Formation.  It forms the bedrock geology of the Marquette Mineral District of Michigan, 

which incorporates the towns of Negaunee, Marquette and Ishpeming.  The Negaunee 

Iron Formation typically forms topographic highs such as Jasper Knob at Ishpeming and 
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the ridges where the Empire, CDIII and Tilden mines are sited.  Outcrop exposure 

beyond the mine property boundaries is quite limited as the area is generally covered by 

deciduous forests.  Where exposed, iron formation outcrops are moderately oxidized.  

Iron formation exposed in the mine workings is fresh but typically covered in brown 

oxidized iron dust due to ongoing blasting and mining, making it difficult to identify 

lithofacies.  The best way to investigate the Negaunee Iron Formation is within non-

active historic mine pits and in drill core.        

Cliffs Natural Resources Ltd. operations are located in Ishpeming, approximately 

23 km east of the shore of Lake Superior and the city of Marquette (Figure 1.1).  The 

southern most Tilden Pit straddles the faulted contact between the Negaunee Iron 

Formation and the Archean-aged Southern Gneiss Complex.  As of 2010, the Tilden Pit 

dimensions measure 707 meters at its widest point at the surface, 1,593 meters long and 

approximately 350 meters deep (Figure 1.2).  Tapering downward to the base, the current  

bottom of the pit is 152 meters wide, and 721 meters long.  Access to the mine is 

controlled by security entrances as pit operations involve continual year round ore 

removal and periodic blasting.  Current mining is focused on the basal Main Pit 

Carbonate Domain, and this is the specific focus of this thesis.   

 

Tilden Hematite  Pit       Looking Southwest 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 1.0: Tilden Pit dimensions as of 2007.  At the surface it is 
1,593 meters long, 707 meters wide and 350 meters deep.  At its 
base it is 721 meters long and 152 wide.  
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The Tilden deposit is unique in the Lake Superior region in that the principle production 

(over 75%) is from hematite flotation ore.  All other mining operations in the region are 

based on mining magnetite ore or high-grade hematite direct shipping ore.   

 

1.5 Statement of the Problem 
 
Mining of Tilden’s Main Pit Carbonate Domain has presented Cliff’s staff with 

metallurgical challenges.  The Main Pit Carbonate Domain represents an oxidized portion 

of the Negaunee Iron Formation that is comprised of complex iron ore mineralogy.  The 

variability in mineral textures and chemistry has led to difficulties during separation and 

concentration processes that ultimately affect pellet quality.  Standard operation 

procedure is to sample every second drill hole (~12 meters apart) and analyze for bulk 

major element geochemistry.  Utilizing the bulk chemistry, including total head iron, 

phosphorous and silica, ore mixing ratios are calculated to ensure the desired proportions 

of element abundances for consistent mill feed.  Historically, bulk geochemical analyses 

have been accurate enough in predicting ore-processing response however in current 

mining of the Main Pit Carbonate Domain these practices have been less successful.  The 

bench tests that are used to predict plant response have also been unreliable.   

 The definition of ore zones has been based on the metallurgical process response of 

differing ore types.  The differing ore zones have been assigned a “Domain” designation 

for mine planning purposes.  Definitions and the characteristic bulk geochemistry of each 

domain are addressed in Chapter 2.  Metallurgical definitions of domains are applied in 

the absence of any geological data for the explanation of deviations in ore-processing 

response.       

 

1.6 Objectives 
 
The primary objective of this thesis is to define the ore zones on the basis of detailed 

paragenetic relationships of the differing iron ore mineral assemblages.  The secondary 

objectives for this thesis are threefold:  
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1) To delineate lithofacies within the metallurgically defined Main Pit Carbonate 
and Martite domains by utilizing textural and mineral chemical mapping.  

 

2) Develop a metallogenic model for the iron ore that accounts for the detailed 
paragenetic relationships demonstrated by the various ore types. 

 
 

3) Apply the metallogenic model to predict the metallurgical response to 
complex ores within the Main Pit Carbonate Domain. 

 

  Mineral textural and mineral chemical variations are used to subdivide the Main 

Pit Carbonate and Martite domains into differing lithofacies.  Characterization of each of 

the lithofacies was determined by core-logging, petrographic investigations and detailed 

microprobe analyses.  The apparent change in lithological facies both laterally and 

vertically provided evidence not only for a change in depositional environment over time, 

but variations in subsequent diagenetic, metamorphic and late hydrothermal overprints.  

A paleoenvironment interpretation and paragenetic sequence of the subsequent overprints 

are described.  The lithofacies of the Main Pit Carbonate and Martite domains are linked 

to the bulk head chemistry recorded in exploration drill holes.  The comparison of 

mineral textures and mineral chemistry to whole rock analyses clearly demonstrates both 

textures and mineral chemistry affect liberation, ore-mixing ratio calculations and 

ultimately the pellet quality.  Combining all data, a metallogenic model is proposed that 

accounts for the complex paragenetic evolution and metallurgical response of iron ores in 

the Carbonate and Martite domains of the Tilden Pit.  
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Chapter 2: Penokean Geotectonic Framework 
 

2.1 Introduction 

The Tilden Mine is situated in the Upper Michigan Peninsula on the south shore of Lake 

Superior.  The region is central to the Penokean role in the amalgamation of Laurentia 

between 2.4 and 1.7 Ga (Sims et al., 1980).  This region has experienced a protracted 

Penokean orogenic history that included rifting of the Neoarchean shield, island arc 

accretion, foreland basin development and late thermal doming.  The Penokean orogen 

(1875-1750 Ma) was subsequently reactivated during the 1.1 Ga Keweenawan rifting 

event that resulted in widespread mafic dyke swarms and regional flood basalt volcanism 

(Hoffman, 1987).  This chapter outlines the Penokean orogenic cycle from the 2.4 Ga 

rifting on the south margin of the Superior Province, development of juvenile 1.9 Ga 

island arcs, 1850 Ma arc accretion and foreland basin development, and terminal thermal 

doming at 1750 Ma.  It then considers the depositional history of the Marquette Range 

Supergroup and concludes with a discussion on the tectonic setting of the Negaunee Iron 

Formation. 

 

2.2 The Penokean Orogenic Cycle 

Although Archean events are not the focus of this thesis, a 2.7 Ga regional deformation 

zone juxtaposes the Neoarchean Superior craton against an older Mesoarchean gneiss 

terrane to the south and this boundary plays a large role in subsequent Paleoproterozoic 

history.  The Great Lakes Tectonic Zone extends 1200 kilometers from Minnesota, USA 

into Ontario, Canada (Figure 2.0).  Although not well defined in Ontario, the northern 

limit is the Murray fault system (Sims et al., 1980).  Subsequent Paleoproterozoic 

depositional history in the Lake Superior and Lake Huron regions relates to reactivating 

the Great Lakes Tectonic Zone.  

As early as 2.4 Ga, diachronous crustal foundering accommodated by high angle 

normal faulting resulted in the formation of structural basins parallel to the Great Lakes  
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Figure 2.0: The Marquette Range Supergroup bounded by the Archean Superior 
Province (north) and the Wisconsin Magmatic Terrane (south). Note the 
Marquette Range Supergroup has a parallel trend to the Great Lakes Tectonic 
Zone (GLTZ) (Tinkham and Marshak, 2004). 

 

 

 

 

Tectonic Zone (Sims et al., 1980).  Three depositional prisms formed along this structural 

zone, consisting of the Huronian Supergroup on the north shore of Lake Huron, the 

Marquette Range Supergroup in Michigan, and the Animikie Supergroup in Minnesota 

(Figure 2.1).  Young (1983) suggests that the Huronian Supergroup and the Marquette 

Range Supergroup represent the early ~2.4 Ga rifting phase of the Penokean cycle.  This 

same author correlates the basal Chocolay Group of the Marquette Range Supergroup to 

the upper Cobalt Group of the Huronian Supergroup.  Basal Chocolay Group equivalents 

are missing in the Mesabi and Gunflint ranges of the Animikie Supergroup suggesting 

rifting propagated westward.  Both the Huronian and Marquette Range form depositional 

prisms that thickened to the south.  The northern portions of these basins are typified by 

thin sequences of sediments whereas southern more mobile segments have thicker 

sequences of sediments interbedded with volcanics (Sims et al., 1980).  Deformation  
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Figure 2.1: A map depicting the regional geology of the western Superior Lake 
region, USA. Note that the Animikie and Marquette Range Supergroup are 
considered partly contemporaneous. The Niagara Fault Zone represents the 
faulted boundary between the Marquette Range Supergroup and the Wisconsin 
Magmatic Terrane (Vallini et al., 2007) 

 

 

 

 

intensity is lower in the north and more intense to the south, reflecting increasing crustal 

instability.   

Sims et al., (1980) support the interpretation that the lower Chocolay and 

Menominee groups of the Marquette Range Supergroup represent early rifting and 

passive margin sedimentation prior to Penokean collision (Figure 2.2).  Chocolay Group 

sediments represent early rift facies clastics.   The Menominee Group sediments however 

represent deposition on a stable shelf (Young, 1983).  The Menominee dolomite, argillite 

and iron formation succession is attributed to stable passive margin sedimentation.  
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Ojankangas et al, (2001) proposes intracratonic sedimentation that progressed to an 

Atlantic-style passive margin setting.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.2: A stratigraphic section representing the Marquette Range 
Supergroup (compiled from publications of USGS, Michigan 
Department of Natural Resources, Michigan Technology University, 
Cleveland-Cliffs Iron Company and Callahan Mining Corporation 
2007). 

 

 

 

 

 



12 
 

Intrusion of the 2.2 Ga Nippissing diabase sills within the Huronian Supergroup 

indicates early rift magmatism accompanied sedimentation (Corfu and Andrews, 1986).  

Geochemical signatures of the metadiabase sills in the Menominee and volcanics within 

the Baraga Groups, also supports a continental rift setting (Sims et al., 1980).  Sm-Nd 

dating of megascopic eukaryotic algae sampled within the Negaunee Iron Formation has 

yielded dates of 2110 +/- 52 Ma, suggesting that the iron formation deposition that caps 

the Menominee Group occurred by ~ 2.1 Ga (Hans and Runnegar, 1992).  Nd-isotopic 

signatures have also shown there is no change in provenance between the Chocolay and 

the Menominee Groups as both groups are sourced from the northern Superior Craton 

(Sims et al., 1980).  

Rifting between 2.4 and 2.1 Ga was followed by south-directed subduction that 

formed the 1.9 Ma juvenile-arc comprising the Wisconsin Magmatic Terrane (Schultz 

and Cannon, 2007).  Absence of arc-type igneous rocks in the north prior to 1875 Ma 

supports initial south-dipping subduction.  This resulted in decrease in age and increase in 

abundance of Penokean-aged plutons from north to south across the Wisconsin Magmatic 

Terrane (Hoffman, 1988; Van Schmus et al., 1987).  When the Superior craton could no 

longer subduct beneath the southern island arc terranes, subduction polarity switched to 

north-directed (Schneider et al., 2002).  Accretion of the Wisconsin Magamatic Terrane 

to the Superior craton, initiated the deposition of the turbiditic sediments of the Baraga 

Group onto the foreland (Van Schmus, 1976; Barovich et al., 1989).   

A major erosonal unconformity at the base of the Goodrich Quartzite separates 

the Menominee and the Baraga groups (Figure 2.2).  Vallini et al., (2007) propose that 

this represents uplift and erosion ca. 1860 Ma.  A reversal in sediment provenance is 

marked by this unconformity as the Menominee Group is sourced from the northern 

Superior craton while the Baraga Group is sourced from the southern terranes (Sims et 

al., 1980). Identification of 1850 Ma Sudbury Event impactites have been recently 

documented across the Marquette Range and Animikie supergroups (Cannon et al., 

2010).  Spherulitic units mark the stratigraphic tops of the Mesabi and Gunflint iron 

ranges of the Animikie Group (Figure 2.3).  In the Marquette Range Supergroup, 

however, the Sudbury impact occurs below the Bijiki, but well above the basal Goodrich 

Quartzite of the Baraga Group (Cannon et al., 2010).  This recent stratigraphic correlation 
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indicates that the Negaunee Iron Formation is likely much older than the proposed 1874 

Ma date of Schneider et al., (2002).  By 1835 Ma the continued northward directed 

compression developed the 1200 km long Penokean fold and thrust belt parallel to the 

Great Lakes Tectonic Zone (Van Schmus, 1976; Schneider et al., 2002).   

 

 

Figure 2.3: Cross section correlation by Cannon et al., (2010) illustrating the 
stratigraphic position of the Sudbury Impact Event layer across the Great Lakes 
region.  Note how the spherulitic layer terminates most iron formation deposition 
with the exception of the Negaunee. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Penokean Deformation of the Marquette Range 

Supergroup 

The Penokean fold and thrust belt parallels the Great Lakes Tectonic Zone.  Mesoarchean 

basement outliers are exposed in the cores of domes within this belt (Sims et al., 1980).  

Regional folds are typically open, inclined to the northwest, and characterized by a steep 

SE-dipping penetrative cleavage (Sims et al., 1980).  Penokean tectonic fabrics developed 

between 1870 to 1830 Ma (Sims and Peterman, 1983).  Original growth fault extension 
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accommodating passive margin rifting focused reverse faulting during Penokean 

transpressional collision and resulted in basin inversions (Lukey et al., 2007).  Second-

order structures within the Marquette Range Supergroup consist of local upright to 

steeply inclined anticlines and synclines with low angle northwest or southeast plunges 

(Cambray, 2002).         

Peak thermal metamorphism post dates regional compression and is attributed to 

such anorogenic plutonism as the 1760 Ma Humbolt granite.  Tinkham and Marshak 

(2004) show that metamorphic isogrades outline gneiss domes (Figure 2.4A).  These 

same authors interpret the regional dome and keel structural patterns to signify the 

collapse of the Penokean orogen.  The supracrustal keels of the Marquette Range 

Supergroup are bounded by shear zones and displaced downward relative to the interior 

of gneiss domes.  The dome and keel structural development at 1760 Ma occurred 70 

million years after the Penokean arc-craton collision (Tinkham and Marshak, 2004).       

Development of the post-orogenic Republic Metamorphic Node resulted in the 

thermal metamorphism that overprinted the Marquette region (James, 1955).   Schneider 

et al., (1996) report 40Ar/39Ar ages between 1720 and 1680 Ma for developing the 

Republic Metamorphic Node.   Metamorphic grade in the Marquette District increases 

from chlorite grade, in the east near Negaunee, to sillimanite grade near the village of 

Republic (Figure 2.4B).  The Tilden Pit lies just outboard of the biotite isograde (James, 

1955).  Haase (1979) identified three metamorphic zones within the Negaunee on the 

basis of specific iron-rich mineral assemblages.  These zones of increasing metamorphic 

grade from east to west include: Zone 1, defined by the occurrence of stilpnomelane or 

minnesotaite or both co-existing with quartz and siderite; Zone 2, defined by ubiquitous 

grunerite-bearing assemblages co-existing with quartz and siderite; and Zone 3, defined 

by the appearance of garnet or Ca-amphibole or both and further subdivided into garnet 

and Ca-amphibole co-existing with grunerite and garnet, and Ca-amphibole coexists with 

clinopyroxene, olivine and grunerite.  According to Haase (1979) the Tilden mine occurs 

in Zone 1 and lies between chlorite grade to the east and biotite grade to the west.  

Notably, neither stilpnomelane nor minnesotaite were identified in the current 

investigation at the Tilden Pit.  
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Figure 2.4: The isograd boundaries according to (a) Tinkham and Marshak 
(2004) and (B) by Haase (1979) showing the increasing metamorphic grade to the 
west.  Note the approximate location of the Tilden Mine (red dot) close to the 
Biotite-Chlorite isograd boundary. 

 

Schultz and Cannon (2007) have recently proposed that the thermal metamorphic 

overprint of the Marquette Range Supergroup may relate to the far field accretion of the 

younger Yavapai arc system.  These authors and Karlstron et al. (2001) note that the 

domal uplift in central Wisconsin coincides with the compressive deformation of the ~ 

1760 Ma Yavapai orogen, approximately 200 km south of the Penokean orogen.  They 

suggest the post-Penokean anorogenic plutonism was driven in part by compression due 

to continent-arc accretion to the south.  Schultz and Cannon (2007) also propose that a 

late hydrothermal overprint of the Great Lakes Tectonic Zone may be related to accretion 

of the Mazatal arc system.  These authors observed that in Wisconsin and part of 
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Michigan basement rocks beneath deformed quartzites yield 1630 Ma cooling ages that 

temporally link this late hydrothermal overprint to docking of the Mazatal arc.    

Late shear zone reactivation accounts for the late hydrothermal overprint of the 

Negaunee Iron Formation proximal to the Southern Shear Zone.  At the Champion mine 

molybdenite, copper and gold mineralization is attributed to a late hydrothermal fluid 

influx accompanying shearing that post dates the thermal peak (Babcock, 1966).  Both 

the Tilden and Champion mines occur on the same northern structural boundary of the 

Republic Metamorphic Node and recent Os-Re dating of the molybdenite and Mn-

bearing magnetites at Champion has yielded ages ranging from 1672 to 1570 Ma 

(Waggoner, 2010).    

 

2.4 Sedimentary History of the Marquette Range Supergroup 

The Marquette Range Supergroup is a Paleoproterozoic continental margin sedimentary 

succession that lies unconformably on the southern margin of the Archean Superior 

craton (Schneider et al., 2002).  It forms an east-west basin, which is 24-100 km wide and 

310 km long (Figure 2.5), striking across the Upper Peninsula of Michigan (Van Schmus 

and Hinze, 1985).  The thickness of the Marquette Range Supergroup varies from 2000 

meters in the north to 7500 meters in the south (James et al., 1968).  Sims et al., (1980) 

proposes that similar to the Huronian, southward sediment thickening is a result of dip-

slip downthrown fault movement on the southern Superior margin.  Differential 

subsidence occurred throughout the depositional history.  Larue and Sloss (1980) also 

propose Marquette basin sedimentation is related to passive margin rifting prior to 

Penokean collision.  Foundering of the underlying Archean basement reactivated 

Archean faults across the passive margin (Schultz, 1990; Sims et al., 1980).  Cliffs’ 

Tilden Pit is located on the southeastern margin of the Marquette Iron Range where it is 

in fault contact with the Mesoarchean 3.2 - 2.8 Ga Southern Gneiss Complex (Figure 

2.1).   

The siliciclastic and chemical sedimentary rock cycles of the Marquette Range 

Supergroup comprises the lower Chocolay, medial Menominee and upper Baraga/Paint 

River groups.  All three groups represent upward fining sequences (Figure 2.2).  The  

 



17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: A generalized geology map of the Marquette Range Supergroup in 
contact with the Southern Complex.  The Tilden Mine is located on the contact 
between the Negaunee Iron Formtation (brown) and the Southern Complex 
(cross-pattern) (Lukey et al., 2007). 

lower Chocolay Group is dominated by shelf facies quartzites and dolomites.  From 

bottom to top it is comprised of the Enchantment Lake Conglomerate, Mesnard Quartzite, 

Kona Dolomite and Wewe Slate (Gair, 1970).  The Chocolay is unconformably overlain  

by the argillitic Menominee Group that includes from bottom to top the Ajibik Quartzite, 

Siamo Slate and Negaunee Iron Formation (Cannon and Gair, 1970).  The Negaunee Iron 

Formation represents the upper member of the Menominee Group and is the dominant 

supplier of iron ore in the Marquette District.  Both the Chocolay and Menominee groups 

represent shallow water facies deposited in local fault-bounded troughs (Larue and Sloss, 

1980).   
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The Baraga and locally occurring Paint River groups unconformably overlie the 

Menominee Group (Gair, 1970).  From bottom to top the Baraga Group includes the 

Goodrich Quartzite, Michigamme Slate, Clarksburg Volcanics and Bijiki Iron Formation 

(Larue and Sloss, 1980).  The overlying Baraga and Paint River groups are turbiditic 

sequences deposited during widespread, rapid subsidence caused by northward migration 

of a foredeep on the leading edge of the overthrust Wisconsin Magmatic Terrane (Sims et 

al., 1980; Hoffman 1988).  Young (1983) supports this interpretation and further suggests 

that the thick overlying Baraga Group represents arc derived turbiditic rocks deposited in 

an extensive foreland basin that developed during crustal downwarping.  The Baraga 

overstepped the underlying platformal Chocolay and Menominee groups northwards 

(Young, 1983).  The reversal in sedimentary provenance is recorded by a marked 

erosional unconformity between the basal Baraga Group Goodrich Quartzite and 

underlying Negaunee Iron Formation capping the Menominee Group.    

 

2.5 Tectonic Setting of the Negaunee Iron Formation 

Most of the iron ore mined in Michigan has been extracted from the Superior-type 

Negaunee Iron Formation of the Marquette Range.  Lesser production has also come 

from the younger Riverton Iron Formation of the Menominee Range and Ironwood Iron 

Formation of the Gogebic Range (North, 1993).  The Negaunee reaches a thickness of 

1300 meters within the Marquette trough and changes from dominantly siderite-chert 

mineral assemblages in the north to magnetite-hematite-chert assemblages in the south 

(Lukey et al., 2007).  The majority of the Negaunee Iron Formation consists of carbonate, 

carbonate-silicate or carbonate-oxide facies (James, 1954; Gair, 1975).  The Negaunee 

contact with the underlying Siamo Slate is transitional and includes Fe-silicate, Fe-

carbonate, and Fe-oxide facies of iron formation.  The middle Negaunee is dominated by 

Fe-carbonate and Fe-carbonate-oxide facies iron formation and the upper Negaunee is 

dominated by hematite-jasper facies iron formation (Cannon, 1975).  This general pattern 

of hematite facies at the stratigraphic top, medial carbonate and basal mixed facies iron 

formation holds throughout the Marquette District (James, 1955; Haase, 1979).    
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Although the depositional history of the Menominee Group has been well 

established, the tectonic setting and date of the Menominee remains controversial.  Much 

of the controversy polarizes over the age and significance of metadiabase units 

interlayered within the Negaunee and whether these units correlate to the Hemlock 

Volcanics.  Gair (1956) placed the Hemlock Formation within the upper Baraga Group 

and considered the chloritized metadiabases within the Negaunee to be much older.  Van 

Schmus and Bickford (1981) dated the Hemlock volcanics to be ~1910 Ma and supported 

the interpretation that the Hemlock volcanics are younger than the 2.2 Ga Negaunee Iron 

Formation.  Cannon (1986) and Schneider et al., (2002) interpret the Hemlock volcanics 

to lie unconformably on the lower Chocolay Group and suggest the Hemlock volcanics 

correlate to the Menominee Group.  These authors report dates of 1874 Ma for the 

Hemlock and suggest a regional correlation for the Negaunee.  

Direct dating of the altered metadiabase units that interfinger with the Negaunee 

have been unsuccessful and therefore correlations remain speculative.  Schneider et al., 

(2002) reinterpret the Hemlock Formation to be contemporaneous with the metadiabase 

units within the Negaunee Iron Formation and suggest foredeep deposition overlapped 

with arc magmatism to give rise to the Negaunee metadiabases as well as the Hemlock 

and Clarksburg Volcanic formations.  These authors propose the Menominee was 

deposited in a back arc basin as opposed to a foreland basin.     

However, on the basis of present data it seems likely that the Hemlock on 

Chocolay unconformity correlates with the Goodrich on Negaunee unconformity, and 

that this unconformity marks a substantial time gap between passive margin and foreland 

deposition.  The metadiabase units within the Negaunee may indicate that passive margin 

deposition terminated with active rifting at the outer margin of the shelf, signifying the 

rift-drift transition around 2.1 Ga.  The young 1874 Ma Negaunee age proposed by 

Schneider et al., (2002) is not consistent with the 2.1 Ga Sm-Nd date reported by Hans 

and Runnegar (1992).  Nor is it stratigraphically supported by the 1850 Ma impactite 

marker of the Sudbury Event that occurs well above the unconformity separating the 

Negaunee Iron Formation and overlying Baraga Group.     
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Chapter 3: Stratigraphy and Petrography 

 

3.1 Introduction 

Iron ore of the Tilden Pit has been historically subdivided into metallurgical domains 

based on bulk geochemical signatures and other metallurgical characteristics.  This 

chapter will first review pit geology and present the definitions and ore characteristics of 

the metallurgical domains.  Much of the information is courtesy of the Cliffs technical 

staff.  Detailed petrographic descriptions of the lithofacies constituting the Main Pit 

Carbonate and Martite domains are then presented.  The metadiabase capping the Martite 

Domain as well as the effects of the late hydrothermal overprint are also described. 

     

3.2 Geology of the Tilden Mine 

The Tilden Mine occurs at the southern boundary of the Paleoproterozoic Marquette 

Range Trough (Figure 3.0) where it is in fault contact with the Mesoarchean Southern 

Gneiss Complex or locally the Palmer Gneiss (Webster, 1999; Cambray, 2002).  The 

Southern Shear Zone likely originated as a basin margin normal fault accommodating 

basin subsidence along the Great Lakes Tectonic Zone.  It was reactivated during the 

transpressional Penokean collision and now is a reverse fault that dips about 65o north 

(Cambray, 2002).  The fault is highly chloritized and contains sheared remnants of 

metadiabase (Lukey et al., 2007).  The dominating structure in the pit is a 100 meter scale 

asymmetric anticline with its axial plane dipping subparallel to the Palmer Gneiss and 

which plunges 30o northwest (Figure 3.0).  The steeper southern limb is truncated by the 

Southern Gneiss Complex.   

Two ages of mafic rocks occur in the mine: old syn-sedimentary metadiabases 

and young 1.1 Ga Keweenawan dykes related to the Mid-continent rift.  The older series 

have relict fine porphyritic to diabasic/ophitic texture but are strongly overprinted by 

chlorite-carbonate alteration assemblages, particularly in deformation zones (Scott and 
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Lukey, 1999).  The younger Keweenawan dykes are of fresh diabase (Lukey et al., 2007).  

Due to rapid facies changes and the lack of clear marker horizons, the older metadiabase  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.0: A stratigraphic cross-section (A-A’ of figure 2.6) that illustrates the 
anticline as defined by mapping of the igneous “Pillar” marker.  The southern 
limb of the anticline has a steeper dip than the northern limb and is truncated by 
the sheared contact with the Southern Complex.  The Main Pit Carbonate and 
Martite Domains are located beneath the igneous Pillar (Scott and Lukey, 1999). 

 

units have been used as marker horizons for stratigraphic and structural correlation.  The 

basal metadiabase unit, termed the Pillar, is folded and thins over the crest of the 

anticline.  Numerous chloritized dykes cross-cut the stratigraphy beneath the Pillar and 

are identified as feeder dykes.   

 

3.2.1 Ore Domains 

Mining of the deposit by 14 meter high benches accommodates the size of operating 

equipment, and geotechnical logistics.  Mine plans and grade control are based on 

geochemical data on 8 x 8 x 14 meter blocks.  Differing ore types showing metallurgical 

consistency forms the basis of resource modeling (Scott and Lukey, 1999).  Metallurgical 

variations defined at blast pattern scale have led to subdivision of the Tilden Pit flotation 

ores into differing ore domains (Lukey et al., 2007).  These domains usually correspond 

to stratigraphic intervals but may be fault bounded or defined by non-conformable 

alteration/oxidation fronts (Lukey et al., 2007).  Importantly, the domains are 
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characterized by metallurgical response and not by texture.  The primary flotation ore 

domains are shown in Figure 3.1 and their mineralogy, bulk geochemistry and 

metallurgical characteristics are summarized in Table 3.0.  Metallurgical variations, 

important in mine planning and ore blending, reflect the variation in such processes as 

primary deposition, diagenesis, metamorphic and hydrothermal overprinting.   There is an 

overall change upward from dominantly ferrous to ferric iron mineralogy.  In all 

domains, chert is a dominant constituent (Scott and Lukey, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.0: A table summarizing the characteristics of the Clastic (310), Main Pit 
Carbonate (340) and Martite (350) Domains. 

In computer modeling, the domains are designated by a three digit numerical 

code.  The Main Pit Carbonate (340) Domain is the primary focus of this thesis (Figure 

3.1).  However, the investigation continues into the overlying Martite (350) Domain up to 

the base of the Pillar.  On the basis of the whole rock geochemistry supplied by the mine, 

the Main Pit Carbonate Domain is higher in Al, Ca and Mg but lower in P compared to 

the Martite Domain (Figure 3.2).  The contact of the Main Pit Carbonate Domain with the 
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Martite Domain (Figure 3.3) is marked by a dramatic decrease in magnetic iron 

(magnetite) content (Figure 3.4).  Based on satmagan readings the Carbonate Domain is  

typically in sharp contact with the Martite Domain (Figure 3.5).  However locally the 

boundary is transitional over 10 to 20 meters (Lukey et al., 2007).  Thin (10 meter) 

magnetite-bearing interbeds are locally present above the contact but the upward trend is 

to increasing martite (Scott and Lukey, 1999).     

 

Figure 3.1: A generalized geology map of the domains defined by the Tilden 
technical staff.  The Main Pit Carbonate and Martite Domains are the focus of 
the thesis.  Note the shallowly plunging northwest anticline delineated by the 
igneous Pillar horizon (Scott and Lukey, 1999).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 3.2: A contour map delineating the top of the Main Pit Carbonate (340) 
Domain as it is identified in the pit in contact with the overlying Martite Domain.  
Drill holes used in the current research are labelled with white numbers.  The 
green plane represents the location of the Tower Fault.  Map courtesy of Cliffs 
Technical Staff. 
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 Figure 3.3: A graph showing the bulk geochemistry of the Main Pit Carbonate 
(340), Martite (350) and Hematite (450) domains respectively. 

 

 

 

 

 Figure 3.4: A graph showing magnetic iron content of the Main Pit  
Carbonate (340) Domain, Martite (350) Domain and Hematite  
Domain (450). 
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3.2.2 Stratigraphic Subdivision of the Domains 

 

 

 
Figure 3.5: Example of a Satmagan reading down drill hole 26-212  
delineating the contact between the Main Pit Carbonate (340) and  
Martite (350), the Main Pit Carbonate (340) and lower Clastic (310) 
domains. 

 

 

 

The lower Clastic (310) Domain grades upward into the Main Pit Carbonate (340) 

Domain.  There is a generally sharp contact against the overlying Martite (350) Domain, 

and it is capped by the Pillar (230) Domain.  The Pillar separates the Martite Domain 

from the upper Hematite (450) Domain.  The lower Clastic Domain (Figure 3.1) 

comprises the southern margin, and thin clastic units are interstratified within the iron 

formation of the Main Pit Carbonate Domain (Scott and Lukey, 1999).  The Clastic 

Facies of both the Clastic Domain and the Main Pit Carbonate Domain is coarsest and 

thickest proximal to the Southern Gneiss Complex.  Several deep holes have intersected 

Clastics Facies below the Main Pit Carbonate Domain well north of the fault, but it is 

unclear if these deep holes have intersected the Clastic Domain proper (Scott and Lukey, 

1999).   

The flotation ores within the Tilden Pit are constrained within the Main Pit 

Anticline (Figure 3.0).  The greatest diversity of ore types occurs along the axis of the 

fold (Lukey et al., 2007).  As defined by blast patterns and development drilling, the 

Main Pit Carbonate Domain cores the axis of the Main Pit Anticline.  It has unusual and 

variable bulk geochemistry and complex mineral textures.  The domain designation was 

originally based on the carbonate content, primarily siderite, and dominant iron oxide 
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minerals of magnetite and martite (Scott and Lukey, 1999).  Designation for the Martite 

Domain is based on the dominant iron oxide minerals being martite and hematite and the 

absence of magnetite and carbonate (Scott and Lukey, 1999).  The general upward 

mineralogical variation centered along the axis of the Main Pit Anticline is from ferrous 

iron dominant magnetite-carbonate-chlorite of the Main Pit Carbonate Domain to ferric 

martite of the Martite Domain to microplaty hematite-goethite of the Hematite Domain 

(Scott and Lukey, 1999).  The Waste (330) Domain represents iron formation below 

concentrate grade targets for economic pellet recovery.  The Hematite (450) and Waste 

(330) domains are not investigated in this thesis. 

 

3.3 Detailed Petrography 

A location map of strategically selected drill holes and listing of the core sample suite 

chosen for detailed petrographic study are provided in Appendix A.  The primary 

compositions and texture of the chemical sediments that comprise an iron formation are 

controversial topics.  Furthermore, Archean and Paleoproterozoic iron formations have 

been subjected to multiple overprints that have modified primary features.  Within the 

Tilden Pit the primary mineralogy of the Negaunee Iron Formation has been masked by 

regional metamorphism accompanying the 1850 Penokean regional deformation as well 

as late retrograde hydrothermal conditions accompanying the 1750 Ma thermal overprint.  

On the basis of detailed petrographic examination, the variety of textures and the mineral 

assemblages exhibited by the flotation ores at the Tilden mine can be separated 

paragenetically into initial primary, complex early diagenetic, medial metamorphic and 

late hydrothermal stages of mineral growth.  This and the following chapter document 

this complex paragenetic history in terms of mineral texture and mineral chemistry.  

Although subject to metamorphic and hydrothermal overprints, lithofacies correlations 

based on relict primary and diagenetic textures and mineral compositions may be 

cautiously employed.   

Primary textures such as granules, including peloids and ooids, have been 

preserved through replacement by diagenetic, metamorphic and hydrothermal mineral 

assemblages.  The term “primary” in this chapter refers to relict original textures that 
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have been preserved by secondary replacement.  Based on relict primary textures, three 

distinct lithofacies comprise both the Main Pit Carbonate and Martite domains including: 

1) Basal Clastics; 2) Medial Banded Iron Formation (BIF); and 3) Granular Iron 

Formation (GIF) (Figure 3.6).  The unique, diagnostic macro- and microscopic textures 

of these three basal Negaunee lithofacies are described below.      

  To aid Cliffs Natural Resources in mine planning, these three lithofacies 

constitute distinct textural subdomains for metallurgical purposes.  Each lithofacies 

represents a unique depositional process that has been subsequently modified by 

diagenetic, metamorphic and hydrothermal overprinting.  Description of the three 

lithofacies will be in ascending stratigraphic order from Basal Clastics, to Medial Banded 

Iron Formation, to Upper Granular Iron Formation.  A metadiabase “Pillar” (or 330 

Domain) overlies the Upper GIF unit and caps the Martite Domain.  As emplacement of 

the Pillar may have played a role in the diagenetic overprint of the underlying Carbonate 

and Martite domains it is also described.    

 

3.4 Basal Clastic Facies 

The Basal Clastic Facies is the lowermost rock type exposed in the Tilden Pit (Plate 3.0).  

It comprises the entire basal Clastic (310) Domain and the lower portion of the overlying 

Main Pit Carbonate Domain.  This clastic lithology may represent a transitional 

stratigraphic contact between the Negaunee Iron Formation and the underlying Siamo 

Slate.  However, the basal contact has not been intersected in drill core and therefore the 

total thickness of clastic sediments is currently undefined.  Bulk rock geochemistry 

shows crude iron for the basal Clastic Domain is ~35% weight Fe prior to pelletization 

(Table 3.0).  Due to its relatively low iron content, Cliffs generally considers the Clastic 

Domain to be the non-economic base of the Negaunee Iron Formation.   

The Basal Clastic Facies is thickest proximal to the intersection of the Palmer 

Gneiss and Tower faults (Figure 3.1).  The lateral extent of this unit is undetermined but 

it likely pinches out at depth to the north.  It is speculated that the clastics are related to 

growth fault movement on the Southern Shear.   
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Figure 3.6: An idealized cross-section of the Medial BIF textures of  
the Main Pit Carbonate Domain.  Section is approximately 60 meters.   
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Plate 3.0: Drill core of hole 26-77- (1117-1137) depicting coarse  
clastics interbedded with Medial BIF at the base of the Main Pit  
Carbonate Domain. 

 

 

 

This unit can be subdivided into coarse-grained and fine-grained layers.  A coarse 

clastic lithology dominates throughout the entire Basal Clastic Facies.  Fine grained and 

coarse grained clastics comprise bands well into the overlying Main Pit Carbonate 

Domain (Plate 3.0).  The detrital textures of the coarse Basal Clastics indicate little 

transport, suggesting rapid basin subsidence accommodated marine transgression.  In 

core, coarse-grained clastics are dominantly green in colour and contain dispersed coarse 

(1-4 mm) detrital quartz grains in a dominantly chlorite matrix (Plate 3.1a).  The high 

chlorite content gives rise to a diagnostic green colour that makes this unit distinctive in 
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drill core and outcrop.  In core, fine-grained clastics are dark grey in colour, may or may 

not contain minor amounts of detrital quartz and have lesser matrix chlorite (Plate 3.1b).  

In general, there is a subtle decrease in the grain size of the detrital quartz within coarse 

clastics upsection.   
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 Plate 3.1: Clastic lithofacies: (a) coarse clastics (sample 23-70-1113);  
and (b) fine grained variety (sample 26-70-1236).  

 

Monocrystalline quartz grains are the dominant mineral occurring in thin sections 

of the coarse clastics, with modal percentages estimated between 40-60% (Plate 3.2a).  

The matrix mineral assemblage is chlorite-magnetite-siderite.  The precursor rock is 
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interpreted to be an immature, poorly sorted quartz-wacke sandstone.  In thin section, the 

matrix of the fine grained clastics is comprised of mud-sized chlorite, carbonate, 

magnetite and minor illite/sericite (Plate 3.2b).  The precursor rock was likely an iron-

rich mudstone.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.2a:  Photomicrograph in cross polarized light of coarse grained clastic 
texture in sample 26-077-1119. Detrital quartz grains display strained extinction.  
Late carbonate, chlorite and magnetite are interstitial to the quartz grains. 
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Plate 3.2b:  Photomicrograph of fine grained clastic texture in sample 26-075-
1296. Note the mud matrix and lack of detrital quartz grains (plane polarized 
light). 
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Detrital quartz in the coarse grained clastics ranges between < 1 mm and 4 mm 

and are sub-rounded to angular.  These grains occasionally have margins of silica cement 

in uniform extinction with the primary grain.  The uniform extinction suggests diagenetic 

cementation involving pore water that was similar in composition to the depositional 

basin waters and in equilibrium with the detrital quartz grains (Deer et al., 1966).  The 

monocrystalline detrital quartz grains commonly exhibit strained extinction indicating 

deformation.  As strain directions are random and not oriented the deformation occurred 

prior to transport and deposition.  The detrital grains may have been sourced in the 

deformed basement gneiss to the south.  The lack of rounding suggests a short transport 

distance (Kuenen, 1958; Boggs, 1969).  Detrital quartz is commonly absent in the fine 

grained clastic and where present, is generally less than 1 mm in diameter.  Quartz is also 

a cement component of the chlorite-carbonate-illite/sericite mud matrix.   

 Lath shaped to fibrous chlorite typically comprises up to 25% of the coarse clastic 

lithofacies.  Grain size ranges from < 1mm to 2 mm.  The chlorite is interstitial and 

secondary, growing around the detrital quartz grains.  In the fine grained clastics, the 

chlorite is very fine grained (<0.1 mm) and occurs as a minor component in the mud 

matrix of the rock.  It is unlikely that chlorite occurred as primary detritus but forms 

secondary metamorphic overgrowths on precursor matrix minerals.   

 The carbonate component of the clastics varies in species and grain size.  In 

coarse clastics, anhedral Mg-siderite is blocky and occurs interstitial to detrital quartz 

intergrown with chlorite and iron oxides, suggesting it originated as a matrix constituent.  

Coarse grain sizes range up to 1-2 mm.  Less than 0.1 mm anhedral to fibrous Mg-siderite 

is intergrown with quartz, chlorite and illite/sericite in the fine grained matrix.  Mg-

siderite in the fine grained clastics likely originates as primary or diagenetic carbonate 

that has been subsequently recrystallized (Boggs, 1995).  The coarse interstitial Mg-

siderite may represent diagenetic precipitation and cementing related to basinal fluid 

circulation and chemical precipitation out of a formational brine during diagenesis 

(Chang et al., 1998).  All primary or diagenetic carbonates were subjected to 

metamorphism and show subsequent grain coarsening.   

The characteristic iron oxide occurring in the Clastic Facies is essentially 

magnetite whereas martite and/or hematite are rare to absent.   The majority of the 
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magnetite forms large blocky grains ranging in size from 0.5 to 2 mm.  The coarse 

idioblastic textures indicate metamorphic growth (Plate 3.3a).  Occasionally these 

magnetite grains contain cores of ferri-hydrite.  This suggests primary/diagenetic 

precipitation of ferri-hydrite such as goethite.  Ferri-hydrite acted as a nucleation for the 

late growth of magnetite and subsequent grain coarsening to produce porphyroblastic 

textures.  The clastics show the greatest variation in iron oxide species proximal to the 

Tower Fault.  At deepest levels intersected in drilling the iron oxide is dominantly 

magnetite, however, at shallower levels the magnetite is increasingly replaced by martite 

or hematite (Plate 3.3b).  In shallow level replacement of magnetite by martite/hematite, 

the oxidation product still retains the original blocky texture of magnetite.  Martite 

replacement of magnetite and growth of specularite is linked to late metamorphic 

conditions. 
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 Figure 3.3a: Coarse grained texture of metamorphic magnetite with minor 
martite replacement in sample 26-075-1234 (reflected light).  
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Figure 3.3b: Coarse grained texture of metamorphic magnetite with increased 
martite replacement at a shallower elevation in sample 26-198-768 (reflected 
light). 
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3.5 Medial Banded Iron Formation Facies 

The Medial Banded Iron Formation (BIF) Facies comprises the bulk of the Main Pit 

Carbonate Domain.  This thin (1-3 cm) banded unit is up to 60 meters thick and tracks 

across the entire Tilden Pit.  It has a general iron recovery of ~42 weight% Fe.  Bands of 

the Basal Clastics are interbedded with the Medial BIF, indicating overlapping 

sedimentation (Plate 3.0).  The clastic bands decrease in thickness and frequency upward 

and ultimately disappear within a few tens of meters.  Green chloritic clastics forming 

some of the bands suggest silicate facies BIF in this transition.    

Medial BIF bands do not contain primary depositional features such as cross-

beds, wave or current ripples.  As clastics disappear the Medial BIF Facies becomes 

interbedded with the overlying GIF (Plate 3.4).  The contact between the Medial BIF and 

overlying GIF approximates the boundary between the Main Pit Carbonate and Martite 

domains (Figure 3.0).  This boundary has been observed to be sharp but is locally 

gradational.  
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Plate 3.4: Drill core from hole 23-18-(646-666) depicting granular-textured bands 
interbeds within the Medial BIF Facies. 

The defining feature of the Medial BIF Facies is alternating 1-3 cm bands.  It is 

laminated to thinly bedded, displaying dark grey iron oxides, white to grey chert, reddish 

jasper, cream carbonate and pinkish to reddish grey granular textured layers (Plate 3.5).  

The mineral assemblage for each band type is unique.  Grey-black bands are dominantly 

iron oxide with minor chlorite and carbonate.  Chert bands are monomineralic 

cryptocrystalline quartz containing only trace amounts of chlorite and carbonate (Plate 

3.6).  The carbonate bands have mixed fine grained carbonate and chert with minor 

chlorite.  The granular textured bands show cryptocrystalline quartz cementing primary 

ferri-hydrite granules and contain minor chlorite with rare apatite.   
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Plate 3.5: Representative samples of the Medial BIF facies.  Band lithologies are: 
white cryptocrystalline chert, yellow carbonate, black oxides, pinkish granular-
chert and speckled clastics.  Note that there are multiple fractures and offsets 
that cross-cut banding.  
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Plate 3.6: A photomicrograph of grey-white chert band comprised of 
cryptocrystalline chert and lacking iron oxides in sample 26-198-762 (plane 
polarized light). 
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Detrital quartz grains occur in clastic bands and as discontinuous fine lags within 

the bands of chert, carbonate and oxides (Plate 3.7).  Detrital quartz laminae signify the 

“last gasp” of clastic sedimentation in a starved environment - perhaps sand laminae 

deposited in deeper or quiet water due to storm waves (Trendall, 2002).  If so, this 

suggests the BIF deposition occurred below storm wave base with a diminishing influx of 

clastics.  Possibly the detrital laminations could also represent aeolian recycling from a 

subaerial environment (Boggs, 1969).   
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Plate 3.7: Photomicrograph of detrital quartz laminae within an oxide band of 
sample 26-075-1089 (cross polarized light). 

Chert bands are comprised of monomineralic quartz derived by recrystallization 

of primary chemically precipitated siliceous ooze or through complete secondary 

replacement.  The monomineralic chert bands lack evidence for replacement so more 

likely represent primary silica precipitation.  Jasper bands contain micromillimeter “dust 

particles” of ferri-hydrite that were trapped within the precipitating silica (Plate 3.8).  In 

granular bands, cryptocrystalline quartz is the dominant mineral surrounding and infilling 

ferri-hydrite granules, indicating diagenetic silica cementation (Maliva and Siever, 1989).   
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Plate 3.8: Photomicrograph of jasper bands containing impurities of ferri-hydrite 
and iron oxides scattered throughout in sample 26-143-1018 (plane polarized 
light). 

 

Chlorite is a minor constituent in the Medial BIF Facies.  However, fine grained, 

feathery to lath shaped chlorite is common within some oxide, carbonate and chert 

cemented granular bands.  Two varieties of chlorite are in evidence.  Dispersed chlorite 

within the chert and granule structures are metamorphic products replacing a minor clay 

component.  Late hydrothermal chlorite is restricted to fractures and crosscutting veinlets.  

Carbonate in the Medial BIF Facies can also be subdivided into two stages of 

mineral growth, a primary/diagenetic variety and a late hydrothermal species.  Both 

species exhibit unique mineral chemistry.  Minor Mg-siderite occurring as isolated grains 

within some chert and within specific clastic bands appears to be a primary or diagenetic 

product.  These carbonates are fine grained (0.2 to 0.5 mm), anhedral and overgrow chert.  

The majority of carbonate in the Medial BIF is hydrothermal and is restricted to late 

fractures.  

   Four iron oxide and hydroxide species occur within all band types and include 

ferri-hydrite, magnetite, martite and hematite.  The size and distribution of iron species is 

greatly influenced by the specific lithology.  Barren cryptocrystalline chert bands do not 

contain iron oxides or hydroxides.  The ferri-hydrite and hematite (up to 30%) constituent 
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of the granular-textured bands typically rinds the granules (Plate 3.9).  The ferri-hydrite is 

commonly overgrown by blocky magnetite porphyroblasts.  Ferri-hydrite and hematite 

are disseminated throughout the jasper bands, and again are commonly overgrown by 

fine magnetite.  Magnetite is the dominant mineral (up to 90%) in the oxide bands, 

occurring as coarse blocky aggregates.  Blocky magnetite is relatively minor (up to 10%) 

and is up to 1 mm in the carbonate bands.  Minor magnetite disseminated within the 

granular bands is very fine grained (<0.1 mm).   
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Plate 3.9: Photomicrograph of a granule rinded by ferri-hydrites in a granular-
textured band of sample 26-075-1136 overgrown by blocky magnetite. (A) is in 
plane polarized light and; (B) is in reflected light. 
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Increasing martite or hematite rinds develop on euhedral magnetite upsection 

(Plate 3.10).  The secondary martite and hematite are crystalline and not earthy, 

indicating higher temperature replacement as opposed to meteoric weathering (Lascelles, 

2006).  The degree of martite replacement varies with respect to the co-existing minerals.  

A high degree of martite replacing magnetite is associated with the occurrence of low Fe-

dolomite/ankerite species or near absence of siderite.  Conversely, low degrees of martite 

replacement are related to the presence of Mg-siderite species.  Specular hematite 

dominates the granular bands upsection.  Specularite occurs as laths that grow around and 

between the martite-replaced magnetite grains indicating metamorphic growth (Plate 

3.11).   Locally specular hematite laths define a subtle foliation.    
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Plate 3.10: Photomicrographs of martite replacing magnetite in sample 26-075-
1071. This is moderate replacement of magnetite (reflected light).  Note the lack 
of specular hematite. 
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Plate 3.11: Photomicrograph of the near complete replacement of magnetite by 
martite and the abundant laths of specular hematite in sample 26-080-614 
(reflected light).  Note the hematite defines a weak foliation. 

 

3.6 Upper Granular Iron Formation Facies 

The Upper GIF Facies overlies the Medial BIF Facies and comprises the Martite Domain.  

As noted above granular-textured bands are common within the upper part of the Medial 

BIF Facies (Plate 3.4).  The GIF Facies is up to 100 meters thick and tracts across the 

entire Tilden Pit.  The Martite Domain has an iron recovery of ~50 weight% Fe and is 

considered a hematite flotation ore (Lukey et al., 2007).    

The GIF Facies is dominantly grey to pink-grey in core and is massive to finely 

laminated (Plate 3.12).  Individual laminations are comprised of ferri-hydrite granules, 

red jasper and rarely massive chert.  In general this unit lacks cryptocrystalline chert 

bands (Plate 3.13).  Other than banding, primary depositional features such as cross-beds 

and wave or current ripples were not observed.   

 

 

 

 

 

  
 



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.12: Representative samples of the Upper GIF Facies in drill core.  Note 
the lack of chert bands and laminations. 

 

 Plate 3.13: The Upper GIF Facies in drill hole 26-143-(721-741). Note the 
bleached areas of chert replaced granules and the occasional chert bands. 
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Granules rinded by ferri-hydrite are the dominant texture (Plate 3.14).  These 

granules display varying degrees of replacement by blocky magnetite.  Granules range 

from 0.5 to 2 mm in diameter and are generally elliptical indicating deformation.    

Delicate multiple concentric growth layers of ooids are occasionally preserved hence the 

granules are considered a primary sedimentary feature.  Chert, commonly the dominant 

mineral (up to 60%) of the GIF Facies, can be observed both replacing and cementing 

granules.  Chert is recrystallized, forming <0.1 mm cryptocrystalline mosaics.  Detrital 

quartz laminae are extremely rare.  Chert laminae with ferri-hydrite or hematite 

impurities form reddish jasper bands.   
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Plate 3.14: Photomicrograph of the granular texture in sample 26-075-1089 
(plane polarized light). Most grains are granules however there are minor 
occurrences of ooids. 

There are multiple generations of iron oxides within GIF.  Primary or diagenetic 

ferri-hydrite rind granules and represent the first generation.  There is no evidence that 

carbonate originally rinded the granules.  Metamorphic blocky magnetite overgrows the 

ferri-hydrite representing the second generation (Plate 3.9).  This magnetite may be a 

result of the reduction of the ferri-hydrite, or hematite during diagenesis (Ohmoto, 2003).  

Late martite replacement of magnetite results in very little magnetite (<15%) being 

preserved.  Martite replacement represents a period of oxidation and clearly is post 
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magnetite growth.  Platy hematite grows between martite grains, indicating these post- 

date oxidation of magnetite.  Where platy specularite forms wavy bands it defines 

metamorphic foliation related to ductile shearing (Cannon, 1976).  Specularite schists are 

most common in drill holes transecting the steepest south limb of the Main Pit Anticline, 

suggesting specularite growth accompanied high strain bordering the Southern Shear 

Zone.  The platy hematite is therefore late metamorphic in origin.   

Minor (< 5%) chlorite occurs as <0.2 mm feathery aggregates or isolated laths 

dispersed in chert.  Early chlorite dispersed throughout the chert occasionally occupies 

the cores of granules.  These chlorites are light green in colour and are likely 

metamorphic replacement of a trace clay component.   

The Upper GIF Facies is capped by the metadiabase Pillar.  About 15 meters of 

the GIF below the Pillar is overprinted by a hydrothermal aureole.  Within the aureole, 

GIF is comprised essentially of recrystallized chert with only trace iron oxides.  The 

primary granular textures are obliterated. 

 

3.7 Metadiabase Pillar  

A metadiabase Pillar caps the Martite Domain, forming a thin 18 to 30 meter unit that 

best delineates the west plunging nose of the Main Pit Anticline.  It is an offshoot from 

the much thicker Summit Mountain greenstone sill to the north.  To the south the Pillar is 

sheared out by the Southern Shear and may form the Palmer Gneiss within the Southern 

Shear Zone (Webster, 1999).  A hydrothermal halo of 15-30 meters thick has been 

observed on both sides of the pillar in several exploration drill holes (Scott, personal 

communication, 2010).  That the pillar is conformable and has a well developed 

hydrothermal aureole on both sides indicates sill emplacement.   

The Pillar is green to grey green colour in core, is fine to medium grained, 

massive and dominantly comprised of chlorite.  The margin is schistose but a relict 

gabbroic texture is preserved within its interior.  Late brittle brecciation and fractures are 

noticeably absent.   The chlorite (up to 80%) is coarse grained and lath shaped.  Minor 

phases in the hydrothermal altered margin include carbonate, quartz, potassium feldspar, 

apatite and monazite.      

  
 



45 
 

The Pillar and underlying feeder dykes were emplaced pre-metamorphism.  Most 

of these metadiabase dykes display weak foliation indicating ductile shearing was post-

emplacement.  Dykes are typically narrow and range from 2 cm up to 0.5 meters thick.  

Contacts are almost completely chlorite in composition and generally schistose (Plate 

3.15).  In thin section, relict primary igneous textures are locally preserved, however 

primary minerals have been completely replaced by chlorite (Plate 3.16).  The replaced 

minerals retain euhedral plagioclase and pyroxene shapes (Plate 3.16).  The occurrence of 

ilmenite in several dykes signifies a magmatic origin (Deer et al., 1966).   
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Plate 3.15: A chloritized dyke intruding the Upper GIF Facies in drill hole 26-076 
(782-818). 
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Plate 3.16: Photomicrograph of a metadiabase dyke for sample 26-198-1058 
containing magmatic textures that are replaced by chlorite (plane polarized 
light). 
 

 3.8 Late Brittle Hydrothermal Overprint 

Following deposition, diagenesis and metamorphism, the basal Negaunee exposed in the 

Tilden Pit was subjected to a late brittle hydrothermal overprint.  Brittle fracturing is 

most intense in the Basal Clastics proximal to the Palmer Gneiss and decreases up 

section.  Intense fracturing and brecciation within the Basal Clastics was observed in drill 

core, indicating late movement proximal to the Southern Shear Zone and Tower Hill 

fault.  The Medial BIF Facies is strongly fractured but does not show the same degree of 

brecciation as the Basal Clastics.  In general, the Upper GIF is the least fractured of the 

three lithofacies.   

Late hydrothermal mineral assemblages are restricted to brittle structures (Plate 

3.17).  The hydrothermal mineral assemblage is defined by abundant chlorite, carbonate, 

and trace Cu-Fe sulphide, apatite and monazite.  Chlorite dominates fracture walls and 

veinlets.  Intergrowths of late chlorite away from fractures in the Basal Clastic suggest 

greater degrees of chlorite overgrowth exterior to fracture walls.  The late chlorite is 

relatively coarser grained and exhibits dark green to yellow green pleochroism.   
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Plate 3.17:  A photomicrograph of sample 26-075-1021 showing a late fracture 
within the Upper GIF Facies that is in filled with hydrothermal chlorite and 
carbonate (plane polarized light).  

 

Carbonate is the second most abundant late hydrothermal mineral.  The late 

carbonate is patchy and occupies veinlets and fracture infill in all three facies.  Within the 

Basal Clastics high Fe and Mn-carbonate varieties are common.  However, in the Medial 

BIF and Upper GIF Facies, Fe-dolomite/ankerite is dominant.  Locally, hydrothermal 

carbonate is domainal containing zones of siderite, ankerite and rhodochrosite.   

Late hydrothermal carbonate is occasionally accompanied by trace chalcopyrite 

and tennantite.  Although minor to rare (<1%), the presence of these Cu-Fe sulphides 

suggest high temperature fluid ingress (Klein and Hurlbut, 1993).  These sulphides are 

fracture controlled and are commonly associated with high-Fe or zoned carbonate and 

high-Fe chlorite adjacent to the Palmer Gneiss.  Chalcopyrite is most concentrated (up to 

2-4%) in fault breccia (Plate 3.18).  Chalcopyrite and tennantite occur in trace amounts 

(<1%) on fractures crosscutting the Medial BIF Facies.  Sulphides are not associated with 

the carbonate-chlorite veinlets crosscutting the Upper GIF Facies.   

Rare apatite and monazite form isolated laths within or proximal to fractures 

transecting the Upper GIF Facies.  The grains are typically <1 mm and most commonly 

intergrown with hydrothermal chlorite.  Trace monazite locally accompanies late apatite.  
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Both apatite and monazite are absent in the Basal Clastic Facies and therefore are a result 

of hydrothermal remobilization from within the Upper GIF Facies   

            Fe-dolomite/ankerite can be associated with late vein quartz hosting coarse 

specular hematite.  Late quartz veins cross-cut all brittle fractures and these locally 

contain very coarse specular hematite (Plate 3.19).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.19: Sample 26-75-1066 showing coarse specular hematite within a late 
quartz vein.    

Plate 3.18: Sample 26-77-1157 depicting late sulphides infilling fractures within 
the Basal Clastics.   
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Chapter 4: Mineral Chemistry 
 

4.1 Introduction 

The mineral assemblages of the flotation ores from the Tilden Mine can be separated into 

primary/diagenetic, metamorphic and hydrothermal stages of mineral growth.  In addition 

to primary quartz/chert, ore assemblages include various species of iron oxide, chlorite 

and carbonate.  Trace minerals include apatite, monazite and sulphide.  The majority of 

the chlorite and carbonate species are closely linked to a late retrograde hydrothermal 

overprint, however, specific species relate to diagenetic/metamorphic growth.  Chlorite, 

carbonate and iron oxide speciation is discussed for each lithofacies below, including 

Basal Clastic Facies, Medial BIF Facies and Upper GIF Facies as well as for the 

metadiabase Pillar and feeder dykes.  This is followed by discussing mineral speciation 

related to the late hydrothermal overprint, including trace apatite, monazite and sulphide.  

Mineral species identification is based on microprobe analytical results.   

 

4.2 Methods 

Samples of core were cut and made into polished thin sections.  Thin sections were 

carbon coated and examined in transmitted and reflected light with a Zeiss petrographic 

microscope.  Regions of interest and specific grains were photographed and circled using 

diamond scribe to enable relocation of the selected areas when in the microprobe.  

Backscatter electron detector images of relevant mineralogical and textural relationships 

were collected digitally.  All minerals were analyzed using a JEOL 733 microprobe 

equipped with a Tracor Northern Energy Dispersive System (EDS) and five wavelength 

spectrometers.  Mineral chemical results are presented in weight percent oxides. 

It was hypothesized prior to analyses that martite would represent an oxidized 

form of magnetite and have a composition approaching hematite.  Martite is therefore 

chemically indistinguishable from hematite based on microprobe analyses.  In an attempt 

to tie microprobe analyses of martite to its crystallography, XRD spot analysis (~300 
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microns) was employed on a few selected samples.  However, only crystal structure 

patterns of hematite and magnetite were recognized (Figure 4.0).  There are three 

possibilities for this including: 1) the fine grain size of the martite rimming magnetite 

grains did not give a conclusive XRD pattern to indicate martite; 2) martite does not have 

a crystal structural pattern significantly different from magnetite; or 3) it is only hematite 

rimming the magnetite.  Ferri-hydrite identified via microprobe analyses were too fine 

grained to be recognized by XRD patterns.   
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Figure 4.0: X-ray diffraction data demonstrating the presence of chert, magnetite 
and hematite. 
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4.2.1 Method of Recalculating Fe2+ and Fe3+ 

Iron oxides including magnetite, hematite and ferri-hydrite (goethite or limonite) were 

identified and analyzed.  Magnetite has the formula Fe2
3+Fe2+O4 containing the ratio of 2 

ferric iron to 1 ferrous iron.  Hematite has the formula Fe3+
2O3 where all the iron is in the 

ferric state.  Martite is formed by oxidation of magnetite to hematite with all the iron 

again in the ferric state.   

Electron microprobe analyses presents iron as a total in the form of Fe2+ (i.e. 

FeO).  In an attempt to identify specific iron oxide minerals the variations in total wt% 

FeO signifies different iron oxide species.  Electron microprobe analyses of magnetite 

results in totals of approximately 92-93 wt% FeO.  Analysis of hematite and martite 

result in totals of near 90 wt% FeO.  The ferri-hydrite reported totals of < 90 wt% FeO.  

The iron oxide analyses were run through the Fe2+/Fe3+ recalculation program “Valmag” 

which recalculates the total iron content.  On recalculation, the totals of magnetite and 

hematite approach 100 % respectively.  The ferri-hydrite totals still did not exceed 90% 

indicating up to 10% water.  Ferri-hydrite minerals such as goethite, lepidocrosite or 

limonite cannot be separated by mineral chemical analysis.  Therefore the generic term 

ferri-hydrite is applied to iron minerals with ~ 10% water.    

 

4.3 Basal Clastic Facies 

As described in the petrographic chapter, the Basal Clastic Facies can be subdivided into 

coarse-grained and fine-grained variants.  The mineral assemblage of the coarse grained 

clastics consists of quartz-chlorite-magnetite-carbonate.  The fine-grained clastics are 

dominated by quartz, carbonate, chlorite and magnetite with trace occurrence of 

illite/sericite. 

 

4.3.1 Chlorite 

Chlorite typically comprises up to 25% of the coarse clastic rocks and occurs interstitial 

to and grows around detrital quartz grains.  Chlorite in the Basal Clastics has the widest 

range of compositions with Fe-dominant and Mg-dominant end-members.  When plotted 
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on a discriminant plot of Zane et al., (1998) these species include pycnochlorite, lesser 

ripidolite, brunsvigite and minor diabantite (Figure 4.1).  In the Basal Clastics chlorite 

iron contents range from 21 to 39 wt% FeO and aluminum contents from 19 to 24 wt% 

Al2O3.  Magnesium contents are inverse to iron and range from 8 to 24 wt% MgO.  

Chlorites commonly exhibit domainal growth patterns that suggest changing fluid 

chemistry accompanied chlorite growth.  The pycnochlorite and ripidolite compositions 

reflect metamorphism of a pelitic sediment and therefore have primary compositional 

control.   
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Figure 4.1: Classification diagram after Zane et al., (1998) depicting the chlorite 
species of the Basal Clastic Facies (red dots). Note that other symbols on the chlorite 
classification diagrams are: squares represent Medial BIF, triangles represent Upper 
GIF and diamonds represent hydrothermal chlorite.

 

4.3.2 Carbonate 

Due to recrystallization, carbonates in the Basal Clastics vary both in grain size and 

composition.  In the coarse grained clastics, carbonate is blocky and occurs interstitial to 

quartz, chlorite and iron oxides.  This coarse carbonate plots in the siderite-magnesite 

solid solution series (Figure 4.2).  Occasionally, the coarse carbonate grains exhibit 
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domains with varying amounts of Fe, Mg and Mn, again suggesting changing fluids 

conditions accompanied mineral growth.  Dolomite-ankerite species are absent with Ca 

contents below 1% for all analyzed grains.  In the fine grained clastics, carbonate occurs 

in the matrix along with chlorite and illite/sericite.  The composition is dominantly 

siderite and grain size is less than 0.1 mm.    

Fe-dominant siderite species in the clastics may stem from diagenetic processes in 

reducing conditions.  Magnesite and siderite commonly forms as diagenetic cement as 

basinal fluids circulated during burial and compaction (Beukes and Gutzmer, 2008).  In 

samples from drill hole 26-77 near the Tower Hill Fault, the Basal Clastics contain 

carbonate species with elevated Mn and lower Mg that plot on the siderite-rhodochrosite 

solid solution series (Figure 4.3).  This elevated Mn is may be due to the late 

hydrothermal overprint proximal to the Southern Shear Zone. 
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Figure 4.2: Ternary diagram after Chang et al., (1998) of the carbonate species 
within the Basal Clastic Facies (open red circles).  Other symbols are: squares 
represent Medial BIF, triangles represent Upper GIF and crosses represent 
initially determined hydrothermal carbonates. 
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Figure 4.3: Ternary diagram after Chang et al., (1998) depicting the Mn-rich 
carbonates of the Basal Clastic Facies.  Other symbols are: squares represent 
Medial BIF, triangles represent Upper GIF and crosses represent initially 
determined hydrothermal carbonates. The high Mn component is attributed to 
late hydrothermal carbonates.  

 

4.3.3 Iron Oxide 

The dominant Fe-oxide in the Basal Clastics is blocky magnetite.  This magnetite is 

typically not zoned, is uniformly ~93 wt% FeO and does not contain any impurity.  

Proximal to the Tower Hill Fault some of the magnetite displays zoning.  Zoned 

magnetite grains contain a lower Fe cores (<90 wt% FeO) and a higher Fe rims (~93 wt 

% FeO) (Plate 4.0).  Core totals less than 90% FeO suggest ferri-hydrite compositions.  

Cores of ferri-hydrite may stem from primary or diagenetic precipitate while the pure 

magnetite rims indicate porphyroblastic growth (Konhauser et al., 2002; Lacelles, 2006). 

Also proximal to the Tower Hill Fault, inclusions of silica occasionally form 

vermiform intergrowths within magnetite (Plate 4.1).  The wormy textured domains 

contain trace amounts of silica (up to 2.5 wt% SiO), occasionally aluminum (up to 1.5 

wt% Al2O3) and titanium (up to 0.5 wt% TiO2).  Such impurities suggest magnetite 

grains reacted with bordering silicates. 
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Plate 4.0: A backscatter image depicting magnetite overgrowing ferri-hydrite in 
sample 26-080-716. 
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Plate 4.1: A backscatter image of magnetite grains that display “wormy” texture 
in sample 26-080-163. 

 

4.4 Medial Banded Iron Formation Facies 

The Medial BIF Facies is laminated to thinly bedded, displaying alternating dark grey 

oxides, white to grey chert, pink-red jasper, cream carbonate and pinkish to reddish- grey 
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granular-textured layers.  The mineral assemblages are unique for each band type.  

Chlorite, carbonate and iron oxides are found in most band types except the 

cryptocrystalline chert bands.   

 

4.4.1 Chlorite 

Chlorite is a minor constituent in this subdomain.  Fine-grained feathery to lath shaped 

chlorite occurs within oxide, carbonate and granular-textured bands. These exhibit a 

range from 14 to 37 wt% FeO, 7 to 26 wt% MgO and 16 to 24 wt% Al2O3.  These 

compositions are similar to, but are more restricted in composition compared to those 

found in the Basal Clastics (Figure 4.4).  Detrital mineral chemistry therefore reflects 

host lithology.  The chlorites hosted by clastic bands displayed a broader range in iron 

and magnesium compositions with both Mg- and Fe-rich end members.  Trace Mg-rich 

chlorites occur within the granular layers.  This textural control suggests that primary 

sedimentary bulk rock composition controls the metamorphic mineral chemistry.  

Chlorite is absent in the cryptocrystalline chert and jasper layers. 
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Figure 4.4:  A classification diagram of the chlorite species in the Medial BIF 
Facies (blue squares).  Diagram is after Zane et al., (1998).  Note that other 
symbols on the chlorite classification diagrams are: circles represent Basal 
Clastics, triangles represent Upper GIF and diamonds represent hydrothermal 
chlorite. 
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4.4.2 Carbonate 

In the Medial BIF Facies primary or diagenetic carbonate occurs within the clastic and 

oxide layers.  It is absent in the cryptocrystalline chert and jasper bands.  Only trace 

amounts occur in the granular-textured layers.  The Medial BIF Facies show two distinct 

compositional groups representing dolomite-ankerite and magnesite-siderite solid 

solution series (Figure 4.5).  The Mg-siderite ranges from 8 up to 42 wt% FeO and from 

2 to 19 wt% MgO.  Similar to the chlorites, the carbonate compositions are influenced by 

host lithology.  Carbonates within clastic, oxide and granular-textured bands are 

dominantly Mg-siderite suggesting primary or diagenetic origin.  The Fe-

dolomite/ankerite carbonates are late hydrothermal species. 
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Figure 4.5: A ternary diagram after Chang et al., (1998) of the two different 
carbonate groups (magnesite-siderite and Fe-dolomite-ankerite) within the 
Medial BIF Facies.  Other symbols are: circles represent Basal Clastics, triangles 
represent Upper GIF and crosses represent initially determined hydrothermal 
carbonates. The high Mn component is attributed to late hydrothermal 
carbonates.  
 

 

 

4.4.3 Iron Oxide 

The Medial BIF Facies are dominated by blocky magnetite with thin martite rims (Plate 

4.2).  The martite rims increase in thickness up section (Plate 4.3).  Martite is most 
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abundant when Mg-siderite species of carbonate is absent.  Magnetite cores contain ~93 

wt% FeO.  Martite rims contain ~90 wt% FeO.  These rims also contain trace amounts of 

aluminum, silica, titanium and occasionally chrome.  Martite rinds indicate a late 

metamorphic overprint (Ohmoto, 2003) that involved the interaction of magnetite grains 

with oxidizing fluids enriched in aluminum (up to 1.5 wt% Al2O3), silica (up to 0.8 wt% 

SiO2), titanium (up to 0.5 wt% TiO2) and chrome (up to 0.1 wt% Cr2O3).  Trace ferri-

hydrite “dust” is occasionally encased within Mg-siderite.  These ultra fine iron grains are 

lath-shaped and contain <90 wt% FeO with no impurities.  The ferri-hydrite is likely a 

primary precipitate that was subsequently dehydrated and replaced by diagenetic Mg-

siderite. 
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Plate 4.2: Backscatter image of blocky magnetite grains with minor martite 
replacement in sample 26-075-1089. 
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Plate 4.3: Backscatter image of blocky magnetite grains with major martite 
replacement in sample 26-143-715. 

 

4.5 Upper Granular Iron Formation Facies 

The Upper GIF Facies dominates the top of the Main Pit Carbonate Domain and 

comprises the entire Martite Domain.  It is the most texturally and mineralogically 

uniform of the three lithofacies.  The dominant minerals are quartz and iron oxide.  The 

top of this facies is capped by the sheared and chloritized base of the metadiabase Pillar.  

Chlorite occurs as trace feathery laths within the Upper GIF Facies and late hydrothermal 

chlorite occurs in fractures.  Primary or diagenetic carbonate is absent, however late 

hydrothermal carbonate occurs in fractures. 

 

4.5.1 Chlorite 

Chlorite is a minor to trace constituent in this rock type.  It occurs as rare isolated laths 

interstitial to granules.  These chlorites have a lower Fe-component compared to those in 

the Basal Clastics and Medial BIF Facies.  On a discriminant plot by Zane et al., (1998) 

chlorite compositions include sheridanite, clinochlore with some ripidolite and 

pycnochlorite (Figure 4.6).  The chlorites associated with granular- textured lithology are 
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Mg-dominant, ranging from 12 to 18 wt% FeO, 20 to 24 wt% MgO and 20 to 24 wt% 

Al2O3.  Chlorite grains occasionally display domains with varying FeO and MgO but are 

not zoned.  High-Fe chlorite (25 wt% FeO) was observed adjacent to fractures in 

association with hydrothermal carbonate.   
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Figure 4.6: Classification diagram after Zane et al., (1998) depicting the chlorite 
species within the Upper Granular-Chert Facies (green triangles).  Note that 
other symbols on the chlorite classification diagrams are: circles represent Basal 
Clastics, squares represent Medial BIF and diamonds represent hydrothermal 
chlorite. 
 

 

4.5.2 Carbonate 

Fe-dolomite/ankerite form late hydrothermal species restricted to fractures.   

 

4.5.3 Iron Oxide 

Fine ferri-hydrite laths with <90 wt% FeO, and hematite with ~91 wt% FeO rinding 

granules, indicate primary iron precipitate with silica (Simonson, 1987).  The ferri-

hydrite and hematite that rind granules is overgrown by blocky magnetite (Plate 4.4).  

The magnetites within the Upper GIF Facies are wholly replaced by martite (Plate 4.5).  

Blocky martite grains that retain their original magnetite shape may contain trace cores of 
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magnetite with ~94 wt% FeO but thick martite rims have ~90 wt% FeO.  The martite 

rinds contain trace amounts of aluminum, silica, titanium and chrome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 4.4: A backscatter image of ferri-hydrite laths rinding a granule in the 
Upper GIF Facies in sample 23-035-1000.  Note the metamorphic magnetite 
overgrowing the ferri-hydrite grains. 
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Plate 4.5: A backscatter image of abundant intergrowths of specular hematite 
laths growing between martite grains in sample 26-203-354. 

 

Abundant platy specular hematite grows between the blocky martite grains (Plate 

4.5).  These platy laths first appear in the Medial BIF Facies but become more abundant 
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upsection in the Upper GIF Facies (up to 25 modal %).  Specularite has 91 wt% FeO and 

contains trace amounts of silica and aluminum (up to 1.5 wt% Al2O3), but does not 

contain titanium or chrome.  The lack of titanium and chrome in the hematite plates as 

compared to martite suggests an evolution of the late oxidizing fluids.  Martite and 

specularite are abundant in the Upper GIF Facies where Mg-siderite is absent; carbonate 

was not present to act as a buffer to magnetite oxidation.  

 

4.6 Chloritized Metadiabase Pillar and Dykes  

Chlorite dominates the Pillar-iron formation contact and cross-cutting metadiabase dykes, 

and represents hydrothermal retrogression of primary diabasic textures.  Pillar chlorite 

ranges between 22 and 26 wt% FeO.  Chloritized dykes cross-cut stratigraphy and 

possibly acted as feeder dykes to the overlying Pillar.  Chlorites of the metadiabase dykes 

are Mg-dominant with significantly lower iron contents (12-16 wt% FeO) than chlorites 

found in the surrounding iron formation.  A mineral chemical profile of chlorite 

compositions across a dyke contact with the Medial BIF iron formation shows a marked 

decrease in Fe-chlorite in the iron formation and increase in Mg-chlorite approaching the 

dyke margin (Figure 4.7).  Iron formation chlorites at dyke margins therefore display the 

more Mg-rich chemistry of the dyke.   
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Figure 4.7: Classification Diagram after Zane et al., (1998) profiling the chlorites 
from the dyke and across the dyke margin from dyke to iron formation.  Samples 
include red diamonds (26-198-709), green circles (26-198-710) and black squares 
(26-198-713). 
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Carbonate is relatively minor in the Pillar (up to 5 modal %).  The majority is calcite and 

occurs in cavities or veinlets.  Rare dolomite/ankerite was identified.  Carbonate is absent 

in the metadiabase dykes.   

Trace minerals identified within the hydrothermal margin of the Pillar margin 

include apatite and monazite dispersed within chlorite and carbonate.  These minerals 

were not analyzed; however EDS spectrum from the electron microprobe identified an 

REE component to the monazites.  Trace titanite, magnetite, rutile and chalcopyrite were 

identified within metadiabase dykes.  

 

4.7 Late Hydrothermal Overprint 

Late brecciation and fracturing was accompanied by hydrothermal ingress, resulting in 

high Fe-chlorite, carbonate, and trace apatite, monazite and sulphide coating fracture 

surfaces.  Fracturing decreases upsection and away from the Signal Hill Fault with 

brecciation of the Basal Clastics, fracture offsets in the Medial BIF and stockwork 

veinlets within the Upper GIF Facies.     

 

4.7.1 Chlorite and Carbonate 

Late hydrothermal chlorite overprinting the Basal Clastics Facies and Medial BIF Facies 

include high iron ripidolite, brunsvigite and diabantite species (Figure 4.8).  Iron ranges 

between 25 to 37 wt% FeO.  Conversely late chlorite overprinting the Upper GIF Facies 

is dominantly Mg-rich.  Chlorite within the feeder dykes is also Mg-dominant. 

Late carbonate is typically associated with high iron chlorites (i.e. 37 wt% Fe).  In 

the Basal Clastics fracture controlled carbonate varies in composition from high Mn (up 

to 27%) to high Fe (up to 42%).  Zoned carbonates contain high iron and manganese 

contents (ie. 42 wt% FeO and 19 wt% MnO) with high Mn cores to high Fe rims.  

Occasional Mg-Fe zoned grains were observed (Figure 4.9).  Carbonate with low-Fe 

magnesite cores to Fe-rich siderite rims indicates an evolution of fluids to increasingly 

Fe-rich (Plate 4.6).  Late carbonate within the Medial BIF and Upper GIF Facies are 

dominantly Fe-dolomite/ankerite.  Some grains display domains that reflect variable Fe 
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and Mg contents.  Iron contents are typically low and do not exceed 10 wt% FeO where 

as calcium contents are between 16 and 31 wt% CaO.   
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Figure 4.8: A classification diagram after Zane et al., (1998) depicting the late 
hydrothermal chlorite species (pink triangles). Note that other symbols on the 
chlorite classification diagrams are: circles represent Basal Clastics, triangles 
represent Upper GIF and squared represent Medial BIF chlorite. 
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Figure 4.9: A ternary diagram after Chang et al., (1998) depicting the Fe-
dolomite-ankerite carbonates of the Upper Granular-Chert Facies (green open 
triangles). Other symbols are: circles represent Basal Clastics, squares represent 
Medial BIF and crosses represent initially determined hydrothermal carbonates.  
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Magnetite 

 
Plate 4.6: A backscatter image of late hydrothermal zoned carbonate in sample 
26-075-1103. Note the lower Fe cores and higher Fe rims.  

 

4.7.2 Apatite 

Trace apatite, monazite and sulphide are associated with late hydrothermal chlorite and 

carbonate.  Apatite (<5%) is dominantly found in veinlets crosscutting the Upper GIF 

Facies and granular-textured bands in the Medial BIF Facies.  These grains are typically 

dispersed proximal to fractures.  Apatite is absent in cryptocrystalline chert and jasper 

bands and has not been observed in the Basal Clastic Facies.  Isolated grains are very fine 

grained (< 1 mm) and typically have a prismatic habit.  These grains are fluro-apatites 

with an approximate composition of Ca5(PO4)3F, with trace manganese and iron.   No 

growth zoning was observed and there is very little variation in mineral chemistry.  

Apatite associated with chlorite and carbonate in fractures occasionally occurs with trace 

monazite and sulphide (Plate 4.7).   

 

 

 

 



66 
 

 

 

 

 

 

 

 

 

 

 

 
Plate 4.7: A backscatter image of apatite associated with late hydrothermal 
chlorite and carbonate in sample 23-018-725.  

 

4.7.3 Monazite 

Monazite is extremely fine grained (~60 um) and prismatic.  This mineral occurs only 

within the Upper GIF Facies and granular-textured bands of the Medial BIF Facies. It is 

absent in the Basal Clastic Facies.  The rare (< 1 modal %) monazite is associated with 

fracture controlled apatite, chlorite and carbonate (Plate 4.8).  The monazite contains an 

REE component linked to secondary redistribution during the late hydrothermal 

overprint.         

 

 

 

 

 

 

 

 

 

 

 
Plate 4.8: Monazite with late hydrothermal chlorite and carbonate in sample 23-
018-725. 
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4.7.4 Sulphide 

Trace sulphide (<2 modal %) serves as an important identifier of the late hydrothermal 

overprint.  The dominant sulphide mineral is chalcopyrite (Plate 4.9).  It is most abundant 

within the Basal Clastics Facies where it occurs as coarse grained fracture fill.  In the 

Medial BIF Facies it is less abundant and is occasionally associated with other trace 

sulphides such as tennantite, cuperite and a CuSb mineral accompanied by Fe-

dolomite/ankerite or Mn-zoned siderite.  Cu-bearing sulphide species are most commonly 

associated with high Fe-chlorite in the Basal Clastics, are rare in the Medial BIF Facies, 

and are absent in the Upper GIF Facies.     

 

 

Chalcopyrite + Tennantite 

Hematite 

Magnetite 

Plate 4.9: The sulphide minerals including chalcopyrite and tennantite in sample 
26-075-1071. 
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Chapter 5: Discussion 

 

5.1 Introduction 

At the Tilden Main Mine the basal Negaunee Iron Formation has complex mineral 

paragenesis and chemical speciation that stems from primary mixed clastic and chemical 

sediments that have been subsequently overprinted by diagenetic, metamorphic and 

hydrothermal processes.  Interpretations based on core-logging, petrography and 

microprobe analyses can be made concerning: 1) the paleoenvironment for deposition of 

Basal Clastics, Medial BIF and Upper GIF; and 2) the paragenetic sequence for growth of 

chlorite, carbonate, chert, iron oxides and trace minerals.   

 

5.2 Paleoenvironment of the Basal Negaunee Lithofacies 

At Tilden, the Negaunee Iron Formation is in fault contact against the Archean-aged 

Southern Gneiss Complex.  The Basal Clastic Facies comprises the stratigraphic base of 

the Negaunee Iron Formation within the Tilden Pit.  Coarse polycrystalline and strained 

detrital quartz indicate limited clastic transport of wacke-type sediments infilling a fault 

bounded trough.  The poorly sorted texture and abundant chlorite matrix suggests a large 

primary detrital clay component that further attests to the textural and compositional 

immaturity of the clastic input.  This early transgressive phase of sedimentation resulted 

in clastics being shed off the south margin into a subsiding rift basin (Larue and Sloss, 

1980; Barovich et al., 1989).  Increased thickness of the Basal Clastics proximal to the 

Southern Gneiss Complex and Tower faults suggests that initial clastic deposition was 

growth fault controlled.  Interfingering of the clastics with overlying iron formation 

indicates periodic growth fault reactivation.  On a regional scale, the Southern Shear 

system, separating the Negaunee Iron Formation and the Southern Gneiss Complex, 

demonstrates that early normal fault reactivation along the Great Lakes Tectonic Zone 

played a key role in controlling the paleoenvironment within the Marquette Range 
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Supergroup.  The relatively low iron content in the Basal Clastic Facies indicates that 

ongoing clastic sedimentation prohibited iron formation deposition.    

The overlying Medial BIF Facies is comprised of multiple band types.  

Diminishing and upward fining of clastics into the thinly banded iron formation sequence 

indicates evolution towards a starved shallow marine environment.  Waning of clastic 

sedimentation indicate the basin became increasingly restricted.  Alternating chemical 

and clastic deposition suggests fluctuating water depth and water chemistry controlled the 

sediment supply (Harris, 1990).  The cyclic silica-iron chemical precipitation competed 

with slow rates of subsidence over a considerable time period to give rise to the 

tremendous 1300 meter thickness of the Negaunee Iron Formation.   

The first appearance of banded iron formation suggests a significant change in the 

depositional setting to one that favoured chemical sedimentation.  Recrystallization 

during diagenesis and subsequent metamorphism, has overprinted primary textures, 

accordingly, any interpretation of specific band origin remains somewhat speculative.  

There are two plausible processes for the chert bands, primary precipitation or carbonate 

replacement, however, the former is favoured.   

The millimeter to centimeter thick monomineralic chert bands suggest periodic 

deposition of silica from oversaturated waters in an evaporitic setting.  Evaporitic pans 

that emerged during regressive stands could facilitate chert precipitation (Trendall and 

Blockey, 2004).  Silica-rich waters precipitate primary siliceous ooze in such restricted 

environments (Hinman and Lindstrom, 1996).  The source of abundant silica is 

problematic and it is possible that higher geothermal gradients related to overlapping 

mafic magmatism could play a role in dewatering and promote discharge of warm silica 

and iron enriched formational water.   

Mixing of formational brine with cooler surface seawater would certainly enhance 

silica precipitation.  Simonson (1987) cites temperature gradients of 300oC to 100oC at 

seafloor volcanic centers as a modern environment for considerable silica precipitation.  

Alternatively, Hinman and Lindstrom (1996) describe silica precipitation from geysers at 

Yellowstone National Park, Wyoming.  In this case, colder air temperatures in the winter 

promote precipitation of silica due to the decreased silica solubility in colder water.  

Chert bands might therefore indicate seasonal deposition.  In addition, Blatt (1992) 
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suggests that microbial activity could affect water chemistry and that lowering water pH 

would promote silica precipitation.  Potentially, microbial blooms could alter water 

chemistry sufficiently to facilitate silica precipitation. 

Primary precipitation is suggested by jasper bands that contain micro-millimeter 

disseminated ferri-hydrite.  In this case, primary ferri-oxyhydroxide precipitates were 

occasionally trapped within the precipitating silica ooze and recrystallized to ferri-hydrite 

during diagenesis.  In jasper bands containing abundant ferri-hydrite this iron species is 

readily transformed to goethite or hematite during diagenesis and subsequent 

metamorphism, thus obliterating the primary textures of the original precipitates (Beukes 

and Gutzmer, 2008).     

The alternative explanation for chert bands is by way of replacement.  Primary 

ferri-oxyhydroxide precipitates are highly reactive with dissolved silica (Konhauser et al., 

2007).  Slack et al., (2007) and Fischer and Knoll (2009) propose that the silica is initially 

scavenged by iron precipitation at the sediment-water interface.  During diagenesis when 

ferri-oxyhydroxides are converted to more stable compounds, silica is released into the 

pore waters and available for replacement.  This is a plausible mechanism for forming the 

jasper bands but is difficult to explain how selective chert replacement can give rise to 

alternate chert-carbonate bands.   

Kimberly (1974) and Krapez et al., (2003) suggest that chert bands in iron 

formations are not primary but form diagenetically by replacing initially precipitated 

carbonate.  Acidic silica-rich pore water could dissolve carbonate and promote chert 

replacement.  The abundance of siderite within the Basal Clastic Facies and within the 

Negaunee Iron Formation north of Tilden supports cyclic primary iron carbonate and 

chert deposition.  Silica replacement of siderite not only raises the problem for the source 

of abundant silica but is also not supported by the complete absence of carbonate in most 

chert bands.  Simonson (1987) suggests that hydrothermal waters circulating through 

basin sediments could promote carbonate dissolution and silica replacement.  The source 

of silica could then be from hydrothermally evolved formational brine fluxed from the 

underlying clastic sediments.  Discharged hydrothermal brine could carry both iron and 

silica and give rise to jasper bands.  The syn-sedimentary mafic magmatism indicated by 

the autohydrated metadiabase units interfingering with the Negaunee Iron Formation 
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could supply heat and drive hydrothermal fluid expulsion for diagenetic replacement.  

Why alternate carbonate bands are replaced by chert remains problematic.  Regardless of 

the specific origin of the chert bands, subsequent diagenesis and metamorphism results in 

recrystallized chert (Grenne and Slack, 2005; Klein, 1974).   

Siderite bands within iron formations are commonly attributed to microbial 

activity in reduced conditions during burial and diagenesis (Miyano, 1987).  The 

occurrence of unique Mg-siderite species within individual bands supports primary or 

diagenetic carbonate precipitation.  Many siderite bands contain disseminated detrital 

quartz grains suggesting subtle transgression, and rapid capping by chert could play a role 

in siderite preservation.  However, carbonate is very amenable to grain coarsening during 

metamorphism, thus all primary depositional characteristics have been obliterated.     

Interruption of cyclic precipitation by wave action resulted in deposition of non-

banded granular iron formation upward in the sequence.  Periodic flooding due to storm 

waves initiated reworking of unconsolidated silica-iron precipitates and re-working of 

these granule rip-ups constitutes the granular-textured bands.  Rapid burial by granular 

bands during transgressive pulses could also play a role in rapid burial of carbonate 

bands.  In modern environments interbedding of such diverse lithologies is characteristic 

of carbonate ramps at or near storm wave base (Beukes and Gutzmer, 2008).      

The transition from the Medial BIF Facies with granular-textured interbeds into 

the Upper GIF Facies is quite dramatic, occurring over a few meters.  The disappearance 

of the banded lithologies and subsequent dominance of granular texture indicates basin 

evolution into a wave dominated environment.  This transition marks a change in 

depositional environment from banded iron formation to a granular iron formation.  This 

contact therefore marks a major transgression where cyclically precipitated banded iron 

formation is flooded by an encroaching sea (Simonson and Hassler, 1996).  Continuous 

wave action causes ongoing disruption of silica-iron precipitation (Simonson, 1987).  

Individual ferri-hydrite rinded granules reflect wave-induced erosion of semi-lithified 

silica-iron gels (Dimroth, 1976; Simonson, 1987; Maliva et al., 2005).  The extensive 

thickness of the Upper GIF Facies of ~ 100 meters indicates that silica-iron precipitation 

was ongoing during prolonged wave action.  Examples from modern granular 

environments are dominated by the formation of carbonate ooids in agitated water 
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(Boggs, 1995).  However, the lack of primary or relict carbonate within the granules and 

the occurrence of ferri-hydrite within the Negaunee do not support the formation of 

granules in a carbonate-mud environment as suggested by Maliva and Siever (1989).  

However, the granular textures do indicate an open-shelf ramp dominated by wave 

processes that precipitated primary ferri-oxyhydroxides on granule surfaces (Harris et al., 

1985; Sellwood, 1986). 

The start of the Great Oxygenation Event at ~2.4 Ga predates the Nipissing silling 

event recorded in the Huronian (Holland, 2006).  Evidence for early oxygenating 

microbes has been observed in the Upper Huronian and correlative Kona Dolomite of the 

Chocolay Group (Hoffman, 1980).  This unit occurs well below the Negaunee Iron 

Formation and suggests that the atmosphere was oxygenated prior to Negaunee 

deposition.  Although the atmosphere was oxygenated, it may have been of low oxidizing 

potential and still contain abundant CH4 and CO2 so that the oceans remained buffered 

by ferrous iron (Kump and Seyfried, 2005; Bekker and Kaufman, 2007).  Holland (200

suggests that the shallow oceans were oxygenated, however deep oceans remained 

anoxic.  The conditions of an oxic atmosphere and anoxic seas containing abundant 

ferrous iron could facilitate ferri-oxyhydroxide during oxidative regressive cycles and 

siderite precipitation during reduced transgressive cycles.  Primary precipitation of ferri-

oxyhydroxides requires either abiotic free oxygen interaction or microbial metabolic 

activity.  Free oxygen produced by cyanobacteria could create oxygen oases or an oxic-

anoxic stratified ocean water column to cause abiotic ferri-oxyhydroxide precipitation 

(Klein and Beukes, 1989).   

6) 

Many authors suggest metabolic ferrous iron oxidation is responsible for iron 

formation precipitation.  Two mechanics have been proposed.  Fe (II) oxidizers utilize Fe 

(II) and free oxygen to precipitate Fe (III) in low atmospheric oxidizing conditions 

(Sogaard et al., 2000).  Alternatively Fe (II) is used as a reductant for carbon dioxide 

fixation and no free oxygen is required (Widdel et al., 1993; Heising et al., 1999; Straub 

et al., 1999).  A model utilizing Fe (II) as a carbon dioxide fixer is attractive since 

experiments have shown that this primary oxidation of iron could account for the 

abundance of ferri-oxyhydroxide and siderite in the Negaunee (Konhauser et al., 2005).  

Carbon dioxide fixation can occur at hundreds of meters of water depth, thus any 
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upwelling Fe (II) could be completely oxidized before iron rich waters come into contact 

with an oxygenated water column or atmosphere (Kappler et al., 2005).  Although 

oxygenation of the atmosphere occurred pre-Negaunee deposition however, the seawater 

was sufficiently anoxic to facilitate iron formation precipitation.    

Bekker et al., (2010) propose a temporal link between iron formation deposition 

and large igneous provinces (LIPs) (Figure 5.0).  The igneous events would contribute 

large amounts of SO2 and CO2 to the atmosphere and enhance weathering under 

greenhouse conditions.  Such weathering would contribute bicarbonate and nutrients such 

as phosphorous and to lesser extent nitrogen to the oceans, increasing the bioavailabity of 

these nutrients and thus triggering the Great Oxygenation Event.  Extensive mafic 

magmatism would also provide abundant Fe2+ and reductants such as H2 and H2S to 

buffer the global oceans from an oxygenated atmosphere.  The simultaneous construction 

of large continental shelves created a depository for granular iron formation deposition in 

the suboxic shallow waters.  The concentration of greenstone units within the Negaunee 

Iron Formation could signify such a triggering mechanism.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5.0: A graph depicting the temporal relationship between iron formations 
and mantle plume events (Bekker et al., 2010)  
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According to Slack and Cannon (2009) depositions of most iron formations ended 

abruptly at 1.85 Ga, coincident with impact of the Sudbury extraterrestrial bolide. These 

authors propose a model in which the impact caused global mixing of shallow oxic and 

deep anoxic waters to create a suboxic redox state in deep seawater.  Limited 

concentrations of dissolved O2 prevented the transport of hydrothermally derived Fe2+ 

from the deep ocean to the continental margin settings, ending the iron formation 

deposition.  However, in the Marquette Range Supergroup, iron formation deposition 

terminated with the Bijiki Iron Formation significantly above the Sudbury impactite.  

 

5.3 Paragenetic Sequence 

The Tilden iron ores record a complex paragenetic sequence that can be subdivided into: 

1) primary clastic and chemical sedimentary deposition and prelithification diagenetic 

processes including dewatering and cementation; 2) low grade greenschist 

metamorphism; and 3) a late hydrothermal overprint.  These stages are demonstrated by 

the texture and mineral chemistry of the iron oxides, chlorites, carbonates and trace 

minerals. 

 

5.3.1 Primary Deposition and Diagenesis 

Given the subsequent metamorphic as well as late hydrothermal overprints, relict primary 

depositional and diagenetic textures are surprising well preserved.  Silica cement rinding 

detrital quartz in the Basal Clastics reflects early cementation.  Cryptocrystalline chert 

bands and jasper bands in the Medial BIF Facies suggest primary silica precipitation and 

diagenetic cementation.  The Upper GIF Facies indicates wave re-worked silica-iron 

precipitation.  All chert lithologies were lithified by dehydration and silica cementation.  

The presence of ferri-hydrite both rinding granules and occurring a micromillimeter “dust 

particles” is evidence for encapsulating primary ferri-oxyhydroxide precipitate in silica 

gels (LaBerge et al., 1987).  Konhauser et al., (2002) advocate that the iron within iron 

formations is concentrated by way of precipitating ferri-oxyhydroxide that dehydrates 

during diagenesis to form ferri-hydrite.  These authors suggest that the presence of iron 

oxidizers can precipitate iron by the process: 
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(1) 6Fe2+ +0.5O2 + CO2 + 16H2O -> CH2O + 6Fe(OH)3 + 12H+ 

 

Posth et al., (2008) demonstrates that changes in seawater temperatures above or 

below 20-25oC can cause the slowing of iron oxidizing microbes.  The retardation of 

microbial processes could subsequently promote the precipitation of abiotic silica.  

Precipitation of siliceous ooze or amorphous chert could modify the seawater to 

sufficiently anoxic and acidic conditions to promote microbially-mediated ferri-

oxyhydroxide co-precipitation (Robbins et al., 1987).  Fluctuating pH and water 

temperatures could therefore account for bands of jasper with abundant ferri-hydrite 

rather than the typical cryptocrystalline chert bands that lack iron minerals.  Primary 

precipitated ferri-oxyhydroxide is metastable but diagenetic processes accompanying 

burial, with possibly overlapping microbial activity, results in dehydrating ferri-

oxyhydroxide to form either goethite or hematite, again depending on temperature and 

pH.  Acidic formational waters with pH levels of 2-5 in the jasper and granular-textured 

lithologies would favour goethite whereas, higher temperatures and pH would favour the 

formation of hematite (Cudennac and Lacerf, 2006).   

Although no primary siderite survived the metamorphic overprint, it is likely that 

iron carbonate occurred as both a primary and diagenetic product.  James (1955) noted 

that siderite is abundant in the Negaunee Iron Formation north of the iron mines.  

Therefore, primary carbonate was likely abundant within the Basal Clastics and Medial 

BIF prior to metamorphism.  However iron carbonate is absent in the Upper GIF Facies.  

Silica cements the granules in GIF Facies and any primary carbonate was dissolved.  The 

Mg-siderite species in the Basal Clastics and Medial BIF bands reflect the elevated Mg 

contents within the Basal Clastic detritus and subsequent carbonate replacement by 

magnetite.  It is likely that siderite formed as a microbial precipitate within the reduced 

clastic sedimentary substrate.  Subsequent grain coarsening accompanying 

metamorphism formed idioblastic textures that modify but did not destroy the diagenetic 

carbonate chemical signatures.     

Within the Medial BIF Facies siderite is likely a primary or diagenetic precipitate.  

However, there is also textural evidence for diagenetic reduction of primary ferri-
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oxyhydroxide to siderite (Beukes and Gutzmer, 2008).  In a reduced environment siderite 

precipitates form by the reaction: 

 

(2) Fe2+ + CO2 + H2O -> FeCO3 + 2H+ (Stumm and Morgan, 1996) 

   

The siderite occurring in both the Basal Clastics and Medial BIF, occasionally 

preserves ferri-hydrite cores, suggesting the dehydration reduction of ferri-hydrite to 

form siderite.  Beukes and Gutzmer (2008) proposed that microbial respiration during 

diagenesis released CO2 and aided in conversion of primary ferri-oxyhydroxide to 

diagenetic siderite under suboxic conditions.  Breakdown of ferri-oxyhydroxide can lead 

to siderite if conditions are more alkaline and sediments contain abundant organic matter 

and followed by rapid burial.  However, as no organic matter was identified it is unlikely 

that microbial matter played a significant role.   

Both the Basal Clastics and Medial BIF report relatively low phosphorous 

contents and lack phosphorous minerals (Lukey et al., 2007).  Notably the low levels of 

phosphorous in the Basal Clastics and within bands of the Medial BIF Facies coincide 

with abundant siderite.  Zachara et al., (1998) propose that the presence of phosphorous 

can have effect on iron precipitation.  During reduction experiments, siderite was the only 

crystalline reduction product of goethite in the absence of a phosphorous component.  

Significantly, the higher phosphorous content in the Upper GIF Facies, accounted for by 

ubiquitous trace apatite and monazite, coincides with the absence of siderite.     

 

5.3.2 Effects of Low Grade Metamorphism 

The Marquette Range Supergroup was folded during the Penokean orogeny.  Open folds 

to the north tighten toward the Southern Shear Zone giving rise to the Main Pit Anticline 

on the hanging wall of the Southern Gneiss Complex (Lukey et al., 2007).  No biotite was 

observed, indicating low grade metamorphic conditions.  Carbonate and chlorite grain 

coarsening, and the growth of magnetite, martite and specular hematite can be linked to 

metamorphic recrystallization.  Magnetite is abundant within the Basal Clastics and 

Medial BIF Facies but has been completely oxidized to martite in the Upper GIF Facies.  

In the Basal Clastics and Medial BIF Facies, magnetite forms coarse, euhedral grains that 
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overgrew early ferri-hydrite, hematite and siderite.  The magnetite in iron formations has 

been commonly attributed to reactions between hematite and siderite: 

 

 (3) Fe2O3(hm) + FeCO3(sid) -> Fe3O4(mt) + CO2 (Burt, 1972) 

 

 

 

This reaction is favoured at higher temperatures and pressures and therefore occurs when 

an iron formation is buried and subjected to regional metamorphic conditions (Ohmoto, 

2003).  Siderite is lacking in the Upper GIF Facies and therefore reaction (3) may not 

proceed.  The Upper GIF Facies represents a more open-shelf environment lacking the 

suboxic conditions necessary for siderite precipitation.   

Beukes and Gutzmer (2008) propose that fine grained magnetite growth can be 

initiated during diagenesis when conditions do not favour the formation of siderite.  

Instead of siderite precipitating, magnetite can form by reduction of primary ferri-

oxyhydroxide: 

 

 (4) Fe(OH)3 + Fe2+ -> Fe3O4 + 2H2O + 2H+  (Beukes and Gutzmer, 2008)

 

 Reduced diagenetic fluids may also have caused magnetite replacement of early 

hematite by the addition of Fe2+: 

 

 (5) Fe2O3(hm) + Fe2+ + H2O = Fe3O4(mag) +2H+ (Ohmoto, 2003).

 

 Although magnetite growth in the Upper GIF Facies may have been initiated during 

diagenesis, subsequent metamorphic overprint of all three lithofacies caused grain 

coarsening of magnetite through porphyroblastic growth and annealing.  The annealed 

glomeroporphyroblastic magnetite occurring within the Basal Clastic Facies and 

magnetite-rich bands of the Medial BIF Facies is typical of metamorphic recrystallization 

(Lascelles, 2006).   

The degree of coarse idioblastic magnetite replacement by martite is variable, and 

band specific through the Medial BIF lithology and martite dominates in the Upper GIF 

Facies.  Specular hematite is most abundant within the Upper GIF Facies, where platy 
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hematite replaces martite.  Ohmoto (2003) and Lascelles (2006) suggest that martite and 

specular hematite form at high temperatures related to metamorphism.  Metamorphic 

fluids oxidized the magnetite grains to form variably thick martite rims on magnetite.  

Cannon (1976) and Ohmoto (2003) evoked a model whereby oxidized metamorphic 

fluids leached Fe2+ from magnetite to form platy hematite.  The magnetite-chert ores at 

the Tom Price deposit, Australia were transformed into hematite-chert ores by such a 

process. 

   

 (6) Fe3O4(mt) + 2H+ -> Fe2O3(hm) + Fe2+ + H2O (Ohmoto, 2003) 

 

Precipitation and growth of specular hematite from oxidizing fluids has also been 

documented at the Carajas Deposit, Brazil (Lobato et al., 2005).  Impurities in martite 

rinds including Al, Si, Ti and occasionally Cr suggest martite replacement was facilitated 

by hydrous and oxidized metamorphic fluids as these elements are only mobile under 

highly oxidizing conditions (Velilla and Jimenez-Millan, 2003).  Impurities such as trace 

Al and Si in the specularite laths indicate hematite replacement of martite.   

The leaching of Fe2+ from magnetite via oxidation to form martite precedes the 

growth of texturally mature specularite.  In the Upper GIF Facies specular hematite laths 

locally define tectonic foliations that are proximal to the limbs of the Main Pit Anticline, 

indicating specularite schists formed during metamorphic-related ductile shearing.  

Martite replacement of magnetite is minimal in the Basal Clastics and in specific bands of 

the Medial BIF Facies where siderite is present.  This clearly demonstrates that siderite 

buffered the oxidation of magnetite to martite.  In the Upper GIF Facies where siderite is 

lacking, metamorphic oxidation is not buffered by siderite and magnetite is completely 

oxidized to martite showing variable transformation to texturally mature platy 

specularite. 

 Metamorphic chlorites also reflect primary compositional control by bulk 

chemistry.  Fe-dominant chlorites in the Basal Clastics and Medial BIF Facies occur 

interstitial to detrital quartz and represent the recrystallized clay component of the 

detritus.  According to Zane et al., (1998) chlorites of metapelites that crystallize under 

greenschist facies are Fe-dominant.  Haase (1979) demonstrated that the Tilden Pit occurs 
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just outboard of the biotite isograd bounding the Republic Metamorphic Node.  A low 

greenschist overprint is therefore responsible for the Fe-dominant species in the Basal 

Clastics.   

The metadiabase Pillar and underlying feeder dykes have undergone complete 

autohydration during emplacement into semi-wet sediments, supporting syn-depositional 

magmatism.  Remnant diabasic textures are completely retrograded to chlorite during 

emplacement, obliterating the primary magmatic mineral species.  These units display 

chlorite grain coarsening and alignment indicating effects of the post emplacement 

metamorphic overprint.  The metamorphic chlorite in metadiabase is Mg-dominant, 

reflecting the bulk chemistry of the original greenstone.  A detailed transect across a dyke 

boundary into the surrounding iron formation clearly demonstrates the change from Mg-

dominant to Fe-dominant chlorite away from the dyke contact.   

 

5.3.3 Late Hydrothermal Overprint 

The Tilden Pit is sited on the hanging wall of the Southern Gneiss Complex and late 

brittle deformation increases towards the shear zone.  This shear forms the north 

boundary to the Republic Metamorphic Node, related to thermal doming at 1750 Ma.  

Brittle deformation decreases upwards through stratigraphy from intense brecciation of 

the Basal Clastics, to fracture sets in the Medial BIF Facies, to stockwork veinlets in the 

Upper GIF Facies.  A late hydrothermal overprint accompanied brittle deformation and 

gives rise to ubiquitous chlorite, carbonate and sulphide coating fracture walls, with trace 

associated apatite and monazite increasing upsection.  

The hydrothermal chlorite is generally coarser than metamorphic chlorite and has 

diagnostic composition.  Hydrothermal chlorite ranges from very high iron 

pseudothuringite, ripidolite, brunsvigite and diabantite species, as opposed to the lower 

iron metamorphic ripidolite and pycnochlorite species abundant in the Medial BIF and 

Basal Clastics.   

Late hydrothermal carbonate includes zoned siderite-rhodochrosite and Fe-

dolomite/ankerite species.  Mn-zoned siderite and rhodochrosite coat fractures in the 

Basal Clastics and Medial BIF Facies.  Mn-zoned siderite displays increasing iron 

towards grain rims, indicating increased Fe2+ in the hydrothermal fluids.  Very high-Fe 
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and Mn-zoned siderites dominate the Basal Clastic fractures and occur less commonly 

through the Medial BIF Facies.  Hydrothermal Fe-dolomite and ankerite are more 

abundant in the Medial BIF Facies and are the only hydrothermal carbonate species 

observed in the Upper GIF Facies.  Calcite and dolomite are rare and are restricted to late 

fractures on the sheared margin of the metadiabase Pillar capping the Upper GIF Facies.  

Beukes and Guztmer (2008) noted that hydrothermal dolomite and calcite are common in 

high-grade iron ore deposits of the Carajas and Hamersley ranges.  

Sulphides are most abundant in the Basal Clastics and are markedly less abundant 

in the Medial BIF Facies.  Pyrite, chalcopyrite and tennantite are most concentrated in the 

chlorite-carbonate cemented breccias in the Basal Clastics.  Fractures coated with chlorite 

and carbonate has rarely associated dispersed chalcopyrite and tennantite in the Medial 

BIF Facies.  Fracture controlled sulphide indicate the high Fe-Mn hydrothermal fluid 

carried minor ubiquitous copper.  Similar sulphide species have been documented in the 

Champion mine in association with late Mn-silicates (Babcock, 1966).   

 The trace apatite and monazite linked to the late hydrothermal overprint are 

remobilized out of the iron formation.  Late apatite and monazite commonly intergrow 

with coarse Fe-dolomite, ankerite and chlorite within the granular iron formation.  This 

stratigraphic control clearly indicates the increase in P-species with hydrothermal chlorite 

and carbonate is due to primary phosphorous in granular iron formation being 

remobilized during late hydrothermal conditions (Deer et al., 1966; Spry et al., 2000).  

Both monazite and apatite contain trace amounts of REEs as shown by microprobe EDS 

spectrum and the apatites prove to be a fluro-apatite species.   
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Chapter 6: Conclusions 
 

6.1 Introduction 

As a result of the interpretive discussions regarding the paleoenvironment and 

paragenetic sequence, conclusions can be made with respect to the metallogenic 

framework.  This metallogenic history is followed by geometallurgical characterization 

of the complex iron ores making up the Main Pit Carbonate and Martite ore domains.  A 

final summary lists the relevant conclusions from this thesis.    

 

6.2 Metallogenic Model    

The complex paragenesis of the Tilden ores can be tied to the regional tectonic 

framework.  Detailed textures and mineral compositions of the three lithofacies suggest 

that the basal Negaunee Iron Formation at Tilden represents a rift basin setting that 

evolved to a more restricted evaporitic environment.  Deposition of the basal Negaunee 

represents evolution from a clastic filled trough to an evaporitic pan to an off shelf ramp.  

Most of the lower Negaunee Iron Formation can be classified as a Superior-type, wave 

dominated granular iron formation.  Regional folding between 1870 and 1830 Ma 

overprinted the original mineral assemblages and caused iron oxide enrichment.  Late 

brittle deformation continued well after 1750 Ma and this was accompanied by a post 

thermal peak retrograde hydrothermal overprint proximal to the Southern Shear Zone. 

Initial clastic sedimentation resulted in deposition of wacke sandstone containing 

quartz and abundant clay. Clastic sedimentation overlapping with banded iron formation 

marks periods of normal fault reactivation along the Southern Shear Zone.  During the 

following regressive phase, evaporitic pan chemical sedimentation of ferri-oxyhydroxide, 

silica and siderite gave rise to the Medial BIF Facies.  Subsequent transgression flooded 

the evaporitic pan and silica-iron precipitation reworked by wave-action produced ferri-

oxyhydroxide granules comprising the Upper Granular Iron Formation.  Diagenetic 
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processes included silica gel dehydration to chert and siderite cementing the Basal 

Clastics and Medial BIF Facies.  Primary ferri-oxyhydroxides dehydrated to ferri-hydrite 

and lesser hematite.      

The Negaunee Iron Formation has an unusual concentration of interlayered 

metadiabase.  Complete autohydration of the Pillar and feeder dykes indicates syn-

sedimentary mafic magmatism.  Autohydration reflects emplacement into still semi-

lithified wet sediments prior to regional deformation.  Based on the evidence for syn-

depositional emplacement, it is likely that the metadiabase units approximates the 2.1 Ga 

date suggested by Hans and Runnegar (1992) for the Negaunee Iron Formation.  A 2.1 

Ga age of the metadiabase units suggests rift related magmatism on the outer shelf of the 

trailing margin well before Penokean arc-craton collision.  The absence of chloritized 

metadiabases above the Goodrich Quartzite unconformity strongly suggests that 

Negaunee mafic magmatism terminated iron formation deposition on the outer shelf.   

Trendall and Blockey (2004) point out that most granular iron formations form 

discrete, well defined units that are commonly interstratified with associated volcanics.  

Intimate association of granular textured iron formation and volcanics has been 

documented in the Carajas Deposit, Brazil (Beukes and Gutzmer, 2008).   The associated 

mafic magmatism suggests a close link between granular iron formation deposition and 

active rift environments.  Bekker et al., (2010) point out that mafic magmatism associated 

with LIP development can be temporally linked to iron formation deposition. 

The erosional unconformity between the Negaunee Iron Formation and the 

overlying Goodrich Quartzite at the base of the Baraga Group represents the onset of 

Penokean collision and marks a reversal in sediment provenance (Young, 1983).  Arc-

continent collision between 1870 and 1830 Ma gave rise to the Penokean fold and thrust 

belt and to the development of a foreland basin.  Regional deformation resulted in the 

formation of the Main Pit Anticline within the Tilden Pit, and clearly involves folding of 

the interlayered metadiabase.  At Tilden, greenschist regional metamorphism promoted 

glomeroporphyroblastic growth of magnetite, recrystallization of chlorite in the Basal 

Clastics and grain coarsening of the primary/diagenetic carbonates.  Oxidized 
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metamorphic fluids unbuffered by siderite, resulted in replacement of magnetite by 

martite in the Medial BIF and Upper Granular Iron Formation.  Martite is replaced by 

recrystallization to platy hematite.   

The magnetite replacement of iron carbonate and martite replacement of 

magnetite is centered along the axis of the Main Pit Anticline (Lukey et al., 2007).  This 

suggests a structural control for iron enrichment.  The Main Pit Anticline may have acted 

as a focus for metamorphic fluids.  Dalstra and Rosiere (2008) observed that hematite 

ores in the Hamersley, Kapvaal and Quadrilatero Ferrifero are also structurally 

controlled, indicating synclines and anticlines are important in concentrating fluids for 

iron ore enrichment.  Magnetite and hematite flotation ores only occur proximal to the 

Southern Gneiss Complex and do not occur in the northern, less deformed part of the 

Negaunee (Lukey et al, 2007).   

The late 1750 Ma Republic Metamorphic Node imposed greenschist facies 

thermal metamorphic conditions at the Tilden Pit.  Temperatures between 200 and 300oC 

and pressures of no greater than 1.2 kbar (Klein, 2005) are consistent with producing 

abundant chlorite in the absence of biotite, stilpnomelane and minnesotaite in the Tilden 

Pit (Hasse, 1979).  Retrograde shearing post-dates peak thermal metamorphism and is 

accompanied by a late hydrothermal chlorite-carbonate-sulphide overprint proximal to 

the Southern Gneiss Complex.  Brittle deformation decreases upsection and away from 

the Southern Gneiss Complex causing brecciation in the Basal Clastics, fractures in the 

Medial BIF and veinlets in the Upper Granular Iron Formation.  The late hydrothermal 

overprint proximal to the Southern Gneiss Complex is characterized by zoned siderite-

rhodocrosite, Fe-dolomite, ankerite, high-Fe chlorite, and Cu-Fe sulphide accompanied 

by trace fluro-apatite and monazite.  Co-existing chalcopyrite and tennantite can suggest 

fluid temperatures between 260 and 370oC (Valencia et al., 2008).  Rare cross-cutting 

undeformed quartz veins containing minor specular hematite are linked to this late stage 

overprint.   

A similar overprint is recorded at the Champion Mine, occurring at higher 

metamorphic grades along the same northern boundary of the Republic Metamorphic 

Node.  The late hydrothermal minerals at the Champion Mine include molybdenite, 
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native gold, boron and bismuth (Cannon, 1976; Waggoner, 2010).  Recent Os-Re dating 

of molybdenite and Mn-bearing magnetites at the Champion Mine places the late 

hydrothermal overprint between 1672 and 1570 Ma (Waggoner, 2010).  The late 

hydrothermal overprint may be related to waning stages of the 1720 to 1680 Ma 

development of the Republic Metamorphic Node. 

Hydrothermal fluids enriched in Mn-Fe-Cu-Au-Mo-Bi with trace REEs, suggests 

an iron-oxide-copper-gold (IOCG) signature at both the Champion and Tilden mines.  At 

Olympic Dam, Australia the IOCG mineralization, expressed by complex, magnetite-

chalcopyrite, hematite-bornite, Au, and U-REE apatite ores are broadly similar in 

geochemical signature to the trace hydrothermal minerals observed at Tilden (Bastrakov 

et al., 2007).   

 

6.3 Geometallurgical Response of Carbonate and Martite 

Domain Iron Ores 

For mine planning purposes the Tilden pit has been partitioned into ore domains based on 

bulk geochemistry and metallurgical response.  The Carbonate and Martite domain 

characteristics are summarized in Table 2.0.  Inconsistent metallurgical response of the 

Main Pit Carbonate Domain led to speculation that variations in ore textures and mineral 

compositions not identified by bulk chemical analyses were affecting ore treatments.  

Subsequent core-logging, petrographic investigations and microprobe analyses have 

identified three lithofacies that comprise the Main Pit Carbonate and Martite Domains.  

These account for textural variability.  Determination of the paragenetic sequence and 

associated mineral compositions presented herein, aid in metallurgical trouble-shooting.   

 

6.3.1 The Main Pit Carbonate Domain 

The Carbonate Domain is dominantly comprised of the Medial BIF Facies and several 

meters of the upper Basal Clastics.  Bulk chemistry is characterized by higher Mg, Mn, 

Ca, Al and slightly lower Fe compared to the Martite Domain.  Petrographic 

investigations define the mineral assemblage to be quartz + magnetite + [martite/hematite 
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+ chlorite + siderite/magnesite].  Fracture controlled, hydrothermal minerals include Fe-

dolomite or ankerite +/- chlorite +/- chalcopyrite +/- tennantite +/- apatite +/- monazite.  

Considering bulk geochemistry in the context of the complex mineral paragenesis, 

several metallurgical issues can be identified.  The bulk head iron content is misleading 

since Fe is tied up in multiple mineral species.  The recoverable iron is dominantly in 

magnetite, and minor martite/hematite, however, iron is also a major element in the 

abundant chlorite and carbonate minerals.  Diagenetic Mg-siderite, Fe-dominant chlorites 

and the very high-Fe hydrothermal chlorites will add to the total Fe budget and therefore 

over-represent the total Fe available for liberation.   

Bulk rock magnesium, manganese and calcium can be accounted for by clastic 

detritus and different species of diagenetic and hydrothermal carbonate.  The bulk 

magnesium is largely contained in siderite/magnesite and lesser in chlorite.  However, 

Mg-dominant chlorite in the chloritized metadiabase would add to the magnesium 

budget.  Minor magnesium is tied up in the late hydrothermal Fe-dolomite/ankerite 

species.  Manganese is a minor component in chlorite but a major element in late Mn-

zoned siderite.  The low phosphorous content of the Carbonate Domain reflects minor 

hydrothermal apatite and monazites associated with interlayered granular textured bands.  

The occurrence of trace hydrothermal sulphide is unlikely to affect ore treatment.   

Textures not expressed by bulk chemistry can have an impact on metallurgical 

treatment.  The Main Pit Carbonate Domain is largely comprised of the Medial BIF 

Facies and minor components of the Basal Clastics and Upper Granular Iron Formation.  

These texturally distinct lithologies will respond differently to treatment.  Silica 

comprises three morphological varieties including primary detrital quartz grains, primary 

or diagenetic cryptocrystalline chert or jasper and granular-chert.  Grain size and degree 

of iron oxide encapsulation in chert will affect Fe liberation during grinding.  The 

dominant iron oxide is coarse magnetite, forms disseminations in the Basal Clastics, 

replaces discreet bands, and overgrow granules in the Medial BIF and Granular Iron 

Formation.  Degrees of martite replacement are tied to the presence of siderite.  Where 

siderite is absent, magnetite oxidation is unbuffered and is replaced by martite. 
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6.3.2 Martite Domain 

The Martite Domain contains lower bulk rock Al, Mg, Mn, and Ca and slightly higher Fe 

and P compared to the Carbonate Domain, reflecting the significant decrease in 

abundance of chlorite and carbonate.   The mineral assemblage that defines the Martite 

Domain is quartz + martite/hematite.  Trace hydrothermal minerals include chlorite +/- 

Fe-dolomite/ankerite +/- apatite +/- monazite.  Metallurgical response of this Domain has 

been relatively consistent and therefore ore definition on the basis of bulk chemistry is 

more effective.  

Martite and hematite are the dominant iron phases present and therefore define 

head iron content.  Trace Fe-chlorite and Fe-dolomite/ankerite will have little impact on 

iron content.  Mg-mineral species in chloritized diabases will contribute to the Mg and Al 

bulk chemistry.  The trace hydrothermal carbonate is solely Fe-dolomite/ankerite 

contributing negligible Mg, Ca and Mn to the bulk rock chemistry.  However, 

phosphorous content in the Martite Domain is accounted for by both primary and 

hydrothermal apatite and monazite. 

 Texturally, this domain is also relatively uniform with recrystallized primary and 

diagenetic silica dominating.  The primary iron oxide phase is martite, replacing coarse 

metamorphic magnetite and overgrown by platy hematite.  Magnetite is absent.  The 

consistency in both silica and iron oxide textures leads to the much more predictable ore 

treatment response of the Martite Domain compared to the more variable Main Pit 

Carbonate Domain. 

  

6.3.3 Geometallurgical Statement 

Metallurgical interpretations based on bulk rock chemistry irrespective of the pit geology 

and mineralogy has and will continue to lead to unpredictable ore treatment response in 

the Main Pit Carbonate Domain.  The development of a metallogenic model accounting 

for the multistage paragenetic sequence has shown that textures and mineral chemistries 

reflect a complex evolution.  Bulk chemical analyses do not reliably predict concentrate 

chemistries.  Textural variations and mineral speciation of the different lithofacies can 

affect grinding and liberation and must be taken into account.  Therefore, ore treatment 
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processes are more effective when the genesis of the ore deposit is fully understood.   

Metamorphic overprinting has significantly upgraded primary iron formation via 

oxidation and grain coarsening.  The primary ferri-hydrite reacted with siderite to form 

magnetite, and magnetite was further oxidized to martite and platy hematite.  The 

metamorphic enrichment produced the economic ores.  Intense brittle deformation 

accompanied by strong hydrothermal alteration complicates the Carbonate Domain 

metallurgical response proximal to the Southern Gneiss Complex.   

 This thesis has proven that bulk rock chemistry established at the blast hole scale 

can mask multiple facets of iron ores that ultimately influence metallurgical processing.  

In order to successfully predict metallurgical response, mineral speciation within 

paragenetic stages must be considered in characterizing the geometallurgical response of 

ores.           

       

6.4 Summary 

Variable mineral chemistry and textures of basal Negaunee iron ores mined in the Main 

Tilden Pit have led to metallurgical difficulties.  Core-logging, detailed petrography and 

microprobe investigations were carried out to characterize the iron ores of the Main Pit 

Carbonate Domain and Martite Domain.  As a result of these investigations the following 

conclusions can be made regarding: 1) the paleoenvironment of the basal Negaunee 

lithofacies; 2) the detailed paragenesis of the Main Pit Carbonate and Martite iron ores; 3) 

a metallogenic model; and 4) the predictive geometallurgical response of ores to 

treatment. 

 

1) Three lithofacies were identified comprising the Main Pit Carbonate 

and Martite domains including Basal Clastics, Medial BIF and Upper 

Granular Iron Formation.   
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2) The paleoenvironment of the basal Negaunee evolves from clastic 

infilling a fault bounded trough to a starved evaporitic pan on a stable 

shelf, to wave reworked off shelf ramp. 

 
3) The paragenetic sequence of the basal iron ores entail: a) 

primary/diagenetic silica, ferri-hydrite and carbonate; b) metamorphic 

chlorite, carbonate and magnetite plus martite and platy specular 

hematite; and c) late hydrothermal chlorite, carbonate, Cu-Fe sulphide 

and remobilized apatite and monazite. 

 

4) The paragenetic sequence can be linked to the Penokean cycle such 

that: a) primary/diagenetic sediments and mafic magmatism are related 

to a trailing margin setting; b) regional metamorphism is related to the 

Penokean arc/craton collision; and c) the late hydrothermal overprint 

reflects an IOCG signature that may be linked to the 1750 to 1680 Ma 

development of the Republic Metamorphic Node. 

 

5) The geometallurgical response of the Main Pit Carbonate and Martite 

domains can be linked to: a) silica textures; b) bulk iron content 

expressed in numerous minerals; and c) the metamorphic and 

hydrothermal overprinting.  
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Appendix A 
 

Informal Use of terms 
 
 
Bulk/Head chemistry:  this refers to the assayed results of the drill core from exploration  

holes.  Bulk chemistry was performed on the major elements including Si, Fe, 
Mg, Mn, Ca and P. 

 
Carbonate: is a general term that can include the solid solution series end members of  

magnesite, siderite, ankerite, Fe-dolomite, calcite, rhodocrosite and kutnohorite.   
 
Chert: term has been adopted from mine classifications and used by the company staff.   

Chert in this thesis refers to chert that has re-crystallized to quartz.  
Polycrystalline chert, also used synonomously with “barren” chert, refers to the 
near uniform composition of the chert bands that are now re-crystallized quartz. 

 
(Jasper) Chert:  refers to chert bands that have been re-crystallized to quartz and contain  

tiny particles or iron oxides such as hematite or ferri-hydrite.   
 
Ferri-hydrite: is used as a general term to include goethite, limonite, lepidocrosite and  

the classically termed ferri-hydrite (indeterminate crystal structure and formula).    
Due to the lack of x-ray diffraction identification, this general term refers to the 
undetermined dehydrated product of the initially precipitated amorphous iron 
particles or gels. 

 
Ferri-oxyhydroxides: this term refers to the initially precipitated amorphous or non- 

crystalline iron particles or gels.  No genetic connotation is implied.  
 
Lithofacies: is used to group rock types of similar textures and mineral assemblages.   

These mineral assemblages include primary, diagenetic and metamorphic 
minerals.  This non-traditional classification is to facilitate mine planning and 
metallurgical classifications.   

 
Satmagan: is a tool used by the company to test for magnetic iron content.  The tool is  

scans the drill core surface and measures the magnetism of the rock.  High 
satmagan response suggests the presence of magnetite versus low satmagan 
response that suggests the absence of magnetite. 

 
 
 



 

Elev. feet 

23004

Tilden – Main Pit  Vertical Section 
Looking North 

Appendix B2: Cross-section map. Sample Locations of the drill holes investigated in this these.  Elevations relative 
To sea level are marked by the blue numbers on the left side of the diagram.  The X,Y and Z co-ordinates are listed in the 
Sample List of Appendix B. 
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Drill Hole Sample #  Location (X) Location (Y) Location (Z) Domain Lithofacies 

23-004 1018  26086477.93 607553.335 1053.3 350 GIF (+ jasper) 

23-004 1023 26086477.93 607535.835 1048.3 350 Medial BIF 

23-004 1025 26086477.93 607538.335 1046.3 350 Medial BIF 

23-004 1041 26086478.33 607520.358 1027.1 340 Medial BIF 

23-004 1060 26086478.33 607515.358 1008.1 340 Lower Medial BIF 

       

23-018 588 26083937.74 608191.664 1028.0 350 GIF 

23-018 628 26083937.07 608171.221 983.3 340 Medial BIF 

23-018 725 26083935.37 608164.903 879.3 340 GIF 

23-018 894    340 GIF 

23-018 902 26083930.92 608108.648 682.6 340 Medial BIF 

23-018 950 26083929.96 608110.833 648.5 340 Medial BIF 

23-018 987 26083928.86 608104.403 609.6 340 Medial BIF 

       

23-021 1077 26085315.37 608361.1707 682.3 350 GIF 

23-021 1096 26085315.11 608368.5313 642.4 350 Medial BIF 

23-021 1136 26085314.92 608338.4394 612.4 340 Medial BIF 

23-021 1190 26085314.7 608324.5083 577.5 340 Medial BIF 

       

23-080 77 26084939.4 607526.7 1593.0 350 Pillar aureole 

23-080 163 26084939.4 607526.7 1505.0 350 Pillar aureole 

23-080 363 26084938.77 607517.651 1305.2 350 GIF  

23-080 614 26084936.51 607485.299 1057.6 350 GIF 

23-080 632 26084935.85 607475.965 1013.5 350 GIF 

23-080 716 26084934.47 607456.214 930.9 350 GIF 

       

26-075 612 26083230.37 608010.31 974.2 350 GIF 

26-075 718 26083229.29 607994.783 867.8 350 GIF 

26-075 768 26083228.88 607991.3227 832.8 350 GIF 

26-075 775 26083228.85 608007.6309 828.3 350 GIF 

26-075 909 26083227.38 607967.519 720.3 350 GIF 

26-075 913 26083227.38 607990.019 720.3 350 Dyke 

26-075 914 26083227.38 607972.519 720.3 350 Dyke 

26-075 923 26083227.38 607990.019 710.0 350 GIF 

26-075 932 26083227.38 607965.1506 710.7 350 GIF 

26-075 1021 26083226.48 607949.6985 612.4 350 GIF 

26-075 1046 26083224.62 607928.006 582.0 340 GIF 

26-075 1064 26083223.71 607921.9381 544.1 340 Medial BIF 

26-075 1066 26083223.71 607905.015 541.7 340 Medial BIF 

26-075 1071 26083223.71 607901.515 532.1 340 Medial BIF 

26-075 1089 26083222.88 607875.574 511.3 340 Medial BIF 
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26-075 1103 26083222.88 607872.1216 514.8 340 Medial BIF 

26-075 1123 26083223.87 607912.678 551.7 340 Medial BIF 

26-075 1136 26083222.88 607893.074 511.3 340 Medial BIF 

26-075 1228 26083220.45 607856.8717 432.0 340 Medial BIF 

26-075 1234 26083219.37 607827.3373 396.8 340 Medial BIF 

26-075 1296 26083218.42 607828.1678 370.1 340 Clastics 

       

26-076 454 26086251.62 607969.463 1289.7 350 GIF 

26-076 628 26086248.35 607905.167 1116.0 350 GIF 

26-076 666 26086248.35 607922.667 1116.0 340 Medial BIF 

26-076 877 26086247.53 607903.501 1077.7 340 Medial BIF 

26-076 884 26086243.36 607845.4903 898.7 340 Medial BIF 

       

26-077 679 26086279.77 607633.835 1090.5 340 GIF 

26-077 691 26086279.14 607624.859 1051.5 340 Medial BIF 

26-077 704 26086278.59 607617.005 1017.4 340 Medial BIF 

26-077 744 26086279.14 607653.7876 1051.5 340 Medial BIF 

26-077 749 26086278.59 607633.6717 1017.4 340 Medial BIF 

26-077 822 26086277.91 607586.8975 978.6 340 Medial BIF 

26-077 837 26086277.19 607592.3811 940.0 340 Medial BIF 

26-077 925 26086275.04 607572.8677 844.9 340 Medial BIF 

26-077 1039 26086273.45 607530.035 784.0 340 Medial BIF 

26-077 1048 26086272.54 607523.2811 751.5 340 Medial BIF 

26-077 1119 26086272.31 607529.5377 744.6 340 Medial BIF 

26-077 1136 26086270.03 607492.2886 669.0 340 Clastics 

26-077 1162 26086267.59 607479.672 597.1 340 Clastics 

       

26-079 1152 26085519.4 607502.2 603.6 340 GIF 

26-079 1158 26085519.4 607496.2 603.6 340 Medial BIF 

26-079 1183 26085518.6 607478.378 581.3 340 Medial BIF 

26-079 1236 26085516.64 607432.3043 528.3 340 Medial BIF 

26-079 1349 26085512.88 607382.3063 432.4 340 Clastics 

       

26-143 40 26084287.5 607640.3 1563.5 350 Pillar aureole 

26-143 100 26084287.5 607640.3 1536.0 350 Pillar aureole 

26-143 300 26084287.05 607633.859 1306.1 350 Pillar aureole 

26-143 525 26084285.93 607645.365 1106.8 350 GIF 

26-143 555 26084285.41 607617.3272 1060.9 340 GIF 

26-143 699 26084282.66 607571.136 902.4 340 GIF 

26-143 715 26084282.66 607560.4217 902.4 340 GIF 

26-143 801 26084280.76 607548.22 827.2 340 Medial BIF 

26-143 933 26084277.36 607474.0386 725.1 340 Medial BIF 

26-143 958 26084276.16 607478.067 695.5 340 Medial BIF 



101 
 

26-143 1018 26084273.79 607425.444 643.0 340 Medial BIF 

26-143 1103 26084268.34 607382.6852 545.8 340 Medial BIF 

       

26-198 16 26084660.8 608042.5714 1483.0 350 Pillar aureole 

26-198 90 26084660.8 608021.5 1443.5 350 Pillar aureole 

26-198 185 26084660.8 608024 1343.0 350 Pillar aureole 

26-198 480 26084659.44 608022.042 1074.1 350 GIF 

26-198 652 26084656.45 607979.29 889.2 350 GIF 

26-198 669 26084655.54 607948.799 851.4 350 GIF 

26-198 685 26084655.54 607941.299 861.4 350 GIF (+chert bands) 

26-198 696 26084655.54 607967.3704 851.4 340 GIF 

26-198 710 26084654.67 607950.787 822.0 340 Medial BIF 

26-198 709 26084654.67 607950.787 821.0 340 Dyke 

26-198 713 26084654.67 607936.287 818.7 340 Medial BIF 

26-198 719 26084654.67 607963.787 818.7 340 Dyke 

26-198 762 26084653.85 607929.344 791.1 340 GIF 

26-198 956 26084648.7 607817.4693 638.1 340 Medial BIF 

26-198 1058 26084644.02 607821.565 532.7 340 Dyke 

26-198 1196 26084638.61 607722.8328 429.4 340 Dyke 

26-198 1236 26084635.4 607679.3424 375.6 340 Medial BIF 

26-198 1321 26084631.45 607604.303 313.6 340 Medial BIF 

26-198 1358 26084629.67 607578.79 286.1 340 Medial BIF 

       

23-333 220-230 26085577 607944.1 727.0 340 unknown 

23-035 1000 26084952.74 608170.552 624.0 340 Medial BIF 

26-059 674 26085845.96 606674.925 1267.4 350 GIF 
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