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Abstract 

Inspired by the history of the development of instruments in the physical sciences, and by 

past psychology giants, the following dissertation aimed to advance basic psychological 

science by investigating the metric calibration of psychological instruments. The over-

arching goal of the dissertation was to demonstrate that it is both useful and feasible to 

calibrate the metric of psychological instruments so as to render their metrics non-arbitrary. 

Concerning utility, a conceptual analysis was executed delineating four categories of 

proposed benefits of non-arbitrary metrics including (a) help in the interpretation of data, (b) 

facilitation of construct validity research, (c) contribution to theory development, and (d) 

facilitation of general accumulation of knowledge. With respect to feasibility, the metric 

calibration approach was successfully applied to instruments of seven distinct constructs 

commonly studied in psychology, across three empirical demonstration studies and re-

analyses of other researchers’ data. Extending past research, metric calibration was achieved 

in these empirical demonstration studies by finding empirical linkages between scores of the 

measures and specifically configured theoretically-relevant behaviors argued to reflect 

particular locations (i.e., ranges) of the relevant underlying psychological dimension. More 

generally, such configured behaviors can serve as common reference points to calibrate the 

scores of different instruments, rendering the metric of those instruments non-arbitrary.  

Study 1 showed a meaningful metric mapping between scores of a frequently used 

instrument to measure need for cognition and probability of choosing to complete a 

cognitively effortful over a cognitively simpler task. Study 1 also found an interesting metric 

linkage between scores of a practically useful self-report measure of task persistence and 

actual persistence in an anagram persistence task. Study 2, set in the context of the debate of 

pan-cultural self-enhancement, found theoretically interesting metric mappings between a 

trait rating measure of self-enhancement often used in the debate and a specifically 

configured behavioral measure of self-enhancement (i.e., over-claiming of knowledge). 

Study 3 demonstrated the metric calibration approach for popular behavioral measures of 

risk-taking often used in experimental studies and found meaningful metric linkages to risky 

gambles in binary lottery choices involving the possibility of winning real money. Re-

analyses of relevant datasets shared by other researchers also revealed meaningful metric 
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mappings for instruments assessing extraversion, conscientiousness, and self-control. 

Gregariousness facet scores were empirically linked to number of social parties attended per 

month, Dutifulness facet scores (conscientiousness) were connected to maximum driving 

speed, and trait self-control scores were calibrated to GPA. In addition, to further 

demonstrate the utility of non-arbitrary metrics for basic psychological research, some of my 

preliminary metric calibration findings were applied to actual research findings from the 

literature. Limitations and obstacles of metric calibration and promising future directions are 

also discussed. 

Keywords 

Metric calibration, arbitrary metrics, psychological units of measurement, psychological 

measurement, psychometrics. 



  

v 

 

Acknowledgments 

First and foremost, I would like to thank my advisor, Bertram Gawronski, for his guidance 

and knowledge, but most importantly his inspiration to think broadly, aim high, and follow 

one’s scientific passions. I have learned so much from him and have benefited in many ways 

from his intellectual astuteness and openness, clarity of thought, and high standards of 

thoroughness and exactness in his work. 

I would also like to thank my supervisory committee members, Sampo Paunonen and Rick 

Goffin, for their valuable input in the early stages of my dissertation. Many thanks to my 

other examiners, Lorne Campbell, James O’Brien, and Brent Donnellan for their helpful 

comments and suggestions. I also owe gratitude to Scott Leith for his assistance with data 

collection. Thanks also go to June Tangney, Ross O’Hara, Kenneth DeMaree, Joseph Ditre, 

and Sampo Paunonen for graciously sharing relevant datasets with me. 

Many thanks go to graduate student colleagues – in particular Kurt Peters, Chris Wilbur, Paul 

Conway, and Yang Ye – who in recent years have engaged in constructive and interesting 

conversations about metric calibration which have ultimately clarified and improved my 

thinking on the subject. Many thanks also go to all my psychology friends for their support, 

camaraderie, and general positive energy. You have contributed greatly to this rewarding 

intellectual journey and I am grateful for that. Special thanks also go to my non-psychology 

friends who provided much needed diversions from the analytically relentless world of 

academic psychology. 

Finally, I would like to thank my parents for their unwavering, emotional, financial, and 

intellectual support over the years. My father, for his mad-scientist genes and my mother for 

her detail-oriented and creativity genes. Without you, I would never have been able to 

achieve this goal. Sincere thanks also go to Michelle Lau and Theodore Cole for all the fun 

and creativity-inspiring adventures. 



  

vi 

Table of Contents 

CERTIFICATE OF EXAMINATION ........................................................................... ii 

Abstract .............................................................................................................................. iii 

Acknowledgments............................................................................................................... v 

Table of Contents ............................................................................................................... vi 

List of Tables ..................................................................................................................... ix 

List of Figures ..................................................................................................................... x 

List of Appendices ............................................................................................................ xii 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 The Nature of Metrics and Metric Arbitrariness ..................................................... 3 

1.2 Reducing Metric Arbitrariness: Background ........................................................ 10 

1.3 Main Empirical Strategies of Metric Calibration .................................................. 12 

1.3.1 Strategy 1: Noteworthy Differences in Behavior ...................................... 12 

1.3.2 Strategy 2: Gradation in Behavior ............................................................ 16 

1.3.3 Strategy 3: Experimental Approach .......................................................... 17 

1.4 Ideal Characteristics of Behavioral Reference Points ........................................... 22 

1.5 Inspirations from the History of the Development of Instruments in the Natural 
Sciences................................................................................................................. 24 

1.6 Relevant Theorizing by Past Psychologists .......................................................... 29 

1.7 Past Research on Arbitrary Metrics ...................................................................... 33 

1.7.1 Clinical Psychology .................................................................................. 34 

1.7.2 Forensic Psychology ................................................................................. 37 

1.7.3 Sport Psychology ...................................................................................... 39 

1.7.4 Individual-Level Diagnoses ...................................................................... 40 

Chapter 2 ........................................................................................................................... 43 

2 Benefits of Metric Calibration for Basic Psychological Research ............................... 43 

2.1 Help in the Interpretation of Data ......................................................................... 44 

2.1.1 Enhanced Interpretability of Statistical Effects ........................................ 44 

2.1.2 Allow Extraction of More Information from Data Patterns ...................... 48 

2.1.3 Help Overcome Limitations of NHST ...................................................... 51 

2.2 Facilitate Construct Validity Research ................................................................. 54 



  

vii 

2.2.1 Construct Illumination .............................................................................. 55 

2.2.2 Help with Conceptual Challenges ............................................................. 56 

2.2.3 Measurement Benchmark ......................................................................... 58 

2.3 Contribution to Theoretical Development ............................................................ 59 

2.3.1 Aid in Theoretical Debates Involving Absolute Claims ........................... 60 

2.3.2 Allow More Precise Theorizing via Enhanced Scientific Language ........ 61 

2.3.3 Quantitative Testing of Psychological Theories ....................................... 62 

2.4 Facilitation of General Accumulation of Knowledge ........................................... 64 

2.4.1 Valuable Information in its Own Right .................................................... 65 

2.4.2 Guiding Framework for Cataloguing the Magnitude of Psychological 
Effects ....................................................................................................... 65 

2.4.3 Facilitate Phenomenon-Based Research ................................................... 66 

Chapter 3 ........................................................................................................................... 68 

3 Empirical Demonstrations ............................................................................................ 68 

3.1 Study 1 .................................................................................................................. 68 

3.1.1 Theoretical Derivation of Relevant Behavioral Referents ........................ 69 

3.1.2 Method ...................................................................................................... 74 

3.1.3 Results ....................................................................................................... 78 

3.1.4 Discussion ................................................................................................. 87 

3.2 Study 2 .................................................................................................................. 88 

3.2.1 Pan-cultural Self-Enhancement Debate .................................................... 89 

3.2.2 Method ...................................................................................................... 92 

3.2.3 Results ....................................................................................................... 95 

3.2.4 Discussion ............................................................................................... 100 

3.3 Study 3 ................................................................................................................ 100 

3.3.1 Risk-taking Measures to be Calibrated ................................................... 101 

3.3.2 Theoretical Derivation of Behavioral Reference Points ......................... 102 

3.3.3 Method .................................................................................................... 104 

3.3.4 Results ..................................................................................................... 109 

3.3.5 Discussion ............................................................................................... 114 

3.4 Other Analyses .................................................................................................... 116 

3.4.1 Trait Self-control ..................................................................................... 116 

3.4.2 Extraversion and Conscientiousness ....................................................... 118 

Chapter 4 ......................................................................................................................... 121 



  

viii 

4 General Discussion .................................................................................................... 121 

4.1 Feasibility ............................................................................................................ 121 

4.2 Implications......................................................................................................... 123 

4.2.1 Help in the Interpretation of Data ........................................................... 123 

4.2.2 Facilitate Construct Validity Research ................................................... 128 

4.2.3 Contribute to Theoretical Development .................................................. 131 

4.2.4 Facilitate the General Accumulation of Knowledge ............................... 134 

4.3 Relatedness to Other Past Measurement Approaches ......................................... 136 

4.4 Limitations and Caveats ...................................................................................... 140 

4.5 Future Directions ................................................................................................ 142 

4.6 Coda .................................................................................................................... 145 

References ....................................................................................................................... 146 

Appendices ...................................................................................................................... 163 

Curriculum Vitae ............................................................................................................ 173 



  

ix 

List of Tables 

Table 1: List of proposed benefits of non-arbitrary metrics. .............................................43 

Table 2: Descriptive statistics and correlations for variables in Study 1 (N = 94). ...........79 

Table 3: Descriptive statistics and correlations for variables in Study 2 (N = 97). ...........96 

Table 4: Lottery options format in lottery risk task. ........................................................107 

Table 5: Descriptive statistics and correlations for variables in Study 3 (N = 99). .........109 

 



  

x 

List of Figures 

Figure 1: The nature of arbitrary metrics visually depicted. ................................................4 

Figure 2: Hypothetical probability of suicide attempt as a function of depression scores.
......................................................................................................................................13 

Figure 3: Hypothetical mapping between neuroticism scores and probability of reacting 
to an environmental stressor with anger rather than calmness. ...................................15 

Figure 4: Hypothetical linear (solid line) and non-linear (dotted line) mappings between 
extraversion scores and average hours spent socializing. ............................................16 

Figure 5: Schematic diagrams of the key concepts of the strong (panel A) and weak 
(panel B) variants of the proposed experimental metric approach. .............................19 

Figure 6: Early thermometers having no metric (left) or arbitrary metric (right). Reprinted 
with permission of The John Hopkins University Press (© 1969) from Middleton 
(1969, p. 87, Figure 3.1). .............................................................................................25 

Figure 7: Santorio’s early string hygrometer having a scale with arbitrary metric. 
Reprinted with permission of The John Hopkins University Press (© 1966) from 
Middleton (1966, p. 21, Figure 1.9). ............................................................................27 

Figure 8: A typical moderated multiple regression model when both predictors are 
continuous (panel A) with an actual example from the literature (panel B, Jordan et 
al., 2003; reproduced with permission). .......................................................................45 

Figure 9: Hypothetical experimental results across two samples at different locations on 
the DV scale. ................................................................................................................49 

Figure 10: Predicted probability of choosing a cognitively challenging task (Task 2) over 
a cognitively simpler task (Task 1) given need for cognition (NFC) scores. ..............80 

Figure 11: Mean time spent on unsolved near-impossible anagrams (in minutes) in the 
anagram persistence task (APT) plotted against self-reported task persistence scores 
using a linear (solid line) or cubic function (dotted line). ............................................83 

Figure 12: Mean time spent on unsolved near-impossible anagrams in the anagram 
persistence task plotted against self-reported Impulse-Control scores (Goldberg). ....87 

Figure 13: Number of non-existent words claimed familiar in OCT plotted against trait 
rating scores using a linear (solid line) or cubic function (dotted line). ......................97 

Figure 14: Number of non-existent words claimed familiar in OCT plotted against trait 
rating scores made separately using a linear function. ................................................98 

Figure 15: Number of non-existent words claimed familiar in OCT as a function of BIDR 
scores using a linear function. ......................................................................................99 

Figure 16: Predicted probabilities of choosing $10 gamble over $4 safe bet plotted 
against adjusted BART scores. ..................................................................................111 

Figure 17: Predicted probabilities of choosing $10 gamble over $4 safe bet (solid line) or 
over $6 safe bet (dotted line) given CCT scores. .......................................................112 



  

xi 

Figure 18: Grade point average plotted against Tangney et al.’s (2004) trait self-control 
scores..........................................................................................................................118 

Figure 19: Number of parties per month given gregariousness facet scores (panel A) and 
maximum driving speed given dutifulness facet scores (panel B). ...........................119 

Figure 20: Moderated multiple regression re-analysis of O’Hara et al. (2009) using 
conventional +/-1 SD (panel A) or calibrated values (panel B).................................124 

  



 

xii 

 

List of Appendices 

Appendix A: Conscientiousness items (MPQ and NEO-FFI) used in Study 1. ..............163 

Appendix B: Conscientiousness items (AB5C) used in Study 1. ....................................164 

Appendix C: NFC items used in Study 1. ........................................................................165 

Appendix D: Anagram persistence task (APT) materials used in Study 1. .....................166 

Appendix E: Words used in over-claiming technique (OCT) of Study 2. .......................167 

Appendix F: Domain-specific risk-taking scale (DOSPERT) items used in Study 3......169 

Appendix G: Ethics approval for Study1. ........................................................................170 

Appendix H: Ethics approval for Study 2. .......................................................................171 

Appendix I: Ethics approval for Study 3. ........................................................................172 

 

 

 



1 

Chapter 1  

1 Introduction 
It is undeniable that measurement is a cornerstone of psychology as an empirical science. 

Any field of scientific enquiry takes it as a given that empirical observation – rather than 

judgments of faith – is the primary evidentiary entity used to make claims regarding 

reality. The significance of measurement cannot be over-stated. The importance of 

measurement, however, can be further illuminated by considering the definition of the 

word cornerstone. The Oxford English dictionary defines cornerstone as “the first stone 

set in the construction of a masonry foundation, important since all other stones will be 

set in reference to this stone, thus determining the position of the entire structure.” This 

analogy visually reveals that measurement is critical because all empirical findings and 

theoretical claims are fundamentally tied or emerge in reference to measurement. 

Furthermore, measurement as a first stone ultimately determines the structure and 

sturdiness of an entire body of scientific knowledge. 

The vast majority of researchers in psychology generally agree with the importance of 

measurement. Indeed, within the last few decades, great advances in psychological 

measurement techniques have been achieved, which have led to important theoretical 

insights (e.g., the development of implicit measures; see Fazio & Olson, 2003). At the 

same time, however, some psychologists have pleaded for an increased focus on 

measurement in psychological research (e.g., Borsboom, 2006; Embretson, 2006; 

Merenda, 2007; Murphy & Deshon, 2000). In particular, Borsboom (2006), based on an 

analysis of the factors that have hindered the integration of psychometrics and 

psychology, argued that the incorporation of more advanced psychometric practices into 

psychological research is necessary for the true potential of psychological science to be 

realized. Notwithstanding these critiques, psychology researchers are often diligent in 

satisfying basic measurement requirements, for example, by providing evidence for the 

reliability and validity of their measures. However, an aspect of measurement that is 

distinct from reliability and validity that has received virtually no attention in basic 

research and scant attention in applied research, concerns the numbering system used to 
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quantify observed scores on psychological measures: that is, the metric of psychological 

instruments. 

The term metric refers to the numbering system used to quantify observed measurement 

scores when describing an individuals’ standing on a psychological construct (Blanton & 

Jaccard, 2006a). For instance, Beck’s Depression Inventory (BDI: Beck & Steer, 1987) 

has a metric that can range from 0 to 63. An interesting fact that is rarely discussed, 

however, is that virtually all measures in psychology have a metric that is arbitrary in 

nature. This means that any particular value produced by a measurement instrument does 

not necessarily have any precise meaning except when considered in relation to other 

values. That is, a score of “35” on the BDI does not – in and of itself – tell us much; 

however, relative to a score of “45”, we can – all else being equal – infer that a person 

with a score of “35” has a depression of lesser severity than a person with a score of 

“45”. In a formal sense, a metric is arbitrary when it is not empirically known where a 

given score locates an individual on the underlying psychological dimension or when it is 

not known how a 1-unit change in the observed scores reflects the magnitude of change 

on the underlying dimension (Blanton & Jaccard, 2006a, 2006b).  

The focus of the current research is on the nature of arbitrary metrics in the context of 

basic psychological research. The over-arching goal of the dissertation is to argue that it 

is both useful and feasible to calibrate the metric of psychological instruments used in 

basic psychological research so as to render their metrics non-arbitrary. To achieve this 

goal, I will present a conceptual analysis of the utility of non-arbitrary metrics for basic 

psychological research by elaborating on four categories of proposed benefits of non-

arbitrary metrics. Then, I will illustrate empirically that it is feasible to calibrate the 

metric of psychological instruments, by applying the metric calibration approach to seven 

distinct constructs commonly studied in psychological research, across three studies and 

re-analyses of other researchers’ data.  Finally, connecting the conceptual and empirical 

components of the dissertation, in the General Discussion, I will attempt to strengthen my 

case regarding the proposed benefits of non-arbitrary metrics by applying some of my 

preliminary metric calibration findings to actual published research findings in the 

literature. 
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1.1 The Nature of Metrics and Metric Arbitrariness  
In this section, I will expand on what is meant by metric arbitrariness and elaborate on 

important issues that are relevant when considering the metrics of psychological 

measures. First, however, a clarification concerning terminology is in order. Following 

De Houwer (2006), I will define a measurement procedure (or measurement instrument) 

as the actual apparatus used to measure a psychological variable (e.g., the questionnaire, 

task instructions, etc.). For the term, measure, it is important to realize that this term can 

refer either to the measurement instrument or to the outcome of a measurement procedure 

(e.g., a particular score on a questionnaire). To avoid this ambiguity, I will use the term 

measure exclusively to refer to the measurement instrument. To refer to the outcome of 

measurement, I will use the term measurement scores (or observed scores), which can be 

viewed as the end product of applying a measurement procedure to a person to assess a 

psychological construct. The term measurement is defined using Stevens’ (1946) widely 

adopted characterization as “the assignment of numerals to objects or events according to 

some rule” (p. 677; but see Luce, 1997). Hence, metric arbitrariness is a feature of the 

scores produced by a measurement procedure. 

As mentioned in the introductory paragraph, Blanton and Jaccard (2006a) consider a 

metric as arbitrary when it is not known where a given score locates an individual on the 

underlying psychological dimension or when it is not known how a 1-unit change in the 

observed scores reflects the magnitude of change on the underlying dimension. In other 

words, a metric is arbitrary when the mapping between observed scores and the 

underlying dimension is unknown. In psychology, it is generally assumed that observed 

scores provide a proxy to an individual’s actual standing on the latent construct of interest 

and that some response function relates the individual’s actual standing on the construct 

to his or her observed score on the response metric (Lord & Novick, 1968). Hence, when 

a metric is arbitrary, the function describing the relation between observed scores on a 

measure and the underlying dimension is unknown (Blanton & Jaccard, 2006a). Of 

course, we never have direct access to the underlying dimension (as is also the case in the 

physical sciences). What we can do, however, is to observe theoretically-relevant 

behaviors, which can be argued to reflect different levels of the underlying dimension. 
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The general task then becomes to discover how scores from the to-be-calibrated measure 

link up to these theoretically-relevant behaviors, which researchers consensually agree 

reflect particular locations on the underlying dimension of the construct (I will elaborate 

below on the characteristics such behaviors should ideally possess to serve as useful 

reference points). These fundamental concepts of metric calibration can be clarified by 

turning to the panel A of Figure 1, which depicts three depression instruments having 

arbitrary but distinct metrics (Instrument A = Self-report Depression Scale [SDS; Zung, 

1965], Instrument B = Major Depression Inventory [MDI; Bech et al., 2001], and 

Instrument C = Beck’s Depression Inventory [BDI; Beck & Steer, 1987]). 

 

Figure 1: The nature of arbitrary metrics visually depicted. 

The metric arbitrariness of these instruments becomes apparent in the figure given that 

the instruments have not been linked in any way to relevant behavioral reference points 
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of depression. Hence, it is unclear what a high score on any of the depression instruments 

means with respect to the different ranges of the underlying dimension. For instance, it is 

possible that a high score on one instrument (e.g., instrument A) reflects a lower level of 

depression than a low score on another instrument (e.g., instrument C).  

These issues can be further clarified by considering the metric calibration of different 

thermometer instruments, depicted in panel B of Figure 1. Here, the non-arbitrary metric 

of the different thermometers becomes apparent given they have all been empirically 

linked to the boiling and freezing point of water, which are reference points indicative of 

particular locations on the underlying dimension of temperature. As should be apparent, it 

is clear that the only way to know that these different thermometers are tapping into 

different ranges of the underlying dimension of temperature is through their empirical 

linkages to the relevant reference points. For instance, the cooking thermometer 

(thermometer A) taps into a higher and much wider range of the underlying dimension 

whereas the more general purpose thermometers (thermometers B and C) cover a 

narrower and lower range.  

Returning to the depression instruments, these considerations make apparent that to get a 

sense of what range of the underlying dimension the different depression instruments are 

tapping into, it is necessary to empirically link scores from those instruments to specific 

depression behaviors which could be argued to reflect different locations on the 

underlying dimension of depression (for e.g., suicide attempt in the last six months). 

Then, the metric of those instruments would gain meaning and become non-arbitrary. 

More generally, achieving non-arbitrary metrics for psychological instruments requires 

that observed scores are linked to particular behaviors argued to reflect different locations 

on the underlying psychological dimension. Then, and only then, will the metric of 

psychological instruments start to gain meaning and hence shed light on what location of 

the underlying dimension one’s instrument is tapping into. Below, I will elaborate on the 

specific details of this kind of metric calibration approach and outline the critical features 

ideal behavioral reference points should possess. 
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Arbitrary metrics may not be a problem per se for basic researchers who typically seek to 

test general theories rather than make absolute judgments about a person’s standing on a 

construct (however, we will see later how this can be a problem for certain types of 

claims made even in basic psychology). Arbitrary metrics do, however, become an issue 

when researchers attempt to make individual-level diagnoses based solely on the scores 

produced by an instrument with an arbitrary metric. This is the case when a researcher 

attempts to characterize an individual (or a group of individuals) as “high” or “low” on 

the underlying dimension: that is, making a statement regarding a person’s absolute level 

on the underlying dimension.  

Blanton and Jaccard described (2006a) two inappropriate strategies researchers 

sometimes use to make absolute judgments from scores produced by measures with 

arbitrary metrics: meter reading and norming. Meter reading refers to the act of simply 

using the score on the observed metric to infer the standing of the person on the 

underlying dimension. Hence, someone with a score at the high end of the metric would 

be considered as being “high” on the underlying dimension whereas someone with a 

score at the low end of the metric would be considered as being “low” on the underlying 

dimension (see below for an example). Norming refers to the process of transforming raw 

scores into standardized scores (e.g., z-scores or percentiles) based on the distribution of 

data from a target population and then making inferences of location on the underlying 

dimension based on this new metric. Blanton and Jaccard argue that both of these 

strategies are unfounded and that systematic metric research linking measurement scores 

to meaningful psychological events is the only sufficient strategy to permit inferences 

regarding someone’s standing on the underlying dimension.  

Meter reading, the first inappropriate strategy reviewed by Blanton and Jaccard (2006a), 

involves inferring the standing of a person on the underlying dimension by simply 

examining where, on the metric range, that person’s observed score lies. For example, 

inferring that someone with a score of “6” on a self-esteem inventory with a metric 

ranging from 1 to 7 is “high” on the underlying dimension of self-esteem would be an 

example of meter reading. Although meter reading may not be that common for situations 

similar to this simple example, researchers often engage in meter reading in the context 
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of bipolar constructs, which are quite common in psychology. For bipolar constructs, the 

two ends of the dimension are assumed to be polar opposites, with the midpoint of the 

scale sometimes labeled as “neutral” or “unsure” or “neither agree nor disagree”. In this 

context, researchers may simply assume (based on faith) that the scale midpoint maps 

onto the midpoint of the underlying dimension.  

The assumption that the scale midpoint maps onto the midpoint of the underlying 

dimension is pervasive, for example, in research on egocentric preferences for the self 

relative to others (Alicke, Klotz, Breitenbecher, Yurak, & Vredenburg, 1995; Weinstein, 

1980) and in research on knowledge overconfidence (Erev, Wallsten, & Bedescu, 1994). 

In the research on egocentric preferences, for example, researchers infer “better-than-

average” effects by testing whether individuals’ mean ratings of how they view 

themselves in comparison to others on certain traits (e.g., “intelligent”, “friendly”) are 

statistically greater than the scale midpoint (5 on a 9-point scale, where 1 = much less 

than the average college student; 5 = about the same as the average college student; 9 = 

much more than the average college student). There are numerous logical and empirical 

reasons why assuming that the scale midpoint reflects the midpoint on the underlying 

dimension is not warranted. Logically, and returning to my earlier analogy to 

thermometers (see Figure 1, panel B), it should be clear that if one was working with 

thermometers that have not been calibrated to relevant fixed points, it follows that one 

should not simply conclude that the numerical midpoint on one’s thermometer reflects 

“neutral” temperature. Similarly, it is clear from Figure 1 (panel B) that a thermometer 

reading near the maximum (or minimum) of the range of the instrument should not be 

used to infer the temperature in an absolute sense (i.e., meter reading) if the thermometer 

has not been empirically calibrated to relevant fixed points. Transporting these 

considerations into the psychological arena clearly implies that one should not engage in 

this type of meter reading if the psychological instruments have not been empirically 

linked to relevant reference points. 

Above and beyond logical considerations against meter reading, there are also various 

empirical findings that indicate we should not engage in meter reading with 

psychological instruments. For example, ratings given to questionnaire items have been 
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shown to be influenced by all of the following: the number of categories on the rating 

scale (e.g., 6- vs. 9-point scales; Parducci & Wedell, 1986), the extremity of previously 

judged items (Rotter & Tinkleman, 1970), the adjective labels or format of the scale 

anchors (French-Lazovik & Gibson, 1984; Schwarz, Hippler, Deutsch, & Strack, 1985), 

whether the intermediate categories are labeled with adverbs or not (e.g., slightly, 

moderately; Lam & Klockars, 1982), sheer frequency with which stimuli occur in the real 

world (Wedell & Parducci, 1988), and category activation processes related to the scale 

anchors (“very honest” vs. “not at all dishonest” activates conceptually distinct 

knowledge structures; Gannon & Ostrom, 1996). 

Yet another empirical reason that supports the inappropriateness of meter reading is the 

issue that individuals sometimes use different standards of reference when making 

judgments about different targets (Biernat & Manis, 1994). For example, it has been 

found that for judgments of competence, individuals use different standards of 

comparison when judging men versus women, such that individuals – based on gender 

stereotypes – give higher ratings of competence to women than to men for exhibiting the 

same level of competence (Biernat & Manis, 1994). Hence, equal ratings of perceived 

competence across gender targets do not reflect equal amounts of perceived competence. 

In other words, a difference score of “0” on observed ratings of competence for men 

minus women would not indicate equal perceived competence but in actuality reflect 

higher perceived competence in women than in men. In a broader sense, however, one 

can argue that individuals’ reliance on different judgment standards poses psychometric 

problems even for judgments made about the same target (e.g., personal attitude 

judgments: Olson, Goffin, & Haynes, 2007; employee performance judgments: Goffin, 

Gellatly, Paunonen, Jackson, & Meyer, 1996; see also Goffin & Olson, 2011). Taken 

together, all of these empirical findings imply that it is questionable to engage in meter 

reading and hence assume based on faith alone that the neutral point of a numerical scale 

maps onto the neutral point of the underlying dimension for bipolar constructs. 

Ultimately, however, these empirical reasons are not strictly required to make the case 

that meter reading is unwarranted given the aforementioned logic regarding the more 

obvious flaw of meter reading when considering, for instance, thermometers which have 

not been empirically calibrated to relevant fixed points (see Figure 1, panel B).  
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Another example of this issue – worth mentioning due to its notoriety – is the race 

Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998), for which 

some researchers interpret scores of “0” as lack of implicit bias, when in fact certain 

features of the IAT stimuli could render a difference score of “0” ambiguous in meaning 

at best (Blanton & Jaccard, 2006a, 2006b; Blanton et al., 2009). This could be the case if 

positive words used in the IAT are more positive in character than the negative words are 

negative and/or if the Black faces are more prototypically Black than the White faces are 

prototypically White (Bluemke & Friese, 2006; hence, again shifting scores in either 

direction away from the theoretical midpoint). To interpret the numerical midpoint of “0” 

in the IAT as the neutral midpoint on the underlying dimension, one has to move beyond 

meter reading and actually gather evidence of empirical linkages between particular 

measurement scores and “meaningful and conceptually relevant behaviors” (p. 63) 

argued to reflect particular locations on the underlying dimension (Blanton & Jaccard, 

2006b). It is important to note that the metric of any measure, regardless of the measure 

type (i.e., self-report, indirect, unobtrusive, behavioral task), is initially inherently 

arbitrary. Only after scores of a measure are linked to specifically chosen theoretically-

relevant behaviors consensually agreed-upon to reflect particular locations on the 

underlying psychological dimension, do measurement scores start to gain meaning.  

A second strategy identified by Blanton and Jaccard (2006a) sometimes used to 

inappropriately infer metric meaning, is when a researcher “norms” a distribution of 

scores such that it conforms to the properties of a standardized population of individuals 

(e.g., a population of healthy individuals). Norming typically involves the transformation 

of raw measure scores into standardized scores, such as z-scores, and then these scores 

are interpreted relative to the mean of the standardized population. For example, a raw 

score of “6” could be transformed to a z-score of “1.5”, which would mean that a 

person’s score is 1.5 standard deviations higher than the mean in the normative target 

population. Although it is true that standardizing scores may give important information 

about the relative standing of individuals within a particular target population, 

standardization alone in no way conveys information about a person’s standing on the 

underlying dimension in an absolute sense or in terms of the behavioral implications of a 

particular score. Consequently, standardizing scores from an arbitrary metric does not 
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render the metric non-arbitrary. The only way to convey information about a person’s 

standing on the underlying dimension in an absolute sense is to link observed scores to 

behavioral implications of the relevant construct, which can serve as reference points 

(Blanton & Jaccard, 2006a, 2006b; Sechrest, McKnight, & McKnight, 1996).1 

1.2 

                                                

Reducing Metric Arbitrariness: Background 
To glean information about a person’s standing on an underlying dimension, one has to 

go beyond meter reading and norming and acquire empirical evidence for making more 

nuanced interpretations of measurement scores. Empirical research must therefore be 

executed providing behavioral evidence for score interpretation rather than deciding 

metric meaning based on faith, by fiat, or as a measurement assumption. Although sparse, 

the literature contains some theorizing about different research strategies that can be used 

to reduce metric arbitrariness. A valuable starting point is a framework provided by 

Sechrest et al. (1996) who stated that metric meaning can be increased in one of three 

ways: (1) by estimating the degree of internal coherence of a measure, (2) by calibrating a 

measure with another measure, and (3) by calibrating a measure against external criteria 

or behavioral implications. Sechrest et al. emphasized that the third strategy is likely the 

most fruitful strategy and hence focus their discussion almost exclusively on this strategy. 

This resonates well with Blanton and Jaccard’s (2006a, 2006b) position who also 

emphasized a strategy involving the calibration of measures by finding empirical linkages 

between measurement scores and meaningful behavioral referents external to the to-be-

calibrated measure. 

Sechrest et al. (1996) elaborated on five strategies to increase the meaning of score 

metrics via calibration of a measure against external criteria: direct personal experience, 

empirically established behavioral implications, cross-experiential equivalence 

 
1 Some may find Blanton and Jaccard’s (2006a) position that normative data cannot speak to the metric 
issue too strong, given that normative IQ data have led to an intuitive metric of IQ scores. Though it is true 
that the IQ metric in some sense has gained an intuitive metric via normative data, strictly speaking metric 
calibration requires systematic empirical research linking test scores to behavioral reference points rather 
than metric meaning based on informal data regarding the kind of behaviors one can expect from 
individuals with particular IQ scores. 
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(formulating unfamiliar phenomena in more familiar terms), cross-modal representation 

(representing psychological states in terms of experiences in other modalities; e.g., 

loudness), and the method of just noticeable differences (minimum difference in scores 

required to observe a difference in theoretically-relevant behavior). I will focus my 

attention on the first two strategies as they reflect most closely the conceptualization of 

metric arbitrariness taken in this dissertation. In terms of direct personal experience, 

clinicians working with patients may sometimes have extensive experience in the use of 

psychological instruments and hence have an intuitive sense of the kinds of behaviors 

that correspond to particular scores on a measure. For example, a clinician who regularly 

uses the BDI potentially could have an intuitive understanding of how certain BDI scores 

map onto different types of depression-related behaviors (i.e., frequency of crying, 

suicide ideation) exhibited by his or her patients. It can be argued, however, that these 

types of mappings need to be established more systematically and precisely. Indeed, as 

Sechrest et al. mention, these kinds of personal experiences may not be of much help to 

the majority of the researchers in the field, who lack dual contact with clients and a 

psychological measure, unless this information can be captured and organized in some 

systematic fashion. The second strategy proposed by Sechrest et al. involves using 

empirically established behavioral implications to calibrate a measure’s scores. For 

example, given that a sad demeanor is one of the most salient features of depression, one 

could examine the specific mapping between a 1-point increase in BDI score and 

reduction in probability of being found smiling. More generally, Sechrest et al. argue that 

using behavioral implications of any particular measure (not just clinical measures) can 

be a fairly direct method of imbuing measurement scores with more meaning. 

In a similar vein, Blanton and Jaccard (2006a, 2006b) provided valuable information on 

strategies to reduce the metric arbitrariness of psychological measures. Indeed, they went 

beyond Sechrest et al. (1996) by providing a more nuanced conceptual analysis of the 

tricky issues surrounding the metric calibration of psychological measures and also by 

elaborating more concretely on the actual steps required to carry out empirical research 

aimed at reducing metric arbitrariness. According to Blanton and Jaccard’s conceptual 

analysis, an important preliminary step, which can be seen as a pre-condition to the 

metric calibration of a measure, is to develop consensus among researchers as to which 
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particular behaviors (or symptoms, or manifestations of a certain state) likely places an 

individual at the high or low end of the underlying psychological dimension. If this 

particular behavior empirically corresponds to a certain observed score on the measure, 

then the approximate location of the score on the underlying dimension can be inferred. 

Granted, this inference nonetheless caries some degree of uncertainty given the number 

of complexities inherent in the metric calibration process (e.g., reaching consensus 

among experts on the most appropriate behavioral reference points, assessing the 

particular behavior, modeling the metric mapping). Indeed, Sechrest et al. mention that 

the calibration of measures in psychology may never be as “tight” as in the physical 

sciences, but that this should not detract psychologists from engaging in metric 

calibration research. Moreover, the fact that the constructs of interest in psychology are 

unobservable should also not detract psychologists from calibrating their measures. 

Although this fact undoubtedly renders the calibration task quite challenging, it is 

important to keep in mind that most constructs in the physical sciences are also 

unobservable (e.g., temperature, electricity, magnetism), but that this did not prevent 

natural scientists from calibrating measures of unobservable constructs. 

1.3 Main Empirical Strategies of Metric Calibration 
Three primary strategies can be followed to reduce metric arbitrariness, two roughly 

following from Blanton and Jaccard’s (2006a, 2006b) and Sechrest et al.’s (1996) 

analyses and one stemming from my own ideas derived from an analysis of how 

thermometers and hygrometers are experimentally calibrated to theoretically-relevant 

reference points. The main empirical strategies are: (1) mapping observed scores to 

noteworthy differences in behavior tied to the phenomenon in question, (2) mapping 

observed scores to the gradation of theoretically-relevant behaviors, and (3) using an 

experimental approach to experimentally manipulate the construct to increasingly 

extreme levels. I will elaborate on each one of these strategies in turn. 

1.3.1 Strategy 1: Noteworthy Differences in Behavior 

In a first sense, a metric can be made more meaningful by finding an empirical mapping 

between observed scores and noteworthy differences in behavior tied to the construct of 
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interest. This can be implemented, for example, by finding an empirical mapping 

between observed scores and the probability of performing a theoretically-relevant 

behavior. In this context, the presence or absence of a behavior can be seen as a clear 

noteworthy difference in behavior. Hence, one seeks to document how changes in the 

observed scores of the to-be-calibrated measure map onto the probability of performing a 

certain behavior. As a concrete example, one could examine how depression scores map 

onto whether an individual has or has not made a suicide attempt in the last six months. 

As Blanton and Jaccard (2006b) mention, one response function that could be found in 

this case is an exponential function, fitted using logistic regression (see Figure 2). As is 

seen in the figure, the probability of a suicide attempt is small and constant for depression 

scores below “10”, but then start increasing around “15” and may reach unacceptable and 

dangerous levels around “25” and “30”, respectively.  

 

Figure 2: Hypothetical probability of suicide attempt as a function of depression 

scores. 
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It is important to note that, if this empirical mapping was found (and replicated), it would 

be clear that improving someone’s depression score from a value of “30” to “25” would 

mean something quite different than improving someone’s depression score from a value 

of “20” to “15”. These sorts of meaningful inferences could not be made without this type 

of metric calibration information. Hence, as Blanton and Jaccard state more broadly, “as 

individual test scores are linked to meaningful external events [behaviors], the meaning 

and implications of a given test score become more apparent and the metric becomes less 

arbitrary” (p. 63).  

Another example may help clarify the important concept involved in the notion of 

noteworthy difference in behavior. Consider a researcher interested in shedding light on 

the meaning of neuroticism scores by assessing individuals’ emotional reactions to 

construct-relevant environmental stressors as a theoretically-relevant behavioral criterion 

to calibrate those scores. In particular, one would be interested in finding the mapping 

between neuroticism scores and qualitatively distinct emotional reactions to the relevant 

environmental stressor. In this context, the qualitatively distinct emotional reactions 

could be seen as the noteworthy difference in behavior. Trained independent judges could 

code the emotional reactions of participants to the environmental stressor as “calm, even 

tempered” or “irritated/angry.” Assuming adequate inter-judge reliability, one could then 

find the approximate threshold neuroticism score that separates those who respond to the 

stressor with annoyance and irritation versus those who remain calm. Using a logistic 

regression, a graph could then be generated as depicted in Figure 3. As is evident in the 

non-linear mapping in Figure 3, a neuroticism score of approximately “18” could be 

viewed as representing a threshold value that distinguishes between individuals who 

respond to the environmental stressor with anger rather than calmness (given that a score 

of “18” maps onto a .5 probability of reacting with anger vs. calmness). 
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Figure 3: Hypothetical mapping between neuroticism scores and probability of 

reacting to an environmental stressor with anger rather than calmness. 

That being said, it is also possible that a more nuanced three-category model of 

qualitatively distinct emotional reactions could be posited and found (using, for e.g., 

probit or logit regression). That is, strong construct theory and other considerations may 

predict three qualitatively distinct ways to respond to the environmental stressor (e.g., [1] 

calmness, [2] mild irritation, and [3] extreme anger). The example in this approach fits 

well with Blanton and Jaccard’s (2006a) own recommendations, stating that meaningful 

metrics are “developed through the discovery of empirical thresholds that indicate 

noteworthy changes in the occurrence of observable events tied to the phenomenon in 

question” (p. 34).   

Finally, it is also interesting to briefly note how this noteworthy difference in behavior 

approach parallels in a broad sense the general strategy of calibrating the metric of 

thermometers by using the qualitatively distinct changes in relevant external events as 

reference points (i.e., noteworthy change of states between non-boiling and boiling water 

or between non-frozen and frozen water). Although this parallel was not mentioned by 

Blanton and Jaccard (2006a, 2006b), I think it is informative to bear this in mind when 
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considering the complex and abstract issues surrounding the metric calibration of 

psychological instruments. I will soon return to this issue in my section on inspirations 

from the history of the development of instruments in the natural sciences. 

1.3.2 Strategy 2: Gradation in Behavior 

The second general strategy to reduce metric arbitrariness involves finding empirical 

linkages between test scores and gradation of theoretically-relevant manifest behaviors. 

Using this strategy, particular scores on a measure can be mapped onto particular 

behavioral manifestations of the relevant construct, imbuing those particular scores with 

meaning. Gradation of such behaviors could take the form of an individual’s performance 

on a behavioral task or a frequency count of the number of times a relevant behavior is 

performed. For example, one could examine the mapping between extraversion scores 

(e.g., using Eysenck’s Introversion-Extraversion Scale [IES]; Eysenck & Eysenck, 1975) 

and number of hours spent socializing.  
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Figure 4: Hypothetical linear (solid line) and non-linear (dotted line) mappings 

between extraversion scores and average hours spent socializing. 
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As depicted in Figure 4, extraversion scores could gain meaning by way of their mapping 

to the behavioral manifestation of extraversion; that is, the average hours spent in the 

presence of others per day (as assessed, for e.g., using Mehl, Pennebaker, Crow, Dabbs, 

& Price’s, 2001, electronically activated recorder [EAR]). As reflected by the linear 

mapping (solid line), an extraversion score of “9” would correspond to approximately 8 

hours per day spent socializing whereas an extraversion score of “1” would correspond to 

approximately 2 hours of socializing per day. Hence, although in this approach no 

specific qualitatively distinct difference in behavior is available as a particular reference 

point, the scores nonetheless acquire meaning via the discovery of empirical mappings to 

relevant theoretically-relevant behaviors. 

With systematic collaborative discussions among experts in the field, it is also possible 

that consensus eventually emerges as to what changes in values in the manifest behavior 

represent noteworthy differences. For instance, in the extraversion example, even though 

number of hours spent socializing per day is linear, it seems clear that spending an 

average of 2 hours socializing – versus spending an average of 9 hours – represents a 

qualitatively distinct state of affairs. Over time, as more is understood about extraversion, 

perhaps experts in the area could agree to even more nuanced “noteworthy” 

differentiations. Furthermore, even though average hours is a continuous variable, it is 

also entirely possible that the function relating extraversion scores to average hours spent 

socializing could be non-linear (e.g., cubic or exponential), in which case meaningful 

threshold values for the behavioral referent could be gleaned. Indeed, as reflected by a 

non-linear function (dotted line) in Figure 4, a closer inspection reveals some kind of 

discontinuity near the inflection point of the fitted non-linear curve, suggesting 

extraversion scores greater than approximately “6.5” may correspond to a qualitatively 

distinct manifestation of extraversion. 

1.3.3 Strategy 3: Experimental Approach 

A third strategy for calibrating the metric of psychological measures, which to my 

knowledge is a completely novel conceptual idea, involves adopting an experimental 

approach whereby the relevant construct is manipulated to extreme levels. I will propose 

two variants of the experimental approach to account for the fact that constructs in 
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psychology are generally theorized to be either predominantly trait-like (e.g., personality 

constructs) or predominantly state-like. Hence, I will propose (1) an experimental 

strategy aimed to calibrate instruments that assess predominantly state-like constructs 

(i.e., a “strong” experimental strategy) and (2) an experimental approach aimed to 

calibrate instruments that assess predominantly trait-like constructs (i.e., a “weak” 

experimental strategy). 

The strong experimental approach involves manipulating a certain construct to 

increasingly extreme levels and then simultaneously assessing the to-be-calibrated scores 

and manifest behavioral referents. Empirical mappings between scores and behaviors are 

then established by way of the manipulation levels (as depicted in Figure 5, panel A). 

This idea broadly derives from the history of the calibration of the thermometer and 

hygrometer (details covered below). In the physical sciences, it is common practice for 

scientists to calibrate their instruments by linking the instrument readings to reference 

points that involve extreme levels of the phenomenon. For example, in the case of the 

early hair hygrometer (i.e., a human hair used to index ambient humidity), scientists 

experimentally manipulated extreme degrees of humidity by creating conditions under 

which the ambient air was either extremely moist or extremely dry. Consequently, the 

arbitrary values of the early hair hygrometer (i.e., length of human hair expanding or 

contracting as the moisture in the air increased or decreased) gained meaning as they 

were linked to these extreme manifestations of humidity. Transporting this approach into 

the psychological arena implies that we can potentially increase the meaning of our 

metrics by experimentally manipulating a certain construct to levels as extreme as 

possible (both low and high) and then simultaneously assess changes in the to-be-

calibrated measurement scores and the relevant behavioral manifestation of the construct. 

The empirical linkage between the to-be-calibrated measure scores and the behavioral 

manifestations would then be achieved by virtue of the experimentally manipulated 

levels. That is, the mean scores of the to-be-calibrated measure can be connected to the 

mean scores of the behavioral measure within each of the conditions (as depicted in 

Figure 5, panel A). 
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Figure 5: Schematic diagrams of the key concepts of the strong (panel A) and weak 

(panel B) variants of the proposed experimental metric approach. 

For instance, strongly anxiety-provoking situations (vs. intermediate vs. control 

conditions) could be used to experimentally calibrate a state-measure of anxiety 

(Spielberger, 1983) to the probability of exhibiting a nervous tick, by examining the 

mapping between the mean state-anxiety scores and the mean behavioral reference point 

scores at each level of the anxiety manipulation (e.g., mean score of “6.5” on state-

anxiety measure linked to a .5 probability of exhibiting a nervous tick). This strategy 

would roughly map onto the calibration of instruments in the physical sciences where the 

manipulation of the construct (e.g., increasing temperature of water via a flame) 

simultaneously impacts the to-be-calibrated measure (e.g., the glass-tube thermometer 

readings) and the reference point (e.g., presence or absence of boiling water).  

The second “weak” variant of the experimental metric approach is proposed as a way to 

imbue further meaning into scores from measures posited to be predominantly trait-like, 

above and beyond the scores’ linkages to naturally occurring levels of theoretically-

relevant behavioral referents covered in the first two strategies. Given that it may not be 

possible, or make theoretical sense, to attempt to manipulate trait-like measures to 

extreme levels (e.g., a self-report measure of extraversion), the strong form of the 

experimental approach is not appropriate. However, I propose that a “weaker” variant of 
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the strong experimental strategy could nonetheless imbue additional meaning into the 

measurement scores of constructs theorized to be predominantly trait-like. This can be 

achieved by manipulating the behavioral expression of the construct to as extreme as 

possible levels and then assessing these behavioral manifestations (scores from self-

report measure of the construct would be assessed before any manipulations given trait-

like construct). Even though a construct may be posited to reflect a primarily trait-like 

component (e.g., extraversion), it may nonetheless be possible to increase the behavioral 

expression of the construct by manipulating theoretically-relevant situational factors. For 

instance, one could manipulate extraverted behavior with an alcohol manipulation (e.g., 0 

vs. 2 vs. 4 units of alcohol per kg of body weight). Although personality psychologists 

may not see the expression of extraverted behavior due to alcohol as “true change” in the 

underlying construct, I contend that experimentally manipulating extraverted behavior to 

extreme levels can nonetheless provide valuable reference points that further increase the 

meaning of extraversion trait scores. This would be achieved by the fact that the 

experimentally manipulated extreme levels of the behavioral reference points would 

supplement the naturally occurring observed levels of the behavioral reference points.  

The “weak” variant of the experimental approach is depicted in Figure 5 (panel B). 

Continuing with the extraversion example, we can see on the left-hand side of the 

diagram, the mapping between the naturally occurring levels of trait extraversion scores 

and a relevant extraverted behavioral reference point (e.g., probability of talking to a 

stranger). Hence, manipulating extraverted behaviors via alcohol could increase (on 

average) the probability of spontaneously talking to a stranger (values in boxes on the 

right-hand side). These manipulated behavioral reference points can then serve to add 

additional meaning to the naturally occurring levels of the behavioral reference point, 

which would lend further meaning to the interpretation of the trait scores. For example, 

the interpretation of the meaning of an extraversion trait score of “7” would be increased 

by virtue of the fact that the natural mapping to its behavioral reference point (i.e., .25 

probability of talking to a stranger) can be interpreted with reference to the 

experimentally manipulated reference point (i.e., .50 probability).  
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In summary, following broadly the experimental logic of the calibration of instruments in 

the physical sciences, the experimental approach proposed (either in its strong or weak 

form) holds the potential to increase the meaning of psychological score metrics over and 

above the meaning gained from the first two non-experimental strategies.2 The two 

primary strategies that will be used to reduce metric arbitrariness in the current research, 

however, will be the two non-experimental strategies first reviewed. Future studies 

should nevertheless explore the potential utility of my newly proposed experimental 

approach to metric calibration. 

No matter what metric calibration strategy is used, it is important that the most 

appropriate statistical technique is used to model the response function that best connects 

the observed scores to the manifest behaviors. For instance, if a binary behavioral 

outcome is assessed, a logistic regression could be used to determine the logistic 

coefficient and intercept of the best fitting line; then predicted probability of performing 

the behavior can be determined for given test scores. If multiple category behavioral 

reference points are assessed, then a probit or logit regression could be used. For count-

like data, for example the frequency of crying, poisson (or negative binomial) regression 

could be used. Regardless of the statistical strategy employed, the important issue is that 

a particular metric mapping is established and that the parameters of this function are 

then used to map the observed test scores to the criterion behaviors. It may also be 

informative to form prediction intervals (Neter, Kutner, Nachtsheim, & Wasserman, 

1996) for each given test score, to gauge the amount of uncertainty inherent in the 

                                                 
2 The known-groups approach sometimes used in construct validity research might come to mind to some 
readers in this section. Indeed, the known-groups approach could be seen as providing very preliminary 
information about the possible meaning of a measure’s metric. For example, the finding that university 
professors score on average “6.5” on the need for cognition (NFC) scale (scale metric ranging from 1-7, for 
e.g.) whereas fashion designers score on average “3.5” could provide preliminary information to investigate 
what type of qualitatively distinct NFC-related behaviors distinguish university professors from fashion 
designers. Subsequent metric research could then systematically examine the empirical linkages between 
NFC scores and the relevant NFC-related behaviors identified in the known-groups stage. 
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empirical mapping for the individual-level scores. Prediction intervals estimate a range in 

which future observations will fall, given what has already been observed.3 

1.4 

                                                

Ideal Characteristics of Behavioral Reference Points 
Regardless of the metric calibration strategy employed, it is important that behaviors 

chosen to act as reference points possess specific characteristics. In this section, I will 

elaborate on such particular characteristics, which behaviors serving as reference points 

should ideally possess. These characteristics are based on considerations that build upon 

past theorizing on the metric calibration process in the psychological arena. For instance, 

Sechrest et al. (1996), from an applied perspective, conceived criterion behaviors to be 

used in metric calibration as reflecting “external behavioral implications” (p. 1068) in 

relation to real-life events. More generally, Blanton and Jaccard (2006b) construed 

criterion behaviors as “meaningful and conceptually relevant behaviors or symptoms” (p. 

63) or as “meaningful events that have gained consensus as being of relevance” (p. 68) 

with respect to certain locations on the underlying psychological dimension. But what 

particular characteristics render certain behaviors or psychological events “meaningful”? 

Going beyond considerations by Blanton and Jaccard and Sechrest et al., I contend that 

criterion behaviors to serve as behavioral reference points should ideally possess the 

following specific characteristics: theoretically-relevant, objective, unambiguous 

construct-wise, and interpretationally clear.  

First, criterion behaviors should be theoretically-relevant in the sense that there is an 

expectation based on construct theory that a certain behavior reflects a relevant 

behavioral manifestation of the construct at hand. That is, the accepted working definition 

of the construct (itself ideally stemming from theoretical considerations surrounding the 

construct) should guide the decision of which particular behaviors one would 

theoretically expect to be connected to scores of the to-be-calibrated measure. Second, 

 
3 In a related vein, the role of random measurement error contaminating the scores of both the to-be-
calibrated measure and criterion behavior should be considered and accounted for in the metric calibration 
process. Given that this issue has not yet been discussed in the metric calibration literature, future research 
should investigate how best to account for random measurement error in the metric calibration process. 
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behaviors to serve as reference points should be objective in the sense that independent 

observers can agree that a particular behavior was exhibited. Third, criterion behaviors 

should be chosen (and assessment situations configured) such that the observed behaviors 

are the most unambiguous as possible construct-wise. That is, the chosen behaviors 

should be assessed in such a manner whereby it can be argued that the observed behavior 

reflects primarily the construct of interest rather than also reflecting other constructs 

which are not of interest. Finally, criterion behaviors should be chosen and assessed such 

that they have a clear and intuitive interpretation, meaning that the scoring of the relevant 

behavior has a clear connection to the observed behavior in question (e.g., 1 = presence 

of a behavior and 0 = absence of a behavior; or number of times [or proportion of time] 

engaging in some behavior). For instance, if assessing time spent socializing with others 

(using e.g. Mehl et al.’s [2001] EAR), one would want to express the behavior in terms of 

hours spent socializing per day (for instance), rather than the number of seconds spent 

socializing per month. Also, another important consideration, as already mentioned, is 

that criterion behaviors to serve as behavioral reference points should be specifically 

chosen with the goal that the behaviors in question can be argued to reflect a particular 

location on the underlying dimension in an absolute sense. Taken together, I contend that 

it is the confluence of all of these characteristics that render certain behaviors strong 

candidates to be considered meaningful behavioral reference points. 

Furthermore, it is also important to consider the features of the context in which criterion 

behaviors are assessed (the “interpretational context”). When searching for empirical 

mappings, it is critical that a researcher uses theory to guide his or her thinking about the 

particular contextual conditions that need to be in place to elicit the behavioral 

manifestation of the construct in question. Consequently, rather than modeling 

moderation, one must include the contextual moderators of a psychological phenomenon 

into the design of a metric research investigation. For example, in the abovementioned 

neuroticism example, it is crucial to configure the experimental situation to match the 

particular conditions under which neurotic individuals have been found to respond with 

negative emotions. Hence, any mapping found between neuroticism scores and manifest 

behavior can be viewed as being conditional with respect to the parameters of the 

experimental situation (i.e., the type and severity of the environmental stressor). Also, it 
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is important to ensure that the measure being calibrated is tapping into the construct at the 

same level of generality and temporality as the manifest behaviors. Consistent with the 

specificity matching principle (Ajzen & Fishbein, 2005; Swann, Chang-Schneider, & 

McClarty, 2007), if the measure-to-be-calibrated taps into a relatively specific construct 

(e.g., attitudes toward potato chips), then the manifest behavior should be equally specific 

(e.g., how many grams of potato chips eaten in a year) whereas if the measure-to-be-

calibrated taps into a relatively general construct, then the manifest behavior should be 

equally broad (e.g., number of social events attended per month). Similarly with 

temporality, if the measure-to-be-calibrated taps into behaviors or mental states over a 

long period of time, the manifest behaviors also need to be observed over an equally long 

temporal period whereas if the measure-to-be-calibrated taps into a transient mental state, 

then the manifest behavior used as reference point should reflect an equally transient 

manifest behavior (e.g., behavioral markers of transient anxiety). In addition, construct 

theory should be used to determine which particular facet of a construct is best suited to 

be calibrated to certain behavioral manifestations of the construct. For example, if 

number of mistakes in a detail-oriented task is to be used as a behavioral reference point 

to calibrate a conscientiousness measure, great care should be used to select the most 

appropriate lower-order facet of conscientiousness (e.g., Deliberation facet of the NEO-

FFI; Costa & McRae, 1992). 

1.5 Inspirations from the History of the Development of 
Instruments in the Natural Sciences 

A brief glimpse into the history of the development of two important instruments in the 

natural sciences provides a useful context for discussing pertinent issues surrounding 

arbitrary metrics and the potential value of metric calibration in psychology. I will 

discuss, in turn, the history of the development of the thermometer and hygrometer.  

The development of the thermometer was based on a basic principle – discovered in 

antiquity by Philo of Byzantium and Hero of Alexandria at about the end of the second 

century B.C. – that certain substances expand and contract under varying conditions 

(McGee, 1988). Many centuries later, the idea of developing an instrument to quantify 

this effect emerged. Although still contested, historians of science usually consider 
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Galileo Galilei, Santorio Santorio, Cornelius Drebbel and Robert Fludd as serious 

candidates for the honor of having “invented the thermometer” sometime in the 1500s 

(Middleton, 1966). These early thermometers or thermoscopes as they were properly 

called, used as their thermometric substance the expansion and contraction of air, which 

would displace water in an elongated tube. Of relevance to my dissertation, these early 

thermoscopes did not have a scale and hence lacked any systematic metric or numbering 

system (Middleton, 1966). Furthermore, when Francesco Sagredo and Santorio Santorio, 

around 1612, first put some kind of scale on their respective thermoscopes, these scales 

did not involve any meaningful metric. These primitive scales involved the gradation of 

lines drawn on the tube, sometimes with two moveable threads tied to the stem, 

presumably to detect a change in temperature (see Figure 6, left). The first systematic 

scale used with an air thermometer was developed by Jean Leurechon around 1625, 

which had a scale ranging from 1 to 9 “degrees” (see Figure 6, right) and an air 

thermometer reported by Telioux around 1613 which had a scale ranging from 1 to 8 

(Middleton, 1969).  

 

Figure 6: Early thermometers having no metric (left) or arbitrary metric (right). 

Reprinted with permission of The John Hopkins University Press (© 1969) from 

Middleton (1969, p. 87, Figure 3.1). 
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It is historically interesting to note that the scales of early air thermometers can be viewed 

as having had an arbitrary metric. That is, even though temperature measurements with 

these air thermometers may have been mostly valid (although see next paragraph) and 

reliable, without reference to other observable phenomena, the readings produced by 

these thermometers were devoid of much meaning. It is also very interesting to note that 

these early scales seemed strikingly similar to the Likert-type scales so pervasively used 

in modern day psychology. 

Soon, however, a defect was discovered in the commonly used non-sealed air 

thermometers, such that they would respond to changes in air pressure as well as changes 

in temperature (i.e., early air thermometers were also barometers). To remedy this 

situation, Ferdinando II de Medici created a sealed liquid-in-glass thermometer in about 

1654 that was immune to atmospheric air pressure. Subsequently, many different types of 

sealed thermometers were developed using different thermometric substances (e.g., 

water, wines and other alcoholic spirits, mercury) and using different scales. It soon 

became apparent, however, that it would be much more useful, both in terms of the 

interpretation of thermometer readings and for comparing thermometer readings across 

laboratories using differently constructed instruments, if thermometers could somehow be 

standardized. Hence, some time in the middle of the 1600s, scientists started proposing 

that thermometers should be standardized in their construction and in their calibration to 

certain fixed points (and hence the scale used). Robert Hooke was one of the first, around 

1665, to propose that thermometers should be calibrated using one fixed point, namely 

the freezing point of distilled water; around the same time, Christiaan Huygens proposed 

to use as a reference point either the degree of cold at which water begins to freeze or the 

degree of heat of boiling water as a universal standard, so that degrees of heat and cold 

could be compared across laboratories without having to use the same instrument. A long 

debate, spanning almost a full century, thereafter ensued concerning which fixed points 

(and how many) should be used to calibrate thermometers. For example, fixed points 

proposed included (to name a few): constant temperature of deep cellars under the Paris 

Observatory (Mariotte, circa 1679), snow and boiling water (Bartolo, circa 1679), 

freezing point of water and melting point of butter (circa 1688), melting point of ice and 

salt and the temperature of very deep cellars (circa 1688), and melting point of ice and 
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body temperature (Isaac Newton, circa 1701). Eventually, Daniel Fahrenheit (circa 1724), 

René-Antoine Réaumur (circa 1730), and Anders Celsius (circa 1742) proposed to use 

the freezing point of water and boiling point of water as universal reference points, 

although they each proposed their own scales (32 °F and 212 °F; 0 °R and 80 °R; 0 °C 

and 100 °C, respectively were proposed as values for the freezing and boiling points).  

A similar story emerges from reading the history of the development of the early 

hygrometers (instruments to measure humidity). For instance, one of the first documented 

hygrometers, Santorio’s string hygrometer (circa 1612) (see Figure 7), was a simple 

device composed of a stretched out cord attached on both ends to a wall, with a lead ball 

fixed in the middle with a scale drawn nearby (Middleton, 1966). The logic underlying 

this measurement instrument was that as the moisture in the air increased, the length of 

the cord expanded whereas as moisture decreased (or dryness increased) the length of the 

cord contracted, moving the lead ball up or down, which could be quantified by the scale 

drawn on the wall.  

 

Figure 7: Santorio’s early string hygrometer having a scale with arbitrary metric. 

Reprinted with permission of The John Hopkins University Press (© 1966) from 

Middleton (1966, p. 21, Figure 1.9). 

As should be apparent, it is clear that the metric of this early string-hygrometer was 

arbitrary in nature, given that the scale values were not linked to any external reference 

points. Later hygrometers (e.g., de Saussure’s hair-hygrometer and Deluc’s whalebone-

hygrometer), however, did include a meaningful metric by calibrating the devices to 
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external reference points. For de Saussure’s (circa 1778) hair hygrometer, for example, 

the reference points were an extreme condition of moisture (achieved by putting the hair 

apparatus under a bell-jar of which the sides and bottom were wet) and an extreme 

condition of dryness (achieved by enclosing a piece of sheet iron – previously made red-

hot, cooled, and sprinkled with a mixture of powdered niter and cream of tartar – in a dry 

jar along with the hygrometer). Hence, the arbitrary values of de Saussure’s early hair 

hygrometer (i.e., length of human hair) gained meaning as they were linked to these 

extreme manifestations of humidity. 

Taken together, these historical sketches make clear that voluminous amounts of research 

was undertaken to calibrate thermometers and hygrometers to theoretically-relevant 

reference points (and many other instrument in the natural sciences). Such metric 

calibration research not only imbued temperature and humidity readings with more 

meaning, but also contributed in important ways to the cumulative knowledge base in 

these fields and correspondingly to theory development (e.g., theory of heat developing 

in step with the calibration of the thermometer, McCormmach, 2004). As it concerns my 

dissertation, the take-home message of these historical excerpts is: (a) that natural 

scientists agreed that the metric calibration of their measurement instruments was very 

important for the advancement of knowledge and (b) that this type of research involved 

the unique challenge of researchers reaching consensus as to the most theoretically-

relevant and meaningful reference points to use in the calibration process. Consequently, 

a possible implication of these historical excerpts for my research is that perhaps it is 

time for psychological instruments to be improved in ways that are in a broad sense 

similar to the calibration of instruments in the natural sciences.4 In particular, perhaps it 

is time for basic researchers in psychology to start considering the potential utility and 

feasibility of calibrating the metric of psychological instruments.  

                                                 
4 It is important to keep in mind that I am not suggesting that psychologists follow strict parallelism to 
measurement and methodology used in the natural sciences. My goal is to use measurement examples from 
the natural sciences as metaphors (see Dooremalen & Borsboom, 2010) to help inspire novel ideas with 
respect to psychological measurement. Psychological measurement clearly involves unique methodological 
challenges that transcend measurement challenges in the physical sciences; hence, metric calibration in 
psychology needs to be tailored to these unique specific challenges. 

 



29 

1.6 Relevant Theorizing by Past Psychologists 
If I have seen further it is by standing on the shoulders of giants.  - Isaac Newton 

 

Considering the scarcity of metric research in psychology, it may seem surprising that 

prominent psychology scholars have proposed theoretical ideas that are broadly 

consistent with my argument that reducing metric arbitrariness could potentially benefit 

basic psychological research. This observation seems even more remarkable given that 

specific research on metrics in psychology only emerged much later in the late 1990s. For 

instance, in a 1969 American Psychologist article, John Tukey propounded repeatedly 

that “amount, as well as direction, is vital” (p. 86). By this he meant that it is not just the 

direction of an experimental effect that is important, but by how much. In his own words: 

The physical sciences have learned much by storing up amounts, not just 
directions. If, for example, elasticity had been confined to “When you pull on it, it 
gets longer!” Hooke’s law, the elastic limit, plasticity, and many other important 
topics could not have appeared (emphasis added) (p. 86).  

It is important to keep in mind that Tukey is not simply arguing that we should be 

cognizant of the effect size of experimental findings. He is specifically making a plea that 

researchers should “store up amounts,” which implies that simply reporting amounts is 

insufficient, and hence that researchers should actually keep track and become familiar 

with particular amounts (see also Tukey, 1991). Another quotation from the same article 

makes this point even more clearly: 

Measuring the right things on a communicable scale lets us stockpile information 
about amounts. Such information can be useful, whether or not the chosen scale is 
an interval scale. Before the second law of thermodynamics – and there were 
many decades of progress in physics and chemistry before it appeared – the scale 
of temperature was not, in any nontrivial sense, an interval scale. Yet these 
decades of progress would have been impossible had physicists and chemists 
refused either to record temperatures or to calculate with them (p. 87, emphasis 
added). 

It seems clear from this passage that Tukey is espousing that we should keep track of the 

particular magnitude of an experimental effect in terms of scores that have a 

meaningfully interpretable metric. According to Tukey, it is valuable and important to 
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keep track of the particular amount of an effect as expressed in the units of measurement 

of the instrument used. Of course, this “stockpiling” of information is only valuable if the 

units of measurement are indeed meaningful. If, on the other hand, the metrics of 

measures in a research domain are arbitrary and hence lacking in meaning, then it would 

not be surprising that researchers fail to stockpile this kind of information. In general, 

psychologists doing basic research fall into this category. Indeed, Tukey (1969) spoke on 

this matter and explicitly lamented that “being so disinterested in our variables that we do 

not care about their units can hardly be desirable” (p. 89). One way of explaining why 

psychology researchers have not heeded Tukey’s ideas is indeed because virtually all 

psychological metrics used today are arbitrary (Blanton & Jaccard, 2006a). An important 

aspect of the current research, therefore, is to argue that given we now have a preliminary 

psychometric understanding of the steps required to make metrics of psychological 

instruments more meaningful (Blanton & Jaccard, 2006a, 2006b; Embretson, 2006), it is 

now time to tap into the great potential of Tukey’s words of wisdom at a practical level. 

Much inspired by Tukey’s ideas, Jacob Cohen also had important things to say regarding 

arbitrary metrics in psychology. Resonating particularly well with Tukey’s theorizing, 

Cohen (1994) emphasized that if all psychologists learn from a study is the direction of 

an effect, then we have not really learned much at all. In his own words: “But if all we, as 

psychologists, learn from a research is that A is larger than B (p < .01), we have not 

learned very much. And this is typically all we learn” (p. 1001). In a broad sense, this 

quote implies that we should be learning a lot more from a study than whether the groups 

differed in one direction or the other. That is, we should learn by how much the groups 

differed with respect to particular values of the dependent variable (DV) and also 

consider the departing value of the effect (e.g., manipulation increased DV scores by 2 

units from a departing value of 4 units). In a strikingly similar style, Kirk (1996) made 

almost exactly the same remark while speaking about the severe limitations of the typical 

use of null hypothesis statistical significance testing (NHST), one of which is that it 

evaluates only ordinal relationships:  

…a rejection [of the null] means that the researcher is pretty sure of the direction 
of the difference. Is this any way to develop psychological theory? I think not. 
How far would physics have progressed if their researchers had focused on 
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discovering only ordinal relationships [such as those tested by conventional 
NHST]? … knowing A is greater than B is not enough (p. 754). 

Hence, in a broad sense, these poignant prods imply that we need to go beyond direction 

and start being cognizant of the units we work with. Indeed, Kirk specifically mentioned 

that the use of confidence intervals (CI) can help precisely because CIs use the same unit 

of measurement as the data, which “facilitates the interpretation of results and makes 

trivial effects harder to ignore” (p. 754). This kind of theorizing directly implies that 

researchers should be more acquainted with the metrics they work with. In fact, Cohen 

explicitly stated that psychologists need to “respect” the units they work with: 

To work constructively with “raw" regression coefficients and confidence 
intervals, psychologists have to start respecting the units they work with, or 
develop measurement units they can respect enough so that researchers in a given 
field or subfield can agree to use them. In this way, there can be hope that 
researchers' knowledge can be cumulative. There are few such in soft psychology. 
A beginning in this direction comes from meta-analysis, which, whatever else it 
may accomplish, has at least focused attention on effect sizes. But imagine how 
much more fruitful the typical meta-analysis would be if the research covered 
used the same measures for the constructs they studied. Researchers could get 
beyond using a mass of studies to demonstrate convincingly that "if you pull on it, 
it gets longer. (emphasis added, p. 1001) 

“Respecting” the units one works with implies that one should become intimately 

acquainted with those units by first of all keeping track of them. Second, it also means 

that one should try to make sense of those units which requires that they actually be 

meaningfully interpretable. Indeed, the specific part of this last quote about developing 

measurement units that can be respected enough that different researchers can agree to 

use them specifically implies that researchers should develop non-arbitrary metrics that 

are respectable enough that different researchers can agree to use them (as occurred in the 

case of the development of thermometer and hygrometer scale metrics). 

From a slightly different perspective, Paul Meehl indirectly argued for the importance of 

score metrics in the context of the nature of theory testing in psychology. Meehl (1978) 

mentions that for science in general, a theory is corroborated to the extent that it has been 

subjected to potentially risky tests. That is, “the more dangerous tests [a theory] has 

survived, the better corroborated it is” (p. 817). In other words, the higher the specificity 
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of the predictions a theory confirms the more strength the theory acquires (see also 

Popper, 1968/1959). Hence, specific point predictions that involve estimating numerical 

point values are inherently more valuable for theory testing purposes than general 

directional predictions (see also Meehl, 1990a, 1990b). Indeed, Meehl specifically 

mentioned that “a theory that makes precise predictions and correctly picks out narrow 

intervals or point values out of the range of experimental possibilities is a pretty strong 

theory” (p. 818, emphasis in original). For psychology, this would translate into making 

specific theoretical predictions about how an experimental manipulation would pattern 

itself on specific locations of the metric of a DV. Meehl (1990a, 1990b) lambasted 

psychologists for invoking NHST in its weak form and laments that directional theory 

testing is highly sub-optimal because it subjects psychological theory to very weak or 

lenient tests.  

Relatedly, Meehl (1967) has argued that the hurdle which physical sciences theory must 

surmount generally increases with improvement in experimental design and measurement 

whereas in the psychological sciences improvement in experimental design generally 

leads to easier hurdles for a theory to surmount (a situation Meehl calls a 

“methodological paradox”). This is the case because in the physical sciences, with 

increased knowledge, increasingly precise point-value predictions are made whereas in 

psychology only directional tests are ever made. Of course, Meehl mentions that most 

psychological theories (and the knowledge base from which theories are derived) may not 

be sufficiently quantitatively developed to be able to generate point-predictions (but see 

Granaas, 2002). Hence, he admits that although this state of affairs is surely 

unsatisfactory, it is “nobody’s fault” given it is unclear how behavioral scientists would 

attempt to develop strong enough theory to be able to generate point-predictions that 

stand a larger risk of refutation (and hence would corroborate the theory in a much 

stronger way). That being said, Granaas (2002) questions whether psychologists’ 

reluctance to make point predictions stems from (a) their theories not being sufficiently 

developed quantitatively or (b) from psychologists not being trained to think this way. 

From a metric perspective, however, I would argue that increased attention to the metric 

of our measures and research specifically aimed at calibrating our metrics to behavioral 

fixed points could represent the preliminary steps required to move our field into a 
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direction that could make it eventually possible to adopt Meehl’s recommendations of 

making more specific point-value estimate predictions (see also Mulaik, Raju, & 

Harshman, 1997). In fact, one could argue that metric research is a required and 

necessary first step to even consider the possibility of such kinds of point-prediction 

theory testing.  

In summary, a fair bit of theoretical discourse exists that generally supports the idea that 

making metrics more meaningful could benefit the progress of basic psychological 

science. Ranging from theoretical ideas on more quantitatively-oriented theory testing, to 

pleas on developing units of psychological measures that researchers are willing to 

respect, to the stockpiling of information about particular amounts of experimental 

effects, taken together, these theoretical ideas provide the context from which my main 

thesis is derived. Ultimately, these broad-minded theorists had the foresight to discuss 

ideas that are broadly consistent with my argument that making metrics of psychological 

instruments more meaningful can move our field forward and benefit basic psychological 

research. 

1.7 

                                                

Past Research on Arbitrary Metrics 
Past research that speaks more directly to the issue of metrics in the psychology arena is 

surprisingly limited. Based on my review of the literature, the only existing research on 

the issue of metrics is the relatively small amount of research done from an applied 

perspective in the area of clinical psychology (Kazdin, 1999; Kazdin, 2006; Sechrest et 

al., 1996), forensic psychology (Hanson, 2009; Pirelli, Gottdiener, & Zapf, 2011), sport 

psychology (Andersen, McCullagh, & Wilson, 2007), and individual-level diagnoses 

(Blanton & Jaccard, 2006a, 2006b; Blanton et al., 2009).5 I discuss these in turn. 

 
5 Research approaches within the domain of industrial/organizational (I/O) psychology have also examined 
topics that could be viewed as related to metric calibration issues broadly construed (e.g., expectancy 
charts, utility analysis). However, given that this research does not directly tackle the issue of empirically 
developing meaningful units of measurement for one’s measures, I will defer my discussion of these 
approaches until the General Discussion. 
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1.7.1 Clinical Psychology 

Most of the research concerning arbitrary metrics from a clinical perspective involves 

papers that discuss the challenging task of evaluating the true effectiveness of clinical 

interventions on treating psychopathologies. Known under the rubric of clinical 

significance, this research aims at determining what constitutes proper evidence for 

showing clinical significance rather than merely showing statistical or practical 

significance (Chambless & Hollon, 1998; Kendall, 1999). For example, in a review of 

literature, Kazdin (1999) conceptualized the notion of clinical significance as the  

practical or applied value or importance of the effect of an intervention – that is, 
whether the intervention makes a real (e.g., genuine, palpable, practical, 
noticeable) difference in everyday life to the clients or to others with whom the 
clients interact (p. 332).  

Kazdin conceptually analyzed the various ways that different researchers have 

operationalized clinical significance and concluded that all of these different meanings 

involve ambiguities that need to be clarified. Kazdin recommended that much more 

research effort should be focused on determining cut-off scores for outcome measures 

that can identify individuals who have changed in marked ways in everyday functioning 

by calibrating the metric of outcome measures commonly used in psychotherapeutic 

intervention studies.  

Indeed, in his 2006 commentary on Blanton and Jaccard’s (2006a) target article, Kazdin 

specifically delineated the numerous problems of using measures with arbitrary metrics 

for research on evidence-based psychotherapy. His main point was that the thorny issue 

of determining the clinical significance of intervention studies would be greatly improved 

if outcome measures used in intervention studies were calibrated against real-world 

referents as to reduce the metric arbitrariness of these outcomes measures (see also 

Kazdin, 1999, 2001). Kazdin argued that using outcome measures with non-arbitrary 

metrics would allow one to better gauge the actual impact of an intervention on a client’s 

everyday functioning. For example, a depression inventory whose scores were linked to 

frequency of actual crying episodes would allow a better assessment of the actual impact 

of an intervention on client functioning. 
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Similarly, but said much more piercingly, Sechrest et al. (1996) delineated the 

interpretational problems in judging the effectiveness of clinical intervention studies 

when outcome measures have an arbitrary metric. For instance, Sechrest et al. reviewed a 

major national study of the treatment of depression, showing that BDI (Beck & Steer, 

1987) scores decreased from about 26 points to about 17 points post-treatment (Watkins 

et al., 1993). What do these findings mean other than that depression decreased to some 

extent over the course of the study? Sechrest et al. stated bluntly: “nothing much we 

think, unless one has good understanding of just what is entailed by that to some extent” 

(p. 1065). They further stated that it is impossible to gauge the degree of effectiveness of 

most psychotherapy intervention studies (even psychotherapy meta-analyses, e.g., Lipsey 

& Wilson, 1993), because at best these studies express treatment effects in standard 

deviation units on whatever outcome measures were used. Sechrest et al. argued that for 

psychotherapy findings to be interpretable, findings must be expressed in terms of actual 

change in behavior or functioning rather than simply assuming change from a metric of 

uncertain meaning. Hence, they strongly recommended that the outcome measures used 

in intervention studies be calibrated against “external implications” reflected in actual 

behavior theoretically related to the construct at hand, as to imbue the metric of outcome 

measures with some inherent meaning and interpretability. 

Although Sechrest et al. (1996) discussed issues pertaining to arbitrary metrics mostly 

from the applied context of clinical psychology, they also made statements about metrics 

directed to psychology more generally. For example, in their own words they stated that 

“science, [and] understanding of behavior, […] would be advanced by a better 

understanding of the measures by which the phenomena we concern ourselves are 

gauged” (p. 1068). In other words, it seems in the eyes of Sechrest et al. that 

understanding of human behavior more generally could be advanced by increasing our 

attention to the meaning of the metrics of the measures we use to assess psychological 

phenomena. This idea is stated more clearly and convincingly in their concluding 

paragraph, which will be included in its entirety due to its relevance and vigor: 

Our belief is that progress in psychology, [including the understanding of 
psychotherapy], like progress in all science, depends strongly on the quality of 
psychological measures. Psychologists cannot claim to have high-quality 
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measures if they do not have full knowledge of their implications. Currently, that 
knowledge cannot be claimed for most measures used in psychology. We believe 
that knowledge, understanding, and progress in the science of psychology would 
be furthered greatly by concerted efforts to calibrate psychological measures in a 
variety of ways that are now available and that are sadly neglected. These 
methods include calibration of measures against each other so that it is possible to 
make accurate comparison across studies, but behavioral and other real-life 
implications should be accorded highest priority (p. 1071).  

This concluding paragraph is most unambiguously consistent with the main thesis of my 

dissertation. Precisely how the calibration of measures could benefit basic psychological 

research, however, still remains unclear and unspecified. As mentioned, one of the goals 

of this dissertation is to specify precisely how metric research can potentially benefit 

basic psychology. 

In a praiseworthy demonstration of Sechrest et al.’s (1996) general recommendations, 

Harman, Manning, Lurie and Liu (2001) published a large scale study that specifically 

linked mental health status measure scores (at time 1) to the probability of occurrence of 

subsequent major life events (at time 2). They framed the goal of their research as helping 

clinicians, researchers, and policy makers more easily interpret and gauge the actual 

significance of intervention outcomes. Harman et al. examined three mental health status 

scales including the Global Assessment Scale (GAS; individual life functioning), the 

Schedule for Affective Disorders and Schizophrenia (SADS; mood, anxiety, and 

delusions) subscale, and the Schizophrenia Subscale of the Brief Psychiatric Rating Scale 

(BPRS; emotional withdrawal, guilt, hostility, and disorientation). The major life events 

used in the study were psychiatric hospitalizations, victimizations, arrests, and suicide 

attempts, all assessed by patient self-report during face-to-face interviews.  

Using a logistic robust regression, Harman et al. (2001) found, to list a few examples: 

that an 8 point increase on the GAS (metric range = 0 to 100) corresponded to a 24% 

decrease in probability of a suicide attempt; that a 5 point increase on the SADS 

depression subscale (metric range = 0 to 73) corresponded to a 19% increase in 

probability of psychiatric hospitalization and a 36% increase of a suicide attempt. It was 

argued that these kinds of linkages can help clinicians and policy makers interpret results 

of clinical interventions because rather than simply reporting that an intervention 
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increased GAS scores by 8 points, one could report that the effect of the intervention was 

equivalent to a 24% reduction in probability of suicide attempt.  

Another interesting implication of Harman et al.’s study is that it can be used (taking into 

account sampling differences) to interpret the clinical significance of past studies. For 

example, a study on the effect of risperidone versus haloperidol in treating refractory 

schizophrenia, showed that patients taking risperidone had post-treatment BPRS scores 

that were 2.3 points lower than patients taking haloperidol (p < .05, d = .15; Wirshing et 

al., 1999). According to Harman et al.’s calibration results, this effect translates into an 

approximate decrease of 5% in the probability of a psychiatric hospitalization, which is 

clearly more meaningfully interpretable than knowing the results of the study based 

solely on scores having an arbitrary metric, arbitrary effect sizes, and arbitrary p-values. 

1.7.2 Forensic Psychology 

Although still in its early stages, preliminary conceptual work has been done by Pirelli, 

Gottdiener, and Zapf (2011) with respect to the use of non-arbitrary metrics for 

competency to stand trial assessment instruments. In their review of the literature, it is 

concluded that each of the eleven competency to stand trial assessment instruments used 

in the forensic literature has an arbitrary metric and that this is problematic for both 

researchers and practitioners. Competency to stand trial instruments are especially 

important due to the costs associated with poor or flawed competency to stand trial 

evaluations should an incompetent defendant incorrectly be forced to stand trial or should 

a competent defendant be incorrectly committed to a forensic psychiatric facility. For 

example, the Competency Screening Test (CST; Lipsitt, Lelos & McGarry, 1971) is a 

self-administered measure containing 22 sentence completion items which are coded by 

independent judges as “0” (incompetent), “1” (marginally competent), and “2” 

(competent). Example items include “When I go to court the lawyer will…” and “When 

they say a man is innocent until proven guilty…” Composite score can range from 0 to 

44, with a total score of 20 or below demarcating incompetent from competent 

defendants. Pirelli et al. argued that this measure (as all other competency to stand trial 

instruments) is seriously flawed given that the metric of the measure is arbitrary and thus 

it is quite unclear what the total scores really mean with respect to competency to stand 
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trial. Without linking CST scores to specific competency to stand trial behaviors that are 

theoretically-relevant and meaningfully interpretable, CST scores remain ambiguous at 

best. As Pirelli et al. pointed out, it is axiomatic that the number “1” should always be 

located between “0” and “2” on any scale and that assuming a score of “1” on an 

instrument corresponds to a neutral point on the underlying construct of competency is 

completely unfounded.  

Another important problem related to arbitrary metrics of instruments with composite 

scores like the CST is that, because the issue of arbitrary metrics applies both at the item 

and composite score level, two persons may arrive at the same total score via two 

completely different routes and this may mean quite different things in terms of actual 

behavior. For example, for the CST, a defendant could have a total score of 20 by 

receiving twenty “1”s and two “0”s or by receiving ten “2”s and twelve “0”s, which may 

translate into quite distinct competency to stand trial behaviors. Pirelli et al. concluded by 

recommending that it is imperative that researchers reduce the metric arbitrariness of 

competency to stand trial for the good of science and society, by empirically linking test 

scores to real-world competency to stand trial behavioral referents that are deemed by 

experts in that area to be theoretically-relevant and interpretable. 

Paralleling Pirelli et al.’s (2011) general ideas, recent work by Hanson (2009) followed 

the same logic but was applied in the context of risk assessment measures used to predict 

crime and violence. Reviewing the literature on risk assessment tools for crime and 

violence (e.g., sexual deviancy, aggression measures), Hanson concluded that crime and 

violence risk assessment tools used to predict subsequent criminal and violent behaviors 

(sexual and violent recidivism, respectively) need stronger psychometric properties and 

would greatly benefit from having non-arbitrary metrics. Indeed, Hanson, Helmus, and 

Thornton (in press) reported research examining the empirical linkages between the 

scores from the most commonly used sexual recidivism risk tool in Canada and the U.S. 

(i.e., the Static-2002; McGrath, Cumming, & Burchard, 2003) and probability of re-

committing a sexual offence. The Static-2002 tool combines objective (e.g., 

demographic, previous sexual offences) and self-report (e.g., deviant sexually interests) 

information for five content dimensions within a professional structured interview 

 



39 

context (age, persistence of sex offending, deviant sexual interests, relationship to 

victims, and general criminality). For instance, an individual with 4 prior sexual 

convictions would receive a subscore of “3” for the “persistence of sex offending” 

dimension; an individual with any non-sexual convictions would receive a score of “1” 

for the “general criminality” dimension. These scores are then summed and recoded in a 

weighted fashion to produce the final total composite scores ranging from 0 to 14, with 

higher numbers representing higher levels of sexual crime risk.  

In a large sample (N = 867), Hanson et al. (in press) found informative empirical 

mappings between Static-2002 scores and probability of sexual recidivism for both 

rapists and child molesters. For instance, Static-2002 scores of 0, 1, and 2 (for rapists) 

were associated with recidivism rates of roughly 10% or lower whereas Static-2002 

scores of 9 and above corresponded to recidivism rates of 50% or greater. Although not 

framed as such in this particular report, evidence of this kind, which demonstrates 

empirical linkages between Static-2002 scores and meaningful external reference points, 

imbues the metric of Static-2002 scores with more meaning and hence increases score 

interpretability. 

1.7.3 Sport Psychology 

Researchers in sport psychology typically raise the issue of arbitrary metrics in the 

context of interpreting exercise intervention studies aimed at helping athletes improve the 

mental aspect of their sport with the ultimate goal of improving actual athletic 

performance. For example, Andersen et al. (2007) reviewed all articles in three of the top 

sport psychology journals published in 2005 and concluded that 86% of studies that used 

measures with arbitrary metrics did not discuss the results in terms of real-world sport 

behaviors and that this severely limits knowledge advancement in the field. In particular, 

Andersen et al. argued that if measures of mental subjective states are not calibrated 

against real-world sport behavior, then there is no way of knowing whether the effect 

(mean group difference between treatment and control group) of an exercise intervention 

study is meaningful or worth paying for. In their own words: 
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Establishing that an intervention helps reduce competitive state anxiety by an 
average of 8 points on an inventory seems to be a diminished form of 
legitimization evidence.  Is 8 points a big drop? Or better yet, is 8 points worth 
paying for? The answer to both those questions is that we really do not know. For 
a coach, which of the following would be more convincing: (a) with this 
relaxation and imagery program we can drop your runners’ anxiety scores by 10 
to 15 points, or (b) with this relaxation and imagery program we can reduce your 
runners’ times by an average of 2.0%? We may be able to say the former, but the 
coach wants to hear the latter. And on the latter, in most cases, we must be silent, 
otherwise the aroma of snake oil will begin to waft across the sport and exercise 
psychology landscape (p. 666). 

Hence, Andersen et al. make a strong case that exercise intervention studies that use 

outcome measures with arbitrary metrics are severely limited in terms of their 

interpretability. Strong recommendations are made for the calibration of sport psychology 

measures to real-world sport behaviors that are more meaningfully interpretable to 

coaches and practitioners. 

1.7.4 Individual-Level Diagnoses 

In a different vein altogether, Blanton and Jaccard (2006a) criticized the practice of 

giving individual-level diagnoses of “implicit racial preferences” to individuals based on 

their responses to an online instantiation of the race IAT (Greenwald et al., 1998).6 The 

race IAT assesses “implicit preferences” by requiring individuals to classify certain types 

of stimuli (words and pictures) presented serially on a computer screen. In the case of the 

race IAT, the categories are Whites (pictures of Caucasian individuals) versus Blacks 

(pictures of African-American individuals) and pleasant versus unpleasant words (e.g., 

“sunshine” or “vomit”, respectively). In a first task, participants’ classify as quickly as 

possible (without making too many mistakes) whether the presented stimulus falls into 

the category of “White or pleasant” by pressing one key or whether the stimulus falls into 

the category of “Black or unpleasant” by pressing another key. The fundamental unit of 

analysis is the time taken to make these categorizations (i.e., response latency; RT). This 

task is generally referred to as the compatible task. In a second task, individuals classify 

as quickly as possible whether the stimulus falls into the category of “White or 

                                                 
6 This website can be accessed via the following link: https://implicit.harvard.edu/implicit/ . 
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unpleasant” with one key or whether the stimulus falls into the category of “Black or 

pleasant” with another key. This task is generally referred to as the incompatible task. 

The “IAT effect” is calculated as the difference between the mean RTs from the 

incompatible task and the compatible task divided by the variability of the RTs (in 

addition to other transformations, see Greenwald, Nosek, & Banaji, 2003). Individuals 

who perform the compatible task faster than the incompatible task end up with positive 

race IAT scores and are characterized as having “automatic preferences for Whites over 

Blacks” whereas those performing the incompatible task faster than the compatible task 

end up with negative race IAT scores and are characterized as having “automatic 

preferences for Blacks over Whites.”  

As previously mentioned, Blanton and Jaccard (2006a, 2006b) provide strong arguments 

against the strategy of meter reading and norming, which the researchers at the Project 

Implicit website use to make absolute statements about individuals’ standing on the 

underlying dimension of “implicit preferences.” Blanton and Jaccard’s main message is 

that it is both scientifically unfounded and ethically impermissible to make individual 

diagnoses of “implicit racial preferences” based on the scores of a measurement 

procedure that has a non-calibrated arbitrary metric. As previously elaborated upon, there 

are a multitude of factors that can conspire to shift the zero point of IAT scores away 

from the theoretical midpoint of no implicit preference (not to mention the logical 

reasons against meter reading; see Figure 1, panel B). In the particular case of the race 

IAT, Blanton and Jaccard mention that stimulus features can influence measurement 

scores, if for example, the pleasant words are more positive in character than the negative 

words are negative in character or if the pictures depicting African-Americans are more 

prototypical of Blacks than the pictures depicting Whites are prototypical of Whites 

(Bluemke & Friese, 2006). What’s more, the various algorithmic transformations 

imposed on the raw RT data can also shift the zero point on the IAT away from the 

theoretical midpoint.  

Indeed, in an analysis of race IAT data, Blanton and Jaccard (2006b) provided evidence 

against a meter reading strategy of IAT scores. Creatively, they aggregated scores from a 

standard race IAT using the original IAT scoring algorithm (Greenwald et al., 1998) and 
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also using the new scoring algorithm (Greenwald et al., 2003) and then regressed the IAT 

scores from the new algorithm onto IAT scores aggregated using the original algorithm. 

Interestingly, a statistically significant non-zero intercept was found, demonstrating that a 

participant receiving a score of “0” on the old algorithm would now, on average, receive 

a positive IAT score with the new algorithm. Therefore, a participant diagnosed as 

lacking an implicit preference for Whites over Blacks in the year 2000, would now, based 

on exactly the same IAT responses, be diagnosed as having an implicit preference for 

Whites over Blacks. As this example demonstrates, the score on the IAT metric that maps 

onto the underlying dimension of no implicit preference must be empirically established 

rather than being embraced as a measurement assumption. To make individual diagnosis 

claims about the absolute standing of individuals on a psychological construct, which are 

defensible (both scientifically and ethically), it is imperative to have an empirically 

calibrated measure with a non-arbitrary metric. This is not the case with the IAT and no 

calibration research has been done with the IAT to achieve a non-arbitrary metric.  

That being said, Blanton and Jaccard (2006a, 2006b) explicitly stated that metric 

arbitrariness is generally not an issue for theory testing purposes within the realm of basic 

psychological research. They mention that for most research purposes in psychology, the 

use of measures with arbitrary metrics is not problematic when, for instance, the focus of 

the research is on the study of basic processes which aims to test for the presence or 

absence of predicted linkages between theoretical variables. Blanton and Jaccard’s 

position is based on the fact that testing directional predictions derived from theory 

(which typically represents the bulk of psychological research) only requires a relative 

interpretation of measurement scores, which is permissible for measures with arbitrary 

metrics. These authors are mute, however, on whether using measures with non-arbitrary 

metrics could benefit basic psychology. Hence, my main thesis clearly goes beyond 

Blanton and Jaccard’s analysis, such that I make the specific claim that metric 

arbitrariness is also an important issue in basic psychological research and that calibrating 

the metrics of our instruments has the potential to benefit basic psychological research in 

several important respects. 
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Chapter 2  

2 Benefits of Metric Calibration for Basic Psychological 
Research 

To re-iterate, the goal of my dissertation is to make the case that it is both useful and 

feasible to calibrate the metric of instruments commonly used in basic psychological 

research. To achieve this goal with regard to the utility of metric calibration, I will first 

present a conceptual analysis that elaborates on the potential benefits of non-arbitrary 

metrics for basic psychological research, given the premise that one is working with 

empirically established calibrated metrics. I will do so by delineating arguments for four 

distinct categories of benefits of non-arbitrary metrics for basic psychological research. 

Although distinct, the four benefits are hierarchically related with respect to how specific 

versus general the potential benefits are for basic psychological science. Hence, I will 

elaborate on these four distinct categories of benefits in an ascending order, from more 

specific benefits to more general benefits. I will argue that non-arbitrary metrics can 

benefit basic psychological research in the following four respects: (1) help in the 

interpretation of data, (2) facilitate construct validity research, (3) contribute to 

theoretical development, and (4) facilitate the general accumulation of knowledge (see 

Table 1 for a list of all proposed benefits).  

Table 1: List of proposed benefits of non-arbitrary metrics. 
Proposed benefits 
1. Help in the interpretation of data 

a. Enhance the interpretability of statistical effects 
b. Allow and facilitate the extraction of more information from data patterns 
c. Help overcome important limitations of NHST 

2. Facilitate construct validity research 
a. Metric calibration can shed brighter light on psychological constructs 
b. Metric approach can help with conceptual challenges that arise in construct validity research 
c. Provide benchmark for detecting measurement problems and/or improving measures 

3. Contribute to theoretical development 
a. Aid and facilitate theoretical debates involving absolute claims 
b. Allow for more precise theorizing via enhanced scientific language 
c. Provide preliminary interpretive platform for quantitative testing of theories (Meehl, 1978) 

4. Facilitate general accumulation of knowledge 
a. Metric calibration findings are valuable information in their own right 
b. Metric approach as guiding framework for cataloguing the magnitude of psychological effects 
c. Facilitate phenomenon-based research (Rozin, 2001) 
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To strengthen my case regarding these proposed benefits, in the General Discussion I will 

further demonstrate some of these benefits by applying some of my preliminary metric 

calibration findings to actual research findings in the literature. 

2.1 Help in the Interpretation of Data 
The first, and most specific, benefit involves facilitating the interpretation of data. To 

support my argument that non-arbitrary metrics could facilitate the process of interpreting 

data, I will elaborate on the following three ways that working with calibrated metrics 

could help the interpretation of data: (a) enhance the interpretability of basic statistical 

effects, (b) allow for the extraction of more information from data patterns, and (c) help 

overcome important limitations of NHST. I will elaborate on each of these aspects and 

support my reasoning with corresponding relevant examples. 

2.1.1 Enhanced Interpretability of Statistical Effects 

First, I put forth that working with calibrated metrics could enhance the interpretation of 

statistical effects for common statistical procedures. That is, if psychological variables 

were measured with instruments having non-arbitrary metrics, analyses using common 

statistical techniques (e.g., t-test for 2-group between-subjects design, moderated multiple 

regression) would be enhanced in the sense of being easier and more meaningful to 

interpret. I will unpack this point by focusing most of my attention on moderated multiple 

regression (MMR), which has become the preferred statistical procedure in basic research 

to analyze the interaction between continuous predictors or between a continuous and 

categorical predictor (rather than using the sub-optimal median split method and 

ANOVA; MacCallum, Zhang, Preacher, & Rucker, 2002). In the case where two 

continuous predictors (e.g., X and Z) are hypothesized to interact to predict an outcome 

variable (e.g., Y), predictors are typically mean-centered and a product term created 

(Aiken & West, 1991). Then, a statistically significant interaction term is typically 

followed up by plotting and statistically testing the simple slopes between X and Y at 1 

standard deviation (SD) above the sample specific mean and 1 SD below the sample 

mean of Z (Aiken & West, 1991). Graphically, this would be depicted as in Figure 8 

(panel A), which reflects the examination of the relation between X and Y at 1 SD above 
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the mean on Z (i.e., the positive slope) and the relation between X and Y at 1 SD below 

the mean on Z (i.e., the negative slope). (Alternatively, one could examine the relation 

between Z and Y at 1 SD above the mean on X and the relation between Z and Y at 1 SD 

below the mean on X.)  

 

Figure 8: A typical moderated multiple regression model when both predictors are 

continuous (panel A) with an actual example from the literature (panel B, Jordan et 

al., 2003; reproduced with permission). 

Using the +/-1 SD convention to examine the interaction between two continuous 

predictors has become common practice in the literature (Cohen, Cohen, West, & Aiken, 

2003) and in general it does the job of explicating these types of interactions. From a 

metrics perspective, however, it becomes clear that the meaning of examining the relation 

between X and Y at the particular value of 1 SD above (or below) the mean of Z may be 

quite limited. This is the case because assuming the metric of the measured Z variable is 

arbitrary, it is unclear what a value of 1 SD above (or below) the mean of Z actually 

means with reference to the underlying dimension (other than a relative interpretation 

such that a value 1 SD above the mean implies greater levels of the underlying construct 

as compared to the mean, which in turn implies greater levels of the underlying construct 

as compared to 1 SD below the mean).  
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An actual case from the social psychological literature may more clearly demonstrate the 

limitations of using the arbitrary +/-1 SD convention when probing continuous predictor 

interactions. Jordan, Spencer, Zanna, Hoshino-Browne, and Correll (2003) examined the 

joint effect of explicit self-esteem (ESE) and so-called implicit self-esteem (ISE) on 

defensiveness, as reflected in narcissism, in-group bias, and cognitive dissonance 

reduction. As seen in Figure 8 (panel B), Jordan et al. found that the relation between ISE 

and self-reported narcissism became increasingly more negative as ESE scores increased. 

Probing the interaction more deeply by using the standard +/-1 SD convention, Jordan et 

al. found that “there was a significant negative relation between IAT scores and NPI 

scores for participants with high explicit SE (+1 SD)... [whereas]… among individuals 

with low explicit SE (-1 SD), the relation between implicit SE and narcissism was non-

significantly positive” (p. 971). These results were argued to support their “nagging 

doubt” hypothesis, which states that individuals with “high explicit SE” differ markedly 

in their defensiveness depending on their levels of ISE. That is, “high explicit SE” 

individuals who have “low implicit SE” may experience “negative” implicit self-feelings 

as nagging doubts, which leads to defensive behavior.  

It is important to note, however, that this interpretation hinges upon the assumption that 

ISE and ESE discrepancies at the statistical (or distributional) level translate into 

corresponding psychological discrepancies that are experienced subjectively as such. This 

is not necessarily the case when one appreciates the arbitrary nature of the metric of the 

self-esteem measures. Just because an individual has a high score on the ESE measure 

and a low score on the ISE measure, does not mean he or she will experience a 

subjectively felt discrepancy, as required by Jordan et al.’s position. This is so because 

the metrics of these self-esteem measures are arbitrary and hence it is completely 

unknown how particular scores on these measures map onto different locations on the 

underlying dimensions of the respective constructs. For instance, it is taken completely 

on faith that a score 1 SD below the mean on the Rosenberg (1965) self-esteem scale 

(RSES; typically a score of about “4” on a 1 to 7-point scale) actually reflects low self-

esteem in absolute sense. The only way to know this is to empirically calibrate the metric 

of the measure to theoretically-relevant behaviors argued to be indicative of low self-

esteem. 
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What’s more, another typically unacknowledged limitation of the +/- 1 SD convention 

when working with arbitrary metrics is that the +1 and -1 SD values are relative to the 

sample specific range of scores. Thus, if the range of scores is different across two 

samples (e.g., scores ranging from 3 and 5 in one sample vs. 1 and 3 in another sample, 

on a 5-point scale), the +/- 1 SD values may refer to different levels of the underlying 

dimensions, further complicating the interpretation of these types of data. In other words, 

it is possible due to sampling error alone, to get different sample specific means (and 

sample specific standard deviations) for either predictors, which could lead to different 

theoretical interpretations of interaction patterns that would be spurious due to sampling 

error. 

I argue, however, that if the instruments used to assess the predictors in these types of 

interaction analyses had non-arbitrary metrics, the interpretation of the data would be 

enhanced in at least three respects. First, rather than relying on the arbitrary +/-1 SD 

convention, calibrated values for the moderator variable could be used to statistically 

analyze these types of interactions. Hence, one could examine the relation of X and Y at 

particular calibrated values of Z, which correspond to external behaviors indicative of a 

high or low level of the underlying construct. This would enhance the interpretation 

because one would get a better sense of what the interaction means psychologically given 

the relevant slopes could be interpreted with respect to the behaviors corresponding to the 

calibrated values. Second, the data interpretation would be enhanced because the 

interaction analysis using calibrated values, which would be grounded in theoretically-

relevant behavior, could yield different patterns of results that could have different and 

potentially important theoretical implications (see hypothetical example below). And 

finally, data interpretation would be improved because the use of (consensually agreed-

upon) calibrated values would overcome the sampling error issue given that exactly the 

same calibrated values would be used across different samples rather than the fluctuating 

 



48 

sample-specific values.7 I will further discuss and demonstrate this potential benefit in 

the General Discussion. 

Consider for the defensiveness research question from above, that the RSES measure had 

been calibrated to the probability of asking a clarifying question in a small group 

discussion (e.g., from a sociometer perspective), such that scores of “3.2”, “4.2”, “5.2”, 

and “6.2” on the RSES corresponded to probabilities of “0.2”, “0.6”, “0.7”, and “0.8”, 

respectively of asking a clarifying question. Given this calibration information, one could 

decide that the RSES value 1 SD below the mean (i.e., “4.2”) does not really reflect a 

condition of low self-esteem in a psychological sense, given that it is associated with a .6 

probability of asking a clarifying question. Rather, one may decide that it would be more 

appropriate theoretically to examine the relation between ISE and narcissism at the RSES 

value of “3.2”, which corresponds to a qualitatively distinct behavioral manifestation of 

self-esteem which arguably is more diagnostic of the low end of the underlying self-

esteem continuum (e.g., a .2 probability of asking a clarifying question). 

2.1.2 Allow Extraction of More Information from Data Patterns 

The second way non-arbitrary metrics could help data interpretation in psychological 

research is that non-arbitrary metrics would facilitate the process of extracting more 

information from data patterns. That is, using measures with calibrated metrics would 

allow researchers to glean more details from data patterns and hence facilitate more 

nuanced interpretations of data patterns. In a broad sense, this would be the case because 

of the more intuitive nature of calibrated metrics, which allow for a more natural focus on 

score interpretation. To unpack the reasoning behind this proposed benefit, I will again 

use specific relevant examples.  

                                                 
7 This benefit could be demonstrated concretely by using a Monte Carlo simulation where an interaction 
with a certain known form (e.g., cross-over interaction) is defined in the population and then samples of 
size n (typical of sample sizes used in the literature) are repeatedly drawn from such population. Each 
sample could then be analyzed using both the conventional +/- 1 SD above the sample specific mean values 
and using calibrated values. Tabulated results would then show in concrete terms the superiority of the 
calibrated values approach in yielding more accurate conclusions with regard to the true interaction pattern. 
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First, in the case of a between-subjects design, I contend that if the DV is assessed using 

a measure with a meaningful metric, then between-group mean differences that occur at 

different locations on the measurement scale across studies would become more apparent 

and hence more easily noticed and interpreted accordingly. Also, and importantly, 

experimental effects that emerge at different locations on the scale could mean something 

quite different psychologically, hence DVs with non-arbitrary metrics may be quite 

useful in facilitating more nuanced interpretations of data. For example, consider a 

researcher studying the effect of self-construal on self-reported extraversion using 

Eysenck’s IES scale (Eysenck & Eysenck, 1975). For a simple 2-group between-subjects 

design, imagine that a researcher finds that construing one’s self in broader versus more 

concrete terms lead to higher levels of self-reported extraversion (mean of “7.1” vs. 

“6.0”; see Figure 9, Sample 1). Now imagine that the same researcher runs the same 

study again and finds the same general pattern except in the second sample the mean 

group difference is shifted down the scale (mean of “4.2” vs. “3.1” in the same direction; 

see Figure 9, Sample 2).  
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Figure 9: Hypothetical experimental results across two samples at different 

locations on the DV scale. 
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Although the effect was replicated in the predicted direction in Sample 2, the effect 

emerged at a different location on the scale of the DV measure. Standard research 

practice would typically ignore this fact and simply emphasize that the research finding 

was replicated across studies. If, however, the DV measure was calibrated to meaningful 

behavioral reference points (i.e., had a non-arbitrary metric), this difference across 

sample would become easier to notice. Most importantly, non-arbitrary metrics would 

allow a more nuanced interpretation of the data in these situations given that the 

experimental effects emerging at different locations on the DV scale can be interpreted 

with respect to the calibrated relevant behaviors. For instance, referring back to the 

hypothetical extraversion metric mapping in Figure 4 (dotted line), it can be seen that 

extraversion scores of “7.1” and “6.0” correspond to about 8 and 5 hours of socializing, 

respectively, whereas extraversion scores of “4.2” and “3.1” correspond to about 3 and 

2.5 hours of socializing, respectively. It is clear that these experimental effects emerging 

at different locations on the DV scale would mean something quite different 

psychologically and hence should be interpreted as such. Hence, not only can non-

arbitrary metrics make it more likely that these cross-sample differences are noticed in 

the first place, but the additional metric calibration information afforded by non-arbitrary 

metrics could also allow for more nuanced interpretations of data patterns that could also 

have theoretical value. 

Furthermore, the exact logic above can also be applied to factorial designs and the 

interpretation of simple main effects that emerge at different locations on the DV scale. 

These subtle differences in simple main effects across data patterns would become much 

more salient with non-arbitrary metrics, and hence could also advance knowledge by 

facilitating more nuanced interpretations of data patterns for such factorial designs.  

Finally, another illustration of the utility of non-arbitrary metrics in this context can be 

demonstrated using a slightly different scenario from the above example. Consider in that 

example, that the second sample revealed an effect opposite to the one in the first sample. 

That is, broad self-construal versus specific self-construal led to lower (“3.1” vs. “4.2”), 

rather than higher, levels of self-reported extraversion. With a calibrated metric, it would 

be easier to see that the second finding does not represent a failed replication of the first 
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sample, but rather that the manipulation increases whatever personality characteristic is 

prevalent in the sample (i.e., extraversion vs. introversion). A broader point that is 

implied by this particular example is that non-arbitrary metrics may be especially useful 

for research investigations involving bipolar constructs. That is, it would be especially 

valuable to calibrate the scale midpoint on such bipolar constructs to diagnostic behavior 

that distinguishes individuals from the opposing poles of the construct. For instance, for 

Eysenck’s IES scale (Eysenck & Eysenck, 1975), this could mean linking up the 

midpoint of the scale to a diagnostic behavior argued to distinguish an extravert from an 

introvert. The scale could then be converted into a more intuitive metric with the 

calibrated scale midpoint labeled as “0” and negative and positive values centered on this 

“0” value.  

2.1.3 Help Overcome Limitations of NHST 

The third and final way non-arbitrary metrics may help the interpretation of data is in the 

context of the limitations of NHST. Even though NHST is the dominant approach to 

hypothesis testing in psychology, it has, throughout its existence, been repeatedly 

attacked as a flawed or severely limited statistical practice (Berkson, 1942; Boring, 1919; 

Carver, 1978; Cohen, 1990, 1994; Cronbach, 1975; Cumming, 2008; Dracup, 1995; 

Eysenck, 1960; Falk & Greenbaum, 1995; Folger, 1989; Gigerenzer, 1998; Guttman, 

1977, 1985; Hunter, 1997; Kirk, 1972, 1996; Lykken, 1968; McNemar, 1960; Meehl, 

1967, 1978, 1990a, 1990b; Pedhazur & Schmelkin, 1991; Pollard, 1993; Rozeboom, 

1960, 1997; Schmidt, 1996; Schmidt & Hunter, 1997; Shaver, 1993; Shrout, 1997; 

Signorelli, 1974; Thompson, 1993, 1996, 1997, 1998; for reviews see Harlow, Mulaik, & 

Steiger, 1997; Nickerson, 2000; Wagenmakers, 2007). Although criticism against NHST 

is multi-faceted and varied, the brewing controversy can be roughly summarized by five 

main criticisms: (a) NHST does not tell researchers what they want to know (i.e., it tells 

them the probability of obtaining a certain data point, D, given the null is true rather than 

telling them the probability that the null is true given the obtained D), (b) NHST is a 

trivial exercise given that the null hypothesis is always false with a large enough sample 

size, (c) rejecting the null in no way corroborates the substantive theory that implies the 

falsity of the null, (d) p-values yielded by NHST do not reflect result replicability, and (e) 
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the dichotomous or all-or-none nature of NHST and the arbitrariness of the decision 

criterion α are problematic. Given these criticisms and limitations, methodologists have 

made different recommendations concerning NHST, ranging from an outright ban on the 

technique (Hunter, 1997; Schmidt, 1996), the use of the technique alongside the use of 

effect size and confidence intervals (Mulaik, Raju, & Harshman, 1997), the modified uses 

of the technique (Granaas, 2002; Kirk, 1996), or the use of alternative techniques such as 

Bayesian data analytic approaches (e.g., Kruschke, 2010; Lee & Wagenmakers, 2005).    

Even though it can only be hoped that improved use of NHST will take place and/or that 

researchers will adopt superior alternative strategies, it seems clear that NHST is here to 

stay in some shape or form. Given this state of affairs, it seems fair to say even with 

improved usage and interpretation of NHST, that some limitations of NHST are 

inherently unavoidable. Given, for example, that the null hypothesis is always false with 

a large enough sample size and that the decision criterion α is an arbitrary value, NHST 

can be seen at best as insufficient or incomplete. One of the most frequently cited 

recommendations to overcome limitations of NHST is an increased focus on the 

estimation of effect sizes of experimental effects (Thompson, 2001, 2002; Wilkinson 

Task Force, 1999). Although I agree with this general recommendation, it is important to 

keep in mind that the quantification of effect sizes into small (e.g., d = 0.2), medium (e.g., 

d = 0.5), and large (e.g., d = 0.8) categories (Cohen, 1969, 1988) was proposed by Cohen 

only as a general guide to gauge the size of an effect (Thompson, 2002). As has been 

stated (Thompson, 2001, 2002, Kirk, 1996), if researchers sanctify these categories of 

effect sizes as much as they have sanctified p-value levels, we would “merely be being 

stupid in a different metric” (Thompson, 2001, p. 83). Hence, viewed from this 

perspective, effect size estimation can also be considered in a sense arbitrary and 

therefore insufficient in informing our research conclusions concerning empirical data 

sets.  

The famous aspirin study (Belanger et al., 1988) provides a compelling case to support 

the claim that these standardized effect sizes can also be considered arbitrary. In this 

randomized controlled trial, physicians given low dosage of aspirin experienced fewer 

heart attacks (and hence deaths from heart attacks) than those in a placebo control 
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condition. The trial had to be terminated early because the beneficial effect of the 

treatment was so clear that it was deemed unethical to continue to give the placebo to 

individuals in the control condition. What is most interesting, however, is that the 

magnitude of the experiment effect explained less than 1% of the variance in the DV. 

However, because the outcome variable had such a clear interpretation (255 heart attacks 

per 100,000 for the aspirin group compared to 440 heart attacks per 100,000 for the 

control group and hence fewer deaths), the importance of the experimental effect was 

easy to gauge. Hence, as this example clearly demonstrates, percentage of variability 

explained in a DV (i.e., effect size estimation) alone is insufficient to determine the 

importance or utility of an effect. Hence, if NHST and effect size estimation are both (in 

their most proper usage) insufficient, then where can we turn for additional guidance on 

how to interpret the importance or noteworthiness of a data pattern? 

I contend the answer to this question relates to the meaning of measurement metrics. I 

argue that working with measures with calibrated metrics may facilitate the task of 

determining whether a particular experimental finding is worth paying attention to. That 

is, a researcher could use metric calibration information (e.g., a mean difference of 0.6 on 

the DV is equivalent to a certain difference in behavior) to help the decision process of 

determining whether the data pattern supports the research hypothesis and/or whether the 

pattern is non-trivial. Ultimately, the interpretation of empirical findings boils down to 

meaning. To answer the question of whether the results are “noteworthy” or “significant” 

(literally speaking), one must know what the results actually mean. But to know what 

results mean, one has to know the meaning of the measured variables, especially the 

meaning of the DV measure scores (in the context of experimental studies). My 

contention is that if the metric of the DV was more meaningful (i.e., non-arbitrary), this 

could help us gauge the meaning of an empirical finding. For instance, following an 

example used by Kirk (1996), consider a hypothetical situation where a researcher 

examining the effect of a drug for 12 Alzheimer patients on intelligence (vs. 12 patients 

in a control group), finds to her dismay that an increase of 13 IQ points in the treatment 

compared to the control group did not attain conventional levels of statistical significance 

(i.e., p = .14, d = 0.90). As Kirk mentions, the “non-significant” p-value does not 

necessarily mean that there is no IQ difference between groups, but rather that the effect 
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size found in the sample is not large enough to yield a statistically favorable p-value 

given the sample size used (N = 24; 12 in each group).8 However, because most 

researchers familiar with the IQ metric would likely agree that the 13 IQ points increase 

is a potentially noteworthy result, the study results can be seen as providing evidence for 

the hypothesis that the Alzheimer drug is effective. Is the effect real or rather simply due 

to sampling error? The only way to know is to attempt to replicate the observed effect.  

My position that non-arbitrary metrics may help gauge the noteworthiness of 

experimental effects is broadly consistent with recent recommendations by Kashy, 

Donnellan, Ackerman, and Russell (2009) who emphasize that it is crucial to distinguish 

between findings that are theoretically important and those that are “significant” in a 

strictly statistical sense. My position is also in line with Kirk (1996) who argued that the 

decision of whether a certain data pattern support one’s research hypotheses should be a 

difficult one and that it is unrealistic to think that a completely objective statistical 

technique could ever be invented to do the job for us (see also Abelson, 1995; Thompson, 

1996). Indeed, in Cohen’s (1994) own words: “…don’t look for a magic alternative to 

NHST, or some other objective mechanical ritual to replace it. It doesn’t exist” (p. 1001).  

2.2 

                                                

Facilitate Construct Validity Research 
Metric calibration research may also benefit psychological research by facilitating the 

research process in the context of construct validity research. I will argue that metric 

 
8 Some may object to this conclusion, under the assumption that the greater than .05 p-value means that the 
results of the study could be attributable to mere chance. Although many researchers do interpret p-values 
in this fashion, some have argued that NHST cannot (unfortunately) separate “real” findings from those 
arising merely due to chance (Schmidt, 1996; Schmidt & Hunter, 1997). The argument goes like this. Meta-
analytic reviews from many different research domains demonstrate that average statistical power 
(correctly concluding an effect exists) is in the range of .40 to .60 (Cohen, 1962, 1992; Schmidt, 1996; 
Schmidt, Hunter, & Urry, 1976). Hence, in these research domains, about 50% of all statistical conclusions 
that non-statistically significant effects are merely due to chance are actually erroneous. In some areas of 
research (e.g., job satisfaction), average statistical power is only .20 (Schmidt et al., 1976), which means 
using a coin flip would be a more accurate way of determining real from chance findings than using NHST. 
Furthermore, requiring sufficient statistical power as a solution to this problem does not work, because this 
would make it impossible to conduct the large proportion of studies that examine small effects, given that 
sufficiently large sample sizes to achieve power of .80 would be too costly or infeasible to run. This is a 
serious problem given that as knowledge increases in a certain research area, the effect sizes studied tend to 
become smaller (Schmidt, 1996). 
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calibration research could potentially facilitate construct validity investigations in at least 

three regards. That is, by (a) shedding more light on the construct itself, (b) aiding in 

conceptual challenges that arise in developing psychological instruments (e.g., construct 

definition), and (c) by providing a benchmark for detecting problems and/or improving 

psychological instruments. 

2.2.1 Construct Illumination 

First, the metric calibration approach in general, and metric calibration studies in 

particular, may help shed more light on a construct itself. The act of linking test scores to 

meaningful theoretically related behavioral referents can be seen as additional evidence 

supporting the validity of a construct. Indeed, Samuel Messick (1989), who wrote one of 

the most authoritative treaty on the topic of validity, actually mentions the idea of 

“criterion-referenced behaviors” as a strategy to help the process of interpreting scores: 

“…scores may be interpreted criterially in terms of performance standards or behavioral 

referents” (p. 44). Furthermore, in his discussion of the external component of construct 

validity, Messick states that the meaning of test scores is “substantiated externally by 

appraising the degree to which empirical relationships with other measures, …, are 

consistent with that meaning” (p. 45). It is important to keep in mind that Messick’s 

conceptualization of construct validity differs from the conceptualization that has been 

entrenched in mainstream psychology, which views construct validity as the simpler 

question of whether a psychological instrument measures what it was intended to 

measure (but see Borsboom, Mellenbergh, & van Heerden, 2004). Rather, Messick sees 

validity as “an integrated evaluative judgment of the degree to which empirical evidence 

and theoretical rationales support the adequacy and appropriateness of inferences and 

actions based on test scores …” (p. 13, emphasis in original). This is similar to the 

conceptualization of the inventors of the concept of validity, who viewed validity as the 

complex question of whether test score interpretations are consistent with a nomological 

network involving theoretical and observational terms (Cronbach & Meehl, 1955). 

Hence, viewed from these two more nuanced conceptualizations of validity, metric 

calibration research can be seen as contributing to construct validity by providing 

additional evidence and support for the interpretation of test scores (Messick, 1995). 
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What’s more, the kind of metric research I propose can be seen as providing even more 

specific evidence for construct validity given that the focus is on the particular response 

functions or functional forms established between test scores and behavioral referents 

rather than an exclusive focus on zero-order correlations to other theoretically-related 

measures. For instance, successfully linking neuroticism test scores to the probability of 

reacting with anger to a mild stressor would provide further evidence for the construct 

validity of the neuroticism measure. Furthermore, a stronger case could be made that 

research providing empirical evidence for metric meaning should be seen as a 

requirement in the validation of any measure. This would be consistent with Messick’s 

(1989) idea that “test validation in essence is scientific inquiry into score meaning” (p. 

56) and also consistent with Sechrest et al. (1996) who stated that one cannot claim to 

have a “high-quality measure” if one has no idea about the meaning of the metric (see 

also Messick, 1995). 

2.2.2 Help with Conceptual Challenges 

A second and related way that metric research may facilitate construct validity is by 

providing a general framework for clarifying difficult conceptual challenges that arise 

when developing or improving psychological instruments. In particular, metric 

calibration may help with conceptual issues involving construct definition and construct 

theory (Messick, 1989). That is, the process of designing and executing metric research 

aimed at empirically linking particular scores on one measure to external behavioral 

reference points, may help a researcher deal with the difficult questions surrounding what 

precisely a measure is measuring. For example, when attempting to find the most relevant 

behavioral reference points to calibrate test scores, one might realize that the construct 

has been defined too broadly or too narrowly, or that the construct suffers from other 

conceptual ambiguities (conceptual clarity issues, as discussed by Machado & Silva, 

2007).  

As an actual example, consider calibrating a measure of conscientiousness as assessed by 

the NEO-FFI (Costa & McCrae, 1992). Given the goal of metric research of linking 

scores from a measure to theoretically related behaviors that can serve as reference 

points, in the context of conscientiousness, researchers would need to ask themselves 
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what relevant behaviors would best represent the most meaningful reference points to 

calibrate conscientiousness test scores. Clearly, this depends on the actual definition of 

the construct and the theoretical framework from which the construct was derived. In the 

case of conscientiousness, one quickly realizes that even though most researchers likely 

agree with the working definition of conscientiousness as the propensity of being 

painstaking and careful in acting according to the dictates of one’s conscience (John & 

Srivastava, 1999), conscientiousness is actually posited to have many different facets 

including Self-Discipline, Carefulness, Thoroughness, Organization and Orderliness, 

Deliberation, Industriousness, Conventionality, Reliability, Virtue, and even Need for 

Achievement (Costa & McCrae, 1992; Goldberg, 1999; Roberts, Chernyshenko, Stark, & 

Goldberg, 2005). For instance, a researcher could decide to examine the lower-order facet 

of Orderliness, which has been conceptualized as the propensity to be organized and neat 

versus being messy (Jackson et al., 2009), by searching for empirical linkages between 

self-report scores of the Orderliness facet of the NEO-FFI (Costa & McCrae, 1992) and 

trained judges’ ratings of the neatness of one’s home or work office (Gosling, 2008). 

Hence, in the case of the conscientiousness construct, metric research may provide a 

useful framework for questioning the fundamental assumptions underlying 

conscientiousness, such as whether the construct is too broad in scope.  

In fact, going through this process myself, I contend that a case could be made that 

conscientiousness (at least as it is conceptualized by most) might be too broad in scope 

and that it lacks tight construct theory given it posits the existence of so many 

heterogeneous lower-order facets under the rubric of conscientiousness. For example, is 

Industriousness (propensity to work hard), or Need for Achievement, or Virtue, really a 

reflection of conscientiousness? It would seem that more conceptual clarity could be 

achieved by relegating these lower-order facets to their proper distinct constructs; that is, 

Industriousness to the task persistence construct and Need for Achievement to the need 

for achievement construct (McClelland, 1951; McClelland, Atkinson, Clark, & Lowell, 

1958). Some of these ambiguities likely lie in the fact that many personality inventories 

were derived using data reduction techniques that do not require strong construct theory 

(Borsboom, 2006). The strategy of linking distinct lower-order facets to distinct 

meaningful behavioral reference points, as required by metric research, could hence be 
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seen as a superior method of determining the lower-order structure of constructs. At any 

rate, I argue that metric calibration research has the potential to facilitate the challenging 

(and often under-appreciated) task of working through the fundamental conceptual work 

underlying the measurement of constructs (see also Gawronski, Peters, & LeBel, 2008). 

2.2.3 Measurement Benchmark 

Finally, metric research may also facilitate construct validity research by providing a kind 

of benchmark for detecting problems with and/or improving psychological measures. 

That is, the empirical process of calibrating measures to relevant behavioral reference 

points may provide concrete information about psychometric problems plaguing a 

measure. In addition, the metric calibration approach may provide a concrete yardstick 

for improving measures by offering more diagnostic information than traditional validity 

investigations. This would be the case because finding empirical mappings between test 

scores and behavioral criteria has the potential to supply richer and more proximal 

information than standard convergent validity investigations. Metric research involves the 

discovery of a specific response function between test scores and behavioral 

manifestation of the construct, which stands in contrast to traditional criterion validity 

research which typically involves establishing zero-order correlations between test scores 

of the construct and test scores from other theoretically-related constructs. Indeed, in the 

General Discussion I will describe an actual example of this principle below, which I 

encountered when calibrating the scores of a task-persistence measure (Study 1), whereby 

the consideration of a metric calibration mapping revealed evidence suggestive of a 

construct validity issue.  

As a further example of how metric research may aid in the detection of measurement 

issues, consider a researcher who has run a series of metric calibration studies and 

discovers that test scores are consistently not linking up with a theoretically-relevant 

behavioral referent. This may suggest that something is wrong with the measure and/or 

the construct theory that led to examining the particular behavioral referent. For example, 

imagine that no empirical linkage (linear, curvilinear, or otherwise) is found between 

extraversion facet scores and average time spent socializing per day (as assessed using 

Mehl et al.’s, 2001 EAR for e.g.). This may suggest that something is wrong with the 
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extraversion measure or that the construct theory underlying extraversion needs revision 

(or both). Upon closer scrutiny, one may notice that a particular extraversion score of 

“36”, for example, corresponds to almost any value on the criterion measure (0.5, 1, 2, 

3,4 and even 7 hours socializing per day). This could suggest that something is wrong 

with the measurement and/or conceptualization of extraversion. Hence, assuming solid 

measurement of the criterion behaviors and sound reasoning concerning important metric 

calibration principles (e.g., features of the context, level of measurement), metric research 

may provide a valuable benchmark for developing psychological measures. Furthermore, 

once an empirical mapping is established, all of the relevant calibration information can 

be used when improving a measure (or when attempting to improve the scoring algorithm 

of a measure) to ensure the integrity of the measure has not been compromised. In other 

words, the increased information provided by metric research may help researchers gauge 

their progress in improving a measure. Indeed, this form of construct validity research 

resonates well with the position of some theorists, who have argued that validity is more 

properly seen as a continuous research process that (a) aims to continually build a better 

evidence base to support score interpretation (Messick, 1989) and (b) strives to 

continually increase our understanding of the measurement error that contaminates test 

scores (and hence continually trying to reduce this error component; DeShon, 1998). In 

summary, metric calibration research could facilitate construct validity research by 

shedding more light on psychological constructs, aiding in challenging conceptual issues 

(e.g., construct definition), and by providing a clearer benchmark for developing and 

improving psychological instruments. 

2.3 Contribution to Theoretical Development  
In this section, I will elaborate on how non-arbitrary metrics could benefit psychological 

research by having the potential to advance theory development in basic psychological 

research. I will argue that using psychological measures with calibrated metrics could 

contribute to theory development by (a) shedding light on theoretical debates involving 

absolute claims, (b) allowing for more precise theorizing of psychological phenomena via 

enhanced scientific language, and (c) allowing researchers to test substantive theories 

more precisely (i.e., make specific point-value predictions). 
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2.3.1 Aid in Theoretical Debates Involving Absolute Claims 

In a first sense, non-arbitrary metrics could contribute to theory development in 

potentially important ways by shedding light on theoretical claims based on assertions 

made about the absolute level of a certain psychological phenomenon. Though the bulk 

of basic psychological research involves testing directional hypotheses involving relative 

score comparisons across experimental conditions, certain theoretical questions in 

psychological research involve making claims of an absolute nature. I contend that metric 

calibration could contribute to theoretical development by providing empirical machinery 

to more directly tackle such theoretical questions. One such example comes from the 

research literature on the cross-cultural universality of self-enhancement. In this 

literature, researchers often examine whether individuals rate themselves more favorably 

on a series of culturally relevant desirable traits as compared to a hypothetical average 

other person, by testing mean ratings against the scale midpoint (e.g., 1 = much less than 

the average person; 4 = about the same as the average person; 7 = much more than the 

average person). If the mean ratings are statistically significantly greater than the scale 

midpoint, then it is inferred that self-enhancement is present in that culture (e.g., 

Gaertner, Sedikides, & Chang, 2008). However, as already stated, it is unfounded to 

assume that the scale midpoint coincides with the theoretical midpoint on the underlying 

dimension of self-enhancement. As mentioned, many factors may shift the numerical 

midpoint away from the theoretical midpoint on the underlying dimension (not to 

mention the aforementioned logical reasons against meter reading).  

If trait ratings of self-enhancement, however, were linked to a behavioral index of self-

enhancement (e.g., Paulhus, Harms, Bruce, & Lysy’s, 2003 over-claiming technique), 

then the scores on the self-report self-enhancement measure would gain meaning that 

would potentially shed light on the theoretical claim regarding the universality of self-

enhancement (Sedikides, Gaertner, & Toguchi, 2003).  For instance, it would be critical 

to examine how scores typically interpreted as self-enhancement (e.g., a “5” on a 1 to 7 

point scale with scale midpoint of “4”) map onto the behavioral indices of self-

enhancement, to get an actual sense of what kind of self-enhancement behaviors 

correspond to particular trait rating scores. If trait rating scores typically interpreted as 
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self-enhancement do not map onto behavioral indices of over-claiming, this could cast 

doubt on the universality of self-enhancement claim based on the absolute interpretation 

of trait rating scores. This example demonstrates the potential that metric calibration 

research could hold in advancing or revising theoretical claims involving assertions of an 

absolute nature, which could contribute to theory development more broadly. 

2.3.2 Allow More Precise Theorizing via Enhanced Scientific 
Language 

A second way non-arbitrary metrics could contribute to theoretical development is by 

helping researchers more accurately and precisely theorize about psychological 

phenomena. This would be the case because non-arbitrary calibrated metrics would 

enhance our scientific language by empirically substantiating claims about the standing 

of individuals on underlying psychological dimensions. It is easy to find examples in the 

literature of theorizing that contain reference to “high-X individuals” or “low-X 

individuals” doing certain things under certain conditions (where the X can be any 

psychological construct). For example, “…it was found that individuals with a high need 

for closure were more likely to report having voted for conservative parties” (Chirumbolo 

& Leone, 2008, p. 1286); “our results provide support for Sedikides et al’s (2002) 

contention that people high in narcissism show a lack of contextual sensitivity…” 

(Collins & Stukas, 2008, p. 1629); “in such situations, high self-esteem individuals might 

be more resistant to persuasion than low self-esteem individuals…” (Briñol & Petty, 

2005, p. 591). These kinds of claims, which are rampant in the literature, are 

unsubstantiated and potentially misleading given that claims about the standing of 

individuals on an underlying psychological dimension requires systematic empirical 

linkages to meaningful external referents (Blanton & Jaccard, 2006a, 2006b). Hence, 

theorizing that emerge from these unfounded claims can impede accurate theorizing 

about psychological phenomena and hence interfere with theory development. 

Some readers may feel that it is unfair to characterize claims of the sort described above 

(“high-X individuals”) as unfounded. An astute reader could point out that researchers 

may indeed have some empirical knowledge to substantiate their claims about individuals 

being “high” or “low” on a certain psychological construct. For example, it could be 
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brought up that the finding from the self-esteem literature showing that median-split 

“low” self-esteem individuals trust their relationship partners less than “high” self-esteem 

individuals (Murray, Holmes, & Griffin, 2000) actually provides support for using the 

labels “high” versus “low” self-esteem individuals. On this point, I would partially agree. 

Viewed in a broad sense, studies showing how a median-split continuous predictor 

variable patterns itself on a certain DV can actually be seen as a very coarse version of 

metric calibration research. I would argue, however, that such evidence is insufficient for 

making claims regarding individuals’ standing on a construct for at least two reasons. 

First, the very rough (and arbitrary) nature of doing a median-split on the scores can 

mask/hide important information about the mappings between particular scores and the 

relevant behavioral referents. Furthermore, nowadays researchers typically avoid median-

splits (as they should, see MacCallum et al., 2002), which means that these types of 

relations would be simply reported as the correlation between the variable in question and 

the DV. A correlation, of course, in and of itself, does not provide information about 

metric meaning (Blanton & Jaccard, 2006b). Second, more systematic thinking is 

required to generate the relevant behavioral referents to be used as reference points in the 

calibration process. Notwithstanding these limitations, I think it is potentially informative 

to review the literature for a certain construct (e.g., narcissism) and examine what kinds 

of DVs have been linked to it in these median-split or correlational studies. This could 

provide a starting point for determining what kinds of phenomena or manifest behaviors 

are related to the construct whose measure one is interested in calibrating. Actually, data 

from these studies could be re-analyzed (if recoverable from the authors) to examine the 

specific mapping between the non-median-split (i.e., full-range) scores of the predictor 

and the relevant behavioral DV. 

2.3.3 Quantitative Testing of Psychological Theories 

In a third and final way, non-arbitrary metrics have the potential to contribute to theory 

development by providing a guiding framework that might eventually allow basic 

psychologists to more precisely test psychological theories. That is, using more 

meaningful calibrated metrics may eventually allow researchers to make theoretical 

predictions about particular point-values of psychological phenomena. An important 
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caveat to note, however, is that a pre-requisite for this potential benefit is that substantive 

theories need to be developed enough to actually be able to generate point-predictions 

(Meehl, 1967; but see Granaas, 2002). Although perhaps many would agree that in most 

areas of psychology theories may not be developed enough to make specific point 

predictions (Cook & Shadish, 1994), as previously mentioned, Granaas (2002) wonders 

whether it is the methodological training of psychological researchers that prevents 

psychologists from designing studies that make specific point-value predictions rather 

than the fact that most psychological theories are too weak to make such point-value 

predictions. Although the relatively young nature of psychological science undoubtedly 

plays a part, I argue that the use of arbitrary metrics also likely contributes to this 

problem. That is, psychologists are not trained to think about metric score meaning 

because virtually all metrics in psychology are arbitrary; and without paying attention to 

what particular scores mean, it seems unlikely one could develop a psychological theory 

that makes specific predictions about magnitude and particular values. Hence, I argue that 

the general metric calibration research approach proposed in this dissertation might 

eventually increase the possibility of testing psychological theory in a more quantitative 

fashion, whereby particular point-value predictions are made and then empirically tested.  

In physics, specific point-value predictions involve comparing a theoretically predicted 

value xo (based on the particular experimental or natural factors embedded in a situation) 

with the empirically observed mean x o, and asking whether the predicted value falls 

within the band of probable error (due to random error of measurement) of the 

empirically observed mean (Meehl, 1967). For example, Mulaik et al. (1997) recounts the 

scenario, early in the 20th century, where Newton’s theory of gravity predicted that 

gravitation would deflect light from a star passing near the edge of the sun by one-half 

the amount predicted by Einstein’s theory of relativity (0”.87 r0/r vs. 1”.75 r0/r, where r0 

= the radius of the sun and r = closest distance of the star’s light to center of the sun). 

Observed data from two independent observation sites during a total eclipse of the sun 

confirmed that Einstein’s predicted value fell within the band of probable error of the 

observed value for both sites whereas Newton’s predicted value fell outside the band, 

hence supporting Einstein’s theory over Newton’s theory. 
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Although it might be difficult to imagine that psychological research will ever reach this 

level of exactitude, I contend that we should perhaps nonetheless strive toward this 

general direction. This would be in line with recommendations by Harlow (1997) who 

suggested that more emphasis should be placed on creating very specific “defeatable” 

hypotheses, rather than the common practice of having a null hypothesis of no effect and 

a non-specific alternative hypothesis (see also Granaas, 2002, who recommends training 

psychologists to use theoretically meaningful null hypothesis values). Furthermore, 

perhaps we need to start thinking about how we can combine theories and/or design our 

studies such that we can derive possible ranges of values that we theoretically expect 

from placing individuals in a particular experimental situation (e.g., 1.2 < B < 1.6; Meehl, 

1967). Roughly paralleling the physics example from above, this could correspond to 

building a model (e.g., set of equations) based on a substantive theory that integrates how 

the different factors (impinging on the participant in the experimental situation), combine 

to influence the participant’s behavior. After a range of possible values is generated by 

the constructed model, one would empirically observe the behavior in the experimental 

situation and determine if the observed value fell within the model’s predicted range of 

values. If the value falls outside the range, then one would try to figure out why the 

prediction was not borne out, for example, by improving the relevant model and 

importantly ruling out other methodological and measurement issues (as is done in 

physics). If after repeated experimental tests, the observed value still lies outside the 

predicted range, one would be forced to revise the theory and/or auxiliary assumptions 

used to generate the substantive model. 

2.4 Facilitation of General Accumulation of Knowledge 
The last, and most general benefit of the metric calibration approach, reflects the 

proposition that metric calibration could potentially benefit basic psychological research 

by facilitating the accumulation of knowledge more broadly. I will expand on the three 

ways in which both the metric calibration approach and the resulting non-arbitrary 

metrics may facilitate the general accumulation of knowledge. That is, non-arbitrary 

metrics (a) may provide valuable general information in its own right, (b) may be a 
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guiding framework for keeping track and cataloguing the magnitude of psychological 

effects, and (c) may facilitate phenomenon-based research. 

2.4.1 Valuable Information in its Own Right 

Metric research that seeks to find empirical linkages between a measure’s scores and 

theoretically-relevant noteworthy behaviors can be seen as very useful information in its 

own right. That is, knowing that specific scores on a particular measure correspond to 

specific theoretically-relevant behavioral reference points can be viewed as providing 

valuable knowledge about human psychology, in the same way that scientists in the 

physical sciences seemed to think that calibration research provided valuable information 

in the early days of instrument development (e.g., thermoscope, hygrometer). Indeed, 

Sechrest et al. (1996) mention it is surprising that no psychological measure known to 

them has been systematically calibrated against relevant behavior. That is, Sechrest et al. 

state that it is strange that psychologists do not know, for example, what reduction in 

probability of being seen smiling is associated with each point increase on the BDI, or 

how many points on the Eysenck Introversion-Extraversion Scale (Eysenck & Eysenck, 

1975) are associated with each additional hour spent alone per day or how many points 

on Scale 4 (Psychopathic Deviate) of the Minnesota Multiphasic Personality Inventory 

(Dahlstrom & Welsh, 1960) are associated with each arrest by age 25. 

2.4.2 Guiding Framework for Cataloguing the Magnitude of 
Psychological Effects 

Metric calibration research could also facilitate the accumulation of knowledge by 

providing a guiding framework for keeping track and cataloguing the magnitude or 

“quantity” of psychological effects, above and beyond direction, as Jacob Cohen has 

advocated (Cohen, 1994). Without metrics that have any inherent meaning, the 

“stockpiling” of information on quantity may not be very productive. That is, the utility 

of storing up information about the magnitude of experimental effects based on arbitrary 

effect size indices on scores from measures with arbitrary metrics might be quite limited. 

With metrics that do have some inherent meaning, however, the situation could be very 

different. Researchers would then have a guiding framework for systematically 
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cataloguing information about the amount of an experimental effect, above and beyond 

its direction expressed in terms of arbitrary effect size. For example, one could catalogue 

that an intelligence-based self-concept threat decreased state self-esteem scores 

(Heatherton & Polivy, 1991) by 1.5 points (d = 0.5), which is behaviorally equivalent to a 

50% increase in time spent on a self-affirmation task whereas a social-exclusion-based 

self-concept threat decreased state self-esteem scores by 2.0 points (d = 0.6), behaviorally 

equivalent to a 75% increase in time spent on the self-affirmation task. If systematically 

catalogued in the context of other related studies employing similar and different 

manipulations, this information – valuable in its own right – could become even more 

valuable in developing a database of “amounts” by which certain experimental 

manipulation impact different kinds of human behavior. This could facilitate the 

accumulation of knowledge by providing an organized system for structuring a research 

area’s knowledge base in a much more information-rich manner.  

2.4.3 Facilitate Phenomenon-Based Research 

Finally, a third perspective on the way the metric calibration approach may facilitate the 

accretion of knowledge can be put forward from the perspective of phenomenon-based 

research (Asch, 1952/1987; Rozin, 2001; see also Funder, 2009; Rozin, 2009). From this 

perspective, it is critical to identify and describe phenomena and invariances (i.e., to 

describe what is), before engaging in modeling and hypothesis testing of complex 

research questions requiring sophisticated methodological designs and statistical 

techniques. A Soloman Asch quote (as cited in Rozin, 2001) reflects this idea poignantly: 

“Before we inquire into origins and functional relations, it is necessary to know the thing 

we are trying to explain” (Asch, 1952/1987, p. 65). Rozin reviewed objective data 

comparing research practices in the natural sciences versus psychology and demonstrates 

that natural scientists (a) much more often engage in descriptive research aimed at 

becoming familiar with the phenomenon at hand, (b) less often engage in specific model 

or hypothesis driven research aimed at testing specific hypotheses, and (c) less often use 

experimental designs to make statistical inferences. In addition, Rozin provided an 

interesting conceptual argument that the discovery of the molecular basis of genetic 

transmission, which Rozin claimed was the most important advance in the life sciences in 
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the 20th century, occurred because scientists in this domain engaged heavily in 

descriptive, phenomenon-based research. Rozin states that the scientists’ motive for early 

studies on x-ray diffraction and nucleotide was basically something along the lines of: “It 

looks like DNA is really important and a likely vehicle for genetic transmission. Let’s 

find out more about it. What is its shape and what is it made of?” (p. 7). A potential 

implication of Rozin’s arguments is that researchers in psychology have perhaps been too 

hasty or skipped altogether the valuable descriptive, phenomenon-based stage of 

research, and that this has interfered with the development of a cumulative knowledge 

base in psychology. Viewed from this perspective, I argue that metric calibration research 

can provide a useful framework to engage in this type of descriptive, phenomenon-based 

research. Indeed, metric research aimed at discovering the relevant behavioral 

manifestations of a construct, and how these manifest behaviors pattern themselves onto 

a corresponding measure’s scores, could be viewed as accomplishing the goal of knowing 

in more depth, richer information about a certain phenomenon. Viewed in this light, 

metric research could facilitate the process of investing more energy in the fundamental 

early stages of science, argued to be critically needed for psychological science to reach 

its full potential (Asch, 1952/1987). 
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Chapter 3  

3 Empirical Demonstrations 
I now turn to the empirical demonstration of the metric calibration approach applied to 

psychological instruments of constructs commonly examined in basic psychological 

research. These preliminary empirical demonstrations were meant to showcase in more 

concrete ways the steps required, both at the conceptual and procedural level, to calibrate 

the metrics of psychological measures typically used in psychological research. It is 

important to keep in mind, however, that these empirical demonstrations were executed 

primarily for illustrative purposes only, given that (a) collective agreement on the 

appropriateness of the behavioral criteria is a prerequisite and (b) much larger targeted 

samples are required in practice to ensure that the calibration values found are precise 

enough estimates of the population values (i.e., the particular mappings between test 

scores and behaviors are sufficiently stable). Study 1 focused on illustrating the metric 

calibration approach for need for cognition, task persistence, and conscientiousness 

instruments; Study 2 focused on the calibration of a self-enhancement measure in the 

context of the pan-cultural debate of self-enhancement (Sedikides et al., 2003); and Study 

3 focused on the metric calibration of behavioral instruments of risk-taking. Finally, re-

analyses from two shared datasets further illustrated the metric calibration approach for 

instruments assessing self-control, extraversion, and once more conscientiousness. 

3.1 Study 1 
The primary goal of the first study was to provide preliminary empirical demonstrations 

of the metric approach applied to three constructs commonly used in basic psychological 

research: need for cognition, task persistence, and conscientiousness. In a broad sense, 

these constructs fall under the broader umbrella concept of cognitive effort, which plays 

an important role in dual-process models that have become increasingly popular in many 

areas of psychology (e.g., Chaiken & Trope, 1999; Devine, 1989; Epstein, 1990; Fazio, 

1990; Fiske & Neuberg, 1990; Gawronski & Bodenhausen, 2006; Gilbert, 1989; Petty & 

Cacioppo, 1986; Sloman, 1996; Smith & DeCoster, 2000; Strack & Deutsch, 2004; 
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Trope, 1986). In these dual-process models, cognitive effort (i.e., cognitive elaboration) 

is posited to impact how different pieces of information influence social or self 

judgments and/or behaviors. For instance, in the Elaboration Likelihood Model (ELM; 

Petty & Caciooppo, 1986), the extent to which individuals process and analyze 

information (i.e., the “elaboration continuum”) contained in a persuasive message is 

posited to influence the impact of central versus peripheral cues on attitude change. For 

example, under conditions of high elaboration (e.g., individuals high in need for 

cognition), central cues, such as argument strength, are posited to be the main 

determinants of attitude change whereas under conditions of low elaboration, peripheral 

cues, such as source credibility, are posited to be the primary determinants of attitude 

change. Given the emphasis on cognitive elaboration in such models, it becomes apparent 

why shedding light on the metric meaning of measures of constructs in such category 

would be important. These constructs were also selected for study because our current 

level of understanding of the constructs and related phenomena seemed sufficiently 

developed to be good candidates for engaging in metric calibration research.  

To illustrate the feasibility of increasing metric meaning in the context of basic 

psychological research, respective measures for each of these three constructs were 

calibrated to each of their own theoretically-relevant behavioral referents (details of the 

particular behavioral referents below). The calibration process involved examining the 

particular response function that connected the measurement scores (e.g., need for 

cognition scores) with the relevant behavioral reference points (e.g., probability of 

choosing cognitively challenging vs. simpler task). The goal in this first step was to 

illustrate empirically the practical feasibility of this type of metric calibration approach 

for constructs studied in this area of psychology. 

3.1.1 Theoretical Derivation of Relevant Behavioral Referents 

In this section, I will elaborate on my theoretical reasoning for examining the particular 

external behavioral referents chosen to calibrate the scores of the respective measures. 

When going through the derivation of behavioral reference points for the three constructs, 

it is important to keep in mind the broader context of dual-process models in which the 

concept of cognitive elaboration plays an important role.  
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First, let’s consider need for cognition (NFC). NFC is conceptualized as the tendency for 

an individual to engage in cognitively effortful activities and enjoy thinking in its own 

right (Cacioppo & Petty, 1982; Cacioppo, Petty, & Kao, 1984). The NFC construct 

originated based on earlier research examining individuals’ behavioral tendencies in how 

they organize, understand, and evaluate information in their environments (Cohen, 

Stotland, & Wolfe, 1955; Cohen, 1957). NFC is typically measured using the revised and 

shortened 18-item scale (Cacioppo et al., 1984), which is based on the original 34-item 

scale (Cacioppo & Petty, 1982). Based on the abovementioned conceptual definition (and 

the conceptual framework from which the construct arose), one potential external 

behavior to examine as a possible behavioral reference point to imbue NFC scores with 

meaning, is the probability of choosing to complete a cognitively challenging versus 

simple task. Individuals high in the underlying dimension of NFC should be more likely 

to engage in a cognitive task that is described as being more cognitively challenging 

compared to one that is described as cognitively simpler, given that these individuals find 

cognitively effortful activities intrinsically enjoyable. However, the type of task and 

specific features of the task would need to be specifically configured, so that it is able to 

capture a behavioral manifestation of NFC. For instance, it is critical to choose a type of 

cognitive task from which two versions of the task (i.e., a cognitively challenging and 

cognitively simpler version) could be constructed. The cognitively challenging version 

would need to actually appear cognitively more challenging, but not so much that most 

individuals would think it was too difficult; conversely, the cognitively simpler task 

version would need to appear cognitively simpler, but not so much that most individuals 

would consider it too boring. In addition, the presentation of the two versions of the task 

should be done in a way that minimizes the possibility of having the vast majority of 

individuals choosing one task over the other.  

The task chosen in the present study was a modification of the Remotes Association Test 

(RAT; Mednick & Mednick, 1967), originally used to measure word-based creativity. In 

this task, individuals are presented with three distinct words and are asked to generate a 

fourth word that relates in some way to each of the three stem words. For example, if 

presented with the words “turkey”, “freezing”, and “war”, a possible answer would be 

“cold”. It was expected that this task would be relevant in capturing variations in the 
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underlying dimension of NFC because the type of thinking required to solve these 

puzzles resonates well with the fundamental conceptualization of the NFC construct (i.e., 

engaging in cognitively effortful activities involving the organization, processing, and 

understanding of information). More importantly, with this task it was possible to 

develop two versions (varying in cognitive difficulty) in a way that could potentially 

discriminate between those high and low on the underlying dimension of NFC. These two 

versions were presented to participants via actual example items for each task and 

specific explanations were given as to how the two tasks differed. This was done in a way 

that specifically matched the conceptualization of NFC, such that the more cognitively 

challenging task was framed as requiring more intricate thinking than the simpler task. 

That is, it was explained that in the simple task the fourth word would generally relate to 

the three words in the same way (e.g., semantically related) whereas in the more 

cognitively challenging task, the fourth word could relate to each of the three words in a 

different way (e.g., semantic, conceptual, visual). Hence, it was predicted, based on 

construct theory, that individuals high in NFC would see the more cognitive challenging 

task as more cognitively effortful than the simpler task and hence be more likely to seize 

the opportunity to engage in and enjoy the more effortful task (see below for more details 

on the specific parameters of the tasks). 

With regard to conscientiousness, although the construct originated from personality 

psychology (Costa & McCrae, 1992; Goldberg, 1999; John & Srivastava, 1999; Tellegen 

& Waller, 1994), it is now examined in the context of many other research areas 

including social (Kelly & Conley, 1987), health (Booth-Kewley & Vickers, 1994), and 

personnel psychology (Hogan, Rybicki, Motowidlo, & Borman, 1998). According to 

dictionary definitions, conscientiousness refers to the “trait of being painstaking and 

careful” or the “quality of being in accord with the dictates of conscience” (Merriam-

Webster; Princeton WordNet Dictionary). Psychological research, however, seems to 

have progressed to a more differentiated conceptualization that views conscientiousness 

as reflecting the tendency to follow socially prescribed norms and rules, to be goal-

directed, planful, able to delay gratification, and to control impulses (John & Srivastava, 

1999) or, worded slightly differently, as the degree of organization, persistence, and 

motivation in goal-directed behavior (Costa & McCrae, 1992). This heterogeneity in 
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conceptualization makes it somewhat difficult to theorize about which behavioral 

referents to use to calibrate the scores of the conscientiousness measure. As elaborated in 

the introduction, however, during the calibration process, one needs to carefully consider 

the (possible) multi-faceted nature of a construct, and if applicable, to find separate score-

behavior linkages for each facet. Given the multi-faceted nature of conscientiousness, I 

decided as a starting point to examine facets relating to detail-orientedness and tried to 

link conscientiousness scores from relevant facets to performance on a difficult proof-

reading essay task that requires high levels of detail-orientedness. After careful scrutiny 

of the many different facets of conscientiousness available via different assessment 

instruments, the most theoretically-relevant facets were deemed to be the Deliberation 

and Self-Discipline facets of the NEO-FFI (Costa & McCrae, 1992), the Self-Control 

facet from the MPQ (Tellegen & Waller, 1994), and the Impulse Control facet from 

Goldberg’s Abridged Big Five Dimensional Circumplex (AB5C; Goldberg, 1999). For 

example, the Deliberation facet of the NEO-FFI contains items such as “I avoid 

mistakes” and “I choose my words with care” and the self-control facet of the MPQ 

contains items such as “I am exacting in my work” and “I pay attention to details.” 

Hence, it was hypothesized that an empirical mapping would emerge between the 

conscientiousness scores from those particular facets and the number of mistakes found 

in a difficult 4-page essay proof-reading task.  

The essay task, adopted from Glass, Singer, and Friedman (1969), was configured to 

capture the behavioral manifestation of detail-orientedness. For example, special care was 

taken to systematically introduce unambiguous mistakes that do not require grammatical 

knowledge. That is, only clear typographical errors (e.g., “aspetcs”, “hows to”) and 

unambiguous punctuation errors (“The Style; Template”, “stage of, publication”) were 

introduced into the text. In addition, the task length (i.e., 4-pages with approximately 200 

words per page) and task time (i.e., 8 minutes) were chosen to create optimal conditions 

for capturing conscientiousness, such that the task was difficult enough so that non-

conscientious individuals did not have enough time to find most of the mistakes (see 

below for more details of the essay task). Also, and critically, to attempt to normalize 

levels of motivation for performance in the task, instructions stressed that it was 
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important that participants tried their best in finding as many mistakes as possible in the 

allotted time. 

Finally, concerning task persistence, this construct is of broad relevance to different areas 

of psychology, having been investigated in the context of addictive behaviors and distress 

tolerance (Rodman, Daughters, & Lejuez, 2009; Quinn, Brandon, & Copeland, 1996; 

Steinberg et al., 2007), human motivation and goals (e.g., achievement motivation; 

Feather, 1961), health psychology (e.g., mindfulness; Evans, Baer, & Segerstrom, 2009), 

and social psychology (e.g., narcissism; Wallace, Ready, & Weitenhagen, 2009). Task 

persistence is typically conceptualized as the tendency to persist in an effortful behavior 

or frustration-inducing activity (Steinberg et al., 2007) and has been measured both 

behaviorally (anagram persistence task: Brandon et al., 2003; mirror tracing persistence 

task: Quinn et al., 1996) and via self-report (Steinberg et al., 2007; Pomerleau, 

Pomerleau, Flessland, & Basson, 1992). As a potential demonstration of metric 

calibration research, I decided to calibrate a self-report task persistence measure with a 

theoretically-relevant manifest behavior. I decided to use Steinberg et al.’s (2007) 2-item 

self-report measure, developed from Cloninger’s (1987) Tridimensional Personality 

Questionnaire (TPQ), which were specifically derived from the theoretical framework of 

Learned Industriousness Theory (Eisenberger, 1992). This brief self-report measure of 

persistence is desirable because of its clear practical advantages over behavioral 

persistence measures in terms of its ease of use, lower cost, and portability (Ditre & 

Brandon, 2008). The items are as follows: “I will keep trying the same thing over again 

even when I have not had success the first time” and “I will often continue to work on 

something, even after other people have given up”. Steinberg et al. successfully used this 

measure in the context of teenager smoking, showing that self-reported task persistence 

was greater among adolescent non-smokers as compared to current adolescent smokers 

(see also Ditre & Brandon, 2008, who also successfully used this measure).  

As a behavioral manifestation of task persistence, I used a commonly used anagram 

persistence task (Brandon et al., 2003; Evans et al., 2009; Nes, Segerstrom, & Sephton, 

2005; Quinn et al., 1996), which involves unscrambling near-impossible (“X L Y I K” = 

“K Y L I X”) and easy (“B E A H C” = “B E A C H”) anagram puzzles, with the average 
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time persisting on the near-impossible items used as an index of task persistence. 

Critically, participants are instructed that (a) they have 3 minutes to solve each anagram, 

(b) as many attempts as desired can be made, and that (c) they can give up and skip to the 

next item before the maximum time has elapsed. The assumption was that the self-report 

measure would tap into some aspect of task persistence that would share some overlap 

with the behavioral index of task persistence. Hence, it was predicted that a mapping 

would emerge between scores of the self-report measure and actual behavioral 

persistence exhibited in the anagram persistence task. 

3.1.2 Method 

3.1.2.1 Participants and Design 

Ninety four (94) University of Western Ontario introductory psychology undergraduates 

participated for partial course credit (69 females, 25 males; mean age = 18.46, SD = 2.18, 

range = 17 to 30). No restrictions were imposed on participant sex, age, or ethnicity. No 

experimental conditions were examined, hence all participants completed the same 

measures and tasks in the same order (see below for details). 

3.1.2.2 Procedure and Materials 

Participants were run in groups of two to five in a large testing room where each 

participant was seated in a separate cubicle in front of a PC computer. The experimenter 

(myself) individually gave brief verbal instructions before participants started, stating: 

All of the tasks you will complete today, except one, will be completed on the 
computer. It is very important to thoroughly read all of the instructions before 
starting any of the tasks. If you have any questions about any of the tasks, feel 
free to ask me for clarification. Also, before starting, please turn off your cell 
phone (or any other electronic devices). 

Participants then followed on-screen instructions and completed each task in a serial 

fashion in the following order: the measures of conscientiousness, the need for cognition 

scale, the self-report measure of task persistence, the word association decision task, the 

essay proofreading task, the anagram persistence task, and then demographics and 

debriefing questions. 
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3.1.2.2.1 Conscientiousness 

To assess conscientiousness, I measured the Deliberation and Self-Discipline facets of the 

NEO-FFI (Costa & McCrae, 1992), the Self-Control facet from the MPQ (Tellegen & 

Waller, 1994), and the Impulse Control facet from Goldberg’s Abridged Big Five 

Dimensional Circumplex (AB5C; Goldberg, 1999). I used the International Personality 

Item Pool (IPIP; Goldberg et al., 2006) version of the relevant MPQ and NEO-FFI facets 

(see Appendix A for actual instructions and items). For the NEO-FFI and MPQ items, 

participants rated the extent to which each statement was an accurate description of 

themselves, using a 5-point Likert scale, with the response categories 1 = “Very 

Inaccurate”,  2 = “Moderately Inaccurate”, 3 = “Neither Accurate Nor Inaccurate”, 4 = 

“Moderately Accurate”, and 5 = “Very Accurate”. Instructions emphasized that 

participants should describe themselves as they generally are, to answer honestly, and to 

answer in relation to other people the same sex and roughly the same age. For the AB5C 

(impulse control), participants rated the extent to which 12 trait adjectives (e.g., 

“Careful”, “Cautious”) described them, using a 5-point Likert scale, with the response 

categories 1 = “Strongly Disagree”, 2 = “Somewhat Disagree”, 3 = “Neither”, 4 = 

“Somewhat Agree”, and 5 = “Strongly Agree” (see Appendix B for instructions and 

items). Instructions emphasized that participants should describe themselves at the 

present time and to describe themselves as they are generally or typically. About half of 

the items on the four facets were negatively worded and hence were reverse-scored. 

Reliability of the scores from the four facets were generally acceptable (deliberation, 10 

items, α = .80; self-discipline, 10-items, α = .87; self-control, 10-items α = .76; impulse-

control, 12-items, α = .76). For ease of interpretation, the ratings for each facet were 

averaged, therefore creating a metric ranging from 1 to 5, with decimal numbers in 

between. 

For the essay task behavioral measure, participants were told that they would receive a 4-

page essay on actual paper and that their task would be to circle as many mistakes as 

possible within a span of eight minutes (approximately 10 mistakes per page were 

systematically introduced in the text, with a total of 42 mistakes). Participants were 

clearly informed to look only for mistakes such as misspellings, incorrect punctuations, 
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and typographical errors (but not formatting issues, e.g., spacing). They were also 

informed that it was important that they do their best in finding as many mistakes as 

possible in the allotted time. After reading these instructions, the experimenter brought 

the 4-page essay and pen to the participant and started the 8-minute timer set in the 

MediaLab software. In terms of scoring, I counted (using an answer overlay for accuracy 

and expediency) the number of mistakes correctly circled by the participant. Scores were 

expressed as a percentage of the total mistakes found by the participant. Scores ranged 

from 17 to 88%. 

3.1.2.2.2 Need for Cognition 

As mentioned, Cacioppo et al.’s (1984) revised and shortened 18-item NFC scale was 

used. The questionnaire was introduced as a tool assessing people’s individual thinking 

styles and it was mentioned that there were no right or wrong answers. Participants rated 

the extent to which each item was characteristic of them, using the response categories 1 

= “Extremely Uncharacteristic”, 2 = “Somewhat Uncharacteristic”, 3 = “Uncertain”, 4 = 

“Somewhat Characteristic”, and 5 = “Extremely Characteristic” (see Appendix C for 

items). Negatively worded items were reverse scored and the mean of the 18 items was 

computed, yielding a metric ranging from 1.0 to 5.0 (α = .88). 

For the behavioral reference point, as mentioned, a choice was given to participants to 

complete one of two word association tasks that were described as varying in terms of 

their level of cognitive challenge. Introduced as a task used to measure individuals’ 

conceptual ability to solve problems involving the connections between words, 

participants were explained the basic logic of the task (i.e., three words given, must find a 

related fourth word) and told that they would complete 10 questions (having 20 seconds 

for each). Then, an example problem for Task 1 (cognitively simpler task: “FRIES” 

“KISS” “TOAST”) and Task 2 (cognitively more challenging task: “BOARD” “MAGIC” 

“DEATH”) were presented without the answer, emphasizing that these example 

questions reflected the level of cognitive challenge that would be found in the items of 

the respective tasks. A minimum of 5 seconds was imposed before participants were 

allowed to proceed to the next screen to see the answers to the Task 1 and 2 example 

problems. This was done to ensure that participants would accurately perceive the level 
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of cognitive challenge of the example questions (i.e., prevent people from thinking even 

the challenging problem was obvious if they were presented with the problem and the 

answer simultaneously). On the screen with the answer to the Task 1 and 2 examples, it 

was clearly explained how the two examples differed in level of cognitive challenge by 

explaining that in the Task 1 example, the answer (i.e., “FRENCH”) related to the three 

words in the same way whereas in the Task 2 example, the answer (i.e., “BLACK”) 

related to the three words in a different way (i.e., “BLACK” relates to “BOARD” in a 

semantic way whereas “BLACK” relates “DEATH” in a visual way, etc.). Participants 

then clicked on the respective button to make their choice and proceeded to complete the 

10 questions. Overall, 58 individuals (62%) chose Task 1 and 36 individuals (38%) chose 

Task 2. 

3.1.2.2.3 Task Persistence 

As described earlier, Steinberg et al.’s (2007) 2-item self-report measure of task 

persistence was administered (“I will keep trying the same thing over again even when I 

have not had success the first time” and “I will often continue to work on something, 

even after other people have given up”). Participants rated their degree of persistence 

using a 4-point scale, using the response categories 1 = Very untrue, not at all like me, 2 

= Somewhat untrue or not like me, 3 = Somewhat true or like me, and 4 = Very true, very 

much like me. The reliability estimate of the measurement scores was α = .67, which is 

somewhat lower than the α = .73 reported by Steinberg et al. For ease of interpretation, 

ratings from the two items were averaged, creating a metric ranging from 1 to 4, with half 

steps in between. 

For the behavioral measure, an anagram persistence task (Brandon et al., 2003; Nes et al., 

2005; Quinn et al., 1996) was used. Participants were told that they would complete 

anagram puzzles and that although some of these would be very difficult, that they were 

all solvable. Participants were given an example (i.e., re-arrange the letters “O B A T” 

into “B O A T”) and then told that the task would contain 11 anagrams presented serially. 

Participants were told that they would be allowed as many attempts as they wished to 

figure out the correct answer, but that they would have a maximum of 3 minutes to work 

on each question (at which time the program would automatically proceed to the next 
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question). Importantly, participants were informed that if they wished to give up on an 

anagram question before the maximum time, they could skip to the next question by 

clicking the “SKIP” button. Unbeknownst to the participants, the Visual Basic software 

program recorded the amount of time spent on each question and also how many attempts 

were tried for each question (and the content of each attempt). The task contained 6 near-

impossible anagrams (e.g., “Q Y U I A” = “Y A Q U I”) and 5 relatively easy anagrams 

(e.g., “B E C H A” = “B E A C H”; see Appendix D for all items). As done in past 

research, average time spent persisting on the 6 near-impossible questions was used as 

the index of task persistence. However, upon closer scrutiny of participants’ actual 

answers on the near-impossible items, I noticed that many participants actually correctly 

guessed the answer often within the first minute (surprisingly, 20.3% of the near-

impossible anagrams were correctly guessed within the allotted time; however, all 

individuals left at least 2 anagrams unsolved, meaning no one had to be excluded due to 

correctly guessing all near-impossible anagrams).9 To control for this contamination, 

only unsolved anagrams were used to compute behavioral indices of task persistence. 

3.1.3 Results 

3.1.3.1 Preliminary Data Treatment 

Data from all measures were first screened informally for any evidence of non-

compliance. That is, I examined the time taken (as recorded by MediaLab) on instruction 

screens and actual questionnaire items for any evidence of consistently short latencies 

suggestive of non-compliance. No unambiguous cases were identified and hence all 

participants were retained.  

                                                 
9 It is interesting to note that I did not find mention of this issue in any of the past research using this 
persistence task. Indeed, Brandon et al. (2003) specifically mentioned that “the dependent measure was the 
mean time spent on the six difficult anagrams, which were never solved by the participants” (p. 450). I 
suspect this discrepancy may have arisen due to differences in the administration of the task, which in past 
research has typically been done with an experimenter and a stop-watch, whose presence may drastically 
reduce the amount of trial-and-error guessing and hence considerably reduce the number of correctly 
guessed answers. 
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3.1.3.2 Main Analyses 

I now present the main metric mapping results. For rhetorical reasons, I will present 

results for the constructs in the following order: need for cognition, task persistence, and 

conscientiousness. Table 2 presents descriptive statistics and zero-order correlations for 

variables in Study 1. 

Table 2: Descriptive statistics and correlations for variables in Study 1 (N = 94). 

Variable Mini
mum 

Maxi
mum 

Mea
n SD  NFC Caut

ious. 
Self-
disc. 

Self-
cont. 

Imp
ulse 

Erro
rs TP APT 

NFC (metric = 1-5) 1.83 4.78 3.37 0.65          
Conscientiousness              

Deliberation  
(NEO-FFI; 1-5) 

1.70 4.70 3.39 0.62  .31*        

Self-Discipline  
(NEO-FFI; 1-5) 

1.80 4.80 3.16 0.74  .34* .53*       

Self-Control  
(MPQ; 1-5) 

2.10 4.80 3.55 0.57  .23* .84* .57*      

Impulse Control 
(AB5C; 1-5) 

2.50 4.58 3.71 0.49  .28* .73* .49* .68*     

Essay errors found  
      (%; 0-100) 

17.0 88.0 45.0 14.0  .12 -.02 -.02 .04 -.03    

Task Persistence (TP) 
      (self-report; 1-4) 

1.00 4.00 3.07 0.64  .41* .31* .51* .25* .29* -.14   

Anagram Persistence 
Task (avg mins / 
question; 0-3) 

0.16 3.00 1.51 0.78  .26* .22* .02 .12 .26* -.01 .15  

Cognitive task choice 0.0 1.0 - -  .34* .13 .03 .15 .06 .06 .02 .29* 

3.1.3.2.1 Need for Cognition 

The empirical linkages between NFC scores and probability of choosing the cognitively 

challenging task over the simpler task was modeled using a logistic regression, with NFC 

scores as the predictor and behavioral choice as the dichotomous outcome. Results from 

the logistic regression revealed that indeed NFC scores were able to successfully 

discriminate (72.3% classification accuracy compared to both the 50.0% baseline and 

62.0% largest-group baseline) between those who chose the more cognitively challenging 

task (Task 2) and those who chose the cognitively simpler task (Task 1), Wald’s χ2 = 

9.71, B = 1.20, odds ratio (OR) = 3.33, p = .002. This indicates that for every unit 

increase in NFC scores, the odds of choosing the challenging over simpler task more than 

triples (i.e., OR = 3.33). This can be seen visually, by plotting the predicted probability of 

choosing Task 2 over Task 1 (calculated using the coefficient and intercept values of the 

best fitting exponential regression line) for each particular NFC score obtained in the 
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sample (see Figure 10).10 At least three important things can be gleaned from Figure 10, 

which are critical to imbuing meaning to the metric of NFC scores. The first observation 

that can be made is to garner general information about how the NFC scores along the 

metric range map onto the relevant behavioral referent. In this case, it can be seen that 

NFC scores of “2.0”, “2.5”, “3.0”, “3.5”, “4.0”, and “4.5” map onto about a 10%, 17%, 

27%, 40%, 55%, and 70% chance of choosing the more cognitively challenging over 

simpler task (i.e., Task 2 over Task 1).  

 

Figure 10: Predicted probability of choosing a cognitively challenging task (Task 2) 

over a cognitively simpler task (Task 1) given need for cognition (NFC) scores. 

                                                 
10 Interpretation of the odds ratio (in this case OR = 3.33) can be visualized in this figure. For example, an 
NFC score of “2.0” yielded a predicted probability of choosing Task 2 over Task 1 of approximately 0.10, 
equivalent to an odds of about 0.11 (0.10/0.90) whereas an NFC score of “3.0” yielded a predicted 
probability of choosing Task 2 over Task 1 of approximately 0.27, equivalent to an odds of 0.37 (0.27/.73). 
Hence, the odds of choosing Task 2 over Task 1 more than triples (0.37/0.11 = 3.33) for every 1-unit 
increase in NFC scores. 
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The second important observation that can be made from Figure 10, which follows the 

general logic implied by Blanton and Jaccard’s (2006b) analysis, is to use the 50% 

probability of choosing Task 2 over Task 1 as a qualitatively distinct behavioral reference 

point to imbue meaning into NFC scores. That is, to the extent that one interprets 50% as 

a meaningful behavioral reference point, the mapping between an NFC score of 

approximately “3.8” and 50% can be used to imbue NFC scores with meaning, by 

interpreting other NFC scores relative to the value of “3.8”. In other words, the 

approximate location of the NFC scores on the underlying dimension of NFC can be 

inferred relative to the “3.8” threshold value. Overall, this metric meaning analysis 

implies that the metric range of NFC scores seems to be capturing the lower end of the 

underlying continuum of NFC. This is based on the logic that the NFC numerical 

midpoint (i.e., “3.0”) is associated with a value on the behavioral reference point that is 

considerably lower than the behavioral threshold value (27% lower than 50%). If the 

opposite would have emerged (i.e., the NFC numerical midpoint of “3.0” was associated 

with a 75% chance of choosing the more cognitively challenging task), then this would 

have suggested that the NFC measure would be capturing the higher end of the 

underlying continuum of NFC.  

A final observation that can be made from Figure 10 is that the scale midpoint (i.e., 

“3.0”) maps onto a 27% chance of choosing Task 2 over Task 1. This observation can be 

seen as providing preliminary empirical evidence that the scale midpoint should not be 

interpreted as reflecting a neutral position on the underlying dimension of NFC, assuming 

that a 50% chance of choosing Task 2 over Task 1 is interpreted as a meaningful NFC 

behavioral reference point. In other words, this result implies that characterizations of 

individuals above the scale midpoint as “high” in NFC and those below the midpoint as 

“low” in NFC would be misleading, given that the scale midpoint of “3.0” was associated 

with an approximate 27% chance of choosing the more cognitive challenging task. In 

addition, given that the median of NFC scores in the sample was “3.4”, the empirical 

mapping found also implies that characterization of individuals above the median as 

“high” or those as below the median as “low” on NFC could also be seen as misleading, 

given that a score of “3.4” was associated with an approximate 32% chance of choosing 

the more cognitive challenging task. Granted, these implications only hold to the extent 
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that experts in this research area agree that this behavioral choice reflects a theoretically 

meaningful reference point that actually reflects the underlying dimension (and is also 

provisional on replicating the finding). Hence, as NFC scores are linked to other 

meaningful and/or more extreme need for cognition behavioral reference points, NFC 

scores could gain even more meaning and interpretability. 

3.1.3.2.2 Task Persistence 

Plotting mean time spent on the unsolved near-impossible anagram puzzles against self-

reported task persistence (TP) scores revealed a linear trend (see Figure 11). A linear 

regression confirmed the presence of a positive relation (B = 0.18, β = r = .15), though 

the effect did not attain conventional levels of statistical significance (p = .15). 

Interestingly, however, this effect is consistent with results from Ditre and Brandon 

(2008) who found a small positive relation between the same self-report TP measure and 

a mirror-tracing persistence task (r = .17, p = .056) and a breath-holding persistence task 

(r = .16, p = .07). Given that Brandon et al. (2003) found a positive relation between this 

mirror-tracing persistence task and the exact anagram persistence task used in my study 

(r = .27, p = .001), this suggests that the correlation found in my study is a meaningful 

effect given that it is consistent with past research. From Figure 11 (solid line), it can be 

seen that a self-report TP score of “2.0” corresponded to approximately 1 minute and 19 

seconds of mean time persisting on the near-impossible anagrams whereas a self-report 

TP score of “3.0” corresponded to about 1 minute and 30 seconds of persistence. This 

linear relationship can be gleaned more precisely by directly interpreting the 

unstandardized regression coefficient (B = 0.18), which indicates that a 1-unit increase in 

self-report TP scores is associated with an increase of 11 seconds (11 = 0.18 × 60) in 

persistence.11 Hence, although in this case the behavioral referent does not have a clear 

                                                 
11 This particular finding demonstrates the conceptual idea of how metric research can help us overcome 
limitations of NHST. In this case, a researcher strictly relying on p-values or effect size would have likely 
dismissed the result given the greater than .05 p-value and the “small” effect size (2.2% of the variance 
explained).  Focusing our attention on the meaning of measurement scores, however, reveals a potentially 
more useful perspective on assessing the actual noteworthiness of this empirical finding. In this particular 
case, a researcher must ask themselves the (potentially difficult) question of whether an 11-second increase 
in actual task persistence for every 1-unit increase in the self-report measure scores is noteworthy. 
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qualitatively distinct threshold cut-off value, the mapping nonetheless imbues the self-

report TP scores with some meaning. 

 

Figure 11: Mean time spent on unsolved near-impossible anagrams (in minutes) in 

the anagram persistence task (APT) plotted against self-reported task persistence 

scores using a linear (solid line) or cubic function (dotted line). 

For example, knowing that a self-report TP score of “1.0” is associated with 

approximately 1 minute and 8 seconds of actual persistence whereas a score of “4.0” is 

associated with approximately 1 minute and 40 seconds of persistence helps one get a 

sense of what these scores might mean in relation to the underlying dimension of task 

persistence. 

An interesting second perspective on the mapping between self-reported and actual 

persistence can be gained when one takes a closer look at the scatterplot in Figure 11. 
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Although overall it appears that as self-reported TP scores increase time persisting also 

increases, for values greater than “3.5” on the self-report measure, time spent persisting 

actually seems to decrease rather than increase. This could be the case if individuals who 

endorsed the highest possible response option for both self-report items (“4”s on both 

items) exhibited an over-reporting bias when indicating their typical persistence, 

implying that this select group of individuals (those scoring “4”s on both items) exhibited 

less persistence behaviorally than their “3.5” counterparts. Indeed, a cubic function 

applied to the data seemed to fit the data reasonably well, explaining approximately three 

times more variance than the linear function (6.2% versus 2.2%) (see Figure 11, dotted 

line). Hence, using this response function, a score of “3.0” corresponded to about 1 

minute and 36 seconds of persistence; a score of “3.5” corresponded to about 1 minute 

and 44 seconds; whereas a score of “4.0” corresponded to only about 1 minute and 29 

seconds. This could be seen as preliminary evidence suggesting that responses on the 

self-report measure of task persistence may suffer from sub-optimalities that further 

construct validity research should clarify. This curvilinear effect could also potentially 

explain the consistently small positive linear relations observed between the self-report 

measure and the three behavioral persistence measures (as found by Ditre and Brandon, 

2008, and in my study).  

Indeed, by re-analyzing Ditre and Brandon’s (2008) data (kindly provided by the authors 

upon request), I was able to replicate this non-linear cubic response function in Ditre and 

Brandon’s data. That is, a cubic function modeling the relation between the same self-

reported task persistence scores and mean time persisting on unsolved mirror-tracing 

trials (which has shown a sizable correlation to the exact anagram persistence task used in 

my study) explained approximately twice the amount of variance than a linear function 

(5.3% vs. 2.8%). The nature of the cubic function followed the same “dipping pattern” as 

in my data, whereby a score of “3.0” corresponded to about 2 minutes and 52 seconds of 

persistence; a score of “3.5” corresponded to about 3 minutes and 1 seconds; whereas a 

score of “4.0” corresponded to only about 2 minutes and 48 seconds (all values 

numerically higher because participants were allowed up to 5 minutes per trial compared 

to a maximum of 3 minutes in my task). Hence, this finding provides further evidence 

supporting the hypothesis that certain individuals (i.e., those scoring “4”s on both items) 
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may be exhibiting a reporting bias. Furthermore, this finding implies that further 

construct validity research could examine whether a strong accuracy instruction 

eliminates the alleged over-reporting bias, which could be reflected in the data if a linear 

function would explain more variance than the cubic function. 

3.1.3.2.3 Conscientiousness 

Contrary to expectations, scatterplots of percentage of errors found in the essay task 

plotted against the scores from the relevant facets of conscientiousness did not reveal any 

clear mappings for any of the four facets. That is, higher conscientiousness scores did not 

necessarily correspond to a higher percentage of mistakes found in the essay task for 

none of the facets (r = -.02, r = .04, r = -.02, r = -.03, for the Impulse Control, Self-

Control, Self-Discipline, and Deliberation facets, respectively). 

Many factors could underlie why no meaningful mappings were found between the 

conscientiousness facets and performance in the specifically designed detail-oriented 

task. I will elaborate on a few possibilities. First, although carefully constructed, the 

essay task may not have been the best task to capture the intended “detail-orientedness” 

manifestation of conscientiousness. The primarily language-based component of the task 

may not have captured detail-orientedness in those less linguistically inclined. Indeed, 

consistent with this idea, a post-experiment debriefing question tapping the extent to 

which individuals read books, revealed a small positive correlation between reading and 

percentage of errors found (r = .18, p = .09, overall and r = .22, p = .03 for errors found 

on the first page, which is likely more diagnostic given most people did not get to the last 

page of the essay task). Second, perhaps the essay task was mostly driven by (i.e., 

confounded with) motivation rather than conscientiousness. Third, my choice of 

conscientiousness facets may have contributed to the null mappings. Although I took 

great care in selecting facets that seemed to be most theoretically-relevant to detail-

orientedness, admittedly I was not satisfied with my final choices of measures. For 

example, closer inspection of the items comprising the facets revealed odd items that do 

not seem to reflect the facet I intended to measure (e.g., “I do crazy things,” which was 
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part of the Deliberation facet).12 Hence, perhaps the chosen facets did not accurately 

reflect the construct I intended to capture. Similarly, the fact that I used the (briefer) IPIP 

instantiations of the MPQ and NEO-FFI might have played a part. Finally, perhaps partial 

violation of the matching principle with respect to temporality may have contributed to 

the null mappings. Conscientiousness self-reports are typically assumed to capture 

individuals’ recall of how they characteristically behave with respect to the 

conscientiousness facets whereas the criterion behavior assessed in the study captured 

individual’s transient momentary detail-oriented inclination at the present moment in 

time. One possibility to overcome this issue would be to take the average performance on 

the essay task across three independent occasions and then examine the mappings 

between conscientiousness facet scores and behavioral performance. 

Although the conscientiousness facet scores did not reveal meaningful mappings to essay 

performance, the Impulse Control facet of conscientiousness did reveal some 

interpretable linkages to the behavioral persistence in the APT (see Figure 12). As can be 

seen in Figure 12, every unit increase in Impulse Control self-report scores corresponded 

to roughly a 25 second increase in persistence on the APT (B = .41, t = 2.56, p = .01; .41 

× 60 = 25 seconds). For example, individuals self-reporting conscientiousness around the 

scale midpoint (i.e., “3”) persisted for an average of about 1 minute and 12 seconds on 

the near-impossible unsolved anagrams whereas those self-reporting around “4” persisted 

for about 1 minute and 37 seconds. 

                                                 
12 Although psychometrically hazardous, I also examined empirical mappings between specific items 
deemed most theoretically relevant in predicting detail-oriented behavior in the essay task (I a priori picked 
four questions from the MPQ and NEO-FFI (i.e., “I am exacting in my work”, “I pay attention to details”, 
“I avoid mistakes”, and “I choose my words with care”) and four items from the adjective ratings (i.e., 
“careful”, “cautious”, “conscientious”, and “systematic”) that seemed the most theoretically relevant). 
Interestingly, I did find two meaningful mappings: one between the adjective ratings for the “cautious” 
item and overall errors found (r = .30, p = .004) and another between the adjective ratings for the 
“conscientious” item and errors found on the first page (r = .25, p = .02). These mappings, however, must 
be interpreted with caution given that they involve a 1-item self-report measure. Nonetheless, this could be 
seen as preliminary evidence suggesting, in line with the matching principle, that more specific self-report 
measures would be more useful in predicting the specific expression of conscientiousness presumably 
required for the essay task. 
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Figure 12: Mean time spent on unsolved near-impossible anagrams in the anagram 

persistence task plotted against self-reported Impulse-Control scores (Goldberg). 

This metric mapping can actually be seen as consistent with the broad conceptualization 

of conscientiousness which includes as a facet the degree of organization, persistence, 

and motivation in goal-directed behavior (Costa & McCrae, 1992). Assuming that some 

individuals had it as a goal to persist in the task, the conscientiousness-persistence metric 

mapping could make sense theoretically to the extent that the particular conscientiousness 

facet captured this tendency to persist in goal-directed behavior. 

3.1.4 Discussion 

Overall, Study 1 demonstrated the feasibility of calibrating the metric of measures 

commonly used in basic psychological research by employing two metric calibration 

strategies inspired by past research. In summary, I found a meaningful and illuminating 

empirical mapping between NFC scores and probability of choosing a cognitively 
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challenging versus simpler task. I also found an informative linkage between a 

pragmatically useful self-report task persistence measure and actual behavioral 

persistence in a commonly used persistence task. Finally, although no clear connection 

was found between the conscientiousness facets and errors found in the essay task, I did 

find some theoretically interpretable linkages between scores from the Impulse Control 

facet (Goldberg) and behavioral persistence in the anagram task. Taken together, these 

findings suggest that the metric calibration approach is feasible in achieving the goal of 

calibrating the metric of measures commonly used in psychological research. Hence, 

these promising results suggest that the benefits proposed in my conceptual analysis 

could one day potentially bear fruit. 

Supposing replication and consensus from the field as to the meaningfulness of the 

behavioral reference points, these metric findings could speak to theoretical issues in the 

research literatures involving the constructs of need for cognition, conscientiousness, and 

task persistence. For instance, one could delve into the attitudes and persuasion literature 

and find published studies that involved NFC as a moderating variable of attitude change. 

One could then attempt to re-analyze moderated multiple regression analyses in these 

studies using calibrated NFC metric values, which could shed additional light on the 

research questions tested (e.g., NFC as a moderator of the impact of central vs. peripheral 

cues on attitude change). In fact, in the implications section of the General Discussion, I 

will report results of this kind of re-analysis using precisely such an approach. 

3.2 Study 2 
The primary goal of Study 2 was to provide a preliminary demonstration of the feasibility 

and utility of the metric approach with regard to contributing to theoretical development. 

More specifically, the goal was to illustrate how the metric calibration approach could be 

used to shed light on theoretical debates that involve claims of an absolute nature. 

Another goal of Study 2 was to further demonstrate the metric approach for a distinct 

construct commonly studied in basic psychological research. The study centered on the 

topic of self-enhancement in the context of theoretical controversies regarding the 

question of pan-cultural self-enhancement. An important aspect of this theoretical debate 

is that it involves making claims regarding the presence versus absence of self-
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enhancement within and across cultures, which involves making theoretical claims about 

absolute levels of self-enhancement based on scores from trait rating measures which 

have arbitrary metrics. Consequently, this topic was chosen precisely to attempt to 

illustrate how the metric approach can potentially shed new light on the debate by 

providing specific information regarding the metric meaning of trait rating scores for 

those measures. Toward this end, two self-enhancement measures that play a focal role in 

the debate were calibrated to a theoretically-relevant behavioral reference point. 

3.2.1 Pan-cultural Self-Enhancement Debate 

Although research on cultural differences in the self-enhancement motive has a long 

history (Heine, Lehman, Markus, & Kitayama, 1999; Markus, Kitayama, & Heiman, 

1996; Pepitone & Triandis, 1987), the pan-cultural self-enhancement debate intensified 

when Sedikides et al. (2003) asserted as misguided the idea that self-enhancement is 

pervasive in individualistic cultures (Westerners) but absent collectivistic cultures 

(Easterners). Rather, Sedikides et al. proposed that Westerners and Easterners use 

different tactics to achieve the same goal of self-enhancement, such that Westerners self-

enhance on individualistic attributes whereas Easterners self-enhance on collectivistic 

attributes. This tactical self-enhancement hypothesis was supported empirically in a set of 

two studies showing that Americans self-enhanced on individualistic attributes whereas 

Japanese self-enhanced on collectivistic attributes. This led Sedikides et al. to conclude 

that self-enhancement is a universal human motive. Heine (2005) challenged this claim 

on empirical and methodological grounds. Specifically, Heine argued that Sedikides et al. 

ignored numerous conflicting past findings that contradict their main conclusion and that 

they used inappropriate cross-cultural samples. More relevant to the present dissertation, 

Heine also called into question Sedikides et al.’s pan-cultural claim based on an 

important methodological issue. Heine argued that the better-than-average paradigm used 

by Sedikides et al. to index self-enhancement is flawed given that it is confounded with a 

general cognitive bias. That is, past research has shown that individuals view not only 

themselves as better than average, but they also view any randomly chosen individual as 

better than average (the “everyone is better-than-average-effect” [EBTA]; Klar & Giladi, 

1999; Sears, 1983). It is clear that rating a random other as better than average has 
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nothing to do with self-enhancement and hence this cognitive bias contaminates the self-

enhancement index scores in an upward fashion and seriously calls into question 

Sedikides et al.’s main theoretical claim.  

Although Sedikides, Gaertner, and Vevea (2005) responded to Heine’s (2005) challenge 

with a meta-analytic investigation showing the same overall patterns of results across 27 

combined samples, Heine, Kitayama, and Hamamura (2007a) further challenged 

Sedikides et al.’s claim by showing their meta-analytic conclusions do not hold with the 

inclusion of missing cross-cultural studies. Heine et al. also once more challenged 

Sedikides et al. on methodological grounds (see also Heine, Kitayama, & Hamamura, 

2007b; Sedikides, Gaertner, & Vevea, 2007a, 2007b). Importantly, when considering all 

cross-cultural studies available in the literature, Heine et al. (2007a) noticed a striking 

pattern: the studies most consistently yielding evidence supportive of the pan-cultural 

hypothesis used the better than average (BAE) method (either combining self-vs.-other 

judgments or rendering the judgments separately). And, given that this method over-

estimates self-enhancement because of the abovementioned methodological artifact 

conflated with the method (i.e., the EBTA), this calls into question the conclusion that 

self-enhancement is universal. Taken together, one important aspect of the debate 

involves the fact that much of the evidence in support of the pan-cultural self-

enhancement hypothesis comes from studies using BAE measures, which suffer from a 

methodological artifact that inflates estimates of self-enhancement.  

From a metric perspective, I would argue that calibrating measures of self-enhancement 

(e.g., BAE paradigm: self-vs.-other judgments simultaneously or self minus other 

separately) could shed light on the pan-cultural theoretical controversy, by attempting to 

provide evidence about what types of self-enhancement behaviors correspond to different 

scores on these trait rating measures of self-enhancement. In the process, metric research 

may also reveal more directly how much construct-irrelevant cognitive biases are 

contaminating these self-enhancement trait measures. Critically, one would examine what 

type of self-enhancement behaviors actually correspond to particular scores on the trait 

measures, including critically scores that are typically interpreted as self-enhancement 
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(e.g., scores statistically greater than the scale midpoint for the self-vs.-other judgments 

made simultaneously). 

The main goal of Study 2 was to calibrate two of the trait self-enhancement measures 

(Alicke et al., 1995; Sedikides et al., 2003) that feature prominently in this debate, 

namely a trait rating measure involving self versus other judgments made simultaneously 

and a trait rating measure where other judgments are subtracted from self judgments. This 

was achieved by calibrating the metric of these two measures to behaviors reflective of 

self-enhancement, which could be used as a reference point. I used Paulhus et al.’s (2003) 

over-claiming technique (OCT) as the behavioral index of self-enhancement. The 

calibration of these trait rating self-enhancement measures could potentially shed light on 

the universality of self-enhancement debate because part of this debate involves trait 

rating measures of self-enhancement that are often interpreted in an absolute fashion 

(e.g., Gaertner et al., 2008). As reviewed in the introduction, this strategy of meter 

reading is unfounded given that the metrics of these trait rating measures are arbitrary and 

hence it is unknown what region of the underlying dimension of self-enhancement is 

captured by these trait rating measures. Applying a metric approach to this topic, 

however, could potentially shed new light on this controversy by examining what kinds 

of behavioral manifestations of self-enhancement correspond to scores typically 

interpreted as self-enhancement. If, for instance, scores above the midpoint traditionally 

interpreted as self-enhancement (e.g., mean trait rating of “4.5” tested against a scale 

midpoint of “3.5”; see Gaertner et al., 2008) are associated with negligible behavioral 

manifestations of self-enhancement, then this would cast doubt on claims of self-

enhancement based on greater-than-the-midpoint analyses of trait rating measures. 

Granted, this would represent only the first step toward speaking to this controversy, 

given that consensus would need to be reached with respect to the behavioral criterion of 

self-enhancement. An auxiliary goal of Study 2 was also to calibrate the Balanced 

Inventory of Desirable Responding (BIDR; Paulhus, 1984), another commonly used self-

enhancement measure, to behavioral markers of self-enhancement manifested in the 

OCT. 
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3.2.2 Method 

3.2.2.1 Design and Participants 

One hundred ninety-four (194) University of Western Ontario undergraduates 

participated for partial course credit (97 males, 97 females; mean age = 18.9, SD = 1.2, 

range = 17 to 25). No restrictions were imposed on participant sex, age, or ethnicity. The 

study included two experimental conditions, having altered instruction sets for the OCT 

as a first exploration into the proposed experimental approach to metric calibration. 

However, given that this instruction manipulation had virtually no effect on OCT scores, 

I do not discuss these data further.13 Hence, the final sample was composed of 97 

undergraduates that completed the OCT with standard instructions (47 males, 50 females; 

mean age = 18.9, SD = 1.3, range = 17 to 25). Thus, all participants completed the same 

measures and tasks in the same order (see below for details). 

3.2.2.2 Procedure and Materials 

Participants were run in groups of two to five in a lab testing room where each participant 

was seated in a separate cubicle in front of a PC computer. Before starting, the 

experimenter verbally instructed each participant to carefully read all instructions and to 

ask the experimenter for clarification if any questions arose. The experimenter also 

instructed each participant to turn off any and all electronic devices before starting. 

Participants then followed on-screen instructions and completed each measure in a serial 

fashion in the following order: combined trait rating measure of self-enhancement (self-

vs.-other judgments), separate trait rating measure (self and other judgments made 

separately), a filler task (Remotes Association Test), the OCT, the BIDR, and then 

demographics and debriefing questions. 

3.2.2.2.1 Combined Self vs. Other Judgments 

The first trait measure of self-enhancement involved self-versus-other judgments 

following the logic and structure of the trait rating measures used in the literature on the 

                                                 
13 Specifically, the mean OCT scores across conditions were Mwarning = .09 (SD = .08), Mcontrol = .11 (SD = 
.12), and Mconfidence = .09 (SD = .10). 
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pan-cultural debate (Sedikides et al., 2003), except with culture-independent traits given 

the present non-cross-cultural sample (the standard traits as used by Alicke et al., 1995). 

The measure originated from the better-than-average effect literature and was 

subsequently adopted by researchers in the pan-cultural debate. The better-than-average 

effect has been argued to represent a fundamental type of self-enhancement reflected in 

the tendency to view one’s behaviors, opinions, and characteristics more favorably than 

those of others (Alicke et al., 1995). Assessment of these views typically involve making 

ratings of oneself relative to an “average other” on a series of traits on a bipolar scale 

anchored at the extremes by self and other (e.g., “To what extent does Trait A describe 

you relative to the average other?”: 1 = much worse than the average other, 4 = as well 

as the average other, 7 = much better than the average other). However, given research 

showing that better-than-average effects can be inflated when the comparison target is 

ambiguous (Alicke et al., 1995), researchers have often tried to make the comparison 

target more concrete to permit more stringent analyses. Given that some of the past pan-

cultural studies (but not all) have adopted these more stringent assessment conditions, I 

decided to also adopt these more stringent measure configurations. Hence, following 

Gaertner et al. (2008), participants rated the extent to which each listed trait described 

themselves relative to the average Western university student of their own age and gender 

on an 9-point scale (1 = much worse than the average university student of my age and 

gender, 4 = as well as the average university student of my age and gender, 7 = much 

better than the average university student of my age and gender). Participants rated the 

following 10 positive and 10 negative traits (adopted from Alicke et al., 1995): 

dependable, intelligent, considerate, observant, polite, respectful, cooperative, reliable, 

friendly, creative and gullible, disobedient, snobbish, lazy, disrespectful, mean, 

unforgiving, vain, uncivil, unpleasant (α = .75). 

3.2.2.2.2 Separate Self vs. Other Judgments 

For the second measure of self-enhancement, participants rated the extent to which a 

series of statements were true of themselves and subsequently of others, assessed 

separately (e.g., Hornsey & Jetten, 2005; Heine & Lehman, 1999). Mean ratings of others 

were then subtracted from ratings of the self to form an index of self-enhancement. 
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Participants rated the extent to which the following 10 traits were true of themselves (5 

positive, 5 negative) and subsequently the extent to which these same traits were true of 

others: clear-headed, resourceful, reliable, perceptive, trustful and insecure, spiteful, 

unstudious, maladjusted, complaining (again from Alicke et al., 1995). Because past 

research has failed to find order effects for whether self versus other ratings are 

completed first, participants completed the ratings in one order only (self ratings first) 

(Brown & Kobayashi, 2002; Hornsey & Jetten, 2005). For self-ratings, participants were 

informed to indicate the extent to which the traits were true of themselves whereas for 

ratings of others, participants were informed to indicate the extent to which the traits 

were true of the average Western student of their age and gender (using the scale anchors: 

1 = not at all true and 7 = completely true) (α = .62). 

3.2.2.2.3 Over-claiming Technique 

After completing a brief filler task alleged to assess their creativity (i.e., the RAT; about 5 

minutes), participants completed the OCT as a behavioral reference point of self-

enhancement. The OCT involves the presentation of a series of words allegedly 

describing people, places, and objects, some of which, unbeknownst to the participants, 

refer to non-existent items (i.e., some words are foils). In the standard OCT task, 

participants are instructed to indicate the extent to which they are familiar with each word 

(0 = “never heard of it” to 6 = “completely familiar”). Independent indices are then 

typically computed, using signal detection theory, to estimate actual knowledge (i.e., 

accuracy: hit rate – false alarm rate) and self-enhancement (i.e., over-claiming bias: [hit 

rate + false alarm rate] / 2). Although the signal detection theory framework provides a 

mathematically rigorous estimate of knowledge exaggeration, unfortunately these 

estimates are interpretationally ambiguous given they are composed of the mean of both 

the hit rate and false alarm rate. Given that the goal of metric research is to link test 

scores to maximally meaningful (i.e., unambiguous) behavioral scores, I chose to use the 

raw false-alarm rate to index the self-enhancement bias, given it provides the clearest and 

most meaningfully interpretable face-valid operationalization of self-enhancement (i.e., 

the proportion of non-existent items claimed as familiar). Hence, this implied a slight 

change in the response format of the task, whereby participants in this study indicated 
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whether the item was familiar or unfamiliar using a binary choice format rather than the 

usual 7-point polytomous choice format. 

Participants completed a variant of the 150-item OCT (Paulhus et al., 2003), which is 

broken down into 10 categories of 15 items. Three out of every 15 items per category 

were foils, that is, they do not actually exist (see Appendix E). Standard instructions were 

used, whereby participants were instructed to indicate whether each item was familiar to 

them or unfamiliar to them. The number of non-existent words indicated as familiar 

served as the main behavioral index of self-enhancement (metric range = 0 to 30). 

3.2.2.2.4 Balanced Inventory of Desirable Responding 

Participants completed the 40-item BIDR (Paulhus, 1984; 1991), a measure of social 

desirable responding that has previously been used in the context of the over-claiming 

technique (Paulhus et al., 2003). The BIDR involves the subscales of self-deception 

(honestly held exaggeration of one’s positive attributes) and impression management 

(positive self-presentation targeted at a public audience). Items were answered using a 7-

point Likert scale (1 = Not true, 4 = Somewhat true, and 7 = Very true) (BIDR Version 6, 

Form 40; Paulhus, 1991). By convention, BIDR scoring involves adding one point for 

each “6” or “7” item response indicated by the participant (Paulhus, 1984; 1991). Hence, 

the metric for the total scores can range from 0 to 40. Scores from this measure were then 

calibrated to the behavioral indices of self-enhancement in the OCT. After the BIDR, 

participants completed a few debriefing and demographics questions (α = .76). 

3.2.3 Results 

3.2.3.1 Preliminary Data Treatment  

Data from all measures were first screened informally for any evidence of non-

compliance. I examined the time taken (as recorded by MediaLab) on instruction screens 

and actual questionnaire items for any evidence of consistently short latencies suggestive 

of non-compliance. No unambiguous cases were identified and hence all participants 

were retained. 
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3.2.3.2 Main Analyses 

The metric mapping results will be presented in the order the measures were introduced 

in the Methods section. Table 3 presents descriptive statistics and zero-order correlations 

for all Study 2 variables. 

Table 3: Descriptive statistics and correlations for variables in Study 2 (N = 97). 

Variable Mini
mum 

Maxi
mum Mean SD  Com

bined 
Sepa
rate Self Other BIDR 

Combined trait rating 
scores (1-7) 

3.85 6.05 4.93 .56       

Separate trait rating 
scores (self – other;  
-6 to +6) 

-1.00 2.9 .77 .82  .12     

Self (1-7) 3.4 6.5 5.04 .68  .34* .67*    
Other (1-7) 2.3 5.9 4.27 .63  .21* -.59* .21*   

BIDR (0-40) 1.00 23.0 8.54 4.80  .23* .36* .51* .08  
OCT (# of non-existent 

items claimed as 
familiar; 0-30) 

0.0 16.7 3.23 3.67  .29* .16 .25* .06 .27* 

3.2.3.2.1 Combined Trait Rating Measure 

A regression analysis revealed that trait rating scores on the combined self-vs.-other 

judgments were positively predictive of behavioral over-claiming scores (B = 1.88, β = r 

= .29, p = .004). This metric mapping can be unpacked by visualizing Figure 13 (solid 

line), whereby a 1-unit increase on the trait rating scale corresponds to over-claiming 

knowledge of about 2 more non-existent words. Specific metric mappings for particular 

trait rating scores revealed that a trait rating score of “4”, “5”, and “6” corresponded to 

claiming familiarity of about 1.5, 3, and 5 non-existent words, respectively (derived from 

using the intercept and regression coefficient). These particular metric mappings start to 

give us a rough sense of the kinds of self-enhancement behaviors associated with 

particular trait rating scores, hence imbuing the metric of the trait rating measure with 

meaning. Once replicated on larger and culturally-appropriate samples, these metric 

mappings could then potentially shed new light on the pan-cultural debate of self-

enhancement by examining the kinds of self-enhancement behaviors associated with trait 

rating scores typically interpreted as self-enhancement (e.g., trait rating score of “5” [on a 

7-point scale] associated with over-claiming about 3 non-existing words). 

 



97 

 

Figure 13: Number of non-existent words claimed familiar in OCT plotted against 

trait rating scores using a linear (solid line) or cubic function (dotted line). 

Given the odd shape of the scatterplot of trait rating scores and over-claiming behavior in 

OCT, I also decided to examine the metric mapping using a non-linear cubic function. 

This analysis revealed that the cubic function accounted for about 50% more variance 

than the linear function (R2 = .12 vs. R2 = .083). As depicted in Figure 13 (dotted line), a 

cubic functional form shows that trait rating scores between “4” and “5” corresponded to 

over-claiming of approximately 3 words whereas trait rating scores greater than “5.5” 

corresponded to a sharp increase in over-claiming (“5.5” was linked to about 4.5 words 

whereas “6” was linked to about 8 words). Consistent with the linear metric mapping, the 

non-linear metric mapping suggests that very little self-enhancement behaviors 

corresponded to trait rating scores typically interpreted as self-enhancement. 
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3.2.3.2.2 Separate Trait Rating Measure 

Trait rating scores from the self versus other judgments made separately revealed a small 

positive trend with OCT scores, however this was not statistically significant, B = .71, β 

= r = .16, p = .12 (see Figure 14). A possible explanation for this less robust relation is 

that trait rating scores in this measure involved difference scores. Such aggregate scores 

are known to suffer in reliability in direct proportion to the correlation between the 

individual components scores (Cronbach, 1958; Edwards, 2002). 

 

Figure 14: Number of non-existent words claimed familiar in OCT plotted against 

trait rating scores made separately using a linear function. 

3.2.3.2.3 Balanced Inventory of Desirable Responding 

Finally, a regression analysis revealed a linear relation between BIDR scores and OCT 

scores (B = .21, β = r = .27, p = .008). That is, a 5-unit increase in BIDR scores 
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corresponded to over-claiming of about one more non-existent word (5 × .21 = 1.05; 

given the much wider metric range of the BIDR). For instance, a BIDR score of “1” 

corresponded to about two non-existent words claimed as familiar, a mid-range BIDR 

score of “21” corresponded to about six non-existent words claimed as familiar, whereas 

a maximal BIDR score of “40” would have corresponded to about 10 non-existent words 

claimed as familiar (see Figure 15). An examination of BIDR’s two subscales revealed 

that this relation was primarily driven by the self-deception rather than the impression 

management facet.  

 

Figure 15: Number of non-existent words claimed familiar in OCT as a function of 

BIDR scores using a linear function. 

That is, a regression analysis revealed a more positive relation between BIDR self-

deception scores and OCT scores (B = .35, β = r = .29, p = .004) than between BIDR 

impression management scores and OCT scores (B = .17, β = r = .14, p = .18). 
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3.2.4 Discussion 

Study 2 successfully applied the metric approach to the construct of self-enhancement. 

More importantly, however, the current study illustrated how the metric approach could 

potentially be valuable in shedding light on theoretical debates involving absolute claims, 

by focusing on the pan-cultural debate of self-enhancement (Sedikides et al., 2003; 

Heine, 2005). The metric mapping results for a trait rating measure of self-enhancement 

commonly used in this debate, showed that very little behavioral evidence of self-

enhancement corresponded to trait scores typically interpreted as self-enhancement. That 

is, a trait rating score of “5” sometimes interpreted as self-enhancement (e.g., Gaertner et 

al., 2008), corresponded to the over-claiming of only about 3 non-existent words. These 

results are consistent with Heine’s (2005) concern that such better-than-average trait 

rating judgments provide inflated estimates of self-enhancement. I will elaborate more on 

these details and the broader implications of these findings in the General Discussion. 

3.3 Study 3 
The goal of Study 3 was twofold. First, Study 3 sought to demonstrate the utility and 

feasibility of calibrating the scores of measures capturing predominantly state-like 

constructs. In all of the empirical demonstrations thus far, predominantly trait-like 

constructs have been examined. As previously mentioned, however, the potential benefits 

of non-arbitrary metrics apply to the measurement of any construct, state-like or trait-

like, or anywhere in between. That being said, some of the benefits proposed in my 

conceptual analysis are best demonstrated using predominantly state-like constructs, 

which are commonly assessed in the context of experimental studies. Consequently, the 

primary goal of Study 3 was to empirically reveal the calibration process for a 

predominantly state-like construct, in order to better demonstrate the proposed benefits 

relevant in experimental contexts (e.g., extracting more information from data patterns). 

Second, Study 3 was designed to illustrate the calibration approach for behavioral 

measures. Up to now, all calibrated measures have happened to be self-report measures; 

it is important to emphasize, however, that issues involving arbitrary metrics are pertinent 

to any measure, whether self-report, behavioral, or unobtrusive (Blanton & Jaccard, 

2006a, 2006b).  
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To achieve these two primary goals, I examined the construct of risk-taking. In the 

literature, risk-taking is typically defined as the purposive enacting of a behavior that 

involves the possibility of some positive consequences or gains (e.g., personal thrill, 

monetary gain), but with some potential negative consequences (e.g., danger, harm, 

financial loss; Ben-zur & Zeidner, 2009; Lejuez et al., 2002). Empirical investigations of 

risk-taking have been executed in different areas of basic psychological research 

including developmental (Boyer, 2006; Steinberg, 2010), cognitive (Pleskac, 2008; 

Pleskac, Wallsten, Wang, & Lejuez, 2008), and social psychology (Hamilton, 1974; Leith 

& Baumeister, 1996). Furthermore, risk-taking has often been studied in an experimental 

context, supporting the idea that risk-taking involves a substantial state-like component 

amenable to change by situational manipulations (e.g., Goudriaan et al., 2010; Maner, 

Gailliot, Butz, & Peruche, 2007), although this does not preclude the possibility for 

temporal stability of the construct (e.g., White, Lejuez, & de Wit, 2008). Taken together, 

these considerations rendered the construct of risk-taking as an ideal candidate for a 

metric calibration study with the aforementioned goals.   

3.3.1 Risk-taking Measures to be Calibrated 

As mentioned, risk-taking involves behaviors that involve potential gains at the cost of 

potential negative consequences. To capture this defining feature of risk-taking, the 

primary behavioral measure calibrated in Study 3 was the Balloon Analogue Risk Task 

(BART; Lejuez et al., 2002), which is currently the most widely used and tested 

sequential risk-taking instrument in the literature (Pleskac et al., 2008). In this task, 

participants inflate a series of simulated balloons presented on the computer screen. For 

each balloon, participants can choose the risky option of pumping up the balloon, which 

inflates the balloon and rewards the participant with a constant amount of money 

(typically 5 cents), placed in a temporary bank. Naturally, pumping up the balloon 

sometimes causes it to explode, causing the loss of the accumulated money and the end of 

the trial. The safe option is to stop inflating the balloon at some point and collect the 

earned money (which is placed in a permanent bank) and begin the next balloon trial. The 

task adopts a sequential risk-taking paradigm whereby for each trial, participants must 

sequentially choose between a risky play option and a safe stop option. Within each trial, 
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risk therefore increases over time in a dynamic way such that choices within a trial 

become incrementally risky. This is to be contrasted with many other risk-taking tasks 

involving the choice between gambles involving static non-changing levels of risk (e.g., 

Brand et al., 2005). Importantly, the BART’s dynamic nature models real-world 

situations in which excessive risk often results in diminishing returns. The BART then 

was chosen as the primary measure of the study due to these valuable attributes, in 

addition to its prominence in the literature and the fact that it is the most widely tested 

and understood sequential risk task in the literature (Pleskac et al., 2008). 

In addition to the BART, I also sought to calibrate scores from the hot version of the 

Columbia Card Task (CCT; Figner, Mackinlay, Wilkening, & Weber, 2009), a recently 

developed behavioral risk-taking measure that has shown promising results in 

understanding age-related changes in risk-taking and the informational use processes 

underlying risk-taking. Similar to the BART, the CCT involves a sequential and dynamic 

paradigm whereby risk-taking is assessed via participants’ voluntary stopping point 

behavior in a series of incrementally risky choices. However, the CCT goes beyond the 

BART by (a) assessing the complexity of the decision maker’s information use and (b) 

providing a more optimal probabilistic environment to observe risk-taking behavior (see 

below for more details). The CCT involves a series of trials in which participants turn 

over 32 cards presented face down on the computer screen (arranged in four rows of eight 

cards). The object of the game is to turn over as many cards as possible to accumulate 

points (each card turned is worth a trial-specific amount). Participants are told they can 

continue to turn cards over as long as gain cards (smiling face) are encountered. The 

moment a loss card (frowning face) is encountered, the trial is over and the accumulated 

points are deducted from the permanent bank. Similar to the BART, participants must 

decide when to stop and collect their earned points.  

3.3.2 Theoretical Derivation of Behavioral Reference Points  

The search for the most theoretically-relevant and meaningful behavioral reference point 

to calibrate the BART and CCT was guided primarily by (a) conceptual analysis, (b) past 

empirical research, and (c) theorizing regarding the cognitive processes underlying risk-

taking. First, and consistent with the theoretical derivation of behavioral referents for 
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Study 1 and 2, the starting point involved the careful consideration of the working-

definition of the construct of risk-taking. To re-iterate, risk-taking is most typically 

defined as behavior entailing the possibility of positive consequences, while at the same 

time involving the possibility of negative outcomes (Lejuez et al., 2002). Hence, a 

relevant behavioral reference point to ground the metric of the BART and CCT, first and 

foremost, must fit within such conceptualization of risk-taking. Second, and following 

from points raised in the introduction, the reference point must be an objective behavior 

that has a clear interpretation. Objective, meaning that two independent observers could 

agree that the behavior in question occurred and clear meaning that the observed scoring 

of the behavioral reference point is directly interpretable (e.g., 1 = presence of a behavior 

and 0 = absence of a behavior; or number of times engaging in some behavior). 

Following from these considerations, I combed the literature in search of a behavioral 

measure of risk-taking that satisfied these requirements.  

After an extensive search, I decided on a task involving lottery risky choices (adapted 

from Hsee & Weber, 1999, based on the classic lottery tasks from Tversky & Kahneman, 

1981). These lottery choices typically involve a series of choices between two choice 

options and participants must choose which option they would prefer to receive. For 

instance, one could be faced with a choice between option A ($4 for certain) or option B 

(a 50% chance of winning $10 or $0).14 The behavior of choosing the risky option (rather 

than the safe option) can then be used as a clear behavioral reference point to calibrate the 

metric of the relevant target measures. In addition to satisfying all of the aforementioned 

requirements, this behavioral measure was chosen because of empirical precedence 

demonstrating that these lottery risky choices were successfully used as a criterion 

measure to validate a risk propensity scale (Weber, Blais, & Betz, 2002). Theorizing 

regarding the cognitive processes underlying risk-taking behavior in the BART also 

supports the theoretical adequacy of the lottery choices as a behavioral reference point 

(Bishara et al., 2009; Wallsten, Pleskac, & Lejuez, 2005). Wallsten et al. developed and 

                                                 
14 Following Tversky and Kahneman (1981), to enhance the realism of these behavioral choices, 
participants were informed that two of the 100 participants would actually receive the monetary sum of one 
of their realized choices. 
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successfully substantiated a mathematical model of the multiple cognitive processes 

underlying behavior in the BART. One of the four parameters in this model involves the 

extent to which participants are sensitive to changes in the payoffs associated with 

pumping a balloon on a particular trial (i.e., payoff sensitivity, γ). Participants with larger 

values of γ are assumed to be more sensitive to the changing payoffs involving gains and 

losses. Hence, to the extent that lottery choices are at least partially governed by 

attending to the payoffs of the choice options, one would expect empirical linkages 

between BART scores and choice behaviors in the lottery task.  

For the sake of completeness, two self-report trait measures of risk propensity were also 

included in the current study and calibrated to the same lottery choices. The measures 

were the Risk Propensity Scale (RPS; Meertens & Lion, 2008) and the Domain-Specific 

Risk-Taking Scale (DOSPERT; Blais & Weber, 2006) (see below for details of these 

measures). This provided the opportunity to further demonstrate the calibration of self-

report measures to relevant behavioral fixed points for the distinct construct of risk-

taking. 

3.3.3 Method 

3.3.3.1 Participants and Design  

Ninety nine (99) individuals from the University of Western Ontario campus participated 

in the current study (58 males, 39 females, 2 non-specified; mean age = 24.46, SD = 5.48, 

range = 17 to 46). Participants were compensated $5 (CDN) in addition to the money 

earned in the balloon task (mean BART earnings = $7.37, SD = 2.67). Two a priori 

randomly selected participants also received the money associated with one of their 

lottery risk choices (both lucky participants chose the gamble; one of them won the $10 

whereas the other lost). No restrictions were imposed on participant sex, age, or ethnicity. 

No experimental conditions were examined, hence all participants completed all 

measures and tasks in the same order (see below for details). 
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3.3.3.2 Procedure and Materials 

Participants were run in groups of two to four in a lab testing room where each 

participant was seated in a separate cubicle in front of a PC computer. Before starting, the 

experimenter verbally instructed each participant to carefully read all instructions and to 

ask the experimenter for clarification if any questions arose. The experimenter also 

instructed each participant to turn off any and all electronic devices before starting and to 

put on the headphones for the first two tasks. Participants then followed on-screen 

instructions and completed each measure in a serial fashion in the following order: 

BART, game of dice (GDT) task, CCT, lottery risk choices, affect misattribution 

procedure (AMP), RPS, DOSPERT, a volunteering questionnaire, and then demographics 

and debriefing questions.15 

3.3.3.2.1 Balloon Analogue Risk Task 

The balloon task was designed specifically to provide a diagnostic context to observe 

actual risky behavior (Lejuez et al., 2002). The task involved 30 consecutive trials of 

inflating balloons by clicking a button labeled “Pump up the balloon”. Each pump earned 

participants exactly 1¢, which accrued in a temporary bank. Participants decided how 

many pumps to inflate each balloon before collecting their accumulated earnings for that 

trial by clicking a button labeled “Collect $$$”. If the balloon was inflated past its 

explosion point, all earnings in the temporary bank were lost and the next trial started. 

The balloon number, the current number of pumps, total winnings, and potential earning 

for that trial were all displayed on the right-hand side of the screen. The task was 

implemented and run using Inquisit 3.0 and featured a real-life picture of a red balloon 

that inflated slightly with each pump (about 0.125 in. [0.3 cm] in all directions). To add 

realism to the task, the computer generated the sound of a real balloon inflating for each 

pump and also produced a balloon popping sound in the event of an explosion. 

Participants were instructed that the explosion point for each balloon would be different. 

                                                 
15 The AMP and volunteering questionnaire were assessed for two unrelated investigations. The GDT was 
assessed for the current study but was not correlated with any of the behavioral referents and hence will not 
be discussed further.  
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Also, following recent instruction improvements of the BART (Pleskac et al., 2008), 

participants were explicitly informed that each balloon explosion point could range 

anywhere from the first pump to a maximum of 128 pumps. The actual explosion point 

for each balloon was determined randomly by the computer, by choosing a random 

number between 1 and 128 without replacement from an array (the value 1 indicating an 

explosion). Hence, the probability that a balloon would explode on the first trial was 

1/128, second trial 1/127, and so on up until the 128th pump at which the probability of an 

explosion was 1/1 (i.e., 100%). According to these parameters, the average explosion 

point in the long run would be 64 pumps (i.e., if one were to pump a large number of 

balloons 64 times each, one would expect about half to explode in the long run). As 

previously mentioned, the sequential nature of this task models real-world situations 

whereby excessive risk often results in diminishing returns (e.g., pumping the balloon on 

the 3rd trial would only risk losing 2¢ and would possibly increase the total earnings by 

50%; after the 60th pump, however, a subsequent pump would risk 60 cents but possibly 

increase total earnings by only 1.6%). After reading two instruction screens, participants 

pressed a button to begin the task. At the conclusion of the task, participants were paid 

the amount earned in the task (rounded up to the nearest 25¢). 

3.3.3.2.2 Columbia Card Task 

The goal of the “hot” version of the Columbia Card Task is to accumulate as many points 

as possible by sequentially turning over as many cards as possible (presented face down 

in a 4 × 8 array on the computer screen). Participants are informed that the cards can be 

either gain (smiling face) or loss (frowning face) cards. If a gain card is turned over, 

participants earn a specified gain amount for that trial and are able to continue the trial. If 

a loss card is turned over, participants lose a specified loss amount for that trial from their 

total points earned up to that point, and the trial ends. Trials vary in terms of the 

following parameters: number of loss cards (1, 2, or 3 loss cards out of the 32 cards total), 

gain amount (10, 20, or 30 point per gain card), and loss amount (-250, -500, or -750 

points from total points earned up to that point). This information is presented at the top 

of the screen. These three game parameters are varied using a full factorial within-subject 

design, presenting each of the 27 parameter combinations twice resulting in 54 trials. 
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However, to maximize the assessment of voluntary stopping, the game is rigged such that 

loss cards are always the last possible card turned over. To conceal this, nine additional 

trials are randomly interspersed amount the 54 experimental trials whereby the 

probability of turning a loss card anywhere in the array is very high. Hence, participants 

completed a total of 63 trials. To turn over cards, participants were instructed to simply 

click on the card. To stop turning cards and end the trial, participants were instructed to 

click a button on the bottom of the screen labeled “STOP”. The CCT was also 

implemented and run using Inquisit 3.0. 

3.3.3.2.3 Lottery Risk Choices 

Participants subsequently completed five lottery risk choices involving the choice 

between two options (adapted from Hsee & Weber, 1999, based on the classic lottery 

tasks from Tversky & Kahneman, 1981). Instructions informed participants that they 

would have to indicate which of the two (option A or B) lottery options they preferred. 

Following Tversky and Kahneman (1981), it was explicitly mentioned (and emphasized 

on two different screens) that two of the 100 participants would actually receive the 

money associated with their preferred option for one of the lottery questions, and hence, 

that they should make their choices as if they were actually playing these lotteries. As 

displayed in Table 4, the lottery choices were as follows: 

Table 4: Lottery options format in lottery risk task. 
Lottery Option A Option B 
1 $6 for certain Flip a coin. Receive $10 if heads, receive $0 if tails. 
2 $2 for certain Flip a coin. Receive $10 if heads, receive $0 if tails. 
3 $8 for certain Flip a coin. Receive $10 if heads, receive $0 if tails. 
4 $5 for certain Flip a coin. Receive $10 if heads, receive $0 if tails. 
5 $4 for certain Flip a coin. Receive $10 if heads, receive $0 if tails. 

It was explained to participants that if option B was selected, the experimenter would 

actually flip a coin, and the participant would receive the dollar amount associated with 

the coin flip outcome. Choice behaviors in this task were interpreted such that gambles 

on questions involving larger sure bets reflected incrementally higher reference points for 

higher levels of risk-taking (i.e., choosing the 50% gamble to win $10 over $8 for certain 

represents a higher level of risk-taking then choosing the 50% gamble to win $10 over 

$6, and so on). 
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3.3.3.2.4 Risk Propensity Scale 

Participants completed the 7-item risk propensity scale (Meertens & Lion, 2008), which 

is a self-report measure that attempts to capture general risk-taking tendencies. The items 

are: “Safety first”, “I do not take risks with my health”, “I prefer to avoid risks”, “I take 

risks regularly”, “I really dislike not knowing what is going to happen”, “I usually view 

risks as a challenge”, and “I view myself as a …” Participants were instructed to indicate 

the extent to which they agreed or disagreed with the statements, and following standard 

procedure, were asked not to think too long before answering each question (scale 

anchors 1 = totally disagree and 9 = totally agree except for the last item where 1 = risk 

avoider and 9 = risk seeker). The first, second, third and fifth items were reverse-scored. 

Responses were averaged for each participant, with higher scores reflecting higher levels 

of risk-propensity (α = .78). 

3.3.3.2.5 Domain-Specific Risk-Taking Scale 

Participants completed the 30-item version (Blais & Weber, 2006) of the domain-specific 

risk-taking scale for adult populations (Weber et al., 2002). The measure attempts to 

capture risk-taking tendencies across five distinct and commonly encountered content 

domains including ethical, health/safety, social, recreation, and financial (further 

decomposed into gambling and investment domains). Example items include: “Going 

camping in the wilderness” (recreation), “Drinking heavily at a social function” 

(health/safety domain), and “Having an affair with a married man/woman” (ethical; see 

Appendix F for all items). Participants were informed to indicate the likelihood that they 

would engage in the described activity or behavior if they were to find themselves in that 

situation (using scale anchors 1 = Extremely Unlikely, 2 = Moderately Unlikely, 3 = 

Somewhat Unlikely, 4 = Not Sure, 5 = Somewhat Likely, 6 = Moderately Likely, and 7 = 

Extremely Likely). Responses were averaged, with higher scores reflecting higher levels 

of risk-taking (α = .82). 
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3.3.4 Results 

3.3.4.1 Preliminary Data Treatment 

Data from all measures were first screened informally for any evidence of non-

compliance. I examined the time taken (as recorded by MediaLab) on instruction screens 

and actual questionnaire items for any evidence of consistently short latencies suggestive 

of non-compliance. One case was identified for the DOSPERT questionnaire (latencies < 

350 milliseconds for the last 4 items) and so this participant was excluded in analyses 

involving this measure. In addition, in the debriefing, 10 participants indicated 

unambiguous suspicion regarding the rigged nature of the CCT and so were excluded in 

analyses involving that measure.  

3.3.4.2 Main Analyses 

Table 5 presents descriptive statistics and zero-order correlations for all of the main 

variables in Study 3. The metric mapping results will be presented in the following order: 

BART scores, CCT scores, RPS scores, and DOSPERT scores, all calibrated to the risky 

lottery choices (DOSPERT scores will also be linked to behavior in the BART).  

Table 5: Descriptive statistics and correlations for variables in Study 3 (N = 99). 

Variable Mini
mum 

Maxi
mum Mean SD  BAR

T CCT RPS 
DO
SPE
RT 

RLC 
$2 

RLC 
$4 

RLC 
$5 

RLC 
$6 

BART (mean # of 
pumps on non-
explosion trials) 

2.24 88.33 39.0 17.95          

CCT (mean # of cards 
turned over; 0-30) 

2.29 28.70 22.86 5.24  .17        

RPS (1-9) 1.71 8.29 4.41 1.36  .16 -.01       
DOSPERT (1-7) 2.27 5.80 3.65 .73  .21* -.01 .65*      
Risky lottery choices 

(RLC) 
             

$10 gamble vs. $2 
for certain  

0 1 - -  .15 .13 -.08 .23*     

$10 gamble vs. $4 
for certain 

0 1 - -  .23* .20† .22* .36* .31*    

$10 gamble vs. $5 
for certain 

0 1 - -  -.07 .18 .02 .04 .26* .33*   

$10 gamble vs. $6 
for certain 

0 1 - -  .11 .29* .24* .20* .10 .03 .25*  

$10 gamble vs. $8 
for certain 

0 1 - -  -.24* .10 .02 -.01 -.11 -.04 .01 -.03 
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To determine which choice behaviors in the lottery task to use as behavioral reference 

points, in a first step, I examined the point bi-serial correlations between the different 

measures and the five choice behaviors (see Table 5 for all correlations). Overall, results 

revealed generally positive correlations (small to moderate in size) between the scores of 

the different measures and the five binary choices (with some correlations, however, 

negative in sign). Consideration of the frequencies of the particular choices for the 

different lotteries revealed, however, that responses for the $2 and $8 lotteries were 

highly polarized compared to the other lotteries, hence potentially explaining the 

unexpected negative correlations (e.g., for the $8 lottery, 94% of participants selected the 

safe bet). Given that correlations were the most consistent for the $4 lottery, I decided to 

use this behavior as the main behavioral reference point for the current study and 

sometimes used choices on the $6 lottery as a secondary reference point. 

3.3.4.2.1 Balloon Analogue Risk Task 

The empirical linkages between BART scores and probability of choosing the risky 

gamble in the $4 lottery was modeled using a logistic regression, with BART scores as 

the predictor and behavioral choice as the dichotomous outcome. Results from the 

logistic regression revealed a statistically significant positive predictive relation between 

BART scores and behavioral choice in the $4 lottery (Wald’s χ2 = 4.85, B = .03, odds 

ratio (OR) = 1.03, p = .03). This indicates that for every unit increase in BART score, the 

odds of choosing the risky gamble over the safe bet of $4 increases by 3% (i.e., OR = 

1.03; in other words, an increase of 10-units in BART scores is associated with a 30% 

odds increase of choosing the gamble, OR = 1.29). This can be seen visually in Figure 

16, which plots the predicted probability of choosing the $10 gamble over the $4 sure bet 

(calculated using the coefficient and intercept values of the best fitting exponential 

regression line) for each particular BART score obtained in the sample. That is, BART 

scores of “10”, “30”, “50”, “70”, and “90” approximately corresponded to a .37, .50, .64, 

.76, and .84 probabilities, respectively, of choosing the gamble over the $4 safe bet. 

These empirical mappings imbue the metric of BART scores with meaning in a general 

sense. More specific meaning can be gleaned by focusing on the particular BART score 

that corresponds to a .50 probability of choosing the risky gamble over the safe bet (i.e., a 
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BART score of approximately “29”). To the extent that this behavior is interpreted as a 

qualitatively distinct risky behavior (i.e., consensus among experts), then BART scores 

gain meaning with respect to this threshold value of “29” (Blanton & Jaccard, 2006b). 

 

Figure 16: Predicted probabilities of choosing $10 gamble over $4 safe bet plotted 

against adjusted BART scores. 

3.3.4.2.2 Columbia Card Task 

The empirical linkages between CCT scores and probability of choosing the risky gamble 

in the $4 lottery were similarly modeled using a logistic regression. Results of this 

analysis revealed a positive predictive relation between CCT scores and probability of 

choosing the risky gamble, though the p-value only reached marginal statistical 

significance (Wald’s χ2 = 3.24, B = .08, odds ratio (OR) = 1.08, p = .07). The particular 

functional form of this mapping can be visualized in Figure 17 (solid line). Of note, an 
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approximate CCT score of “20” was associated with a 50/50 chance of choosing the $10 

gamble over the safe $4 option.  

 

Figure 17: Predicted probabilities of choosing $10 gamble over $4 safe bet (solid 

line) or over $6 safe bet (dotted line) given CCT scores. 

Hence, those who turned an average of 20 more cards in the task were statistically more 

likely to choose the gamble than the safe bet whereas those who turned less than an 

average of 20 cards were statistically more likely to choose the safe bet rather than the 

gamble. Further insights into the meaning of the metric of CCT scores can be achieved by 

examining how CCT scores map onto the act of choosing the $10 gamble over the $6 safe 

bet. Choosing the gamble on this lottery clearly involves more risk than the previous 

lottery (i.e., one can lose $6 vs. $4); hence, theoretically, one would expect a higher 

threshold value for CCT scores that maps onto the probability of choosing this gamble. 

Indeed, a logistic regression analysis revealed a positive predictive relation between CCT 
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scores and probability of choosing the $10 gamble over the $6 safe bet (Wald’s χ2 = 5.78, 

B = .30, odds ratio (OR) = 1.35, p = .02), such that the 50/50 gamble point mapped onto 

an approximate CCT score of “29” (see Figure 17, dotted line). In other words, scoring 

virtually the highest score in this card task (“30” is the maximal behavioral score on this 

instrument) is associated with “only” a 50/50 chance of choosing the $10 gamble over the 

$6 safe bet. Hence, this metric mapping result vividly illustrates the power of the metric 

approach to shed light on the possible meaning of metrics which were previously void in 

meaning in a non-relative sense. What’s more, this metric mapping provides information 

that could have important implications for the interpretation of experimental studies using 

CCT scores as the DV. That is, a mean difference (of a certain effect size) at the upper 

range of the CCT metric could have very different interpretations than a mean difference 

at the mid range (more on this in the Discussion section). 

3.3.4.2.3 Risk Propensity Scale 

Turning to the self-report measures, a logistic regression was used to determine the 

mapping between scores from the risk-propensity measure and act of choosing the $10 

gamble over the $4 safe option. The analysis revealed a meaningful positive relation 

between RPS scores and probability of choosing the risky $10 gamble over the $4 sure 

shot (Wald’s χ2 = 4.57, B = .35, OR = 1.42, p = .03). A similar analysis also revealed a 

meaningful positive relation between RPS scores and the $6 lottery choice (Wald’s χ2 = 

5.02, B = .45, OR = 1.56, p = .03). These mapping results provide preliminary empirical 

evidence about the meaning of the metric of the RPS scale. For instance, with regard to 

the $6 lottery, the metric mapping helps us gauge the meaning of RPS scores in a non-

relative sense by showing that an almost maximal score on the RPS (i.e., “8.5” out of a 

maximum of “9”) corresponded to no more than a slightly higher than 50/50 chance of 

choosing a $10 gamble over a $6 safe bet. 

3.3.4.2.4 Domain-Specific Risk-Taking Scale 

Given the multi-faceted nature of the Domain-Specific Risk-Taking Scale, a metric 

analysis was performed on the most theoretically specific and relevant subscale of the 

DOSPERT, that is, risk-taking in the financial domain. A logistic regression analysis 
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revealed a meaningful positive relation between DOSPERT financial scores and 

probability of choosing the risky $10 gamble over the safe $4 option (Wald’s χ2 = 9.42, B 

= .69, OR = 1.99, p = .002) and also a meaningful positive relation between the financial 

facet scores and probability of choosing the risky gamble over the $6 safe bet (Wald’s χ2 

= 4.93, B = .47, OR = 1.60, p = .03).16 This analysis revealed, for example, that a 

maximal score on the financial DOSPERT (i.e., “7” out of “7”) corresponded to a slightly 

higher than 50/50 chance (predicted probability = .58) of choosing a $10 gamble over a 

$6 safe bet. 

For further illustrative purposes, I executed a final metric analysis calibrating DOSPERT 

scores onto mean number of pumps (on non-exploding trials) in the BART. A meaningful 

metric mapping emerged between total DOSPERT scores and BART scores (r = .21, p = 

.05), with a slightly stronger mapping between DOSPERT scores in the recreational 

domain and BART scores (r = .27, p = .01). A regression analysis specified the particular 

functional form of this relation, whereby a 1-unit increase on the DOSPERT recreational 

scale (metric range = 1 to 7) corresponded to an increase of about 3 balloon pumps 

averaged across trials in the BART (unstandardized regression coefficient: B = 3.29, p = 

.01). Furthermore, a maximal DOSPERT recreational score of “7” corresponded to 

inflating the balloons in the BART an average of 48 times. 

3.3.5 Discussion 

The primary goal of Study 3 was to demonstrate the calibration process for the metric of 

two behavioral measures of risk-taking presumed to involve a state-like component. 

Overall, the study generally achieved this goal, showing promising results in illustrating 

the feasibility of calibrating behavioral measures of risk-taking to meaningful behavioral 

fixed points, as to reduce the metric arbitrariness of the behavioral measures. In 

summary, I found meaningful metric mappings between BART and CCT scores to the 

                                                 
16 Surprisingly, very similar patterns of results were also found for general DOSPERT scores, computed 
across all domains (i.e., point bi-serial correlations between total DOSPERT scores and the $4 and $6 
lottery choices of r = .36, p = .001 and r = .20, p = .05, respectively, compared to r = .33, p = .001 and r = 
.24, p = .02, respectively for the financial DOSPERT scores). 
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probability of choosing risky gambles in the lottery choices. For instance, the observed 

mapping between an almost maximal score on the card task and a 50/50 chance of 

choosing the $10 gamble over the $6 safe choice, demonstrated the ability of the metric 

calibration approach to shed light on metric meaning. In addition, Study 3 successfully 

demonstrated the calibration of the metric of two self-report measures of risk-taking. The 

RPS, a general risk-propensity scale and the DOSPERT, a domain-specific risk-taking 

measure, both yielded meaningful calibration results to the same lottery choice behavioral 

reference points.  

Study 3 findings have at least two important implications regarding the potential utility of 

systematically calibrating the metrics of measures used in experimental studies. First, the 

metric findings in Study 3 demonstrate the potential utility of non-arbitrary metrics to 

allow for the extraction of more information from data patterns. In particular, the current 

findings illustrate how using measures with calibrated metrics can enhance the 

interpretation of experimental mean differences that emerge at different locations on the 

scale of the DV measure. Second, the findings from Study 3 speak to the issue that non-

arbitrary metrics may help us overcome some of the limitations of NHST. The basic idea 

is that measures with a calibrated non-arbitrary metric could potentially help us gauge the 

theoretical “noteworthiness” of an experimental effect, above and beyond the statistical 

significance and effect size indices, by interpreting the effect with respect to relevant 

behavioral reference points. In the Implications section of the General Discussion, I will 

elaborate on concrete examples of these two benefits by applying my metric calibration 

findings to actual experimental effects from the literature. 

A final point worth mentioning with regard to implications of Study 3 findings is that 

valuable information can also be gleaned about the metric meaning of BART and CCT 

scores by using the same $4 lottery gamble choice as a common reference point for both 

measures. For instance, using a .50 probability of choosing the risky gamble as a 

common reference point, one can infer that a CCT score of about “20” is approximately 

equivalent to a BART score of about “30” with respect to the underlying dimension of 

risk-taking (see Figure 16 and Figure 17 [solid line]). This would also further suggest that 

a CCT score of about “20” likely reflects a higher level of risk-taking than a BART score 
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of about “20.” Future research should investigate the psychometric and scientific value of 

this type of approach of calibrating the metric of different measures of the same construct 

to a common reference point.17 

3.4 

                                                

Other Analyses 
To bolster the empirical substance of the current dissertation, I sought other empirical 

datasets that could further demonstrate the feasibility of applying the proposed metric 

calibration approach to constructs commonly examined in basic psychology. Toward this 

end, I searched the literature for published datasets that contained the necessary 

components to allow for a metric calibration analysis (i.e., independent assessment of test 

scores and relevant behavior) and e-mailed authors requesting their data. I was able to 

acquire one such dataset from Tangney, Baumeister, and Boone (2004) and another from 

Hong and Paunonen (2009). I present the results of my re-analyses of these datasets in 

turn. 

3.4.1 Trait Self-control 

Tangney et al. (2004) investigated the benefits of self-control by examining the 

psychological correlates of a new individual difference measure of the trait. In a sample 

of 157 undergraduates, they found that higher scores on the new self-control measure 

correlated with better adjustment, less binge eating and alcohol abuse, better relationship 

and interpersonal skills, and higher grade point average (GPA). From a metrics 

perspective, this study is a good candidate because GPA can be seen as a behavioral 

reference point which has a fairly intuitive meaning to most psychologists. Hence, scores 

from the self-control measure can be calibrated to GPA as a way to increase the meaning 

 
17 This approach can be contrasted to traditional approaches to test equating where, for instance, scores 
from two measures of the same construct are equated using a simple linear regression prediction equation. 
Given the different logic of the two approaches, as expected, applying this approach to the scores of my 
two behavioral measures of risk-taking resulted in different equivalence mappings between the two 
measures (e.g., BART score of “50” equivalent to a CCT score of about “24” using a traditional test 
equation approach whereas the same BART score of “50” was equivalent to a CCT score of about “30” 
using my common reference point approach). Importantly, such kind of traditional test equating cannot be 
used to develop non-arbitrary metrics given scores are not linked to reference points external to the tests. 
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of the metric of the self-control measure.18 In their study, Tangney et al. (Study 1) had 

undergraduate students complete the self-control measure in addition to a host of other 

theoretically-relevant measures. Example items from their self-control scale were “I am 

good at resisting temptation”, “I often interrupt people”(R), and “I sometimes drink or 

use drugs to excess” (R), using a 5-point Likert scale (1 = Not at all and 5 = Very much). 

They found a correlation of r = .39, p = .001 between self-control scores and GPA.19  

To probe the metric mapping between self-control scores and GPA, a regression analysis 

was performed and revealed an unstandardized regression coefficient of B = .40 (β = r = 

.39, p = .001). As can be seen in Figure 18, a 1-unit increase in self-control scores 

corresponded to almost a .50 increase in GPA. For instance, a self-control score of “3” 

(scale midpoint) corresponded to a GPA of about 2.9, a “4” to a GPA of about 3.3, and a 

“5” to a GPA of about 3.7. What is potentially most illuminating about this metric 

mapping is that according to the regression equation, a 4.0 GPA would correspond to a 

hypothetical self-control score of “6.” Linking the self-control scores to external criteria 

such as GPA, which have real-world meaning, therefore helps make apparent the 

meaning and implications of a given self-control score and hence the metric becomes less 

arbitrary. Through such linkages between self-control scores and GPA, we start getting a 

rough sense of the approximate location of the scores of the measure on the underlying 

dimension of self-control (Blanton & Jaccard, 2006b). 

 

                                                 
18 Although this strategy deviates from the main metric calibration strategies elaborated in the introduction, 
such that scores from the self-control measure are linked to behavioral expressions of a different rather than 
the same construct, this different approach is nonetheless consistent with theorizing by Blanton and Jaccard 
(2006b), who stated that metric calibration can also be achieved by linking scores to theoretically-relevant 
behaviors “so that one can better appreciate the real-world implications of obtaining one test score versus 
another” (p. 63; see also Sechrest et al., 1996). 
19 Unfortunately, GPA was self-reported in this study which is not ideal for a metric study. However, as 
mentioned by Tangney et al., the self-control GPA relation was virtually unchanged when controlling for 
social desirability using the Marlowe-Crowne Social Desirability Scale (Crowne &Marlowe, 1960), rpartial = 
.32.  
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Figure 18: Grade point average plotted against Tangney et al.’s (2004) trait self-

control scores. 

3.4.2 Extraversion and Conscientiousness 

Hong and Paunonen (2009) investigated and found reliable associations between various 

personality facets and health-risk behaviors, which provides the necessary components to 

further illustrate metric calibration for the constructs of extraversion and 

conscientiousness. In a sample of 124 undergraduate students, Hong and Paunonen had 

participants complete the NEO-PI-R (Costa & McCrae, 1992) and a behavior report form 

(BRF; Paunonen, 2003) that included various behaviors theoretically-relevant to different 

personality facets. For my purposes, I focused on behaviors that seemed the most 

interpretationally meaningful with respect to the available personality facets. 

Consequently, I examined the behavior of attending social parties as a behavioral 

reference point for the extraversion facet of Gregariousness and I also examined speeding 

behavior as a reference point for the conscientiousness facet of Dutifulness. The 

personality items were answered using a 5-point strongly disagree-strongly agree scale 
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(Costa & McCrae, 1992) and each facet score was a sum score based on 8 items. The 

behavior of attending social parties was assessed by the question “Estimate the average 

number of parties per month that you attend.” For participant who had a driver’s license, 

speeding behavior was assessed by the question “What is the fastest you have driven?” 

measured in kilometers per hour. 

Regression analyses revealed illuminating metric calibration patterns for both behaviors. 

For the extraversion facet, the regression analysis revealed a robust positive relation 

between Gregariousness facet scores and number of social parties attended per month, (B 

= 2.01, β = r = .39, p = .0001). As is visually depicted in Figure 19 (panel A), a 1-unit 

increase in Gregariousness scores corresponded to attending 2 more parties per month. 

For instance, a Gregariousness score of “3” (scale midpoint) corresponded to attending 

approximately 3 social parties whereas a Gregariousness maximal score of “5” 

corresponded to attending about 7 social parties per month.  

 

Figure 19: Number of parties per month given gregariousness facet scores (panel A) 

and maximum driving speed given dutifulness facet scores (panel B). 

For the conscientiousness facet, the regression analysis revealed a reliable negative 

relation between Dutifulness facet scores and speeding behavior (B = -12.4, β = r = -.24, 

p = .01). As shown in Figure 19 (panel B), a 1-unit increase in Dutifulness scores 

corresponded to a maximum driving speed that was about 12 km/h slower. For example, 

a Dutifulness score of “3” (scale midpoint) corresponded to a maximum driving speed of 
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about 156 km/h whereas a Dutifulness maximal score of “5” corresponded to a maximum 

driving speed of about 131 km/h. These metric linkages between lower-order personality 

facet scores and external theoretically-relevant behaviors hence provide preliminary 

information about the meaning of the metric of these personality inventories. To the 

extent that personality theorists can agree on where certain behaviors locate an individual 

on a relevant underlying personality dimension, then linking personality scores to those 

behaviors can provide information about the meaning and implication of particular 

personality scores. 

Taken together, the metric mappings presented in these additional analyses provide more 

empirical substance to strengthen my contention that the metric calibration approach is 

feasible when applied to constructs commonly studied in basic psychological research. 

Furthermore, these additional analyses will also provide more empirical examples to use 

as illustrations to further demonstrate some of the proposed benefits and utility of the 

metric calibration approach, which I will discuss further in the General Discussion. 
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Chapter 4  

4 General Discussion 
In a world where the metrics of our instruments are meaningful, psychological research 

could be done in importantly different ways, ranging from the way data are analyzed and 

interpreted, to how psychological theories are tested, to how psychological findings are 

catalogued. The overarching goal of the current dissertation is to make the case that it is 

both useful and feasible to calibrate the metric of psychological instruments commonly 

used in basic research, as to render their metrics non-arbitrary. In this section, I will first 

review and summarize the findings from my empirical demonstrations that speak to the 

feasibility of the metric calibration approach and then elaborate on the broader 

implications of the metric approach with respect to the usefulness of non-arbitrary 

metrics by reviewing several potential benefits they may one day provide.  

4.1 Feasibility 
Across seven distinct constructs assessed in five different samples (including two 

samples graciously provided by other researchers), I demonstrated that it is empirically 

possible to reduce the metric arbitrariness of instruments commonly used in basic 

research. In these metric calibration studies, I illustrated how to apply a metric calibration 

approach to a variety of psychological instruments, whether self-report or behavioral, 

whether for predominantly trait-like (e.g., conscientiousness) or state-like (e.g., risk-

taking) constructs, and whether the construct is commonly studied in social psychology 

(e.g., self-enhancement), cognitive psychology (e.g., risk-taking), or personality 

psychology (e.g., extraversion). In summary, Study 1 showed a meaningful metric 

calibration result for the metric of the instrument most commonly used to assess need for 

cognition, an important individual difference variable in the research area of attitudes and 

persuasion (Cacioppo, Petty, Feinstein, & Jarvis, 1996). Scores from Cacioppo et al.’s 

(1984) need for cognition measure were calibrated to the probability of choosing to 

complete a cognitively effortful over a cognitively simpler task. Study 1 also found an 

interesting metric mapping between scores of a practically useful self-report measure of 
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task persistence (Steinberg et al., 2007) and actual persistence in an anagram persistence 

task, whereby a non-linear cubic function explained three times more variance than a 

linear metric mapping (which incidentally was replicated in another relevant dataset 

shared by Ditre and Brandon, 2008). The “dipping shape” in the metric calibration 

relation (see Figure 11), suggested that individuals indicating the maximal score on the 

self-report measure may be over-reporting their typical task persistence (how the metric 

approach can help in detecting measurement problems such as these will be elaborated 

below). 

Set in the context of the pan-cultural debate of self-enhancement (Sedikides et al., 2003), 

Study 2 found theoretically interesting metric linkages (linear and cubic, see Figure 13) 

between a trait rating measure of self-enhancement (which figures prominently in the 

debate) and a specifically configured behavioral measure of self-enhancement. More 

specifically, the metric mappings showed that trait rating scores above the scale midpoint 

(typically interpreted as self-enhancement) corresponded to very little evidence of actual 

self-enhancement behavior as assessed by over-claiming of knowledge in the OCT (see 

Figure 13). This finding suggests that researchers should not interpret trait scores above 

the scale midpoint as evidence for self-enhancement. Rather, metric calibration research 

is required for making these kinds of claims whereby trait self-enhancement scores are 

empirically connected to consensually agreed upon behaviors argued to reflect self-

enhancement. 

Study 3 extended the metric calibration approach to commonly used behavioral measures 

of risk-taking and found meaningful metric mappings to risky gambles in binary lottery 

choices involving the possibility of winning real money. For instance, the observed 

mapping between an almost maximal score on the Columbia card task measure and a 

50/50 chance of choosing the $10 gamble over the $6 safe choice was illuminating in 

demonstrating how the metric approach can imbue meaning into scores and hence reduce 

metric arbitrariness (see Figure 17). In addition, Study 3 successfully demonstrated the 

calibration of the metric of two self-report measures of risk-taking (Risk Propensity Scale 

and DOSPERT scale) to the same risky gamble choices.  
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Finally, the feasibility of the metric approach was further demonstrated by re-analyzing 

relevant datasets from samples shared by other researchers. Meaningful metric mappings 

were found for instruments assessing extraversion, conscientiousness, and self-control. 

Gregariousness facet scores were linked to number of social parties attended per month, 

Dutifulness facet scores (conscientiousness) were connected to maximum driving speed, 

and trait self-control scores were calibrated to GPA.  

Taken together, these empirical demonstrations across several constructs and samples 

provide concrete evidence that it is possible to apply the metric calibration approach (and 

hence increase metric meaning) to constructs commonly studied in basic psychological 

research. Though many challenges exist in the calibration process of psychological 

instruments, the empirical illustrations reported herein should nonetheless reveal to 

researchers that the metric calibration approach espoused in this dissertation is possible. 

The next big question, then, is whether metric calibration is worth it? That is, what 

concrete benefits do we gain from metric calibration and non-arbitrary metrics? I turn to 

this next. 

4.2 Implications  
In this section, I review the implications of the metric calibration approach with respect 

to utility following the structure and order used in the Introduction (see Table 1 for a 

summary of the proposed benefits). Consequently, I will briefly elaborate on the potential 

usefulness for each of the proposed benefits and further support my claims by drawing on 

some of my empirical demonstrations or by providing additional re-analyses of yet other 

shared datasets from the literature. 

4.2.1 Help in the Interpretation of Data 

In my first category of proposed benefits, I argue that non-arbitrary metrics would 

facilitate the process of interpreting data in three main respects. 

4.2.1.1 Enhance Interpretability of Statistical Effects 

First, I contend that calibrated metrics would help in the interpretation of data by 

enhancing the interpretability of statistical effects for statistical procedures commonly 
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used in basic research. I will focus my attention on moderated multiple regression 

(MMR), which has become the statistical procedure of choice in basic research to probe 

interactions involving continuous predictors (rather than the sub-optimal approach of 

using median splits; MacCallum et al., 2002). To demonstrate my point, I will re-analyze 

a finding from the psychological literature involving need for cognition as a moderator 

using calibrated NFC values found in Study 1, rather than the values of +/- 1 SD above 

the sample specific mean used by convention. The psychological finding that I examined 

is from a study by O’Hara, Walter, and Christopher (2009), who, in the context of 

understanding the personality underpinnings of political behavior, found that NFC 

moderated the relation between conscientiousness and political behavior.20 Figure 20 

(panel A) shows the main conscientiousness × NFC interaction from their study plotted at 

+/- 1 SD (SD = .72) above the sample specific mean of “3.4” (predictors mean-centered 

and product term created; Aiken & West, 1991).  

 

Figure 20: Moderated multiple regression re-analysis of O’Hara et al. (2009) using 

conventional +/-1 SD (panel A) or calibrated values (panel B). 

                                                 
20 To find this dataset, I first combed the literature for relatively recent articles reporting data patterns 
involving NFC as a moderator of some psychological effect. I found about 20 such articles and e-mailed 
the corresponding authors requesting their datasets. Only two of such 20 requests resulted in the acquisition 
of the relevant datasets (typically no reply or datasets unavailable). I report re-analyses from the O’Hara et 
al. (2009) paper given that it best demonstrated the principles at hand. 
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As can be seen, for those scoring 1 SD below the sample specific NFC mean, individuals 

with higher conscientiousness scores exhibited higher levels of political interest, whereas 

those scoring 1 SD above the sample specific NFC mean exhibited relatively high levels 

of political interest regardless of their conscientiousness scores. With the calibrated NFC 

metric in hand from Study 1 (for illustrative purposes), however, the interpretation of this 

data pattern can be enhanced considerably. This can be achieved by analyzing the 

conscientiousness × NFC interaction at calibrated NFC values, which have gained 

meaning via empirical linkages to corresponding NFC behavior (i.e., completing 

cognitively effortful task).  For illustrative purposes, I re-analyzed O’Hara et al.’s 

interaction pattern by centering the NFC scores around the NFC score associated with a 

50/50 chance of choosing to complete the cognitively challenging task (mean = 3.8; see 

Figure 10). Then, to plot and test simple slopes, I analyzed the relation between 

conscientiousness and political interest at the calibrated NFC values associated with a 

25% and 75% chance of completing the cognitively challenging task (i.e., NFC values of 

“2.9” and “4.7”, respectively). The data pattern from this re-analysis is displayed in 

Figure 20 (panel B). This illustration renders three major things apparent. First, it should 

be evident that the interpretation of the MMR data pattern is enhanced given that the 

interaction is analyzed using NFC values that have been grounded to actual NFC 

behavior rather than arbitrary NFC values which have no meaning other than a relative 

interpretation. That is, one gets a better sense of what the interaction might mean 

psychologically because the relevant slopes can be interpreted with respect to the 

probabilities of exhibiting a relevant behavior. In this particular case, that is, the relation 

between conscientiousness and political interest is positive for the calibrated NFC value 

of “2.9”, which corresponds to a 25% chance of exhibiting an NFC behavior, whereas the 

relation is negative for the calibrated NFC value of “4.7”, which corresponds to a 75% of 

exhibiting the NFC behavior.  

The interpretation of the MMR data pattern is also enhanced because the interaction 

analysis involving calibrated values, which are grounded to theoretically-relevant 

behavior, may reveal different patterns of results which could have different, but 

potentially important, theoretical implications. As is evident in Figure 20 (panel B), the 

slope between conscientiousness and political interest is markedly more negative at the 
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calibrated high NFC value (i.e., “4.7”) compared to the +1 SD NFC value (i.e., “4.1”). 

Even though in this particular case, the different interaction pattern may not imply a 

drastically different theoretical implication, it is quite possible that it could in a more 

theoretically driven research situation. In research on implicit versus explicit attitudes, for 

instance, a negative slope (rather than a flat slope) between implicit and explicit attitudes 

is sometimes interpreted as over-correction of the implicit attitude on the explicit attitude 

measure (Fazio & Olson, 2003). Hence, if the use of calibrated NFC values in such MMR 

analyses consistently yielded negative implicit-explicit attitudes slopes at the calibrated 

high NFC value (whereas the +1 SD above the mean value did not yield such negative 

slopes), then this could have important theoretical implications regarding over-correction 

processes underlying attitude judgments. 

A final way calibrated values could enhance data interpretation in MMR analyses is by 

overcoming sampling error issues inherent in the conventional MMR approach. The issue 

involves the fact that the +/-1 SD approach is based on sample-specific values of the 

mean and standard deviation. Thus, it is possible, due solely to sampling error, that an 

interaction analysis yields a different pattern of results from previous research, which a 

researcher incorrectly interprets in a theoretically substantive way (hence obfuscating the 

accumulation of knowledge). For instance, returning to O’Hara et al.’s (2009) interaction 

pattern (Figure 20, panel A), consider a follow-up extension study on the same topic, but 

this time the mean of the NFC scores is “4.0” rather than “3.4”. In this situation, a 

negative conscientiousness-political interest slope may be found and interpreted 

theoretically even though the result would have been due solely to the NFC-aberrant 

sample of individuals. If, on the other hand, it would be standard convention to use 

consensually-agreed upon calibrated NFC values to analyze these types of MMR 

analyses, this sampling error issue would be overcome, and hence the interpretation of 

data would be enhanced.21 

                                                 
21 Strictly speaking, even a consensually-agreed upon convention of always using particular non-calibrated 
scale scores when executing such MMR analyses could also overcome the sampling error issue (though 
researchers would also need to agree to always use the same number of scale points). From a metric 
calibration perspective, however, it is clear that striving toward consensually agreed upon calibrated metric 
values is the most useful approach.  
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4.2.1.2  Allow Extraction of More Information from Data Patterns 

Another way non-arbitrary metrics could facilitate the interpretation of data is by 

allowing the extraction of more information from data patterns. As alluded to in the 

Discussion section for Study 3, the use of calibrated metrics in experimental studies could 

allow more fine-grained interpretations of experimental effects that emerge at different 

locations on the scale of the DV. That is, with non-arbitrary metrics, it becomes apparent 

that an experimental effect in different ranges of the DV metric implies something 

different psychologically and hence should be interpreted as such theoretically. For 

example, referring back to Figure 17 (dotted line), it can be seen that an experimental 

effect found at the upper range of the CCT metric (e.g., M = 29.0 vs. M = 26.0, d = .5) 

would mean something quite different psychologically than an experimental effect of the 

same size found at the mid range (e.g., M = 15 vs. M = 12, d = .5). This would be so 

because a mean difference at the upper range of the CCT metric is associated with a 

much larger difference in lottery choice behavior than the same mean difference in the 

middle range (same logic as in Blanton & Jaccard, 2006b).  

To make the proposed benefit more concrete, the calibrated CCT metric can be applied to 

an actual (quasi-) experimental study of risk-taking in the literature, whereby Figner et al. 

(2009, Experiment 3) found that teenagers turned over statistically significantly more 

cards in the hot CCT than adults (M ~= 25 vs. M ~= 20, d = .65). If this study were 

replicated, however, and one found an experimental effect of the same magnitude, but in 

the middle or lower range of the CCT metric, it would be much more apparent (given the 

calibrated CCT metric) that this experimental effect implies something different 

psychologically and hence should be interpreted as such. Furthermore, even in the case 

where the metric mapping for a certain metric is linear (e.g., calibrated trait rating metric 

to OCT behavior, Study 2, Figure 13), it can be argued that using a calibrated metric 

makes it much more apparent that an experimental effect has occurred at a different 

location on the DV because one will naturally pay more attention to metric values if they 

have some kind of meaning (rather than if the metric is arbitrary, which tends to 

encourage just focusing on p-values and effect sizes). Hence, using calibrated non-
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arbitrary metrics could allow the extraction of more information from experimental data 

patterns and thus facilitate how data are interpreted and catalogued. 

4.2.1.3 Help Overcome Limitations of NHST 

A final way calibrated metrics could aid with data interpretation is by potentially 

overcoming some of the limitations of NHST. The basic idea is that measures with a 

calibrated metric could help us gauge the theoretical “noteworthiness” of an experimental 

effect, above and beyond the statistical significance and effect size indices, because the 

experimental effect could be interpreted with respect to the relevant calibrated behavior. 

To illustrate this concretely, I will apply my metric findings for the BART to an actual 

experimental effect from the literature involving the BART as DV. For instance, 

Benjamin and Robbins (2007) investigated the impact of framing effects on risk-taking in 

the BART and found that a loss frame led to higher scores in the BART compared to a 

gain frame (Mloss = 48.8 vs. Mgain = 42.3, p < .05, d = .57). The metric calibration results 

of BART scores in the present Study 3 help to add meaning to this experimental effect 

via its linkages to behavior in the risky lottery task (i.e., predicted probability of choosing 

the $10 gamble over the $4 safe bet). That is, Benjamin and Robbins’ experimental effect 

in the particular range of the BART metric (i.e., BART score of “49” and “42”) 

corresponds to probabilities of .64 and .60 of choosing the risky $10 gamble (over the $4 

safe bet), respectively (see Figure 16). Hence, one can interpret the increase in risk-taking 

in the BART due to Benjamin and Robbins’ particular framing manipulation as roughly 

equivalent to a 7% increase in the probability of choosing that particular risky gamble. As 

illustrated in this example, non-arbitrary metrics information can be seen as providing 

additional information to consider (over and above p-values, sample size, and effect 

sizes) when faced with the difficult task of deciding on the “noteworthiness” of an 

experimental result (Kirk, 1996). Hence, in this sense, using calibrated metrics could be 

seen as helping us with data interpretation in the context of the limitations of NHST. 

4.2.2 Facilitate Construct Validity Research 

In my second category of proposed benefits, I argue that the metric calibration approach 

could help with construct validity research in three main regards. 
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4.2.2.1 Construct Illumination 

Metric calibration could help construct validity research by shedding brighter (i.e., more 

illuminating) light on the construct at hand. Consistent with more nuanced 

conceptualizations of construct validity by past theorists (i.e., Cronbach & Meehl, 1955; 

Messick, 1989), the process of linking test scores to theoretically-relevant and 

meaningful behaviors can be seen as a more compelling form of evidence supporting the 

construct validity of a psychological instrument (Messick, 1995). This is so because the 

connection between test scores and theoretically-relevant behavior that results from 

metric calibration reveals more illuminating construct validity evidence given that test 

scores are linked directly to specifically-configured interpretable behaviors rather than 

just another theoretically-related measure. Furthermore, and importantly, construct 

validity evidence adduced by the metric calibration approach is more fine-grained 

because it involves modeling particular response functions (linear or non-linear) between 

test scores and behavior expressed in meaningful unstandardized regression coefficients 

(or odds ratio in the case of a binary behavioral outcome) rather than the conventional 

(and arguably impoverished) zero-order “validity” correlations. For example, the 

Impulse-Control (conscientiousness) task persistence metric mapping found in Study 1 

provides a useful demonstration of this point. As can be seen in Figure 12, every unit 

increase in Impulse Control self-report scores corresponded to roughly a 25 second 

increase in persistence on the near-impossible anagrams. This metric mapping translates 

to about 1 minute and 12 seconds of persistence for individuals reporting Impulse Control 

scores at the scale midpoint of “3” and about 1 minute and 37 seconds of persistence for 

individuals reporting Impulse Control scores of “4”. Therefore, these kinds of mappings 

between test scores and specific behaviors provide more illuminating and hence stronger 

construct validity evidence for the psychological instrument at hand. 

4.2.2.2 Help with Conceptual Challenges 

Metric calibration could also help construct validity research by aiding with challenging 

conceptual issues that often arise in the development of psychological instruments. In 

particular, the process of metric calibration may help with conceptual challenges related 

to construct definition and basic theorizing of the construct (Messick, 1989). One 
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conceptual challenge that often arises, for example, is the issue of how broad a construct 

should be defined. That is, finding the most optimal construct definition that is neither too 

broad nor too narrow in scope (Gawronski et al., 2008). Some of these issues became 

readily apparent when going through the metric calibration process for the construct of 

conscientiousness in Study 1. For example, even though most researchers seem to accept 

the construct definition of conscientiousness as the propensity of being painstaking and 

careful in acting according to the dictates of one’s conscience (John & Srivastava, 1999), 

conscientiousness in the literature is actually posited to have many different facets 

including Self-Discipline, Carefulness, Thoroughness, Organization and Orderliness, 

Deliberation, Industriousness, Conventionality, Reliability, Virtue, Dutifulness, and Need 

for Achievement (Costa & McCrae, 1992; Goldberg, 1999; Roberts et al., 2005). Given 

that metric calibration requires researchers to focus on only a few diagnostic behavioral 

manifestations of the construct, it has the potential to help with conceptual issues such as 

whether a construct is too broad in scope.  

In fact, I contend that a case can be made that conscientiousness is too broad in scope and 

that conceptual clarity could be achieved by relegating most of those lower-order facets 

of conscientiousness to their proper distinct constructs (e.g., relegate “need for 

achievement” conscientiousness facet to actual “need for achievement” construct; 

McClelland, 1951). Indeed, these types of conceptual challenges relate very closely to 

what Jack Block termed the “jingle-jangle fallacy” (1995, 2000) whereby the same term 

is used by different researchers to refer to different psychological entities and where 

different terms are used by different researchers to refer to the same psychological entity. 

In this respect, I contend that the metric calibration approach has the potential to help 

researchers work through these difficult conceptual challenges. 

4.2.2.3 Measurement Benchmark 

A final way metric calibration studies could also help with construct validity research is 

by providing a sort of measurement benchmark for detecting measurement problems 

and/or to further improve psychological instruments. The logic underlying this idea stems 

from the recently mentioned fact that the empirical metric linkages between test scores 

and theoretically meaningful behaviors provide richer and arguably more diagnostic 
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information than traditional convergent or criterion validity approaches. The non-linear 

metric mapping between self-reported task persistence and persistence in the anagram 

task provides a good example of this proposed benefit. As depicted in Figure 11 (dotted 

line), a non-linear cubic function was found which explained almost three times more 

variance than a linear function. This “dipping” pattern (which was subsequently 

replicated in Ditre & Brandon’s, 2008 data) suggested that many individuals endorsing 

the highest possible response on the self-report measure (“4” out of 4) exhibited some 

kind of over-reporting bias given that these individuals showed less persistence in the 

anagram task than those with a lower self-report persistence score (i.e., “3.5”). This 

metric calibration finding demonstrates how the metric calibration approach may 

facilitate the process of detecting measurement issues and also help in improving 

measurement instruments. Indeed, a straightforward implication of the task persistence 

self-report measure problem would be to examine whether a strong accuracy or honesty 

instruction would eliminate the alleged over-reporting bias, as would be reflected if a 

linear function would explain more or just as much variance as a cubic function.22 

4.2.3 Contribute to Theoretical Development 

In my third category of proposed benefits, I argue that non-arbitrary metrics could 

contribute to theoretical development more broadly, by aiding in theoretical debates 

involving absolute claims, allowing for more precise theorizing in our scientific 

language, and providing a platform for more quantitative testing of theories. 

4.2.3.1 Aid in Theoretical Debates Involving Absolute Claims 

First, I argue that metric calibration could contribute to theoretical development by 

helping in theoretical debates that involve making absolute claims about psychological 

phenomena. That is, the metric approach demonstrated in the current dissertation can 

contribute in new ways to theoretical development in basic psychology by providing 

methodological machinery for researchers to more directly tackle theoretical questions 

                                                 
22 In fact, Ditre and Brandon (personal communication, February 10, 2010) showed great interest in my 
finding and in wanting to execute such a follow-up construct validity study. 
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that involve making claims of an absolute nature. Many interesting theoretical questions 

are absolute in nature, for instance: “Is (implicit) self-esteem universally positive?” 

(Yamaguchi et al., 2007), “Are young people narcissistic?” (Twenge, Konrath, Foster, 

Campbell, & Bushman, 2008), and “Are most people unconscious racists?” (Blanton & 

Jaccard, 2006a, 2006b). With arbitrary metrics, however, we cannot tackle these 

important research questions directly and so researchers either tippy-toe around the 

question in less effective indirect ways or avoid the questions altogether. The systematic 

use of a metric calibration approach, however, could potentially open the door to more 

directly tackling these important questions about human psychology.  

Study 2 illustrated how the metric calibration approach could potentially be valuable in 

contributing to theoretical debates involving absolute claims, by focusing on the pan-

cultural debate of self-enhancement (Heine, 2005; Sedikides et al., 2003). The metric 

mapping results for a trait rating measure of self-enhancement commonly used in the 

debate showed that very little behavioral evidence of self-enhancement corresponded to 

trait scores typically interpreted as self-enhancement. That is, a trait rating score of “5” 

(on a 1 to 7-point scale) typically interpreted as self-enhancement (e.g., Gaertner et al., 

2008), corresponded to the over-claiming of only about 3 non-existent words.23 Of 

course, this mapping should be interpreted with some caution given the small sample size 

and lack of consensus on the OCT behavioral reference point. For the sake of illustration, 

however, if one would put stock into this metric mapping, then a theoretical implication 

for the pan-cultural debate could be that researchers should not use trait rating scores 

tested against the scale midpoint to examine self-enhancement within or across cultures. 

                                                 
23 This conclusion becomes even more pronounced if one uses the minimum value that is statistically 
greater than the scale midpoint. In my sample, a trait rating score of “4.2” would be statistically 
significantly greater than the scale midpoint of “4” (p < .05), but would only be associated with over-
claiming of about one non-existent word. This was manifested in Gaertner et al. (2008), for example, where 
a trait-rating mean of “3.7”, statistically greater than the scale midpoint of “3.5” (p < .05), was taken as 
evidence of self-enhancement in a Taiwanese sample. 
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4.2.3.2 Allow More Precise Theorizing via Enhanced Scientific 
Language 

Metric calibration could contribute to theoretical development in a second sense by 

making our scientific language more precise, which in turn will increase the precision in 

our theorizing. That is, calibrating the metric of psychological instruments empirically 

substantiates claims about the standing of individuals on the underlying psychological 

dimensions captured by those instruments. At present, theorizing containing references to 

“high-X individuals” or “low-X individuals” doing certain things under certain conditions 

are rampant in the literature (where X can be any construct). For example, “…high-SE 

individuals possess self-doubts and insecurities…” (Jordan et al., 2003, p. 975). These 

kinds of meter-reading claims are strictly unsubstantiated given that they are based on 

scores with arbitrary metrics (Blanton & Jaccard, 2006a, 2006b), and hence impede 

accurate theorizing and potentially interferes with theory development. With arbitrary 

metrics, all that one can say is that individuals who “scored high (or low)” on a certain 

instrument acted in certain ways. Only when scores are empirically calibrated to 

behaviors consensually agreed-upon as reflecting high (or low) levels of the construct 

does one’s theorizing involving expressions such as “high-X individuals” become 

empirically substantiated.  

For example, consider the preliminary metric calibration finding from Study 3 showing 

that an almost maximal CCT score of “29” (out of “30”) corresponded to only a 50/50 

chance of choosing a risky $10 gamble over $6 for certain (see Figure 17, dotted line). As 

this example nicely demonstrates, it would be potentially misleading to assume that a 

high score on this measure reflects a high level of risk-taking in an absolute sense. This 

problem becomes even more apparent when one considers adopting this kind of meter-

reading strategy to different instruments of the same construct, for instance, Study 3’s 

BART. It should be clear that a high score on the BART does not necessarily reflect the 

same level of risk-taking than a high score on the CCT. This important issue, however, is 

obfuscated when unsubstantiated expressions such as “high-X individuals” are made 

based on measures with arbitrary metrics. The metric calibration approach could 

overcome these problems and lead to more precise scientific language in describing 

 



134 

psychological phenomena. Ultimately, this could facilitate more accurate theorizing 

about human psychology and hence contribute to theoretical development more broadly. 

4.2.3.3 Quantitative Testing of Psychological Theories 

A final way metric calibration could potentially contribute to theoretical development is 

by providing a platform for testing psychological theories in a more quantitative manner 

rather than the strictly directional hypothesis testing approach typically used in 

psychology (Meehl, 1978). In particular, using more meaningful calibrated metrics in 

day-to-day research activities may eventually get researchers into the habit of paying 

much more attention to the meaning of particular scores and metric meaning more 

broadly. And in conjunction with the more nuanced interpretations of data patterns 

calibrated metrics could allow, this different mentality may eventually lead to more fine-

grained integrated theoretical accounts of a research area which could facilitate the 

process of testing psychological theories more quantitatively by developing hypotheses 

involving particular point-value predictions. In physics, specific point-value predictions 

involve comparing a theoretically predicted value xo (based on theoretical considerations 

of the particular experimental or natural factors embedded in a situation) with the 

observed mean x o, and determining whether the predicted value falls within the band of 

probable error (due to random measurement error) of the empirically observed mean 

(Meehl, 1967). Although it might be difficult to imagine that psychological theory will 

ever be developed enough to be able to generate these types of point-value predictions, I 

contend that the metric calibration approach may provide a developmental platform in 

striving toward this general direction. 

4.2.4 Facilitate the General Accumulation of Knowledge 

The metric calibration approach may facilitate the general accumulation of knowledge 

more broadly in three main respects. These are described below. 

4.2.4.1 Valuable Information in its Own Right 

The empirical findings that result from the metric calibration approach can be seen as 

valuable information in its own right. That is, knowing what kinds of particular 
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theoretically-relevant behaviors correspond to certain scores on a particular measure 

provides, in itself, valuable knowledge about human psychology. For example, my re-

analysis of Hong and Paunonen (2009) revealed a meaningful metric mapping between 

gregariousness facet scores and number of social parties attended per month, such that a 

maximal score of “5” corresponded to attending about 7 social parties per month. By 

building a network of these kinds of metric mappings for various instruments assessing 

diverse psychological constructs, valuable information could be systematically amassed 

regarding our general knowledge of the psychological landscape. 

4.2.4.2 Guiding Framework for Cataloguing the Magnitude of 
Psychological Effects 

The metric calibration approach could also help the general accumulation of knowledge 

by providing a framework to help systematically catalogue the magnitude of 

psychological effects, as strongly advocated by Jacob Cohen (1994). With arbitrary 

metrics and effect size indices of limited meaning, however, storing up information about 

the magnitude of experimental effects would likely be quite unproductive. With 

calibrated metrics, on the other hand, this storing up of information could potentially be 

much more useful because one could express the magnitude of a psychological effect 

with respect to the calibrated (and consensually agreed-upon) behavioral reference points. 

That is, one could express the magnitude of a particular manipulation on a set of DV 

scores in terms of meaningfully interpretable behaviors. For example, pulling from my 

previous re-interpretation of Benjamin and Robbins’ (2007) study involving a framing 

manipulation on BART scores, one could catalogue the magnitude of the experimental 

effect in terms of the increased probability of choosing the risky gamble. In this way, it is 

hoped that we could perhaps finally heed to John Tukey’s (1969) plea for psychologists 

to store up “amount[s], not just direction” (p. 86). 

4.2.4.3 Facilitate Phenomenon-Based Research 

A final way the metric calibration approach could contribute to the general accumulation 

of knowledge is by facilitating phenomenon-based research (Asch, 1952/1987; Rozin, 

2001). Adherents of the phenomenon-based research perspective argue that it is critical to 
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identify and describe phenomena and invariances before engaging in more sophisticated 

types of modeling and hypothesis testing. Viewed from this perspective, I contend that 

the metric calibration approach could provide a useful general framework to engage in 

this type of descriptive, phenomenon-driven research. In fact, basic metric calibration 

studies, such as those executed in this dissertation, can be viewed as providing 

descriptively-rich information about psychological phenomena, given that the goal of the 

metric approach is to discover how the scores of a certain measure map onto meaningful 

behaviors argued to reflect different levels of the underlying construct. View in this light, 

metric calibration can be seen as having the potential to contribute more broadly to the 

accumulation of psychological knowledge. 

4.3 Relatedness to Other Past Measurement Approaches  
The metric calibration approach espoused in this dissertation is broadly consistent with, 

and can be seen as extending, other past measurement approaches, which are worth 

mentioning for the sake of knowledge continuity. Importantly, however, notable 

differences exist between these methods and the metric approach and ultimately only the 

proposed metric calibration approach can render the units of measurement of 

psychological instruments non-arbitrary. 

For instance, Guttman’s (1950) scalogram approach involves finding a series of 

behaviors such that all individuals exhibiting a set of cumulatively-ordered behaviors 

belong to the same “level” of the underlying construct, whereas individuals exhibiting 

those same behaviors and at least one additional behavior belong in the next higher 

“level” of the construct. To achieve such Guttman scaling, the set of behaviors must be 

ordered cumulatively such that exhibiting a set of such behaviors is assumed to reflect a 

lower level of the construct than someone exhibiting that same set of behaviors in 

addition to one other cumulatively-ordered behavior. Consider as an example the 

Guttman scale developed to measure fear of battle in World War II soldiers (Stouffer, 

1950). For this scale, individuals who did not experience “violent pounding of the heart” 

during battle formed the lowest level of the construct, while those who did were part of 

the next higher level of the construct. If a soldier also reported a “sinking feeling in the 
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stomach” during battle as well as violent pounding of the heart, the solider belonged to 

the next higher level of the construct, and so on.  

The Guttman (1950) scalogram approach can be seen as similar to the metric calibration 

approach in the sense that it focuses on the meaning of particular behaviors that are 

assumed to reflect different levels of the underlying construct. An important difference, 

however, between such approach and the metric calibration approach is that the 

cumulatively-ordered behaviors are typically self-reported in the Guttman approach 

whereas metric calibration emphasizes the objective manifestation of meaningfully 

interpretable behaviors. A more important difference, however, lies in the fact that no 

metrics or scores are calibrated in the Guttman approach because the behaviors are used 

in and of themselves to reflect the different levels of the underlying construct whereas the 

goal in metric calibration is to empirically connect particular scores to behaviors argued 

to reflect different levels of the underlying construct. 

Thurstone’s (1927) method of equal-appearing intervals is another measurement 

approach that metric calibration is broadly consistent with. In such an approach, 

individuals indicate their agreement or disagreement with attitudinal statements that have 

been empirically judged to vary with respect to favorability toward the attitude object. 

Measurement scores are then calculated by examining the items that individuals agreed 

with and computing the average item favorability score for each of those endorsed items. 

The Thurstone approach can be seen as similar to the metric calibration approach in the 

broad sense that effort is put into creating endorsable statements that have been 

empirically judged to reflect different levels of the underlying construct. Nonetheless, 

and similar to the Guttman (1950) approach, the Thurstone approach is clearly different 

from metric calibration because the endorsed statements (or more accurately the average 

item favorability of the endorsed statements) are used in and of themselves to reflect 

different levels of the underlying construct. Hence, it is unknown how resulting scores 

map onto the underlying dimension because scores are based on subjective favorability 

judgments from independent judges. 
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The metric calibration approach can also be seen as an extension of “concept mapping,” 

which is sometimes used in the item generation stage when developing self-report 

instruments in the social sciences (Trochim, 1989). In this approach, concept mapping 

refers to a “type of structured conceptualization” (p. 1) that facilitates the process of 

conceptualizing the domain of a construct by using concept maps. From this perspective, 

a group of experts of a certain construct would generate statements that describe 

behaviors a person high in the construct would exhibit, distinct from behaviors a person 

low in the construct would exhibit. Self-report items are then constructed based on those 

statements. As can be seen, the concept mapping approach involves asking very similar 

questions that a researcher from the metric calibration approach would ask, with regard to 

behaviors reflective of high or low levels of the construct. The major difference, of 

course, is that in the metric approach the relevant behaviors are used to calibrate test 

scores rather than simply being used to generate self-report items.  

Finally, the metric calibration approach espoused in this dissertation can also be seen as 

an extension of two approaches used in the area of industrial/organizational psychology. 

For instance, metric calibration can be viewed as an extension of the expectancy chart 

approach sometimes used in the context of personnel selection (Lawshe & Bolda, 1958; 

Lawshe, Bolda, Brune, & Auclair, 1958). In this approach, charts are constructed such 

that the expected likelihoods of successful job performance of an individual are tabulated 

for different ranges of predictor scores on some kind of assessment tool (e.g., a 

personality measure). For instance, obtaining a score in the 50th percentile could 

correspond to an expected probability of .2 of successful job performance whereas a 

score in the 90th percentile could correspond to an expected probability of .6 of successful 

job performance. Such approach is similar to the metric approach in the sense that an 

empirical mapping is sought between particular test scores and the probability of 

exhibiting a particular relevant behavior. The approaches are also similar in the sense that 

similar types of statistical analyses are used to empirically connect test scores to behavior 

(e.g., logistic regression). The two approaches differ in important ways, however, in that 

only the metric calibration approach focuses on developing meaningful units of 

measurement for different instruments of a construct. In this sense, the metric calibration 

approach is significantly different from the expectancy chart approach given that only the 
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metric calibration approach requires specifically choosing and configuring theoretically-

relevant behaviors to serve as reference points that can be argued to reflect particular 

locations on the underlying dimension of interest. Also, only in the metric calibration 

approach is it relevant to select several distinct behaviors to reflect ordered reference 

points. Finally, the metric calibration approach uniquely focuses on calibrating different 

instruments to the same behavioral reference points as to discover what ranges of the 

underlying dimension the different instruments are capturing.  

Utility analysis is another approach in industrial/organizational psychology that could be 

seen as a past research approach extended by the metric calibration approach. Originally 

introduced by Brogden and Taylor (1950) and further developed by Cronbach and Gleser 

(1965), utility analysis refers to a quantitative method that estimates the benefits in dollar 

figures that would be gained by an organization if an intervention or selection procedure 

designed to increase worker productivity was used. In a selection context, for instance, a 

utility analysis approach would allow one to estimate how much money an organization 

would gain if a person selected for a job had a particular score on a selection test 

compared to another score (e.g., hiring a person with a score of “45” on a selection 

measure could benefit the company $50,000 versus hiring a person with a score of “40”). 

The utility analysis approach is similar to metric calibration in the sense that scores from 

the selection measures are linked to external criteria that describe the implications of 

receiving one score versus another. As with the expectancy chart approach, the two 

approaches are also alike in that similar types of statistical analyses are used (e.g., linear 

regression). The two approaches differ in important ways, however, in that the goal in 

utility analysis is to specifically link selection scores to dollar figures to help managers 

evaluate the financial impact of their decisions whereas the more general goal in the 

metric calibration approach is to link the scores of different instruments to a common set 

of behavioral reference points as to render the units of measurement of the different 
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instruments meaningful and comparable. Hence, only in metric calibration is the focus on 

developing meaningful units of measurements that researchers can collectively use.24 

In summary, the metric calibration approach can be seen as broadly consistent with all of 

these past measurement approaches. More specifically, the metric calibration approach 

can be viewed as an extension and refinement of these past measurement approaches 

rather than being viewed as a completely novel approach. 

4.4 

                                                

Limitations and Caveats 
At the empirical level, the two most important limitations of the current dissertation are 

related to the sample size of the present metric calibration studies and the need for 

consensus in choosing appropriate behavioral reference points. In metric calibration 

studies proper, large samples are required to ensure that the parameter estimates of the 

metric mapping functions are accurate (i.e., stable) estimates of the relevant parameters 

of the targeted population. This is critical because in metric calibration the ultimate goal 

is to find meaningful empirical linkages between test scores and the probability or 

frequency of theoretically-relevant behaviors. Hence, if the sample size is small and 

parameter estimates of the metric function are contaminated with large amounts of 

sampling error, then a metric mapping found in a particular sample may not be very 

meaningful and hence useful. For instance, in the case of a binary behavioral reference 

point, the log-odds coefficient and intercept upon which the metric mapping is calculated 

may be too imprecise of a population estimate to put much stock in. Though what 

constitutes a “large” sample may be difficult to pinpoint exactly, I would say sample 

sizes in the range of 300 or more should be considered as a lower bound. 

 
24 Another approach in the I/O psychology area that relates to metric calibration broadly construed is the 
Productivity Measurement and Enhancement System (ProMES; Pritchard, Jones, Roth, Stuebing, & 
Ekeberg, 1989), which seeks to develop integrative sets of utility functions for different aspects of 
successful job performance (e.g., % of circuit boards completed) using a common organizational 
effectiveness metric as outcome of the utility functions. This approach differs in important ways from 
metric calibration, however, in that metric mappings are not established by empirically connecting test 
scores to independently measured behavioral reference points but rather the utility functions between the 
different aspects of job performance and organizational effectiveness are decided by discussion and 
consensus (though the different aspects of job performance are measured). 
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The second most important limitation at the empirical level is the need for some kind of 

collective consensus in agreeing on behaviors that are most theoretically appropriate to 

serve as behavioral reference points. Consequently, it is important to realize that my 

empirical demonstrations are limited by the extent to which relevant experts agree with 

my choice of behavioral reference points. I tried my best possible to choose behavioral 

reference points that were theoretically derived and conceptually consistent with the most 

commonly accepted working definition of each construct, including sometimes 

contacting relevant experts and soliciting their opinions (e.g., in the case of choosing 

lottery risk choices as behavioral reference points for risk-taking; T. Pleskac, personal 

communication, June 15, 2010). Nonetheless, strictly speaking without some kind of 

consensus on the appropriateness of the behavioral reference points, at best the empirical 

demonstrations should be seen as simply that: illustrative empirical examples of the 

metric calibration process assuming some kind of consensus exists.  

At a more conceptual level, two limitations are worth briefly discussing here. First, the 

metric approach may be limited in utility for broad personality constructs often studied in 

personality psychology. That is, given the sometimes explicit goal in personality research 

to assess and understand broad behavioral trends (typically assessed via self-report; 

Paunonen, 2009), rather than more circumscribed and particularly meaningful behaviors, 

it could seem that the metric calibration approach, which requires the selection of only a 

few relevant behaviors to act as reference points, is of limited utility for the calibration of 

instruments in the personality area. Though there may be a grain of salt in that position, I 

contend that a possible alternative view on this issue is that the metric approach may 

suggest that such modal measurement approach in personality is in itself limited. This 

perspective would be consistent with pleas by certain theorists who have recently called 

for much more direct behavioral observations in personality research (Back & Egloff, 

2009; Furr, 2009; Mehl, 2009). Ultimately, these theorists argue that focusing more of 

our attention on direct behavioral observations would bring us closer to the key mission 

of psychology: “understanding the determinants and consequences of what people 

actually do” (Back & Egloff, 2009, p. 405). 
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The metric calibration approach could also be seen as limited in utility for instruments 

assessing highly phenomenological constructs that tap into psychological states not 

directly reflected in any observable behavior. For instance, instruments used to assess 

phenomenological or “experiential” constructs such as consciousness or sensory color 

perceptions may not be amenable to the metric calibration approach. That being said, I 

would put forward that many constructs that appear at first glance to be too experiential 

or subjective for metric calibration may, upon further consideration, actually be amenable 

to metric calibration. For example, constructs such as personal values, inner motivations, 

and transient feelings all could, upon deeper consideration, be argued to nonetheless have 

correspondent behavioral manifestations that could be used as reference points to 

calibrate the scores of such subjective and experiential measures (e.g., attending a pro-life 

rally as a behavioral manifestation of holding anti-abortion values). 

Another caveat worth mentioning is that in certain research situations, the metric issue 

may be less relevant if researchers are more simply interested in the description of 

behavior rather than using behavior as a proxy for an underlying latent construct. For 

instance, in the psychological literature of addiction research, researchers may be 

interested in assessing the number of daily cigarettes smoked after an intervention as a 

completely descriptive measure of that specific behavior. In this very specific research 

situation, metric calibration is not relevant because the metric (i.e., number of daily 

cigarettes smoked) is meaningful given the strict descriptive nature of the assessment 

(Blanton & Jaccard, 2006a). That being said, if the number of daily cigarettes is used as a 

proxy to assess self-regulation, then the metric becomes arbitrary and metric calibration 

becomes relevant if one wants to get a sense of where on the underlying dimension of 

self-control the number of cigarettes metric falls. It seems safe to say that the vast 

majority of psychological research falls in this latter category whereby behaviors are used 

as a proxy to an underlying latent construct (Borsboom, 2005; Embretson, 2006). 

4.5 Future Directions 
In this section, I want to briefly elaborate on a few different future directions that I 

believe constitute potentially fruitful avenues to explore to increase the feasibility and 

ultimate utility of the metric calibration approach. First, future metric calibration research 
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should seriously consider using more sophisticated methodology to assess richer 

behaviors to serve as reference points. This could include, for example, using eye-

tracking technology to assess particular eye gaze behaviors that could serve as diagnostic 

behavioral reference points to calibrate test scores of an instrument assessing a relevant 

construct. For instance, in the context of calibrating test scores for a measure of goal 

activation, one could use the percentage of time individuals’ gaze focus on goal-relevant 

features of serially presented pictures. Eye-tracking methodology may turn out to be a 

powerful general tool for metric calibration research because eye gaze behaviors may be 

more diagnostic reflections of the construct at hand, given that early saccades have been 

argued to be relatively unfiltered “up-stream” components of behavior (Guitton & Volle, 

1987). Using an observational approach whereby independent judges code behavior 

observed in carefully constructed laboratory situations could also be another fruitful 

avenue to explore to provide richer behavioral reference points. 

In addition, future research should also consider utilizing more sophisticated 

methodology to assess ecologically valid behaviors that emerge in naturalistic settings to 

serve as behavioral reference points. Though at first glance this future direction seems 

methodologically prohibitive, recent technological developments have made possible the 

assessment of human behaviors in vivo as they naturally occur in the lives of individuals 

tracked over time. For instance, Mehl and colleagues (2001) have developed the 

electronically activated recorder (EAR) as a naturalistic observation sampling method 

that allows researchers to unobtrusively “observe” actual behavior as it unfolds in natural 

environments. This is achieved by individuals wearing a pocket-sized audio-recorder that 

captures snippets of ambient sounds in individuals’ momentary environments at random 

intervals throughout the day, which can then be coded by independent judges. As an 

example, in one study Mehl and colleagues coded the percentage of people’s waking 

hours spent socializing, in the context of a cross-cultural study on whether Mexicans are 

more or less sociable than Americans (Ramirez-Esparza, Mehl, Alvarez Bermudez, & 

Pennebaker, 2009). From a metric calibration perspective, these ecologically valid 

behavioral observations provide arguably the most meaningful and compelling behavioral 

reference points for which to calibrate test scores.  
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Another avenue to explore is the utility of my proposed experimental approach to metric 

calibration inspired by the calibration of instruments in the physical sciences such as the 

thermometer and hygrometer. The basic logic here is to experimentally manipulate the 

construct at hand to extreme levels and look to identify any qualitatively distinct 

behavioral manifestations of the construct that can serve as additional or better reference 

points. This would potentially supplement the standard metric calibration approach in 

important ways because it is possible that more diagnostic behavioral reference points 

exist outside the range of naturally-occurring levels of the construct (akin to how the 

calibration of thermometers to naturally-occurring levels of temperature could be seen as 

limited, because the fixed points of boiling and freezing water do not necessarily arise 

within naturally-varying temperature levels). 

Finally, it is worth considering the application of more advanced psychometric 

procedures as future avenues to supplant the extant metric calibration approach. One 

angle to take in this vein is to explore the utility of a within-subjects approach to metric 

calibration by employing psychometrically-inspired state-space models (e.g., 

Commandeur & Koopman, 2007). From this perspective, the construct at hand is 

assessed using a repeated-measure design using both the to-be-calibrated measure and 

relevant behavioral assessments. Then, individual-specific slopes and intercepts can be 

estimated which can then be used to construct person-specific metric mappings to some 

common behavioral reference point. This approach could be very powerful given that it 

would allow for the consideration and comparison of metric calibration patterns at both 

the intra- and inter-individual levels (which could turn out to be critically important). 

A final psychometric future direction to consider is the application of item response 

theory (IRT; Embretson & Reise, 2000; Lord, 1980) to provide a more sophisticated 

modeling of relevant behavioral reference points. An important conceptual obstacle in the 

metric calibration approach is that sometimes several different behaviors may be seen as 

theoretically meaningful in serving as reference points and so the choice of behaviors 

could turn out to be difficult for certain constructs. It may be possible, however, to use an 

IRT approach to model a set of hierarchically-ordered behaviors (treated as “items” 

varying in “item difficulty”), which could yield “behavior” characteristic curves, that 
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would reveal the predicted probability of exhibiting each behavior as a function of a 

person’s level on the underlying construct.25 This could be seen, in a sense, as an IRT 

approach applied to a Guttman-like behavioral scale. Ultimately, this approach could 

provide a valuable tool allowing for a more fine-grained use of multiple behaviors to act 

as distinct and ordered reference points to calibrate scores of psychological instruments. 

4.6 

                                                

Coda 
In closing, given the advent of new technological developments in both methodological 

assessment tools and psychometric advances, the future is bright for the metric 

calibration approach to contribute in important ways to the betterment and advancement 

of basic psychological research. I leave you with the hope that, in the spirit of John 

Tukey, the metric calibration approach may one day finally allow psychological 

researchers to care about their units of measurement. Ultimately, this would solidify the 

cornerstone of measurement that so critically underlies empirical psychological research. 

 
25 I would like to thank Patrick Shrout for discussions that directly inspired this future direction research 
idea (P. Shrout, SPSP 2011, January 28, 2011). 
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Appendices 

Appendix A: Conscientiousness items (MPQ and NEO-FFI) used in Study 1. 

Conscientiousness facets (MPQ; Tellegen & Waller, 1994; NEO-FFI; Costa & McCrae, 
1992) (IPIP version of the MPQ and NEO-FFI facets; Goldberg et al., 2006) 
 
HOW ACCURATELY CAN YOU DESCRIBE YOURSELF? 
 
The next part of the experiment involves describing yourself as you generally are now, not as you wish to be in the 
future. Describe yourself as you HONESTLY see yourself, in relation to other people you know of the same sex as you 
are, and roughly the same age.  
 
So that you can describe yourself in an honest manner, your responses will be kept anonymous in absolute confidence.  
You will be presented with a series of statements of behavioral descriptions. For each statement, indicate (using the 
scale options) whether the statement is: 
 
1 
Very Inaccurate 

2 
Moderately 
Inaccurate 

3 
Neither Accurate 
Nor Inaccurate 

4 
Moderately Accurate 

5 
Very Accurate 

 
as a description of you. 
 
MPQ1. I like to plan ahead. 
MPQ2. I make a mess of things.*  
MPQ3. I am exacting in my work. 
MPQ4. I pay attention to details. 
MPQ5. I often make last-minute plans.* 
MPQ6. I jump into things without thinking.* 
MPQ7. I make plans and stick to them. 
MPQ8. I like to act on a whim.* 
MPQ9. I do things by the book. 
MPQ10. I make rash decisions.* 
 
NEO1. I get chores done right away. 
NEO2. I find it difficult to get down to work.* 
NEO3. I am always prepared. 
NEO4. I waste my time.* 
NEO5. I start tasks right away. 
NEO6. I postpone decisions.* 
NEO7. I get to work at once. 
NEO8. I need a push to get started.* 
NEO9. I carry out my plans. 
NEO10. I avoid mistakes. 
NEO11. I rush into things.* 
NEO12. I choose my words with care. 
NEO13. I do crazy things.* 
NEO14. I stick to my chosen path. 
NEO15. I act without thinking.* 
NEO16. I have difficulty starting tasks.* 
Note. Asterisks (*) denotes reverse-scored items. 
 
Scoring: 
MPQ Self-Control facet: MPQ1, MPQ2r, MPQ3, MPQ4, MPQ5r, MPQ6r, MPQ7, MPQ8r, MPQ9, MPQ10r  
NEO-FFI Self-Discipline facet: NEO1, NEO2r, NEO3, NEO4r, NEO5, NEO6r, NEO7, NEO8r, NEO9, NEO16r 
 
NEO-FFI Deliberation (IPIP cautiousness) facet: NEO10, NEO11r, NEO12, NEO13r, NEO14, NEO15r, MPQ5r, 
MPQ6r, MPQ8r, MPQ10r 
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Appendix B: Conscientiousness items (AB5C) used in Study 1. 
Conscientiousness Impulse-Control facet (Goldberg’s Abridged Big Five Dimensional Circumplex 
[AB5C]; Goldberg, 1999) 
 
HOW DO SEE YOURSELF IN GENERAL? 
 
In the next task, you will see a series of common human traits. Please use these traits to describe yourself as 
accurately as possible.  Describe yourself as you see yourself at the present time, not as you wish to be in 
the future.  Describe yourself as you are GENERALLY or TYPICALLY.   
 
For each trait that you will see, please indicate whether that trait describes you using the following rating 
scale: 
 
1 
Strongly Disagree 

2 
Somewhat 
Disagree 

3 
Neither  

4 
Somewhat Agree 

5 
Strongly Agree 

 
Gold1. Careful 
Gold2. Careless * 
Gold3. Cautious 
Gold4. Conscientious 
Gold5. Erratic * 
Gold6. Impulsive * 
Gold7. Particular 
Gold8. Rash * 
Gold9. Reckless * 
Gold10. Ritualistic 
Gold11. Systematic 
Gold12. Uncautious * 
 
Note. Asterisks (*) denotes reverse-scored items. 
 
Scoring: 
Goldberg Impulse-Control facet: Gold1, Gold2r, Gold3, Gold4, Gold5r, Gold6r, Gold7, Gold8r, Gold9r, 
Gold10, Gold11, Gold12r 
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Appendix C: NFC items used in Study 1. 
Need for Cognition revised scale (NFC; Cacioppo, Petty, & Kao, 1984) 
 
The next task involves answering questions that are designed to assess your thinking style.  There are no 
right or wrong answers.  
 
For each of the statements below, please indicate to what extent the statement is characteristic of you, using 
the following scale options: 
 
1 
Extremely 
Uncharacteristic 

2 
Somewhat 
Uncharacteristic 

3 
Uncertain 

4 
Somewhat 
Characteristic 

5 
Extremely 
Characteristic 

 
NFC1. I prefer complex to simple problems.  
NFC2. I like to have the responsibility of handling a situation that requires a lot of thinking.  
NFC3. Thinking is not my idea of fun.* 
NFC4. I would rather do something that requires little thought than something that is sure to challenge my 
abilities.* 
NFC5. I try to anticipate and avoid situations where there is a likely chance I will have to think in depth 
about something.*  
NFC6. I find satisfaction in deliberating hard for long hours.  
NFC7. I only think as hard as I have to.*  
NFC8. I prefer to think about small daily projects rather than long-term ones.*  
NFC9. I like tasks that require little thought once I've learned them.*  
NFC10. The idea of relying on thought to make my way to the top appeals to me.  
NFC11. I really enjoy a task that involves coming up with new solutions to problems.  
NFC12. Learning new ways to think doesn't excite me much.*  
NFC13. I prefer my life to be filled with problems that I must solve.  
NFC14. The notion of thinking abstractly is appealing to me.  
NFC15. I would prefer a task that is intellectual, difficult, and important to one that is somewhat important 
but does not require much thought.  
NFC16. I feel relief rather than satisfaction after completing a task that requires a lot of mental effort.*  
NFC17. It's enough for me that something gets the job done; I don't care how or why it works.*  
NFC18. I usually end up deliberating about issues even when they do not affect me personally.  
 
 
Note. Asterisks (*) denotes reverse-scored items. 
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Appendix D: Anagram persistence task (APT) materials used in Study 1. 

 
Anagram Persistence Task Materials (APT; Brandon et al., 2003) 
 
Anagram    Solution 
 
1. BEAHC    BEACH 
2. KLYXI *   KYLIX  
3. LMAAE *   MALAE 
4. QYUIA *   YAQUI 
5. NTRAI    TRAIN 
6. CINAI *    INIAC 
7. LBFUE *   FULBE 
8. DPSUA *   PADUS 
9. EOCVI    VOICE 
10. AEWTR    WATER 
11. IFNLG    FLING 
 
Note. Items with an asterisk (*) indicate the 6 critical near-impossible items used to compute the behavioral 
index of task persistence. 
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Appendix E: Words used in over-claiming technique (OCT) of Study 2. 
Over-claiming Technique 150  (variant of Version 2005.1) 

Paulhus, D.L., Harms, P. D., Bruce, M.N., & Lysy, D.C. (2003). The over-claiming technique: Measuring 
self-enhancement independent of ability.  Journal of Personality and Social Psychology, 84, 890-904. 

 
PLEASE INDICATE FOR EACH ITEM WHETHER YOU ARE FAMILIAR WITH THE ITEM 
OR NOT, BY CIRCLING THE APPROPRIATE NUMBER. 
 
0    1    
Never heard    Familiar 
of it    with it 

EXAMPLES: 

1. If you’re asked about POLITICIANS and the item said “Bill Clinton”, you would probably circle ‘1’ to 
indicate that you are familiar with him. 

 
2. If the category was FAMOUS ATHLETES and the item said “Fred Gruneberg”, you would probably 

circle ‘0’ if you have never heard of him.   
 
Historical Names and Events                            Fine Arts 

1. Napoleon                            16. Mozart 
2. Robespierre                         17. a cappella 
3. El Puente*                           18. Pullman paintings* 
4. My Lai                              19. art deco 
5. The Lusitania                       20. Paul Gauguin 
6. Ronald Reagan                       21. Mona Lisa 
7. Prince Lorenzo*                      22. La Neige Jaune* 
8. The Luddites                        23. Mario Lanza 
9. Neville Chamberlain                 24. Verdi 
10. Vichy Government 25. Vermeer 
11. Queen Shattuck*                      26. Jackson Howell* 
12. Bay of Pigs                         27. Grand Pooh Bah 
13. Torquemada                          28. Botticelli 
14. Wounded Knee                        29. harpsichord 
15. Clara Barton                        30. dramatis personae 

 
Language.                                                           Books and Poems 
31. subjunctive                         46. Antigone 
32. hyperbole                           47. Murphy's Last Ride* 
33. alliteration                        48. Catcher in the Rye 
34. sentence stigma*                     49. The Bible 
35. euphemism                           50. Hiawatha 
36. double entendre                     51. Trapnell Meets Katz* 
37. blank verse                         52. Mein Kampf 
38. pseudo-verb*                         53. The Aeneid 
39. ampersand                           54. Faustus 
40. myth                                55. The Boy Who Cried Wolf 
41. aphorism                            56. Pygmalion 
42. shunt-word*                          57. Hickory Dickory Dock 
43. simile                              58. The Divine Comedy 
44. acronym                             59. Windermere Wild* 
45. synonym                             60. The Raven 
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Authors and Characters                     Social Science and Law 
61. Adonis                              76. yellow journalism 
62. Mephistopheles                      77. angst 
63. Shylock                             78. nationalism 
64. Ancient Mariner                     79. megaphrenia* 
65. Doctor Fehr*                         80. acrophobia 
66. Venus                               81. pulse tax* 
67. Romeo and Juliet                    82. pork-barreling 
68. Bulldog Graziano*                    83. prejudice 
69. Norman Mailer                       84. Christian Science 
70. Horatio Alger                       85. ombudsman 
71. Charlotte Bronte                    86. consumer apparatus* 
72. Artemis                             87. superego 
73. Lewis Carroll                       88. trust-busting 
74. Admiral Broughton*                  89. behaviorism 
75. Mrs. Malaprop                       90. Oedipus complex  

 
Physical Sciences                                                        Life Sciences 
91. Manhattan Project                106. mammal 
92. planets                          107. adrenal gland 
93. nuclear fusion                   108. sciatica 
94. cholarine*                        109. insulin 
95. atomic number                    110. meta-toxins* 
96. hydroponics                      111. intestine 
97. alloy                            112. bio-sexual* 
98. plate tectonics                  113. meiosis 
99. photon                           114. ribonucleic acid 
100. ultra-lipid*                      115. electrocardiograph 
101. centripetal force                116. amniotic sac 
102. plates of parallax*               117. hemoglobin 
103. nebula                           118. retroplex* 
104. particle accelerator             119. antigen 
105. satellite                        120. recessive trait 
 
Century Culture Names                               Philosophy 
121. Gail Brennan*                   136. logistic heresy* 
122. Jackie Robinson                137. creationism 
123. Houdini                        138. Goedel’s theorem 
124. Ginger Rogers                  139. social constructionism 
125. Greta Garbo                    140. Platonic sense* 
126. Dale Carnegie                        141. hermeneutics 
127. Scott Joplin                   142. esoteric deduction* 
128. Rube Goldberg                  143. ghost in the machine 
129. George Gershwin                144. Hegel 
130. Mae West                       145. Socrates 
131. Jesse Owens                       146. categorical imperative 
132. Oliver Marjorie*                147. free will 
133. Louis Lapointe*                 148. Ayn Rand 
134. King Kong                      149. situational ethics 
135. P.T. Barnum                    150. Principia Mathematica 
 
Note. * Indicates items that are foils (i.e., non-existent items: 3, 7, 11, 18, 22, 26, 34, 38, 42, 47, 51, 59, 65, 
68, 74, 79, 81, 86, 94, 100, 102, 110, 112, 118, 121, 132, 133, 136, 140, 142). 
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Appendix F: Domain-specific risk-taking scale (DOSPERT) items used in Study 3. 

 
Domain-specific risk-taking scale (DOSPERT; 30-item version, Blais & Weber, 2006) 
 
For each of the following statements, please indicate the likelihood that you would engage in the described 
activity or behavior if you were to find yourself in that situation.  
 
Provide a rating from using the following scale: 

1 2 3 4 5 6 7 
Extremely 
Unlikely 

Moderately 
Unlikely 

Somewhat 
Unlikely 

Not Sure Somewhat 
Likely 

Moderately 
Likely 

Extremely 
Likely 

 
1. Admitting that your tastes are different from those of a friend. (S) 
2. Going camping in the wilderness. (R) 
3. Betting a day’s income at the horse races. (F) 
4. Investing 10% of your annual income in a moderate growth mutual fund. (F) 
5. Drinking heavily at a social function. (H/S) 
6. Taking some questionable deductions on your income tax return. (E) 
7. Disagreeing with an authority figure on a major issue. (S) 
8. Betting a day’s income at a high-stake poker game. (F) 
9. Having an affair with a married man/woman. (E) 
10. Passing off somebody else’s work as your own. (E) 
11. Going down a ski run that is beyond your ability. (R) 
12. Investing 5% of your annual income in a very speculative stock. (F) 
13. Going whitewater rafting at high water in the spring. (R) 
14. Betting a day’s income on the outcome of a sporting event (F) 
15. Engaging in unprotected sex. (H/S) 
16. Revealing a friend’s secret to someone else. (E) 
17. Driving a car without wearing a seat belt. (H/S) 
18. Investing 10% of your annual income in a new business venture. (F) 
19. Taking a skydiving class. (R) 
20. Riding a motorcycle without a helmet. (H/S) 
21. Choosing a career that you truly enjoy over a more secure one.11 (S) 
22. Speaking your mind about an unpopular issue in a meeting at work. (S) 
23. Sunbathing without sunscreen. (H/S) 
24. Bungee jumping off a tall bridge. (R) 
25. Piloting a small plane. (R) 
26. Walking home alone at night in an unsafe area of town. (H/S) 
27. Moving to a city far away from your extended family. (S) 
28. Starting a new career in your mid-thirties. (S) 
29. Leaving your young children alone at home while running an errand. (E) 
30. Not returning a wallet you found that contains $200. (E) 
 
Note. E = Ethical, F = Financial, H/S = Health/Safety, R = Recreational, and S = Social. 
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Appendix G: Ethics approval for Study1. 
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Appendix H: Ethics approval for Study 2. 
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Appendix I: Ethics approval for Study 3. 
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