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Abstract
The concept of migration and checkpoint/restore has been a very important topic in research

for many types of applications including any distributed systems/applications or single massive
systems/applications; and low latency vehicular use cases, augmented reality(AR) and virtual
reality(VR) applications. Migrating a service requires that the state of the service is preserved.
This requires checkpointing the state and restoring it on a different server in multiple rounds to
avoid a total loss of all data in case of a failure, fault or error. There are many different types of
migration techniques utilized such as cold migration, Pre-copy migration, post-copy migration.

Compared with the above migrations, MiGrror migration needs to consider rounds of mem-
ory changes for when it does the migration. The utilization of rounds of memory changes
means that it is more precise to migrate instead of migrating on a unsuitable time interval. In
this thesis, we will implement a testbed for the MiGrror and Precopy technique (as there are
currently none that are not simulations) and evaluate their performance.

Keywords: Checkpoint/Restore, migration, CRIU, container
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Summary for Lay Audience
In the recent years, there have been a massive push to use containers on the cloud rather than
virtual machines. This increase has warranted new and more powerful resources in order to
transfer a massive throughput through a very small amount of time that may be used on the
cloud. Migration is the process of migrating information from one device to another.

The process of migration is part of checkpoint and restore where the goal is to checkpoint
application states and then restore them after so it is ready to be used later. Migration is mainly
done in different types of techniques that differ by when/how the memory is transferred and the
amount transferred. The main technique most containers use are a time gated one but may not
be efficient enough for more low latency dependent applications.

Therefore, we implemented a testbed for a new proposed migration technique compared with
the usual migration technique used by many containers. The implementation we proposed
utilizes podman containers on two servers. We evaluated the metrics for both migration tech-
niques migrating from one container to another. The results show that the proposed migration
technique has a lower downtime for the migration compared with the main migration technique
used.
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Chapter 1

Introduction

1.1 Thesis Contribution
The concept of migration and checkpoint/restore has been an important topic in research. Early
research on migration primarily focused on cloud computing where latency is relatively low.
However with emerging applications (e.g., augmented reality, virtual reality applications) there
is a need for migration in geographically dispersed locations which typically have high latency
between locations.

Migrating a service requires that the state of the service is preserved. This requires check-
pointing the state and restoring it on a different server in multiple rounds to avoid a total loss
of all data in case of a failure. There are many different types of migration techniques utilized
such as cold migration, pre-copy migration, post-copy migration which will be explained in
Chapter 2.

In the field of migration, new migration techniques and approaches are emerging, accom-
panied by new simulation results, such as the works by Arshin et. al [35]. Simulations provide
only theoretical results; therefore there is a need of evaluation for these simulations in more
realistically implemented environments to address their viability in production. The research
gap to be addressed by this masters thesis is: What is the performance evaluation on containers
between different types of migration techniques?

The research in this thesis addresses this research gap in two parts throughout this thesis:
We create a shell script implemented environment for the migration technique proposed by
Arshin et al.[35] and the standard Pre-copy migration technique widely used. An evaluation is
conducted on the two techniques to observe the results on different metrics formulated. A com-
parison of the evaluations of both of the techniques reveals the disadvantages and advantages
of each, addressing the viability of using the new migration technique.

1



Chapter 1. Introduction 2

1.2 Thesis Structure
Chapter 2 provides the background knowledge for this thesis, addressing different migration
techniques and the checkpoint/restore tool CRIU. Chapter 3 discusses the related works of this
thesis, including an expansion of the knowledge from Chapter 2 and the algorithms or appli-
cations of checkpoint/restore and migration. Chapter 4 presents the architecture and algorithm
of the thesis, including the algorithm of the MiGrror technique, the main architecture utilized,
and a comparison of the two main migration techniques in a tabular format. Chapter 5 details
the main implementation of the thesis, explaining the building blocks, Podman commands,
and source code for the source and destination nodes. Chapter 6 addresses the evaluation of
the thesis, including the application downtime, total network usage, and total migration time.
The results from the evaluation are compared between the two migration techniques to justify
the viability of the MiGrror migration technique. Finally, Chapter 7 concludes the thesis and
discusses future work.



Chapter 2

Background

The main goal of this thesis is to implement MiGrror technique of running containers and then
do a comparison with Pre-copy(iterative) migration. It builds on migration techniques and its
implementation in the CRIU project. This chapter provides a detailed introduction to these
concepts as they are necessary to understand the contributions we present later on.

2.1 Linux Environment and Processes in Linux

This thesis uses the Linux kernel [40]. Processes in the kernel is used later on in the thesis for
the checkpointing and restoring of processes(programs).

This work requires understanding of the processes (/proc) filesystem/directory [27].The
/proc directory contains (among other things) one subdirectory for each process running on
the system, which is named after the process identifier (PID). The following is a table of the
process specific entries in /proc that are utilized for checkpoint and restoring.

Entry Meaning
/proc/$pid/pagemap Page table
/proc/$pid/fd Directory, which contains all file descriptors
/proc/$pid/fdinfo Information about opened file
/proc/$pid/maps Memory maps to executables and library files
/proc/$pid/map files Information about memory mapped files

/proc/$pid/smaps
Showing memory consumption of each
mapping and flags associated with maps

/proc/$pid/clear refs Clears page referenced bits shown in smaps output
/proc/$pid/task Directory, which contains tasks

/proc/$pid/task/$tid/children Information about task children

Table 2.1: Table of process specific entries utilized in the thesis [27]

3



Chapter 2. Background 4

2.2 CRIU: Checkpoint Restore in Userspace
Checkpoint/Restore in Userspace (CRIU) is an open-source C/R tool [20, 16] introduced in
2011, with a distinctive feature in that mainly implemented in userspace, rather than in the
kernel.

The main goal of CRIU is to perform a snapshot of the current process’ tree state, which
represents a tree of all the subprocesses and superprocesses related to the current process, to a
set of image files, so that it can be later restored at that exact point in time, without reproducing
the steps that led to it.

Tracking Memory Changes
Tracking memory changes is essential for CRIU in order to determine the memory difference
from different memory image dumps for restoring. This is also useful later in the implemen-
tation when implementing the MiGrror algorithm to detect any memory changes. To track the
memory changes for different migration techniques:

1. Request that the kernel keeps track of memory changes by writing ”4” into /proc/$pid/clear refs
file to clear the soft-dirty bit (a bit on the page table entry that tracks which pages a task
writes to, for tracking the changes and then checkpointing/restoring) for each $pid we
are interested in [21].

2. Retrieve the list of modified pages of a process by reading its /proc/$pid/pagemap file
and looking at so called soft-dirty bit in the pagemap entries [21].

Checkpoint
The checkpoint procedure highly relies on the /proc linux root file system including:

• Files descriptors information (a list of all opened files and descriptors used by the process
via /proc/$pid/fd and /proc/$pid/fdinfo).

• Pipe parameters (the parameters that explain the read and write end of the pipe, used for
interprocess communication).

• A memory map represents where the process is mapped in the memory via /proc/$pid/maps
and /proc/$pid/map files/.

Checkpointing starts with retrieving the process identifier(PID) of the first process in the
process tree(a tree of all the sub-processes, which are the processes launched by the parent
process, that are used for a certain process) provided by the user through the command line
–tree option [17]. Before starting to checkpoint the process, it is necessary that the process will
not change their state. The state not only includes opening new files, sockets, changing ses-
sion(group of processes) and others, but also producing new child processes [12]. To achieve
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this transparently, instead of sending a stop signal (which could affect the process’ state) CRIU
freezes processes using ptrace’s PTRACE SEIZE command [25] or utilizing the freezer cgroup
(which obtains a consistent image of the processes by attempting to force the tasks in a cgroup
into a paused state where later can be gathered for the information then restarted) [29]. In order
to find all active children processes of the first process in the process tree, the $pid dumper iter-
ates through each /proc/$pid/task/ entry, recursively gathering threads and their children from
/proc/$pid/task/$tid/children.

When all processes are frozen (the processes are only sleeping and not being altered,
but not entirely stopped and deleted), CRIU collects all the relevant information about the pro-
cess’ task resources into image files. Virtual memory areas are parsed from /proc/$pid/smaps
and mapped files are read from /proc/$pid/map files links. File descriptors and registers are
read, dumped via ptrace interface and parsed through /proc/$pid/fd and /proc/$pid/stat respec-
tively. There is a novel technique in order to dump contents of memory and credentials which
is referred to as parasite code.

Parasite code is a binary blob of code built in PIE(Position-independent executable)
format based on machine code, for execution inside another process address space. The main
and only purpose of the parasite code is to execute CRIU service routines inside dumpee tasks
address space [22]. All architecture independent code calling for parasite service routines is
sitting in parasite-syscall.c file. To run parasite code inside some dumpee process, CRIU carries
out these steps:

1. Move task into the specified parent process identifier with ptrace(PTRACE SEIZE, . . . )
which allows the parent process to inspect the task. The task is stopped without any
signal triggered hence the state remains unaltered.

2. Inject and execute mmap syscall, which creates a new mapping in the virtual address
space of the calling process, inside dumpee address space with help of the ptrace system
call. When this stage is reached, there is a need to allocate a shared memory area which
will be used for the stack and parameters exchange between CRIU and dumpee.

3. A local copy of shared memory space from /proc/$PID/map files/ is created, where $PID
is the process identificator of a dumpee.

4. The original dumper process retrieves information of the dumpee’s address space through
the parasite code either utilizing trap mode (one command at a time) or daemon mode
(parasite behaves like UNIX socket).

5. With the data for the virtual memory areas and the flags from /proc/$pid/smaps and
/proc/$pid/pagemap respectively, the parasite code then transfer the actual content through
pipes, which in turn translates them into image files.

Lastly, the original process to checkpoint is cleaned of the parasite code by the ptrace facility
again which drops the all the parasite code and restoring original code. CRIU then detaches
from the processes and they continue to operate.
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Restore
During the restore process, CRIU enters into the process it tries to restore. Initially, CRIU
reads in image files (created from the checkpoint step) and finds out which processes share
which resources(file descriptors, pipes). Later shared resources are restored by one process
and all the others either inherit one on the 2nd stage (like sessions) or obtained in some other
way. The latter is, for example, shared files which are sent with SCM CREDS, representing
UNIX credentials for authentication, messages via Unix sockets, or shared memory areas that
are restoring via memfd file descriptor.

Next, since a checkpoint processes trees of processes rather than single processes, CRIU
must fork itself many times on the processes, in the process tree to be restored, since every pro-
cess tree is recursive with multiple processes within. CRIU requires that the restored tasks
have the same PID they had before the dump. With clone3() system call vs original clone(), it
becomes now possible to clone a process and specify the desired PID for it [9].

CRIU opens files, prepares namespaces, maps (and fills with data) private memory ar-
eas, creates sockets, then calls chdir() and chroot(). However, it restores memory mappings,
timers, credentials and threads later.

In order to restore memory areas in-place, before exiting CRIU would have to unmap
itself and map the application code. To overcome this issue, a similar approach to the parasite
code one is followed, by the restorer blob. It is a position-independent executable that does
what is stated above and then allows to restore the process successfully.

Live migration with CRIU
CRIU operates by design on a single system. Supports for live migration requires further ad-
ditions [19]. In particular, it is up to the user to ensure that the dump files are on the remote
host upon restore. Furthermore, IP addresses used by the application in the original host, must
also be available in the new restored host. CRIU developers have implemented go-criu [14] in
go which is a continuation of the original p.haul project(no longer maintained) in python for
migration.

One approach to live migration is to use the iterative approach like Pre-copy, where after
a certain time interval there is a transfer of execution state and memory pages pushed from the
source to the destination, as we will cover in 2.2. However, support for lazy migration, where
the memory pages are pulled from the destination to the source when there is a difference of
the pages between the source and destination, and a page server is also available [18]. A major
drawback with iterative migration is that, as explained before, CRIU freezes the process while
the snapshot takes place. This means that some memory pages may have dirty memory during
the snapshot.
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2.2.1 Comparison with other C/R (Checkpoint/Restore) tools
The main differences between C/R tools are the way they interact with the kernel and the appli-
cation use cases. CRIU is implemented completely in userspace, and as a consequence relies
heavily on existing kernel interfaces, otherwise execution fails. Additionally, CRIU’s target
application are containers.

Other open-source tools that implement C/R are DMTCP [36], BLCR [1] and FTI [4]. They
all focus on high performance computing.

DMTCP

Distributed Multi-Threaded Checkpointing (DMTCP)[2] is an active project lead by Prof.
Cooperman at Northeastern University that implements C/R on a library level. This means
that if a user wants to checkpoint an application, this must be dynamically linked from the very
beginning and executed with custom wrappers (which decreases transparency). It works under
Linux, with no modifications to the Linux kernel nor to the application binaries. It can be used
by unprivileged users. DMTCP intercepts all system calls instead of assuming existing kernel
interfaces, as CRIU does, and is, as a consequence, more robust and reliable. It is very popular
in HPC environments.

BLCR

Berkeley Lab Checkpoint/Restart (BLCR) is a system-level checkpointing tool aimed also at
High Performance Computing jobs. It requires loading an additional kernel module and is cur-
rently not maintained (last supported kernel version is 3.7).

A detailed table comparing the software is presented here, and some other solutions, is
maintained by the CRIU foundation [15].

FTI

FTI stands for Fault Tolerance Interface and is a library that aims to give computational scien-
tists the means to perform fast and efficient multilevel checkpointing in large scale supercom-
puters. FTI leverages local storage plus data replication and erasure codes to provide several
levels of reliability and performance. FTI is application-level checkpointing and allows users
to select which datasets needs to be protected, in order to improve efficiency and avoid wasting
space, time and energy. In addition, it offers a direct data interface so that users do not need to
deal with files and/or directory names [5].

2.3 Migration Techniques
Container migrations include either stateless or stateful migrations. The former is based on
stateless containers where it does not retain persistent data such as the container state. There-
fore, once on the destination node, the container restarts from scratch. Stateless migration
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consists of two steps: (i) Instantiation of a new container on the destination node; and (ii) The
deletion of the old container on the source node. With stateful migration the volatile and per-
sistent states of the container are made available at destination once migration is completed.
This section focuses on stateful container migration. More specifically, this section provides
an overview of the many techniques that may be adopted distinguishing between cold(the first
technique) and live migration techniques(the remaining three techniques).

2.3.1 Cold Migration
The steps for cold migration is depicted in Figure 2.1. (i) the source device container is stopped
so that the state is not modifiable, (ii) the state is dumped (fully checkpointed on the current
device) and transferred to the other device, and finally (iii) the container is finally resumed
on the destination device only when the state is available [32]. As a result of this, there is a
long downtime, namely the time where the container is not up and running. This indirectly
also affects the total migration time, the total time to migrate the container from one device to
another. However, we highlight that the memory pages are only transferred one time which
should reduce the total migration time and the overall amount of data transferred during mi-
gration.

Figure 2.1: Cold Migration steps[32]
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2.3.2 Pre-copy Migration
Pre-copy migration transfers most of the state prior to freezing the container for a final dump
and state transfer, after which the container runs on the destination node. It is also known as
iterative migration, since it may perform the Pre-copy phase through multiple iterations such
that each iteration only dumps and retransmits those memory pages that were modified during
the previous iteration without stopping the source. The modified memory pages are referred to
as dirty pages. After a number of iterations the container is then suspended on the source node
in order to capture the last dirty pages along with the modifications in the execution state and
copy them at destination without the container modifying the state again. Finally, the container
resumes on the destination node with its up-to-date state [32]. Figure 2.2 shows the technique
with only one step Pre-copy step but maybe be expanded for multiple Pre-copy steps too.

Figure 2.2: Pre-copy Migration steps[32]

The main difference between cold and Pre-copy migrations lies in the nature of their dumps.
The dump in cold migration represents the whole container state (as the pre-dump in Pre-
copy migration) and thus always includes all the memory pages and the execution state. The
dump in Pre-copy migration includes those memory pages that were modified during the Pre-
copy phase, together with the changes in the execution state. As such, downtime for Pre-
copy migration should be in general shorter than that for cold migration since less data is
transferred while the container is stopped. However, downtime for Pre-copy migration is not
deterministic, as it significantly depends on the number of dirty pages. Therefore, we expect
Pre-copy migration to be affected by the two factors that may increase the number of dirty
pages: 1) the page dirtying rate(how frequently are pages being changed) at which the service
modifies memory pages 2) amount of data that are transferred during the Pre-copy phase.
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2.3.3 MiGrror Migration
MiGrror migration is migrating and mirroring put together. It is similar to Pre-copy. Figure
2.3 depicts the distinction between the MiGrror and Pre-copy approaches. Assume a user
equipment(UE) is moving from one node to another. As illustrated in Figure 2.3, Pre-copy
transmits dirty memory at the end of a round representing a predefined amount of time. With
MiGrror, the goal is to reduce the amount of data that must be transferred during downtime
in order to achieve higher performance; therefore, there was a focus on reducing transfer. The
distinction between the two methods is that MiGrror, as shown at the bottom of Figure 2.3, uses
events to synchronize (sync) the source and destination as events occur, rather than waiting for
the end of a round as Pre-copy does. Each memory change at the source causes an event to
be generated, indicating that the source and destination must be synced. MiGrror does not
need to wait for a period of time to elapse. Instead, MiGrror allows the possibility of multiple
synchronizations of the source and destination during the period of time that corresponds to
Pre-copy’s round in order to mirror the current VM/container available at the destination. These
number of MiGrror sync events(variable n) and number of rounds of Pre-copy(variable m) are
depicted in Figure 2.3. In most cases, n is expected to be larger than m since MiGrror syncs
as soon as a memory change occurs and sends memory differences(image transfer) as soon as
they become available. A small amount of dirty memory remains when hand-off is triggered.
After the hand-off trigger, this data is the last memory difference that the source sends to the
destination for synchronization. This is less memory than the last round in Pre-copy since other
memory differences have already been transmitted. As a result, the image transfer is reduced
in MiGrror when compared to Pre-copy. Consequently, as shown in Figure 2.3, downtime is
reduced compared to Pre-copy. The diagram’s right- most section represents the resumption
time required to restart the VM/container at the destination [35].

Figure 2.3: Distinction between MiGrror and Pre-copy[35]
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2.3.4 Post-copy Migration
Post-copy migration suspends the container on the source and copies the execution state to the
destination so that the container can resume its execution there. It copies all the remaining
state, namely all the memory pages. Three variants of post-copy migration [7], which differ
from one another on how they perform this second step. We will only describe the post-copy
migration with demand paging variant, better known as lazy migration (see Figure 2.4), which
is the only one that may be currently implemented using the functionalities provided by CRIU
(see https://criu.org/Lazy migration), e.g., the -lazy-pages and -page-server options. With lazy
migration, the resumed container tries to access memory pages at destination, but, since it does
not find them, it generates page faults. The outcome is that the lazy pages daemon at destination
contacts the page server on the source node. This server then “lazily” (i.e., only upon request)
forwards the faulted pages to the destination [32].

Figure 2.4: Post-copy Migration steps[32]

The main benefits of post-copy migration is that memory pages are copied only once.
Therefore, it should transfer a data volume that is comparable with that of cold migration
and with that of the Pre-copy phase of Pre-copy migration. For post-copy migration, down-
time is irrespective of the page dirtying rate. There are however two main drawbacks. Firstly,
page faults degrade service performances, as memory pages are not immediately available at
destination once the container resumes. This is not acceptable for infrastructure that requires
ultra-low latency. Secondly, the migration process distributes the overall up-to-date state of
the container between source and destination compared to the whole up-to-date state for cold
migration and Pre-copy migration. Therefore if there is a failure on the destination node, it
may not be capable to recover the most up-to-date state for the post-copied container [32].



Chapter 3

Related Work

In this chapter we introduce the most relevant pieces of related work addressed in this the-
sis, together with similar approaches to tackle live migration of processes, containers or other
applications. We also include, given the educational nature of this work, references on the
bibliography we have based our claims on, together with the materials used throughout our
learning process as we understand it is relevant in the frame of a Master’s thesis.

3.1 Checkpoint Restore and CRIU

First, we have a starting point definition from the Encyclopedia of Parallel computing [37].
Within this chapter, it first briefly explains what is checkpointing and then explains the dif-
ference between system and application checkpointing. We also leveraged a set of slides by
Brandon Barker from Cornell University [3]. There, the author does a non-scientific intro-
duction and motivation for C/R and goes on to cover the different available tools. Program
memory, PIDS, shared memory segments etc. are saved. For the distributed processes, co-
ordination of checkpointing across all processes is needed as well. The applications of C/R
include recovery/fault tolerance, saving scientific interactive sessions, reducing long initializa-
tion times, debugging, migrating processes and interacting and analysis results of in progress
CPU-intensive processes. There are a variety of C/R tools being used. Barker [3] focuses on
high performance computing, where DMTCP [36] is the software of choice. The paper does
a great job explaining differences of the different tools being used. Some of the origins of
ways for rollback recovery strategies for fault tolerant systems are highlighted by the work of
Elnozahy et al. from 2002 [11]. Some of these strategies gained further traction with VM
migration, a topic outlined by Clark’s survey [8].

For our project, we used CRIU as the base C/R tool as it was the most suitable one for
containers and was already used by many major container engines and runtimes. Checkpoint-
Restore in Userspace [20] is an open-source community-driven project. Therefore, it has a very
actively maintained wiki covering all related topics. Adrian Reber is a maintainer of the project
in charge of, among others, part of the integration with runC and podman checkpoint/restore,
and has a set of very interesting an easy-to-follow articles on CRIU. One of the most delicate
parts of process restore is how to handle old, new, and dependent process identifiers (PIDs).

12



Chapter 3. RelatedWork 13

Adrian also has an article describing how this is done in CRIU [34] before the introduction of
new clone function [9].

When comparing different C/R tools, and in addition to the previously mentioned work by
Barker [3], CRIU’s developers themselves maintain a comparative table where they list the pros
and cons of each different tool (namely CRIU, DMTCP, BLCR) [15]. In spite of the natural
biases they may have, the resource has plenty of detail and is of great use. The main alterna-
tive to CRIU for C/R is the Distributed-MultiThreaded Checkpointing project [36] (DMTCP).
Developed under the supervision of professor Gene Cooperman from Northeastern Univer-
sity, the project has a long-standing record of successes in the high performance computing
domain, being the tool of choice by several national laboratories in the US. Additionally, the
Berkeley Lab’s Checkpoint-Restart [1] (BLCR) is also an HPC-focused tool, although it has
lost some traction during the last years as it is not maintained. Another HPC-focused tool on
the application level checkpointing is FTI [4]. Developed under supervision of Dr. Leonardo
Bautista-Gomez, it is a library that aims to give computational scientists the means to perform
fast and efficient multilevel checkpointing in large scale supercomputers.

A stretch goal for this project would be to implement live migration or MiGrror migration
of distributed container deployments, for which distributed checkpointing algorithms would be
crucial. Even though we have not had time to address the implementation of such a concept,
we have used several well-established resources for documentation purposes. We would like
to highlight the works by Raynal [33] and Kshemkalyani [26].

3.2 Migration Techniques
Migration is one of the main reasons for utilizing checkpoint restore as stated before in section
3.2. There are many methods of migration that are utilized to accomplish migration from one
container to another.

For most of the techniques, we refer to the paper written by Puliafito et al.[32]. In this paper
they first split up migration techniques into stateful and stateless migrations. They then explain
in detail the different types of stateful migration techniques used such as cold migration, pre-
copy migration and post-copy migration. For the main migration technique we are approaching
in this project for implementation, we use the paper by Rezazadeha et al. [35]. This is the main
paper we use to understand how their technique is different from the usual de-facto pre-copy
migration used by many container engines and runtimes.

3.3 Algorithms or Applications of C/R and Migration
Even though C/R and live migration are a relatively mature topic of research, scientific con-
tributions covering particular applications are way more scarce. This was, among others, one
of our initial motivations for this work. Most of these related works are complementary to our
work utilizing instead the MiGrror algorithm for the migration parts of the applications.
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On the topic of checkpointing, we would like to highlight the article by Fernando [13]. It
proposes PostCopyFT, that superimposes a reverse incremental checkpointing mechanism over
the forward transfer of VM states on recovering from post-copy migration failures. It utilizes
heartbeats to monitor liveness and reachability. Another topic on checkpointing abit different
relating to checkpointing on applications, we would like to highlight the work by Huang [24]
that adds a checkpoint restore feature into docker swarm by utilizing CRIU to further make
it fault tolerant for orchestration. They propose to use direct or incremental ways to do the
checkpointing.

For application-oriented projects leveraging CRIU we would like to highlight the work by
Venkatesh et al. [41]. In particular, the authors present an optimization to the file-based image
procedure using the new (as of 2019) kernel support for multiple independent virtual addresses
space (MVAS). We can not leverage the findings in our project as it only focuses on single-
machine C/R.

A contribution to CRIU which stemmed from an application use case and which we could
leverage in the project was presented by Stoyanov et al. [39]. The author optimizes down-
time during container live migration by utilizing CRIU’s newly added feature: the image
cache/proxy.

For comparison of container and vm migration, lies a piece of by Bhardwaj et al.[6]. This
work is mainly focused on the comparison of containers vs vm migration by contributing a
testbed of the container based migration. They experiment on different types of applications to
compare the metrics between container and vms.

In the HPC domain, but focused on container migration, lie the piece of work by Sindi [38].
It showcases different applications of CRIU’s migration capabilities in HPC. In particular, the
authors present a migration of an MPI application.

A contribution that is still very closely related to our work is displayed by Htet et al. [23]
presents a job migration function using CRIU on UPC(User-PC computing) systems(It uses
idling resources of personal computers (PCs) for daily usage by users as the workers, to run the
requested jobs or application programs that may need various environments on Docker con-
tainers). This is quite useful to our work because we utilize podman to try to test migration
except that we are trying to use a diferent type of migration process while they are utilizing
cold migration.

Lastly, the contribution that most closely relates to our goal of providing an efficient, trans-
parent, easy-to-use migration library for running containers is the go-criu project [14]. Initiated
by the same CRIU developers, the work attempts to wrap all the technical details behind ef-
ficient live migration and deliver it as a solution to the end user. This replaced the original
P.Haul project that was implemented in python. The Podman commands used are based off
this project so that we are able to implement the Pre-copy and MiGrror algorithms.

The literature has been predominantly orchestration and management applications on the
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existing Pre-copy migration technique. This limits exploration of other migration techniques
on mobility applications or other applications. This gap will be addressed by utilizing MiGrror
migration technique on some simple programs and evaluating its future viability for varieties
of applications including mobility applications(smart tours).



Chapter 4

Architecture and Algorithm

This chapter describes the architecture and the algorithms used for migration.

4.1 Comparison of MiGrror and Pre-copy
This section describes a comparison of MiGrror and Pre-copy

Pre-copy MiGrror
Utilizes iterative transfer of state Utilizes iterative transfer of state

Checkpoint full image of state and
transfer image to the destination

Checkpoint full image of state and
transfer image to the destination

Iterative transfer of state based on
time interval changes

Iterative transfer of state based on
memory changes

A set amount of time before
migration

Migration dependent on number of
memory changes

Table 4.1: Table comparing MiGrror and Pre-copy techniques

The MiGrror migration technique is a memory change based iterative migration tech-
nique. In order for MiGrror to work, there is a need to count the memory changes that occurs
to determine the next transfer of the image. This requires a counter that keeps track of mem-
ory changes that have occurred from the last transfer of the image . The number of changes
before a migration can be one or more. The flexibility of a varied number of changes before
migration is useful for a better control of the I/O. The control of the efficiency on the I/O is
mainly dependent on how much time the I/O is not idling and doing useful work. For higher
memory change frequencies (shorter time before a memory change) it would be more ideal
to have a higher number of changes before a migration in order to not overload the I/O with
too frequent image transfers, while lower memory change frequencies (longer time before a
memory change) would be more ideal to have lower number of changes before migration to
allow for the I/O to not be idling and efficiently image transferring. A variable is needed for
the total number of memory changes before an image transfer occurs. As the total number of
memory changes increases before an image transfer occurs, the greater the difference between
two memory states which incur higher downtime for calculating and applying the memory state

16
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differences.
The Pre-copy migration technique is based on time-interval changes. This allows the

MiGrror technique to have one main advantage over the Pre-copy technique: fewer chances
of missed data transfer when some memory changes occur between the time intervals of the
Pre-copy technique. Iterative transfer of state is done with pre-checkpoints(the difference in
memory state is stored in an image file instead of the whole memory state and then sent to
the destination). As the number of total image transfers needed before hand-off increases, the
higher the downtime for the destination node to restoring the pre-checkpoints but the lower the
downtime needed for the final checkpoint restore on the destination after the source hand-off.

This means that both types of migration techniques are flexible. These techniques can tune
their variables for different types of migration use cases so that they are more suitable for those
specific use cases such as when there is better throughput and I/O use lower values for variable
tuning while slower throughput and I/O use high values for variable tuning. Examples of the
higher throughput and I/O include virtual reality application or tour car applications. Examples
of slower throughput and I/O include bank applications or school applications.

4.2 Algorithm
This section describes the algorithm for MiGrror.

Algorithm 1 Source algorithm
1: trigger migrationRequest;
2: handoffSignalReceived = False
3: totaltransfers = 3
4: totalchanges = 2
5: currenttransfers = 0
6: currentchanges = 0
7: while handoffSignalReceived == False do
8: if currenttransfers != totaltransfers then
9: if Memory Change then
10: if currentchanges<totalchanges then
11: currentchanges+=1
12: else
13: pre checkpoint()
14: send pre checkpoint()
15: currentchanges = 0
16: currenttransfers+=1
17: else
18: handoffSignalReceived = True
19: checkpoint and stop container()
20: send checkpoint()
21: wait for t seconds then release VM/Container

Algorithm 2 Destination algorithm
1: trigger migrationRequest;
2: handoffSignalReceived = False
3: while handoffSignalReceived == False do
4: case Memory Change
5: receive pre checkpoint;
6: calculate and apply memoryDifference;
7: restore VM/container
8: case handoffRequest
9: handoffSignalReceived = True
10: receive checkpoint
11: restore VM/container
12: communicate from this Node onwards;

The source node is the node that is currently providing services to end-user applications. After
these steps are completed, the destination node will provide the service. The specifics of both
the source and destination steps are described in the rest of this section.
S1: Source Node memory changes, pre-checkpoint, pre-checkpoint transfer

The source node triggers a migration request signal to start the migration from source node
to the destination node(algorithm 1, line 1 and algorithm 2, line 1). The hand-off signal is set
to false on both the source and destination node(algorithm 1 line 2 and algorithm 2 line 2). The
total number of image transfers before hand-off(the total transfers variable) is initialized to 3
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as an example, the total number of memory changes before an image transfer(the total changes
variable) is initialized to 2 as an example respectively(algorithm 1 line 3 and 4). The current-
transfers variable for image transfers completed and currentchanges variable for the memory
changes occurred are both initialized to 0(algorithm 1 line 5 and 6). While the hand-off signal
has not been received yet(algorithm 1 line 7), the currenttransfers variable is compared with
the totaltransfers variable. If the two values are not equal(algorithm 1 line 8), on a memory
change and the currentchanges variable is less than totalchanges variable(algorithm 1 line 9 to
10), the algorithm increments the current number of memory changes(algorithm 1 line 11). If
the currentchanges variable reaches the totalchanges variable, the algorithm will create a pre-
checkpoint image of the container’s memory state and send the pre-checkpoint image to the
destination(algorithm 1 line 12 to 14). The algorithm restores the current number of memory
changes to 0 to prepare for another image transfer and increment the current amount of image
transfers by 1(algorithm 1 line 15 to 16).
S2: Calculate and Apply Memory Difference then Restore VM/Container in the Destina-
tion Node

The pre-checkpointed image from the source node is received by the destination, where
the destination node container is paused in order to calculate and apply the memory difference
changes between the the received image on the destination and its current image(algorithm 2,
line 3 to 6). It then restores and resumes the VM/container with the new memory difference
changes(algorithm 2, line 7).
S3: Stop Source VM/Container and Hand-off, Service Running on the Destination Node

The source node checkpoints and stops the current running container then sends the most
recent memory state image to the destination after the handoffSignalReceived variable is set to
True(algorithm 1 line 17 to line 20). The destination now has all of the fully updated data from
the source(algorithm 2 line 8 to line 11). Control is handed off to the destination node after the
hand-off is triggered (algorithm 2, line 12). Simultaneously, the destination node will proceed
to step S1 in order to prepare for future possible migrations.
S4: Clean Up the Source Node

Removing everything from the existing source container/VM will result in a cleaned source
node. Algorithm 1, line 21 represents the waiting time before the migrated VM/container is
released. The benefit of the waiting period is that if the end-user moves back or it may serve as
a back-up if the next node’s connection is lost.
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4.3 Architecture
This section describes the architecture related to the algorithm described in 4.2. This section
describes the architecture: the operating system(OS) used, the container engine chosen and the
containerfile/image used. Below is the overall architecture utilized.

Figure 4.1: Overall Architecture utilized for the Algorithm

In the top level architecture, Fedora OS was used instead of the more commonly used
Ubuntu OS. The reason for utilizing Fedora was that there were some missing features in
Ubuntu OS that did not allow for the utilization of checkpoint and restore in the kernel. This
feature was the core principle of the thesis to conduct performance evaluation with checkpoint
and restoring.

In the next level, podman was selected as the container engine. Although Docker is the
more favored container engine in most use cases, the main issue was no updates for the check-
point restore functionalities in Docker. The functionality was part of the experimental branch
of Docker but had bugs of not allowing for the checkpoint and restore of containers. On the
other hand, podman allowed for the utilization of those features seamlessly on the Fedora OS
so that was utilized instead.

In the next level, the Containerfile is utilized for the configuration of the podman containers.
In the beginning of the Containerfile, the busybox image from Docker is utilized. The reason
for that is the minimal overhead and bloat from the image when starting it up as a container.
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Implementation

This chapter explains about the implementation relating to the two migration techniques.

5.1 Building blocks
This section explains about the program that is utilized in the implementation for memory
changes detection for the MiGrror algorithm.

5.1.1 Pagemap utilization for MiGrror 1

The functionality of the pagemap program is a userspace tool to map virtual page addresses to
physical addresses, based on the /proc/pid/pagemap interface described in kernel docs (pagemap.txt)2

which is used as an implementation for the memory change detection in algorithm 1 on line 9
and in algorithm 2 on line 4 in chapter 4. This tool is used to find the virtual page addresses
that are changed by the soft-dirty bit flag utilized by the kernel in the softdirty.txt[28] docu-
mentation in order to find the memory changes of a program(process).

To utilize the pagemap code [10], the following command line code is used to save and
compile as an executable file pagemap2 to detect changes in the memory pages of processes
as:

1 ./pagemap2 $$ | grep ’soft-dirty 1’

Listing 5.1: Pagemap command line

where $$ represents the container PID. The goal of the command is to retrieve all the pages
of the container PID first, then pipe it into the grep Linux tool and retrieve pages that have a
”soft-dirty 1” bit present which means that there are changes in the relevant page.

1https://github.com/liang995/thesis/blob/main/pagemap2.c
2https://www.kernel.org/doc/Documentation/vm/pagemap.txt

20
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5.2 Podman commands
This section gives a breakdown on some of the podman commands utilized for the implemen-
tation and where they are used.

The goal of the project is attempting to accomplish container migrations on podman con-
tainers. Below will be a list of the podman checkpoint[30], restore[31] commands and other
commands that are utilize to build the implementation for the two migration techniques:

1 podman container checkpoint -P -e pre-checkpoint.tar -l

2 podman container checkpoint -R --compress=none --export=checkpoint.tar

3 podman container checkpoint srcimage --compress=none --export=checkpoint.

tar

4 podman container restore --import-previous pre-checkpoint.tar --import

checkpoint.tar

5 podman container restore --import checkpoint.tar

6 podman run -d --name=srcimage testimage

7 podman rm srcimage

Listing 5.2: Podman commands

The first command is for pre-checkpointing the container(checkpoint only changes to the con-
tainer memory pages).
The second command is for checkpointing which doesn’t stop(for the iterative part).
The third command is for full checkpointing that stops the container.
The fourth command is for restoring from a pre-checkpoint.
The fifth command is for restoring from a full checkpoint.
The sixth command is for starting the container from image name srcimage with name testim-
age.
The last command is for removing the srcimage image
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5.3 Code on the source
In the next two sections the implementation of the two migration techniques on the source and
destination node are explained. The link to the source code for both of the techniques are at-
tached as footnotes in the sections.

Due to the Docker’s checkpoint restore feature not working properly and no existing im-
plementations of MiGrror, the source code for both technique was programmed from scratch
in shell script.

5.3.1 MiGrror3

The implementation for MiGrror utilizes a counter attached with the pagemap program search-
ing through the current process memory pages and detecting memory changes in the process
and triggering migrations in regards with the counter.

In this implementation, the original steps of the pseudocode algorithm for sending the base
image is done beforehand. It then starts the container from the image and gets the pid of
the process that starts printing numbers as dirty values. The program then creates a check-
point image of the container without stopping the container from running(as by default the
checkpoint implementation stops the running container)then send the checkpoint to the other
server(algorithm 1 before line 1). The program then waits for a set amount of time before
starting the migration process(algorithm 1 line 1). The program initializes variables similar to
the algorithm 1 line 2 to 6 and then initializes prefix names and suffix names to uniquely iden-
tify every pre-checkpoint that will be sent to the destination. The pagemap program is used to
check for any changes and if the current number of changes is less than maximum allowable
changes before migrating and the current number of migrations is less than the total migrations
before hand-off, the current number of changes is incremented by 1(algorithm 1 line 7 to 11).
Otherwise if the current number of changes reaches the total changes before migration but the
current migration number has not reached the maximum allowable image migrations before
hand-off, the source node will create and send uniquely identified pre-checkpoint images with
names previously initialized for their the prefix and suffix, to the destination node(algorithm 1
line 13 to 14). The current number of changes is reset to 0 and current number of migrations
is incremented by 1(algorithm 1 line 15 to 16). When the current number of migrations is the
total migrations before hand-off, the final full checkpoint image is created to stop the program
and send the checkpoint to the destination (algorithm 1 line 18 to 20). The program waits for
some time before the container is released(algorithm 1 line 21).

5.3.2 Pre-copy4

In this implementation most of the steps previously described are reused from the MiGrror
implementation with some differences. As the difference in memory changes in not required
for the Pre-copy algorithm, the step for getting the pid for the writing number dirty memory
program and the variables that are related to finding number of memory changes before a

3https://github.com/liang995/thesis/blob/main/src.sh
4https://github.com/liang995/thesis/blob/main/pre src.sh



Chapter 5. Implementation 23

migration are removed. In the actual migration steps, instead of utilizing pagemap for finding
a memory change and incrementing the changes, the program only needs to wait a set amount
of time before a image migration is finished.

5.4 Code on the destination5

Regardless of the migration technique, the same implementation on the destination is utilized.
As both of the migrations utilize iterative pre-checkpoint image transfers, the main difference
is only on their source implementations’ timing for when the image transfer is done.

The image is already received on the destination before the start of the program. The
program starts the VM container, receives the pre-dump from the source, applies the pre-dump
and then restores the operation of the destination container(algorithm 2 before line 1). There
is a set amount of time to wait before starting the migration process(algorithm 2 line 1). If the
signal for hand-off is not sent to the destination, as soon as a different uniquely named pre-
checkpoint images file is received, the program calculates and applies the difference from the
source then restores them on the destination to lower the downtime of the full restore(algorithm
2 line 4 to 7). When the hand-off signal from the source is triggered, a full restore with the
last checkpoint sent over by the source to hand-off is finished(algorithm 2 line 8 to 11). This
destination node now becomes the new source node for migrations(algorithm 2 line 12).

5https://github.com/liang995/thesis/blob/main/dst.sh
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Evaluation

This chapter explains about the evaluation of the thesis’ migration techniques between Pre-
copy and MiGrror migration on different metrics such as migration downtime, total data trans-
ferred and total migration time.

6.1 Metrics and Experimental Outline

In this section, we study the impact of different dirty memory frequency rates(how often to
dirty the memory) and dirty memory sizes(values) for the two types of migration techniques
on the metrics of: application downtime, total network usage and total migration time.

As we will compare MiGrror and pre-copy migration, we establish parameters for: the num-
ber of pre-checkpoint migrations before we fully migrate and stop(handoff), and the number
of changes(MiGrror) or time intervals(pre-copy) before every pre-checkpoint migration. The
values selected for the parameters increase proportionally between the MiGrror and pre-copy
techniques. For example 1 memory change and 2 memory changes before transfer for pre-copy
versus 100ms and 200ms before transfer for MiGrror so that both techniques checkpoint on the
source, and transfer to the destination the same number of times before handoff. We use the
same types of memory dirty rates and memory dirty sizes(values) for every different type of
metric.

In order to test the above metrics, we set up the following experiments running them 5
times. We deploy two podman containers on both VMs, the source and the destination, with
the same podman image while running. We use a bash script. In each run, we use dirty mem-
ory values: ”20” represents input20, ”2020” represents input2020 and ”20202020” represents
input20202020 in the graphs in the next section for the metrics. For each run, we have a fixed
memory dirty frequency rate and a variable memory dirty frequency rate. For the fixed memory
dirty frequency rate, a dirty memory value is created every 100, 200 or 300ms. In particular
for the variable memory dirty frequency rate, we have:

test1: variable dirty frequency rate where first time a dirty memory is created 50ms after,
second time 100ms after and third time 150ms after, then repeated.(50/100/150ms frequencies)

test2: variable dirty frequency rate where first time a dirty memory is created 150ms after,
second time 200ms after and third time 250ms after, then repeated.(150/200/250ms frequen-
cies)

24
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test3: variable dirty frequency rate where first time a dirty memory is created 250ms after,
second time 300ms after and third time 350ms after, then repeated.(250/300/350ms frequen-
cies)

6.2 Experimental Results of the Metrics

The main application for the experiments is a container that outputs in varying times, the given
memory values from the experimental outline in the previous section. The results of the metrics
from the previous section are explained in the following subsections.

6.2.1 Application Downtime

In this subsection, we study the application downtime metric for the two types of migration
techniques.
We present our results in Figures 6.1 and 6.2.
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Figure 6.1: Application Downtime comparison of fixed memory dirty rate
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Figure 6.2: Application Downtime comparison of variable memory dirty rate

We observe that, for our particular setting, regardless of the type of input dirty memory
size, the MiGrror migrated container had a lower application downtime. Moreover it is also
interesting to see that, the comparison of the application downtime for the all the MiGrror
migrated containers did not always decrease with higher dirty memory rate. The results are
specific to our setting with two virtual machines and limited memory, but a similar benchmark
could be reproduced in production on larger applications too.
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6.2.2 Total Network Usage
In this subsection, we study the total network usage metric for the two types of migration
techniques.
We present our results in Figure 6.3 and 6.4.

input20 input2020 input20202020
0

50

100

150

200

250

300

350

K
ilo

by
te

s(
kb

)

Pre-copy 100ms MiGrror 100ms Pre-copy 200ms MiGrror 200ms Pre-copy 300ms MiGrror 300ms

Figure 6.3: Total network usage comparison for fixed memory dirty rate
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Figure 6.4: Total network usage comparison for variable memory dirty rate

From our results, we are able to extract different conclusions. First of all, the MiGrror
results resulted in a little bit more of data transfer compared to pre-copy. This is as expected
because more transfers may result in the MiGrror containers compared to the pre-copy which
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means more overhead. Lastly, we notice that most of the network transfer really do not vary
a whole lot between the pre-copy and MiGrror containers, mostly hovering around 350 mbs.
This is expected because the changes are not huge differences so the checkpoints would not
usually grow exponentially with size.
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6.2.3 Total Migration Time
In this section, we study the total migration time metric for the two types of migration tech-
niques.
We present our results in Figure 6.5 and 6.6.
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Figure 6.5: Total migration time comparison for fixed memory dirty rate
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Figure 6.6: Total migration time comparison for variable memory dirty rate

After running this experiment 5 times, we are able to extract an interesting conclusion. For
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most of the inputs and dirty rates, the MiGrror results have lower total migration time than Pre-
copy results. This is as expected as we do not have as long of a time delay for checkpointing
and transferring on the MiGrror compared to Pre-copy. The possible reason for some of the
MiGrror values being longer total time compared with the Pre-copy is from the creation of the
last checkpoint, not the pre-checkpoints to transfer before the full handoff is triggered. This
checkpoint is created by CRIU which we are not able to control as easily as a user. This means
there is a possible variance of the time it takes for the checkpoint to be created.
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Conclusion and Future Work

In this chapter we summarize the work presented, and critically assess whether our contri-
butions match the objectives we initially planned. In section 7.1, we provide an objective
overview of the results presented in order to establish if the techniques we use are possibly
usable for more scalable applications. Lastly, in section 7.2 we cover things we would have
liked to include and accomplish in this thesis but have not been able to, and the research lines
we believe this initial approach heads us to.

7.1 Conclusions and Lessons Learnt

Our initial goal was to assess the two techniques, MiGrror and Pre-copy, on a more realistic
testbed compared to just simulations. It was surprising to find that, the mainstream tool for
container related experiments, Docker, had abandoned an apparently useful tool (checkpoint
and restore) from its experimental branch. CRIU is an incredibly complex tool, with a very
helpful community, but whose intricate relation with the kernel makes it hard to debug when-
ever things don’t go as expected. Luckily, the integration with other container engines (other
than Docker), is way more maintained, resourceful, documented, and tested. This meant that
other container engines was the way to implement the techniques at the time.

Implementing MiGrror and Pre-copy turned out to be a very complicated task. Before even
implementing the techniques, setting up the cloud virtual machines took a lengthy amount of
time. This was due to different OS mismatching with CRIU or podman and requiring proxying
multiple times. During the implementation process for the MiGrror and Pre-copy techniques,
synchronizing when to do a migration and detecting if checkpoints were migrated took many
trial and errors before everything worked out. This included different numbers suitable for how
often to transfer the migration, such as every two seconds or two memory changes and also us-
ing proper data structure for handling the checkpoints on the destination virtual machine.

Our experimental results presented in Chapter 6, validate our implementations. Firstly, the
application downtime for MiGrror migration technique for all types of variable inputs is dras-
tically reduced compared to Pre-copy migration technique. Secondly, the total data transferred
is in most cases a bit more for the MiGrror compared to the Pre-copy but not by a lot (in general
only hovering around 350KB transferred only) even though more transfers occurred. Lastly,
the total migration time for MiGrror is lower than Pre-copy but sometimes with more delays.
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This is expected as some of the total migration time included the time for CRIU to create the
final checkpoint before hand-off that may take a bit longer than usual creating extra time.

As a result, we believe that the MiGrror migration technique is a good starting point to use
as a varied way to do migration instead of Pre-copy, at least for smaller containers and data
flow. We are also confident that this technique can be utilized in more mobility focused appli-
cations if more research is done to find ideal amounts of changes before doing a migration in
the coming years.

7.2 Future Work
Unfortunately, and as it tends to be the case, there has been much work we would have liked to
include in the present work but we have not been able to. Either due to a lack of time or a lack
of expertise and experience, there are some areas of this research that we would like to polish,
and some ones which we would like to push forward in the future.

From a technical standpoint, there are some implementation and evaluation details we
would like to complete. Firstly, the application we utilize for the experiments in this thesis
is only a relatively simple application of different constant memory values. Given more time,
support for trying the migration techniques on more sophisticated programs would be ideal.
These may include web(text), music and photo heavy programs. Secondly, we did not have
any evaluations relating to the data loss. This is an important factor to determine what migra-
tion techniques are better in order to avoid losing data. With a limited amount of time, it was
hard to find a great way to measure the data that was lost.

On a broader scope, the over-arching goal of this project was to support different migration
techniques for distributed container deployments and possibly WAN or mobility migration. We
believe the work here presented is a necessary first step towards achieving it, but there’s still
much work to be done. From an algorithmic standpoint, distributed checkpointing and coor-
dination algorithms need to be implemented. From an infrastructure standpoint, distributed
container deployments are managed through an orchestrator. We would also need to pair up
with some hardware from an engineering perspective to simulate a tour car with migration on
a fog based network. The integration of CRIU and podman with such a tool is, to the best of
our knowledge, unexplored territory and something we look forward to doing in the future.
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