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Abstract

In the information explosion era, the ability to automatically extract knowledge and gain in-
sights from diverse linguistic genres has become imperative. Comprehending intricate lin-
guistic expressions constitutes an indispensable facet of artificial intelligence. Deep learning
techniques have emerged as powerful tools for classification, relation extraction, semantic sim-
ilarity measurement, and document summarization, o↵ering the promise of revolutionizing our
understanding of these crucial domains. In the dynamic landscape of Natural Language Pro-
cessing (NLP), the integration of syntactic and semantic elements stands as a pivotal frontier.
This investigation delves into incorporating both syntactic and semantic dimensions within
NLP applications. By leveraging tree- and graph-based neural networks, this study pioneers a
holistic approach that augments language understanding and processing capabilities. Through
the fusion of structural and semantic-driven insights, this work tries to explore various NLP
applications for two linguistic genres: scientific text, and psycho-linguistic texts. Scientific
articles inherently embody a sophisticated framework of information representation, necessi-
tating a depth of background knowledge for comprehension. This requisite background knowl-
edge is gleaned through a meticulous examination of the citations interwoven within the on-
going paper. The objective of this endeavor is to scrutinize the citation linkage task, serving
as an avenue for extracting the essential background information imperative for the meticu-
lous analysis of scientific documents. Furthermore, for summarization, the citation network is
leveraged to augment the performance of summarization models by furnishing additional con-
textual underpinnings. Di↵erent tree-structured neural networks are systematically explored to
discern relations between various biomedical entities within scientific articles, thus contribut-
ing to the e�cacy of relation extraction tasks. In the contemporary landscape dominated by the
proliferation of social media, natural language processing emerges as a potent instrument for
psychologists to delve into the analysis of individuals’ personality traits. Conventional mod-
els, hampered by their incapacity to grapple with extended textual sequences exceeding their
token intake limit, encounter limitations. This work propounds innovative solutions through
the utilization of tree-structured neural networks and graph attention networks, facilitating the
identification of personality traits from protracted written compositions.

Keywords: Semantic Similarity, Syntactic Representation, Tree-structured Transformers,
Graph Attention Network, Heterogeneous Graph Network, Citation Linkage, Protein-Protein
Interaction, Drug-Drug-Interaction, Multi-head attention, Multi-branch attention, Scientific
Article Summarization, Personality Trait Identification, Text Classification.
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Summary for Lay Audience

In today’s age of information overload, it’s crucial to automatically extract insights from di-
verse types of textual representaitons. This is especially important for artificial intelligence
to comprehend complex linguistic expressions. Deep learning techniques, powerful tools for
tasks like classification, relation extraction, and document summarization, hold the potential to
revolutionize our understanding of these crucial domains.

Within the dynamic field of Natural Language Processing (NLP), integrating both syntac-
tic and semantic elements is a key frontier. This research explores the combination of these
dimensions using tree- and graph-based neural networks, o↵ering a holistic approach to en-
hance language understanding and processing capabilities. The study focuses on two linguistic
genres: scientific text and psycho-linguistic texts.

Scientific articles are intricate in their representation of information, requiring a depth of
background knowledge for comprehension. This research meticulously examines citations
within scientific papers to extract essential background information. The primary goal is to
scrutinize citation linkages, providing necessary context for the detailed analysis of scientific
documents. Additionally, the citation network is utilized to improve summarization models by
adding contextual underpinnings along with a reflection of the research community’s view. Var-
ious tree-structured neural networks are systematically explored to discern relations between
biomedical entities within scientific articles, enhancing the e�cacy of relation extraction tasks.

In today’s world dominated by social media, natural language processing becomes a pow-
erful tool for psychologists studying individuals’ personality traits. Conventional models face
limitations in handling lengthy textual sequences. This work introduces innovative solutions
using tree-structured neural networks and graph attention networks to identify personality traits
from extended written compositions. These approaches aim to overcome the challenges posed
by the token intake limit of traditional models, providing new avenues for understanding and
analyzing complex human expressions.
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Chapter 1

Introduction

1.1 Thesis Statement

Natural Language Processing (NLP) and deep learning have become indispensable in to-
day’s technological landscape, revolutionizing how we interact with machines and process vast
amounts of textual data. NLP enables computers to understand, interpret, and generate human
language, powering applications such as chatbots, language translation, and sentiment analy-
sis. Deep learning, particularly through neural networks, has proven to be a game-changer in
enhancing the performance of NLP tasks. The ability of deep learning models to automatically
learn hierarchical representations of data has significantly improved the accuracy and e�ciency
of language-related applications.

In contemporary research landscapes, the amalgamation of Natural Language Processing
(NLP) and deep learning has emerged as a transformative force, particularly in the realms of
scientific literature analysis and psychological trait identification. NLP facilitates the rapid and
comprehensive analysis of vast scientific texts, accelerating the pace of literature review and
knowledge synthesis. Through deep learning techniques, such as recurrent neural networks
and attention mechanisms, these systems can discern intricate patterns, identify key concepts,
and even predict emerging trends in scientific research.

In the field of psychological trait identification, NLP-powered tools contribute significantly
to the analysis of textual data related to individual behavior and personality traits. Deep learn-
ing models excel at discerning subtle nuances in language, allowing for the extraction of valu-
able insights from written expressions. This capability proves invaluable in psychological re-
search, aiding professionals in identifying patterns associated with specific traits, emotions, or
mental health indicators. The integration of these technologies not only expedites the analysis
process but also enhances the depth and accuracy of understanding human behavior, paving the
way for more nuanced and personalized interventions in mental health and well-being. As the
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volume of scientific literature and the complexity of psychological data continue to grow, the
synergy between NLP and deep learning stands as a cornerstone in advancing our comprehen-
sion of both scientific knowledge and the intricacies of the human mind.

For the NLP tasks, the incorporation of both semantic and syntactic information is para-
mount for deep learning models, as it addresses the inherent complexities of language com-
prehension. Syntactic structures, representing the grammatical relationships within sentences,
provide a fundamental sca↵old for understanding how words interconnect. By integrating syn-
tactic information, deep learning models can grasp the hierarchical and sequential nature of
language, enhancing their ability to discern context and meaning. On the other hand, incorpo-
rating semantic understanding enables deep learning models to capture the nuances, ambiguity,
and context-dependent meanings that are inherent in human language. This is particularly sig-
nificant in the tasks mentioned above, where the accurate interpretation of meaning is pivotal
for successful outcomes. Moreover, the synergy between semantic and syntactic information
o↵ers an holistic approach to language representation, empowering deep learning models to
move beyond surface-level analysis. In essence, the joint incorporation of semantic and syntac-
tic information is a key enabler for advancing the capabilities of deep learning models in NLP
tasks, ultimately bridging the gap between human-like language comprehension and machine-
based language processing.

In this study, the focus has been investigating four NLP tasks, semantic similarity mea-
surement, relation extraction, classification, and document summarization, for two linguistic
genres: scientific literature and psychological statements. Most of the NLP tasks and the state-
of-the-art models consider preserving either semantics of the text or syntactical information.
In this study, we have tried to make a bridge between these two backbone parts of NLP by
introducing di↵erent models for the above mentioned tasks.

1.2 Problem Statement

Natural Language Processing (NLP), a pivotal subfield of artificial intelligence, focuses on
endowing machines with the capacity to understand, interpret, and produce human language.
It encompasses a diverse range of applications that are reshaping our interactions with and
extraction of insights from textual data [100].

Prior to the widespread integration of deep learning methodologies, NLP applications pre-
dominantly leaned on rule-based systems and conventional machine learning algorithms. In
the pre-deep learning phase, tasks like machine translation, sentiment analysis, and named en-
tity recognition primarily relied on manually crafted rules and intricate feature engineering.
These methodologies encountered challenges in capturing the intricate subtleties of language



Chapter 1. Introduction 3

and faced limitations in e↵ectively handling diverse and extensive datasets.

The landscape of NLP underwent a revolutionary transformation with the advent of deep
learning techniques. Models like recurrent neural networks (RNNs) [194], long short-term
memory networks (LSTMs) [84], and attention mechanisms [18, 127, 223] demonstrated ex-
ceptional e�cacy in unraveling complex linguistic patterns and dependencies. The emergence
of potent transformer [223] architectures, as evidenced by models such as BERT (Bidirec-
tional Encoder Representations from Transformers) [56] and Longformer [22] have marked a
paradigm shift in NLP. These models, trained on extensive datasets, have acquired the abil-
ity to grasp contextual language representations, surpassing traditional methods across various
tasks. The application of deep learning in NLP has significantly bolstered the precision and
scalability of systems. Tasks that were previously arduous, such as summarization, relation
extraction, and sentiment analysis, now benefit from the context-aware capabilities inherent
in deep learning models. Furthermore, the development of expansive pre-trained language
models has streamlined transfer learning, allowing for fine-tuning on specific tasks with more
limited datasets [102]. This trajectory of NLP evolution from rule-based and traditional ma-
chine learning approaches to the integration of deep learning methodologies has ushered in a
new era characterized by more robust, context-aware, and scalable natural language processing
applications.

Though the current research utilizing deep learning models has shown prominent improve-
ment in NLP tasks, still, the majority of works ignore linguistic features that could be inte-
grated. In contrast to other endeavours, NLP is a complex task to perform due to the phrasal
representation of words and the dependencies between non-sequential words which are placed
at a distance in the sentences [118]. The sequential deep learning models and the large language
models ignore this structural information of the texts. In an e↵ort to address this lacuna, our
study endeavours to construct models for di↵erent NLP applications that incorporate linguistic
features with an objective to enhance the performance of these models by preserving more ro-
bust semantic representations. In this study, we have investigated four NLP applications: clas-
sification, relation extraction, semantic similarity measurement, and document summarization
utilizing tree-structured neural networks [6, 118] and graph attention networks [224, 227]. We
have explored these tasks covering two di↵erent genres: scientific and psychological texts. For
investigating the classification models we have experimented with psychological texts which
identify personality traits of individuals from social media posts and question-answer sets. We
have revisited the protein-protein and drug-drug interaction identifications from biomedical
research articles to explore the essence of the relation extraction task. To ease the readers
while going through any research article we have formulated the citation linkage problem as
a semantic similarity task where the investigated models fetch the semantically similar state-
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ments from the reference articles that correspond to the citing statements from the ongoing
paper to provide additional background information necessary to grasp the concept presented
in the ongoing paper. Finally, we have investigated two approaches of the scientific article
summarization task: extractive and abstractive summarizations. The summarization models
investigated in this work incorporate the citation network to provide the background informa-
tion and the impact of the article in the research community. Furthermore, we have investigated
a joint training method of the extractive and abstractive summarizers and a semantic-induced
loss function so that each counterpart’s performance is improved.

1.3 Motivation

Within the dynamic domain of Natural Language Processing (NLP), the profound import of
syntactic and semantic linguistic features remains indubitable. These pivotal elements serve as
the bedrock upon which NLP tasks can be built, unlocking the door to a deeper understanding
of human language and enabling machines to navigate the intricacies of communication with
increasing finesse.

Syntactic features, encapsulating the structural arrangement of words and the relationships
between them, act as the grammar framework of language. They provide a roadmap for de-
ciphering the intricate tapestry of sentences, facilitating the extraction of meaning from the
syntactic structures that underpin human expression. As NLP methods grapple with the nu-
ances of syntax, they gain the ability to comprehend not only the literal meaning of words but
also the intricate dance of grammar that imparts layers of subtlety and context to language.

On the other hand, semantic attributes plunge into the realm of meaning, navigating the
intricate nexus of associations and connotations that endow words with significance. Semantic
understanding goes beyond the surface-level interpretation of individual words, encompassing
the contextual nuances and relationships that define the true essence of communication. Har-
nessing semantic features empowers NLP systems to discern subtle nuances, grasp metaphor-
ical expressions, and navigate the rich tapestry of language with a depth that mirrors human
comprehension.

Together, the integration of syntactic and semantic features forms a formidable synergy that
elevates NLP tasks to unprecedented levels of sophistication. Whether it be text summariza-
tion, personality trait identification, relation extraction, or semantic similarity measurement, a
nuanced grasp of syntax and semantics equips NLP models with the cognitive tools to unravel
the complexity of human language. In essence, the journey toward natural language under-
standing is paved by the profound interplay of syntactic and semantic features, propelling NLP
into realms of comprehension that echo the intricacies of human communication [6, 118]. That
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is why incorporating syntactic information to preserve better semantics for the NLP tasks has
been the main motivation of this study. Driven by this imperative, our scholarly pursuit has
been devoted to scrutinizing various deep learning models across two distinct genres, enriched
by the integration of tree-structured information representations. These neural networks, con-
figured in a tree structure, endow the scrutinized models with an augmented repository of
syntactic details, a facet notably absent in extant works.

Another facet of our comprehensive inquiry is dedicated to the refinement of summariza-
tion techniques specifically tailored for scientific articles. The summarization of scientific
content introduces distinct complexities when compared to articles of other genres. Notably,
scientific documents, characterized by their substantial length, introduce unique challenges to
the summarization process. Furthermore, a comprehensive grasp of these documents necessi-
tates background information, adding another layer of intricacy to the summarization process.
Moreover, the dynamic nature of research impact introduces a temporal dimension. Enabling
summaries to encapsulate evolving perspectives can be a help for the reader.

Recognizing these intricacies as focal points, our research is motivated by an aspiration to
augment neural network summarizers designed for scientific articles. A key innovation in this
pursuit involves integrating citation networks to provide essential background information and
encapsulate the evolving perspectives within the corresponding research communities. This
augmentation not only addresses the contextual challenges inherent in scientific articles but
also positions summarizers as invaluable tools capable of reflecting the evolving impact of
research work within the pertinent scholarly societies. In response to the inherent lengthiness
of scientific articles, we have delved into the exploration of segmentation mechanisms as a
concurrent task. This multifaceted approach underscores our commitment to comprehensively
address the challenges unique to the domain of scientific article summarization.

1.4 Objectives

For a resolution of any quandary within the NLP applications, it becomes imperative to culti-
vate a potent representation of the subject of scrutiny, whether it be a singular word, an entire
sentence, or the entirety of a document. Contemporary paradigms in machine learning and
deep learning bestow the capability to distill abstract features from data, presenting users with
a methodological framework to craft robust architectures. These architectures harness well-
defined di↵erentiable objective functions, meticulously mapping inputs to outputs.

However, our purview extends beyond the conventional, as we aspire to transcend prevail-
ing benchmarks in the intricate NLP tasks. Our approach is anchored in the amalgamation of
machine learning models and profound linguistic acumen, a convergence designed to propel
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the frontier of what is considered state-of-the-art in addressing the complexities inherent in
NLP challenges. In a more granular context, our focus centers on enhancing the e�cacy of
deep learning models across diverse NLP applications involving the integration of syntactic
information and the preservation of heightened semantic precision, achieved through the in-
corporation of contextual information. As the exposition advances, it will become apparent to
the reader that we steadfastly adhere to the following objectives throughout the course of this
thesis.
To incorporate the syntactic information in the downstream NLP applications. We have
designed some deep learning models that incorporate the phrasal and inter-word dependency
information by using constituency and dependency tree-structured neural networks. Combined
with an attention mechanism, these models attain the capability to provide better semantics in
the sentence- and document-level representations.
To enrich word representations with task-specific context information. We have introduced
one word refinement module for the downstream tasks to generate enriched word representa-
tions having task specific context information. Our proposed deep learning models with these
enriched word representations have shown prominent performance improvement for various
NLP tasks.
To enhance the performance of the summarization models utilizing a citation network.
We have designed summarization models that intake background information regarding the
considered scientific articles using a citation network. These models also reflect the impact of
the considered articles incorporating citing statements in the summaries as well.
To improve the quality of the summarizers by introducing a semantic-induced training
mechanism. We have introduced a joint training of extractive and abstractive summarizers with
a semantic-induced loss function. This training mechanism has improved the performance of
the summarizer models in terms of the performance metrics.

1.5 Contributions

The thesis unfolds a tapestry of significant contributions, a mosaic of insights that may appear
diverse given the expansive terrain within the NLP domain. However, within this diversity lies a
coherence meticulously woven by overarching themes. In the ensuing discussion, we delineate
the threads that converge these contributions into cohesive motifs, o↵ering a succinct preview
of their accomplishment and the valuable insights they furnish. A more detailed exposition of
these details will be unveiled in subsequent chapters.

Structural Information Enhancement We embark on a comprehensive exploration of var-
ious NLP applications across two distinct genres. Our focus lies in enriching word, sentence,
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and document representations by incorporating structural information, ultimately elevating the
overall model performance.

Citation Linkage Framework A bespoke framework and silver standard corpus are intro-
duced to facilitate the understanding of ongoing research articles. This framework addresses
the citation linkage task, reformulated as a semantic similarity measurement challenge. The
model retrieves semantically similar sentences from reference articles based on the citing state-
ments in the ongoing paper.

Biomedical Relation Extraction Models Tree-structure-based relation extraction mod-
els are developed to discern interactions between diverse biomedical entities. These models,
augmented with additional phrasal and inter-word dependency information, outperform their
counterparts, establishing superior performance.

Personality Trait Identification as Multi-Label Classification The intricacies of person-
ality trait identification are approached as a multi-label document classification problem. In
contrast to token limitations in other BERT-based models, our proposed models overcome
these constraints, accommodating texts of variable lengths.

Scientific Article Summarization Augmented by Citation Networks Performance in sci-
entific article summarization is enhanced by integrating additional background information
through citation networks. Our models not only produce improved summaries but also reflect
the impact of articles on the corresponding research society. An in-house summarization cor-
pus, comprising 10k research articles and citation information, is introduced for this purpose.

Semantic-Induced Joint Training for Extractive and Abstractive Summarizers We in-
troduce a novel approach of semantic-induced joint training for extractive and abstractive sum-
marizers, resulting in improved individual performance. Furthermore, the incorporation of
segmentation and citation linkage into the summarization task contributes to a substantial per-
formance boost.

Word Refinement Module for Downstream NLP Tasks A word refinement module is
introduced to enhance downstream NLP tasks by allowing models to produce superior sen-
tence and document representations. This module updates word embeddings based on context,
aligning with the BERT fine-tuning principle while demanding less computational resources.

Last but not least, our models mark substantial quantitative advancements, a testament to
their e�cacy in the landscape of NLP. Rigorous experimentation underscores the competitive
edge inherent in each model, showcasing their prowess when benchmarked against the existing
state-of-the-art models spanning diverse tasks. Our empirical endeavours transcend convention
as we elevate the performance bar to redefine the state-of-the-art across a spectrum of NLP
tasks. These tasks encompass document classification, relation extraction, semantic similarity
measurement, and the nuanced domain of scientific document summarization.
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1.6 Thesis Organization

The thesis is structured to show the evolution of our ideas, in the thesis as a whole and in each
of the chapter. The thesis is rooted in our desire to introduce syntactic and semantic information
into our deep learning models, starting with the citation linkage task and continuing through
the following applications, creatively building on the techniques used in the prior applications.

Chapter 1 commences with an introductory exploration of the thesis. This initial chap-
ter delineates the core problem under investigation, articulates the motivations propelling this
research endeavour, elucidates the overarching objectives, and underscores the contributions
poised to enrich the broader research community.

Chapter 2 encapsulates the benchmarks associated with our carefully examined experi-
ments for four di↵erent NLP applications. This chapter briefly describes the prominent works
that have been explored before addressing the tasks we have investigated here.

Chapter 3 delves into the performance metrics utilized across various NLP applications,
providing equations and explanations for these metrics.

Chapter 4 explains the citation linkage problem, how it has been formulated as a seman-
tic similarity measurement problem and how it has been tackled. Section 4.1 introduces the
proposed silver corpus for the citation linkage task, detailing corpus creation methods and
validation by human annotators. Section 4.2 explains the construction of the citation linkage
framework to establish a connection between the citing sentence and the referenced text span
within the cited biomedical research article. It involves the integration of syntactic informa-
tion by means of utilizing constituency and dependency tree-structured neural networks for the
semantic similarity measurement task.

Chapter 5 shifts our focus from semantic similarity to relation extraction. Section 5.1 in-
vestigates the performance of di↵erent tree-structured neural networks and ensembles of them
for the relation extraction task, focussing on identifying the interactions between di↵erent pro-
teins in biomedical text. Section 5.2 introduces a word refinement module using an hetero-
geneous graph attention network. The word refinement module provides a separate sentence
representation which is concatenated with the sentence representations from the tree trans-
formers to provide a better sentence representation for the following classifier layer. Section
5.3 modifies this idea by having the word refinement module update the word embeddings for
the tree-transformers rather than generating a separate sentence embedding. The model has
achieved state-of-the-art performance for the protein-protein and drug-drug interaction identi-
fication tasks across all the benchmark corpora. These investigations laid the groundwork for
the inception of a task-specific word refinement module, initially applied at the sentence level
and subsequently extended to paragraph-level applications in Chapter 6 Section 6.3.
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Chapter 6 delves into our endeavours related to personality trait identification. Initially,
Section 6.1 deals with the personality trait analysis as a semantic similarity measurement
task and measures the similarity of individuals’ statements against the baseline statements in
the semantic space. Section 6.2 continues with personality trait analysis, formulating it as a
multi-label document classification problem. The two layered hierarchical approach used here
overcomes the 512-token limitation of the previous BERT-based state-of-the-art models. The
model encodes sentences using tree-transformers and then a graph attention network accumu-
lates the sentence embeddings. Section 6.3 enhances this idea by incorporating a statement-
to-sentence and a sentence-to-word refinement module. These refinement modules generate
context-enriched word embeddings so that the sentence and statement encoders can generate
representations that better preserve semantics. This final model achieves state-of-the-art per-
formance.

Chapter 7 discusses our exploration of text summarization of scientific articles, encom-
passing both extractive and abstractive techniques. A significant stride was made by leverag-
ing citation networks to augment summarizer units. Section 7.1 introduces the corpus we have
created for the scientific document summarization by integrating the citing statements. A large
language model-based abstractive summarizer and a graph attention network-based extractive
summarizer are trained in parallel to improve each summarizer’s performance. Section 7.2
extends the previous summarizer by enabling the model to utilize both sides of the citation
network: the reference side and the citing side. Finally, Section 7.3 introduces a novel training
mechanism for summarization models, jointly training extractive and abstractive summariz-
ers with a semantic-induced loss function, demonstrating improved performance for individual
summarizer units.

Finally, Chapter 8 summarizes the thesis, delving into its inherent limitations and suggest-
ing potential avenues of extension and further exploration.



Chapter 2

Related Work

This chapter provides a succinct overview of the related work in the corresponding application
domain. Chapters 4 to 7 comprehensively delve into the related work pertinent to its respec-
tive domain, o↵ering readers a more nuanced understanding of the existing literature and the
contextual landscape in which the research is situated.

Our investigations encompass scientific document analysis, wherein we have delved into
the citation linkage task, scientific article summarization (embracing both extractive and ab-
stractive methods), and relation extraction from biomedical research articles, whereas for psy-
chological text analysis we have investigated the personality trait identification task as a seman-
tic similarity measurement problem at first, and then as a multi-label classification problem.

Regarding the citation linkage task, we have adopted a methodology grounded in semantic
similarity measurement. In the subsequent exposition, various models for semantic similarity
measurement are expounded upon.

Following this, our endeavours extended to discerning relationships within biomedical en-
tities from scientific articles, specifically between proteins (PPI) and drugs (DDI). Despite the
potential for protein or drug relationships spanning multiple sentences, the experiments show-
cased herein are confined to identifying these associations within a singular sentence. This
limitation stems primarily from the annotation structure of the benchmark corpora at our dis-
posal. For the PPI and DDI tasks, we have formulated solutions as relation extraction tasks.
The ensuing section provides a succinct overview of the methodologies employed in tackling
the intricacies of PPI and DDI problems.

A pivotal facet of the scientific literature analysis conducted in this study pertains to dis-
tilling the essence of the literature. Scientific document summarization presents two distinct
approaches: extractive and abstractive summarization. Noteworthy challenges in summarizing
scientific literature include the extended length of documents, the intricacies of information
structure, and the prerequisite for background knowledge. In our research, we endeavoured to

10
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surmount these challenges through diverse methodologies. Our e↵orts extended to conducting
experiments involving the parallel training of extractive and abstractive summarizers, fostering
mutual guidance to enhance the e�cacy of individual summarization units. Additionally, we
sought to capture the enduring impact of scientific articles on their respective research com-
munities over time, utilizing citation networks to a↵ord readers insights into the application
of the proposed methods within the considered paper’s domain. This section also delves into
noteworthy research contributions within this domain.

For psychological text analysis, our e↵orts have been directed toward discerning distinct
personality traits from textual content and our work has investigated two personality trait mod-
els. These endeavours were conducted using three widely utilized benchmark corpora. The
task of identifying personality traits was approached through two distinct methods: gauging
the semantic similarity of provided statements in relation to benchmark statements, and em-
ploying multi-label classification techniques leveraging tree and graph-based neural networks.
Notably, in contrast to the sentence-level focus inherent in the classification tasks associated
with scientific literature analysis, the tasks involving the identification of personality traits have
been executed at the paragraph level. The concluding segment herein provides an overview of
prior contributions within this field, encapsulating the antecedent endeavours and achievements
in the domain under consideration.

2.1 Related Work: Scientific Article Analysis

2.1.1 Citation Linkage

The examination of citations in the realm of scientific research has given rise to extensive
scholarly endeavours. Citation analysis seeks to discern the specific section within a refer-
enced article to which a given sentence pertains, encompassing elements such as the abstract,
introduction, methodology description, and results analysis [70, 71]. Nevertheless, this form
of inquiry encounters limitations in pinpointing the expanse of citation spans.

An alternative avenue of research focuses on delineating the citation span. PolyU, for
instance, employed RankSVM over sentence chunks to predict the span of cited text [39].
Baruah et al. [19] computed cosine similarity of word embeddings for the citation linkage task,
while Yeh et al. [253] employed majority voting across various machine learning classifiers,
considering lexical, knowledge-based, corpus-based, syntactic, and surface features.

The CL-SciSumm Shared Task endeavours to address three facets: locating the span of
cited text in the citation sentence (“citance”), identifying the discourse facet of the cited sen-
tence, and summarizing the referenced article using only frequently quoted text spans from the
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document [134]. However, the latter two sub-tasks lie beyond the purview of the present work.
Ma et al. [134] employed diverse classifiers and a voting mechanism over similarity, rule, and
position-based features for determining the similarity between citing and cited statements in
CL-SciSumm-17. The linkage between citing and cited sentence pairs was established by Li
et al. [121] using inverse document frequency and Jaccard similarity. Subsequent works by
the same authors involved the computation of sentence vectors through the concatenation of
200-dimensional word vectors [119], followed by the application of a convolutional neural
network (CNN) over the concatenated vector representation [122]. In both instances, the cited
text span was ascertained by measuring cosine similarities between citing and candidate cited
statements. Other researchers, such as AbuRa’ed [2], have also engaged with the CL-SciSumm
corpus.

More recently, BERT-based models have become prevalent in the citation linkage task, fea-
turing prominently in numerous experiments. Gidiotis et al. [72] fine-tuned BERT to identify
the referenced cited sentences from the cited document. Zerva et al. [259] applied a CNN
over SciBERT-based features [21] to determine the specific text span in the cited article being
referenced. They augmented features from the BERT-based model for comprehensive feature
generation. Umapathy et al. [220] leveraged key-phrase similarity using the Rapid Automated
Keyword Extraction Algorithm [187] and a BERT-based architecture for cited text span iden-
tification.

Nevertheless, a paucity of citation linkage studies exists for biomedical research papers, a
domain characterized by diverse representations of identical components. A noteworthy con-
tribution in this domain dates back to 2017, where Houngbo and Mercer [85] applied a tradi-
tional machine learning approach over their proprietary, albeit modestly sized, expert-annotated
corpus, representing the singular human-annotated corpus for the citation linkage task in the
biomedical domain thus far.

2.1.2 Relation Extraction between Biomedical Entities

Numerous Natural Language Processing (NLP) methodologies have emerged to discern con-
nections among proteins. Initially, pattern-based techniques prevailed, relying on syntactic
and lexical features to establish rules for relationship identification [27, 114]. However, these
models faced challenges in accurately handling intricate relationships expressed in relational
and coordinating clauses. In contrast, dependency-based methods, with a more concentrated
emphasis on syntax, o↵er versatility across a broader spectrum of scenarios [60, 150].

Kernel-based techniques constitute another prevalent approach for identifying correlations
between proteins, leveraging rich structural information acquired through dependency struc-
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tures and syntactic parse trees [204]. Airola et al. [7] proposed a method examining information
from linear and dependency subgraphs to identify interactions between target proteins. Miwa
et al. [149] introduced a system incorporating a Support Vector Machine with weighted feature
vectors derived from multiple corpora. Kim et al. [109] utilized a walk-weighted sub-sequence
kernel by matching e-walks and v-walks on the shortest dependency path. Zhang et al. [260]
developed a neighborhood hash graph kernel-based model for extracting Protein-Protein Inter-
actions (PPIs), while Chang et al. [42] used a convolution tree kernel and PPI patterns to extract
interlinkages between proteins. Murugesan et al. [152] proposed the distributed smoothed tree
kernel, showcasing substantial advancements in comparison to other kernel methods for this
task.

The advent of deep learning models has ushered in a plethora of experiments to unravel
PPI relationships from biomedical literature [88, 175, 267]. Zhao et al. [270] pioneered the ap-
plication of deep learning in PPI relation extraction, employing an autoencoder on unclassified
training data to prepare parameters for a multi-layer perceptron (MLP) model. Peng et al. [164]
utilized a double-channel CNN, with one channel incorporating syntax-based features and the
second channel applying convolution based on parent word information. For PPI extraction,
Zhang et al. [267] implemented a three-channel CNN, incorporating convolution operations on
original words, positional encoding, the shortest dependency path, and encoding features for
dependency relations in each channel.

Subsequent studies explored the e�cacy of Recurrent Neural Networks (RNNs) in process-
ing sequential data for the PPI task [4, 64, 88, 244, 245]. Hsieh et al. [88] concatenated output
vectors from a Bi-LSTM, fed with sentence input, to generate a sentence vector representation.
Yadav et al. [244] utilized the shortest dependency information between unit pairs as input to a
Bi-LSTM with structured attention. Yadav et al. [245] introduced a self-attentive approach for
simultaneous tasks: extraction of protein-protein interactions and extraction of drug-drug in-
teractions. Ahmed et al. [4] applied structured attention over dependency tree-LSTMs, demon-
strating the superiority of tree-structured neural networks over sequential models.

Apart from PPI, another task we have investigated for relation extraction is identifying
relation between drugs (DDI). Fei et al. [64] investigated a graph-based approach operating on
a fully connected graph composed of either word or phrase nodes. This approach is designed
to leverage the structural information present in the data for improved performance in Protein-
Protein Interaction (PPI) and Drug-Drug Interaction (DDI) extraction. Asada et al. [14] utilized
molecular structure and drug descriptions for retrieving DDIs, while Gu et al. [80] fine-tuned
PubMedBERT to extract relations between drugs. Following this, Asada et al. [15] employed a
knowledge graph with PubMedBERT for the DDI extraction task, demonstrating an integrated
approach for enhanced knowledge representation and extraction performance.
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2.1.3 Scientific Document Summarization

In light of notable progress in short document summarization, there has been a burgeoning
interest in long document summarization, particularly for substantial content such as scientific
articles. Researchers are exploring both extractive [189, 227, 242] and abstractive [8, 174, 228]
approaches.

Extractive Text Summarization (ETS) aims to classify sentences in a document, determin-
ing whether a specific sentence should be included in the summary. Recent ETS models for
lengthy documents predominantly rely on transformer-based architectures [22, 258], chosen
for their ability to handle longer sequences compared to RNN-based models. BERTSUMEXT
[126] fine-tunes BERT with stacked Transformer layers and a sigmoid classifier. HIBERT
[264] introduces a hierarchical Transformer encoder with pre-training and fine-tuning specifi-
cally for ETS. The siamese-BERT architecture is utilized by MatchSum [271] to select candi-
date extractive summaries based on semantic similarity. State-of-the-art extractive summariz-
ers for scientific documents include HiStruct+ [189], GRETEL [242], HEGEL [261], and Lo-
doss [47]. HiStruct+ [189] innovatively incorporates hierarchical structure information into an
extractive summarization model, leveraging both local and global contextual details. It is based
on a pre-trained Transformer language model, aligning with the principles of BERTSUMEXT
[126]. A significant contribution is the introduction of hierarchical positional encoding for
sentences, facilitating the integration of hierarchical information within Pre-trained Language
Models (PLMs) for the summarization task. GRETEL is a significant advancement in Extrac-
tive Text Summarization (ETS) for long documents, combining graph contrastive topic models
with a Pre-trained Language Model (PLM) to maximize global and local contextual semantics.
It uses a hierarchical transformer encoder and graph contrastive learning to capture global se-
mantic information and achieve relevant sentences aligning with the gold standard summary,
while minimizing redundant sentences covering sub-optimal topics. HEGEL is a hyper-graph
transformer layer to capture high-order cross-sentence relationships in lengthy documents. It
integrates various sentence dependencies, such as latent topics, keyword coreference, and sec-
tion structure, enhancing the summarization process. The hyper-graph representation allows
edges to connect to multiple vertices, enabling a comprehensive understanding of dependen-
cies. This matrix establishes connections between sentences with common topics or keywords.
Lodoss is a document segmentation and summarization method that learns robust sentence
representations through summarization. It captures the document’s structure and salient con-
tent, with an optimization regularizer based on determinantal point processes preventing re-
dundancy. Lodoss is built on Longformer, using a double-layered inter-sentence transformer
for operations.
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Abstractive Text Summarization (ATS) represents a distinct approach aiming to generate
summaries enriched with novel sentences not directly extracted from the source text. In con-
trast to extractive summarization, which rearranges existing sentences, ATS focuses on pro-
ducing concise and coherent summaries by creating new content that encapsulates the essence
of the source text. Various advanced models have been developed to address the challenges
inherent in ATS. Liu et al. [126] employ the encoder-decoder framework of BERT in BERT-
SUMABS, enabling the generation of abstractive summaries by leveraging encoded informa-
tion and creating new sentences that encapsulate the document’s gist. Wang et al. [231] propose
a two-step approach to enhance summarization models. In the first step, latent topics are in-
dependently extracted from the input text to capture underlying themes within the document.
These extracted latent topics are then utilized in the second step to improve summarization
model performance. Aralikatte et al. [11] leverage neural topic modeling with bag-of-words as
input features, coupled with a transformer-based encoder-decoder architecture for generating
abstractive summaries. Fu et al. [68] explore the extraction of topic distributions at both the
document and paragraph levels, using these distributions as guidance in the abstractive summa-
rization process. DimSum [257] integrates guidance from an extractive summarizer to enhance
the performance of the abstractive summarizer, utilizing BART [115]. The combined loss func-
tion of the extractive and abstractive summarizers contributes to the generation of improved lay
summaries from scientific documents. Recent state-of-the-art models for ATS include DYLE
[138], FactorSum [66], PageSum [130], and HierGNN [174]. These models showcase ad-
vancements in generating abstractive summaries by incorporating innovative techniques and
architectures. DYLE is a dynamic latent extraction mechanism that revolutionizes abstractive
summarization by training both an extractor and a generator simultaneously. It calculates the
probability of an output token based on each input snippet, while the generation probability is
determined by the generator’s weights and tokens. The extractor is optimized using two sur-
rogate losses: the extractive oracle and consistency loss. FactorSum is a model that separates
content selection from resource allocation to improve the e↵ectiveness of abstractive summa-
rization systems. It introduces an energy function that breaks down the summarization process
into two steps: generating abstractive summary views to highlight significant information, and
combining these views into a final summary while adhering to budget constraints and content
guidance from advisor models like BART or BigBird. PageSum uses locality to reduce memory
overhead and provide insightful summaries. It treats input documents as a collection of pages,
with each page encoding independently and decoding producing local predictions and confi-
dence scores. This emphasizes the importance of locality in text summarization. HierGNN is a
neural encoder with reasoning capabilities, suitable for integration into sequence-to-sequence
neural summarization models. It acquires a latent hierarchical graph, frames sentence-level
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reasoning as a graph propagation problem, and uses a graph-selection attention mechanism for
precise summaries.

2.2 Related Work: Personality Trait Identification

Due to the insu�ciency of mental health resources relative to the prevailing demand, auto-
mated assistant tools emerge as valuable aids in diagnosing mental health issues, showcasing
the potential of AI models in providing substantial support. These AI models exhibit promis-
ing capabilities as automated assistants, demonstrating superior performance in personality
judgment compared to human evaluations [255]. Various studies have e↵ectively leveraged
machine learning techniques to discern personality traits in social media content [40, 219].
The identification of personality traits involves the utilization of diverse features, including
demographic data and text data such as self-interpretation and content from social media. Pio-
neering work by Argamon et al. [12] employed support vector machines (SVMs) and statistical
features from functional lexicons to identify personality traits. Farnadi et al. [63] extended this
work by using SVM to detect personality traits based on features such as network size, den-
sity, and frequency of updating status. Additionally, Zhusupova [275] employed social media
activity and demographic data to detect personality traits in Twitter users from Portugal.

Recent advancements have witnessed the application of various deep learning models to
the task of identifying personality traits. Kalghatgi et al. [101] utilized neural networks, specif-
ically multilayer perceptrons (MLP), in conjunction with hand-crafted features for personality
trait detection. Su et al. [212] employed recurrent neural networks (RNN) and hidden Markov
models (HMM) to identify personality traits from Chinese Language Inquiry and Word Count
(LIWC) annotations extracted from dialogues. Tandera et al. [215] and Sun et al. [213] applied
long-short-term-memory (LSTM) and convolutional neural network (CNN) to detect person-
ality traits directly from text data extracted from Facebook posts. Liu et al. [124] devised a
hierarchical structure based on Bidirectional recurrent neural network to predict personality
traits from multi-lingual statements. Van de Ven et al. [221] demonstrated the accurate infer-
ence of extroversion from self-descriptions in LinkedIn profiles. Lynn et al. [133] employed
message-level attention over Facebook posts for personality trait analysis. Majumder et al.
[136] utilized psycholinguistic features [135] and hierarchical CNN for automatic personality
detection. Gjurković et al. [74] utilized Sentence-BERT [182] on their self-created corpus.
Kazameini et al. [105] applied an ensemble of SVMs over BERT embeddings, achieving supe-
rior performance on the Essays corpus [166] for Big Five trait classification. Mehta et al. [142]
experimented with various combinations of BERT-based models and psycholinguistic features,
achieving state-of-the-art results on di↵erent corpora. A comprehensive analysis of previous
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models is presented in [143], while a review of perspectives is discussed in [211].
Despite the improvement in accuracy over time, these models confront limitations that

impede their practical e↵ectiveness. The intricate nature of textual representations, incorporat-
ing word-level dependencies across long distances and constituency representations, poses a
challenge for sequential models alone to capture such information e↵ectively. Moreover, pre-
trained language model-based approaches, while achieving state-of-the-art results, are con-
strained by a 512-word limit for statements, presenting a hindrance in real-life applications
as automated assistant tools. In light of these challenges, our investigation focuses on a model
employing tree-transformers to capture word-level dependencies and phrasal information, com-
plemented by a graph attention network (GAT) for combining sentence representations when
generating the full statement representation. This approach, utilizing tree-transformers and
GAT, exhibits the capability to preserve syntactical structure, overcoming limitations in word
limits imposed on each sentence and the entire text, as observed in previous works by Kaza-
meini et al. [105] and Mehta et al. [142].



Chapter 3

Metrics for Performance Evaluation

In this study, a comprehensive exploration of four distinct Natural Language Processing (NLP)
applications is undertaken, spanning two diverse genres: scientific texts and psychological
texts. Each application is subjected to unique assessments employing varied methodologies
and metrics. This chapter serves to elucidate the performance metrics employed, o↵ering a
detailed account of their computation methods and providing insight into the evaluation process
for each downstream task.

A brief presentation of each NLP application paired with its respective evaluation metrics
is given in Table. 3.1.

Table 3.1: NLP applications paired with their corresponding evaluation metrics.

Task Performance Evaluation Metric

Semantic Similarity Measurement Accuracy, F-1 score, Balanced accuracy,
Matthews correlation coe�cient

Relation Extraction F-1 score
Personality Trait Identification Accuracy, F-1 Score

Text Summarization ROUGE scores, METEOR

3.1 Categorizing Predictions

3.1.1 True Positive (TP)

This scenario arises when the model accurately predicts instances belonging to the positive
class. Essentially, the model correctly identifies or classifies examples that genuinely pertain
to the positive class.

18
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3.1.2 True Negative (TN)

This situation occurs when the model accurately predicts instances belonging to the negative
class. In this context, the model correctly identifies or classifies examples that do not fall within
the positive class.

3.1.3 False Positive (FP)

Also acknowledged as a Type I error, this situation unfolds when the model incorrectly predicts
an instance as belonging to the positive class when, in reality, it belongs to the negative class.
In essence, the model erroneously signals the presence of the positive class.

3.1.4 False Negative (FN)

Also recognized as a Type II error, this scenario transpires when the model inaccurately predicts
an instance as belonging to the negative class when, in fact, it belongs to the positive class. In
this instance, the model neglects to identify the presence of the positive class.

3.2 Accuracy

Accuracy stands as a ubiquitous metric for assessing the overall e�cacy of a classification
for semantic similarity measurement model. It gauges the proportion of correctly classified
instances relative to the total dataset [200, 234]. The accuracy formula is expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

where, TP stands for true positive, TN for true negative, FP denotes false positive and FN
is false negative. While accuracy provides a straightforward evaluation, its applicability may
be limited, especially with imbalanced datasets. In scenarios where one class prevails signif-
icantly, a model may achieve high accuracy by predominantly predicting the majority class,
potentially neglecting the minority class. Thus, it is prudent to complement accuracy with
additional metrics like precision, recall, the F-1 score [236].

3.3 Precision

Precision [234, 236] gauges the accuracy of positive predictions made by the model. It is
computed as the ratio of true positive (TP) predictions to the sum of true positives (TP) and
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false positives (FP). Precision specifically focuses on the model’s correctness in predicting
the positive class, o↵ering insights into the accuracy and reliability of such predictions. The
formulation for precision is as follows:

Precision =
TP

TP + FP
(3.2)

3.4 Recall

Recall [236] assesses the model’s proficiency in capturing all pertinent instances of the posi-
tive class. Its calculation involves the ratio of true positive (TP) predictions to the sum of true
positives (TP) and false negatives (FN). Recall is particularly focused on evaluating the com-
pleteness of the model’s predictions for the positive class, providing insights into its ability to
identify and capture all relevant instances. The formulation for recall is as follows:

Recall =
TP

TP + FN
(3.3)

3.5 F-1 Score

The F-1 score, a frequently employed metric in machine learning and statistical analysis, serves
as a pivotal tool for assessing the e↵ectiveness of a classification or semantic similarity mea-
surement model, particularly in the context of imbalanced datasets. By harmonizing precision
and recall, the F-1 score encapsulates a balanced evaluation, o↵ering a comprehensive gauge
of the model’s performance [236]. The formulation for the F-1 score is as follows:

F1-score =
2 ⇤ Precision ⇤ Recall

Precision + recall
(3.4)

Spanning a scale from 0 to 1, the F-1 score attains higher values to denote superior model
performance. Its utility shines in scenarios marked by class imbalance, where one class sub-
stantially outweighs the other. In such instances, conventional accuracy metrics may prove
misleading, as a model could achieve elevated accuracy merely by predicting the majority
class. The F-1 score, in contrast, o↵ers a more equitable assessment by accounting for both
false positives and false negatives, thereby providing a nuanced evaluation of the model’s ef-
fectiveness.
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3.6 Balanced Accuracy

For instances of imbalanced datasets, an alternative for evaluating binary classifier performance
is Balanced Accuracy (BACC) [33]. Traditional accuracy metrics may falter when faced with
imbalanced datasets, particularly when the model exhibits a bias toward the class with most
samples. In such cases, if the model consistently predicts the majority class, the conventional
accuracy metric would mirror the more frequent class’s dataset proportion. This misleadingly
high accuracy, however, does not reflect the model’s generalization capacity.

Consider the example where class “A” comprises 90% of a dataset and the remaining 10%
belongs to class “B”. If a binary classifier labels all samples as “A”, the traditional accuracy
would erroneously be 90%. BACC addresses this limitation by incorporating the average recall
obtained for both classes. It yields values within the range of (0,1) or as a percentage. A higher
BACC signifies superior model performance [200].

The BACC is computed as follows:

BACC =
T P

T P+FN +
FN

T N+FP

2
(3.5)

In the example above, where 90% of the dataset belongs to class “A” and 10% to class “B”, the
Balanced Accuracy (BACC) calculation yields 0.45 (or 45%).

3.7 Matthews Correlation Coe�cient

Another suitable metric when evaluating a binary classifier’s performance when confronting
an imbalanced dataset [168] is the Matthews Correlation Coe�cient (MCC). The principal ad-
vantage of the Matthews Correlation Coe�cient lies in its comprehensive consideration of the
four prediction categories. This feature renders it particularly valuable in scenarios involving
highly imbalanced datasets [30, 55, 140]. By incorporating these elements, MCC produces a
balanced assessment of the model’s performance.

The MCC score falls in the range -1 to +1. A score of +1 signifies perfect classification
performance, while -1 indicates a complete mismatch between the model’s predictions and the
true observations. An MCC score of 0 implies a performance equivalent to random predictions
[200, 235].

The MCC score for a binary classifier operating on an imbalanced dataset is calculated
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using the following equation:

MCC =
TP ⇥ TN � FP ⇥ FN

p
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.6)

3.8 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) stands as a suite of metrics es-
sential for the automated assessment of machine-generated text, particularly applied in domains
like text summarization and machine translation. Its fundamental objective is to gauge the con-
currence between the text produced by machines and the corresponding human-generated ref-
erence summaries. ROUGE holds a distinct recall-oriented character, emphasizing the recall
of important information in the generated text compared to the reference summaries. The
common practise for analysing the performance of machine summarizers is to assess uni-
gram ROUGE (ROUGE-1), bigram ROUGE (ROUGE-2), and longest common sub-sequence
ROUGE (ROUGE-L). ROUGE metrics span from 0 to 1, with elevated scores serving as in-
dicators of heightened resemblance between the automatically generated summary and the
reference [238].

3.8.1 ROUGE-1: Unigram ROUGE

ROUGE-1 orchestrates an assessment of the alignment of unigrams (individual words) between
the machine-generated text and the human-authored reference summaries. The computation
entails precision, recall, and F1-score, which are articulated as follows:

Recall =
Number of overlapping unigrams

Total number of unigrams in reference summary
(3.7)

Precision =
Number of overlapping unigrams

Total number of unigrams in generated summary
(3.8)

Rouge-1 = 2 ⇤
Precision ⇤ Recall
Precision + Recall

(3.9)

3.8.2 ROUGE-2: Bigram ROUGE

ROUGE-2 is dedicated to scrutinizing the correspondence of bigrams (successive pairs of
words) between the machine-generated text and the reference summaries. Its computational
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essence echoes that of ROUGE-1:

Recall =
Number of overlapping bigrams

Total number of bigrams in reference summary
(3.10)

Precision =
Number of overlapping bigrams

Total number of bigrams in generated summary
(3.11)

Rouge-2 = 2 ⇤
Precision ⇤ Recall
Precision + Recall

(3.12)

3.8.3 ROUGE-L: Longest Common Sub-sequence ROUGE

ROUGE-L, in contrast, focuses on determining the longest common subsequence (LCS) of
words between the machine-generated text and the reference summaries. LCS is identified as
the longest sequence of words shared between the two. ROUGE-L is computed as follow:

Recall =
Length of LCS

Total number of words in reference summary
(3.13)

Precision =
Length of LCS

Total number of words in gnerated summary
(3.14)

Rouge-L = 2 ⇤
Precision ⇤ Recall
Precision + Recall

(3.15)

3.9 METEOR

METEOR (Metric for Evaluation of Translation with Explicit ORdering) stands as a metric
widely applied for the evaluation of automatically generated summaries or translations. It
intricately amalgamates precision, recall, and alignment-oriented components, presenting a
holistic gauge of how e↵ectively the generated text aligns with reference summaries. The
evaluation metric is founded upon the harmonic mean of unigram precision and recall, wherein
a nuanced weighting system accords greater importance to recall over precision. METEOR
is intricately crafted to exhibit language-agnostic features, accommodating variations in word
order, stems, and synonyms using WordNet [92, 237, 239].

Initially, it constructs an alignment between the generated summary and the reference sum-
mary which is a set of mappings between unigrams and computes precision P as follows:

P =
m
wt

(3.16)

Here, m is the number of common unigrams found between the reference and generated sum-
maries and wt is the number of unigrams present in the generated summary. Then unigram
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recall R is computed as:
R =

m
wr

(3.17)

where, wr is the number of unigrams present in the reference summary. This unigram precision
and recall are combined to compute the harmonic mean with recall weighted 9 times more than
precision following the equation below:

Fmean =
10PR

R + 9P
(3.18)

Then a chunk penalty (p) is computed based on the number of chunks (c) in the generated
summary that map to the chunks from the reference summary following:

p = 0.5
 

c
um

!3

(3.19)

where a chunk is characterized as a grouping of single words that are contiguous in both the
proposed text and the original reference. The greater the length of contiguous matches between
the text being evaluated and the reference text, the fewer chunks are identified. um represents
the unigrams in the generated summary. Finally, the METEOR score (M) is computed as:

M = Fmean(1 � p) (3.20)



Chapter 4

Semantic Similarity Measurement

Semantic similarity measures the distance between two pieces of text in a semantic space. In
scientific publications, a citation does not refer to the exact span of text that is being referred
to in the referenced article. Connecting the citation to this span of text is called citation link-
age. This chapter covers two of our works that have formulated the citation linkage task as a
semantic similarity measurement problem.

This chapter contains two articles that deal with citation linkage as a semantic similarity
task: “Building a Synthetic Biomedical Research Article Citation Linkage Corpus”, and
“BioCite: Citation Linkage Framework for Biomedical Research Articles”.

Although published later than the second article, the former delineates the creation of a
silver standard corpus (one that is generated and annotated through mechanical means) and
its validation through rigorous analysis of a statistically representative sample of the corpus.
The creation of a silver standard corpus was necessitated by the lack of a class-balanced gold
standard citation linkage corpus (one that is human annotated) of a size required for deep
learning that reduces the bias towards the largest class.

In the latter article, we introduce two ensemble siamese architectures tailored for this task.
In the context of the siamese architecture, four sequential and four tree-structured neural net-
works serve as sentence encoders, with our experiments consistently revealing the superior
performance of the tree-structured models. This finding underscores the importance of incor-
porating additional syntactic information to enhance the semantic representation of the sen-
tences. Ensembles of the tree-structured neural networks show a further performance increase.
The best encoder model for the BioCite framework concatenates the feature representations of
the best performing constituent and dependency tree neural networks as the sentence represen-
tation.

25
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4.1 Building a Synthetic Biomedical Research Article
Citation Linkage Corpus

This section is based on the paper titled “Building a Synthetic Biomedical Research Article
Citation Linkage Corpus” co-authored with Robert E. Mercer that appeared in Proceedings of
the Thirteenth Language Resources and Evaluation Conference (LREC 2022) [203].

Citations are frequently used in publications to support the presented results and to demon-
strate the previous discoveries while also assisting the reader in following the chronological
progression of information through publications. In scientific publications, a citation refers to
the referenced document, but it makes no mention of the exact span of text that is being referred
to. Connecting the citation to this span of text is called citation linkage. In this paper, to find
these citation linkages in biomedical research publications using deep learning, we provide a
synthetic silver standard corpus as well as the method to build this corpus. The motivation for
building this corpus is to provide a training set for deep learning models that will locate the
text spans in a reference article, given a citing statement, based on semantic similarity. This
corpus is composed of sentence pairs, where one sentence in each pair is the citing statement
and the other one is a candidate cited statement from the referenced paper. The corpus is an-
notated using an unsupervised sentence embedding method. The e↵ectiveness of this silver
standard corpus for training citation linkage models is validated against a human-annotated
gold standard corpus.

4.1.1 Introduction

There are a variety of formats, writing styles, and purposes for di↵erent types of written docu-
ments. It is possible for a research article to reflect a current trend in the field of study, a new
invention, or a novel approach to solving a specific problem. During the process of writing a
research paper, the author examines past studies that are either important in solving the topic at
hand or have impacted the author’s current research paper ideas. Using a citation is the process
to refer to another article in the current research article [86]. In this way, citations serve as
bridges between di↵erent research papers. Citations free up the authors’ time by removing the
need to repeatedly write the same thing. While doing so, it provides readers with some context
for the issues being discussed in the body of the piece.

The concept of citation indexing was first introduced in 1964 by Garfield et al. [70] where
indexes contain the entirety of the references in a research document. Since then, various anal-
yses of citing have been presented (e.g., [184]). In biochemistry and physics research papers,
Garzone and Mercer [71] presented a method for determining the objectives of di↵erent cita-
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Table 4.1: Sample citations and the intended reference sentences that correspond (from: [86])

Example 1
Citing
Statement

Formalin fixation, the most often used fixative in histology, has various
advantages, including ease of tissue manipulation, optimal histological quality,
long-term preservation capability, and widespread availability at a reasonable
cost. [91]

Cited
Statement

The advantages of using formalin fixation are simplicity of tissue handling, the
ability to store wet material for an extended period of time, and its inexpensive
cost. [104]

Example 2
Citing
Statement

DNA samples are frequently harmed by exposure to excessively acidic
environment. [230]

Cited
Statement

DNA is fairly stable in mildly acidic solutions, although the beta glycosidic link
in the purine bases is hydrolyzed at around pH4. [29]

Example 3
Citing
Statement

Di↵erent PCR bu↵er systems and/or Taq polymerases may produce variable
results in real time PCR. [91]

Cited
Statement

There is a significant disparity between the outcomes obtained using the various
DNA polymerase-bu↵er solutions. [241]

tions. Furthermore, citation aids in the tracking of logical argumentation throughout multiple
research articles [144]. Citation is commonly used to maintain the trail of scientific research
argumentation across di↵erent scientific papers [162] and to summarise these documents [176].

When writing scientific research publications, citations are used when referring to a source
of inspiration for a cited idea. In the case of experimental biomedical research, only a small
portion of the referred material, which can be from the methodological, result, or any other
sections of the cited document, is often relevant. Applications like the ones listed above would
benefit from being able to extract just that relevant portion of the cited document’s text. In
addition, readers would not have to read an entire referenced document in order to locate the
mentioned text span.

The citation linkage task for biomedical literature is a complex process: a chemical com-
pound can be presented in multiple ways; the reactions between di↵erent drugs, chemical com-
ponents, and genes can be described in very di↵erent manners; and for research articles from
di↵erent sub-domains of this field, this information can be represented in di↵erent ways. Fur-
thermore, not a lot of resources are available for deep learning this task as annotating a large
corpus takes a lot of time and the annotators require domain-knowledge. At the same time,
deep learning based models are data hungry and require a lot of annotated data for such task.
A few corpora for the citation linkage task are currently available, but almost all are for the
domain of computational linguistics research articles, not for biomedical research literature
[122].

The objective of this paper is to present a method for generating a synthetic silver standard
corpus for the citation linkage task for biomedical research articles and to introduce a corpus
containing 74,568 sentence pairs to the research community. This corpus contains sentence
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pairs that are tagged as being semantically similar or not. However, since we are using semantic
similarity as a proxy for citation linkage, the corpus is intended to train models which view the
citation linkage task as a textual semantic similarity measurement task in the same way as Li
et al. [122]. We call this corpus a synthetic corpus as the dataset is annotated by unsupervised
sentence embedding models, not by humans. And finally, the e↵ectiveness of this dataset is
assessed by testing some linear and tree-structured neural network models, which are trained
with this silver corpus, on a human annotated gold corpus. The following is how the remainder
of the paper is organised: The citation linkage task is discussed in Section 2 while Section 3
provides some relevant research which tackles the citation linkage task by means of assessing
textual semantic relatedness between the citing and cited text spans. Data collection, data
cleaning, and the automatic silver corpus creation steps are discussed in Section 4. In Section
5, the assessment of the e↵ectiveness of this corpus is analyzed. Finally, this paper concludes
with a brief summary of this work along with some directions for future research.

4.1.2 Citation Linkage

Citations create a semantic connection between the articles that are citing and the manuscripts
that are being cited. While writing a research article, the authors use reference articles to
support their findings and hypotheses. At the same time, they try to acknowledge the findings
of the other researchers. Mentioning others’ works is also important to show the significance
and improvements brought by the authors with their current work.

A citation inside a research article refers to a section of the reference paper known as the
citation context [86]. An idea or issue addressed in the referenced work is often the focus of
this citation context. The citation intends to give some insight about the apposite background
information to the reader so the concept of the ongoing paper becomes more understandable
to them. It is possible to identify the methods, instruments, or discoveries and hypotheses in a
cited publication by looking at the citation context. An author may adapt the method mentioned
in the citing paper or modify it to some extent so that the performance improves or becomes
compatible to the domain where he/she wants to deploy that method. Moreover, the author
may conduct some experiments based upon the hypothesis of the cited paper. References to
those used methods and hypotheses help the readers to easily grasp the ideas presented in the
ongoing paper.

Citations, on the other hand, do not specify which part of the referenced article is being al-
luded to; rather, they simply state the title of the cited piece. As a result, if a reader is interested
in learning more about the issue, he or she has to study the entire cited document. Readers, on
the other hand, like research articles that provide them with specifics on the findings that were
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made during the study with clear and specific background knowledge. This necessitates a clear
understanding of the influences that have shaped this work.

A few examples of citation sentences and their related reference sentences in the cited
publication are shown in Table 4.1. In Example 1 a paraphrase of the cited sentence is given
which incorporates common words in a di↵erent sequence in the citing sentence. The term
“pH4” is replaced by “excessively acidic environment” in the second example. It is necessary
to map the pH scaling to the acidic situation to connect these two ideas. The citation sentence
in Example 3 interprets the target sentence’s information. It is obvious from these examples
that accurate mapping between sentences and words is necessary for creating the relationship
between the citing and referenced sentences.

This paper presents a synthetic silver standard corpus for training models to solve the cita-
tion linkage task for biomedical research articles by means of measuring semantic relatedness
between the citing and candidate cited statements. Usually, the citation context can comprise
from one single sentence to multiple paragraphs. However, models trained on this corpus can
link related sentences from the cited paper given the citing sentences from the ongoing paper.
This corpus comes with sentence pairs where one sentence in each pair is the citing statement
and another sentence in the pair is the candidate cited statement from the reference paper. The
sentence pairs in this corpus are labeled with either 0 or 1, where 1 indicates the sentences in
the pair are semantically similar and 0 denotes dissimilarity.

4.1.3 Related Works

There has been a significant amount of work done to analyse citations in scientific research
publications as a result of growing interest in citations [70, 71]. One approach is using citation
analysis to figure out which area (such as the abstract, introduction, methodological descrip-
tion, result analysis and discussion of the findings) of a cited article is being referenced by a
certain citation sentence. An exact citation span cannot be determined using this this type of
analysis.

To help with the citation linkage task, the CL-SciSumm Shared Task is examining three
di↵erent aspects: finding the text span in the referenced paper that best captures each citation
sentence (a “citance”); identifying the discourse facet of each cited text span; and the reference
paper’s summarization using text spans referenced by several citances. The last two tasks
go beyond the scope of the current paper. Text granularity considered in the first task are
complete sentences, fragments of sentences, and up to five sequential sentences. In this study,
while creating the corpus, we considered single sentences as the cited text span. A corpus of
computational linguistics research papers is used in the CL-SciSumm Shared Task.
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For the CL-SciSumm-17 shared task, Li et al. [121] used Jaccard similarity and inverse
document frequency to assess which sentence pairs in citing and cited sources were linked to
one another. Li et al. [119] computed the cosine similarity between sentence vectors. These
sentence vectors were the concatenations of the corresponding words’ 200 dimensional vectors
computed from word2vec [146]. In this work, they applied a convolutional neural network over
these sentence representations for generating better feature representations. Gidiotis et al. [72]
fine-tuned BERT for generating sentence representations for the very same task. Umapathy
et al. [220] used the Rapid Automated Keyword Extraction Algorithm [187] for detecting
key-phrase similarity and a BERT-based model for detecting citation text span.

Regrettably, just a few works in the biomedical field have attempted this citation linking
endeavour. And that’s why only one gold standard human annotated corpus is available for
this task in the biomedical field. In 2017, Houngbo and Mercer [85] created a small expert-
annotated corpus consisting of sentence pairs from the biomedical area and used di↵erent tra-
ditional machine learning algorithms for textual matching operations to establish a framework
for the citation linkage task.

4.1.4 Corpus Creation

In the biomedical domain, the only human annotated gold standard corpus available is from
Houngbo and Mercer [85]’s work. This corpus covers texts and citations only from the method-
ological sections from the biomedical research articles. The citation text span in this corpus is
limited to only one sentence. So, the models trained on this corpus are designed for measur-
ing semantics of the sentence pairs, though the citation text spans in scientific research papers
may cover one or multiple sentences and from di↵erent portions of the articles. The corpus is
annotated by experts with proper domain knowledge and contains 3857 sentence pairs with 23
citing statements. The sentence pairs are annotated on a scale of 1 to 5 ((minimum to maximum
similarity between the citing and candidate cited statement) and 0 (no similarity between citing
and candidate cited sentence).

The major problem while working with this corpus is the highly imbalanced proportion
between positive and negative samples. Out of these 3857 samples present in this corpus, only
81 samples are annotated with similarity score 4 and 5. That’s why models trained with this
corpus become highly biased towards the negative outcome. On the other hand, annotating a
corpus with a su�cient number of samples which is balanced in proportion of the positive and
negative samples is a very time consuming process and demands expert domain knowledge.
And without such a dataset, it is tough to train data hungry deep learning models for the cita-
tion linkage task in the biomedical domain. To overcome these shortcomings, we present our
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Table 4.2: Regex for detecting distinct patterns in the data

synthetic corpus of 74,568 sentence pairs from 2,736 citing and 138 cited papers covering 3
biomedical sub-domains: chemical biology, biochemistry and cell biology. We call this cor-
pus synthetic as no human supervision is used for data annotation. Rather, the unsupervised
sentence embedding model Sent2Vec [161] is used to serve this purpose. For assessing the
e↵ectiveness of this synthetic corpus, models are trained with this corpus, but validated and
tested against the gold standard corpus of Houngbo and Mercer [85]’s work. However, the
scoring factor of this gold standard corpus is modified for our work. Similarity scores of the
samples with score 0 to 3 are replaced by 0 and samples annotated with similarity score 4 and
5 are labelled with 1. We chose Sent2Vec for creating the silver standard synthetic corpus be-
cause of it’s ability to work with out of vocabulary words and doesn’t require any pre-trained
word embeddings [161].

The overall corpus creation process is described here in three steps: i) data collection, ii)
data cleaning, and iii) data annotation.
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4.1.4.1 Data Collection

Sent2Vec, like all other unsupervised models, demands a large amount of training data. That’s
why for training the model, 4,843,756 sentences from 28,310 research documents are accumu-
lated. These documents from more than 90 di↵erent fields of biomedicine are extracted from
BioMed Central.

For the purpose of creating the sentence pairs with citing and cited sentences, 138 articles
from the fields of cell biology, biochemistry, and chemical biology were chosen at random from
a pool of these 28,310 research papers and these papers are considered as the cited reference
papers. A total of 2,736 citing papers (cite at least one of the papers from these 138 reference
papers) are collected manually and from them, only the relevant citing statements are extracted.

4.1.4.2 Data Cleaning

As the research articles are accumulated from di↵erent biomedical sub-domains, they come
with a variety of writing formats and representations. Furthermore, the same equations may be
represented in di↵erent ways with di↵erent symbols and variable names. That’s why, to avoid
confusion, all of the equations in these cited and citing papers are replaced with “< equ >”. All
of the isolated numbers are also replaced by “< num >”. However, if any number comes as a
part of any chemical compound name, it is preserved without any modification. The documents
contain some symbols which have no importance in terms of representing the semantics neither
at the sentence level nor at the document level. Such symbols are identified and deleted from
the data. Citation indexes like “[xx]” are also deleted as they have no semantic value. Some
Greek letters have di↵erent usages in di↵erent scenarios. For instance, ↵ has no importance in
terms of semantics when it is used as a variable in an equation, but, when it comes as a part
of a chemical name, like “↵-carbon”, it di↵erentiates the chemical from other variants. That’s
why when such Greek letters appear as a part of equations, they are kept untouched and the
whole equation is replaced with “< equ >”. But, when these Greek letters come as a part of
chemical names, they are replaced with their written form (e.g., ↵ in “↵-carbon” is replaced
by alpha). Finally, symbols which are represented in multiple ways are replaced with their
corresponding common format of representations and then all the data are lower-cased. Table
4.2 shows the regex commands used for the data cleaning step. Finally, all the unnecessary
symbols are deleted.

4.1.4.3 Data Annotation

Following the cleaning of the sentences, the unsupervised sentence embedding model Sent2Vec
is trained. This step is necessary in order to properly annotate the pairs of citing and candidate
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Table 4.3: Hyper-parameter settings used for training Sent2Vec. The selected parameter values
are marked as bold.

Hyper-parameters Values
Embedding Dimension 700/600/500/400/300/200

Iterations 20/15/10/5
Window Size 20/10
Learning Rate 0.2/0.1/0.05/0.01

Negative Samples 10

Loss Function
softmax/

Hierarchical softmax/
Negative sampling

Sampling Threshold 0.0001

cited sentences. That is why Sent2Vec is trained on the data using a variety of parameter
settings. Table 4.3 illustrates di↵erent hyper-parameter settings. Hyper-parameter values for
the optimal sentence embedding are indicated, as well.

In order to produce a sentence pair for each sentence in the cited article, after the data has
been cleaned, sentence pairs are formed in which one sentence is taken from the cited article
and the other is taken from the citation. A total of 522,398 sentence pairings are generated in
this step.

The Sent2Vec model is then used to generate the vector representations of individual sen-
tences from each pair and after that, cosine similarity between sentence vectors for citing and
candidate cited statements in each pair is computed. Performance is evaluated against the gold
standard validation set from Houngbo and Mercer [85]’s work for varied cuto↵ cosine similar-
ity values. This validation set consists of 800 sentence pairs with 20 randomly chosen positive
samples. Samples with cosine similarity score more than the cuto↵ are tagged with similar-
ity score 1 (indicates the citing and the candidate cited statements are semantically similar)
and 0 otherwise (there is no similarity between the citing and the candidate cited sentences).
This cuto↵ value is determined by looking at the Balanced Accuracy, Matthews correlation
coe�cient (MCC), and F1 score metrics over the validation dataset. Sentence vectors with
500-dimensional representations and a cuto↵ value of 0.57 produce the best results.

However, after this approach it is found that the vast majority of these 522,398 sentence
pairs have annotation value 0. Any model will be biased towards the negative outcome, if it
is trained with this corpus. Because of this, 74,568 samples are selected from these pairs to
ensure that the positive and negative samples are evenly distributed. For this selection process,
all the positive samples (annotated with similarity value 1) are retained, while for each citing
statement, n negative samples are chosen randomly where for that citing sentence n positive
samples are found. Thus, this evenly distributed silver standard corpus with 74,568 is gener-
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Figure 4.1: Annotated sentence pair creation for synthetic corpus build-up.

ated. The whole corpus creation process is portrayed in Fig 4.1.

4.1.5 Evaluation of the Synthetic Corpus’s E↵ectiveness

We have evaluated the quality of the synthetic corpus in two steps. In the first step, an anal-
ysis is performed on a statistically valid sample of the corpus (95% confidence, 3% margin
of error) with some human annotators’ help, and in the second step, various sequential and
tree-structured models are trained with this corpus and the trained models’ performances are
evaluated on a gold standard test set. For the statistical analysis, from the pool of 74,568 cit-
ing and candidate-cited sentence pairs, we randomly selected 750 positive and 750 negative
samples for evaluation of the annotation quality (labelled accordingly in the synthetic corpus).
Two groups of expert annotators both annotated the 1500 pairs of sentences. There were three
people in each group, and they each annotated 500 samples. In other words, each 500-sample
chunk was annotated by two people, one from each group. Each reviewer also expressed their
level of confidence in the sample annotations they were given. The inter-annotator reliability
between the human experts and between the human experts and the synthetic corpus was then
calculated using Cohen’s . One group found 731 positive and 769 negative examples in 1500
sentence pairings, while the other found 709 positive and 791 negative. The annotator groups
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agreed upon 706 positive samples and 765 negative samples. This study’s  reliability factor
is 0.96. For 715 and 701 positive samples, the synthetic silver corpus and the first and second
annotator groups agreed on annotation decisions, respectively. In both situations, the anno-
tators agreed with the synthetic silver corpus on all of the negative samples’ annotations. In
terms of , the first group of annotators and the mechanically created corpus have an inter-rater
reliability of 0.95 and between the second annotator group and the synthetic corpus, 0.93. By
comparing these two sets of results, we can see that the automatic annotations closely match
the expert annotations. When evaluating these high  values, it is important to keep in mind
that the annotators were given a 50/50 distribution of positive and negative samples .

For assessing the e↵ectiveness of the introduced silver standard synthetic corpus, we con-
ducted three experiments. In the first experiment, we trained di↵erent sequential and tree-
structured deep neural network models with 3057 samples with 61 positive samples from the
gold standard dataset [85] and tested them against 400 sentence pairs containing 10 positive
sentence pairs from the same dataset. The remaining data from this dataset was used for the
validation purpose. In the second experiment, we trained the same models with the synthetic
silver standard data and then validated, and tested against the gold standard data just like we
did in the first experiment. If the results are found better in the second case, then it proves the
e↵ectiveness of training models with the proposed synthetic corpus. In our last experiment,
3057 samples containing 61 positive samples are used for the testing purpose and the remain-
ing data are used for the validation of the models. Results from this experiment shows how
good the models perform on a larger portion of the gold standard dataset if they are trained
with our synthetic dataset.

The base for all of the models used for the assessment of the quality of the synthetic corpus
is the Infersent [53] architecture. As the sentence encoders in the Infersent architecture, four
sequential and two tree-based models are used. The basic working principle of Infersent is the
use of siamese sentence encoders and applying concatenation, absolute di↵erence, and point
wise multiplications over the sentence representations computed from the identical encoders.
Finally, this feature representation is used for the downstream tasks. In our experiments, one
encoder is fed with the citing sentence and the other encoder is fed with the candidate cited
sentence. Then after the encoding and the above stated three operations are done, it is fed to a
two-way softmax classifier layer for computing the binary semantic relatedness value. Outcome
1 indicates that the citing sentence is actually referring to the candidate cited sentence and 0
indicates the opposite.

In the Infersent architecture, Bi-LSTM with max-pooling, hierarchical CNN [269], Bi-
LSTM with inner [127] and hierarchical attention [249] mechanisms, and two variants of
tree-transformers, dependency (DT-Transformer) and constituency (CT-Transformer) tree-
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Table 4.4: Performance analysis of di↵erent models trained with the gold corpus [85]. The test
set contains 400 samples from [85]. The performance metrics are TP: true positive; FP: false
positive; TN: true negative; FN: false negative, P: precision, R: recall, F1: F1 score, MCC:
Matthews correlation coe�cient; Acc: accuracy, BAcc: balanced accuracy.

Model TP FP TN FN P R F1 MCC Acc
(in %)

BAcc
(in %)

hCNN 2 0 390 8 1 0.2 0.33 0.44 98 60
Bi-LSTM & Max-Pooling 1 0 390 9 1 0.1 0.18 0.31 97.75 55

Bi-LSTM & Inner Attention 1 2 398 9 0.33 0.1 0.15 0.17 97.25 54.74
Bi-LSTM & Hierarchical Attention 1 2 398 9 0.33 0.1 0.15 0.17 97.25 54.74

CT-Transformer 2 1 389 8 0.67 0.2 0.31 0.36 97.75 59.87
DT-Transformer 1 2 398 9 0.33 0.1 0.15 0.17 97.25 54.74

Table 4.5: Performance analysis of di↵erent models trained with the synthetic silver corpus.
The test set contains 400 samples from [85]. The performance metrics are the same as for Table
4.4.

Model TP FP TN FN P R F1 MCC Acc
(in %)

BAcc
(in %)

hCNN 7 9 381 3 0.44 0.7 0.54 0.54 97 83.85
Bi-LSTM & Max-Pooling 7 7 383 3 0.5 0.7 0.58 0.58 97.5 84.10

Bi-LSTM & Inner Attention 8 6 384 2 0.57 0.8 0.67 0.67 98 89.23
Bi-LSTM & Hierarchical Attention 8 5 385 2 0.62 0.8 0.69 0.69 98.25 89.35

CT-Transformer 9 5 385 1 0.64 0.9 0.75 0.75 98.5 94.36
DT-Transformer 9 3 387 1 0.75 0.9 0.82 0.82 99 94.62

transformers [6], are used as the encoders. All of the encoder architectures are fed with word
embeddings from Bio-RoBERTa [116]. The hidden layer in all models contains 512 neurons
in all cases and a stochastic gradient descent optimizer is used. The hierarchical CNN (hCNN)
concatenates features from 4 layers of convolution operations and both the inner and hierar-
chical attention mechanisms come with 4 heads for focusing on 4 di↵erent portions of the
sentences which are concatenated in the end. Both tree-transformers use 6 parallel heads with
50-dimensional key, query and value matrices and the Adagrad optimizer is used. For all of the
sentence encoder models, the learning rate is initialized to 0.1. This learning rate is divided by
5 if the validation accuracy reduces in the subsequent epoch.

Tables 4.4 and 4.5 show the performances of the models over the same test set containing
400 sentence pairs from Houngbo and Mercer [85]’s human annotated corpus averaged with
four similarly sized randomly chosen subsets. When the models are trained with training set
data from the gold standard corpus (3057 samples containing 61 positive samples), no model
could retrieve more than 2 out of 10 positive samples from the test set (Table 4.4). The overall
accuracy found for all the models are always more than 97% as the data contains more than
97% negative samples. It proves that when the models are trained with this human annotated
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Table 4.6: Performance analysis of di↵erent models trained with the silver standard synthetic
corpus. The test set contains 3057 sentence pairs from [85]. The performance metrics are the
same as for Table 4.4.

Model TP FP TN FN P R F1 MCC Acc
(in %)

BAcc
(in %)

hCNN 46 576 2420 15 0.07 0.75 0.13 0.20 80.69 78.09
Bi-LSTM & Max-Pooling 53 359 2637 8 0.13 0.87 0.22 0.31 88.02 87.45

Bi-LSTM & Inner Attention 54 349 2647 7 0.13 0.89 0.23 0.32 88.38 88.43
Bi-LSTM & Hierarchical Attention 56 339 2657 5 0.14 0.92 0.25 0.34 88.75 90.24

CT-Transformer 57 315 2681 4 0.15 0.93 0.26 0.35 89.56 91.46
DT-Transformer 57 301 2695 4 0.16 0.93 0.27 0.36 90.02 91.70

corpus, they are biased towards the negative outcome. But, when the same models are trained
with the proposed silver standard corpus, the models retrieve 7 to 9 positive samples out of 10
correctly. The best result is found for the DT-Transformer model. It accurately determines 9
positive samples with a balanced accuracy of 94.62%. These results prove the e↵ectiveness of
the proposed silver standard dataset.

Table 4.6 shows the performance of the various models on the original gold standard train-
ing set [85] averaged with four similarly sized randomly chosen subsets when trained with the
synthetic silver standard corpus. When the models are trained with the silver corpus, models
achieve up to 91.70% balanced accuracy. These models utilize recent deep learning techniques
and attention mechanisms which allow them to put more focus on the important portions of
the text. The tree-transformer models outperform all the sequential models as they incorporate
word level dependency and phrase level information. With these tree structured transformer
models, 57 out of 61 positive pairs are extracted accurately. These results reflect that if the
models are trained with the proposed synthetic corpus, they perform very well over the gold
standard dataset.

4.1.6 Conclusion

In this paper, we introduce a synthetic silver standard corpus for the citation linkage task in the
biomedical domain and also a method to annotate such a corpus without any human help or
expert opinion. Performance of the models trained with this dataset reflects the e↵ectiveness
of this corpus. This corpus will be made publicly available. As we started this project a couple
of years ago, we used Sent2Vec for the sentence embedding. In future work, di↵erent BERT-
based models can be utilized. One limitation of this work is that the considered citation text
span is limited to a single sentence only. However, in real application scenarios, the referenced
text may span over multiple sentences. Keeping this in mind, we are trying to build a gold
and a silver standard corpus for the citation linkage task where the text span can be single to



Chapter 4. Semantic SimilarityMeasurement 38

multiple sentences.

4.2 BioCite: A Deep Learning-based Citation Linkage
Framework for Biomedical Research Articles

This section is based on the paper titled “BioCite: A Deep Learning-based Citation Linkage
Framework for Biomedical Research Articles” co-authored with Robert E. Mercer that ap-
peared in the Proceedings of the 21st Workshop on Biomedical Language Processing (BioNLP
2022) [202].

Research papers reflect scientific advances. Citations are widely used in research publica-
tions to support the new findings and show their benefits, while also regulating the information
flow to make the contents clearer for the audience. A citation in a research article refers to
the information’s source, but not the specific text span from that source article. In biomedical
research articles, this task is challenging as the same chemical or biological component can be
represented in multiple ways in di↵erent papers from various domains. This paper suggests
a mechanism for linking citing sentences in a publication with cited sentences in referenced
sources. The framework presented here pairs the citing sentence with all of the sentences in the
reference text, and then tries to retrieve the semantically equivalent pairs. These semantically
related sentences from the reference paper are chosen as the cited statements. This e↵ort in-
volves designing a citation linkage framework utilizing sequential and tree-structured siamese
deep learning models. This paper also provides a method to create an automatically generated
corpus for such a task.

4.2.1 Introduction

Research articles from di↵erent domains use varying writing styles and formats. They serve
di↵erent purposes as well. A research publication may discuss current research trends, a novel
discovery, or alternative approaches to solving a problem in a given domain. While writing a
research article, the author mentions prior research that was either significant in resolving the
same topic or impacted the author’s views mentioned in the current research paper. This refer-
encing another document in a research piece is referred to as a citation [86]. This way, citations
establish connections between distinct research literature as well as alleviating authors’ writing
burden by preventing them from having to write the same thing mentioned in another research
article again. Simultaneously, it assists readers in acquiring prior knowledge about a subject
that may be necessary to comprehend the ideas contained in the ongoing research work.
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The idea of citation indexing was first introduced in 1964 where indexes contain the ref-
erences in a research document. Citation-based bibliometrics are utilized to evaluate the sig-
nificance of a research work [70]. In response to the growing popularity of citation indexing,
a more critical analysis of citing was later suggested. Garzone and Mercer [71] devised a
mechanism for determining the objective of a reference in biochemistry and physics research
publications. Moreover, citations help to keep track of the logical argumentation across various
research articles [144]. Prominent applications of citation incorporate maintaining the trail of
scientific research argumentation across di↵erent research articles [162] and summarization of
these documents [176].

In scientific research publications, a citation refers to the source article from which the
cited notion is drawn. However, in experimental biomedical research articles, a citing sentence
usually only relates to a small text span of the cited document’s contents. This small span of
text can be from the method section, result analysis section or any other section of the reference
document [208]. The above-mentioned applications would substantially benefit if such a text
span could be extracted from the original document. It would also free up the readers from
having to read the full document to locate the cited piece of text.

The citation linkage task is more complicated for biomedical research papers as the same
chemical or biological component has various representation formats and the use of these vari-
ations is very common in such research articles. For example, the chemical compound carbon
dioxide can be represented as CO2 as well as O=C=O, whereas in some articles the writers
write the whole name in plain text (carbon dioxide). Similarly, there are multiple representa-
tions to indicate the same reactions between various genes, chemicals, and drugs. On top of
that, the only human annotated corpus available for the citation linkage task in the biomedical
domain is from [85] which comes with 3857 sentence pairs which are highly imbalanced with
only 2% positive samples and 98% negative samples. The size and imbalanced nature of this
corpus makes it di�cult to train deep learning models on this dataset. To overcome this, we
propose an automatically generated corpus for this task containing 74,568 sentence pairs.

This paper has two objectives: first, introducing an automatically generated corpus for the
citation linkage task for biomedical research papers and second, providing a framework for
this task to retrieve the cited text span from the reference paper given the citing sentence by
means of measuring the semantic similarities between the citing sentence and candidate cited
sentences from the referenced paper. The cited text span can be a single sentence, part of a
sentence or even one or more paragraphs [85]. However, for this task this text span is restricted
to a single sentence like Li et al. [121]. Considering the first objective, we introduce an auto-
matically generated corpus containing 74,568 sentence pairs and also an approach to annotate
data automatically without any human e↵ort. The quality of the data annotation is evaluated by
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annotating a portion of the dataset by human experts and then measuring Cohen’s  among the
human annotators’ decisions and the automatically generated annotation labels. Sentence pairs
from this dataset are used only for training the models for the citation linkage task. And for the
second aspect, we have investigated multiple sequential and tree-structured neural networks
and presented one ensemble architecture, which we call BioCite, that computes the seman-
tic similarity between the citing statement and all of the sentences in the referred document.
The performance of the model is tested against the expert annotated dataset from Houngbo
and Mercer [85] which contains citing sentences that refer to methods statements in the cited
documents. The outline for the paper is: Section 4.2.2 gives a brief description of the citation
linkage task and Section 4.2.3 mentions and discusses a few prominent works for the cita-
tion linkage task. Section 4.2.4 discusses the automatically generated corpus creation and the
framework design. The performance of the models are reported and analyzed in Section 4.2.5.
The parameters of the models are also described in this section. The paper ends with a brief
summary and possible future directions of this research.

4.2.2 Citation Linkage

Citations construct semantic bridges between citing and cited manuscripts. To support the
findings, claims and hypotheses, authors cite several resources while preparing manuscripts.
They also try to address the results and findings of the other research works. It is also important
to mention others’ works, in order to demonstrate the authors’ significance and progress with
their current work.

A citation in any research paper focuses on some specific sections of the referenced article
acknowledged as the citation context. This citation context often focuses on a specific idea or
issue in the referenced manuscript [86]. The intent of a using citation is to provide the readers
with the apposite background information for a better understanding of the concepts introduced
in the citing paper. The citation context can reveal information about a cited publication’s
hypotheses, findings, methodologies, etc. In order to improve the performance or make the
method compatible with the domain for which it is intended to be used, an author may adapt
or modify the method described in the citing paper to the extent necessary. Aside from that,
the author may undertake experiments based on the idea presented in a cited paper to confirm
or refute the idea presented in that work. References to the hypotheses and methodologies that
were employed in the referenced paper aid the readers to grasp the concepts presented in the
current work.

However, citations only provide the source of information which is being referred. The
current citation indexing approach does not provide a way to indicate which text span from
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the cited research manuscript is actually being touched on. It provides no method other than
going through the whole referenced article for the reader if he or she wants to grasp the idea
properly. On the other hand, research articles that include detailed information on the study’s
discoveries, as well as relevant background information, are more appealing to readers. This
necessity has influenced the work we are presenting in this paper.

The author can cite a paper by paraphrasing the statements from the cited paper. He or she
can also elaborate some statements from the cited paper. For example in the citing statement,
“DNA samples are frequently harmed by exposure to excessively acidic environment”, Wang
et al. [230] explains that "pH4" is an “excessively acidic environment” when citing “DNA is
fairly stable in mildly acidic solutions, although the beta glycosidic link in the purine bases is
hydrolyzed at around pH4.” [29]. Sometimes these citations are the interpretations of the cited
statements, e.g., the citing sentence “Di↵erent PCR bu↵er systems and/or Taq polymerases
may produce variable results in real time PCR.” [91] is nothing but an interpretation of the
cited sentence “There is a significant disparity between the outcomes obtained using the various
DNA polymerase-bu↵er solutions.” [241]. As these examples demonstrate, precise mapping
between words and sentences is required to establish a connection between the citing and cited
sentences.

This paper provides a citation linkage framework for biomedical research articles along
with an automatically generated corpus comprising 74,568 sentence pairs. The framework at
first generates sentence pairs with the citing sentence and all the sentences from the referenced
paper. Then, the model measures the semantic similarity scores between the sentences in
each pair. Based on these similarity scores, it retrieves the actual cited sentences from the
referenced manuscript. We have formulated this semantic similarity measurement task as a
binary classification task where each sentence pair is predicted with either label 1 or label 0.
Sentence pairs predicted with label 1 are selected as the cited sentences given the particular
citing sentence.

4.2.3 Related Work

The study of citations in scientific research has led to a lot of work. Citation analysis attempts
to identify which section (i.e., abstract of the paper, introduction of the problem statement,
description of methods, analysis of result, etc.) of the referenced article this sentence refers to
[70, 71]. However, this form of study cannot pinpoint the citation span.

Another type of work is to determine the citation span. PolyU [39] applied RankSVM over
chunks of sentences to predict the cited text span. Baruah et al. [19] computed cosine similarity
of word embeddings for the citation linkage task. Yeh et al. [253] applied majority voting to
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six machine learning classifiers over the lexical, knowledge-based, corpus-based, syntactic and
surface features for this task.

The CL-SciSumm Shared Task tries to solve three aspects: find the cited text span given
the citation sentence (“citance”), identifying the discourse facet of the cited sentence and sum-
marise the referred article using only the text spans that are quoted many times in the referenced
document. However, the later two sub-tasks are out of the scope of this work. Ma et al. [134]
applied di↵erent classifiers and voting mechanism over similarity, rule and position-based fea-
tures to determine the similarity between the citing and cited statements for CL-SciSumm-17.
The citation linkage between citing and cited sentence pairs was determined by Li et al. [121]
utilizing inverse document frequency and Jaccard similarity. In their following works, they
computed the sentence vectors by concatenating 200 dimensional word vectors [119] and then
applying a convolutional neural network (CNN) over that concatenated vector representation
[122]. In both cases, the cited text span is determined by measuring the cosine similarities
between the citing and candidate cited statements. Other works, such as AbuRa’ed et al. [2]
have also worked with the CL-SciSumm corpus.

Recently, BERT-based models have been deployed for the citation linkage task and are
being used in many experiments. Gidiotis et al. [72] fine-tuned BERT to determine the referred
cited sentences from the cited document. Zerva et al. [259] applied a CNN over SciBERT-
based features [21] to determine which text span in the cited article is actually being referred.
They concatenated the features from the BERT-based model for feature generation. Umapathy
et al. [220] utilized key-phrase similarity using the Rapid Automated Keyword Extraction
Algorithm [187] and a BERT-based architecture for cited text span identification.

However, only a few citation linkage works are found for biomedical research papers. Cita-
tion linkage for biomedical research articles is more challenging due to various representations
of the same component. One notable work for this domain is from 2017, where Houngbo and
Mercer [85] used traditional machine learning approach over their own small expert-annotated
corpus. And so far, this is the only human annotated corpus for the citation linkage task in the
biomedical domain.

4.2.4 BioCite: Description of the Framework

The development of the framework involves two major steps: creating a balanced automatically
generated training corpus of reasonable size and building a framework for determining the
referred statements from the cited document for a particular citing statement.



Chapter 4. Semantic SimilarityMeasurement 43

4.2.4.1 Corpus Creation

The only expert-annotated corpus for the biomedical domain to serve the purpose of our work
is from Houngbo and Mercer [85] which comes with only 3857 sentence pairs. For training,
the major problem with this dataset is the class imbalance: only 81 positive pairs which is only
2% of the corpus. Eventually, training any model with this corpus would make it biased to-
wards negative outcome. At the same time, manually annotating enough data from biomedical
and biochemical research articles for this task is time consuming. So, we have created an auto-
matically generated corpus of 74,568 sentence pairs spanning three biomedical sub-domains:
biochemistry, cell biology and chemical biology. We are calling this corpus automatically
generated as no human annotation has been used for generating these sentence pairs. For the
validation and testing of the models, we have used the validation and testing sets from the
Houngbo and Mercer [85] corpus (800 samples with 20 positive ones for validation and 3057
samples containing 61 positives for test set). The sentence pairs in the training set are anno-
tated with 0 (not semantically similar) or 1 (semantically similar) to make it compatible with
the validation and test set.

We collected 28,310 research documents from BioMed Central spanning multiple biomed-
ical sub-domains. From these documents, 138 are randomly chosen from the above-mentioned
three sub-domains and then corresponding citing statements from 2736 papers (manually col-
lected) citing these 138 articles are extracted manually. The citing statements are then paired-
up with all of the sentences from the corresponding cited documents, ending-up with 522,398
pairs.

Sentences of each pair are fed individually to the Sent2Vec [161] model, which is trained
over all of the research documents we accumulated, and the cosine similarity between the
paired sentences is measured. Pairs with cosine similarity value greater than a cuto↵ value 0.57
(selected after testing against the validation set) are labelled 1, 0 otherwise. We experimented
with di↵erent cut-o↵ values and plotted the results on AUC and ROC curves while testing on
the validation set from the expert annotated corpus [85]. From there, we chose the cut-o↵ value
for which the best validation accuracy was found. From there As there are many fewer positive
samples than negative ones, for each citing statement, negative samples are randomly chosen
for each citing sentence to balance the classes. In this automatically generated corpus, for each
citing sentence, an equal number of positive and negative samples are preserved. The overall
process of this corpus creation is illustrated in Figure 4.2.
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Figure 4.2: Automatically generated corpus build-up: Sentence pair creation and annotation.

4.2.4.2 Semantic Similarity Measurement Module

The aim of building this citation linkage framework is to link the citing sentence to the refer-
enced text span in the referenced biomedical research article. To solve this challenge, we have
used a variety of supervised deep learning-based models to estimate the semantic similarity
between the citing and cited text span where the text span is limited to a single sentence. The
predictions of these models are set to binary class labels: 0 and 1. Here 1 indicates that the
candidate cited and the particular citing statement are semantically similar and it can be inter-
preted as the candidate cited sentence is truly being referenced by the citing sentence and if the
prediction value is 0, it represents the candidate cited sentence is not being referred.

The base of the sequential and tree-structured neural network models is InferSent [53]: a
siamese architecture. This is a supervised sentence representation model which is able to work
with sentence pairs and has been used in many cases for semantic relatedness measurement
tasks [6, 182]. The overview of the training process of InferSent for the semantic similarity
measurement task is portrayed in Figure 4.3. In InferSent two identical encoder neural network
topologies are used with identical parameter settings. The citing sentence (S citing) and the cited
sentence (S cited) are encoded by them in parallel. This is followed by generating a feature map
that concatenates concatenation, absolute point-wise di↵erence, and point-wise multiplication.
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Figure 4.3: InferSent training for the citation linkage task.

This feature map is then loaded into the dense and softmax layers in sequence to predict the
binary class label. As the encoder models, four sequential and four tree-structured neural
networks are used. The functioning principles of these models are first outlined, and then the
ensembles of them are discussed. The best encoder model for the BioCite framework is chosen
in the end based on the performances of the investigated models.

4.2.4.3 Sequential Encoders

As the encoder for the InferSent model, four sequential models are applied. The first one is
the Bi-LSTM with a following max-pooling layer. The second encoder model applies inner
attention [127] over the Bi-LSTM output features for producing the sentence representations.
The third encoder model utilizes the hierarchical attention [249] in place of inner attention over
the Bi-LSTM. This attention mechanism was introduced for document classification where at
the first layer it attends on the words for generating sentence representation and in the second
layer it attends over the sentences for paragraph or document representation. As our work is
limited to single sentences, we have used only the first layer of this attention mechanism. This
approach is designed in such a way that it can focus on four di↵erent parts of the sentence.
Thus it generates four sentence representations, which are concatenated to form the sentence
vector. The last sequential encoder we investigated is the hierarchical CNN with four layers of
convolution operations, each followed by one max-pooling operation. These four feature maps
are concatenated in the end to generate the sentence representation vector.
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4.2.4.4 Tree-Structured Encoders

Sequential neural networks provide reasonable sentence representations. However, they can’t
preserve structural information and miss semantic compositionality. Tree-structured neural
networks, on the other hand, can preserve both semantic and syntactic properties of the text by
working with the parse tree. For the tree-structured neural network models we investigated the
dependency and constituency tree-transformers with both multi-head and multi-branch atten-
tion mechanisms over child nodes’ representations [6]. For completeness, we provide details
of these tree-transformers that are developed therein.

A constituency tree contains words at leaf nodes only, whereas a dependency tree has a
word at each node. So, while traversing a dependency tree, it is required to consider both the
child and corresponding parent nodes whereas for constituency tree, only after traversing every
sub-tree the non-terminal intermediate nodes can be calculated. So, in both cases, the children
nodes are considered. This approach [6] uses self attention mechanism for attending the child
nodes. This attention mechanism uses three matrices: key, value and query like the transformer
model [223] (Equ. 4.1).

↵ = softmax(
query keyT

p
dk

)value (4.1)

Here dk is the dimension of the key, value and query matrices. For this experiment the dimen-
sion of all these matrices are kept the same. n copies of these matrices are generated for n
branches of the multi-branch attention mechanism. Here, n is the number of branches to be
used. Then scaled dot product is used as in Equ. 4.2:
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where !q
i , !k

i , !
v
i are the hyper-parameter weight matrices for query, key, and value, respec-

tively.

Following this scaled dot product operation, a residual connection is employed over these
tensors �. A layer-wise batch normalization is used in the following step which is multiplied
with a scaling factor ⌧ (Equ. 4.3). Over every �̃, position-wise CNN (PCNN) is then employed
(Equ. 4.4). By applying weighted summation then, the attention encoded semantic sub-spaces’
representation are generated (Equ. 4.5). Here � 2 Rn is a hyper-parameter. In the end, an-
other residual connection is established with BranchAttn which is then fed to a non-linearity
function tanh and an element-wise summation function EWS is done to produce the parent node
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representation (Equ. 4.6) [6].

�̃i = LayerNorm(�i!
b
i + �i) ⇥ ⌧i (4.3)

PCNN(x) = Conv(Relu(Conv(x) + b1)) + b2 (4.4)

BranchAttn =
nX

i=1

�iPCNN(�̃i) (4.5)

ParentNodeRep = EWS(tanh((�̃ + �)! + b)) (4.6)

For multi-head attentions, attention matrices key, value and query are projected h times
[223] and it is calculated as follows:

MultiHead(query, key, value) = Concat(head1, ..., headh)WO (4.7)

where, for each head,

headi = ↵(queryWq
i , keyWk

i , valueWv
i ) (4.8)

All of the Ws are the hyper-parameter matrices which get updated during training.

4.2.4.5 Ensemble Architectures

After investigating the sequential and tree-structured neural network models, we experimented
with two ensemble models. The first ensemble architecture utilizes all the models investigated
here. After all the models are trained separately, each sentence pair is fed to all the models
in parallel. Each model individually predicts the semantic similarity score and in the end,
the final similarity value is selected by applying a winner-takes-all approach [188] over all the
predictions. In the second approach we used only the tree-transformer models. The dependency
tree-transformer is able to preserve the word level dependency between di↵erent part of the
sentence, whereas the constituency tree-transformer can preserve phrase-level information. To
benefit from both of these models, we concatenated the feature representations generated from
both of the tree-transformers and used it as the vector representation of the sentence. This
sentence vector is then fed to a multi-layer perceptron for the similarity score prediction.

4.2.5 Experimental Setup and Result Analysis

In this section, the experimental setup and the results of the models investigated for the citation
linkage task are discussed. As the human annotated test data is highly imbalanced, apart from
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Table 4.7: Statistics of the annotations by the experts and the automatically generated corpus
for the 1500 samples

Annotator Group 1 Annotator Group 2 The Automatically
Generated Corpus

Positive samples (in total) 731 709 750
Negative Samples (in total) 769 791 750

Table 4.8: Analysis of the agreements among the expert annotators and the automatically gen-
erated corpus

Between Annotator
Groups 1 and 2

Between Annotator Between Annotator
Group 1 and Group 2 and

the Automatically the Automatically
Generated Corpus Generated Corpus

Agreed Positive Samples 706 715 701
Agreed Negative Samples 765 750 750

Cohen’s  0.96 0.95 0.93

F-1 score, Matthews Correlation Coe�cient (MCC) and Balanced accuracy (BAcc) are also
used to assess the performance of the models.

4.2.5.1 Experimental Setup

Sent2Vec was trained with various parameter settings. The cuto↵ value and the best model are
chosen based on the MCC and BAcc over the validation set. The best hyper-parameter settings
for Sent2Vec are: 500d sentence embedding, window size 20, learning rate 0.2, negative sam-
pling loss function and sampling threshold 0.0001. For the four sequential models: hierarchical
CNN (hCNN), Bi-LSTM with max pooling, hierarchical and inner attentions over Bi-LSTM;
the learning rates (LR) were initialized to 0.1. With a drop in validation accuracy, the LR is
multiplied by 0.2. The batch size and LR threshold are set to 50 and 0.0001, respectively. For
training, stochastic gradient descent is used as the optimizer. For hCNN, 4 layers of convo-
lution are used followed by max-pooling. Four context vectors are used for both hierarchical
and inner attention mechanisms to focus on 4 distinct parts which are concatenated for final
sentence representations. For all of the tree-structured transformer models, 6 parallel heads
are used with 50d query, value and key matrices where 6 position-wise convolution layers are
used for multi-branch attention. Two layers of CNN (first layer: 341 1d kernel and no dropout,
second layer: 300 1d kernels, 0.1 dropout) are used in the PCNN layer as the composition
function which is the same as Ahmed et al. [6]. For parameter tuning, Adagrad [59] with LR
0.0002 is used in all cases.
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4.2.5.2 Performance Analysis

We first evaluate the quality of the automatically generated corpus. For analyzing the quality
of the data annotation, we randomly picked 750 positive and 750 negative samples (labelled as
such in the automatically generated corpus) from the 74,568 citing and candidate cited sentence
pairs. These 1500 sentence pairs were provided to two groups of expert annotators. Each group
consisted of three people and each person annotated 500 samples. So, each 500 sample chunk
was annotated by two individuals, one from each group. Each reviewer also mentioned their
confidence level for each sample annotation. We then used Cohen’s  [52] to compute inter-
annotator reliability between the human annotators and the automatically generated corpus.
The overall statistics are shown in Table 4.7. The first group identified 731 positive and 769
negative samples in the 1500 sentence pairs, and the second group identified 709 positive and
791 negative samples. Table 4.8 shows the annotator groups’ decisions agreed for 706 positive
and 765 negative samples. The reliability factor  found here is 0.96. While comparing the an-
notation provided by the automatically generated corpus against the first and second annotator
groups, we see that the annotation decisions match for 715 and 701 positive samples between
the automatically generated corpus and groups 1 and 2, respectively. For negative samples, the
agreed decisions are 750 samples in both cases. The  values are 0.95 (between first annotator
group and the automatically generated corpus) and 0.93 (between second annotator group and
the automatically generated corpus). These values indicate that the automatically generated
corpus annotations match the experts’ annotations quite well. When interpreting these high 
values, it is important to recall that the data given to the annotators were balanced (50/50 split
of positive and negative samples). From Table 4.8 it is clear that the human annotators have
high agreement for both of their positive and negative choices.

Next we provide the citation linkage task outcomes. To compare the performance of the
model against the previous models, we evaluated the model with the gold standard human
annotated data from Houngbo and Mercer [85] because the previous models were tested against
this gold standard corpus. This corpus focuses on citations of methods used in the citing and
cited articles. Houngbo and Mercer [86] suggests that in most cases the citation refers to single
sentences in the cited articles. As an example, the citing statement “Recently, Chauhan et al.
employed SVM to predict the ATP binding residues in ATP binding proteins using amino acid
sequences and their evolutionary profiles” [65] indicates the cited sentence “Our SVM module
predicts a score for each residue in protein (in range of -1.0 to 1.0), we define a threshold to
discriminate ATP interacting and non-interacting residues” [43]. Another approach for such
a task could have been ranking the candidate sentences as was one of the methods done by
Houngbo [86]. However, for the final classification step we used softmax, which gives a
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Table 4.9: Performance analysis of di↵erent architectures for the citation linkage task for
biomedical research articles. Models tagged with † are the investigated ones in this work.
Here, CT: constituency tree, DT: dependency tree, MB: multi-branch attention, MH: multi-
head attention, TP: true-positive, FP: false-positive, TN: true-negative, FN: false-negative.

Model TP FP TN FN F1 MCC BAcc
(in %)

Previous Houngbo 34 995 2001 27 0.06 0.07 61.27
Works Li 39 779 2217 22 0.09 0.12 68.97

Sequential
Models

Hierarchical CNN † 45 580 2416 16 0.13 0.19 77.21
Bi-LSTM +Max-pooling † 54 361 2635 7 0.23 0.31 88.24
Inner attentive Bi-LSTM † 55 372 2624 6 0.23 0.31 88.87
Hierarchical Attentive Bi-LSTM † 56 355 2641 5 0.24 0.33 89.98

Tree
Structured

DT-Transformer (MH) † 57 301 2695 4 0.27 0.36 91.70
DT-Transformer (MB) † 58 287 2709 3 0.29 0.38 92.75
CT-Transformer (MH) † 57 315 2681 4 0.26 0.35 91.46
CT-Transformer (MB) † 57 309 2687 4 0.27 0.36 91.56

Ensemble Winner-takes-all ensemble † 59 253 2743 2 0.32 0.41 94.14
BioCite † 60 240 2756 1 0.33 0.42 95.17

probability to every possible outcome, so this approach could easily be modified to be a ranking
approach.

Table 4.9 reflects multiple performance metrics found for the models used here along with
the results from a few prominent works. Among the sequential models, Bi-LSTM with the
hierarchical attention mechanism fed with Bio-RoBERTa embeddings performs the best based
on the MCC and BAcc (0.33 and 89.98% accordingly). However, it can correctly extract only
56 out of 61 positive samples. The inner attentive Bi-LSTM and simple Bi-LSTM followed by
a max-pooling layer captures 54 and 55 positive samples correctly with the same MCC (0.31)
and F1 score (0.23). However, the inner attentive Bi-LSTM model earns a slightly higher BAcc
(88.87%) as it predicts more negative samples correctly.

The tree-structured models outperform all of the sequential models to extract the cited state-
ments from the referenced documents. The reason for this is the constituency tree-transformer
is able to capture phrase level information and the dependency tree-transformer is able to pre-
serve word level dependencies. In biomedical articles, biological components’ chemical names
may comprise multiple words. The constituency tree-transformer has the capability to work
better with such phrase level text. And in a lot of cases, the citing statements are complex in
nature. The dependency tree-transformer deals with such cases well. Another important thing
to notice here is that tree-transformers with multi-branch attention perform better than the tree-
transformers with multi-head attention as multi-branch attention applies multiple heads in each
branch and is thus able to obtain more information about each sentence [62]. Here, both the
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constituency and dependency tree-transformers with multi-head attention mechanism predict
57 positive samples correctly. Multi-branch attentive dependency tree-transformer predicts 58
positive samples correctly. Constituency tree-transformer with multi-branch attention predicts
57 positive samples correctly. However, it predicts 6 more negative samples correctly attaining
a 0.10 percentage point improvement in BAcc.

The two ensemble architectures investigated here improve the performance of the citation
linkage task for biomedical research articles. The first approach ensembles all of the investi-
gated individual models with the winner takes all selection process. This approach considers all
the outcomes from di↵erent models and the outcome with the highest probability is chosen as
the final prediction. It successfully predicts 59 positive samples out of 61 with 94.14% BAcc,
0.41 MCC and 0.32 F1 score which are higher compared to any of the standalone models. The
second ensemble architecture considers only dependency and constituency tree-transformers
with multi-branch attention. There are two reasons behind choosing only these two models for
ensemble in this case: firstly, the major intention was to investigate how the model performs if
we combine both the word dependency and phrase level information, and secondly, these two
models showed better performance among all individual models. This ensemble architecture
extracts 60 true positive cited statements given the citing statements for the citation linkage
task. It also achieves 95.17% BAcc, 0.42 MCC and 0.33 F1 score. As the best performance
is attained by this last ensemble architecture, for the BioCite citation linkage framework, we
choose this approach for extracting cited statements from the referenced biomedical research
article given the citing statement from the citing paper. Is the computationally more expen-
sive ensemble model justified for predicting only a few more true-positives? We notice that
the increase in true-positives is approximately 2%. This increase, especially in a larger cor-
pus, would seem to justify the extra computational cost. However, it should also be noted that
the false-positives have decreased by almost 20%. The applications noted in the introduction
will benefit substantially by such a decrease in false-positives. This decrease in false-positives
further justifies the extra computational cost of the ensemble model.

Now, there remains one more question to be discussed. Which one is actually improving
the performance, the automatically generated corpus or the model? From Table 4.9, it is clear
that, the performance of BioCite is better than the other models. To check the e↵ectiveness
of the proposed automatically generated corpus, we trained all the models over the human
annotated small corpus [85]. In this experiment we found all the investigated models’ accu-
racies were very high (around 98%). However, the BAcc, MCC and the F1 scores were very
poor as the models are strongly biased towards the negative outcome. This gives evidence of
the e↵ectiveness of training models over our proposed automatically generated corpus. Fur-
thermore, analyzing the outcomes and going through the predictions of the sentence pairs, we
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found that this model can successfully predict cited sentence given the citing statement when
chemical components and reactions are presented in di↵erent ways. For example: the cited
sentence “DNA is fairly stable in mildly acidic solutions, although the beta glycosidic link in
the purine bases is hydrolyzed at around pH4.” [29] is predicted successfully for the citing sen-
tence “DNA samples are frequently harmed by exposure to excessively acidic environment.”,
[230]. It indicates that this model has the ability to resolve “pH4” as an “excessively acidic
environment” and “hydrolyzed” with “harmed”.

4.2.6 Conclusion

Biomedical literature is complex in nature due to having complex biological and chemical com-
ponent names. Our framework, BioCite, performs well when dealing with the human annotated
test set containing research articles accumulated from the biomedical domain and outperforms
the previous prominent works. However, there are still a few avenues to investigate. The text
span used here is a single sentence. In future, it can be expanded to the paragraph level which
would capture the contextual information as well. Graph-based neural networks which perform
well when working with paragraphs [268] could be used. Moreover, BERT-based models can
be explored as well.

4.3 Conclusion

The current method of citing in scientific articles is to refer to the source document, but this
does not reflect the text chunk from the source document that is being referred to by the citing
statement. To ease the task of understanding the background information, the citation linkage
framework tries to retrieve the text spans from the referenced articles that are the focus of the
citations in the citing article. This task has been formulated as a semantic similarity measure-
ment task since a citing statement can be an interpretation of the cited text span, or a paraphrase
of it, or an explanation of the text written in the reference article. However, we had to restrict
this task to the sentence level due to the lack of a test corpus that is human-annotated beyond
the single sentence level. In addition, our proposed approach for creating the silver standard
corpus demands a gold standard corpus for validation. For the sentence level citation linkage
task, experiments with di↵erent models show the e↵ectiveness of training with our proposed
silver standard corpus. And the ensemble architectures proposed here have also shown superior
performance compared to the other approaches.

For the negative sentence selection we applied the algorithm we have mentioned in section
4.1. Following this algorithm we randomly selected negative samples three times and every
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time the performance of the models were almost identical. Finally, the best negative samples
were selected via experiments over the validation set from the gold standard corpus. Rather
than analyzing how close the negative samples are to the positive samples in the vector space,
we simply assumed that they were di↵erent enough depending on the performance over the
validation set.

No separate ablation study of the ensemble models has been presented here as the perfor-
mances of the individual models, which have been combined together to build the ensemble
architectures, have been reported. Reporting the results of the individual models serves as an
alternative to an ablation study.

As these models were implemented in early 2020, experimenting with the large language
models (LLMs) was not possible due to resource limitations. Initially, we performed a few
experiments with the pretrained sentence-BERT (SBERT), but the performance was not sat-
isfactory as SBERT was not trained on biomedical texts. With the limited resources, it was
not possible to fine-tune the SBERT model. Experimenting with LLMs can be explored in the
future to tackle this task. As well, the heterogeneous graph attention network that has been
used in the following chapters for word embedding enrichment can be applied here to see if
this idea can improve performance.

Another dimension of future work can be to expand the retrieved text span to beyond the
sentence level. The initial task for that approach would be to create a gold standard corpus.
If that corpus contains a small number of samples, then our proposed approach for synthetic
corpus creation could be used to make a proper sized silver standard corpus. Moreover, the
current gold standard corpus deals with method citations only. Future work could extend the
set of citation types to the kinds of citations that refer to results, motivations, and so forth.
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Biomedical Entity Relation Extraction

The objective of relation extraction is to discern the interaction between two entities within a
text. Our focus in this chapter lies in exploring this extraction task to detect interactions be-
tween various proteins and drugs mentioned in a sentence. This chapter amalgamates the find-
ings from three of our publications: (i) “Investigating Protein-Protein Interactions using
Tree-Structured Neural Network Models”, (ii) “Identifying Protein-Protein Interaction
using Tree-Transformers and Heterogeneous Graph Neural Network”, and (iii) “Extract-
ing Drug-Drug and Protein-Protein Interactions from Text Using a Continuous Update
of Tree-Transformers”.

Our evolving approaches are motivated by the idea of incorporating syntactic information
to preserve phrasal and inter-word relational details for this task. Initially, we utilized only tree
transformers and an ensemble thereof for sentence vector representation. Subsequently, we
integrated the graph attention network to generate an additional sentence representation, which
is then updated with context-enriched word representations. Our most recent work further
updates the word embeddings of the tree transformers with context-enriched word embeddings,
yielding the best performance. This approach has demonstrated state-of-the-art performance
in comparison to previous methods and has maintained its position as the benchmark for tasks
involving protein-protein and drug-drug interactions.

The standard corpora that are used in these studies are modified by replacing the protein
and drug names with some out-of-vocabulary generic terms. All of the models are fed with
BioRoBERTa word embeddings, as BioRoBERTa is trained on biomedical texts and also has
the ability to generate vector representations for out-of-vocabulary words. Our initial exper-
iments used fasttext and BioWordVec word embeddings, both being able to provide vector
representations for out-of-vocabulary words. However, the better results were found with
BioRoBERTa and that is why all the experiments reported here are done with BioRoBERTa
word embeddings.

54
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5.1 Investigating Protein-Protein Interactions using
Tree-Structured Neural Network Models

This section is based on the paper titled “Investigating Protein-Protein Interactions using Tree-
Structured Neural Network Models” co-authored with Robert E. Mercer that appeared in The
35th International FLAIRS Conference Proceedings (FLAIRS 35) [204]. This paper was nom-
inated for best student paper award and secured the runner-up position.

In order to comprehend underlying biological processes, it is necessary to identify interac-
tions between proteins. It is typically quite di�cult to extract a protein-protein interaction (PPI)
from text data as text data is complex in nature. Unlike sequential models, tree-structured neu-
ral network models have the ability to consider syntactic and semantic dependencies between
di↵erent portions of the text and can provide structural information at the phrase level. This
paper investigates tree-structured neural network models for the PPI task and the results show
their supremacy over sequential models and their e↵ectiveness for this task.

5.1.1 Introduction

As the scientific literature grows at an exponential rate, the vast majority of biological in-
formation is currently available in text form residing in the scientific literature. MEDLINE
database’s size has grown by 4.2 percent annually during the last two decades and currently
it contains approximately 26,000,000 records extracted from 5639 publications which is 23%
more than what it contained in 2014 [245]. This huge amount of unstructured text from biomed-
ical research articles is a valuable source of information for the biomedical natural language
processing (NLP) domain.

As the volume of biomedical data continues to grow exponentially and due to the inher-
ent complexity in the textual representations of these data, it is critical to pursue automatic
information retrieval techniques to aid biologists in the detection and identification of useful
information, and the arranging and maintaining of databases, as well as providing automatically
generated decision support systems for medical professionals. Considering this issue, a lot of
research has been conducted for inferring information concealed in these texts to assist health
care and biomedical people, such as protein-protein interactions (PPIs), chemical-disease rela-
tion extraction, clinical relation extraction, drug-drug interactions, etc., as retrieving important
information manually from this large volume of texts is both time consuming and expensive
[165].

The majority of biological activities inside a cell, such as immune response, signal trans-
duction, cellular organization, etc., are caused by di↵erent interactions between various pro-
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teins [209]. So, identifying the protein-protein interactions (PPIs) provides a better under-
standing of the functionalities, regulations, and communication between di↵erent proteins
[250]. Identifying PPIs entails figuring out how di↵erent proteins mentioned in a text are con-
nected [112]. This information may spread out through di↵erent parts of the whole document,
however, the current work is restricted to identify PPIs present only inside single sentences
[172, 218]. For instance, “LEC induced maximal migration of CCR1 and CCR8 transfected
cells at 89.3 nmol/L and cell adhesion at 5.6 nmol/L.” [87] reflects two PPI relations: LEC-
CCR1 and LEC-CCR8 and no association between CCR1 and CCR8.

For such tasks, sequential deep learning-based models have been used in multiple research
works [88, 244]. However, if the data is structured rather than presented sequentially, these
models are more likely to miss the underlying semantic compositionality [5] as they consider
word order only but no linguistic structure [118]. By contrast, Recursive neural networks, com-
monly known as tree-structured neural network models, work over parsed tree representations
of the sentences and thus preserve both the syntactic and semantics in a better way.

In this paper, we investigate six tree-structured neural network models for the PPI identi-
fication task. For working with dependencies between words in di↵erent portions of the sen-
tence, we investigate dependency tree-structured neural nets, whereas to work with the phrase
level information, constituency tree-structured neural nets are explored. Finally, two ensem-
bles of these models are used for retrieving the PPIs present in the sentences. We provide an
ample analysis of these models’ performances over the benchmark PPI datasets which evince
the supremacy of using tree-structured neural networks over sequential ones for this task.

5.1.2 Related Works

Numerous NLP methods have been developed for determining the associations between protein
entities. In the initial stages, pattern-based techniques were widely used. In these approaches,
on the basis of syntactic as well as lexical features, pattern-based rules were designed for
extracting the relationship [27, 114]. However, these models were not capable of handling
complex relationships specified in relational and coordinating clauses appropriately. In contrast
to naïve pattern-based methods, dependency-based methods are more syntax attentive and o↵er
a wider range of application coverage [60, 150].

Another prominent approach for extracting such relationships is to use kernel-based meth-
ods. These models learn profuse structural information by means of dependency structures and
syntactic parse trees [149, 109]. Some noteworthy methods use bag-of-words kernel [191],
tree kernel [263], convolution tree kernel [42], neighbourhood hash graph kernel [266], and
walk-weighted kernel [109].
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With the recent blossoming of deep learning-based models, a lot of experiments have been
conducted to extract PPI relations [175, 270]. Peng et al. [164] deployed a double-channel
convolutional neural network (CNN) for feature extraction. The first channel utilizes syntactic
features like named entities, parts of speech, syntactic dependencies, chunk parsing informa-
tion, distances from each word to the two interacting protein candidates, and the word itself.
The second channel applies a convolution operation over each word’s parent word informa-
tion. Zhang et al. [267] applied a three channel CNN for this task. The first, second, and
third channel apply convolutional operations over original words in addition to the positional
encoding, shortest dependency path information, and dependency relation encoding features,
respectively. Zhao et al. [270] trained an auto-encoder on the unlabelled training data for pa-
rameter initialization of a multi-layer perceptron (MLP) model which is then trained utilizing
gradient descent for the PPI relation extraction task.

Following this, several research works have been conducted for this task using recurrent
neural networks (RNNs) as these models perform better with sequential data. Hsieh et al. [88]
applied only a bi-directional long short term memory network (Bi-LSTM) on the sentences,
and the vectors concatenated from the left and right-most LSTM output vectors are used as the
feature vectors for the classification task. Yadav et al. [244] utilized structured attention over
the sequential Bi-LSTM which is fed with the shortest dependency path information between
the unit pairs. In their following work, Yadav et al. [245] utilized the self attention mechanism
for multi-task learning incorporating both PPI and drug-drug interaction relation extraction.
Ahmed et al. [4] used a dependency tree-structured LSTM with structured attention for the
same task and outperformed all of the above-stated sequential models.

5.1.3 The Model

This section describes our work in detail. Our investigation of the PPI relation extraction
task examines four tree-structured neural network models: dependency and constituency tree-
LSTMs with a self attention mechanism and tree-transformers. Their working principles are
discussed first. Two ensembles of these models are then discussed.

5.1.3.1 Tree-LSTMs

A sentence can be represented by two tree-structured representations: constituency and depen-
dency trees [44]. These representations provide syntactical information about the sentence by
preserving word to word dependencies (dependency tree) and phrase level information (con-
stituency tree). To utilize these structural syntactic information sources, Tai et al. [214] intro-
duced dependency (child sum tree-LSTM) and constituency (N-ary tree-LSTM) tree-LSTMs.



Chapter 5. Relation Extraction 58

For the child sum tree, the internal gates of a component node are updated by the summed
hidden state values of its child nodes. Then, using this updated hidden state value the other
intermediate gates are updated as follows:

h̃ j =
X

2C j

h j (5.1)

i j = �(Wix j + Uih̃ j + bi) (5.2)

oj = �(Woxj + Uoh̃ j + bo) (5.3)

c̃ j = tanh(Wcxj + Uch̃ j + bc) (5.4)

Here, Ws and bs are weights and bias values, and C j is the set of child nodes. In the child sum
tree-LSTM, for each child node, there is a separate forget gate ( f j) which allows the model to
selectively incorporate information for the parent node from the child nodes. For each child
node, the corresponding cell state and forget gate values are then multiplied and finally all of
these values are combined together to compute the forget gate value of the parent node. Then,
the cell state (c j) and hidden state (hj) values of the parent node are computed using this forget
gate value as follows:

f j = �(Wf x j + U f h̃ j + bf ) (5.5)

f̃ j =
X

2C j

f j · c (5.6)

c j = i j · c̃ j + f̃ j (5.7)

hj = oj · tanh(c j) (5.8)

In the N-ary tree-LSTM, each parent node contains identical cell and hidden states for each
of its children. The internal gate values and forget gates are computed as follows:

i j = �(Wix j +

NX

◆=1

Ui_◆h̃ jl + bi) (5.9)

oj = �(Woxj +

NX

◆=1

Uo_◆h̃ jl + bo) (5.10)

c̃ j = tanh(Wcxj +

NX

◆=1

Uc_◆h̃ jl + bc) (5.11)
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f jk = �(Wf x j +

NX

◆=1

U f _ j◆hjl + bf ) (5.12)

Just like in the child sum tree-LSTM, the final forget gate of the parent node is computed by
multiplying the corresponding forget gate and cell state values and then summing them (Eq.
5.13). The cell state (Eq. 5.7) and new hidden state (Eq. 5.8) values are computed as before.

f̃ j =

NX

◆=1

f j◆ · c j◆ (5.13)

Ahmed et al. [5] introduced self attention for such tree structured recursive neural networks. It
incorporates three matrices: query, key, and value. They are calculated as follows:

key = !kMk s.t. !k 2 Rd⇥d (5.14)

value = !vMv s.t. !v 2 Rd⇥d (5.15)

query = !qMq s.t. !q 2 Rd⇥d (5.16)

For the child sum tree, theMs are the concatenations of all of the child nodes’ word vectors
for a corresponding parent node, whereas in the N-ary tree-LSTM the word vectors under a
constituent are concatenated. Then these key, value, and query matrices are aligned considering
the representation’s dimension (Eq. 5.17).

align 2 Rn⇥n = (query)T key · (1/
p

d) (5.17)

where n is the number of o↵spring nodes under any particular parent node and d is the
normalizing factor. Then, softmax is applied over this align matrix to compute the attention
probability matrix ↵ 2 Rn⇥n. Finally, batch-wise matrix multiplication is applied between the
attention matrix ↵ and the matrix value to compute the attentive hidden states h̃ 2 Rn⇥d. Rows
of this matrix are concatenated to produce the final hidden representation of the parent node
for both the child sum and N-ary tree-LSTM.

5.1.3.2 Tree-Transformers

Ahmed et al. [5] applied the concept of transformer [223] over the constituency and depen-
dency trees, and introduced two tree-transformer models: constituency tree-transformer and
dependency tree-transformer. Both of these models apply multi-branch attention over the child
nodes’ representations. Just like the self attention mechanism, this approach also uses key,
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query, and value matrices as follows:

↵ = softmax(
query keyT

p
dk

)value (5.18)

where dk is the dimension of the key. For the multi-branch attention (�i), n copies of key, query,
and value matrices are created with the appropriate weight matrices !i, where n is the number
of branches, and finally a scaled dot product attention (Eq. 5.18) is applied over each branch
(Eq. 5.19).

�i = ↵i2[1,n](queryi !
query
i , keyi !

key
i , valuei !

value
i ) (5.19)

A residual connection is then employed over these tensors followed by a layer-wise batch
normalization layer. A scaling factor ⌧ is applied in the end to produce the branch representa-
tion (Eq. 5.20). Following this, position-wise CNN (PCNN) is applied over every �̃i (Eq. 5.21).
The attention-encoded representations of these semantic subspaces are computed by applying
weighted summation where each �i 2 R

n is a hyperparameter (Eq. 5.22). In the end, with
BranchAttn, another residual connection is employed. This is then fed to a tanh layer and an
element-wise summation (EWS) is performed to generate the parent node representation (Eq.
5.23). Here, � and �̃ represent the input and the outcome of the attention module, respectively.

�̃i = LayerNorm(�i!
b
i + �i) ⇥ ⌧i (5.20)

PCNN(x) = Conv(Relu(Conv(x) + b1)) + b2 (5.21)

BranchAttn =
nX

i=1

�iPCNN(�̃i) (5.22)

ParentNodeRep = EWS(tanh((�̃ + �)! + b)) (5.23)

5.1.3.3 Ensemble Architecture

After exploring the tree-structured LSTMs and transformer models, we investigated two en-
semble models. In the first approach, we train all the models, and then, when testing, each
sentence is fed to all of the models. All of the models predict the class label individually. Fi-
nally, a winner takes all method [188] is applied over these individual models’ selections for
the final class prediction. In our second approach, we utilize only the dependency and con-
stituency tree-transformers. Each sentence is fed to both of the tree-transformers and then the
sentence representations are concatenated and then fed to the following MLP for class label
prediction. The intention behind investigating this model is to find out what happens if fea-
tures containing both word-level dependencies and phrase-level information are used for the



Chapter 5. Relation Extraction 61

Sentence

Protein names replaced by generic names

Dependency 
Tree-Transformer

Constituency 
Tree-Transformer

Sentence
Representation 

(RepDT)

Sentence
Representation 

(RepCT)

Concatination 
(RepDT, RepCT)

Classification

Extracted Relation

Figure 5.1: Working procedure of the ensemble architecture combining features from the de-
pendency and constituency tree-transformers.

PPI relation extraction task. Figure 5.1 provides a sketch of this ensemble architecture.

5.1.4 Experiments and Performance Analysis

This section reports the results found for the tree-structured neural network models and the
ensemble architectures with F1-score as the performance evaluation metric. It also provides a
statistical description of the five standard benchmark PPI corpora for this task along with the
pre-processing steps. The PPI problem has been formulated as a classification task. Finally, the
performance of the tree-structured models are compared against the most prominent sequential
and the previous tree-structured architectures used to solve this task.

For evaluating the investigated tree-structured neural networks, the models are tested on
the five standard PPI corpora: AIMed [35], BioInfer [173], IEPA [57], HPRD50 [69], and LLL
[158]. For all the experiments, the converted version of the corpora are used as mentioned by
Ahmed et al. [5]. All of the protein names in all five corpora are substituted with three special
symbols: PROT0, PROT1 and PROT2. If any two proteins in a sentence are being considered
as interacting with each other, they are replaced with PROT1 and PROT2. All the mentioned
proteins in the sentence which are not being considered for interaction identification are re-
placed with PROT0. As an example, the sentence “LEC induced maximal migration of CCR1
and CCR8 transfected cells at 89.3 nmol/L and cell adhesion at 5.6 nmol/L.”, the protein names
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Table 5.1: Overall demographics of the modified corpora

Corpus Original Positive Negative
Sentences Interactions Interactions

AIMED 1,995 1,000 4,834
BioInfer 1,100 2,534 7,132

IEPA 486 335 482
HPRD50 145 163 270

LLL 77 164 166

LEC, CCR1 and CCR8 are replaced by PROT1, PROT2 and PROT0 accordingly as this time
the intention is to retrieve the relation between LEC and CCR1. When the target proteins are
LEC and CCR8, then these two protein names are replaced by PROT1 and PROT2 accordingly,
and CCR1 would be replaced with PROT0. The nature of an interaction between two proteins
can be positive or negative. For the above mentioned two examples, the interactions are pos-
itive whereas the interaction between CCR1 and CCR8 is negative as there is no interaction
between them. There are three possible interactions present in this example sentence. So, the
modified corpora contains three variants of this sentence with two positive and one negative in-
teraction. In a similar way, for every sentence in the corpora with ⌘ proteins present in it, there
are ⌘C2 variants in the modified corpora. The demographics of these five modified corpora are
presented in Table 5.1. In addition, representing the protein names by a few generic names
enhances the data further by having multiple samples for these generic names rather than a few
samples for each real protein name. For the evaluation of these models, we used 10-fold cross
validation using StratifiedK-Fold from the scikit-learn package.

Both of the tree-LSTM models are initialized with learning rate 0.1. For each iteration, if
the validation accuracy drops compared to the previous iteration, the learning rate is reduced by
80%. The batch size is 10. The memory and attention dimension is set to 150. The MLP hidden
dimension is 300. Training dropout is used with value 0.1. For the training of the tree-LSTM
models the ‘SGD’ optimizer is used. For the tree-transformer models, the initial learning rate is
0.1 and the same learning rate decay approach is used. Six PCNN layers are used in the multi-
branch attention block. For the experiments, six branches of attention layer are used. Each
PCNN layer is composed of 2 CNNs. The first CNN layer employs 341-dimension kernels
without any dropout and 300-dimension kernels are used in the second layer of the CNN. In the
second layer, dropout 0.1 is used in all cases just like Ahmed et al. [5]. The hyperparameters of
the tree-transformers are updated using the ‘Adagrad’ optimizer. All of the models (both tree-
LSTMs and tree-transformers) are fed with Bio-RoBERTa [82] word embeddings which are
not updated during training. We also tried fasttext [28] and Bio-WordVec [265] embeddings.
However, the best results are with the Bio-RoBERTa embeddings.
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Table 5.2: Performance evaluation of the models by means of F1-score (in %). The sequen-
tial models are marked with †. Here, NT-LSTM: 2-ary tree-LSTM over constituency tree,
CT-LSTM: Child sum tree-LSTM over dependency tree, CT-Transformer: Constituency tree-
transformer and DT-Transformer: Dependency tree-transformer, DT+CT-Transformer: Com-
bination of dependency and constituency tree-transformers.

Methods AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. [42] † 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. [88] † 76.9 87.2 76.31 80.51 78.3 79.84

Zhang et al. [267] † 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. [245] † 77.33 76.33 - - - 76.83

Tai et al. [214] 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. [4] 81.6 89.1 78.5 81.3 84.2 82.94

NT-LSTM + Self Attn 82.99 90.87 78.2 83.22 86.14 84.28
CT-LSTM + Self Attn 83.06 91.01 78.9 83.59 86.78 84.67

CT-Transformer 87.51 94.95 82.5 87.73 91.32 88.80
DT-Transformer 87.88 95.37 82.56 88.01 91.46 89.06

Ensemble - Winner Takes All 87.94 95.48 82.63 87.95 91.49 89.09
DT + CT-Transformer 88.15 96.01 83.24 88.94 92.18 89.70

Table 5.2 shows the performance of the tree-structured LSTMs, transformers, and the en-
semble architectures over the five benchmark PPI corpora and some prominent sequential and
tree-structured models for comparability. Among these five, AIMed contains many erroneous
annotations. In addition, having nested named entities makes it more di�cult to work with [4].

From this table it is clearly visible that all of the tree-structured models outperform the
sequential models for this task. Among the two investigated tree-LSTM models (child sum and
N-ary treeLSTM), the child sum tree-LSTM with self-attention performs slightly better than the
N-ary tree-LSTM with self attention (average F1-scores are 84.67% and 84.28% accordingly).
Overall, both of the investigated tree-transformer models perform better than the tree-LSTM
models. However, among the tree-transformer architectures, the dependency tree-transformer
(DT-transformer) performs better than the constituency tree-transformer (CT-transformer) and
it happens for all five corpora. So, these two observations suggest that neural networks based
on dependency trees perform slightly better than the models built on constituency trees. The
reason behind this may be that because the sentences here are quite complex in nature, word-
level dependency provides more useful information.

For each dataset among these four standalone models, DT-Transformer has the highest
F1-scores (87.88%, 95.37%, 82.56%, 88.01%, and 91.46% for the AIMed, BioInfer, IEPA,
HPRD50, LLL datasets, accordingly). For the Ensemble - Winner Takes All model, a little
performance boost is achieved for four datasets. For HPRD50, the F1-score is a bit less than the
two transformer models. It achieves a better average F1-score compared to all of the standalone
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models. The DT+CT-Transformer model combines features from both of the constituency
and dependency tree transformers. The reasons behind choosing only the tree-transformer-
based models are that both of the transformer-based models perform better than the LSTM-
based models and both the word dependency-level and phrase-level information are already
being provided by the transformer-based models. The DT+CT-Transformer outperforms all
other models for every dataset with an average F1-score 89.70%. Furthermore, this approach
is computationally less expensive compared to the previously mentioned ensemble model as
that method requires four models to be trained whereas for the DT+CT-Transformer only two
models and an additional MLP are required to be trained. Additionally, the results can be
explained by means of the attention value on each node as presented by Ahmed et al. [5] .

5.1.5 Conclusions

In this work, we have explored various tree-structured neural network models for the PPI rela-
tion extraction task. The experimental results show that the tree-structured models, because of
having additional syntactical information at word dependency and phrase-level, perform bet-
ter than the sequential models. Among all of the explored models, the combined model with
both the dependency and constituency tree-transformers performs the best as it utilizes both
the word dependency and constituency information. However, opportunities for improvement
in this field remain. In the future we want to explore graph-based neural network models with
attention mechanisms, and to leverage additional features for this task. Further analysis of
results based on AUC and ROC curves can be performed.

5.2 Identifying Protein-Protein Interaction using
Tree-Transformers and Heterogeneous Graph Neural
Network

This section is based on the paper titled “Investigating Protein-Protein Interactions using Tree-
Structured Neural Network Models” co-authored with Robert E. Mercer that appeared in The
36th International FLAIRS Conference Proceedings (FLAIRS 36) [201].

For a better understanding of the underlying biological mechanisms, it is crucial to iden-
tify the reciprocity between proteins. Often, extracting such interactions between proteins
from biomedical articles faces challenges due to the complex sentence structure of the textual
information sources. Most of the prominent previous works have applied additional hand-
crafted features for the protein-protein interaction task. In this work, we have utilized two tree-
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structured attention-based neural network models along with a heterogeneous graph approach
to perform this task. We suggest that the proposed model preserves the syntactic as well as
the semantic information of the text. The experimental results demonstrate that even without
using any additional feature extraction techniques, this model achieves significant performance
boosts when applied on the five standard benchmark corpora compared to the previous works.

5.2.1 Introduction

The exponential growth of scientific literature means that the majority of biological information
is now in text form and can be found in the scientific literature. The MEDLINE database has
seen an increase of more than 4% each year over the past two decennia, and currently holds
more than 29 million records from various publications, which is 3 million more than in 2020
and more than 8 million over what it held in 2014 [245]. The massive amount of text found
in biomedical research articles represents an invaluable resource of information for the field of
automated biomedical information retrieval.

Given the exponential growth of biomedical data and the intricate nature of the textual
representation of this data, it is crucial to utilize automated methods for information retrieval
to assist biologists in finding relevant information, organizing databases, and o↵ering deci-
sion support for medical professionals. Several studies have been conducted to extract the
information present in these texts, including protein-protein interactions, chemical-disease re-
lationships, clinical relations, drug-drug interactions, and more.

A cell’s internal biological activities, including immune response, signal transduction, and
cellular organization, are largely a result of interactions between various proteins [209]. Under-
standing molecular mechanisms of biological processes requires knowledge of protein-protein
interactions (PPI) [4]. These interactions have crucial relevance for biomedical fields, including
the examination of drug targets [77] and signal proteins [9]. Therefore, recognizing protein-
protein interactions (PPIs) leads to a deeper comprehension of the functions, control, and com-
munication between various proteins [250]. The objective of recognizing PPIs is to extract the
relationships between protein entities mentioned in a document [112].

A significant amount of information regarding PPIs is present in biomedical literature, but
in an unstructured form. Manually extracting PPIs is a demanding task, both in terms of time
and cost, due to the large number of published studies [165, 216]. As a result, automatically ex-
tracting PPIs from biomedical literature has become a crucial research area, garnering attention
from many researchers. The information could be dispersed throughout the document, how-
ever, the current study is limited to detecting only the PPIs within individual sentences similar
to many previous works [172, 218, 4]. As an example of a sentence containing interactions
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between proteins [87]:

“At 89.3 nmol/L, maximal migration of CCR1 and CCR8 transfected cells was
prompted by LEC and at 5.6 nmol/L, cell adhesion also occurred.”

This sentence reflects two protein-protein interactions involving LEC and CCR1, as well as
LEC and CCR8. But, importantly, no correlation is present between proteins CCR1 and CCR8.

In the early research phase, the commonly used methods for PPI extraction involved uti-
lizing co-occurrence and pattern recognition techniques [20, 256]. However, recent advance-
ments in technology have led to the widespread adoption of machine learning techniques which
have superior performance compared to these traditional methods. Early approaches involved
constructing a feature set through feature engineering and kernel methods and then applying
support vector machines or other classifiers for classification [7, 152]. In the last few years,
several research works [270, 89, 49] have successfully applied deep learning techniques to PPI
extraction, taking advantage of the widespread use of deep learning in NLP.

Most of the recent works utilize recurrent neural network (RNN) models for this task con-
sidering textual representations as sequences [88, 244]. However, if the data is arranged in
a structured format instead of being arranged in a sequence, these models are prone to miss
the semantic compositions present within [5]. This is due to the fact that they only take into
account the word order and ignore the linguistic structure [118]. Contrarily, recursive neu-
ral networks, also known as tree-structured neural network models [6], process the sentences
represented in a parsed tree form, thereby keeping both the syntax and semantics in a more ef-
fective way. Investigations have also taken place regarding graph-based methods for this task,
where the models operate on either a fully connected graph composed of word nodes or on text
segments of phrases [64]. Our proposed model assembles these last two methods in a novel
design.

While extracting relations between target proteins, we have considered three issues: firstly,
how to retrieve the relation if the considered proteins are mentioned far apart in the text, sec-
ondly, how to deal with the phrasal structure of text in order to preserve the semantics so that
the PPI extraction can attend to this information, and thirdly, what will happen if instead of
using fixed word representations from pre-trained models, we update the word representations
based on the considered sentence and then use these updated representations to impact the
generated sentence representation for this task.

Uniting these considerations, we have investigated a model combining dependency and
constituency tree transformers [6] and a heterogeneous graph attention network [227] for the
PPI extraction task. The dependency tree-transformer captures the correlations between words
at di↵erent parts of the sentence which allows the model to extract relations between the con-
sidered proteins even if they are positioned far apart in the sentence. For preserving the phrasal
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information we have used the constituency tree-transformer. And for word to sentence repre-
sentation and sentence to word representation updates, we have utilized a heterogeneous graph
neural network. We provide a comprehensive analysis of the performance of these models
on benchmark PPI datasets, which showcases the superiority of the proposed model over the
previous prominent works.

5.2.2 Related Work

Several NLP techniques have emerged for determining links between proteins. At first, pattern-
based methods were popular, where rules were established based on syntax and lexical features
for finding relationships [27, 114]. But, these models couldn’t manage complex relationships
expressed in relational and coordinating clauses correctly. Unlike simple pattern-based ap-
proaches, dependency-based methods are more focused on syntax and can be applied to a
broader range of situations [60, 150].

Another common method for identifying correlations between proteins is the use of kernel-
based techniques. These models acquire rich structural information through dependency struc-
tures and syntactic parse trees [204]. Airola et al. [7] suggested a method for identifying
interactions between target proteins by examining information from linear and dependency
subgraphs. Miwa et al. [149] developed a system that incorporates a Support Vector Machine
with weighted feature vectors derived from multiple corpora. Kim et al. [109] matched e-walks
and v-walks on the shortest dependency path to acquire non-contiguous syntactic structures by
means of a walk-weighted sub-sequence kernel for this task. Zhang et al. [266] introduced
a neighbourhood hash graph kernel-based model to draw out PPIs. Chang et al. [42] used a
convolution tree kernel and PPI patterns to extract interlinkages between proteins. Murugesan
et al. [152] proposed the distributed smoothed tree kernel which has demonstrated substantial
advancements when compared to other kernel methods for this task.

The recent surge in deep learning models has resulted in a plethora of experiments aimed
at uncovering PPI relationships from biomedical literature [175, 88, 267]. Zhao et al. [270]
were the first to apply deep learning in the area of PPI relation extraction. Their approach
involved training an autoencoder on unclassified training data to prepare the parameters for a
multi-layer perceptron (MLP) model, which was then optimized through gradient descent to
carry out PPI extraction. Peng et al. [164] involved the utilization of a double-channel CNN
for this task. The first channel incorporated syntax-based features like syntactic dependencies,
parts of speech, named entities, the distance of each word from the two proteins interacting,
chunk parsing details, and the word itself. The second channel utilized a convolution process
with respect to the parent word information for each word. The second channel provides a
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distributed representation of the sentence by applying convolution over each word’s parent
information. For PPI extraction, a three-channel CNN was implemented by Zhang et al. [267].
Convolution operations were carried out on the original words along with positional encoding,
the shortest dependency path, and encoding features for dependency relations in each of the
first, second, and third channels, respectively. Zhang et al. [260] showed that using residual
connections improves the performance of the CNN-based models when extracting PPIs from
texts.

Since then, a series of studies have been carried out on the PPI task, utilizing Recurrent
Neural Networks (RNNs), which have been seen to excel in processing sequential data. Hsieh
et al. [88], to generate a sentence vector representation, concatenated the left and right-most
output vectors from a Bi-LSTM which was fed with the sentence, and then applied a softmax
classifier for the classification task. Yadav et al. [244] fed the shortest dependency information
between unit pairs as input to a Bi-LSTM with structured attention. For their subsequent study,
Yadav et al. [245] implemented a self-attentive approach for performing two tasks simulta-
neously: extraction of protein-protein interactions and extraction of drug-drug interactions.
Ahmed et al. [4] applied structured attention over dependency tree-LSTMs for this task and
showed the supremacy of the tree-structured neural networks over sequential models. Fei et
al. [64] introduced a span-graph neural architecture for extracting protein entity relations from
biomedical texts. Their model jointly learns to identify the candidate entity spans and the
correlaton between them. The entity graph is constructed by listing out probable entity span
possibilities.

5.2.3 Proposed Model

In this portion of the paper, we delve into the specifics of our model. Our study of the protein-
protein interaction extraction task utilizes two tree-structured neural networks: dependency
and constituency tree-transformers [6]; and a heterogeneous graph attention network [227].
How each network functions is initially discussed. The discussion then moves on to cover the
proposed model combining these modules.

5.2.3.1 Tree-Transformers

Two tree-based representations exist for representing a sentence: constituency trees and de-
pendency trees. These forms of representation o↵er syntactic information about the sentence,
capturing both the structure of phrases (constituency tree) and the dependencies between in-
dividual words (dependency tree). Ahmed et al. [6] suggested two tree-transformer models:
dependency and constituency tree-transformers utilizing these sources of syntactic structure
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information. The objective of these models is to traverse each sub-tree within a dependency or
constituency tree structure, attentively, and derive a vector representation at its root.

Each node in a dependency tree holds a word. To traverse a sub-tree in this kind of tree, the
dependency tree-transformer considers both the parent and child node representations. Con-
versely, in a constituency tree, only the leaf nodes hold words. The non-terminal node vectors
are computed only after the sub-tree has been fully traversed. Ahmed et al. [6] applied self-
attention to the sentence’s dependency and constituency tree representations, incorporating
query (Q), key (K) and value (V) matrices. These matrices are computed as follows [223]:

K = !kMk s.t. !k 2 Rd⇥d (5.24)

V = !vMv s.t. !v 2 Rd⇥d (5.25)

Q = !qMq s.t. !q 2 Rd⇥d (5.26)

In the dependency tree, the matrixM is formed by concatenating the word vectors of all child
nodes for each corresponding parent node. On the other hand, for the constituency tree,M is
the concatenation of the word vectors within a constituent. Using Q, K and V matrices, the
tree-transformer models compute the self attention matrix as follows:

↵ = softmax(
Q K

T

p
dk

)V (5.27)

where dk refers to the dimension of K . To implement the multi-branch attention Bi with n
branches, n copies of key, query, and value matrices are generated using the appropriate weight
matrices (!i). In the end, a scaled dot product attention (as per Eq. 5.27) is applied to each
branch (Eq. 5.28).

Bi = ↵i2[1,n](queryi !
query
i , keyi !

key
i , valuei !

value
i ) (5.28)

Afterwards, a residual connection is utilized on these tensors and a batch normalization layer is
applied layer-wise, subsequently. Then, a scaling factor µ is employed to generate the branch
representation as follows:

B̃i = LayerNorm(Bi!
b
i + Bi) ⇥ µi (5.29)

Subsequently, a position-wise CNN (PCNN) is employed to every B̃i. This PCNN layer con-
sists of two convolution operations on each position with a ReLU activation function in between.
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This PCNN layer works as Eq. 5.30:

PCNN(x) = Conv(ReLU(Conv(x) + b1)) + b2 (5.30)

The final attentive representation of these semantic sub-spaces, generated from the PCNN
layer, is obtained by performing a linear weighted summation (Eq. 5.31) where � 2 Rn is a
model hyper-parameter.

BranchAttn =
nX

i=1

�iPCNN(B̃i) (5.31)

In the last step, a residual connection is established with BranchAttn and non-linearity (tanh)
is applied. The parent node representation is achieved by performing element-wise summation
(ExS). Eq. 5.32 represents the operation of this step.

ParentNode = EWS(tanh((�attn + �)! + b)) (5.32)

In Eq. 5.32, � and �attn symbolize the input and output features of the attention computation
module.

5.2.3.2 Heterogeneous Graph Attention Network

The heterogeneous graph attention network (H-GAT) [227] was initially introduced for the tex-
tual summarization task to provide enriched cross-sentence relationships. In this work, we have
utilized this approach to improve the sentence representation quality. At each iteration, this
module is deployed once the constituency and dependency tree-transformers’ forward passes
are done. Via sentence-to-word and word-to-sentence update processes, this module provides
enriched sentence vectors.

For this module the graph G has been structured as G = {V, E}. The set V represents the
nodes in the graph, while E represents the edges between those nodes. For any sentence S con-
taining n words (wi), V = {w1,w2, ...,wn, S }. As this task finds protein-protein interactions in
single sentences, the edges are established in such a way that the sentence node S is connected
to every word node wi. Once the graph G has been constructed, a Graph Attention Network
(GAT) [224] is employed to modify the feature values of the nodes. Let hi 2 Rdh be the hid-
den states of the word and sentence nodes, where i 2 {1 : (n + 1)} and dh is the hidden state
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dimension. Then the GAT layer can be represented as:

i, j = LeakyReLU(!a[!qhi;!kh j]) (5.33)

↵i, j =
exp(i, j)P

l2Ni exp(i,l)
(5.34)

Zi = �(
X

j2Ni

↵i, j!vh j) (5.35)

where the !a, !q, !k, and !v weight-matrices are updated via backpropagation. The set of
neighbouring nodes for any considered node is represented byNi. The attention score between
hi and hj is represented by ↵i, j. The GAT incorporating multi-head attention, withM attention
heads, can be defined as:

Z
i = ||Mm=1�(

X

j2Ni

↵m
i, j!

mhi) (5.36)

In order to avoid the vanishing of gradients over time, a residual connection is also established.
With the information ui from this residual connection, the final hidden state representation is
formulated as follows:

hi = ui + hi (5.37)

By means of the previously described GAT and a position-wise feed forward network (FFN)
layer, which consists of two linear transformations [227], the word nodes are updated based on
the information from the sentence node seen in Eqs. 5.38 and 5.39:

Z
1
s!w = GAT(H0

w,H
0
s ,H

0
s ) (5.38)

H
1
w = FFN(Z1

s!w +H
0
s ) (5.39)

where H0
w is the set of word nodes (the Bio-RoBERTa-based embeddings for words [82]) for

the words present in the sentence. H0
s is the average of the sentence representations from the

dependency and constituency tree-transformers. In Eq. 5.38, H0
w has been considered as the

query matrix and H0
s has been considered as both the key and value matrices following the

work of Vaswani et al. [223].

After updating the word nodes based on the sentence node, the next step involves updating
the sentence node based on the just updated word nodes. These sentence-to-word and word-to-
sentence node refinement processes continue at each iteration. For the t-th iteration, the process
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Figure 5.2: This diagram illustrates the approach for combining features from the dependency
and constituency tree-transformers together with a heterogeneous graph attention network to
create an integrated architecture for PPI prediction. The blue numbers in the Constituency and
Dependency Tree Transformers indicate the attention value for the associated tree branches.

can be represented in the following manner:

Z
t+1
s!w = GAT(H t

w,H
t
s,H

t
s) (5.40)

H
t+1
w = FFN(Zt+1

s!w +H
t
w) (5.41)

Z
t+1
w!s = GAT(H t

s,H
t+1
w ,H

t+1
w ) (5.42)

H
t+1
s = FFN(Zt+1

w!s +H
t
s) (5.43)

5.2.3.3 Model Architecture

Figure 5.2 sketches the overall architecture of the model. Each unit of the model is initially
fed with the Bio-RoBERTa [82] word embeddings. Then the constituency and dependency tree
transformers generate the sentence representations (S CTT and S DTT, respectively) in parallel. A
point-wise average operation is applied to these two sentence vectors. This averaged sentence
vector (S avg) is then used for the sentence-to-word and word-to-sentence update steps in the
heterogeneous graph attention network. This step provides another sentence representation
(S graph). In the following step, max-pooling is applied and followed by a multi-layer perceptron
for the PPI extraction.
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5.2.4 Experimental Details and Performance Analysis

In this section, we present the performance of the proposed model, evaluated using the F1-
score. We have formulated the PPI extraction as a classification task. We conclude by com-
paring the e�cacy of the proposed model to the leading sequential, tree-structured, and graph-
based architectures that have been previously proposed for the PPI task. We first include a
statistical overview of the five primary PPI corpora utilized in this task, as well as a discussion
of the pre-processing techniques employed on these corpora.

5.2.4.1 Corpus Description

First, to assess the performance of the examined model, we evaluate its performance on the
five standard PPI benchmark corpora: BioInfer [173], AIMed [35], HPRD50 [69], IEPA [57],
and LLL [158]. In all of the experiments, the following transformed version of each corpus is
employed, as specified by Ahmed et al. [6] and Singha Roy and Mercer [204]. To provide a
consistent classification task across all five corpora, all protein names are replaced with three
distinct symbols: if a pair of proteins are to be considered as potentially interacting in a given
sentence, they are substituted with the labels PROT1 and PROT2 and all other proteins men-
tioned in the sentence are substituted with PROT0. Thus, this approach has the model consider
an interaction between two proteins, one at a time. To work with sentences containing more
than two proteins, two proteins at a time are tagged with PROT1 and PROT2 and their interac-
tion (positive or negative) is identified. Sequentially, all protein pairs are considered. So, for
each sentence in the corpus containing ⌘ proteins, the modified corpus will feature ⌘C2 varia-
tions. As an example, consider the following sentence: “At 89.3 nmol/L, maximal migration
of CCR1 and CCR8 transfected cells was prompted by LEC and at 5.6 nmol/L, cell adhesion
also occurred.” To identify the possible relationship between LEC and CCR1, we replace their
respective protein names with PROT1 and PROT2, while replacing CCR8 with PROT0. When
the objective is to identify the possible interaction between LEC and CCR8, we replace their
names with PROT1 and PROT2, and use PROT0 in place of CCR1. Similarly, when identi-
fying the possible interaction between CCR1 and CCR8, they are replaced with PROT1 and
PROT2 and LEC is replaced with PROT0. Interactions between protein pairs can be either
positive or negative. For the above example, when the considered proteins are CCR1 and LEC
or CCR8 and LEC, the nature of their interactions is positive in each case. However, when the
considered protein pair is CCR1 and CCR8, the PPI is negative since no interaction is present
between them. Thus the example sentence presents three possible interactions, resulting in
three variants (3C2) of the sentence in the modified corpus: two with positive interactions, and
one with a negative interaction. Using generic names to represent protein names enhances
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Table 5.3: Statistics of the modified corpora

Corpus Original Positive Negative
Sentences Interactions Interactions

AIMED 1,995 1,000 4,834
BioInfer 1,100 2,534 7,132

IEPA 486 335 482
HPRD50 145 163 270

LLL 77 164 166

the data by allowing for multiple samples of these generic names, as opposed to only a few
samples for each individual protein name. Table 5.3 provides an overview of the demographic
characteristics of the five modified corpora applying this above-mentioned approach. We have
utilized the Stanford dependency and constituency parser to parse sentences in each corpus
[137].

5.2.4.2 Experimental Setup

Next, turning to the details of the model, it uses an initial learning rate of 0.1. If the validation
accuracy decreases from the previous iteration, the learning rate is reduced by 80% in each
iteration. We set the batch size to 10. The tree-transformer models use six PCNN layers and
six branches of attention layer, and employ 341-dimension and 300-dimension kernels in two
CNN layers with dropout 0.1 in the second layer only. For the H-GAT unit, six attention heads
are utilized. The model hyper-parameters are trained by the ‘Adagrad’ [132] optimizer. The
final sentence representation of each individual unit as well as the model is a 512-dimensional
vector. The model is fed with Bio-RoBERTa word embeddings. For the tree-transformers,
these embeddings are not further updated. But, for the H-GAT unit, with the sentence-to-word
update step, word embeddings are updated once each epoch. We have also experimented with
PubMed-BERT [80], however, better performance is acquired when Bio-RoBERTa word em-
beddings are used. We have utilized StratifiedK-Fold from the scikit-learn package to perform
10-fold cross-validation in the model evaluation process. For each fold, the training was done
on the training set and the test was done on a separate test set.

All of the experiments are performed on Linux Ubuntu 22.04 LTE with 16GB memory and
Nvidia 1070Ti 8GB graphics memory. For implementing the model, we have used PyTorch
1.7.1. In this environment, the model took 8 hours each for training on the BioInfer and AIMed
corpora.
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Table 5.4: Performance evaluation of the models by means of F1-score (in %). The sequential,
tree-structured, and graph-based models are tagged with †, ‡, and ⇤, accordingly. The perfor-
mance metric of our model is presented in bold.

Methods AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. [42] † 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. [88] † 76.9 87.2 76.31 80.51 78.3 79.84

Zhang et al. [267] † 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. [245] † 77.33 76.33 - - - 76.83

Tai et al. [214] ‡ 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. [4] ‡ 81.6 89.1 78.5 81.3 84.2 82.94

Singha Roy and Mercer[204] ‡ 88.15 96.01 83.24 88.94 92.18 89.70
Fei et al. [64] ⇤ 88.27 96.21 83.90 89.57 92.86 90.16
Proposed Model 91.23 96.97 87.28 93.11 93.52 92.02

5.2.4.3 Performance Analysis

Table 5.4 displays how our proposed model performs on the five benchmark corpora, along
with the published results of several sequential, tree-structured, and graph-based models for
comparison. For performance evaluation, we have used the F1-score. With the AIMED corpus,
we have achieved 91.23% F1-score, which is a 2.96 percentage point (p.p.) performance boost
compared to the current state of the art [64]. The second dataset that has been used to evaluate
the model is BioInfer. It has the highest number of annotated interactions compared to the
other four datasets. In this dataset the sentences are notably longer and encompass a greater
number of protein names mentioned within a single sentence. On this corpus, our model has
achieved a F1-score of 96.97% which is 0.76 p.p. and 0.96 p.p. higher than Fei et al. [64] and
Singha Roy and Mercer [204], respectively. The three remaining corpora (IEPA, HPRD50, and
LLL) come with comparably smaller number of samples. Even for these corpora with very few
samples our model has outperformed the current state of the art model [64] for the PPI task.
Compared to Singha Roy and Mercer [204], which is the best performing tree-structured model
for the PPI extraction task, our model has gained 4.04 p.p., 4.17 p.p., and 1.34 p.p. higher F1-
scores for the IEPA, HPRD50, and LLL corpora, accordingly. In comparison to the work of
Fei et al. [64], for these three corpora, in the order given above, the performance boosts for our
model are 3.38 p.p., 3.54 p.p., and 0.66 p.p. On average, over these five corpora, our model has
achieved 92.02% F1-score which is 1.86 p.p. higher than what is reported in Fei et al. [64].

Further to these performance numbers, it is noteworthy that if we discard the H-GAT mod-
ule, our proposed model is almost identical to the model presented in the work of Singha Roy
and Mercer [204]. Comparing the F1-scores of these two models in Table 5.4, we can see
that the sentence-to-word and word-to-sentence update processes are key to the improvement
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Table 5.5: Cross-corpus experimental results by means of F1-score (in %). The training corpora
are represented by the rows, while the testing data is presented in the columns. Rows marked
with † are the results from Ahmed et al. [4].

AIMed BioInfer IEPA HPRD50 LLL
AIMED † - 47.0 38.6 41.5 34.6
BioInfer † 50.8 - 40.8 45.5 33.5
AIMED - 55.1 42.7 46.2 39.5
BioInfer 56.7 - 44.0 50.3 40.8

seen in the performance of our new model. This enhanced performance, we believe, is because
when the H-GAT module is being employed, the sentence representations generated by the
tree-transformers, and thus the newly generated word representations by the sentence-to-word
update step, provide a more enriched semantics for the task which in turn help to produce (due
to the word-to-sentence process) a better sentence representation for the following classifier.
Our belief is further supported by noting that the max-pooling layer, having replaced a sen-
tence feature concatenation layer in a previous version of our model, results in a 0.5-1.8 p.p.
performance boost compared to the previous version (previous model’s numbers not shown).

5.2.4.4 Cross-Corpus Performance Analysis

In addition, we have performed a cross-corpus assessment, motivated by Van et al. [222],
which aims to address a critical inquiry regarding the e↵ective extraction of protein-protein
interactions in practical applications – “which corpus is most suitable for the training of a
specific model in real-world scenarios?”. Table 5.5 shows the results achieved by our model
for the cross-corpus evaluation. The training data is represented by the rows, and the test data
is represented by the columns. In this study, we utilized AIMed and BioInfer exclusively as
the training datasets while disregarding the smaller ones. This is because training on small
and simple corpora and testing on larger, more intricate datasets serves no practical purpose
[164, 4]. The results show a noticeable decline in performance across all corpora due to the lack
of consistency between the distribution of the training and testing data. The acquired results
support the basic principle of machine learning, which states that training and test sets should
have identical distributions. Notably, our proposed model trained on BioInfer outperforms the
same model trained on AIMed, likely due to the former’s larger size. The results also show
that, for our model, if it is used in real life scenarios, BioInfer should be the suggested corpus
for model training. Furthermore, these transfer learning results show a performance boost
compared with Ahmed et al. [4].
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5.2.5 Conclusion and Future Work

In this paper, we have proposed a supervised Protein-protein interaction extractor model which
has the ability to obtain the word level dependencies, phrasal information, and better seman-
tics by means of utilizing dependency and constituency tree-transformers and a heterogeneous
graph neural network. Our model has shown significant performance improvements on all five
benchmark corpora.

Despite the progress made in this work, there is still room for further improvement. The
sentence-to-word and word-to-sentence node update step can be applied directly over the tree-
transformers to see how they perform. Additional analysis of the results can be conducted by
examining the AUC and ROC curves.

5.3 Extracting Drug-Drug and Protein-Protein
Interactions from Text Using a Continuous Update of
Tree-Transformers

This chapter is based on the paper titled “Extracting Drug-Drug and Protein-Protein Interac-
tions from Text Using a Continuous Update of Tree-Transformers” co-authored with Robert
E. Mercer that appeared in the Proceedings of the 22nd Workshop on Biomedical Language
Processing (BioNLP 2023) [205].

Understanding biological mechanisms requires determining mutual protein-protein inter-
actions (PPI). Obtaining drug-drug interactions (DDI) from scientific articles provides impor-
tant information about drugs. Extracting such medical entity interactions from biomedical
articles is challenging due to complex sentence structures. To address this issue, our pro-
posed model utilizes tree-transformers to generate the sentence representation first, and then a
sentence-to-word update step to fine-tune the word embeddings which are again used by the
tree-transformers to generate enriched sentence representations. Using the tree-transformers
helps the model preserve syntactical information and provide semantic information. The fine-
tuning provided by the continuous update step adds improved semantics to the representation
of each sentence. Our model outperforms other prominent models with a significant perfor-
mance boost on the five standard PPI corpora and a performance boost on the one benchmark
DDI corpus that are used in our experiments.
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5.3.1 Introduction

With the rapid expansion of scientific literature, most biological knowledge is now stored as
text and can be accessed through scientific publications. The MEDLINE database has ex-
perienced a steady annual growth of over 4% for the last two decades, currently boasting a
collection of over 29 million records from diverse sources. This is an increase of 3 million
records compared to 2020 and over 8 million records compared to 2014, as cited in Yadav
et al. [245]. The vast amount of textual data in biomedical research articles presents an in-
valuable opportunity for automated biomedical information retrieval to leverage this wealth of
information.

As biomedical data continues to expand exponentially and the inherent complexity of tex-
tual representations, automated methods for information retrieval plays a pivotal role in aiding
biologists in locating pertinent information, managing databases, and providing decision sup-
port to medical practitioners. Numerous studies have been conducted to extract valuable infor-
mation from these texts, encompassing various domains such as protein-protein interactions,
chemical-disease relationships, clinical correlations, drug-drug interactions, and more.

The internal biological processes within a cell, such as cellular organization, signal trans-
duction, and immune response, are predominantly governed by interactions between di↵erent
proteins [209]. To comprehend the molecular mechanisms underlying these biological pro-
cesses, knowledge of protein-protein interactions (PPI) is indispensable [4]. These interactions
have significant relevance in the biomedical domain, including drug target examination [77]
and signal proteins [9]. Consequently, the identification of protein-protein interactions (PPIs)
leads to a deeper understanding of the functions, regulation, and communication between var-
ious proteins [250]. The primary objective of PPI recognition is to extract the relationships
between protein entities mentioned in a document [112].

A drug-drug interaction (DDI) refers to a modification in the e↵ects of one drug due to
the presence of another drug [186]. While clinical trials for pre-market identification of in-
teractions are challenging, obtaining DDI information from scientific articles is a faster, cost-
e↵ective, and reliable approach to reducing adverse e↵ects. Furthermore, in order to prac-
tice evidence-based medicine and mitigate drug-related accidents, comprehensive extraction of
DDI knowledge from pharmaceutical literature is crucial [190]. Automatic DDI extraction can
prove highly beneficial for the pharmaceutical industry, o↵ering an e�cient means of reducing
the time spent by healthcare professionals reviewing the medical literature.

Biomedical literature contains a wealth of information about protein-protein interactions
(PPIs) and drug-drug interactions (DDIs), but this information is often unstructured. Manual
extraction of these interactions from biomedical literature is a laborious, resource-intensive,
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and costly task, given the sheer volume of published studies [165, 216]. Consequently, the
automatic extraction of PPIs and DDIs from biomedical literature has emerged as a vital re-
search area, garnering attention from numerous researchers. While the information may be
scattered throughout the document, the current study focuses on detecting these interactions
within individual sentences, similar to previous studies [15, 64, 4, 218].

An instance of a sentence that demonstrates protein-protein interactions can be found in the
study by Howard et al. [87], where it states:

“At 89.3 nmol/L, maximal migration of CCR1 and CCR8 transfected cells was
prompted by LEC and at 5.6 nmol/L, cell adhesion also occurred.”

This sentence highlights two protein-protein interactions involving LEC and CCR1, as well
as LEC and CCR8. However, it is important to note that there is no correlation mentioned
between proteins CCR1 and CCR8 in this context.

An instance of a DDI-containing sentence is [157]:

“To determine whether probenecid has a direct e↵ect on the distribution of
cloxacillin, the elimination and distribution of cloxacillin was studied in six pa-
tients, five lacking kidney function and one with a partially impaired renal func-
tion, in the presence or absence of probenecid.”

This sentence mentions two drugs: probenecid, and cloxacillin. However, the interaction be-
tween them is negative, as no concrete interaction is stated.

During the extraction of relationships between target proteins or drugs, we have addressed
three key concerns. Firstly, how to tackle the challenge of retrieving relations when the men-
tioned proteins or drugs are widely separated in the text. Secondly, how to preserve better
semantics by handling the phrasal structure of the text, allowing for the e↵ective extraction of
PPIs or DDIs and capturing relevant information. Lastly, what is the impact of updating word
and non-leaf node representations in the tree-structured networks based on the sentence at hand,
as opposed to using fixed representations from pre-trained models, and how this influences the
generated sentence representation for the task of PPI and DDI extractions.

To address the above-mentioned three considerations we have proposed a model combining
a constituency tree-transformer (for preserving phrase-level information in the text), and a de-
pendency tree-transformer (to consider relations between long distant drugs or proteins in the
text) where each of them generates sentence representations which are then combined. Finally,
a sentence-to-word update step is introduced following the concept from Wang et al. [227] to
update the word and non-leaf nodes of the tree-transformers to generate refined sentence repre-
sentation. This approach serves the purpose of fine-tuning BERT-based word embeddings for
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these tasks. But the advantage of this approach is that we do not need to fine-tune millions of
parameters in the BERT-based models. Our study includes a thorough analysis of the perfor-
mance of the proposed models on benchmark PPI and DDI datasets. The results demonstrate
the superiority of our proposed model compared to previous prominent models in the field. The
comprehensive analysis highlights the e↵ectiveness and e�cacy of our approach in accurately
extracting protein-protein and drug-drug interactions from biomedical literature.

5.3.2 Related Work

In the initial stages of biomedical entity relation extraction research, co-occurrence and pattern
recognition techniques were commonly employed [20, 256]. However, with advancements in
technology, machine learning techniques have gained prominence due to their superior perfor-
mance. Early approaches involved feature engineering and kernel methods to construct a fea-
ture set, followed by classification using support vector machines or other classifiers [7, 152].
In recent years, deep learning techniques, leveraging the widespread use of deep learning in
natural language processing (NLP), have been successfully applied to PPI and DDI extraction
in several research works [125, 270, 89, 49]. Zhang et al. [267] proposed a three-channel
convolution neural network for extracting PPIs from the text.

Recent work in PPI and DDI extraction often utilizes recurrent neural network (RNN) mod-
els that treat textual representations as sequences [88, 192, 244]. However, these models may
miss semantic compositions when biomedical entities lie at distant positions in the text, as they
only consider word order and ignore linguistic structure [5, 118]. In contrast, recursive neu-
ral networks, also known as tree-structured neural network models [6, 204], process sentences
represented in a parsed tree form, capturing both syntax and semantics in a more e↵ective man-
ner. There have also been investigations into graph-based methods, where models operate on
a fully connected graph composed of either word or phrase nodes [64]. These approaches aim
to leverage the structural information present in the data for improved performance in PPI and
DDI extraction. Asada et al. [14] utilized molecular structure and description of the drugs for
retrieving DDIs. Gu et al. [80] fine-tuned PubMedBERT to extract relations between drugs.
Following this, Asada et al. [15] utilized a knowledge graph with PubMedBERT for the DDI
extraction task.

5.3.3 Proposed Model

In this section, we provide details of our model for the protein-protein and drug-drug interaction
extraction tasks. Our model contains three key modules: two tree-transformers, as described
in Ahmed et al. [6], for preserving the semantic and syntactical information, and a sentence-
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to-word update step for updating the word and intermediate node representations in the tree-
transformers to generate refined representations of the sentences. In this current work, we have
added an update of the word embeddings after the sentence-to-word update step which enriches
the input to the combination of the two tree-transformers and the heterogeneous graph attention
network, which were first proposed for the PPI extraction task in Singha Roy and Mercer [201].
In this section, we first discuss how each module functions individually, and then elaborate on
how these modules are integrated into our proposed model with the expanded workflow.

5.3.3.1 Tree-Transformers

The two tree-based representations commonly used for representing a sentence are con-
stituency trees and dependency trees. Constituency trees capture the structure of phrases in
a sentence, while dependency trees represent the dependencies between individual words. In
our work, we utilize two tree-transformer models, namely the dependency tree-transformer and
the constituency tree-transformer, as proposed by Ahmed et al. [6], to leverage these sources of
syntactic structure information. The goal of these tree-transformer models is to traverse each
sub-tree within a dependency or constituency tree structure attentively and at its root derive a
sentence representation. This allows us to capture both the semantic and syntactic information
of the sentence for improved performance in extracting protein-protein and drug-drug interac-
tions from the text. Unlike the tree transformer proposed by Wang et al. [229] which learns
phrases they call constituents, the tree transformer proposed by Ahmed et al. [6] works over
the parsed trees and can work with both the constituency and dependency trees.

In a dependency tree, each node represents a word in the sentence. When traversing a
sub-tree in a dependency tree, the dependency tree-transformer takes into consideration the
representations of both the parent and child nodes, allowing for the propagation of information
between connected words in the tree. On the other hand, in a constituency tree, only the leaf
nodes hold words, while the non-terminal nodes do not have word representations. The vector
representations for the non-terminal nodes are computed only after the sub-tree has been fully
traversed, taking into account the information from the leaf nodes. This approach allows for
the capture of both local and global contextual information during the tree traversal process,
facilitating the extraction of meaningful representations from the syntactic structures of the
sentence. Ahmed et al. [6] have used a self-attention mechanism to process the dependency
and constituency tree representations of the sentence, employing query (Q), key (K), and value
(V) matrices, which are computed as follows based on the formulation proposed by Vaswani
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et al. [223]:

K = !kMk s.t. !k 2 Rd⇥d (5.44)

V = !vMv s.t. !v 2 Rd⇥d (5.45)

Q = !qMq s.t. !q 2 Rd⇥d (5.46)

In the tree-based transformer models, the matrix M is computed di↵erently for dependency
trees and constituency trees. In the case of dependency trees, the matrix M is created by
concatenating the word vectors of all of the child nodes for each parent node in the dependency
tree. On the other hand, for constituency trees,M is formed by concatenating the word vectors
within a constituent. The self-attention matrix ↵ is then computed as:

↵ = softmax(
Q K

T

p
dk

)V (5.47)

where dk represents the dimension ofK . To implement multi-branch attention with n branches,
the following steps are taken: first, n copies of the key, query, and value matrices are gener-
ated using weight matrices (!i). Then, each branch applies the scaled dot product attention
separately (following Eq. 5.47), using its own set of query, key, and value vectors. Finally, this
results in n sets of attended word vectors, one for each branch (see Eq. 5.48).

Bi = ↵i2[1,n](Qi !
Q

i ,Ki !
K

i ,Vi !
V

i ) (5.48)

Then, a residual connection is employed on these tensors, and a batch normalization layer is
applied to each layer. Following that, the branch representation is generated using a scaling
factor µ in the following manner:

B̃i = LayerNorm(Bi!
b
i + Bi) ⇥ µi (5.49)

Following that, a position-wise CNN (PCNN) is applied to each B̃i. The PCNN layer com-
prises two convolution operations on each position, separated by a rectified linear unit (ReLU)
activation function. The operation of this PCNN layer can be represented as per Eq. 5.50:

PCNN(x) = Conv(ReLU(Conv(x) + b1)) + b2 (5.50)

The ultimate attentive representation of these semantic sub-spaces, which are generated from
the PCNN layer, is acquired by conducting a linear weighted summation (as expressed in Eq.
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5.51), with � 2 Rn serving as a hyper-parameter of the model.

BranchAttn =
nX

i=1

�iPCNN(B̃i) (5.51)

In the final stage, a residual connection is established with BranchAttn, and a hyperbolic
tangent non-linearity (tanh) function is applied. The representation of the parent node is then
obtained by conducting element-wise summation (EWS) (Eq. 5.52).

ParentNode = EWS(tanh((�attn + �)! + b)) (5.52)

In Eq. 5.52, the symbols � and �attn represent the input and output features of the attention
computation module, respectively.

5.3.3.2 Sentence-to-Word Update Module

For the sentence-to-word update step, we have used an approach similar to the heterogeneous
graph attention network (H-GAT) [227]. H-GAT was introduced for extractive summarization
tasks with the intention to generate an enriched cross-sentence relationship. In our research,
we have employed this approach to enhance the quality of sentence representations. This
module is utilized at each iteration, once the forward passes of the constituency and dependency
tree-transformers are completed. Through sentence-to-word and a following forward pass of
the tree-transformers again, this module enriches the sentence vectors, thereby improving the
overall sentence representation quality.

The graph G in this module is structured as G = V, E, where V represents the nodes in
the graph and E represents the edges between those nodes. For a given sentence S containing
n words (wi), the set of nodes V is defined as V = w1,w2, ...,wn, S . Since the task involves
identifying PPIs and DDIs in single sentences, the edges are established in such a way that the
sentence node S is connected to every word node wi. Once the graph G is constructed, a Graph
Attention Network (GAT) [224] is used to modify the feature values of the nodes. Let hi 2 Rdh

be the hidden states of the word and sentence nodes, where i 2 1 : (n + 1) and dh is the hidden
state dimension. The GAT layer can be formulated as follows:

i, j = LeakyReLU(!a[!qhi;!kh j]) (5.53)

↵i, j =
exp(i, j)P

l2Ni exp(i,l)
(5.54)

Zi = �(
X

j2Ni

↵i, j!vh j) (5.55)
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The weight matrices !a, !q, !k, and !v in the GAT layer are updated through backpropaga-
tion. The set of neighbouring nodes for a given node i is denoted by N i, while the attention
score between hidden states hi and hj is denoted by ↵i, j. The GAT layer can be extended to
incorporate multi-head attention withM heads, which is represented as follows:

Z
i = ||Mm=1�(

X

j2Ni

↵m
i, j!

mhi) (5.56)

To mitigate the issue of vanishing gradients over time, a residual connection is established.
The final hidden state representation (hi), incorporating the information (ui) from the residual
connection, is formulated as hi = ui + hi.

The word nodes are updated using the previously delineated GAT and a position-wise feed-
forward network (FFN) layer, which consists of two linear transformations as introduced by
Wang et al. [227]. At the t-th iteration, the updates are performed based on the information
from the sentence node, as shown in Eqs. 5.57 and 5.58:

Z
t+1
s!w = GAT(H t

w,H
t
s,H

t
s) (5.57)

H
t+1
w = FFN(Zt+1

s!w +H
t
s) (5.58)

In Eq. 5.57, H0
w represents the set of word nodes, which are the Bio-RoBERTa-based embed-

dings for the words in the sentence [82]. On the other hand, H t
s represents the average of the

sentence representations obtained from the dependency and constituency tree-transformers. In
the GAT layer, H t

w is used as the query, while H t
s is considered as both the value and key

matrices, imitating the approach of Vaswani et al. [223].

5.3.3.3 Model Architecture

Figure 5.3 provides an architectural overview of the model. The model starts with Bio-
RoBERTa word embeddings as input. These embeddings are then processed by the Depen-
dency Tree Transformer (DTT) and Constituency Tree Transformer (CTT) in parallel to gen-
erate sentence representations (S DTT and S CTT, accordingly). This step is followed by a mean-
pooling operation and an intermediate sentence representation S avg is generated. The sentence-
to-word update step uses the S avg representation to update the word representations. These
updated word representations are then passed to the tree-transformers again. This step in-
volves another forward pass to generate the updated sentence representations S 0DTT and S 0CTT.
Max-pooling is applied over these updated sentence representations and this result is fed to the
following classification layer for the relation extraction.
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Figure 5.3: Integrated architecture with tree-transformers with the sentence-to-word update
step for relation extraction task. The numerical values in blue color, associated with the
branches in the tree Transformers, represent the attention scores for those specific branches.

5.3.4 Experimental Setup and Analysis of Results

In this section, the performance of the proposed model is evaluated using the F1-score. The
PPI (Protein-Protein Interaction) and DDI (Drug-Drug Interaction) extraction tasks have been
formulated as classification tasks. The section also includes a demographical overview of
the five primary PPI corpora and the standard DDI corpus used in the evaluation, as well
as a discussion of the pre-processing techniques employed on these corpora. The e�cacy
of the proposed model is compared to leading sequential, tree-structured, and graph-based
architectures that have been previously propounded for these biomedical entity inter-relation
extraction tasks.

5.3.4.1 Corpora Descriptions

The performance of the proposed model for PPI extraction task is evaluated on five benchmark
corpora: BioInfer [173], AIMed [35], HPRD50 [69], IEPA [57], and LLL [158]. In order to
bring forth a persistent classification task across all five corpora, protein names are substituted
with three symbols: PROTEIN1 and PROTEIN2 are used to represent pairs of proteins that are
considered potentially interacting in a given sentence, while all other protein names present
in the sentence are altered with PROTEIN0. The approach of replacing protein names with
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Table 5.6: Demographical description of the modified corpora for PPI task

Corpus Original Positive Negative
Sentences Samples Samples

AIMED 1,995 1,000 4,834
BioInfer 1,100 2,534 7,132

IEPA 486 335 482
HPRD50 145 163 270

LLL 77 164 166

generic symbols allows the model to focus on the interaction between a pair of proteins in each
sentence, one at a time. For sentences containing more than two proteins, two proteins at a time
are tagged with PROTEIN1 and PROTEIN2, and their interaction (positive or negative) is iden-
tified. This process is repeated sequentially for all protein pairs in the sentence. Thus, for each
sentence in the corpus containing ⌘ proteins, the modified corpus will feature ⌘C2 variations.
For example, consider the sentence: “At 89.3 nmol/L, maximal migration of CCR1 and CCR8
transfected cells was prompted by LEC and at 5.6 nmol/L, cell adhesion also occurred.” To
identify the possible relationship between LEC and CCR1, their respective protein names are
replaced with PROTEIN1 and PROTEIN2, while CCR8 is replaced with PROTEIN0. When
the objective is to identify the possible interaction between LEC and CCR8, their names are
replaced with PROTEIN1 and PROTEIN2, and PROTEIN0 is used in place of CCR1. Simi-
larly, when identifying the possible interaction between CCR1 and CCR8, they are replaced
with PROTEIN1 and PROTEIN2, and LEC is replaced with PROTEIN0. Interactions between
protein pairs can be either positive or negative. For the above example, when the considered
proteins are CCR1 and LEC or CCR8 and LEC, the nature of their interactions is positive in
each case. However, when the considered protein pair is CCR1 and CCR8, the PPI is nega-
tive since no interaction is present between them. Thus, the example sentence presents three
possible interactions, resulting in three variants (3C2) of the sentence in the modified corpus:
two with positive interactions and one with a negative interaction. Using generic names to
represent protein names enhances the data by allowing for multiple samples of these generic
names, as opposed to only a few samples for each individual protein name. An overview of the
demographic traits for the five revised datasets, using the aforementioned method, is presented
in Table 5.6.

For the DDI extraction task, we have conducted our experiments on the DDIExtraction-
2013 corpus [199]. For the data preprocessing step, the aforementioned steps have been sim-
ilarly followed. Here, the potentially interacting drug pairs are replaced with DRUG1 and
DRUG2 and the remaining drug names in the sentence are replaced with DRUG0. Thus, each
sample considers the interaction between one pair of drugs at a time, similar to the PPI data
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Table 5.7: Demographical description of the SemEval-2013 DDIExtraction task dataset

Train Test
Sentences 6976 1299
Drug Pairs 27792 5716
Positive Pairs 4021 979

Mechanism 1319 302
E↵ect 1687 360
Advice 826 221
Interaction 189 96

Negative Pairs 23771 4737

preprocessing step. The overall demographic of the corpus is presented in Table 5.7.
The Stanford dependency and constituency parsers [137] have been employed to parse

sentences in all of these corpora.

5.3.4.2 Experimental Setup

Regarding the model specifics, an initial learning rate of 0.1 has been employed for all the
experiments. If the validation accuracy declines compared to the previous iteration, the learning
rate has been decreased by 80% in each subsequent iteration. Additionally, a batch size of 10
is set.

The tree-transformer models incorporate six branches of an attention layer and six PCNN
layers. Two CNN layers utilize kernels of dimensions 341 and 300, respectively, with a dropout
of 0.1 in the second layer only. The sentence-to-word update module employs six attention
heads. The trainable hyperparameters of the model are updated using the Adagrad optimizer
[132]. The final representation for each sentence representation unit (dependency and con-
stituency tree-transformers) and the model itself is a 512-dimensional vector. Bio-RoBERTa
word embeddings are used as the initial input of the model. The model uses two forward
passes for sentence vector generation. Only the first forward pass uses these Bio-RoBERTa
word embeddings. The second pass utilizes the updated word representations obtained from
the sentence-to-word update module, as described in Section 5.3.3.3.

To conduct the performance evaluation of the Proposed Model for the PPI extraction task,
we have employed StratifiedK-Fold from the scikit-learn package to perform 10-fold cross-
validation. In each fold, the training has been carried out on the training set, and the evaluation
has been performed on a separate test set. The tree LSTM proposed by Tai et al. [214] 1 has

1This model was not developed in particular for the PPI task. We were interested in its performance on this
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Table 5.8: Performance evaluation of the models for PPI extraction on the five datasets: F1-
score (in %) as the metric. All values, except for Tai et al. [214] and the Proposed Model, are
those reported in the original works. The best performance metric for each dataset is indicated
in bold.

Methods Architecture AIMed BioInfer IEPA HPRD50 LLL Avg.
Chang et al. [42] RNN 60.6 69.4 71.4 71.5 80.6 70.7
Hsieh et al. [88] RNN 76.9 87.2 76.31 80.51 78.3 79.84

Zhang et al. [267] RNN 56.4 61.3 75.1 63.4 76.5 66.54
Yadav et al. [245] RNN 77.33 76.33 - - - 76.83

Tai et al. [214] Tree-structured 80.6 88.1 76.4 82.0 84.8 82.38
Ahmed et al. [4] Tree-structured 81.6 89.1 78.5 81.3 84.2 82.94

Singha Roy and Mercer[204] Tree-structured 88.15 96.01 83.24 88.94 92.18 89.70
Fei et al. [64] Graph-based 88.27 96.21 83.90 89.57 92.86 90.16

Singha Roy and Mercer[201] Tree-structured 91.23 96.97 87.28 93.11 93.52 92.02
+ Heterogeneous Graph

Proposed Model Tree-structured 94.66 97.81 93.47 94.01 94.14 94.82
+ Heterogeneous Graph

been trained and tested by us following the aforementioned approach. All the other models’
results are reported directly from their corresponding publications. For the DDI extraction task,
the training and test sets have been shu✏ed 5 times using StratifiedK-Fold from the scikit-learn
package to perform 5-fold cross-validation. The average performance metrics for both tasks
are presented in Tables 5.8 and 5.9, respectively, and discussed in Section 5.3.4.3.

The experiments have been conducted on a Linux Ubuntu 22.04 LTE machine equipped
with 16GB of memory and an Nvidia 1070Ti graphics card with 8GB of graphics memory.
PyTorch 1.7.1 has been utilized for implementing the model.

5.3.4.3 Performance Analysis

Table 5.9: Performance evaluation of the models on SemEval-2013 DDIExtraction: Precision,
Recall, and F1-score (in %) as the metrics. All values, except for the Proposed Model, are
those reported in the original works. The best performance metrics are indicated in bold.

Methods Architecture P R F1
Yadav et al. [244] RNN 76.5 69.0 72.6
Gu et al. [80] PubMedBERT - - 82.4
Phan et al. [169] RNN - - 83.7
Asada et al. [14] Knowledge-based 85.4 82.8 84.1
Asada et al. [15] PubMedBERT + Knowledge 85.3 85.5 85.4
Fei et al. [64] Graph-based 94.9 92.0 93.4

Proposed Model Tree-structured 95.5 94.9 95.2
+ Heterogeneous Graph

task.
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Table 5.10: Performance of the model on individual DDI types of the SemEval-2013
DDIExtraction dataset

Metric Mech. E↵ect Advice Interac.
P 95.83 96.77 95.10 94.33
R 94.27 95.64 94.89 94.61
F1 95.04 96.20 94.99 94.47

Table 5.11: The ablation study of the Proposed Model on the PPI and DDI corpora. All values
are F1-scores.

Discarded AIMed BioInfer IEPA HPRD50 LLL DDIComponent
Constituency 89.32 95.66 85.82 90.46 92.01 91.63Tree-Transformer
Dependency 89.11 95.43 84.60 89.72 91.78 90.96Tree-Transformer
Sentence-to-Word 88.11 95.89 83.17 88.85 92.10 89.98Update Module

Table 5.8 showcases the performance of our proposed model on the five benchmark cor-
pora for PPI extraction, along with the published results of various sequential, tree-structured,
and graph-based models for comparison. The F1-score has been utilized as the performance
evaluation metric.

Our proposed model has demonstrated outstanding performance on all benchmark cor-
pora, particularly on the AIMED, IEPA and BioInfer datasets. For the AIMED corpus, our
model has achieved an impressive F1-score of 94.66%, surpassing the current state-of-the-art
(SOTA) model [64] by 6.39 percentage points (p.p.). For the BioInfer dataset, which has longer
sentences and more protein names mentioned in a single sentence, our model has shown re-
markable results achieving an F1-score of 97.81%, surpassing the SOTA and Singha Roy and
Mercer[204] results by 1.6 p.p. and 1.8 p.p., respectively. Even for the IEPA, HPRD50, and
LLL corpora, which have smaller sample sizes, our model has outperformed the current SOTA.
Compared to the best performing tree-structured model [204], our model has achieved signif-
icant improvements of 10.23 p.p., 5.07 p.p., and 1.96 p.p. for the IEPA, HPRD50, and LLL
corpora, respectively. In comparison to Fei et al. [64], our model has achieved performance
boosts of 9.57 p.p., 4.44 p.p., and 1.96 p.p. for the same three corpora, respectively. On average,
across all five corpora, our model has obtained an impressive F1-score of 94.82%, surpassing
the results reported in Fei et al. [64] by 4.66 p.p.

Table 5.9 shows the precision (P), recall (R) and F1-score achieved by the proposed model
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for the DDI extraction task over the SemEval-2013 DDIExtraction corpus along with previous
prominent models and Table 5.10 portrays the performance of the model over each individual
class of the corpus. From Table 5.9 it is clearly visible that the proposed model has out-
performed the current SOTA [64] with a significant margin of 1.8 p.p. by achieving 95.2%
F1-score. For each individual type, the model has achieved more than 94% F1-score which
also proves the generalization capability of the proposed model.

The first attempt to extract PPIs from text incorporating a tree structured neural network
model was by Ahmed et al. [4]. They have applied structured attention over tree-LSTMs and
achieved an average of 82.94% F1-score over the 5 benchmark PPI corpora. Later, in our
following work [204], we have applied tree-transformers and gained a 6.86 p.p. performance
boost on average. This model almost reached Fei et al. [64]’s work which was the state-of-the-
art at that time. In the next step, we have experimented with adding an heterogeneous graph
attention network model [201] with the tree transformers and observed a further performance
gain of 2.32 p.p. In the work reported here, we have utilized the same heterogeneous graph
attention network to update the word embeddings to generate a refined sentence vector which
has given us another 2.8 p.p. performance gain over the PPI corpora, giving a total improvement
of 5.12 p.p. from our initial tree-transformer model [204]. In this present work we have also
experimented with the DDI corpus to show the generalizability of the method and gained a 1.8
p.p. F1-score improvement over the previous state-of-the-art [64].

5.3.4.4 Ablation Study

To indicate the importance of each module in the Proposed Model, an ablation study has been
performed and the results are presented in Table 5.11.

If the sentence-to-word update module is discarded the model is similar to the work of
Singha Roy and Mercer[204] and we can see a significant drop in the F1-score when this
module is discarded. For the five PPI extraction corpora, this F1-score drop is 5.12 p.p. on
average. For the SemEval-2013 DDIExtraction dataset (mentioned as DDI in Table 5.11),
this F1-score drop is 5.1 p.p. which reflects the e↵ectiveness of the sentence-to-word update
module. This process plays a critical role in capturing relevant contextual information from
both the sentence and word levels, leading to the enhanced model performance.

We believe that the improved performance is due to the sentence-to-word update mod-
ule leveraging the sentence representations generated by the tree-transformers fed with task-
specific and context-enriched word vectors. These sentence representations, along with the
newly generated word representations through the sentence-to-word update step, enrich the
semantics of the task. Consequently, the second forward pass produces a more informative
sentence representation for the subsequent classifier, contributing to the enhanced performance
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of our model.
The significance of the sentence-to-word update module is also supported by the other

two ablation experiments presented in the table. When only one of the tree-transformers is
utilized with the sentence-to-word update module, it performs better than that individual tree-
transformer for these tasks. As reported in Singha Roy and Mercer[204], the dependency
tree-transformer achieves 89.06% F1-score over the PPI extraction corpora on average, where
with the sentence-to-word update module it is 90.65%. In the case of the constituency tree-
transformer, the performance boost is 1.33 p.p. A similar observation has been found for the
experiments with the DDI corpus, as well.

5.3.5 Conclusions and Future Work

From these results and discussions in the previous sections, we can conclude that our model
performs significantly better than the other prominent models even without using any addi-
tional features. The tree-transformers enable the proposed model to capture better semantics
along with syntactical information. Additionally, the sentence-to-word update module provides
more task-specific context-aware information, generating enriched word embeddings that fur-
ther enhance the sentence representations for the PPI and DDI extraction tasks.

Although the model has achieved a significantly improved performance over the previous
models, still there is scope for further improvement. Including a knowledge-graph, like in
Asada et al. [15], may improve the model performance with proper knowledge about the DDI
extraction task. Moreover, the current models find PPIs and DDIs that are given in a single
sentence. Using an additional layer of hierarchy that represents document-to-sentence rela-
tions over the sentence-to-word update module, this work can be extended to extract relations
between biomedical entities lying in di↵erent sentences.

5.3.6 Limitation

The model has achieved a significant performance boost. However, the trade-o↵ is the compu-
tational time. Due to using two forward passes, the model requires more time to generate the
results compared to the other models.

5.4 Conclusion

The experiments presented here for the protein-protein interaction (PPI) and drug-drug inter-
action (DDI) identification tasks result in two observations: firstly, the tree-structured neural
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networks perform better than the sequential models for this task; and secondly, unlike some of
the other prominent works, these tree-structured models do not require any additional features
for the performance boost. As an example of additional features to improve the performance
of the relation extraction model for the PPI and DDI tasks, Fei et al. [64] used multi-task
learning and trained a named entity recognition model in combination with their graph-based
relation extraction model. Instead, the constituency and dependency tree-transformers have the
ability to use the syntactic and semantic information that they derive from the text by them-
selves to generate rich sentence representations for the relation extraction step. Moreover, the
sentence-to-word update module, which uses the sentence representations generated by the
tree-transformers, delivers task-specific contextual information, yielding enriched word em-
beddings that benefit the tree-transformers to produce even better sentence representations for
PPI and DDI extraction.



Chapter 6

Personality Trait Identification

Identifying human personality traits is a multifaceted endeavour, characterized by the construc-
tion of various psychological models by experts. These models delineate personality traits as
amalgams of distinct dichotomies. Our work addresses the challenge of personality trait iden-
tification through two distinct approaches, both aimed at extracting semantic nuances from
textual data to discern the underlying dichotomies.

In the initial approach, we enhance vector representations of psycho-linguistic texts, lever-
aging a siamese architecture-based semantic similarity model to train statement encoders,
thereby ensuring that the vector representations of given statements closely align with their
respective baseline statements in the vector space. Our publication titled “Interpretable Rep-
resentation Learning for Personality Detection” details this approach in Section 6.1.

In the second approach, we employ a multilabel classification strategy, which integrates
insights from two of our publications: (i) “Personality Trait Detection using an Hierar-
chy of Tree-transformers and Graph Attention Network” and (ii) “Detecting Personality
Traits from Texts using an Hierarchy of Tree-Transformers and Graph Attention Net-
work with Word Embedding Refinement”. The former work, given in Section 6.2, utilizes
tree-transformers to generate sentence representations for each sentence in a given statement. A
graph attention network then integrates these sentence representations to create a more seman-
tically enriched statement representation, enhancing the accuracy of the subsequent multi-label
classification for personality trait prediction. The latter work, given in Section 6.3, extends the
aforementioned approach by integrating phrase-level and inter-word information using con-
stituency and dependency tree-transformers. A graph attention network is employed to gen-
erate context-enriched word representations which are subsequently fed into the hierarchy of
tree-transformer and graph attention network layers to enhance statement representation. Our
work has demonstrated state-of-the-art performance across three benchmark corpora spanning
two distinct personality trait identification models.

93
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6.1 Interpretable Representation Learning for Personality
Detection

This section is based on the paper titled “Interpretable Representation Learning for Personality
Detection” co-authored with Robert E. Mercer, Amirmohammad Kazemeini, and Erik Cambria
that appeared in the 2021 International Conference on Data Mining Workshops (ICDMW)
[106].

Automatic personality detection has gained increasing interest recently. Several models
have been introduced to perform this task. The weakness of these models is their inability to
interpret their results. Even if the model shows excellent performance over test data, it can
sometimes fail in real-life tasks since it may incorrectly interpret a statement. To investigate
this issue, we evaluate two approaches. In the first approach we generate the sentence embed-
dings by training a siamese Bi-LSTM with max-pooling on the psychological statement pairs.
The intent is to compute the semantic similarities between them. On the second approach we
evaluate state-of-the-art pretrained language models to see whether their output representations
can distinguish personality types. Both of these approaches outperform the previous state-of-
the-art models for this task with less computational overhead. We conclude by discussing the
implications of this work for both computational modelling and psychological science.

6.1.1 Introduction

AI has the potential to assist health experts in dealing with the increasing rate of mental health
issues and disorders. This increasing trend has been the subject of recent investigations such
as the recent trends in mental ill health and health-related behaviors in two cohorts of UK
adolescents that show depressive symptoms and self-harm were higher in 2015 compared with
2005 [163]. How social media impacts mental health (including the mental health of adoles-
cents and rising teen suicide rates) has also been studied [159]. This increasing rate of mental
issues has accelerated due to the COVID-19 pandemic. According to a Kaiser Family Founda-
tion poll, people have become more socially isolated and stressed. Nearly half of Americans
report the coronavirus crisis is harming their mental health [3, 67].

According to a 2020 Harris Poll, between 46% and 51% of US adults were using social me-
dia more since the outbreak began [193]. Increased social media use means more digital foot-
prints, and since people’s personality and private traits can be identified based on them [111],
this pandemic challenge can be turned into an advantage to provide more support for people
based on their needs. A WHO survey showed that COVID-19 further burdened the already
limited mental health services in many countries [233]. Since mental health service resources
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are limited and mental health issues have increased, the increase in social media use provides
an opportunity for AI researchers to utilize the produced digital footprints to help diagnose
people’s mental health issues.

Personality traits are defined as the set of relatively stable characteristics which describe
our feelings and behaviour. These traits play important roles in individuals’ futures and life
outcomes [160, 185]. Among the various personality tests, the Big-Five, which is also called
OCEAN, is known to be the most reliable test for assessing people’s personality [97]. The
OCEAN test describes personality in five measures: Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism. Previous work has investigated the relationship between
personality and mental disorders. Studies have shown that neuroticism plays a vital role in de-
pressive and anxiety disorders [75].

Regarding the other traits, resilience demonstrates a strong inverse relationship with neu-
roticism and strong positive relationships with extraversion and conscientiousness and a small
but statistically significant positive relationship with openness [38]. Hence, understanding a
person’s personality can provide a better insight for detecting mental illnesses.

In addition to psychological motivation, personality traits are also useful in recommender-
systems [254, 141], product and service personalization [195, 226], job screenings [123], social
network analysis [139], and sentiment analysis [37].

In this work, we address the following two questions: Does the embedding, which is used
for current state-of-the-art model, capture psychological information? If not, how can it be
improved? In order to answer these questions, we first introduce an approach for evaluat-
ing embeddings in personality detection. Following that, with metric learning in mind [103],
we apply two di↵erent approaches using two siamese architectures for generating the embed-
dings from the psychological statements. The first approach produces sentence embeddings
by means of computing semantic similarities between psychological statements representing
di↵erent traits. In the second approach, di↵erent variants of another siamese sentence encoder,
Sentence-BERT, for producing sentence embeddings for classifying psychological traits are
investigated. Both of these approaches surpass the previous state-of-the-art models used in this
task with the BFI statement data [95, 96, 23]. The second approach outperforms the previous
state-of-the-art models with the Essays dataset [166] and the Kaggle personality dataset [99].
Extensive experiments with the Essays dataset and the BFI statements are performed and dis-
cussed. These experiments have focussed on these two datasets since the MBTI test (used in
the Kaggle personality dataset) has been questioned for its comprehensiveness, dependability,
and lack of independent categories [171], whereas the OCEAN personality test (the Essays
dataset) is considered as more reliable. These approaches not only outperform the previous
state-of-the-art model but also reduce the computational overhead.
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6.1.2 Related Work

There are a variety of personality tests that are based on psychological discoveries [79]. The
most accepted one in the field of psychology is the Big Five model, also called OCEAN [97].
This personality test is the one focussed on in this paper. OCEAN assesses five dimensions
of personality (Openness to Experience, Conscientiousness, Agreeableness, Extraversion, and
Neuroticism or when positively keyed, emotional stability). One other commonly used person-
ality model, which is used in a comparison below, is Myers-Briggs, also known as MBTI [32].
MBTI categorizes personalities into 16 types; each one can be described as a combination
of 4 binary categories (Extroversion/Introversion, Sensing/Intuition, Thinking/Feeling, Judg-
ing/Perceiving). Since the MBTI test has been questioned for its comprehensiveness, reliablity,
and lack of independent categories, the OCEAN personality test is chosen as the main focus of
this paper.

Given the limited mental health service resources, there is a strong need for an automated
assistant tool. AI models have proven to be good candidates as they perform more accurately
than humans in personality judgment [255]. Some models used psycholinguistic features to
identify personality [135]. In the field of deep learning-based automatic personality detection,
the hierarchical CNN model [136] has attracted a lot of attention. A full comparison between
previous proposed models is given in [143] and perspectives are analyzed in [211]. Although
the deep models are improving the accuracy in this field and their approaches have built the
foundations of our current work, they su↵er from some issues that prevent them from serving
as well as they ought to. For example, the results might be based on the studied socio-cultural
group. Lewis [117] has analyzed this diversity and has shown that the results can vary depend-
ing on the observed cohort. In addition, due to the delicate nature of mental health tasks, trust
is an important criterion that these black-box models cannot satisfy without using a post-hoc
explainability approach [183].

Current NLP models that understand human language are mostly proposed by large compa-
nies such as Facebook and Google, enabled by their high-spec infrastructure to create their high
accuracy predictors [34, 56, 129]. Although they are not runnable on regular computers, their
pre-trained versions can be used in personality detection with a small amount of fine-tuning to
be adapted to this task [142, 225]. Considering that there is usually a trade-o↵ between accu-
racy and simplicity, the task to obtain an optimal, yet simple model is non-trivial. Only a few
papers, such as [105] (BB-SVM), have proposed high accuracy models in this field without
sacrificing simplicity. BB-SVM also introduced a BERT-based personality model that can be
used for longer sequences as well. However, even though this model is able to be run on ordi-
nary computers, its interpretability, especially the justification for the choice of the pre-trained
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model, has yet to be addressed.

First, as well as the existing trade-o↵ between complexity and accuracy, a trade-o↵ also
exists between performance and transparency (i.e., explainability of the outcomes). The higher
performing models tend to be more opaque [58]. As the model becomes more opaque, the
need for explainability increases. To alleviate this problem, post-hoc explainability is used.
This type of explainability is divided into model-agnostic approaches, which can be used for
any model, and model-specific ones. A full comparison of explainable AI methods is given in
[13].

Also, contemporary models learn from examples in specific datasets. This issue challenges
the model when it faces new examples that are not the same as the previously observed ones
since current models are not using experts’ knowledge. So, even though the current models
can do their best for their specific dataset, they cannot incorporate the socio-cultural diversity
among groups of people, which results in the di↵erent ways they articulate their thoughts [117].

With the emergence of accurate AI models, theorists and researchers make normative
claims based on the models’ results [98]. Some of the previous experience has also shown
how these models can be exploited for detrimental goals [78, 141]. Hence, by making the AI
models more interpretable, more descriptive facts can be obtained based on their results. Ethi-
cal concerns can be slightly alleviated because of the insight which the model provides. [142]
is one of the few works that address both improving personality detection accuracy using deep
learning models and providing understandable insight using post-hoc explanablity approaches.
This work is used as the baseline for the current paper.

6.1.3 Methodology

This section discusses the interpretable sentence representation generation approaches using
the siamese architectures, the dataset we use for training the model, and the datasets used for
evaluating the performance of the models. The sentence representation is generated by means
of computing the semantic similarities between psychological statements. The reason behind
choosing this approach is to preserve enriched semantics in the vector representations. Finally,
the approach to interpret the output of the model is discussed along with the evaluation of the
model. The interpretability of our approach is evaluated using the feature relevance and visual
explanation methods of the post-hoc explainability category (see the taxonomy in Fig. 6 of
[13]), by computing the cosine similarity between the input and baseline sentences and using
PCA visualization, respectively.
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Figure 6.1: Visualization of the personality statements after applying PCA on the average of
the output of layer 11 of Bert-base [142]. 1 and 0 mean “High” and “Low” rate of a specific
trait, respectively, and “B” is for baseline sentences.

6.1.3.1 Datasets

We used the following publicly available personality datasets in our analyses:

6.1.3.1.1 Essays

This well-known stream-of-consciousness dataset consists of 2468 essays written by students
and annotated with the binary labels of the Big Five personality traits which were found by a
standardized self-report questionnaire [166].

6.1.3.1.2 Kaggle MBTI

This data was collected through the PersonalityCafe forum providing a diverse selection of
people interacting in an informal online social setting. The dataset comprises 8675 records of
each person’s last 50 posts on the website along with their MBTI binary personality type [99].

6.1.3.2 Evaluating the Embeddings

In order to evaluate the pretrained BERT-base model for meaningful personality representa-
tions, we have used a simplified version of the Big Five Inventory (BFI) [95, 96, 23]. BFI is a
self-report questionnaire that consists of 44 short phrases. Participants rate each of these state-
ments based on their situation. Each statement focuses on assessing one of the five traits. We
have simplified this version to make it easier for language models to extract meaningful rep-
resentations from them. For example, the statement “I am someone who is talkative”, which
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Table 6.1: The baseline sentences for each trait of the Big Five personality test

Text Trait Label
I am extrovert Ext 1
I am introvert Ext 0
I am agreeable Agr 1

I am disagreeable Agr 0
I am neurotic Neu 1
I am stable Neu 0

I am an open person Opn 1
I am not an open person Opn 0

I am conscientious Con 1
I am casual Con 0

assesses the extraversion rate of a person, is converted to “I am talkative”. In addition, to in-
crease the dataset size, we have also added the adapted version of BFI [54, 76] to the original
one. The final simplified statement set consists of 85 sentences, 44 of which belong to the
original BFI statements and the rest are obtained from the adapted version. We have also used
two baseline sentences for each trait. These sentences are listed in Table 6.1. We then use the
pretrained version of BERT-base to extract the representations of the tokens. We have followed
the best representation of Mehta et al. [142] which is averaging the output of the second to
last layer to get the final representation of each statement. Next, we transform the embeddings
using a PCA [1] with 2 principal components. The result of the PCA is illustrated in Fig. 6.1.
The B-points are clustered in the upper half of the bottom right quadrant, whereas the 0- and
1-points are almost all in the left or upper quadrants. The representations of the baseline sen-
tences are very close to each other and the distance between them and the corresponding trait
statements are much larger. Hence, we can conclude that even when [142] gets high accuracy
using these representations, it will not be generalizable since the extracted embeddings do not
manifest the related personalities. Considering that this current state-of-the-art representation
uses a rich corpus and state-of-the-art language models, we can infer that older ones probably
also su↵er from this issue. Furthermore, even if the baseline representations obtained from the
previous methods maintain su�cient distance, their classification performance is worse com-
pared to [142] which is also not acceptable. This motivates our investigating a model which
cannot only improve the classification performance but also enhance explainability.

6.1.3.3 Interpretable Representation for Personality Detection

This paper investigates two di↵erent approaches for producing vector representations from
psychological statements. The core idea behind both approaches is to use the extracted embed-
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dings from the baseline sentences and BFI statements in order to evaluate the performance of
the model. The output embedding can be explainable using this comparison.

Both of these approaches use siamese architectures using deep learning models. The first
approach utilizes siamese Bi-LSTM with max-pooling over time of the output vectors. This
model is trained on the simplified BFI statement pairs for computing the similarity between
them. The second approach evaluates the Sentence-BERT variants [182]. The reason behind
choosing the siamese models here is that we try to detect the personality traits not by applying
direct classification approaches but rather by preserving the semantics of the statements where
statements reflecting similar traits remain close to each other in the embedding space. This
objective is achieved by leveraging psychological datasets (the BFI statements and the baseline
sentences).

6.1.3.3.1 Bi-LSTM with Max-pooling

Figure 6.2: Architecture of the model with siamese Bi-LSTM and max-pooling for the inter-
pretable tool for personality detection. (a) The training of the model, (b) After training, the
Bi-LSTM followed by the max-pooling layer act as the sentence encoder.
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Figure 6.3: Architecture of Sentence-BERT. (a) Training of the model on the natural language
inference datasets. (b) Sentence encoder.

To extract the feature vectors of both the BFI statements and the baseline sentences, we
have used the siamese architecture of Bi-LSTM over the BERT word embeddings from layer
11 of BERT-base. The architecture is inspired by the InferSent model [53]. The basic idea of
this model is to generate a sentence embedding by means of computing the semantic similarity
between two sentences. This semantics attempts to preserve the personality trait from the BFI
statement.

For the word embeddings we have chosen the output of layer 11 of the pre-trained BERT-
base. For any given sentence pair, word embeddings are fed to two identical Bi-LSTMs. These
Bi-LSTMs share the same parameters and weights. For a sequence of N words, Bi-LSTM
produces a set of N vectors. The final hidden state representation for each time step is gen-
erated by concatenating the hidden representation of the forward (

�!
hi) and backward LSTMs

(
 �
hi) [196]. For each time step, max-pooling is applied over these concatenated hidden repre-

sentations ([
�!
hi ,
 �
hi]) to generate an intermediate sentence representation. In the next step, three

operations, concatenation, point-wise di↵erence and point-wise multiplication, are performed
on the representations obtained for both of the sentences from the sentence pair. Finally, the
outcome of these three matching operations are concatenated and fed to a feed-forward neural
network for classification like [53]. Suppose, u and v are the intermediate representations for
the sentences after max-pooling. Then [u, v, |u � v|, (u ⇤ v)] would be the final feature represen-
tation to be fed to the following classifier. The classifier outputs either 0 or 1 where 1 indicates
the sentences o↵er semantically similar traits and 0 otherwise. Fig. 6.2 portrays the overall ar-
chitecture of the model. After the training is done, the Bi-LSTM together with the max-pooling
layer acts as the encoder for generating the sentence representation. This representation is a
768 dimensional vector.
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Figure 6.4: Visualization of the personality statements after applying PCA on the feature vec-
tors of Bi-LSTM and max-pooling. 1 and 0 mean “High” and “Low” rate of a specific trait,
respectively, and “B” is for baseline sentences.

6.1.3.3.2 Sentence-BERT

Sentence-BERT [182] is a refinement of the pretrained BERT using siamese and triplet struc-
tures. It can derive sentence representations preserving the semantics of the sentences. Unlike
BERT, which outputs rich token embeddings and [CLS] with poor semantics for the sentence,
Sentence-BERT produces semantically richer sentence embeddings. It is trained on the sen-
tence pairs from the SNLI dataset [31] and multi-genre NLI dataset [240]. It has been shown
that sentence embedding models trained on natural language inference datasets have better se-
mantic preserving abilities [53]. For this reason, Sentence-BERT outputs semantically richer
sentence embeddings.

Sentence-BERT incorporates a mean-pooling operation over the output of each BERT em-
bedding to generate two sentence embeddings for the sentence pair. Then two matching oper-
ations, concatenation and point-wise di↵erence, are performed on them. Finally, this feature
is fed to the softmax classifier. After the fine tuning is complete, the fine-tuned BERT with
the mean-pooling act as the sentence encoder. Using this pretrained Sentence-BERT is then a
straight-forward approach. After being given a sentence, it directly outputs the corresponding
768 dimensional vector sentence embedding. The architecture of Sentence-BERT is shown in
Fig. 6.3. We have conducted experiments on the Essays, the BFI statements, and the Kaggle
datasets using di↵erent variants of Sentence-BERT [181]. In all cases the overall architecture
remains the same, only the BERT encoder is varied. Some prominent variants are RoBERTa
[129] and MPNet [210].



Chapter 6. Personality Trait Identification 103

6.1.4 Experiments

To analyze the e↵ectiveness of our siamese Bi-LSTM model, for each personality trait t,
we create all possible corresponding BFI statement pairs together with the appropriate label,
(si, s j, li, j), where li, j is 1 if the statements si and s j have the same label and 0 if si and s j have
di↵erent labels. Then, we feed the statement pairs as inputs to the model and use li, j as the label
which the model tries to predict. Applying this approach over the BFI statements, the data set
has 681 sentence pairs. Among these, 600 samples are used for training and the remaining
81 are used for validation. This small dataset was su�cient for training the siamese LSTM
model with some good training and validation accuracies. While testing this model on the BFI
statements, it achieved a better result compared to the previous models [142]. This comparison
is performed using the PredLabel and SimScore metrics. In addition, the finetuned embedding
are also assessed by replacing the embedding part of the model in [142] for classifying the
Kaggle and Essays datasets. However, the model trained on this data did not achieve state of
the art accuracies as the training data was comparably small.

We have trained the siamese Bi-LSTM model for only 25 epochs where the best result
was found at the 21st epoch. While training, the batch size was set to 10 with 10% dropout.
Standard gradient descent was used for optimization with a learning rate 1e�5. The forward
and backward LSTMs’ hidden representations are 384 dimensional vectors.

After the training phase, we use the feature vectors extracted from the Bi-LSTM for eval-
uation as we did in Section 6.1.3.2 for the BFI statements. After extracting the feature vectors
of both the BFI statements and the baseline sentences, for each statement that belongs to trait
t we assign a similarity score and prediction label based on the closeness to the corresponding
baseline sentences as following:

8si 2 S t : SimScore(si) =

(�1)li�1C(si, bt,1) + (�1)liC(si, bt,0)

and

PredLabel(si) =

8>><
>>:

1, if C(si, bt,1) > C(si, bt,0)
0, otherwise

where li is the label of si, C is cosine similarity, and bt,0, bt,1 are the baseline feature vectors
of trait t. To report the result of a specific model, we use accuracy for the PredLabels and the
average of the SimScores. For the Sentence-BERT models, the BFI statements and baseline
statements are fed to the pretrained encoders and then the accuracy of the PredLabels and
the average of the SimScores are computed. While testing, we aggregated both the simplified
and non-simplified versions of the BFI statements to generate a more generalized model. The
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Table 6.2: Comparison of accuracies of PredLabels of di↵erent representations.

Model O C E A N Average
BERT (average) [142] 61.11 52.94 41.18 64.71 56.25 55.24

BERT (CLS) 33.33 58.82 41.18 47.06 62.5 48.58
Bi-LSTM with max-pooling 94.44 100.00 32.35 100.00 53.13 75.98

average_word_embeddings_glove.6B.300d 33.33 58.82 70.59 76.47 43.75 56.59
average_word_embeddings_glove.840B.300d 33.33 64.71 88.24 70.59 62.50 63.87

average_word_embeddings_komninos 33.33 70.59 76.47 70.59 75.00 65.20
average_word_embeddings_levy_dependency 33.33 41.18 47.06 64.71 62.50 49.76

nli-bert-base 66.67 76.47 70.59 88.24 100.00 80.39
nli-bert-base-cls-pooling 77.78 76.47 70.59 88.24 93.75 81.36

nli-bert-base-max-pooling 77.78 88.24 70.59 88.24 93.75 83.72
nli-bert-large 94.44 94.12 100.00 88.24 93.75 94.11

nli-bert-large-cls-pooling 88.89 88.24 100.00 88.24 100.00 93.07
nli-bert-large-max-pooling 88.89 82.35 100.00 88.24 100.00 91.90

nli-distilbert-base 72.22 88.24 17.65 88.24 93.75 72.02
nli-distilbert-base-max-pooling 77.78 82.35 11.77 88.24 87.50 69.53

nli-distilroberta-base-v2 72.22 94.12 70.59 88.24 100.00 85.03
nli-mpnet-base-v2 100.00 88.24 94.12 94.12 93.75 94.04

nli-roberta-base 94.44 82.35 100.00 88.24 93.75 91.76
nli-roberta-base-v2 83.33 94.12 100.00 88.24 100.00 93.14

nli-roberta-large 100.00 100.00 100.00 88.24 100.00 97.65
paraphrase-distilroberta-base-v1 33.33 70.59 47.06 70.59 87.50 61.81
paraphrase-xlm-r-multilingual-v1 83.33 70.59 47.06 76.47 93.75 74.24

stsb-bert-base 72.22 76.47 76.47 76.47 87.50 77.83
stsb-bert-large 88.89 88.24 100.00 82.35 68.75 85.65

stsb-distilbert-base 72.22 88.24 29.41 82.35 93.75 73.19
stsb-distilroberta-base-v2 72.22 82.35 70.59 82.35 100.00 81.50

stsb-mpnet-base-v2 94.44 94.12 94.12 100.00 93.75 95.29
stsb-roberta-base 100.00 70.59 76.47 82.35 100.00 85.88

stsb-roberta-base-v2 88.89 70.59 88.24 88.24 100.00 87.19
stsb-roberta-large 100.00 94.12 76.47 88.24 100.00 91.77

embeddings of the BFI and the baseline statements are extracted from the encoder portion
of the siamese Bi-LSTM as previously described and finally, PredLabels and SimScores are
measured.

In the case of experimenting with the Essays dataset, no further training is performed.
The statements are fed to the models (both the Bi-LSTM with max-pooling and the Sentence-
BERTs). Then they are tested against the baseline statements to compute the performance
metrics. The Kaggle dataset is tested with the Sentence-BERTs only.

6.1.5 Results

The accuracies of the PredLabels are shown in Table 6.2, and the SimScores for the BFI state-
ments, in Table 6.3. For three traits, Bi-LSTM with max-pooling outperforms the CLS and
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Table 6.3: Comparison of SimScores of di↵erent representations.

Model O C E A N Average
BERT (average) [142] 0.011 0.007 -0.003 0.026 0.002 0.009

BERT (CLS) 0.001 0.001 -0.011 0.012 0.009 0.002
Bi-LSTM with max-pooling 0.082 0.064 -0.01565 0.079 0.008 0.044

average_word_embeddings_glove.6B.300d 0.000 0.039 0.038 0.066 0.011 0.031
average_word_embeddings_glove.840B.300d 0.000 0.036 0.040 0.082 0.077 0.047

average_word_embeddings_komninos 0.000 0.036 0.031 0.039 0.077 0.036
average_word_embeddings_levy_dependency 0.000 -0.007 0.002 0.020 0.075 0.018

nli-bert-base 0.124 0.148 0.073 0.253 0.321 0.184
nli-bert-base-cls-pooling 0.145 0.134 0.063 0.277 0.330 0.190

nli-bert-base-max-pooling 0.116 0.141 0.035 0.187 0.224 0.141
nli-bert-large 0.231 0.211 0.160 0.270 0.211 0.217

nli-bert-large-cls-pooling 0.224 0.166 0.159 0.281 0.304 0.227
nli-bert-large-max-pooling 0.163 0.169 0.246 0.283 0.264 0.225

nli-distilbert-base 0.068 0.149 -0.088 0.194 0.224 0.109
nli-distilbert-base-max-pooling 0.088 0.147 -0.082 0.162 0.166 0.096

nli-distilroberta-base-v2 0.037 0.119 0.046 0.180 0.181 0.112
nli-mpnet-base-v2 0.148 0.086 0.209 0.253 0.223 0.184

nli-roberta-base 0.194 0.158 0.142 0.228 0.356 0.215
nli-roberta-base-v2 0.160 0.117 0.138 0.206 0.226 0.169

nli-roberta-large 0.248 0.278 0.245 0.274 0.415 0.292
paraphrase-distilroberta-base-v1 0.020 0.025 0.002 0.060 0.080 0.037
paraphrase-xlm-r-multilingual-v1 0.032 0.030 -0.004 0.074 0.117 0.050

stsb-bert-base 0.158 0.129 0.150 0.200 0.212 0.170
stsb-bert-large 0.251 0.174 0.145 0.261 0.140 0.194

stsb-distilbert-base 0.119 0.163 -0.041 0.221 0.272 0.147
stsb-distilroberta-base-v2 0.045 0.131 0.039 0.196 0.227 0.128

stsb-mpnet-base-v2 0.174 0.081 0.206 0.191 0.179 0.166
stsb-roberta-base 0.259 0.095 0.152 0.305 0.352 0.233

stsb-roberta-base-v2 0.107 0.097 0.122 0.190 0.243 0.152
stsb-roberta-large 0.218 0.262 0.077 0.226 0.315 0.219

average methods of BERT which were used in Mehta et al. [142]’s state-of-the-art model for
this task and outperforms on the average result as well. For each of the personality traits, the 0-
and 1-statements form distinguishable and well-separated clusters except for the Neuroticism
and Extroversion baseline sentences, which are so close to each other. The PCA result is illus-
trated in Fig. 6.4. The evaluation also tries to identify whether the model is able to assign the
correct binary trait label to the statements. For Openness, Conscientiousness, and Agreeable-
ness, as it is shown in Fig. 6.4, the model can almost completely understand which statement
belongs to which baseline trait. Regarding Neuroticism, although the SimScore is better than
both the CLS and the average methods, the classification metric was not satisfactory. Extraver-
sion also seems to be the most di�cult trait to be identified by baseline sentences. Although
the statements are separated, the embeddings of “I am extrovert” and “I am introvert” are still
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Table 6.4: Accuracy of Bi-LSTM with max-pooling and Sentence BERT models on
Essays and Kaggle datasets.

MODEL Essays Kaggle MBTI
O C E A N Average I/E N/S T/F P/J Average

Majority Baseline 51.5 50.8 51.7 53.1 50.0 51.4 77.0 85.3 54.1 60.4 69.2
BERT-base [142] 64.6 59.2 60.0 58.8 60.5 60.6 78.3 86.4 74.4 64.4 75.9
BERT-large [142] 63.4 58.9 59.2 58.3 58.9 59.7 78.8 86.3 76.1 67.2 77.1

Bi-LSTM max-pooling_combined 61.7 54.6 55.0 56.7 55.9 56.8 - - - - -
average_word_embeddings_glove.6B.300d 63.2 58.5 56.3 57.2 58.5 58.7 77.2 86.5 76.9 66.2 76.7

average_word_embeddings_glove.840B.300d 63.0 58.0 57.2 57.5 57.7 58.7 78.6 87.1 79.6 68.6 78.5
average_word_embeddings_komninos 62.5 57.9 55.3 56.6 58.5 58.1 77.0 86.2 74.3 63.0 75.1

average_word_embeddings_levy_dependency 61.4 55.9 54.0 53.3 56.7 56.3 77.0 86.2 70.2 60.5 73.5
nli-bert-base 64.0 60.0 58.7 58.2 60.4 60.2 77.6 86.4 70.8 62.5 74.3

nli-bert-base-cls-pooling 63.8 59.7 57.7 59.1 60.1 60.1 77.6 86.3 71.1 62.2 74.3
nli-bert-base-max-pooling 63.0 58.0 56.7 57.4 58.4 58.7 77.5 86.2 69.7 61.8 73.8

nli-bert-large 63.5 59.8 57.1 58.7 60.8 60.0 77.6 86.3 71.2 62.2 74.3
nli-bert-large-cls-pooling 63.6 59.2 57.9 58.7 60.1 59.9 77.5 86.3 71.3 62.7 74.4

nli-bert-large-max-pooling 63.0 58.1 58.3 58.5 59.1 59.4 77.5 86.2 70.8 61.9 74.1
nli-distilbert-base 62.5 58.8 58.5 57.8 59.4 59.4 77.6 86.2 71.4 62.3 74.4

nli-distilbert-base-max-pooling 62.4 57.0 57.5 57.5 60.2 58.9 77.5 86.2 68.8 61.7 73.6
nli-distilroberta-base-v2 63.2 58.5 59.5 58.7 61.5 60.3 81.0 87.3 77.9 71.5 79.4

nli-mpnet-base-v2 64.2 58.8 59.7 59.1 60.6 60.5 81.0 87.2 78.1 69.3 78.9
nli-roberta-base 62.0 59.1 58.9 59.2 59.0 59.6 77.7 86.3 72.0 62.4 74.6
nli-roberta-large 63.9 59.5 60.2 59.5 61.3 60.9 80.7 87.2 77.7 70.9 79.1

nli-roberta-base-v2 62.8 59.7 58.9 59.3 60.8 60.3 77.9 86.5 72.0 63.1 74.9
paraphrase-distilroberta-base-v1 65.0 57.8 59.3 59.0 59.7 60.2 80.1 87.1 76.2 70.7 78.5
paraphrase-xlm-r-multilingual-v1 63.6 58.1 58.8 57.3 59.8 59.5 79.1 86.6 74.2 67.8 77.0

stsb-bert-base 64.0 59.1 57.7 58.1 60.6 59.9 78.1 86.5 72.4 63.4 75.1
stsb-bert-large 62.4 56.9 58.0 58.1 61.4 59.4 77.5 86.5 71.3 62.4 74.4

stsb-distilbert-base 62.8 58.0 58.0 57.1 59.3 59.1 78.5 86.5 73.1 64.6 75.7
stsb-distilroberta-base-v2 63.8 58.9 58.5 58.9 59.8 60.0 81.1 87.2 77.3 71.0 79.2

stsb-mpnet-base-v2 64.2 58.6 58.7 59.0 61.1 60.3 81.1 87.5 78.0 69.1 78.9
stsb-roberta-base 63.4 58.2 57.4 57.8 59.5 59.3 80.3 86.8 76.1 65.8 77.2

stsb-roberta-base-v2 63.4 58.7 59.7 58.9 60.6 60.3 81.0 87.3 77.5 70.3 79.0
stsb-roberta-large 62.7 58.4 57.6 58.0 59.7 59.3 80.1 86.6 74.2 65.4 76.6

Table 6.5: The Pearson correlation between the Predlabel accuracy and the Essays accuracy
for all Sentence-BERT embeddings. *p <.05. **p <.001, two-tailed.

O C E A N Ave.
0.086 0.488* 0.208 0.662** 0.533** 0.700**

too close, resulting in the poor result. We believe this issue happens because of the dataset
which is used for training BERT.

Overall, since we have not used the baseline sentences in any phase of the training process,
and they are used only in the evaluation, we believe that Bi-LSTM with max-pooling has used
the general language model knowledge enriched with knowledge from the psychological state-
ments to distinguish between traits. Average results have shown that this model is successful
in learning the personality trait-specific representations while retaining its knowledge from the
pre-trained BERT.

Even though the Bi-LSTM with max pooling outperforms the previous state-of-the-art
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Figure 6.5: Visualization of the personality statements after applying PCA on nli-roberta-large
version of Sentence BERT. 1 and 0 mean “High” and “Low” rate of a specific trait, respectively,
and “B” is for baseline sentences.

when compared by performance metrics as well as richer personality trait-specific representa-
tion generation, the Sentence-BERT based model outperforms this one. We have experimented
with di↵erent variants of Sentence-BERT. Among them, the most prominent results are found
when RoBERTa-large or MPNet are used as the encoder in the Sentence-BERT architecture.
In terms of accuracy of the PredLabels and SimScores, overall, RoBERTa-large performs the
best. It achieves an accuracy for PredLabel of 97.65% which is almost double the previous
state-of-the-art model’s accuracy [142]. Apart from Agreeableness, its PredLabel accuracy is
100%, whereas for Agreeableness, it’s 88.24%. MPNet achieves 100% PredLabel accuracy
for Agreeableness. On average MPNet achieves 95.29% PredLabel accuracy. In terms of
SimScores, RoBERTa-large performs the best in all cases apart from Agreeableness. Still, its
average value, 0.292, is more than three times that of [142]’s result. For Agreeableness, the
encoder with MPNet performs the best for SimScore, 0.305, and on average it achieves 0.233.
Fig. 6.5 portrays in a 2D projection the representations generated by the RoBERTa-large ver-
sion of Sentence-BERT, showing that the closeness of each statement to any particular trait is
very clear. For each of the personality traits, the 0-, 1- and B-statements form distinguishable
and well-separated clusters (with a couple of exceptions) as demonstrated. One issue of note,
two metrics, PredLabel and SimScore, are used to measure the performance of the model. PCA
has been used only to provide a visualization of the embeddings to show how close the rep-
resentations of the similar trait samples are. We have also used other visualization techniques
like t-SNE, UMAP, and LDA. As all the visualization results are very similar, we have reported
only the PCA visualization.

To evaluate the generalizability of the model, we tested these models on the Essays and
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the Kaggle personality datasets. This time the Bi-LSTM with max-pooling performs worse
than [142]’s work. The overall accuracy is almost 2% lower for the Essay dataset. But this is
justifiable as this Siamese model was trained on very short sentences from the BFI statements,
whereas the Essays dataset comes with long paragraphs. Additionally, LSTM based models
face shortcomings while working with very long sequences. But the Sentence-BERT models,
without any kind of additional operations, outperform the BERT-based averaging technique
[142]. This time, RoBERTa-large achieves 60.9% accuracy which is an almost 1 percentage
point boost compared to the previous works. In the case of the Kaggle personality dataset,
RoBERTa-large gains almost 2 percentage points more accuracy (79.1%). However, Distil-
RoBERTa performs the best for this dataset and achieves 79.4% accuracy. In both cases, MP-
Net shows prominent results with accuracies 60.3% and 78.9%, respectively.

We also computed the Pearson correlation of the accuracy of PredLabel and Essays to see if
the PredLabel accuracy gives any insight into how an encoder works for real world datasets. As
demonstrated in Table 6.5, although the experimented encoders are not specifically designed
for long sequence datasets such as Essays, for most traits, especially the average of the traits,
there is a significant positive correlation between these two accuracies. Hence, we can conclude
that using PredLabel is a good approach for picking the best encoder for real-life datasets.

One notable significance of these models is that none of them have been enhanced with
any kind of additional psychological features, unlike [142]. While training, the models are
simply trained with sentence pairs. Thus it reduces the computational overhead as well. And
as RoBERTa-large was initially trained over larger sequences and then fine-tuned again over
natural language inference data, Sentence-BERT with RoBERTa-large earns the capability to
produce sentence embeddings preserving richer semantics than the others. Furthermore, as the
Sentence-BERT models are trained on a very large corpus of real life inference data compared
to the siamese LSTM model, which is trained on the small BFI statement pairs dataset, they
have achieved the ability to provide better representations of the statements.

6.1.6 Conclusion

In this paper, we analyze the weakness of the state-of-the-art personality detection model.
In addition, with computationally less overhead our model delivers sentence embeddings for
psychological statements with rich semantics. Our results show that our enriched represen-
tations distinguish the personality traits better than the CLS and average methods which are
common in the field. Furthermore, we have used the enriched representations in addition to
Sentence-BERT models to classify traits based on their closeness to the baseline psychological
statements so the result can be regarded as interpretable. Our experiments improved the Kaggle
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state-of-the-art accuracy by 2.3 percentage points and Essays by 0.3 percentage points. This
work restricts the statements at the sentence level. In future it can be extended to the paragraph
level using hierarchical models like SMITH [246] so that better representations from the para-
graphs can also be captured. Besides, BFI statements can be used within the prediction model
to identify the closeness of each of the samples in the dataset with each of the BFI statements.
We believe this method will help psychologists to get better insights into the prediction.

6.2 Personality Trait Detection using an Hierarchy of
Tree-Transformers and Graph Attention Network

This section is based on the paper titled “Personality Trait Detection using an Hierarchy of
Tree-transformers and Graph Attention Network” co-authored with Robert E. Mercer, and Sou-
vik Kundu that appeared in the 2023 Canadian Conference on Artificial Intelligence [207].

Automatic personality trait detection from a person’s writings is helpful for professionals
to assess the mental health of an individual, as well as helping individuals to determine their
strengths and weaknesses for making choices such as personal improvement, workplace com-
patibility, and life-style decision-making. Psychologists have identified a set of personality
traits that may be present in an individual’s personality. This work classifies the writings of an
individual into a subset of these traits. The classifier model comprises an hierarchical structure
of tree-transformers and a graph attention network (GAT). The tree-transformers encode the
sentences and the following GAT layer encodes the complete text of an individual’s writing.
Our model has shown a large performance boost over two benchmark corpora compared to
previous works.

6.2.1 Introduction

Artificial intelligence (AI) has become a valuable tool for aiding psychiatrists and healthcare
professionals in addressing the growing incidence of mental health related issues and disor-
ders [106]. This upward trajectory has garnered recent attention, with studies like “Changes in
Mental Ill Health and Health-Related Behaviors in Two Cohorts of UK Adolescents” reveal-
ing that rates of depression symptoms as well as self-harm tendencies have risen to multiple
times in 2015 compared to 2005 [163]. In addition, research has examined the e↵ect of social
media on mental health, including its impact on adolescents’ mental health and the increasing
prevalence of teen suicide [159].

The COVID-19 pandemic has exacerbated the rising incidence of mental health concerns.
A Kaiser Family Foundation survey has reported that individuals have become more distressed
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and disconnected from their social life, with nearly 50% residents of America reporting that
the pandemic has negatively impacted their mental wellbeing [3, 67].

A 2020 Harris Poll [193] shows social media usage has increased among US adults, about
50% reporting higher usage during the pandemic. This trend was particularly noticeable among
younger age groups, with 60% of those aged 18 to 34, 64% of those aged 35 to 49, and 34% of
those aged 65 and older reporting increased social media usage [108].

Personality traits refer to a collection of enduring qualities, rooted in psychological re-
search [79], that define an individual’s emotions and actions in a relatively consistent manner.
The Big-Five personality traits (also called OCEAN) is the best accepted and most commonly
used model of personality [97]. OCEAN describes personality with these five measures: Open-
ness to Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism (or pos-
itively keyed as emotional stability) [106]. Another frequently used personality model, the
Myers-Briggs Type Indicator (MBTI) [32], categorizes 16 types of personalities characterized
by a combination of four binary categories: Extroversion or Introversion, Sensing or Intuition,
Thinking or Feeling, and Judging or Perceiving. These traits play important roles in an indi-
vidual’s future and life outcomes [160, 185].

The upsurge in social media activity during the pandemic has resulted in more digital foot-
prints being left behind. These footprints can reveal an individual’s personality and emotional
traits, as has been demonstrated by Kosinski et al. [111]. This presents an opportunity to
leverage these data to provide tailored support to individuals based on their unique needs, thus
transforming the pandemic challenge into a potential advantage in terms of mental health care.

Many countries have faced additional burden on their mental health services due to the
COVID-19 pandemic, as highlighted by a survey conducted by the World Health Organiza-
tion (WHO) [233]. Given the scarcity of mental health service resources and the surge in
mental health issues, the rise in social media usage presents an window of opportunity for AI
researchers to leverage the resulting digital footprints to aid in diagnosing individuals’ mental
health concerns.

Prior research has explored the connection between personality traits and mental health
disorders. Several studies have evidenced that neuroticism is a crucial factor in the development
of depression and anxiety disorders [107, 75]. In addition, studies have found that resilience
is inversely correlated with neuroticism and positively associated with conscientiousness and
extraversion. Moreover, The positive correlation between openness and resilience is modest,
but significant statistically [38]. Thus, automatic comprehension of an individual’s personality
can have a significant impact on the treatment process for mental health concerns. This has the
potential to improve treatment outcomes and alleviate the burden on mental health services.

In this study, we have developed two deep-learning models that integrate tree-transformers
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[6] and graph attention networks [224]. The aim is to generate more nuanced vector represen-
tations of statements, preserving their underlying semantics, to facilitate the identification of
personality traits through subsequent classification. To evaluate the e�cacy of our approach,
we have conducted experiments on various benchmark corpora, where statements are labeled
with one or more personality traits. Our experimental results demonstrate that our model sur-
passes the performance of many state-of-the-art methods.

6.2.2 Related Works

Due to limited mental health resources compared to the demand in current time, automated
assistant tools can be a great support to help diagnose mental health issues and AI models have
the potentiality to o↵er a great help. AI models have shown promise as automated assistants for
such services due to their superior performance in personality judgment compared to humans
[255]. Numerous studies have e↵ectively utilized machine learning techniques to identify per-
sonality traits in social media content [219, 40]. Detecting personality traits can be achieved
through various features, including demographic data and text data (e.g., self-interpretation and
content from social media). One early example is Argamon et al.’s [12] model, which has used
support vector machines (SVMs) and statistical features extracted from functional lexicons to
identify personality traits. Farnadi et al. [63] built on the work of Argamon et al. [12] and used
SVM to detect personality traits based on features such as network size, density, and frequency
of updating status. Zhusupova et al. [275] utilized social media activity and demographic data
to detect the personality traits of Twitter users from Portugal.

In recent years, several notable works have employed various deep learning models for the
task of identifying personality traits. Kalghatgi et al. [101] used neural networks, specifically
multilayer perceptrons (MLP), along with hand-crafted features to detect personality traits.
Meanwhile, Su et al. [212] employed recurrent neural networks (RNN) and hidden Markov
models (HMM) to identify personality traits from Chinese Language Inquiry and Word Count
(LIWC) annotations extracted from dialogues. Tandera et al. [215] and Sun et al. [213] em-
ployed long-short-term-memory (LSTM) and convolutional neural network (CNN) to detect
personality traits directly from text data collected from facebook posts. Meanwhile, Liu et
al. [124] developed a hierarchical structure based on Bidirectional recurrent neural network
to learn representations of words and sentences that can predict personality traits from multi-
lingual (English, Spanish, and Italian) statements. After experimenting on 275 LinkedIn pro-
files, Van de Ven et al. [221] have demonstrated with evidence that extroversion can be ac-
curately inferred from self-description in the user profiles. Lynn et al. [133] used message
level attention over facebook posts to analyze users’ personality traits. Majumder et al. [136]
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have utilized psycholinguistic features [135] and deep learning models, such as hierarchical
CNN, for automatic personality detection. Gjurković et al. [74] utilized Sentence-BERT [182]
over their self-created corpus. Kazameini et al. [105] has applied an ensemble of SVMs over
BERT embeddings and achieved better performance compared to other models on the Essays
corpus [166] for Big Five trait classification. Mehta et al. [142] has experimented with various
combinations of BERT-based models and psycholinguistic features and analyzed each feature’s
impact on the trait prediction. They have also achieved state-of-the-art results on di↵erent cor-
pora. A comprehensive analysis of previous models is presented in [143], while a review of
perspectives is discussed in [211].

While these models have improved the accuracy over time, they face several limitations
that hinder their e↵ectiveness in practice. The major reason is that textual representations are
complex in nature and that the word level dependencies between long distant words plus the
constituency representations mean a lot while generating the semantics. The use of only se-
quential models cannot capture this information appropriately. Again, though the pre-trained
language model-based approaches have achieved state-of-the-art results over the benchmark
personality trait classification corpora, they are limited to handle 512 words from the state-
ments as these language models can take a maximum of 512 input tokens. This is definitely
a hindrance for real-life applications of these models as automated assistant tools. Consider-
ing these two issues, we have investigated a model which utilizes tree-transformers to utilize
word-level dependency and phrasal information followed by a graph attention network (GAT)
to combine the sentence representations when generating the full statement representation. By
using the tree-transformers and the GAT, this approach has the ability to preserve the syntac-
tical structure of the sentences, and at the same time is not restricted to word limits of each
sentence and the text as a whole, like Kazameini et al. [105] and Mehta et al. [142].

6.2.3 Methodology

The personality trait classification model is built upon an hierarchical structure consisting of a
sentence encoder and then a full statement encoder. The sentence encoder unit works over the
words and generates a vector for each sentence in the text. Then the statement encoder unit
generates a vector representation of the complete text from the individual sentences. To utilize
the syntactical information that is present in the textual representation, as the sentence encoder
we have experimented with two types of tree-transformers: the constituency and dependency
tree-transformers. For combining these sentence representations to obtain the statement rep-
resentation, we have utilized a graph attention network (GAT). This section first talks about
the individual building blocks, providing a better understanding of the concepts, and then it
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describes the proposed model as a whole.

6.2.3.1 Sentence Encoding Module

To analyze an individual’s personality traits from texts, we need to consider the syntactical
structures of the sentences as the sentence representations play a crucial role while generating
the whole statement embedding. To serve this purpose, we have investigated two types of tree-
structured transformer models in this work as Tai et al. [214] has showed that tree structured
representations are a better fit while working with text data compared to sequential representa-
tions. Sequential models are not capable enough to consider correlations between long distant
words and phrasal representations present in the sentence. Attention [18, 223] goes a long way
to solving the problem which occurs due to the long distance between the considered words.
However, they are not capable of competing with tree-structured models [6, 5] which also take
into account the relationships between words and the phrases that words make up.

There are two types of tree-based representations used to convey information about a sen-
tence: constituency and dependency trees. These representations capture di↵erent aspects of
the sentence’s syntax, with constituency trees representing the structure of phrases and depen-
dency trees illustrating the relationships between individual words located at di↵erent positions
in the sentence. In a study by Ahmed et al. [6], two tree-transformer models have been pro-
posed to make use of this syntactic structure information: a constituency tree-transformer and
a dependency tree-transformer. The aim of these models is to carefully examine each sub-tree
inside a constituency or dependency tree structure and recursively compute the root of each
sub-tree to generate a sentence vector representation at the root of the tree through attentive
processing over branches.

In a dependency tree, each node corresponds to a word in the sentence. When traversing
a sub-tree in this type of tree, the dependency tree-transformer takes into account the repre-
sentations of both the parent and child nodes. On the other hand, a constituency tree only has
words at the leaf nodes, while the vectors for non-terminal nodes are computed only after the
full traversal of the sub-tree is completed.

Ahmed et al. [6] have enriched the dependency and constituency tree representations of a
sentence by using self-attention over the branches, which involves computing query (Q), key
(K), and value (V) matrices. The matrices are computed in the following way [223]:

K = !kMk s.t. !k 2 Rd⇥d (6.1)

V = !vMv s.t. !v 2 Rd⇥d (6.2)

Q = !qMq s.t. !q 2 Rd⇥d (6.3)
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To create the matrix M in a dependency tree, the word vectors of all child nodes cor-
responding to each parent node are concatenated. For a constituency tree, M is formed by
concatenating the word vectors within a constituent. The tree-transformer models use the Q,
K , andV matrices to compute the self-attention matrix in the following manner:

↵ = softmax(
Q K

T

p
dk

)V (6.4)

Here, dk represents the dimension of theK matrix. To perform multi-branch attention, denoted
as Bi, with n branches, n sets of the key (K), query (Q), and value (V) matrices are created
using the relevant weight matrices (!i). Finally, a scaled dot product attention, as per Eq. 6.4,
is performed on each branch as seen in Eq. 6.5.

Bi = ↵i2[1,n](Qi !
Q

i ,Ki !
K

i ,Vi !
V

i ) (6.5)

Next, a residual connection is applied to these tensors, followed by a layer-wise batch
normalization layer. After this, a scaling factor µ is used to create the branch representation as
shown below:

B̃i = LayerNorm(Bi!
b
i + Bi) ⇥ µi (6.6)

In the subsequent step, a position-wise CNN (PCNN) is used on each B̃i comprising of two
convolution operations on each position, separated by a ReLU activation function. The PCNN
layer operates as shown in Equation 6.7:

PCNN(x) = Conv(Relu(Conv(x) + b1)) + b2 (6.7)

The final attentive representation of the semantic sub-spaces, generated from the PCNN
layer, is obtained by carrying out a linear weighted summation (as shown in Equation 6.8),
where � 2 Rn is a trainable hyper-parameter of the model.

BranchAttn =
nX

i=1

�iPCNN(B̃i) (6.8)

Finally, a residual connection is created with the output of the BranchAttn layer, followed
by the application of a non-linear activation function (tanh). The parent node representation is
calculated by performing element-wise summation (ExS). Equation 6.9 depicts the operation
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of this step.

ParentNode = EWS(tanh((�attn + �)! + b)) (6.9)

The attention calculation module’s input and output features are � and �attn in Eq. 6.9.

6.2.3.2 Statement Encoding Module

Once the sentence representations are generated from the sentence encoding module, the graph
attention network (GAT) [224] is applied over it to generate the vector representation of the
statement. For this work, we have designed the graphG = {V, E} in such a way that the sentence
nodes present in the statement are connected to the statement node D. So, for any statement
comprising n sentences, there will be n+1 nodes in the graph (n nodes for n number of sentences
and one node to represent the whole statement from the individual) and V = {s1, s2, ..., sn,D}.
The edges are established between nodeD and the sentence nodes (s1, s2, ..., sn), thus the graph
G ends up with n number of edges.

This module updates only the statement node (D) using the sentence nodes (s1, s2, ..., sn).
The sentence nodes are initialized with the sentence embeddings generated by the sentence
encoding module (see Section 6.2.3.1). The GAT layer is formulated as follows:

D,s j = LeakyReLU(!a[!qD||!k s j]) (6.10)

↵D,s j =
exp(D,s j)P

l2ND exp(D,l)
(6.11)

D = �(
X

j2ND

↵D,s j!vs j) (6.12)

where || indicates the concatenation operation. The weight matrices !a, !q, !k, and !v in the
GAT layer are updated by back-propagation. The set of neighbouring nodes for a given node is
represented by Ni, while the attention score between hi and hj is represented by ↵i, j. The GAT
layer with multi-head attention, usingM attention heads, is expressed as:

Hi = ||
M

m=1�(
X

j2ND

↵m
D,s j
!ms j) (6.13)

This final hidden representationHi is used as the statement representation vector (D = Hi).
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Figure 6.6: Structure of the suggested system for identifying personality traits

6.2.3.3 Model Architecture

For each individual’s statement, this model at first utilizes RoBERTa [129] for generating word
embeddings. In our experiments, we have also tried glove [167], fasttext [28] and BERT [56]
word embeddings. However, the best results have been achieved when the model has been fed
with RoBERTa word embedding.

Over these word embeddings the tree-transformers are applied to generate the sentence
embeddings (see Section 6.2.3.1). The following statement encoding module then generates
the embedding for the whole statement using GAT (see Section 6.2.3.2). This feature vector
for the individual’s statement is then fed to a dense layer with a following sigmoid classifier
which returns a probability score for each personality trait. The sigmoid classifier returns the
probability score for every particular traits. We have used binary cross-entropy loss function
for calculating the overall loss of the model for model training. Considering N as the total
number of considered personality traits, yi as the original label and prob(yi) as the predicted
probability of that particular trait, the binary cross-entropy can be formulated as:

loss = �
1
N

NX

i

yi log prob(yi) + (1 � yi) log(1 � prob(yi)) (6.14)

The overall model architecture is sketched in Figure 6.6.
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6.2.4 Experimental Setup and Result Analysis

In this section, we report on how well our model performed for personality trait classification,
using accuracy as the evaluation metric. In the context of personality trait identification, each
individual can be assigned multiple personality traits at the same time, as each trait is not
mutually exclusive. Therefore, we have formulated the personality trait identification as a
multi-label classification task and the performance of the model is assessed on each individual
class label. This section also provides a concise overview of the benchmark datasets utilized
in the experiments. We conclude this section by comparing the e↵ectiveness of the model
proposed in this study with that of the top-performing previous models.

6.2.4.1 Overview of the Benchmark Corpora

Two benchmark personality datasets: (i) Essays [166], (ii) Kaggle MBTI [99] are publicly
available and have been used in our analyses.

6.2.4.1.1 Essays

The stream-of-consciousness also known as the “Essays” dataset contains 2468 essays written
by students, which were annotated with binary labels over five personality traits. These binary
labels indicate the presence or absence of the Big Five personality traits. These traits were
identified using a standardized self-report questionnaire [166].

6.2.4.1.2 Kaggle MBTI

The data used in this corpus was accumulated from the PersonalityCafe forum, which provides
a broad range of individuals interacting in an informal online social environment. The dataset
consists of 8675 entries, each containing the last 50 posts made by each individual on the
website. Each entry comes with its corresponding binary MBTI personality type. To work
with this corpus, we have slightly modified the class labels. This corpus comes with four
binary class labels: (i) Extroversion or Introversion, (ii) Sensing or Intuition, (iii) Thinking or
Feeling, and (iv) Judging or Perceiving. Each entry in the corpus is labeled with four traits, one
from each of four binary labels. For our experiments, we have tagged entries with 1 and 0 for
Extroversion (1) and Introversion (0); Sensing (1) and Intuition (0); Thinking (1) and Feeling
(0; and Judging (1) and Perceiving (0), accordingly.
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6.2.4.2 Experimental Setup

The model uses an initial learning rate of 0.1 and reduces it by 80% in each iteration if the
validation accuracy decreases from the previous iteration. The batch size is set to 10. The
multi-branch attention block consists of six PCNN layers, and six branches of attention layer
has been used for the tree-transformers in the sentence encoding module. Following Ahmed et
al.’s [6] work, we have deployed each PCNN layer with two CNNs, where the first one uses
341-dimensional kernels and no dropout. The second layer utilizes 300-dimensional kernels
with dropout rate 0.1. The GAT in the statement encoding unit employs six attention heads.
The model hyper-parameters are trained using the ‘Adagrad’ [132] optimizer.

Both models use 768-dimensional RoBERTa word embeddings as input. These word em-
beddings are collected by feeding each sentence to the pre-trained RoBERTa. We have assessed
the performance of our models using 10-fold cross-validation. To perform this cross-validation,
we have utilized StratifiedKFold from the scikit-learn package. All the experiments have been
conducted in a Ubuntu 22.04 LTE environment with an NVIDIA 1080ti GPU. For parsing the
sentences to generate the dependency and constituency tree representations of the sentences,
we have used the Stanford Core NLP parser.

6.2.4.3 Performance Analysis

Tables 6.6 and 6.7 show the accuracies achieved by our model over the two benchmark corpora
along with the published results of the previous notable works. Along with the accuracies
achieved over the whole corpora, accuracies over each individual class are also provided here
for a better assessment of the improved results.

Looking at Table 6.6, it is clearly visible that both the proposed models outperform the
previous works by a margin of 5.4 to 5.8 percentage points on average for the Essays dataset.
For individual traits, the margin is 3.4 to 7.1 percentage points. The proposed models show the
best performance while predicting conscientiousness. For this particular trait, the performance
boost margin is 6.7 to 7.1 percentage points. And the lowest performance gain is for the
label “Neuroticism" with a gain margin of 3.4 to 4.1 percentage points. In all the cases, apart
from one (“Agreeableness"), the model using the dependency tree-transformer as the sentence
encoding module outperforms the one which uses the constituency tree-transformer.

Table 6.7 depicts the performance of the models over the Kaggle MBTI corpus. Over Kag-
gle MBTI corpus, on average, our models have shown 2.9 to 3.5 percentage points performance
boost compared to the previous models. Over the “Thinking/Feeling” class, the model with de-
pendency tree-transformer has achieved 3.8 percentage points more accuracy than the previous
works. The model with constituency tree’s performance gain for this class is 3 percentage
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Table 6.6: Performance analysis of the proposed models along with the other prominent works
over the Essays dataset. All the performance scores are accuracy (in %). The best results are
presented in bold texts. Here, CTT means constituency tree-transformer and DTT represents
dependency tree-transformer. Column headings: O: Openness, C: Conscientiousness, E: Ex-
traversion, A: Agreeableness, and N: Neuroticism

Model O C E A N Average
Previous Works
Hierarchical CNN [136] 61.1 56.7 58.1 56.7 57.3 58.0
RNN +Mairesse [213] 58.3 63.4 59.7 57.8 60.2 59.9
BERT + Bagged SVM [105] 62.1 57.8 59.3 56.5 59.4 59.0
Psycholinguistic +MLP [142] 60.4 57.3 56.9 57.0 59.8 58.3
BERT-base +MLP [142] 64.6 59.2 60.0 58.8 60.5 60.6
BERT-large +MLP [142] 63.4 58.9 59.2 58.3 58.9 59.7
CNN-AdaBoost-2channel [151] 61.9 62.1 59.9 60.6 64.9 61.9
Proposed Models
CTT + GAT 69.2 68.8 65.9 65.3 68.3 67.5
DTT + GAT 70.1 69.2 66.5 64.8 69.0 67.9

Table 6.7: Performance analysis of the proposed models along with the other prominent works
over the Kaggle MBTI dataset. All the performance scores are accuracy (in %). The best
results are presented in bold texts. Here, CTT means constituency tree-transformer and DTT
represents dependency tree-transformer. Column headings: I/E: Extroversion or Introversion,
S/N: Sensing or Intuition, T/F: Thinking or Feeling, and J/P: Judging or Perceiving

Model I/E S/N T/F P/J Average
Previous Works
BERT + Bagged SVM [105] 79.0 86.0 74.2 65.4 76.1
Psycholinguistic +MLP [142] 77.6 86.3 72.0 61.9 74.5
BERT-base +MLP [142] 78.3 86.4 74.4 64.4 75.9
BERT-large +MLP [142] 78.8 86.3 76.1 67.2 77.1
Proposed Models
CTT + GAT 82.0 88.8 79.1 70.2 80.0
DTT + GAT 82.5 89.3 79.9 70.6 80.6

points over the previous works. Among the proposed models, the model with dependency tree-
transformer performs better than the other one. Over all the classes, it has gained a 0.5 to 0.8
percentage point accuracy boost over the model which parses sentences using the constituency
parser.

In our research, conducting an ablation study is not possible due to the interdependence of
the modules in our pipeline. However, we have employed comparative studies to enhance our
analysis, as presented in Table 6.8. To investigate the significance of both the tree-transformers
and the GAT, we have conducted two experiments on each dataset. In the first experiment, we
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Table 6.8: Comparative studies of the proposed model with di↵erent modules replaced. Row
headings: RoBERTa [CLS]: The tree-transformer layer is replaced with RoBERTa CLS tokens;
Mean Pooling: The GAT layer is replaced with a mean-pooling layer.

Comparison Study for the Essays Dataset
Model O C E A N Average

RoBERTa [CLS] 65.3 65.1 60.8 59.2 61.7 62.4
Mean Pooling 63.8 64.1 60.2 58.3 58.9 61.1

Comparison Study for the MBTI Dataset
Model I/E S/N T/F P/J Average

RoBERTa [CLS] 76.4 83.1 74.3 66.9 75.2
Mean Pooling 75.2 81.7 71.9 65.2 73.5

have replaced the tree-transformer layer with RoBERTa CLS tokens to generate sentence rep-
resentations. In the second experiment, we have substituted the GAT layer with a mean-pooling
layer over the sentence representations obtained from the tree-transformers. These experiments
have allowed us to gain valuable insights into the contributions of the tree-transformer and GAT
components in our model. The outcomes of our experimentation clearly indicate a decline in
performance across all the aforementioned cases. When the tree-transformer layer is replaced,
there is a notable drop of 5.3-5.5 percentage points (comparing averages) for the Essays dataset
and 4.8-5.4 percentage points (comparing averages) for the MBTI corpus, as compared to the
performance of our proposed model which can be seen in Tables 6.6 and 6.7. These findings
provide compelling evidence that preserving syntactical information through tree-structured
representations contributes to better semantic preservation in our model. Similar results are
observed when the GAT layer is replaced with a mean-pooling layer. This time the results
drop by 6.1-6.3 percentage points (comparing averages) for the Essays and 6.5-7.1 percentage
points (comparing averages) for the MBTI corpora. These findings provide strong evidence
that the fusion of sentence representations with attentive graph neural networks, such as GAT,
can generate superior statement representations. This is attributed to the ability of GAT to as-
sign varying weights to di↵erent sentences within a statement, despite its higher computational
cost compared to a mean-pooling layer.

From these statistics, it is clear that our proposed models surpass the previous works in
terms of performance. There are two reasons behind these performance boosts achieved by the
proposed models. Firstly, our proposed models have the capability to work with the complete
text unlike the BERT-based personality trait classifier models [105, 142]. These BERT-based
models, due to the 512 word limitations of BERT, consider either only the first 512 words or
the last 512 words, or the first 256 and last 256 words. On the other hand, our proposed models
are able to work with sentences and texts of any length. While assessing an individual’s per-
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sonality traits it is important to consider that person’s complete written statement. Secondly,
while generating the sentence embeddings, we have utilized tree-structured representations of
the sentences which has helped the models to incorporate syntactical information and preserve
better semantics. Because of using dependency and constituency tree-transformers, our models
can consider word-level dependencies and phrasal information. However, we have also noticed
that the model with the dependency tree-transformer gives better performance compared to the
model with the constituency tree-transformer. By analyzing the data, we have arrived at the hy-
pothesis that the sentences in the benchmark corpora are reasonably simple with few phrases
used and that’s why considering word-level dependencies is more beneficial here. Further-
more, unlike the other models [105, 142, 213, 136], our models don’t require any additional
psycholinguistic features and still provide better results compared to them.

6.2.5 Conclusion

In this paper, we have proposed two models using the hierarchy of tree-transformers and graph
attention network for personality trait identification and these models have outperformed the
previous state-of-the-art models over Essays and Kaggle MBTI corpora. Analysis of the re-
sults also shows that using tree-structured representations while sentence embedding preserves
better semantics while encoding the whole statements from individuals. Still, there are some
scopes for improvement. Instead of using fixed word embeddings from BERT-based models,
we can update the word embeddings like Wang et al. [227] to improve the performance of
the model. Furthermore, like Kazameini et al. [106] this model can be modified to provide
interpretable representations.

6.3 Detecting Personality Traits from Texts using an
Hierarchy of Tree-Transformers and Graph Attention
Network with Word Embedding Refinement

This section is based on the paper titled “Detecting Personality Traits from Texts using an Hier-
archy of Tree-Transformers and Graph Attention Network with Word Embedding Refinement”
co-authored with Robert E. Mercer. This paper is an extension of the work from Chapter 9 and
is currently under review for conference publication.

Automatic detection of personality traits from individuals’ written texts aids in identify-
ing personal strengths and weaknesses, facilitating informed decisions on personal growth,
workplace compatibility, and lifestyle choices. Psychologists have discerned a collection of
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personality traits that can manifest within an individual’s character. This research introduces a
novel approach that utilizes an hierarchical structure of tree-transformers and a graph attention
network (GAT) to classify personality traits derived from written text. It also employs an het-
erogeneous GAT (H-GAT) to refine Roberta word embeddings. The proposed model demon-
strates substantial performance enhancements compared to previous works, as evidenced by
superior results on benchmark datasets.

6.3.1 Introduction

Personality refers to the enduring traits and patterns of behavior that an individual consistently
displays. It encompasses a person’s moods, attitudes, and opinions, which are explicitly man-
ifested in their interactions with others. Personality encompasses a wide range of behavioral
characteristics, both innate and acquired, that are observable in an individual’s social rela-
tionships and their interactions with the surrounding environment. These traits significantly
influence an individual’s future prospects and life outcomes [185].

The Big-Five personality traits, also known as OCEAN, are the widely accepted and com-
monly used model of personality [97]. OCEAN represents personality through five dimensions:
Openness to Experience, Conscientiousness, Extraversion, Agreeableness, and Neuroticism
[106]. Another frequently employed personality model is the Myers-Briggs Type Indicator
(MBTI) [153], which categorizes individuals into 16 distinct personality types based on four
binary categories: Extroversion or Introversion, Sensing or Intuition, Thinking or Feeling, and
Judging or Perceiving.

Extensive studies, most notably on the writings of freshmen university students, have pro-
moted the investigation of language to determine personality traits [166]. Researchers, such as
Kosinski et al. [111], have shown that extensive social media footprints can provide insights
into an individual’s personality and emotional traits.

Many prevailing and contemporary cutting-edge models for classifying personality traits
revolve around the utilization of BERT-based architectures [143, 105]. These language-based
models have been applied to the Essays dataset [166] and online posts. Ramezani et al. [179]
develops an attention-based method that uses various knowledge graphs to classify personality
traits in the Essays dataset. Yang et al. [248], Zhu et al. [274], and Yang et al. [247] design
graph-based models using psychological and semantic relations among posts.

In this study, we present a novel language-based approach to classify the personality
traits that can be drawn from text. We propose three distinct models that incorporate tree-
transformers [6], a graph attention network (GAT) [224], and an heterogeneous graph attention
network (H-GAT) [227]. Each of these architectures employs an hierarchical structure com-
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prising tree-transformers and GAT layers. The tree-transformers serve as sentence encoders,
while the subsequent GAT layer encodes complete statements using the derived sentence vec-
tors. To update the leaf nodes of the tree-transformers and sentence nodes, an H-GAT has been
deployed, which leverages the statement embedding. Notably, the three models vary in the spe-
cific application of the H-GAT. By fine-tuning the word embeddings, these models e↵ectively
serve the purpose of BERT fine-tuning. Their advantage is reducing the need for substantial
computational resources to fine-tune the millions of parameters found in the BERT-based mod-
els and enabling essentially unlimited input text lengths. In our study, we have conducted an
extensive analysis of the performance of the proposed models on well-established personality
trait identification datasets. Through rigorous analysis, the findings unequivocally show the
superior performance of our proposed model when compared to previously prominent models
in the field.

6.3.2 Related Work

In recent years, there have been notable contributions in employing various deep learning mod-
els for the identification of personality traits. Su et al. [212] utilized recurrent neural networks
(RNN) along with hidden Markov models (HMM) to identify personality traits using Chinese
Language Inquiry and Word Count (LIWC) annotations extracted from dialogues. Sun et al.
[213] and Thandera et al. [215] utilized long-short-term-memory (LSTM) and convolutional
neural networks (CNN) to detect personality traits from text data sourced from Facebook posts.
Van et al. [221] have conducted experiments on 275 LinkedIn profiles and provided evidence
that extroversion can be accurately inferred from self-descriptions in user profiles. Lynn et
al. [133] employed message-level attention over Facebook posts to analyze users’ personality
traits. Gjurkovic et al. [74] have introduced their self-created corpus in the context of personal-
ity analysis and applied S-BERT [182] over it. Kazameini et al. [105] utilized an ensemble of
SVMs with BERT embeddings and achieved superior performance compared to other models
for the Big Five trait classification using the Essays corpus [166]. Mehta et al. [142] have con-
ducted experiments with various combinations of psycholinguistic features and BERT-based
models, analyzing the impact of each feature on trait prediction. Stachl et al. [211] and Mehta
et al. [143] delve into computational perspectives in their review article, exploring various
aspects and considerations within the field of personality trait identification. Ramezani et al.
[179] have incorporated a knowledge graph with CNN, RNN, LSTM and Bi-LSTM for auto-
matic personality trait classification. Yang et al. [248] uses a graph attention network (GAT)
[224] approach that utilizes LIWC [217]. Zhu et al. [274] generates two graphs, one linking
posts if they contain words in the same LIWC categories and one representing semantically
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similar posts, which are used in a contrastive graph transformer network (CGTN). Yang et
al. [247] builds a dynamic deep graph convolutional network (D-DGCN) incorporating in-
formation about each individual’s posts. These graph-based methods use pre-trained BERT
embeddings. In addition, the methods are applicable to online posts only, as they are based on
multiple posts by an individual.

6.3.3 Methodology

The personality trait classification model utilizes an hierarchical framework with a sentence
encoder and a statement encoder. The sentence encoder generates vectors for each sentence,
while the statement encoder synthesizes these vectors for the entire text. We have experimented
with two tree-transformer variants as sentence encoders: constituency (CTT) and dependency
(DTT) tree-transformers. A graph attention network (GAT) merges sentence representations
and produces a statement representation. The heterogenous GAT (H-GAT) layer refines sen-
tence and word nodes using the statement vector. Three model architectures have been ex-
amined, varying the configuration of the H-GAT layer. It enhances sentence and word rep-
resentation by incorporating information from the statement vector. This section explains the
individual components and then describes the comprehensive model.

6.3.3.1 Sentence Encoder Module

To e↵ectively analyze an individual’s personality traits through textual data, we take into ac-
count the syntactical structure of sentences. Motivated by Tai et al. [214], we address this
requirement by exploring two types of tree-structured transformer models which capture cor-
relations between distant words and the phrasal structures present in sentences. While attention
mechanisms [18, 223] have made significant strides in addressing the issue of long-distance de-
pendencies, they still fall short when compared to tree-structured models [5, 6].

To convey comprehensive information about a sentence, two types of tree-based represen-
tations are employed: constituency trees, which capture distinct aspects of sentence syntax,
and dependency trees, which achieve the relationships between individual words positioned at
various locations within the sentence [6]. Through recursive computations entailing attention
across branches, the models analyze each sub-tree and generate a sentence vector representa-
tion at the tree’s root.

To generate the self-attention over the branches query (Q), key (K), and value (V) matrices
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are computed [223] (see Eqs. 6.15-6.17).

K = !kMk s.t. !k 2 Rd⇥d (6.15)

V = !vMv s.t. !v 2 Rd⇥d (6.16)

Q = !qMq s.t. !q 2 Rd⇥d (6.17)

For a DTT, the matrix M is constructed by concatenating the word vectors of all child
nodes associated with each parent node. Conversely, in a CTT, the matrix M is formed by
concatenating the word vectors within a constituent. The self-attention matrix (↵) is calculated
by leveraging the Q,V,K matrices in the following manner:

↵ = softmax(
Q K

T

p
dk

)V (6.18)

Here, the dimension of the key (K) matrix is denoted as dk.

To carry out multi-branch attention, denoted as Bi, with n branches, n sets of the key (K),
query (Q), and value (V) matrices with n corresponding weight matrices (!i) are used. Next,
a scaled dot product attention is performed on each branch:

Bi = ↵i2[1,n](Qi !
Q

i ,Ki !
K

i ,Vi !
V

i ) (6.19)

Next, a residual connection is introduced to the tensors obtained from the multi-branch
attention operation followed by a layer-wise batch normalization layer to normalize the tensor
outputs and finally a scaling factor µ is used:

B̃i = LayerNorm(Bi!
b
i + Bi) ⇥ µi (6.20)

In the subsequent stage, a position-wise CNN (PCNN) is applied to each B̃i. The PCNN
layer consists of two convolution operations performed at each position, with a ReLU activation
function separating the convolution operations:

PCNN(x) = Conv(ReLU(Conv(x) + b1)) + b2 (6.21)

Then, the attentive representation of the semantic sub-spaces is generated by applying a
linear weighted summation over the PCNN layer-derived features (see Eq. 6.22). Here � is a
trainable hyper-parameter of the model that determines the weights assigned to each semantic
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sub-space.

BranchAttn =
nX

i=1

�iPCNN(B̃i) (6.22)

Finally, a residual connection is established between the output of the BranchAttn layer
and the subsequent step. Then, a non-linear activation function (tanh) is applied to the result-
ing tensor. The parent node representation is then computed by performing an element-wise
summation (EwS) which combines the representations of the child nodes:

ParentNode = EWS(tanh((�att + �)! + b)) (6.23)

Here, the input features to the attention calculation module are denoted as �, while the output
features are represented as �att.

To incorporate both the word-level dependencies and the underlying phrasal information
present in the sentences, mean pooling is utilized over the sentence vectors obtained from the
DTT and CTT. This is elaborated in Section 6.3.3.4.

6.3.3.2 Statement Encoder Module

Over the sentence representations generated from the sentence encoding module (see Section
6.3.3.1), the Graph Attention Network (GAT) [224] is employed to generate the vector repre-
sentation of the statement. The graph G = {V, E} is designed in such a way that there is an edge
between the statement nodeD and all n sentence nodes (S 1, S 2, ..., S n) in the statement. Thus,
G = {V,E} where V = {S 1, S 2, ..., S n,D} and E = {S 1 ! D, S 2 ! D, ..., S n ! D}. The
sentence nodes are initialized with the sentence embeddings that are generated by the sentence
encoder module and by applying mean pooling over them,D is initialized. GAT is applied over
these sentence nodes to generate the vector representation for nodeD (see Eqs. 6.24-6.26).

D,S j = LeakyReLU(!a[!qD||!kS j]) (6.24)

↵D,S j =
exp(D,S j)P

l2ND exp(D,l)
(6.25)

D = �(
X

j2ND

↵D,S j!vS j) (6.26)

Here, the concatenation operation is denoted by ||. !a, !q, !k, and !v are the trainable weight
matrices. The set of neighbouring nodes for a given node (S i or D) is represented by Ni. ↵i, j

denotes the attention value between any two nodes in the graph. The GAT layer incorporates
multi-head attention. UtilizingM attention heads, this multi-head attention formulation can be
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expressed as follows:

Hi = ||
M

m=1�(
X

j2ND

↵m
D,S j
!mS j) (6.27)

This final hidden representationHi is used as the statement representation vector (D = Hi).

6.3.3.3 Refinement module

The refinement module employs the heterogeneous graph attention network (H-GAT) to up-
date the word and sentence embeddings based on the statement embeddings generated from
the statement update module. This refinement module is inspired by the H-GAT [227]. Origi-
nally designed to enhance cross-sentence relationships and to generate more informative sen-
tence representations for extractive summarization tasks, we have adapted this approach to
improve the quality of statement representations for our task. In our methodology, the H-GAT
module is utilized at each iteration, following the completion of forward passes of the sen-
tence encoder and statement encoder modules. By incorporating the statement-to-sentence,
sentence-to-word, and statement-to-word update steps and subsequent forward passes of the
sentence and statement encoder modules, this module enriches the statement vectors, leading
to an enhancement in the overall quality of the statement representations for the personality
trait detection task. This section outlines the general concept of the refinement module. The
varying placements of this module are elaborated in Section 6.3.3.4.

Considering a statement has n sentences, the statement-to-sentence update module works
on a graph G = {V, E} where the set of vertices V = {S 1, S 2, ...,D} and set of edges E = {S 1  

D, S 2  D, ..., S n  D} (similar to the graph G in the statement encoding module). After
constructing the graph G, the feature values of the nodes are modified using a Graph Attention
Network (GAT) [224]. Let hi 2 Rdh represent the hidden states of the statement and sentence
nodes, where i 2 {1, 2, ..., (n+ 1)}, and dh denotes the dimension of the hidden states. The GAT
layer, which operates on this graph, can be formulated as follows:

i, j = LeakyReLU(!a[!qhi;!kh j]) (6.28)

↵i, j =
exp(i, j)P

l2Ni exp(i,l)
(6.29)

Zi = �(
X

j2Ni

↵i, j!vh j) (6.30)

where !a, !q, !k, and !v are the weight matrices in the GAT layer are updated during the
back-propagation based on the gradients. The set of neighbouring nodes for a given node i
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is represented by Ni, and the attention score between hidden states hi and hj is denoted as
↵i, j. This layer acts similarly to the GAT layer explained in Eqs. 6.24-6.26. But this time, it
updates the sentence nodes based on the statement node and updates the word nodes based on
the sentence nodes.

To enhance the expressiveness of the GAT layer, it can be extended to incorporate multi-
head attention with M heads. This extension allows the model to capture multiple aspects
or perspectives of the relationship between nodes. The formulation of the GAT layer with
multi-head attention can be expressed as follows:

Z
i = ||Mm=1�(

X

j2Ni

↵m
i, j!

mhi) (6.31)

Finally, a residual connection is established in the model. This connection allows the final
hidden state representation hi to incorporate the information ui from the residual connection.
The updated hidden state representation is formulated as hi = ui + hi. This addition operation
ensures that the information from previous layers is preserved and combined with the current
representation, helping to alleviate the issue of vanishing gradients.

At each iteration, the sentence nodes undergo updates using the GAT layer and a position-
wise feed-forward network (FFN) layer. Following the approach introduced by Wang et al.
[227], the updates are performed considering the information from the statement node. The
updates can be described by the following equations:

Z
t+1
D!S = GAT(H t

S ,H
t
D
,H t
D

) (6.32)

H
t+1
S = FFN(Zt+1

D!S +H
t
D

) (6.33)

In Eq. 6.32, at the first iteration (t = 0), H0
S corresponds to the initial set of sentence

nodes, which are obtained from the sentence encoder module. On the other hand, H0
D

rep-
resents the statement representation derived from the statement encoder module. In the GAT
layer, H t

S serves as the query matrix, while H t
D

is utilized as both the value and key matrices.
This configuration is inspired by the approach in Vaswani et al. [223], aiming to capture the
attention-based relationships between the sentence nodes and the statement representation.

Both the sentence-to-word and statement-to-word update steps are designed following the
same principle of the statement-to-sentence update step. The sentence-to-word update step
tries to refine the word embeddings based on the sentence embedding so that the word vectors
can preserve the essence of the sentence. For any sentence S containing p words, the word
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Figure 6.7: Structure of the investigated systems for identifying personality traits. (a) the word
embeddings are updated using statement vector, (b) the statement vector updates the S avg and
subsequently updates the word embeddings, and (c) the statement vector updates the S DTT and
S CTT . These sentence vector updates the word embeddings separately. All the unbroken orange
straight lines indicate the second forward pass with the updated word vectors. For (b) and (c)
the refinement steps labeled with numbers indicate the order of occurrence.

nodes are updated by a GAT layer as follows:

Z
t+1
S!w = GAT(H t

w,H
t
S ,H

t
S ) (6.34)

H
t+1
w = FFN(Zt+1

S!w +H
t
S ) (6.35)

where, at the first epoch (t = 0),H0
w represents the initial set of word nodes. These word nodes

correspond to the RoBERTa-based embeddings [129] for the words in the sentence. H t
S depicts

the updated sentence representations obtained from the statement-to-sentence update step.

The statement-to-word update step applies GAT to produce refined word embeddings with
the knowledge of the statement embedding. For the statementD, this step is defined as:

Z
t+1
D!w = GAT(H t

w,H
t
D
,H t
D

) (6.36)

H
t+1
w = FFN(Zt+1

D!w +H
t
D

) (6.37)

where, initially (t = 0), H0
w is the set of word nodes present in the statement D and initialized

with the RoBERTa word embeddings. H0
D

is the statement vector generated by the statement
encoder.
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6.3.3.4 Model Architecture

By varying the position and utilization of the refinement module units, we have investigated
three architectures for the automatic personality trait detection task. The architectural struc-
tures of the proposed models are portrayed in Figure 6.7. In the context of the personality trait
detection task, all of the models require two forward passes separated by a refinement step.
The first forward pass is a common step shared by all of the models. During the initial forward
pass, RoBERTa word embeddings are used as the initial input to the model. Subsequently, the
aforementioned inputs undergo simultaneous processing by both the DTTs and CTTs in the
sentence encoder module. This step outputs two sentence representations for each sentence in
the statement: S DTT 2 {S 1

DTT , S
2
DTT , ..., S

n
DTT } and S CTT 2 {S 1

CTT , S
2
CTT , ..., S

n
CTT }, accordingly.

Following this stage, a mean-pooling procedure is executed, resulting in the generation of an
intermediate sentence representation denoted as S avg. Thus for a statement D containing n
sentences, n sentence representations (S avg 2 {S 1

avg, S 2
avg, ..., S n

avg}) are generated. These sen-
tence representations from the sentence encoder are passed to the statement encoder module.
The GAT layer in the statement encoder computes the statement representationD and the first
forward pass ends here.

The major di↵erence between the investigated models is the utilization and design of the
refinement step. For the first model (see Figure 6.7(a)), the refinement module uses only the
statement-to-word update step. In the second investigated model (see Figure 6.7(b)), the re-
finement module uses the statement-to-sentence and the sentence-to-word update steps. The
statement-to-sentence step, at first, updates the averaged sentence representations (S avg). These
updated sentence representations are then used by the sentence-to-word update module to up-
date the word embeddings. The last model (see Figure 6.7(c)) also uses the statement-to-
sentence and the sentence-to-word update steps. But here, the statement-to-sentence update
module updates the S DTT (S 0DTT) and S CTT (S 0CTT). Then, the sentence-to-word refinement step
is utilized twice: once to update the word embeddings based on the updated S DTT, and another
time based on the updated S CTT.

After the refinement module is employed, the second forward pass is initiated. For the
first two models, with the updated word embeddings, the forward pass is the same as the first
forward pass. But for the third model, the sentence encoder module works with two di↵erent
word embeddings. The CTT intakes the word embeddings updated by the S 0CTT, and the DTT
is fed with word embeddings updated by the S 0DTT as inputs. The following steps are similar
to the other two models. This second forward pass generates a refined statement vector (D0).
Subsequently, D0 is fed into a dense layer, followed by a sigmoid classifier that assigns a
probability score to each individual personality trait. For model training, we have employed
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the binary cross-entropy loss function to evaluate and calculate the overall loss of the model.

6.3.4 Experimental Setup

Here, we give an assessment of our model’s e�cacy in discerning personality traits, employ-
ing F1 score and macro-F1 score as the evaluation metrics. Individuals can exhibit multiple
traits concurrently, given that these characteristics are not inherently exclusive. Consequently,
we have framed the identification of personality traits as a multi-label classification problem,
gauging the model’s performance against each distinct class label. Furthermore, this section
provides a synopsis of the benchmark datasets used in our experiments.

We have experimented on three publicly available benchmark corpora: (i) Essays [166],
(ii) Kaggle [99], and (iii) Pandora [74]. The Essays dataset encompasses a collection of 2468
compositions penned by students, meticulously annotated with binary labels pertaining to five
distinct personality traits: Openness (O), Conscientiousness (C), Extraversion (E), Agreeable-
ness (A), and Neuroticism (N). They were annotated by analyzing a standardized self-report
questionnaire for each student. Each entry in Kaggle and Pandora is associated with a binary
MBTI personality type. These corpora encompass four binary class labels, namely: (i) Extro-
version or Introversion (I/E), (ii) Sensing or Intuition (S/N), (iii) Thinking or Feeling (T/F),
and (iv) Judging or Perceiving (J/P). The Kaggle and Pandora datasets comprise a substan-
tial collection of 8675 and 9067 records, respectively. Each entry in Kaggle contains the 50
most recent contributions made by individuals on the PersonalityCafe website, whereas the
records in Pandora are collected from Reddit. The data pre-processing step follows the ap-
proach used in (to preserve anonymity we don’t cite the work. Upon acceptance we will add
the citation.). The statistics of the corpora are presented in Appendix 6.3.8.2. For all three
corpora, we have performed 10-fold cross-validation with a split of 80/10/10 of the samples
for the training/validation/testing.

The model employs an initial learning rate of 0.1, which is subsequently reduced by 80%
in each iteration if the validation accuracy declines compared to the previous iteration. The
batch size is 10. For the tree-transformers, the same hyper-parameter settings are used as in
Ahmed et al. [6]. The statement encoding unit utilizes a GAT (Graph Attention Network) with
six attention heads. The model’s parameters are trained using the “Adagrad” optimizer [132].

The output representations for the sentence encoders (DTT and CTT), the statement en-
coder, and the model itself, are 768-dimensional vectors. The model employs two forward
passes to generate the statement vector. During the first forward pass, RoBERTa word em-
beddings are utilized. In the second pass, the updated word representations obtained from the
“refinement module” are employed, as described in Section 6.3.3.4. The performance eval-
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Table 6.9: Performance analysis of the proposed models along with the other prominent works
over the Essays dataset. The reported results are the F1 scores. The best results are presented
in bold texts.

F1 Score
Model O C E A N Ave.
Previous Works
Psycholinguistic +MLP [142] 61.11 57.68 57.72 58.46 59.79 58.95
BERT-large +MLP [142] 64.09 59.27 60.01 59.75 58.49 60.32
CNN-AdaBoost-2channel [151] 62.60 62.46 60.71 62.02 64.89 62.54
KGrAT-Net [179] 75.04 76.52 78.14 72.83 69.91 74.43
CGTNpretrain [274] 72.28 74.75 76.21 76.01 73.77 74.60
CGTNjoint [274] 72.17 76.21 78.78 77.12 70.87 75.03
Proposed Models
Model-1 72.50 73.50 74.44 72.22 70.59 72.65
Model-2 75.45 76.08 77.79 75.04 73.09 75.49
Model-3 76.27 78.71 80.29 78.78 77.59 78.33

Table 6.10: Performance analysis of the proposed models along with the other prominent works
over the Kaggle and Pandora MBTI datasets. The reported results are the macro-F1 scores. The
best results are presented in bold texts. Missing values are presented with -.

Kaggle Pandora
F1 Score F1 Score

Model I/E S/N T/F P/J Ave. I/E S/N T/F P/J Ave.
Previous Works
Psycholinguistic +MLP [142] 72.84 77.52 71.90 61.25 70.88 - - - - -
BERT-large +MLP [142] 74.13 77.52 76.00 66.54 73.55 - - - - -
TrigNet [248] 69.54 67.17 79.06 67.69 70.86 56.69 55.57 66.38 57.27 58.98
D-DGCN and D-DGCN-`0 [247] 69.52 67.19 80.53 68.16 71.35 61.55 55.46 71.07 59.96 62.49
Proposed Models
Model-1 80.21 83.20 83.12 72.36 79.72 70.12 72.13 73.29 64.84 70.10
Model-2 80.66 87.51 85.72 75.48 82.34 71.08 78.15 76.60 68.75 73.50
Model-3 81.35 88.65 86.63 76.08 83.18 71.92 79.23 77.56 69.35 74.52

uation of our models has been conducted using 10-fold cross-validation. To facilitate this
cross-validation process, we have utilized the StratifiedKFold function from the scikit-learn
package. All experiments have been conducted in an Ubuntu 22.04 LTE environment, lever-
aging a 48GB NVIDIA RTX A6000 GPU. For parsing the sentences and generating the tree
representations, we have used the Stanford Core-NLP parser [137].

6.3.5 Analysis of Results

Tables 6.9 and 6.10 showcase the performance of the proposed models on the Essays and the
Kaggle and Pandora corpora, respectively. The results clearly demonstrate that our proposed
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models have outperformed previous models, including the current state-of-the-art (SOTA)
models [179, 274, 142, 247], by a significant margin without using any additional features like
the other models do. For the Essays corpus, the model incorporating the statement-to-word
update module (Model-1) exhibits slightly lower F1 scores compared to the current SOTA
[179, 274]. The second model, which incorporates the statement-to-sentence (S avg) and sen-
tence (S avg)-to-word refinements, approximates the F1 scores of the current SOTA [179, 274].
The third model, which incorporates separate statement-to-sentence (S DTT and S CTT) and sen-
tence (S DTT and S CTT)-to-word update modules, exhibits better class scores (class N showing
the most improvement) and a 3.3 average F1 point improvement over the SOTA. A similar
performance boost is observed in the experiments with the Kaggle corpus, as well. Our best
performing proposed model (Model-3) has shown 9.63 point gain, on average, over the BERT-
large +MLP model which is the current SOTA. With the Pandora corpus, the best performing
model is the D-DGCN-`0 achieving an average 62.49 macro-F1 score. All of our proposed
models outperform it by achieving 7.61 to 12.03 point higher average macro-F1 scores.

KGrAT-Net incorporates the knowledge graph to improve the performance of the model,
whereas CGTN links posts by determining the common words that are in the same LIWC
category. D-DGCN also tries to generate a graph of the essays from the individuals post.
These models try to identify personality traits based on multiple posts from each individual.
However, they ignore the linguistic features of these posts which in our work we have tried to
accommodate. Incorporation of the linguistic features (parse tree-structures) allow our model
to understand the texts better and analyze individual posts regarding personality traits.

We believe the reason behind the improvement over the BERT-based models is that the
BERT-based models [142] work with only the first 512 tokens of the statements due to the token
input limitation of BERT. Our model has surpassed that limitation by using the tree-transformer
based sentence encoder module. It works with individual sentences from the statement and
thus it is not dependent on the statement length. Furthermore, the statement encoder module
imposes attention over the sentences which helps the model understand which sentences are
important when identifying personality traits.

Another reason for the improved performance is that the other models use the features from
pre-trained BERT models without any fine-tuning for this task whereas our proposed models,
using the refinement module, update the word embeddings as well, based on the generated
statement representation which in the end helps to produce more enriched statement repre-
sentations. This approach is quite similar to the concept of fine-tuning BERT-based models,
but demands less computational resources (122M vs 345M parameters) and one-fourth of the
training time compared to the BERT-fine-tuning, making our model more suitable to run on
computers with less computational resources. The proposed model takes slightly more time
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compared to the BERT-large model in the testing phase. However, there are ways to parallelize
our model to reduce this computational time di↵erence.

Using the tree-transformers allows the model to better capture structural knowledge at the
sentence level. Through our experiment, we have found that while dealing with complex sen-
tences the other models fail to identify all of the personality traits properly as there exist de-
pendencies between di↵erent phrases at various distances in the sentence.

Among the proposed models, we observe that the second and third models perform much
better than the first one. The second model directly refines the word representations based on
the generated statement vector. It requires a lot of nodes to be refined all together based on
the value of only one node (the statement vector) and the refinement ignores the sentence-level
information. The third model uses two separate statement-to-sentence and sentence-to-word
update modules so the two tree-transformers get di↵erent word embeddings and allows the
model to have more semantic information during the second pass, helping it to achieve higher
performance compared to the second model. To show the importance of the individual com-
ponents of these methods, an ablation study is shown in Appendix 6.3.8.1. The ablation study
demonstrates that the refinement module helps the model to achieve superior performance.
From the ablation study, we have observed that, across all three corpora, the refinement step
helps the model to improve the performance by 4 to 9 F-1 score points. However, our model
makes wrong predictions in some cases. Each class within the Essays corpus is exemplified by
a singular case in Appendix 6.3.8.3.

6.3.6 Conclusions and Future Work

This study introduces three innovative architectures that leverage an hierarchical structure of
tree-transformers and a graph attention network for the classification of personality traits in-
ferred from written text. The refinement module proposed in this research aids in the precise
adjustment of word vectors while preserving enriched semantics and syntactical information.
The proposed models have demonstrated a substantial performance improvement compared to
previous prominent works. A potential extension of this work could involve the incorporation
of a knowledge graph, similar to the approach taken by Ramezani et al. [179].

6.3.7 Limitations

In this study, our focus was primarily on the Big Five Model (OCEAN) and Myers-Briggs Type
Indicator (MBTI) personality trait classifications. However, it is important to note that there
are two other noteworthy personality trait models that warrant attention: Eysenck’s Personality
Dimensions and the HEXACO Model. These alternative models o↵er distinct frameworks for
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understanding and categorizing personality traits. We are not sure how well these models will
perform when working with them.

Moreover, while the proposed models have indeed exhibited a substantial performance im-
provement, it is important to acknowledge that there is a trade-o↵ in terms of computational
time. In the first forward pass the model takes the RoBERTa word embeddings initially and
then generates the sentence and statement representations. From this generated statement and
sentence representations, the word representations are updated. In the second forward pass,
using the context-enriched word embeddings the sentence and statement representations are
generated again and the personality traits are identified. Using two forward passes plus parsing
required for the tree-structured transformers in the model leads to an increase in time required
for the generation of results compared to the other models. This computational overhead should
be taken into consideration when considering the deployment and scalability of the proposed
models in practical applications. However, with some parallelization in the model implemen-
tation, the computational time it requires can be reduced.

6.3.8 Appendix

6.3.8.1 Ablation Study

Table 6.11: Ablation Study on the Essays dataset. Here, CTT + GAT is the model where
sentences are encoded with only the constituency tree-transformer (CTT) and only the graph
attention network (GAT) generates the statement encoding. No refinement module is used.
DTT + GAT uses the dependency tree-transformer (DTT) as the sentence encoder and GAT as
the statement encoder without any refinement module. DTT + CTT + GAT takes the point-
wise average of the sentence representations generated from the DTT and CTT, and the GAT
layer computes the statement vector. No refinement module is used here, as well. All the
performances are macro-F1 scores (in %).

Model O C E A N Average
CTT + GAT 67.03 66.18 65.55 65.14 66.76 66.13
DTT + GAT 67.54 66.70 66.09 65.72 67.34 66.68
DTT + CTT + GAT 68.76 68.04 67.01 66.71 68.14 67.73

Observing the results in Tables 6.9 and 6.11, Tables 6.10 (Kaggle) and 6.12, and Tables
6.10 (Pandora) and 6.13, we can clearly say that the performance of the individual units are
much lower compared to the proposed models. The refinement unit, present in the proposed
models, plays the vital role in the performance boost achieved by the three investigated models.
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Table 6.12: Ablation Study on the Kaggle dataset. Here, CTT + GAT is the model where
sentences are encoded with only the constituency tree-transformer (CTT) and only the graph
attention network (GAT) generates the statement encoding. No refinement module is used.
DTT + GAT uses the dependency tree-transformer (DTT) as the sentence encoder and GAT as
the statement encoder without any refinement module. DTT + CTT + GAT takes the point-
wise average of the sentence representations generated from the DTT and CTT, and the GAT
layer computes the statement vector. No refinement module is used here, as well. All the
performances are macro-F1 scores (in %)

Model I/E S/I T/F P/J Average
CTT + GAT 75.39 79.15 78.92 68.19 75.41
DTT + GAT 76.20 80.51 79.25 69.16 76.28
DTT + CTT + GAT 77.82 81.02 79.98 71.07 77.48

Table 6.13: Ablation Study on the Pandora dataset. Here, CTT + GAT is the model where
sentences are encoded with only the constituency tree-transformer (CTT) and only the graph
attention network (GAT) generates the statement encoding. No refinement module is used.
DTT + GAT uses the dependency tree-transformer (DTT) as the sentence encoder and GAT as
the statement encoder without any refinement module. DTT + CTT + GAT takes the point-
wise average of the sentence representations generated from the DTT and CTT, and the GAT
layer computes the statement vector. No refinement module is used here, as well. All the
performances are macro-F1 scores (in %)

Model I/E S/I T/F P/J Average
CTT + GAT 69.48 71.33 72.56 64.82 69.55
DTT + GAT 70.10 71.89 73.01 64.78 69.95
DTT + CTT + GAT 71.06 71.23 73.88 65.62 70.45

6.3.8.2 Statistics of the Corpora

6.3.8.2.1 Statistics of the Essays Corpus

Table 6.14: Statistics of the Essays dataset.

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Positive 1271 1253 1276 1310 1233
Negative 1197 1215 1192 1158 1235

6.3.8.2.2 Statistics of the MBTI Corpora
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Table 6.15: Statistics of the MBTI datasets.

Kaggle Pandora
Category Number of Samples Number of Samples
Extroversion 1999 1925
Introversion 6677 7142
Sensing 1197 1445
Intuition 7479 7922
Thinking 3981 5851
Feeling 4695 3216
Judging 3434 3757
Perceiving 5242 5310

6.3.8.3 Errors in Prediction Made by the Proposed Model

6.3.8.3.1 Openness

I just got back from your class, so I decided that I should start to type this paper. I
am very happy with my classes, even though I feel like they are going to be rather
di�cult this year, especially my Calculus class. I have a hard time understanding
what my professor is saying. I end up have to go home and teach myself most
of the information. Well that’s enough about school. I just thought about my
exgirlfriend. I have very strong emotions about her. I know that she was my first
love. But I also am so mad at sometimes. We had talked about me going o↵ to
college and we knew that it probably would work about, so we decided that we
would date other people. From my experience this really does work out. The first
girl that I dated after her was a girl from my waiting job in New Braunfels. I
decided that I should tell my exgirlfriend, whose name is Genie, about the girl.
This was a very big mistake. Genie came to the restaurant where I worked and
caused a big scene. But this isn’t the only thing that makes me mad. Things are
totally di↵erent now that we decided to see other people. We don’t get along and
we can’t talk to each other. I think women need to just make up their mind. They
all act like want this perfect gentlemen that does everything for them, but when the
actually get that they don’t know how to treat it. Usually the go to far and try to
take advantage of it and then the guy starts to despise the girl. I don’t really wish
that things were back the way they were, I just wish that we could still get along.
I really miss talking to her. She was a person that I could tell everything to and
still feel comfortable about doing so. I am lucky though, because I have a sister
that I am very close to. She also goes to UT and she has been a very big help with
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getting me settled in here in Austin. She only lives a couple of blocks away from
me and she is there for me whenever I need anything, as I am for her. This is my
freshman year and I am already dreaming that college would be over. It isn’t that I
don’t enjoy Austin or College, it is just that I am tired of school. I wish that there
could be a step in your life that you could just skip, but that is impossible. I would
love to just be able to be settled in to a good paying job, but since that will never
happen I am prepared to work now to enjoy the benefits later.

This particular instance is designated as negative within the category of "Openness." Nonethe-
less, our model has made an incorrect prediction by classifying it as positive in this specific
class.

6.3.8.3.2 Extraversion

Right now, I am sitting here sick to my stomach and the world feels so small. I am
waiting for a phone call that is so important, and if I don’t get it, I am going to feel
like a really big loser. Yes, I did just get all the blessings I could ever ask for, so I
am selfish to be wanting more, but its something I really really want. All I want is
to make my parents proud and to give my family something they can brag about. I
have spent my whole life wanting to achieve the best, and I get so sick when I let
myself down. Rejection sucks. its so hot in here, and as all my friends call because
they just got the call," I feel like a loser. I am proud of myself- but rejection is not
something I handle well? What if the call does not come– will I cry, will I blame
my inabilities on something else, how will I react? The anxiety I feel right now
is extreme. On top of all that, I am homesick. I have a great life here in Austin,
but since my family is a huge part of my life, I feel kind of left out being so far
away. Everything back home seems to go on without me. my roommate here is
annoying and the tv here is always on. she follows me around and sometimes I
feel used because she really does not know people here. She is not in a sorority
and so sometimes I feel as if she is angry at me for that. I am so anxious. my
boyfriend is supportive too, but I wonder sometimes if he really has deep feelings
for me. Yes, I know about his fear of commitment and all that crap, but we have
been together for way too long for me not to feel totally secure with him. Oh, that
stupid seventh heaven song. turn o↵ the dang tv. All I want is peace and quiet
without all the noise. Oh, and I have to worry about yesterday too. My sorority
is awesome, but it makes me really uncomfortable to drink around some of them.
Yes, I know. Its silly if we all drink together. But, sometimes I feel as if I have this
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image that I have to uphold. and that image reflects back onto all aspects of my
life. my family, my faith, my school, my friends. How do I act? How do I dress?
Who do I associate myself with? All of these things constantly flood my brain, and
sometimes all I want to do is get far away from those thoughts. Do people love me
for me? Do they love me for who I am here or the grades I make or the house I live
in or the money my parents make? How do people view me? And that tv, always
on. what I would give for that chatter to stop for 10 minutes. I can’t even study
with the noise. I am worried about this year. I need a job, I have bills to pay, I am
in hard classes. how will I measure up? I love my life, I love my life. but I could
seriously do without the stress. I am determined, and I already have accomplished
so much this semester, but will it end? I want it to stay this way, but there is so
much to lose. I am scared that I will lose it. How do I not lose it? I pray all the
time, and I count my blessings. its hot in my apartment and it smells like paint.
why did I choose to live in an apartment with a girl I don’t like? What possessed
me to do this? Did I feel independent and like a big girl? Now I feel young and
naive, and way out of my league. oh, the insanity, but good things come to those
who wait and I put all my trust into a higher being so things WILL work out.

This statement has been categorized as positive within the "Extraversion" class; nevertheless,
our model has erred in its prognostication, misclassifying it as negative.

6.3.8.3.3 Conscientiousness

ever since my boyfriend got this new job as a community assistant in an apartment
complex, it doesn’t seem like he has any time left over to spend with me. also,
since he is a higher rank in rotc, he is even busier. so i question. what’s going
to happen to us? i ask him over and over again and he just gets upset. what am i
supposed to think? every time this happens, we end up in an argument and threaten
to break up which really hurts. i mean, he can’t play with my emotions like that.
it’s not fair that he can have me waiting for him and giving up all my other plans
in the hope that maybe this time, he’ll come see me or make plans with never
happens. it’s not fair how he can just have me on the side when it’s convenient to
him. why is is that he seems like a totally di↵erent person now. not the same from
the guy that i met more than a year ago. how can someone just change overnight?
i am upset that when he does come and see me, it’s is timed cause he says he’s
trying to squeeze me into his busy schedule. it make me feel like i am in prison
and getting visitation rights or something. relationships shouldn’t be like that. it
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was never like that in the begining. but he says he’s a di↵erent person now. he
just called right now and hung up on me because i told him i couldn’t talk cause i
was doing this thing for the psychology class. he’s mad. but what am i supposed
to do? after all, the reason i am here, is to go to school and learn and stu↵. if he
expects me to understand everything he does why can’t he understand that i need
to do this thing. i feel like i’m gaining a little bit of weight and that bothers me a
lot. yet, i’m too stubborn to get into a diet and too lazy to go excercise at the gym.
i am sooooo stresed out. not just from the crap i have to put up with my boyfriend
but also because of school work and the crap i have to put up to with work. work
does not seem fun anymore. it was in the begining when i first started working
there for more than a year ago. maybe because it was my very first job and i was
getting paid more that i thought i would be. or maybe it was cause i’m new in
town and was meeting lots of people then who are my age. but now, it seems like
work is just a drag. maybe i’m jealous cause my boyfriend has this wonderful job
or may be it’s cause a lot of the people and managers that i started working with
left to another state or for another occupation and just wanted to get away. i need
the money that is why i am still working there. i applied at the hospital a couple of
weeks ago but they haven’t called me back or anything. then last week, i decided
i wanted to volunteer at the children’s hospital and when i called to inquire about
it to see what i got to do, they told me that they were good. they were good? how
can that be. they’re a hospital. i thought they always needed help. and i was going
to do some services for free. it’s not like i was going to ask pay or anything. it was
going to be free. my boyfriend’s roomate’s mom works there and the roomate had
told me that he was going to ask his mom to give me a job and he did and she said
that all i needed was to give her the hours that i can work. i mean, i can do that but
it would be really awkward in my position because the mom is my boyfriends ex
mom. i just didn’t want to be in that position you know? and i really need to start
working in the nursing field and get out of being a cashier at heb because that’s
my major, nursing. that’s another thing i was worried about. what if i don’t get
accepted to nursing school next semester? then what am i going to do? maybe i
can switch to pharmacy just like what my friend did. but i don’t think it will be
any easier or anything.

This statement is annotated as non-conscientiousness in the corpus. However, our model has
predicted the personality trait of the author of this statement as having conscientiousness.
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6.3.8.3.4 Agreeableness

I thought I would because I’ve visited with my friends so many times before, but
now that I’m actually here it’s finally true. I’m away from my parents, it’s so
great. I live with three great girls in my suite and we’re so popular here. I’ve
always been a socially outgoing person, but now I feel like it’s going to work.
there are always large numbers of people in our living room, bringing in food or
beer to contribute to our refrigerator; everyone munches from it. and it’s OK. the
RA told us about this girl in another room who got so upset because her roommate
ate her store bought cookies without asking; she called her mom and was so upset.
I’m so glad its not like that here. we all contribute and all consume. But it’s not
like there’s always noise and party’s here. only when we all decide. if one person
wants to read or study or sleep, we’re really considerate. I hope that lasts, I’m
pretty sure it will. At our building there are many foreign exchange students which
is always a plus because, come on, who minds a foreign accent every once in a
while. this guy from Belgium and this one from England are always watching TV
in our room, which is another amusing thing: we don’t have cable, or an antenna,
or a VCR, so we only get FOX Channel 7. We sit around and watch whatever’s
on. in one way it’s good because we don’t have arguments over which channel
to watch. maybe simplicity is the root of compromise. We had a floor meeting
the other night here and they discussed some issues that had come up. it was so
funny because almost all of them referred to our room’s shananagans. This one
guy came here from where he lives in a house to use the laundry (he’s one of our
friends- our referring to my roommate and I we’ve been friends since 2nd grad,
long time, huh? ) anyway, he dropped like half a box of laundry detergent on
the stairwell and no one noticed for a week. the RA got mad and cleaned it up
herself, but it was amusing because he doesn’t even live here. another thing was
the "stolen furniture" incident. we are given this loveseat-type couch in our suite’s
living room that can maybe seat 3 people if you’re lucky. and in the lobby of
the 3rd floor in front of the elevator there are 2 large couches that just block the
pathway, no one ever sits in them, and they could probably seat 5 or 6. so when
no one was around, my suitemate and I and 3 other people that happened to b in
our room at the time helped us move our dinky little couch into the lobby which is
down the hall and around a corner. we hauled the large couch down the way and
we had to tilt it sideways and temporarily knock o↵ some of the ceiling tiles just
to make it in the doorway without banging down the door across from us. now



Chapter 6. Personality Trait Identification 142

we have a nice couch that is well used and the RA’s are threatening to do a room
check to find it. why? its going to more use. It’s all kind of a double standard
anyway. The head RA is always in our room hanging out and drinking our beer.
he has a crush on me so he always brings us stu↵ and won’t mention the couch
to the others and lets us into the cafeteria at night. it’s pretty funny, one night the
night guard knocked on our door because someone had made a noise complaint.
we opened the door and the guard stood in the threshold and the head RA stood
behind the door quietly while we got reprimanded. it probably wouldn’t have been
in his best interests to b seen in there. He’s only 20, but the building is changing
management, so right now he’s the head guy. its odd. I’m 18. finally. I could be in
a management position at the pool I lifeguard at in the summers, next summer. it
seems odd that I’m really an adult. when you’re a kid u never think that you’re ever
going to get to the point where you decide when to come home and when to do this
and what to do in this situation, type thing. its like the transition from high school
to college really is that much of a change in that you’re independent. it feels so
good to finally b independent, financially, physically, emotionally. its wonderful
responsibility. I am responsible for watching my budget, if I don’t, no one will
bail me out (well that’s probably not true but you know). I guess I’m trying out
freedom on borrowed wings, I can always have that security blanket if I want, but
I don’t want. I want to be independent. I am right now, I hope to stay that way.

This person’s personality trait shouldn’t be agreeable. However, our model has misclassified
it.

6.3.8.3.5 Neuroticism

Every day is a rollercoaster of emotions for me. I wake up in the morning with
a knot in my stomach, fearing what challenges the day might bring. Even the
simplest decisions can send me into a spiral of doubt and anxiety. It’s as if a
never-ending storm of worry and fear rages inside me. Social interactions are a
minefield; I’m constantly second-guessing what I say and how others perceive me.
I replay conversations in my head, dissecting every word for hidden meanings or
signs of disapproval. Criticism, no matter how constructive, feels like a personal
attack, and it takes me days to recover from it. I often find myself unable to let go
of past mistakes, no matter how trivial. My mind races with ’what ifs’ and ’should
haves.’ It’s a daily struggle to keep my anxiety in check and maintain a semblance
of normalcy, but most days, it feels like a battle that I’m losing.



Chapter 6. Personality Trait Identification 143

This extended paragraph provides a more detailed and vivid description of a person’s experi-
ence characterized by high levels of anxiety, constant self-doubt, and sensitivity to social inter-
actions and criticism, all of which are indicative of the neuroticism personality trait. However,
our model misclassifies it.

6.4 Conclusion

The task of identifying psychological traits is approached from two distinct directions in this
study. The initial strategy employs a siamese architecture to train statement encoders, aiming
to bring statements closer to their respective baseline statements in the vector space. Various
implementations of siamese architectures, including Bi-LSTM and di↵erent Sentence-BERTs
(SBERTs), were experimented with, revealing the superior performance of BERT-based mod-
els in this context. However, a limitation of BERT-based models is their token input constraint
of 512 tokens. To process statements exceeding 512 tokens, a common occurrence in this task,
the statements are truncated to 512 tokens.

To address this limitation, the next study explores the utilization of an hierarchical structure
comprising tree-transformers and a graph attention network (GAT) to reframe the personality
trait identification challenge as a multi-label classification problem. The tree-transformers,
operating on a single sentence at a time, are employed to generate sentence embeddings in the
initial layer of the hierarchy. Subsequently, GAT is applied as an overarching mechanism to
derive statement embeddings from the generated sentence vector representations.

In the final study, an heterogeneous GAT is employed to refine word embeddings based on
statement and sentence embeddings, thereby further enhancing the word embeddings with con-
textual information. Through this approach, the model achieves state-of-the-art performance
across three benchmark corpora spanning two personality trait models: OCEAN and MBTI.
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Scientific Article Summarization

Summarization is a process that involves condensing a text, like an article or a book, into a
shorter version that retains the main ideas and key points. Scientific document summarization
presents a greater challenge compared to summarizing short text due to the length of text and
the complexity and technical nature of scientific language. Understanding that this type of doc-
ument is part of a body of writings that cite each other, we have introduced a corpus containing
10,000 research articles with their corresponding citing statements, and integrated a citation
network in the models to provide background information. This chapter combines three of our
publications for scientific document summarization (i) “Generating Extractive and Abstrac-
tive Summaries in Parallel from Scientific Articles Incorporating Citing Statements”, (ii)
“Enhancing Scientific Document Summarization with Research Community Perspective
and Background Knowledge”, and (iii) “Investigating Semantic Similarity-Induced Par-
allel Training of Abstractive and Extractive Scientific Document Summarizers”.

In the first two works, our proposed models generate in parallel the two types of summaries,
extractive and abstractive. This parallel training mechanism allows the counterparts to attain
a performance boost. All of these models utilize heterogeneous GAT to consider the inter-
sentence relations and relations between sentences and the words. These word and sentence
nodes are initialized by the 768-dimensional word tokens and sentence representations ([CLS]
token) of the Longformer architecture.

In the third work we have introduced a loss function that considers the semantic distance
between the generated and the reference summaries so that the generated summaries become
semantically more similar to the reference summary. To assess the impact of the parallel train-
ing approach and loss function, in this work we have experimented with four state-of-the-art
(SOTA) extractive and four SOTA abstractive summarizers. The experimental results show that
with this proposed training approach the SOTA models have gained significant performance
boosts.

144
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7.1 Generating Extractive and Abstractive Summaries in
Parallel from Scientific Articles Incorporating Citing
Statements

This section is based on the paper titled “Generating Extractive and Abstractive Summaries in
Parallel from Scientific Articles Incorporating Citing Statements” co-authored with Robert E.
Mercer that appeared in The 4th New Frontiers in Summarization Workshop (NewSumm 2023)
[206].

Summarization of scientific articles often overlooks insights from citing papers, focusing
solely on the document’s content. To incorporate citation contexts, we develop a model to sum-
marize a scientific document using the information in the source and citing documents. It con-
currently generates abstractive and extractive summaries, each enhancing the other. The extrac-
tive summarizer utilizes a blend of heterogeneous graph-based neural networks and graph at-
tention networks, while the abstractive summarizer employs an autoregressive decoder. These
modules exchange control signals through the loss function, ensuring the creation of high-
quality summaries in both styles.

7.1.1 Introduction

Text summarization automates condensing documents while preserving key information. Most
neural summarization models, like those by Nallapati et al. [155], Zhong et al. [272], etc. are
designed for shorter texts, e.g., the CNN/Daily Mail dataset [83]. However, applying these
models to longer documents, such as scientific research papers, remains limited. In scientific
document summarization, it is common to focus solely on abstracts, introductions, and conclu-
sions, as demonstrated in Yasunaga et al. [251]’s work.

Summarizing scientific publications presents unique challenges due to their length, com-
plex concepts, technical jargon, structured organization, and citations. These complexities
make it a more daunting task compared to summarizing other types of documents. Addition-
ally, the long-term impact of a scientific article may not be fully evident when it is first pub-
lished, as its significance can evolve over time. While an abstract provides an initial overview
from the authors’ perspective, it may not capture the full extent of the paper’s influence on
the research community and its evolving impact [251]. As an example, we can consider the
abstract from Bergsma [24]:

We present an approach to pronoun resolution based on syntactic paths. . . . we
learn the likelihood of coreference between a pronoun and a candidate noun based
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on the path in the parse tree between the two entities. . . . Highly coreferent paths
also allow mining of precise probabilistic gender/number information. We com-
bine statistical knowledge with well known features in a Support Vector Machine
pronoun resolution classifier. Significant gains in performance are observed on
several datasets.

This abstract gives insight into the methods the authors used. But the citations emphasize the
corpus it presents. For example:

We use the approach of Bergsma and Lin (2005), both because it achieves state-
ofthe-art gender classification performance, and because a database of the obtained
noun genders is available online. [25]

For the gender task that we study in our experiments, we acquire class instances by
filtering the dataset of nouns and their genders created by Bergsma and Lin (2005).
[26]

Jaidka et al. [93, 94] have identified this missing aspect in scientific document summariza-
tion and addressed it by introducing a shared task. This task aims to create summaries that
take into account not only the information in the body of the documents but also the research
community’s overview of the documents over time. The work described here continues in this
direction.

With the advancement of neural networks, there have been a few prominent research works
in recent years for generating extractive [251] and abstractive [257, 264] summaries from scien-
tific documents [50, 262]. Extractive summarization recognizes key sentences from the source
document as the summary but lack the flow of information, whereas the abstractive summariza-
tion technique generates new phrases using language models while preserving the semantics of
the input document but may miss some important aspects of the text. This is a motivation for
designing a model to generate both summaries in parallel and help the counterpart to achieve a
performance boost with additional guidance.

A key step in extracting brief synopsis sentences from a manuscript is to map the cross-
sentence correlations. A lot of recent prominent works [154] have tried to do so using recur-
rent neural networks (RNNs). However, because of using RNNs, these models fail to capture
long-distance sentence-level dependencies. Another approach to preserve sentence-level de-
pendencies from long documents is using graph-based neural networks. A few recent works
(e.g., [51, 252]) have utilized discourse information in the article along with inter-sentence
correlations for constructing graphs and summarizing document. Another approach is to con-
struct a sentence-level fully connected graph. Zhong et al. [272] and Liu et al. [126] used
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transformer [223] encoders to determine how sentences interact with each other. Wang et al.
[227] introduced an heterogeneous graph neural network for extractive summarization which
used additional semantic units (words) as intermediate nodes to construct relationships between
sentences.

Abstractive summarizers focus heavily on form, with the goal of producing a generalized
summary, which tends to necessitate complex language-generating models. These models are
typically based on sequence-to-sequence (seq2seq) architectures, in which a source document
is seen as one sequence whereas its summary as another. The majority of previous research on
neural abstractive summarization depended on large-scale, high-quality datasets of supervised
document-summarization pairings [197]. Recently, state-of-the-art solutions on abstractive
summarization are built upon the transformer [223] and BERT [56] models. These attention-
based abstractive models are being used in di↵erent fields like clinical note summarization
[102], scientific document summarization [262], and lay-abstract generation [257].

In this paper, addressing the above-mentioned issues, we have built a standalone summa-
rization model which can generate both extractive and abstractive summaries from scientific
documents incorporating the citation network. Analyzing the citation network, citing state-
ments from the citing articles are accumulated with the original text document to incorporate
the research community’s observation on that particular cited manuscript. These summaries
are the abstracts of the original papers with additional information reflecting the research com-
munity’s view. After that, we run the LongFormer [22] encoder to generate sentence and word
representations and train extractive and abstractive summarizers together. For the extractive
summarizer, an heterogeneous graph neural network [227] is used as it has the ability to pre-
serve sentence-level dependencies utilizing additional semantic units as intermediate nodes in
the graph representation. Abstractive summaries are generated by the autoregressive decoder.
The loss function is defined in such a way that both summarizers can achieve better ROUGE
and METEOR scores. Furthermore, we have developed a corpus containing 10K research arti-
cles along with their corresponding citation statements and is a subset of the Semantic Scholar
Network (SSN) corpus. The citation statements are collected utilizing the citation graph used
in the SSN corpus. In short, the contributions of this work are:

• We have built a stand-alone summarizer model which can produce both extractive and
abstractive summaries and each counterpart helps the other to generate better summaries.

• The summarizer model can work with long scientific text articles

• This model considers research communities’ observations while generating the sum-
maries
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• We have proposed a new corpus containing 10K research articles along with the corre-
sponding citing statements to incorporate the research communities’ view.

7.1.2 Related Work

Text summarization aims to distill a document’s essence e�ciently. Recent NLP research has
yielded e↵ective neural summarization models, particularly those using transformer and BERT-
based architectures. Work summarizing lengthy scientific documents often focuses on specific
sections rather than the entire text [257] or citation statements [10].

7.1.2.1 Extractive Text Summarization

Extractive text summarization models classify sentences in a document using labels that in-
dicate whether or not a sentence ought to be included in the summary. Originally, these
models were designed based on the encoder-decoder architecture using RNNs [154]. Since
transformer and BERT-based models provide a more enriched sentence encoding, they have
become the foundation for the majority of extractive summarizer models in recent years. Liu
et al. [126] fine-tuned BERT with stacked layers of transformer to obtain the sentence vec-
tors and then used a sigmoid classifier for identifying the sentences that would be included
in the summary. Zhang et al. [264] fine-tuned an hierarchical transformer (HIBERT) for the
extractive summarization task. Another prominent approach for extractive summarization is
using graph representations which can preserve sentence-level correlations. Later, the graph
convolutional network (GCN) [232] has been espoused for building di↵erent inter-sentence
correlation graphs [252] for this task. Wang et al. [227] built an heterogeneous graph neural
network for extractive summarization (HeterSumGraph) which takes into account additional
semantic units at the word level for building the sentence-level correlation graph.

7.1.2.2 Abstractive Text Summarization

Abstractive text summarization models, unlike the extractive summarizers which work like
classifiers, are intended to generate summaries comprising new sentences which may or may
not be present in the body of the document. These models are mostly based on the encoder-
decoder architecture of the sequence-to-sequence models and language models like BART
[115], BigBird [258], and T5 [178]. Aksenov et al. [8] applied BERT-windowing to over-
come the length limitation of the BERT model and summarize long documents. Gidiotis et al.
[73] trained the summarizer model to generate separate abstractive summaries for small parts
of the document. Pilault et al. [170] combined both the extractive and abstractive summariza-
tion using a transformer language model and built an hybrid summarizer model. Yu et al. [257]
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fine-tuned pre-trained BERT as the abstractive summarizer for generating a lay summary from
the document.

7.1.2.3 Scientific Article Summarization

Existing scientific article summarizers, in most cases, are extractive models designed on the
idea of sentence selection [51]. Coha et al. [50] developed the first abstractive summarizer
for long scientific articles using an hierarchical encoder and discourse-aware attentive decoder.
Mishra et al. [148] applied citation contextualization to extract unique relevant sentences from
the document and final summaries are generated using a multi-objective clustering approach.
Gupta et al. [81] applied BERT and graph-based approaches for biomedical document summa-
rization. Li et al. [120] fine tuned T5 for generating summaries from long scientific documents
and implemented an extractive summarizer using GCN. Yasunaga et al. [251] built a cor-
pus (ScisummNet) that includes a citation network for scientific document summarization and
extracted the summary-candidate sentences using a GCN. An et al. [10] introduced a large
corpus (SSN) with 141K research papers connected with a citation graph. They also proposed
a graph-based summarization model (CGSUM) for extractive document summarization. This
model can draw information from both the source and the citing texts.

7.1.3 Methodology

This section defines the problem of scientific document summarization using a citation graph.
Then, the two benchmark datasets used for the scientific article summarization experiments are
discussed along with the pre-processing procedures. Finally, the proposed deep learning model
is explained.

7.1.3.1 Problem Formulation: Summarization Using Citation Graph

Scientific articles possess distinctive attributes, including citation linkages, that establish pro-
found connections between their contents. These studies may also yield unforeseen impacts
and evolve in importance as research progresses. In such cases, ideal summaries should en-
compass both the authors’ key points and the perspectives of the scientific community, as re-
flected in citations [251]. To serve this intent we have utilized two resources: the citation
graph provided in the Semantic Scholar Network (SSN) corpus [10], and the ScisummNet/CL-
SciSumm-2020 (CL-SciSumm-2020) corpus [41, 251] which supplies documents and their
corresponding citing statements.



Chapter 7. Scientific Article Summarization 150

7.1.3.2 Description of the Datasets

As this work is focused on generating summaries from scientific articles that incorporate the
research community’s views, we have considered two benchmark datasets: ScisummNet/CL-
SciSumm [41, 251], and Semantic Scholar Network (SSN) [10] for the experiments done here.
To the best of our knowledge, these are the only datasets for the summarization task that also
provide citation information. The ScisummNet corpus consists of abstracts of the 1000 most
cited research articles from the ACL Anthology Network [177] along with 15 citing statements
per article. The gold standard summaries for these 1000 documents are manually summarized
by domain experts. The CL-SciSumm-2020 corpus [41] extends the ScisummNet corpus with
40 extra documents and human-generated summaries thereby providing 1040 documents, cita-
tion sentences, and summaries. For testing, we have used the test set comprising 200 scientific
articles from the CL-SciSumm-2020 corpus. The other benchmark dataset used for this task is
the SSN corpus. It includes 140,799 research articles culled from the Semantic Scholar Open
Research Corpus (S20RC) [131] together with a large citation graph. This citation graph has
each article as a node and 660,908 edges indicating the citations. This corpus covers research
articles from three domains: physics, mathematics and computer science.

The primary objective of this study is to develop a deep learning model capable of gen-
erating summaries for lengthy scientific documents while incorporating insights from other
researchers citing the document. While the ScisummNet/CL-SciSumm dataset provides cita-
tion statements, the SSN corpus lacks this information. Originally, the SSN corpus consisted
of documents and their references, but for our purpose of including citing statements, modifi-
cations were necessary. We leveraged the citation graph to identify citing papers and manually
extracted the statements referring to the cited articles. Given the substantial size of the SSN
corpus, containing nearly 141K articles, we randomly selected 10K papers for summarization.
These papers have body lengths ranging from 1000 to 3500 words (with background/related
work sections removed), aligning with the capacity of the LongFormer model (as described
in Section 7.1.5), which can handle a maximum of 4096 tokens at a time. The dataset was
divided into training (8000), validation (1000), and testing (1000) articles to facilitate model
development and evaluation.

Citations can convey positive, neutral, or negative intentions. To capture this diversity,
we systematically categorized citing statements into these three classes after gathering them
from citing articles. In cases where a paper had limited negative citations, we balanced the
selection by including more neutral and positive citation statements. To classify these citation
statements, we have employed RoBERTa trained on Athar [17] following the approach used by
Kundu [113].



Chapter 7. Scientific Article Summarization 151

Figure 7.1: System architecture of the proposed model

In the SSN corpus, the summaries are limited to the authors’ perspectives as they consist
of the paper abstracts. To create more comprehensive summaries, we employed a two-step ap-
proach. First, we used a fine-tuned T5 model [178], trained on the CL-SciSumm-2020 corpus,
to generate five summaries per document by inputting both the abstracts and corresponding
citation statements. Then, we have employed a pre-trained RoBERTa architecture to obtain
five vector representations for these summaries. The most similar summary to the reference
summary, determined by cosine similarity, was selected as our T5-Generated Summary.

7.1.4 Model Overview

The investigated summarization model has two units: an extractive and an abstractive summa-
rizer. The overall architecture of the model is portrayed in Figure 7.1. This section discusses
the architecture and working principle of these two units.

While designing the extractive summarizer, we have considered two issues: how the sen-
tences are connected to each other and how semantic units like words a↵ect the sentence level
correlations. To fulfill these purposes, we have utilized two di↵erent graph-based neural net-
works: an heterogeneous graph neural network (HeterSumGraph) [227] and a graph attention
network (GAT) [224].

For any graph G = {V, E}, V denotes the nodes and E, the edges between them. Heter-
SumGraph defines V = Vw [ Vs, Vw is the set of unique words and Vs is the set of sentences
in the document. For a document with n unique words and m sentences, E is the edge weight
matrix, where ei, j represents word i in sentence j, (i 2 {1 : n}, j 2 {1 : m}) [227]. The
nodes that represent the sentences are initialized with LongFormer [CLS] tokens. Because
LogFormer generates a contextualized word embedding for each occurrence of the word in the
document, all of the word embeddings for a word are averaged to initialize that particular word-
representing node in the graph. The edges between the words and sentences are initialized with
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the corresponding TF-IDF values.

After the graph G is constructed, a graph attention network (GAT) is used to update the
node feature values. Considering hi 2 Rdh where i 2 {1 : (n + m)} as the hidden states of the
word and sentence nodes, the GAT layer is designed as:

Ti, j = LeakyReLU(!a[!qhi;!kh j; ei, j]) (7.1)

↵i, j =
exp(Ti, j)P

l2Ni exp(Ti,l)
(7.2)

ui = �(
X

j2Ni

↵i, j!vh j) (7.3)

where !a, !q, !k and !v are learnable weight matrices. Ni denotes the list of the neighbor
nodes. The attention value between hi and hj is denoted by ↵i, j. The GAT with multi-head
attention (considering K attention heads) is designed as:

ui = ||
K
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i, j!

khi) (7.4)

To prevent the gradient from vanishing, HeterSumGraph incorporates a residual connection
and the final hidden state representation becomes:

hi = ui + hi (7.5)

Through the aforementioned GAT and position-wise feed-forward network (FFN) layer com-
prising two linear transformations [227], the sentence nodes are updated with their adjacent
word nodes:
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0
w = Vw, andH0

s = Vs. In Eq. 7.6,H0
s is employed as the attention

query and for both the attention key and valueH0
w is used. Then, the revised sentence nodes are

used to generate new representations for the individual word nodes and continue to refine the
revised sentence nodes in an iterative fashion. At each iteration, sentence-to-word and word-
to-sentence updates continue to be processed. The process can be depicted as follows for the
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t-th iteration:
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Once the model training is done, the sentence nodes’ representations are used as the sentence
vector representations.

For direct sentence-level interactions, we have also used a graph attention neural network
(GAT). Here, for the graph G = {V, E}, V = Vs where Vs is the set of all the sentences in the
document. The edge weight matrix E preserves the semantic similarity values between sen-
tences. The nodes are initialized in the same manner as the sentence nodes in HeterSumGraph.
For initializing the edges between nodes, at first we have acquired the vector representations of
the sentences using pre-trained LongFormer and then computed the cosine similarity between
the sentences. The edges are initialized with the corresponding similarity values between sen-
tences. However, as scientific documents come with many sentences, working with a fully
connected graph is not computationally cost e↵ective. To reduce the burden of computational
overhead, we have dropped the edge connections between nodes whose cosine similarity val-
ues are below a certain cut-o↵ value. Throughout the conducted experiments, we have found
that if we set the cut-o↵ value below 0.3, the performance of the summarizer model remains
the same.

Considering node features h = {h1, hn, ..., hm} as the input, GAT applies a self attention on
the nodes and computes the attention coe�cients as follows:

Ti, j = a(!hi,!hj) (7.12)

where a is a single-layer feed forward neural network with the LeakyReLU activation function,
and ! is a learnable parameter. This attention coe�cient shows node j’s importance on node i
and it is computed only for the corresponding one-hop neighbour nodes ( j 2 Ni). This attention
coe�cient value is normalized to compute the attention values as follows:

↵i, j =
exp(Ti, j)P

l2Ni exp(Ti,l)
(7.13)

The multi-head attention is computed in the same way it has been done for HeterSumGraph
(Eq. 7.4).
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Once the sentence representations from both the HeterSumGraph and GAT are computed,
they are concatenated and fed to the feed-forward neural network layer. This is a two-layer
position-wise feed-forward layer [227] for labeling the sentences with 1 or 0; 1 indicates that
particular sentence is included in the extractive summary.

The abstractive summary is generated by the LongFormer decoder. To train the summarizer
units in parallel, the training mechanism in Yu et al. [257] is used. The overall loss L of the
model is:

L = Lext + Labs (7.14)

where Lext and Labs represent the cross-entropy losses of the extractive and abstractive summa-
rizers, respectively.

7.1.5 Experimental Results and Analysis

This section gives a brief description of the model parameters used in the experiments as well
as the results achieved on CL-SciSumm-2020 and the customized SSN datasets.

7.1.5.1 Model Parameters and Training Details

We have trained our model on a 48GB NVIDIA RTX A6000 GPU. The batch size has been
set to 1 as the length of input documents plus the citation statements is large. Since all the
experiments are done on a small batch-size, we have followed the training procedure of Sefid
et al. [198] and accumulated gradients for 10 steps and updated the parameters. The NOAM
scheduler has been utilized to adjust the learning rate and gradients are clipped so that explod-
ing gradients during training can be prevented. The model has been trained for 20,000 epochs.
The extractive summarizer is initialized with the LongFormer embeddings. Following that,
the LongFormer encoder-decoder architecture for the abstractive summarizer and the extrac-
tive summarizer units’ forward passes are trained separately. Once both of the forward passes
are done for each iteration and the individual losses are calculated, the model’s overall loss is
calculated. If either of the two unit’s validation loss continues to go down for 5 epochs, the
parameter settings for that particular unit are saved and that unit’s training is postponed for the
next 10 epochs. The number of attention-heads for multi-head attention has been set to 8. The
stop words and punctuation have been filtered out when pre-processing the word nodes in the
graph. Following Wang et al. [227], 10% of the words in the vocabulary having low TF-IDF
values have been further filtered out. The word and sentence nodes have been initialized with
768-dimensional vectors. And the sentence representations from both the HeterSumGraph and
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Table 7.1: Results on the modified SSN corpus. The results consider both the abstracts and the
T5-generated summaries incorporating citation statements as the reference summaries. The
best results are boldfaced.

Models On Abstracts as Summaries On T5-Generated Summaries
R-1 R-2 R-L METEOR R-1 R-2 R-L METEOR

Extractive
BERTSumExt 42.92 14.19 39.01 33.09 43.11 14.21 39.12 33.07
HeterSumGraph 44.27 14.52 39.73 33.18 44.30 14.53 39.74 33.18
GRETEL 45.22 15.19 40.23 36.87 45.23 15.19 40.24 36.88
Proposed Model (Extractive) 45.19 15.18 40.21 36.83 45.19 15.21 40.23 36.85
Abstractive
PTGen+Cov 41.66 13.08 36.95 32.44 41.60 13.10 36.72 32.40
BERTSumAbs 42.06 14.52 38.17 32.49 42.04 14.56 38.17 32.49
BERT+CopyTransformer 42.43 15.01 39.03 32.88 42.44 15.05 39.04 32.91
Proposed Model (Abstractive) 44.82 15.19 39.31 36.50 44.83 15.19 39.30 36.51

GAT are 512-dimensional vectors. So, the final sentence vectors after the concatenation step
are 1024-dimensional vectors. The Feed Forward Network hidden layer size is 512.

7.1.5.2 Performance Analysis of the Model

We have performed experiments on two datasets: modified SSN and CL-SciSumm-2020. The
results achieved by our models are reported as overlapping unigrams, bigrams, and the longest
common sequence between the generated summaries and the reference summaries by means
of R-1, R-2, and R-L metrics; and semantic compatibility between the reference and generated
summaries by means of METEOR metric, respectively, for the modified SSN corpus. R-1,
and R-2 show the informativeness, and R-L shows the fluency of the generated summary. The
metrics used for analyzing the model performance on CL-SciSumm-2020 are R-2 and R-SU4,
which indicate the proportion of bigram overlap and unigram plus skipgram of 4 tokens over-
lap, respectively, between the reference and generated summaries. The performance here is
also analyzed with the METEOR metric. As the Bi-directional encoder and autoregressive de-
coder we have also experimented with BigBird. However, the better performance was found
with LongFormer. That is why in the final model, we have used LongFormer in all the cases
for initial encoding and generating abstractive summaries.

7.1.5.2.1 Results: Modified SSN Corpus

To compare the performance of our model with the existing extractive models, we train and test
the following extractive summarizer models on our modified corpus: (1) BERTSumEXT [126]:
a BERT-based model; (2) HeterSumGraph [227]: a heterogeneous graph-based approach that
considers the cross-sentence correlations using additional semantic units; and (3) GRETEL:
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fuses semantic information from the document context and gold summary using a hierarchical
transformer encoder and graph contrastive learning. For the abstractive summarization base-
line, we have experimented with: (1) PTGen+Cov [197]: based on a hybrid pointer generator
network to copy words from the source text, (2) BERTSumAbs [126]: a BERT-based model;
and (3) BERT+CopyTransformer [8]: applies BERT-windowing for processing data longer
than the BERT window.

The performance of the existing models and our proposed models are shown in Table 7.1.
As reference summaries, we have considered both the paper abstracts as well as the summaries
we have generated from the abstracts plus the citing statements using T5.

Although BERTSumExt and BERTSumAbs perform very well with short documents, their
performance metrics are not at that level when summarizing scientific documents. The main
reason for this is their limitation to working with a maximum 512 input tokens, but scientific
documents are much longer. For this, they have applied the greedy algorithm introduced by
Nallapati et al. [155]. HeterSumGraph considers direct relationships between words and sen-
tences on texts with a 50-sentence maximum, whereas our proposed model considers direct
cross-sentence correlations, as well, and can deal with longer text spans (up to 3500 words).
These additional features, together with LongFormer’s enriched word and sentence features,
gives our model a performance boost, but our model requires more computational time and re-
sources. Our model performs better by a good margin compared to the other models apart from
GRETEL. Our extractive summarizer shows slightly lower performance compared to GRETEL
which is a more complex model. Still, because of the parallel training approach, our model has
achieved comparable results. Our abstractive summarizer model outperforms the other ex-
perimental abstractive summarizers by large margins: PTGen+Cov by 2.36, BertSumAbs by
1.14, and BERT+CopyTransformer by 0.28 R-L scores. The METEOR scores achieved by our
model are 36.83 and 36.50 for extractive and abstractive summaries, respectively, when tested
over the T5-generated summaries. In the experiment with the abstracts as summaries, the ME-
TEOR scores are 36.51 and 36.85 for the abstractive and extractive summaries, respectively.
Looking at the METEOR scores achieved by the other models (see Table 7.1), it is clearly vis-
ible that both the extractive and abstractive summarizer units of our model have outperformed
them by at least 3. This observation indicates that the summaries generated by our proposed
model are more semantically similar to the reference summaries. To see the importance of the
individual units, please check the ablation study in the appendix.

7.1.5.2.2 Results: CL-SciSumm-2020 Corpus

For analyzing our proposed model’s performances on CL-SciSumm-2020 Corpus, we have
used R-2 and R-SU4 F-1 scores (as the other comparable models are reported with these met-
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Table 7.2: Model performance analysis on two CL-SciSumm-2020 summary categories. All
values are F-1 scores.

Models Abstracts as Summaries Human-created Summaries
R-2 R-SU4 METEOR R-2 R-SU4 METEOR

Jaccard-focused GCN 0.19931 0.09956 - 0.2042 0.14162 -
Clustering 0.1959 0.0962 - 0.1749 0.1169 -
MMR2 0.15067 0.07851 - 0.15073 0.10237 -
LSTM+BabelNet 0.329 0.172 - 0.241 0.171 -
Proposed Model
Extractive Summarizer 0.43 0.266 31.12 0.42 0.249 30.18
Abstractive Summarizer 0.43 0.250 30.98 0.41 0.234 30.06

rics) We have experimented to generate abstract and human summaries. As benchmarks, we
have selected the research works submitted to CL-SciSumm-2019/2020: (1) Jaccard-focused
GCN [220]: an extractive summarizer utilizing cross-sentence graph and graph attention net-
works, (2) Clustering [147]: based on di↵erent clustering algorithms followed by sentence-
scoring functions, (3) MMR2 [180]: based on the maximal marginal relevance technique, and
(4) LSTM+BabelNet [46]: BabelNet vectors were used to train the LSTM. The CL-SciSumm
task provides a performance metric evaluation script which is used to calculate the R-2 and
R-SU4 values for the model-generated summaries against the test set.

Results on CL-SciSumm-2020 are reported in Table 7.2. Looking at the results, it is clear
that our model outperforms the other existing extractive models on every measure. The R-2
and R-SU4 achieved for both of our model-generated extractive and abstractive summaries are
very high compared to the other existing extractive models. And this is the case for both the
original abstracts and the human-created summaries as reference summaries. For the human-
created reference summaries, our extractive and abstractive summarizers have achieved 0.078
and 0.063 R-SU4 F-1 score gains, respectively, compared to the LSTM+BabelNet model,
which comes with the best result among the other considered models. While considering the
abstracts of the papers as reference summaries, these gains are 0.094 and 0.078, respectively.
For the abstractive summaries, the METEOR score achieved by our model is 30.18 whereas
for the extractive summaries, it has achieved a 30.06 METEOR score on the human-generated
summaries. Over the abstracts of the papers, these scores are 31.12 and 30.98, respectively.

7.1.6 Conclusion and Future Work

In this paper, we have introduced a summarizer model considering two intentions: first, sum-
marize scientific documents incorporating citation contexts, and second, build a summarizer
model which can generate both extractive and abstractive summaries by means of parallel train-
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ing so that both counterparts can gain a performance boost. For this, we have utilized both the
sentence-sentence and sentence-word correlations. Furthermore, we have constructed a corpus
comprising 10K scientific articles with their corresponding citation statements for the summa-
rization task. The experimental results show that our model performs well compared to other
well-known methods. Though this work considers the research community’s observations (cit-
ing statements), it doesn’t consider the background information (references presented in the
target article). In our future work, we are planning to use both sides of the citation graph (ref-
erences as the background knowledge and the citing statements as the research community’s
views) while summarizing a scientific article.

7.1.7 Limitations

Our experiments are limited to summarize long scientific texts only. We have not conducted
any experiments with short target texts, consequently we are not sure how well the model
may perform while summarizing short texts. We are also unsure how well this model may
perform for extreme summary generation like TLDR [36]. Moreover, we have trained both the
extractive and abstractive summarizer units for a large number of epochs. Though to prevent
any unit from being over-fitted we have checked the curve of validation loss after every 5
epochs. This is very computationally expensive and demands a longer period of time for model
training. Furthermore, no tests have been performed to see how the abstractive summarizer unit
su↵ers from hallucination.

7.1.8 Appendix

7.1.8.1 Ablation Study

Table 7.3: Ablation Study: Rows labeled with † indicate the extractive summaries and rows
labeled with ⇤ indicate abstractive summaries.

Discarded Unit On T5-Generated Summaries
R-1 R-2 R-L METEOR

GAT† 44.86 14.9 39.96 36.52
HeterSumGraph† 44.78 14.81 39.84. 36.49
Extractive Summarizer⇤ 43.01 15.02 38.99 35.92
Abstractive Summarizer† 44.91 14.95 39.96 36.50

To portray a better grasp of each component’s contribution in our suggested model, we have
experimented with di↵erent units of our model separately and the results are reported in Table
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7.3. All of these experiments are performed on the T5-generated corpus which combines the
abstract of the paper along with the citation statements.

In our first experiment, we have discarded the GAT unit which works with cross-sentence
relationships and kept only the HeterSumGraph for extractive summary generation. This time
the performances of the model are lower than the reported results in Tables 7.1 (R-1: 44.86,
R-2: 14.91, R-L: 39.96, and METEOR: 36.52) for our generated extractive summaries. Still,
these results are higher compared to the original HeterSumGraph model. It shows, using the
LongFormer encoder in the beginning and using the collective loss function for both the ab-
stractive and extractive summarizer units play a significant role in the performance boost. And
it also indicates that taking direct cross-sentence correlations into consideration provides some
additional features to enrich the model which helps the model’s performance to improve.

In the second experiment, we have discarded the HeterSumGraph unit and used only GAT
in the extractive summarization unit. This time the performance metrics for extractive sum-
maries are R-1: 44.78, R-2: 14.81, R-L: 39.84,and METEOR: 36.4. These values are compa-
rably lower than we gained in the last experiment. The reason behind this incident is, though no
direct cross-sentence relationships are present, HeterSumGraph, by 2-hop distance, considers
the correlations between sentences.

The third experiment discards the extractive summarizer unit. The LongFormer abstractive
summarizer unit achieves very poor R-1: 43.01, R-2: 15.02, R-L: 38.99, and METEOR: 35.92
scores compared to the proposed model. This poor performance demonstrates the importance
of the information that the extractive summarizer provides the abstractive summarizer through
the combined loss function.

Finally, we have discarded the abstract summarizer unit and used the combination of Heter-
SumGraph and GAT for extractive summary generation. During this experiment, the achieved
R-1, R-2 R-L, and METEOR scores are 44.91, 14.95, 39.96, and 36.50, respectively, which
are more than the cases for the three above-mentioned ablation experiments. It indicates the
significance of training the abstractive summarization unit in parallel as well as using the cross-
sentence and semantic unit-sentence correlations at the same time.

7.1.8.2 Validity Check of the Proposed Corpus

To ascertain the corpus’s quality, a rigorous analysis was conducted on a statistically significant
subset of the dataset, with a confidence level of 95% and a margin of error of 3%, aided by
three human annotators. Within the vast pool of 10,000 summarization samples, a random
selection of 400 was subject to annotation for this statistical inquiry.

Each annotator was tasked with evaluating whether the summaries generated by the T5
model e↵ectively encapsulated the same information as the combination of the abstract and the
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citing statements. The first annotator a�rmed that 374 samples achieved this concurrence, the
second annotator concurred with 368, and the third annotator with 371.

When comparing the assessments of the first and second annotators, it was determined they
agreed that 368 samples were appropriately summarized, while 16 were not, resulting in a
substantial Cohen’s  of 0.89. In the comparison between the second and third annotators, a
significant concurrence emerged for 396 samples, where 368 were accurately summarized, and
28 were not, yielding  value of 0.93. Similarly, when examining the assessments of the first
and third annotators, agreement was established for 398 summaries, with 370 being correctly
summarized and 27 not, resulting in  of 0.94.

7.2 Enhancing Scientific Document Summarization with
Research Community Perspective and Background
Knowledge

This section is based on the paper titled “Enhancing Scientific Document Summarization with
Research Community Perspective and Background Knowledge” co-authored with Robert E.
Mercer. Currently, this paper is under review for conference paper publication.

Scientific paper summarization has been the focus of much recent research. Unlike previous
research which summarizes only the paper in question, or which summarizes the paper and the
papers that it references, or which summarizes the paper and the citing sentences from the
papers that cite it, this work puts all three of these summarization techniques together. To
accomplish this, we have, by utilizing the citation network, introduced a corpus for scientific
document summarization that provides information about the document being summarized, the
papers referenced by it, as well as the papers that have cited it. The proposed summarizer model
utilizes the referenced articles as background information and citing articles to capture the
impact of the scientific document on the research community. Another aspect of the proposed
model is it’s ability to generate both the extractive and abstractive summaries in parallel. The
parallel training helps the counterparts to improve their individual performance. Results have
shown that the summaries are of high quality when considering the standard metrics.

7.2.1 Introduction

Text summarization represents an intricate procedure that entails the automatic condensation
of a document, all the while preserving a succinct and coherent rendition of its content. In
contrast to the widespread utilization of neural text summarization systems for brief texts
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[155, 272], their application to longer documents, such as scholarly research publications, has
not been markedly prevalent. In the context of summarizing scientific manuscripts, the pre-
vailing method typically involves the selective extraction of content solely from the abstract,
introduction, and conclusion segments within the target articles [251].

Scientific publications are characterized by their length, complex concepts, and domain-
specific knowledge. They follow a structured format with sections and citations, serving to
explain the subject matter to knowledgeable readers while meeting publisher-imposed page
limits. Furnishing summarization models with this context is crucial for enhancing summary
quality [10]. Consequently, summarizing scientific articles presents a more daunting task than
other document types.

Moreover, there exists a latent dimension to the impact of any given scientific article at the
point of its initial publication, which may become apparent only in subsequent studies by other
researchers. While a paper’s abstract provides a valuable snapshot of the content as envisioned
by the authors, it may fall short in capturing the genuine influence that the paper might wield
within its domain over time. This influence has the potential to evolve and assume di↵erent
dimensions as it reverberates throughout the research community [251]. For instance, we can
examine the abstract presented by Bergsma and Lin [25]:

We present an approach to pronoun resolution based on syntactic paths. Through
a simple bootstrapping procedure, we learn the likelihood of coreference between
a pronoun and a candidate noun based on the path in the parse tree between the
two entities. This path information enables us to handle previously challenging
resolution instances, and also robustly addresses traditional syntactic coreference
constraints. Highly coreferent paths also allow mining of precise probabilistic
gender/number information. We combine statistical knowledge with well known
features in a Support Vector Machine pronoun resolution classifier. Significant
gains in performance are observed on several datasets.

This abstract provides a glimpse into the methodologies employed by the authors, whereas the
citations underscore the significance of the corpus it presents. For instance:

For the gender task that we study in our experiments, we acquire class instances by
filtering the dataset of nouns and their genders created by Bergsma and Lin (2006).
[26]

Jaidka et al. [94]) have discerned this absent facet within the realm of scientific document
summarization and have undertaken its remediation by introducing a collaborative endeavor.
This endeavor is designed to generate summaries that not only encapsulate the content within
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the document’s body but also encompass the broader perspective of the research community
regarding these documents’ evolution over time.

Regrettably, there has not been a single concerted e↵ort to amalgamate these two ap-
proaches which would entail developing a summarization model that not only assimilates the
content of the source document and its contextual background but also possesses the capability
to gauge the article’s influence on its respective academic community through an examina-
tion of the citations it has garnered. Considering this fact, in this work, we have introduced a
standalone summarizer model which provides enriched summary from any scientific document
combining the knowledge of the articles referenced in the body of the considering document
plus the summary by means of summarizing the citation statements made on that particular
article in other works. In pursuit of this goal, we have introduced a corpus for scientific docu-
ment summarization that leverages the citation network. This corpus furnishes comprehensive
information encompassing the document under scrutiny, the papers referenced within it, and
the papers that have subsequently cited it. This corpus is a subset of the SSN corpus [10].

Another aspect of this work is that the introduced summarizer model has the ability to pro-
duce both the extractive and abstractive summaries in parallel. The rationale behind generating
these two summaries in parallel lies in the reciprocal enhancement that occurs during the cre-
ation of each summary. The extractive summarizer represents a fusion of the heterogeneous
graph-based neural network [227] and the graph attention network [232] and the abstractive
summarizer is founded on a Longformer [22] decoder architecture. These two summarizer
units establish a bidirectional information exchange by transmitting supplementary control sig-
nals to each other through the loss function. This coordinated approach ensures the concurrent
generation of high-quality abstractive and extractive summaries. Prior to utilizing these two
summarization units, the considered article is segmented using the segmentation technique pro-
posed by Xing et al. [243] and for each segment it leverages the citation graph to incorporate
background information. Subsequently, employing an hierarchical structure, the summaries of
the segments are accumulated and the final summary is generated. Our contributions can be
succinctly summarized as follows:

• We have developed a corpus, utilizing the citation network, for scientific document sum-
marization containing 10k research articles. As per our knowledge, this is the first corpus
curating the referenced and citing sides of the citation network for this task.

• We have developed a standalone model combing segmentation and summarization tech-
niques that has the ability to gather background information form the reference articles
and reflect the impact of the work on the corresponding research community considering
the citations made on it while generating the summaries of the scientific document.
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• The model has the capability to produce both the extractive and abstractive summaries
in parallel. This parallel training of these two units allow each other to improve their
individual performance.

7.2.2 Related Work

In the wake of the remarkable progress in neural network technology, a number of notewor-
thy research endeavors have emerged in recent years, focusing on the generation of extractive
summaries [251] as well as abstractive summaries [257, 264] from the realm of scientific doc-
uments [50, 262].

Extractive summarizers identify pivotal sentences from the source document to form the
summary; however, they tend to lack the coherent flow of information. Inceptive studies
[61, 145] employ cosine similarity measurements between sentences for constructing a graph
that encapsulates inter-sentence correlations. Certain contemporary research endeavors (e.g.,
[51, 252]) have incorporated discourse-related information from the articles in conjunction
with inter-sentence correlations to formulate graphs and subsequently generate document sum-
maries. Li et al. [120] fine-tuned T5 and integrated an extractive summarizer using Graph
Convolutional Networks (GCN) for the purpose of generating summaries from extensive sci-
entific documents. Wang et al. [227] have employed supplementary semantic units in graph
neural network (GNN) to establish intricate relationships between sentences while designing
their extractive summarizer. Cho et al. [48] have introduced a model (Lodoss) which segments
the document and extracts the important sentences simultaneously.

Abstractive summarization lays significant emphasis on formulating a generalized sum-
mary, often requiring the utilization of sophisticated language generation models. These mod-
els are commonly built upon sequence-to-sequence (seq2seq) architectures, wherein the source
document is treated as one sequence, while its corresponding summary is considered another.
Cohan et al. [50] pioneered the development of the initial abstractive summarizer designed for
lengthy scientific articles. Their approach incorporates a hierarchical encoder and a discourse-
aware attentive decoder to accomplish this task. Mishra et al. [148] implemented a citation
contextualization method to extract distinct and pertinent sentences from the document. Subse-
quently, they employed a multi-objective clustering approach to generate the final summaries.
Liu et al. [126] harnessed the encoder-decoder framework of BERT, enabling their model
BERTSUMABS to generate abstractive summaries. Wang et al. [231]entailed the indepen-
dent extraction of latent topics from the input text, aiming to capture the underlying themes or
concepts within the document. Subsequently, these extracted latent topics are employed to aug-
ment the performance of the summarizer. Yu et al. [257] utilized the guidance of an extractive
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summarizer to enhance the performance of their abstractive summarizer (DimSum). It employs
BART [115] as the foundation for its abstractive summarizer. The amalgamation of loss func-
tions from both the extractive and abstractive summarizers contributes to the model’s ability to
generate improved lay summaries from scientific documents. Gupta et al. [81] employed both
BERT and graph-based methodologies in their work on biomedical document summarization.
PageSum [130] reduces memory overhead by treating the input document as a collection of
pages based on locality. Each page is independently encoded by the abstractive model’s en-
coder and the decoder generates local predictions for each page and assigns confidence scores
to these predictions. HierGNN [174] is a neural encoder with reasoning capabilities, making it
compatible for integration into various seq2seq neural summarization models.

A citation network has two sides: the articles being referenced in the considering literature,
and the articles that have cited the considering article. To incorporate the information from the
referenced articles while summarizing scientific documents, An et al. [10] introduced a sub-
stantial corpus, denoted as SSN, comprising 141,000 research papers interconnected through
a citation network. Additionally, they presented a graph-based summarization model called
CGSUM to extract information from both the source document and the citing texts, enhancing
its summarization capabilities. Yasunaga et al. [251] introduced a corpus (CL-SciSumNet)
comprising 1000 research articles with the citations made on them. The intention of their work
is to generate summaries that also portrays the contribution of this work on the research com-
munity by means of accumulating the citing statements. However, as per our knowledge, there
is no work still available that combines the information from the referenced articles to grasp
the background knowledge, at the same time, portrays the impact of the work analyzing the
citations made on that particular article while generating the summary. Filling up this gap has
been the motivation of our work presented here.

7.2.3 Corpus Creation

Summarizing scientific literature is complex due to the need for contextual background knowl-
edge, including references. Summarizer models require information from referenced articles.
Additionally, assessing an article’s true impact often requires analyzing citing statements. The
SSN corpus o↵ers background information from referenced articles, and the CL-SciSumNet
corpus provides citing statements. However, there’s no corpus connecting both facets of the
citation network.

Considering these factors, we’ve introduced a corpus tailored for scientific document sum-
marization. This corpus covers both sides of the citation network: the referenced articles and
the citing statements. Our corpus is, in part, a subset of the SSN corpus. While the SSN corpus
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contains background references, it lacks citing statements. To address this, we’ve enhanced
our corpus by adding citing statements from citing papers to bridge this gap and build a more
comprehensive corpus.

To create our corpus, we used the citation network to identify citing papers. We then
manually extracted statements referencing the cited article from these citing papers. The SSN
corpus, with its 141K articles, is quite extensive, so we selected a random subset of 10,000
papers for summarization. These papers have word lengths between 1,000 and 3,500 words,
excluding background or related work sections. We deliberately chose this word length range
to accommodate both the document and its citing statements within the Longformer’s 4,096
token intake limit. In the papers earmarked for summarization, background and related work
sections were removed. The dataset is partitioned into three subsets: 8,000 articles for training,
1,000 for validation, and another 1,000 for testing.

We have categorized the intentions expressed by citations into three classes: positive, neu-
tral, or negative. For each paper, we have selected a maximum of 20 citation statements from
each of these categories. Notably, negative citations are less prevalent, so for papers with
limited negative citing sentences, we prioritized selecting more neutral and positive ones. To
perform this categorization, we have experimented with various BERT-based models and ul-
timately fine-tuned RoBERTa RoBERTa [129] on the Citation Sentiment Corpus (CSC) [16]
and used this model to classify all the curated citation statements.

To create summaries that amalgamate the perspectives of both the authors and the broader
research community, we took a multi-step approach. Initially, we provided the abstracts of the
research papers along with their corresponding citation statements to a fine-tuned T5 model
[178]. This model had been trained on the CL-SciSumm corpus. It generated five di↵erent
summaries for each document. Subsequently, these five summaries for each document were fed
into a pre-trained Longformer architecture. This process produced five vector representations.
To determine the most suitable summary, we compared these vector representations against the
reference summary using cosine similarity. The summary with the highest cosine similarity
to the reference summary was selected as our T5-Generated Summary, thereby reflecting a
synthesis of both the authors’ viewpoints and the broader research community’s perspectives.
To capture the background information we have used the citation network used directly in the
SSN corpus. The maximum length of the summaries has been set to 500 tokens. For cleaning
the equations and other unnecessary symbols, we have used the regex commands used by
Singha Roy et al. [203].

To validate the quality of the proposed corpus, we have performed an analysis on a statis-
tically representative sample of the corpus (95% confidence, and 3% error margin) with three
human annotators’ assistance. From the pool of 10,000 summarization samples, 400 were cho-
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sen randomly and annotated by three annotators for this statistical analysis. Each annotator
assessed whether the T5-generated summaries capture the same information as the abstract
plus the citing statements. Annotator one said that 374 samples did, annotator two, 368 and
annotator three, 371. Annotators one and two agreed that 368 samples compare correctly and
16 do not giving a Cohen’s  = 0.89. Between annotators two and three the agreement is with
396 samples (368 are correctly summarized and 28 are not) with  = 0.93. Between annotators
one and three the agreement is found for 398 summaries (370 correctly summarized and 27
not) with  = 0.94.

7.2.4 Methodology

This section commences with the problem formulation, outlining how the summarization task
of the considered document is enriched by utilizing the information contained in the network
of referenced and citing papers. Then, the architecture of the proposed model is discussed.

7.2.4.1 Problem Formulation

Scientific papers possess a distinct attribute characterized by the presence of the citation rela-
tionship (referring to and referred to) among papers and the logical coherence in their content.
Figure 7.2(a) visualizes this relationship augmented with the ideas of segmenting the consid-
ered paper and accumulating only the relevant sentences in the citing papers, both aspects
which will be discussed later. These relationships will be used to enhance the e↵ectiveness of
summarization tasks in this domain.

To leverage this interconnected nature of scientific literature, we have utilized the concept
of a citation graph. Description of this graph and its subgraphs will be used to describe how
the model uses various portions of it. For the citation graph on the whole dataset G = (V, E),
each node v 2 V symbolizes a scientific article and each edge ei, j 2 E portrays the relationship
between articles represented by vi and v j. In this graph, the background knowledge for a
scientific article vi, (the papers to the left of the considered paper, D, in Figure 7.2(a)), is
represented by the subgraph Gref

i which contains the relation between vi and Vref
i which is the

set of the articles being referenced by vi. This is further refined by another characteristic of
the scientific article, the structured representation of its information [48]. To preserve this
structure, we have applied the segmentation approach used by Xing et al. [243]. Our work
applies this segmentation on document D, the scientific article being considered, to define the
citation subgraph Gi

Segp for each segment Segp, p = 1...n in D to accumulate the background
information for all segments.
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Figure 7.2: Architecture and workflow of the proposed model.

To define the second subgraph Gciting
i , we accumulate the citing statements referring to vi

(see Figure 7.2(a)) and use this as Segciting.

7.2.4.2 Model Architecture

Our proposed model operates concurrently on the segmentation and summarization tasks, en-
abling the acquisition of robust sentence representations. The model architecture is portrayed
in Figure 7.2. Initially, the document is segmented into sections using the segmentation model
introduced by Xing et al. [243]. This segmentation utilizes the word embeddings from Long-
former as input and applies attentive Bi-LSTM on top of it to get the sentence representa-
tions. Another sentence representation is generated from pre-trained Longformer and these
two features are concatenated together. This concatenated feature vector is then fed to the



Chapter 7. Scientific Article Summarization 168

following Bi-LSTM layer which predicts the section boundaries. This segmentation problem
is formulated as a binary classification problem. To label each article, the sentence starting
each segment of the article is labelled with 1 and all others with 0. This segmentation model
is optimized with the binary cross entropy loss function (Equ. 7.15 where k is the number of
sentences in the document).

Lseg = �

k�1X

i=1

[yi log pi + (1 � yi) log(1 � pi)] (7.15)

After the segmentation is completed, the citation graph is utilized to aggregate the abstracts
of the articles referenced by each segment p. For the considered document D, represented by
vi in the citation graph, these articles are represented by the nodes in Gi

Segp . These groups of
abstracts are then fed to the subsequent summarizer unit per segment.

The summarizer unit has two components: extractive and abstractive summarizer units. The
architectural overview of the summarizer unit is depicted in Figure 7.2(b). When developing
the extractive summarizer, we have focused on two discourse aspects: sentence-level semantic
connections for information coherence and the influence of word-level semantics on sentence
correlations. With these considerations, for a target document D, we have designed the graph
G = {V,E} where V symbolizes the nodes and E symbolizes the edges that connect these
nodes. The set of nodesV = Vw[Vs whereVw = {vw1 , vw2 , ..., vwn} is the set of all the distinct
words and Vs = {vs1 , vs2 , ..., vsm} denotes the set of sentences in D, and D contains n unique
words and m sentences. E = EW-S [ ES-S is the edge weight matrix where EW-S represents
the edges between word and sentence nodes and each element ewi-s j in EW-S is defined in such
a way that ewi-s j , 0 (i 2 {1...n}, j 2 {1...m}) if the sentence s j contains the word wi. Es-s

symbolizes the edges between sentences in the document. The sentence nodes are initialized
with Longformer [CLS] tokens and the word nodes with:

wi =

P
8s j2Vs ^ ewi-s j,0 vecwi, j
P
8s j2Vs |ewi-s j , 0|

(7.16)

where |ewi-s j , 0| is the number of occurrences of the word wi in D and vecwi, j symbolizes the
Longformer word token for word wi in sentence s j. Each word-sentence edge ew-si, j 2 EW-S

is initialized with the corresponding TF-IDF value. Each cross-sentence edge esx-sy 2 ES-S is
initialized with the cosine similarity between Longformer [CLS] tokens of sentences sx and sy.

Scientific articles contain a large number of sentences making operations on fully connected
sentence node graphs computationally expensive. As a solution, we have discarded the edge
connections between sentence nodes with cosine similarity values below a threshold, ✓ = 0.3,
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since experimentally, we have discovered that for ✓  0.3 the summarization quality of the
model is not a↵ected. To further reduce the computational overhead, the vocabulary size is
reduced by replacing words in the document with common synonyms.

Once the graph G has been constructed and initialized, a graph attention network (GAT) is
applied over the word and sentence nodes in an iterative manner to update them. This GAT
layer has been designed by following Wang et al. [227]. Considering, hi as the hidden state
representation of either vwi 2 VW or vsi 2 VS where hi 2 Rdh and i 2 {1, ..., (n + m)}, the GAT
layer (incorporating the edge information) is delineated as:

µi, j = LeakyReLU(!a[!qhi;!kh j; ei, j]) (7.17)

↵i, j =
exp(µi, j)P

l2Ni exp(µi,l)
(7.18)

ui = �(
X

j2Ni

↵i, j!vh j) (7.19)

where, !v !k, !q, and !a are weight matrices that are updated iteratively. Ni is the set of 1-hop
distant neighbour nodes. The attention value between neighbour nodes hi and hj is depicted by
↵i, j. For K attention heads, this GAT layer is designed as:

h0i = ||
K

k=1�(
X

j2Ni

↵k
i, j!

khi) (7.20)

Furthermore, a residual connection has been added to prevent gradient vanishing and the final
hidden representation, hi, is:

hi = h0i + hi (7.21)

In the first step of model training, the sentence nodes are updated, influenced by their 1-hop
distant word nodes, using the aforementioned GAT layer and the position-wise feed-forward
network (FFN) [227]:

U
(1)
w!s = GAT (H (0)

s ,H
(0)
w ,H

(0)
w ) (7.22)

H
(1)
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w!s +H
(0)
s ) (7.23)

where H0
w = Vw, and H0

s = Vs. In Equ. 7.22, H0
s has been considered as the attention query

matrix, andH0
w as both the key and value matrices.

Once the sentence nodes are updated using the adjacent word nodes, in the following step
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the sentence nodes are updated using cross-sentence correlations, followed by a word node
update step using the last-modified sentence node representations. Thus, each iteration com-
prises a sequence of sentence-sentence, sentence-word, word-sentence and cross-sentence edge
updates. At the tth iteration, this operation can be stated as:
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The Longformer decoder has been utilized as the abstractive summarizer following the ap-
proach used by Yu et al. [257].

For each segment, once the abstracts of the referenced articles are extractive- and
abstractive-summarized, these two summaries are individually concatenated with the segment.
These texts are then fed to their corresponding summarizer unit to produce extractive and ab-
stractive summaries of each segment. At this step of the hierarchy, the accumulated citing
statememts are also extractive- and abstractive-summarized. In the last hierarchical step, the
extractive and abstractive segment summaries are concatenated with the corresponding sum-
mary of the citing statements and fed to the corresponding summarizer unit to produce the
final extractive and abstractive summaries of the considered article. Both the extractive and ab-
stractive summarizer units use cross-entropy loss functions (Lext and Labs, accordingly). The
model’s loss function, L is defined as:

L = Lext +Labs +Lseg (7.31)

7.2.5 Experiments

This section first gives a brief description of the hyper-parameter settings and hardware used
for the model implementation and then presents the results achieved by the proposed model
described in the previous section on the corpus outlined in Section 7.2.3.

The experiments have been conducted on a 48GB NVIDIA RTX A6000 GPU with batch
size = 5 to accommodate the large number of sentences in the scientific documents. For model



Chapter 7. Scientific Article Summarization 171

Table 7.4: Results on the proposed corpus. The results consider both the abstracts and the
T5-generated summaries incorporating citation statements as the reference summaries.

Models On Abstracts as Summaries On T5-Generated Summaries
R-1 R-2 R-L METEOR R-1 R-2 R-L METEOR

Extractive
BERTSumExt [126] 45.63 15.99 41.91 34.89 46.01 16.17 42.18 34.97
HeterSumGraph [227] 46.35 16.22 42.64 35.02 46.81 16.29 42.82 35.16
CGSUM [10] 46.98 17.02 44.17 38.26 46.96 16.96 43.85 37.93
Lodoss [48] 47.17 17.22 44.37 38.61 47.29 17.24 44.47 38.66
Proposed Model (Extractive) 48.39 18.18 45.18 39.13 48.43 18.21 45.19 39.11
Abstractive
PTGen+Cov [197] 43.99 14.12 38.16 33.51 43.97 14.10 38.18 33.46
BERTSumAbs [126] 45.01 15.33 38.96 34.59 45.02 15.36 39.00 34.64
BERT+CopyTransformer [8] 45.62 15.78 39.93 34.84 45.54 15.81 39.91 34.88
Proposed Model (Abstractive) 48.12 17.96 44.91 38.85 48.04 17.99 44.71 38.82

training with a small batch size, we have followed the approach of Sefid et al. [198]. Gradients
are collected for ten steps and then the parameters are adjusted. The NOAM scheduler is
used to regulate the learning rate. Furthermore, to prevent the exploding gradient problem,
we have used gradient clipping. The extractive summarizer is initialised with 768-dimensional
Longformer embeddings. After that, the extractive summarizer unit uses the GAT (with 8
attention heads) and the following FFN layer to update the graph nodes. After every forward
pass, the abstractive and extractive summarizer units’ losses are calculated separately. If either
unit’s validation loss decreases for 5 continuous epochs, its parameter values are stored and
its training is paused for the next 10 iterations. We have trained the model for 200 iterations.
The FFN hidden layer size is set to 512. For the parallel training of the summarizers, we have
followed the approach proposed by Yu et al. [257]. For the segmentation model, apart from
the word embedding dimension, we have replicated the hyper-parameter settings used by Xing
et al. [243]. This model is fed with 768-dimensional Longformer word vectors.

We have assessed the segmentation performance using F-1 scores. Like Cho et al. [48],
we have experimented with predicting the first sentence and last sentence of each segment and
found that when predicting the first sentence of each segment, the model performs better which
supports the claim in [48]. With the joint training of segmentation and summarization, our
segmentation model has achieved 86.19 F-1 score on the segmentation task when predicting
the first sentences of the segments. We have also noticed that sentences near the segment
boundaries are more prone to be included in the summaries.

In order to assess the e�cacy of our model for extractive summarization, we undertake
the training and evaluation of the following extractive summarization models with our adapted
corpus: (1) BERTSumExt [126], an exemplar grounded in BERT; (2) HeterSumGraph [227],
a heterogeneously structured graph-based technique that accounts for inter-sentence relation-
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ships by incorporating supplementary semantic elements; (3) CGSUM [10], a graph-based
summarization model that incorporates the information from the source paper plus the ref-
erenced articles; and (4) Lodoss [48], it performs the segmentation and summarization tasks
in parallel regularized by the determinantal point processes regularizer. In the context of ab-
stractive summarization benchmarking, our experimentation encompassed the utilization of the
following models: (1) PTGen+Cov [197], founded upon a hybrid pointer generator network
designed to facilitate verbatim transcriptions from the source text; (2) BERTSumAbs [126], a
model rooted in the BERT architecture; and (3) BERT+CopyTransformer [8], which leverages
BERT-windowing techniques to manage textual content exceeding the inherent BERT window
limitations. While training these models, to incorporate the background information, we have
concatenated the abstracts of the referenced articles and the considered article following An
et al. [10]. The citation statements are also concatenated at the end. The same approach is
used for HeterSumGraph and CGSUM. To overcome the token intake limitation of the BERT-
SumEXT and BERTSumAbs, we have added additional positional encoding which is added
randomly and fine-tuned in the training phase [10].

The performances for the prior models and our novel proposals are presented in Table 7.4
using four commonly used metrics. For reference summaries, we have taken into account not
only the paper abstracts but also the summaries that we have produced by amalgamating the
abstracts with the citing statements via the T5 framework.

HeterSumGraph scrutinizes immediate associations among words and sentences within tex-
tual contexts limited to a maximum of 50 sentences. Conversely, our innovative model not only
takes into account these immediate cross-sentence correlations but is also adept at handling
more extensive text spans, accommodating up to 3500 words. Over the sentence-word rela-
tionships presented in HeterSumGraph, our model provides inter-sentence correlations. These
supplementary functionalities, coupled with the enhanced word and sentence features o↵ered
by LongFormer, collectively contribute to a notable enhancement in our model’s performance.
CGSUM can take up to two-hop reference articles. For the experiment here, it has been re-
stricted to one-hop to comply with our proposed corpus. However, CGSUM considers all the
abstracts from the reference article at once, rather than being used segment by segment. Using
reference abstracts segment by segment and utilizing an hierarchical summarization approach
over segments allows our model to benefit from the background information in the reference
articles where it is needed. However, it is essential to acknowledge that the heightened capa-
bilities of our model necessitate a commensurate increase in computational time and resource
allocation. In terms of performance, our model demonstrates a substantial gain over other mod-
els for the extractive summarization task. The extractive summarizer unit, in our model, has
achieved 45.18 Rouge-L (R-L) and 39.13 METEOR scores over the “abstracts as summaries”
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which is 0.81 R-L and 0.52 METEOR higher than Lodoss, which is the best performing model
among the considered other extractive summarizers . Over the “T5 generated summaries”, our
model has outperformed Lodoss by 0.72 R-L and 0.45 METEOR scores by attaining 45.19 R-L
and 39.11 METEOR scores. Like the extractive summarizer unit, our abstractive summarizer
unit has also outperformed the other considered abstractive summarizer units by attaining 44.91
R-L and 38.85 METEOR scores over the “abstracts as summaries”, and 44.71 R-L and 38.82
METEOR scores over the “T5 generated summaries”. The best performing model among the
considered abstractive summarizers, BERT+CopyTransformer, has achieved 39.93 R-L and
34.84 METEOR over the “abstracts as summaries”, and 39.91 R-L and 34.88 METEOR over
the “T5 generated summaries”.

To perform the ablation study, di↵erent units from the proposed model are discarded and
then the performances are reported (see Table 7.5). Experimental results show, if the word-
sentence update step is discarded, the model is a↵ected more than by discarding the sentence-
sentence update step. This di↵erence corresponds with our knowing that the sentence nodes
are still connected via the word nodes, and suggests that removing the word-sentence update
step has a greater information loss. Furthermore, the results show that replacing uncommon
words with corresponding common synonyms not only reduces the computational burden, but
also improves the performance and justifies the claim by Wang et al. [227] which states that
articles containing words with higher node degree not only make the summarization task easier
for the deep learning models but also improves the performance. Another observation that we
have drawn from the ablation study is that discarding the extractive summarizer a↵ects the
abstractive summarizer more than the extractive summarizer gets a↵ected when the abstractive
summarizer unit is discarded. These performance drops for the summarizer units also indicate
the significance of the parallel training of the extractive and abstractive summarizers. Both the
extractive and abstractive summarizer units are a↵ected with a performance drop in both cases
when the background information provided by the citation graph or the segmentation units are
discarded. It proves that providing background information segment-by-segment rather than
providing this information altogether helps the summarizer model attain better performance.

7.2.6 Conclusion

In this paper, we have introduced a scientific document summarization model that leverages
references within the article to provide background information and reflects the impact of the
cited work on the research community through citation statements. We have created a novel
corpus based on a citation graph, encompassing abstracts of reference papers and citing state-
ments for 10,000 scientific articles. This work takes the background information from the
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Table 7.5: Ablation Study on the T5 generated summaries: † indicates the extractive summaries
and ⇤ indicates the abstractive summaries.

Discarded Unit R-L METEOR
Sentence-Sentence update† 43.98 38.68
Word-Sentence update† 42.51 37.22
Abstractive summarizer† 43.95 38.47
Extractive summarizer⇤ 41.63 36.56
Citation network† 42.17 37.16
Citation network⇤ 41.74 36.89
Segmentation unit† 43.21 38.14
Segmentation unit⇤ 42.68 37.79
Synonym replacement† 44.07 38.25
Synonym replacement⇤ 42.94 37.58

reference articles segment-by-segment. As per our knowledge, this is the first approach to
bridge the gap between two facets of the citation graph in scientific document summarization.

7.2.7 Limitations

We have trained both the extractive and abstractive summarizer units for a large number of
epochs. Though to prevent any unit from being over-fitted we have checked the curve of
validation loss after every 5 epochs. This is very computationally expensive and demands a
longer period of time for model training.

7.3 Investigating Semantic Similarity-Induced Parallel
Training of Abstractive and Extractive Scientific
Document Summarizers

This section is based on the paper titled “Investigating Semantic Similarity-Induced Parallel
Training of Abstractive and Extractive Scientific Document Summarizers” co-authored with
Robert E. Mercer. Currently, this paper is under preparation for conference paper submission.

Scientific document summarization focuses on condensing scientific literature, research
papers, or technical documents into concise summaries while preserving crucial scientific con-
cepts, findings, and conclusions. In this work, we have presented an approach to improve the
performance of the summarization models using a parallel training of the extractive and ab-
stractive summarizers together with a modified loss function. The modified loss function is a
union of cross-entropy loss and semantic similarity among the generated and reference sum-
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maries. The experiments that are used to validate the parallel training method and new loss
function have used a combination of four recently state-of-the-art extractive summarizers and
four abstractive summarizers. Results indicate that for all combinations, both the extractive and
abstractive summarizers gain significant performance boosts. It is conjectured that the parallel
training method and new loss function will improve any combination of quality extractive and
abstractive summarizers.

7.3.1 Introduction

Document summarization refers to the process of condensing a written record or collection of
records into a concise and coherent synopsis while maintaining the crucial details and primary
concepts of the original document. It entails examining the content of the original document(s)
and extracting the most pertinent and significant information to produce a shorter version that
captures the fundamental meaning and noteworthy points of the source material. The objec-
tive of document summarization is to o↵er a comprehensive overview of the original text(s),
allowing readers to quickly comprehend the principal ideas and extract pertinent information
without the need to peruse the entire document(s).

With recent advancements in neural networks and large pre-trained language models
[56, 258, 22], researchers have made significant progress in the field of short document summa-
rization like news article summarization, typically dealing with documents of approximately
650 words [154, 45, 156, 126] However, these models face challenges when processing longer
texts such as scientific papers. Scientific papers can range from 2,000 to 7,000 words in length,
and the corresponding summary, which is usually the abstract, is expected to be more than 200
words, as opposed to the concise 40-word summaries found in news headlines [261].

Additionally, for long documents, it is imperative to uphold the organizational structure
provided by chapters, sections, headings, and bullet points. This allows readers to e↵ortlessly
navigate the document and locate the most important information and key details encapsulated
within its contents [47]. This section-oriented representation of texts creates another challenge
for the summarizer models as information is organized in sections, not sequentially. Further-
more, the computational complexity of attention in Transformer-based models, as introduced
by Vaswani et al. [223], is quadratic with respect to the length of input tokens. This quadratic
complexity poses a significant challenge and renders these models impractical for certain ap-
plications [261].

Scientific document summarization research focusses on two types of summaries: extrac-
tive and abstractive. Extractive summarization refers to the process of creating a concise sum-
mary of a document by directly extracting the most important and relevant sentences from
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the original text. Rather than generating new sentences like abstractive summarizers, extrac-
tive summarization identifies sentences from the source document that best capture the key
ideas and main points. This approach allows for a more direct representation of the original
document’s salient information in the summary. Initially, RNN-based models [273, 154, 45]
have been explored for this task. However, these models fail due mostly to the inability of
the RNN models to capture dependencies between long-distant sentences. Recently, fine-tuned
pre-trained language models (PLMs) have been commonly used for the extractive summariza-
tion task. However, PLMs focus on sequential context by incorporating linear positional en-
coding to input token embeddings, but they do not explicitly consider hierarchical text structure
information [189]. Addressing these issues, in the most recent approaches, extractive summa-
rizers are considering section information [189], graph-based approaches to incorporate topic
information [242], location of the keywords in the text [261], and heterogeneous relationship
between words and sentences [227].

Unlike extractive summarization, which involves selecting and rearranging existing sen-
tences, abstractive summarization entails comprehending the meaning of the input text and
generating sentences that e↵ectively capture the essential information in a more natural fash-
ion. Di↵erent variations of sequential neural network architectures have emerged as the pre-
dominant approach in abstractive summarization [115, 197]. Despite this progress, machine-
generated summaries still fall significantly short in terms of quality when compared to human-
generated summaries [174, 90]. Just like the extractive summarizers, abstractive summarizers
with sequential neural network lack the ability to capture long-distant sentence dependencies
and hierarchical structure present in the long text documents. Additionally, in these models,
the self-attention module brings about a quadratic increase in memory requirements as the
length of the input sequence grows [130]. This is why recent research has started incorporating
knowledge of hierarchical structure of the document [174], attention over the locality of the
text [130], and adding auxiliary extractive salience [228].

One contribution described here is a training method that trains an extractive and an abstrac-
tive summarizer in parallel. To provide strong evidence that this training method is summarizer
agnostic, we have experimented with four recently state-of-the-art (SOTA) extractive and ab-
stractive summarizers. In all possible combinations, we have trained these models with the
proposed training approach, and the results indicate that in every case, both the extractive and
abstractive summarizers have performance boosts.

Having the extractive, abstractive, and reference summaries during training provides an-
other avenue for performance improvement. While current research focusses on the Rouge
metric to measure model performance, another important aspect of summary quality is the
preservation of the semantics of the summarized document. One common issue for all of the
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SOTA models being used in the experiments is that while generating the summaries, they miss
taking advantage of summary-level semantic similarity (GRETEL [242] uses semantic sim-
ilarity at the sentence level). One key approach is to make the generated summaries more
semantically similar to the reference summaries. Since the parallel training method generates
two summaries, a further approach is to push the summaries to be more semantically related.
To address this issue, we have modified the typical cross-entropy loss function to include se-
mantic similarity of the summaries using cosine di↵erence.

Joining these two novel ideas, we provide a semantic similarity-induced parallel training
of extractive and abstractive summarizers where the loss function guides the individual sum-
marizer units to move closer to the reference summary on the basis of their underlying se-
mantics.This new semantically enhanced parallel method shows significant performance gains
for all combinations of the SOTA extractive and abstractive summarizers, strongly suggesting
that it is model agnostic, thereby allowing us to conjecture that this will be the case for any
combination of quality summarizers.

7.3.2 Related Work

Due to the encouraging advancements in short document summarization, recently there has
been a growing research interest in long document (such as scientific articles) summarization
in both extractive [227, 189, 242] and abstractive [8, 228, 174] manners.

The goal of Extractive Text Summarization (ETS) is to categorize sentences in a docu-
ment using labels that indicate whether a particular sentence should be included in the sum-
mary. Most recent ETS models [261, 189] for long documents are based on transformer-based
architectures [22, 258] as they have the ability to work with longer sequences in comparison
to the RNN-based models. Liu et al. [126] have introduced BERTSUMEXT, a method that
fine-tunes BERT by incorporating stacked Transformer layers and a sigmoid classifier. Instead
of using the standard Transformer encoder for document encoding, Zhang et al. [264] have
proposed HIBERT, a hierarchical Transformer encoder that includes a sentence encoder and
a document encoder. They have pre-trained this encoder and then fine-tune it specifically for
the ETS task. Zhong et al. [271] utilizes the siamese-BERT architecture to select candidate
extractive summaries by means of computing the semantic similarity between the candidate
and reference summaries. Recently, state-of-the-art extractive summarizers for the scientific
documents are HiStruct+ [189], GRETEL [242], HEGEL [261], and Lodoss [47].

HiStruct+ [189] involves formulating, extracting, encoding, and explicitly injecting hierar-
chical structure information into an extractive summarization model to incorporate both local
and global contextual information and is based on a pre-trained Transformer language model
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that focuses solely on encoding following the concept of BERTSUMEXT [126]. . The major
contribution of this work is the introduction of hierarchical positional encoding of sentences
which helps the model to integrate hierarchical information in the PLMs for the summarization
task.

GRETEL [242] combines the graph contrastive topic model with a PLM to maximize the
utilization of both global and local contextual semantics for ETS of long documents. It inte-
grates a hierarchical transformer encoder and graph contrastive learning to e↵ectively capture
and incorporate global semantic information from the overall document context and the de-
sired summary. GRETEL aims to encourage the model to extract pertinent sentences that are
topically relevant to the gold standard summary, while minimizing the inclusion of redundant
sentences that cover sub-optimal topics. One of the key aspects of GRETEL is its emphasis
on converging to topic representation of documents and sentences that exhibit high semantic
similarity with the gold summary.

HEGEL [261] have introduces a hyper-graph transformer layer to capture high order cross-
sentence relationships from a long document. Various types of sentence dependencies, such
as latent topics, keyword coreference, and section structure, are incorporated in order to en-
hance the summarization process. It represents a document as a hyper-graph where an edge
can connect to any number of vertices. Each dependency is represented by a one hot matrix
and finally they are concatenated to form an incidence matrix which provides additional infor-
mation to make a connection between sentences containing the same topic, keywords, or other
dependencies, even if these sentences occur in di↵erent sections of the document.

Lodoss [47] adopts a novel strategy by simultaneously learning robust sentence representa-
tions through both summarization and document segmentation. This integrated process allows
Lodoss to capture the essence of the document e↵ectively by recognizing document structure
along with encoding salient content. This is further enhanced by incorporating an optimization
regularizer (based on determinantal point process) that encourages the diversity in selecting
candidate sentences and avoiding redundancy. This model is architectured on top of Long-
former [22] following a stacked double-layered inter-sentence transformer.

Another type of summarization, Abstractive Text Summarization (ATS), aims to gener-
ate summaries that contain new sentences that are not directly extracted from the source text.
Unlike extractive summarization, which selects and rearranges existing sentences, ATS aims
to generate concise and coherent summaries by generating novel sentences that capture the
essence of the source text. This process involves understanding the source text, generating new
content, and ensuring the generated summary is coherent and informative. Liu et al. [126]
utilizes the encoder-decoder framework of BERT which enables BERTSUMABS to generate
abstractive summaries by leveraging the encoded information and generating new sentences
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that capture the gist of the document. Wang et al. [231] propose a two-step approach for
improving the summarization model. The first step involves extracting latent topics indepen-
dently from the input text to capture the underlying themes or concepts within the document.
In the second step, these extracted latent topics are utilized to enhance the performance of the
summarization model. Aralikatte et al. [11] have used neural topic modeling with bag-of-
words as input features and then implemented transformer-based encoder-decoder architecture
for generating abstractive summaries. Fu et al. [68] have examined the extraction of topic dis-
tributions at both the document and paragraph levels. These distributions then have been used
as guidance in the abstractive summarization process. Yu et al. [257] have employed the guid-
ance of an extractive summarizer to improve the performance of the abstractive summarizer
(DimSum). For the abstractive summarizer, DimSum utilizes BART [115]. The combined loss
function of the extractive and abstractive summarizers helps the model to generate better lay
summaries from scientific documents. Recently, the state-of-the-art models for ATS are DYLE
[138], FACTORSUM [66], PageSum [130], and HierGNN [174].

DYLE [138] introduces a dynamic latent extraction mechanism that involves training both
an extractor and a generator simultaneously. To determine the probability of an output token,
DYLE calculates it based on each input snippet independently, while the generation probabil-
ity is determined by the generator’s dynamically assigned weights and previously generated
tokens. The extractor is optimized using two surrogate losses: the extractive oracle, which
uses a greedy search to find the best ROUGE scores to serve as targets for the extractor, and
the consistency loss, which encourages the extractor to move its predicted weights toward the
averaged dynamic weights predicted by the generator.

FactorSum [66] is built on the premise that separating content selection from the allocation
of resources to cover important content enhances the e↵ectiveness and versatility of abstrac-
tive summarization systems. This model achieves the disentanglement of content selection and
resource allocation by employing an energy function that factorizes the summarization pro-
cess into two distinct steps. During the initial step, FactorSum generates abstractive summary
views that specifically cover the most significant information found within subsets of the input
document. In the second step, FactorSum combines the generated summary views into a final
summary while adhering to a budget and content guidance. This guidance can originate from
various sources, such as an advisor model like BART [115] or BigBird [258].

PageSum [130] is built on the concept of leveraging locality to reduce memory overhead,
while still providing informative summaries. Rather than treating the input document as a
single uninterrupted sequence, PageSum represents it as a collection of pages, constructed
based on the concept of locality. Each page is encoded independently by the encoder of the
abstractive model. During decoding, the decoder generates local predictions for each page and
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Figure 7.3: Parallel training process of the extractive and abstractive summarizers with the
semantic similarity loss function.

assigns confidence scores to these predictions. These local predictions and confidence scores
are then combined to produce the final outputs. Notably, tokens from di↵erent pages do not
interact directly with each other during the encoding and decoding processes, emphasizing the
significance of locality in text summarization.

HierGNN [174] is a neural encoder that integrates a reasoning capability, making it suit-
able for integration into any sequence-to-sequence (seq2seq) neural summarization model. The
HierGNN model initially learns a latent hierarchical graph using a sparse variant of the matrix-
tree computation technique [128, 110]. Next, it formulates sentence-level reasoning as a graph
propagation problem by employing a novel message passing mechanism. During the decod-
ing process, a graph-selection attention mechanism acts as a source sentence selector, hierar-
chically guiding the attention module to focus on specific tokens in the input sentences and
generate more precise summaries.

7.3.3 Semantic Similarity-induced Parallel Training of Extractive and
Abstractive Summarizers

The training methodology employed in this study adopts a parallel approach, employing a
siamese structure that incorporates both an extractive and an abstractive summarizer. To en-
hance their performance, a modified loss function is utilized. Figure 7.3 illustrates the overall
architecture. The primary focus of this work is not to propose a new model, but rather to intro-
duce a training approach for the summarizers, incorporating a semantic similarity loss function
to improve their performance. This training approach serves as a bidirectional guidance mech-
anism, aiming to prompt both summarizers to generate summaries that are more semantically
similar to the reference gold-standard summaries.
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The parallel training of the summarizers is a straightforward approach. At first, the extrac-
tive and abstractive summarizers try to generate the summaries of a given document. Once
both the extractive (SummaryExt) and abstractive (SummaryAbs) summaries are generated, they
are fed to the following Longformer [22] layer along with the reference gold-standard summary
(SummaryRe f ). This Longformer layer is responsible for generating the vector representations
of the summaries (VExt, VAbs, VRef for the extractive, abstractive, and reference summaries, ac-
cordingly). In the following step, the overall loss of the model is computed using our semantic
similarity loss function.

The semantic similarity loss function has two parts. The first part utilizes the cross-entropy
loss which is the commonly used approach to improve the Rouge values of the generated sum-
maries. Following the work of DimSum [257], this portion considers the cross-entropy of both
the extractive (LExt) and abstractive (LAbs) summarizers by taking the summation of them. The
second portion of the loss function, considers the semantic aspect of the generated summaries.
This portion of the loss function is three-fold. The first fold computes the distance between the
extractive and reference summaries at the semantic space. To measure the semantic distance
between the extractive and reference summaries, the cosine function ((1 � cos(VExt,VRef))) is
used. It tries to guide the the extractive summarizer to generate summaries semantically similar
to the reference summary. The second fold ((1�cos(VAbs,VRef))) does the very same job for the
abstractive summarizer. The last fold ((1 � cos(VExt,VAbs))) tries to make both the summarizer
units semantically similar. It is used basically to push the low-performing summarizer model
towards the gold standard. Finally, these three last-mentioned folds are normalized so that the
overall loss doesn’t become too big. The final semantic similarity loss function (L) is described
as:

L =
�
(1 � cos(VExt,VRef)) + (1 � cos(VAbs,VRef)) + (1 � cos(VExt,VAbs))

�
/3 +

(LAbs + LExt)/2
(7.32)

Although this work draws motivation from Dimsum [257] and MatchSum [271], the major
di↵erence with these works is the introduction and incorporation of the semantic similarity
loss function for the parallel training of the extractive and abstractive summarizers. On top
of that, unlike Dimsum, which primarily aims to guide the abstractive summarizer by training
it alongside the extractive summarizer, our approach provides bidirectional guidance to each
summarization component. In contrast to MatchSum, which focuses on constructing an ex-
tractive summarizer based on the semantic similarity between candidate summaries and the
reference summary, our work concentrates on enhancing the performance of existing summa-
rizers (both extractive and abstractive) through this novel training method.
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7.3.4 Experimental Setup and Analysis of Results

7.3.4.1 Corpus Description

In order to evaluate the performance of our semantic similarity-induced training approach, we
have conduct experiments on two benchmark corpora: PubMed and arXiv [50]. These datasets
consist of research articles paired with their respective abstracts. In our study, we treat the
abstracts as the reference summaries. Table 7.6 outlines their key characteristics. The default
train/validation/test set split proposed by Cohan et al. [50] is employed for these two corpora
in our study.

Table 7.6: Statistics of the PubMed and arXiv datasets.

Datasets Number of
documents

Avg. word
count per
document

Avg.
summary

length
PubMed 133 3016 203
arXiv 215K 4938 220

7.3.4.2 Experimental Results Analysis

Here, we present the results gathered from the series of experiments conducted using our se-
mantic similarity-induced parallel training approach. We demonstrate the progressive enhance-
ment in performance exhibited by the summarizer models to illustrate the significance of each
component.

For the experiments we have considered four SOTA extractive and four SOTA abstractive
summarizers. These models have been trained in 16 combinations, pairing one extractive sum-
marizer with one abstractive summarizer for each combination. The four extractive summariz-
ers are: HiStruct+ [189], HEGEL [261], GRETEL [242], and Lodoss [47]. The four abstractive
summarizers are: DYLE [138], FACTORSUM [66], PageSum [130], and HierGNN [174].

Tables 7.7 and 7.8 present the performance of the extractive and abstractive summarizer
models, respectively, when trained individually on the two benchmark datasets.

Table 7.9 displays the results obtained when the summarizers are trained in parallel with
the loss function used in DimSum [257]. This loss function combines the cross-entropy losses
of the extractive and abstractive summarizers. Comparing the performances of the summarizer
models in Tables 7.7, 7.8, and 7.9, it is clear that the parallel training approach improves the
summarizer units’ performances.

Table 7.10 contains the performance of the summarizer units when as semantic units only
the cosine distances between the reference and extractive summaries and the reference and
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Table 7.7: Rouge scores for four recently state-of-the-art extractive summarizers on the
PubMed and arXiv corpora.

Extractive PubMed arXiv
Model R-1 R-2 R-L R-1 R-2 R-L
HiStruct+ [189] 46.59 20.39 42.11 45.22 17.57 40.16
HEGEL [261] 47.13 21.00 42.18 46.41 18.17 39.89
GRETEL [242] 48.20 21.20 43.16 48.17 20.31 42.84
Lodoss [47] 49.38 23.89 44.84 48.45 20.72 42.55

Table 7.8: Rouge scores for four recently state-of-the-art abstractive summarizers on the
PubMed and arXiv corpora.

Abstractive PubMed arXiv
Model R-1 R-2 R-L R-1 R-2 R-L
DYLE [138] 46.22 17.13 41.55 46.41 17.95 41.54
FACTORSUM [66] 47.50 20.33 43.76 49.32 20.27 44.76
PageSum [130] 48.73 21.33 44.67 49.72 20.98 44.69
HierGNN [174] 49.62 21.74 45.32 49.88 20.81 44.84

abstractive summaries are considered as part of the loss function.

Table 7.11 provides the Rouge scores achieved by the extractive and abstractive summariz-
ers when the loss function considers the semantic distance between the generated extractive and
abstractive summaries along with the reference-extractive and reference-abstractive semantic
distances.

Results in Tables 7.9, 7.10, 7.11 show the gradual performance boosts of the models. As an
example, the performance boosts gained by HiStruct+ (the poorest performing Extractive sum-
marizer) for the PubMed corpus in terms of Rouge-L are 0.07, 0.09, 0.1, and 0.12 (averaged for
the Extractive and Abstractive results in Table 7.9) over the original HiStruct+ performance on
the PubMed corpus when it is coupled with DYLE, FACTORSUM, PageSum, and HierGNN,
respectively, for the parallel training method only. When the semantic similarity loss function
is coupled with it, the performance boosts rise to 0.38, 0.42, 0.45, and 0.51, maintaining the
same order (see Table 7.11). From Table 7.10, we can see that the performance boost is slightly
lower when the semantic distance between the generated extractive and abstractive summaries
is not included in the loss function. For Lodoss, the best performing extractive summarizer,
the performance boosts (average of the Extractive and Abstractive scores for Rouge-L for the
PubMed corpus) are 0.60, 0.67, 0.71, 0.79, respectively, when the model is trained with the
full semantic similarity loss function and parallel training. For only the parallel training, these
improvements are 0.14, 0.19, 0.23, 0.24, respectively. A similar pattern of results is observed
for the other investigated extractive summarizers for both corpora, as well.
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Table 7.9: Rouge scores for the sixteen combinations of four recently state-of-the-art extractive
and abstractive summarizers on the PubMed and arXiv corpora using only the parallel training
method. The scores in the Extractive column are the scores for the extractive summarizer
trained in parallel with the abstractive summarizers. The scores in the Abstractive column are
the scores for the abstractive summarizer trained in parallel with the extractive summarizers.

Extractive
Model

Abstractive
Model

PubMed arXiv
Extractive Abstractive Extractive Abstractive

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

HiStruct+

DYLE 46.66 20.47 42.17 46.41 17.33 41.74 45.28 17.63 40.23 46.61 18.14 41.73
FACTORSUM 46.66 20.48 42.21 47.74 20.55 43.97 45.30 17.66 40.26 49.54 20.49 44.98
PageSum 46.69 20.49 42.22 48.96 21.56 44.90 45.32 17.65 40.26 49.95 21.23 44.92
HierGNN 46.73 20.50 42.23 49.85 21.94 45.56 45.34 17.69 40.28 50.12 21.14 45.08

HEGEL

DYLE 47.22 21.06 42.26 46.45 17.36 41.76 46.46 18.26 40.97 46.64 18.18 41.75
FACTORSUM 47.23 21.13 42.30 47.79 20.58 44.01 46.55 18.29 41.02 49.57 20.51 45.01
PageSum 47.28 21.16 42.32 49.01 21.59 44.94 46.55 18.32 41.02 50.01 21.26 44.97
HierGNN 47.33 21.19 42.38 49.89 22.01 45.59 46.59 18.34 41.06 50.18 21.19 45.12

GRETEL

DYLE 48.28 21.27 43.13 46.47 17.38 41.80 48.27 20.40 42.69 46.61 18.20 41.79
FACTORSUM 48.32 21.30 43.16 47.78 20.60 44.02 48.31 20.43 42.72 49.59 20.55 45.02
PageSum 48.37 21.34 43.25 49.03 21.62 44.95 48.34 20.49 42.79 50.01 21.27 44.97
HierGNN 48.39 21.40 43.28 49.93 22.01 45.62 48.39 20.54 42.80 50.20 21.23 45.14

Lodoss

DYLE 49.52 24.01 44.98 46.50 17.43 41.84 48.58 20.83 42.92 46.69 18.24 41.81
FACTORSUM 49.57 24.06 45.00 47.85 20.66 44.08 48.66 20.89 42.97 49.63 20.90 45.07
PageSum 49.61 24.13 45.05 49.07 21.67 45.02 48.69 20.97 42.98 50.05 21.30 45.02
HierGNN 49.64 24.16 45.11 49.98 22.08 45.66 48.69 20.98 43.05 50.24 21.24 45.16

Table 7.10: Rouge scores for the sixteen combinations of four recently state-of-the-art extrac-
tive and abstractive summarizers on the PubMed and arXiv corpora using the parallel training
method and the extractive-reference and the abstractive-reference similarity loss function.

Extractive
Model

Abstractive
Model

PubMed arXiv
Extractive Abstractive Extractive Abstractive

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

HiStruct+

DYLE 46.98 20.76 42.46 47.06 17.91 42.32 45.62 17.97 40.53 47.24 18.75 42.46
FACTORSUM 47.03 20.76 42.49 48.08 20.95 44.37 45.64 17.99 40.53 49.82 20.80 45.31
PageSum 47.04 20.79 42.52 49.34 21.93 45.30 45.65 18.01 40.57 50.25 21.11 45.25
HierGNN 47.10 20.83 42.59 50.27 22.34 45.95 45.70 18.06 40.62 50.36 21.29 45.37

HEGEL

DYLE 47.45 21.46 42.63 47.11 18.02 42.46 46.89 18.60 40.28 47.27 18.81 42.42
FACTORSUM 47.49 21.44 42.65 48.26 21.09 44.53 46.90 18.63 40.31 50.12 21.07 45.34
PageSum 47.51 21.49 42.68 49.41 21.99 45.35 46.94 18.64 40.31 50.39 21.66 45.39
HierGNN 47.59 21.52 42.74 50.32 22.46 46.03 47.03 18.69 40.42 50.55 21.50 45.44

GRETEL

DYLE 48.65 21.61 43.56 47.12 18.15 42.67 48.62 21.64 43.08 47.26 18.81 42.48
FACTORSUM 48.71 21.65 43.60 48.17 20.94 44.39 48.67 21.72 43.10 49.94 20.88 45.31
PageSum 48.76 21.74 43.65 49.50 22.04 45.37 48.73 21.78 43.19 50.35 21.17 45.49
HierGNN 48.84 21.78 43.76 50.38 22.46 46.01 48.75 21.80 43.21 50.44 21.31 45.57

Lodoss

DYLE 49.97 24.44 45.40 47.44 18.36 42.88 49.01 21.26 43.10 47.74 18.93 42.84
FACTORSUM 50.04 24.52 45.49 48.47 21.32 44.75 49.05 21.33 43.19 50.25 21.15 44.78
PageSum 50.05 24.56 45.51 49.62 22.21 45.57 49.14 21.39 43.22 50.58 21.89 45.60
HierGNN 50.15 24.64 45.59 50.48 22.57 46.17 49.20 21.48 43.28 50.73 21.97 45.69

If we consider the performance of the abstractive summarizers, DYLE, the least performing
among the four, gains 0.19, 0.23, 0.26, and 0.31 Rouge-L scores (averaged over the Extractive
and Abstractive scores) when trained with the parallel training approach only (see Tables 7.8,
7.9) when coupled with HiStruct+, HEGEL, GRETEL, and Lodoss, respectively. In this sce-
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Table 7.11: Rouge scores for the sixteen combinations of four recently state-of-the-art extrac-
tive and abstractive summarizers on the PubMed and arXiv corpora using the parallel training
method and the extractive-reference, the abstractive-reference, and the extractive-abstractive
similarity loss function.

Extractive
Model

Abstractive
Model

PubMed arXiv
Extractive Abstractive Extractive Abstractive

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

HiStruct+

DYLE 47.02 20.77 42.48 47.12 17.98 42.39 45.63 17.99 40.55 47.31 18.82 42.51
FACTORSUM 47.05 20.79 42.52 48.19 21.02 44.45 45.67 18.02 40.58 49.91 20.87 44.39
PageSum 47.08 20.82 42.58 49.42 22.01 45.39 45.69 18.05 40.61 50.33 21.18 45.31
HierGNN 47.12 20.86 42.63 50.34 22.42 46.02 45.74 18.09 40.66 50.42 21.36 45.44

HEGEL

DYLE 47.49 21.48 42.66 47.19 18.09 42.53 46.91 18.64 40.33 47.35 18.90 42.51
FACTORSUM 47.51 21.49 42.69 48.35 21.17 44.61 46.94 18.66 40.35 50.19 21.11 45.43
PageSum 47.55 21.53 42.72 49.52 22.09 45.44 47.00 18.68 40.39 50.47 21.55 45.39
HierGNN 47.61 21.56 42.76 50.40 22.53 46.10 47.05 18.72 40.46 50.63 21.72 45.50

GRETEL

DYLE 48.69 21.63 43.60 47.18 18.22 42.74 48.66 21.67 43.12 47.38 18.91 42.59
FACTORSUM 48.75 21.71 43.66 48.24 21.02 44.48 48.71 21.75 43.16 50.03 20.96 45.48
PageSum 48.81 21.77 43.70 49.56 22.09 45.43 48.77 21.83 43.21 50.44 21.26 45.51
HierGNN 48.86 21.82 43.78 50.45 22.49 46.08 48.79 21.84 43.24 50.51 21.39 45.54

Lodoss

DYLE 49.99 24.48 45.45 47.52 18.41 42.95 49.03 21.30 43.13 47.84 19.01 42.91
FACTORSUM 50.04 24.56 45.51 48.58 21.41 44.85 49.09 21.37 43.21 50.37 21.22 45.53
PageSum 50.08 24.60 45.54 49.71 22.29 45.65 49.16 21.43 43.26 50.68 21.96 45.67
HierGNN 50.16 24.66 45.61 50.54 22.63 46.24 49.22 21.51 43.31 50.81 21.99 45.76

nario, for the best performing abstractive summarizer (among the considered ones), HierGNN,
the performance boosts are 0.22, 0.24, 0.3, and 0.31. When the full semantic similarity loss
function is used, the performance boosts observed for HierGNN are 0.67, 0.76, 0.81, and 1.1
when coupled with the extractive summarizers in the same order. This time the Rouge score
boost found for the DYLE are 0.85, 0.92, 0.96, 1.4. Very similar patterns of results are ob-
served for the other abstractive summarizers, as well. These values show that parallel training
of the models improves the quality of the summarizers. But, when it is incorporated with the
proposed semantic similarity loss function the models get another very noticeable performance
boost.

Looking at the results and performance boosts of the extractive summarizers we make the
following conclusions. Firstly, the semantic similarity-induced training method is both model-
agnostic and corpus-agnostic. And for all of the combinations the performance boost is strictly
monotonic. Furthermore, the improvement of any summarizer unit also depends on the quality
of its counterpart. From Tables 7.9, 7.10, and 7.11, it is evident that the extractive summarizer
achieves higher performance enhancements when combined with a more e↵ective abstractive
summarizer, and vice versa. In this experimental setting, the training process involves utilizing
the top-performing extractive summarizer (Lodoss) in conjunction with the top-performing ab-
stractive summarizer (HierGNN), resulting in the maximum performance boost and the highest
Rouge values (note that PageSum is the top-performing abstractive summarizer for R-2 on the
arXiv corpus).
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The aforementioned findings suggest that even though employing the semantic similarity-
induced parallel summarizer training approach enhances the performance of the summarizer
pairs, selecting a more proficient counterpart will attain higher Rouge scores. Additionally, our
observations indicate that abstractive summarizers benefit more from this training approach in
terms of performance improvement compared to the extractive summarizers. One interesting
observation that has emerged from our experiments is that our final results (Table 7.11 are
counter to the findings reported in other research papers (Tables 7.7 and 7.8), that extractive
summarizers exhibit superior performance on the PubMed corpus when compared to abstrac-
tive summarizers. Except for DYLE and a few other situations, Abstractive summarizers out-
perform Extractive summarizers on R-1 and R-L metrics. This remains the case for the arXiv
corpus except for a few cases, most of which are in the R-2 metric.

7.3.5 Conclusions

This paper introduces a novel approach to training extractive and abstractive summarizers
called semantic similarity-induced training method. Through parallel training and a modi-
fied loss function, both extractive and abstractive summarizers benefit from mutual guidance.
Moreover, the inclusion of semantic distance in the loss function facilitates a closer alignment
between the generated summaries and the reference summary in terms of semantic content. Fu-
ture work will extend the study to test the conjecture that the parallel training method and new
loss function will improve any combination of quality extractive and abstractive summarizers
on any long document corpus.

7.3.6 Limitations

Despite the performance boost shown by the proposed training approach, it still has some
limitations. Firstly, this training approach is tested for the long document only. That is why
we are not sure how well it may perform for shorter texts. Secondly, Abstractive summarizers
often su↵er from hallucination [47]. This training approach may or may not overcome this
incident of hallucination. Lastly, we are not sure whether this model is language specific or
not. The performance of the summarizers may vary while summarizing text from di↵erent
languages.

7.4 Conclusion

One novelty for the summarization task that we have introduced is the incorporation of the full
citation network. To add background information, An et al. [10] utilized the referenced part
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of the citation network, ignoring the citing part of the citation network. Yasunaga et al. [251]
utilized the citing part of the citation network to reflect the impact of the considered article on
the corresponding research community, but ignored the referenced part of the citation network.
Our work is the first attempt to utilize both the citing and reference parts of the citation network.
To accomplish this, we have introduced a scientific article summarization corpus comprising
10,000 research articles.

Like Cho et al. [47], we have incorporated the automatic segmentation as a part of the sci-
entific article summarization task. In addition to this idea, we have incorporated the abstracts of
the referenced articles as background information for each segment and applied an hierarchical
summarization approach which has shown superior performance over the previous state-of-
the-art (SOTA) models. Furthermore, our proposed models have the ability to generate both
the extractive and abstractive summaries in parallel. The experimental results have shown that
the parallel training of the extractive and abstractive summarizer units help both counterparts
to attain significant performance boosts.

Following this finding we have introduced a novel training mechanism and a semantic-
induced loss function for scientific document summarization. This training approach trains
extractive and abstractive summarizers in parallel and the introduced loss function tries to bring
the generated summaries closer to the reference summaries in the semantic space. The results
have shown that this training approach significantly improves the performance of the SOTA
extractive and abstractive summarizers; however, the abstractive summarizers attain higher
performance gains.

Finally, to compare the performance of the summarizer model discussed in Section 7.2 to
ChatGPT, we consider here, one sample (article ID: 0) from the arXiv scientific article summa-
rization corpus [50]. The reference and the ChatGPT generated summaries are shown in Table
7.12. The ROUGE-1, ROUGE-2, ROUGE-L scores are 0.47, 0.16, and 0.27, respectively.
These scores are lower than the abstractive summarizer model introduced in Section 7.2 even
without using the citation network as the background information provider. This model has
achieved 0.51 ROUGE-1, 0.22 ROUGE-2, and 0.46 ROUGE-L scores for the same sample.

The ChatGPT summary has some errors. Some are discussed here. The summary suggests
that the study in the paper found that in 2011 millions of children in developing countries
were malnourished. This information was from an analysis that the paper referred to, not the
study reported in the paper. Also, “millions” suggests “a few million”, but the figure was 314
million. The prevalence of underweight, overweight, and obesity referred to high school girls
not school-aged children. The improvements were in knowledge, not nutritional knowledge as
mentioned in the summary, and the improvements were for girls and boys, not particularly for
girls as mentioned in the summary.
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Table 7.12: The reference summary and the ChatGPT generated summary for a sample from
the arXiv corpus.

Reference Summary Generated Summary
the present study was carried out to assess
the e↵ects of community nutrition interven-
tion based on advocacy approach on malnu-
trition status among school-aged children in
shiraz, iran. materials and methods: this case-
control nutritional intervention has been done
between 2008 and 2009 on 2897 primary and
secondary school boys and girls (7-13 years
old) based on advocacy approach in shiraz,
iran. the project provided nutritious snacks
in public schools over a 2-year period along
with advocacy oriented actions in order to
implement and promote nutritional interven-
tion. for evaluation of e↵ectiveness of the in-
tervention growth monitoring indices of pre-
and post-intervention were statistically com-
pared. results: the frequency of subjects with
body mass index lower than 5% decreased
significantly after intervention among girls (p
= 0.02). however, there were no significant
changes among boys or total population. the
mean of all anthropometric indices changed
significantly after intervention both among
girls and boys as well as in total population.
the pre- and post-test education assessment
in both groups showed that the student’s av-
erage knowledge score has been significantly
increased from 12.5 ± 3.2 to 16.8 ± 4.3 (p
0.0001). conclusion: this study demonstrates
the potential success and scalability of school
feeding programs in iran. community nutri-
tion intervention based on the advocacy pro-
cess model is e↵ective on reducing the preva-
lence of underweight specifically among fe-
male school-aged children.

the text discusses a study on the preva-
lence of malnutrition among school-
aged children in iran, focusing on the
e↵ectiveness of a community nutrition
intervention based on an advocacy ap-
proach. the study found that in 2011,
millions of children under five years
old were stunted or underweight in
developing countries. in iran, stud-
ies showed varying prevalence rates of
underweight, overweight, and obesity
among school-aged children. the text
describes the implementation of a na-
tional free food program in elementary
schools in deprived areas to cover poor
students, but notes that many malnour-
ished children in big cities are not
covered by the program. the study
aimed to improve the program by ad-
vocating for changes, such as provid-
ing nutritious and diverse snack pack-
ages for all children in need, includ-
ing those in big cities. the interven-
tion involved educational campaigns,
providing nutritious snacks, and net-
working with stakeholders. the study
found significant improvements in nu-
tritional knowledge and anthropomet-
ric measures among the intervention
group, particularly among girls. over-
all, the community nutrition interven-
tion based on the advocacy process
model was e↵ective in reducing the
prevalence of underweight, especially
among female school-aged children.



Chapter 8

Conclusions

This thesis introduces a series of state-of-the-art deep learning architectures designed to tackle
a spectrum of classical and intricate Natural Language Processing (NLP) challenges. Each of
these works is encapsulated in its own chapter, ensuring a self-contained and comprehensive
coverage. Exhibiting a robust theoretical foundation, rigorous investigation, and extensive ex-
perimentation, all presented works have been featured in or prepared for respected conferences,
attesting to their academic significance. Readers are guided through a journey that unveils the
intuitive thinking process behind addressing various NLP problems. The consistent thread
running through this thesis is the integration of cutting-edge deep learning models with foun-
dational knowledge in natural language. In this chapter, we distill our key findings, outline
major contributions, and acknowledge the limitations inherent in this thesis. Moreover, we de-
lineate future directions for research, outlining potential areas for improvement and expansion.
This synthesis serves as both a culmination of the presented works and a springboard for future
exploration in the dynamic realm of natural language processing.

8.1 Key Findings

This study presents a comprehensive research landscape, engaging the reader in a multifaceted
exploration of NLP problems. Delving into the intricacies of semantic similarity measurement,
relation extraction, document classification, and text summarization, we have addressed each
of these challenges with tailored models. The citation linkage problem is conceptualized as a
semantic similarity measurement task, while protein-protein (PPI) and drug-drug (DDI) inter-
action identification are approached as relation extraction tasks. Personality trait identification
is tackled through two distinct methodologies: semantic similarity measurement and document
classification. In the realm of scientific text summarization, we have delved into both extractive
and abstractive summarization approaches, o↵ering a comprehensive investigation into diverse

189
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facets of NLP.
Our objective was to incorporate syntactic features and enhance semantic preservation in

downstream NLP applications. We observed a prevalent tendency in state-of-the-art models
to overlook the structural and grammatical aspects of textual representations within these do-
mains. To address this research gap, we have investigated the integration of constituency and
dependency tree information in tasks related to citation linkage, Protein-Protein Interaction
(PPI), Drug-Drug Interaction (DDI), and personality trait identification. By leveraging depen-
dency and constituency tree transformers, our investigated models e↵ectively retained phrasal
and inter-word dependency information. This integration played a pivotal role in facilitating
performance enhancements. The utilization of these additional structural and grammatical fea-
tures resulted in our proposed models achieving state-of-the-art performances across various
scenarios.

Furthermore, to enhance the semantic preservation of the models, we have introduced a
word-refinement module designed to enhance word embeddings with context information.
Across tasks involving PPI, DDI, personality trait analysis, and summarization, our models
have demonstrated state-of-the-art performances by leveraging context-aware word represen-
tations. While large language models o↵er context-aware word representations, their task-
specific fine-tuning demands substantial computational resources. In contrast, our proposed
models utilize a graph attention network to generate enriched context-aware word embeddings,
thereby achieving superior performance with reduced computational resource demands.

A pivotal discovery in our research is the e�cacy of multitask training in enhancing the
performance of summarizer models. In our experiments, we adopted a joint training ap-
proach for extractive and abstractive summarizers, alongside the incorporation of a segmen-
tation model. This innovative strategy, coupled with the utilization of citation network infor-
mation, empowered our investigated summarizers to integrate background information on a
segment-by-segment basis. This stands in contrast to other models that assimilate all back-
ground information as a single unit. The proposed model, leveraging multitask training and
segment-wise background information integration, outperformed alternative models, showcas-
ing superior performances across various metrics.

8.2 Major Contributions

This study embarks on an extensive exploration of diverse NLP problems, employing inno-
vative deep learning models characterized by intuitive architectures. The elucidation of the
modules employed within these architectures is presented with clarity, providing an intuitive
understanding of their selection and role. Beyond the intuitive design principles, the study at-
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tains state-of-the-art performance on several tasks, marking a significant advancement at the
time of model publication. The culmination of these endeavors results in a set of major contri-
butions, summarized as follows:

• We have pioneered a novel methodology for the creation of synthetic corpora, specifi-
cally tailored for semantic similarity tasks. This innovative approach has culminated in
the development of a corpus comprising 74,568 samples designed for the citation linkage
task within the biomedical research domain.

• Our implementation of models for tasks involving semantic similarity measurement, re-
lation extraction, and document classification is distinguished by the incorporation of
syntactic information. Notably, our models have achieved state-of-the-art performances
in these domains, underscoring their e�cacy and advancement beyond existing bench-
marks.

• Our models have surmounted the token intake limit inherent in traditional BERT-based
models. This achievement was realized by leveraging tree-structured neural networks as
sentence encoders, complemented by a graph attention network serving as an overarching
mechanism to interconnect them. This innovative approach allows our models to handle
texts of variable lengths, transcending the constraints posed by the token intake limits of
conventional BERT-based architectures.

• The introduction of our word-refinement module represents a breakthrough, enabling
downstream tasks to benefit from task-specific, context-aware word embeddings. This
methodology aligns with the objectives of BERT fine-tuning but does so with reduced
computational resource requirements.

• We have introduced a semantic-induced joint training approach for both extractive and
abstractive summarizers. This innovative methodology significantly enhances the perfor-
mance of each individual summarizer, marking a notable advancement in summarization
techniques.

• To the best of our knowledge, we stand as trailblazers in the utilization of both sides
of the citation network—citing and cited—for scientific document summarization. Our
scientific document summarizers exhibit a unique capability, going beyond the provision
of the core content of research articles. Our scientific document summarizers go beyond
merely o↵ering the essence of research articles; they possess the unique capability of
reflecting the impact of specific research within the corresponding research community
over time, achieved through a thorough analysis of citing statements. Furthermore, our
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summarizers acquire essential background knowledge by capturing the abstracts of the
reference articles.

• Our summarizer models possess the capability to incorporate background information
segment-wise through the joint training of a neural segmentation model. This innovative
approach ensures that the summarizer model receives information in a segmented and
organized manner, facilitating a proper flow of information. This strategic integration
has proven instrumental in achieving a substantial performance improvement compared
to existing prominent works in the field.

• Leveraging the citation network, we have introduced a pioneering corpus for scientific
document summarization encompassing 10,000 research articles. This corpus not only
links to the articles referenced in the considered documents but also incorporates cita-
tions made to them.

8.3 Limitations of the Study

In this thesis, we examine every facet of an architecture, conduct a thorough analysis of the
advantages and disadvantages of each linguistic feature incorporated, and consistently achieve
commendable results. However, it is crucial to acknowledge that there are still a few limita-
tions that warrant consideration. Chapter 5 Section 5.3, Chapter 6 Section 6.3, and Chapter 7
Sections 7.1, 7.2, and 7.3 individually delineate their inherent limitations, while the remaining
chapters articulate their constraints within the purview of result analysis and conclusive dis-
cussions. Nevertheless, a comprehensive overview of the limitations intrinsic to all scrutinized
models is presented herein.

The citation linkage framework has demonstrated promising performance on both the cre-
ated silver and gold-standard corpora [85]. Nevertheless, a notable limitation of the introduced
framework lies in its confinement to the sentence-level, which, upon reviewing scientific doc-
uments, appears restrictive. We have observed a need to broaden its scope to the paragraph
level, recognizing the inherent interconnectedness of information. An initiative was taken to
create a gold-standard corpus for this expanded task, aiming to encompass a broader span
beyond sentence-level similarity. However, due to the resource-intensive nature of this task,
particularly in terms of time and the necessity for annotators with specialized knowledge, the
endeavour had to be abandoned.

Similarly, the relation extraction task between biomedical entities from research articles
is encapsulated at the sentence-level. The relation between di↵erent biomedical entities may
be found after analysing multiple sentences rather than considering a single sentence only.
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Regrettably, akin to the previously mentioned case, there is no corpus available which expands
its scope beyond single sentences. Consequently, our models rely solely on single sentences to
identify relationships between di↵erent biomedical entities.

In addressing the personality trait identification task, our primary emphasis was placed on
the Big Five Model (OCEAN) and the Myers-Briggs Type Indicator (MBTI) classifications.
Nonetheless, it is crucial to acknowledge the presence of two additional notable personality
trait models—Eysenck’s Personality Dimensions and the HEXACO Model. These alternative
frameworks provide unique perspectives for comprehending and classifying personality traits.
The performance and adaptability of our models to these alternative models remain uncertain.

While the models incorporating word-refinement modules have demonstrated a significant
boost in performance, it is imperative to recognize a trade-o↵ in terms of computational time.
In the initial forward pass, the model utilizes RoBERTa word embeddings to generate sentence
and statement representations, updating word representations from this generated information.
In the subsequent forward pass, using the context-enriched word embeddings, the model regen-
erates sentence and statement representations for downstream tasks. The use of two forward
passes coupled with the parsing required for the tree-structured transformers in the model con-
tributes to an increased time requirement for result generation compared to other models. This
computational overhead should be duly considered when contemplating the deployment and
scalability of the proposed models in practical applications.

The joint training of extractive and abstractive summarizer units involved extensive experi-
mentation with a substantial number of epochs. To safeguard against overfitting, we diligently
monitored the validation loss curve after every 5 epochs. This process, while e↵ective, is com-
putationally expensive and necessitates an extended period for model training.

8.4 Recommendations for Future Research

Throughout Chapters 4 to 7, certain sections propose future research directions pertaining to
specific topics. While some of these recommended avenues have been subsequently addressed
in later chapters as the thesis unfolded, others remain as unexplored possibilities awaiting in-
vestigation in future research endeavours.

To enhance the applicability of the initial two tasks, citation linkage and relation extraction
between biomedical entities, a significant avenue for improvement involves extending their
application range beyond single sentences. This could be achieved by creating corpora that
expand from the sentence level to the paragraph level for these two tasks, and to the document
level for the latter task. The design of models aligned with these expanded applications could
render them more useful and practical in real-life scenarios.
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In the context of relation extraction tasks, a noteworthy avenue for improvement involves
the incorporation of task-specific knowledge graphs. A notable example is the work by Asada
et al. [15], where they integrated the knowledge graph of drugs for Drug-Drug Interaction
(DDI). While our models have demonstrated significant performance enhancements without
the use of additional task-specific features, integrating such features could further elevate their
performance by providing enhanced reasoning capabilities.

For the personality trait identification, exploring the integration of Language Inquiry and
Word Count (LIWC) between posts from social media could yield valuable insights. Addi-
tionally, leveraging knowledge graphs by incorporating interlinked descriptions of concepts,
entities, and relationships in a machine-readable form, as introduced by Ramezani et al. [179],
stands as a potential avenue for enhancement. These approaches may contribute to a richer
understanding of personality traits and improve the models’ performance in this domain.

In the context of scientific document summarization, while we have successfully incorpo-
rated the abstracts of reference articles as background information, there is an opportunity to
further enrich this background information by utilizing the citation linkage framework. This
entails fetching sentences from reference articles that are semantically similar to the refer-
encing statements and using them alongside the abstracts as the background information. As
discussed in Chapter 7 Section 7.2, the impact of a research work may evolve over time, and
such changes in impact may not be adequately reflected in the abstract alone. Therefore, re-
lying solely on abstracts may not su�ce to provide the necessary background information for
summarizing the considered article. Initial experiments from our side on this idea have shown
promising results, but further exploration and experimentation are required to solidify these
claims and present them as established facts.

Moreover, the integration of tree-structured neural networks for sentence encoding in our
summarization models holds the potential to enhance model performance by incorporating
additional syntactic information. This avenue presents an opportunity to further investigate the
impact of syntactic structures on summarization quality and explore potential improvements in
capturing nuanced relationships within textual content.
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