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Abstract

While deep neural networks have demonstrated excellent learning capabilities, explainability
of model predictions remains a challenge due to their black box nature. Attributions or feature
significance methods are tools for explaining model predictions, facilitating model debugging,
human-machine collaborative decision making, and establishing trust and compliance in criti-
cal applications. Recent work has shown that attributions of neural networks can be distorted
by imperceptible adversarial input perturbations, which makes attributions unreliable as an ex-
plainability method. This thesis addresses the research problem of attribution robustness of
neural networks and introduces novel techniques that enable robust training at scale.

Firstly, a novel generic framework of loss functions for robust neural net training is introduced,
addressing the restrictive nature of existing frameworks. Secondly, the bottleneck issue of high
computational cost of existing robust objectives is addressed by deriving a new, simple and
efficient robust training objective termed “cross entropy of attacks”. It is 2 to 10 times faster
than existing regularization-based robust objectives for training neural nets on image data while
achieving higher attribution robustness (3.5% to 6.2% higher top-k intersection).

Thirdly, this thesis presents a comprehensive analysis of three key challenges in attribution
robust neural net training: the high computational cost, the trade-off between robustness and
accuracy, and the difficulty of hyperparameter tuning. Empirical evidence and guidelines are
provided to help researchers navigate these challenges. Techniques to improve robust training
efficiency are proposed, including hybrid standard and robust training, using a fast one-step
attack, and optimized computation of integrated gradients, yielding 2x to 6x speed gains.

Finally, an investigation of two properties of attribution robust neural networks is conducted. It
is shown that attribution robust neural nets are also robust against image corruptions, achieving
accuracy gains of 3.58% to 11.94% over standard models. Empirical results suggest that robust
models do not exhibit resilience against spurious correlations.

This thesis also presents work on utilizing deep learning classifiers in multiple application
domains: an empirical benchmark of deep learning in intrusion detection, an LSTM-based
pipeline for detecting structural damage in physical structures, and a self-supervised learning
pipeline to classify industrial time-series in a label efficient manner.

Keywords: Attribution robustness, attribution attacks, feature significance, network intrusion
detection, self-supervised learning, industrial time-series classification
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Summary for Lay Audience

Deep learning, a branch of artificial intelligence, has transformed how machines learn from
data, making significant advancements in technology. However, understanding how these sys-
tems make their decisions has been a challenge, mainly because their processes are not always
transparent. This issue of transparency is crucial, especially when these systems are used in
areas where trust and reliability are paramount, like in healthcare or self-driving cars.

My research focuses on improving the transparency and reliability of deep learning systems.
Specifically, I developed new methods to ensure that the explanations provided by these sys-
tems about their decisions remain accurate, even when faced with misleading information that
could cause errors. This is important because, just like in human decision-making, understand-
ing why a decision was made is often as critical as the decision itself.

One of the main achievements of my work is a novel approach to training these artificial in-
telligence systems that is both faster and produces more reliable explanations than previous
methods. This means that we can now make these large AI systems more understandable and
trustworthy more efficiently. Additionally, my research has shown that making these systems’
decision-making processes more transparent not only helps in understanding their choices but
also improves their performance in handling poor-quality data, such as blurry images.

Beyond enhancing the transparency and reliability of AI decisions, my thesis applies these
advanced deep learning techniques to solve practical problems in various fields, from detect-
ing security breaches in computer networks to assessing structural damage in buildings and
efficiently analyzing industrial data.

In summary, my thesis aims to make deep learning AI systems more transparent, understand-
able, and trustworthy, ensuring that as these technologies become more integrated into our
lives, they can be relied upon to make decisions in a way that we can understand and trust.
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Chapter 1

Introduction

1.1 Motivation

Deep neural networks have become increasingly prevalent in diverse fields, offering new solu-
tions to complex problems. They provide state-of-the-art results in various problem domains
such as machine vision (eg: classification and segmentation [40], video understanding [53]),
speech (eg: speech-to-text [43]), natural language processing (eg: generative AI [7]), and nat-
ural sciences (eg: protein folding [27]). The ability of deep neural networks to learn from
large datasets has enabled engineers to develop solutions for problems previously handled by
expert-designed rule-based systems.

While deep neural networks excel in solving a variety of tasks, a significant challenge they
pose is the lack of interpretability or the inability to understand the decision making process
of a model [76]. Unlike rule-based systems designed and written by humans, neural networks
comprise large weight matrices, effectively making them complex black boxes with no easy
way to understand the rationale behind their predictions. This is the central consideration of
the field of neural network interpretability [11]. It encompasses techniques for assessing,
understanding and modifying or refining a neural network’s decision making process [21].

The topic of explainability can be considered a sub field of the broader literature on inter-
pretability [49]. It addresses the problem of providing an explanation for a model’s prediction
of a given input in terms of feature attributions (also known as feature significance, feature
relevance or saliency) [41]. A high-level view of machine learning interpretability and ex-

1
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Figure 1.1: Interpretability as understanding the decision making process of a machine learning
system, complementing a direct assessment of its task-solving ability.

plainability as methodology for assessing and understanding the decision making process of
models is illustrated in Figure 1.1.

Intuitively, attributions represent the features of an input example that the model considers to
be important for the prediction. For this reason, feature attributions produced by a model for
a specific input are termed the model’s “explanation”. Attributions or explanations are useful
outputs of a machine learning system. For example, they can promote human-machine collab-
orative decision-making systems by allowing human experts to inspect and understand which
features or regions of an input are significant for a model prediction [55]. Attributions can
also aid in identifying failure modes (eg: spurious correlations [59]) and debugging of trained
models [6]. Several works have also explored the possibility of utilizing attribution maps in an
automated manner to guide and improve the model training process [77, 72]. More broadly,
coherent and well-aligned attributions or explanations of model predictions help establish trust
and compliance of machine learning systems deployed in critical application settings such as
healthcare [38, 75].

The problem of fragility and robustness of attributions

Recent studies have exposed a critical vulnerability in attributions produced by neural net-
works: they are fragile and susceptible to manipulation [20, 9]. It is possible to find small,
often imperceptible changes or perturbations to the input that can drastically alter the attribu-
tions, misleading the explanations given by the model. The perturbed examples are termed
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Figure 1.2: Visualization of an attribution attack or perturbation.

“attribution attacks”, and they are found by an iterative optimization algorithm such as pro-
jected gradient descent, which perturbs a natural example in the direction of maximal change
attributions. Figure 1.2 illustrates an attribution attack that is visually similar to the natural
example, but produces distorted attributions.

The fragility of neural network attributions makes them unreliable and untrustworthy as a tool
of explanation in any setting where they are utilized, either for human expert inspection to
support decision making or automated model improvement [13, 8]. The existence of such
adversarial perturbations also reveals a failure mode of neural networks. These issues highlight
the need for neural network models to not only be accurate but also have robust and reliable
attributions [54, 58].

“Attribution robustness” of a model refers to the property that attributions or input fea-
ture significance scores produced by the model for a given input cannot be easily manip-
ulated or distorted by imperceptible perturbations to the input [5].

Training attribution robust neural networks is typically done by modifying the standard loss
function (eg: standard cross entropy for classification) to include a term that enforces a robust-
ness constraint, resulting in robust training objectives. This requires computing an attribution
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attack example (a perturbed input) for each natural example during training. For example, one
robust objective termed “IG-Norm” [5] computes attribution attack examples by maximizing
the distortion in integrated gradients between natural and perturbed versions. The robust ob-
jective is then created by adding to the cross entropy a regularization term that measures this
maximal distortion. Attribution robust training objectives take the form of a min-max problem
where the outer minimization of the loss function is performed with gradient descent (for neural
net weight updates), and the loss function contains an inner maximization loop that computes
the attribution attacks.

A major problem with existing methods for training attribution robust neural networks is their
significantly high computational cost. For example, the IG-Norm robust objective [5] was
measured to be up to 67 times slower than standard training, which is prohibitively expensive
for large scale training. Furthermore, frameworks for deriving attribution robust objectives in
the existing literature [5, 25] are designed to be too restrictive by specifying a given attribution
computation method and coupling the inner attack generation to the regularization terms in
the loss function. In addition to these research problems, the existing literature contains no
investigation or information of the properties of neural networks trained with attribution robust
training objectives.

This thesis is a study of the problem of attribution robust training of neural networks.
In this work, a novel, generic and flexible framework of loss functions is proposed, which
allows for derivations of all well-known robust objectives as well as a new class of robust
objectives. A new, simple and efficient attribution robust objective is proposed, with extensive
empirical evidence demonstrating its effectiveness. A compilation of techniques are proposed
to further improve the efficiency of robust training objectives. Furthermore, we investigate
two key properties of attribution robust models: their robustness to common data corruptions
and resilience in the presence of spurious correlations. The techniques and empirical results
presented in this work will facilitate large scale training of attribution robust neural networks.

Applications of deep neural network classifiers

This thesis also presents research on classification pipelines utilizing deep neural networks in
multiple application domains. First, we conduct a comprehensive analysis of neural network
classifiers for solving the problem of computer network intrusion detection. The second appli-
cation is in structural health monitoring, where a novel data pipeline and a Long Short-Term
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Memory (LSTM) architecture is used to detect damages in physical structures by analyzing
vibration sensor data. The third application is in industrial process signal classification, where
multi-variate sensor signals are used to identify various process states in a label efficient man-
ner using self-supervised learning.

1.2 Contributions of the thesis

This section summarizes the key contributions of the thesis on both the central topic of attribu-
tion robustness of neural networks and the applications of deep neural network classifiers.

1.2.1 Attribution robustness of neural networks

A novel framework of loss functions for attribution robust training

We introduce a novel framework of loss functions as a principled approach to the problem of
attribution robust training of neural networks. This framework is unique in its decoupling of
the attribution attack generation from the regularization terms in the loss function and includes
a cross-entropy of attacks term. It also offers flexibility in the choice of attribution methods
and similarity functions that can be used to generate attribution attacks during training. To
demonstrate the generalization capability of the proposed framework, we show that all well-
known attribution robust objectives can be derived from it. In addition, derivations of several
novel robust objectives that leverage the cross entropy of attacks-term are also provided.

A novel attribution robust training objective: the “cross entropy of attacks”

From the proposed framework of loss functions, a simple yet novel objective function termed
“cross entropy of attacks” (CE-of-attacks) is instantiated. This method computes a batch of at-
tribution attacks for each mini-batch of original data during training, and uses the cross entropy
of model predictions on the attack batch as the loss value for gradient descent optimization of
network weights.

Comprehensive empirical evidence on the performance of the CE-of-attacks objective for train-
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ing convolutional neural networks (CNNs) on image datasets demonstrates that it achieves
higher attribution robustness and accuracy than IG-Norm, a well-known robust objective [5].
As an example, a small 4-layer CNN trained on the CIFAR-10 dataset gives 72.1% accuracy
with the CE-of-attacks objective compared to 70.7% accuracy with the IG-Norm objective,
while achieving a 68.4% top-100 intersection (a metric of attribution robustness) compared to
the 64.9% top-100 intersection of the IG-Norm objective.

More importantly, the proposed CE-of-attacks robust objective is significantly more efficient
than existing robust loss functions (2 times to 10 times faster neural net training runs compared
to IG-Norm), enabling large scale training of attribution robust neural networks.

A detailed analysis of the challenges of attribution robust training

Attribution robust training of neural networks poses several unique challenges over standard
training, an under-explored area in the literature on attribution robustness. We present a de-
tailed analysis of three key issues: computational cost, the trade-off between attribution robust-
ness and accuracy, and the difficulty of hyperparameter tuning.

Algorithmic and empirical analysis of computational cost of different attribution robust training
objectives shows that robust training can be 4 to 67 times slower than standard loss functions.
Attribution robust training with varying distance budgets for the generated attacks reveals that a
17.5% gain in top-100 intersection (a metric of attribution robustness) on the CIFAR-10 dataset
with a small CNN results in an accuracy drop of 7.8%, highlighting the trade-off between
the two properties. These two issues and the larger hyperparameter space make tuning of
hyperparameters difficult. Techniques and guidelines are proposed to mitigate the issues.

Techniques for efficient attribution robust training of neural networks

Several techniques are proposed to address the key issue of high computational cost of attri-
bution robust training. They are: combining standard and robust training (2x - 4x speed gain),
using a fast one-step attack in the training loop (3x or more speed gain), and tuning the number
of steps in the integrated gradients computations (2x - 6x speed gain). Experimental results
validate that the proposed techniques achieve significant efficiency gains with no performance
degradation in terms of attribution robustness and accuracy.



1.2. Contributions of the thesis 7

Properties of attribution robust neural networks

The goal of attribution robust training is to achieve a level of robustness in the input feature
significance space. As a result, robust neural networks may demonstrate other desirable prop-
erties, a topic not addressed in the existing literature. We investigate two important properties
of robust models.

We show that attribution robust neural networks are also robust against common image corrup-
tions and perturbations (diverse noise types, weather effects, digital artifacts etc.) compared to
well-trained standard neural nets. Robust models achieve accuracy gains in the range of 3.58%
to 11.94% over standard trained models on three corrupt versions of popular image datasets:
MNIST-C, CIFAR-10-C and ImageNet-C.

Prior work has hypothesized that attribution robust neural networks may be resilient to spurious
correlations in training data [5]. We provide experimental evidence that this desirable property
does not exist in robust models.

Open source implementation

All code and artifacts needed to reproduce and build on our work on training attribution robust
neural networks are made open source1

1.2.2 Applications of deep neural network classifiers

A comprehensive survey and empirical benchmark of computer network intrusion detec-
tion with neural networks

We introduce a taxonomy of deep learning methods for intrusion detection, providing a struc-
tured overview of the current literature. Methods are categorized into supervised instance-
based and sequence-based learning, and semi-supervised instance-based learning. A com-
prehensive benchmark is proposed to capture a range of deep learning models and datasets:
both legacy small datasets and modern large datasets. Four major deep learning models (feed-

1https://github.com/rcsunanda/attribution_robustness

https://github.com/rcsunanda/attribution_robustness
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forward neural networks, autoencoders, deep belief networks, and long short-term memory
(LSTM) networks) are evaluated on this benchmark.

A novel pipeline with a LSTM network for damage detection in physical structures

We propose a novel pipeline that utilizes a Long Short-Term Memory (LSTM) network for de-
tecting structural damage using vibration signals. The input to the LSTM model is a sequence
of sample windows, and a voting mechanism is used at the output to classify an entire vibration
signal. This method facilitates data augmentation for cases with limited training data, and the
voting mechanism significantly improves classification performance.

We propose a damage localization technique, where the damage class probabilities of vibration
signals coming from different places in a physical structure are used to localize the damage.
The system is evaluated and validated on two benchmark setups in the structural health moni-
toring domain: a physical simulation dataset and a real-world bridge dataset.

Using self-supervised learning methods for label efficient classification of industrial pro-
cess signals

We propose a system for label efficient classification of multi-variate time-series data in the
industrial process domain. For this work, we utilize a self-supervised learning method called
Contrastive Predictive Coding (a hybrid 1-dimensional CNN and LSTM architecture and a pre-
diction pre-training task). The system is evaluated on public and proprietary process datasets
demonstrating very high label efficiency (high classification accuracy with only 10’s or 100’s
of labeled examples).

1.3 Thesis organization

Chapter 2 introduces the reader to the concepts of attributions, attribution attacks, and the topic
of attribution robustness. A comprehensive literature survey is conducted on the relevant topics
with a focus on methods for attribution robust training of neural networks. Chapter 3 presents
the novel framework of loss functions for attribution robust training, and the proposed robust
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objective ‘CE-of-attacks’. Comprehensive experimental results evaluating the performance of
the proposed methods are presented.

Chapter 4 presents the detailed analysis of three key challenges of robust training: compu-
tational cost, the trade-off between attribution robustness and accuracy, and the difficulty of
hyperparameter tuning. Guidelines for mitigating the issues and conducting effective attribu-
tion robust training are discussed. Chapter 5 investigates the properties of attribution robust
models, namely robustness to image corruptions and resilience to spurious correlations.

Chapter 6 concludes the study on attribution robustness of neural networks with a summary
of the proposed novel methods, and provides concrete ideas for future directions based on this
work.

The research on applications of deep neural network classifiers is presented in the appendices.
Appendix B contains the survey and empirical benchmark of computer network intrusion de-
tection with neural networks. Appendix D presents the work on damage detection in physical
structures using neural networks. Appendix E contains the self-supervised learning based sys-
tem for label efficient classification of industrial process signals.

A note on thesis format. This thesis comprises unpublished work on attribution robustness of
neural networks (chapters 2 - 5) as well as modified manuscripts of the author’s publications
(appendices B, D, E). Therefore, the thesis takes the form of a hybrid between the integrated
articles format and a monograph.



Chapter 2

Attribution Robustness of Neural
Networks: Background

In this chapter, the reader is first introduced to the preliminary notions of input attributions
produced by a neural network classifier, attribution methods, fragility of attributions and attri-
bution attacks. The research problem of attribution robustness is then discussed with a com-
prehensive review of the literature on methods for training attribution robust neural networks.
Finally, several important research gaps on attribution robustness are identified for the benefit
of the researchers of this topic.

2.0.1 Attributions

Among the many techniques in the explainability literature, feature attributions (also known
as feature significance, feature importance, feature relevance, saliency or explanations) are a
key class of methods used to explain predictions of machine learning models [41]. Attributions
represent the degree of significance that a model places on each feature of a given input for
making the prediction.

In the classification setting, attributions can be formally defined as follows (illustrated in Fig-
ure 2.1). Consider a model parameterized by θ so that the model function fθ : Rd → RC maps
an input vector of dimensionality d into C categories (classes). The predicted class for an input
x ∈ Rd is then given by k = argmax j fθ(x) j. An attribution method or an estimator is a function

10
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Figure 2.1: Illustration of attribution method or estimator

A : Rd → Rd that associates each feature of the input x ∈ Rd to the significance that it has
on the model prediction k. Note that the attributions vector has the same dimension Rd as the
input vector, and the attribution method A(x, k; fθ) is a function of the input x, predicted class
k and the parameterized model fθ. i.e. attributions are produced by the attribution method for
a given input, for the predicted class from the model.

2.0.2 Usefulness of attributions

Attributions as a complementary output of a model. The primary output of a machine
learning model is its prediction relevant to the task. Feature attributions can be considered an
additional output of a machine learning system for a given input, complementing the primary
model output. Feature attributions can be visualized (eg: as heatmaps) so that a domain expert
can inspect it to understand which features of the input the model is basing its prediction on or
which features the model considers to be important. For example, a medical expert can look at
the attributions heatmap of an X-Ray image classification of a model and spot which regions of
the image have contributed more to the model prediction. Such information can be invaluable
to the human expert in making informed decisions [67].

Identifying failure modes and debugging a model. Feature attributions can help us iden-
tify potential failure modes of a machine learning model. For example, inspecting attribution
heatmaps for certain inputs could reveal that irrelevant features have high attribution scores (eg:
edges of an image, artifacts such as copyright text on an image). This is an example of a model
learning spurious correlations. We can then take corrective action based on this information to
avoid the failure modes and train better models (eg: remove training samples with artifacts) [2,
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59].

Establishing causal relationships. Feature attributions can aid in establishing causal rela-
tionships between model inputs and outputs. This is especially useful for machine learning
models trained in domains with complex physical, chemical, or biological systems and mas-
sive datasets. In such scenarios, deriving analytical methods for the modeled data domain may
be challenging. In these instances, feature attributions serve as a starting point for developing
insights into experiments and discerning causal relationships within the data domain [4].

Trust and compliance. In a broad sense, feature attributions, when deployed as part of a
machine learning system contribute to developing reliability and trust, and they help in building
systems within ethical and legal constraints [39]. In some cases, explanations associated with
a model prediction may be a legal requirement (eg: EU General Data Protection Regulation
[44], EU Artificial Intelligence Act [45]).

Improving the model training process. The previous use cases are based on manual inspec-
tion of attribution maps. This can be error prone, as highlighted in critiques on the reliability
and use of attribution methods for making critical decisions [34]. It is possible to incorporate
attributions into the model training process with the aim of improving the models, which is an
automatic or algorithmic way of using feature attributions (no manual inspection). An excel-
lent review on this topic is found in [69]. Several concrete examples from the literature are
briefly discussed below.

In [48], the authors modify the training loss function of neural networks to encourage certain
irrelevant areas of the input (either marked by a human expert, or obtained in an unsupervised
manner) to have smaller gradient attributions. The resulting trained models have been shown
to have qualitatively different decision boundaries and higher out-of-distribution generalization
performance than standard trained models. Another work [16] adds high-level priors such as
smoothness and sparsity requirements to the training objective using a novel attribution method
called expected gradients (an approximation of integrated gradients). Results on image and
health care datasets show high generalization performance and robustness to noise. Closer to
the central topic of this thesis, attributions can be incorporated into the training loss to improve
attribution robustness [5, 25], noise robustness [58] and prediction or adversarial robustness
[17].
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2.1 Methods for computing attributions

Methods for computing attributions have been a central research problem in the literature on
machine learning explainability. In this section, we introduce several gradient based methods
[1] that can be used to generate attributions for neural networks. For a comprehensive review of
attribution methods, we refer the reader to [41]. Figure 2.2 shows a comparison of attribution
heatmaps obtained by some of the attribution methods.

2.1.1 Simple gradients

A simple technique to generate attributions is taking the gradient of the model output with
respect to the input features [74]. Let x be the input feature vector of an example, xi be each
input feature, f (x) be the model output for x (eg: class logit or softmax value) and Ai be the
attribution value for each feature xi of the input. The simple gradient attributions can be written
as in Equation 2.1.

Ai(x) =
∂ f (x)
∂xi

(2.1)

Gradients represent the sensitivity of the model function to each input feature. For this reason,
this technique is also called sensitivity analysis. Intuitively, a well-trained model must be more
sensitive to core features (eg: pixels on an object under classification), and less sensitive to
unimportant features (eg: background pixels).

One advantage of simple gradients is that it is very easy to compute when the model function
f is differentiable: for neural networks, a backpropagation all the way to the input layer gives
the gradient attributions. However, a downside is the noisy nature of gradient attributions,
particularly for images, where they tend to highlight seemingly random pixels to the human
eye.
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2.1.2 SmoothGrad

SmoothGrad attributions method [61] was proposed as a solution to the problem of the noisy
nature of gradients. In this technique, n noisy samples of the input image x are created by
adding Gaussian noise (xj = x + N(0, σ2)), and the average of gradients for each sample is
taken as the final set of attributions (Equation 2.2).

Ai(x) =
1
n

n∑
j=1

∂ f (x + N(0, σ2))
∂xi

(2.2)

2.1.3 Integrated gradients (IG)

Integrated gradients (IG) [64] computes the path integral between a baseline input x′ and the
given input example x. Unlike other gradient-based attribution methods that solely rely on lo-
cal gradients at a single point, IG integrates the gradient information over this path. Intuitively,
it captures how much each feature contributes to the change in the function when the input
varies from the baseline to the given input example.

The continuous path integral is shown in Equation 2.3. Practically, the discrete approximation
in Equation 2.4 is used in all IG computations.

The choice of baseline can be made in a context-dependent manner. To compute attributions for
an image, the zero baseline (x′ = 0vector) (all black pixels) is suitable. It is also important to
select a suitable number of steps m for the discrete approximation: the authors of [64] suggest
a number between 20 - 300. Depending on the application, this number needs to be found
experimentally (trade off between efficiency and approximation accuracy).

Ai(x) = (xi − x′i) ×
∫ 1

α=0

∂ f (x′ + α · (x − x′))
∂xi

dα (2.3)

Ai(x) ≈ (xi − x′i) ×
m∑

k=1

1
m
·
∂ f (x′ + k

m · (x − x
′))

∂xi
(2.4)

In our work on attribution robust training methods, we use integrated gradients (IG) as the
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Figure 2.2: Heatmaps of attributions obtained by some of the methods described [56]

preferred attribution computation method due to several reasons. First, IG offers a choice and
good balance between the quality of attributions (less noise) and efficiency via the tunable
parameter m (m = 4 to m = 50 depending on the location of the calculation in the training
loop). Second, in our work, we often have to compute the difference between attributions of
two input examples x1, x2 (eg: natural and attack example). This can be done efficiently using
the property in Equation 2.5, with only one IG computation (calculating IG of x1 with x2 as
the baseline of the path integral). Finally, in nearly all our experiments, integrated gradients
produce better results in comparison to other gradient based methods.

Attribution difference(x1, x2) = IG(x1, xbaseline) − IG(x2, xbaseline)

= IG(x1, x2)
(2.5)

2.2 Attribution attacks

The existence and ability to generate attacks (perturbations) for a given input and machine
learning model have been well studied research problems [3]. The most prominent category of
attacks, known as adversarial attacks, involves perturbations to an input that alter the model’s
prediction from the original (fooling the model prediction). Therefore, they are also called
prediction attacks or prediction adversaries. The attack generation process targets the decision
boundary of a model.

In [20], the authors proposed a different category of attacks. The perturbations of this attack
category are generated to drastically change the attributions yielded by a machine learning
model for a given input, while preserving the model predictions. (In contrast to the classic
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adversarial or prediction attacks, which change the model prediction). This category of at-
tacks can be broadly termed “attribution attacks”, as they aim to break (drastically change)
the attributions of an input. Examples of attribution attacks are illustrated in Figure 2.3 and
Figure 2.5.

2.2.1 Iterative Feature Importance Attacks (IFIA)

The optimization problem to solve for generating an attribution attack is shown in Equation 2.6
[20]. Given an attribution method A(.) and a difference (dissimilarity) function Diff(), it at-
tempts to find the perturbation δ that maximally changes the attributions within a distance
budget ϵ (i.e. ∥δ∥∞ ≤ ϵ) while preserving the prediction of the original input.

argmax
δ

Diff (A(x), A(x + δ))

subject to: ∥δ∥∞ ≤ ϵ,

Prediction(x + δ) = Prediction(x)

(2.6)

The authors of [20] propose an algorithm to solve the optimization problem (Equation 2.6)
in a projected gradient descent (PGD) loop and generate attribution attacks termed “Iterative
Feature Importance Attacks” (IFIA). The process of a PGD loop searching for an attack within
a small distance to the original example is illustrated in Figure 2.4.

Algorithm 1 describes a variant of the IFIA algorithm where we use integrated gradients (IG)
as the attribution method, and the negative sum of attributions of k highest-attribution pixels as
the difference function. This is called a “tok-k IFIA attack” as it seeks to find a perturbation
that maximizes the difference in attribution maps in the k initially most important pixels.

Figure 2.3 shows examples of IFIA attacks, and how they distort the attributions yielded by a
neural network.

2.2.2 Other attribution attacks

Following the first work of [20] on the existence of attribution attacks, several more works have
explored different types of attribution attacks.
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Algorithm 1 The top-k IFIA attack algorithm (Equation 2.6)
Input:

Input image x

Trained neural network

Hyperparameters:
No. of iterations (p), step size (α), distance budget (ϵ), IG steps (m), top-k pixels (k)

1: A← IG(x, ig_steps = m)

2: B← subset of k pixels with highest A(x) values

3: x′ ← x

Attack generation loop (PGD):
4: for j← 1 to p do
5: A← IG(x′, ig_steps = m)

6: D← −
∑

p∈B Ap // Difference function

7: grad← gradient(D, x′) // Gradient of D w.r.t. x′

8: x′ ← x′ + α · sign(grad) // Gradient ascent update in PGD

9: x′ ← clamp(x′, ϵ) // Projection in PGD

10: if Prediction(x′) = Prediction(x) then
11: attack = x′

12: end if
13: end for

Output:
IFIA attribution attack: attack



18 Chapter 2. Attribution Robustness of Neural Networks: Background
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Figure 2.3: IFIA attacks and their heatmaps in comparison to original samples and heatmaps
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Figure 2.4: Projected gradient descent (PGD) optimization loop searching for an attribution
attack.
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Figure 2.5: Targeted attribution attack. Image taken from [9] for illustration.

Targeted attacks. In [9], the authors propose an attack that can manipulate model attributions
map of an input image such that the manipulated image (attack) is imperceptible from the
original image, and the attributions of the attack match an arbitrary target map. This is achieved
by solving the optimization problem in Equation 2.7 where A(.) is any attribution method, AT

is the target attribution map, and f (.) denotes the model output. The first term makes the
attack attribution as close to the target map as possible, and the second term ensures model
outputs remains the same for the attack and the original input, while the parameter γ controls
the relative weighing between the two objectives. An example of a targeted attack is shown in
Figure 2.5.

min
x′ ∈ N(x, ϵ)

∥A(x′) − AT ∥2 + γ ∥ f (x′) − f (x)∥2 (2.7)

Attribution fragility with simple changes. Recent work has shown that simply adding Gaus-
sian noise to the input image in a small distance ball can change the attribution maps produced
by a neural network [9]. Furthermore, simple and common preprocessing input transforma-
tions such as adding a constant shift to the input have been shown to heavily distort attribution
maps [29].

Adversarial model manipulation. The methods discussed so far create attribution attacks by
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modifying an input example. Other researchers have explored modifying model behavior (e.g.,
altering model parameters) to produce manipulated attributions without affecting the model’s
outputs. In [24], the authors show that fine-tuning ImageNet pre-trained convolutional nets on
a small dataset with manipulated attribution maps leads to the model learning weights that pro-
duce distorted attribution maps on entire test sets. Another work [60] proposes a technique to
train an adversarial classifier that produces targeted attributions for LIME (Local Interpretable
Model-agnostic Explanations [46]) and SHAP (SHapley Additive exPlanations [36]). In [8],
the authors develop a simple fine-tuning loss function that can degrade the model sensitivity to
an arbitrary target feature. [60] and [8] provide examples where such adversarial model ma-
nipulations effectively conceal a model’s reliance on undesirable feature dependencies such as
learned harmful biases.

2.3 Attribution robustness

Attribution robustness is the property of a trained model where the attributions of an attack ex-
ample do not drastically differ (or distort) from the attributions of the original, natural example.
In other words, attribution attacks such as IFIA attacks are ineffective against robust models,
or it is difficult to generate attacks for a model trained to have attribution robustness. This is
illustrated in Figure 2.6.

Attribution robustness can be thought of as the counterpart of “adversarial robustness”; it is
the robustness of a model’s input attributions (explanations), rather than the robustness of its
predictions. At a high level, it can also be viewed as robustness in the learned rules space (or
the decision-making space) in terms of feature significance scores or input gradients.

2.3.1 Why is attribution robustness important?

Attribution robustness of a machine learning model is an important research problem for sev-
eral reasons.

It improves the reliability of attributions or explanations. In subsection 2.0.2, we discussed
several use cases of attributions such as understanding a model’s learned rules, verifying that
a model is relying on correct features, model debugging, and trust and compliance of machine
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Figure 2.6: IFIA attacks are ineffective against models trained to have attribution robustness

learning systems. The ability to easily distort a model’s attributions with perturbations reduces
the dependability and reliability of using attributions for such applications.

For example, in [13], the authors show that CNNs trained for MRI-based Alzheimer’s disease
classification produce inconsistent attribution maps across different settings, making them un-
reliable as a tool of explanation. There is also evidence that attribution maps can be distorted in
the presence of noise [10] without the need for smart or worst-case adversarial perturbations.
This is especially problematic in critical applications or where model explanations are a legal
requirement. The unreliability of attributions raises serious concerns for companies building
machine learning products, regulators, and end-users who rely on attributions as a tool for inter-
pretability [8]. Therefore, attribution robustness is an important quality for a machine learning
model to have and an important research problem.

The existence of attribution attacks reveals a failure mode of machine learning models.
Aside from the practical implications of attribution attacks, their existence implies that it is
easy to modify a model’s decision making process, as indicated by the change in focus that it
places on the different dimensions or elements of the input features space [8]. Rules learned
by a human or the human decision making process would not change in this manner in the
presence of small perturbations to the input. Therefore, the problem of attribution attacks and
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training attribution robust models are important research questions to address.

Attribution robustness could lead to a generic view of robust representation learning. Ro-
bustness of models is a well studied problem in the machine learning literature, and the central
concern has been the robustness of model predictions [8] (against adversarial attacks, noise,
spurious correlations etc.). A model making correct predictions in the presence of such arti-
facts is considered to have learned robust representations. However, if a model is not robust
in the input attribution space, the robustness of the learned representations can be questioned
[70]. For a truly generic view of robustness in representation learning, we believe that attribu-
tion robustness is an important problem to investigate.

2.4 Methods for training attribution robust neural networks

As established in the previous section, the attribution robustness of machine learning models is
an important research problem. In this section, we review the literature on training attribution
robust neural networks.

2.4.1 Frameworks for attribution robust training

A principled and generic framework helps us understand the problem of attribution robustness
broadly, compare it with other forms of robustness, and derive candidate solutions (robust
training objectives). We discuss two prominent frameworks proposed in the current literature.

Robust Attribution Regularization (RAR) [5]. In this work, the authors propose the frame-
work in Equation 2.8. Here, l(x, y; θ) is the standard cross entropy loss, s(.) is a size function,
IG(x, x′) is integrated gradients, the outer minimization is the neural net training loop, and the
inner maximization is the attack generation loop. The method relies on axiomatic properties of
integrated gradients to achieve attribution robustness, leading to several theoretical connections
to other forms of robustness (distributional and predication robustness).

min
θ

E(x, y)

l(x, y; θ) + λ max
x′ ∈ N(x, ϵ)

s(IG(x, x′))

 (2.8)
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Although this represents the first principled approach to attribution robustness in the literature,
it is limited to using integrated gradients as the attribution method. This limitation exists for
both the attack generation (x′ via the inner maximization loop) and calculating the robustness
term (second term) in the loss function. The authors also note difficulties in optimizing the
robustness term with gradient descent during neural network training, as it remains at high
values even after training completion.

Framework for Attributional Robustness (FAR) [25]. This method removes the restriction
of integrated gradients in [5] by making the attribution method arbitrary (S (.)). The FAR frame-
work is shown in Equation 2.9, where d(.) is a distance function that measures the difference
between two attribution maps and S (.) is any attribution method. Note that this framework
allows for the ability to set any target attribution map S T (x), so that it can also be a manually
generated or modified attribution map.

min
θ

E(x, y)

l(x, y; θ) + λ max
x′ ∈ N(x, ϵ)

d(S T (x), S (x′))

 (2.9)

The FAR framework is indeed more generic than the prior RAR framework; RAR can be
derived from FAR. However, a crucial limitation in FAR is the coupling of the attribution attack
generation and the robust regularization in the neural network loss function. i.e. the same term
maxx′ d(S T (x), S (x′)) is used in both places. We believe that there is no fundamental reason for
this to be the case: the attack generation process can be separate from the robust regularization
term incorporated into the loss function, as proposed in our work.

2.4.2 Objective functions and techniques for attribution robust training

We now present several specific techniques for attribution robust training of neural networks
and empirical results found in the literature. Some of these are robust objectives that can be
instantiated from the RAR and FAR frameworks, while others take a different approach to
robust training.

“IG-Norm” and “IG-Sum-Norm” robust objectives. The RAR paper [5] provides two at-
tribution robust objectives termed IG-Norm and IG-Sum-Norm instantiated from the generic
formulation. The IG-Norm objective computes an IG attack batch for each natural mini-batch
and adds a robust regularization term to the loss function that is the norm of IG attribution
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difference of natural and attack batches. The attack generated in IG-Sum-Norm training is a
combination of prediction adversity and attribution adversity, intended to achieve both predic-
tion and adversarial robustness in training. Small CNNs and Wide ResNet models are trained
with the proposed robust objectives on several grayscale and natural color image datasets. Em-
pirical results on small CNNs and Wide ResNet training show that both objectives achieve high
attribution robustness (Kendall’s tau, top-k intersection metrics) compared to standard training
and prediction robust objective of [37].

“AAT” and “AdvAAT” robust objectives. The FAR paper [25] also provides two attribu-
tion robust objectives termed AAT (adversarial attributional training) and AdvAAT instantiated
from the generic formulation. The AAT objective computes an Iterative Feature Importance At-
tack (IFIA: see Algorithm 1) during training, which is a more generic attribution attack than
the IG attack used in the previous IG-Norm loss. For the AdvAAT objective, a modified IFIA
attack called Adversarial IFIA is generated, which is again a combination of prediction and at-
tribution adversity. ResNets are trained on several grayscale and natural color image datasets,
and the reported Kendall’s tau and top-k intersection results are slightly higher or comparable
to the IG-Norm and IG-Sum-Norm results of [5].

“ART” robust objective [58]. This paper proposes a robust objective termed ART (attribu-
tional robustness training) intended to minimize the upper bound of attribution vulnerability,
defined in terms of spatial correlation between the input image and its attributions map. This is
achieved through a soft-margin triplet loss that optimizes for high spatial correlation between
the gradient-based attributions and the input image pixels values. The ART robust objective is
an instantiation of the FAR generic loss formulation of [25].

The experimental setup and results of [58] are more comprehensive than other work on the
topic of attribution robustness. Firstly, the authors train WideResNet-28-10 (28 layers deep,
10x wider than original ResNets), WideResNet-40-2 (40 layers deep) and ResNet-50 (50 lay-
ers deep) neural network architectures on several color dataset classification tasks. In com-
parison, the model architectures in previous works are only up to 18 layers deep. This is
significant, considering the computational cost of generating attribution attacks during training
and the challenges of computing input gradients for deep networks, such as vanishing gradi-
ents and stagnant loss values during training. Secondly, the authors show that attribution robust
pre-training provides performances improvements in a downstream task of weakly supervised
object localization in the CUB-200 dataset.

Class attribution-based contrastive regularizer [54]. The authors of this work consider
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attribution maps for both the positive class (ground truth) and negative classes of a classifier,
and identify several conditions needed for attribution robustness. First, attribution map of the
positive class must be sparse (localized to small pixel regions), and maps of the negative classes
must be uniform (distributed across the image). Second, a change in attribution map due to an
attack must be low for pixels with high attribution values in the original map. A novel robust
loss function is proposed to enforce these properties, and empirical results with CNNs on image
datasets demonstrate higher levels of attribution robustness than previous work [5].

Geometric view of attribution robustness [9, 10]. The authors of these works present theo-
retical and empirical findings that a main cause of the fragility of attribution maps is the large
curvature due to ruggedness of the hypersurface of constant network output. This implies that
tiny input perturbations are able to drastically change the gradient vector on the hypersurface.
Therefore, smoothing of the hypersurface should produce robust attributions. For ReLU neural
networks, the authors propose a technique called β-smoothing. In this method, a neural net
is first trained in the standard way with ReLU activations. Then, the ReLU activations are
replaced with the softplus function ln(1 + eβx)/β, which is a smooth approximation of ReLU,
parameterized by β (needs to be tuned). Robust attribution maps are then computed using this
modified neural network.

The advantage of this method lies in its simplicity and minimal computational cost (no change
to standard training), which makes it an excellent candidate for obtaining robust post-hoc expla-
nations from trained ReLU-only models. However, for the purpose of training neural networks
with the property of robustness, and studying the accompanying behavior and properties of
such models, the after-the-fact softplus activation replacement is not a viable approach.

While the works discussed in this section achieve high attribution robustness compared to
standard training, we note that it is difficult to compare attribution robustness performance
numbers across research papers as discussed in subsection 2.5.1. This is largely due to the
sensitivity of attributions to the many parameters of a training setup, as well as the lack of a
uniform evaluation benchmark (datasets, models, metrics).

2.5 Evaluating attribution robustness

This section describes the methodology for evaluation of attribution robustness that is uni-
formly used in the literature, which is illustrated in Figure 2.7.
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Generating an attack dataset. Measuring attribution robustness of a trained model involves
comparing the similarity between attribution maps of a natural example and a corresponding
attribution attack example. Attribution robust models should yield very similar attribution
maps for a natural example and its perturbation (attribution attack). For this purpose, an attack
dataset version of an out-of-sample test set is first generated using a standard-trained neural
network classifier. The most common type of attribution attack used for this purpose is the
Iterative Feature Importance Attack (IFIA) proposed in [20].

Evaluation metrics. To evaluate attribution robustness of a model, the following metrics are
calculated. They are similarity metrics that measure similarity between a trained model’s at-
tribution maps of the original (natural) test set and the attack set. The metrics are calculated
for each example pair (original and attribution attack), and the average over all examples in the
test set is taken as the overall measure of a model’s attribution robustness. In all metrics, higher
values indicate higher levels of attribution robustness.

Kendall’s tau (τ) (Kendall’s rank correlation coefficient) [28]. Let the attribution values of
pixels in the natural example be x1, x2... and attribution values of pixels in the attack example
be y1, y2.... Any pair of values xi, yi and x j, y j, where i < j , are said to be “concordant” if
the attribution sort order of the two pixels in the natural example (xi, x j) has been preserved in
the pixels of the attack example (yi, y j). Otherwise, the pair is said to be “discordant”. Then
Kendall’s rank correlation coefficient is calculated by Equation 2.10. Intuitively, this is a metric
of how many pixel pairs (attribution value pairs) of the natural example have been preserved or
distorted by the attack.

τ =
number of concordant pairs − number of discordant pairs

number of pairs
(2.10)

Spearman’s rank correlation coefficient (s) [63]. The attribution values of the natural example
(x1, x2...) and the attack example (y1, y2...) are first converted to rank values (R(x1),R(x2)... and
R(y1),R(y2)...). Then, the Spearman’s rank correlation coefficient is calculated as the standard
Pearson correlation coefficient of the rank values (Equation 2.11).

s =
Cov(R(X),R(Y))
σR(X)σR(Y)

(2.11)

Top-k intersection. In this metric, the k pixels with highest attribution values are selected (the
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Figure 2.7: The process of evaluating attribution robustness of a trained model.
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top-k pixels) in the natural and attack examples. top-k intersection is the percentage of pixels
with overlap between the two attribution maps (no. of overlapping pixels/k). The choice of k

can be made based on the size of the input image; k = 200 for small images (32 x 32) and
k = 1000 for large images (eg: 224 x 224) has been consistently used in the literature.

2.5.1 On the difficulty of benchmarking attribution robustness

It has been shown [25] that attribution maps (even robust) and therefore attribution robustness
metrics are highly sensitive to the many hyperparameters in a robust training setup. Our expe-
rience with robust training of neural networks aligns with these findings; the outcomes are also
sensitive to data preprocessing (eg: normalization) in addition to the training parameters. The
evaluation setup as illustrated in Figure 2.7 includes an IFIA attack generation process, which
also contains hyperparameters.

Additionally, the neural network architectures trained in different works are also diverse (small
CNNs, wide and deep ResNets with different numbers of layers). This makes it difficult to
compare reported attribution robustness results across different papers. In order to make a reli-
able benchmark and comparison between various robust training methods, a researcher would
need to implement the relevant methods in her own training and evaluation setup and compare
the results. For a practitioner trying to produce robust attribution maps within a machine learn-
ing system deployment, this would not be problematic, as the improvements of robust training
methods can be measured against one another as implemented within that system.

2.6 Properties of attribution robust models

Since attribution robustness makes a model’s decision making process in the input feature space
more resilient (robust gradients), a good research question to ask is "what other properties do
attribution robust models have?" Understanding such connections is important in developing
unifying theories, connecting diverse research fields, and finding solutions to practical prob-
lems. This has been a common line of exploration for several other neural network training
paradigms such as self-supervised learning and adversarial robust training. In this section, we
present a brief summary of the literature on properties of attribution robust neural networks.



2.7. Research problems and gaps on attribution robustness 29

Connection to adversarial robustness. Intuition supports that models with robustness in
the attribution space may also have robustness in the prediction boundary space (adversarial
robustness). This can also be seen in the ability to derive adversarial robust objectives (eg:
[37]) from the general attribution robustness frameworks (RAR [5], FAR [25] and our proposed
framework).

Several recent works have explicitly established the connection between attribution robustness
and adversarial (prediction) robustness of neural networks with empirical evidence. A theoret-
ical framework linking adversarial robustness to the correlation between attributions A(x) and
the image pixel values x itself (input-gradient alignment, a proxy for attribution robustness) is
developed in [17]. This correlation is proven for linear models, and the observation is made
that it is weakened for non-linear neural networks. The same relationship is established in
[68] and the authors attribute it to the smoothness of decision boundaries in adversarial robust
models. Empirical evidence on CNN classifiers on image datasets [58, 5] also suggest that the
connection between the two forms of robustness exists both ways.

Robustness to data noise or corruptions. There is limited work in the literature exploring
the connection between attribution robustness and model performance on noisy and corrupt
data. In [58], the authors show that CNNs trained with the attribution robust objective give
higher accuracy on CIFAR-10-C [23] (corrupted version of CIFAR-10 with various noise types
and artifacts). They also show that the attribution robust models show higher performance on
spatial adversarial perturbations [15] (small rotations and translations on CIFAR-10).

Transfer learning performance on downstream tasks. The same work [58] demonstrates
another advantage of attribution robustness: pre-training a model with the robust objective for
classification gives higher performance on downstream tasks of image segmentation (weakly
supervised image localization). The authors provide empirical evidence of this by evaluating
performance on two segmentation tasks on CUB-200 and Flower datasets.

2.7 Research problems and gaps on attribution robustness

The discussion so far has introduced the reader to the literature on attributions, attribution
attacks and attribution robustness. Our impression is that the literature on attribution robustness
is generally lacking in comparison to the well studied problem of adversarial or prediction
robustness. We now identify several gaps or under-explored areas that could benefit from more
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attention by researchers.

Attribution attacks. Several categories and variants of attribution attacks have been studied
in the existing literature. However, we do not see a unifying framework of attribution attacks
and threat models, as well as behaviors such as attack transferability across systems, and their
effect on different types of attribution methods, models and data modalities.

Efficient robust training methods and scalability. Attribution robust training often involves
an inner optimization problem to generate attribution attacks during training. This is even more
expensive than prediction robust attack generation as it involves a large number of gradient
computations and vector difference calculations. While techniques for efficient and scalable
prediction robust training has been an active area of research [57, 71], there is no counterpart
in the attribution robust training literature.

Properties of attribution robust models. We discussed the existing works on this topic in
section 2.6 (prediction and noise robustness). However, given that attribution robustness mod-
els achieve robust gradients in the input space at high computational cost, more research is
needed to understand behaviors both desirable and undesirable in robust models.

Diverse set of tasks, models and data domains. Nearly all research on attribution attacks
and robustness has been done in the context of convolutional neural networks on image clas-
sification. This is likely due to the fact that attributions on images can be easily visualized.
However, attribution attacks and robustness are general problems, and more work is needed to
understand the impact of attribution robust training on other tasks, models and data domains.

Benchmarks for attribution robustness. The difficulty of comparing the performance of
robust training methods was discussed in subsection 2.5.1. More work on standard benchmarks
(large attack datasets and evaluation setups) could be highly useful to the research community.

In the remaining chapters of the thesis, we set out to address some of these problems to some
extent and present our experiments and findings.



Chapter 3

A Novel Framework and Robust Objective
for Training Attribution Robust Neural
Networks

In the previous chapter, the significance of attribution robustness of neural networks was dis-
cussed, and several lacking areas in the literature were identified. A major problem with exist-
ing robust training methods is the very high computational cost, making it difficult to do large
scale robust training of neural networks. In this chapter, we present our work addressing this
issue: a novel and generic framework of loss functions for attribution robust training, and a
new, efficient robust training objective derived from the framework.

3.1 Contributions of the chapter

The research contributions of this chapter are summarized below.

• A framework for attribution robust training (section 3.2). We present a novel frame-
work of loss functions (training objectives) for attribution robust training of neural net-
works. The novelty of the proposed framework lies in decoupling attack generation from
the regularization terms in the loss function, adding a cross entropy of attacks term in the
loss function, and the flexibility to use any attribution method. This provides a principled
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approach to think about attribution robust training, wherein a practitioner can choose dif-
ferent instantiations of the constituent components and run training sessions.

• A new robust objective (subsection 3.2.2). We derive a novel attribution robust objective
from the proposed framework, termed the cross entropy of attacks (“CE-of-attacks”).
This objective is simple to implement (generate an attack during training and compute
the cross entropy of it) and significantly more computationally efficient than existing
robust objectives. The CE-of-attacks objective is 2 to 10 times faster for robust training
of neural networks compared to IG-Norm, a prominent existing method.

• Empirical analysis of robust objectives (section 3.3). We conduct comprehensive ex-
periments on training attribution robust convolutional neural networks (small CNNs and
ResNets) on image datasets (MNIST, CIFAR-10, ImageNet subset) with the proposed
novel robust objective (CE-of-attacks) as well as existing robust objectives. The CE-of-
attacks objective achieves higher attribution robustness than the IG-Norm objective [5]
while simultaneously providing higher test accuracy. For example, a small 4-layer CNN
trained on the CIFAR-10 dataset gives 72.1% accuracy with the CE-of-attacks objective
compared to 70.7% accuracy with the IG-Norm objective, while achieving a 68.4% top-
100 intersection compared to the 64.9% top-100 intersection of the IG-Norm objective.
The results of the diverse experimental setup are novel and a valuable addition to the
literature on attribution robustness of neural networks.

3.2 Loss functions for attribution robustness: a framework

In this section, we expand on the framework of loss functions for robust training of neural
network classifiers proposed in [5]. The framework of [5] is termed the “Uncertainty Set
Model” and we note that it is fairly generic and allows for multiple important instantiations
(see section 2.4). The main limitation in their framework is the coupling of the optimization
term to the regularization term in the loss function. Another limitation is its restriction to the
use of integrated gradients to create the attribution attack during training. Additionally, the
loss function contains only a size measurement of IG difference between the natural and attack
example, which restricts the ability to easily include other potential candidate terms (eg: cross
entropy of attack examples). Our proposed framework of attribution robust loss functions or
training objectives for neural network classifiers can be expressed in the following form;
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min
θ

E(x, y)
[
ρ(x, y, θ)

]
(3.1)

ρ(x, y; θ) = α l(x, y; θ) + β l(x′, y; θ) + λ size(Diff[A(x), A(x′)]) (3.2)

where x′ = max
x′ ∈ N(x, ϵ)

size(Diff[A(x), A(x′)]) (3.3)

The terms in the above expressions are as follows (see Figure 3.1 for a quick visualization);

• Equation 3.1 is the usual minimization of a given loss function ρ(x, y; θ), which is done
in the model training (optimization) loop.

– (x, y) are the (natural) training examples and the ground truth labels.

– θ are the model parameters (weights of the neural network).

• Equation 3.2 is the attribution robust objective or the loss function.

– The first term α l(x, y; θ) is the standard cross entropy loss of the natural examples
with respect to the ground truth labels, weighted by a constant parameter α.

– The second term β l(x′, y; θ) is the standard cross entropy loss of the attribution
attack examples (generated during training as shown in Equation 3.3) with respect
to the ground truth labels, weighted by a constant parameter β.

– The third term λ size(Diff[A(x), A(x′)] is a measure of the difference between attri-
butions given by the model for natural and attack examples. A is a function that
computes attributions of the model, so that A(x) and A(x′) refer to the attributions
of natural and attack examples respectively. Di f f [] is a function that computes the
difference between two vectors, and size() is a function that measures the size of a
vector (eg: norms). The third term is weighted by a constant parameter λ.

– Note that attribution function A() depends on the model parameters θ, although it is
omitted in the above expressions for clarity.

• Equation 3.3 is the attribution attack example computation. It is an optimization problem
that finds a perturbed version of the original (natural) example within a given distance
budget ϵ such that the difference between attributions of the natural example and the
perturbed version is maximized.



34 Chapter 3. A Novel Framework and Attribution Robust Training Objective

Loss minimization with 
standard gradient descent

Attribution attack generation 
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around the original example)

Maximize difference 
of attribution maps
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Figure 3.1: Explanation of the terms in the proposed robust loss functions framework

– x′ is the resulting attack example found by solving the optimization problem.

– x′ ∈ N(x, ϵ) specifies that the attack example x′ must be found within a distance
budget of ϵ around x.

– size(), Di f f [], and A() refer to the same functions as described before.

Note the following aspects of the proposed framework and the changes in comparison to prior
frameworks in [5, 25].

• The attack generation (Equation 3.3) is decoupled from its use within the loss function
(Equation 3.2). This simple change allows one to use any method to generate an attack,
and use it in the loss function in a flexible manner. For example, the simple but novel
robust objective “cross entropy of attacks” can be derived only because of this flexibility,
which is not possible with prior frameworks.

• Two cross entropy loss terms are included; one for natural examples and one for attribu-
tion attack examples. This allows for flexible instantiations. It also adds two additional
hyperparameters, but we can instantiate a loss function in a way that all three hyperpa-
rameters are not needed (eg: setting α = 0, β = 1, λ = 0 gives us the robust training
objective “cross entropy of attacks”).

• The IG(x, x′) term in the loss function of [5] is replaced by a more generic Diff[A(x), A(x′)]
term. This allows us to use any attribution method A() in place of integrated gradients
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(IG), and to use suitable difference and size functions. For example, we can calculate gra-
dients instead of IG and compute the L2 norm of the absolute value difference between
the two gradient maps A(x) and A(x′).

• Replacing IG could come with the loss of certain theoretical properties inherent in IG.
From an empirical point of view, that is not problematic, as we are searching for efficient
and effective attribution robustness methods that work well in practice.

• The x′ in this loss function is the attribution attack, which is generated during training for
each natural example x. It is usually computed with projected gradient descent (PGD)
within a distance budget of ϵ around the natural example. The resulting x′ is then used
in the third term of the loss function (Equation 3.2).

• Since projected gradient descent (PGD) needs to compute the derivatives of the term
size(Diff[A(x), A(x′)]) w.r.t x′, the functions size(), Diff[] and A() must be differentiable.
Other than that, there is no restriction in the choice of these functions. One can also
consider derivative-free optimization techniques to bypass this restriction (not explored
in this work).

• It is also possible to use different A() and Di f f [] functions in the loss function’s third
term (Equation 3.2) and for the attack calculation Equation 3.3. This allows for more
flexibility in instantiating an attribution robust objective.

3.2.1 Loss function instantiations

In this section, we discuss several instantiations of the proposed general framework. These
instantiations are robust training objectives, and while some of them are well-known objectives,
others have not been explored in the current literature to the best of our knowledge. These
derivations demonstrate the generalization capability of the proposed framework.

The following are well-known robust objectives.

• Input Gradient Regularization objective [12, 47]

• Adversarial robustness objective [37]

• IG-Norm objective [5]
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• IG-Sum-Norm objective [5]

The following robust objectives can be derived from the generic framework, and they are either
novel or under-explored in the existing literature.

• Cross entropy of IG attacks

• Cross entropy of natural examples + Cross entropy of IG attacks

• Cross entropy between model outputs for natural examples and IG attacks

• Grad-Norm objective

• Objectives with layer-wise attacks

The “Input Gradient Regularization” objective [12, 47]. Let α = 1, λ = 0, size(.) = ∥ · ∥22
(square of L2 norm), and Diff[A(x), A(x′)] = ∇xl(x, y; θ) (gradients of loss w.r.t. x). Then, we
get the robust objective in Equation 3.4.

min
θ

E(x, y)
[
l(x, y; θ) + β ∥∇xl(x, y; θ)∥22

]
(3.4)

Note that in this objective, an attack computation does not occur. Instead, the square of L2 norm

of gradients of the loss function with respect to the input (input gradients) are added to the
standard cross entropy loss. This was originally proposed in [12] as "double backpropagation"
(due to the need for an extra backpropagation for the second term).

The adversarial robustness objective or the robust prediction objective [37]. Let α = 0,
β = 1, λ = 0, size(.) = sum(.) (sum of all elements of a vector), and Diff[A(x), A(x′)] = l(x, y; θ)
(integrated gradients of loss from a baseline of x′ to x). Then, we get the robust objective in
Equation 3.5.

min
θ

E(x, y)

 max
x′ ∈ N(x, ϵ)

l(x′, y; θ)

 (3.5)

This is the generic adversarial robust objective as proposed in [37]. Note that the inner opti-
mization is maximizing the cross entropy loss, i.e. it is finding an attack that fools the model
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prediction (an adversarial attack or a prediction attack), which is different from finding an
attribution attack.

The IG-Norm objective [5]. Let α = 1, β = 0, size(.) = ∥·∥1 (L1 norm), and Diff[A(x), A(x′)] =
IG(x, x′) (integrated gradients of loss from a baseline of x′ to x). Then, we get the robust
objective in Equation 3.6.

min
θ

E(x, y)

l(x, y; θ) + λ max
x′ ∈ N(x, ϵ)

∥IG(x, x′)∥1

 (3.6)

In this robust attribution objective, the inner optimization (generating an attribution attack)
is maximizing the difference of integrated gradients between the natural and attack example
(∥IG(x, x′)∥1), i.e. it is generating IG attack. The final loss function is the sum of cross entropy
loss on natural attacks (learn to classify) and the difference of IG between the natural and the
generated attack example (learn robust attributions).

The IG-Sum-Norm objective [5]. Let α = 0, β = 1, size(.) = ∥·∥1 (L1 norm), and Diff[A(x), A(x′)] =
IG(x, x′) (integrated gradients of loss from a baseline of x′ to x). Then, we get the robust ob-
jective in Equation 3.7.

min
θ

E(x, y)

 max
x′ ∈ N(x, ϵ)

l(x′, y; θ) + λ ∥IG(x, x′)∥1

 (3.7)

In this robust attribution objective, the inner optimization is maximizing both the cross entropy
loss and the IG difference, i.e. it is finding an attack that fools model predictions as well as
attributions.

The “Cross entropy of IG attacks” objective. Let α = 0, β = 1, λ = 0 size(.) = ∥ · ∥1
(L1 norm), and Diff[A(x), A(x′)] = IG(x, x′) (integrated gradients of loss from a baseline of x′

to x). Then, we get the robust objective in Equation 3.8.

min
θ

E(x, y)
[
l(x′, y; θ)

]
where x′ = max

x′ ∈ N(x, ϵ)
∥IG(x, x′)∥1

(3.8)
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Note that in this objective, an IG attribution attack is calculated, and the model is trained for
the cross entropy loss of the attack example. In our experiments, this novel objective achieved
the best performance in terms of attribution robustness, accuracy and computational efficiency.

The “Cross entropy of natural examples + Cross entropy of IG attacks” objective. Let
α = 1, λ = 0 size(.) = ∥ · ∥1 (L1 norm), and Diff[A(x), A(x′)] = IG(x, x′) (integrated gradients
of loss from a baseline of x′ to x). Then, we get the robust objective in Equation 3.9.

min
θ

E(x, y)
[
l(x, y; θ) + β l(x′, y; θ)

]
where x′ = max

x′ ∈ N(x, ϵ)
∥IG(x, x′)∥1

(3.9)

Note that in this objective, an IG attribution attack is calculated, and the model is trained for
the weighted sum of cross entropy loss of the natural example and the cross entropy loss of the
attack example.

The “Cross entropy between model outputs for natural examples and IG attacks” objec-
tive. Let α = 1, β = 0, λ = 0 size(.) = ∥ · ∥1 (L1 norm), and Diff[A(x), A(x′)] = IG(x, x′)
(integrated gradients of loss from a baseline of x′ to x). Let l(x, y; θ) = l { fθ(x), fθ(x′); θ} (cross
entropy between model outputs for natural examples and attacks. fθ(.) is the model function).
Then, we get the robust objective in Equation 3.10.

min
θ

E(x, y)
[
l { fθ(x), fθ(x′); θ}

]
where x′ = max

x′ ∈ N(x, ϵ)
∥IG(x, x′)∥1

(3.10)

In this objective, an IG attribution attack is computed, and the model output vector (class
logits) for the natural example and the attack is separately computed. Then, the cross entropy
loss between the two output vectors is used as the training objective. The intuition behind this
objective is that an attribution robust model must produce similar output for both natural and
attack examples.

The Grad-Norm objective. The proposed framework allows the flexibility to use a different
attribution method than IG to generate an attribution attack. As a concrete example, consider
using input gradients as attributions instead of IG. Let α = 1, β = 0, size(.) = ∥ · ∥1 (L1 norm),
A(x) = ∇xl(x, y; θ) (input gradients of cross entropy loss), and Diff[a,b] = a − b. Then, we get
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the robust objective in Equation 3.11.

min
θ

E(x, y)

l(x, y; θ) + λ max
x′ ∈ N(x, ϵ)

∥∇xl(x, y; θ) − ∇x′l(x′, y; θ)∥1

 (3.11)

Attacks on attributions of intermediate layers (layer-wise attacks). In the instantiations
discussed so far, the attributions are computed for the input layer of a neural network (input
attributions). In all gradient-based attribution methods, it is also possible to compute attribu-
tions for any intermediate layer of a neural network, and therefore generate attribution attacks
on the intermediate layers. This implies that any robust objective we have discussed so far
can be instantiated with layer-wise attribution attacks. (Note: for clarity, we have omitted the
layer-wise notation from the generic framework in Equation 3.2).

As a concrete example, consider a variation of IG-Norm objective (see Equation 3.6) with
layer-wise attacks. Let α = 1, β = 0, size(.) = ∥·∥1 (L1 norm), and Diff[A(x), A(x′)] = IGh(x, x′)
(integrated gradients of loss at an intermediate layer h from a baseline of x′ to x). Then, we get
the robust objective in Equation 3.12

min
θ

E(x, y)

l(x, y; θ) + λ max
x′ ∈ N(x, ϵ)

∥IGh(x, x′)∥1

 (3.12)

Other possible variants of robust objectives. As demonstrated by the instantiations described
in this section, the proposed framework for attribution robust objectives is generic and flexible.
We have discussed some variants, but it is worth noting that it is possible to instantiate more
robust objectives by choosing different A(.) (attribution method), Di f f [] (difference) and size(.)
functions.

3.2.2 The “Cross entropy of IG attacks” objective and training loop

The “Cross entropy of IG attacks” (CE-of-attacks) loss function initiation (Equation 3.8) is a
novel attribution robust objective that has not been explored in the literature. A neural network
training loop that implements this objective is shown in Algorithm 2.

The “CE-of-attacks” robust objective compares and contrasts with current popular attribution
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robust objectives such as IG-Norm (Equation 3.6) and IG-Sum-Norm (Equation 3.7) [5] in the
following ways;

• Similar to IG-Norm and IG-Sum-Norm, an attribution attack x′ (integrated gradients
attack) is computed for each natural example in the training loop. This is a solution to
the inner maximization problem computed with projected gradient descent (PGD).

• Unlike IG-Norm and IG-Sum-Norm which calculates a ∥IG(x, x′)∥1 term for the outer
minimization in the training loop (the model learns to produce similar IG attributions for
the natural and the attack examples), the CE-of-attacks objective simply takes the cross
entropy loss of the attacks l(x′, y; θ).

• This essentially trains the model to classify attribution attack examples. The intuition is
that the model will learn the patterns in the attacks, and therefore achieve some level of
attribution robustness. Our experiments find that this is indeed the case. This may seem
like an obvious or trivial technique; in fact, training on attacks is the typical adversarial
or prediction robustness technique [37] (Equation 3.5). However, it is worth noting that
none of the prior attribution robustness frameworks are able to derive this simple loss
function due to the coupling of the regularization terms with the inner maximization.

• The benefit of the CE-of-attacks objective comes from not having to calculate the ∥IG(x, x′)∥1
term in the outer minimization loop, which is very expensive. Experimentally, the outer
IG calculation of IG-Norm and IG-Sum-Norm has to be done with ig_steps between 24
- 50 (that many backward passes or backpropagations to compute gradients). That is 24
- 50 more backprops than a standard training loop!

• In the CE-of-attacks objective, IG term calculation is only necessary for the inner maxi-
mization or attack generation. Experimentally, we find that ig_steps = 4 is adequate to
produce good attribution robustness in convolutional neural networks on image datasets.
Therefore, with practical hyperparameter values, the CE-of-attacks robust objective is
several orders of magnitude more efficient than the currently popular IG-Norm and IG-
Sum-Norm attribution robust objectives.
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Algorithm 2 Training loop with the “Cross entropy of IG attacks” robust objective:
minθ E(x, y)

[
l(x′, y; θ)

]
where x′ = maxx′ ∈ N(x, ϵ) ∥IG(x, x′)∥1

Input:
Training dataD = (Xall,Yall)

Neural network weights θ

Outer training loop hyperparameters:

No. of training steps (N), learning rate (β), batch size (batch_size)

Inner attack generation loop hyperparameters:

No. of iterations (iterations), step size (α), distance budget (ϵ), IG steps: (ig_steps)

Function : integrated_gradients(A, B, Y, ig_steps)

Computes integrated gradients of cross entropy, w.r.t. A going from B

1: Initialization:
2: Initialize θ with random weights

3: Training loop:
4: for i← 1 to N do // Outer loss minimization loop

5: Take mini-batch (X,Y) of size batch_size fromD

6: X_attacks← X // Initialize batch of attacks at the original examples

7: for j← 1 to iterations do // Inner maximization loop (compute attack with PGD)

8: IG ← integrated_gradients(X, X_attacks, Y, ig_steps)

9: IG_norm← L1_norm(IG)

10: grad ← gradient(IG_norm, X_attacks) //Gradient of IG_norm w.r.t. X_attacks

11: X_attacks← X_attacks + α ∗ grad // Gradient ascent update in PGD

12: X_attacks← clamp(X_attacks, ϵ) // Projection in PGD

13: end for

14: loss = cross_entropy(X_attacks,Y; θ) // Cross entropy loss of attack mini-batch

15: θ ← θ − β ∗ ∇θloss // Gradient descent weight update on mini-batch

16: end for

Output:
Trained neural network weights θ [with attribution robustness]
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3.3 Attribution robustness experiments

We now take a selection of robust objectives from the previous section and train neural network
classifiers on image datasets using these objectives. The aim is to determine if the robust train-
ing objectives, both from prior work and those proposed here, can effectively train attribution
robust neural networks. The experiment setups, results and our findings are described in this
section.

3.3.1 Experiment details

Training objectives

The following three objective functions are used for training the neural network models. In all
robust training setups, a one-step IG attack is used in the training to achieve a balance between
efficiency and resulting attribution robustness (exception: on MNIST, a 5-step attack is used).

• Standard training (cross entropy loss on natural examples).

• CE-of-attacks or CEA (cross entropy of IG attacks): the novel attribution robust objective
proposed in this work (Equation 3.8, subsection 3.2.2)

• IG-Norm [5]: the leading, theoretically grounded attribution robust objective in the cur-
rent literature (Equation 3.6). This objective has a second term in the loss function (the
attribution regularization term) that is expensive to compute (subsection 4.2.1).

Models and datasets

Models. Three convolutional neural network architectures are trained for classification tasks
in the attribution robust training experiments.

• Small convolutional neural networks (Small-CNN). 4 pairs of ReLU-convolutional and
max pooling layers. 32, 64, 128, 256 nodes in the 4 convolutional layers.
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• Deep residual networks (ResNet-18 [22]). 18 ReLU-convolutional layers in 4 blocks
with residual connections. 64 - 512 nodes in the convolutional layers.

• Wide residual networks (WRN-10-4 [73]). 10 ReLU-convolutional layers in 3 blocks
with residual connections. 64 - 256 nodes in the convolutional layers.

Datasets. The neural network models are trained for classification tasks in the following
datasets. These datasets represent a variety of image data modalities, including grayscale,
and small and large natural color images. Each dataset includes a training set and a smaller test
set for evaluation. The Small-CNN model is trained on the MNIST and CIFAR-10 datasets,
while the all three architectures are trained on the RIMB dataset.

This combination of models and image modalities provides a diverse experimental setup, so
that the attribution robustness results and insights derived from this work have broad applica-
bility. All models are trained for a sufficient number of epochs until the test error converges.

• MNIST [32]. 60,000 grayscale digits, Image size: 28 x 28. Classes: 10 digit.

• CIFAR-10 [31]. 60,000 color natural images. Image size: 32 x 32. Classes: 10 object
classes.

• RIMB (Restricted ImageNet Balanced) [14]. This is a small subset of the ImageNet
dataset. It contains 37,400 images belonging to 14 classes (balanced). Image sizes in the
range of 256 x 224.

Evaluation data and metrics

Attack datasets. To measure attribution robustness of a model, similarity between attribu-
tion maps of natural and attack examples produced by the model is measured. Following the
standard practice of the literature, we choose the Iterative Feature Importance Attack (IFIA)
proposed in [20] (subsection 2.2.1) to create the attack data from the natural test sets in each
dataset. Note that the IFIA attack used for evaluation is a stronger attack than the simple IG
attacks computed during training (eg: up to 100 IFIA iterations vs. one-step IG attacks). See
section A.1 for parameters of the IFIA attack generation process.

Evaluation metrics. To evaluate the similarity between attribution maps of natural and IFIA
attack data, we choose two commonly used metrics in the literature: Kendall tau (Kendall’s
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rank correlation coefficient) and top-k intersection (top-100 for MNIST and CIFAR-10, top-
1000 for RIMB).

See section 2.5 for a complete description of the attribution robustness evaluation setup and
definitions of the metrics.

Additionally, we also evaluate the test accuracy on the original (natural) test set to verify that
the models trained with robust objectives are not failing on the natural examples. Accuracy on
the IFIA attack dataset is also calculated.

3.3.2 Results and discussion

Table 3.1: Attribution robustness (average over test set) of different training objectives. CEA
= CE-of-attacks. Best performance in each metric is highlighted in bold.

Dataset Model Training
method

Natural
accuracy %

Attack
accuracy % Kendall tau Top-k

intersection %

MNIST Small-CNN
Standard 99.08 13.25 0.35 58.92
IG-Norm 98.93 92.27 0.41 67.63
CEA 98.97 83.75 0.43 73.78

CIFAR-10 Small-CNN
Standard 74.44 54.46 0.57 57.26
IG-Norm 70.74 63.73 0.63 64.86
CEA 72.12 64.49 0.66 68.35

RIMB Small-CNN
Standard 82.64 71.57 0.41 34.96
IG-Norm 79.5 68.79 0.45 39.54
CEA 76.71 75.57 0.48 42.71

RIMB WRN-10-4
Standard 81.29 48.64 0.47 38.64
IG-Norm - - - -
CEA 79.07 66.00 0.55 49.16

RIMB ResNet-18
Standard 87.14 69.57 0.37 33.23
IG-Norm 67.93 50.64 0.37 43.13
CEA 86.86 82.21 0.46 39.81

Table 3.1 shows the average attribution robustness metrics (over the test set), and accuracy
on natural test set and IFIA attack set obtained by training the neural networks with the three
different objective functions. Figure 3.2 illustrates the distribution of top-k intersection for
each test example pair (natural and attack). As expected, both robust objectives (IG-norm
and CE-of-attacks) produce higher attribution robustness than the standard cross entropy loss
function.
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Figure 3.2: Attribution robustness of the three training objectives on four setups (top-k in-
tersection distribution over all test examples). The middle horizontal bar is the median, box
boundaries are the 25th and 75th percentiles and whiskers show the rest of the distribution.
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Comparing attribution robustness metrics. The average Kendall tau and top-k intersection
metrics over the test set in Table 3.1 show that the CE-of-attacks objective achieves high attri-
bution robustness compared to the IG-Norm objective in most setups. This is also evident by
the upward shift in the distribution of top-k intersection of the CE-of-attacks objective relative
to IG-Norm (Figure 3.2). The one exception is the ResNet-18 model trained on the RIMB
dataset, where the IG-Norm objective achieves higher top-k intersection. However, this comes
with a considerable drop in accuracy (IG-Norm is 18.9% less accurate than CE-of-attacks with
ResNet-18 on RIMB). Training the Wide ResNet (WRN-10-4) model on the RIMB dataset
with the IG-Norm robust objective proved to be unsuccessful (test accuracy was too low for
many training epochs and training was too slow).

It must be noted that the CE-of-attacks objective is also significantly faster than the IG-Norm
objective (1.5 hours of CE-of-attacks training vs. 8 hours of IG-Norm training). The ineffi-
ciency of IG-Norm comes from computing the attribution regularization term in the loss func-
tion with many steps for the integrated gradients (24 steps) and backpropagating over it during
gradient descent. A full comparison of computational cost is given in (subsection 4.2.1).

Comparing natural accuracy. In all setups in Table 3.1, the two robust objectives give lower
accuracy on the test set (natural accuracy). This implies that there is a trade-off between attri-
bution robustness and accuracy. This phenomenon has been noted in prior work as well [25,
10]. In fact, if one is willing to lose test accuracy, it is possible to tune both robust objectives
to produce higher attribution robustness (eg: by generating a stronger IG attack during training
or increasing the regularization strength parameter λ in IG-Norm). The challenge is to find
a desired mid point for the two goals of attribution robustness and accuracy. This important
effect is explored further in section subsection 4.2.2.

Comparing attack accuracy. In all scenarios setups in Table 3.1, model accuracy on the IFIA
attack set is higher with the two robust objectives compared to standard training. On this metric
as well, the CE-of-attacks objective performs better than the IG-Norm objective with the one
exception on the MNIST dataset.

Evolution of attribution robustness during training. The discussion so far was based on
final results of complete training sessions that reached convergence in test accuracy. It is also
important to observe the evolution of the desired metrics over a training session. Figure 3.3
illustrates attribution robustness (top-k intersection) and test accuracy over training epochs on
MNIST and CIFAR-10 datasets. Attribution robustness with the standard cross entropy loss
clearly decreases in the initial half of training, and plateaus for the remaining epochs. This
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implies that models trained with the standard loss are unable to produce any meaningful level
of attribution robustness or that they are vulnerable to attribution manipulation. Both robust
objectives increase in top-k intersection over time, signaling their capability to achieve the
desired goal of improved attribution robustness. The novel CE-of-attacks objective proposed
in this work maintains higher attribution robustness than the IG-Norm [5] objective throughout
both training sessions in Figure 3.3.

We make another interesting observation with the top-k intersection and test accuracy curves
on the CIFAR-10 dataset (Figure 3.3: right). While both robust objectives maintain higher
top-k intersection than standard training, their test accuracy is consistently lower than standard
training. This relative difference in test accuracy is present throughout the training epochs,
which can be considered a strong indication of the previously discussed trade-off between
attribution robustness and accuracy. On the test accuracy metric too, CE-of-attacks performs
better than the IG-Norm objective through the CIFAR-10 training session.
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MNIST CIFAR-10

Figure 3.3: Evolution of attribution robustness (top-k intersection, top graphs) and test accuracy
(bottom graphs) during training with the three objective functions (standard, IG-Norm, CE-of-
attacks) on MNIST (left) and CIFAR-10 (right) datasets.
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3.4 Conclusion

In this chapter, a novel, generic and flexible framework of attribution robust training objec-
tives was introduced. A fast and effective attribution robust objective termed “cross entropy of
attacks” (CE-of-attacks) was derived from this framework. Comprehensive experimental anal-
ysis confirmed that CE-of-attacks outperforms the existing IG-Norm robust objective in terms
of both attribution robustness (Kendall correlation, top-k intersection) and accuracy.



Chapter 4

Challenges of Training Attribution Robust
Neural Networks and Efficient Training
Methods

Attribution robust training of neural networks is a more challenging task than standard train-
ing (cross entropy loss) due to several key issues: the high computational cost, the trade-off
between attribution robustness and accuracy, and the difficulty of hyperparameter tuning. The
existing literature on attribution robustness contains no meaningful analysis or discussion on
these topics. To address this gap, we conduct a thorough analysis of the challenges of training
attribution robust neural networks, and propose guidelines for mitigating these challenges to
some extent.

The major challenge of robust training is its very high computational cost compared to standard
training. The CE-of-attacks objective introduced in the previous chapter is 2 times faster than
the existing IG-Norm objective. However, in its original form, the CE-of-attaks objective is
still significantly slower than standard training (up to 25 times slower). In this chapter, we
propose several techniques to significantly improve the efficiency of attribution robust training
of neural networks with the CE-of-attacks objective.

50
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4.1 Contributions of the chapter

The research contributions of this chapter are summarized below.

• Computational cost analysis of attribution robust training (subsection 4.2.1). Al-
though it is obvious that attribution robust training is computationally more expensive
than standard training, the existing literature contains no analysis on this important as-
pect. We provide a detailed algorithmic and empirical analysis of the computational cost
of several attribution robust training objectives. Our analysis reveals that robust training
with the prior IG-Norm objective is 16 to 67 times slower than standard training, while
the proposed CE-of-attacks objective is only 2 to 35 times slower than standard training.

• Trade-off between attribution robustness and accuracy (subsection 4.2.2). Robust
training experiments reveal that there is a fundamental trade-off between attribution ro-
bustness and test set accuracy. The existing literature lacks any analysis on this aspect
of robust training. We provide empirical results that quantify the trade-off by conducting
robust training under varying attack strengths. For example, training a small CNN on
the CIFAR-10 dataset with varying distance budgets for the generated attacks yields a
17.5% gain in top-100 intersection at an accuracy drop of 7.8%.

• Hyperparameter tuning of attribution robust training (subsection 4.2.3). Hyperpa-
rameter tuning in robust training is difficult due to three reasons: the additional hyper-
paramers, the high computational cost and the trade-off between attribution robustness
and accuracy. We provide a set of guidelines to mitigate these issues and find good
hyperparameter configurations for attribution robust training of neural networks.

• Techniques for efficient robust training (section 4.3). We propose three efficiency im-
provement techniques to address the major problem of high computational cost of robust
training: combining standard and robust training (2x - 4x speed gain), using a fast one-
step attack in the training loop (3x or more speed gain), and tuning the number of steps in
the integrated gradients computations (2x - 6x speed gain). Experiment results demon-
strate that the efficiency gains are achieved with no significant performance degradation
in terms of attribution robustness and accuracy.
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4.2 Challenges in training attribution robust neural networks

4.2.1 Computational cost of attribution robust training

The main challenge of attribution robust training is its higher computationally cost compared
to standard training. We consider the number of forward and backward (backpropagation or
gradient computation) passes needed for one training step (one mini-batch weight update) of
a neural network, as it is a practically useful measurement and is applicable to any neural
architecture (Table 4.1).

The following notation is used in the analysis: f = no. of forward passes, b = no. of back-
ward passes, p = no. of iterations in attack loop, ma = IG steps in inner attack loop, mn = IG
steps in outer IG norm term. In robust training objectives, there are two sources of computa-
tional complexity, assuming integrated gradients (IG) is the choice of attribution computation
method;

• The inner attack generation loop: a projected gradient descent loop (p iterations) is used
to compute the attacks. Inside each iteration of the attack loop, integrated gradient (ma

IG approximations steps) computations are performed, resulting in p.ma forward and
backward passes.

• The outer loss term computation and gradient descent minimization loop (only in the
case of the IG-Norm objective). If the loss function has integrated gradients (mn IG
approximations steps), this step will incur additional cost of mn forward and backward
passes.

The computational cost of different training approaches is summarized in Table 4.1. For ex-
ample calculations, we use two settings: computing a strong multi-step attack with p = 10
iterations, and a weak one-step attack (p = 1). For both cases we use ma = 4 and mn = 40, val-
ues that were empirically found to produce well-trained (good test accuracy) attribution robust
models (good Kendall’s tau and top-k intersection values).

The number of forward and backward passes in Table 4.1 indicate that IG-Norm and IG-Sum-
Norm [5] robust objectives are extremely expensive compared to standard training in both the
strong attack setting (81 times slower) and the weak attack setting (45 times slower). The CE-
of-attacks objective proposed in this work is also very expensive in the strong attack setting
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(41 times slower than standard training), but less so in the weak (one-step) attack setting (only
5 times slower than standard training).

Table 4.1: Computational cost of training objectives.
p = no. of iterations in attack loop, ma = IG steps in inner attack loop,

mn = IG steps in outer IG norm term. For example values ma = 4,mn = 40

Objective No. forward ( f ) and
backward (b) passes

Example values:
multi-step attacks
(p = 10)

Example values:
one-step attacks
(p = 1)

Standard
f = 1
b = 1

- -

IG-Norm,
IG-Sum-Norm

f = 1 + p.ma + mn

b = 1 + p.ma + mn

f = 81
b = 81

f = 45
b = 45

CE-of-attacks
f = 1 + p.ma

b = 1 + p.ma

f = 41
b = 41

f = 5
b = 5

Robust prediction
[37]

f = 1 + p
b = 1 + p

f = 11
b = 11

f = 2
b = 2

Measuring wall-clock time. Implementation details (eg: batching etc.) and compute environ-
ment (eg: tensor-optimized GPUs) can heavily affect the actual run time of training sessions.
Therefore, experiments were run to measure wall-clock time of different training objectives
on a single A100 GPU environment. The results in Table 4.2 show that the observed slow-
down in robust training is not as severe as suggested by the algorithmic analysis (Table 4.1) for
the Small-CNN model. However, the ResNet-18 model approaches the theoretical slowdown
multiples.

Overall, it is evident that attribution robust training is significantly slower than standard train-
ing (2x to 67x slower), and the IG-Norm objective is prohibitively inefficient for medium to
large neural networks. The proposed CE-of-attacks robust objective with a one-step attack
(p = 1) is the most efficient out of all training configurations (2x to 4x slower than stan-
dard training). This implies that the CE-of-attacks objective is a good candidate for training
attribution robust models at scale.

4.2.2 Trade-off between attribution robustness and accuracy

In the attribution robustness experiment results and discussion (subsection 3.3.2), we noted that
there appears to be a trade-off between attribution robustness and accuracy, i.e. models trained
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Table 4.2: Time taken (seconds) per one epoch of training for different objectives. The number
within parenthesis is the slowdown factor for robust objectives relative to standard training.
The fastest robust objective is highlighted in bold. p = no. of iterations in attack loop.

Dataset & model Standard IG-Norm CE-of-attacks

p = 1 p = 10 p = 1 p = 10

CIFAR-10 [Small-CNN] 7.5 113 (16x) 306 (41x) 23 (4x) 72 (10x)
RIMB [Small-CNN] 38 708 (19x) 1511 (40x) 74 (2x) 606 (16x)
RIMB [ResNet-18] 36 1112 (31x) 2400 (67x) 140 (4x) 1240 (35x)

for high attribution robustness lose test accuracy.

To confirm the existence of this phenomenon, we conduct an experiment with the CE-of-attacks
robust objective proposed in this work. The Small-CNN model is trained on the CIFAR-10
dataset using the CE-of-attacks objective with increasing attack strength. Attack strength is
increased by setting larger values for the distance budget ϵ, so that the attack examples can
steer far away from the natural examples. A one-step attack is used with attack step size α set
to half the distance budget (α = ϵ/2).

The results of this experiment are shown in Figure 4.1. It is clear that attribution robustness
(measured by top-k intersection) and test accuracy have a negative correlation. Between the
two models trained with the standard cross-entropy loss and the CE-of-attacks objective, a gain
in attribution robustness of 17.5% top-100 intersection is achieved at the cost of a 7.8% drop
in accuracy.

Note that this is not an isolated effect due to the increased distance budget. In our experiments,
any technique used to increase attribution robustness by any amount always results in a drop
in accuracy. This includes generating stronger attacks with more iterations (Figure 4.3) and
increasing the regularization strength (λ) in the IG-Norm objective. Similar findings have also
been reported in the literature [25, 10]. This broad empirical evidence suggests that there is
a fundamental trade-off between attribution robustness and model accuracy.

Why is the trade-off a challenge and how to manage it? Practically, the existence of the
trade-off means that it is difficult to train models to have both high attribution robustness and
very high (state-of-the-art) accuracy. Depending on the importance of attribution robustness
within the application, a practitioner will need to decide the level of acceptable values for these
two properties and tune the models towards those values. It is important to be cognizant of the
existence of this trade-off, so that resources can be optimally allocated (not wasted on trying to
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Figure 4.1: Trade-off between attribution robustness and test accuracy. ϵ = 0 is standard
training, the other data points represent the CE-of-attacks objective.

improve both together at the edge).

4.2.3 Hyperparameter tuning

Hyperparameter tuning is especially challenging with attribution robust objectives due to three
reasons: the additional hyperparameters involved (larger search space), the significantly high
training time (hard to obtain results from many runs), and the trade-off between attribution
robustness and accuracy (optimizing for one will sacrifice the other). These factors make it
difficult to use common hyperparameter tuning algorithms such as random search or Bayesian
optimization for the robust training case. We suggest the following approach to hyperparameter
tuning for attribution robust training, in the hope that researchers and practitioners will find it
a useful heuristic to guide the tuning process.

• Start by finding a good hyperparameter configuration for standard training. The relevant
parameters may include neural network architecture, batch size, learning rate, number of
training epochs needed for test error convergence etc. These parameters will form the
basis for the outer gradient descent loop in robust training.

• Find a good set of values for the hyperparameters in the inner attack generation loop,
separately from the training loop. The main parameters are: distance budget (ϵ), step
size (alpha), no. of iterations (p), no. of integrated gradient steps (ma). Some practical
considerations are;
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– It is a good idea to visualize the attacks generated and their heatmaps to verify that
the attacks are not very dissimilar to the natural examples and that attribution maps
have been distorted.

– Distance budget (ϵ) and step size (α) tend to have the most impact on attack strength.
Heuristics for these parameters may be found in the literature on attribution robust-
ness as well as adversarial robustness. For one-step attacks we used α = ϵ/2, and
for multi-step attacks α = 2.ϵ/p produced good attacks.

– The other two parameters that affect attack strength and quality are the number of
attack iterations (p) and the number of integrated gradient steps (ma) in the attack
loop. In this work, we have shown that a one-step attack (p = 1) and a small
number of IG steps (ma = 4) is sufficient for robust training. Similarly, attempt to
find the most efficient values for these two parameters that will generate the attacks
needed for robust training.

– One can track the attack strength in the training loop to verify that the attack is
strong and suitable for the task by measuring Kendall tau and the ∥IG(x, x′)∥1 terms
as seen in Figure 4.2.

• Once the hyperparameter value ranges have been found for the outer gradient descent
loop and the inner attack generation loop, combine them and run training sessions. It
is also possible to use a smaller subset of the dataset to run shorter sessions. Manual
binary-like search within the hyperparameter ranges produced good results in our work.

• At this point, it may be possible to do a random search or a Bayesian optimization within
the constrained range of values.

• Track all relevant metrics (training loss, test accuracy, attribution robustness metrics such
as Kendall tau and top-k intersection) throughout training epochs (eg: using Tensor-
Board). This will highlight important effects even if a training run fails to achieve the
desired end values for accuracy and attribution robustness.

• Be mindful of the trade-off between attribution robustness and accuracy. This means that
if tuning a parameter in a certain direction yields increasing attribution robustness, we
must expect a drop in accuracy. This will help find the desired balance between the two.
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4.3 Efficient training of attribution robust neural networks

The analysis of computational cost attribution robust training (subsection 4.2.1) highlights the
crucial need for efficient attribution robust training methods, which is a lacking area in the
current literature. We have made attempts to improve computational efficiency in the following
ways.

• Attack strength. A major source of computational cost is the attribution attack gen-
eration inner loop. Creating a strong attack requires many iterations of the inner loop,
leading to higher cost. We examine the possibility of using a weak one-step attack, and
find that a one-step attack with proper hyperparameters is able to produce neural nets
with high attribution robustness (subsection 4.3.1).

• Combined training. Since attribution robust training is inherently costly, a good ques-
tion to ask is “what is the minimum amount of robust training needed to achieve a de-
sired level of attribution robustness?” We find that running standard training followed by
a relatively small number of robust training epochs is sufficient to achieve high levels of
attribution robustness (subsection 4.3.2).

• Tuning the IG steps parameter. It is important to compute integrated gradients (IG) in
the attack loop with the minimal number of approximation steps that still produce well-
trained neural nets with high attribution robustness. The effect of the IG steps parameter
on attribution robustness and the tuning process is described in subsection 4.3.3.

4.3.1 Strength of the attribution attack generated in the training loop

When training a neural network with attribution robust objectives (IG-Norm, IG-Sum-Norm,
CE-of-attacks), a batch of attribution attacks is generated for each mini-batch of natural training
data. Attack generation is the search for a solution with projected gradient descent (PGD) to the
inner maximization seen in many robust objectives, as illustrated in Algorithm 3. Intuitively,
generating stronger attacks should lead to increased attribution robustness. Two key parameters
determine the strength of the generated attack: the distance budget ϵ (the norm constraint for
the attack around the natural example), and the number of PGD iterations p.

The distance budget ϵ is set such that the attacks are not perceptually very different from the nat-
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ural examples, and it does not affect the computational cost of training. However, as discussed
in subsection 4.2.1, the computational cost of training increases linearly with the number of
iterations p in the attack loop (and therefore training slows down significantly).

For the classic adversarial learning setting which also involves a generating an attack by an
inner loss maximization loop, efficient training methods have been proposed that achieve the
desired adversarial robustness with one-step attacks [71]. Inspired by this, we set out to find
if weak one-step attacks in the robust objectives are sufficient to train neural networks with
attribution robustness while being significantly faster than strong multi-step attacks. The key
finding is that it is indeed possible to achieve attribution robustness with one-step attacks.

Comparing the strength of one-step and 10-step attacks

Algorithm 3 Attribution attack generation loop with PGD (inner maximization):
x′ = maxx′ ∈ N(x, ϵ) ∥IG(x, x′)∥1

Input:
Mini-batch of natural examples: (X,Y)

Attack generation loop hyperparameters:

No. of iterations (p), step size (α), distance budget (ϵ), IG steps: (ig_steps)

1: X_attacks← X // Initialize batch of attacks at the original examples

2: for j← 1 to p do
3: IG ← integrated_gradients(X, X_attacks, Y, ig_steps)

4: IG_norm← L1_norm(IG)

5: grad ← gradient(IG_norm, X_attacks) // Gradient of IG_norm w.r.t. X_attacks

6: X_attacks← X_attacks + α ∗ grad // Gradient ascent update in PGD

7: X_attacks← clamp(X_attacks, ϵ) // Projection in PGD

8: end for

Output:
Attribution attack batch X_attacks

As can be seen in Algorithm 3, the PGD loop finds a perturbed example batch (attack batch:
X_attacks) that maximizes the L1 norm (IG_norm) of the integrated gradients between X and
X_attacks. In order to understand the evolution of attack strength in the attack generation
loop, we observe the change in the IG_norm and the Kendall correlation between intermediate
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Figure 4.2: IG attack strength through the attack loop for 3 data batches (one-step vs 10-step
attacks).

attacks and the natural example batch in a 10-step PGD loop (parameters: p = 10, ϵ = 0.1, α =
ϵ/5 = 0.02). To compare with the attack strength of a one-step attack, we plot the same metrics
for a one-step attack with a larger step size (parameters: p = 1, ϵ = 0.1, α = ϵ/2 = 0.05).

Several observations can be made from the results of this experiment Figure 4.2. The attack
strength of the 10-step attack increases faster at first and slower towards the end of the loop (ex-
pected from a gradient descent optimization). The one-step attack with large step size achieves
a significant percentage of the strength of the 10-step attack as measured by the IG_norm (32%
- 47% over test set) and Kendall tau (52% - 94% over test set) metrics. These observations hint
that it may be possible to use the significantly cheap one-step attack in a robust objective and
still achieve an acceptable level of attribution robustness.

Attribution robust training with one-step and multi-step attacks

To verify the efficacy of the one-step attack with the CE-of-attacks robust objective, we train
the Small-CNN model on the CIFAR-10 dataset with the attack iterations hyperparameter set
to p = 1, 2, 4, 6, 8. The results are shown in Figure 4.3. The one-step attack in the CE-of-
attacks method achieves a top-k intersection of 68.35%, which is only 2.65% less than the
value achieved by the best multi-step attack (4 steps). This suggests that a one-step attack is
sufficient for the CE-of-attacks objective to train attribution robust neural networks.

The immediate advantage of training with the one-step attack is that it is more than 3 times
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Figure 4.3: Attribution robustness and accuracy change with no. of iterations in the attack loop

faster than a 10-step attack (23 seconds per epoch vs. 72 seconds per epoch). For large neural
networks and datasets, the CE-of-attacks objective with the one-step attack may be the only
practical configuration for attribution robust training. Furthermore, it opens up the possibility
of more efficiency improvement techniques used in the adversarial robustness literature (eg:
gradient recycling [57]).

4.3.2 Combining standard and robust training

Given the computational expense of attribution robust training, we explore the possibility of
doing a minimal amount of robust training training to achieve the desired level of attribution
robustness. Out findings indicate that conducting robust training for only 12.5% - 50% of
epochs can achieve comparable robustness to full training, potentially speeding up the process
by 2x - 4x.

Combined training experiments. First, the Small-CNN model is trained on the CIFAR-10
dataset with the standard cross entropy loss for many epochs. Next, the loss function is changed
to the CE-of-attacks robust objective for the remainder of the training. We also perform exper-
iments to observe the effect of alternating between standard and robust objectives every other
epoch. The total no. of training epochs is 80 in this experiment setup.

This idea was inspired by the observation that attribution robustness soon reaches a high level
and plateaus during robust training. Changing loss functions for different training regimes is
also a common strategy in some machine learning settings. For example, in self-supervised
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learning, models are pre-trained on large datasets with one loss function, followed by fine-
tuning on downstream tasks with different loss functions.

The results of the experiments are shown in Table 4.3. It is clear that training the neural
network with the robust objective in the last 10 to 40 epochs is sufficient to achieve a high
level of attribution robustness as measured by top-k intersection. In fact, the highest top-k
intersection value of 68.87% is produced by the “Last 50% robust” training configuration. The
highest drop of top-k intersection is seen in the “Last 12.5% robust” setting, which is 2.93%
less than full robust training (relatively small drop).

Table 4.3: Combined training results (standard and CE-of-attacks [CEA]).

Training configuration Standard
epochs

CEA
epochs

Natural
accuracy %

Top-100
intersection %

Full robust training 0 80 72.12 68.35
Last 50% robust 40 40 73.47 68.87
Last 25% robust 60 20 73.61 66.94
Last 12.5% robust 70 10 73.58 65.42
Alternating robust (50%) 40 40 72.23 68.12

In the Small-CNN on CIFAR-10 training sessions with 80 epochs, the speed gain of doing
50% to 87% less robust training may not seem significant. However, for large neural networks
trained on large datasets with high-dimensional inputs, the robust training epochs dominate the
overall training time. In such cases, the speed gain of combined training can be estimated to be
in the range of 2x - 4x.

Figure 4.4 shows the evolution of top-k intersection during the different training runs of this
experiment. The full-robust and alternating-robust training setups have a gradual increasing
top-k intersection curve. In the three training configurations where standard cross entropy is
used for the first set of epochs, the top-k intersection slowly decreases at first. When the loss
function is switched to CE-of-attacks for the last n epochs (last 10, 20, 40 epochs), the curve
shows a sharp increase towards the full-robust-training curves.

This effect of catching up to the full-robust curves in a small number of epochs is interesting,
as it suggests that well-trained weights may be a better starting point than randomly initialized
weights when training for attribution robustness. The top-k intersection evolution curves are a
strong indication that combining objectives is an effective way to achieve attribution robustness
while minimizing the cost of robust training.
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Figure 4.4: Switching the training objective during training: all-epochs-robust vs. last-few-
epochs-robust

4.3.3 Tuning the integrated gradients steps parameter

As discussed in the computational cost analysis (subsection 4.2.1), the integrated gradients
(IG) computation in the attack generation loop is a major source of cost in the overall training
process. The IG computation involves an approximation of a path integral, where different
points of the path are sampled (the IG steps). The typical number of IG steps needed for high
quality attribution maps is 20 - 300 [64].

However, since the IG calculations happen in the inner attack generation loop, a large number
of steps will significantly slow down the training process. Therefore, it is important to tune the
IG steps parameter in the attack loop (ma): it must be low enough so the training is fast, but
high enough that the IG approximation yields the desired attribution robustness.

To investigate the effect of the IG steps parameter (ma) on training time and attribution robust-
ness, we train the Small-CNN model on the CIFAR-10 dataset with ma values in the range of 2
- 24 for the CE-of-attacks robust objective.

The results are shown in Table 4.4. As expected, the lowest top-k intersection is given by
ma = 2, and the highest value is given by ma = 24 at the cost of a 6x slowdown in training. The
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difference in the achieved top-k intersection between the two settings is 3.52%. This suggests
that small values for ma produce attribution maps sufficient for generating the IG attacks in the
CE-of-attacks objective. With increasing ma, the resulting increase in top-k intersection may
not justify the corresponding slowdown in training. In all our experiments, we have chosen
ma = 4 as an acceptable balance between training speed and attribution robustness.

Table 4.4: Tuning the IG steps parameter (ma) in the CE-of-attacks objective.

IG steps
(ma)

Natural
accuracy %

Top-100
intersection %

Seconds
per epoch

Speedup
relative to
ma = 24

2 72.90 66.11 7 6.3x
4 72.12 68.35 10 4.4x
8 72.33 69.24 16 2.8x
16 71.43 68.99 30 1.5x
24 71.79 69.62 44 -

4.4 Conclusion

In this chapter, challenges of robust training was discussed in detail with extensive empirical
results, including the problem of high computational cost, the trade-off between attribution ro-
bustness and accuracy and the difficulty of hyper-parameter tuning. Several techniques were
proposed to further improve efficiency of the robust training loop. We believe that the tech-
niques and the comprehensive empirical analysis on challenges of attribution robust training
presented in this chapter is a valuable compilation of information for machine learning re-
searchers and practitioners.



Chapter 5

Properties of Attribution Robust Neural
Networks

Attribution robust models achieve robustness in the input feature space at high computational
cost. With this knowledge, a good research question to ask is, "what other useful properties do
attribution robust models have?" A similar theme of research in the adversarial or prediction
robustness literature has uncovered several important properties of prediction robust models;
for example, they are known to have higher transfer accuracy on downstream tasks [52, 66].
However, there is no exploration in the existing literature on the properties of attribution robust
neural networks.

To address this gap, in this chapter we investigate two properties of attribution robust models:
robustness to image corruptions and resilience to spurious correlations.

5.1 Contributions of the chapter

The key research contributions and findings presented in this chapter are as follows.

• Attribution robust neural networks show robustness to common image corruptions (eg:
blurring, digital artifacts, etc.). This is demonstrated by the higher performance of at-
tribution robust models compared to standard-trained models on corrupt images. The

64
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robust models achieve accuracy gains in the range of 3.58% to 11.94% over standard
trained models on three corrupt versions of popular image datasets: MNIST-C, CIFAR-
10-C and RIMB-C.

• Prior work has hypothesized that attribution robust neural networks may be robust in the
presence of spurious correlations [5]. Our experiments reveal that this is not the case, as
measured by worst-group accuracy on datasets with spurious correlations. On the con-
trary, we find that the IG-Norm robust objective could result in perfect misclassification
of minority groups.

5.2 Robustness to image corruptions

In this section, we describe the experiments and findings on the relationship between attribution
robustness of a neural network classifier and its robustness to common corruptions.

5.2.1 Experiment details

Models, training sets and training objectives. We use the same neural network architectures
(Small-CNN and ResNet-18) and hyperparameter configurations described in section 3.3 for
training. Specifically, the Small-CNN model is trained on the MNIST, CIFAR-10 and RIMB
datasets and the ResNet-18 model is trained on the RIMB datasets. The models are trained
with the three objectives: standard, CE-of-attacks and IG-Norm.

Evaluation metrics. In order to evaluate the robustness of neural network classifiers to com-
mon corruptions and perturbations, we evaluate the accuracy of trained models on several cor-
rupted datasets (described in the next section). As a measurement of corruption-robustness
of attribution robust models, we calculate the accuracy difference between the robust model
and the standard model (Equation 5.1) as well as the percentage improvement of the accuracy
(Equation 5.2). Note that a negative value for these metrics indicate that the attribution robust
model performs poorly in comparison to the standard model on the corrupted datasets.

Accuracy Difference
(Acc_Diff)

= Robust model accuracy − Standard model accuracy (5.1)
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Accuracy Improvement %
(Acc_Improv)

=
Robust model accuracy − Standard model accuracy

Standard model accuracy
× 100%

(5.2)

Benchmark datasets. The corrupted datasets are taken from the existing literature, so that the
benchmark is standard, and our work is easy for researchers to reproduce and compare with
other techniques. The datasets are MNIST-C [42] (‘C’ stands for ‘Corrupted’), CIFAR-10-C
[23], and RIMB-C (‘Restricted ImageNet Balanced - Corrupted’ subset of the ImageNet-C in
[23]). The CIFAR-10-C and RIMB-C datasets contain test set images corrupted with different
types of noise and artifacts at multiple severity levels (1 to 5). Corruption types include the
following;

• Noise: gaussian noise, shot noise, and impulse noise

• Blur: defocus blur, glass blur, motion blur, and zoom blur

• Weather: frost, snow, fog, and brightness

• Digital: contrast, elastic transform, pixelate, JPEG compression

• Other artifacts: speckle noise, spatter, gaussian blur, saturate, stripe

Details on dataset content are given in Table 5.1, and Figure 5.1 shows a subset of the cor-
ruptions. section A.2 provides details on the exact corruption types in each dataset and more
visualizations.

Table 5.1: Benchmark image datasets containing corruptions and perturbations

Dataset No. of corruptions No. of examples

MNIST-C [42] - 15 corruption types - 10,000 examples in each corruption type
- 150,000 total examples

CIFAR-10-C [23] - 19 corruption types
- 5 severity levels

- 10,000 examples in each corruption type
- 950,000 total examples

RIMB-C [23] - 19 corruption types
- 5 severity levels

- 1,400 examples in each corruption type
- 133,000 total examples
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Figure 5.1: Visualization of corruptions in RIMB-C [23] and MNIST-C [42] datasets.

5.2.2 Results and discussion

Overall robustness to corruptions. Table 5.2 and Figure 5.3 show the accuracy improvement
of two robust training objectives (IG-Norm, CE-of-attacks) compare to the standard cross-
entropy loss on all corruption types and severity levels in each benchmark datasets. Neural
nets trained with the CE-of-attacks objective clearly achieves a considerable accuracy gain
over the standard-trained models on all datasets, ranging from a 3.58% gain in the RIMB-
C [Small-CNN] case to a 11.94% gain on the MNIST-C dataset. These accuracy gains or
differences correspond to large accuracy improvement percentages over the baseline standard
models (6.1% to 19.58%)

On the MNIST-C and CIFAR-10-C datasets, the IG-Norm objective slightly outperforms the
CE-of-attacks objective (gap of 0.86% on MNIST-C). However, on the RIMB-C dataset, the
IG-Norm objective underperforms the standard training objective with both ResNet-18 and
Small-CNN architectures. The worst case scenario is the ResNet-18 model, where the IG-
Norm objective gives 11.45% less accuracy than the standard model (not illustrated in Fig-
ure 5.3). This behavior is expected, as the IG-Norm-trained ResNet-18 model has a standard
accuracy (clean RIMB dataset) of 67.93% compared to standard-trained model accuracy of
87.14% (a 19.21% drop). In other words, IG-Norm training of the ResNet-18 model performs
so poorly on clean data that it is unable to perform well on the corrupt data.
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Figure 5.2: Overall accuracy difference (Acc_Diff%) of robust models compared to standard
models

Figure 5.3: Distribution of accuracy difference (Acc_Diff%) of robust models compared to
standard models over different corruption types. The middle horizontal bar is the median, box
boundaries are the 25th and 75th percentiles, and whiskers show the rest of the distribution
with outliers shown as circles.
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Table 5.2: Overall accuracy difference (Acc_Diff%) and improvement percent (Acc_Improv)
of robust models compared to standard models on the corrupt datasets.

Dataset & model Acc_Diff% Acc_Improv %

IG-Norm CEA IG-Norm CEA

MNIST-C [Small-CNN] 12.8 11.94 20.99 19.58
CIFAR-10-C [Small-CNN] 4.65 4.49 8.05 7.78
RIMB-C [ResNet-18] -11.45 8.03 -17.91 12.56
RIMB-C [Small-CNN] -1.02 3.58 -1.74 6.10

Robustness to different corruption types. So far, we looked at the accuracy of the robust
models on the overall corruption datasets (all corruption types). Figure 5.3 illustrates the range
or distribution of accuracy gains (or drops) given by robust training on different corruption
types. While the accuracy difference distribution of the CE-of-attacks objective has a positive
tilt (hence the average accuracy gain), the median and lower percentiles have crossed into the
negative side. This indicates that on some corruption types, models trained with the CE-of-
attacks have underperformed the standard-trained models.

However, there are no negative outliers, which shows that the accuracy drop of the CE-of-
attacks model among different corruption types is limited. The positive outliers show that the
CE-of-attacks objective performs extremely well on some corruptions (60% accuracy gain in
one MNIST-C corruption, over 17% gain on 3 RIMB-C corruptions).

These results strongly suggest that attribution robust training, especially with the CE-
of-attacks objective proposed in our work, produce neural networks that are also robust
against a multitude of image corruptions.

Importantly, a high degree of robustness was achieved with no knowledge of the different cor-
ruption types and their generation process at training time (unknown corruption types in the
evaluation data). In contrast, many methods need to have knowledge of the potential corrup-
tions or slight distribution shifts and train for those specific corruptions (eg: with strong data
augmentation where augmentations are made by making specific corruptions of the training
data). In other words, attribution robust training is a generic technique that has the capability
to build robustness to data corruptions into neural network classifiers.
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5.3 Resilience to spurious correlations

Spurious correlations are features or shortcut patterns in data that a model may incorrectly
learn to associate with a target variable. For example, an image classifier may learn to as-
sociate flowers in the background with the class “butterfly”. This may cause the model to
classify any image with flowers as butterfly, and actual butterfly images without flowers into
other classes. The problem of deep neural networks learning spurious correlations has been
extensively studied in the machine learning literature [50, 26, 51].

It has been hypothesized that attribution robust models may be resilient in the presence of spu-
rious correlations [5]. However, the relationship between attribution robustness, and resilience
to spurious correlations has not been explored or established in the current literature. In this
work, we set out to answer the question “does attribution robust training give neural network
classifiers the ability to avoid spurious features in training data?”

5.3.1 Experiment details

Models and training objectives. We train ResNet-18 models (initialized with ImageNet pre-
trained weights) with the three objective functions: standard cross entropy, IG-Norm and CE-
of-attacks.

Datasets. We train and evaluate the models on two datasets used in the spurious correlations
literature. Each containing a binary spurious attribute and a binary target variable. The com-
position of spurious attributes and target variables of the datasets is shown in Table 5.3. See
section A.3 for visualizations of images and more details in these two datasets.

• Waterbirds [51]. Target: type of bird (waterbird vs. landbird). Spurious attribute: back-
ground (water and land). Minority groups: G1 (landbird on water backgrounds) and G2
(waterbirds on land backgrounds). Worst-accuracy group: G2.

• CelebA [35]. Target: hair color (blond vs. non-blond). Spurious attribute: gender: (male
and female). Minority and worst-accuracy group: G3 (blond male). A 25% subset of the
original CelebA dataset is used to train the models to save computational cost.

Evaluation metrics. To evaluate robustness to spurious correlations, we use a standard metric
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Table 5.3: Datasets used in spurious correlations experiments. Worst-accuracy group is high-
lighted in bold.

Waterbirds dataset CelebA dataset

Target (class) Spurious
attribute Group Presence Target (class) Spurious

attribute Group Presence

landbird (0) land (0) G0 73% non-blond (0) female (0) G0 44%
landbird (0) water (1) G1 4% non-blond (0) male (1) G1 41%
waterbird (1) land (0) G2 1% blond (1) female (0) G2 14%
waterbird (1) water (1) G3 22% blond (1) male (1) G3 1%

in the literature spurious correlations: test set accuracy of the worst-accuracy group [30,
51]. If a model has learned to rely heavily on a spurious attribute, it will perform poorly on
the set of examples containing that attribute belonging to the minority group (eg: waterbirds
on land background, males with blond hair). Therefore, higher accuracy on the worst-accuracy
group implies higher resilience to spurious correlations.

5.3.2 Results and discussion

The results are shown in Table 5.4. On both datasets, the standard-trained model achieves
higher worst-group accuracy than both robust objectives. The CE-of-attacks robust objec-
tive has a worst-group accuracy value closer to the standard model (0.62% less on Waterbirds
dataset, 3.93% less on the CelebA dataset). These results show that the two attribution
robust objectives do not make the models resilient to spurious correlations.

The model trained with the IG-Norm robust objective misclassifies all test examples in the two
minority group of both datasets (0% accuracy). The overall accuracy of the IG-Norm models
are high as the minority groups are heavily underrepresented in the test set. We identify this
as a failure mode of the IG-Norm objective: it has very low accuracy on minority groups and
perfect accuracy on majority groups. This could be an effect of group imbalance, or an effect
of spurious correlations. Further research is warranted in order to understand this behavior.
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Table 5.4: Accuracy % of different training objectives on spurious correlations datasets.

Training
objective

Waterbirds CelebA

Worst-group Overall Worst-group Overall

Standard 39.09 78.25 41.67 94.77
IG-Norm 0.00 78.24 0.00 86.59
CE-of-attacks 38.47 71.06 37.74 95.17

5.4 Conclusion

The experiments described in this chapter demonstrate that neural networks trained with at-
tribution robust objectives (IG-Norm and CE-of-attacks) are robust against image corruptions.
Results show accuracy gains in robust models in the range of 3.58% to 11.94% over standard
trained models evaluated on corrupt image datasets.

The experiments on spurious correlations show that both robust objectives underperform the
standard models as measured by worst-group accuracy on datasets with spurious correlations.
In addition, a failure mode of the IG-Norm objective was identified, where all minority group
test examples are misclassified, and the majority groups are perfectly classified.

5.4.1 Potential avenues for exploration

We now discuss several potential paths of exploration on the topic of properties of attribution
robust models with pointers to relevant research.

Attribution robustness and spurious correlations

The negative result on the relationship between attribution robustness and spurious correlations
presented in this chapter should be treated as a preliminary result. The robust objectives used
in the experiments (IG-Norm and CE-of-attacks) operate on generic attribution maps, and they
do not incorporate any knowledge of the data domain or the spurious correlations present in
the datasets. To be resilient to spurious correlations, we may need to incorporate knowledge of
the spurious correlations into the training objectives. Two concrete ideas are discussed below;
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• Annotate the images (pixel level annotations) so that relevant objects in the images and
even the spurious parts to avoid are highlighted. Add a prior to the loss function based
on annotations (focus on the correct parts, avoid the spurious parts) [48].

• When it is difficult to obtain a large amount of annotations, add sensible priors to the loss
function that may be based on attributions [16]. For example, for the Waterbirds dataset,
a prior that says attributions must be focused on regions, rather than dispersed could
prove useful. This can be seen as domain specific attribution robustness (as opposed to
the generic attribution robustness we have explored in this work).

Studying a more comprehensive set of properties of attribution robust models

Since attribution robust training is a technique that makes the input feature space more robust
than standard cross entropy loss, intuition supports that such robust models may have other
benefits. We suggest two properties worth investigating.

• Transfer learning capability. Neural networks trained with attribution robust objectives
on large source datasets may be capable of achieving higher transfer performance on
secondary datasets. A similar effect is reported for the case adversarial or prediction
robustness [52, 66]. Similarly, attribution robust models may perform better on diverse
downstream tasks [58]. In these settings, attribution robust training can be thought of as
a good pre-training task.

• Training data efficiency. For many tasks, large amounts of labeled data may not be
available. In those cases, achieving high accuracy with less data is important. Prior
work indicates that adversarial or prediction robust training can be data efficient, and
even treated as a form of data augmentation [65]. Therefore, an investigation of the data
efficiency of attribution robust training could be a worthwhile effort.
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Conclusion

6.1 Summary of thesis contributions

This thesis presented research on the topic of attribution robustness of neural networks (chap-
ters 2 - 5) as well as applications of deep neural networks based on published work (appendices
B, D, E). The research contributions of this thesis can be summarized as follows.

6.1.1 Attribution robustness of neural networks

Attributions or feature significance maps are a method for explaining a model’s predictions
for a given input. Attribution robustness refers to the property that attributions produced by a
model cannot be easily manipulated by adversarial input perturbations. For reliability and trust
of attributions and machine learning models in general, attribution robustness is an important
research problem to solve.

Novel framework of loss functions and a new robust objective. We presented a new, generic
and flexible framework of loss functions for training attribution robust neural networks, which
allows us to derive well-known and new robust objectives. One such derivation led to the
novel attribution robust objective, the “cross entropy of attacks”. It is simpler and significantly
faster than the existing robust objectives, while simultaneously achieving higher attribution
robustness and accuracy on several image datasets.

74
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Computational cost analysis of attribution robust training and techniques for efficiency
improvement. A detailed algorithmic and empirical analysis of the high computational cost
of attribution robust training revealed that it can be 4 to 67 times slower than standard training
in different settings. To address this critical issue, we introduced three efficiency improvement
techniques: combining standard and robust training (2x - 4x speed gain), using a fast one-step
attack in the training loop (3x or more speed gain), and tuning the number of steps in the
integrated gradients computations (2x - 6x speed gain).

An analysis of the challenges of attribution robust training. We presented experiment re-
sults that confirm the existence of a trade-off between attribution robustness and accuracy. We
also identified the critical challenge of hyperparameter tuning in robust training, and provided
a guideline to approach the tuning process.

Properties of attribution robust neural networks. An empirical investigation of the prop-
erties of attribution robust neural networks revealed that they are robust to common image
corruptions (higher accuracy than standard models on corrupt data), and that they are not re-
silient to spurious correlations as hypothesized in prior work.

6.1.2 Applications of deep neural networks

Neural network classification systems were developed using several training methodologies
(supervised, semi-supervised and self-supervised) to solve real-world problems.

Computer network intrusion detection. We presented a comprehensive survey and empir-
ical benchmark of deep learning models for the use case of network intrusion detection. We
identified that deep feed-forward neural networks trained in a supervised manner outperform
autoencoder, deep belief network and LSTM networks in terms of accuracy, F1-score and train-
ing and inference time. The diverse benchmark with legacy and modern intrusion detection
datasets allows for standard comparison, which was a critical gap in the existing literature.

Damage detection in physical structures. We proposed a novel machine learning system uti-
lizing an LSTM with multi-window input from vibration signals for the purpose of detecting
and classifying damage in physical structures. We demonstrated that simple data augmentation
techniques and a voting mechanism on the output of individual windows in a signal signifi-
cantly improve the performance of the system.
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Label efficient classification of industrial process signals with self-supervised learning. A
critical problem in the domain of industrial process signal classification is the lack of labeled
data despite the availability of vast amounts of unlabeled data. We used a well-known self-
supervised learning method called Contrastive Predictive Coding (CPC) to pre-train a hybrid
1D CNN + LSTM architecture on unlabeled signals, followed by supervised fine-tuning on
labeled data. This method produced excellent label efficiency, achieving high accuracy com-
parable to label-heavy supervised-only training methods with very little labeled training data
(10’s or few 100’s of labeled examples).

6.2 Impact and implications

6.2.1 Impact of the research on attribution robustness

We approached this work with the goal of dissecting the attribution robust training problem and
developing simple techniques to achieve robustness. The methods proposed in this work are
simple, efficient, backed by comprehensive empirical evidence and open source. This al-
lows researchers to easily build on our work without the need for vast computational resources.
Robust attributions lead to reliable and trustworthy explanation methods and dependable ma-
chine learning systems in general. In domains where the reliability of explanations is critical,
such as healthcare and autonomous systems, the advancements in attribution robustness are
especially consequential.

The analysis of the properties of attribution robust models was intended to enhance the under-
standing of these training mechanisms and the resulting trained models, which are typically
treated as black boxes and not broadly evaluated. We hope that both the positive and nega-
tive results presented in this work will be a valuable addition to the literature on attribution
robustness of neural networks.

6.2.2 Impact of the research on applications

The three application projects introduced novel machine learning systems and techniques that
the researchers and engineers in corresponding domains can use and build on. The research
in network intrusion detection with neural networks will enhance the security of computer
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systems and add value to the cybersecurity research community.

The structural damage detection project was a collaboration with a civil engineering research
team. The research was conducted with a view of utilizing the learning capabilities of deep
neural networks to enable the engineers in the field of structural health monitoring to develop
better monitoring systems, and to enhance the safety of physical infrastructure of the world.
The label efficient industrial process classification methods presented in this thesis address the
critical issue of lack of labeled data in the field, and enable industrial engineers to become
more productive. The published work on these topics have been well-received by the research
community.

6.3 Future work

We now discuss several potential paths of exploration for future work on the topic of attribution
robustness of machine learning models.

Diverse neural architectures, tasks and data modalities. The literature on attribution ro-
bustness is largely concentrated on convolutional neural network classifiers with image data.
There is no fundamental reason for this to be the case; attribution attacks can be generated for
any model and data type. We encourage more diversity on the topic of attribution robustness.

• Training attribution robust models for other data modalities (eg: time-series such as audio
signals).

• Training other neural network architectures for attribution robustness (eg: very deep
ResNets, LSTMs, transformers etc.) as well as other machine learning models.

• Investigating attribution robustness in task settings other than classification (eg: regres-
sion).

Broad evaluation of properties of robust models. Studying a more comprehensive set of
properties of attribution robust models among multiple data modalities and neural network
architectures (see also section 5.4.1).

• Properties such as transfer learning capability, label efficient classification.
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• Performance on edge cases/ examples that are difficult to classify for standard models.

Efficient robust training. As seen in this work, attribution robust training of neural networks is
computationally more expensive than standard training. We have introduced several techniques
for improving efficiency, but more research in this direction will enable attribution robust train-
ing at scale (for large models and datasets). For example, it may be possible to replace inte-
grated gradients with a faster attribution method, so that the attack generation during training
will be fast.

Improving our understanding of attribution robust training dynamics. Existing work eval-
uate attribution robustness of trained models using metrics such as Kendall tau and accuracy
after robust training sessions have been completed. However, we do not have a good idea on
how the neural loss surfaces [33] of attribution robust objectives are different from standard
modes. Such analysis will lead to a deeper understanding of attribution robust training, and
how it poses a different optimization problem than the standard training objectives.
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Appendix A

Attribution Robustness Experiment
Details

A.1 IFIA attack generation hyperparameters

Table A.1 shows the hyperparameters used for generating the IFIA attacks for the test sets of
different datasets. The symbols denote the following: distance budget = ϵ, attack step size =
α, no. of attack iterations = iter, no. of steps in the IG calculation = ig_steps, no. of top
attribution pixels = k.

Table A.1: IFIA attack generation hyperparameters

Dataset Hyperparameters

ϵ α iter ig_steps k

MNIST 0.3 0.01 100 100 200

CIFAR-10 0.6 0.01 100 50 200

RIMB 0.2 0.005 50 40 1000

Waterbirds 0.2 0.005 50 40 1000

CelebA 0.1 0.0025 50 40 1000
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A.2 Benchmark datasets with common corruptions and per-
turbations

Table A.2 shows information about the different corruption types contained in the three corrupt
image datasets MNIST-C, CIFAR-10-C and RIMB-C.

Table A.2: Benchmark image datasets containing corruptions

Dataset No. of test examples Corruption types

MNIST-C [42]

- 10,000 examples in
each corruption type
- 15 corruption types
- 150,000 total
examples

Random noise: shot noise, impulse noise
Blur: glass blur, motion blur
Affine transformations: shear, translate, scale, rotate
Weather: brightness, fog
Artifacts: stripe, spatter, dotted line, zigzag, canny edges

CIFAR-10-C [23]

- 10,000 examples in
each corruption type
- 19 corruption types
- 5 severity levels
- 950,000 total
examples

Noise: gaussian noise, shot noise, and impulse noise
Blur: defocus blur, glass blur, motion blur, and zoom blur
Weather: frost, snow, fog, and brightness
Digital: contrast, elastic transform, pixelate, JPEG
compression
Other: speckle noise, spatter, gaussian blur, saturate

RIMB-C [23]

- 1,400 examples in
each corruption type
- 19 corruption types
- 5 severity levels
- 133,000 total
examples

Same corruptions types as CIFAR-10-C

A.3 Datasets used for spurious correlations experiments

Figure A.1 illustrates the spurious attributes and groups in the Waterbirds and CelebA datasets
used for spurious correlations experiments in section 5.3.
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Figure A.1: Waterbirds and CelebA dataset details and visualizations. Adapted from [30]



Appendix B

Deep Learning Methods in Network
Intrusion Detection: a Survey and an
Objective Comparison

Synopsis

This chapter is based on a survey paper [21] written and published by the thesis author in the
Journal of Network and Computer Applications.

The use of deep learning models for the network intrusion detection task has been an active
area of research in cybersecurity. Although several excellent surveys cover the growing body of
research on this topic, the literature lacks an objective comparison of the different deep learning
models within a controlled environment, especially on recent intrusion detection datasets. In
this chapter, we first introduce a taxonomy of deep learning models in intrusion detection and
summarize the research papers on this topic. Then we train and evaluate four key deep learning
models - feed-forward neural network, autoencoder, deep belief network and long short-term
memory network - for the intrusion classification task on two legacy datasets (KDD 99, NSL-
KDD) and two modern datasets (CIC-IDS2017, CIC-IDS2018). Our results suggest that deep
feed-forward neural networks yield desirable evaluation metrics on all four datasets in terms of
accuracy, F1-score and training and inference time. The results also indicate that two popular
semi-supervised learning models, autoencoders and deep belief networks do not perform better
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than supervised feed-forward neural networks. The implementation and the complete set of
results have been released for future use by the research community. Finally, we discuss the
issues in the research literature that were revealed in the survey and suggest several potential
future directions for research in machine learning methods for intrusion detection.
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B.1 Introduction

Computer networks have expanded greatly in size, usage and complexity over the last decade.
New types of devices and network architectures have emerged, such as cloud computing and
the Internet of Things. With the expansion of these networks and systems, their security has
become a key issue. According to the 2019 Cyberthreat Defense Report published by the
CyberEdge group [12], attacks on global networks of large enterprises have been increasing
during the past five years (Figure B.1). These attacks include, among others, denial of ser-
vice attacks, malware and ransomware attacks and advanced persistent threats (APT). APTs
can be particularly dangerous and costly, as these are targeted, long-term attacks launched by
resourceful malicious actors against government and private organizations with the intent of
exfiltrating data and sabotaging infrastructure. The cybsersecurity report M-Trends 2019 [20]
reveals that in 2018, these attacks had a mean dwell time of 184 days (the time that the attack
is effective before it is detected).

The first line of defense against cyber attacks on a computer system is formed by a well-
designed security framework that enforces standard security practices, which includes confi-
dentiality management, access control, authentication and other security policies. However,
attacks may still pose a threat due to operational mishaps, system vulnerabilities (especially,
those targeted by zero-day exploits) and other reasons. Intrusion detection systems (IDS) per-
form the crucial task of detecting such attacks on computers and networks and alerting the
system operators. In one case, an IDS in a SCADA system of a water utility helped detect
a crypto-mining malware on the system servers by alerting the security team of anomalous
HTTP traffic [60].

An IDS may be placed in individual hosts in a network, in a dedicated central location, or dis-
tributed across a network. IDS’s that are designed to detect attacks on a network of computers
rather than a single host are called network intrusion detection systems (NIDS). These systems
monitor network functionality in the form of network telemetry, which may include network
traffic, metadata of network flows (eg: protocols such as NetFlow) and activity logs from hosts,
and attempt to detect attack occurrences.

Techniques used for intrusion detection can be broadly categorized into two groups: signature-
based and anomaly detection methods [64]. Signature-based methods operate by matching the
input telemetry data with a set of known attack patterns or signatures. These methods give
accurate detections on previously known attacks, yet they fail at detecting unseen new attacks.
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Anomaly detection methods on the other hand establish a notion of normal behavior in the
data, and flag deviations from this behavior (anomalies) as attacks. This method of detection
enables the detection of preciously unseen attacks. However, since they flag any anomaly as
an attack, these methods are known to yield a high number of false alarms.

Machine learning methods for intrusion detection have been studied by researchers for over
20 years [55]. The large volume of network telemetry and other types of security data has
made the intrusion detection problem amenable to machine learning methods. Many mod-
ern commercial intrusion detection systems use machine learning based algorithms as part of
their detection strategy (eg: security platforms Cisco Stealthwatch [11] and Microsoft Azure
Sentinel). These methods generally fall under the anomaly detection category of intrusion de-
tection technique. The machine learning models can be broadly categorized into two groups:
shallow learning or classic models and deep learning models. Generally, deep learning models
in current use are neural network models with a high number of hidden layers. These models
are capable of learning highly complex non-linear functions, and the hierarchical arrangement
of layers enables them to learn useful feature representations from input data. Deep learning
methods have gained recent success in multiple domains such as image classification [44, 27],
speech recognition [30, 4] and machine translation [70]. In the domain of intrusion detection,
both classic machine learning models [9] and deep learning models [7] have been used with
promising results.

Several recent survey papers cover the literature on deep learning methods for intrusion de-
tection [7, 53]. However, the literature is lacking in an empirical evaluation of deep learning
models evaluated on standard intrusion datasets; especially, newer datasets. In this chapter,
we present a taxonomy and a broad survey of research papers on the topic of deep learning
methods for intrusion detection. Four key deep learning models in the literature are trained
and evaluated on two legacy datasets (KDD 99, NSL-KDD) and two modern datasets (CIC-
IDS2017, CIC-IDS2018), and this benchmark implementation and its complete result set is
made publicly available. The remainder of this chapter is organized as follows. The rest of
Section B.1 briefly reviews the related literature and highlights the contributions of this chap-
ter. Section B.2 is a preliminary discussion on the problem of intrusion detection, and section
B.3 presents the taxonomy and the survey of the literature on deep learning methods for intru-
sion detection. Section B.4 describes in detail the series of experiments in the benchmark and
the analysis of the results. Section B.5 is a discussion on issues in current research and future
directions, and section B.6 gives concluding remarks.
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Figure B.1: Percentage of large enterprises with reported attacks [26]

B.1.1 Related work

Several reviews of the literature on machine learning methods for intrusion detection have been
published in recent years, some of them focusing on deep learning methods. One of the ear-
lier surveys [76] review machine learning models in the intrusion detection domain published
between 2000 and 2007. Since this is an older survey, it does not capture the research develop-
ments in intrusion detection during the past decade. It can be seen that during this period (2000
- 2007), classic machine learning models such as support vector machines, shallow artificial
neural networks, and decision trees have been popular in research. The authors categorize the
models into three groups: single classifiers, hybrid classifiers (cascade of different classifiers)
and ensemble classifiers (combination of weak learners).

Several other surveys [9, 17] cover a wide range of machine learning algorithms in the intrusion
detection domain. Use of classic algorithms such as SVMs, decision trees and random forests
are reviewed in detail, as well as hidden Markov models and evolutionary algorithms. Both
these surveys review research published before 2015 and they do not explore any class of
algorithms in depth. In particular, deep learning methods in intrusion detection are not covered
in these surveys. Several surveys published in 2018 and 2019 [53, 10, 69] review more recent
research on this topic, which include some deep learning methods. However, the selection of
deep learning algorithms in these articles is limited, as they are intended to be surveys of a
broad set of machine learning models for intrusion detection.

Several survey papers focus on the topic of deep learning methods for intrusion detection. In
[32], authors propose a taxonomy which accommodates deep learning methods by classifying
them into two groups: generative and discriminative architectures. However, important models
such as deep feed forward networks and recurrent neural networks are not comprehensively
covered in this review. A detailed summary of a selection of seven research papers on deep
learning models for intrusion detection is given in [46]. Other work [80] reviews several types
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of deep learning models in cybersecurity: deep belief networks, recurrent neural networks and
convolutional networks. Both these surveys lack breadth of coverage of deep learning models
used in intrusion detection. A broad survey in [23] covers deep learning models in the domain
of IoT security. However, few of the reviewed works are relevant to intrusion detection.

Of the recent survey papers, [7] provides perhaps the most comprehensive review of deep
learning models used in cybersecurity tasks, including intrusion detection. The authors note
that restricted Boltzmann machines, autoencoders and recurrent neural networks are particu-
larly popular in the intrusion detection domain. They also note the difficulty in comparing the
performance of different models, as researchers use different datasets and metrics for model
evaluation. None of the survey papers mentioned above perform any benchmark or empirical
analysis of the reviewed deep learning models themselves.

In [82], an empirical performance analysis of four deep learning models (multi-layer percep-
tron (MLP), restricted Boltzmann machine (RBM), Sparse autoencoder (SAE) and MLP with
feature embeddings) is conducted on two intrusion datasets (NSL-KDD and UNSW-NB15).
However, their experiments do not cover some of the popular models like recurrent neural net-
works, and no evaluation is done on newer intrusion datasets. Further, the authors report only
accuracy, precision and recall of the experiments, and the analysis lacks depth and insight into
the performance of the models. In a recent and concurrent work [18] the performance of seven
deep learning models on CSE-CIC-IDS2018 and Bot-IoT datasets is analyzed. This benchmark
evaluates the models on only two datasets and report three evaluation metrics: per-class detec-
tion rate, overall accuracy and training time. We were unable to verify important parameters of
the deep network models such as the number of hidden layers. In contrast, the full implemen-
tation of our study is publicly available to encourage objective comparisons and to promote
transparency. We train and evaluate both shallow and deep versions of neural network models
and report a diverse range of evaluation metrics (accuracy, F1-score, false positive and nega-
tive rates, training and inference time etc). Furthermore, we conduct experiments to compare
supervised vs. semi-supervised models, a thorough neural architecture search to understand
the effects of network depth and width on performance, and an analysis of data efficiency of
feed-forward neural networks.

Table B.4 lists prior surveys on the topic of deep learning methods in intrusion detection.
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B.1.2 Contributions

In this chapter, we attempt to address the shortcomings of the current surveys on deep learning
models for intrusion detection as discussed above. The major contributions of this work are as
follows:

• We present a taxonomy of deep learning methods used for intrusion detection and sum-
marize the recent relevant literature under this taxonomy.

• We implement a benchmark of four key deep learning models used in the intrusion detec-
tion literature, and evaluate them on two legacy datasets (KDD 99, NSL-KDD) and two
modern datasets (CIC-IDS2017, CIC-IDS2018). The deep learning models have been
selected from the top three branches of the taxonomy (Figure B.2), and they are repre-
sentative of three different approaches to building deep learning models: feed-forward
neural networks that classify flow instances, LSTM networks that classify sequences of
flows, autoencoder and deep belief networks that are trained in a semi-supervised man-
ner with both unlabeled and labeled data. This empirical comparison aims to address
the difficulty of comparing the models by results reported in research works due to dif-
ferences in evaluation metrics, operations on datasets, and limited evaluation on recent
datasets.

• The implementation1 and the complete set of experiment results2 are released for further
use and analysis by the research community.

• We discuss the issues in current research on machine learning for intrusion detection and
highlight several future research directions guided by our findings.

We believe that our survey of the literature, and the comprehensive empirical comparison of
deep learning models provides a bird’s-eye view of the field and insights to both new and ex-
perienced researchers in this field. Researchers may also find the open-source implementation
of the benchmark useful as a reference point for their future work and experimentation.

1https://github.com/sgamage2/dl_ids_survey
2https://github.com/sgamage2/dl_ids_survey/paper_results

https://github.com/sgamage2/dl_ids_survey
https://github.com/sgamage2/dl_ids_survey/paper_results
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B.2 Preliminary discussion

B.2.1 The network intrusion detection problem

The goal of an intrusion detection system (IDS) is to monitor the activity or behavior of a
system, identify when attacks are occurring and generate alarms so that action can be taken to
mitigate the consequences. In a computer system network, the input to the IDS (activity to be
monitored) takes the form of network telemetry (traffic statistics, information extracted from
packet headers and content) and information from hosts (process behavior, system call traces,
application logs, file system changes). The output of the IDS could be a label or an attack
score for each input or a sequence of inputs. The label can be binary: normal and attack, or
multi-valued indicating different types of attacks.

From a machine learning perspective, this problem can be formulated as either an anomaly
detection or a classification problem. To train an anomaly detection model, a dataset of nor-
mal inputs is sufficient. To train a classifier, a labeled dataset of normal and attack inputs is
necessary (unlabeled data maybe helpful, but most classification models need some amount of
labeled data for training). After a model is trained, it can be deployed to make detections on
new data from the system.

B.2.2 Datasets

A number of network intrusion detection datasets are available publicly, some of which have
been used for training and evaluating the models in the works surveyed. It is not in the scope of
this work to provide a comprehensive overview of all datasets (we direct the interested reader
to [61]). This section contains a brief summary of the more frequently used datasets below,
and the rationale for using them in our experiments for model comparison. Key characteristics
of the datasets are summarized in Tables B.1 and B.2.

• KDD 99 [39]: This is one of the earliest public datasets for intrusion detection and the
most frequently used in the reviewed literature. It is a flow-based dataset (augmented
with additional metadata from hosts) with 41 features and attacks of four categories: de-
nial of service (DoS), probe, remote to local (R2L), and user to root (U2R). Despite its
frequent usage, the dataset contains many deficiencies such as duplicate records, simu-
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lation artifacts and the fact that it does not reflect modern network traffic and attacks . In
our experiments, we train and evaluate machine learning models on the KDD 99 dataset
for two reasons: 1) as a first step to verify that the models are working as expected and
2) to be able to compare with previous results reported on this dataset.

• NSL-KDD [73]: The NSL-KDD dataset addresses some of the deficiencies in the KDD
99 set by removing duplicate records and selecting records that are difficult to classify.
It is similar in structure to the KDD 99 dataset. Although this dataset is an improved
version of the KDD 99 set, it is still not suitable for building intrusion detection models,
and we use it in our experiments for the same reasons quoted for the KDD 99 dataset.

• CIC-IDS2017 [63]: This dataset was recorded in a small network environment with
simulated normal traffic. Six categories of modern attacks are launched from a separate
network. Both the raw packet capture and Netflows with 80 features are made available.
A small number of research papers reviewed in this survey use this dataset. We believe
that this dataset is representative of modern network traffic, and therefore we use it in our
experiments.

• CSE-CIC-IDS2018 [63]: This dataset is similar to CIC-IDS2017 in structure and the
contained attacks. However, it is prepared on a larger network representing a corporation
as the victim network (420 client machines and 30 servers) and a larger attacker network
(50 machines).

Table B.1: Summary of dataset characteristics.

Dataset No. of instances Type of data No. of features Features No. of classes

KDD 99 Train: 4,898,431
Test: 311,029 Connection

records
41 (3
categorical, 39
numeric)

duration, src_bytes,
serror_rate,
su_attempted etc.

24 original
classes mapped to
5 classesNSL-

KDD
Train: 125,973
Test: 22,544

IDS
2017 Total: 2,827,808 Bi-

directional
NetFlows

78 (1
categorical, 77
numeric)

duration, packet
counts and sizes in
both directions etc.

12 classes

IDS
2018

Total:
16,137,183 15 classes

B.2.3 Evaluation metrics

There are several metrics and tools used by researchers to evaluate the performance of machine
learning models in intrusion detection. These metrics measure different aspects of a model or
an IDS system. A brief description is of each metric and tool is given below.
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Table B.2: Attack types present in the datasets.

Dataset Attack types

KDD 99 and
NSL-KDD

Probe: ipsweep, nmap, portsweep, satan
DoS (Denial of Service): back, land, neptune, pod, smurf, teardrop
U2R (User to Root): buffer_overflow, loadmodule, perl, rootkit
R2L (Remote to Local): ftp_write, guesspasswd, imap, multihop, phf, spy, warezlient,
warezmaster

IDS 2017 Bot, DDoS, DoS GoldenEye, DoS Hulk, DoS Slowhttptest, DoS slowloris, FTP-Patator,
PortScan, SSH-Patator, Web Attack Brute Force, Web Attack XSS

IDS 2018
Bot, Brute Force - Web, Brute Force - XSS, DDOS HOIC, DDOS LOIC-UDP, DDoS
LOIC-HTTP, DoS GoldenEye, DoS Hulk, DoS SlowHTTPTest, DoS Slowloris,
FTP-BruteForce, Infilteration, SQL Injection, SSH - Bruteforce

The confusion matrix is a tabulation of classifications made by a model, typically with the ac-
tual class (ground truth) on rows and predicted class on columns. It can be obtained for both
binary classifications (Table B.3), and multi-class classifications. It shows the "classification
distribution" of a model, and helps identify properties of the model, such as when it is consis-
tently misclassifying one class as another. For example, a model may classify nearly all DDoS
attempts as a data exfiltration. The researcher can then examine potential causes for this issue.
This type of insight is not readily gleaned from other metrics.

Table B.3: Confusion matrix for a binary class problem: TP = True Positives, TN = True
Negatives, FP = False Positives, FN = False Negatives

Predicted class
Attack Benign

Actual class
Attack TP FN

Benign FP TN

Several other important metrics are calculated based on the values in the confusion matrix
(Table B.3). They include overall accuracy, precision, recall, specificity, false positive rate and
F1 score. See C.1 for definitions of the metrics.

For multi-class problems, these metrics can be calculated per-class, treating the classification
as a one-vs-all problem. A final metric may be obtained by averaging the per-class metrics in
one of three ways.

• Micro average: calculate the metrics using the sum of each type of classification (eg:
T P = T Pclass1 + T Pclass2 + ...).

• Macro average: calculate the per-class metrics and average them (sum and divide by the
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no. of classes)

• Weighted macro average: similar to macro average, except the per-class metrics are
weighted by the number of instances in each class to obtain the final average.

Note that a natural trade-off exists between sensitivity (recall) and false positive rate (FPR); i.e.
a highly sensitive model (desirable) is likely to have a high false positive rate (undesirable).
This relationship is illustrated by a Receiver Operating Characteristic (ROC) curve, which
has FPR in the horizontal axis, and sensitivity (recall) in the vertical axis. The ROC curve
is obtained by changing the threshold for classification into the positive class (attacks), and
recording the corresponding FPR and recall. One can then choose a point on the ROC curve
that is suitable to the application. The area under the ROC curve (AUC) is another metric for
classifiers that reflects the ability of the model to distinguish between the two classes.

In addition to the metrics that evaluate classification performance of a model, several other
important metrics reflect model complexity. In a deep learning model, complexity is a function
of the number of parameters (weights) and architecture.

• Time to train: This can be measured as the number of training epochs (iterations over the
dataset taken by an algorithm like gradient decent) needed to reach a goal metric on out-
of-sample data (eg: a goal accuracy or a goal F1-score). The time taken (in seconds or
minutes) for those training epochs can also be measured. If the model is trained offline,
a longer time to train it may be acceptable. However, if the model must be trained in
real-time, fast training is required.

• Time to predict (latency): this can be measured as the time taken to make a prediction on
a fixed-sized batch of input instances. Since predictions in an intrusion detection system
are made online (real-time), low latency figures are preferred.

• Throughput: the number of predictions that can be made in a time period. This is a func-
tion of prediction latency and the manner the model is deployed in an IDS (eg: parallel
deployments yield high throughput). Given the large volume of network telemetry data
that an IDS has to examine, high throughput figures are required for proper operation.
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B.3 Taxonomy and survey of deep learning methods for in-
trusion detection

Deep learning models
in intrusion detection

Supervised instance
learning

Shallow neural network
(feed-forward) (ANN)

Deep neural network
(feed-forward) (DNN)

Convolutional neural
network (CNN)

Supervised sequence
learning

Recurrent neural
network (vanilla RNN)

RNN: Long-short term
memory (LSTM)

RNN: other variants

Semi-supervised
instance learning

Autoencoder (AE) +
classifier

Restricted Boltzmann
machine (RBM) or

Deep belief network
(DBN) + classifier

Other unsupervised
learner + classifier

Other learning
paradigms

Transfer learning

Figure B.2: Taxonomy of deep learning models in intrusion detection

Various taxonomies have been presented in previous surveys on the topic of deep learning
models in intrusion detection [32, 46, 10]. The taxonomy we propose for this survey is shown in
Figure B.2. For this taxonomy, we have considered the machine learning practitioner’s point of
view rather than conceptual classification of machine learning models. For example, previous
taxonomies identify generative vs. discriminative models, which is an important conceptual
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categorization. However, the distinctions we make are more likely to help practitioners in terms
of data pre-processing and implementing a model building pipeline in addition to highlighting
conceptual differences. For example, instance vs. sequence classification require different
arrangements of the dataset, and semi-supervised methods typically involve a pre-training stage
(with unlabeled data) in the machine learning pipeline. A transfer learning method requires
downloading of a suitable pre-trained model from a repository.

We have surveyed the research literature on deep learning methods in intrusion detection and
compiled a summary of the key works. Table B.4 shows a list of current survey papers on this
topic and Tables B.5, B.6, B.7 and B.8 shows research papers categorized under each branch
of the taxonomy. Finally, four key neural network models from the first three branches of the
taxonomy were implemented for empirical comparison (section B.4).
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Table B.4: List of survey papers on deep learning and other machine learning methods for
intrusion detection. (DNN = deep neural network, RNN = recurrent neural network, CNN
= convolutional neural network, RBM = restricted Boltzmann machine, DBN = deep belief
network, AE = autoencoder, SOM = self-organizing map, IDS = intrusion detection system).

Survey paper Coverage of machine learning models and remarks

[18]
Reviews 10 DNN papers, 7 RNN papers, 7 CNN papers, 9 RBM papers, 5
DBN papers and 7 AE papers. Includes an empirical comparison of seven
deep learning models on two recent datasets.

[7]
Reviews 3 DNN papers, 11 AE papers, 2 CNN papers, 8 RNN papers and 7
RBM papers. Includes deep learning papers on other cybersecurity
applications (eg: malware detection).

[53]
Reviews a selection of 38 papers that use different machine models for the
intrusion detection problem. Contains an analysis of network attacks and
features used in IDS.

[10]

Presents a taxonomy of machine learning algorithms in network intrusion
detection, with a focus on the Internet of Things. A limited selection of prior
research is reviewed in detail. Discusses other aspects such as IDS
architectures and deployment methods.

[69]
Summarizes five papers that use deep learning for SDN-based network
intrusion detection. Discusses challenges in intrusion detection in an SDN
environment.

[80] Reviews 7 DBN papers, 6 RNN papers and 5 CNN papers.

[32]
Gives a taxonomy of machine learning methods in intrusion detection. 15
papers on various neural network models are reviewed in detail (DNN, RBM,
RNN, AE, CNN, SOM).

[46]

Gives a taxonomy of machine learning methods in intrusion detection. 7
deep learning IDS papers are reviewed in detail (includes DNN, AE, DBN).
Introduces a 4-layer fully connected DNN with results on the NSL-KDD
dataset.

[9]
Covers a range of machine learning methods, including decision trees,
Bayesian networks and Ensemble methods. Neural network models are not
given focus.

[17]
Covers a range of machine learning methods, including SVM, Naïve Bayes
and decision trees. Neural network models are not given focus.
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Table B.5: List of research papers on supervised instance classification models for intrusion
detection. (Acc = accuracy, Prec = precision, Rec = recall, FAR = false alarm rate, F1 = F1-
score)

Model
type

Paper Dataset and
problem Model details Results

DNN [77]
NSL-KDD, CICIDS 2017,
UNSW-NB15, Kyoto,
WSN-DS

ANN has 5 hidden layers
with 1024, 768, 512, 256,
128 nodes. ReLU activation

In order NSL-KDD, IDS
2017:
Acc = 78.5, 95.6%, Prec
= 81.0, 96.2%, Rec =
78.5, 95.6%, F1 = 76.5,
95.7%

CNN [84]
ISCX VPN-nonVPN,
ISCX 2012. 5-class
classification

Deep CNN: 2 1D
convolutional layers, 1 fully
connected layers

Acc = 99.85%

DNN [78]

NSL-KDD, 5-class
classification. Original
training set is split to 90%
training, 10% test sets

ANN has 4 hidden layers
with 245 nodes each. ReLU
activation

Acc = 86.35%, Prec =
81.86%, Rec = 77.32%,
F1 = 73.89%, FAR =
0.1619

CNN [45]
NSL-KDD, Kyoto,
MAWILab, binary
classification

Deep CNN: 3 1D
convolutional, 2
max-pooling, 1 flatten, 3
fully connected layers

F1 = 79%

DNN [15] NSL-KDD, binary and
4-class classification

ANN has 3 hidden layers
with 150, 120, 50 nodes

Acc = 98.27%, Rec =
96.5%, FAR = 0.0257

DNN [37] KDD 99 (10% subset),
binary classification

ANN has 4 hidden layers
with 100 nodes each. ReLU
activation

Acc = 99.01%, Rec =
99.81%, FAR = 0.0047

CNN [79]

Custom dataset
(USTC-TFC2016), binary,
10-class and 20-class
classification

Traffic flows are converted
to gray-scale images. CNN
has 2 convolutional, 2
max-pooling, 2
fully-connected layers

20-class classifier:
Acc = 99.17%, Prec =
99%, Rec = 98%, F1 =
98%

DNN [72] NSL-KDD, binary
classification

6 features are manually
selected. ANN has 3 hidden
layers with 12, 6, 3 nodes

Acc = 75.75%, Prec =
83%, Rec = 76%, F1 =
75%

DNN [52]
Subsets of KDD 99 and
NSL-KDD, 5-class
classification

Dataset is clustered using
spectral clustering.
Multiple ANNs are trained
(one per cluster). Result is
aggregated

Acc = 72.64%, Prec =
57.48%

DNN [31] Simulated IoT network
data, binary classification

ANN has one hidden layer
with 3 nodes. Sigmoid
activation, MSE loss
function

Acc = 99%

ANN [33] NSL-KDD, binary and
5-class classification

Reduce features to 29.
ANN has single hidden
layer with 29 nodes

Acc = 79.9%
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Table B.6: List of research papers on supervised sequence classification models for intrusion
detection. (Acc = accuracy, Prec = precision, Rec = recall, FAR = false alarm rate, F1 = F1-
score, GRU = Gated Recurrent Unit)

Model
type

Paper Dataset and
problem Model details Results

LSTM [14] ISCX 2012, AWID.
Binary classification

30 embedding layers, 10
LSTM layers, and sigmoid
output layer

ISCX dataset:
Acc = 99.91%, Prec =
99.85%, Rec = 99.96%

GRU [81] KDD 99, NSL-KDD,
5-class classification

GRU and Bidirectional
GRU (BGRU) nets. Model
has one layer with 128
GRU nodes, 3 feed-forward
layers with 48 nodes

BGRU gives best results
with fast convergence.
On NSL-KDD: Acc =
99.24%, Rec = 99.31%,
FAR = 0.84%

LSTM [59]

ISCX IDS, anomaly
detection by predicting
future tokens
(unsupervised)

Token embedding layer, 2
bidirectional LSTM layers,
2 dense layers

AUC = 0.84, ROC
curves for attack classes
given

LSTM [36] NSL-KDD, binary
classification

Training multiple LSTM
nets (one hidden layer) for
different features extracted
(channels). Majority voting.

Acc = 98.94%, Rec =
99.23%, FAR = 9.86%

LSTM [51]
Vehicle network dataset
(custom) with 3 attack
types

3 LSTM layers with 100,
800, 1000 nodes Acc = 86.9%

RNN [83] NSL-KDD, binary and
5-class classification

RNN has 1 hidden layer
with 80 nodes, learning rate
= 0.5

5-class classifier:
Acc = 81.29%

LSTM [8]

KDD 99 (converted to
time-series), anomaly
detection by predicting
future packets

One hidden LSTM layer
with 23 nodes. Input time
steps = 3. High prediction
errors in a time window (12
steps) indicate attacks

Rec = 94 - 98%, FAR =
Variable

LSTM [48] KDD 99, 5-class
classification

LSTM network details are
unspecified

Acc = 97.54%, Prec =
97.69%, Rec = 98.95%,
FAR = 9.98%

LSTM [74]
CAN bus data (custom),
anomaly detection by
predicting next word

Network has 2 dense layers,
2 LSTM layers. Input seq.
length is 20 words

AUC ranging from 94.4
to 99.8

LSTM [40] KDD 99, 5-class
classification

One hidden LSTM layer
with 80 nodes. Input time
steps = 100. MSE loss
function

Acc = 96.93%, Rec =
98.88%, FAR = 10.04%

LSTM [68] KDD 99, 5-class
classification

LSTM network has 20
hidden nodes and variable
no. of cell memory blocks

Acc = 93.82%.
Comprehensive
experiments and results
are reported.
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Table B.7: List of research papers on semi-supervised instance classification models for intru-
sion detection. (Acc = accuracy, Prec = precision, Rec = recall, FAR = false alarm rate, F1
= F1-score. AE = Autoencoder, RF= Random Forest, SM = Softmax, DBN = Deep Belief
Network)

Model
type Paper Dataset and

problem Model details Results

AE +
RF [65]

KDD 99 (10%
subset), NSL-KDD,
5-class and 13-class
classification

2 stacked AE’s (each with 3
hidden layers: 14, 28, 28
nodes): unsupervised
training. Followed by RF
classifier

5-class classifier on
NSL-KDD:
Acc = 85.42%, Prec =
100%, Rec = 85.42%, F1
= 87.37%, FAR =
14.58%

AE +
SM [58]

NSL-KDD, binary
and 5-class
classification

AE with 2 layers (20, 10) is
pre-trained layer-wise,
followed by fine-tuning a
softmax layer

Overall results are not
given

AE +
SM [35]

NSL-KDD, 2-class,
5-class and 13-class
classification

Sparse AE for unsupervised
training followed by
softmax regression
classifier

2-class classifier:
Acc = 88.39%, Prec =
85.44%, Rec = 95.95%,
F1 = 90.94%

AE +
SM [1] NSL-KDD, binary

classification

Stacked AE (3 layers with
150, 120, 50 nodes)
followed by softmax layer

Acc = 99.2%, Rec =
99.27%, FAR = 0.85%

AE +
DBN [50]

KDD 99 (10%
subset), binary
classification

AE training round (5 layers
with 41, 300, 150, 75
nodes), followed by a
RBM-style training of each
layer, followed by
fine-tuning with a final
softmax layer

Acc = 92.1%, Rec =
92.2%, FAR = 1.58%

DBN [2]
NSL-KDD (40%
subset), 5-class
classification

DBN model details are
unspecified Acc = 97.45%

DBN [22] KDD 99, 5-class
classification

DBN has 4 layers with 122,
150, 90, 50 nodes, followed
by softmax layer
(fine-tuned)

Acc = 93.49%, Rec =
92.33%, FAR = 0.76%

DBN [29]
Custom IEEE 118-bus
dataset, binary
classification

Conditional DBN (5 hidden
layers with 50 nodes each).
Time window = 5

Acc = 96.16%, Rec =
95.89%, FAR = 3.57%

DBN +
LR [3]

KDD 99 (10%
subset), 5-class
classification

DBN has 4 layers with 72,
52, 40, 5 nodes (pretrained),
followed by logistic
regression (softmax:
fine-tuned)

Acc = 97.9%, Rec =
97.5%, FNR = 2.47%

DBN +
DNN [38] Custom CAN dataset,

3-class classification
DBN pre-trained weights
are used to initialize DNN

Acc = 97.8%, FAR =
1.6%, FNR = 2.8%

DRBM [19]
KDD 99 (10% subset)
and custom dataset,
binary classification

Discriminative RBM
(parameters are unspecified)

On custom dataset:
Acc = 94%
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Table B.8: List of research papers on transfer learning models for intrusion detection. (TL =
Transfer Learning)

Model
type Paper Dataset and

problem Model details Results

TL [43]

Transfer models
between UNSW
NB-15 and
CICIDS2017 datasets
(train on one, transfer
to other)

Adversarial Siamese neural
network

Outperforms non-TL
baseline and the CORAL
TL method

TL [85]

NSL-KDD, create
source sets and target
sets with attacks not
present in the source
set

Find a latent space where
known and new attacks
have minimum distance.
Agnostic of the ML model

Outperforms all non-TL
baselines (models trained
only on target domain) and
several other TL methods

TL [71]
Transfer models from
KDD 99 to
Kyoto2006

Uses similarity measures
and manifold alignment
between the two feature
spaces

Outperforms non-TL
baseline (SVM)

B.4 Empirical comparison

B.4.1 Overview of experiments: models, datasets and evaluation metrics

The intrusion detection problem is frequently formulated as a classification problem in the lit-
erature reviewed in this chapter. For empirical analysis, four neural network classifiers were se-
lected from the different categories in the model taxonomy (Figure B.2), and they were trained
and evaluated on four popular intrusion detection datasets. For each deep learning model type,
a shallow model (single hidden layer) and a deep model (multiple hidden layers) were imple-
mented. These models were selected as they are representative of the deep learning models
frequently used in the intrusion detection research literature (applicability), and they repre-
sent supervised, semi-supervised and sequential types of models (diversity and coverage). The
following models were selected for the empirical comparison:

1. Artificial neural network: feed-forward (ANN). Feed-forward neural networks yield state-
of-the-art performance on classification tasks in many domains, and it is one of the key
models in the deep learning literature [49]. For network intrusion detection, both shal-
low and deep feed-forward neural networks (DNNs) have been used since the KDD 99
competition [33, 77]. Therefore, feed-forward neural networks were selected as the main
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model for experimentation on the intrusion detection datasets.

2. Autoencoder followed by ANN (AE + ANN). In this semi-supervised learning mechanism,
first an autoencoder with a symmetric encoder-decoder architecture is trained with unla-
beled data (a portion of the training set). This unsupervised training phase is expected to
capture feature transformations from the data. Next, the labeled data of the training set
are transformed using the autoencoder, and the output of the final encoding layer (feature
transformation) is input to a supervised classification model. In our experiments, a feed-
forward neural network (ANN) after the final encoding layer of the autoencoder acts
as the classification model. Semi-supervised approaches using autencoders for network
intrusion detection have been explored in [65, 35].

3. ANN initialized with deep belief network (DBN + ANN). In this semi-supervised method,
first a deep belief network (DBN) is trained with unlabeled data (a portion of the training
set). Next, the weights learned by the DBN are used as the initial weights for training a
neural network (DNN) of the same architecture. The ANN is then trained with the avail-
able labeled data in a supervised fashion. This is a different method of semi-supervised
learning to the autoencoder; it employs weight transfer instead of data transformation
[16]. Semi-supervised approaches using DBNs for network intrusion detection have
been explored in [2, 3].

4. Long-short term memory network (LSTM): Network traffic is sequential in nature, which
makes recurrent neural networks such as LSTMs good candidates for the network intru-
sion detection problem [8, 14]. In our experiments, input sequences to the LSTM model
have been formed by grouping adjacent flows or records of the datasets, as they occur in
a temporal sequence. The output of the model is a label sequence; one label for each flow
in the input sequence. The expectation is that the LSTM network will capture temporal
relationships among adjacent flows.

5. Random forest (RF): In addition to the 4 neural network models, a random forest was
also trained and evaluated on the datasets. It represents the classical machine learning
category of models, and it is commonly used in the intrusion detection literature. It
provides a benchmark for comparison with the deep learning models.

We used two legacy datasets (KDD 99, NSL-KDD) and two modern datasets (CIC-IDS2017,
CIC-IDS2018) for training and testing the machine learning models. A description of the
datasets used in the empirical evaluation is given in section B.2.2.
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The following metrics are calculated for each model evaluation. The definition of the metrics
are given in section B.2.3.

• Per-class metrics: accuracy, precision, recall, false alarm rate, false negative rate, F1
score. These per-class metrics are available in the results repository 3.

• Overall accuracy.

• Weighted macro averages of precision, false alarm rate, false negative rate, F1 score.

• Training time: the number of training epochs and the time taken to reach the average
accuracy achieved by a model (epochs to convergence).

• Testing or inference time: time taken to classify a fixed size batch of 1 million instances
from the dataset.

B.4.2 Details of the experiments

In conducting the experiments of this empirical analysis, we have placed a high importance
on the reproducibility of results. To this end, we have closely followed the Reproducibility
Checklist of the NeurIPS 2019 conference [57]. The relevant details of the experiments are
outlined in the following subsections.

Data pre-processing

The following pre-processing steps were performed on the datasets.

• Removing invalid flow records: the IDS 2017 and IDS 2018 datasets contain flow records
with invalid values in the fields (eg: missing values, strings in numeric fields). Such
records were removed from both datasets (2,867 in the IDS 2017 dataset, and 95,819 in
the IDS 2018 dataset).

• Changing class labels to formulate the 5-class problem: the KDD 99 and NSL-KDD
datasets contain 38 types of attacks (class labels), which fall into 4 attack classes (DOS,

3https://github.com/sgamage2/dl_ids_survey/paper_results

https://github.com/sgamage2/dl_ids_survey/paper_results


B.4. Empirical comparison 109

R2L, U2R and probing). Since we are developing models for the 5-class version of
the problem, the 38 class labels are mapped to the 4 attack classes. With the "Normal"
(benign) label, this yields 5 class labels for classification.

• One-hot encoding of categorical features: the KDD 99 and NSL-KDD datasets contain
3 non-numeric (categorical) features: protocol_type, service and flag. These 3 features
were one-hot encoded, which yielded 84 encoded features.

• Scaling features: All features of all 4 datasets were scaled by standard normalization.

• Preparing sequences for the LSTM model: inputs to recurrent neural networks are se-
quences of instances. For the LSTM model, sequences were formed by grouping a
number of consecutive flow records (adjacent in time). The length of a sequence then
becomes a hyper-parameter of the model. The class label of each flow record was at-
tached to the individual records in a sequence (i.e. input and output is synchronized). All
sequences have a fixed length.

Sample allocation and hyper-parameter tuning

The 3-way holdout method was used for allocating the data for training, hyper-parameter tuning
and model evaluation.

• In the KDD 99 and NSL-KDD datasets, separate test sets are available (in the NSL-KDD
dataset, the test is named KDDTest+). The rest of the dataset was split into two sets: 80%
for training and 20% for validation. The split was made in a stratified fashion in order to
preserve the original class proportions.

• In the IDS 2017 and IDS 2018 datasets, a separate test set is not available. The dataset
was split into three sets: 60% for training, 20% for validation and 20% for testing. The
split was made in a stratified fashion in order to preserve the original class proportions.

Hyper-parameter tuning. The final sets of hyper-parameters for each model on each dataset
were found by a random search of the parameter space. We used hyper-parameter values
reported in the intrusion detection literature as a guide to define the value ranges for the random
search. Table B.9 shows the range of values used in the random search of hyper-parameters.
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The configurations with the highest weighted macro-average F1 score on the validation set
were selected as the final hyper-parameter configurations (Table B.10).

In order to minimize overfitting of neural network models, dropout, batch normalization and
early stopping of training was performed. In each model-dataset combination, the hyper-
parameter configurations that gave the highest weighted macro-average F1 score were selected
as the winning models.

Table B.9: Hyper-parameter configurations/ ranges used in the tuning process

Model Range of hyper-parameters

ANN

no. of layers = 1 - 5
no. of nodes in layers = 64, 128, 256, 512, 1024, 2048
layer activations = ReLU
output layer activation = softmax
loss function = cross-entropy
weight initialization = He [28]
layer dropout rates = 0.05, 0.20, 0.50
batch normalization for each layer
batch size = 32, 64, 256, 1024
optimizer = Adam [41]

AE + ANN

Similar configurations to ANN, except:
unsupervised training data percentage (for AE) = 25%, 50%, 80%
no. of nodes in AE encoder layers = 64, 128, 256, 512, 1024, 2048
symmetric encoder and decoder
output layer activation of AE = sigmoid, ReLU
loss function of AE = binary cross-entropy, mean squared error

DBN + ANN

Similar configurations to ANN, except:
unsupervised training data percentage (for DBN) = 25%, 50%, 80%
DBN optimizer = Persistent Contrastive Divergence (PCD) [75]
DBN learning rate = 0.0001, 0.0005 0.001, 0.1
DBN pre-train epochs (each layer) = 20, 50

LSTM

Similar configurations to ANN, except:
recurrence relation to self in all hidden nodes
cell type = LSTM
sequence length (time steps) = 16, 32, 50

RF
no. of trees = 100, 500, 1000
minimum no. of samples required to split a node = 2, 10, 100 (this
parameter controls tree depth)

Experiments with the best hyper-parameter configurations

The best-performing (highest weighted macro-average F1 score on validation set) hyper-parameter
configurations selected from the hyper-parameter tuning process are listed in Table B.10. The
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following experiments were conducted with these hyper-parameter configurations of the 8 neu-
ral networks (shallow and deep ANN, AE +ANN, DBN +ANN, LSTM) and the random forest
model.

• Validating the benchmark implementation and comparing model performance. The mod-
els were trained (with the best hyper-parameter configurations) on the training sets and
evaluated on the test sets of the four datasets (KDD 99, NSL-KDD, IDS 2017, IDS 2018).
This training and testing process was repeated 5 times for each model-dataset combina-
tion to observe any variance of performance caused by random initialization of model
weights and to verify the stability of the selected hyper-parameter configurations. Per-
formance metrics were recorded for the 36 model-dataset combinations shown in B.10
and the weighted macro average of metrics are reported (mean and standard deviation
over 5 runs). As a form of validating our benchmark implementation, the metrics were
compared to the results reported in the literature. A general comparison of the perfor-
mance of different models along different metrics was also conducted.

• Measuring model training and testing (inference) time. For each model-dataset combi-
nation, the average test set accuracy from the previous experiment was set as the out-
of-sample goal metric. The models were trained until they achieved the goal accuracy,
and the number of training epochs and the time taken were recorded. This process was
repeated 3 times for each model-dataset combination to obtain a distribution of results
(mean result is reported). In the case of semi-supervised models, the autoencoders and
deep belief networks were pre-trained for a fixed number of epochs (10), before fine-
tuning until convergence to the goal accuracy on the test set. Since the random forest is
not trained by an iterative algorithm, its training time was simply measured in minutes.
The testing (inference) time was measured as the time taken (in minutes) to classify a
fixed size batch of 1 million instances from the dataset (repeated 5 times for a distribu-
tion; mean and standard deviation are reported).

• Comparing semi-supervised methods (AE + ANN and DBN + ANN models) with the

supervised feed-forward neural network (ANN). The training set of the NSL-KDD and
IDS 2017 datasets were split 75%-25% in a stratified fashion. The first 75% (labels
removed) was used during the unsupervised training phase (autoencoder and deep belief
network pre-training), and the second 25% was used in the supervised training phase
(fine-tuning). These models were then compared with an ANN model that was trained
(supervised) only on the second 25% of the split. Thus, the semi-supervised models have
a 75% data advantage in the form of unsupervised pre-training over the ANN model. A
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second experiment followed the same process with a 50% unlabeled, 50% labeled split
of the datasets. A shallow network architecture with 64 nodes in the hidden layer was
used for training all the models.

• Neural network architecture search. The initial result set showed that feed-forward neu-
ral networks (ANN) yielded better evaluation metrics on all four datasets. Therefore,
a set of experiments was designed to identify how different ANN architectures impact
performance in the intrusion detection task. Three types of architectures were tested. 1)
Shallow but wide architectures (3 hidden layers with up to 3000 nodes in the first hidden
layer). 2) Deep architectures with the same number of nodes in each layer (up to 10
hidden layers with 64 nodes in each layer). 3) Narrowing deep architectures (up to 10
hidden layers with 800 nodes in the first hidden layer narrowing down to 16 nodes in the
last hidden layer). The exact network architectures and the number of parameters in the
models are given in Tables C.6, C.7 and C.8. These models were trained and evaluated
on three datasets: NSL-KDD and IDS 2017 and IDS 2018.

• Measuring the effect of training set size on ANN performance. Network intrusion detec-
tion is a domain where large quantities of data can be acquired, both by simulation and
recording packet flows in real networks. In order to understand the ability of an ANN
to improve performance as more data is made available to it for training, the following
experiment was conducted. The training sets of NSL-KDD, IDS 2017 and IDS 2018
datasets were split in a stratified fashion (preserving class proportions) into 10%, 20%,
... 100% subsets. ANN models (shallow: 64 nodes in hidden layer) were trained on these
subsets (10% to 100%) of the original training set and evaluated on the test sets.

Compute environment

The experiments were carried out on several PCs with and without using GPU acceleration.
The time measurements (training and testing time) were obtained on a machine with the fol-
lowing specifications.

• Processors: AMD Ryzen 9 3900X CPU @ 3.80GHz, 12-cores (24 threads)

• Memory (RAM): 64 GB

• GPU: 2 x Nvidia GeForce RTX 2080 Ti (11 GB) GPUs
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• Operating system: Ubuntu 18.04

Table B.10: Hyper-parameter configurations selected from the tuning process (configurations
that give the highest validation weighted macro-average F1 score). mse = mean squared error,
bce = binary cross-entropy

Model
hyper-parameters

KDD 99 NSL-KDD IDS 2017 IDS 2018
Shal-
low Deep Shal-

low Deep Shal-
low Deep Shal-

low Deep

ANN
no. of layers 1 3 1 3 1 4 1 4

no. of nodes in layers 256 64,32,16 256 64,32,16 64 256,128,
64,32 512 128,64,

32,16
layer dropout rates 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
batch size 256 256 256 256 256 256 256 256

AE + ANN
no. of layers 1 3 1 3 1 3 1 3
no. of nodes in
encoder layers 32 128,64,32 32 128,64,32 32 128,64,32 32 128,64,32

layer dropout rates 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
batch size 256 256 256 256 256 256 256 256
unsupervised training
data percentage 50% 25% 50% 25% 50% 25% 50% 25%

output layer of AE relu sigmoid sig-
moid sigmoid sig-

moid sigmoid sig-
moid sigmoid

loss function of AE mse bce bce bce bce bce bce bce
AE pre-train epochs 200 200 200 200 200 200 40 40

DBN + ANN
no. of layers 1 3 1 3 1 3 1 3
no. of nodes in layers 32 128,64,32 32 128,64,32 32 128,64,32 32 128,64,32
layer dropout rates 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
batch size 256 256 256 256 256 256 256 256
unsupervised training
data percentage 50% 25% 50% 25% 50% 50% 50% 50%

DBN learning rate 0.0001 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001

DBN pre-train epochs 50 50 50 50 50 50 12 12

LSTM
no. of layers 1 2 1 2 1 2 1 2
no. of nodes in layers 32 32,16 32 64,32 32 64,32 32 64,32
layer dropout rates 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
batch size 256 256 256 256 256 256 256 256
sequence length 32 32 32 16 32 32 32 32

Random forest
no. of trees 100 100 100 100
minimum no. of
samples required to
split a node

2 2 2 2
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B.4.3 Results and analysis

Validating the benchmark implementation

The evaluation results of the 36 model-dataset combinations (Table B.10) closely approximate
the best results reported in the recent literature. The full set of results is given in Tables C.1,
C.2, C.3 and C.4 and a comparison of results with prior works is given in Table B.11. The deep
feed-forward neural networks proposed in [77] give similar results to our work (±3% difference
in some metrics) on KDD 99, NSL-KDD and IDS 2017 datasets. The deep neural network suit
(ANN, AE, DBN) in [18] on the IDS 2018 dataset also yield similar results (±2.5% difference).
In other model-dataset combinations, evaluation metrics from our experiments are in the same
range as the values reported in the literature. This comparison validates the correctness of our
benchmark implementation and verifies that the machine learning models are well-trained on
the datasets.

It must be noted that direct comparison is often difficult as many papers do not provide adequate
details on the pre-processing steps performed on datasets (eg: removing new attack types in
the test set that are not present in the training set, which gives more optimistic results), as
well as the exact type of evaluation metric (eg: micro-averaged vs. weighted-macro-averaged
precision, F1-score etc). Since the pre-processing steps and evaluation metrics in our study
are uniform across all model evaluations in our study, the compilation of results allows for
fair comparison of the selected deep learning models at the intrusion detection task. Models
trained on IDS 2017 and IDS 2018 datasets give accuracy values in the range of 98.5% - 99.8%,
while those trained on NSL-KDD give accuracy figures in the 75.5% - 77.5% range. This large
difference is due to the fact that the test set of NSL-KDD is created with samples that were
consistently misclassified by a set of 21 machine learning models (samples with high difficulty
level [73]).

Comparing model performance

The accuracy, precision and F1-score of the models on each dataset are illustrated in Figure
B.3, and the false positive and false negative rates are illustrated in Figure B.4. The result set
indicates that all the trained models are generally capable of the intrusion detection classifica-
tion task on these datasets. On each dataset, there is minimal variation of evaluation metrics
between the models. In order to check the statistical significance of the variations in the met-
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rics, a Friedman’s test followed by a Nemenyi test was conducted on the accuracy figures of
all models on the four datasets. These are two recommended statistical tests for comparing the
performance multiple classifiers on multiple datasets [13].

Friedman’s test yielded a p-value of 0.0120, which results in a rejection of the null hypothe-
sis that all models have equal accuracy (with a significance threshold of 0.05). Therefore, a
post-hoc pairwise multiple comparison Nemenyi test was done, which has a null hypothesis
that performance of each pair of models is equal (p-values are given in Table C.5). The null
hypothesis is rejected (p-value below 0.05 significance threshold) in only one case, when the
deep ANN model is compared with the deep AE model. This implies that the deep ANN model
performs better than the deep AE model in a statistically significant sense.

In all other model pair comparisons, the null hypothesis cannot be rejected, which suggests that
their performance differences cannot be asserted with statistical significance. Similar results
were observed when the statistical tests were performed for false negative rate and F1-score. It
is worth noting that on any of the datasets, the semi-supervised models do not outperform other
models along any of the metrics (a separate experiment was carried out to compare ANNs with
semi-supervised models and its results are discussed later).

The random forest (RF) gives high accuracy and F1-score on IDS 2017 and IDS 2018 datasets.
RFs have been a popular classical machine learning model in the intrusion detection literature.
The results from our study suggest that RFs perform well on recent intrusion detection datasets,
and it is a suitable model to consider along with other machine learning models in future
evaluations.

Performance of LSTM models

The purpose of evaluating an LSTM network for the intrusion detection task was to study the
ability of sequence models to capture temporal patterns in the flows that may improve the
classification. The experiment results (Figures B.3, B.4 and significance test results in Table
C.5) indicate that the LSTM models trained on these datasets do not outperform the other
models. They yield high false negative rates for attack classes that are time-correlated by their
nature, such as denial of service and brute force style attacks.

Increasing the sequence length (number of look-back time steps) of an LSTM did not improve
the evaluation metrics. A reason for this could be that a single flow, which is a window of
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related packets, captures the significant packet-level time dependencies in flow features such
as arrival rate, no. of packets or bytes in a flow etc. Inter-flow relationships may not contain
useful dependencies learn-able by a sequence model like an LSTM network. The capability of
sequence models at the intrusion detection task needs to be further investigated.
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Figure B.3: Accuracy, precision and F1-score of the models on each dataset. ‘S’ and ‘D’
suffixes stand for ‘Shallow’ and ‘Deep’ respectively. The error bars indicate +/- one standard
deviation of the error distribution obtained from 5 repetitions of training and evaluation.

Computational cost of training and inference

The number of training epochs and time in minutes taken to achieve the average goal accuracy
of a model, and test (inference) time to classify a batch of 1 million instances are given in
the last three columns of Tables C.1, C.2, C.3 and C.4, and illustrated in Figure B.5 for the
NSL-KDD and IDS 2017 datasets.

Feed-forward neural networks (ANN) have the fastest training times across the four datasets.
The semi-supervised models (AE + ANN and DBN + ANN) are generally slow to train (1.5x
to 10x slower than ANNs) due to the computationally expensive unsupervised pre-training
phase (10 epochs on the IDS 2018 dataset and 50 epochs on others). In comparison, the ANNs
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Table B.11: Comparison of model performance with prior works. (Acc = accuracy, Prec =
precision, Rec = recall, FAR = false alarm rate, F1 = F1-score)

Model NSL-KDD KDD 99 IDS 2017 IDS2018

ANN

Vinayakumar at al.
Acc = 78.5%, Prec =
81.0%, F1 = 76.5%

Vinayakumar at al.
Acc = 92.5%, Prec =
93.4%, F1 = 92.1%

Vinayakumar at al.
Acc = 95.6%, Prec
= 96.2%, F1 =
95.7%

Ferrag at al.
Acc = 97.28%

Ours: Acc = 77.26%,
Prec = 81.31%, F1 =
73.32%

Ours: Acc = 92.40%,
Prec = 93.85%, F1 =
90.51%

Ours: Acc =
99.58%, Prec =
99.56%, F1 =
99.54%

Ours: Acc =
98.38%

AE

Javaid et al.
Acc = 75%, Prec =
86%, F1 = 72%

Shone et al.
Acc = 97.85%, Prec =
99.99%, F1 = 98.15%

Ours: Acc =
98.55%, Prec =
98.53%, F1 =
98.51%

Ferrag et al.
Acc = 97.37%

Ours: Acc = 76.94%,
Prec = 80.51%, F1 =
73.62%

Ours: Acc = 92.25%,
Prec = 92.74%, F1 =
90.40%

Ours: Acc =
98.22%

DBN

Alom et al. (40% subset
of NSL-KDD)
Acc = 97.45%

Gao et al.
Acc = 93.49%, FAR =
0.76%

Ours: Acc =
99.56%, Prec =
99.54%, F1 =
99.52%

Ferrag et al.
Acc = 97.3%

Ours: Acc = 76.93%,
Prec = 80.97%, F1 =
73.12%

Ours: Acc = 92.31%,
Prec = 93.81%, FAR =
1.99%

Ours: Acc =
98.31%

LSTM
Yin et al.
Acc = 81.29%

Le at al.
Acc = 97.54%, Prec =
97.69%, FAR = 9.98%

Ours: Acc =
99.57%, Prec =
99.55%, F1 =
99.54%

Ferrag et al.
Acc = 96%

Ours: Acc = 77.26%,
Prec = 80.40%, F1 =
73.71%

Ours: Acc = 92.32%,
Prec = 93.12%, FAR =
2.17%

Ours: Acc =
98.88%

RF

Vinayakumar at al.
Acc = 75.3%, Prec =
81.4%, F1 = 71.5%

Vinayakumar at al.
Acc = 92.5%, Prec =
94.4%, F1 = 91.8%

Vinayakumar at al.
Acc = 94.4%, Prec
= 97.0%, F1 =
95.3%

Ferrag et al.
Acc = 92%

Ours: Acc = 75.80%,
Prec = 80.18%, F1 =
71.21%

Ours: Acc = 92.34%,
Prec = 94.05%, F1 =
90.34%

Ours: Acc =
99.86%, Prec =
99.86%, F1 =
99.85%

Ours: Acc =
98.34%
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Figure B.4: False positive and false negative rates of the models on each dataset. ’S’ and ’D’
suffixes stand for ’Shallow’ and ’Deep’ respectively. The error bars indicate +/- one standard
deviation of the error distribution obtained from 5 repetitions of training and evaluation.

converge to their average accuracy with a small number of training epochs compared to the
other neural network models.

For inference (classifying instances), ANNs are fast across all datasets, and AE +ANN, LSTM
and RF models are the slowest. This is likely due to the fact that features must be transformed
by the encoder in the the AE +ANN model, and model complexity of unrolled LSTM networks
is high. Random forests have slow inference time (5x to 10x slower than ANNs), which make
them undesirable for deployment in a real-time intrusion detection system.

This general comparison of the five models indicate that feed-forward neural networks (ANNs:
shallow and deep variants) yield desirable evaluation metrics (accuracy, F1-score, training and
inference time etc.) across all four intrusion detection datasets. Random forests show compara-
ble performance and since they are easy to implement and fast to train, they are a suitable model
to consider in the intrusion detection model building process (for initial results on new datasets
and as a potential baseline for more complex models). LSTM networks and semi-supervised
models (AE + ANN, DBN + ANN) do not show improvement over the ANNs.
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Figure B.5: Training epochs (left) and training time in minutes (middle) to achieve the average
goal accuracy of a model, and test (inference) time to classify a batch of 1 million instances
(right). Top row: NSL-KDD dataset, bottom row: IDS 2017 dataset

Comparing semi-supervised methods with the supervised feed-forward neural network
(ANN)

To verify the finding from the initial evaluations that semi-supervised models (AE + ANN and
DBN + ANN) do not show improvement over the ANNs, an additional set of experiments
was carried out where the semi-supervised models were pre-trained with a data advantage
(unlabeled) of 75% the size of the original dataset (see section B.4.2). The results of the
experiments are given in Table B.12 and illustrated in Figure B.6.

In all cases, ANNs achieve higher or similar performance to the semi-supervised models. 10-
fold cross validation t-tests were performed to verify any statistical significance in differences
of accuracy (null hypothesis: two compared models have equal accuracy) and the results are
given in Table B.13. The results show that either the ANN model performs better (null hy-
pothesis is rejected in favor of ANNs) or the accuracy differences are not significant. Another
consideration is that the semi-supervised models are slow to train due to the expensive pre-
training on a large chunk of the dataset (1.5x to 3.5x slower than ANN).



120 Chapter B. Deep LearningMethods in Network Intrusion Detection

Figure B.7 shows the validation error during the fine-tuning stage of the three models (after
the pre-training stage). The DBN + ANN model error at the start of the fine-tuning process
is very high in comparison to the other two methods, and it has a slower rate of convergence
(in the IDS 2017 case). This indicates that taking DBN-pre-trained weights as the initial point
for the fine-tuning stage does not help it achieve better performance or converge faster. In
contrast, the random-initialized ANN model starts with a lower validation loss, and converges
faster to its minimum error. Similar results were obtained with a 50% unlabeled, 50% la-
beled split of the datasets. The observation that semi-supervised models bring no improvement
over feed-forward neural networks aligns with research trends in the broader machine learning
community. The following two paragraphs gives a summary of relevant works.

The greedy layer-wise pre-training of a deep belief network on unlabeled data is expected to
learn weights for all layers that will provide a good initial point in the parameter space for the
supervised fine-tuning step [16]. An autoencoder learns a non-linear feature transformation
from unlabeled data, which can then be input to a supervised learner [5]. These models were
intended to address issues in the difficult optimization problem of training deep architectures,
utilizing abundantly available unlabeled data.

However, techniques including activation functions such as the rectified linear unit (ReLU [25])
and scaled exponential linear units (SELU [42]), better random weight initialization schemes
[28, 24], batch normalization [34], regularization methods like dropout [67], and efficient GPU
implementations that allow longer training have successfully addressed the difficulties in train-
ing deep neural networks. Researchers report unsupervised pre-training brings no improvement
over pure supervised training of deep feed-forward neural networks (DNN) [25, 6]. There-
fore, computationally expensive unsupervised pre-training methods like deep belief networks
and the autoencoders have largely been replaced by supervised training of deep feed forward
neural networks with labeled datasets, helped by transfer learning. The results from our ex-
periments on the intrusion detection datasets agree with the above observations made by the
broader machine learning community on other tasks.

Neural network architecture search

The results of the network architecture search experiments are shown in Tables C.6, C.7 and
C.8. In deep neural networks with the same number of nodes (64) in each layer (Table C.7),
the depth of the network showed no correlation with the F1-score or other metrics on any of the
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Table B.12: Comparing the performance of semi-supervised models (AE + ANN, DBN +
ANN) with supervised ANN. The results are the mean of weighted macro average of metrics
over 3 runs.

Dataset Model Preci-
sion

Detec-
tion rate

False
alarm
rate

False
negative
rate

F1
Train
time
(min)

NSL-
KDD

ANN 0.8110 0.7814 0.1502 0.2186 0.7438 0.2
AE + ANN 0.7970 0.7693 0.1510 0.2307 0.7339 0.5
DBN + ANN 0.7894 0.7686 0.1577 0.2314 0.7336 1.2

IDS
2017

ANN 0.9943 0.9945 0.0107 0.0055 0.9941 3.0
AE + ANN 0.9941 0.9943 0.0105 0.0057 0.9939 5.8
DBN + ANN 0.9914 0.9920 0.0198 0.0080 0.9915 14.9

IDS
2018

ANN 0.9779 0.9827 0.0495 0.0173 0.9776 8.9
AE + ANN 0.9734 0.9815 0.0520 0.0185 0.9763 7.6
DBN + ANN 0.9782 0.9833 0.0502 0.0167 0.9782 10.5
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Figure B.6: Results of training semi-supervised models AE + ANN and DBN + ANN (unsu-
pervised pre-training on 75% of original training set followed by supervised fine-tuning on the
other 25%) and ANN (supervised training on 25% of original training set).

three datasets. However, in deep networks with a narrowing architecture (Table C.8), accuracy
and F1-scores improved with depth on the IDS 2017 and IDS 2018 datasets, as illustrated in
Figure B.8. For example, the F1-score on the IDS 2017 dataset improves from 99.15% with a
single-hidden-layer network to 99.61% with a 6-hidden-layer-network.
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Table B.13: p-values of the 10-fold cross validation t-tests comparing ANNs with semi-
supervised models.

NSL-KDD IDS 2017 IDS 2018

ANN vs. AE + ANN 2.7 × 10−5 0.45 0.8405
ANN vs. DBN + ANN 1.8 × 10−5 1.8 × 10−17 0.9911
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Figure B.7: Validation loss history during the supervised training stage of feed-forward neural
network (ANN), autoencoder (AE + ANN) and deep belief network (DBN + ANN) models.

The statistical significance of the performance improvement was verified with a paired t-test
of a 10-fold cross validation (rejection of the null hypothesis that the two models have equal
accuracy with p-value = 6.5×10−20). This improvement corresponds to a drop in false negatives
from 2248 to 820 (a 63% reduction), which can be significant in a critical task like intrusion
detection. Shallow and wide networks (Table C.6) also produced improved evaluation metrics
very similar to the deep and narrow architectures. The accuracy and F1-score of shallow and
wide models are shown as the last 3 data points on the graphs in Figure B.8.

This improvement is likely due to the large number of parameters in these networks, which
increases their learning capacity. However, it also means that training these large networks is
computationally very expensive. For example, training the 10-layer network in Table C.8 takes
15x the time it takes to train the single-layer network on the IDS 2017 dataset. Adding one layer
in the narrowing architectures increases training time by 16% on average. Similarly, training
shallow but wide architectures take long training times due to the large number of parameters.
Therefore, researchers and practitioners must consider the trade-offs between accuracy, model
complexity and training and inference time when selecting the models that go into intrusion
detection systems.
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Figure B.8: Accuracy and F1-score on IDS 2017 and IDS 2018 datasets for ANNs with deep
and narrowing architectures (first 10 data points in the graphs), and shallow and wide architec-
tures (last 3 data points in graphs labeled SH-1, SH-2 and SH-3). The architectures are given
in Tables C.6 and C.8.

Measuring the effect of training set size on ANN performance

The evaluation results of training a shallow ANN model on increasingly large datasets are
given in Table C.9. Evaluation metrics on the NSL-KDD and IDS 2018 test set do not show a
correlation with the training set size. This suggests that smaller, stratified subsets of the NSL-
KDD and IDS 2018 training sets contain the information required for training models that can
reach the accuracy of models trained with the full dataset. It also indicates that practitioners
can use stratified small subsets of large intrusion detection datasets for fast experimentation
during the model building process.

Results on the IDS 2017 test set show that increasing the training set size improves the evalua-
tion metrics of the ANN models (Figure B.9). The number of false negatives drop by 59.98%
when the ANN model is trained with the full IDS 2017 training set as opposed to when it
is trained with 10% of the training set. The statistical significance of the performance im-
provement was verified with a paired t-test of a 10-fold cross validation (rejection of the null
hypothesis that the two models have equal accuracy with p-value = 8.9×10−10). Assuming that
the IDS 2017 dataset is representative of normal and attack traffic in a modern network, this
result suggests that it is possible to build more accurate neural network models for the intrusion
detection task by collecting large amounts of representative network data.
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Results on the IDS 2018 dataset

All models trained on the IDS 2018 dataset yield very similar evaluation metrics (over 98.3%
accuracy and 97.8% F1-score). Along with results reported by [18], these evaluations can be
used as a basis for further study of this large and realistic dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of original dataset

98.8
98.9
99.0
99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9

IDS 2017

Accuracy
F1 score

Figure B.9: Evaluation metrics from shallow ANN models trained on increasingly large subsets
of the IDS 2017 dataset. Models trained with larger training sets show high accuracy and F1-
score.

A summary of the conclusions that can be drawn from the results of our empirical study is
listed below.

• All five evaluated models perform generally well on all four intrusion detection datasets.
Considering performance (accuracy, F1-score, false negatives), training time and infer-
ence time, deep feed-forward neural networks (ANN) are the more capable model in the
benchmark.

• Semi-supervised models (AE + ANN, DBN + ANN) do not perform better than other
purely supervised ANNs even when they have a substantial data advantage (unlabeled).
They are also slow to train due to unsupervised pre-training required.

• LSTM networks operating on flow sequences do not show improved performance for
highly time-correlated attacks like denial of service or brute force. Additionally, they
have high inference times due to the network complexity.

• Random forests perform well, especially on the IDS 2017 and IDS 2018 datasets. How-
ever, they are slow during inference. Since they are easy to implement and fast to train,
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random forests can be used as a potential baseline model when building machine learning
models for intrusion detection.

• Narrowing deep neural network architectures (large number of nodes in the first hidden
layer, narrowing down to a small number of nodes in the final hidden layer) show im-
proved performance than small networks (shallow and narrow) on IDS 2017 and IDS
2018 datasets.

• ANN performance can be improved by training it with more network flow data, which
suggests that efforts to collect more data for network intrusion detection will be worth-
while.

B.5 Issues in current research and future directions

The extensive literature survey that we conducted revealed several common weaknesses in
research papers. This section discusses these issues, and highlights a number of potential
future research avenues based on our observations.

• Issues in evaluation of novel methods. Many papers on the topic of machine learning
methods for intrusion detection use only older datasets (mostly, KDD 99 and NSL-KDD)
for training and evaluating the models. These datasets are not representative of modern
network traffic and intrusions, and only using these datasets for validating novel methods
is not adequate. This issue has been discussed in [66]. We recommend that researchers
build and validate their models on recent intrusion detection datasets (see [61] for a
survey of intrusion detection datasets). Comprehensive analyses of datasets, their differ-
ences and understanding how machine learning models may generalize across datasets
will provide useful information to make better decisions on new research. The literature
also lacks reports on evaluating intrusion detection methods in real-life attack scenarios
(eg: advanced persistent threats and data exfiltration), and comparisons of traditional
signature-based intrusion detection and machine learning methods in these cases. New
results in this area can be valuable to the intrusion detection and machine learning re-
search communities.

• Issue of reproducibility. The inability to reproduce results of published research hinders
building upon those ideas. In our survey, we found that many papers on deep learning
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for intrusion detection do not report adequate information on their methodology to fully
understand their work (model details, operations on data etc). The machine learning
research community has identified this problem, and now places a high importance on
reproducibility (eg: a guide on reproducibility of machine learning research [57]). In
our empirical analysis, we found that adhering to such a guide helps with conducting
and reporting reproducible experiments. We have also open-sourced our code, which
promotes transparency and allows researchers to use it as a reference point for their work.
We encourage researchers in intrusion detection to consider the aspect of reproducibility
when designing and reporting their systems and methods.

• Semi-supervised machine learning methods for intrusion detection. Since large quan-
tities of unlabeled network flow data can be acquired from operating networks with
relatively little effort, semi-supervised machine learning models that make use of this
unlabeled data for the intrusion detection problem have been actively researched. The
most frequent models in the literature are autoencoders and deep belief networks. In
our empirical study, we show that these models do not perform better than feed-forward
neural networks trained in a supervised fashion on labeled data. This observation aligns
with the general trends in the machine learning community. Therefore, researchers in the
intrusion detection domain may find it more fruitful to explore new methods in unsuper-
vised and semi-supervised machine learning.

• Exploring the use of novel machine learning paradigms and methods. The field of ma-
chine learning has seen many advances in the recent years, some of which may be used
to address problems in the intrusion detection domain. For example, transfer learning
methods will allow practitioners to download pre-trained neural network intrusion de-
tectors and adapt them to a new network environment with minimal supervised training
on new data. Techniques such as the attention mechanism may be effective in detecting
long-term attacks. Neural Architecture Search methods can be employed to find neural
networks that are optimal under a set of metrics (eg: minimum false negatives, low model
complexity and high inference throughput) for different intrusion detection settings. Re-
search on interpretable machine learning could be used to explain the classifications of
an intrusion detection system. For example, identifying which features in a flow record
or set of packets were significant [54] for an attack detection may provide useful infor-
mation to a security analyst for investigating a threat incident (eg: root cause analysis
and triage). In the case of misclassifications or overfitting, such explanations can be use-
ful to the system developer to identify issues or weaknesses of machine learning models
(eg: reliance on spurious feature correlations [47]) and improve them.
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• Open-source machine learning based intrusion detection systems (IDS). There are sev-
eral popular rule-based open-source IDS projects [56, 62] that have contributed to re-
search and development in the field of rule-based intrusion detection. However, no such
projects exist for machine learning based IDS. An open-source IDS with machine learn-
ing detectors will allow researchers to quickly deploy an IDS in a network environment
and benchmark their models against a repository of machine learning based intrusion
detectors. It may also help in fostering collaboration and attracting new researchers to
the field.

B.6 Conclusion

Attacks against computer networks are a growing threat and intrusion detection systems per-
form the critical task of detecting them and alerting the security teams. Machine learning
algorithms have become a viable option for network intrusion detection, as they are capable of
learning intrusion patterns from large datasets. In this study, we present the results of a broad
literature survey on the topic of deep learning models for network intrusion detection, and a set
of experiments comparing the performance of four key deep learning models on four intrusion
detection datasets. We have made the implementation and the complete set of results publicly
available, so that researchers may build upon it.

The results show that supervised deep feed-forward neural networks (ANN) perform well on
all four datasets across all metrics (accuracy, F1-score, false negatives, training and inference
time). Two popular semi-supervised learning models, autoencoders and deep belief networks
do not perform better than supervised feed-forward neural networks. The accuracy of ANNs
increase as they are trained on larger datasets, which suggests that efforts to build large datasets
with labeled flows of benign and attack traffic will be a worthwhile investment.

Our survey revealed several weaknesses in current research such as model evaluation per-
formed only on legacy datasets and inadequate details of models leading to experiments and
results that cannot be replicated. Several potential research avenues in the field of machine
learning for intrusion detection have been suggested. This survey aims to provide a bird’s-eye
view of the field of deep learning methods for intrusion detection, along with reproducible
empirical results that researchers can rely on.

The set of experiments in this study were designed and conducted to identify the capability
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of different machine learning models in the intrusion detection task and to give researchers
a bird’s-eye view of the field. However, some limitations exist in the study due to resource
constraints. We have evaluated the models on only four datasets, which lack variety in terms
of network traffic patterns and the attacks included in them. Furthermore, all models in the
benchmark classify flow records, and no analysis is performed at the packet-level. For future
work, we plan to extend the benchmark by training and evaluating these models on more large
intrusion detection datasets. Other varieties of recurrent neural networks will also be added to
the model repository.
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Appendix C

Network Intrusion Detection Results

C.1 Evaluation metrics

The following evaluation metrics are calculated based on the values in the confusion matrix
(Table B.3).

• Overall accuracy: the proportion of correctly classified instances out of a given set of
instances. When the classes are heavily imbalanced, this metric is less useful.

accuracy =
T P + T N

all instances

• Precision or positive predictive value (PPV): the proportion of correct classifications out
of a set of predictions classified as attacks.

precision =
T P

T P + FP

• Recall, sensitivity, true positive rate or detection rate: the proportion of correct attack
classifications out of a given set of attack instances. This metric represents the attack
detection capability of the model.

recall =
T P

T P + FN

136



C.2. Results of experiments 137

• Specificity or true negative rate: the proportion of correct benign classifications out of a
given set of benign instances.

speci f icity =
T N

T N + FP

• False positive rate (FPR) or Fall out: the proportion of instances classified incorrectly
as attacks out of a given set of benign instances. An intrusion detection system with a
high false positive rate is practically less useful, as it generates a flood of false alarms,
overwhelming security operators.

FPR =
FP

T N + FP
= 1 − speci f icity

• False negative rate (FNR) or miss rate: the proportion instances classified incorrectly
as benign out of a given set of attack instances. Note that in an IDS, a false negative
corresponds to an attack that was not detected by the system; an event that can have
severe consequences.

FNR =
FN

T P + FN
= 1 − recall

• F1 score: the harmonic mean of precision and recall. For class-imbalanced problems,
which is usually the case with intrusion datasets, this is a useful metric to evaluate mod-
els.

F1 = 2.
precision . recall
precision + recall

C.2 Results of experiments
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Table C.1: Overall results (weighted macro average of metrics) of the models on the KDD 99
test set in the format: mean (std_dev) from 5 repetitions.

Model Accu-
racy

Preci-
sion

False
alarm
rate

False
negative
rate

F1 Train
epochs

Train
time
(min)

Test
time
(sec)

ANN: shallow 0.9237
(0.0010)

0.9386
(0.0031)

0.0199
(0.0002)

0.0763
(0.0010)

0.9046
(0.0011)

2.0
(1.00)

0.1
(0.05)

1.0
(0.01)

ANN: deep 0.9240
(0.0008)

0.9385
(0.0036)

0.0203
(0.0003)

0.0760
(0.0008)

0.9051
(0.0010)

1.7
(0.58)

0.1
(0.03)

1.4
(0.04)

AE + ANN:
shallow

0.9225
(0.0008)

0.9274
(0.0171)

0.0211
(0.0010)

0.0775
(0.0008)

0.9040
(0.0019)

11.0
(0.00)

1.0
(0.00)

1.7
(0.06)

AE + ANN:
deep

0.9224
(0.0013)

0.9316
(0.0094)

0.0216
(0.0009)

0.0776
(0.0013)

0.9035
(0.0023)

15.7
(0.00)

0.7
(0.00)

1.7
(0.91)

DBN + ANN:
shallow

0.9231
(0.0006)

0.9381
(0.0036)

0.0199
(0.0003)

0.0769
(0.0006)

0.9043
(0.0006)

12.7
(0.58)

2.6
(0.02)

1.0
(0.04)

DBN + ANN:
deep

0.9226
(0.0011)

0.9368
(0.0038)

0.0241
(0.0034)

0.0774
(0.0011)

0.9034
(0.0014)

39.0
(4.58)

6.2
(0.38)

1.5
(0.04)

LSTM: shallow 0.9232
(0.0006)

0.9312
(0.0018)

0.0217
(0.0010)

0.0768
(0.0006)

0.9047
(0.0006)

7.0
(4.36)

0.4
(0.22)

18.8
(0.00)

LSTM: deep 0.9229
(0.0015)

0.9281
(0.0060)

0.0243
(0.0048)

0.0771
(0.0015)

0.9041
(0.0026)

17.3
(16.65)

0.9
(0.83)

26.0
(0.72)

RF 0.9234
(0.0008)

0.9405
(0.0005)

0.0218
(0.0002)

0.0766
(0.0008)

0.9034
(0.0009)

2.0
(0.00)

7.7
(0.00)

Table C.2: Overall results (weighted macro average of metrics) of the models on the NSL KDD
test set in the format: mean (std_dev) from 5 repetitions.

Model Accu-
racy

Preci-
sion

False
alarm
rate

False
negative
rate

F1 Train
epochs

Train
time
(min-
utes)

Test
time
(secs)

ANN: shallow 0.7725
(0.0071)

0.8104
(0.0084)

0.1566
(0.0065)

0.2275
(0.0071)

0.7360
(0.0090)

1.7
(0.58)

0.1
(0.00)

1.0
(0.02)

ANN: deep 0.7726
(0.0127)

0.8131
(0.0112)

0.1588
(0.0055)

0.2274
(0.0127)

0.7332
(0.0138)

2.0
(0.00)

0.1
(0.00)

1.4
(0.03)

AE + ANN:
shallow

0.7694
(0.0102)

0.8051
(0.0167)

0.1564
(0.0054)

0.2306
(0.0102)

0.7362
(0.0099)

20.7
(4.62)

0.2
(0.04)

1.8
(0.03)

AE + ANN:
deep

0.7688
(0.0078)

0.8022
(0.0082)

0.1582
(0.0067)

0.2312
(0.0078)

0.7275
(0.0144)

20.6
(2.65)

0.2
(0.02)

2.0
(0.04)

DBN + ANN:
shallow

0.7693
(0.0096)

0.8097
(0.0110)

0.1566
(0.0067)

0.2307
(0.0096)

0.7312
(0.0127)

12.3
(0.58)

0.1
(0.00)

1.0
(0.01)

DBN + ANN:
deep

0.7633
(0.0093)

0.7878
(0.0272)

0.1572
(0.0090)

0.2367
(0.0093)

0.7296
(0.0092)

32.7
(0.58)

0.2
(0.00)

1.4
(0.04)

LSTM: shallow 0.7718
(0.0034)

0.8030
(0.0088)

0.1508
(0.0028)

0.2282
(0.0034)

0.7370
(0.0024)

52.7
(22.85)

0.4
(0.19)

18.7
(0.93)

LSTM: deep 0.7726
(0.0087)

0.8040
(0.0140)

0.1513
(0.0029)

0.2274
(0.0087)

0.7371
(0.0078)

18.3
(6.81)

0.2
(0.06)

15.0
(0.12)

RF 0.7580
(0.0035)

0.8018
(0.0056)

0.1710
(0.0030)

0.2420
(0.0035)

0.7121
(0.0030)

0.1
(0.00)

8.2
(0.00)
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Table C.3: Overall results (weighted macro average of metrics) of the models on the IDS 2017
test set in the format: mean (std_dev) from 5 repetitions.

Model Accu-
racy

Preci-
sion

False
alarm
rate

False
negative
rate

F1 Train
epochs

Train
time
(min-
utes)

Test
time
(secs)

ANN: shallow 0.9954
(0.0002)

0.9952
(0.0002)

0.0086
(0.0004)

0.0046
(0.0002)

0.9950
(0.0001)

40.7
(17.04)

0.7
(0.28)

0.9
(0.01)

ANN: deep 0.9958
(0.0006)

0.9956
(0.0006)

0.0063
(0.0009)

0.0042
(0.0006)

0.9954
(0.0006)

21.3
(5.13)

0.7
(0.17)

1.4
(0.04)

AE + ANN:
shallow

0.9855
(0.0006)

0.9853
(0.0005)

0.0247
(0.0099)

0.0145
(0.0006)

0.9851
(0.0006)

110.0
(0.00)

1.2
(0.00)

1.6
(0.02)

AE + ANN:
deep

0.9812
(0.0015)

0.9810
(0.0016)

0.0370
(0.0099)

0.0188
(0.0015)

0.9808
(0.0016)

96.0
(28.29)

1.7
(0.47)

1.9
(0.05)

DBN + ANN:
shallow

0.9945
(0.0003)

0.9942
(0.0005)

0.0078
(0.0018)

0.0055
(0.0003)

0.9941
(0.0004)

64.3
(17.04)

1.8
(0.28)

0.9
(0.02)

DBN + ANN:
deep

0.9956
(0.0001)

0.9954
(0.0001)

0.0080
(0.0010)

0.0044
(0.0001)

0.9952
(0.0001)

99.3
(17.24)

6.0
(0.29)

1.3
(0.03)

LSTM: shallow 0.9954
(0.0003)

0.9951
(0.0003)

0.0080
(0.0017)

0.0046
(0.0003)

0.9950
(0.0004)

76.0
(20.78)

1.3
(0.35)

15.7
(0.21)

LSTM: deep 0.9957
(0.0004)

0.9955
(0.0004)

0.0079
(0.0014)

0.0043
(0.0004)

0.9954
(0.0006)

80.7
(30.09)

1.3
(0.50)

23.4
(0.19)

RF 0.9986
(0.0001)

0.9986
(0.0001)

0.0024
(0.0002)

0.0014
(0.0001)

0.9985
(0.0001)

2.7
(0.00)

19.6
(0.08)

Table C.4: Overall results (weighted macro average of metrics) of the models on the IDS 2018
test set in the format: mean (std_dev) from 5 repetitions.

Model Accu-
racy

Preci-
sion

False
alarm
rate

False
negative
rate

F1 Train
epochs

Train
time
(min-
utes)

Test
time
(secs)

ANN: shallow 0.9836
(0.0002)

0.9785
(0.0003)

0.0497
(0.0009)

0.0164
(0.0002)

0.9785
(0.0002)

43.0
(5.20)

5.0
(0.61)

0.9
(0.02)

ANN: deep 0.9838
(0.0003)

0.9754
(0.0024)

0.0492
(0.0003)

0.0162
(0.0003)

0.9785
(0.0004)

19.7
(7.64)

3.0
(1.15)

1.4
(0.11)

AE + ANN:
shallow

0.9807
(0.0006)

0.9719
(0.0018)

0.0576
(0.0043)

0.0193
(0.0006)

0.9754
(0.0007)

40.3
(27.23)

7.7
(2.27)

1.6
(0.04)

AE + ANN:
deep

0.9822
(0.0002)

0.9750
(0.0022)

0.0514
(0.0008)

0.0178
(0.0002)

0.9768
(0.0002)

29.8
(2.31)

6.5
(0.27)

1.9
(0.10)

DBN + ANN:
shallow

0.9819
(0.0009)

0.9744
(0.0024)

0.0501
(0.0004)

0.0181
(0.0009)

0.9766
(0.0010)

19.0
(5.00)

5.1
(0.50)

0.9
(0.02)

DBN + ANN:
deep

0.9831
(0.0006)

0.9761
(0.0032)

0.0496
(0.0006)

0.0169
(0.0006)

0.9778
(0.0008)

44.0
(8.89)

25.1
(0.59)

1.3
(0.05)

LSTM: shallow 0.9888
(0.0001)

0.9840
(0.0009)

0.0509
(0.0003)

0.0112
(0.0001)

0.9839
(0.0001)

66.0
(15.72)

5.5
(1.31)

16.1
(0.20)

LSTM: deep 0.9860
(0.0031)

0.9800
(0.0056)

0.0641
(0.0143)

0.0140
(0.0031)

0.9809
(0.0032)

46.0
(31.10)

3.8
(2.59)

24.0
(0.14)

RF 0.9834
(0.0001)

0.9780
(0.0001)

0.0465
(0.0003)

0.0166
(0.0001)

0.9796
(0.0001)

5.6
(0.01)

25.5
(0.10)
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Table C.5: p-values of the Nemenyi pairwise multiple comparison test on the accuracy figures
of models with the null hypotheses: performance of each pair of models in the matrix is equal.
p-values below a 0.05 significance threshold (null hypothesis is rejected) are shown in bold.

ANN:
shal-
low

ANN:
deep

AE +
ANN:
shal-
low

AE +
ANN:
deep

DBN
+

ANN:
shal-
low

DBN
+

ANN:
deep

LSTM:
shal-
low

LSTM:
deep

RF

ANN: shallow -1 0.9 0.4971 0.3274 0.8106 0.8889 0.9 0.9 0.9

ANN: deep 0.9 -1 0.0736 0.0341 0.2553 0.3274 0.9 0.9 0.8889
AE + ANN:
shallow 0.4971 0.0736 -1 0.9 0.9 0.9 0.5756 0.4118 0.8106
AE + ANN:
deep 0.3274 0.0341 0.9 -1 0.9 0.9 0.4118 0.2553 0.6539
DBN + ANN:
shallow 0.8106 0.2553 0.9 0.9 -1 0.9 0.8889 0.7323 0.9

DBN + ANN:
deep 0.8889 0.3274 0.9 0.9 0.9 -1 0.9 0.8106 0.9

LSTM: shallow 0.9 0.9 0.5756 0.4118 0.8889 0.9 -1 0.9 0.9

LSTM: deep 0.9 0.9 0.4118 0.2553 0.7323 0.8106 0.9 -1 0.9

RF 0.9 0.8889 0.8106 0.6539 0.9 0.9 0.9 0.9 -1

Table C.6: Performance of shallow and wide neural network architectures. No. of parameters
are calculated with 78 input units and 12 output units. (Acc = accuracy, Prec = precision, FNR
= false negative rate, F1 = F1-score, T.T. = training time in minutes)

Name No. of nodes in
hidden layers

No. of
params

IDS 2017 IDS 2018
Acc. FNR F1 T.T. Acc. FNR F1 T.T.

SH-1 1000-500-200 680.4 K 0.9959 0.0041 0.9956 10.4 0.9843 0.0157 0.9792 20.9

SH-2 2000-1000-500 2.66 M 0.9964 0.0036 0.996 15.2 0.9842 0.0158 0.9793 32.1

SH-3 3000-1500-500 5.49 M 0.9963 0.0037 0.9959 30.4 0.9842 0.0158 0.9791 68.1
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Table C.7: Performance of deep neural network architectures with the same no. of nodes in
each layer. No. of parameters are calculated with 78 input units and 12 output units. (Acc =
accuracy, Prec = precision, FNR = false negative rate, F1 = F1-score, T.T. = training time in
minutes)

Depth No. of nodes in
hidden layers

No. of
params

IDS 2017 IDS 2018
Acc. FNR F1 T.T. Acc. FNR F1 T.T.

2 64-64 9.9 K 0.9954 0.0046 0.9951 4.8 0.9840 0.0160 0.9789 9.8

3 64-64-64 14 K 0.9961 0.0039 0.9957 5.6 0.9840 0.0160 0.9788 8.5

4 64-64-64-64 18 K 0.9946 0.0054 0.9942 6.0 0.9836 0.0164 0.9782 8.9

5 64-64-64-64-64 22.1 K 0.9947 0.0053 0.9943 6.8 0.9832 0.0168 0.9778 11.5

6 64-64-64-64-64-64 26.2 K 0.9958 0.0042 0.9954 7.6 0.9841 0.0159 0.9789 17.1

7 64-64-64-64-64-
64-64 30.3 K 0.9955 0.0045 0.9951 8.4 0.9829 0.0171 0.9775 7.1

8 64-64-64-64-64-
64-64-64 34.4 K 0.9952 0.0048 0.9948 9.2 0.9837 0.0163 0.9783 19.7

9 64-64-64-64-64-
64-64-64-64 38.6 K 0.9955 0.0045 0.9951 9.6 0.9832 0.0168 0.9778 18.9

10 64-64-64-64-64-
64-64-64-64-64 42.7 K 0.9952 0.0048 0.9948 10.4 0.9837 0.0163 0.9785 23.1
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Table C.8: Performance of narrowing deep neural network architectures. No. of parameters
are calculated with 78 input units and 12 output units. (Acc = accuracy, Prec = precision, FNR
= false negative rate, F1 = F1-score, T.T. = training time in minutes)

Depth No. of nodes in
hidden layers

No. of
params

IDS 2017 IDS 2018
Acc. FNR F1 T.T. Acc. FNR F1 T.T.

1 16 1.4 K 0.9925 0.0075 0.9915 4.0 0.9813 0.0187 0.9762 3.7

2 32-16 2.7 K 0.9945 0.0055 0.9938 4.8 0.9823 0.0177 0.9772 5.0

3 64-32-16 7.7 K 0.9947 0.0053 0.9940 5.6 0.9831 0.0169 0.9777 9.5

4 128-64-32-16 20.1 K 0.9955 0.0045 0.9951 6.0 0.9840 0.0160 0.9788 10.7

5 256-128-64-32-16 63.7 K 0.9951 0.0049 0.9947 7.2 0.9841 0.0159 0.9789 15.8

6 400-256-128-64-
32-16 177.3 K 0.9961 0.0039 0.9958 8.4 0.9837 0.0163 0.9785 10.8

7 500-400-256-128-
64-32-16 385.1 K 0.9958 0.0042 0.9954 10.4 0.9842 0.0158 0.9790 24.1

8 600-500-400-256-
128-64-32-16 693 K 0.9956 0.0044 0.9953 12.8 0.9842 0.0158 0.9791 24.5

9 700-600-500-400-
256-128-64-32-16 1.12 M 0.9956 0.0044 0.9952 15.6 0.9842 0.0158 0.9790 33.1

10
800-700-600-500-
400-256-128-64-
32-16

1.69 M 0.9967 0.0033 0.9963 19.6 0.9842 0.0158 0.9790 40.2
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Table C.9: Evaluation metrics from shallow ANN models trained on increasingly large subsets
of the IDS 2017 and IDS 2018 datasets.

Subset
size

IDS 2017 IDS 2018
Acc. Prec. FNR F1 Acc. Prec. FNR F1

10% 0.9925 0.9910 0.0075 0.9916 0.9832 0.9781 0.0168 0.9779

20% 0.9913 0.9905 0.0087 0.9907 0.9830 0.9780 0.0170 0.9779

30% 0.9942 0.9940 0.0058 0.9938 0.9834 0.9779 0.0166 0.9782

40% 0.9938 0.9936 0.0062 0.9934 0.9831 0.9757 0.0169 0.9779

50% 0.9935 0.9932 0.0065 0.9930 0.9830 0.9776 0.0170 0.9777

60% 0.9951 0.9949 0.0049 0.9947 0.9834 0.9791 0.0166 0.9782

70% 0.9947 0.9941 0.0053 0.9942 0.9831 0.9784 0.0169 0.9779

80% 0.9949 0.9947 0.0051 0.9945 0.9835 0.9792 0.0166 0.9783

90% 0.9952 0.9950 0.0048 0.9948 0.9831 0.9784 0.0169 0.9779

100% 0.9956 0.9955 0.0044 0.9954 0.9825 0.9775 0.0175 0.9771



Appendix D

Structural Damage Detection and
Localization using Neural Networks on
Vibration Signals

Synopsis

This chapter is based on a technical paper [21] co-authored by the thesis author in the civil
engineering journal Structures.

This chapter proposes a novel damage detection and localization method of civil structures
using a windowed Long Short-Term Memory (LSTM) network. Sequences of windowed sam-
ples are extracted from acceleration responses in a novel data pre-processing pipeline, and an
LSTM network is developed to classify the signals into multiple classes. The LSTM network’s
classification of a signal into a damage level indicates damage presence. Furthermore, multiple
structural responses obtained from the vibration sensors placed on a structure are provided as
input to the LSTM model, and the resulting predicted class probabilities are used to identify
the locations with a high probability of damage. The proposed method is validated on the ex-
perimental benchmark data of the Qatar University Grandstand Simulator (QUGS) for binary
classification, as well as the Z24 bridge benchmark data for multiclass damage classification
associated with different levels of pier settlement and the numbers of ruptured tendons. The
results show that the proposed LSTM-based method performs on par with the one dimensional
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convolutional neural network (1D CNN) on the QUGS dataset and outperforms 1D CNN on
the Z24 bridge dataset. The novelty of this work lies in the use of recurrent neural network-
based windowed LSTM for multiclass damage identification and localization using vibration
response of the structure.
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D.1 Introduction

D.1.1 Structural Health Monitoring (SHM)

Next-generation civil infrastructure is designed and constructed using emerging technologies
and advanced construction materials to achieve resiliency against natural disasters and oper-
ational conditions. However, integrity and condition monitoring of existing aging structures
are still lacking in advancements. Over time, structures deteriorate and lose their load-carrying
capacity due to various factors such as environmental, heavy traffic, and human-induced dam-
ages, requiring cutting-edge technology for continuous structural inspection. Recently, the
American Society of Civil Engineers (ASCE) reported the current condition of infrastructure
in the United States with a low grade of D+. Canadian infrastructure has been ranked along the
same lines; it has been reported that it would take 1.1 trillion dollars to replace the crumbling
infrastructure that is in deplorable condition.

The development of efficient strategies for continuous structural monitoring is of paramount
importance for aging structures. The conventional approach is to employ a well-trained struc-
tural inspector to investigate and inspect the structure, identify defects and implement appropri-
ate maintenance strategies. However, manual condition assessment of the structures is subjec-
tive, error-prone and laborious, incurring a significant portion of the annualized maintenance
budget. Structural Health Monitoring (SHM) provides a sensor-driven real-time inspection
technology to address these challenges of manual visual inspection [15, 5].

SHM employs suitable diagnostic algorithms and assists infrastructure owners and decision-
makers in maximizing the safety, serviceability, and functionality of critical structures. Vibration-
based SHM has emerged as one of the promising fields for condition monitoring and damage
diagnosis of civil infrastructure [3, 7] and offers a viable option for tracking time-varying dam-
ages in the structures based on the measured data. Existing damage identification techniques
involve analysis in time-domain, frequency-domain, and time–frequency domain [20, 9, 19]
along with a combination of machine learning techniques [22, 16].
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D.1.2 Machine learning methods in structural health monitoring

Machine learning techniques provide promising opportunities for detection and localization of
damages in civil infrastructure by analyzing various sensor measurements with minimal user
intervention, thereby reducing cost and increasing accuracy and reliability of infrastructure
management. The focus of this chapter is on structural health monitoring using temporal sensor
data.

Authors of [10] proposed sparse coding to extract features from unlabeled acceleration mea-
surements. The damage classification was carried out using CNN, and the results were com-
pared with the traditional machine learning methods, such as logistic regression and decision
trees. In [8], the authors conducted a simulation study on a steel gusset plate connection by
varying the size and location of the damage. A CNN was used to classify damage, achieving
an error of 2% and robustness against environmental noise. Out of various convolutional ar-
chitectures, one dimensional CNNs (1D CNN) have shown promising results in capturing the
temporal information and undertaking damage detection using vibration data.

In the recent years, [1, 2] introduced 1D CNN for nonparametric vibration-based damage de-
tection. The authors trained the neural network on a vibration signal dataset obtained on a
30-joint steel truss structure, named Qatar Grandstand, by damaging each joint and keeping
the other joints undamaged. The proposed model was trained individually on each joint, there-
fore a total of 31 measurement setups were conducted to develop the training database for
binary classification. The work of [14] showed the applicability of 1D CNN with autoencoders
for anomaly detection under data compression.

The authors of [18] showed the applicability of 1D CNN for damage detection in structural steel
frames. Experimental validation was performed on a 2D-steel frame with different damage
locations and severity of the damage. In another study, [12] used transmissibility function-
based 1D CNN to effectively identify damage in the ASCE SHM benchmark structure and
compared the performance against time-domain and frequency-domain methods. 1D CNN
primarily exhibited superior performance over multilayer perceptron (MLPs) networks in the
context of computation efficiency and noise in temporal data.

While 1D CNN captures relevant information in a neighborhood of samples, it lacks the ability
to learn the long-term dependencies of the sequential datasets, which is relevant for structural
damage identification over a long period of data. To address this challenge, a Long Short-Term
Memory (LSTM) network was recently explored for damage detection in numerical benchmark
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data [11], where the performance of LSTM was shown to be better than classical machine
learning techniques (random forest, support vector machines). Moreover, the authors of [23]
extended the applicability of Long Short-Term Memory (LSTM) networks to detect changes in
physical parameters of the structures, such as stiffness and mass. Various structural components
such as a beam and steel girder bridge were used for validating the proposed algorithm.

D.1.3 Contributions and organization

In this work, a multi-window Long Short-Term Memory (LSTM) network is proposed for mul-
ticlass structural damage detection and localization. The proposed method captures long term
patterns in an acceleration signal by feeding a sequence of windows extracted from the signal
as input to the LSTM model, allowing it to make predictions on the acceleration data. This
makes the LSTM architecture a valuable technique in vibration-based SHM. This study makes
four novel contributions. First, it introduces a standalone LSTM-based approach for damage
localization using acceleration measurements. Second, the limited dataset is augmented by
windowing the acceleration measurements and a novel approach of voting on the prediction
class for windowed-dataset is presented to increase the prediction accuracy. Third, a thorough
hyperparameter tuning analysis is conducted and performance is compared with an imple-
mentation of the 1D CNN proposed in [2]. Fourth, the proposed method is demonstrated for
multiclass and multi-level damage identification in a full-scale bridge study.

The chapter is structured as follows. A brief introduction of the structural damage identification
using deep learning techniques is presented in section D.2. Next, section D.3 presents the pro-
posed methodology based on LSTM networks along with the data pipeline and performance
metrics to identify and localize damage. The results of both binary and multiclass damage
localization are illustrated in section D.4. This section also highlights the importance of hy-
perparameter tuning and evaluation of optimal window size. Concluding remarks are given in
section D.5.

D.2 Preliminaries of LSTM networks

Given an input acceleration signal, x=(x1, . . . . . , xT ), a standard recurrent neural network
computes hidden vector sequence as h=(h1, . . . . . , hT ) and the output vector sequence as
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y=(y1, . . . . . , yT ) by iterating Equations D.1 - D.2 from time t =1 to T .

ht = H(Wihxt +Whhht−1 + bh) (D.1)

where W denotes weight matrices, Wih is the input-hidden weight matrix, Whh is the hidden-
hidden weight matrix, b denotes bias vectors, bh is hidden bias vector, and H is the hidden
layer activation function.

yt = Whoht + b0 (D.2)

where yt denotes output at time t, Who is the hidden-output weight matrix, and bo is the output
bias vector. H is usually an element-wise application of a sigmoid function. Figure D.1 illus-
trates a typical single LSTM memory cell (adapted from [6]). The transformations applied to
the input xt and hidden state from the previous time step ht−1 in the LSTM cell are described
by Equations D.3 - D.8 [6].

Input gate

Input 
modulation gate

Forget gate

Output 
gate

Ct-1

Figure D.1: The typical internal structure of an LSTM cell [6].

it = tanh(Wxixt +Whiht−1 + bi) (D.3)
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ft = σ(Wx f xt +Wh f ht−1 + b f ) (D.4)

gt = tanh(Wxcxt +Whcht−1 + bc) (D.5)

ot = σ(Wxoxt +Whoht−1 + bo) (D.6)

ct = ft ⊗ ct−1 + it ⊗ gt (D.7)

ht = tanh(ct) ⊗ ot (D.8)

where σ is the logistic sigmoid function, and i, f , g, o and c are respectively the input gate,
forget gate, input modulation gate, output gate and cell activation vectors, all of which are
the same size as the hidden vector h. The weight matrix subscripts have the same meaning,
for example Whi is the hidden-input gate matrix, Wxo is the input-output gate matrix. The bias
terms (which are added to i, f , g,and o) have been omitted in Figure D.1 for clarity. The weight
matrices represent the learnable parameters of the model, and they are learned by the gradient
decent algorithm to minimize prediction error on a training set.

The cell state ct encodes the information of the sequence observed up to that time step. The
input gate controls the information added to the cell state from the current time step, and the
forget gate controls what information needs to be forgotten from the current cell state. For
example, if the output vector of the forget gate ft has a near-zero value in the first dimension,
it indicates that the first dimension of the cell state ct needs to be “forgotten”. The forgetting
occurs in the element-wise multiplication; i.e. multiplying an element by a near-zero value
results in a near-zero element in the output vector. By maintaining cell state in this manner,
the LSTM cell is able to capture both long and short term relationships between the input
time-series values and the predicted variable (eg: damage classification).

During training, the truncated back propagation through time (TBPTT) algorithm makes the
process computationally feasible. During prediction, the forward pass can be applied to arbi-
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trarily long sequences (the LSTM cell can be repeatedly applied to any number of input time
steps). More details of the internal structure and training mechanism of LSTMs can be found
in [6].

D.3 Damage detection using LSTM model

D.3.1 Data pipeline

Figure D.2 illustrates the proposed data pipeline, which consists of a series of pre-processing
and post-processing steps with an LSTM network as the classification model. It should be
noted that the solid black lines represent datasets, blue dotted lines represent operation on the
datasets, and multiple arrows represent multiple data instances.

A single acceleration time-series consists of a large number of samples (a lengthy record of vi-
bration data). This time signal is first normalized (scaled) with respect to its mean and standard
deviation. This improves the convergence rate of models trained on the datasets and prevents
outliers from dominating the input. Second, windows of the scaled time series (window size w)
are created, and a sequence of such windows (length L) is arranged to form one input instance
to the LSTM network. Thus, the input of the network is a w-dimensional sequence of length
L. Many such sequences can be extracted from a single original accelerometer time series,
and each sequence is assigned to a label (damage level) of the original series. The process of
extracting sequences of windows from a time series is illustrated in Figure D.3.

This technique of transforming the original series into sequences of windows effectively re-
duces the data dimension, and additionally, it increases the training set size (multiple sequences
per time-series), which in turn allows training deep learning models with less over-fitting. Im-
balanced data can cause problems in model training. To alleviate this problem, a balanced
training set is created by randomly selecting a number of undamaged sequences equal to the
number of damaged sequences.
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Figure D.2: Data pipelines for training the LSTM network and obtaining predictions for a given
acceleration response.

D.3.2 The model, training and inference

The proposed machine learning model for the damage time series level classification is a multi-
layer LSTM network architecture, as shown in Figure D.3. A pre-processed sequence of win-
dows are given as input to the model, and the softmax output of the final LSTM time step is
considered as the prediction of the sequence (the set of classification probabilities P(y = ct) for
each class ct). The classification problem is formulated as binary (undamaged vs. damaged) or
multiclass (undamaged, and damage of more than two levels) depending on the dataset.

During training, forward and backward passes are performed on the input sequences, and the
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Figure D.3: Extracting sequences of windows from the vibration signals and the LSTM net-
work architecture.

weight updates are made to minimize the cross-entropy loss on a batch of sequences. The pre-
dicted set of classification probabilities Pp(yc) for a full acceleration measurement is obtained
by summing the class probabilities of all the window sequences in one vibration signal. The
class with the maximum probability is the predicted damage level classification of the series.
Note that this is equivalent to voting on the classification probabilities of individual window
sequences to arrive at the prediction of the full series. It is observed that the voting process
improves the prediction accuracy and other evaluation metrics on the time-series test set.

D.3.3 Hyperparameter tuning

The window size w and the sequence length L (number of windows in a sequence) are hyperpa-
rameters that are tuned to improve the accuracy of the neural network. The hyperparameters of
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LSTM network include number of layers and number of nodes in each layer (network architec-
ture), activation function, and batch size (performing weight updates during training). Optimal
parameters are found using a random search on a predefined hyperparameter space [4]. In each
iteration, the search algorithm randomly selects a configuration of values for hyperparameters
from a specified set of possible values, and trains three models with those parameters on three
splits of training and validation sets (3-fold validation) with early stopping used to minimize
overfitting.

D.3.4 Damage localization using LSTM model

The LSTM network described in the previous section produces a set of probabilities Pp(yc)
for a given acceleration signal. These indicate the probability that the signal belongs to each
class c. Multiple signals are obtained from accelerometers placed in the critical locations of
a structure, and model prediction probabilities are computed for each signal. This method
estimates a damage probability distribution across the structure and identifies high-probability
damage locations. The damage probability distribution over the structure can be visualized
(for example, heatmaps of probability values over a 2D structure) to aid an engineer in quickly
localizing damages. Algorithm 4 summarizes the proposed approach for damage detection and
localization.

D.3.5 Performance evaluation criteria

Several standard metrics can be used to evaluate the performance of a classification model.
These metrics measure different aspects of the obtained results. A brief description of the
selected metrics is provided below and explained in the context of structural health monitoring
of civil infrastructure.

Confusion matrix. The primary form of prediction results is given by the confusion matrix,
which is a tabulation of classifications made by a model. It shows the “classification distribu-
tion” of a model, and helps identify properties of the model, such as when it is consistently
mis-classifying one class as another. The confusion matrix is obtained for both binary and
multi-class classifications. Table D.1 shows the confusion matrix for the case of binary clas-
sification. True Positives are denoted as TP, True Negatives as TN, False Positives as FP, and
False Negatives as FN.
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Algorithm 4 Damage detection and localization
Input:

A set of acceleration signals from a structure

Outputs:
Predicted damage class (damage detection)

Probabilities of damage over the structure (damage localization)

1: The acceleration signal data is pre-processed, as shown in the training pipeline in Fig-

ure D.2.

2: A single LSTM model is trained for damage classification.

3: The predicted class label (undamaged or damage level) for a signal is computed from the

model (damage detection for the signal).

4: Damage probabilities for all signals form a distribution of damage probabilities over the

structure. High probabilities correspond to damaged locations (damage localization).

5: Visualize (heatmaps) the distribution of damage probabilities for visual inspection and

automated decision making.

Table D.1: Confusion matrix for a binary damage classification problem.

Predicted class

Output class

Damage Healthy

Damage TP FN

Healthy FP TN

Evaluation metrics. Multiple metrics can be derived from the confusion matrix as shown in
Table D.2. In this study, two key metrics are used as the performance metrics to evaluate the
proposed method, namely, accuracy, and false negative rate (FNR). Accuracy is the primary
evaluation metric to understand the ability of the model to correctly classify the inputs. A false
negative (type II error) represents a truly damaged signal that is classified as undamaged by
the model, which could lead to catastrophic consequences in a critical structure. Therefore, the
FNR is measured and compared in the model evaluation experiments in this work.

Performance curves. Two plots highlight the trade-off between metrics as the decision thresh-
old of the classifier changes: the Receiver Operating Characteristic (ROC) curve shows the
trade-off between false positive rate (FPR) and true positive rate (TPR), and the precision-
recall (PR) curve shows the trade-off between precision and recall. Analyzing these curves



156 Chapter D. Structural Damage Detection and Localization

Table D.2: Description of various performance metrics.

Metric Formula Remarks

Accuracy T P+T N
T P+FN+FP+T N Less useful for heavily imbalanced data

Precision T P
T P+FP Positive predicted value

Recall T P
T P+FN True positive rate or sensitivity

False Positive Rate (FPR) FP
T N+FP False alarm when there is no damage

False Negative Rate (FNR) FN
T P+FN No alarm for actual damage

F1 Score 2* precision.recall
precision+recall The harmonic mean of precision and recall

ROC-AUC Recall vs. FPR Degree of separability between classes

from model predictions enables engineers to make informed decisions on the balance that is
needed between the metrics and make a decision on thresholds suitable for the task. The PR
curve, in particular, is suitable for the evaluating the cases where the datasets are highly imbal-
anced. In this study, ROC and PR curves are plotted for visual comparison. The corresponding
area-under-the-curve (AUC) of these graphs (ROC-AUC and PR-AUC) represent an aggregate
measure of the model’s ability in terms of the relevant metrics of the curves.

Evaluating damage localization capability. The damage localization results are evaluated by
inspecting the visualization (heatmaps) of damage probabilities over the structure, and verify-
ing that high damage probabilities have been assigned to the damaged location, while the other
locations are assigned with low damage probabilities.

D.4 Experiments and results

The proposed method is evaluated in two setups: an experimental setup (physical simulation of
a grandstand structure), and a full-scale study (real-world data from a bridge). For comparison,
the 1D CNN model from [2] is also implemented and evaluated. For performance evaluation,
accuracy, FNR, ROC-AUC and PR-AUC metrics are used. Additionally, several experiments
are conducted to study the performance change with window size in the model input, and the
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effect of voting on individual window predictions to obtain the final prediction.

D.4.1 Experimental study

A brief description of the data

In this study, the experimental benchmark data of Qatar University Grandstand Simulator
(QUGS) [2] is used to evaluate the performance of the proposed method. The QUGS was
constructed to evaluate and develop effective structural damage detection techniques suitable
for monitoring of modern stadia, as shown in Figure D.4. The frame was designed to carry
a total of 30 spectators with area dimensions of 4.2 m x 4.2 m. The design considerations
used for the experimental test structure was to guarantee its safety and compatibility with the
specifications of modern grandstands.

The structure was utilized in its current form (steel frame only) to generate vibration data under
several structural damage scenarios. The grandstand was excited using a shaker and two 16-
channel data acquisition systems were used to acquire the acceleration responses. A total of
31 scenarios are considered: the first scenario corresponds to the reference (undamaged) case,
while in scenarios 2 to 31, damage was introduced by loosening the bolts at the joints 1 to 30,
respectively. A total of 30 accelerometers were mounted at the joint of each girder and the
filler beam, and a magnetic mounting plate was used to attach the sensors on the frame. The
acceleration data was sampled at 1024 Hz and collected for 256 s under a band-limited white
noise excitation from the shaker with a frequency range of 0–512 Hz.

Hyperparameter tuning

A range of values for hyperparameters is used for tuning the LSTM model using a random
search, as shown in Table D.3. The window size as an external parameter is varied between 64
and 512 samples. Various values for other hyperparameters such as the number of hidden layers
(range of 1-6), and nodes in hidden layers (range of 32-1024) are considered to achieve optimal
performance of the proposed model. Consequently, the random search algorithm explores
shallow, wide and deep LSTM architectures. All models are trained using the Adam optimizer
with the ‘Rectified Linear Unit (ReLU)’ activation function in hidden layer nodes, ‘softmax’
activation in the output layer, and the ‘cross-entropy’ loss function.
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Figure D.4: QUGS testbed [2]. Joints are numbered from 1 to 30

The optimal hyperparameter configuration obtained using random search algorithm for QUGS
experiment is presented in Table D.4. It can be observed that the highest performing LSTM
architecture has three hidden layers (not very wide), with a window size of 64 (input dimen-
sionality).

The change in damage detection performance with window-size (w) is shown in Figure D.5.
Three different metrics are used, namely, ROC-AUC, accuracy, and FNR as these three metrics
broadly cover the efficacy and any shortcomings of the classification model. It can be observed
that w=64 and w=128 yield the best performance metric values (high accuracy and ROC-AUC
with low FNR), and performance metrics consistently degrade with increasing window size.
This behavior is attributed to a reduction in the data samples (sequences of windows) with
increasing w, causing the LSTM network to overfit when trained on smaller datasets.

Performance comparison

To compare the proposed LSTM approach with the 1D CNN method introduced by [2], a 1D
CNN is trained with the same hyperparameter tuning process as outlined before. The optimal
1D CNN network has 4 hidden layers with nodes 256, 128, 64, 32 in each layer and a kernel
size of 64. After acquiring the optimal tuned parameters, a parametric study is conducted to
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Table D.3: Hyperparameters used in LSTM for tuning by random search algorithm.

Parameter Values

Window size 64, 128, 160, 256, 512

No. of windows in a sequence 2, 4, 8, 16

No. of hidden layers 1 - 6

No. of hidden nodes 1024, 512, 256, 128, 64, 32

Droput rates 0.2 and 0.5 for each hidden layer

Learning rate 0.0003, 0.001, 0.01

Batch size 64, 256, 512

Cell type LSTM with tanh activation

Table D.4: Optimal configuration of LSTM hyperparameters for QUGS experiment.

Parameter Values

Window size 64

No. of windows in a sequence 8

No. of hidden layers 3

Architecture [64, 128, 64, 32, 1]

Droput rates 0.2

Learning rate 0.001

Batch size 256

Training epochs 100 with early stopping

understand variance in the metrics by training the LSTM and 1D CNN models with random
initialization of network weights of 5 times. The result is shown in Figure D.6. It is found
that both models perform well consistently with accuracy at 1.0 and FNR at 0.0 with negligible
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Figure D.5: Performance evaluation of LSTM based on window size for QUGS.
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Figure D.6: Performance evaluation of 5 random weight initializations for QUGS (a) Accuracy,
and (b) FNR.

One possible explanation for the perfect performance behavior of the machine learning models
is based on the nature of the acceleration signals. The damages in the joints of the QUGS are
highly localized, and the sensors are placed at the exact locations of damage. Furthermore,
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the controlled experimental laboratory setup makes the acquired signals of high quality. These
properties lead to acceleration signals that have distinct, discriminating patterns between the
damaged versus undamaged cases. The 1D CNN’s capability to learn local structure of the time
signals, and the LSTM’s capability to learn long-term irregular dependencies lead to excellent
performance of both models.

Effect of majority voting on classification performance

In the proposed method, the damage classification of a time-series is obtained by voting on
the classification of individual windows that constitute the entire time-series. It is observed
that this voting process increases performance metrics on time-series predictions considerably
in contrast to the predictions on individual windows, as illustrated by the ROC and precision-
recall (PR) curves in Figure D.7.

The ROC curve is closer to the upper left corner in the voted series predictions (Figure D.7
(b)) than on the individual window predictions (Figure D.7 (a)), which represent an increase
in ROC-AUC from 0.95 to 1.0. The PR curve also shifts to the upper right corner as shown
in Figure D.7 (d), with an increase in PR-AUC from 0.52 for voted series predictions to 0.99
for individual window predictions. It can be concluded that voting on windows decreases the
probability of error significantly to obtain the final prediction.

Damage localization

Damage localization is performed for the QUGS setup using Algorithm 4. In each damage
scenario in the QUGS dataset, a single joint out of the 30 joints in the grandstand structure is
damaged by loosening of the bolts. Acceleration signals are acquired from all joints, and the
proposed localization method gives damage probabilities for each joint location.

The distributions of damage probabilities for multiple damage scenarios are presented as heatmaps
in Figure D.8. Note that the color blue indicates P(Damage) ≈ 0 and color red P(Damage) ≈ 1.
For example, Figure D.8 (a) shows the scenario where joint-1 of the structure is damaged (see
Figure D.4 for an illustration for numbered joints). The damage appears to be heavily localized
at the damaged joint (correct localization). Figure D.8 (e) shows the scenario where joint-23
[location: (3, 5)] is damaged, and it is clear that the damage is spread out as it is surrounded by
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(a) (b)

(c) (d)

Figure D.7: Performance of the LSTM model on the QUGS data: (a) ROC on individual
windows, (b) ROC with voting, (c) PR on individual windows, (d) PR with voting.

4 connected branches signifying more effect of damage after loosening of bolts.

D.4.2 Full-scale study

A brief description of the data

Z24 bridge benchmark data [13] is used to evaluate the performance of the proposed method
for multiclass damage detection. In this study, two classes of damage are used, namely, pier
settlement and rupture of tendons. Both damage classes further have multiple damage levels,
hence this is a multiclass classification problem. The bridge was a classical post-tensioned
concrete box-girder bridge with a main span of 30 m and two side spans of 14 m, as shown in
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Figure D.8: Damage localization probabilities in QUGS for scenarios where the damaged joint
is: (a) Joint-1 [1, 1] (b) Joint-4 [4, 1], (c) Joint-12 [2,3], (d) Joint-15 [5,3], (e) Joint-23 [3,5],
and (f) Joint-28 [3, 6].

Figure D.9. The bridge was demolished at the end of 1998 because a new railway adjacent to
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the highway required a new bridge with a larger side span.

The SHM data was acquired using 16 accelerometers placed at different spans of the bridge, as
shown in Figure D.10. The bridge was excited by two shakers, one at the mid-span of the bridge
and another at a side-span. Because of the size of the bridge, response was measured in nine
setups with each setup containing up to 15 sensors each. In all setups, three accelerometers
and two force sensors were used. The data was sampled at 100 Hz, and a total of 65,536
samples were acquired. This data was made publicly available by researchers at the Katholieke
Universiteit Leuven and is available at: https://bwk.kuleuven.be/bwm/z24.

Figure D.9: Schematic of the Z24 bridge.

Figure D.10: Sensor placement for the data acquisition.

Several progressive damage scenarios were considered for vibration-based damage identifica-
tion. Each damage scenario contains multiple levels of damage. All these damage scenarios
are compared with the baseline undamaged state. For example, the rupture of tendons scenario
has three damage levels and the lowering of pier scenario has four damage levels. For detailed
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explanation of how the damages were induced to the bridge, readers are referred to [17]. The
reference undamaged condition is considered as class-zero in all scenarios and the other dam-
ages were assigned classes starting from 1 to n depending upon the level of damage, as shown
in Table D.5.

Table D.5: Multiclass classification problem description for two damage scenarios.

Problem Damage scenario Class label

1

Undamaged 0

Rupture of 2 tendons 1

Rupture of 4 tendons 2

Rupture of 6 tendons 3

2

Undamaged 0

Lowering of pier, 20 mm 1

Lowering of pier, 40 mm 2

Lowering of pier, 80 mm 3

Lowering of pier, 95 mm 4

Hyperparameter tuning

Optimal hyperparameters of the LSTM model on the Z24 bridge dataset are obtained by per-
forming a random search. Table D.6 shows the hyperparameter configuration with highest
accuracy. It can be observed that LSTM performed well with w = 128. An analysis is per-
formed to understand the effect of window size w on performance. The results are illustrated
in Figure D.11, which shows that optimal performance is achieved at w = 128, with highest
ROC-AUC and accuracy, and lowest FNR. In the case of Figure D.11 (a), the ROC-AUC and
accuracy reduce while FNR increases. Similarly, in the case of Figure D.11 (b), the FNR re-
mains consistent after w = 512 and other metrics are at their peak. Due to larger w, the data
size reduces per damage class and it leads to overfitting of the model on the data.

A random search of hyperparameters is also conducted to find optimal parameters for the 1D
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CNN model.

Table D.6: Optimal configuration of LSTM hyperparameters for the Z24 bridge dataset.

Parameter Values

Window size 128

No. of windows in a sequence 16

No. of hidden layers 3

Architecture [128, 64, 32, 5]

Learning rate 0.001

Batch size 512

Training epochs 100 with early stopping
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Figure D.11: Performance evaluation of LSTM based on window size for (a) rupture of ten-
dons, and (b) pier settlement.

Performance comparison

Five repetitions of training and testing sessions are performed to verify the robustness of the
models against random initialization of network weights. Accuracy and FNR are computed for
each session, and the results are shown in Figure D.12.
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It can be observed that for pier settlement which was measured using 4 sensors for data ac-
quisition, and associated with 4 damage levels, the damage is considered as localized around
these sensors. The LSTM performs well with highest accuracy and lowest FNR in compari-
son to 1D CNN as seen in Figure D.12 (a), and (b). In case of rupture of tendons, where the
damage is fairly distributed throughout the bridge deck, the damaged signals are not highly dis-
tinguishable in comparison to undamaged signal and other severe damage measurements such
as lowering of piers. The accuracy of LSTM drops to 0.9 and FNR increases to 0.2. However,
LSTM still performs better than 1D CNN as shown in Figure D.12 (c), and (d). The superior
performance of LSTM can be attributed to its capability to learn long-term irregular depen-
dencies of complex time signals whereas 1D CNN learns prominently the local neighborhood
structure of the signals.
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Figure D.12: Performance evaluation of LSTM for random weight initialization for various
damage cases in the Z24 bridge where, (a) accuracy for pier settlement, (b) FNR for pier
settlement, (c) accuracy for rupture of tendons, (d) FNR for rupture of tendons.

Figure D.13 shows the confusion matrices for the pier settlement damage classification problem
with five classes, starting from no damage (class-0) to 95 mm damage (class 4), using LSTM
and 1D CNN, respectively. It can be seen that the LSTM model accurately classifies a large



168 Chapter D. Structural Damage Detection and Localization

percentage of signals in each class (i.e., the diagonal of the confusion matrix), demonstrating
high precision by the LSTM model. In comparison, the 1D CNN fails to differentiate between
the undamaged case and damage level 1, as well as, between levels 2 and 3, which can lead to
significant inaccuracy in the bridge maintenance.

LSTM

1D-CNN

Figure D.13: Confusion matrices for the pier settlement damage problem using LSTM (top)
and 1D CNN (bottom)

Figure D.14 shows the confusion matrices for the rupture of tendons damage classification
problem with four classes, starting from no rupture (class-0) to rupture of 6 tendons (class 3),
using LSTM and 1D CNN, respectively. The LSTM model classifies a large percentage of
signals in each class correctly (e.g., the diagonal of the matrix). This results in high precision
by the LSTM model. In comparison, the 1D CNN model fails to differentiate between damage
levels 1, 2 and 3. A considerable percentage of signals in damage level 2 are classified into
levels 1 and 3.
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LSTM

1D-CNN

Figure D.14: Confusion matrices for the rupture of tendon damage problem using 1D CNN
(top) and 1D CNN (bottom)

Effect of majority voting on classification performance

Finally, the optimal parameters are used to evaluate the performance of proposed method on
full-series (as one input instance) versus voted-windowed samples. It is observed that voting on
windowed dataset increases accuracy considerably and it is evident in ROC and PR curves, as
presented in Figure D.15 and Figure D.16 respectively. However, due to the localized measure-
ment acquisition and severity of damage in pier settlement, the difference in AUCs of various
cases was comparatively similar to the QUGS damage scenario. Moreover, as observed in Fig-
ure D.16, where the damage was considerably distributed in case of rupture of tendons, voting
on windows increased the ROC-AUC by 5% and PR-AUC by 13%.
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(a) (b)

(c) (d)

Figure D.15: Performance of the proposed LSTM model in the Z24 bridge for pier settlement:
(a) ROC in individual windows, (b) ROC in voted series, (c) PR in individual windows, (d) PR
in voted series.

Damage localization

Damage localization is performed using Algorithm 1 for multiclass damage scenarios of low-
ering of pier and rupture of tendons. In these damage scenarios, the damage is not highly
localized as in the experimental study of subsection D.4.1. Three different structural compo-
nents of the bridge are used to localize damage and understand the effect of pier settlement.
An undamaged pier in Utzenstorf, bridge deck, and damaged pier in Koppigen are used to
represent the predicted probability (Pp) and infer damages in three components. The Koppi-
gen pier is used for inducing the damage by lowering it in several increments starting with 20
mm, 40 mm, 80 mm, and moving to 95 mm at the last stage. The predicted probability Pp is
plotted against the sensor number and a dash-dotted average of Pp of structural component is
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(a) (b)

(c) (d)

Figure D.16: Performance of the proposed LSTM model by windowing the data of the Z24
bridge in case of rupture of tendons: (a) ROC in individual windows, (b) ROC in voted series,
(c) PR in individual windows, (d) PR in voted series.

shown as a representation of combined Pp for corresponding structural component, as shown
in Figure D.17. For example, Figure D.17 (a, b, c) represents Pp for undamaged pier (UDP),
bridge deck (BD), and damaged pier (DP) for 20 mm lowering of piers, respectively. Similarly,
Figure D.17 (d, e, f ) and (g, h, i) show Pp for 40 mm and 95 mm lowering of piers, respectively.

Due to non-localization of measurement acquisition, it is difficult to infer damage location
while considering each sensor separately. However, it is possible to compare average of each
structural component for various damage cases. The results considering average Pp for each
structural component and various damage levels are shown in Figure D.18. Despite the lack of
correlation between Pp and damage severity, more severe damages yield more distinguishable
signals, enhancing the LSTM model’s classification effectiveness. It can be observed from
Figure D.18 that UDP shows lowest predicted probability due to its similarity to undamaged
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Figure D.17: Damage localization for lowering of pier for three damage levels, where, (a, b, c)
are for 20 mm lowering of piers, (d, e, f ) are for 40 mm lowering of piers, (g, h, i) are for 95
mm lowering of piers.

baseline signal, however, both BD and DP show higher predicted probability. The higher
probability of damage on the bridge deck is attributed to the surface area and larger effect of
differential pier-settlement on the entire bridge system. The bridge suffers higher changes in
structural responses than at the damaged pier itself, as the bridge deck acts as a support.

Similarly, for rupture of tendons, the most affected area would be the bridge deck and the
damage induced due to rupture of tendons will create a non-localized and distributed damage
throughout the bridge deck in comparison to bridge piers. The damage localization per sensors
is avoided due to non-conclusive inference and a comparison between structural components
of the bridge is provided in Figure D.19. It can be observed that rupture of 6 tendons prove to
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Figure D.18: Damage localization for lowering of pier, where legend shows the amount of
pier-settlement.

be worse damage level scenario in comparison to the ruptures with 2 and 4 tendons.
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Figure D.19: Damage localization for rupture of tendons, where, the legend shows number of
tendon ruptures.
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D.5 Conclusion

This chapter introduced a novel approach for multi-level structural damage detection and lo-
calization using LSTM networks on vibration signals. Limited datasets were augmented by
windowing of the time-series measurements and the prediction accuracy is improved by a
novel voting approach on the predictions of individual windows. Performance of the pro-
posed approach were validated through comprehensive experiments on the Qatar University
Grandstand Simulator (QUGS) and the Z24 bridge datasets. It is observed that the proposed
algorithm performs well with non-localized and irregular sample sizes, and learns the long-
term dependencies in vibration signals. The proposed algorithm is analyzed with sensitivity
analysis on window-size as the external parameter to the model. A parametric study is also
presented for random initialization of weights. It is demonstrated that a simple LSTM archi-
tecture is capable of classifying the time series signals into multiple damage levels with high
accuracy and low false negative rate. This work contributes a novel tool for the early detection
and localization of damages in civil structures and opens new avenues for future research in
the application of deep learning techniques for structural health monitoring, such as evaluating
the remaining useful life of structures.
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Appendix E

Experiences with Contrastive Predictive
Coding in Industrial Time-Series
Classification

Synopsis

This chapter is based on a technical paper [4] co-authored by the thesis author in the ACM
SIGKDD Explorations Newsletter.

Multivariate time-series classification problems are found in many industrial settings; for ex-
ample, fault detection in a manufacturing process by monitoring sensors signals. It is difficult
to obtain large labeled datasets in these settings, for reasons such as limitations in the auto-
matic recording, the need for expert root-cause analysis, and the very limited access to human
experts. Therefore, methods that perform classification in a label efficient manner are useful
for building and deploying machine learning models in the industrial setting. In this work, we
apply a self-supervised learning method called Contrastive Predictive Coding (CPC) to classifi-
cation tasks on three industrial multivariate time-series datasets. First, the CPC neural network
(CPC base) is trained with a large number of unlabeled time-series data instances. Then, a
standard supervised classifier such as a multi-layer perception (MLP) is trained on available
labeled data using the output embeddings from the pre-trained CPC base. On all three classifi-
cation datasets, we see increased label efficiency (ability to reach a goal accuracy level with less
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labeled examples). In the low data regime (10’s or few 100’s of labeled examples), the CPC
pre-trained model achieves high accuracy with up to 15x less labels than a model trained only
on labeled data. We also conduct experiments to evaluate the usefulness of CPC pre-trained
classifiers as base models to start an active learning loop, and find that uncertainty sampling
does not perform significantly better than random sampling during the initial queries.
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E.1 Introduction

Modern manufacturing plants and process systems are equipped with a large number of sensors
that monitor various physical variables on the operation of the systems. These sensors generate
vast amounts of time-series data, which can be used for tasks such as quality monitoring, fault
detection, and process optimization. Some of these tasks require classification of the gener-
ated multi-variate time-series data. Machine learning methods, and especially deep learning
methods have shown state of the art performance in these applications [12, 8].

However, deep learning classification methods are typically trained in a fully supervised man-
ner, and they require a large amount of labeled data to achieve high accuracy [15]. In industrial
applications, it can be difficult to obtain labeled time-series data due to several reasons [5].
For manual labeling, human experts need to carefully inspect and identify the different classes,
which is time-consuming, expensive and also error-prone. Sensor data and labels can be highly
process-specific or plant-specific, which makes it impossible to reuse a set of labeled data to
train models for multiple plants. Furthermore, some tasks naturally give rise to high class im-
balance, and obtaining and labeling data instances from the rare classes is difficult (e.g. faulty
class in plant fault detection, because plants do not break down often).

Due to the difficulty in obtaining large labeled datasets in industrial settings, developing time-
series classification methods that can be trained in a label-efficient manner to achieve high
accuracy is an important research problem. Various approaches have been proposed to address
the problem of unavailability of labeled data when training classification models. One solu-
tion is to use active learning [20, 6], which interactively queries an expert to label unlabeled
instances that are maximally informative to model training. Several forms of semi-supervised
learning have also been developed [29, 18], which generally involves the use of both labeled
and unlabeled data together to train a model.

A more recent method designed to improve label efficiency of deep neural network classifiers is
self-supervised learning. In self-supervised learning (SSL), a neural network is first pre-trained
with a proxy task on unlabeled data, followed by a supervised fine-tuning step on labeled data
for the actual classification task. Self-supervised learning has achieved state-of-the art label
efficiency (high accuracy with limited labeled data) in many domains such as image [9] and
text [26] classification.

In this work, we adapt Contrastive Predictive Coding, a self-supervised learning method intro-
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duced in [19] to the problem of label-efficient multivariate time-series classification in indus-
trial applications. The major contributions of this work are as follows:

• We propose a self-supervised learning pipeline (Figure E.1) that uses Contrastive Pre-
dictive Coding (CPC) [19] to train a neural network classifier for multivariate industrial
time-series problems in a highly label efficient manner.

• We provide a thorough analysis of the effect of CPC pre-training on label efficiency in
three industrial time-series classification datasets, including the very low data regime
(10’s or few 100’s of labeled examples). The three datasets are the Tennessee Eastman
Process dataset [24], a proprietary real-world batch process dataset, and a simulated
batch process dataset [28] 1.

• Since CPC models achieve high accuracy with very few training examples, we con-
duct further experiments to explore the possibility of using the CPC pre-trained method
to improve the performance of an active learning loop. Our finding is that with CPC
pre-trained models, uncertainty sampling does not have a clear advantage over random
sampling in the initial queries of an active learning loop.

The rest of the chapter is organized as follows. Section E.2 briefly discusses the relevant
research in self-supervised learning and time-series classification. Section E.3 provides an
overview of the Contrastive Predictive Coding method, and section E.4 describes the indus-
trial time-series datasets and the classification problems. Section E.5 explains the proposed
self-supervised learning based classification pipeline. Section E.6 presents the details of the
experiments and the results analysis. Section E.7 provides concluding remarks.

E.2 Related Work

The need to learn efficiently from a limited number of labels or to obtain label information in
an efficient fashion is not limited to industrial applications and several approaches to address
this problem exist.

1The simulation dataset is currently in the process of being published.
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Figure E.1: Training and testing pipeline for time-series classification with self-supervised
learning.

E.2.1 Semi-supervised learning

Semi-supervised learning tries to leverage unlabeled data in the training process based on two
assumptions: cluster assumption and manifold assumptions [31]. The first assumption assumes
that the data has cluster structure and instances falling into the same clusters have the same class
label. The latter assumes that the data lies on a manifold and nearby data points have similar
predictions. Unlabeled data gives insights into which data is similar. Semi-supervised learning
has been applied to time-series data as well [29, 18]. One challenge with semi-supervised
learning is the possible degradation of performance when using unlabeled data, which leads
to the fact that semi-supervised learning does not consistently outperform supervised learning
methods [27].

E.2.2 Self-supervised learning (SSL)

Self-supervised learning is a machine learning process using deep neural networks that learns
from data using labels obtained in a "semi-automatic" process, or that tries to predict parts
of the data from other parts [14]. The network trained in a self-supervised fashion is then
adapted in a supervised training process to solve a more relevant task. Many studies show that
self-supervised pre-training leads to higher label-efficiency. SSL has also been successfully
applied to time-series classification problems, such as phoneme and speaker identification in
audio signals [19], and biomedical signal classification [17]. Recent parallel work [21, 22]
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proposes a self-supervised learning method for time-series classification with a benchmark on
an industrial time-series dataset. However, the literature on self-supervised learning methods
for industrial multivariate time-series classification problems is lacking.

E.2.3 Active learning

Active learning tries to learn with better performance with fewer labeled samples by enabling
the machine learning algorithm to decide from which data it learns. For this purpose, an active
learning loop queries for labels of previously unlabeled samples [25]. The problem of pool-

based active learning [25], where the active learner chooses samples from a large pool of
unlabeled data matches the scenario described in this chapter best. Pool-based active learning
has previously successfully applied on process data in the chemical industry [23, 6] and other
time-series datasets [20]. The performance of active learning depends strongly on the selection
of the initial labeled training set [10] and the selection of good hyper-parameters during the
active learning process [7]. The combination of active learning and self-supervised learning
should help to overcome both issues by making the active learning process more robust to the
selection of the initial dataset and by using a relatively simple model for the actual classification
task.

E.2.4 Combining SSL and Active Learning

The idea to combine self-supervised learning and active learning is not new. For instance in one
work [13], SSL is used to rank images w.r.t to image quality as a proxy task. Self-supervised
learning can also be an approach to overcome the cold-start problem of active learning, the
issue that the model is not stable when trained with little data at the beginning of the process
[30]. In [30], the authors applied SSL to pre-train NLP models and used the loss of the pre-
trained model as a measure of informativeness in early iterations of the active learning process.
More recent results show that the possible gain of combining SSL and active learning can
be limited. In [2], a combination of SSL and random sampling performs better in the low
data regime and active learning based sampling is only beneficial in higher-data regimes. The
results of [3] even imply that active learning offers only marginal improvements and SSL alone
is sufficient to achieve labeling efficiency.
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E.3 Contrastive Predictive Coding

The self-supervised learning approach to building a neural network classifier involves two
steps. First, a neural network is trained on a suitable pre-training task on a large number of
unlabeled training examples. This is the representation learning step. Typical pre-training
tasks include predicting a masked part of a signal given the remaining parts (e.g. predicting the
future given past segments of the signal). This step does not require ground truth labels, which
enables the use of any amount of unlabeled data instances available. In the second step (fine-
tuning), a classifier (e.g. a fully connected neural network) is trained in a supervised manner
with available labeled training examples. In this step, one can choose to either freeze the repre-
sentation layers of the neural network (no weight updates to the base), or allow weight updates
to the base. Designing self-supervised learning methods involves identifying a neural network
architecture and a pre-training objective that learns good representations of the data modality.
For the multivariate industrial time-series datasets we use in this work, we adapt Contrastive
Predictive Coding or CPC [19], a generic self-supervised learning method designed to work
with many types of data (images, audio etc.)

E.3.1 CPC architecture and self-supervision task

The CPC neural network architecture is illustrated in Figure E.2. We call it the CPC_Full_SSL_Model.
In the self-supervised pre-training stage, the CPC model is given a sequence of past windows of
the time-series, and a second set of future windows (or samples) equal to the number of future
steps. However, only one of these samples correspond to the true window of that future step
(positive sample), while the others are taken from elsewhere in the dataset (negative samples).
The pre-training training objective is to identify the positive sample in the given set of samples,
which is formulated as a classification task.

The components of the CPC_Full_SSL_Model are described below.

• A sequence of encoder neural networks. The encoders have shared weights, and adjacent
windows of the time-series (xt) are given as input to each encoder. Each encoder pro-
duces a latent vector representation zt. The architecture of the encoder is chosen based on
the data modality. For multivariate time-series data, we use a strided 1-D convolutional
network.
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Figure E.2: Contrastive predictive coding neural architecture of the CPC_Full_SSL_Model
(adapted from [19])

• An autoregressive (AR) model. Typically, this is a recurrent neural network (e.g. GRU or
LSTM units). The sequence of encoder outputs is given as input to the AR model. The
final output state of the AR model is considered as a single vector representation of the
window sequence of the original time-series. It is named the context ct.

• A set of transformation layers (or networks). These layers transform the context ct into
the encoder output latent space. The output ẑt of each layer can be thought of as a latent
space prediction of the future window corresponding to the time step. Note that the
layers of different time steps have different weights (a unique layer for each time step).
We use fully connected layers with linear activations in this work.

• Dot product and softmax. These operations output the classification probabilities soft-
max vector. The element with the highest value is treated as the correct future window
(positive sample) among the given set of future windows. There are no trainable weights
in these operations.

E.3.2 CPC classifier

Once the CPC model architecture is trained for the self-supervised task of correct future win-
dow identification on unlabeled data, we can use the trained weights of part of the model for
the supervised classification task. The output of this part of the model is called an embedding,
and it is used as input to a classifier for the supervised classification task. We have two options
for the choice of embedding.
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• Take the encoder and autoregressive (AR) model together and use the final context of the
AR model as the embedding (input to train a classifier). This requires a longer context
of the input signal (a sequence of windows).

• Use the encoder output (encoded vector) of a single window as input to train a classifier.

In this work, we use the first method, as industrial time-series typically come from long running
processes, and our experiments gave better results in this setting. The classifier that is trained
on the embeddings is a small fully connected neural network with two hidden layers. We call
the model that is trained for the classification the CPC_Classifier (encoders + AR model +
small fully connected neural network). During the supervised training stage, weight updates
are allowed on the entire CPC_Classifier network, which includes the base part (encoder and
AR model), so that a fine-tuning of the weights occurs.

E.4 Industrial Datasets and Classification Problems

To test the suitability of CPC for solving industrial time-series classification tasks with in-
creased label-efficiency, we applied it to three datasets with associated classification problems.
Table E.1 shows the important characteristics of these datasets.

TEP refers to the Tennessee Eastman Process [1], a process simulator that replicates a complex
industrial process operated by the Eastman Chemical Company containing five units: reac-
tor, condenser, compressor, separator, and stripper. The simulator and generated datasets are
widely used in control research. TEP is a representative of continuous production process,
where a continuous flow of input material is transformed into the output material with a fixed
process behaviour over a long period of time (in some cases, years).

For our experiment we used a publicly available dataset created for the purpose of fault and
anomaly detection [24]. The dataset contains 52 time-series where 41 variables represent sen-
sor measurements and 11 are manipulated variables. The variables capture quantities like flow
rates, pressures, temperatures, levels, and compressor power output. The public dataset con-
tains 20 different fault scenarios by introducing different types of disturbances. This results in
21 different classes including the absence of disturbances. Besides the presence or absence of
disturbances, the different simulation runs differ in the measurement noise. From a practition-
ers perspective, TEP is an highly idealized benchmark dataset due to its size, well balanced
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Figure E.3: Nominal behaviour of a batch in the simulated dataset. Each highlighted segment
belongs to a different batch phase (a class in the classification problem) [28]

classes and very homogeneous production conditions.

The other two datasets are extracted from batch production processes, which consist of a se-
quence of steps such as heating, cooling, chemical reactions, or stirring. Due to their event
driven character, production runs (batches) for the same product can vary considerably. For in-
stance, differences of several hours of batch duration are common [11]. The analysis of batch
processes relies on reliable information about the start and end of the production steps and
transitions are often triggered manually by operators and not consistently documented.

Figure E.3 shows the behavior of the level of the unit reactor from the simulated dataset. The
colored areas indicate the duration of the different steps or batch phases in the production
process. These batch phases are the classes of the time-series classification problem. A related
classification problem, to recognize the presence of certain production steps in the data is
described in [16]. The different sequential steps of the production take places in so called units
and the focus of both batch datasets is a single unit resulting in much smaller number of signals
compared to the TEP dataset. The first dataset ("Batch Real") was provided by a partner of a
collaborative research project 2, and it contains data from a real world industrial process. The
second dataset ("Batch Simulated") was produced using a process simulator [28] 1.

2http://keen-plattform.de/keen/en/
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Table E.1: Dataset characteristics

TEP Batch Real Batch Simu-
lated

Data source Simulation Real-world
batch process

Simulation of
batch process

Availability Public [24] Proprietary 2 Proprietary 1

Classification
task

Fault detection Batch phase
classification

Batch phase
classification

No. of signals 52 8 5
No. of classes 21 (all taken) 15 (only 4 taken) 15 (only 3 taken)
Training set size 21k examples 6k examples 4k examples

E.5 Proposed Classification Pipeline

In order to leverage contrastive predictive coding to train classifiers for multivariate industrial
time-series datasets in a label efficient manner, we propose the classification pipeline in Fig-
ure E.1. The steps involved are described below.

• Train-test split. The individual time-series in the two proprietary batch process datasets
(Batch Real and Batch Simulated) are split into train and test sets (80%-20% split). The
splitting is done in the very first step to avoid any data leaks in later stages. TEP dataset
contains a separate test set, therefore splitting is not necessary. From the training sets, a
20% validation set is separated to measure out-of-sample loss during model training and
perform early stopping to avoid overfitting.

• Data preprocessing. Standard scaling is performed on the individual time-series of the
TEP dataset. The time-series in the two batch process datasets were first mean-resampled
to obtain mean values per minute. This is necessary, as the different variables in the mul-
tivariate time-series come from sensors that are sampled at different sampling intervals.
Then, min-max scaling is performed on the individual time-series followed by a data
imputing step (linear interpolation) to fill any missing values.

• Data instance preparation. The input to the CPC_Full_SSL_Model is a sequence of
past windows and a set of windows for the future steps with only one correct (positive)
window. A sliding window along the time-series is used to prepare these instances. The
incorrect (negative) windows for the future steps are taken randomly from anywhere in
the dataset. Window size for the TEP dataset is 20, and on the batch process datasets the
window size is 10. To increase the number of training examples, we set a 80% overlap
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of the time-series between two input sequences. The input to the CPC_Classifier is a set
of past windows prepared in the same manner.

• Self-supervised pre-training. The CPC_Full_SSL_Model has a strided 1-D convolutional
network (no max-pool layers) as the encoder with 5 layers. Each layer has 256 nodes
with ReLU activations, kernel sizes: [10, 8, 4, 4, 4] and strides: [5, 4, 2, 2, 2]. This
produces a latent space encoded vector of size 256. The autoregressive model is a single-
layer recurrent neural network with 128 GRU cells. The AR model sequence length is
10 for the TEP dataset, and 5 for the batch process datasets. The transformation layers
are single-layer fully connected networks with 256 linear nodes (to match the encoder
output size). The number of future steps is 20 for the TEP dataset, and 5 for the batch
process datasets. The pre-training task is the correct future window classification task
as described in section E.3 on the entire unlabeled training set with cross entropy loss
function. We train the network for 80 epochs using the Adam optimizer with learning
rate 0.001 and batch size 64.

• Supervised classifier training. Once the CPC_Full_SSL_Model is pre-trained with un-
labeled data, the CPC_Classifier model is formed by taking the encoder and AR model
and setting a two-layer fully connected neural network on top of it. The two layers have
128 and 64 nodes with ReLU activations with a dropout rate of 0.2. The CPC_Classifier

is trained for the downstream classification tasks of the datasets (fault detection for TEP
dataset and batch phase classification for the batch process datasets) with only labeled
data in a supervised manner with cross entropy loss function. Weight updates occur in
the full network, which means that the encoder and AR model weights are fine-tuned for
the downstream task. We train the network for 100 epochs using the Adam optimizer
with learning rate 0.001 and batch size 64.

The hyperparameters of the CPC network architecture are based on the parameters of the origi-
nal CPC paper [19]. We find that these parameters work well for all three datasets, indicating a
degree of architectural robustness that makes the CPC network suitable for different time-series
tasks. Parameters such as encoder input window size and autoregressive model sequence length
were determined by trial-and-error (trying out a range from small to large).
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E.6 Experimental Results

E.6.1 Initial experiments

In order to establish the classification accuracy for each task, we train multiple models with the
full labeled datasets. The CPC_Full_SSL_Model is first trained for the self-supervision task
(correct future window classification) with unlabeled data. For this task, the models give 63%
accuracy on the TEP dataset and 86% on the batch process datasets. Figure E.4 shows UMAP
visualizations of the CPC embeddings on the test datasets. The TEP test set embedding UMAP
shows certain classes forming separate clusters while some classes being scattered in the space.
The batch real test set embeddings have well-separated clusters. This observation shows that
the CPC embeddings are discriminative for the downstream classification task and provides an
indication that the CPC model was well trained.

TEP test set UMAP Batch real test set UMAP

Figure E.4: UMAP visualization of CPC embeddings on the test sets of TEP (left) and batch
process real (right) datasets. Different colors represent classes of each dataset.

Next, the CPC_Classifier model was trained for the downstream classification tasks in a super-
vised manner (cross-entropy loss function) with all labeled data in the training sets. Training
of the CPC_Classifier was done under three settings, and an LSTM model was also trained.
Following is a summary of the training settings. Note that the CPC base refers to the set of
convolutional encoders and the autoregressive (GRU) network.

• LSTM model. The LSTM network has two hidden layers (128 and 64 nodes) with tanh
activations. The length of an input sequence to the LSTM model is equal to the number
of samples in an input sequence of the CPC model (200 in the TEP dataset, 50 in the
batch process datasets).
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• CPC: no pre-training. All CPC_Classifier weights (1-D CNN encoder, GRU network,
fully connected neural network classifier) are randomly initialized and weight updates
occur in all components.

• CPC: pre-trained, base frozen. Weights of the 1-D CNN encoder and GRU network are
pre-trained and frozen, weights of the fully connected neural network classifier are ran-
domly initialized, and weight updates occur only in the fully connected neural network
classifier.

• CPC: pre-trained, base fine-tuned. Weights of the 1-D CNN encoder and GRU network
are pre-trained, fully connected neural network classifier weights are randomly initial-
ized, and weight updates occur in all components.

The results are summarized in Table E.2. On the TEP multiclass classification problem (with all
21 classes), the training settings where all network weights are updated yield accuracy upward
of 90%. The classifier trained on CPC embeddings (CPC: pre-trained, base frozen setting)
yields a relatively lower accuracy of 82%. This is likely due to the fact that the representations
learned by the CPC base from the self-supervision task needs fine-tuning in the downstream
task of fault detection for higher performance. The LSTM network also achieves a comparable
81.5% accuracy. The accuracy figures on the TEP dataset are comparable with the 81.43%
accuracy reported in [21]. However, a direct comparison is difficult due to differences in how
the data instances are prepared (different windowing techniques, subset of classes used etc).

On the batch process datasets, all CPC model training settings achieve near perfect classifica-
tion. In addition to establishing a comparison of the possible training methods, this experiment
also verifies that the neural network architecture of the CPC_Classifier is indeed capable of
learning a classification function on the three datasets given all available labeled data. On all
three datasets, the CPC models perform significantly better than the LSTM network.

Table E.2: Classification accuracy on the three datasets (trained on all labeled data).

Training method TEP Batch real Batch simulated
LSTM model 81.5% 95% 85.6%
CPC with no pre-training 90.12% 99.33% 98.6%
Pre-trained + frozen CPC base 82% 99.7% 99.3%
Pre-trained + fine-tuned CPC base 92.3% 99.4% 100%
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Figure E.5: Label efficiency curves of different types of CPC_Classifier training on the three
datasets. Top left: TEP dataset, top right: batch process real dataset, bottom: batch process
simulated dataset. Vertical error bars indicate minimum and maximum values in experiment
repetitions.

E.6.2 Label efficiency experiments

To benchmark the label efficiency of the contrastive predictive coding pipeline, we conducted
the four types of model training described in the previous section (Table E.2). In the down-
stream task supervised training stage, the models were trained with subsets of the full labeled
training sets. In order to observe the effects of CPC pre-training on the very-low-data regime,
we trained models with as little as 0.25% of the full training set, which corresponds to 10 - 40
examples in the three datasets. Such minimal availability of labeled data is possible in certain
industrial applications. The resulting label efficiency curves for the three datasets are shown in
Figure E.5.

On all three datasets, the self-supervised pre-trained CPC_Classifier gives high accuracy com-
pared to the randomly initialized CPC_Classifier and baseline LSTM model when trained with
as little as 0.25% of the full training set (e.g. 72.8% accuracy vs. 35.8% accuracy on the TEP



192 Chapter E. Contrastive Predictive Coding in Time-Series Classification

dataset with 0.25% labeled training examples). Note that this very-low-data regime consists of
42 labeled training examples in the TEP dataset and 10 labeled training examples in the batch
process real dataset.

The large label efficiency gain of the pre-trained CPC models persists further in to the low-
to-mid-data regime (up until 20% or more of labeled training data is made available). On the
TEP dataset, the pre-trained CPC models achieve 78% accuracy with about 10x fewer labels,
and 82% with about 2.5x fewer labels than the randomly initialized CPC model or the LSTM
network. On the batch process real dataset, the pre-trained CPC models achieve 98% accuracy
with 100x fewer labels than the randomly initialized model or the LSTM network. A similar
large efficiency gain is seen on the batch process simulated dataset (100% accuracy with 10x
fewer labels). All models converge to roughly the same accuracy values when they are trained
with more than 20% of labeled training examples.

Small labeled training sets can be the realistic case in certain industrial time-series classifi-
cation problems, and our results indicate that a pre-trained CPC model is beneficial in these
applications.

E.6.3 Active learning experiments

Active learning algorithms attempt to reduce human labeling effort by choosing most informa-
tive or important unlabeled examples and prompting a human expert to label them. Typically,
a model is first trained on available labeled data, and its output is then used to select unlabeled
examples to be labeled by a human expert. In the case of uncertainty sampling, examples
where the model is most uncertain (e.g. largest softmax value is small) are selected. When the
initial model is not well-trained, its output is unreliable, which makes it difficult for an a active
learning algorithm to select good examples.

Since the self-supervised pre-trained CPC_Classifier gives high accuracy even when trained
with a small number of labeled examples, we use it as the initial model in an active learning
loop instead of a randomly initialized model. The model is trained for the classification task
on an initial labeled subset (labeling budget) of 0.1% of the full training set. Then, batches of
unlabeled examples are selected via uncertainty sampling and random sampling (batch size:
20 on TEP dataset, 10 on the batch process real dataset). The labels of these examples are then
revealed (as if they were labeled by a human expert), and the model is trained with the set of
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Figure E.6: Active learning curves (accuracy and error) of on two datasets. Left: TEP dataset,
right: batch process real dataset. Vertical error bars indicate minimum and maximum values in
experiment repetitions.

all available labeled examples (initial labeled subset and the set of examples whose labels were
revealed via the active learning loop).

The resulting active learning performance curves are shown in Figure E.6. On the TEP dataset,
the self-supervised pre-trained CPC_Classifier does not provide a clear advantage to uncer-
tainty sampling over random sampling. On the Batch real dataset, uncertainty sampling of the
pre-trained model produces a lower error than random sampling as more queries are made.
However, the maximum difference of average error between the two sampling methods is
around 1.57%, which may not be considered as a significant gain by uncertainty sampling,
especially during the initial few queries. On both datasets, the self-supervised pre-trained
CPC_Classifier models start out with a much higher accuracy than the CPC models with no
pre-training (randomly initialized), and the gap continues through the low-data regime. This
observation is consistent with the results of the label efficiency experiments (section E.6.2,
Figure E.5).
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While there is no prior work that combines self-supervised and active learning on the TEP
dataset for direct comparison, such techniques applied to image data have produced similar
results. In [2], authors report that random sampling with a self-supervised pre-trained CNN
model on multiple image datasets performs better than active learning sampling methods based
on entropy and embeddings distance, especially in the low-data regime. Similarly, authors of
[3] find that active learning algorithms provide no additional benefit for image classification
when combined with self-supervised and semi-supervised methods.

These results indicate that active learning with uncertainty sampling may not be a worthwhile
time investment when building neural networks for industrial time-series classification prob-
lems with small labeled datasets. However, if a practitioner plans to use active learning to
minimize labeling effort, self-supervised pre-training of the models is a good first considera-
tion as the pre-trained models perform better in the low-data regime.

E.7 Conclusion

In this chapter, we presented a self-supervised learning pipeline based on contrastive predictive
coding or CPC for multivariate industrial time-series classification in a label efficient manner.
This method leverages large amounts of available unlabeled time-series data for pre-training
a CPC neural network to learn valid representations for downstream classification tasks. We
examined the label efficiency gains of the proposed pipeline on three time-series classification
datasets. In all cases, the CPC pre-trained models gave high accuracy with a very small number
of labeled examples.

We also explored the possibility of using a CPC-pre-trained model to cold-start an active learn-
ing loop. We found that a loop with uncertainty sampling does not perform better than random
sampling during the initial queries on the time-series datasets.

In many industrial applications with classification problems, vast amounts of unlabeled time-
series data is available, yet the human expertise to label them is expensive or unavailable. In
comparison, the computational cost of self-supervised pre-training is negligible. Therefore,
the proposed CPC pipeline is an excellent candidate solution for such industrial classification
problems.

In future work, we will extend this project to a benchmark to evaluate more self-supervised
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methods in multivariate industrial time-series applications. It is important to evaluate these
methods in the presence of typical data related issues such as heavy class imbalance (e.g.
anomaly detection; much fewer failure cases than normal operation), varying noise levels due
to uncalibrated sensors, missing values, and out-of-distribution test-time settings (e.g. due to
varying raw material qualities or differing operational conditions).
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