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ABSTRACT
The average local ionization energy (ALIE) has important applications in several areas of electronic structure theory. Theoretically, the
ALIE should asymptotically approach the first vertical ionization energy (IE) of the system, as implied by the rate of exponential decay of
the electron density; for one-determinantal wavefunctions, this IE is the negative of the highest-occupied orbital energy. In practice, finite-
basis-set representations of the ALIE exhibit seemingly irregular and sometimes dramatic deviations from the expected asymptotic behavior.
We analyze the long-range behavior of the ALIE in finite basis sets and explain the puzzling observations. The findings have implications
for practical calculations of the ALIE, the construction of Kohn–Sham potentials from wavefunctions and electron densities, and basis-set
development.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023459., s

I. INTRODUCTION
The quantity known as average local ionization energy (ALIE)

naturally arises in diverse contexts of electronic structure theory.1–11

For a single closed-shell N-electron Slater determinant of the spin-
restricted Hartree–Fock (HF) method and the Kohn–Sham (KS)
density-functional scheme, the ALIE is defined by

Ī(r) ≡ −ϵ̄(r) = −
2

ρ(r)

N/2

∑
i=1

ϵi∣ϕi(r)∣2, (1)

where ϕi(r) are the occupied canonical orbitals, ϵi are their eigenval-
ues, and

ρ(r) = 2
N/2

∑
i=1
∣ϕi(r)∣2 (2)

is the total electron density. The name ALIE owes to the fact that
Ī(r) is a position-dependent average of electron removal energies
according to Koopmans’ theorem.1 The quantity ϵ̄(r) = −Ī(r) is
called the average local electron energy (ALEE) because it may be
written11,12 in an orbital-invariant form as a sum of the local kinetic
energy per electron and the effective potential in which each electron
moves.

The ALIE and ALEE can also be defined for correlated wave-
functions in terms of the eigenfunctions and eigenvalues of the gen-
eralized Fock operator12–14 or, equivalently, in terms of the Dyson
orbitals and associated electron removal energies.15,16 Because Ī(r)
and ϵ̄(r) are trivially related by a sign change, from now on we will
refer to the ALEE only.

This work is concerned with one particular property of the
ALEE—its asymptotic limit. For any ALEE given by Eq. (1), this limit
is determined by the long-range behavior of the occupied molecu-
lar orbitals (MOs). The rate of exponential decay of KS orbitals is
governed by their respective eigenvalues,17,18 whereas the asymptot-
ically leading terms of HF orbitals generally share the same expo-
nent and differ only by pre-exponential factors.19–21 In either case,
the highest-occupied molecular orbital (HOMO) has the slowest
overall rate of asymptotic decay. From this it follows that, for one-
determinantal wavefunctions in a complete basis set and outside of
the nodal surfaces of the HOMO,

lim
r→∞

ϵ̄(r) = ϵHOMO, (3)

where ϵHOMO is the HOMO energy. The analog of Eq. (3) for an exact
correlated wavefunction is12

lim
r→∞

ϵ̄(r) = −I, (4)
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where I is the first vertical ionization energy of the system. Note that
ϵHOMO and I are implied by the rates of the asymptotic exponential
decay of the HF19–21 and exact electron densities,22–25 respectively.
The properties expressed by Eqs. (3) and (4) play a key role in ensur-
ing that the exchange-correlation potentials constructed from elec-
tronic wavefunctions9,10,26–29 have the proper asymptotic behavior
and correct step structure.30–32

We will now show that, within finite basis sets, Eqs. (3) and (4)
may be satisfied exactly, approximately, or not at all, depending on
subtle features of the one-electron basis set used. Our analysis will
expose fundamental limitations of representing the ALEE function
in finite basis sets, reveal occasional qualitative differences between
comparable Gaussian basis sets, and explain why generation of KS
effective potentials from wavefunctions and densities is sometimes
hampered by diffuse basis functions. The conclusions apply to both
Gaussian-type orbitals (GTO) and Slater-type orbitals (STO).

All calculations reported in this work were carried out using
a locally modified version of the GAUSSIAN program.33 All basis
sets except cc-pVXZ and aug-cc-pVXZ match their definitions in
the Basis Set Exchange Database34 and include pure d, f, and
higher functions. The cc-pVXZ and aug-cc-pVXZ basis sets were
used, as implemented in GAUSSIAN—with linear transformations
to remove redundant primitives from the contractions35 (see the
supplementary material).

II. ASYMPTOTIC LIMIT OF THE ALEE
FOR ONE-DETERMINANTAL WAVEFUNCTIONS
A. Observations

In theory, the asymptotic limit of the quantity ϵ̄(r) defined by
Eq. (1) is determined by the long-range behavior of the slowest-
decaying occupied MO. In a complete basis set, the slowest-decaying
MO is the HOMO, hence Eq. (3). The situation is very different in a
finite basis set, where each MO is a linear combination of the same
M basis functions,

FIG. 1. HF ALEEs of the Be atom generated using various Gaussian basis sets.
The presence of diffuse functions in Sadlej and aug-pc-3 causes large errors at
r > 9a0.

TABLE I. HOMO energies and asymptotic limits of the ALEE calculated from HF
wavefunctions of the Be atom using various Gaussian basis sets.

Basis set Sizea ϵHOMO, Eh alim, Eh
b

STO-3G [2s] −0.254 038 −0.256 733
6-31G [3s] −0.301 295 −0.301 524
6-31+G [4s] −0.307 177 −0.308 015
def2-SVP [3s] −0.305 431 −0.307 738
Sadlej [5s] −0.309 102 −0.693 831
cc-pVDZ [3s] −0.309 039 −0.309 224
cc-pVTZ [4s] −0.309 254 −0.309 413
cc-pVQZ [5s] −0.309 260 −0.309 339
cc-pV5Z [6s] −0.309 264 −0.309 278
aug-cc-pVDZ [4s] −0.309 381 −0.373 589
aug-cc-pVTZ [5s] −0.309 276 −0.696 376
aug-cc-pVQZ [6s] −0.309 271 −0.526 132
aug-cc-pV5Z [7s] −0.309 271 −0.365 717
pc-1 [3s] −0.308 006 −0.308 101
pc-2 [4s] −0.308 894 −0.308 956
pc-3 [6s] −0.309 263 −0.316 984
pc-4 [8s] −0.309 258 −0.321 237
aug-pc-1 [4s] −0.308 518 −0.318 582
aug-pc-2 [5s] −0.308 803 −0.311 076
aug-pc-3 [7s] −0.309 262 −3.275 270
aug-pc-4 [9s] −0.309 259 −1.066 429
UGBS (25s) −0.309 270 −0.309 277
Basis-set limitc −0.309 270 −0.309 270

aWithout the irrelevant p and d functions.
bEvaluated using Eq. (9).
cFrom Ref. 36.

ϕi(r) =
M

∑
μ=1

cμifμ(r). (5)

Here, the long-range behavior of ϕi(r) is determined by the slowest-
decaying (most diffuse) functions fμ(r) appearing with nonzero
expansion coefficients. Typically, the most diffuse functions of a
basis set contribute not only to the HOMO but also to the lower-
lying MOs. It is intuitively clear that, when this happens, the asymp-
totic limit of ϵ̄(r) should be below ϵHOMO. Figure 1 and Table I show
that the actual deviations can range from negligible to enormous
(several hartrees) even for a small atom. To understand these results
quantitatively, we will need to analyze in detail how the most diffuse
basis functions determine the asymptotic limit of the ALEE.

B. Slowest-decaying functions of a basis set
Let us substitute Eq. (5) into Eq. (1) and, assuming that the basis

functions are real, write the result as

ϵ̄(r) =
∑

M
μ=1∑

M
ν=1 Eμνfμ(r)fν(r)

∑
M
μ=1∑

M
ν=1 Dμνfμ(r)fν(r)

, (6)

where

Eμν = 2
N/2

∑
i=1

ϵicμicνi (7)
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are elements of the energy-weighted density matrix and

Dμν = 2
N/2

∑
i=1

cμicνi (8)

are elements of the density matrix. Both of these matrices are
symmetric.

When evaluating the asymptotic limit of the right-hand side
of Eq. (6), only the products of the slowest-decaying basis func-
tions need to be considered. The rate of the asymptotic decay of
a primitive basis function is determined by its exponent, α, and
angular quantum number, l. For functions of the same l, the slowest-
decaying function is the one with the smallest α. For functions
with the same α, the slowest-decaying function is the one with
the greatest l. Thus, if the smallest exponent for a given basis set
is α0, the slowest-decaying functions are those functions with α0
that have the greatest l. The rate of decay of a contracted basis
function is that of the slowest-decaying primitive appearing in the
contraction.

For further analysis, it will be convenient to distinguish whether
the slowest-decaying basis functions are centered at one point or at
different points.

C. Slowest-decaying basis functions with a common
center

If the slowest-decaying basis functions with an angular quan-
tum number l share a common center, then the total number of such
functions is 2l + 1. We assume that at least one of them contributes
to the ALEE (otherwise the entire set may be ignored). The analysis
of this situation applies to both GTOs or STOs.

Case l = 0: The slowest-decaying basis function is a unique s
orbital, which we denote by f1(r). From Eq. (6), we get

alim ≡ lim
r→∞

ϵ̄(r) =
E11

D11
=
∑

N/2
i=1 ϵi∣c1i∣

2

∑
N/2
i=1 ∣c1i∣2

, (9)

where c1i is the expansion coefficient of f1(r) in ϕi(r). This limit
is bounded, ϵ1 ≤ alim ≤ ϵHOMO, and is the same in every direction.
Examples of such situations include a single Be atom described with
cc-pVXZ basis sets, the CH2O molecule described with the def2-
SVPD basis set (the s function with α0 is that of the C atom), and
many other systems. The HF ALEE plots of Be shown in Fig. 1 are in
perfect agreement with the values of alim computed by Eq. (9).

Case l = 1: The slowest-decaying basis functions are a single set
of three p orbitals, f1 = px, f2 = py, and f3 = pz . If these functions are
centered at the origin and oriented along the coordinate axes, then
only f1 contributes to the ALEE in the x direction, only f2 contributes
in the y direction, and only f3 contributes in the z direction. For each
of these particular directions, Eq. (6) gives

axlim = lim
x→±∞

ϵ̄(x, y, z) =
E11

D11
, (10)

aylim = lim
y→±∞

ϵ̄(x, y, z) =
E22

D22
, (11)

azlim = lim
z→±∞

ϵ̄(x, y, z) =
E33

D33
. (12)

For an arbitrary direction u defined by the angles β1, β2, and β3
between u and the x, y, and z axes, respectively, we obtain

alim(u) =
∑

3
μ=1∑

3
ν=1 Eμν cosβμ cosβν

∑
3
μ=1∑

3
ν=1 Dμν cosβμ cosβν

, (13)

where cos βμ are the direction cosines. If the system has cylindri-
cal symmetry with respect to the z axis (e.g., CO), then the limit
axlim = aylim = axylim are the same in every direction from the origin
within the z = 0 plane, but distinct from azlim. If the system has tetra-
hedral or higher symmetry (e.g., CH4 and Ne), then alim is again
isotropic.

Case l > 1: One can extend the above analysis to this case or use
the following trick: Orient the system with respect to the coordinate
axes in such a way that the direction of interest (u) coincides with the
z axis and consider the most diffuse basis function that does not van-
ish in the z direction (dz2 , fz3 , and so on), call it f1(r). For this setup,
alim(u) = azlim = G11/D11. By rotating the system and transforming
or recomputing the coefficients G11 and D11, one can determine alim
for any u.

There are three possible outcomes of evaluating alim for finite-
basis-set HF and KS wavefunctions.

Outcome 1: alim = ϵHOMO exactly. This happens when the
slowest-decaying functions of the basis set contribute to the HOMO
but not to any lower-lying MOs. A prime example is the Ne atom
described with the def2-TZVP basis set (Fig. 2). The HOMO level
of this system consists of three degenerate atomic 2p orbitals. Since
the most diffuse functions of the def2-TZVP basis set are of p type
(α0 ≈ 0.266), they contribute exclusively to the HOMOs. As a result,
the asymptotic limit of the ALEE is exactly equal to ϵHOMO in all
directions.

Another example is the HF/6-311+G ALEE of Ne (Fig. 3). Here
the smallest exponent (α0 = 0.13) is shared by s- and p-type func-
tions. The p functions have a pre-exponential factor and decay more
slowly, so alim = ϵHOMO again. However, the presence of an s function
with the same α0 slows down the asymptotic decay of ϵ̄(r) (compare

FIG. 2. HF/def2-TZVP ALEE for the Ne atom. The basis functions with the smallest
exponent are of p type. The asymptotic limit is approached fast.
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FIG. 3. HF/6-311+G ALEE for the Ne atom. The basis functions with the smallest
exponent are of s and p types. The asymptotic limit is approached slowly.

Figs. 3 and 2). The inset of Fig. 3 reveals another interesting feature
of this ALEE: a local maximum at r ≈ 4a0, where ϵ̄(r) is equal to
ϵHOMO almost exactly. This happens on the nodal sphere of the 2s
orbital, where only the p functions contribute.

Outcome 2: alim ≈ ϵHOMO. This occurs when the slowest-
decaying basis function makes the dominant, but not exclusive, con-
tribution to the HOMO. Such behavior is exhibited by the HF/def2-
SVP and HF/pc-3 ALEEs of the Be atom (Fig. 1). Figure 4 shows
the former example in detail. The MO coefficients of the slowest-
decaying s function of the def2-SVP basis set (α0 ≈ 0.0458) are
c12 = 0.380 24 and c11 = −0.008 68 in ϕ2 and ϕ1, respectively. The
ratio |c12|2/|c11|2 is large enough for ϵ̄(r) to be close to ϵHOMO at
large r. The point near r = 4.4a0, where ϵ̄(r) = ϵHOMO exactly,
is the location of an artificial node of the 1s orbital arising in the
HF/def2-SVP description of the Be atom. Artificial nodes are often

FIG. 4. HF/def2-SVP ALEE for the Be atom. The slowest-decaying s function con-
tributes mostly to the HOMO. The asymptotic limit is only approximately equal to
ϵHOMO.

found in the asymptotic tails of KS and HF orbitals, both in numeri-
cal and finite-basis-set solutions.37–39

Outcome 3: alim < ϵHOMO. This happens when the slowest-
decaying basis function makes substantial contributions to at least
one lower-lying MO. Such instances are common for basis sets con-
taining diffuse functions. For example, the most diffuse s-type func-
tion of the Sadlej basis set for Be (α0 ≈ 0.0193) has MO coefficients
of 0.005 75 and 0.001 78 in ϕ2 and ϕ1, respectively. As a result, alim
= −0.6938 Eh is significantly lower than ϵHOMO = −0.3091 Eh (Fig. 1).
For the HF/aug-pc-3 ALEE of Be, the mismatch is even greater:
ϵHOMO = −0.3093 Eh, whereas alim = −3.2753 Eh. Our analysis makes
it evident that the theoretical result alim = ϵHOMO cannot be repro-
duced exactly in a finite basis set whenever there is a lower-lying
MO of the same symmetry as the HOMO, except when the canonical
MOs themselves serve as basis functions.

The HF/def2-SVP ALEE of Ne (Fig. 5) illustrates another pos-
sible twist. Here the HOMO is of p type, but the slowest-decaying
basis function is of s type, so the asymptotic behavior of ϵ̄(r) is
determined by the 1s and 2s orbitals and not at all by the HOMO.
The closest approach of this ALEE to ϵHOMO occurs between 5 and 7
bohrs, where the HOMO contribution to the ALEE exceeds that of
all other occupied orbitals.

Situations in which the most diffuse basis function is unique
are not limited to atoms. Consider, for instance, the HF/DGDZVP
ALEE of the CO molecule oriented along the z axis with the C atom
at the origin (Fig. 6). The ground-state electron configuration of CO
is 1σ22σ23σ24σ21π45σ2. The slowest-decaying basis functions here
are the three carbon-centered p-type primitive GTOs (px, py, pz) with
α0 = 0.109 72. These functions contribute to MOs of different sym-
metries and energies: the pz function to each of the σ-MOs including
the HOMO, and the px and py functions to the π-MOs. By Eqs. (10)–
(13), the ALEE limit along the z axis is azlim = −0.6154 Eh; within the
z = 0 plane, it is axylim = −0.6418 Eh, i.e., the energy of the π-MOs
to which the px and pz functions contribute exclusively. Neither of
these two limits is even close to ϵHOMO = −0.5541 Eh. To get a better
agreement between alim and ϵHOMO for CO, it is necessary to use a

FIG. 5. HF/def2-SVP ALEE for the Ne atom. The slowest-decaying basis function
is of s type. The asymptotic limit is substantially lower than ϵHOMO.
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FIG. 6. HF/DGDZVP ALEE of the CO molecule (R = 2.132a0) along the three
coordinate axes. The molecule is oriented along the z axis with the C nucleus at
the origin. The slowest-decaying basis functions are three p-type GTOs centered
at the C nucleus.

different basis set in which the slowest-decaying basis function is of
s type, e.g., def2-SVP (alim = −0.5637 Eh, ϵHOMO = −0.5510 Eh).

D. Slowest-decaying basis functions
with multiple centers

When the slowest-decaying functions of a basis set are centered
at different points, the asymptotic limit of ϵ̄(r) always has angu-
lar dependence. Let us first analyze the case of two primitive s-type
GTOs, f1(r) and f2(r), placed R bohrs apart and equivalent by sym-
metry (as in a homonuclear diatomic). Without loss of generality,
we can assume that f1(r) and f2(r) are unnormalized and centered at
the points A = (0, 0, R/2) and B = (0, 0, −R/2), respectively, that is,

f1(r) = e−α0[x2+y2+(z−R/2)2
], (14)

f2(r) = e−α0[x2+y2+(z+R/2)2
]. (15)

Substituting these expressions into Eq. (6) and evaluating the z→∞
limit, we obtain

azlim ≡ lim
z→±∞

ϵ̄(x, y, z) =
E11

D11
=

E22

D22
, (16)

where E11 = E22 and D11 = D22 by symmetry. Similarly, for directions
perpendicular to the z axis at z = t, we find

axylim(t) ≡ lim
x→±∞

ϵ̄(x, y, t) = lim
y→±∞

ϵ̄(x, y, t)

=
(1 + e4α0Rt)E11 + 2e2α0RtE12

(1 + e4α0Rt)D11 + 2e2α0RtD12
, (17)

which is different from azlim. In particular, for the xy planes passing
through the nuclei,

axylim(±R/2) =
(1 + e2α0R2

)E11 + 2eα0R2
E12

(1 + e2α0R2
)D11 + 2eα0R2D12

, (18)

whereas for the xy plane at the midpoint,

axylim(0) =
E11 + E12

D11 + D12
. (19)

The same relations apply to p-type GTOs centered at (0, 0, ±R/2):
Eq. (16) to a pair of pz functions and Eqs. (17)–(19) to pairs of px
and py functions. Observe that Eq. (16) is for two GTOs but works
as though there were only one function, as in Eq. (9).

It is important to remember that Eqs. (16)–(19) hold only for
GTOs. For STOs, Eq. (6) gives different results,

azlim =
(1 + e2α0R)E11 + 2eα0RE12

(1 + e2α0R)D11 + 2eα0RD12
(STO) (20)

and

axylim(t) =
E11 + E12

D11 + D12
(STO) (21)

both for s and p functions. The second of these limits no longer
depends on t.

As a first test of Eqs. (16)–(19), consider the HF/pc-1 ALEE
for the F2 molecule oriented along the z axis (Fig. 7). The elec-
tron configuration is KK(σg2s)2

(σ∗u 2s)2
(πu2p)4

(σg2p)2
(π∗g 2p)4.

The slowest-decaying basis functions are primitive p-type Gaussians
(α0 = 0.311 27). The px and py functions make large contributions to
the degenerate π∗g HOMOs as well as to the lower-lying πu MOs.
This signals that alim values should be significantly below ϵHOMO
= −0.6732 Eh. For the xy plane passing through each nucleus, axylim
= −0.7484 Eh, as predicted by Eq. (18) with f1 = pAx and f2 = pBx .
Along the z axis, azlim = −0.7747 Eh, as predicted by Eq. (16) with
f1 = pAz and f2 = pBz .

Another example is the HF/6-311++G∗ ALEE of the H2O
molecule placed in the yz plane with z as the C2 axis (Fig. 8). The
ground-state electron configuration here is 1a2

12a2
11b2

23a2
11b2

1, and
the slowest-decaying functions are two s-type primitives (α0 = 0.036)

FIG. 7. HF/pc-1 ALEE of the F2 molecule (R = 2.670a0) along the three coordinate
axes with one of the nuclei moved to the origin. The molecule is oriented along the
z axis. The most diffuse basis functions are of p type.
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FIG. 8. HF/6-311++G∗ ALEE of the H2O molecule (ROH = 1.810a0, θHOH = 104.5○)
along the three coordinate axes. The molecule is oriented as shown. The most
diffuse basis functions are two s-type GTOs of the H atoms.

centered at the H nuclei. These functions form symmetry-adapted
linear combinations only of a1 and b2 symmetries and therefore can-
not contribute to the b1 HOMO (the nonbonding 2px atomic orbital
of the O atom). As a result, all alim values here are much lower than
ϵHOMO = −0.5094 Eh. Specifically, aylim = −0.8311 Eh, as predicted by
Eq. (16) adapted to the current axis orientation, and axlim = a

z
lim = a

xz
lim

= −1.3601 Eh, as predicted by the similarly adapted equation (19).
If the slowest-decaying basis function for H2O were an s-type

GTO of the O nucleus (which is unusual for standard basis sets),
the HF ALEE would have the same asymptotic limit in every direc-
tion but still would be substantially lower than ϵHOMO, because an
s-type function of the O atom cannot contribute to the b1 HOMO.
If the slowest-decaying basis functions were a set of three p GTOs
of the O atom (as in 6-311+G∗ and def2-SVPD), then alim would
equal ϵHOMO exactly but only along the x axis; in other directions,
it would be a weighted average of the energies of all MOs to which
p-type basis functions of the O atom contribute. For the ALEE of
H2O to approach ϵHOMO everywhere except in the nodal plane of the
HOMO, one would need a customized basis set in which the slowest-
decaying function is a px GTO without the accompanying py and pz
orbitals.

III. ASYMPTOTIC LIMIT OF THE ALEE
FOR CORRELATED WAVEFUNCTIONS

The one-determinantal ALEE of Eq. (1) can be generalized
to spin-restricted correlated wavefunctions in several equivalent
ways.12–14,16 The form best suited for computation is12

ϵ̄(r) =
2

ρ(r)

K

∑
j=1

λj∣gj(r)∣2, (22)

where g j(r) are the eigenfunctions of the generalized Fock opera-
tor, λj are their eigenvalues, and K ≥ N/2. For a closed-shell Slater
determinant, K = N/2, g j(r) = ϕj(r), and λj = ϵj, so Eq. (22) reduces
to Eq. (1).12 For a complete active space (CAS) self-consistent-field

(SCF) wavefunction, K is the total number of the core and active
orbitals. For a full configuration interaction (FCI) wavefunction,
K = M. Although the magnitudes of λj for post-HF wavefunctions
are no longer associated with electron removal energies, the negative
of the generalized ALEE can still be interpreted as an ALIE.16

Let us write the generalized ALEE in terms of a basis set of real
functions fμ(r) (μ = 1, 2, . . ., M). Each eigenfunction g j(r) has the
form

gj(r) =
M

∑
μ=1

bμjfμ(r), (23)

where the coefficients bμj are determined by diagonalizing the gen-
eralized Fock matrix. The total electron density may be written
as

ρ(r) = 2
K

∑
j=1

nj∣χj(r)∣2, (24)

where χj(r) are the natural orbitals and nj are their occupation num-
bers (0 < nj ≤ 1). Each natural orbital may be expanded in the same
one-electron basis set,

χj(r) =
M

∑
μ=1

qμjfμ(r), (25)

where the coefficients qμj are obtained by diagonalizing the one-
electron reduced density matrix. Substituting Eqs. (23)–(25) into
Eq. (22), we obtain

ϵ̄(r) =
∑

M
μ=1∑

M
ν=1 Gμνfμ(r)fν(r)

∑
M
μ=1∑

M
ν=1 Pμνfμ(r)fν(r)

, (26)

where

Gμν = 2
K

∑
j=1

λjbμjbνj (27)

and

Pμν = 2
K

∑
j=1

njqμjqνj. (28)

The matrix G is symmetric for variationally optimal wavefunctions
such as CASSCF and FCI.40–43

One can use Eq. (26) to find the asymptotic limits of a general-
ized finite-basis-set ALEE in the same manner as Eq. (6) was used for
HF wavefunctions. In particular, if the slowest-decaying function,
f1(r), has l = 0, then

alim =
G11

P11
=
∑

K
j=1 λj∣b1j∣

2

∑
K
j=1 nj∣q1j∣2

, (29)

where b1j and q1j are the coefficients of f1(r) in Eqs. (23) and (25),
respectively. The other recipes are the same as Eqs. (9)–(19) with Eμν
replaced by Gμν and Dμν by Pμν.

For HF wavefunctions, we compared alim to ϵHOMO, expect-
ing agreement in the basis-set limit. It is not immediately clear
what alim should be compared to for correlated wavefunctions. The
analysis of the long-range behavior of electronic wavefunctions by
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FIG. 9. Generalized ALEE for the Be atom computed from CAS(4,5) wavefunctions
using two basis sets. The asymptotic limits were evaluated by Eq. (29).

Morrell et al.,22 Davidson,23 and Katriel and Davidson24 implies27

that the asymptotic limit of ϵ̄(r) is −I, i.e., the negative of the first
ionization energy encoded in the rate of exponential decay of the
natural orbitals, χk ∝ exp[−(2I)1/2r] (r→∞). For HF wavefunctions
in the basis-set limit, I = −ϵHOMO,19–21 which leads to Eq. (3). This
motivates us to estimate the I of Eq. (4) as the first ionization energy
according to the extended Koopmans’ theorem (EKT).22,44–46 The
EKT is a well-defined computational prescription for variationally
optimal wavefunctions such as HF and CASSCF.40–43

As an example, consider the CAS(4,5) ALEE computed for the
Be atom using two related basis sets: def2-TZVP and def2-TZVPD.
The active space includes the 1s, 2s, 2px, 2py, and 2pz orbitals, which
means that the p-type functions of these basis sets contribute along-
side s functions. The slowest-decaying functions of def2-TZVP and
def2-TZVPD are, respectively, an s-type primitive (α0 ≈ 0.032 65)
and a set of three p-type primitives (α0 ≈ 0.027 73). Using Eq. (29)
for the former basis set and Eqs. (10)–(12) for the latter, we obtain
adef2-TZVP

lim = −0.349 64 Eh and adef2-TZVPD
lim = −0.491 12 Eh. These

limits are in perfect agreement with the actual ALEE plots (Fig. 9).
Although the def2-TZVP limit is very close to the corresponding
−IEKT value, the def2-TZVPD limit is not. This suggests that the
def2-TZVPD basis set is imbalanced for the purpose of representing
the ALEE in low-density regions. The above analysis can be readily
extended to basis sets in which the slowest-decaying functions are
centered at multiple points.

IV. IMPLICATIONS
A. Calculation of ALEEs

The ALEE provides important information about chemical
reactivity, electronegativity, local polarizability, hardness, and other
molecular properties.1–3,47–50 Our findings suggest that the accuracy
of ϵ̄(r) at large r may be drastically affected by the type and loca-
tion of the most diffuse basis functions. Therefore, it is essential to
use a properly chosen or customized one-electron basis set when
computing HF, KS, and post-HF ALEEs. Of course, by enforcing the

correct alim one does not necessarily attain the correct rate of asymp-
totic decay of ρ(r). The latter property would require a considerably
subtler customization of the basis set than discussed here.51–54

B. Generation of exchange-correlation potentials
from wavefunctions

In a series of papers,9,10,26–29 Staroverov and co-workers devel-
oped a method for constructing KS potentials from ab initio elec-
tronic wavefunctions within finite basis sets. This method involves
solving the KS equations with the exchange-correlation potential
given by

vXC(r) = vhole
XC (r) + vresp(r) + vc,kin(r), (30)

where vhole
XC (r) is the Coulomb potential of the exchange-correlation

hole charge, vresp(r) is the response term, and vc ,kin(r) is the kinetic-
correlation contribution. The response term is computed in our
method as

vresp(r) = ϵ̄KS
(r) − ϵ̄WF

(r), (31)

where ϵ̄WF
(r) is the generalized ALEE of Eq. (22) and ϵ̄KS

(r) is the
KS ALEE of Eq. (1). The expressions for vhole

XC (r) and vc ,kin(r) are
irrelevant here (see Ref. 13 for details). The definitive version of this
method is presented in Ref. 28.

Within Gaussian basis sets, the method of Ref. 28 produces
exchange-correlation potentials of higher quality than any technique
in which vXC(r) is fitted to ρ(r). However, there is a limitation: when
the basis set contains very diffuse functions, the potential of Eq. (30)
may deviate from the correct −1/r behavior at large r so much as to
cause a failure of SCF convergence. This is a deterministic basis-set
artifact that can be understood and remedied through the insights
from Secs. II and III.

When the method of Ref. 28 is applied to HF wavefunctions,
one needs to shift the KS spectrum obtained in each SCF cycle
to satisfy the condition ϵKS

HOMO = ϵHF
HOMO. The aim of this shift is

FIG. 10. Exact-exchange potentials and corresponding response terms calculated
from HF wavefunctions of the Be atom using various Gaussian basis sets. To
achieve SCF convergence for the aug-cc-pVDZ basis set, we ignored all grid points
where ρ(r) is below 2 × 10−10 e/a3

0.
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to force ϵ̄KS
(r) to have the same asymptotic limit as ϵ̄HF

(r). The
equality of the two limits makes vresp(r) vanish asymptotically and
enables vXC(r) to behave as −1/r when r → ∞. In a defective basis
set, where ϵ̄KS

(r) and ϵ̄HF
(r) cannot simultaneously approach the

HOMO energy, the shift fails to achieve the desired effect and the
resulting vresp(r) tends to a nonzero constant. The error in vresp(r)
causes a comparable error in vXC(r) (see Fig. 10) and, if large enough,
impedes SCF convergence. A simple but effective fix in such cases is
to set vresp(r) = 0 at grid points where ρ(r) is very small (say, below
10−10 e/a3

0). Another remedy is to enable the HF and KS ALEEs to
have the same asymptotic limit by tweaking the one-electron basis
set. Similar considerations apply to potentials generated from post-
HF wavefunctions and to other potential construction techniques
that employ the quantity ϵ̄KS

(r).30,55

Strictly speaking, these convergence problems are caused not
by particular diffuse functions themselves but by their interplay with
other basis functions. For instance, uncontracting the aug-cc-pVDZ
basis set for Be does not affect any of the exponents but improves the
ALEE and vXC(r) (Fig. 10).

V. CONCLUSIONS
We have shown that the asymptotic behavior of ALEEs calcu-

lated within finite basis sets may drastically deviate from theoret-
ical predictions that assume a complete basis set. For a given sys-
tem, basis set, and direction, the asymptotic limit alim of ϵ̄(r) may
be determined analytically using Eq. (6) or Eq. (26). For systems
where the slowest-decaying basis functions are centered at one or
two points, the calculation of alim reduces to applying simple recipes
such as Eqs. (9)–(12) and (16)–(19).

In theory, every one-determinantal ALEE should have alim
= ϵHOMO outside of the nodal surfaces of the HOMO. A one-electron
basis set can produce this result only if the most diffuse basis func-
tions contribute exclusively to the HOMO. If this condition is not
net (e.g., because there are other occupied MOs of the same sym-
metry as the HOMO), one can have alim ≈ ϵHOMO at best. If the most
diffuse functions make comparable contributions to the HOMO and
to lower-energy MOs or do not contribute to the HOMO at all, then
alim ≪ ϵHOMO.

For finite-basis-set ALEEs derived from correlated wavefunc-
tions, the property expressed by Eq. (4) can hold only approximately
in practice. This is because the strict equality alim = −I requires the
most diffuse functions of the basis set to contribute exclusively to the
Dyson orbital associated with the lowest ionization energy, which
does not happen for sets of GTOs or STOs.

We conclude with practical recommendations: (1) Suitability of
a one-electron basis set for representing an ALEE can be assessed by
comparing the magnitude of alim to the estimated ionization energy
of the system (ϵHOMO for Slater determinants and IEKT for corre-
lated wavefunctions). (2) Methods for constructing KS exchange-
correlation potentials from finite-basis-set electron densities and
wavefunctions should employ basis sets in which the most diffuse
functions have the type (s, p, d, and so on) and location suitable
for representing ALEEs at large r. (3) Basis sets that do not produce
accurate ALEE limits should be used with caution in calculations of
long-range molecular properties.

SUPPLEMENTARY MATERIAL

See the supplementary material for complete specification of
the transformed cc-pVXZ and aug-cc-pVXZ basis sets used to gen-
erate the data of Table I and Fig. 10.
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