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Abstract 

 

Healthy cities provide physical and mental health benefits to citizens.  To promote scientific 

transportation and land use planning for healthy cities, robust geospatial methods are 

required.  This thesis introduces two new geospatial methods to facilitate healthy 

transportation and land use planning.  First, to help healthy land use planning, a new 

analytical framework for identifying green space deserts based on various walking distance 

thresholds is introduced.  This method is particularly useful in low-middle-income 

countries in the Global South where guidelines for proper walking distance thresholds to 

green spaces are missing.  Second, to aid healthy transportation planning, a new measure 

of transit-based accessibility is proposed to incorporate transit users' exposure to extreme 

weather events.  This measure will enhance the preparedness of our society and 

transportation systems for climate change.  Together, the two geospatial methods developed 

in this thesis will guide informed policymaking efforts to make our world more liveable, 

sustainable, and healthier.  
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Summary for Lay Audience 

 

Healthy cities prioritize public health through various means such as providing accessible 

green spaces, promoting physical activity, and minimizing negative health outcomes for 

citizens. This research highlights the importance of scientific and evidence-based land use 

and transportation planning as a key strategy in fostering healthy cities. By contributing to 

the ongoing challenges of healthy city development this thesis introduces two geospatial 

methods to advance healthy land use and transportation planning, aligning with the 

objectives of creating healthy cities. First, in order to help healthy land use planning, a new 

analytical framework for identifying urban green space deserts and oases based on various 

walking distance thresholds is introduced.  This new method is particularly useful in low- 

and middle-income countries in the Global South where well-established guidelines for 

proper walking distance thresholds to urban green space are missing. This method will also 

help us understand the inequalities in green space distribution in the cities of the Global 

South. Second, to aid healthy transportation planning, a new measure of transit-based 

accessibility is proposed to incorporate public transit users’ exposure to extreme weather 

events such as extreme heat or cold.  This new accessibility measure will enhance the 

resilience and preparedness of our society and transportation systems under climate 

change. Together, these two newly developed methods serve as strategic tools to support 

the creation of healthier cities, emphasizing the importance of evidence-based and healthy 

planning in achieving positive public health outcomes and making our world more livable, 

sustainable, and healthier. 
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Chapter 1 

1. Introduction 

1.1 Research context 

A healthy city aims to provide physical and mental well-being for its citizens (Hancock & 

Bezold, 2017). According to the World Health Organization (WHO), a healthy city cannot 

be determined based on a particular health status; instead, it involves an ongoing effort to 

improve the health outcomes of residents by enhancing both the physical and social 

environment of the city (WHO, 2023). In addition, healthy cities take proactive measures 

in battling the negative consequences of climate change (Bentley, 2007). Promoting healthy 

cities demands the application of scientific, evidence-based approaches, which include the 

integration of urban and transport planning, environment, and health (Nieuwenhuijsen, 

2020).  As a result, introducing various measures of healthy city goals has received 

significant attention among urban planners and practitioners in recent years (Bafarsat and 

Sharifi et al., 2024).   

Climate change is leading to serious health issues in urban areas (Paavola, 2017; Louse and 

Hess, 2008; Haines et al., 2006). The increase in greenhouse gas (GHG) emissions from 

power, industry, transportation, and domestic aviation, combined with a reliance on non-

renewable energy sources, is driving long-term changes in the climate (Liu et al. 2023 

Alterations in weather patterns due to climate change are resulting in more frequent and 

severe extreme weather events, such as heatwaves (Brown, 2020), unpredictable winters 

(Jalili et al. 2010), sudden flooding (Brobstert, 2003), and wildfires (Halofsky et al. 2020) 

all of which can impact urban areas (Banholzer et al., 2014). These, in turn, can lead to a 

rise in illnesses associated with heat, cold, and respiratory problems, which is straining 

healthcare systems already grappling with the impacts of climate change on disease 

patterns (Mora et al., 2022). Consequently, there has been a notable uptick in various 

health-related ailments within cities in recent years (Patz et al., 2003), including asthma, 

diarrhea, skin diseases, and heat stroke (Mora et al., 2022). Furthermore, the limited 
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availability of green spaces in cities is indirectly causing a reduction in rainfall patterns 

(Zhang et al. 2015), introducing new risks of waterborne diseases during floods and 

presenting a dual health hazard (Willems et al., 2012). What is worse is that the health 

effects are not the same for everyone, and marginalized communities face even greater 

health risks due to social and economic inequalities (Roberts, 2001). 

Cities around the world are realizing the need to tackle the root causes of climate change, 

mainly reducing greenhouse gas emissions, and also moving toward urban greening- 

public landscaping and urban forestry projects that create mutually beneficial relationships 

between city dwellers and their environments (Gogilo et al., 2020; Bowler et al., 2010). 

Switching to renewable energy, promoting sustainable transportation, and incorporating 

green spaces into city planning are essential parts of a comprehensive strategy to fight 

climate change, protect public health, and build cities that can withstand future challenges 

(Fawzy et al., 2020).  

For instance, green spaces offer a dual benefit by positively impacting both public health 

and the fight against climate change (Sturiale and Scuderi, 2019). Firstly, green spaces 

provide essential recreational spaces that promote physical and mental well-being (Zhou 

& Rana, 2012; Maas et al., 2006). Access to green spaces encourages physical activity, 

reducing the risk of chronic illnesses such as obesity and cardiovascular diseases (Sadler 

et al., 2010). Additionally, exposure to nature has proven psychological benefits, reducing 

stress and improving overall mental health. Beyond individual well-being, green spaces 

play a crucial role in mitigating and adapting to climate change. They also contribute to 

cooling urban environments through shade and transpiration, mitigating urban heat and 

thus reducing GHG emissions associated with cooling energy demand. Strategically 

integrating green spaces into urban planning not only fosters healthier communities but 

also contributes to the overall resilience of cities in the face of climate challenges. 

Similarly, public transit serves as a crucial ally in the battle against climate change by 

significantly reducing car dependency (Hensher, 2008). Public transit systems are generally 

more energy-efficient, transporting larger numbers of people with fewer emissions per 

capita compared to individual cars (Liu et al., 2019). By promoting mass transit, cities can 
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reduce air pollution, thereby curbing the emission of greenhouse gases. Furthermore, the 

integration of efficient public transit options encourages people to do more physical 

activities such as walking and biking. The collective impact of increased public transit use 

not only contributes to immediate emissions reduction but also fosters a shift towards a 

more sustainable and environmentally friendly urban transportation paradigm. 

The importance of urban green spaces (UGS) as a part of healthy city planning has been 

widely acknowledged by researchers for positive health benefits and fighting climate 

change (Zhou & Rana, 2012; Maas et al., 2006). Consequently, how to ensure required 

green spaces in cities has received significant research interest. Significant efforts have 

been made in this regard, by understanding the accessibility, availability, and inequalities 

in UGS distribution (Kabisch et al., 2016; Dai, 2011, Huang et al., 2023). As research, 

various criteria have been proposed, including the distance at which green space should be 

available, the amount needed for health benefits, and the equal distribution of existing 

green spaces. While cities in the Global North have proposed planning and policies 

regarding green space provision, we found limited research related to green space 

distribution in the developing cities of the Global South. However, the entire planet being 

a global village, it is equally important to investigate the availability of green space in such 

cities and facilitate green space where needed. To investigate green space availability, the 

first step is to ensure the required green spaces for health benefits followed by the distance 

to it. Although there are a few thresholds regarding the quantity, a lingering question in the 

Global South context is the appropriate walking distance threshold due to the lack of 

consensus in the literature and planning guidelines. Addressing this gap, Chapter 02 of this 

thesis contributes to healthy land use planning by developing an analytical framework for 

identifying UGS deserts, and areas lacking adequate UGS availability, considering 

different walking distance thresholds. Moreover, this chapter investigates inequalities in 

green space availability. 

In addition, efficient, affordable, and accessible public transit provides various benefits, 

including promoting physical activity through first- and last-mile walking and reducing 

private automobile use, consequently minimizing greenhouse gas emissions 

(Nieuwenhuijsen, 2020). However, the exposure of public transit users to environmental 
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conditions, such as extreme heat, cold, and air pollution, poses health risks that have been 

overlooked in the literature on public transit accessibility, despite their increasing 

importance in the context of climate change. It is essential to investigate whether such 

environmental exposures disproportionately affect marginalized public transit users. 

Chapter 03 of this thesis investigates these issues by incorporating exposure to extreme 

weather into public transit accessibility and examining how this extreme exposure factor 

affects marginalized population groups. 

Scientifically informed and healthy land use planning holds significant importance in 

fighting climate change impacts, ensuring adequate access to green spaces, and 

implementing transportation infrastructure that enhances walkability, bikeability, and 

public transit use (Barton, 2009). Similarly, evidence-based and healthy transport planning 

plays a crucial role in shaping urban environments that prioritize healthy mobility options 

(Nieuwenhuijsen, 2020). Considering the negative health impacts on pedestrians and 

public transit users in transportation planning allows us to deliver a healthier urban 

environment for citizens. However, erroneous land use and transport planning that 

overlooks citizens' health can lead to significant morbidity and premature mortality 

(Stevenson et al., 2016). For instance, a study reports that flawed land use and transport 

planning caused nearly 3,000 annual premature deaths in Barcelona (Mueller et al., 2017). 

The primary reasons were a failure to meet guidelines to facilitate required access to urban 

green spaces and a lack of consideration for exposure to extreme weather and pollution in 

the planning strategy (Mueller, Rojas-Rueda, Basagaña, Cirach, Cole-Hunter, et al., 2017).  

Practical and robust geospatial methods can contribute to evidence-based, scientific, and 

healthy land use and transportation planning. For instance, high-resolution remote sensing 

data and advanced geospatial models, for example, enable planners to strategically 

implement healthy land use planning, particularly in evaluating the availability and 

accessibility of green spaces within urban landscapes. Additionally, advanced 

transportation models can guide planners in minimizing citizens' health risks associated 

with various transportation modes, such as walking, biking, and public transit, by 

evaluating their exposure to extreme weather and pollution during city movement. 
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By prioritizing sustainable urban planning through advanced geospatial techniques, healthy 

cities can enhance resilience against extreme weather events and climate change impacts. 

High resolution geospatial information on green spaces and healthier public transit systems 

not only promote physical and mental well-being but also serve as effective carbon sinks, 

absorbing greenhouse gases and mitigating urban heat. Implementing effective policies that 

enhance green space availability and promote eco-friendly transportation options can 

collectively reduce carbon emissions. By fostering healthier, more sustainable urban 

environments, healthy cities can effectively address climate change impacts while 

simultaneously improving the quality of life for their residents.  

To ensure citizen’s health and prepare our cities for future climate change consequences, 

this thesis contributes to the ongoing efforts of healthy city planning by proposing two new 

geospatial methods. The proposed geospatial methods in this thesis contribute to the 

existing literature both conceptually and methodologically by informing urban planners, 

local governments, and policymakers to make our world more liveable, sustainable, and 

healthier. Chapter 2 makes a methodological contribution to the existing literature by 

developing an analytical framework applicable in geographic contexts where local policies 

lack information on the distance people would be willing to travel to access green spaces. 

This chapter addresses this gap by providing a framework that can guide decision-making 

processes in such scenarios. On the other hand, Chapter 3 contributes both conceptually 

and methodologically to the fields of transportation geography and planning. Firstly, it 

introduces a new accessibility metric that incorporates environmental exposure as a new 

variable, making a conceptual contribution. Secondly, the chapter refines the existing 

methodology by integrating environmental exposure into the assessment of public transit 

accessibility.  

 

1.2 Research objectives 

This thesis develops two new geospatial methods to advance land use and transportation 

planning in pursuit of healthy city objectives: 1) a new analytical framework for identifying 
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urban green space deserts by considering various walking distance thresholds (Chapter 2) 

and 2) a new accessibility measure that incorporates extreme weather exposure during 

public transit travel (Chapter 3). 

The following chapters of this thesis are guided by several research objectives related to 

healthy land use and transportation planning and are applied to two cities located in the 

Global South and North. Chapter 2 which is related to healthy land use planning is applied 

to Dhaka, a city in a Global South developing country, Bangladesh, while Chapter 3 which 

proposed a healthy transportation planning approach is applied to Winnipeg, Canada, a city 

in the Global North.  

Chapter 2 comprises three research objectives: 

• To investigate whether and how the geographic distributions of limited green space 

areas can be sensitive to the choice of a walking distance threshold. 

• To develop an analytical framework to detect areas with limited green space, 

regardless of various walking distance thresholds, for more reliable and accurate 

identification of underserved areas. 

• To conduct a statistical test to examine the differences in socioeconomic 

characteristics between UGS desert and oasis areas. 

 

Chapter 3 has three research objectives: 

 

• To develop a generalized framework for measuring public transit accessibility 

considering exposure to extreme weather as an environmental health cost. 

• To demonstrate the applicability of the proposed framework within the context of 

extreme cold in the city of Winnipeg, MB, Canada. 

• To perform a statistical test to investigate the differences in socioeconomic 

characteristics between areas experiencing accessibility loss and gain. 
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1.3 Thesis format 

This thesis is structured into four chapters, with Chapters 2 and 3 adopting an integrated 

article format. Chapter 1 serves as the introduction, providing a comprehensive overview 

of the research context, objectives, and the overall structure of the thesis. 

Chapter 2 discusses the research question concerning land use planning in cities of the 

Global South. It introduces a new analytical framework aimed at identifying areas with 

limited green space availability considering various walking distance thresholds into a 

single framework.  

In Chapter 3, an improved transportation planning approach is developed that combines 

travel time and environmental exposure. This results in a comprehensive measure of public 

transit accessibility designed for the cities in the Global North.  

The concluding Chapter 4 serves to summarize key findings from the integrated articles. 

Additionally, it discusses the contributions of the research, acknowledges its limitations, 

and provides recommendations for future studies. The implications of the findings for both 

policy and practice are also explored in this final chapter. 
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Chapter 2 

2. Identifying urban green space deserts by considering 

different walking distance thresholds for healthy city planning 

in the Global South1 

 

2.1 Introduction  

Researchers have long discussed the importance of urban green space (UGS) in improving 

quality (Zhou & Rana, 2012) and positivity (Maas et al., 2006) in daily life. In addition, 

UGS can play significant roles in providing essential biodiversity, reducing air pollution, 

controlling heat island effects, improving psychological and physical health benefits, and 

fighting the negative consequences of climate change (Cohen-Cline et al., 2015; Liu et al., 

2021; Song et al., 2021). As a result, identifying areas without an adequate level of UGS 

availability – UGS deserts – based on the standards provided by local governments has 

received significant attention among urban planners and practitioners in recent years 

(Kabisch et al., 2016; Sikorska et al., 2020; Xu et al., 2018; Koprowska et al., 2020; 

Łaszkiewicz et al., 2018).  

The first step to identifying UGS deserts is to measure neighbourhood-level UGS 

availability – the amount of urban green space within a certain walking distance threshold 

from residential locations in a neighbourhood (Koprowska et al., 2020). When measuring 

UGS availability, a lingering question is which walking distance threshold (e.g., 100-

meter, 300-meter, 500-meter) should be used since there is no consensus on that in the 

literature (Wüstemann et al., 2017; Barbosa et al., 2007). If local governments, planners, 

and policymakers do not provide official guidelines for walking distance thresholds, the 

 

1A version of this chapter has been published (Ahmed, N., Lee, J., Liu, D., Kan, Z., & Wang, J. (2023). 

Identifying urban green space deserts by considering different walking distance thresholds for healthy and 

socially equitable city planning in the Global South. Urban Forestry & Urban Greening, 89, 128123. DOI: 

https://doi.org/10.1016/j.ufug.2023.128123) 
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situation becomes worse. For instance, in low- and middle-income countries (LMIC) in the 

Global South where well-defined local policy guidelines for walking distance thresholds 

are missing, UGS availability is often evaluated by using a single ad-hoc or arbitrary 

walking distance threshold, which can lead to an erroneous measurement of UGS 

availability (Malca and Haddad 2016; Dinda et al., 2021; Song et al. 2021; Singh, 2018).   

This unreliable way of detecting UGS deserts can hinder evidence-based land use planning 

and result in erroneous inequality evaluation regarding the UGS provision since the level 

of UGS availability and the geographic distribution of UGS deserts may fluctuate 

depending on the walking distance threshold of choice. Kabisch et al., (2016) found that 

the availability of UGS significantly fluctuates depending on the distance threshold of 

choice: 300-meter versus 500-meter, in European cities. Another issue associated with the 

use of a single walking distance threshold is that it may overlook individuals’ 

heterogeneous levels of mobility.  In other words, it can overlook the fact that peoples’ 

walking distance thresholds can differ based on their willingness to walk, ability to walk, 

and need to reach desired UGS.  

To address these limitations, this study develops an analytical framework for identifying 

UGS deserts by considering various walking distance thresholds. We first demonstrated 

how the geographic distribution of UGS deserts can be sensitive to the walking distance 

threshold of choice. We used high-resolution remotely sensed data for measuring the UGS 

availability of neighbourhoods. Further, given the variability in the spatial patterns of UGS 

deserts depending on the walking distance threshold used, we introduced and examined 

robust UGS oases and deserts: geographic areas with and without the UGS availability 

level recommended by a local government organization regardless of different walking 

distance thresholds used, respectively. 

Specifically, this study has three interrelated research objectives: 

• To investigate whether and how the geographic distributions of UGS deserts can be 

sensitive to the choice of a walking distance threshold. 

• To develop an analytical framework that enables the detection of robust UGS 

deserts for more reliable and accurate identification of underserved areas. 
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• To conduct a statistical test comparing the socioeconomic characteristics of UGS 

desert and oasis areas, with the goal of investigating whether socially disadvantaged 

population groups are more likely to be situated in areas with limited green spaces.  

 

From the practical standpoint, detecting robust UGS deserts and oases considering various 

walking distance thresholds will provide policymakers and planners with a reliable 

measure of UGS availability that enables better informed and evidence-based planning for 

promoting equitable access to UGS. This would also facilitate achieving the sustainable 

development goals (SDGs) towards healthy, sustainable, and resilient communities (Hak 

et al., 2017). More importantly, our robust UGS deserts approach can be a useful alternative 

for UGS availability research and planning in LMICs of the Global South where walking 

distance thresholds for measuring UGS availability are yet to be determined due to the lack 

of well-defined policy guidelines. To demonstrate this, we applied the proposed approach 

in Dhaka, a rapidly developing capital city of Bangladesh. Using the identified robust UGS 

deserts and oases, we conducted further analysis to compare the socioeconomic 

characteristics between these two types of areas. 

We organized the remainder of the paper as follows: the second section contains a literature 

review on UGS availability studies, and section three describes the study area and data. 

The methodology used in the study is presented in section four. Sections five, six, and 

seven demonstrate the result, discussion, and conclusion, respectively.  

 

2.2 Background 

2.2.1 Definition of UGS 

UGS is usually defined as any type of vegetation (e.g., forest cover, trees, parks, residential 

gardens, playgrounds, grassland, and any other natural areas) that exists within city 

boundaries whether they are formal or informal green space (Dallimer et al., 2011; Dinda 

et al., 2021; Kloek et al., 2013; Wang et al., 2018). However, in many existing studies 

(Kabisch et al., 2016; Koprowska et al., 2018; Xu et al., 2018; Fan et al., 2017; Liu et al., 
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2021), only formal UGS such as designated public parks and/or playgrounds is considered 

when measuring UGS availability and accessibility, which undermines the importance of 

informal UGS (e.g., road and railway greenspace, rooftop, or residential green space). For 

instance, Sikorska et al. (2020) identified the equal importance of formal and informal 

green spaces for tackling negative health outcomes. To this end, we considered both formal 

and informal UGS to evaluate UGS availability in this study. 

2.2.2 UGS availability standards 

UGS availability refers to the presence or existence of green spaces located within a 

specific walking distance threshold from residential areas in urban settings (Biernacka et 

al. 2020; Kabisch et al., 2016). It is important to note that UGS availability should not be 

conflated with accessibility. While certain green spaces may be available, it does not 

necessarily imply that they are physically accessible due to factors such as being non-

public, fenced, or potentially unsafe during nighttime (Kabisch et al., 2016). 

Existing studies have employed different standards in terms of adequate UGS availability 

levels, recognizing domestic policy guidelines. For instance, Kabisch et al., (2016) used a 

per capita green space (PCG) of 2 ha for investigating whether European cities satisfy the 

given PCG threshold or not.  On the contrary, due to the lack of articulated policies 

regarding the minimum required green space availability level, studies conducted in 

developing cities such as Kolkata, India (Dinda et al., 2021), and Bathinda, India (Singh, 

2018), used 9 m2 per capita. In terms of the desired level of UGS availability, we used a 

PCG value of 3.48 m2/person.  This metric was chosen based on the guidelines provided 

by the local planning organization Rajdhani Unnayan Kartripakkha (RAJUK) in Dhaka, as 

outlined in the Dhaka Structure plan (2016-2035) (RAJUK, 2015).  

 

2.2.3 Motivation: Walking distance thresholds used in UGS availability 

studies 

Previous UGS availability research has used various walking distance thresholds to either 

reflect local policy contexts or based on arbitrary decisions. Some studies (Dinda et al., 
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2021; Singh, 2018) did not even consider people’s mobility and instead evaluated UGS 

availability only within their residential neighbourhoods.  Table 2.1 summarizes various 

walking distance thresholds used in the literature. 

Table 2-1: Walking distance thresholds used in previous UGS availability studies. 

Previous studies Distance  

threshold used 

Geographic context 

Wüstemann et al., (2017) 500 meters Schwerin and Bergisch 

Gladbach, Germany 

Kabisch et al., (2016) 300 and 500 meters Berlin, Germany and 

Lodz, Poland 

Sikorska et al., (2020) 300 meters Warsaw and Lodz, 

Poland 

Xu et al., (2018)  300 meters Munich, Germany  

Koprowska et al., (2020) 1000 meters Lodz, Poland 

Koprowska et al., (2018) 300 meters Lodz, Poland 

Łaszkiewicz et al., (2018) 300 meters Lodz, Poland  

Dinda et al., (2021)  No distance used Kolkata, India 

Singh, (2018) No distance used Bathinda, India 

 

For example, Wüstemann et al., (2017) used a 500 meters buffer around the centroid of the 

grid cell/household to quantify green space availability in German cities.  Kabisch et al., 

(2016) evaluated UGS availability for two European cities (Berlin, Germany and Lodz, 

Poland) by using two distance thresholds (300 and 500 meters) around green and forest 

areas.  Sikorska et al., (2020) examined the contribution of informal UGS in alleviating 

disparities in UGS availability for children and the elderly using a 300 meters distance from 

each resident’s location. Similarly, Xu et al., (2018) also used a maximum of 300 meters 
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distance around the selected green spaces and all settlement areas for demonstrating the 

influence of urban spatial structure on UGS availability. The interlinkage between urban 

sprawl and UGS availability was investigated by Koprowska et al., (2020), where a 1,000 

meters buffer around the household address point was used for the analysis. A relationship 

between noise exposure and UGS availability using a 300 meters buffer around household 

location was investigated by Koprowska et al., (2018).  

Based on the studies consulted it is evident that there is no consensus or uniform rule 

regarding the appropriate distance threshold for measuring UGS availability (Wüstemann 

et al., 2017). Relying solely on a single ad-hoc distance threshold can lead to unreliable 

identification of UGS deserts since the magnitude of UGS availability can vary depending 

on the chosen threshold. Such an approach can hinder evidence-based land use planning 

and result in inaccurate evaluations of UGS provision within urban areas.  

This can be especially true in low- and middle-income countries (LMICs) in the Global 

South. In these regions, well-defined local policy guidelines for walking distance 

thresholds are often lack, leading to UGS availability assessments based on singular, ad-

hoc, or arbitrary walking distance thresholds. Such assessment can be misleading. 

Moreover, relying solely on a single distance threshold might overlook the fact that 

individuals can have different walking distance thresholds based on their willingness, 

ability, and need to access desired UGS. To tackle these issues, this study introduces a new 

analytical framework that integrates various walking distance thresholds to measure UGS 

availability more accurately and identify UGS desert areas with greater reliability. 

 

2.3 Study area and Data 

2.3.1 Study area 

Dhaka, the largest city in Bangladesh, is situated at the centre of the country and is home 

to approximately 6.9 million residents according to the Population & Housing Census 

Bangladesh 2011 (BBS, 2014). It is located at the coordinates 23°46’ N and 90°23’ E in 

South Asia, as depicted in Figure 2-1. The city is divided into two city corporations: the 
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Dhaka South City Corporation (DSCC) with 56 Wards, and the Dhaka North City 

Corporation (DNCC) with 36 Wards, as shown in Figure 2-1. In recent decades, Dhaka 

has undergone rapid urbanization, which has led to the loss of urban green spaces, 

playgrounds, and wetlands (Buyantuyev & Wu, 2010). This unplanned and rapid expansion 

has resulted in a disregard for the equitable distribution of green spaces, making Dhaka a 

prime example of the challenges faced by developing cities in the Global South. For these 

reasons, Dhaka was selected as an example study area to investigate the geographic 

distribution of UGS deserts and oases in such cities of the Global South. 

 

Figure 2-1: A map of study areas. 

  

2.3.2 Data sources 

Table 2-2 presents an overview of the datasets used in this study. To create the UGS 

dataset, we classified high-resolution satellite images (RapidEye at 5-meter resolution) 
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from RapidEye (2011). We applied two criteria for selecting the images: 1) minimum cloud 

coverage and 2) leaf-on-season (i.e., April with abundant leafage) to separate the variability 

of vegetation reflectance from other land use and land cover (LULC) components. We also 

utilized high-resolution Google Earth images to enhance the accuracy of LULC 

classification by manually checking the selected LULC features (Lisle, 2006). 

Socioeconomic information was obtained from the Population & Housing Census 

Bangladesh for 2011 (BBS 2014). The spatial unit of analysis considered for the study was 

the Ward. In the context of the current study areas, Ward is the smallest administrative unit 

with socioeconomic and population information available. While utilizing a unit smaller 

than the Ward might have offered a more detailed and nuanced understanding, finer-

resolution spatial units with population data were not available. Additionally, the 

socioeconomic variables employed in this study were also exclusively available at the 

Ward level. Building footprints data used as residential locations for the UGS availability 

analysis was also obtained from the Population & Housing Census Bangladesh for 2011 

(BBS 2014). 

Lastly, we used road network data obtained from the Dhaka Transport Co-ordination 

Authority (DTCA) for the year 2014 to create a street network dataset for network buffer 

analysis. Since road network data for 2011 was unavailable, we used the road network 

data for 2014, which is the closest year to the other datasets used in this study. 
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Table 2-2: Datasets used in this study. 

Data Sources Year 

Urban green space RapidEye (planet.com)  2011 

Administrative boundary (Ward) Dhaka South City Corporation 

(dscc.gov.bd)  

2011 

Building footprints Population & Housing Census 

Bangladesh (bbs.gov.bd) 

2011 

Road network Dhaka Transport Co-ordination 

Authority (dtca.portal.gov.bd) 

2014 

Dependent population, 

unemployment, literacy, and 

homeless population 

Population & Housing Census 

Bangladesh (bbs.gov.bd) 

2011 

2.4 Methods 

2.4.1 Robust UGS deserts and oases analysis  

In this section, we describe analytical procedures for identifying robust UGS deserts and 

oases.  There are four steps listed below and Figure 2-2 illustrates these analytical steps in 

a flow chart. 

• Step 1: Extract UGS data from high-resolution remote sensing images. 

• Step 2: Measure UGS availability based on each of three walking distance 

thresholds: 100-meter, 300-meter, and 500-meter. 

• Step 3: Classify neighbourhoods into UGS deserts and oases based on each 

walking distance threshold. 

• Step 4: Identify robust UGS deserts and oases by synthesizing three UGS 

deserts and oases maps based on the three walking distance thresholds. 
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Figure 2-2: A methodological flowchart of this study. 
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In Step 1, we extracted UGS data from high resolution remote sensing data. Due to the 

absence of readily available UGS data, we derived UGS information from high-resolution 

satellite imagery. So far, various studies extracted green space information by classifying 

remotely sensed data. When classifying satellite imageries for detecting UGS, various 

approaches have been reported in the literature such as object-based classification (e.g., 

Degerickx et al., 2020; W. Zhou & Troy, 2008), support vector machine (SVM) (Zhu & 

Woodcock, 2014), decision tree (Park et al., 2012), artificial neural network (ANN) (Dinda 

et al., 2021), maximum likelihood classification (MLC) (Dennis et al., 2018; Ghosh et al., 

2019), Bayesian hierarchical model (Ludwig et al., 2021), and Random Forest (RF) (Huang 

et al., 2021; Kuang et al., 2021; Li et al., 2020). However, the urban environment consists 

of complex features and there are imitations that no model can rectify perfectly (Phiri & 

Morgenroth, 2017; Zeng et al., 2019). Therefore, we compared three well-established 

methods: 1) maximum likelihood classification (MLC), 2) support vector machine (SVM), 

and 3) random forest (RF), in terms of their performance for detecting UGS and chose one 

with the highest accuracy performance.  

MLC is widely accepted for its efficient parametric classification based on Bayes’ theorem 

of probability density functions (Otukei & Blaschke, 2010). The second approach we 

applied in this study is a non-parametric machine learning approach, namely SVM. Unlike 

MLC which follows various distributions including Gaussian distribution, SVM is neither 

based on Gaussian distribution nor sensitive to the highest trends (Zeng et al., 2019). 

Another advantage of SVM is that it can perform better despite having a limited number 

of training samples (Shih et al., 2019). Similarly, RF is another common supervised 

machine learning algorithm that can create multiple decision trees that perform better than 

a single tree and generate the classification based on the means of voting. As it selects the 

average vote of multiple trees, this ensemble model can reduce the problem of overfitting.  

There are several steps to extract UGS data based on satellite images.  First, we used 

RapidEye imagery (RapidEye, 2011) with 5-meter spatial resolution. RapidEye products 

have already been corrected for sensor artifacts and transformed to Top of Atmosphere 

(TOA) (at-sensor) radiance, thus, no further correction is required. To classify the entire 

study area at once, we combined multiple tiles into a single tile using the Mosaic to New 
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Raster tool in ArcGIS. Subsequently, we created training samples for each LULC class in 

order to train our models. We selected five commonly recognized urban features for urban 

areas, including 1) urban vegetation, 2) water bodies, 3) built-up, 4) open space and 

playground, and 5) bare land, and created training samples by utilizing Google Earth Pro 

version 7.3. Using the generated training samples, we trained our selected models in 

ArcGIS version 10.8. Then, we classified the imagery using three selected classification 

methods. 

Finally, we assessed the performance of each method for detecting UGS via a confusion 

matrix. A confusion matrix can reveal each model’s performance by generating the user’s 

accuracy, producer’s accuracy, overall accuracy, and Kappa Coefficient. Samples for 

accuracy assessment are prepared by using Google Earth imageries. We generated around 

500 samples using stratified sampling techniques in ArcGIS 10.8 for each classification 

method. There is no standard for many points should be considered for accuracy 

assessment, however, 500 random samples are recommended by the ArcGIS toolset (ESRI. 

2020).  Based on this evaluation, a classification method with the highest accuracy is 

selected and used for further analysis. 

In LULC classification, user's accuracy, producer's accuracy, and overall accuracy are 

metrics used to assess the performance of a classification model. User's accuracy measures 

the likelihood that a pixel classified as a specific class by the model actually belongs to that 

class. Producer's accuracy, on the other hand, measures the model’s ability to correctly 

identify all the pixels belonging to a specific class. Overall accuracy represents the 

proportion of correctly classified pixels in the entire image, providing a general measure 

of the model’s performance across all classes. The Kappa coefficient is a statistical measure 

that evaluates the agreement between the observed classification and a randomly expected 

classification, correcting for chance agreement. It considers both omission and commission 

errors and provides a robust assessment of classification accuracy. A kappa coefficient of 

1 indicates perfect agreement, 0 represents agreement equivalent to chance, and negative 

values suggest agreement worse than chance. 
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In Step 2, we measured UGS availability based on each walking distance threshold. To 

quantify the UGS availability, we used the per-capita green space (PCG) metric, a ratio 

between the total size of UGS accessible given a walking distance threshold (e.g., 100-

meter, 300-meter, 500-meter) for each Ward and its total population as shown in Equation 

2-1: 

 

𝑃𝐶𝐺𝑤,𝑑 =
𝑈𝐺𝑆𝑤,𝑑

𝑃𝑤
 (2-1) 

 

where, 𝑃𝐶𝐺𝑤,𝑑 is the per-capita green space value for a Ward w given a walking distance 

threshold of d, 𝑈𝐺𝑆𝑤,𝑑  is the total size of UGS reachable given the walking distance 

threshold for the Ward, and 𝑃𝑤 is the total population of the Ward w. 

Specifically, our UGS availability calculation involves several steps. First, using building 

locations (as a proxy for residential locations) in each Ward as origins, we created network 

buffers based on a walking distance threshold (say 100 meters).  For example, Figure 2-3 

illustrates an example of network buffer zones around building footprint centroids of Ward 

56 (South) for three walking distance thresholds. Next, we quantified the total size of UGS 

included within the 100-meter network buffers, which is 𝑈𝐺𝑆𝑤,100−𝑚𝑒𝑡𝑒𝑟 in Equation 2-

1. This is divided by Ward’s total population, and the resulting value is used as the final 

UGS availability measure with the walking distance threshold of 100-meter. We repeated 

this for other walking distance thresholds (e.g., 300 meters, 500 meters).  

To account for edge effects (Fortney et al. 2000), we considered UGS outside the city 

boundary as well.  The edge effect refers to a scenario in which analysts overlook the 

possibility of individuals travelling beyond their neighbourhood or city boundaries to enjoy 

green spaces or other services/resources if they are within an acceptable travel distance or 

time.  To address these edge effects in this study, green spaces that are located within the 

specified walking distance (e.g., 100 meter) from the resident’s location but fall beyond 

the Ward or city boundary was also included to measure UGS availability. In other words, 
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we assumed that individuals are willing to travel beyond the city boundary to access UGS 

if it is located within a reasonable walking distance from their residences. 

 

Figure 2-3: An example of network buffer zones around building footprint centroids 

of Ward 56 (South) for three walking distance thresholds. 
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In Step 3, we classified neighbourhoods into UGS deserts and oases. We classified 

neighbourhoods into two categories, UGS deserts and UGS oases depending on their UGS 

availability based on each walking distance threshold (e.g., 100-meter, 300-meter, 500-

meter). UGS deserts are geographic areas where the PCG value is less than the local 

government’s 3.48 m2 per person standard while UGS oases are neighbourhoods that 

satisfy or exceed this standard. We used this classification method for each walking 

distance threshold and created three maps of UGS deserts and oases as a basis for 

identifying robust UGS deserts and oases in the next section. 

In Step 4, we identified robust UGS deserts and oases. We used intersected set theory to 

identify robust UGS deserts and oases by intersecting the three maps of UGS deserts and 

oases based on the 100-, 300-, and 500-meter walking distance threshold generated in the 

previous step. Figure 2-2 describes this process. As shown in Figure 2-2, the resulting 

robust UGS oases and deserts are geographic areas with and without the UGS availability 

level recommended by the local planning organization regardless of different walking 

distance thresholds used, respectively. This robust method with the intersected set theory 

in mathematics has also been used in other domains and applications such as analytical 

time geography (Lee & Miller, 2020) and equity analysis of public transit accessibility (Lee 

& Kim, 2023). 

 

2.4.2 Examining inequality and socioeconomic characteristics of UGS 

deserts and oases 

Gini index for exploring inequality of UGS availability within robust UGS deserts and 

oases 

To examine and compare the inequality in UGS availability between the robust UGS 

deserts and oases areas identified in section 4.1, we employed the Gini index. This index 

provides an overview of the inequality in the distribution of PCGs. This widely used and 

effective measure of inequality is easily interpretable through the use of Lorenz curves 

(Cheng et al., 2020; Lucas et al., 2016; Lee and Kim, 2023; Chen et al., 2020). A Gini 

index value of 1 denotes perfect inequality, while a value of 0 indicates complete equality.  
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In this study, we performed an inequality analysis by applying the Gini index to the average 

PCG values across three walking distance thresholds within the identified robust UGS 

deserts and oases Wards in section 4.1. This approach enabled us to understand and contrast 

the inequality levels between the robust UGS deserts and oases. 

T-test for exploring differences in socioeconomic characteristics between robust UGS 

deserts and oases 

Furthermore, to test if there are statistically significant differences in socio-economic and 

demographic variables between robust UGS desert and oasis areas identified in section 4.1, 

we employed Welch’s T-test and a nonparametric Mann-Whitney U-test due to the normal 

or non-normal distribution of these values (as verified by the Shapiro-Wilk test) and the 

relatively small number of samples.   

To understand the socio-economic characteristics of UGS deserts and oases, researchers 

have utilized a variety of variables.  Among the most popular are income (Xu et al. 2018; 

Nesbitt et al. 2019), unemployment (Xu et al. 2018), elderly population (Xu et al. 2018; 

Huang et al. 2023), children (Xu et al. 2018; Huang et al. 2023), disability (Lasky et al. 

2023), race (Nesbitt et al. 2019; Heckert 2012; Heckert and Rosan 2016; Huang et al. 2023; 

Liu et al. 2021), education (Nesbitt et al. 2019), housing prices (Xu et al. 2018; Rao et al. 

2022), and homelessness (Kaprowska et al. 2020).  Although we acknowledge the 

importance of each variable in understanding the characteristics of UGS deserts, including 

all variables in the current study was not possible due to limited data availability in the 

study area (Dhaka, Bangladesh), which is a typical scenario in low- and middle-income 

countries of the Global South.  An overview of the variables used in this study is presented 

in Table 2-3.  
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Table 2-3: Variables used for understanding the socioeconomic characteristics of UGS 

deserts and oases areas 

Variables Rationale 

Unemployment (Xu 

et al. 2018) 

To understand association between green space accessibility and 

unemployment rate 

Elderly population 

(Xu et al. 2018; 

Huang et al. 2023) 

To promote safe, inclusive, and accessible public green space 

Children (Xu et al. 

2018; Huang et al. 

2023) 

To promote safe, inclusive, and accessible public green space 

Education attainment 

level (Nesbitt et al. 

2019) 

To understand association between green space accessibility and 

education attainment level 

Homelessness 

(Kaprowska et al. 

2020) 

To understand association between green space accessibility and 

homelessness 

 

Specifically, we tested if there are statistically significant differences between robust UGS 

deserts and oases with respect to four census variables: 1) dependents, 2) unemployed 

individuals, 3) those with low literacy, and 4) homeless people.   In this study, dependents 

are individuals who are either not eligible to work or are retired and dependent on other 

working family members. We focused on children under 14 and the elderly over 60 years 

of age. The unemployed population are individuals who are not attending school, eligible 

to work, but unable to obtain a job.  Literacy is defined as the ability to write. The homeless 

population is defined as individuals without a permanent residence who spend their nights 

in unconventional and temporary places, such as railway stations, bus terminals, parks, 

mosques, footpaths, etc.  We used R to conduct statistical analysis and visualize the 

outcomes for the four selected variables used in the study.   
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2.5 Results 

2.5.1 Robust UGS deserts and oases analysis results 

Classification model selection results and geographic distribution of UGS in Dhaka 

In this study, three supervised classification methods were used to derive UGS from the 

best-performing method. Figure 2-4 displays LULC maps of Dhaka based on the three 

methods. The accuracy assessment of three classification models: Maximum Likelihood 

Classification (MLC), Support Vector Machine (SVM), and Random Forest (RF), based 

on 500 random samples revealed acceptable results (overall accuracy > 80% and kappa 

coefficient > 0.7) for all classification methods as shown in Table 2-3. Given that the RF 

model outperformed the SVM and MLC in terms of accuracy performance, RF is selected 

as a final classification model for generating the UGS dataset.  

 

Table 2-4: LULC classification results based on three models: MLC, SVM, and RF. 

Classification method MLC SVM RF 

LULC class     

Waterbodies Area (km2) 3.55 4.24 4.92 
 Area (%) 2.89 3.45 4.00 

Urban vegetation Area (km2) 19.12 17.53 20.62 
 Area (%) 15.56 14.26 16.78 

Open space and playground Area (km2) 17.47 8.95 9.15 
 Area (%) 14.22 7.28 7.44 

Built-up Area (km2) 80.34 88.98 86.24 
 Area (%) 65.38 72.40 70.17 

Bare land Area (km2) 2.40 3.20 1.97 
 Area (%) 1.95 2.60 1.60 

Overall accuracy (%) 0.83 0.89 0.90 

Kappa coefficient 0.74 0.82 0.83 
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Figure 2-4: LULC maps of the study area using (a) Maximum Likelihood Classification, (b) Support Vector 

Machine, and (c) Random Forest method. 
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Figure 2-5 presents the UGS data generated by the RF model. Our analysis indicated a 

limited presence of UGS in Dhaka, as seen in Figure 2-5 (b). We also found that UGS in 

Dhaka is clustered in a few Wards, with most of the Wards with higher UGS availability 

belonging to the Dhaka North City Corporation (DNCC), as illustrated in Figure 2-5 (b). 

On the contrary, there is a shortage of UGS availability in the Dhaka South City 

Corporation (DSCC). These areas with insufficient UGS availability in the southern part 

of the city have been affected by rapid population growth and the absence of an urban 

policy regarding UGS provision in the past, leading to encroachment of this essential urban 

resource during the development process.  

 
 

Maps of UGS deserts and oases for three types of walking distance thresholds  

Figure 2-6 shows that UGS availability (i.e., PCG) gradually increases with higher walking 

distance thresholds used. Figure 2-6 (a) displays the PCG within a 100-meter walking 

distance, which reveals limited green space availability in most Wards. Many 

neighbourhoods do not meet the local government's minimum cutoff value for a healthy 

Figure 2-5: Final UGS dataset generated by the RF model. 
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urban life, which is a PCG of 3.48 m2 per person. UGS availability slightly improves with 

the 300-meter walking distance, but many neighbourhoods still fail to meet the minimum 

standard (see Figure 2-6 (b)). Figure 2-6 (c) shows the PCG at the Ward level with the 

maximum walking distance threshold (500 meters) used in this study. As the walking 

distance increased, the UGS availability continued to improve. 

 

 

Figure 2-6: UGS availability based on a walking distance threshold of (a) 100-meter, (b) 

300-meter, and (c) 500-meter. 

 

Figure 2-7 shows the varying geographic distribution of UGS deserts and oases based on 

each walking distance threshold used: a) 100-meter, b) 300-meter, and c) 500-meter.  When 

using a 100-meter walking distance threshold (Figure 2-7 (a)), 32 neighbourhoods were 

identified as UGS oases and 60 areas were classified as UGS deserts. With a 300-meter 

walking distance, the number of deserts decreased slightly (Figure 2-7 (b)), and this trend 

continued as the distance increased to 500 meters (Figure 2-7 (c)). This clearly 

demonstrates that the geographic distribution of UGS deserts is sensitive to the choice of 

walking distance threshold, which can result in unreliable and inaccurate identification of 

UGS deserts. 



 

 

 

33 

 

Figure 2-7: A map of (d) robust UGS deserts and oases which is the intersection of UGS 

availability maps based on a walking distance threshold of (a) 100-meter, (b) 300-meter, 

and (c) 500-meter. 
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Robust UGS deserts and oases analysis results 

Figure 2-7 (d) presents the map of robust UGS deserts and oases which is the intersection 

of Figures 2-7(a), 2-7(b), and 2-7(c). The robust UGS availability approach identified 32 

robust oases and 26 robust desert locations that remain consistent across all walking 

distance thresholds used. The robust UGS deserts were primarily situated in the southern 

part of the study area, which falls under the jurisdiction of the Dhaka South City 

Corporation (DSCC).  The results of our robust UGS deserts analysis indicate that these 

regions show persistent low UGS supply levels compared to their high demand (i.e., 

population), regardless of walking distance thresholds used. These areas are in dire need 

of future attention and investment to meet the minimum standard for a healthy urban 

environment. 

 

2.5.2 Inequality analysis results and socioeconomic characteristics of 

UGS deserts and oases 

The results of UGS availability inequality analysis 

Figure 2-8 presents the Gini index values for robust UGS deserts and oases and the 

corresponding Lorenz curves. The Lorenz curve depicts the cumulative distribution of 

Wards on the horizontal axis against the cumulative distribution of the indicator (e.g., 

averaged PCG value of three walking distance thresholds) on the vertical axis. The Gini 

coefficient is calculated as the ratio of the area between the equal distribution line and the 

Lorenz curve to the area under the triangle formed by the equal distribution line, the 

horizontal axis, and the vertical axis.  

The Gini index for robust UGS deserts is 0.21, indicating a lower level of inequality 

compared to robust UGS oases, which have a Gini coefficient of 0.29. Interestingly, this 

suggests that the PCG distribution in robust UGS oases is less even, although these areas 

boast a wealth of UGS availability. Put another way, while they are abundant in terms of 

UGS availability, ironically there is greater inequality and disparity in UGS availability 

among robust UGS oases neighbourhoods. 
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Figure 2-8: Lorenz curves of robust UGS deserts and oases. 

 

 Findings on socioeconomic differences between UGS deserts and oases  

To examine the differences in socioeconomic characteristics of UGS desert and oasis areas 

in Dhaka, we performed Welch's T-test and Mann-Whitney U-test using the identified 

robust UGS deserts and oases in the previous section 5.1. Figure 2-9 displays the 

geographic distributions of the four census variables used in this analysis: a) dependent 

population, b) unemployment, c) literacy, and d) homeless population. Figure 2-10 shows 

boxplots of these variables for robust UGS deserts (red) and oases (green) neighbourhoods. 

Table 2-4 presents the results of Welch's T-test and Mann-Whitney U-test. 

We found statistically significant differences between robust UGS deserts and oases when 

it comes to the dependent population and literacy variables.  Robust UGS deserts had a 

higher proportion of dependent populations (robust deserts: average of 30.05%, robust 
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oases: average of 28%).  Conversely, robust UGS oases were found to have a higher 

proportion of literate individuals. These differences were statistically significant with a p-

value of less than 10% as presented in Table 2-4.  
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Figure 2-9: Maps of (a) dependent population, (b) unemployment, (c) literacy, and (d) 

homeless population in Dhaka. 
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(a) (b) 

(c) (d) 

Figure 2-10: Boxplots of socio-economic variables in robust UGS deserts (red) and oases (green): 

dependent population, unemployment, literacy, and homeless population. 
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Table 2-5: T-test results. 

Variable Type Mean  P-value 

Dependent population (%) Robust Oasis 28.01 0.056* 
 

Robust Desert 30.05 
 

Unemployment (%) Robust Oasis 2.68 0.784 
 

Robust Desert 2.44 
 

Literacy (%) Robust Oasis 76.43 0.052* 
 

Robust Desert 72.17 
 

Homeless population (%) Robust Oasis 0.92 0.311 
 

Robust Desert 0.67 
 

Note: P-values marked in bold demonstrate the variables are statistically significant. ***, 

** and * indicate significance at the 1%, 5% and 10% levels, respectively. 

 

2.6 Discussion 

The use of arbitrary walking distance thresholds can result in unreliable and inaccurate 

UGS desert identification, which is often the case in LMIC countries in the Global South. 

To address this limitation, we introduced the concept of robust UGS oases and deserts, 

which are geographic areas with and without the recommended per capita green space 

(PCG) level by a local organization regardless of different walking distance thresholds 

used. During the application of this robust approach, we considered both network buffer 

and edge effects to measure urban green space availability more rigorously. We 

demonstrated the utility of the proposed robust UGS deserts framework in the city of 

Dhaka, Bangladesh. 

This study found that the spatial patterns of UGS deserts and oases are sensitive to different 

walking distance thresholds used. These findings are consistent with Kabisch et al., (2016) 

where the study demonstrated the quantity of green spaces increases with an increased 

distance threshold. Therefore, the use of an ad-hoc, arbitrary, not well-informed walking 

distance threshold can lead to inaccurate identification of UGS deserts. Robust UGS deserts 

approach can be a possible solution for this. We also found that socioeconomically 
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disadvantaged populations are disproportionately located in robust UGS desert areas. This 

is consistent with previous research that shows low-income populations tend to live in areas 

with limited UGS availability (Astell-Burt et al., 2014; Williams et al., 2020; Barbosa et 

al., 2007; Wu et al., 2020; Liu et al., 2022). For instance, Astell-Burt et al., (2014) 

concluded that green space availability was substantively lower in regions with a higher 

percentage of low-income residents. Similarly, Williams et al. (2020) found that disparities 

among socioeconomic subgroups are significantly intensified when accessing safe parks, 

with racial/ethnic minorities and low-income communities experiencing greater 

disadvantages.  Therefore, we argue that policymakers and planners in Dhaka should 

carefully reconsider their UGS provision strategy to ensure that the required amount of 

UGS is provided across the city and to reduce the gaps in terms of UGS distribution. Given 

the limited physical space to create new green spaces in Dhaka, policymakers may consider 

informal vegetation, such as rooftop vegetation, as a potential solution. Studies have shown 

that informal green spaces, including rooftops, play an important role in improving the 

quality of life in urban areas (Sikorska et al., 2020). Rooftops have also been identified as 

a potential alternative for tree plantations, which can help alleviate the UGS desert situation 

in Dhaka (Safayet et al., 2017; Rahman and Zhang, 2018). 

 

2.7 Conclusion 

This study highlights the limitations of using arbitrary walking distance thresholds for 

identifying urban green space (UGS) deserts, particularly in low- and middle-income 

countries (LMICs) in the Global South. To address this issue, the concept of robust UGS 

oases and deserts, based on various walking distance thresholds, was introduced.  

The utility of the proposed robust UGS deserts framework was demonstrated by using the 

city of Dhaka, Bangladesh, as an example. The example study revealed that the spatial 

patterns of UGS deserts and oases vary depending on the walking distance thresholds used, 

emphasizing the need for a well-informed approach. The findings also revealed statistically 

significant differences among various population groups in UGS deserts and oases, with 

socially disadvantaged population groups more likely to be predominant in UGS deserts. 
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The proposed robust UGS deserts approach based on various walking distance thresholds 

offers a more rigorous and reliable method for decision-making.  This is particularly useful 

in the absence of clear guidelines for walking distance thresholds, a situation commonly 

observed in low- and middle-income countries. Ultimately, this research contributes to the 

development of urban policies aimed at fostering healthy cities, enhancing UGS provision, 

and helping our cities prepare for future climate change. 
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Chapter 3 

3. The cost of climate change: A general cost function approach 

for incorporating extreme weather exposure into public transit 

accessibility  

 

3.1 Introduction 

Public transit offers an affordable and sustainable mode of transportation for urban 

populations to access opportunities (e.g., jobs, education) (Palm & Farber, 2020; Sanchez 

et al., 2004), resources (e.g., food) (Widener et al., 2015), and services (e.g., healthcare) 

(Lee & Miller, 2018).  In particular, transit is often a lifeline mobility option for socio-

economically underprivileged populations who would otherwise have limited accessibility 

to desired destinations (Allen et al., 2023; Sanchez et al., 2004). However, as public transit 

journeys often include first- and last-mile walking (e.g., from home to the nearest transit 

stop) and waiting at initial and transfer stations, transit users are more likely to be exposed 

to severe environmental conditions, such as extreme heat, extreme cold, and air pollution, 

which can have adverse short- and long-term effects on their health outcomes, such as heat 

stroke and other respiratory diseases (Broadbent et al., 2020; Hoehne et al., 2018). 

Climate change is increasing the frequency and intensity of extreme weather events; this 

makes public transit users, many of whom are from marginalized and vulnerable 

communities and are captive transit users because they do not own private vehicles, more 

susceptible to heat-related (e.g., heat exhaustion, heat stroke) (Fraser and Chester 2017; 

Karner, Hondula, and Vanos 2015), cold-related (e.g., hypothermia, frostbite) (Antunes et 

al., 2017), and respiratory (e.g., asthma, emphysema) (Van Ryswyk et al., 2021) illnesses.  

This increased vulnerability can exacerbate social and environmental injustice within urban 

areas. Therefore, there is an urgent need for a public transit accessibility measure that 

captures and incorporates environmental health costs (e.g., extreme weather exposure) 

during transit travels to better understand the equity landscape of these environmental risks.  
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This will guide evidence-based planning and policy efforts toward creating healthy, 

equitable, and resilient cities in the face of climate change. 

However, environmental health costs have been largely overlooked in the literature on 

public transit accessibility, despite its increasing importance in the context of climate 

change.  Several previous studies (Fraser and Chester 2017; Karner, Hondula, and Vanos 

2015; Lyu et al. 2018; Rosenthal et al. 2022; Dzyuban et al. 2021) have focused on 

measuring exposure, vulnerability, and risks faced by transit and active transport users per 

se.  Nevertheless, there have been limited efforts to explicitly incorporate these 

environmental health costs into public transit accessibility measures.  Overlooking the 

environmental health cost of transit trips can lead to two methodological problems—

unrealistic estimation of the true “cost” that passengers experience, and eventually the 

inaccurate measurement of accessibility.  This not only hinders targeted interventions to 

improve accessibility for transit-dependent populations but also imposes an additional 

burden on them.  Therefore, there is a need to develop a transit-based accessibility measure 

that moves beyond travel time and monetary costs to integrate environmental health costs 

to make transit accessibility measures ready for climate change. 

In light of this context, this paper develops a general cost function approach for integrating 

environmental health costs, such as extreme weather exposure, into public transit 

accessibility measures.  We will demonstrate the utility and applicability of the proposed 

method using an example study that incorporates transit users' extreme cold exposure into 

accessibility measures in the city of Winnipeg, MB, Canada.  Also, we will perform a 

statistical test to investigate the differences in socioeconomic characteristics between areas 

experiencing accessibility loss and gain due to the inclusion of environmental health costs.  

Although our study focuses on exposure to cold as a case study, the general cost function 

approach that is proposed by this study can be applied to other environmental exposure 

factors, such as extreme heat, natural hazards (e.g., urban flooding, heavy precipitation and 

wind), and air pollution. The proposed method can be a more realistic and practical 

measurement of public transit accessibility, particularly in the context of climate change 

and aggravating extreme weather events (e.g., heatwaves, polar vortex, cold air outbreaks, 

cold wave).   
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The remainder of the paper is organized as follows.  The second section provides 

background on measuring accessibility by cost and introduces previous public transit 

research in the context of climate change.  Section three describes the methodology.  The 

detailed analysis procedure and the findings of the example study are presented in section 

four.  Finally, section five offers the discussion and conclusion of this study. 

 

3.2 Background 

3.2.1 Accessibility by cost and dual accessibility measures 

Accessibility refers to the ease of reaching destinations and opportunities or characteristics 

of places in terms of how easily they can be reached by population (Geurs & van Wee, 

2004; Neutens et al., 2010).  Various approaches have been developed to effectively 

measure accessibility, and one way to broadly categorize these measures is by classifying 

them into primal or dual measures of accessibility (Wu & Levinson, 2020).   

Primal accessibility quantifies the number of opportunities, such as jobs, that can be 

reached within a fixed travel cost, whether in terms of time (e.g., 30 minutes), distance 

(e.g., 5 kilometres), or monetary value (e.g., an hourly wage).  A fundamental and widely 

used primal accessibility measure, as introduced by Hansen (1959), calculates the number 

of opportunities accessible within a given time limit, often referred to as the cumulative-

opportunity measure (El-Geneidy & Levinson, 2007).  On the other hand, dual accessibility 

is a measure of the travel costs for accessing a fixed number of opportunities (Cui & 

Levinson, 2020).  For example, dual accessibility measures can be time, distance, or 

monetary costs required to reach a fixed number of healthcare, job, and food resources.  

Unlike primal accessibility, which focuses on the number of opportunities, the dual 

measure becomes more relevant in situations where the cost of travel to an opportunity or 

location is more crucial than the number of opportunities available (Cui & Levinson, 2020).   

Travel time/distance is a common and well-established type of cost when computing dual 

accessibility measures (Batty, 2009).  In simpler terms, this time-based dual measure of 
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transit accessibility computes the temporal duration to physically reach destinations, where 

lower travel time indicates higher accessibility. For instance, Allen & Farber, (2021) 

measured transit accessibility as the one-way travel time by public transit to the nearest 

food bank in minutes from locations across Toronto. Similarly, travel time of various travel 

modes (e.g., walking, automobile, public transit) was used as an indicator for determining 

accessibility to grocery stores (Widener, 2017).  Monetary costs are another popular type 

of cost for measuring dual and primal transit-based accessibility measures that have 

received considerable recent research interest (Currie 2004; Herszenhut et al., 2022; El-

Geneidy et al., 2016; Liu & Kwan, 2020).  

A largely neglected but critical type of cost when measuring public transit accessibility is 

environmental health costs associated with transit journeys, including riders' exposure to 

negative environmental externalities such as extreme weather events, air pollution, and 

urban flooding.  Similar to travel time/distance and monetary costs, environmental health 

costs also might act as barriers for transit users to access destinations (Tétreault et al., 

2018).  Disregarding environmental health costs when it comes to measuring accessibility 

can lead to erroneous and unrealistic measurement of accessibility especially in the context 

of climate change and global warming. 

 

3.2.2 General cost function approaches in accessibility research 

A generalized cost function approach, in the context of accessibility, refers to a framework 

that combines multiple types of costs associated with travel into an integrated dual 

accessibility measure (Bocarejo  & Oviedo, 2012; El-Geneidy et al., 2016; Kim & Lee, 

2019; Liu & Kwan, 2020).  Common costs included are travel time, monetary cost, 

comfort, and environmental cost. Common costs included are travel time (Allen & Farber, 

2021), monetary cost (El-Geneidy et al., 2016), and safety (Cui & Levinson, 2018). 

The generalized cost function approach has been actively used in the literature on public 

transit accessibility.  For instance, (Bocarejo  & Oviedo , 2012) introduced and used a 

generalized cost function approach that integrates travel time cost and monetary cost (e.g., 
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the percentage of income spent on transportation) to evaluate the impacts of different 

transport policies (e.g., changes in the transit fare structure) in Bogota. Currie (2004) 

assessed the geographical distribution of transport needs and compared this with the 

distribution of public transport service quality using a generalized travel cost approach, 

which incorporated both travel time and travel fare. In this approach, travel time was 

converted into monetary values based on hourly wage and travel fare using the local 

currency in Hobart, Australia. Furthermore, Ford et al. (2015) developed a tool for 

measuring transit accessibility that considered a generalized cost approach, including both 

time and travel fares, however, the fare component was based on a flat rate (e.g., average 

price/km).  Similarly, El-Geneidy et al. (2016) proposed a generalized cost function 

combining travel time and monetary cost (or transit fare) to compare the transit 

accessibility between socially disadvantaged neighbourhoods and remaining 

neighbourhoods. In general, they proposed two approaches, first, calculating the number 

of opportunities within the travel cost threshold which is a combination of transit fares and 

travel time converted to monetary value (i.e., hourly wage), and second, calculating travel 

cost by combining travel time and transit fares which is converted to time (i.e., hourly 

wage).   

In summary, we observe that the components of the generalized cost approach for public 

transit accessibility measurement predominantly revolve around travel time and monetary 

costs, while the significance of environmental health costs (e.g., exposure to extreme heat 

and cold) associated with transit trips has been largely overlooked.  The purpose of this 

research is to address this gap. 

 

3.2.3 Measuring extreme weather exposure during transit travels 

Given the negative impacts of climate change, research on assessing extreme weather 

exposure during public transit travels is growing.  These assessments cover a wide range 

of scenarios, with a major focus on evaluating the extreme heat exposure experienced by 

transit riders (Dzyuban et al. 2021; Fraser and Chester 2017; Karner et al. 2015; Kuras et 

al. 2017; Rosenthal et al. 2022; Lanza and Durand 2021; Miao et al. 2019; Sami and Keith 
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2023; Hoehne et al. 2022).  For example, Fraser and Chester (2017) evaluated the heat 

vulnerability of transit riders by considering the time spent on first-mile walking (e.g., from 

home to the nearest transit stop) and waiting time at the initial stop.  However, evaluating 

heat exposure based solely on the duration of exposure can be erroneous because it 

overlooks the intensity (i.e., temperature) of exposure.  To address this issue, Karner et al. 

(2015) developed a method that estimates the heat exposure of non-motorized travellers by 

taking into account both duration and intensity of exposure.  However, still, relatively 

limited attention has been paid to explicitly incorporate these extreme weather exposures 

into the measures of public transit accessibility.  Our research aims to fill this gap using the 

methods described in section 3.1. 

 

3.3 Methods 

3.3.1 A generalized cost function approach 

This study proposes a generalized cost function approach that combines travel time cost 

and environmental health cost (e.g., extreme weather exposure) into an integrated measure 

of dual accessibility.  Figure 3-1 illustrates the idea of the generalized cost function 

approach in this study.  In our framework, environmental health cost arising from extreme 

weather exposure is estimated based on a simple yet practical concept: the amount of time 

a transit passenger spends in adverse environmental conditions (e.g., extreme heat, cold) 

while accessing (e.g., walking, biking to)  the transit stop, waiting at transit stops, 

walking/biking between two transit stops for transfer, and last-mile walking/biking to the 

final destination as illustrated in Figure 3-1.  In this context, the more time spent in such 

conditions, the higher the environmental health cost.  We consider both the intensity and 

duration of exposure to extreme weather when estimating environmental health costs.
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Figure 3-1: A graphical illustration of the generalized cost function approach that combines 

travel time cost and environmental health cost associated with public transit trips. (Icon 

sources: icons8.com)
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The generalized cost function framework in this study combines travel time cost and 

environmental health cost using a weighted sum approach like Equation 3-1: 

 

𝐶𝑖 = (𝛿𝑡
𝑡𝑖𝑗̅̅ ̅̅

𝑚𝑎𝑥𝑖∈𝐼 𝑡𝑖𝑗̅̅ ̅̅
) + (𝛿𝑒

𝑒𝑖𝑗 ̅̅̅̅̅

𝑚𝑎𝑥𝑖∈𝐼 𝑒𝑖𝑗̅̅ ̅̅
) ∀𝑖 ∈ I        (3-1) 

 

Here, 𝐶𝑖  represents the generalized total cost for origin 𝑖  (e.g., centroid of a 

neighbourhood), 𝑡𝑖𝑗̅̅ ̅ denotes the average total transit travel time from origin 𝑖 to a fixed 

number of destinations 𝑗  (e.g., three nearest healthcare facilities), 𝑒𝑖𝑗 ̅̅ ̅̅   is the average 

environmental health cost for origin 𝑖 when travelling to a fixed number of destinations 𝑗, 

and I is the set of origin locations.  max 𝑡𝑖𝑗̅̅ ̅ and max 𝑒𝑖𝑗 ̅̅ ̅̅  are the maximum value within their 

respective category in a study area.  𝛿𝑡 and 𝛿𝑒 reflect the importance of travel time cost 

𝑡𝑖𝑗̅̅ ̅ and environmental health cost 𝑒𝑖𝑗 ̅̅ ̅̅ , respectively and where 𝛿𝑡 +  𝛿𝑒 equals 1.    

It is worth noting that unlike travel time and fares, which can be directly converted into 

comparable units either in time or money (El-Geneidy et al., 2016, Currie 2004; Ford et 

al., 2015), environmental health cost and travel time cost can be challenging to be equated 

or translated into a common unit.  To address this issue, we normalize each component by 

dividing it by the maximum value within its respective category as shown in Equation 3-

1.  The normalized travel time cost and environmental health cost are then combined into 

the total integrated cost metric.  To enhance the interpretability and comparability, we 

further perform min-max normalization on the integrated cost (Equation 3-2), thereby 

scaling the values to a standard range.  This step facilitates a more straightforward 

communication of the cost metrics and helps the comparative analysis across different 

scenarios such as accessibility only based on travel time cost versus environmental health 

cost (Dony et al., 2015).  Equation 3-2 is specified as: 
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𝐶�̃� =
𝐶𝑖−𝑚𝑖𝑛𝑖∈𝐼𝐶𝑖

𝑚𝑎𝑥𝑖∈𝐼 𝐶𝑖−𝑚𝑖𝑛𝑖∈𝐼𝐶𝑖
 ∀𝑖 ∈ I (3-2)       

 

where 𝐶�̃�  is the normalized integrated total cost for origin 𝑖.  𝐶�̃� redistributes all the cost 

values between 0 and 1. The following two sections will provide more detailed 

explanations of how to compute travel time costs and estimate environmental health costs. 

 

 

3.3.2 Travel time cost 

To calculate the travel time cost component within the proposed generalized cost function 

approach, the initial step involves the computation of the total transit travel time from the 

origin to a fixed number (e.g., nearest, three nearest) of destinations, which is also known 

as dual measures of accessibility (Cui & Levinson, 2020).  Total transit travel time consists 

of a series of time segments that encapsulate the entire transit journey as shown in 

Equation 3-3: 

 

𝑡𝑖𝑗 =  𝑡𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

+ 𝑡𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

+ 𝑡𝑖𝑗
𝑖𝑛−𝑣𝑒ℎ𝑖𝑐𝑙𝑒        (3-3) 

 

where 𝑡𝑖𝑗   represents the total transit travel time from an origin 𝑖  to a destination 𝑗 .  It 

encompasses all segments of a comprehensive transit journey from an origin 𝑖  to a 

destination 𝑗, including:  

• 𝑡𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

: the walking time to reach the departure transit stop, the time spent walking 

during transfers between stops, and the last-mile walking time after alighting from 

the transit.  Other first- and last-mile mobility options such as bikes, e-bikes, e-

scooters, and smart mobility devices can also be considered. 

• 𝑡𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

: the waiting time at the initial stop and at intermediate stops.  
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• 𝑡𝑖𝑗
𝑖𝑛−𝑣𝑒ℎ𝑖𝑐𝑙𝑒: the in-vehicle (e.g., bus, light rail) travel time. 

 

It is worthwhile to note that not all transit journeys are as complicated as the one described 

above, which includes transfers. In reality, transit trips can involve simpler sequences, 

typically comprising only first-mile walking, a single waiting period, in-vehicle travel time, 

and last-mile walking to the destination.  Nevertheless, we have accounted for the 

possibility of complex transit travels to ensure comprehensive modelling. 

3.3.3 Environmental health cost 

We use the concept of total degree minutes (TDM) (Hondula et al., 2021; Karner et al., 

2015) to estimate the environmental health costs associated with the out-of-vehicle 

segments of a transit journey, specifically the walking and waiting components.  TDM is 

calculated by multiplying travel time with temperature.  Karner et al. (2015) utilized this 

TDM metric to quantify travellers' exposure to extreme heat during non-motorized and 

active travels and explore the associations between heat-related vulnerability and socio-

economic variables in the San Francisco Bay Area.   

 

Based on this concept of TDM, environmental health costs attributed to walking 𝑒𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

 

from an origin 𝑖 to a destination 𝑗 is estimated based on Equation 3-4: 

 

𝑒𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

= ∑ 𝑡𝑘𝑚𝑘

𝑛

𝑘=1

 
(3-4) 

 

where 𝑡𝑘  is the time duration, in minutes, spent on each walking segment 𝑘 , 𝑚𝑘  is the 

average exposure level (i.e., temperature) experienced along the walking segment 𝑘, and n 

is a positive integer representing the number of walking segments. 
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Similarly, environmental health costs also attributed to waiting 𝑒𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

 from an origin 𝑖 

to a destination 𝑗 can be estimated using Equation 3-5: 

 

𝑒𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

= ∑ 𝑡𝑔𝑚𝑔

𝑛

𝑔=1

 
(3-5) 

 

where 𝑡𝑔  is the time duration, in minutes, spent on each waiting segment 𝑔 , 𝑚𝑔  is the 

average exposure level (i.e., temperature) experienced during waiting, and n is a positive 

integer representing the number of waiting stops. 

Finally, we derive the total out-of-vehicle environmental health cost 𝑒𝑖𝑗 by summing the 

environmental health costs for both walking and waiting based on the Equation 3-6: 

 

𝑒𝑖𝑗 =  𝑒𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

+ 𝑒𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

 (3-6) 

 

where, 𝑒𝑖𝑗
𝑤𝑎𝑙𝑘𝑖𝑛𝑔

  and 𝑒𝑖𝑗
𝑤𝑎𝑖𝑡𝑖𝑛𝑔

  represent the environmental health costs incurred during 

walking and waiting, respectively.   

 

3.3.4 Interpretation of the total integrated cost 

The general cost function approach creates a total integrated cost that ranges between 0 and 

1.  In this context, values closer to 0 represent lower costs (i.e., higher accessibility), while 

a value of 1 indicates the highest cost (i.e., the lowest accessibility). 
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3.4 Application: Incorporating extreme cold exposure into accessibility 

by public transit 

In this section, we demonstrate the applicability and utility of the methods we developed 

in the previous section.  Although the developed framework can be used to integrate 

environmental health costs due to exposure to various extreme climatic events (e.g., 

extreme heat, air pollution, urban flooding), we apply it to the case of incorporating 

extreme cold exposure into public transit accessibility in the city of Winnipeg, MB, Canada, 

as an example.  This section describes the study area, dataset used, analysis procedure and 

findings of the example study. 

 

3.4.1 Study area 

The study area for this example analysis is the city of Winnipeg, located in the province of 

Manitoba (MB), Canada (Figure 3-2).  Winnipeg serves as the capital city of Manitoba and 

is characterized by a diverse urban landscape and a unique set of climatic challenges.  

According to the most recent available data, Winnipeg has a total population of 

approximately 749,607 people, making it the major urban centre of the province (Statistics 

Canada, 2023).  The city is known for its relatively high population density, with an 

estimated 1623.3 people residing per square kilometre (Statistics Canada, 2023).  

Winnipeg's public transit system plays an important role in the daily lives of its residents 

with 9.17% of people commuting to work using public transit compared to other modes of 

transportation (Statistics Canada, 2023). The transit system comprises 87 bus routes and an 

extensive network of 5170 bus stops, which provide essential transportation services to the 

city's residents (Winnipeg Transit, 2023).   

A distinctive aspect of Winnipeg that profoundly influences its public transit system and 

overall urban life is the extreme cold weather conditions experienced during the winter 

months.  The city is well-known for its harsh and frigid winters, characterized by sub-zero 

temperatures, heavy snowfall, and icy conditions.  For instance, in January, which is the 

coldest month in Winnipeg, the average temperature ranges between -21 and -11 degrees 
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Celsius (https://climate.weather.gc.ca/).  These extreme cold weather conditions can 

significantly impact the accessibility and usability of the public transit system, as well as 

the overall mobility and well-being of the city's residents.  For these reasons, the city of 

Winnipeg was selected as a meaningful example study area to investigate the applicability 

of the proposed approach. 

 

Figure 3-2: Maps of the study area: a) the public transit network in the city of Winnipeg, 

and b) the locations of food resources and population density in the study area. 

 

3.4.2 Data 

We use a variety of datasets including remote sensing data for extracting temperature, 

transportation data, origin and destination information, and socioeconomic variables.  We 

begin our analysis by obtaining the boundary for the city of Winnipeg from the Winnipeg 

open data portal (data.winnipeg.ca/), which serves as the geographic boundary of our study 

area. 

https://climate.weather.gc.ca/
https://data.winnipeg.ca/
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Satellite data 

To estimate the temperature, which is the basis of environmental health cost analysis, we 

use Landsat 8 satellite imageries, an open-source product obtained from USGS Earth 

Explorer (https://earthexplorer.usgs.gov/) (USGS, 2023) which consists of two science 

instruments—the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).  

The thermal bands (Band 10 and 11) are commonly used for the analysis of urban surface 

temperature.  We obtained satellite imagery with minimum cloud coverage for January 

2022, which is usually the coldest month in the study area.  While we acknowledge that 

land surface temperature may not directly substitute for the air temperature (i.e., known as 

air temperature derived from local meteorological stations), we use it as a proxy due to the 

limited coverage of weather stations in the region (Environment Canada, 2023). In 

addition, LST has advantages in obtaining higher spatial resolution temperature 

information compared to the data acquired from limited local meteorological stations 

(Braun & Fraser, 2022). 

 

Transportation data 

For our transit analysis, we utilize the General Transit Feed Specification (GTFS) with 

detailed transit operational information (Google, 2023).  GTFS datasets are standardized 

formats for transit agencies to release information (e.g., locations of stops) about the transit 

services available and the schedules (Google, 2023).  We obtained the GTFS data for 

Winnipeg in the winter season from Open Mobility Data (https://transitfeeds.com/).  For 

the sidewalk information, we used Open Street Map (OSM) (Open Street Map, 2023) data 

obtained from BBBike (https://extract.bbbike.org/). 

 

Origin and destination data 

Our analysis uses the Dissemination Block (DB) as the spatial unit for accessibility 

analysis, with the centroids of DBs serving as the trip origins for the accessibility analysis.  

https://earthexplorer.usgs.gov/
https://transitfeeds.com/
https://extract.bbbike.org/
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As for the destinations, we consider the locations of food resources for demonstration 

purposes. We obtained DB information from Statistics Canada (https://www.statcan.gc.ca/) 

(Statistics Canada, 2023) and locations of food resources from SafeGraph 

(https://www.safegraph.com/) (SafeGraph, 2023), both for the year 2021.  The food 

resources data used in this study include general merchandise stores (e.g., Walmart) and 

grocery stores (e.g., Sobeys) based on the "top_category" information in the SafeGraph's 

Canadian Places dataset.  A limitation worth noting is that convenience stores (e.g., 7-

Eleven) are also classified as grocery stores within the SafeGraph dataset.  While 

convenience stores do offer some food resources, we recognize that classifying them as 

grocery stores does not align with the literature. 

 

Socioeconomic information  

In preparation for exploring the socioeconomic characteristics of areas experiencing 

accessibility loss and gain, we aggregate the accessibility analysis results from the 

Dissemination Block (DB) level to the larger Dissemination Area (DA) level.  This allows 

us to utilize detailed socioeconomic information available only at the DA level.  We 

acquired socioeconomic information from Statistics Canada (www.statcan.gc.ca) for the 

year 2021.  We collected six socioeconomic variables: 1) average household income (CA$) 

in 2020, 2) percentage of visible minorities, 3) percentage of immigrants from 2011 to 

2021, 4) percentage of people with a bachelor’s degree or higher, 5) unemployment rate, 

and 6) percentage of people who use public transit for their work commute.  An overview 

of the variables used in this study is presented in Table 2-1. 

 

 

 

https://www.statcan.gc.ca/
https://www.safegraph.com/
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Table 3-1: Variables used for understanding the socioeconomic characteristics of areas 

with accessibility loss and gain 

Variables Rationale 

Income (El-Geneidy 

et al., 2016; Lee and 

Kim 2023; Griffin 

and Sener 2016; 

Pereira 2019; 

Karner et al. 2024) 

To understand association between public transit accessibility 

and income level 

Visible minorities 

(Lee and Kim 2023; 

Javanmard et al. 

2023; Palm et al. 

2020; Liu and 

Shalaby 2023) 

To understand association between public transit accessibility 

and visible minority population group 

Immigrants (Palm et 

al. 2020; Barajas et 

al 2018) 

To understand association between public transit accessibility 

and immigrants 

Educational 

qualifications (Lee 

and Kim 2023) 

To understand association between public transit accessibility 

and education attainment level 

Unemployment (Lee 

and Kim 2023) 

To understand association between public transit accessibility 

and unemployment rate 

 

3.5 Analysis 

In this section, we describe the analytical procedures for measuring public transit 

accessibility by incorporating the environmental health cost through the generalized cost 

function framework.  There are four steps.  First, we estimate land surface temperature 

using remote sensing images.  Next, we compute the detailed transit travel time to the 
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destinations.  Third, we calculate the total cost using the generalized cost function approach 

that combines travel time cost and environmental health cost.  Lastly, we examine the 

differences in socioeconomic characteristics between areas experiencing accessibility loss 

and those experiencing gain due to the inclusion of environmental health costs. For the 

accessibility and inequality analysis, we used R (R, 2023), and for deriving land surface 

temperature, we used QGIS version 3.32 (QGIS, 2023).   

3.5.1 Estimating land surface temperature 

Algorithms have been developed to estimate land surface temperature (LST) from the 

thermal infrared sensors (TIRS) of satellite images, including the mono-window algorithm 

(Qin et al., 2001), single-channel algorithm (Jimenez-Munoz et al., 2014; Jiménez-Munoz 

& Sobrino, 2003), and the split-window algorithm (Sobrino et al., 1993).  Among these 

methods, the split-window algorithm stands out as the most popular and robust approach 

(Käfer et al., 2020).  The split-window algorithm utilizes two thermal bands: bands 10 and 

11, for LST estimation.  However, it is important to note that the data provider USGS 

EarthExplorer recommends users refrain from relying on band 11 data in quantitative 

analysis of the TIRS data, such as the use of split window techniques for retrieval of surface 

temperature values (Landsat 8 (L8) Data Users Handbook, 2019).  The mono-window 

algorithm requires a single thermal band along with atmospheric water vapour and near-

surface air temperature data at the time of image capture, which can be challenging to 

obtain for large study areas with limited weather station coverage.  

Consequently, we opt for the single-channel algorithm that needs only one thermal band 

(Jimenez-Munoz et al., 2014; Jiménez-Munoz & Sobrino, 2003) and does not require the 

aforementioned atmospheric information. This algorithm can be expressed using Equation 

3-7: 

 

𝑇𝑠(𝑘) = 𝛾 [
1

𝜀
(𝜓1𝐿𝑠𝑒𝑛 + 𝜓2) + 𝜓3] + 𝛿               

        (3-7) 
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where 𝑇𝑠  is the land surface temperature in Kelvin, which is later converted to degree 

Celsius; 𝜀 is the surface emissivity; 𝐿𝑠𝑒𝑛 is the top of atmosphere (TOA) radiance; 𝛾 and 𝛿 

are two parameters defined as follows (Equations 3-8 and 3-9): 

 

𝛾 =  
𝑇𝑠𝑒𝑛

2

𝑏𝛾𝐿𝑠𝑒𝑛
                           

        (3-8) 

 

𝛿 =  𝑇𝑠𝑒𝑛 −
𝑇𝑠𝑒𝑛

2

𝑏𝛾
        

(3-9) 

 

where, 𝑇𝑠𝑒𝑛 is the at-sensor brightness temperature, calculated using Equation 3-10, and 

𝑏𝛾 can be determined as 𝑐 / 𝜆; here 𝑐 is the Planck radiation constant and 𝜆 is wavelength. 

 

𝑇𝑠𝑒𝑛 =
𝑘2

ln (
𝑘1

𝐿𝜆
+ 1)

      
(3-10) 

 

Here in Equation 3-10, 𝐿𝜆 is the TOA radiance of the TIR band obtainable using Equation 

3-11 below, and 𝑘1 and 𝑘2 are thermal conversion constants.  

 

𝐿𝜆 =  𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿        (3-11) 
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In Equation 3-11, 𝑀𝐿 is the band-specific multiplicative rescaling factor and 𝐴𝐿is band-

specific additive rescaling factor, both available in the image metadata; 𝑄𝑐𝑎𝑙  is the 

calibrated pixel digital number. 

The atmospheric correction functions 𝜓1, 𝜓2, and 𝜓3 in Equation 3-7 can be expressed 

using the following Equation 3-12: 

 

𝜓1 =
1

𝜏
; 𝜓2 = −𝐿↓ −

𝐿↑

𝜏
; 𝜓3 = 𝐿↓    

(3-12) 

 

Here, 𝜏  is the atmospheric transmission, 𝐿↑  and 𝐿↓  are the atmospheric upwelling and 

downwelling radiance, respectively, obtainable from the Atmospheric Correction 

Parameter Calculator developed by NASA (https://atmcorr.gsfc.nasa.gov/). 

Finally, surface emissivity 𝜀  in Equation 3-7 can be computed using the normalized 

difference vegetation index (NDVI) threshold method proposed by (Sobrino et al., 2008).  

With the estimated NDVI value, we observed an NDVI value ranges between 0 to 0.2 

which reflects the bare land, soil, or impervious surface.  Therefore, we employed the 

following Equation 3-13 for deriving surface emissivity suggested by (Sobrino et al., 

2008): 

 

𝜀 = 𝑎𝑖𝜌𝑟𝑒𝑑 + 𝑏𝑖         (3-13) 

where, 𝜌𝑟𝑒𝑑  is the red band reflectance, and 𝑎𝑖  and 𝑏𝑖  are parameters derived from an 

empirical relationship between the red band reflectance and Moderate Resolution Imaging 

Spectroradiometer (MODIS) emissivity library (Yu et al., 2014). 

 

https://atmcorr.gsfc.nasa.gov/
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3.5.2 Computing detailed transit travel time 

We utilize an open-source transportation analysis package called r5r, developed by Pereira 

et al., (2021) to compute transit-based travel time.  This R package computes a travel time 

matrix when users provide a schedule-aware transit network dataset in GTFS format.  

Within the r5r package, we used the “detailed itineraries” function that provides detailed 

trip information between origin-destination pairs (r5r, 2023).  The output includes the 

access, egress, waiting and in-vehicle time in each trip, as well as some info such as the 

distance travelled, the routes used and the geometry of each leg.  

One notable advantage of this “detailed itineraries” function within the r5r package is its 

flexibility.  It allows users to configure various parameters, such as origin and destination 

details, mode types, departure time, maximum walking time, maximum trip duration, and 

more. In our analysis, we employ a maximum walking time of 17 minutes for each walking 

segment. This duration was initially derived as a 1000-meter distance and converted into 

minutes using the default walking speed of 3.6 km/hour, as specified by the r5r package. 

This 1000-meter threshold has been commonly utilized in previous research focused on 

public transit-based accessibility. (Pereira et al., 2021; Pönkänen, 2022.; Tomasiello et al., 

2023).  We also set the maximum trip duration to the default value of two hours.  To align 

our analysis with a satellite image acquired at 11:22 AM on January 24, 2022, we calculate 

detailed travel times for 11 AM departure time using a time window of 30 minutes.  Within 

the 30-minute time window, a minimum travel time for each origin-destination pair for 

each minute departure time (e.g., 11:01, 11:02, 11:03 AM) based on the fastest paths, is 

used for further cost analysis. 

Our dataset consists of an extensive 4,148,408 origin-destination pairs: 8024 origins (i.e., 

centroids of DBs) × 517 destinations (e.g., locations of food resources).  We narrow our 

focus to identify the three nearest food resources for each origin.  This step enables us to 

retain detailed transit travel time information specifically for the three closest food 

resources and use these for further dual accessibility analysis. It is important to note that 

our study also accounts for occasions when walking is the fastest mode to reach the 
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destination.  In these specific cases, waiting and exposure around the transit stops are not 

included in the cost analysis. 

For illustrative purposes, Figure 3-3a presents the geographic patterns of walking and in-

vehicle segments from detailed itineraries from all dissemination blocks to their three 

nearest food resources.  Meanwhile, Figure 3-3b showcases a close-up view of a detailed 

itinerary from a specific DB to its three nearest food resources.  Using these geo-located, 

detailed itinerary data, we generate buffers for each walking segment to compute the 

surface temperature along the walking segments.  For this analysis, we use a buffer size of 

30 meters to maintain consistency with the resolution of the satellite image.  Although the 

original pixel size of the thermal band in Landsat 8 imagery is 100 meters, we resample it 

to 30 meters to match the resolution of the red band.  This resampling is necessary because 

both bands are used in estimating emissivity as well as land surface temperature.  For 

estimating the environmental health costs of walking and waiting segments based on 

Equations 4 and 5, we use the absolute value of temperature, where higher values indicate 

greater exposure levels. 

Although the "detailed itinerary function" provides waiting time for each transit trip, it does 

not provide information about which stop the waiting time is associated with.  To address 

this issue, we first detect the starting point of each in-vehicle trip leg and then search for 

the closest transit stop from that starting point and assign it with the associated waiting 

time accordingly. With the identified transit stops for each waiting time, we create buffers 

around the stops, which will be used as a basis for estimating travellers' exposure to extreme 

cold weather while waiting for the next bus. 
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Figure 3-3: Geographic patterns of detailed itineraries between origin-destination pairs: a) 

walking and in-vehicle segments from detailed itineraries from all dissemination blocks to 

their three nearest food resources and b) a close-up view of a detailed itinerary from a 

specific DB to its three nearest food resources. 

 

3.5.3 Cost and dual accessibility analysis  

Using the generalized cost function framework (Equation 3-1), we compute the total cost 

by combining travel time cost and environmental health cost (i.e., extreme cold exposure).  

Due to the asymmetric distributions of travel time cost and environmental health cost, we 

implement a natural logarithm transformation to each cost component before calculating 

the total cost.  We further calculate the normalized total cost using Equation 3-2 to 

facilitate scenario analysis for examining the impacts of overlooking or considering 

environmental health costs with different weighting schemes.  We have three scenarios as 

described below:  

• Scenario 1: Measuring accessibility based on travel time cost only (𝛿𝑒 =0 and 𝛿𝑡 =

1). 
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• Scenario 2: Measuring accessibility based on environmental health cost only (𝛿𝑒 

=1 and 𝛿𝑡 = 0). 

• Scenario 3: Measuring accessibility with equal weighting (𝛿𝑒 = 𝛿𝑡), which is a 

dual measure of accessibility based on the total cost. 

3.5.4 Exploring socioeconomic characteristics of areas experiencing 

accessibility loss and gain 

Using the resulting total integrated costs obtained in section 4.3.3., we categorize 

neighbourhoods into two groups: those experiencing increased costs (i.e., decrease in 

accessibility) and those experiencing decreased costs (i.e., increase in accessibility) by 

comparing Scenario 1 (baseline) and 3 results. We then examine whether differences in 

socio-economic and demographic variables between the two types of neighbourhoods are 

statistically significant using a nonparametric Mann-Whitney U-test.  The purpose of this 

analysis is to examine whether individuals with low income (El-Geneidy et al., 2016; Lee 

and Kim 2023; Giffin and Sener 2016; Pereira 2019; Karner et al. 2024), those from visible 

minority backgrounds (Lee and Kim 2023; Javanmard et al. 2023; Palm et al. 2020; Liu 

and Shalaby 2023), immigrants (Palm et al. 2020; Barajas et al 2018), individuals with 

limited educational qualifications (Lee and Kim 2023), and those facing unemployment 

(Lee and Kim 2023) are disproportionately located in areas with accessibility loss due to 

the inclusion of environmental health costs..  We use the Mann-Whitney U-test due to the 

asymmetrical distribution of the variables as verified by the Shapiro-Wilk test.  The 

outcomes from the Mann-Whitney U-test can reveal how the increased cost (i.e., decrease 

in accessibility), arising from the inclusion of environmental health costs (i.e., exposure to 

extreme cold weather), affects socially disadvantaged population groups.   

3.6 Results 

3.6.1 Spatial patterns of land surface temperature  

Figure 3-4 presents the spatial pattern of land surface temperature (LST) in Winnipeg, 

classified using quantile classification schemes, as derived from Landsat 8 data, which is 

used as the basis of environmental health cost estimation in this study.  In Figure 3-4a, the 
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temperature ranges from -16.78°C to -7.78°C across the city of Winnipeg, revealing a 

noticeable trend where urban areas experience relatively milder cold, while suburban 

regions display colder conditions.  Notably, the city's central core stands out as areas with 

less severe cold.  This can be attributed to the prevalent land use pattern characterized by 

extensive concrete and asphalt surfaces (Herb et al., 2008).  Figures 3-4b and 3-4c further 

show the temperature patterns along the walking segments of a transit journey and around 

transit stops, respectively, reflecting the similar trends observed in Figure 3-4a, with colder 

temperatures prevalent in the outskirts of the city.  This spatial variance in LST highlights 

the significant variability in temperature across space, which suggests overlooking these 

heterogeneous temperatures and corresponding environmental health costs could lead to 

erroneous and misleading measurements of public transit accessibility. 

 

 

Figure 3-4: Spatial patterns of land surface temperature: a) overview, b) temperature along 

the walking network, and c) temperature around the transit stops. 

3.6.2 Geographic patterns of detailed transit travel time  

Figure 3-5 provides the analysis results of average transit travel times to the three nearest 

food resources.  Specifically, Figure 3-5a illustrates the total travel time, Figure 3-5b 

represents walking time, Figure 3-5c depicts waiting time, and Figure 3-5d shows in-

vehicle time.  In terms of total travel time, which ranges from 1.56 minutes to 37.46 

minutes, the central city area stands out with significantly lower travel times.  On average, 

residents living near downtown experience travel times of less than 6.73 minutes, while 
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those residing farther away endure significantly longer transit times (Figure 3-5a).  This 

trend also extends to the walking portion of a transit journey with residents near the 

downtown experiencing shorter walking times whereas those living farther away face 

longer walking times (Figure 3-5b).  It is important to note that during extreme weather 

events (i.e., extreme cold and heat), longer walking times can pose a significant health risk 

to transit riders (Fraser and Chester 2017).  When considering waiting time, we observe the 

majority of neighbourhoods in Winnipeg experience an average waiting time of less than 

1.9 minutes when accessing food resources via transit (Figure 3-5c).  Similarly, the in-

vehicle time segment shows that most neighbourhoods experience in-vehicle times 

averaging below 4.3 minutes for trips to the three nearest food resources (Figure 3-5d). 

 

Figure 3-5: Spatial patterns of transit travel time: a) total transit travel time, b) walking 

time, c) waiting time, and d) in-vehicle time. 



 

 

 

72 

3.6.3 Cost and dual accessibility analysis results 

Figure 3-6 presents the outcomes of the cost and dual accessibility analysis based on three 

scenarios: Scenario 1) cost/accessibility based on travel time only (Figure 3-6a), Scenario 

2) cost/accessibility based on environmental health cost only (Figure 3-6b), and Scenario 

3) total integrated cost (Figure 3-6c).  All of these figures are presented with the same 

classification and colour scheme for a fair comparison. 

A consistent trend emerges across all cost metrics: lower costs (i.e., higher accessibility) 

are observed near the downtown area, while costs tend to increase for neighbourhoods 

located farther from downtown.  For example, in Figure 3-6a, when considering travel 

time only, the downtown area exhibits very low costs, which aligns with the findings from 

the travel time analysis in Figure 3-5a.  In Figure 3-6b, we focus on Scenario 2.  Figure 

3-6b shows a similar trend with lower costs near the downtown area. However, there is a 

slight increase in cost near downtown and a minor decrease in areas farther from downtown 

compared to Scenario 1 results (Figure 3-6a). 

Figure 3-6c presents the results of Scenario 3 analysis based on the total integrated cost 

with an equal weight of travel time cost and environmental health cost.  Figure 6c generally 

mirrors the trends observed in Figures 3-6a and 3-6b.  However, when compared to 

Scenario 1 results (Figure 3-6a), we notice changes in the total integrated cost, particularly 

in the downtown and northeast parts of the study area.  This is due to the inclusion of 

environmental health cost, which is heterogeneous across space as shown in Figure 3-4.  

To further confirm these changes, we analyze the relative change in cost by comparing 

Scenario 1 and 3 results (Figure 3-7a).  This analysis reveals both increases and decreases 

in cost, confirming the influence of environmental health costs on accessibility analysis.  

We also classified neighbourhoods into increased cost (i.e., decreased dual accessibility) 

and decreased cost (i.e., increased dual accessibility) categories (Figure 3-7b) for a clearer 

comparison.  Figure 3-7b suggests that a considerable number of neighbourhoods (i.e., 

44%) experience increased costs, which are spatially randomly distributed across the study 

area. 
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Figure 3-6: Cost analysis results: a) travel time as a cost (Scenario 1), b) environmental 

health as a cost (Scenario 2), and c) total cost incorporating travel time and environmental 

health costs (Scenario 3). 

 

 

 

Figure 3-7: Relative changes in costs due to the inclusion of environmental health costs 

(Scenario 1 versus Scenario 3): a) relative changes (%) and b) neighbourhoods with 

increased or decreased costs. 
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3.6.4 Findings on socioeconomic characteristics of areas with accessibility 

loss and gain 

This section reveals whether there are statistically significant differences in socioeconomic 

characteristics between two types of neighbourhoods: 1) increased costs (i.e., decrease in 

accessibility) and 2) decreased costs (i.e., increase in accessibility), identified from the 

previous section. 

Figure 3-8 shows boxplots of these variables for neighbourhoods classified under 

increased or decreased cost categories.  Table 3-1 presents Mann-Whitney U-test results. 

We found statistically significant disparities across all socioeconomic variables between 

neighbourhoods experiencing increased and decreased costs.  For instance, in 

neighbourhoods experiencing increased costs, we observed a higher proportion (a median 

of 9.09%) of the population using public transit for commuting to job places who are often 

marginalized individuals, as opposed to the 7.29% in neighbourhoods with decreased costs.  

A similar pattern emerges for variables such as the percentage of unemployment rates, 

visible minorities, and recent immigrants, with a notably higher concentration of these 

demographic groups residing in neighbourhoods facing increased costs (i.e., decreased 

accessibility). Additionally, neighbourhoods subject to increased costs tend to exhibit lower 

average household incomes (a median of $44,000).  As for the education attainment level, 

neighbourhoods with increased costs show a lower proportion of people with a college 

degree or higher.  

The Mann-Whitney U-tests confirm the statistically significant differences, indicating that 

areas experiencing accessibility loss are generally associated with socioeconomically 

disadvantaged residential areas with higher proportions of public transit users, visible 

minorities, recent immigrants, unemployed individuals, as well as lower household income 

and education levels.  
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Table 3-2 Mann-Whitney U-test results 

Variables Median P-values 

Neighbourhoods with 

increased cost  

(decreased accessibility) 

Neighbourhoods with 

decreased cost  

(increased accessibility) 

 

Public transit to work (%) 9.09 7.29 <0.001 

Unemployment rate (%)  9.1 8.2   0.001 

Visible minority (%) 28.02 22.39 <0.001 

Recent immigrants (2011-2021) (%) 9.61 7.18 <0.001 

Average household income ($) 44000 46800 <0.001 

Have a bachelor’s degree or higher (%) 24.44 27.13     0.02 
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Figure 3-8: Box plots of six socioeconomic variables for the DAs where cost increased or 

decreased due to the inclusion of environmental health cost (Scenario 1 versus 3). 

 

3.7 Discussion and conclusion  

This paper introduced a general cost function approach that combines travel time and 

environmental health costs into an integrated measure of dual accessibility: a measure of 

the travel costs of accessing a fixed number of destinations. In this study, we define 

environmental health costs as the exposure of transit users to extreme environmental 

conditions, such as extreme cold or heat, which can cause adverse health outcomes. The 
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proposed general cost function approach is versatile and can be applied to addressing 

exposure to various extreme environmental conditions such as extreme heat, cold, air 

pollution, and urban flooding. However, we recommend being cautious when applying this 

approach to weather extremes other than extreme heat or cold because different types of 

exposure might involve varying sensitivities and behaviours (e.g., linear vs exponential 

increase of exposure impacts).  To demonstrate the utility of our approach, we conducted 

an example study that incorporates transit users' extreme cold exposure into accessibility 

measures in the city of Winnipeg, MB, Canada. Additionally, we also explored whether the 

increase in costs (i.e., decrease in accessibility) arising from the inclusion of environmental 

health costs disproportionately affects socially disadvantaged population groups.   

Overall, the findings of the example study highlight notable differences in the spatial 

patterns of accessibility across three scenarios: 1) measuring accessibility based on travel 

time cost only, 2) measuring accessibility based on environmental health cost only, and 3) 

measuring accessibility with equal weighting of travel time and environmental health cost, 

which is a dual measure of accessibility based on the total cost.  These findings confirm 

that disregarding environmental health costs can lead to an inaccurate estimation of the 

actual costs associated with accessing urban opportunities and resources.  Additionally, we 

observed that an increase in costs (i.e., a decrease in accessibility) disproportionately 

affects socioeconomically marginalized populations.  

Therefore, we recommend that policymakers and planners give careful consideration to 

environmental health costs when evaluating public transit accessibility, particularly in the 

context of anticipated climate change impacts.  For example, by enhancing transit 

infrastructure (e.g., shelters, heaters) to improve user comfort during extreme weather 

conditions, we can mitigate the health risks and associated costs for transit riders exposed 

to harsh environmental conditions.  The general cost function approach introduced in this 

paper has the potential to enhance the practicality of transit-based accessibility measures, 

thus leading to better preparedness for climate change implications.  By using this method, 

planners and policymakers could gain valuable insights to shape development strategies 

that effectively balance social and environmental sustainability in the face of climate 

change. 
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In the next phase of our research, we aim to expand the scope of our study to encompass 

various environmental exposures, including but not limited to extreme heat, air pollution, 

and urban flooding in cities around the world.  As we grapple with the current and future 

challenges of climate change, the framework developed in this paper can serve as a guide 

for evidence-based planning and policymaking efforts for healthy and resilient cities.   
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Chapter 4 

4. Conclusions 

4.1 Summary of Thesis 

Healthy City is an ongoing process that prioritizes public health through various key 

initiatives which primarily involve improving the quality of citizens’ lives (Haslauer et al., 

2015).  In the recent decade, climate change poses significant health challenges in cities. 

The consequences include a surge in climate-related diseases, such as heat and cold related 

illnesses, and respiratory diseases (Patz and Olson, 2006).  

Recognizing the need to address climate change root causes, cities worldwide are focusing 

on reducing greenhouse gas emissions and embracing urban greening initiatives (Mihavlov 

et al., 2020; Fryd et al., 2011). Renewable energy adoption, sustainable transportation 

promotion, and green space integration into urban planning form a comprehensive strategy 

to combat climate change, protect public health, and enhance city resilience.  

Green spaces play a dual role, positively impacting public health and climate change 

mitigation. They provide recreational spaces, promoting physical and mental well-being, 

while also absorbing carbon dioxide and contributing to urban cooling. Public transit, as a 

crucial element in climate change mitigation, reduces car dependency, curbing emissions 

and encouraging physical activities like walking and biking. This thesis focuses on 

identifying limited green space availability areas (Liu et al. 2021; Dai et al. 2011; Xu et al., 

2018) in the cities of Global South and understanding the exposure to extreme weather 

during public transit use (Dzyuban et al. 2021; Fraser and Chester 2017; Karner et al. 2015; 

Kuras et al. 2017; Rosenthal et al. 2022; Lanza and Durand 2021; Miao et al. 2019; Sami 

and Keith 2023; Hoehne et al. 2022). 

The thesis proposes two new geospatial methods to advance land use and transportation 

planning for healthy cities: an analytical framework for identifying urban green space 

deserts and a new accessibility measure considering extreme weather exposure during 

public transit travel. Chapter 2 focuses on understanding the sensitivity of green space 
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distribution to walking distance thresholds, developing a reliable analytical framework, 

conducting an inequality analysis and investigating socioeconomic characteristics of UGS 

desert areas in the context of Global South cities. Chapter 3 developed a generalized 

framework for measuring public transit accessibility, applying it to extreme cold conditions 

in Winnipeg, Canada, and exploring its impact on socially disadvantaged groups. 

This thesis contributes to healthy city planning by proposing practical geospatial methods 

to inform urban planners, local governments, and policymakers. By addressing the 

importance of green spaces, public transit, and scientifically informed planning in fighting 

ongoing climate change impacts, this thesis aims to create more liveable, sustainable, and 

healthier urban environments globally. 

 

4.1.1 Chapter 2 summary 

Urban green space (UGS) has several health benefits. Ensuring adequate and equitable 

access to UGS is a prerequisite for a healthy city. Citizen-centred land use planning can 

satisfy this requirement. Evidence-based land use planning includes quantifying the 

availability of green spaces based on the guidelines provided by local governments. For 

instance, a standard walking distance is often used as an important criterion for measuring 

UGS availability.  However, in low- and middle-income countries (LMICs) in the Global 

South where well-defined local policy guidelines for walking distance thresholds are 

missing for UGS availability evaluations, UGS availability is often evaluated by using a 

single ad-hoc or arbitrary walking distance threshold. Accurate detection of UGS 

availability will enable policymakers and planners’ evidence-based land use planning. A 

lingering question in the research on UGS availability in the Global South is which walking 

distance threshold should be used due to the absence of consensus on that in the literature 

and planning guidelines.  The second chapter of this thesis answers that question by 

developing an analytical framework for identifying UGS deserts – areas without adequate 

UGS availability levels – considering various walking distance thresholds.  
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We first demonstrate how geographic distributions of UGS deserts can change depending 

on different walking distance thresholds (e.g., 100, 300, 500 meters) of choice.  Unreliable 

and inaccurate detection of UGS deserts can hinder evidence-based land use planning for 

promoting healthy cities and result in erroneous inequality evaluation. To overcome this 

limitation, we introduce and examine robust UGS oases and deserts: geographic areas with 

and without the per capita green space (PCG) level recommended by a local government 

regardless of different walking distance thresholds used, respectively. With the identified 

robust UGS deserts and oases, we further examined whether there are the statistically 

significant differences in socioeconomic characteristics between UGS desert and oases 

areas.  

This study found that the spatial patterns of UGS deserts and oases are sensitive to different 

walking distance thresholds used. Therefore, the use of an ad-hoc, arbitrary, not well-

informed walking distance threshold can lead to inaccurate identification of UGS deserts. 

Robust UGS deserts approach can be a possible solution for this. We also found that 

socioeconomically disadvantaged populations are disproportionately located in robust 

UGS desert areas. The robust UGS deserts approach enables more reliable and informed 

land use planning to enhance UGS availability and its equality, thereby facilitating an 

optimal development of methodology that supports healthy city objectives.  

4.1.2 Chapter 3 summary 

In the Global North, cities prioritize personal automobiles, discouraging active 

transportation and public transit. While transit use can encourage physical activity, it 

exposes users to extreme environmental conditions during out-of-vehicle segments.  Such 

exposure can be considered as environmental health costs because exposure to weather 

extremes can lead to adverse health outcomes.  Even worse, climate change is increasing 

the intensity and frequency of extreme weather events.  In this context, how can we make 

public transit accessibility measures ready for climate change?  Chapter 3 answers the 

question by developing a methodology which is a general cost function approach 

combining travel time and environmental health costs into an integrated measure of dual 

accessibility: a measure of the travel costs of accessing a fixed number of destinations.   
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To demonstrate the utility of the proposed method, we carry out an example study that 

incorporates transit passengers' extreme cold exposure into accessibility measures in the 

city of Winnipeg, Manitoba, Canada.  Further, we examined the differences in 

socioeconomic characteristics of areas with accessibility loss and gain to investigate 

whether the increase in total integrated costs (i.e., decrease in accessibility) due to the 

inclusion of environmental health costs disproportionately affects areas with higher 

proportions of socially disadvantaged population groups.   

Overall, the findings of the example study highlight notable differences in the spatial 

patterns of accessibility when environmental exposures were integrated to measure 

accessibility.  These findings confirm that disregarding environmental health exposures can 

lead to an inaccurate estimation of accessibility and may pose additional burdens on 

citizens.  Additionally, we observed that a decrease in accessibility disproportionately 

affects socioeconomically marginalized populations. The proposed method enables a more 

realistic and practical transportation planning approach to evaluate public transit 

accessibility under climate change; thereby, improving the readiness and resilience of our 

society and transport systems for future challenges align with healthy city objectives. 

4.2 Limitations and recommendations 

Chapter 2 has several limitations. First, due to the absence of information on the building 

type (e.g., residential, office, industrial), we included all buildings in the analysis. 

However, analysis only based on residential location can produce more accurate results in 

future studies. Second, the UGS distribution data were obtained using satellite image 

classification, which may be less reliable than information directly obtained from city 

officials. While satellite image classification is a commonly used method to obtain UGS 

data, it may not always capture the most accurate information since its performance can be 

influenced by weather conditions or other factors that affect image quality. Furthermore, it 

is important to acknowledge that the remote sensing approach utilized in this study neither 

differentiates between public and private green spaces nor considers different impacts and 

attractions of distinct green space types. Given the lack of reliable information on green 

spaces in Dhaka, which is a common challenge in low- and middle-income countries, 
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remote sensing classification was employed as the best available alternative. However, it 

should be noted that this approach only allowed us to calculate UGS availability, rather 

than accessibility, as it focused solely on quantifying the amount of green space without 

providing insights into its physical accessibility to the public due to possible restrictions 

(e.g., private, unsafe, etc.). With more information collected from surveys/interviews and 

higher resolution spatiotemporal datasets, future research could undertake more nuanced 

studies to examine the availability of specific types of UGS and evaluate their impacts on 

people's physical and mental health. Lastly, we also acknowledge that the quantitative 

measures of UGS availability in this study may not resonate with local residents' 

perceptions of their UGS availability.  A future study examining the consistency between 

the objective and subjective measures of UGS availability through the surveys/interviews 

would make the analysis more robust and citizen-centred.  

Despite the limitations, our proposed approach for detecting robust UGS deserts offers a 

more rigorous and reliable method for decision-making in enhancing UGS provision, 

promoting equality, and ultimately supporting the development of urban policies for 

healthier and more equitable cities. In light of this, we suggest several future research 

agendas and recommendations that we encourage researchers and practitioners to consider. 

1) Test multiple walking distance thresholds: It is recommended to use multiple walking 

distance thresholds when identifying UGS deserts. Relying on a single threshold may lead 

to erroneous measurements of UGS availability as demonstrated in this study. 2) Use 

network buffers: Future studies should adopt network buffer analysis instead of Euclidean 

buffer approaches. Utilizing network buffers would enable a more accurate assessment of 

UGS availability along the walking networks. 3) Consult local planning and community 

guidelines: When setting up a standard for UGS availability analysis, it is important to 

consider local planning and community guidelines.  For instance, in Dhaka, the 

recommended guideline is to have at least 3.48 m2 of green space per person.  However, 

this might differ in other countries. 4) Consider edge effects: To accurately measure UGS 

availability, it is recommended to consider the edge effect.  This approach can account for 

UGS availability beyond the city boundary if green spaces fall within a desired walking 

distance. 5) Evaluate inequality: It is crucial to conduct inequality tests to determine 

whether underserved and vulnerable communities have limited access to green spaces. 
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Investigating the disparities in UGS availability for these communities is an important 

aspect of promoting equitable access to green spaces within urban areas. 

Chapter 3 also has a few limitations. First of all, while this chapter contributes conceptually 

and methodologically to making accessibility measures adaptable to climate change, we 

acknowledge a weakness in our new accessibility metric from an applicability standpoint.  

Essentially, the proposed accessibility index becomes unitless when we combine travel 

time and environmental health costs into a generalized cost.  We understand that this 

generalized cost might not be intuitive for planners and policymakers to comprehend and 

implement in practice.  The Winnipeg case study has limitations as well.  First, for 

estimating exposure to weather extremes, we relied on land surface temperature derived 

from remotely sensed data.  While we recognize that surface temperature does not directly 

equate to air temperature, we opted to use it as a proxy (Li, 2021).  This decision was driven 

by the limited coverage of weather stations in the study area, whereas land surface 

temperature (LST) provides temperature data at a much higher spatial resolution. However, 

there remain some uncertainties regarding the LST. In a winter-time scenario, air 

temperature may provide a closer estimate of the experienced temperature of individuals 

using transit and while available at only coarse spatial scales, it is available on an hourly 

temporal time scale. However, due to time constraints, it was not possible to investigate the 

spatiotemporal variability in temperature between LST and air temperature or the relative 

sensitivity to the use of air temperature in place of LST. Future studies can adopt a 

sensitivity test to address these issues. To achieve a more realistic and accurate estimation 

of exposure, our future research will use a more appropriate indicator of human exposure 

to cold or heat.  This will be based on mean radiant temperatures using an urban 3D model 

through SOlar and LongWave Environmental Irradiance Geometry (SOLWEIG) modelling 

(Lindberg et al., 2008).  Second, this paper considers the simple assumption of 

environmental exposure and overlooks the complex impacts of environmental exposure on 

health outcomes (e.g., time-lagged, frequency, recency) (Kwan, 2018). Third, we 

acknowledge that our analysis overlooked the temporal (e.g., monthly) variability of cold 

exposure.  Instead, we relied on temperature data from a single day at a specific time—

11:22 AM on January 24th, 2022—due to the availability of Landsat 8 satellite imagery on 

a 16-day cycle.  To account for monthly variations in cold exposure, future research can 
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use temperature data from a couple of days in other winter months such as December 

7th/23rd or February 9th/25th based on the 16-day cycle to perform the analysis. For 

examining variations at higher temporal resolutions like daily and hourly, future research 

can utilize SOLWEIG (Lindberg et al., 2008) or more comprehensive urban canopy layer 

numerical models (Leroyer et al. 2018)  or through advanced technologies such as 

unmanned aerial vehicles (UAVs) or drones to obtain local temperature data at finer spatio-

temporal resolutions .  These data would enable future studies to investigate the temporal 

variability of weather exposure and examine its impacts on the results of accessibility 

inequality analysis.  For studies spanning a longer time frame (e.g., an entire year), it is 

important to consider the varying impacts of different temperature levels on accessibility.  

For instance, while extreme hot or cold weather during summer or winter seasons may 

affect access, milder or warmer temperatures during the spring or fall seasons might not 

have the same impacts.  Investigating how different temperature levels affect access in 

different ways is an important direction for future research.  Additionally, it is crucial to 

consider the extremity of high (e.g., 30 °C) versus low (e.g., -20 °C) temperatures.  

Geographic contexts should also be taken into account as the same temperature might be 

perceived differently across the world.  For example, a temperature of 30 degrees Celsius 

might be perceived as manageable in regions accustomed to high heat such as the Middle 

East where such temperatures are common and infrastructures like buildings and public 

spaces are designed to cope with the heat.  Conversely, in cooler climates such as the west 

coast (e.g., Vancouver) of Canada, the same temperature could lead to significant 

discomfort, health risks, and increased energy consumption for cooling because these 

regions are less adapted to handling such heat in terms of infrastructure and public 

awareness.  Also, we overlooked the variation in individuals' sensitivity to cold weather 

and instead assumed that everyone places equal importance on travel time and weather 

exposure as part of their travel costs, which is unrealistic.  Future research should conduct 

sensitivity analysis using various weighting schemes (e.g., 0.3 vs. 0.7, 0.4 vs. 0.6, 0.6 vs. 

0.4, 0.7 vs. 0.3) to account for interpersonal variability.  Ideally, the design of these 

weighting schemes should be informed by the literature on the range of interpersonal 

variation in response to cold weather and/or empirical data such as surveys or interviews 

with public transit users.  For our travel time analysis, we relied on static GTFS data that 
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assumes transit operates perfectly on time without any delays or service interruptions.  

However, real-world public transit services can be far from this ideal.  They frequently 

encounter uncertainties like delays, early arrivals, detours, and pass-ups.  Ignoring these 

variabilities can result in inaccurate public transit accessibility measures (Liu et al., 2023) 

and even erroneous evaluation of inequalities in transit-based accessibility (Lee and Kim, 

2023).  Also, the travel time analysis in this paper adopts a default walking speed of 3.6 

km/hour. However, walking speed can be significantly influenced by various factors such 

as inclement weather, snow presence on sidewalks, and individuals' walking abilities (e.g., 

young adults vs. elderly).  Addressing these will make future analysis more realistic.  

Lastly, for future analysis, factors that can mitigate extreme weather exposure should be 

also taken into account.  For instance, incorporating information on whether a bus stop is 

sheltered would be beneficial.  Deep learning methods using Google streetview images can 

be used as an efficient approach for obtaining bus shelter information (Kim et al., 2024).  

Furthermore, future research might consider the presence of vegetation and green spaces 

along the walking paths and near the transit stops when estimating transit users' 

environmental exposure.  This approach would offer a more realistic understanding of 

weather exposure during public transit travel. 

4.3 Conclusions 

Healthy cities prioritize citizens’ well-being through healthy urban planning and design 

that promotes physical and mental health. In addition, healthy cities take proactive 

measures to tackle the negative consequences of climate change. Promoting healthy cities 

demands the application of scientific, evidence-based approaches, which include effective 

and healthy land use and transportation planning. This thesis introduces two new geospatial 

methods to facilitate healthy transportation and land use planning.  Chapter 02 develops an 

analytical framework for identifying regions with limited green space in the Global South. 

Chapter 03 introduces a new accessibility method by integrating extreme weather exposure 

into public transit accessibility assessments for Global North. Both studies demonstrate 

their applicability in their respective study regions. The proposed methods offer insights 

and tools for researchers, policymakers, and urban planners striving to achieve desirable 
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healthy objectives. By emphasizing the importance of evidence-based and healthy land use 

and transportation planning, this work contributes to the broader discussion on sustainable 

healthy city development.  
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