
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-13-2023 4:00 PM

Learning Mortality Risk for COVID-19 Using Machine Learning and Learning Mortality Risk for COVID-19 Using Machine Learning and

Statistical Methods Statistical Methods

Shaoshi Zhang,

Supervisor: Grace Y. Yi, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Shaoshi Zhang 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Zhang, Shaoshi, "Learning Mortality Risk for COVID-19 Using Machine Learning and Statistical Methods"
(2023). Electronic Thesis and Dissertation Repository. 9871.
https://ir.lib.uwo.ca/etd/9871

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F9871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=ir.lib.uwo.ca%2Fetd%2F9871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9871?utm_source=ir.lib.uwo.ca%2Fetd%2F9871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

This research investigates the mortality risk of COVID-19 patients

across different variant waves, using the data from Centers for Disease

Control and Prevention (CDC) websites. By analyzing the available

data, including patient medical records, vaccination rates, and hospi-

tal capacities, we aim to discern patterns and factors associated with

COVID-19-related deaths.

To explore features linked to COVID-19 mortality, we employ dif-

ferent techniques such as Filter, Wrapper, and Embedded methods

for feature selection. Furthermore, we apply various machine learning

methods, including support vector machines, decision trees, random

forests, logistic regression, K-nearest neighbours, näıve Bayes meth-

ods, and artificial neural networks, to uncover underlying trends and

correlations within the data.

The study identifies nine crucial factors significantly impacting pa-

tient survival in the context of COVID-19. These encompass patient-

level factors, including pre-existing medical conditions, acute respira-

tory distress syndrome status, pneumonia status, age group category,

headache status, and shortness of breath (dyspnea) status, as well

as the three factors showing the patient’s status related to hospital

aspects: hospitalization status, mechanical ventilation status, and in-

tensive care unit admission status.

Utilizing these identified features, we further conduct a detailed

statistical analysis using the logistic regression model to estimate the

effects of these risk factors on COVID-19 mortality. The findings

of this research indicate that the majority of those identified factors

are statistically significant in influencing the likelihood of mortality.

i

However, exceptions and variations are observed across different waves

of COVID-19 variants, underscoring the dynamic nature of the pan-

demic. This study contributes insights into understanding the evolv-

ing landscape of COVID-19 outcomes.

Keywords: Artificial neural networks, cost-sensitive classification,

COVID-19, death rates, feature selection, hospital capacities, imbal-

anced classification, logistic regression, machine learning, medical con-

ditions, mortality risk, statistical analysis, vaccination rates.

ii

Summary for Lay Audience

This research investigates the mortality risk of COVID-19 patients across

different variant waves, using the data from Centers for Disease Control and

Prevention (CDC) websites. By analyzing the available data, including pa-

tient medical records, vaccination rates, and hospital capacities, we aim to

discern patterns and factors associated with COVID-19-related deaths.

To explore features linked to COVID-19 mortality, we employ different

techniques such as Filter, Wrapper, and Embedded methods for feature se-

lection. Furthermore, we apply various machine learning methods, including

support vector machines, decision trees, random forests, logistic regression,

K-nearest neighbours, näıve Bayes methods, and artificial neural networks,

to uncover underlying trends and correlations within the data.

The study identifies nine crucial factors significantly impacting patient

survival in the context of COVID-19. These encompass patient-level fac-

tors, including pre-existing medical conditions, acute respiratory distress

syndrome status, pneumonia status, age group category, headache status,

and shortness of breath (dyspnea) status, as well as the three factors show-

ing the patient’s status related to hospital aspects: hospitalization status,

mechanical ventilation status, and intensive care unit admission status.

Utilizing these identified features, we further conduct a detailed statisti-

cal analysis using the logistic regression model to estimate the effects of these

risk factors on COVID-19 mortality. The findings of this research indicate

that the majority of those identified factors are statistically significant in

influencing the likelihood of mortality. However, exceptions and variations

are observed across different waves of COVID-19 variants, underscoring the

iii

dynamic nature of the pandemic. This study contributes insights into un-

derstanding the evolving landscape of COVID-19 outcomes.

iv

Acknowledgments

I would like to express my heartfelt gratitude to my dedicated super-

visor, Dr. Grace Y. Yi, for her invaluable guidance, unwavering support,

and insightful feedback throughout this research journey. Her expertise and

mentorship have been instrumental in shaping this work.

I am also deeply thankful to the Centers for Disease Control and Preven-

tion (CDC) for granting access to the COVID-19 Case Data that formed the

backbone of this study.

v

Contents

Abstract i

Summary for Lay Audience iii

Acknowledgments v

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Three CDC Datasets on COVID-19 8

2.1 COVID-19 Case Data . 9

2.1.1 Data Source and Pre-Processing 9

2.1.2 Objective and Pre-Processed Data 12

2.2 Hospital Data . 15

2.2.1 Data Source . 15

2.2.2 Objective and Data Pre-Processing 16

2.3 Vaccination Data . 17

vi

2.3.1 Data Source . 17

2.3.2 Objective and Data Pre-Processing 19

3 Data Preparation 22

3.1 COVID-19 Case Data . 23

3.1.1 Missing Values . 23

3.1.2 Correcting and Converting Datatype 23

3.2 Hospital Data . 24

3.2.1 Extracting Useful Subset 24

3.2.2 Converting . 29

3.2.3 Plotting . 30

3.3 Vaccination Data . 31

3.3.1 Subsets of Death Information 31

3.3.2 Converting and Creating 32

3.4 Summary of Variables After Pre-processing 33

3.5 Data Integration and Division 35

3.5.1 Integration . 35

3.5.2 Division . 39

4 An Overview of Machine Learning Methods 41

4.1 Feature Selection . 41

4.1.1 Filter Method . 42

4.1.2 Wrapper Method . 44

4.1.3 Embedded Method . 47

4.2 Machine Learning Models . 48

4.2.1 Support Vector Machines 48

vii

4.2.2 Decision Tree . 50

4.2.3 Random Forest . 50

4.2.4 Logistic Regression . 51

4.2.5 K-Nearest Neighbour 51

4.2.6 Gaussian Näıve Bayes 52

4.2.7 Artificial Neural Networks 53

4.3 Cost-Sensitive Classification Models 56

4.3.1 Cost-Sensitive SVM . 57

4.3.2 Cost-Sensitive Decision Tree 57

4.3.3 Cost-Sensitive Logistic Regression 58

5 Data Learning 59

5.1 Feature Selection . 59

5.1.1 Encoding Categorical Variables 60

5.1.2 Learning with the Filter Method 61

5.1.3 Learning with the Wrapper Method 64

5.1.4 Learning with the Embedded Method 67

5.1.5 Results with Intersection and Union 69

5.2 Data Balancing . 72

5.2.1 Over-Sampling on Training Set 73

5.2.2 Under-Sampling on Testing Set 73

5.3 Learning with Machine Learning Models 74

5.3.1 Learning with the Support Vector Machine 75

5.3.2 Learning with the Decision Tree 77

5.3.3 Learning with the Random Forest 77

5.3.4 Learning with the Logistic Regression 78

viii

5.3.5 Learning with the K-Nearest Neighbor 79

5.3.6 Learning with the Gaussian Näıve Bayes 80

5.3.7 Learning with the Artificial Neural Networks 81

5.4 Learning with the Cost-Sensitive Classification Models 86

5.4.1 Learning with the Cost-Sensitive SVM 87

5.4.2 Learning with the Cost-Sensitive Decision Tree 88

5.4.3 Learning with the Cost-Sensitive Logistic Regression . 89

5.5 Summary . 90

5.6 Statistical Analysis . 92

6 COVID-19 Variant of Concerns 94

6.1 Outbreak . 95

6.2 AlphaBeta . 96

6.3 Gamma . 97

6.4 Delta . 98

6.5 Omicron . 99

6.6 Summary . 100

6.7 Statistical Analysis . 100

7 Summary and Discussion 104

References 108

Appendix 116

Data Pre-processing . 116

Feature Selection . 129

Data Analysis . 133

ix

VOC . 147

Hyperparameter Tuning . 150

x

List of Figures

3.1 Example of pre-processed Hospital Data before split by Setting 28

3.2 Example of pre-processed Hospital Data 29

3.3 The percentage of non-COVID-19 patients admitted to selected

hospitals during the COVID-19 waves 31

3.4 Age group pairing in COVID-19 case data, primary doses, and

booster doses from the Vaccination Data 36

3.5 Summary of the integrated dataset. The first column records

the index of each covariate, the second column lists the name

of covariates, the third columns shows the number of non-null

records for each covariate, and the last column indicates the

corresponding datatype of each covariate 37

5.1 Association heat-map with Cramér’s V values 63

5.2 Macro F1 Score(vertical axis) obtained by Sequential Forward

Selection (with standard error shown in light blue shaded area) 66

5.3 The graph of feature importance, shown by the magnitude of

the coefficient versus the feature’s name 68

5.4 A sample MLP network architecture with nine input variables

and two hidden layers . 83

xi

List of Tables

2.1 Summary of Pre-processed three datasets 9

2.2 Summary of COVID-19 Case Data 10

2.3 Summary of Hospital Data . 15

2.4 Summary of Vaccination Data 18

3.1 Summary of Covariates After Pre-processing 34

3.2 Descriptive Statistics for Covariates displayed in Figure 3.5 . 38

3.3 Variant of Concerns(VOCs) 40

5.1 Features selected by the Filter Method and their Cramér’s V

value with variable Y (“death yn”) 64

5.2 Features selected by the Wrapper Method 66

5.3 Features selected by the Embedded Method and their coeffi-

cients with variable Y (“death yn”) 69

5.4 Features selected by the Intersection 70

5.5 Features selected by the Union 71

5.6 The results obtained from applying the Support Vector Machine

(SVM) to the integrated dataset in Section 3.5.1, with the use

of one of the five best feature subsets obtained in Section 5.1 . 76

xii

5.7 The results obtained from applying the Decision Tree models

to the integrated dataset in Section 3.5.1, with the use of one

of the five best feature subsets obtained in Section 5.1 77

5.8 The results obtained from applying the Random Forest models

to the integrated dataset in Section 3.5.1, with the use of one

of the five best feature subsets obtained in Section 5.1 78

5.9 The results obtained from applying the Logistic Regression mod-

els to the integrated dataset in Section 3.5.1, with the use of

one of the five best feature subsets obtained in Section 5.1 . . 79

5.10 The results obtained from applying the K-Nearest Neighbour(KNN)

models to the integrated dataset in Section 3.5.1, with the use

of one of the five best feature subsets obtained in Section 5.1 . 80

5.11 The results obtained from applying the Näıve Bayes models to

the integrated dataset in Section 3.5.1, with the use of one of

the five best feature subsets obtained in Section 5.1 81

5.12 The results obtained from applying the Multi-Layers percep-

tron (MLP) models to the integrated dataset in Section 3.5.1,

with the use of one of the five best feature subsets obtained in

Section 5.1 . 84

5.13 The results obtained from applying the Radial Basis Function

Network (RBFN) models to the integrated dataset in Section

3.5.1, with the use of one of the five best feature subsets ob-

tained in Section 5.1 . 86

xiii

5.14 The results obtained from applying the Cost-Sensitive SVM

models to the integrated dataset in Section 3.5.1, with the use

of one of the five best feature subsets obtained in Section 5.1 . 88

5.15 The results obtained from applying the Cost-Sensitive Decision

Tree models to the integrated dataset in Section 3.5.1, with the

use of one of the five best feature subsets obtained in Section

5.1 . 89

5.16 The results obtained from applying the Cost-Sensitive logistic

regression models to the integrated dataset in Section 3.5.1,

with the use of one of the five best feature subsets obtained in

Section 5.1 . 90

5.17 Statistical analysis of the integrated dataset with the intersec-

tion feature subset under the logistic regression model 93

6.1 The results obtained from applying various models to the Out-

break dataset in Section 3.5.2 using the intersection feature

subset obtained in Section 5.1.5 96

6.2 The results obtained from applying various models to the Al-

phaBeta dataset in Section 3.5.2 using the intersection feature

subset obtained in Section 5.1.5 97

6.3 The results obtained from applying various models to the Gamma

dataset in Section 3.5.2 using the intersection feature subset

obtained in Section 5.1.5 . 98

6.4 The results obtained from applying various models to the Delta

dataset in Section 3.5.2 using the intersection feature subset

obtained in Section 5.1.5 . 99

xiv

6.5 The results obtained from applying various models to the Omi-

cron dataset in Section 3.5.2 using the intersection feature sub-

set obtained in Section 5.1.5 100

6.6 Statistical analysis of each VOC dataset with the intersection

feature subset under the logistic regression model 103

A1 Best Hyperparameters for Some Classifiers Used in the Study . 150

xv

1

Chapter 1

Introduction

Since the discovery of the novel coronavirus (COVID-19) in Wuhan in

December 2019, research on COVID-19 has received extensive attention, and

scientists from various disciplines have gained a deeper understanding of this

virus due to advancements in technology and the availability of increasingly

collected data. Despite the emergence of new variants of concern, treatment

strategies and vaccinations have been developed to treat COVID-19 patients

and prevent the spread of the virus among humans.

In response to the pandemic, many studies have been conducted to pro-

vide valuable insights into the clinical characteristics and outcomes of COVID-

19 patients and to develop effective tools for managing the pandemic. To

name a few, Bertsimas et al. (2020) developed a COVID-19 mortality risk

assessment tool using patient-level medical data from multiple international

centers. The study analyzed data from over 8,000 COVID-19 patients across

12 countries, identifying key factors associated with COVID-19 mortality risk

and developing a predictive model to study the mortality risk in COVID-19

2

patients. Considering that individuals with pre-existing conditions, such as

multiple sclerosis (MS), may be at a higher risk of adverse outcomes from

COVID-19, Louapre et al. (2020) conducted a retrospective study of 347

COVID-19 patients with MS to explore the clinical characteristics and out-

comes of these patients. They investigated the frequency and severity of

COVID-19 symptoms and risk factors associated with severe outcomes, shed-

ding light on the unique challenges faced by COVID-19 patients with MS and

providing evidence-based recommendations for managing these patients dur-

ing the pandemic. These two studies took advantages of patient-level medical

data and provided valuable insights for healthcare providers in making in-

formed decisions regarding patient care and resources allocation.

To control the spread of the virus during the COVID-19 pandemic, vacci-

nation has emerged as a critical tool and the COVID-19 vaccination program

has been one of the largest public health campaigns in history, with the aim

to vaccinate the majority of the population in the world. Research has been

conducted to address the impact and effectiveness of vaccinations. For exam-

ple, Moghadas et al. (2021) conducted a study to investigate the impact of

2-dose COVID-19 vaccination on outbreaks in the United States in 2021. By

analyzing vaccination rates and COVID-19 case data from different regions

in the United States, the study explored the effectiveness of vaccination in

reducing COVID-19-related hospitalization and mortality rates and provided

insights into the potential benefits of vaccination programs in mitigating the

spread of the virus. Also, McNamara et al. (2022) conducted an ecological

analysis of national surveillance data in 2022 to estimate the early impact

of the US COVID-19 vaccination program on COVID-19 cases, emergency

3

department visits, hospital admissions, and deaths among adults aged 65

years and older. Both studies assessed the effectiveness of the vaccination

program in reducing COVID-19-related morbidity and mortality among the

population and provided insights into the early impact of the COVID-19

vaccination program.

The COVID-19 pandemic has posed unprecedented challenges to health-

care systems worldwide. The emergency medical services (EMS) system has

been particularly affected due to the fast virus transmission. In this context,

Lerner, Newgard, and Mann (2020) conducted a study to assess the effect

of the pandemic on the US EMS system. The study analyzed data from

a national EMS database, identifying changes in EMS activations, patient

acuity, and transport patterns during the pandemic. They found that early

in the COVID-19 outbreak there was a significant decrease in the number

of EMS responses across the United States, and simultaneously, the rate of

EMS-attended death doubled, while the rate of injuries decreased. They

highlighted the need for ongoing efforts to ensure the safety and well-being

of EMS providers and patients during pandemics and other public health

emergencies.

Despite extensive research in the literature, there does appears to be a

lack of studies that comprehensively integrate the COVID-19 patient-level

medical data, vaccination status, and hospital capacity together to examine

risk factors concerning the COVID-19 mortality. This research aims to study

the mortality risk of COVID-19 patients in different variant waves by lever-

aging patient-level medical data, vaccination rates, and hospital capacities.

Given that the United States has the largest infected population and

4

death cases in the world according to World Health Organization (2023a),

and that the Centers for Disease Control and Prevention (CDC) has a great

amount of dependable and public accessible datasets at the patient-level,

this research primarily utilizes three CDC-released data sets to examine risk

factors for COVID-19 mortality. These data sets include: (1) COVID-19

Hospital Data from the National Hospital Care Survey, (2) Rates of COVID-

19 Cases or Deaths by Age Group and Vaccination Status (and Booster

Dose), and (3) COVID-19 Case Surveillance Restricted Access Detailed Data.

In handling missing values within the COVID-19 Case Data, our ap-

proach involves the removal of these values, which is consistent with common

practice in handling missing data (e.g., Roth, 1994; Bennett, 2001; Scheffer,

2002; Newman, 2014). The remaining individuals still contain a sizable post-

removal dataset (242,772 rows/cases) relative to the 24 features, allowing us

to effectively examine the relationship among the associated variables. While

there is a belief that the prioritized symptom indicators in the CDC’s data

quality assurance may lead to dropout or skipped questions during form

filling, no official explanations for the missing data are available for us to

perceive what the missing data mechanisms are here. Our approach is basi-

cally called the complete data analysis, whose validity is ensured if missing

data possess the missing completely at random (MACR) mechanism, (e.g.,

Yi (2017, Section 5.5.1) and Little and Rubin (2019)). It is recognized that

biased results are generally expected if MCAR is not feasible, because the

retained subjects do not represent a random sample of the underlying pop-

ulation.

Recognizing the absence of a one-size-fits-all solution for classification

5

tasks, we propose to first employ a range of methods and algorithms to ex-

amine risk factors for COVID-19 mortality from different perspectives, then

we compare the commonality and discrepancy in the results to enhance the

understanding of the underlying truth. The methods include feature selec-

tion using Filter, Wrapper, and Embedded approaches, complemented by

data balancing techniques. Our analyses employ a combination of machine

learning models, such as cost-sensitive classification models and artificial neu-

ral networks, and statistical inference based on logistic regression model.

Our study systematically evaluates various methods to compare their ef-

fectiveness. In terms of feature selection using the three methods (Filter,

Wrapper, and Embedded approaches), our findings emphasize the effective-

ness of selecting common features, i.e., those in the intersection set, revealed

by all the three methods. Acknowledging the potential loss of important

features by using this intersection set, we also extend our analysis to include

any feature identified by each of the three methods to form a union set of

those features.

Consistently, our results highlight the effectiveness of multiple models

based on nine key features: age group category, hospitalization status, inten-

sive care unit admission status, pneumonia status, acute respiratory distress

syndrome status, mechanical ventilation status, headache status, shortness

of breath (dyspnea) status, and pre-existing medical conditions. These vari-

ables are shortened as follows in the subsequent sections, which are further

studied for their effects on COVID-19 mortality through statistical analysis

based on the logistic regression model:

• “age group” (x
(1)
3)

6

• “hosp yn” (x
(1)
5)

• “icu yn” (x
(1)
6)

• “pna yn” (x
(1)
8)

• “acuterespdistress yn” (x
(1)
10)

• “mechvent yn” (x
(1)
11)

• “headache yn” (x
(1)
21)

• “sob yn” (x
(1)
19)

• “medcond yn” (x
(1)
24)

While our analyses are directed to analyze COVID-19 data, our strategy

of forming the intersection and union sets of features, by examining different

feature selection methods, can apply to other contexts as well. As there is

no one-size-fit-all method, our study underscores the importance of delving

into and contrasting various methods within the wider realm of feature se-

lection and the selection of machine learning models. Because of the lack of

a universally superior algorithm, examining and analyzing data using vari-

ous approach helps reveal a comprehensive picture of the relationship among

variables.

The remainder of this essay is organized as follows. In Chapter 2, we

present an introduction to the three datasets used in this essay, along with

their respective objectives. In Chapter 3, we present the detail for the data

preparation process, including handling missing values, converting datatypes,

and creating new covariates by reformatting initial variables. Chapter 4

7

elaborates on the methods to be employed to analyze the data, including fea-

ture selection techniques, data balancing strategies, machine learning models,

cost-sensitive models, and artificial neural networks. The results of the mod-

els and the identification of the best feature subset are reported in Chapter

5. Lastly, Chapter 6 conducts an in-depth analysis of five distinct COVID-19

variants, utilizing the best feature subset and the optimal model identified

in Chapter 5. Supplementary materials are included in appendices.

8

Chapter 2

Three CDC Datasets on

COVID-19

In this chapter, we present detailed descriptions for the three datasets

to be analyzed in subsequent chapters. The first dataset, called COVID-

19 Case Data, contains patient-level measurements per case, including the

information on demographics, geography, exposure history, disease existence

indicators, and so on. The second dataset, called Vaccination Data, records

the death/confirm rates for different age groups and vaccination types. The

last dataset, called Hospital Data, indicates the running pressure of hospitals

with the percentage of non-COVID-19 patients accepted weekly.

With the objective to explore the mortality risk of COVID-19 patients

based on patient-level medical information, different vaccination rates, and

hospital running capacities, we merge these three independent datasets into a

single one by first pre-processing them individually, and then merging them

by either date or age groups. The detailed steps of pre-processing will be

9

provided in Chapter 3. Here we present in Table 2.1 a summary of each

dataset after being pre-processed, where for j = {1, 2, 3}, nj represents the

size of the jth dataset, pj stands for the number of covariates obtained after

the pre-processing steps from jth dataset, and the number of columns records

the number of attributes before pre-processing for one of these datasets.

Table 2.1: Summary of Pre-processed three datasets

COVID-19 Case Data Hospital Data Vaccination Data

Dataset collection period 2020-01-01 to 2022-04-04 2020-03-18 to 2021-11-30 2021-04-04 to 2022-03-19

Dataset size n1 = 69, 664, 983 n2 = 19447 n3 = 997

Number of columns before pre-processing 32 10 22

Number of covariates after pre-processing p1 = 24 p2 = 2 p3 = 1

Below we describe the associated variables in the same way as stated on

the CDC website, where we let Y denote the common output variable for the

three datasets, and let x
(k)
j represent the jth covariate in the kth dataset for

k = 1, 2, 3 and j = 1, . . . , pk, with pk being the number of covariates in the

kth dataset.

2.1 COVID-19 Case Data

2.1.1 Data Source and Pre-Processing

The COVID-19 Case Data, accessed through CDC with permission needed

for the restricted data at https://data.cdc.gov/Case-Surveillance/COVID

-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t, are col-

lected from all COVID-19 cases reported to CDC between 2020-01-01 and

2022-04-04. Table 2.2 gives a summary of the data where there are 32 columns

https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t

10

Table 2.2: Summary of COVID-19 Case Data

The data collection period 2020-01-01 to 2022-04-04

The dataset size n1 = 69, 664, 983

The number of columns 32

The number of covariates after

pre-processing and the symbols of

covariates in parentheses

p1 = 24 ({x(1)
1 , . . . , x

(1)
24 })

The name of outcome Y : “death yn” (binary variable of death status)

Source website https://data.cdc.gov/Case-Surveillance/COVID

-19-Case-Surveillance-Restricted-Access-Detai/

mbd7-r32t

(variables) and 69,664,983 rows (cases/patients) in total, with Y representing

the death indicator (“death yn”). The data include the information about

demographics, geography, exposure history, disease existence indicators, un-

derlying medical conditions indicator, and the final outcome (alive or death)

for each case.

The original dataset contains some similar or repeating columns for dates

and residence areas, such as “cdc report dt” versus “cdc case earliest date”,

“res county” versus “county fips code”, and so on. Also, since the COVID-

19 case surveillance data are collected by jurisdictions yet these jurisdictions

may or may not share the data with CDC, the quality of input data heavily

depends on the data collection performance of each jurisdiction; or uncertain

measurements are present in the dataset a considerable proportion of missing

values. Therefore, it is necessary to pre-process the dataset to get rid of

redundant information or columns with missing or uncertain values before

analyzing cleaned data.

https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t
https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Restricted-Access-Detai/mbd7-r32t

11

The official CDC website mentioned in the previous paragraphs, the CDC

employs several measures to maintain data quality in this dataset, as out-

lined on their website. For questions with three possible answers (“Yes”,

“No”, and “Unknown”), any blank responses are reclassified as “Missing”.

Examinations of the accuracy are implemented for the date associated with

the data. Most crucially, the CDC prioritizes maintaining data quality, es-

pecially concerning information about symptom indicators, race, ethnicity,

and healthcare worker status, throughout the data assurance procedures.

A filtering process is applied to the “current status” column which con-

tains two possible statuses of each study subject: “Laboratory-confirmed

case” or “Probable case.” The filtering process retains the confirmed cases

without including those probable cases for further analyses. Moreover, the

following 6 columns are removed due to the presence of missing values or low

priority in the data assurance control:

1. cdc report dt: Date for the case that was first reported to the CDC;

2. onset dt: Date of symptom onset;

3. pos spec dt: Date of first positive specimen collection;

4. county fips code: five-digit integer which uniquely identifies geographic

areas;

5. res county: County of residence;

6. res state: State of residence.

Then we obtain a pre-processed dataset that is taken as the primary

dataset. We will use this dataset to track the detailed patient-level medical

12

information for subsequent analyses. The death indicator Y (“death yn”) of

the laboratory-confirmed case will be taken as the outcome or the response

variable.

2.1.2 Objective and Pre-Processed Data

With the pre-processed dataset, we are interested in identifying those de-

mographic variables and medical condition indicators of COVID-19 patients

that are important for predicting the mortality risk at the patient-level; such

a study helps us understand what kinds of patients are at a higher risk and

need more medical attention.

For the pre-processed COVID-19 Case Data, we take the output variable

Y : recorded as “death yn”, to be the binary indicator for each case to be dead

or not, with Y = 0 representing “not dead (No)” and Y = 1 representing

“dead (Yes)”. The p1 = 24 covariates in this COVID-19 Case Data dataset

are described as follows:

1. cdc case earliest dt (x
(1)
1): “The earlier of the clinical date (date related

to the illness or specimen collection) or the date received by CDC”

2. sex (x
(1)
2): “male; female; other; unknown; missing; NA”

3. age group (x
(1)
3): “0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79;

80+”

4. race ethnicity combined (x
(1)
4): “American Indian/Alaska native; non-

Hispanic Asian; non-Hispanic black; non-Hispanic multiple/other; non-

Hispanic native Hawaiian/other pacific islander; non-Hispanic white;

non-Hispanic Hispanic/Latino; and unknown”

13

5. hosp yn (x
(1)
5): “Was the patient hospitalized?”

6. icu yn (x
(1)
6): “Was the patient admitted to an intensive care unit(ICU)?”

7. hc work yn (x
(1)
7): “Is the patient a health care worker in the United

States?”

8. pna yn (x
(1)
8): “Did the patient develop pneumonia?”

9. abxchest yn (x
(1)
9): “Did the patient have an abnormal chest X-ray?”

10. acuterespdistress yn (x
(1)
10): “Did the patient have acute respiratory

distress syndrome?”

11. mechvent yn (x
(1)
11): “Did the patient receive mechanical ventilation

(MV) or intubation?”

12. fever yn (x
(1)
12): “Did the patient have fever > 100.4F(38C)?”

13. sfever yn (x
(1)
13): “Did the patient have subjective fever (felt feverish)?”

14. chills yn (x
(1)
14): “Did the patient have chills?”

15. myalgia yn (x
(1)
15): “Did the patient have muscle aches (myalgia)?”

16. runnose yn (x
(1)
16): “Did the patient have runny nose (rhinorrhea)?”

17. sthroat yn (x
(1)
17): “Did the patient have sore throat?”

18. cough yn (x
(1)
18): “Did the patient have cough (new onset or worsening

of chronic cough)?”

19. sob yn (x
(1)
19): “Did the patient have shortness of breath (dyspnea)?”

14

20. nauseavomit yn (x
(1)
20): “Did the patient have nausea or vomiting?”

21. headache yn (x
(1)
21): “Did the patient have headache ?”

22. abdom yn (x
(1)
22): “Did the patient have abdominal pain?”

23. diarrhea yn (x
(1)
23): “Did the patient have diarrhea (≥ 3 loose/looser

than normal stools/24hr period)?”

24. medcond yn (x
(1)
24): “Did the patient have pre-existing medical condi-

tions?”

Indicator variables {x(1)
5 , . . . , x

(1)
24 } are denoted by the suffix “ yn” in their

column names, representing the answer to the corresponding question to be

either “yes” or “no”, coded as “1” or “0”. These variables take only one of

four values: yes, no, unknown, missing, which are regulated by the CDC.

Except for cdc case earliest dt (x
(1)
1), all covariates are categorical vari-

ables that are to be encoded as numerical values by using OridinalEncoder

from Scikit-learn(Pedregosa et al., 2011). Scikit-learn is an open-source ma-

chine learning library in Python, which provides various machine learning al-

gorithms, including classification, regression, and clustering. It also supports

data pre-processing, model evaluation, and feature selection. Categorical

encoding enables the representation of categorical variables in a numerical

format, which is often needed for the implementation of many machine learn-

ing algorithms(Potdar, Pardawala, and Pai, 2017).

15

Table 2.3: Summary of Hospital Data

The data collection period 2020-03-18 to 2021-11-30

The dataset size n2 = 19447

The number of columns before

pre-processing

10

The number of covariates after

pre-processing and the symbols of

covariates in parentheses

p2 = 2 (“Non COVID Percent ED”(x
(2)
1) &

“Non COVID Percent IP”(x
(2)
2))

Source website https://data.cdc.gov/NCHS/COVID-19-Hospital

-Data-from-the-National-Hospital-/q3t8-zr7t

2.2 Hospital Data

2.2.1 Data Source

The Hospital Data, publicly available at https://data.cdc.gov/NCHS/

COVID-19-Hospital-Data-from-the-National-Hospital-/q3t8-zr7t, are

collected by the National Hospital Care Survey (NHCS), which contain inpa-

tient department and emergency department measurements from 40 hospitals

for the period from 2020-03-18 to 2021-11-30.

Table 2.3 gives a summary of the data, which contain 10 columns record-

ing various indicators such as COVID-19 patient percentage, length of inpa-

tient stay, and so on. According to the CDC official website, this dataset may

provide insight into understanding the pressure brought by COVID-19 on the

entire U.S. healthcare system and the impact on various types of hospitals,

even though it is not necessarily nationally representative.

https://data.cdc.gov/NCHS/COVID-19-Hospital-Data-from-the-National-Hospital-/q3t8-zr7t
https://data.cdc.gov/NCHS/COVID-19-Hospital-Data-from-the-National-Hospital-/q3t8-zr7t
https://data.cdc.gov/NCHS/COVID-19-Hospital-Data-from-the-National-Hospital-/q3t8-zr7t
https://data.cdc.gov/NCHS/COVID-19-Hospital-Data-from-the-National-Hospital-/q3t8-zr7t

16

2.2.2 Objective and Data Pre-Processing

COVID-19 is an unprecedented challenge to healthcare systems in the

world. It is critical to monitor the running pressure of hospitals in waves of

different variants, and moreover, it is important to understand the induced

effects on the COVID-19 death rate. As a large number of COVID-19 patients

rush to hospitals, unprecedented pressure is placed on the healthcare system,

which will impact both COVID and Non-COVID patients.

With the Hospital Data, we are interested in examining how the popula-

tion COVID-19 death rate would be associated with by the hospital running

pressure.

However, the original dataset does not contain measurements of a variable

to represent hospital pressure. As a remedy, we use the information contained

in the following six columns to generate two new covariates to indicate the

hospital running pressure brought by COVID-19: The detailed description

of this pre-processing will be presented in Section 3.2.1.

• Start Time: Week starting date

• Setting: ED = Emergency Department, IP = Inpatient

• Indicator: Confirmed COVID-19, non-COVID-19, Suspected COVID-

19, Total screenings, death, etc.

• Group: Subgroups such as age groups and sex.

• Measure: Number of encounters, average length of stay, percent, etc;

measurement for each indicated patient type.

17

• Value: the value for corresponding measurement

The resulting two new covariates are named as “Non COVID Percent ED”(x
(2)
1)

and “Non COVID Percent IP”(x
(2)
2), with the following definition:

1. Non COVID Percent ED (x
(2)
1): the percentage of non-COVID-19 pa-

tients in the Emergency Department;

2. Non COVID Percent IP (x
(2)
2): the percentage of non-COVID-19 pa-

tients in the Inpatient Department.

In the data analyses to be reported in Chapter 5, these new covariates

x
(2)
1 and x

(2)
2 in the Hospital Data will be used as additional features to

{x(1)
1 , . . . , x

(1)
24 } in the COVID-19 Case Data described in Section 2.1, for

which a outcome variable Y , defined in Section 2.1.2, is shared by the both

data sets.

2.3 Vaccination Data

2.3.1 Data Source

The Vaccination Data, publicly available at (1) https://data.cdc.gov/

Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age

-Group-and/3rge-nu2a, and (2) https://data.cdc.gov/Public-Health

-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/

d6p8-wqjm, are collected to monitor rates of COVID-19 cases and deaths by

vaccination status and age groups. They contains two datasets: (1) Rates

of COVID-19 cases or deaths by age group and vaccination status, and (2)

https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm

18

Table 2.4: Summary of Vaccination Data

The data collection period 2021-04-04 to 2022-03-19 (Dataset 1),

and 2021-09-19 to 2022-03-19 (Dataset 2)

The dataset size n3
1 = 997 (Dataset 1)

n3
2 = 364 (Dataset 2)

The number of columns 16 (Dataset 1), and 22 (Dataset 2)

The number of covariates after

pre-processing and the symbols of

covariates in parentheses

p3 = 1 (“death rate”x
(3)
1)

Source website https://data.cdc.gov/Public-Health

-Surveillance/Rates-of-COVID-19-Cases-or

-Deaths-by-Age-Group-and/3rge-nu2a

https://data.cdc.gov/Public-Health

-Surveillance/Rates-of-COVID-19-Cases-or

-Deaths-by-Age-Group-and/d6p8-wqjm

https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm
https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm

19

Rates of COVID-19 cases or deaths by age group and vaccination status and

booster dose.

Table 2.4 gives a summary of the data where the first dataset spans from

2021-04-04 to 2022-03-19, including 16 columns and 997 rows in terms of

weeks and age groups; the second dataset enriches the previous dataset with

Booster Dose information from 2021-09-19 by adding 6 more columns to the

original dataset.

These datasets record dates, the confirmed cases, and deaths for different

age groups with different vaccination status during the given time frame.

Similar to the COVID-19 Case Data, the vaccination information is provided

on jurisdictions-basis and updated weekly. According to the CDC website,

the participating jurisdictions come from ten health and human services re-

gions in the U.S., covering about 71% of the total population.

2.3.2 Objective and Data Pre-Processing

Since the vaccination is critical to prevent or reduce infection and death

caused by COVID-19, this dataset may be used to provide meaningful insight

into the effectiveness of vaccination. With this dataset, we are interested in

examining the strength of protection brought by vaccinations for different

age groups. Therefore, the corresponding death rate for each age group will

be calculated as the population-weighted sum of the death rates of different

vaccination statuses.

Because the Vaccination Data do not include specific columns indicating

the death rate for different age groups and vaccination status directly, we

utilize the following 9 available columns to derive a new covariate, called

20

“death rate”(x
(3)
1), with the detailed process of generating this covariate de-

ferred to Section 3.3.2:

• MMWR week/mmwr week: MMWR epidemiological year and week

(YYYYWW format; e.g. 202101)

• outcome: COVID-19 case or death

• age group: “12-17; 18-29; 30-49; 50-64; 65-79; 80+” and “12-17; 18-49;

50-64; 65+” respectively

• fully vaccinated population: cumulative weekly count of the population

vaccinated with at least a primary series

• unvaccinated population: cumulative weekly estimated count of the

unvaccinated population

• boosted population: cumulative weekly count of the population vacci-

nated with a primary series and booster dose

• crude vax IR: unadjusted incidence rate of the corresponding outcome

among the population vaccinated with at least a primary series (per

100,000 population)

• crude unvax IR: unadjusted incidence rate of the corresponding out-

come among the unvaccinated population (per 100,000 population)

• crude booster ir: unadjusted incidence rate of the corresponding out-

come among the population vaccinated with a primary series and booster

dose (per 100,000 population)

21

The new covariate, “death rate”(x
(3)
1), is defined as the population-weighted

sum of the death rate that is calculated for each vaccination status within

each age group. It will be used as an additional feature to {x(1)
1 , . . . , x

(1)
24 , x

(2)
1 , x

(2)
2 },

a combined features of the COVID-19 Case Data and the Hospital Data de-

scribed in Section 2.2.2, for which the common outcome variable Y is shared.

22

Chapter 3

Data Preparation

To leverage the datasets described in Chapter 2 to examine the mortality

risk of COVID-19, we consolidate those three datasets into a unified dataset

chronologically. This data aggregation allows us to have a comprehensive and

informative dataset for which each patient contains not only his/her medical

details but also additional external factors, such as vaccination status and

hospital pressures upon reception.

Even though these 3 datasets described in Chapter 2 are related, each of

them covers different aspects of COVID-19 factors so they need to be cleaned

and manipulated separately before being aggregated. In this Chapter, we fur-

ther pre-process those 3 datasets individually and then merge them together

as a single dataset to be analyzed.

23

3.1 COVID-19 Case Data

3.1.1 Missing Values

The COVID-19 Case Data dataset described in Section 2.1 has a huge

file size of about 18GB in total. More than 99.995% of the subjects have

at least one missing value in all 32 columns. As mentioned in Section 2.1.1,

the first step is to only keep the confirmed cases and remove the probable

cases and those entries with missing values. Specifically, for those columns

related to {x(1)
1 ... x

(1)
24 }, we remove any rows containing entries with missing,

or unknown. The resulting subset contains only 242,744 rows and the file size

is significantly reduced to 30MB. This means that the COVID-19 Case Data

dataset to be analyzed includes 242,774 confirmed patients with complete

COVID-19 records.

The removal of missing values, allows us to employ available methods in

the literature, which commonly require complete observations for each study

subject. This treatment of missing observations is called the complete data

analysis, a widely used approach in applications. Its validity is ensured if

data are missing completely at random (MCAR). When data are missing

at random (MAR) or missing not at random (MNAR), biased results are

generally expected (Little and Rubin, 2019).

3.1.2 Correcting and Converting Datatype

Correcting: This COVID-19 Case Data dataset is maintained regularly

and published after careful inspection, and most of the columns are binary

indicator columns (Yes/No) or categorical answers (e.g., age group, race,

24

state, county, etc.). There are no aberrant or unreasonable data inputs and

no correction seems needed.

Converting: For the selected 24 covariates {x(1)
1 ... x

(1)
24 }, only date

variable “cdc case earliest dt”(x
(1)
1) is needed to change the datatype. The

“cdc case earliest dt”(x
(1)
1) column is converted from “object” to “datetime64”

datatype to allow more operations in further analysis such as sorting the

dataframe by date, joining two or more dataframes by the date and so on.

3.2 Hospital Data

3.2.1 Extracting Useful Subset

The Hospital Data described in Section 2.2 contain a number of measure-

ments that are not useful in this study. It is thereby necessary to pre-process

the original data to obtain a relevant subset to conduct analyses. In par-

ticular, the measurements in the following six columns are pre-processed as

follows:

• Start Time: Week starting date

– The column under the heading “Start Time” is converted to the

“datetime64” data type, a data type in the NumPy library that

is commonly used for numerical computations in Python (Harris

et al., 2020). It serves as a key to combine the Hospital Data with

the COVID-19 Case Data dataset on x
(1)
1 (“cdc case earliest dt”).

Once integrated, this column will be dropped, and further details

regarding this process will be provided in Section 3.5.1.

25

• Indicator: the single column with heading “Indicator” records the fol-

lowing 17 types of indicators to describe the status of the patients:

Confirmed COVID-19, Non-COVID-19, Suspected COVID-19, Con-

firmed Screenings, Negative Screenings, Total Screenings, Confirmed

COVID-19 with pneumonia, Confirmed COVID-19 with acute respi-

ratory failure, Confirmed COVID-19 with LRI, Confirmed COVID-19

with ARDS, Confirmed COVID-19 with bronchitis, Confirmed COVID-

19 with any respiratory illness, Confirmed COVID-19 Deaths, Intuba-

tion or Ventilator Use, Deaths of confirmed cases with intubation or

ventilator use, Deaths of confirmed cases without intubation or ventila-

tor use, NULL.

– Among these 17 variables, there are three variables about screen-

ing, which are “Confirmed Screenings”, “Negative Screenings”,

and “Total Screenings”. Peculiarly, all these variables record the

exactly same 1740 entries, which do not make sense. As a result,

all entries associated with these three screening-related indicators

have been removed to rectify this error. The NULL entries are

removed as well. Thus, all the remaining 13 indicators are asso-

ciated with confirmed COVID-19 cases, except “Non-COVID-19”

and “Suspected COVID-19”.

– Among the 17 indicators under consideration, 16 are associated

with confirmed or suspected COVID-19 cases, indicating varying

levels of additional hospital resource required. In contrast, one in-

dicator, labeled as “Non-COVID-19,” represents cases that do not

need any additional healthcare resources. Therefore, by examining

26

the proportion of “Non-COVID-19” patients within the dataset,

we can gain certain insights into the overall operational burden

on hospitals. To specifically reflect the hospital pressure brought

by COVID-19, we keep only the rows where the “Indicator” col-

umn has the value “Non-COVID-19”. Subsequently, we remove

all other rows, as they pertain to confirmed or suspected COVID-

19 cases that require further medical attention. This approach

offers us a way to understand overall hospital running pressure by

separating out non-COVID-19 cases who do not strain hospital

resources from others.

• Group: Each entry in the “Group” column contains one of the 8 pro-

vided values: Age, Sex, Total, Urban-rural, Discharge and Intubation

or Ventilator Use Status, Discharge Status, Intubation or Ventilator

Use Status, NULL

– After keeping only the “Non-COVID-19” rows from the previous

step, only three values for the “Group” column remain: Age, Sex,

and Total.

– Since the age or sex of patients are not regarded as direct factors

to increase the running pressure of hospitals, only the rows with

“Total” are kept in the “Group” column.

• Measure:

– The column with heading “Measure” records exactly one of three

words: Number of encounters, Average length of stay(days), Per-

27

cent. The corresponding values are stored in a separate column

named “Values” and will be discussed later.

– However, neither the average length of stay nor the number of

encounters has spanned the entire time frame (Mar 2020 - Nov

2021), only percent has sufficiently many instances and it is there-

fore kept to provide insight into the hospital running pressure.

After only keeping the selected rows as described in the previ-

ous steps, the corresponding values for this Percent column now

indicate the percent of non-COVID-19 patients admitted to the

hospital regardless their age or sex. After eliminating other mea-

surements with numerous missing values, only the rows with the

word “percent” remains.

• Value: the value for corresponding measurement

– After selecting only the Percent measurement and completing pre-

vious preprocessing steps, each entry in this column represents the

percentages of non-COVID-19 patients admitted to the hospital

in a given week, as shown in Figure 3.1.

• Setting: ED or IP

– This column records a binary indicator that each entry must be

either ED or IP, where ED represents the emergency department,

and IP represents the inpatient department.

– To have a better picture of running pressure, defined as the per-

cent of non-COVID-19 patients, and to monitor the running pres-

28

Figure 3.1: Example of pre-processed Hospital Data before split by Setting

sure on emergency department (ED) and inpatient department

(IP) separately, the pre-processed “value” column from the last

step is split into two distinct columns corresponding to “ED” and

“IP” by this “Setting” indicator. Then we further sort these two

new columns by date, given by the “Start Time” column. To dif-

ferentiate them, they are renamed to “Non COVID Percent ED”

and “Non COVID Percent IP” correspondingly. After the split-

ting process, the ”value” column is divided into two new columns

we just created.

29

With the following two created new variables:

• “Non COVID Percent ED”,

• “Non COVID Percent IP”,

we form a subset of data by combining the information about those two

variables with the “Start Time”.

Result: After pre-processing, the Hospital Data contain only three variables:

1. “Start Time”,

2. “Non COVID Percent ED”(x
(2)
1),

3. “Non COVID Percent IP”(x
(2)
2)

The example of this pre-processed Hospital Data is shown as below in Figure

3.2:

Figure 3.2: Example of pre-processed Hospital Data

3.2.2 Converting

Start Time: Similar to the “cdc case earliest dt”(x
(1)
1) column men-

tioned in Section 3.1.2, the “Start Time” column is converted from “object”

30

to “datetime64” datatype so it can be used to aggregate with other two

datasets.

3.2.3 Plotting

After the pre-processing steps for the Hospital Data dataset, in Fig-

ure 3.3, we plot the measurements of “Non COVID Percent ED”(x
(2)
1) or

“Non COVID Percent IP”(x
(2)
2) versus the date recorded in the “Start Time”

column for the period from April 2020 to the end of November 2021.

In Figure 3.3, the operation strain experienced by hospitals is visually

represented by the two lines on the plot, denoting the percentages of non-

COVID-19 patients in the Inpatient Department and the Emergency Depart-

ment. When patients are admitted to a hospital, they are typically catego-

rized as either confirmed or suspected COVID-19 cases, with the exception of

non-COVID-19 cases. The proportion of non-COVID-19 patients admitted

provides an indication of the current hospital workload attributed to con-

firmed or suspected COVID-19 cases. As the percentage of non-COVID-19

patients admitted to hospitals decreases, it signifies a higher proportion of

confirmed or suspected COVID-19 cases. In other words, when a smaller

portion of non-COVID-19 cases are present, the majority of incoming pa-

tients are more likely to be confirmed or suspected to have COVID-19. This

observation highlights a clear trend indicating a decline in the proportions

of non-COVID-19 patients in both Inpatient department and Emergency de-

partment.

31

Figure 3.3: The percentage of non-COVID-19 patients admitted to selected

hospitals during the COVID-19 waves

3.3 Vaccination Data

3.3.1 Subsets of Death Information

The two Vaccination Data datasets described in Section 2.3 can be used

to study the effectiveness of vaccination on preventing or reducing death in

each age group.

Three types of vaccination recorded by CDC in this dataset which are

Pfizer, Moderna, and Janssen (Johnson&Johnson). According to the study

conducted by Lin et al. (2022) in North Carolina, all these three Covid-19

vaccines demonstrated persistent efficacy in decreasing the probabilities of

32

both hospitalization and mortality. Hence, our following analyses will not

focus on assessing the impact of vaccination by the vaccine type; instead, we

will concentrate on determining the impact on changing mortality according

to the vaccination status of the patients. In addition, our analyses will not

incorporate possible gender effects because the CDC has not included gender

information in these datasets.

To this end, we concentrate on those measurements for those subjects who

died of COVID-19 and remove all other columns that contain duplicated or

irrelevant information for this study, except for the columns mentioned in

Section 2.3.2. This process gives us a subset of 222 subjects to be analyzed

in the sequel.

3.3.2 Converting and Creating

• Date: the columns named “MMWR week” and “mmwr week”, stated

in Section 2.3.2, in these two datasets indicate the MMWR epidemio-

logical year and week for each death outcome, respectively. For both

Vaccination Data datasets, the date column is first converted to strings

from “object” datatype, and then a new date column in the “YYYY-

MM-DD” format is created from the “MMWR week” column to track

the variant waves, with the corresponding MMWR week column re-

moved to avoid duplication.

• Death rate (x
(3)
1): The death rate for each age group is calculated as the

population-weighted sum of the death rate for each vaccination status,

33

given by:

x
(3)
1 = w1 ·

#(vaccinated)

#(vaccinated) + #(unvaccinated)

+ w2 ·
#(unvaccinated)

#(vaccinated) + #(unvaccinated)
,

where w1 represents the unadjusted incidence rate of death among the

population vaccinated with at least a primary series, determined by

“Crude vax IR”; w2 represents unadjusted incidence rate of the corre-

sponding outcome among the unvaccinated population, determined by

“Crude unvax IR”; #(vaccinated) stands for the fully vaccinated pop-

ulation; and #(unvaccinated) is determined by unvaccinated popula-

tion. These values can be obtained using the corresponding population

columns and incidence rate columns described in Section 2.3.2.

Result: After preparation, this Vaccination Data subset contains three vari-

ables: date, “age group”, and “death rate”(x
(3)
1). The date and “age group”

column will be used as keys to join with the COVID-19 Case Data dataset

based on the information on x
(1)
1 (“cdc case earliest dt”) and x

(1)
3 (“age group”).

3.4 Summary of Variables After Pre-processing

For ease of reference in subsequent analysis, we summarize the pre-processed

covariates in Table 3.1, with their original dataset source names used. All

these covariates will be merged into one single dataframe as described in the

following section, to be used for the feature selection and building the models

to be described in Chapter 4. The datatype of each covariate is shown in the

last column of Figure 3.4 for reference.

34

Table 3.1: Summary of Covariates After Pre-processing

Covariate’s name Mathematical Symbol Dataset Source

cdc case earliest dt x
(1)
1 COVID-19 Case Data

sex x
(1)
2 COVID-19 Case Data

age group x
(1)
3 COVID-19 Case Data

race ethnicity combined x
(1)
4 COVID-19 Case Data

hosp yn x
(1)
5 COVID-19 Case Data

icu yn x
(1)
6 COVID-19 Case Data

hc work yn x
(1)
7 COVID-19 Case Data

pna yn x
(1)
8 COVID-19 Case Data

abxchest yn x
(1)
9 COVID-19 Case Data

acuterespdistress yn x
(1)
10 COVID-19 Case Data

mechvent yn x
(1)
11 COVID-19 Case Data

fever yn x
(1)
12 COVID-19 Case Data

sfever yn x
(1)
13 COVID-19 Case Data

chills yn x
(1)
14 COVID-19 Case Data

myalgia yn x
(1)
15 COVID-19 Case Data

runnose yn x
(1)
16 COVID-19 Case Data

sthroat yn x
(1)
17 COVID-19 Case Data

cough yn x
(1)
18 COVID-19 Case Data

sob yn x
(1)
19 COVID-19 Case Data

nauseavomit yn x
(1)
20 COVID-19 Case Data

headache yn x
(1)
21 COVID-19 Case Data

abdom yn x
(1)
22 COVID-19 Case Data

diarrhea yn x
(1)
23 COVID-19 Case Data

medcond yn x
(1)
24 COVID-19 Case Data

Death rate x
(2)
1 Vaccination Data

Non COVID Percent ED x
(3)
1 Hospital Data

Non COVID Percent IP x
(3)
2 Hospital Data

35

3.5 Data Integration and Division

3.5.1 Integration

The three datasets, namely COVID-19 Case Data, Hospital Data, and

Vaccination Data, are combined by aligning them based on date or age

groups. First, the Hospital Data are matched with COVID-19 Case Data

using the date only, as the Hospital Data lack information on age groups.

Next, the Vaccination Data are integrated with the combined Hospital

Data and COVID-19 Case Data, using both age groups and date as match-

ing criteria. As CDC has different age group structures for the primary doses

dataset and the booster dose dataset (Section 2.3.2) contained in the Vac-

cination Data dataset, the age group matching process is done by manually

specifying the matched pairs. While the available information does not yield

a perfect match for age groups, we pair age groups by rounding. For ex-

ample, the age group “60-69 years” in the COVID-19 Case Data cannot be

matched perfectly with the age groups of “50-64” and “65-79”, or “50-64”

and “65+” in the Vaccination Data. In this case, “65-79” or “65+” groups

in Vaccination Data will be chosen as the paired age group for “60-69” in

the COVID-19 Case Data. The detailed information about age group pairing

can be found in Figure 3.4.

As a result, the final integrated dataset has three additional columns with

27 covariates in total, in which 24 covariates, {x(1)
1 ... x

(1)
24 }, comes from the

COVID-19 Case Data dataset, two covariates, “Non COVID Percent ED”(x
(2)
1)

and “Non COVID Percent IP”(x
(2)
2) come from Hospital Data, and one co-

variate, “death rate”(x
(3)
1), is from Vaccination Data.

36

Figure 3.4: Age group pairing in COVID-19 case data, primary doses, and

booster doses from the Vaccination Data

The information is summarized in Figure 3.5, where the first column lists

the name of covariates, the second column indicates the number of non-empty

observations in the corresponding column, and the last column of the figure

shows the datatype for each covariate after being pre-processed, as mentioned

in Section 3.4. Detailed descriptions about the covariates are included in the

Table 3.2.

Remark: Since the Hospital Data start on 2020-03-18 but the COVID-19

Cases Data start on 2020-01-01, there are no hospital data between 2020-01-

01 and 2020-03-18, yield missing values for “Non COVID Percent ED”(x
(2)
1)

and “Non COVID Percent IP”(x
(2)
2). As CDC did not start documenting the

corresponding hospital data to address the impact of COVID-19 from 2020-

01-01 to 2020-03-18, all patients in this time window are non-COVID-19, so

that “Non COVID Percent ED”(x
(2)
1) and “Non COVID Percent IP”(x

(2)
2)

are set to 100%. As a result, the missing values are filled with number

100, assuming that the non-COVID-19 patient percentage is 100% for the

period between 2020-01-01 and 2020-03-18.

37

Figure 3.5: Summary of the integrated dataset. The first column records the

index of each covariate, the second column lists the name of covariates, the

third columns shows the number of non-null records for each covariate, and

the last column indicates the corresponding datatype of each covariate

In Table 3.2, we present descriptive statistics for all columns within the

integrated dataset, where each row displays the count of each feature, to-

gether with its mean, standard deviation, minimum and maximum values,

as well as the 25th, 50th, and 75th percentile values.

38

Table 3.2: Descriptive Statistics for Covariates displayed in Figure 3.5

Variable Count Mean Std Min 25% 50% 75% Max

abdom yn 242774 0.116 0.320 0.000 0.000 0.000 0.000 1.000

abxchest yn 242774 0.046 0.209 0.000 0.000 0.000 0.000 1.000

acuterespdistress yn 242774 0.013 0.112 0.000 0.000 0.000 0.000 1.000

age group 242774 3.692 2.057 0.000 2.000 4.000 5.000 8.000

date 242774 341.042 156.471 0.000 254.000 307.000 418.000 777.000

chills yn 242774 0.397 0.489 0.000 0.000 0.000 1.000 1.000

cough yn 242774 0.613 0.487 0.000 0.000 1.000 1.000 1.000

death yn 242774 0.014 0.119 0.000 0.000 0.000 0.000 1.000

diarrhea yn 242774 0.248 0.432 0.000 0.000 0.000 0.000 1.000

fever yn 242774 0.344 0.475 0.000 0.000 0.000 1.000 1.000

sfever yn 242774 0.379 0.485 0.000 0.000 0.000 1.000 1.000

hc work yn 242774 0.120 0.325 0.000 0.000 0.000 0.000 1.000

headache yn 242774 0.570 0.495 0.000 0.000 1.000 1.000 1.000

hosp yn 242774 0.079 0.269 0.000 0.000 0.000 0.000 1.000

icu yn 242774 0.014 0.119 0.000 0.000 0.000 0.000 1.000

mechvent yn 242774 0.005 0.073 0.000 0.000 0.000 0.000 1.000

medcond yn 242774 0.437 0.496 0.000 0.000 0.000 1.000 1.000

myalgia yn 242774 0.512 0.500 0.000 0.000 1.000 1.000 1.000

nauseavomit yn 242774 0.220 0.414 0.000 0.000 0.000 0.000 1.000

pna yn 242774 0.045 0.208 0.000 0.000 0.000 0.000 1.000

race ethnicity combined 242774 5.165 1.555 0.000 6.000 6.000 6.000 6.000

runnose yn 242774 0.436 0.496 0.000 0.000 0.000 1.000 1.000

sex 242774 0.443 0.497 0.000 0.000 0.000 1.000 1.000

sob yn 242774 0.248 0.432 0.000 0.000 0.000 0.000 1.000

sthroat yn 242774 0.353 0.478 0.000 0.000 0.000 1.000 1.000

Non COVID Percent ED 242774 81.309 6.374 73.400 75.700 80.500 85.500 100.000

Non COVID Percent IP 242774 69.889 7.799 59.000 64.100 68.100 73.600 100.000

death rate 47651 2.867 4.671 0.000 0.326 0.704 2.962 30.448

39

3.5.2 Division

To access the impact of the variant type of virus, we also divide the

integrated dataset in Section 3.5.1 into 5 subsets based on date according

to the Variant of Concerns (VOCs) published by World Health Organization

(2023b), and display the information in Table 3.2. To be specific, the 5

subsets are:

• Outbreak: Cases confirmed before 2020-12-18. VOC: None.

• AlphaBeta: Cases confirmed between 2020-12-18 and 2021-01-11. VOC:

Alpha & Beta variants.

• Gamma: Cases confirmed between 2021-01-11 and 2021-05-11. VOC:

Gamma variant.

• Delta: Cases confirmed between 2021-05-11 and 2021-11-26. VOC:

Delta variant.

• Omicron: Cases confirmed after 2021-11-26. VOC: Omicron variant.

Remark: There is the disparity in data availability. The Vaccination Data

start on 2021-04-11, yet the COVID-19 Cases Data start on 2020-01-01. Also,

shown in Figure 3.4, the “death rate” (x
(3)
1) column in the integrated dataset

contains only 47,651 non-null values out of a total of 242,774 rows.

40

Table 3.3: Variant of Concerns(VOCs)

Date Subset name Variant Subset Size (# of patients)

2020-01-01 to 2020-12-18 Outbreak None 135727

2020-12-18 to 2021-01-11 AlphaBeta Alpha & Beta variants 20086

2021-01-11 to 2021-05-11 Gamma Gamma variant 39855

2021-05-11 to 2021-11-26 Delta Delta variant 36224

2021-11-26 to 2022-04-04 Omicron Omicron variant 11287

41

Chapter 4

An Overview of Machine

Learning Methods

This chapter 4 provides an overview of useful machine learning techniques

that will be employed to analyze the integrated dataset described in Section

3.5.

4.1 Feature Selection

Feature selection is a useful technique in data analysis and machine learn-

ing, as it assists in identifying the most pertinent and informative features

by reducing the dimension of the original dataset. The reduction in dimen-

sionality can lead to improved computational efficiency and performance of

machine learning algorithms (Guyon and Elisseeff, 2003). Furthermore, by

eliminating irrelevant or redundant features, feature selection mitigates the

risk of overfitting and enhancing the model’s ability to generalize well to

42

handle future data (Dash and Liu, 1997).

Jović, Brkić, and Bogunović (2015) provided a comprehensive review on

various techniques used for feature selection, and they mentioned that fil-

ter methods based on information theory and wrapper methods based on

greedy stepwise approaches usually offer best results. Here we particularly

describe three approaches: the Filter Method works for univariate data, and

the Wrapper Method and the Embedded Method that apply to multivariate

data.

4.1.1 Filter Method

The Filter method is a technique used to identify the most relevant fea-

tures from a dataset. It measures the relevance of covariates with the target

variable by using different statistical methods to calculate the correlation

(Bommert et al., 2020).

For the case with two continuous variables, Pearson’s Correlation Coef-

ficient can be used as a measure to describe the linear dependence between

two continuous variables X and Y . Let {{Xi, Yi} : i = 1, . . . , n} denote a

random sample taken from the distribution of {X, Y }, then Pearson’s Cor-

relation Coefficient for X and Y is given by

rXY ≜
Σn

i=1(Xi − X̄)(Yi − Ȳ)√
Σn

i=1(Xi − X̄)2
√

Σn
i=1(Yi − Ȳ)2

where X̄ = n−1Σn
i=1Xi and Ȳ = n−1Σn

i=1Yi.

As noted by Rodgers and Nicewander (1988) this coefficient is invariant

to linear transformations of either variable.

43

The correlation ratio is used to calculate the association between a cat-

egorical variable, say X, and a numeric variable, say Y ; the definition is

provided by the Dython documentation(Zychlinski, n.d.). Suppose the ith

observation for Y is yxi, corresponding to the category X = x. Let nx denote

the number of observations in category X = x, and let ȳx =
∑

i yxi
nx

repre-

sent the mean of observations for X = x; and let ȳ =
∑

i nxȳx∑
x nx

. Then the

correlation ratio for X and Y is defined as:

ηXY =

√ ∑
x nx(ȳx − ȳ)2∑

x,i nx(yxi − ȳ)2
.

If both X and Y are categorical variables, then the Chi-square test of

independence can be applied to evaluate the association between X and Y .

This Chi-square test relies on a contingency table, which is a tabular represen-

tation of the observed frequencies of the categorical variables’ combinations

(Bolboacă et al., 2011). For combination of categories from X and Y indexed

by (i, j), let Oi,j represent the observed value in the contingency table that

records the counts of occurrences, and let Ei,j denote the count that would

be seen if X and Y were independent. These expected values (Ei,j) can be

calculated as:

Ei,j =
(
∑

j Oi,j)(
∑

i Oi,j)

N
,

where,
∑

j Oi,j represents the sum of observed values in row i,
∑

i Oi,j rep-

resents the sum of observed values in column j, and N is the total number

of observations.

The Chi-square statistic is then calculated based on the differences be-

tween observed and expected values in each cell, quantifying how much the

observed data deviates from what would be expected under the independence

44

assumption for X and Y . Specifically, the Chi-square statistic is defined as:

T =
r∑

i=1

c∑
j=1

(Oi,j − Ei,j)
2

Ei,j

,

where r represents the number of rows and c represents the number of

columns in the contingency table. Under the independence assumption,

the statistic T follows the Chi-Square distribution with degrees of freedom

(r − 1)(c− 1).

Concerning two categorical variables, say X and Y , one may also use

Cramér’s V to measure the strength of association. This measure adapts

the Chi-Square statistic that is normalized to provide a value ranging from

0 to 1, inclusive. Let n denote the sample size, and let r and c represent the

number of rows and columns in the contingency table, respectively. Cramér’s

V was initially introduced by Cramér (1999) as:

V =

√
χ2

n(z − 1)
,

where χ2 is the Chi-square statistic defined in Section 4.1.1, and z = min(r, c).

The measure V assumes a value in the internal [0, 1]. The higher the

Cramér’s V value, the stronger ther association between X and Y . As men-

tioned by Akoglu (2018), a Cramér’s V value greater than 0.1 is considered

a moderate association, and a value greater than 0.25 is regarded a strong

association.

4.1.2 Wrapper Method

The wrapper method(Das, 2001) is a machine learning algorithm that is

a greedy search based approach. This method evaluates all possible subsets

45

of features to against a specific evaluation criterion.

With regression models, an evaluation criterion can be based on P-values

or R-squared score. The P-value is a measure of the statistical significance of

the relationship between the predictor variables and the response variable in

the regression model. Wasserstein and Lazar (2016) stated that the P-value

is “probability under a specified statistical model that a statistical summary

of the data (for example, the sample mean difference between two compared

groups) would be equal to or more extreme than its observed value”. In

regression analysis, each predictor variable has its own P-value associated

with its coefficient estimate. A low P-value, typically below a chosen signifi-

cance level, such as 0.05, suggests that the predictor variable has a significant

impact on the response variable, meaning the relationship is unlikely to be

due to random chance. On the other hand, the R-squared score is a sample

estimate that represents the proportion of variance in the response variable

that is explained by the predictor variables in the regression model(Miles,

2005). It indicating the goodness-of-fit of the model, takes a value from 0 to

1, where 0 indicates that the predictor variables explain none of the variance

and 1 indicates a perfect fit where all the variance is explained.

For binary classification tasks, the criterion can be accuracy, precision,

F1 score, and so on. The accuracy is simply the ratio of correctly classified

instances to the total number of instances in the sample, and the precision

is the proportion of correctly predicted positive cases out of all positive pre-

dictions made by the model (both true positives and false positives)(Goutte

and Gaussier, 2005). The F1 score is a combined measure of accuracy and

precision.

46

To be specific, suppose there are N classes in total, let fj be the F1 score

for the jth class for j = 1, . . . , N . Let true positives (TP) and false positives

(FP) represent the count of correctly and incorrectly predicted positive in-

stances, respectively. Likewise, true negatives (TN) and false negatives (FN)

indicate the number of correctly and incorrectly predicted negative instances,

respectively. Then the recall, precision, F1 Score, and Macro F1 Score are

defined as(Goutte and Gaussier, 2005):

Recall =
TP

TP+FN
;

Precision =
TP

TP+FP
;

F1 Score =
Precision ∗ Recall
Precision + Recall

;

Macro F1 Score =

∑N
j=1 fj

N
.

To make the feature selection process of the wrapper method more ex-

plainable and straightforward, the sequential selection strategies can be used.

According to El Aboudi and Benhlima (2016), there are two sequential se-

lection strategies:

• The Sequential Feature Selection algorithm (Forward Selection): Start-

ing with no feature in the model, we keep adding features to improve

the performance of the resulting model in each iteration until the per-

formance of the model cannot be improved by adding more features.

• The Sequential Backward Selection algorithm (Backward Elimination):

Starting with all features in the model, we keep removing features to

47

improve the performance of the resulting model in each iteration un-

til there is no improvement on the model when removing additional

features.

4.1.3 Embedded Method

The Embedded method (Lal et al., 2006) is a feature selection approach

which is integrated as part of a machine learning algorithm. It performs the

feature selection process during the algorithm’s execution, and it takes care of

each iteration during the model training process and carefully extracts those

features which contribute the most. In this way, the embedded method has

less computation time and is less prone to over-fitting.

As commented by Jović et al. (2015), certain embedded methods utilize

regularization models, such as derived from using the Lasso method, to assign

weights to features to minimize fitting errors while simultaneously encourage

small or zero coefficients corresponding to the features. These methods are

commonly employed with linear classifiers and apply penalties to the features

that have little contribution to the model.

For example, logistic regression can be used as a straightforward linear

classifier, in combination with the Lasso or L1 penalization function to select

only the predictors with non-zero coefficients, resulting in a reduced overall

dimensionality. On the other hand, under the linear regression model, with

the response vector y in Rn and feature matrix X = [x1, . . . ,xp] in Rn×p, the

Lasso regularization can be formed as(Rosset and Zhu, 2007):

min
w∈Rp

{1
2
∥y−Xw∥22 + λ∥w∥1

}
,

48

where the L1-norm induces sparsity in the solution w and λ > 0 controls the

amount of regularization.

4.2 Machine Learning Models

In this section, our primary objective is to consider robust yet effective

models for data classification. considering on the balanced datasets, we em-

ploy a variety of algorithms and techniques to optimize their performances

in our classification task. Specifically, we review six machine learning algo-

rithms: Support Vector Machine (SVM), Decision Tree, Random Forest, Lo-

gistic Regression, K-Nearest Neighbour (KNN), and Näıve Bayes, with each

algorithm explained in the subsequent subsections.

4.2.1 Support Vector Machines

The Support Vector Machine(SVM)(Noble, 2006) is a supervised learn-

ing algorithm that can be used for both regression and classification tasks.

In general, a SVM classifier is aimed to find a separating hyperplane that

maximizes the margin between the two classes of samples, i.e., the distance

between the hyperplane and the nearest data points from each class(Mohri,

Rostamizadeh, and Talwalkar, 2018).

For a training set

S = {(xi, yi) : xi ∈ Rp; yi ∈ {−1,+1}; i = 1, . . . ,m}

that is linearly separable, we want to find the hyperplane satisfying:

yi(w
⊺xi + b) ≥ 0 for i = 1, . . . ,m,

49

where w is a non-zero p×1 vector and b is a scalar that are to be determined.

The problem can be equivalently formulated as the optimization problem to

find the optimal w and b:

min
w,b

{1
2
∥w∥2

}
subject to

yi(w
⊺xi + b) ≥ 1 for i = 1, . . . ,m,

where ∥w∥ is the Euclidean norm of vector w(Mohri et al., 2018).

In the case that S is not linearly separable, one may project the fea-

tures into a higher dimensional space so that the transformed features can

be linearly separated. Alternatively, we keep the features in their original

space but introduce slack variables to allow the SVM to accommodate some

classification errors. The optimization problem is then defined as:

min
w,b

{1
2
∥w∥2 + C

m∑
i=1

ξi

}
subject to

yi(w
Txi + b) ≥ 1− ξi;

ξi ≥ 0 for i = 1, . . . ,m,

where C is the cost coefficient and the ξi are the slack variables which measure

the degree of misclassification of each feature xi (e.g., Jiang, Missoum, and

Chen, 2014; He, Yi, and Chen, 2019).

50

4.2.2 Decision Tree

Decision Tree is a non-parametric supervised learning algorithm for which

data are not assumed to follow on probability distribution. The construction

of a decision tree is to recursively partition the feature space of the training

set in order to find a set of decision rules(Myles et al., 2004). A decision tree

can be viewed as a flowchart-like model, where each internal node represents a

feature or attribute, each branch represents a decision rule, and each leaf node

represents the outcome or class label. This method is easier to understand

and the results are readily visualized.

The decision tree classifier determines the optimal splits by using various

measures of impurity, such as the Gini impurity or entropy. The Decision-

TreeClassifier in the Scikit-Learn Python library takes the Gini impurity

as the default criterion(Pedregosa et al., 2011).

4.2.3 Random Forest

Random Forest is an ensemble method that improves the accuracy and

avoids the over-fitting problem by using a collection of decision trees. Ran-

dom forest is used to classify a new instance by majority vote based on

the construction of a number of decision trees, where each decision tree in

the random forest model randomly uses a subset of features and different

bootstrap sample data for its construction(Oshiro, Perez, and Baranauskas,

2012).

Since a random forest is an integrated estimator that fits several decision

tree classifiers, it uses the same criterion as the decision tree classifier does.

51

4.2.4 Logistic Regression

Logistic regression is a simple statistical model that characterizes the

probability of an event happening based on a given dataset. This model is

useful to facilitate the relationship between a binary outcome variable and

a vector of predictor variables that can be categorical or continuous(Peng,

Lee, and Ingersoll, 2002).

For i = 1, . . . , n, let Yi represent the binary variable for subject i, taking

value 0 or 1, and let Xi denote the vector of associated covariates. Let

µi = P (Yi = 1|Xi). Logistic regression describes the relationship between Yi

and Xi as follows:

logit(µi) = θ0 + θTxXi

for i = 1, . . . , n, where logit(t) = log t
1−t

for 0 < t < 1, and θ0 and θx represent

regression parameters.

4.2.5 K-Nearest Neighbour

The K-Nearest Neighbours (K-NN) is another non-parametric supervised

learning algorithm. The K-NN method is a simple and widely used learner,

and sometimes, it is called Lazy Learning. It is also called Memory-based

Classification since KNN needs to be in memory at runtime and the induction

is delayed to runtime (Cunningham and Delany, 2021).

This method assigns a class label to a given data input point with the

label of the nearest neighbours based on its distance to other data points.

Several distance measures are commonly in use, including Euclidean distance,

Manhattan distance, and Minkowski distance. The Minkowski distance is the

52

default distance metric in Scikit-Learn package. Minkowski distance of

order p between two points, u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), is

defined as(Pedregosa et al., 2011):

∥u− v∥p =

(
n∑

i=1

|ui − vi|p
)1/p

,

where p > 0.

4.2.6 Gaussian Näıve Bayes

Gaussian Näıve Bayes algorithm is one of Näıve Bayes methods that

naively assumes every pair of features is conditional independent, given the

class variable(Jahromi and Taheri, 2017). This algorithm assumes that the

features follow a Gaussian distribution.

Let Y denote the target class variable, and let {X1, . . . , Xn} denote the

dependent feature vectors. Assume that given Y = y, X1, . . . , Xn indepen-

dently follow a Gaussian distribution, N(µy, σ
2
y), with mean µy and standard

error σy. That is, the density of Xi is given by

f(xi|y) =
1√
2πσy

exp
{
−(xi − µy)

2

2σ2
y

}
,

where µy and σy can be estimated from the maximum likelihood method.

Then the conditional probability for Y given {x1, . . . , xn} is determined by:

P (Y = y|X1, . . . , Xn) =
f(y)f(x1, . . . , xn|y)

f(x1, . . . , xn)
=

f(y)
∏n

i=1 f(xi|y)∑
y f(y)

∏n
i=1 f(xi|y)

,

where f(y) is the prior probability of the class.

To classify a new data instance, the classifier first calculates the likelihood

of the observed features given each class using the Gaussian distribution. The

53

class with the highest probability becomes the predicted class for the new

data point.

Because two assumptions required by the Gaussian Naive Bayes classifier

often do not hold in real-world scenarios, the performance of the classifier

may be compromised when confronted with features that do not adhere to

a Gaussian distribution or when significant dependencies exist among the

features.

4.2.7 Artificial Neural Networks

An artificial neural network (ANN) is a computational model inspired by

the structure and function of the human brain. It consists of artificial neu-

rons, serving as the fundamental processing units, and a complex network of

connections between these neurons (Osowski, Siwek, and Markiewicz, 2004).

Mimicking the brain, an ANN processes information by receiving inputs,

applying mathematical operations on those inputs, and producing output

signals. The interconnections between neurons allow for the network to learn

and adapt its behaviour through the training process. During training, the

network adjusts the weights and biases associated with each connection based

on the provided input-output pairs, allowing it to learn and make predictions

or decisions on unseen data.

4.2.7.1 Multi-Layers Perceptron

Multi-layer perceptron (MLP) is a powerful supervised learning algorithm

widely used for approximating non-linear functions in classification and re-

gression tasks. MLP consists of multiple layers: the input layer, which rep-

54

resents the input features; hidden layers, which receive the values from the

previous layer and apply non-linear transformations using various activation

functions; and the output layer, which takes the transformed values from

the last hidden layer and produces the final output values. By incorporating

multiple hidden layers with non-linear activation functions, MLP is capable

of capturing complex patterns and relationships within the data. Murtagh

(1991) lists a few popular activation functions, including the sigmoid, tanh,

and ReLU functions. The Scikit-Learn document (Pedregosa et al., 2011)

provides the logistic sigmoid function:

f(x) =
1

1 + exp(−x)
for−∞ < x < ∞.

4.2.7.2 Radial Basis Function Network

The radial basis function network (RBFN), introduced by Broomhead

and Lowe (1988), is an alternative to the MLP neural network. Unlike the

MLP, the RBFN has a fixed three-layer architecure, including a input layer,

a single hidden layer that utilizes radial basis functions as activation func-

tions, and the output layer. According to a comparative study by Xie, Yu,

and Wilamowski (2011), there are four key differences between RBFN and

MLP networks, despite their similar structures. Firstly, RBFN generally has

faster training processes due to its simpler architecture than MLP networks.

Secondly, as local approximation networks, RBFN functions rely on specific

hidden units within local receptive fields to determine outputs, while MLP

networks operate globally, considering outputs from all neurons. Thirdly,

the initial states of RBFN are critical for its performance, whereas MLP

networks initially use randomly generated parameters. Lastly, RBFN and

55

MLP networks employ different classification mechanisms. RBFN separates

clusters using hyperspheres, while MLP networks use arbitrarily shaped hy-

persurfaces for separation.

Suppose there are n inputs x ≜ {x1, . . . , xn} , l hidden units {s1, . . . , sl},

and m outputs {o1, . . . ,om}; the structure and formulas of RBFN is shown

as follows (Xie et al., 2011):

...

...
...

x1

x2

x3

xn

s1

sl

o1

om

Input

layer

Hidden

layer

Ouput

layer

For h = 1, . . . , l, the input vector x is multiplied by input weights wh at

the input of hidden unit h to calculate sh. That is, if w
h
n,l is the input weight

between input n and hidden unit h:

sh = [x1w
h
1 , x2w

h
2 , . . . , xnw

h
n].

The output of hidden unit h is calculated with the activation function ϕh

56

where ϕh is usually chosen as a Gaussian function:

ϕh(sh) = exp
(
− ∥sh − ch∥2

σh

)
,

where ch is the centre of hidden unit h and σh is the width of hidden unit h.

Finally, the output ok is calculated with the output weight wo
h,k between

hidden unit h and output unit k, and wo
0,k as the bias weight of output unit

k:

ok =
l∑

h=1

ϕh(sh)w
o
h,k + wo

0,k.

4.3 Cost-Sensitive Classification Models

Cost-sensitive classification, as described by Sun, Wong, and Kamel (2009),

is an important approach in machine learning that considers the diverse costs

associated with different types of misclassifications. Traditional classification

problems treat all misclassifications equally and assign them the same cost,

which may not reflect the real-world scenario accurately. Cost-sensitive clas-

sification tackles this limitation by incorporating varying costs into the clas-

sification process. It assigns different costs to misclassifications based on the

specific classes or types of misclassifications, thus providing a more realistic

and nuanced perspective. This approach enables the development of models

that prioritize certain types of errors over others, aligning with the specific

requirements and objectives of the problem domain.

57

4.3.1 Cost-Sensitive SVM

Cost-Sensitive SVM is an adapted version of the conventional SVM al-

gorithm that introduces weights to the margin based on the significance of

each class. Unlike traditional SVM, which tends to prioritize the majority

class in imbalanced datasets, cost-sensitive SVM considers the importance

of each class. This adjustment allows cost-sensitive SVM to enhance perfor-

mance on imbalanced datasets, surpassing the capabilities of standard SVM

algorithms.

As in Cao, Zhao, and Zaiane (2013), let C+ represent the higher mis-

classification cost assigned to the positive class, which is of primary interest,

and let C− represent the lower misclassification cost assigned to the negative

class. Then the cost-sensitive SVM (CS-SVM) is formulated as follows:

min
w,b

{1
2
∥w∥2 + C+

∑
i:yi=+1

ξi + C−
∑

j:yj=−1

ξj

}
subject to

yi(w
Txi + b) ≥ 1− ξi;

ξi ≥ 0 for i = 1, . . . , n.

It is clear that the Cost-Sensitive SVM recovers the usual SVM described by

(4.2.1) if C+ and C− are set to be identical.

4.3.2 Cost-Sensitive Decision Tree

In the context of decision trees, the selection of split points is typically

aimed at minimizing overlap between different groups of data samples. How-

ever, imbalanced datasets pose a challenge when one class dominates these

58

groups, leading to the neglect of minority class samples in the split points.

With imbalanced datasets, traditional decision trees may not have satisfac-

tory performance. To solve this issue, it becomes crucial to consider the

significance of each class during the split point selection process. By incor-

porating a criterion that accounts for class importance, we can overcome

this limitation and enhance the performance of decision trees on imbalanced

datasets. For example, Krawczyk, Woźniak, and Schaefer (2014) discussed

the use of cost-sensitive decision tree ensembles to improve classification per-

formance on imbalanced datasets, addressing the issue of class imbalance in

decision tree learning.

4.3.3 Cost-Sensitive Logistic Regression

The cost-sensitive logistic regression technique addresses class imbalance

by assigning different weights to each class. This means that the model

is penalized differently, depending on the class membership of the samples.

For the samples belonging to the minority class, the model incurs higher

penalties for errors, and for the majority class samples, they receive relatively

less penalty. This approach improves the performance of logistic regression

classification.

Considering the use of logistic regression to handle imbalanced datasets,

Luo, Pan, Wang, Ye, and Qian (2019) took into account class weights to

adjust the decision boundary to address issues of imbalanced data. Basically,

the effectiveness of logistic regression may vary depending on the unique

characteristics of the dataset under consideration.

59

Chapter 5

Data Learning

In this chapter we analyze the integrated dataset described in Section 3.5

using the methods reviewed in Chapter 4.

5.1 Feature Selection

In the integrated dataset and all VOC subsets described in Section 3.5,

there are 27 features in total, plus the outcome variable “death yn” (Y). The

primary objective of this section is to reduce the dimensionality of the dataset

and select the most informative features to predict the outcome variable Y .

To achieve this, we employ three feature selection methods introduced in

Section 4.1: the Filter Method, Wrapper Method, and Embedded Method,

each method resulting in distinct best feature subsets. Based on these results,

we further examine the intersection and union sets of these subsets to assess

their performance. In the following subsections, we provide detailed results

derived from each of these five methods.

60

5.1.1 Encoding Categorical Variables

There are several popular categorical data encoding methods such as label

encoding, one-hot encoding, and so on. Categorical data encoding involves

the transformation of non-numeric categories or labels into numerical for-

mats, making them suitable for analysis with machine learning algorithms.

However, label encoding cannot capture the relationship/order between the

classes. For example, a “temperature” column may be classified as three

classes: “cold”, “warm”, “hot”. By employing one-hot encoding, each tem-

perature category is mapped as follows: “cold”, “warm”, and “hot” are rep-

resented as [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively, with two additional

columns included and hence increasing computational cost. On the contrary,

using label encoding, one may represent the labels “cold”, “warm”, and “hot”

as arbitrary numerical values such as 5, 3, and 7, respectively, by ignoring

any inherent ranking among them.

Several studies have been available to investigate the performance of dif-

ferent encoding methods. For example, Choong and Lee (2017) conducted a

comparison between ordinal and one-hot encoding methods. Ordinal encod-

ing is a technique used to represent categorical information using numerical

values in a way that retains the inherent order or ranking of the categories.

They discovered that ordinal encoding and one-hot encoding method yield

similar performance in DNA motif prediction with convolutionary neural

network (CNN), but the former encoding significantly reduces the training

time. They also found that in certain evaluated datasets, the ordinal encod-

ing proved to be the most optimal approach.

Based on these findings, we adapt ordinal encoding to assign numerical

61

values for categorical variables similar to Choong and Lee (2017). This treat-

ment is also driven by that most of the categorical covariates in this study are

binary indicators, and the “age group”(x
(1)
3) and “date”(x

(1)
1) have its own

ranked ordering. All categorical columns in this study will be converted to

numbers using OrdinalEncoder in the Scikit-Learn package of Python.

For example, the 9 different age groups of the covariate “age group”(x
(1)
3)

mentioned in Section 2.1.3 is converted to integers of {0, 1, 2..., 8}, and the

variable “date”(x
(1)
1) is converted to integers of {0, 1, 2..., 777} to reflect the

temporal order.

In this study, let X = (x
(1)
1 , . . . , x

(1)
24 , x

(2)
1 , x

(3)
1 , x

(3)
2)T denote the vector of

covariates, and let Y denote the outcome variable,“death yn”. The detailed

definition of those variables can be found in Section 3.4.

5.1.2 Learning with the Filter Method

In the integrated dataset described in Section 3.5.1, a majority of the

covariates are categorical variables, as depicted in Figure 3.4. The conver-

sion process, particularly for binary variables, where values are typically

transformed into 0s and 1s, can significantly impact variance and mean cal-

culations, hindering the interpretability of the deviations. Consequently,

computing Pearson’s Correlation coefficient alone for all covariates may not

provide the desired insights.

To address this limitation, the Python library named Dython, can be

used to evaluate the associations among the covariates and plot them as a

heatmap. By default, Dython uses Pearson’s Correlation, defined in Section

4.1.1, to calculate the association between numeric features.

62

In our analysis, we utilize Pearson’s correlation to determine the associ-

ation between two numeric features, the correlation ratio to compute the as-

sociations between a categorical feature and a numeric feature, and Cramér’s

V to evaluate the strength of association between two categorical variables.

In Figure 5.1(a), we display 14 features whose association with the out-

come variable Y , “death yn”, expressed in terms of Cramér’s V values, is

greater than 0.05, indicating a moderate level of association. In Figure 5.1(b)

presents a comprehensive heatmap illustrating the relationships among all

features. Notably, the highest association strength observed in this study

is 0.35. Based on this analysis, we select the features with a Cramér’s V

value exceeding 0.05 to be included as the best feature subset. The feature

“pna yn” (x
(1)
8) shows a strong correlation with “abxchest yn” (x

(1)
9), with a

Cramér’s V value about 0.8. This high correlation indicates that “pna yn”

and “abxchest yn” are closely related to each other. Consequently, in order

to reduce dimensionality and simplify the analysis, “abxchest yn” (x
(1)
9) is

excluded from the feature subset. This decision is based on the fact that

“abxchest yn” (x
(1)
9) has a lower Cramér’s V value in relation to the outcome

variable, Y .

63

(a) Features that has Cramér’s V value >= 0.05 with the outcome variable Y .

(b) Associations between all features.

Figure 5.1: Association heat-map with Cramér’s V values

In this way, by keeping only the features that have a Cramér’s V value

with the outcome variable Y (“death yn”) larger than 0.05, we obtain the

12 features provided by Filter Method, shown in Table 5.1 where the fea-

tures are ordered by their the Cramér’s V values with the outcome variable

Y (“death yn”), in descending order.

64

Table 5.1: Features selected by the Filter Method and their Cramér’s V value

with variable Y (“death yn”)

Variable Name Notation Cramér’s V value with y

mechvent yn x
(1)
11 0.35

icu yn x
(1)
6 0.32

hosp yn x
(1)
5 0.29

age group x
(1)
3 0.28

acuterespdistress yn x
(1)
10 0.28

pna yn x
(1)
8 0.25

medcond yn x
(1)
24 0.12

sob yn x
(1)
19 0.09

headache yn x
(1)
21 0.08

date x
(1)
1 0.07

runnose yn x
(1)
16 0.06

sthroat yn x
(1)
17 0.05

5.1.3 Learning with the Wrapper Method

We now employ the Python library mlxtend to perform sequential fea-

ture selection for the data. Considering the binary classification nature of our

task, we choose logistic regression to fit the data, which was driven by its in-

herent advantages in terms of interpretability, simplicity, and computational

efficiency. Its suitability for handling large datasets enables us to efficiently

identify the optimal subset of features. Moreover, the interpretability of lo-

gistic regression allows us to provide meaningful explanations for the selected

features.

Concerning X and Y , defined in Section 5.1, we start with having no

65

feature in the logistic regression model, and then keep adding a feature to

improve the model in each step until adding an additional variable cannot

improve the model performance anymore. Macro F1 Score, defined in Section

4.1.2, is used as the evaluation criterion for the classification process since

by Sadi et al. (2022), it “is the arithmetic mean of per-class F1 scores for

a more appropriate measurement of model performance on class-imbalanced

data.” Macro F1 Score is the unweighted mean of the F1 Scores from each

classification class (death or not in the study), and it can be viewed as a

simple aggregation of F1 Score to all classes (Pedregosa et al., 2011).

Importantly, we note that this approach demands considerable computa-

tional resources, prompting us to focus exclusively on the forward selection

algorithm within the wrapper method. A graphical representation, as de-

picted in Figure 5.2, showcases the evaluation criterion, the Macro F1 Score,

plotted along the y-axis. This visualization demonstrates the influence of the

number of selected features on the outcome. It is observed that the Macro

F1 Score attains its peak when 20 features are chosen in the subset, shown

in Table 5.2. These features are listed by the level of importance in the de-

scending order, where the importance of a variable is determined by the level

of its enhancement of the Macro F1 Score with its inclusion.

66

Figure 5.2: Macro F1 Score(vertical axis) obtained by Sequential Forward

Selection (with standard error shown in light blue shaded area)

Table 5.2: Features selected by the Wrapper Method

Variable Name Notation

abdom yn x
(1)
22

abxchest yn x
(1)
9

acuterespdistress yn x
(1)
10

age group x
(1)
3

chills yn x
(1)
14

cough yn x
(1)
18

fever yn x
(1)
12

headache yn x
(1)
21

hosp yn x
(1)
5

icu yn x
(1)
6

mechvent yn x
(1)
11

medcond yn x
(1)
24

myalgia yn x
(1)
15

nauseavomit yn x
(1)
20

pna yn x
(1)
8

sex x
(1)
2

sob yn x
(1)
19

sthroat yn x
(1)
17

Non COVID Percent ED x
(2)
1

Non COVID Percent IP x
(2)
2

67

5.1.4 Learning with the Embedded Method

To implement the embedded method in our study, we use SelectFrom-

Model module provided by Scikit-Learn, since this library can attach

importance to each feature with different attributes such as “coef ”, “fea-

ture importances ” and so on(Pedregosa et al., 2011). This package enables

us to evaluate the contribution of each feature. To achieve feature selection,

we employ logistic regression as a linear classifier with the Lasso (L1) penal-

ization. This approach enables us to select only the predictors with non-zero

coefficients, effectively reducing the overall dimensionality of the dataset.

For better visualization and understanding, in Figure 5.3 we depict the

significance of each feature. The plot showcases the absolute values of the

coefficients plotted against their respective feature names. The magnitude of

the coefficient reflects the contribution of the feature to the prediction, where

larger coefficients indicate greater importance. If using 0.1 as a threshold,

features with coefficients below 0.1 are excluded. As a result, we retain 17

predictors as the best feature subset, shown in Table 5.3. These features are

ordered by the magnitude of coefficients in descending order.

68

Figure 5.3: The graph of feature importance, shown by the magnitude of the

coefficient versus the feature’s name

69

Table 5.3: Features selected by the Embedded Method and their coefficients

with variable Y (“death yn”)

Variable Name Notation Coefficients with y

mechvent yn x
(1)
11 1.5982

hosp yn x
(1)
5 1.5061

icu yn x
(1)
6 1.0668

medcond yn x
(1)
24 0.7798

acuterespdistress yn x
(1)
10 0.7601

age group x
(1)
3 0.7230

headache yn x
(1)
21 0.4693

hc work yn x
(1)
7 0.4008

sob yn x
(1)
19 0.3501

fever yn x
(1)
12 0.3490

pna yn x
(1)
8 0.3141

runnose yn x
(1)
16 0.3031

chills yn x
(1)
14 0.2616

myalgia yn x
(1)
15 0.2611

diarrhea yn x
(1)
23 0.2459

sex x
(1)
2 0.1638

Non COVID Percent ED x
(2)
1 0.1634

5.1.5 Results with Intersection and Union

Examining the best features selected by the Filter, Wrapper, and Embed-

ded Methods, we consider two special sets. The first set includes 9 commonly

selected features of the three methods, shown in Table 5.4 where the features

are listed by the subscript order in the variables.

70

Table 5.4: Features selected by the Intersection

Variable Name Notation

age group x
(1)
3

hosp yn x
(1)
5)

icu yn x
(1)
6

pna yn x
(1)
8

acuterespdistress yn x
(1)
10

mechvent yn x
(1)
11

sob yn x
(1)
19

headache yn x
(1)
21

medcond yn x
(1)
24

In contrast, the second set contains the union of the best feature subsets

chosen by the Filter, Wrapper, and Embedded Methods. This set contains

the following 24 predictors listed by the subscript order, as shown in Table

5.5.

71

Table 5.5: Features selected by the Union

Variable Name Notation

date x
(1)
1

sex x
(1)
2

age group x
(1)
3

hosp yn x
(1)
5

icu yn x
(1)
6

hc work yn x
(1)
7

pna yn x
(1)
8

abxchest yn x
(1)
9

acuterespdistress yn x
(1)
10

mechvent yn x
(1)
11

fever yn x
(1)
12

chills yn x
(1)
14

myalgia yn x
(1)
15

runnose yn x
(1)
16

sthroat yn x
(1)
17

cough yn x
(1)
18

sob yn x
(1)
19

nauseavomit yn x
(1)
20

headache yn x
(1)
21

abdom yn x
(1)
22

diarrhea yn x
(1)
23

medcond yn x
(1)
24

Non COVID Percent ED x
(2)
1

Non COVID Percent IP x
(2)
2

72

5.2 Data Balancing

Imbalanced data refers to datasets in which instances belonging to one

class significantly outnumber those in the other class, posing a challenge in us-

ing traditional classification algorithms. As commented by Sun et al. (2009)

in a review article, standard classifier learning algorithms typically assume

a balanced class distribution and equal misclassification costs, and hence

is hindered in the presence of imbalanced class distributions. To improve

the classification performance on imbalanced dataset, Sun et al. (2009) com-

pared four different types of strategies: resampling techniques, cost-sensitive

learning, boosting, and adapting existing algorithms.

In our study here, we focus on two strategies. The first strategy involves

the resampling scheme, to be discussed from Sections 5.2.1 to 5.2.3. In

the second strategy, we assess the performance of cost-sensitive classification

models which will be explained in detail in Section 5.4.

Before conducting any data balancing technique, we use the Scikit-

Learn library to split the training set and a test set so that 20% of the

original dataset is to be used to test the performance of models. The split is

done randomly to ensure the training and testing sets to have the same class

distribution as the original dataset. This procedure yields that the training

set contains 2778 death cases and 191441 alive cases, presenting imbalance

in the outcome variable.

73

5.2.1 Over-Sampling on Training Set

To address the class imbalance in the dataset, we employ the over-sampling

method from the imbalance-learn library. In doing so, there is, however,

a potential risk of overfitting associated with oversampling the minority

class(Sun et al., 2009). Therefore, to simultaneously balance the training

dataset and mitigate the risk of overfitting caused by random over-sampling,

the synthetic minority over-sampling technique (SMOTE) is employed.

SMOTE is a sampling method to make the minority class be over-sampled

by creating “synthetic” examples rather than by over-sampling with replace-

ment (Chawla et al., 2002). This approach not only generates additional

training data but also circumvents the issue of duplicated rows that may

arise from simple random over-sampling.

This over-sampling yields 191441 observations for each class, Alive or

Death, to form a balanced training set. This balanced training set will be

used for both traditional machine learning models and artificial neural net-

works, to be reported in Sections 5.3 and 5.4.

5.2.2 Under-Sampling on Testing Set

A persistent issue arises in the evaluation of the models on the testing

set, irrespective of the approach taken. The models consistently exhibit low

precision scores, accompanied by either high recall or high accuracy scores,

even when the “class weight” parameter is set to be “balanced”.

To overcome this issue, we employ the random under-sampling method,

a useful technique to address the problem of class imbalance (X.-Y. Liu, Wu,

74

and Zhou, 2008). Under-sampling entails reducing the number of instances

in the majority class, regarded as the over-represented class, to match the

number of instances in the minority class, treated as the under-represented

class. This approach is carried out by randomly selecting a subset of the

majority class instances to make it equal in size to the minority class. This

approach guarantees an equal representation of each class in the testing set.

Consequently, in this study, all testing sets will be balanced prior to model

evaluation, with the “Alive” and “Death” classes each containing 694 records.

5.3 Learning with Machine Learning Models

This section focuses on developing effective models to classify the data

through the utilization of various algorithms and techniques. The study

employs six traditional machine learning algorithms: Support Vector Ma-

chine (SVM), Decision Tree, Random Forest, Logistic Regression, K-Nearest

Neighbor (KNN), and Näıve Bayes.

With the datasets appropriately balanced as described in Section 5.2, we

construct a model using each of these six learning algorithms in subsequent

subsections. All five best feature subsets identified in Section 5.1, (i.e., those

displayed in Tables 5.1 -5.5), will be evaluated using these algorithms to com-

pare their performance, where hyperparameters are set to their default values

specified in the respective software package, except for logistic regression.

The classification reports generated by Scikit-Learn will be presented

in the following sections, where “0.0” corresponds to the “Non-Death/Alive”

class and “1.0” corresponds to the “Death” class; the first column of each

75

table shows the feature subset names and the subsequent columns display

the scores for various evaluation metrics: precision, recall, and F1-score.

The best feature subset with the highest score is highlighted in bold font.

5.3.1 Learning with the Support Vector Machine

As commented by Batuwita and Palade (2013), the support vector ma-

chine (SVM) algorithm is a widely used machine learning technique due to

several reasons, including a robust mathematical foundation, strong gener-

alization capability, and the capacity to discover global and nonlinear clas-

sification solutions. Despite its effectiveness in handling balanced datasets,

SVMs may yield unsatisfactory results when confronted with imbalanced

datasets (e.g., X. Liu et al., 2021). There are various methods to mitigate

this challenge, such as pre-balancing the dataset prior to training (as men-

tioned in Section 5.2) and assigning distinct error costs to different classes

(Cost-Sensitive SVM in Section 4.3.1).

In our study, we face the challenge of dealing with an imbalanced dataset,

leading us to investigate the efficacy of these strategies described in Section

4.3.1 and 5.2. The first approach involves pre-balancing the dataset before

the training phase, and the second strategy entails assigning unique error

costs to different classes in order to optimize the performance of SVM.

Furthermore, in addition to implementing the Cost-Sensitive SVM, our

investigation encompasses the incorporation of Cost-Sensitive Decision Tree

and Cost-Sensitive Logistic Regression, as mentioned in Sections 4.3.1-4.3.3.

Support Vector Classification (SVC) is useful to perform classification for

many datasets, but with over tens of thousands of samples, LinearSVC, doc-

76

umented in Scikit-Learn, is suggested to be used (Pedregosa et al., 2011).

The difference between LinearSVC and SVC is that the former has more

flexibility than the latter one in the choice of penalization or regularization

methods to fit a large sample set better and faster.

The Support Vector Machine (SVM) models are trained using the default

hyperparameter values of LinearSVC in the Scikit-Learn library. Table

5.6 reports the results of applying SVM models to the integrated dataset

described in Section 3.5.1, in combination with the use of each of the five

different feature subsets obtained from using the feature selection methods

described in Section 5.1. The results indicate that applying SVM to the

intersection feature subset demonstrates the best performance among the

five subsets.

Table 5.6: The results obtained from applying the Support Vector Machine

(SVM) to the integrated dataset in Section 3.5.1, with the use of one of the

five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.8696 alive 0.8480 0.9006 0.8735

death 0.8940 0.8386 0.8654

wrapper method 0.8235 alive 0.7657 0.9323 0.8408

death 0.9134 0.7147 0.8019

embedded method 0.8610 alive 0.8112 0.9409 0.8712

death 0.9297 0.7810 0.8489

intersection method 0.8927 alive 0.8833 0.9049 0.8940

death 0.9025 0.8804 0.8913

union method 0.8163 alive 0.7532 0.9409 0.8366

death 0.9213 0.6916 0.7901

77

5.3.2 Learning with the Decision Tree

We utilize the default hyperparameter values from the Scikit-Learn li-

brary to fit the decision tree models to the integrated dataset in Section 3.5.1,

with each of five identified feature subsets obtained in Section 5.1. Table 5.7

below displays the performances of decision tree models applied to each of

the five different feature subsets. Notably, the application to the intersection

feature subset achieved the highest accuracy, indicating its superior perfor-

mance to the applications to other feature subsets.

Table 5.7: The results obtained from applying the Decision Tree models to

the integrated dataset in Section 3.5.1, with the use of one of the five best

feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.7356 alive 0.6614 0.9654 0.7850

death 0.9360 0.5058 0.6567

wrapper method 0.6938 alive 0.6237 0.9769 0.7614

death 0.9468 0.4107 0.5729

embedded method 0.7104 alive 0.6385 0.9697 0.7700

death 0.9371 0.4510 0.6089

intersection method 0.8912 alive 0.8596 0.9352 0.8958

death 0.9289 0.8473 0.8862

union method 0.6787 alive 0.6011 0.9827 0.7536

death 0.9559 0.3746 0.5383

5.3.3 Learning with the Random Forest

We employ the Random Forest classifier from the Scikit-Learn library

with default hyperparameter values to train various Random Forest models

78

on the integrated dataset in Section 3.5.1 by using the five feature subsets de-

scribed in Section 5.1. The results are presented in Table 5.8, and again, the

application to the intersection feature subset exhibited the highest accuracy.

Table 5.8: The results obtained from applying the Random Forest models to

the integrated dataset in Section 3.5.1, with the use of one of the five best

feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.7341 alive 0.6607 0.9625 0.7836

death 0.9310 0.5058 0.6555

wrapper method 0.7104 alive 0.6362 0.9827 0.7724

death 0.9620 0.4380 0.6020

embedded method 0.7197 alive 0.6454 0.9755 0.7768

death 0.9499 0.4640 0.6234

intersection method 0.8912 alive 0.8596 0.9352 0.8958

death 0.9289 0.8473 0.8862

union method 0.6873 alive 0.6171 0.9870 0.7594

death 0.9676 0.3876 0.5535

5.3.4 Learning with the Logistic Regression

In this study, custom parameter values are utilized for the Scikit-Learn

LogisticRegression algorithm to address the “failed to converge” error

caused by the large dataset size. The “saga” solver was employed, and the

maximum number of iterations was increased to 5000. Table 5.9 summarizes

the performances of applying logistic regression models to the integrated

dataset in Section 3.5.1 with five different feature subsets described in Sec-

tion 5.1. Among the five different feature subsets considered, the application

79

to the intersection feature subset emerged as the top performer, achieving

the highest accuracy.

Table 5.9: The results obtained from applying the Logistic Regression models

to the integrated dataset in Section 3.5.1, with the use of one of the five best

feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.9107 alive 0.9014 0.9222 0.9117

death 0.9204 0.8991 0.9096

wrapper method 0.9085 alive 0.8943 0.9265 0.9101

death 0.9238 0.8905 0.9068

embedded method 0.9049 alive 0.8849 0.9308 0.9073

death 0.9271 0.8790 0.9024

intersection method 0.9114 alive 0.9015 0.9236 0.9125

death 0.9217 0.8991 0.9103

union method 0.9035 alive 0.8867 0.9251 0.9055

death 0.9217 0.8818 0.9013

5.3.5 Learning with the K-Nearest Neighbor

We use the default hyperparameter values (such as: “metric”: “minkowski”;

“n neighbors”: 5; “weights”: “uniform”) of the K-Nearest Neighbour (KNN)

classifier from the Scikit-Learn library to train our KNN models. Table

5.10 presents the results of applying K-Nearest Neighbour(KNN) models to

the integrated dataset in Section 3.5.1 with 5 different feature subsets de-

scribed in Section 5.1. Differed from the results in Sections 5.3.1-5.3.4, the

application to the integrated dataset with the feature subset obtained from

the Filter Method achieves the best accuracy of 0.76.

80

Table 5.10: The results obtained from applying the K-Nearest Neigh-

bour(KNN) models to the integrated dataset in Section 3.5.1, with the use

of one of the five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.7572 alive 0.6798 0.9726 0.8002

death 0.9519 0.5418 0.6905

wrapper method 0.7399 alive) 0.6634 0.9741 0.7893

death 0.9512 0.5058 0.6604

embedded method 0.7543 alive 0.6785 0.9669 0.7974

death 0.9424 0.5418 0.6880

intersection method 0.6037 alive 0.5581 0.9971 0.7156

death 0.9865 0.2104 0.3468

union method 0.7529 alive 0.6757 0.9726 0.7974

death 0.9512 0.5331 0.6833

5.3.6 Learning with the Gaussian Näıve Bayes

We train Näıve Bayes models using the GaussianNB classifier from

the Scikit-Learn library with default hyperparameter values. Table 5.11

presents the results of applying Näıve Bayes models to the integrated dataset

in Section 3.5.1 with five different feature subsets described in Section 5.1.

The three feature subsets, namely “filter method”, “wrapper method”, and

“union method”, achieved similar performance, with accuracy around 0.82-

0.85. The “embedded method” subset performed slightly better, with an

accuracy of 0.85. The “intersection method” subset also exhibited good per-

formance, with an accuracy of 0.84. These results indicate that the Näıve

Bayes models, particularly when trained with the “embedded method” sub-

81

set, can effectively do classification.

Table 5.11: The results obtained from applying the Näıve Bayes models to

the integrated dataset in Section 3.5.1, with the use of one of the five best

feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.8264 alive 0.7559 0.9640 0.8474

death 0.9503 0.6888 0.1987

wrapper method 0.8249 alive 0.7554 0.9611 0.8459

death 0.9465 0.6888 0.7973

embedded method 0.8487 alive 0.7834 0.9640 0.8643

death 0.9532 0.7334 0.8290

intersection method 0.8386 alive 0.7695 0.9669 0.8570

death 0.9554 0.7104 0.8149

union method 0.8509 alive 0.7868 0.9625 0.8658

death 0.9518 0.7392 0.8321

5.3.7 Learning with the Artificial Neural Networks

In this section, we develop two artificial neural network models to per-

form binary classification, predicting whether a confirmed COVID-19 patient

will survive or not. The balanced training and testing datasets discussed in

Section 5.2 are utilized for training, fitting, and evaluating the model per-

formance. We apply the five feature subsets obtained in Section 5.1 to these

two networks in order to compare their accuracy rates and overall perfor-

mance. By employing these models, we aim to assess their effectiveness in

accurately classifying the survival outcomes of patients and determine which

feature subsets contribute most significantly to this classification task.

82

5.3.7.1 Learning with the Multi-Layers Perceptron

We construct the network using the MLPClassifier from the Scikit-

Learn library. The network architecture consists of two hidden layers, with

the first layer comprising five neurons and the second layer consisting of two

neurons. To perform the binary classification task, we utilize the logistic

sigmoid activation function for the hidden layers. The “learning rate” pa-

rameter was set to be “adaptive” to optimize the model’s performance. To

ensure convergence to be reached, we increase the maximum number of iter-

ations to 5000. Figure 5.4 below illustrates a sample structure of our MLP

network built with the nine input variables in the intersection feature set

described in Section 5.1.5.

Table 5.12 presents the performances of applying MLP models to the inte-

grated dataset in Section 3.5.1 with five feature subsets described in Section

5.1. Each subset is evaluated based on precision, recall, and F1-score. The

model trained on the intersection feature subset performs the best, achieving

an accuracy about 91%. The model trained on the feature subset obtained

from the Filter Method performed as the second-best model, with slightly

lower precision and recall scores compared to the best-performing model.

The model applied to the integrated dataset with the “wrapper method”

subset and “embedded method” attained an accuracy of 89% and 90% re-

spectively. The model integrated dataset with the “union method” subset

had the lowest accuracy 88%. Overall, the MLP models demonstrate con-

sistent performance across the five feature subsets, with the intersection set

showing the highest accuracy.

83

x1

x2

x3

x4

x5

x6

x7

x8

x9

Input

layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

Hidden

layer 1

h
(2)
1

h
(2)
2

Hidden

layer 2

ŷ1

Output

layer

Figure 5.4: A sample MLP network architecture with nine input variables

and two hidden layers

84

Table 5.12: The results obtained from applying the Multi-Layers perceptron

(MLP) models to the integrated dataset in Section 3.5.1, with the use of one

of the five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.9085 alive 0.8921 0.9294 0.9104

death 0.9263 0.8876 0.9065

wrapper method 0.8847 alive 0.8532 0.9294 0.8897

death 0.9225 0.8401 0.8793

embedded method 0.9027 alive 0.8752 0.9395 0.9062

death 0.9347 0.8660 0.8990

intersection method 0.9092 alive 0.8944 0.9280 0.9109

death 0.9251 0.8905 0.9075

union method 0.8818 alive 0.8478 0.9308 0.8874

death 0.9233 0.8329 0.8758

5.3.7.2 Learning with the Radial Basis Function Network

In Python, there are multiple ways to construct an RBFN. For example,

one option is to utilize the Keras library, which provides flexibility in cus-

tomizing the hidden layer and integrating it into a sequential model along

with input and output layers. In contrast, in this study, we use another

method which only requires the Numpy library.

The RBFN model in this study has only three layers: an input layer, a

hidden layer, and an output layer. The hidden layer has 6 neurons and we use

a Gaussian function as the activation function for these neurons. Each neuron

in the hidden layer represents a centre, and the centres will be determined

by using K-mean clustering; therefore, the initialized model is built with

85

6 centres. The weights connecting the input vectors and hidden neurons

depend on the space or distance between the vectors and the centres, so these

weights are predetermined once the centres are set. The weights connecting

hidden neurons and the output are determined to train the network. and

these weights can be computed by using pseudo inverse since the RBFN can

be represented as matrix multiplications (Ghosh and Nag, 2001).

Let gij denote the output of jth neuron for ith input vector, and let wij

denote the weight connecting ith output neuron to jth hidden neuron. Define

G and W to be a matrix with the (i, j) element gij and wij, respectively.

Let T represent a column vector with the ith element recording the target

variable’s value for the ith training vector. Then

GW = T,

suggesting that W can be computed by using pseudo inverse:

W = (G⊤G)−1G⊤T.

Once we have the weights, we can apply them on the testing set and obtain

the predictions by matrix multiplications and analyze the performance.

Table 5.13 presents the performances of applying Radial Basis Function

Network (RBFN) models to the integrated dataset(Section 3.5.1) with five

feature subsets described in Section 5.1. The application to the features

subset obtained from the “embedded method” achieved the highest accuracy

of 0.87, followed closely by that for the intersection set with an accuracy of

0.86.

86

Table 5.13: The results obtained from applying the Radial Basis Function

Network (RBFN) models to the integrated dataset in Section 3.5.1, with the

use of one of the five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.8228 alive 0.7894 0.8804 0.8324

death 0.8648 0.7651 0.8119

wrapper method 0.8365 alive 0.8186 0.8646 0.8409

death 0.8565 0.8084 0.8317

embedded method 0.8710 alive 0.8503 0.9006 0.8747

death 0.8943 0.8415 0.8671

intersection method 0.8588 alive 0.8630 0.8530 0.8580

death 0.8547 0.8646 0.8596

union method 0.8386 alive 0.7982 0.9063 0.8489

death 0.8917 0.7709 0.8269

5.4 Learning with the Cost-Sensitive Classi-

fication Models

To address possible imbalance in data, we now apply three cost-sensitive

learning algorithms: Cost-Sensitive SVM, Cost-Sensitive Decision Tree, and

Cost-Sensitive Logistic Regression for binary classification to the integrated

dataset in Section 3.5.1, along with five feature subsets described in Sec-

tion 5.1. These algorithms offer a distinct advantage with the inclusion of

the “class weight” parameter in the widely used Scikit-Learn library. The

Scikit-Learn library utilizes the inverse class distribution as the cost matrix

for these three cost-sensitive classifiers. It adjusts weights inversely propor-

87

tional to the frequencies of classes in the input data. In this way, we can

smoothly convert an imbalanced classification challenge into a balanced one

by setting the inverted class weights as the constant cost matrix for cost-

sensitive classifiers. Consequently, evaluation metrics such as accuracy and

F1 score can be employed to assess the performance of cost-sensitive models.

According to the Scikit-Learn documentations of Pedregosa et al. (2011),

the “class weight” parameter is set to “balanced” before train and fit these

models. The imbalanced training set is used in this section to allow the

models to assign different class weights.

The initial training set and testing set, representing the datasets before

applying any over-sampling or under-sampling techniques, are utilized in this

study for the Cost-Sensitive classification models.

5.4.1 Learning with the Cost-Sensitive SVM

We utilize the Scikit-Learn library to train a Cost-Sensitive SVM model

with default hyperparameter values. Table 5.14 presents the results of apply-

ing the Cost-Sensitive SVM models on the integrated dataset in Section 3.5.1

using five different feature subsets described in Section 5.1. The application

to the integrated dataset with the intersection feature subset stands out with

an overall accuracy of 0.92.

88

Table 5.14: The results obtained from applying the Cost-Sensitive SVM mod-

els to the integrated dataset in Section 3.5.1, with the use of one of the five

best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.9215 alive 0.9270 0.9150 0.9210

death 0.9161 0.9280 0.9220

wrapper method 0.8905 alive 0.8623 0.9294 0.8946

death 0.9234 0.8516 0.8861

embedded method 0.9078 alive 0.8953 0.9236 0.9092

death 0.9211 0.8919 0.9063

intersection method 0.9229 alive 0.9272 0.9179 0.9225

death 0.9187 0.9280 0.9233

union method 0.8811 alive 0.8485 0.9280 0.8864

death 0.9205 0.8343 0.8864

5.4.2 Learning with the Cost-Sensitive Decision Tree

We conduct experiments using the Scikit-Learn library to train Cost-

Sensitive Decision Tree models with default hyperparameter values. The

performances of these models was evaluated by their application to the inte-

grated dataset in Section 3.5.1 with five different subsets of features described

in Section 5.1. Table 5.15 compares the performances of the application of

Cost-Sensitive Decision Tree models to the integrated dataset with five dif-

ferent feature subsets. Notably, the use of the intersection feature subset

outperformed other subsets, achieving the highest accuracy of 0.91.

89

Table 5.15: The results obtained from applying the Cost-Sensitive Decision

Tree models to the integrated dataset in Section 3.5.1, with the use of one of

the five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.6571 alive 0.5951 0.9827 0.7413

death 0.9504 0.3314 0.4915

wrapper method 0.6563 alive 0.5949 0.9798 0.7403

death 0.9429 0.3329 0.4920

embedded method 0.6700 alive 0.6052 0.9784 0.7478

death 0.9436 0.3617 0.5229

intersection method 0.9078 alive 0.9031 0.9135 0.9083

death 0.925 0.9020 0.9072

union method 0.6326 alive 0.5769 0.9942 0.7302

death 0.9792 0.2709 0.4244

5.4.3 Learning with the Cost-Sensitive Logistic Re-

gression

In this study, we train a Cost-Sensitive logistic regression model using the

Scikit-Learn library. The advantage of using this library is the availabil-

ity of the “class weight” parameter, which enhances the performance of the

logistic regression algorithm on imbalanced datasets. Furthermore, we eval-

uate the performances of Cost-Sensitive logistic regression models by using

the five different feature subsets described in Section 5.1 on the integrated

dataset(Section 3.5.1). In Table 5.16, we can observe the precision, recall,

and F1-score for each class within the subsets. It is worth noting that the

application of the intersection feature subset excelled in terms of accuracy

90

achieving a remarkable value of 0.91. On the other hand, the remaining

subsets exhibited diverse performance across the metrics.

Table 5.16: The results obtained from applying the Cost-Sensitive logistic

regression models to the integrated dataset in Section 3.5.1, with the use of

one of the five best feature subsets obtained in Section 5.1

Features Selection Method in Section 5.1 Accuracy Status Precision Recall F1-score

filter method 0.8948 alive 0.9463 0.8372 0.8884

death 0.8540 0.9524 0.9005

wrapper method 0.7925 alive 0.7128 0.9798 0.8252

death 0.9677 0.6052 0.7447

embedded method 0.9020 alive 0.9020 0.9020 0.9020

death 0.9020 0.9020 0.9020

intersection method 0.9164 alive 0.9176 0.9150 0.9163

death 0.9152 0.9179 0.9165

union method 0.9006 alive 0.8971 0.9049 0.9010

death 0.9041 0.8963 0.9001

5.5 Summary

This chapter explores the applications of various methods or models to

learn the integrated dataset in Section 3.5.1, with five feature subsets de-

scribed in Section 5.1. The logistic regression model utilizing the intersec-

tion set of predictors stands out with the best performance. The intersection

subset consistently proves to be the most effective set of features in four out

of the six models we considered. Moreover, after balancing the training and

testing sets, all models exhibit robust performance, achieving accuracy, pre-

91

cision, and recall levels of around 90% in most cases, except for the KNN

model.

The intersection set is also the best feature subset for all three cost-

sensitive models. These models exhibit comparable performance to tradi-

tional machine learning models, achieving accuracy, precision, and recall

levels of 90% approximately. These findings suggest that employing the

“class weight” parameter on the imbalanced training set can yield compa-

rable results to the approach of balancing the dataset prior to training and

fitting. Hence, utilizing the class-weighting technique during model training

proves to be an effective strategy for addressing class imbalance and achieving

robust classification performance.

The ANNs described in Section 5.5 exhibit comparable performances to

the aforementioned models, with accuracy, precision, and recall scores hover-

ing around 90%. While the MLP model requires slightly more time for fitting

and training compared to the RBFN, it demonstrates similar time duration

to the cost-sensitive models.

In summary, the analyses here using different classification methods con-

sistently demonstrate that the analyses based on the intersection set of fea-

tures yield the best results, followed closely by those for the embedded set.

This finding indicates that the prediction of COVID-19-related patient mor-

tality maybe likely done well by utilizing the nine key features described in

the intersection feature set in Section 5.1.5. The predictions based on this

subset of features are fairly robust, highlighting their significance in clinical

decision-making.

92

5.6 Statistical Analysis

As discussed in Section 5.6, the intersection set of features, as discussed in

Section 5.1.5, has demonstrated its effectiveness in seven out of the nine ma-

chine learning models we employed. Given that the logistic model exhibited

superior performance, here we further conduct statistical analysis by fitting

the logistic model to the integrated dataset in Section 3.5.1, with the features

determined by the intersection method in Section 5.1.5. This analysis is done

by implementing the R package stats and using the “glm” function to fit the

logistic model, which yields point estimates, standard errors, and P-values

corresponding to the coefficients of each of the nine features. The results are

reported in Table 5.17.

Table 5.17 reveals significant associations between various covariates and

the binary outcome variable, “death y” (Y). Notably, the intercept is nega-

tive and highly significant, shown by the P-value < 2×10−16, suggesting that

in the absence of any predictor variables, the probability of death is exceed-

ingly low. Among the predictor variables, “pna yn” (x
(1)
8) exhibits a near-zero

coefficient (Estimate = -0.02074), and is not statistically significant (P-value

= 0.399). In contrast, all other predictor variables exhibit strong statis-

tical significance, as indicated by their extremely low P-values. Variables

“age group” (x
(1)
3), “hosp yn” (x

(1)
5), “icu yn” (x

(1)
6), “acuterespdistress yn”

(x
(1)
10), “mechvent yn” (x

(1)
11), “sob yn” (x

(1)
19) and “medcond yn” (x

(1)
24) all ex-

hibit positive effects on affecting the outcome, suggesting that these factors

contribute to a higher probability of the death. Surprisingly, binary variable

“headache yn” (x
(1)
21), coded as 0 if no headache and 1 otherwise, has a neg-

ative effect on influencing the outcome, showing that individuals who report

93

Table 5.17: Statistical analysis of the integrated dataset with the intersection

feature subset under the logistic regression model

Variable Estimate Std. Error P-value

(Intercept) -10.6405 0.0501 < 2× 10−16

age group (x
(1)
3) 10.8505 0.0528 < 2× 10−16

hosp yn (x
(1)
5) 2.1537 0.0188 < 2× 10−16

icu yn (x
(1)
6) 0.7278 0.0378 < 2× 10−16

pna yn (x
(1)
8) -0.0207 0.0246 0.399

acuterespdistress yn (x
(1)
10) 0.2374 0.0411 7.88× 10−9

mechvent yn (x
(1)
11) 2.8978 0.0662 < 2× 10−16

sob yn (x
(1)
19) 0.4681 0.0169 < 2× 10−16

headache yn (x
(1)
21) -0.6152 0.0157 < 2× 10−16

medcond yn (x
(1)
24) 1.7842 0.0212 < 2× 10−16

headaches is less likely to increase the probability of death compared to those

without headaches.

94

Chapter 6

COVID-19 Variant of Concerns

In this section, we further perform an in-depth analysis of the five dis-

tinct variants of COVID-19, as classified by the World Health Organization

(WHO). Utilizing the explorations in Chapter 5 which are summarized in

Section 5.6, here we consider only the intersection feature subset by using

the logistic regression model, cost-sensitive SVM, and MLP models for each

Variant of Concerns(VOC) dataset defined in Section 3.5.2.

Given the varying sizes of each VOCs dataset and the presence of datasets

with limited death records, we employ a balancing approach for both the

training sets and testing sets. We balance the training sets using the Syn-

thetic Minority Over-sampling Technique (SMOTE) to address potential

overfitting. This method helps alleviate the risk of overemphasizing the

majority class during model training. In addition, for the testing sets, we

implement random oversampling to counteract scenarios where the test set

may have an insufficient number of death samples. Specifically, we apply the

simple random oversampling technique in Python, using the Scikit-Learn

95

library. This procedure aims to ensure a more representative assessment of

the model’s performance. By addressing potential imbalances, this approach

contributes to a more accurate evaluation of the model’s proficiency in pre-

dicting mortality, especially in situations with a limited number of death

instances in the test set.

We present a comprehensive classification report for each section, offering

a detailed evaluation of the model’s performance. The model with the best

performance is highlighted by presenting its name in bold font.

6.1 Outbreak

The “Outbreak” period is defined as all cases confirmed before 2020-12-

18, during which no significant variant of concern was published by WHO.

In this dataset, there are no records for vaccination status and corresponding

death rates. Consequently, the “death rate”(x
(3)
1) column is simply omitted.

Table 6.1 presents the performances of applying logistic regression, cost-

sensitive SVM, and MLPmodels to the Outbreak dataset described in Section

3.5.2 using the intersection feature subsets described in Section 5.1.5. All

these three models demonstrate similar performance.

96

Table 6.1: The results obtained from applying various models to the Out-

break dataset in Section 3.5.2 using the intersection feature subset obtained

in Section 5.1.5

Models Accuracy Status Precision Recall F1-score

logistic regression 0.9185 alive 0.9295 0.9056 0.9174

death 0.9080 0.9313 0.9195

cost-sensitive SVM 0.9183 alive 0.9265 0.9086 0.9175

death 0.9103 0.9279 0.9190

MLP 0.9191 alive 0.9289 0.9077 0.9182

death 0.9097 0.9305 0.9200

6.2 AlphaBeta

The “AlphaBeta” period is defined as all cases confirmed between 2020-

12-18 and 2021-01-11, during which twoWHO-published variants of concerns:

Alpha and Beta, were present. In this dataset, there are no records for vacci-

nation status and corresponding death rates. Therefore, the “death rate”(x
(3)
1)

column is also excluded.

Table 6.2 shows the performances of applying logistic regression, cost-

sensitive SVM, and MLP models to the AlphaBeta dataset described in Sec-

tion 3.5.2 using the intersection feature subsets described in Section 5.1.5. In

this case, both the cost-sensitive SVC and MLP models exhibited superior

performance compared to logistic regression, with slightly better results.

97

Table 6.2: The results obtained from applying various models to the Alpha-

Beta dataset in Section 3.5.2 using the intersection feature subset obtained

in Section 5.1.5

Models Accuracy Status Precision Recall F1-score

logistic regression 0.9064 alive 0.9167 0.8940 0.9052

death 0.8966 0.9187 0.9075

cost-sensitive SVM 0.9094 alive 0.9196 0.8973 0.9083

death 0.8997 0.9215 0.9105

MLP 0.9099 alive 0.9375 0.8784 0.9070

death 0.8856 0.9415 0.9127

6.3 Gamma

The “Gamma” period is defined as all cases confirmed between 2021-01-11

and 2021-05-11, during which the WHO-recognized variant of concern was

the Gamma variant. This dataset, as described in Section 3.5.2, contains

some missing values in the “death rate”(x
(3)
1) column. To address this, the

missing values are imputed using the median of this column.

Table 6.3 presents the performances of applying logistic regression, cost-

sensitive SVM, and MLP models to the Gamma dataset described in Section

3.5.2 using the intersection feature subsets described in Section 5.1.5. Logis-

tic regression outperforms the other two models with a 90% accuracy rate,

surpassing the 85% accuracy achieved by the cost-sensitive SVC and the 88%

accuracy achieved by the MLP.

98

Table 6.3: The results obtained from applying various models to the Gamma

dataset in Section 3.5.2 using the intersection feature subset obtained in Sec-

tion 5.1.5

Models Accuracy Status Precision Recall F1-score

logistic regression 0.9047 alive 0.9056 0.9036 0.9046

death 0.9038 0.9058 0.9048

cost-sensitive SVM 0.8533 alive 0.8105 0.9222 0.8628

death 0.9098 0.7844 0.8425

MLP 0.8875 alive 0.8771 0.9013 0.8891

death 0.8985 0.8738 0.8860

6.4 Delta

The “Delta” period is defined as all cases confirmed between 2021-05-11

and 2021-11-26, during which the WHO-recognized variant of concern was

the Delta variant. Similar to the dataset in Section 6.4, this dataset also

contains missing values in the “death rate”(x
(3)
1) column, and we use the

median of this column to impute the missing values.

Table 6.4 presents the performances of applying logistic regression, cost-

sensitive SVM, and MLP models to the Delta dataset described in Section

3.5.2 using the intersection feature subsets described in Section 5.1.5. During

the Delta period, both the logistic regression and cost-sensitive SVC models

outperformed the MLP, demonstrating slightly superior performance.

99

Table 6.4: The results obtained from applying various models to the Delta

dataset in Section 3.5.2 using the intersection feature subset obtained in Sec-

tion 5.1.5

Models Accuracy Status Precision Recall F1-score

logistic regression 0.9092 alive 0.9163 0.9007 0.9084

death 0.9023 0.9178 0.9100

cost-sensitive SVM 0.9074 alive 0.9085 0.9060 0.9073

death 0.9063 0.9088 0.9075

MLP 0.9009 alive 0.9071 0.8932 0.9001

death 0.8949 0.9085 0.9016

6.5 Omicron

The “Omicron” period is defined as all cases confirmed after 2021-11-26,

during which the WHO-recognized variant of concern was the Omicron vari-

ant. This dataset also contains some missing values in the “death rate”(x
(3)
1)

column which are imputed using the median of this column.

Table 6.5 presents the performances of applying logistic regression, cost-

sensitive SVM, and MLP models to the Omicron dataset described in Sec-

tion 3.5.2 using the intersection feature subsets described in Section 5.1.5.

Both logistic regression and MLP models outperformed the cost-sensitive

SVC model, demonstrating slightly improved performance for the data in

the Omicron period.

100

Table 6.5: The results obtained from applying various models to the Omi-

cron dataset in Section 3.5.2 using the intersection feature subset obtained in

Section 5.1.5

Models Accuracy Status Precision Recall F1-score

logistic regression 0.8938 alive 0.8605 0.9400 0.8985

death 0.9339 0.8477 0.8887

cost-sensitive SVM 0.7764 alive 0.7077 0.9418 0.8082

death 0.9130 0.6111 0.7322

MLP 0.8900 alive 0.8596 0.9323 0.8945

death 0.9261 0.8477 0.8851

6.6 Summary

Based on the classification reports for each variant of concern (VOC) in

the previous sections, the performance of the models using the intersection

feature subset is comparable, with average performance level reaching around

90%. This underscores the significance of the selected features and their

consistent impact on the accurate classification of COVID-19 outcomes across

various VOCs.

6.7 Statistical Analysis

In this section, we further conduct statistical analysis on each VOC

dataset, Outbreak, AlphaBeta, Gamma, Delta, and Omicron, using the in-

tersection feature subset of predictor variables defined in Section 5.1.5 and

the binary outcome variable, “death y” (Y), for which we use the logistic

101

regression model to characterize their relationship. This analysis is done by

implementing the R package stats and using the “glm” function to fit the

logistic model. We report the analysis results in Table 6.6.

Across all datasets, the “Intercept” represents the baseline or reference

level, the “Estimate” column provides the estimated coefficients for each

predictor variable, indicating their impact on the log-odds of the outcome

(in this content, death). The “Std. Error” column indicates the standard

error associated with each coefficient estimate, providing a measure of the

estimate’s precision. The “P-value” column displays the P-value associated

with each coefficient, which is used to assess the statistical significance of the

predictor’s contribution to the model.

Table 6.6 presents a summary of predictor significance across all datasets.

In all cases, almost all predictors exhibit statistical significance, with P-values

consistently below 0.05. The only exception is “acuterespdistress yn” (x
(1)
10),

with P-value of 0.0613 that is slightly higher than 0.05.

As shown in Table 6.6, “age group”(x
(1)
3), “hosp yn”(x

(1)
5), “icu yn”(x

(1)
6),

“mechvent yn”(x
(1)
11), and “medcond yn”(x

(1)
24) all have positive estimates in

all five variants of the VOC datasets, with their P-values are all smaller

than 0.05 and many of them being extremely small, suggesting they are all

statistically significant and contribute to an increased risk of death.

However, other variables have varying effects for different variant datasets.

Variable “acuterespdistress yn” (x
(1)
10) is statistically significant with positive

estimates for all VOC datasets except the Alpha Beta dataset; for the Alpha

Beta dataset, “acuterespdistress yn” (x
(1)
10) has a negative estimate although

this finding is not considered statistically significant. Variable “sob yn” (x
(1)
19)

102

is statistically significant for all VOC datasets, but it has a negative estimate

for the Gamma dataset and positive estimates for all other VOC datasets.

Variable “pna yn” (x
(1)
8) is found to be statistically significant in all VOC

datasets. However, in the case of the Omicron dataset, it has a negative

estimate, whereas in all other VOC datasets, it has positive estimates.

The binary variable “headache yn” (x
(1)
21) is estimated to be positive for

the Delta dataset but negative for all other VOC datasets. These results

suggest that the variable headache has a positive influence on the outcome

for the Delta variant but negative impacts on other variants. Such findings

refine the discovery in Section 5.7, which indicates that people who report

having headaches are less likely to see an increase in their risk of death

compared to those who do not report experiencing headaches.

103

T
ab

le
6.
6:

S
ta
ti
st
ic
al

an
al
ys
is

of
ea
ch

V
O
C

da
ta
se
t
w
it
h
th
e
in
te
rs
ec
ti
on

fe
at
u
re

su
bs
et

u
n
de
r
th
e
lo
gi
st
ic

re
gr
es
si
on

m
od
el

d
a
ta
se
t

q
u
a
n
ti
ty

in
te
rc
e
p
t

a
g
e
g
ro

u
p

x
(1
)

3

h
o
sp

y
n

x
(1
)

5

ic
u

y
n

x
(1
)

6

p
n
a
y
n

x
(1
)

8

a
cu

te
re
sp

d
is
tr
e
ss

y
n

x
(1
)

1
0

m
e
ch

v
e
n
t
y
n

x
(1
)

1
1

so
b

y
n

x
(1
)

1
9

h
e
a
d
a
ch

e
y
n

x
(1
)

2
1

m
e
d
co

n
d

y
n

x
(1
)

2
4

O
u
tb

re
a
k

E
st
im

at
e

-8
.4
60
3

9.
04
98

1.
85
04

0.
85
33

0.
15
94

0.
60
72

2.
71
82

0.
48
61

-0
.9
72
8

1.
28
84

S
td
.
E
rr
or

0.
05
08

0.
05
61

0.
02
17

0.
04
27

0.
02
72

0.
60
72

0.
07
59

0.
01
95

0.
01
85

0.
02
26

P
-v
al
u
e

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

4.
36

×
10

−
9

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

A
lp
h
a
B
e
ta

E
st
im

at
e

-8
.2
70
9

9.
40
61

1.
83
91

1.
98
51

0.
98
15

-0
.2
84
4

3.
22
59

0.
14
02

-0
.7
03
0

0.
75
23

S
td
.
E
rr
or

0.
12
80

0.
14
42

0.
06
49

0.
17
22

0.
09
40

0.
15
20

0.
34
27

0.
05
45

0.
04
64

0.
04
69

P
-v
al
u
e

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

0.
06
13

<
2
×

10
−
1
6

0.
01
01

<
2
×

10
−
1
6

<
2
×

10
−
1
6

G
a
m
m
a

E
st
im

at
e

-7
.3
46
7

8.
16
02

2.
06
06

1.
19
87

0.
56
15

0.
26
05

2.
66
20

-0
.1
53
7

-0
.2
11
8

1.
00
87

S
td
.
E
rr
or

0.
08
05

0.
09
51

0.
04
45

0.
08
47

0.
05
57

0.
26
05

0.
17
90

0.
03
80

0.
03
25

0.
03
58

P
-v
al
u
e

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

0.
00
66

<
2
×

10
−
1
6

5.
22

×
10

−
5

7.
25

×
10

−
1
1

<
2
×

10
−
1
6

D
e
lt
a

E
st
im

at
e

-6
.8
33
8

7.
19
47

2.
56
48

1.
16
13

0.
17
92

0.
28
36

3.
82
08

0.
44
32

0.
08
08

0.
72
90

S
td
.
E
rr
or

0.
08
11

7.
19
47

2.
56
48

1.
16
13

0.
17
92

0.
08
59

0.
21
32

0.
03
48

0.
03
31

0.
03
68

P
-v
al
u
e

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

0.
00
07

0.
00
10

<
2
×

10
−
1
6

<
2
×

10
−
1
6

0.
01
46

<
2
×

10
−
1
6

O
m
ic
ro

n
E
st
im

at
e

-6
.7
23
8

5.
28
20

4.
52
21

0.
62
29

-1
.0
32
1

1.
28
32

2.
66
37

0.
60
26

-0
.3
09
4

0.
94
74

S
td
.
E
rr
or

0.
16
49

0.
19
22

0.
09
45

0.
16
71

0.
11
88

1.
28
32

0.
40
02

0.
08
37

0.
08
44

0.
10
26

P
-v
al
u
e

<
2
×

10
−
1
6

<
2
×

10
−
1
6

<
2
×

10
−
1
6

0.
00
02

<
2
×

10
−
1
6

1.
66
00

×
10

−
1
4

2.
82
00

×
10

−
1
1

5.
95
00

×
10

−
1
3

0.
00
02

<
2
×

10
−
1
6

104

Chapter 7

Summary and Discussion

This essay explores the mortality risk of COVID-19 patients across dif-

ferent variant waves. It utilizes patient-level medical data, vaccination rates,

and hospital capacities and employs a spectrum of methods and algorithms,

including feature selection techniques, data balancing strategies, and diverse

machine learning models, cost-sensitive classification models, artificial neural

networks, and statistical inference through logistic regression. In recognizing

the absence of a universally applicable solution for feature selection or clas-

sification tasks, we systematically evaluate a range of methods, emphasizing

the necessity of tailoring approaches to specific contexts. Furthermore, we

propose to particularly consider the intersection set of common features re-

vealed by all considered methods and the union set of all features revealed

by at least one considered method. These two sets offer us useful candidates

for in-depth analysis.

The findings and contributions of this research are useful. The logistic

regression model with the intersection set of predictors demonstrates the best

105

performance in most cases, followed by other models utilizing the same fea-

ture subset. The cost-sensitive models and artificial neural networks achieve

comparable performance to traditional machine learning models, demonstrat-

ing accuracy, precision, and recall levels of around 90%. Our study also re-

veals that employing the “class weight” parameter on the imbalanced train-

ing set can yield comparable results to balance the dataset before training.

Our study identifies nine important factors impacting patient survival

in the context of COVID-19. These encompass six patient-level factors, in-

cluding pre-existing medical conditions, acute respiratory distress syndrome

status, pneumonia status, age group category, headache status, and shortness

of breath (dyspnea) status, as well as the three factors showing the patient’s

status related to hospital aspects: hospitalization status, mechanical venti-

lation status, and intensive care unit admission status.

Our strategies applied to handle COVID-19 data can be extended to deal

with other data for feature selection and classification. The interdisciplinary

nature of our work highlights how computational tools and methodologies are

applied to address real-world challenges, emphasizing the need for tailored

approaches in the field. Critically, the selection and evaluation of machine

learning models in specific contexts challenge the notion of a one-size-fits-all

solution. Our findings underscore the importance of exploring and comparing

various methods, not only within the domain of feature selection but also

across the wider spectrum of selecting machine learning models.

Despite these promising findings, the thesis has limitations. While the

selected feature subset shows strong performance, there might be additional

relevant features not considered in this study. Furthermore, the research

106

focuses on datasets from the United States, which may limit generalizability

to other regions. Further research could explore other features and datasets

to enhance predictive capabilities. Additionally, applying the models to other

countries or regions can be valuable to assess their performance in different

contexts.

While our study uses the default hyperparameters specified by respective

software packages, this does not necessary ensure the robustness of the results

to different choices of hyperparameters. It is noted that different specifica-

tions of hyperparameters may generate discrepancies in results. To address

this issue, one scheme is to employ the grid search algorithm, which allows

us to systematically traverse a spectrum of parameter values in pursuit of

the optimal combination. The optimal parameter values for certain chosen

models are available in the appendix, as shown in Table A1. Unsurprisingly,

the default models generally exhibit overall good performance, rendering the

hyperparameter tuning process less impactful on the overall model perfor-

mance. Given the substantial time associated with hyperparameter tuning

yet the modest gains achieved, we opt to use the default parameters speci-

fied in software packages we use. However, it is recognized that this decision

brings about certain limitations, notably the risk of overlooking a globally

optimal solution and other intricacies in model optimization that cannot be

fully captured by the default configuration. The balance between time ef-

ficiency and incremental performance gains thereby becomes a noteworthy

and practical consideration.

Another limitation concerns the missing data mechanism. Consistent

with many authors (e.g., Roth, 1994; Bennett, 2001; Scheffer, 2002; Newman,

107

2014), we remove those subject with missing values and essentially conduct a

complete data analysis. Such a treatment of missing data is justified if data

follows the Missing Completely at Random (MCAR) mechanism, because

the remaining data subset can still be regarded as a random subsample from

the underlying population. Without a comprehensive understanding of the

mechanism behind missing values, our choice of regarding it as MCAR re-

mains speculative, potentially diverging from the true nature of the missing

data. Our MCAR assumption is grounded in the belief that missing values,

particularly those associated with symptom indicators ({x(1)
1 , ..., x

(1)
24 }) stem

from instances where respondents dropped out or skipped questions during

the form-filling process.

While adopting the MCAR assumption provides a pragmatic strategy for

managing missing values, it is crucial to recognize and openly address the

inherent limitations and induced biases when MCAR is unrealistic. Develop-

ing sensible methods to accommodate missing at random (MAR) or missing

not at random (MNAR) is useful (e.g., Yi (2017, Section 5.5.1) and Little

and Rubin (2019)), and this topic remains active in the literature.

108

References

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal

of Emergency Medicine, 18 (3), 91–93.

Batuwita, R., and Palade, V. (2013). Class imbalance learning methods

for support vector machines. Imbalanced Learning: Foundations, Algo-

rithms, and Applications , 83–99.

Bennett, D. A. (2001). How can I deal with missing data in my study?

Australian and New Zealand Journal of Public Health, 25 (5), 464–469.

Bertsimas, D., Lukin, G., Mingardi, L., Nohadani, O., Orfanoudaki, A.,

Stellato, B., Wiberg, H., Gonzalez-Garcia, S., Parra-Calderón, C. L.,

Robinson, K., Schneider, M., Stein, B., Estirado, A., a Beccara, L.,

Canino, R., Dal Bello, M., Pezzetti, F., Pan, A., and Group, T. H. C.-

. S. (2020). Covid-19 mortality risk assessment: An international

multi-center study. PLOS ONE , 15 (12), e0243262.

Bolboacă, S. D., Jäntschi, L., Sestraş, A. F., Sestraş, R. E., and Pamfil, D. C.

(2011). Pearson-fisher chi-square statistic revisited. Information, 2 (3),

528–545.

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., and Lang, M. (2020).

Benchmark for filter methods for feature selection in high-dimensional

109

classification data. Computational Statistics & Data Analysis , 143 ,

106839.

Broomhead, D. S., and Lowe, D. (1988). Radial basis functions, multi-

variable functional interpolation and adaptive networks. royal sig-

nals and radar establishment malvern (united kingdom). No. RSRE-

MEMO-4148 , 1–34.

Cao, P., Zhao, D., and Zaiane, O. (2013). An optimized cost-sensitive svm

for imbalanced data learning. In Pacific-Asia Conference on Knowledge

Discovery and Data mining (pp. 280–292).

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).

Smote: Synthetic minority over-sampling technique. Journal of Artifi-

cial Intelligence Research, 16 , 321–357. doi: 10.1613/jair.953

Choong, A. C. H., and Lee, N. K. (2017). Evaluation of convolutionary

neural networks modeling of dna sequences using ordinal versus one-

hot encoding method. In 2017 International Conference on Computer

and Drone Applications (pp. 60–65).

Cramér, H. (1999). Mathematical Methods of Statistics. Princeton university

press.

Cunningham, P., and Delany, S. J. (2021). K-nearest neighbour classifiers:

a tutorial. ACM Computing Surveys , 54 (6), 1–25.

Das, S. (2001). Filters, wrappers and a boosting-based hybrid for feature se-

lection. In The International Conference on Machine Learning (Vol. 1,

pp. 74–81).

Dash, M., and Liu, H. (1997). Feature selection for classification. Intelligent

Data Analysis , 1 (1-4), 131–156.

110

El Aboudi, N., and Benhlima, L. (2016). Review on wrapper feature selection

approaches. In 2016 International Conference on Engineering & MIS

(pp. 1–5).

Ghosh, J., and Nag, A. (2001). An overview of radial basis function networks.

Radial Basis Function Networks 2: New Advances in Design, 1–36.

Goutte, C., and Gaussier, E. (2005). A probabilistic interpretation of pre-

cision, recall and f-score, with implication for evaluation. In European

Conference on Information Retrieval (pp. 345–359).

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of Machine Learning Research, 3 (Mar), 1157–1182.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,

R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A.,

del Ŕıo, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,

K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,

T. E. (2020, September). Array programming with NumPy. Na-

ture, 585 (7825), 357–362. Retrieved from https://doi.org/10.1038/

s41586-020-2649-2 doi: 10.1038/s41586-020-2649-2

He, W., Yi, G. Y., and Chen, L.-P. (2019). Support vector machine with

graphical network structures in features. In The 15th international

conference on machine learning and data mining (mldm 2019) (pp.

557–570).

Jahromi, A. H., and Taheri, M. (2017). A non-parametric mixture of gaussian

naive bayes classifiers based on local independent features. In 2017

Artificial Intelligence and Signal Processing Conference (pp. 209–212).

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

111

Jiang, P., Missoum, S., and Chen, Z. (2014). Optimal svm parameter selec-

tion for non-separable and unbalanced datasets. Structural and Multi-

disciplinary Optimization, 50 , 523–535.

Jović, A., Brkić, K., and Bogunović, N. (2015). A review of feature selection

methods with applications. In 2015 38th international convention on

information and communication technology, electronics and microelec-

tronics (pp. 1200–1205).

Krawczyk, B., Woźniak, M., and Schaefer, G. (2014). Cost-sensitive deci-

sion tree ensembles for effective imbalanced classification. Applied Soft

Computing , 14 , 554–562.

Lal, T. N., Chapelle, O., Weston, J., and Elisseeff, A. (2006). Embedded

methods. In Feature Extraction: Foundations and Applications (pp.

137–165). Springer.

Lerner, E. B., Newgard, C. D., and Mann, N. C. (2020). Effect of the coron-

avirus disease 2019 (covid-19) pandemic on the us emergency medical

services system: a preliminary report. Academic Emergency Medicine,

27 (8), 693–699.

Lin, D.-Y., Gu, Y., Wheeler, B., Young, H., Holloway, S., Sunny, S.-K.,

Moore, Z., and Zeng, D. (2022). Effectiveness of covid-19 vaccines over

a 9-month period in north carolina. New England Journal of Medicine,

386 (10), 933–941.

Little, R. J., and Rubin, D. B. (2019). Statistical analysis with missing data

(Vol. 793). John Wiley & Sons.

Liu, X., Yi, G. Y., Bauman, G., and He, W. (2021). Ensembling imbalanced-

spatial-structured support vector machine. Econometrics and Statis-

112

tics , 17 , 145-155. Retrieved from https://www.sciencedirect.com/

science/article/pii/S2452306220300344 doi: https://doi.org/

10.1016/j.ecosta.2020.02.003

Liu, X.-Y., Wu, J., and Zhou, Z.-H. (2008). Exploratory undersampling for

class-imbalance learning. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 39 (2), 539–550.

Louapre, C., Collongues, N., Stankoff, B., Giannesini, C., Papeix, C., Bensa,

C., Deschamps, R., Créange, A., Wahab, A., Pelletier, J., Heinzlef, O.,

Labauge, P., Guilloton, L., Ahle, G., Goudot, M., Bigaut, K., Laplaud,

D.-A., Vukusic, S., Lubetzki, C., De Sèze, J., and for the Covisep in-

vestigators. (2020). Clinical characteristics and outcomes in patients

with coronavirus disease 2019 and multiple sclerosis. JAMA Neurology ,

77 (9), 1079–1088.

Luo, H., Pan, X., Wang, Q., Ye, S., and Qian, Y. (2019). Logistic regression

and random forest for effective imbalanced classification. In 2019 IEEE

43rd Annual Computer Software and Applications Conference (Vol. 1,

pp. 916–917).

McNamara, L. A., Wiegand, R. E., Burke, R. M., Sharma, A. J., Sheppard,

M., Adjemian, J., Ahmad, F. B., Anderson, R. N., Barbour, K. E.,

Binder, A. M., Dasgupta, S., Dee, D. L., Jones, E. S., Kriss, J. L.,

Lyons, B. C., McMorrow, M., Payne, D. C., Reses, H. E., Rodgers,

L. E., Walker, D., Verani, J. R., and Schrag, S. J. (2022). Estimating

the early impact of the us covid-19 vaccination programme on covid-

19 cases, emergency department visits, hospital admissions, and deaths

among adults aged 65 years and older: an ecological analysis of national

https://www.sciencedirect.com/science/article/pii/S2452306220300344
https://www.sciencedirect.com/science/article/pii/S2452306220300344

113

surveillance data. The Lancet , 399 (10320), 152–160.

Miles, J. (2005). R-squared, adjusted r-squared. Encyclopedia of Statistics

in Behavioral Science.

Moghadas, S. M., Vilches, T. N., Zhang, K., Wells, C. R., Shoukat, A., Singer,

B. H., Meyers, L. A., Neuzil, K. M., Langley, J. M., Fitzpatrick, M. C.,

et al. (2021). The impact of vaccination on coronavirus disease 2019

(covid-19) outbreaks in the united states. Clinical Infectious Diseases ,

73 (12), 2257–2264.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of

Machine Learning. MIT press.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression.

Neurocomputing , 2 (5-6), 183–197.

Myles, A. J., Feudale, R. N., Liu, Y., Woody, N. A., and Brown, S. D. (2004).

An introduction to decision tree modeling. Journal of Chemometrics ,

18 (6), 275–285.

Newman, D. A. (2014). Missing data: Five practical guidelines. Organiza-

tional Research Methods , 17 (4), 372–411.

Noble, W. S. (2006). What is a support vector machine? Nature Biotech-

nology , 24 (12), 1565–1567.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). How many trees

in a random forest? In International workshop on machine learning

and data mining in pattern recognition (pp. 154–168).

Osowski, S., Siwek, K., and Markiewicz, T. (2004). MLP and SVM networks-

a comparative study. In Proceedings of the 6th nordic signal processing

symposium, 2004. norsig 2004. (pp. 37–40).

114

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,

J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duches-

nay, E. (2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12 (Oct), 2825–2830.

Peng, C.-Y. J., Lee, K. L., and Ingersoll, G. M. (2002). An introduction to

logistic regression analysis and reporting. The Journal of Educational

Research, 96 (1), 3–14.

Potdar, K., Pardawala, T. S., and Pai, C. D. (2017). A comparative study of

categorical variable encoding techniques for neural network classifiers.

International Journal of Computer Applications , 175 (4), 7–9.

Rodgers, J. L., and Nicewander, W. A. (1988). Thirteen ways to look at the

correlation coefficient. American Statistician, 42 (1), 59–66.

Rosset, S., and Zhu, J. (2007). Piecewise linear regularized solution paths.

The Annals of Statistics , 35 (3), 1012–1030. Retrieved 2023-11-06, from

http://www.jstor.org/stable/25463590

Roth, P. L. (1994). Missing data: A conceptual review for applied psychol-

ogists. Personnel Psychology , 47 (3), 537–560.

Sadi, A. A., Chowdhury, L., Jahan, N., Rafi, M. N. S., Chowdhury, R., Khan,

F. A., and Mohammed, N. (2022). Lmfloss: A hybrid loss for imbal-

anced medical image classification. arXiv preprint arXiv:2212.12741 .

Scheffer, J. (2002). Dealing with missing data. Research Letters in the

Information and Mathematical Sciences , 3 , 153–160.

Sun, Y., Wong, A. K., and Kamel, M. S. (2009). Classification of imbal-

anced data: A review. International Journal of Pattern Recognition

http://www.jstor.org/stable/25463590

115

and Artificial Intelligence, 23 (04), 687–719.

Wasserstein, R. L., and Lazar, N. A. (2016). The ASA statement on p-values:

context, process, and purpose. The American Statistician, 70 (2), 129–

133.

World Health Organization. (2023a). COVID-19 Data Explorer. https://

covid19.who.int/. (Accessed: May 18, 2023)

World Health Organization. (2023b). Tracking SARS-CoV-2 Vari-

ants. https://www.who.int/en/activities/tracking-SARS-CoV-2

-variants/. (Accessed: May 18, 2023)

Xie, T., Yu, H., and Wilamowski, B. (2011). Comparison between traditional

neural networks and radial basis function networks. In 2011 IEEE

International Symposium on Industrial Electronics (pp. 1194–1199).

Yi, G. Y. (2017). Statistical Analysis with Measurement Error or Misclassi-

fication: Strategy, Method and Application. Springer.

Zychlinski, S. (n.d.). Dython:nominal. Retrieved from http://shakedzy

.xyz/dython/modules/nominal/

https://covid19.who.int/
https://covid19.who.int/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
http://shakedzy.xyz/dython/modules/nominal/
http://shakedzy.xyz/dython/modules/nominal/

116

Appendix

In this appendix, we provide the Python code utilized in this study. The

code is organized as different sections based on its functionality, correspond-

ing to the topics discussed in the previous chapters. The included code covers

various aspects such as data pre-processing, feature selection, and statistical

analysis for the integrated data as well as the data related to VOCs.

Data Pre-processing

The following code is used to pre-process all the three CDC datasets

described in Chapters 2 and 3.

####################

#Data Prep ro c e s s i n g#

####################

import pandas as pd

import numpy as np

from datetime import datetime , t imede l ta

import matp lo t l ib . pyplot as p l t

import seaborn as sns

from dython . nominal import a s s o c i a t i o n s

import dataframe image as d f i

117

###

#

#Chapter 3 . 1 : COVID−19 Case S u r v e i l l a n c e R e s t r i c t e d Use De t a i l e d Data : #

#

#Since t h i s d a t a s e t c on t a i n s d i f f e r e n t t y p e s o f date , #

i t may be con fu sed in l a t e r ana l y s i s ,

#t h e r e f o r e on l y t h e e a r l i e s t da t e i s k ep t to b e t t e r t r a c k w i th t h e v a r i a n t waves . #

#

#For geography i n d i c a t o r s such as s t a t e and county , on l y keep t he c o u n t y f i p s c o d e#

#to reduce t h e dimension . #

#

#For each i n d i c a t o r v a r i a b l e /column , i t has 5 d i f f e r e n t v a l u e : #

#Yes , No , Missing , Unknown , and empty c e l l . #

#

#To unders tand the r e l a t i o n s h i p between c o v a r i a t e s and the outcome v a r i a b l e , #

#a l l rows t h a t con ta in a t l e a s t one ”Miss ing ” #

#or ”Unknown” or a empty c e l l w i l l be dropped . #

#

###

#read ing s e l e c t e d columns on l y to reduce t h e memory requ i r ement .

f i e l d s = [’ c u r r e n t s t a t u s ’ , ’ c d c c a s e e a r l i e s t d t ’ , ’ sex ’ , ’ age group ’ , ’ r a c e e thn i c i ty comb ined ’ ,

’ c oun ty f i p s c ode ’ , ’ hosp yn ’ , ’ i cu yn ’ , ’ hc work yn ’ , ’ pna yn ’ , ’ abxchest yn ’ ,

’ a c u t e r e s pd i s t r e s s yn ’ , ’ mechvent yn ’ , ’ f e v e r yn ’ , ’ s f e v e r yn ’ , ’ c h i l l s y n ’ , ’ myalgia yn ’ ,

’ runnose yn ’ , ’ s th roat yn ’ , ’ cough yn ’ , ’ sob yn ’ , ’ nauseavomit yn ’ ,

’ headache yn ’ , ’ abdom yn ’ , ’ d ia r rhea yn ’ , ’medcond yn ’ , ’ death yn ’]

#d e l e t i n g t h e rows wi th mi s s ing va l u e or unknown va l u e

mis s i ng va lu e s = [’ Miss ing ’ , ’Unknown ’]

part1 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 1 . csv ’ ,

u s e c o l s= f i e l d s)

part2 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 2 . csv ’ ,

u s e c o l s= f i e l d s)

part3 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 3 . csv ’ ,

u s e c o l s= f i e l d s)

part4 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 4 . csv ’ ,

u s e c o l s= f i e l d s)

part5 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d /

COVID Cases Restr icted Deta i l ed 04042022 Part 5 . csv ’ ,

u s e c o l s= f i e l d s)

part6 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 6 . csv ’ ,

u s e c o l s= f i e l d s)

part7 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 7 . csv ’ ,

118

u s e c o l s= f i e l d s)

part8 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 8 . csv ’ ,

u s e c o l s= f i e l d s)

part9 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 9 . csv ’ ,

u s e c o l s= f i e l d s)

part10 = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ r e s t r i c t e d

/COVID Cases Restr icted Deta i l ed 04042022 Part 10 . csv ’ ,

u s e c o l s= f i e l d s)

#fo r f i e l d in f i e l d s :

c a s e s l i s t = []

for part in [part1 , part2 , part3 , part4 , part5 , part6 , part7 , part8 , part9 , part10] :

#drop a l l rows w i th empty c e l l

part = part . dropna ()

#f i l t e r out p r o b a b l e case and keep conf i rmed ca s e s on l y

part = part [part [’ c u r r en t s t a t u s ’] == ’ Laboratory−conf irmed case ’]

#remove th e rows wi th ”Miss ing ” & ”Unknown”

part = part [(˜ part [f i e l d s] . i s i n (m i s s i ng va lu e s)) . a l l (1)]

part = part . drop (columns = [’ c u r r e n t s t a t u s ’])

c a s e s l i s t . append (part)

#combine mu l t i p l e p a r t s i n t o one f i n a l data frame

ca s e s = pd . concat (c a s e s l i s t)

#save to c sv

ca s e s . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ c l eaned con f i rmed ca s e . csv ’ , index=False)

#read c l e an e d c on f i rmed c a s e d a t a s e t

ca s e s = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ c l eaned con f i rmed ca s e . csv ’)

#conve r t o b j e c t t o da t e t ime da t a t y p e and s o r t by da t e

ca s e s [’ c d c c a s e e a r l i e s t d t ’] = pd . to datet ime (ca s e s [’ c d c c a s e e a r l i e s t d t ’])

ca s e s = case s . s o r t v a l u e s (by = ’ c d c c a s e e a r l i e s t d t ’)

##

#modify FIPS code da t a t y p e : f l o a t −> o b j e c t #

#f i n a l d e c i s i o n here : remove FIPS code s i n c e maybe some area #

#recorded t he d e t a i l s b e t t e r bu t some areas d id not . #

##

#case s [’ c o u n t y f i p s c o d e ’] = ca s e s [’ c o u n t y f i p s c o d e ’] . a s t y p e (o b j e c t)

119

ca s e s = case s . drop (columns = [’ c oun ty f i p s c ode ’])

#conve r t yes /no i n d i c a t o r i n t o b ina ry i n t e g e r

#ca s e s = ca s e s [c a s e s . columns] . r e p l a c e ({ ’No ’ : 0 , ’ Yes ’ : 1 , ’ Female ’ : 0 , ’Male ’ : 1})

ca s e s . shape

ca s e s . head ()

ca s e s . i n f o ()

c a t e g o r i c a l = cas e s . columns . t o l i s t ()

c a t e g o r i c a l . remove (’ c d c c a s e e a r l i e s t d t ’)

f i g , axes = p l t . subp lo t s (nrows=6, nco l s =4, f i g s i z e =(50 ,50))

for i in range (0 , 6) :

for j in range (0 , 4) :

c a s e s . groupby (’ death yn ’) [c a t e g o r i c a l [4∗ i+j]] . va lue counts ()

. s o r t i nd ex () . unstack (0) . p l o t (kind = ’ bar ’ , ax = axes [i , j])

p l t . s ubp l o t s ad ju s t (l e f t =0.1 ,

bottom=0.1 ,

r i gh t =0.9 ,

top=0.9 ,

wspace=0.2 ,

hspace =0.8)

p l t . show ()

#case s . groupby (’ dea th yn ’) [’ c o u n t y f i p s c o d e ’] . v a l u e c o un t s () . p l o t (k ind=’ bar ’ , f i g s i z e =(300 ,300))

i nd i c a t o r yn = c a t e g o r i c a l . copy ()

i nd i c a t o r yn . remove (’ age group ’)

#in d i c a t o r y n . remove (’ c o u n t y f i p s c o d e ’)

i nd i c a t o r yn . remove (’ r a c e e thn i c i ty comb ined ’)

i nd i c a t o r yn . remove (’ death yn ’)

d i c = {}

for i in range (len (i nd i c a t o r yn)) :

d i c [i nd i c a t o r yn [i]] = ca s e s [ca s e s [’ death yn ’] == ”Yes”] [i nd i c a t o r yn [i]] . va lue counts () . s o r t i nd ex ()

df = pd . concat (d i c)

df

death = case s [ca s e s [’ death yn ’] == ”Yes”]

f i g , axes = p l t . subp lo t s (nrows=6, nco l s =4, f i g s i z e =(50 ,50))

for i in range (0 , 6) :

for j in range (0 , 4) :

death [c a t e g o r i c a l [4∗ i+j]] . va lue counts () . s o r t i nd ex () . p l o t (kind = ’ bar ’ ,

120

ax = axes [i , j] , t i t l e = c a t e g o r i c a l [4∗ i+j] , c o l o r = [’ green ’ , ’ b lack ’])

p l t . s ubp l o t s ad ju s t (l e f t =0.1 ,

bottom=0.1 ,

r i gh t =0.9 ,

top=0.9 ,

wspace=0.2 ,

hspace =0.8)

p l t . show ()

c omp l e t e c o r r e l a t i on= a s s o c i a t i o n s (cases , nominal columns = ’ a l l ’ ,

numerical columns = None , compute only = True)

comple te cor r=comp l e t e c o r r e l a t i on [’ co r r ’]

comple te cor r = comple te cor r . s t y l e . background gradient (cmap=’ coolwarm ’ , ax i s=None) . s e t p r e c i s i o n (2)

comple te cor r

#d f i . e x po r t (comp l e t e co r r , ’ c omp l e t e c o r r . png ’)

hide columns = case s . columns . t o l i s t ()

hide columns . remove (’ death yn ’)

comple te cor r=comp l e t e c o r r e l a t i on [’ co r r ’]

d ea th co r r = comple te cor r . drop (columns = hide columns)

dea th co r r = death co r r . s o r t v a l u e s (by = ’ death yn ’ , ascending= False)

dea th co r r = death co r r . i l o c [1 : , :] . head (1 5) . t ranspose ()

dea th co r r = death co r r . s t y l e . background gradient (cmap=’ coolwarm ’ , ax i s=None) . s e t p r e c i s i o n (2)

dea th co r r

#d f i . e x po r t (d ea t h co r r , ’ d e a t h c o r r . png ’)

121

##

#

#Chapter 3 . 2 : COVID−19 Ho s p i t a l Data from the Na t i ona l Ho s p i t a l Care Survey#

#

#In t h i s da t a s e t , we are t r y i n g to monitor t h e running p r e s s u r e #

#or the running c a p a c i t y o f h o s p i t a l s dur ing COVID−19 waves . #

#

##There are 3 d i f f e r e n t co r r e spond ing measurements which are : #

#percent , Average l e n g t h o f s t a y (days) , and Number o f Encounters . #

#

#Since n e i t h e r ave rge l e n g t h o f s t a y and # o f encoun t e r s has spanned the #

#en t i r e t imeframe (Mar 2020 − Nov 2021) , #

#on ly pe r c en t i s used to p r o v i d e t h e i n s i g h t about running p r e s s u r e . #

#

#To b e t t e r monitor t h e pre s sure , we use i n d i c a t o r columns to s e l e c t #

#on ly ”Non−COVID−19” as t h e f i e l d we i n t e r e s t e d in because remaining #

#columns are about conf i rmed / su s p e c t e d COVID−19 ca s e s . #

#The 3 s c r e en i n g columns are e x c l u d ed as w e l l . #

#

#To have a b e t t e r overv iew , we i g o rne th e e f f e c t o f age or sex o f p a t i e n t s ,#

#s i n c e t h e s e two group i n d i c a t o r s w i l l not a f f e c t i f t h e p a t i e n t need #

#medica l t r e a tmen t s or not . They a l l need med ica l care . #

There fore , on l y ” Tota l ” i s s e l e c t e d in t h e ”Group” column .

#

#Hosp i t a l s e t t i n g s are i n d i c a t e d by t h e ” S e t t i n g ” column #

#and i t has ”ED” f o r emergency department , #

#and ”IP” f o r I n p a t i e n t . To have a b e t t e r p i c t u r e o f running pre s sure , #

#the data frame i s s p l i t t e d by s e t t i n g and combined t o g e t h e r by da t e . #

##

#read NHCS h o s p i t a l da ta

ho sp i t a l = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data

/COVID−19 Hosp i ta l Data f rom the Nat i ona l Hosp i ta l Care Survey . csv ’)

h o sp i t a l = ho sp i t a l [(h o sp i t a l [’ I nd i c a t o r ’] == ’Non−COVID−19 ’) & (ho sp i t a l [’Group ’] == ’ Total ’)]

#drop unneces sary columns

ho sp i t a l = ho sp i t a l . drop (columns = [’ Figure ’ , ’Time ’ , ’End Time ’ , ’ I nd i c a t o r ’ ,

’Group ’ , ’ Subgroup ’ , ’Measure ’])

#s p l i t t h e data frame by s e t t i n g / department and combine them t o g e t h e r by da t e .

ED = ho sp i t a l [h o sp i t a l [’ S e t t ing ’] == ’ED’]

IP = ho sp i t a l [h o sp i t a l [’ S e t t ing ’] == ’ IP ’]

running cap = ED. merge (IP , on = ’ Start Time ’ , how = ’ l e f t ’)

#rename columns

running cap = running cap . rename (columns = { ’ Value x ’ : ’Non COVID Percent ED ’ ,

’ Value y ’ : ’ Non COVID Percent IP ’ })

running cap = running cap . drop (columns = [’ S e t t i ng x ’ , ’ S e t t i ng y ’])

running cap [’ Start Time ’] = pd . to datet ime (running cap [’ Start Time ’])

running cap . head ()

running cap . p l o t (x=”Start Time” , y=[”Non COVID Percent ED” , ’ Non COVID Percent IP ’] ,

122

kind=” l i n e ” , f i g s i z e =(9 , 8))

p l t . x l ab e l (’Time ’)

p l t . y l ab e l (’ Percentage o f Non−COVID−19 Pat i ent s ’)

p l t . show ()

##

#

#Chapter 3 . 3 : Rates o f COVID−19 Cases or Deaths by Age Group #

#and Vacc ina t ion S t a t u s (and Boos ter Dose) #

#

#The d i f f e r e n c e between t h e s e two da t a s e t , #

#(1) Rates o f COVID−19 Cases or Deaths by Age Group and Vacc ina t ion S t a t u s & #

#(2) Rates o f COVID−19 Cases or Deaths by Age Group and Vacc ina t ion S t a t u s #

#and Boos ter Dose , #

#i s t h a t t h e l a t e r d a t a s e t on l y con ta in t h e data a f t e r Sep 2021 #

#wi th in f o rma t i on about b o o s t e r dose , #

#wh i l e t h e p r e v i o u s one s t a r t s from Apr 2021 w i t hou t any columns about b o o s t e r dose . #

#

#For t h e s e two da t a s e t s , we on l y i n t e r e s t e d in t h e e f f e c t i v e n s s o f v a c c i n a t i o n #

#to p r e v en t dea th on each age group i g n o r i n g t h e e f f e c t s b rough t by gender #

#or v a c c i n a t i o n t ype . #

#There fore , a l l rows w i th case r a t e are removed . Also , t h e MMWR week i s conve r t ed #

#to da t e t ime v a r i a b l e as w e l l t o be matched wi th t h e case data . #

#

##

#read v a c c i n a t i o n d a t a s e t s

vacc = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data

/Rates of COVID−19 Cases or Deaths by Age Group and Vacc inat ion Status . csv ’)

#drop wanted columns in v a c c i n a t i o n d a t a s e t

vacc = vacc . drop (columns = [’month ’ , ’ Vaccine product ’ , ’ Vaccinated with outcome ’ ,

’ Unvaccinated with outcome ’ ,

’ Crude IRR ’ , ’Age adjusted vax IR ’ , ’Age adjusted unvax IR ’ ,

’Age adjusted IRR ’ , ’ Cont inuity c o r r e c t i o n ’])

#conve r t MMWR week to s t r i n g and c r e a t e a da t e column

vacc [’MMWR week ’] = vacc [’MMWR week ’] . astype (str)

vacc [’ date ’] = pd . to datet ime (vacc [’MMWR week ’]+ ’−0 ’ , format=’%Y%W−%w’)

#keep a l l age groups and on l y outcome == dea th

vacc = vacc [(vacc [’ outcome ’] != ’ case ’) & (vacc [’Age group ’] != ’ a l l a g e s a d j ’)]

#so r t by da t e and drop a few more columns

vacc = vacc . s o r t v a l u e s (by = ’ date ’)

vacc = vacc . drop (columns = [’ outcome ’ , ’MMWR week ’])

#c a l c u l a t e t h e dea th r a t e f o r each age group as t h e popu l a t i on−we i gh t ed sum o f

123

death r a t e o f d i f f e r e n t v a c c i n a t i o n s t a t u s

vacc [’ death IR ’] = vacc [’ Ful ly vacc inated populat ion ’] / (vacc [’ Ful ly vacc inated populat ion ’]

+vacc [’ Unvaccinated populat ion ’]) ∗ vacc [’ Crude vax IR ’]

+vacc [’ Unvaccinated populat ion ’] / (vacc [’ Ful ly vacc inated populat ion ’]

+vacc [’ Unvaccinated populat ion ’]) ∗ vacc [’ Crude unvax IR ’]

#drop o t h e r columns and on l y keep th e o v e r a l l dea th r a t e

vacc = vacc . drop (columns = [’ Ful ly vacc inated populat ion ’ , ’ Unvaccinated populat ion ’ ,

’ Crude vax IR ’ , ’ Crude unvax IR ’])

#from Sep 26 , 2021 , use t h e b o o s t e r dose data frame to i n d i c a t e t h e dea th r a t e

s i n c e t h e age groups are d i f f e r e n t

vacc = vacc [vacc [’ date ’] < ”2021−09−26”]

vacc . rename (columns = { ’Age group ’ : ” age group ”} , i np l a c e = True)

#conve r t age g roup column to a l i s t and make−up a new l i s t by u s ing t h e upper bound o f t h e each age group

#f o r example , age group ”12−17” w i l l be conve r t ed to i n t e g e r 17 .

age group = vacc [’ age group ’] . t o l i s t ()

age = []

for i in range (len (vacc [’ death IR ’])) :

i f age group [i] == ”12−17” :

age . append (17)

e l i f age group [i] == ”18−29” :

age . append (29)

e l i f age group [i] == ”30−49” :

age . append (49)

e l i f age group [i] == ”50−64” :

age . append (64)

e l i f age group [i] == ”65−79” :

age . append (79)

e l i f age group [i] == ”80+” :

age . append (80)

else :

age . append (0)

vacc [’ age group ’] = age

#read b o o s t e r dose d a t a s e t s

booste r = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/

Rates of COVID−19 Cases or Deaths by Age Group and Vacc inat ion Status and Booster Dose . csv ’)

#drop wanted columns in b o o s t e r dose d a t a s e t

booste r = booste r . drop (columns = [’month ’ , ’ vacc ine product ’ , ’ boosted with outcome ’ ,

’ p r imary se r i e s on ly w i th outcome ’ ,

’ unvaccinated with outcome ’ , ’ c r u d e b o o s t e r i r r ’ , ’ c r u d e i r r ’ ,

’ a g e a d j b o o s t e r i r ’ ,

’ a g e ad j v ax i r ’ , ’ a g e ad j unvax i r ’ , ’ a g e a d j b o o s t e r i r r ’ ,

’ a g e a d j i r r ’ , ’ c o n t i n u i t y c o r r e c t i o n ’])

124

#keep a l l age groups and on l y outcome == dea th

booste r = booste r [(boos te r [’ outcome ’] != ’ case ’) & (booste r [’ age group ’] != ’ a l l a g e s ’)]

#conve r t MMWR week to s t r i n g and c r e a t e a da t e column

booste r [’mmwr week ’] = booste r [’mmwr week ’] . astype (str)

boos te r [’ date ’] = pd . to datet ime (boos te r [’mmwr week ’]+ ’−0 ’ , format=’%Y%W−%w’)

#so r t by da t e and drop a few more columns

booste r = booste r . s o r t v a l u e s (by = ’ date ’)

boos te r = booste r . drop (columns = [’ outcome ’ , ’mmwr week ’])

#c a l c u l a t e t h e dea th r a t e f o r each age group as t h e popu l a t i on−we i gh t ed sum

of dea th r a t e o f d i f f e r e n t v a c c i n a t i o n s t a t u s

booste r [’ death IR ’] = booste r [’ boos ted popu lat ion ’] / (boos te r [’ boos ted popu lat ion ’]

+booste r [’ p r ima ry s e r i e s on l y popu l a t i on ’]

+booste r [’ unvacc inated popu lat ion ’]) ∗ booste r [’ c r u d e b o o s t e r i r ’]

+booste r [’ p r ima ry s e r i e s on l y popu l a t i on ’] / (booste r [’ boos ted popu lat ion ’]

+booste r [’ p r ima ry s e r i e s on l y popu l a t i on ’]

+booste r [’ unvacc inated popu lat ion ’]) ∗ booste r [’ c r u d e p r ima r y s e r i e s o n l y i r ’]

+booste r [’ unvacc inated popu lat ion ’] / (booste r [’ boos ted popu lat ion ’]

+booste r [’ p r ima ry s e r i e s on l y popu l a t i on ’]

+booste r [’ unvacc inated popu lat ion ’]) ∗ booste r [’ c rude unvax i r ’]

#drop o t h e r columns and on l y keep th e o v e r a l l dea th r a t e

booste r = booste r . drop (columns = [’ boos ted popu lat ion ’ , ’ p r ima ry s e r i e s on l y popu l a t i on ’ ,

’ unvacc inated populat ion ’ ,

’ c r u d e b o o s t e r i r ’ , ’ c r u d e p r ima r y s e r i e s o n l y i r ’ , ’ c rude unvax i r ’])

#conve r t age g roup column to a l i s t and make−up a new l i s t by u s ing t h e upper bound o f t h e each age group

#f o r example , age group ”12−17” w i l l be conve r t ed to i n t e g e r 17 .

age group = booste r [’ age group ’] . t o l i s t ()

age = []

for i in range (len (boos te r [’ death IR ’])) :

i f age group [i] == ”12−17” :

age . append (17)

e l i f age group [i] == ”18−49” :

age . append (49)

e l i f age group [i] == ”50−64” :

age . append (64)

e l i f age group [i] == ”65+” :

age . append (65)

else :

age . append (0)

boos te r [’ age group ’] = age

125

##

#

#Chapter 3 . 5 . 1 : Data I n t e g r a t i o n #

#

#Now we have a l r e a d y pre−p roc e s s ed a l l t h e s e t h r e e da t a s e t s , #

#and i t i s t h e t ime to combine them t o g e t h e r based on da te and age . #

#

#conve r t age g roup column in ca s e s data frame to a l i s t and make−up a new l i s t#

#by us ing t h e median o f t h e each age group . #

#f o r example , age group ”10−19” w i l l be conve r t ed to i n t e g e r 15 . #

#

#the ” age ” column c r e a t e d by t h e f o l l o w i n g l i n e s w i l l be removed l a t e r #

#s i n c e i t i s j u s t an i n d i c a t o r to match w i th age groups #

#in v a c c i n a t i o n and b o o s t e r data frame . #

#

##

age group = case s [’ age group ’] . t o l i s t ()

age = []

for i in range (ca s e s . shape [0]) :

i f age group [i] == ”0 − 9 Years” :

age . append (5)

e l i f age group [i] == ”10 − 19 Years” :

age . append (15)

e l i f age group [i] == ”20 − 29 Years” :

age . append (25)

e l i f age group [i] == ”30 − 39 Years” :

age . append (35)

e l i f age group [i] == ”40 − 49 Years” :

age . append (45)

e l i f age group [i] == ”50 − 59 Years” :

age . append (55)

e l i f age group [i] == ”60 − 69 Years” :

age . append (65)

e l i f age group [i] == ”70 − 79 Years” :

age . append (75)

e l i f age group [i] == ”80+ Years” :

age . append (80)

else :

age . append (0)

ca s e s [’ age ’] = age

126

##

#Fir s t , t h e ca s e s data frame i s merged w i th running c a p a c i t y data frame . #

#This p r o c e s s i s r e l a t i v e l y e a s i e r s i n c e t h e da t e i s t h e #

#on ly v a r i a b l e to be matched and age group i s e x c l u d ed in t h e p ro c e s s . #

#This pa r t i s done by ou t e r j o i n w i th da t e as t h e key . #

#

#Since t h e running c a p a c i t y i s r e corded week l y s i n c e 2020−03−18, #

#I assume t h a t t h e non−cov id −19 p a t i e n t p e r c en t i s 100% b e f o r e #

#2020−03−18. For t h e case da t e t h a t i s in between o f two c on s e c u t i v e #

#running c a p a c i t y r ecord date , #

#the running c a p a c i t y i s f i l l e d by t h e v a l u e o f p r e v i o u s row . #

#

#For example , t h e r e are two c on s e c u t i v e running c a p a c i t y r ecord #

#date : 2020−03−18 and 2020−03−25, #

#the running c a p a c i t y on the da t e o f 2020−03−19 w i l l be f i l l e d #

#by the va l u e o f 2020−03−18, #

#and the va l u e o f 2020−03−20 w i l l be f i l l e d #

#by the va l u e o f 2020−03−19 and so on . #

##

ca s e s . rename (columns = { ’ c d c c a s e e a r l i e s t d t ’ : ” date ”} , i np l a c e = True)

running cap . rename (columns = { ’ Start Time ’ : ” date ”} , i np l a c e = True)

df = pd . concat ([cases , running cap])

df = df . s o r t v a l u e s (by = ’ date ’)

df = pd . merge (cases , running cap , on = ’ date ’ , how = ’ outer ’)

df [’Non COVID Percent ED ’] . f i l l n a (method=’pad ’ , i np l a c e=True)

df [’ Non COVID Percent IP ’] . f i l l n a (method=’pad ’ , i np l a c e=True)

df [’Non COVID Percent ED ’] . f i l l n a (100 , i np l a c e=True)

df [’ Non COVID Percent IP ’] . f i l l n a (100 , i np l a c e=True)

127

###

#Now i t t ime to d e a l w i th t h e v a c c i n a t i o n data frame #

#and the ca s e s data frame . #

#

#Since CDC has d i f f e r e n t age group s t r u c t u r e s f o r primary dose s #

#and the b o o s t e r dose , t h e age group are matched mannual ly : #

#

#CDC case age gorup ; primary v a c c i n a t i o n age group ; b o o s t e r age group#

#0−9 wi th median 5 N/A N/A #

#10−19 wi th median 15 12−17 12−17 #

#20−29 wi th median 25 18−29 18−49 #

#30−39 wi th median 35 30−49 18−49 #

#40−49 wi th median 45 30−49 18−49 #

#50−59 wi th median 55 50−64 50−64 #

#60−69 wi th median 65 65−79 65+ #

#70−79 wi th median 75 65−79 65+ #

#80+ 80+ 65+ #

#

#

#The mis s ing va l u e f o r age group 0−9 w i l l be hand led l a t e r a f t e r s p l i t t e d #

#accord ing to d i f f e r e n t v a r i a n t waves . #

#

#Since t h e dea th r a t e r ecorded in vacc and b o o s t e r data frame i s on #

#week ly−ba s i s , when comparing t h e dates , we need to s p e c i f y t h e range #

#o f each week so t h a t t h e da t e s in ca s e s data frame cou l d be matched . #

#

#For example , two c on s e c u t i v e v a c c i n a t i o n record da t e i s 2021−04−11 #

#and 2021−04−18, then a l l rows in ca s e s da te f rame wi th da t e >= 2021−04−11 #

#and da te < 2021−04−18 w i l l be matched wi th t h e r e co rd s on 2021−04−11 #

#in vacc data frame . #

###

i n t e g ra t ed = df . copy ()

i n t eg ra t ed [” dea th ra t e ”] = np . nan

for i in range (i n t eg ra t ed . shape [0]) :

for j in range (vacc . shape [0]) :

i f i n t e g ra t ed . i l o c [i] [’ date ’] >= vacc . i l o c [j] [’ date ’]

and i n t e g ra t ed . i l o c [i] [’ date ’] < vacc . i l o c [j] [’ date ’]+ t imede l ta (days=7):

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 15 and vacc . i l o c [j] [’ age group ’] == 17 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 25 and vacc . i l o c [j] [’ age group ’] == 29 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 35 and vacc . i l o c [j] [’ age group ’] == 49 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 45 and vacc . i l o c [j] [’ age group ’] == 49 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 55 and vacc . i l o c [j] [’ age group ’] == 64 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 65 and vacc . i l o c [j] [’ age group ’] == 79 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

128

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 75 and vacc . i l o c [j] [’ age group ’] == 79 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 80 and vacc . i l o c [j] [’ age group ’] == 80 :

i n t eg ra t ed . i l o c [i , 2 8] = vacc . i l o c [j] [’ death IR ’]

for i in range (i n t eg ra t ed . shape [0]) :

for j in range (boos te r . shape [0]) :

i f i n t e g ra t ed . i l o c [i] [’ date ’] >= booste r . i l o c [j] [’ date ’]

and i n t e g ra t ed . i l o c [i] [’ date ’] < booste r . i l o c [j] [’ date ’]+ t imede l ta (days=7):

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 15 and booste r . i l o c [j] [’ age group ’] == 17 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 25 and booste r . i l o c [j] [’ age group ’] == 49 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 35 and booste r . i l o c [j] [’ age group ’] == 49 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 45 and booste r . i l o c [j] [’ age group ’] == 49 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 55 and booste r . i l o c [j] [’ age group ’] == 64 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 65 and booste r . i l o c [j] [’ age group ’] == 65 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 75 and booste r . i l o c [j] [’ age group ’] == 65 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i f i n t e g ra t ed . i l o c [i] [’ age ’] == 80 and booste r . i l o c [j] [’ age group ’] == 65 :

i n t eg ra t ed . i l o c [i , 2 8] = booste r . i l o c [j] [’ death IR ’]

i n t eg ra t ed = in t eg ra t ed . drop (columns = [’ age ’])

i n t eg ra t ed . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ in t eg ra t ed . csv ’ , index=False)

i n t eg ra t ed . i n f o ()

##

#

#Chapter 3 . 5 . 2 : D i v i s i o n #

#S p l i t t h e i n t e g r a t e d data frame accord ing to t h e Date o f d e s i g n a t i o n #

#fo r each VOCs(v a r i a n t s o f concern) p u b l i s h e d by WHO #

#

#For the De l ta va r i an t , t h e r e are two da t e s p u b l i s h e d by WHO #

#which are VOI (v a r i a n t o f i n t e r e s t) and VOC. #

#Here t he VOC date i s used f o r c on s i s t e n c y . #

#

#Alpha & Beta : 18−Dec−2020 #

#Gamma : 11−Jan−2021 #

#De l ta : 11−May−2021 #

#Omicron : 26−Nov−2021 #

#

##

outbreak = in t eg ra t ed [i n t eg ra t ed [’ date ’]< ’ 2020−12−18 ’]

AlphaBeta = in t eg ra t ed [(i n t eg ra t ed [’ date ’]>= ’2020−12−18 ’) & (in t eg ra t ed [’ date ’] < ’ 2021−01−11 ’)]

129

Gamma = in t eg ra t ed [(i n t eg ra t ed [’ date ’]>= ’2021−01−11 ’) & (in t eg ra t ed [’ date ’] < ’ 2021−05−11 ’)]

Delta = in t eg ra t ed [(i n t eg ra t ed [’ date ’]>= ’2021−05−11 ’) & (in t eg ra t ed [’ date ’] < ’ 2021−11−26 ’)]

Omicron = in t eg ra t ed [i n t eg ra t ed [’ date ’]>= ’2021−11−26 ’]

outbreak . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ outbreak . csv ’ , index=False)

AlphaBeta . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/AlphaBeta . csv ’ , index=False)

Gamma. t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Gamma. csv ’ , index=False)

Delta . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Delta . csv ’ , index=False)

Omicron . t o c sv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Omicron . csv ’ , index=False)

Feature Selection

The following code is used to select the best feature subset that is subse-

quently used for applying machine learning models described in Chapter 5.1.

#########################

#f e a t u r e s e l e c t i o n #

#########################

import pandas as pd

import numpy as np

import matp lo t l ib . pyplot as p l t

from dython . nominal import a s s o c i a t i o n s

import dataframe image as d f i

from sk l ea rn . compose import make column transformer

from sk l ea rn . p r ep roc e s s i ng import OrdinalEncoder

from sk l ea rn . f e a t u r e s e l e c t i o n import SelectKBest

from sk l ea rn . f e a t u r e s e l e c t i o n import ch i2

130

###

#

#Chapter 5 . 1 . 1 : F i l t e r Method #

#

#In t h i s part , we on l y keep th e p r e d i c t o r s t h a t #

#has c o r r e l a t i o n wi th dea th yn >= 0 . 0 5 . #

#

#Use Cramer ’ s V from Dython as t h e i n d i c a t o r , and the chi−s quare #

#i s used to doub le−check . #

#

#Also , we w i l l on l y keep one o f pna yn and a b x c h e s t y n #

#s in c e t h ey are h i g h l y c o r r e l a t e d (>=0.75) #

#

#There fore , f i n a l Xs are : mechvent yn , i cu yn , hosp yn , age group , #

#a c u t e r e s p d i s t r e s s y n , pna yn , medcond yn , sob yn , headache yn , #

#date , runnose yn , d e a t h r a t e , s t h r o a t y n #

#

#Chi−Squared Feature S e l e c t i o n wi th Se l e c tKBes t p r o v i d e s t h e same #

#s e t o f f e a t u r e s w i th a b x c h e s t y n t h a t i s dropped due to #

#high c o r r e l a t i o n wi th pna yn #

#

###

i n t e g ra t ed = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ in t eg r a t ed . csv ’)

i n t eg ra t ed . columns

ca t ego r i c a l c o l umns = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ date ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ ,

’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ , ’ pna yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’ death yn ’]

numerical columns = [’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ , ’ d ea th ra t e ’]

df = in t eg ra t ed . copy ()

p r e p r o c e s s e i n g = make column transformer (

(OrdinalEncoder (handle unknown=” use encoded va lue ” , unknown value = np . nan) , c a t ego r i c a l c o l umns))

df . l o c [: , c a t ego r i c a l c o l umns] = p r e p r o c e s s e i n g . f i t t r a n s f o rm (df [c a t ego r i c a l c o l umns])

y = df [’ death yn ’]

p r e d i c t o r s = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ date ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ ,

’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ , ’ pna yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ ,

’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ , ’ d ea th ra t e ’]

x = df [p r e d i c t o r s]

c omp l e t e c o r r e l a t i on= a s s o c i a t i o n s (df , nominal columns = catego r i ca l co lumns ,

131

numerical columns = numerical columns , compute only = True)

comple te cor r=comp l e t e c o r r e l a t i on [’ co r r ’]

comple te cor r = comple te cor r . s t y l e . background gradient (cmap=’ coolwarm ’ , ax i s=None) . s e t p r e c i s i o n (2)

comple te cor r

#d f i . e x po r t (comp l e t e co r r , ’ c omp l e t e c o r r . png ’)

hide columns = df . columns . t o l i s t ()

hide columns . remove (’ death yn ’)

comple te cor r = comp l e t e c o r r e l a t i on [’ co r r ’]

d ea th co r r = comple te cor r . drop (columns = hide columns)

dea th co r r = death co r r [dea th co r r >= 0 . 0 5]

dea th co r r = death co r r . dropna ()

dea th co r r = death co r r . s o r t v a l u e s (by = ’ death yn ’ , ascending= False)

dea th co r r = death co r r . i l o c [1 : , :] . t ranspose ()

dea th co r r = death co r r . s t y l e . background gradient (cmap=’ coolwarm ’ , ax i s=None) . s e t p r e c i s i o n (2)

dea th co r r

#d f i . e x po r t (d ea t h co r r , ’ d e a t h c o r r . png ’)

y = df [’ death yn ’]

f i l t e r f e a t u r e s = [’ mechvent yn ’ , ’ i cu yn ’ , ’ hosp yn ’ , ’ age group ’ ,

’ a c u t e r e s pd i s t r e s s yn ’ , ’ pna yn ’ , ’medcond yn ’ ,

’ sob yn ’ , ’ headache yn ’ , ’ date ’ , ’ runnose yn ’ , ’ s th roat yn ’]

len (f i l t e r f e a t u r e s)

Chi−Squared Feature S e l e c t i o n wi th Se l e c tKBes t p r o v i d e s t h e same s e t o f c a t e g o r i c a l f e a t u r e s

x = df [c a t ego r i c a l c o l umns]

x = x . drop (columns = [’ death yn ’])

y = df [’ death yn ’]

f s = SelectKBest (s c o r e f un c=chi2 , k=’ a l l ’)

f s . f i t (x , y)

ch i2 = pd . DataFrame({ ’ Feature Name ’ : x . columns , ’Chi−Square Value ’ : f s . s c o r e s })

ch i2 = chi2 . s o r t v a l u e s (by=’Chi−Square Value ’ , ascending=False)

ch i2

ch i2 . p l o t . bar (x=”Feature Name” , y=”Chi−Square Value”)

p l t . show (block=True)

###

#

#Chapter 5 . 1 . 2 : Wrapper method wi th foward s e l e c t i o n #

#In t h i s part , we drop the ” d e a t h r a t e ” s i n c e i t c on t a i n s #

#so many n u l l v a l u e . ” d e a t h r a t e ” w i l l be an a d d i t i o n a l f e a t u r e f o r #

#cor r e spond ing v a r i a n t s u b s e t s . #

#

#Also , we modi fy t h e l o g i s t i c r e g r e s s i o n parameters to avo id #

#the ”non conve r g en t e r r o r ” : s o l v e r = ’ saga ’ , max i t e r = 5000 . #

#We use we i gh t ed F1 sco r e s i n c e t h e c l a s s e s are imba lanced . #

###

132

import mlxtend

from mlxtend . f e a t u r e s e l e c t i o n import Sequen t i a lFea tu r eSe l e c t o r as SFS

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

y = df [’ death yn ’]

x = df [p r e d i c t o r s]

x = x . drop (columns = [’ dea th ra t e ’])

s f s = SFS(Log i s t i cReg r e s s i on (s o l v e r = ’ saga ’ , max iter = 5000) ,

k f e a t u r e s = 26 ,

forward = True ,

f l o a t i n g = False ,

s c o r i ng = ’ f1 macro ’ ,

cv = 5 ,

verbose = 2 ,

n jobs = 1)

#Use SFS to s e l e c t t h e top 5 f e a t u r e s

s f s . f i t (x , y)

d f SFS r e su l t s = pd . DataFrame (s f s . s ub s e t s) . t ranspose ()

d f SFS r e su l t s

from mlxtend . p l o t t i n g import p l o t s e q u e n t i a l f e a t u r e s e l e c t i o n as p l o t s f s

f i g = p l o t s f s (s f s . g e t me t r i c d i c t () , kind=’ s t d e r r ’)

p l t . t i t l e (’ Sequent i a l Forward S e l e c t i o n (w. StdErr) ’)

p l t . g r id ()

p l t . show ()

d f SFS r e su l t s [’ avg sco r e ’] = d f SFS r e su l t s [’ avg sco r e ’] . astype (f loat)

max index = d f SFS r e su l t s [’ avg sco r e ’] . idxmax ()

s e l e c t e d f e a t u r e s = d f SFS r e su l t s [’ f eature names ’] [max index]

wrapper f ea ture s = l i s t (s e l e c t e d f e a t u r e s)

wrapper f ea ture s

###

Chapter 5 . 1 . 3 : embedded method

###

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from sk l ea rn . f e a t u r e s e l e c t i o n import SelectFromModel

y = df [’ death yn ’]

x = df [p r e d i c t o r s]

x = x . drop (columns = [’ dea th ra t e ’])

l o g i s t i c = Log i s t i cReg r e s s i on (C = 1 , penalty = ’ l 1 ’ , s o l v e r = ’ saga ’ , max iter= 5000) . f i t (x , y)

model = SelectFromModel (l o g i s t i c , p r e f i t = True)

x new = model . transform (x)

df new = pd . DataFrame (x new)

133

len (l i s t (x . columns))

co e f = pd . DataFrame({ ’ Feature Name ’ : x . columns , ’ C o e f f i c i e n t s ’ : np . abs (l o g i s t i c . c o e f [0]) })

c o e f . s o r t v a l u e s (by=’ Co e f f i c i e n t s ’)

c o e f . p l o t . bar (x=”Feature Name” , y=” Co e f f i c i e n t s ”)

p l t . show (block=True)

embedded features = l i s t (c o e f [’ Feature Name ’] [c o e f [’ C o e f f i c i e n t s ’] > 0 . 1])

embedded features

###

#Chapter 5 . 1 . 5 I n t e r s e c t i o n and union #

###

def i n t e r s e c t i o n (a , b , c) :

return l i s t (set (a) & set (b) & set (c))

def union (a , b , c) :

return l i s t (set (a) | set (b) | set (c))

i n t e r s e c t i o n s e t = i n t e r s e c t i o n (f i l t e r f e a t u r e s , wrapper f eatures , embedded features)

i n t e r s e c t i o n s e t

un ion s e t = union (f i l t e r f e a t u r e s , wrapper f eatures , embedded features)

un ion s e t

len (un ion s e t)

Data Analysis

The following code implements the procedures described from Sections

5.2 to 5.6, where data balancing techniques and various machine learning

models are discussed.

############################

#Data Ana l y s i s #

############################

import pandas as pd

import numpy as np

import imblearn

from imblearn . over sampl ing import SMOTENC

from imblearn . under sampl ing import RandomUnderSampler

from sk l ea rn . compose import make column transformer

from sk l ea rn . p r ep roc e s s i ng import OrdinalEncoder

134

from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from sk l ea rn . p r ep roc e s s i ng import MinMaxScaler

from sk l ea rn import metr i c s

###

#Chapter 5 . 2 : read data and ba l ance t h e d a t a s e t #

###

i n t e g ra t ed = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ in t eg r a t ed . csv ’)

c a t ego r i c a l c o l umns = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ date ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ ,

’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ , ’ pna yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’ death yn ’]

numerical columns = [’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ , ’ d ea th ra t e ’]

f i l t e r f e a t u r e s = [’ mechvent yn ’ , ’ i cu yn ’ , ’ hosp yn ’ , ’ age group ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ pna yn ’ , ’medcond yn ’ ,

’ sob yn ’ , ’ headache yn ’ , ’ date ’ , ’ runnose yn ’ , ’ s th roat yn ’]

wrapper f ea ture s = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ f e v e r yn ’ ,

’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ , ’medcond yn ’ ,

’ myalgia yn ’ , ’ nauseavomit yn ’ ,

’ pna yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’Non COVID Percent ED ’ ,

’ Non COVID Percent IP ’]

embedded features = [’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ c h i l l s y n ’ , ’ d ia r rhea yn ’ ,

’ f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ ,

’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ ,

’ pna yn ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ ,

’Non COVID Percent ED ’]

i n t e r s e c t i o n s e t = [’ hosp yn ’ , ’medcond yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ mechvent yn ’ ,

’ pna yn ’ , ’ i cu yn ’ , ’ age group ’ ,

’ headache yn ’ , ’ sob yn ’]

un i on s e t = [’medcond yn ’ , ’ d ia r rhea yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ c h i l l s y n ’ ,

’ hosp yn ’ , ’ abxchest yn ’ , ’ f e v e r yn ’ ,

’ mechvent yn ’ , ’ i cu yn ’ , ’ hc work yn ’ , ’ age group ’ , ’ cough yn ’ ,

’ nauseavomit yn ’ , ’ sex ’ , ’ pna yn ’ , ’ date ’ ,

’ s th roat yn ’ , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ ,

’ abdom yn ’ , ’ myalgia yn ’ , ’ sob yn ’ , ’ runnose yn ’ ,

’ headache yn ’]

f e a t u r e s e t d i c = { ’ f i l t e r f e a t u r e s ’ : f i l t e r f e a t u r e s ,

’ wrapper f ea ture s ’ : wrapper f eatures ,

’ embedded features ’ : embedded features ,

’ i n t e r s e c t i o n s e t ’ : i n t e r s e c t i o n s e t ,

’ un i on s e t ’ : un i on s e t }

df = in t eg ra t ed . copy ()

135

drop d e a t h r a t e column s i n c e i t c on t a i n s l o t o f mi s s ing va l u e

df = df . drop (columns = [’ dea th ra t e ’])

conve r t nominal columns from s t r i n g to numer ica l l a b e l by Or id ina lEncoder

p r e p r o c e s s e i n g = make column transformer (

(OrdinalEncoder (handle unknown=” use encoded va lue ” ,

unknown value = np . nan) , c a t ego r i c a l c o l umns))

df . l o c [: , c a t ego r i c a l c o l umns] = p r e p r o c e s s e i n g . f i t t r a n s f o rm (df [c a t ego r i c a l c o l umns])

fo r age group , date , race , Non COVID Percent ED and Non COVID Percent IP , s c a l e d them down to range (0 ,1)

s c a l e r = MinMaxScaler ()

df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]] =

s c a l e r . f i t t r a n s f o rm (df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” ,

’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]])

df . head ()

s p l i t t r a i n i n g and t e s t i n g sub s e t , use ” s t r a t i f y ” parameter to

ensure t h e r a t i o o f dea th ca s e s i s t h e same in bo th t r a i n&t e s t .

d f t r a i n , d f t e s t = t r a i n t e s t s p l i t (df , t e s t s i z e =0.2 , s t r a t i f y=df [’ death yn ’] , random state=100)

y t r a i n = d f t r a i n [’ death yn ’]

y t e s t = d f t e s t [’ death yn ’]

use imbalance−l e a rn l i b r a r y to over−samp l ing t h e dea th ca s e s f o r t h e t r a i n i n g d a t a s e t .

smote nc = SMOTENC(c a t e g o r i c a l f e a t u r e s=l i s t (range (0 , 25)) , random state = 100)

d f t r a i n ov e r , y t r a i n ov e r = smote nc . f i t r e s amp l e (d f t r a i n , y t r a i n)

print (’ Training s e t \n ’)

print (’ a f t e r over−sampling : \n ’ , y t r a i n ov e r . va lue counts ())

print (’ b e f o r e over−sampling : \n ’ , y t r a i n . va lue counts ())

print (’\n ’)

use imbalance−l e a rn l i b r a r y to under−samp l ing t h e dea th ca s e s f o r

the t e s t d a t a s e t to avo id low−p r e c i s i o n & high−accuracy .

rus = RandomUnderSampler (random state=200)

d f t e s t unde r , y t e s t unde r = rus . f i t r e s amp l e (d f t e s t , y t e s t)

print (’ Test ing s e t \n ’)

print (’ a f t e r under−sampling : \n ’ , y t e s t unde r . va lue counts ())

print (’ b e f o r e under−sampling : \n ’ , y t e s t . va lue counts ())

136

###

#Chapter 5 . 3 : T r a d i t i o n a l machine l e a r n i n g models #

#

#Now l e t ’ s b u i l d ML Models : SVM, Dec i s i on t r ee , Random f o r e s t ,#

#Lo g i s t i c r e g r e s s i on , KNN, and Naive bayes #

#

###

SVM

from sk l ea rn . svm import SVC

svc = SVC()

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

svc . f i t (x t r a i n , y t r a i n ov e r)

y pred = svc . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ svm . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

de c i s i o n t r e e

from sk l ea rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

d e c i s i o n t r e e = De c i s i o nT r e eC l a s s i f i e r ()

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

d e c i s i o n t r e e . f i t (x t r a i n , y t r a i n ov e r)

y pred = d e c i s i o n t r e e . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

137

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ d e c i s i o n t r e e . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

random f o r e s t

from sk l ea rn . ensemble import RandomForestClass i f i e r

random forest = RandomForestClass i f i e r ()

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

random forest . f i t (x t r a i n , y t r a i n ov e r)

y pred = random forest . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ random forest . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

Lo g i s t i c r e g r e s s i o n

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

l og r eg = Log i s t i cReg r e s s i on (s o l v e r = ’ saga ’ , max iter = 5000)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

138

l o g r eg . f i t (x t r a i n , y t r a i n ov e r)

y pred = log r eg . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ l o g r eg . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

KNN

from sk l ea rn . ne ighbors import KNe ighbor sC la s s i f i e r

knn = KNe ighbor sC la s s i f i e r (n ne ighbors = 5)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

knn . f i t (x t r a i n , y t r a i n ov e r)

y pred = knn . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’KNN. tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

#Naive bayes

from sk l ea rn . na ive bayes import GaussianNB

gauss ian = GaussianNB ()

d f l i s t = []

keys = []

139

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

gauss ian . f i t (x t r a i n , y t r a i n ov e r)

y pred = gauss ian . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ na ive bayes . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

###

#Chapter 5 . 4 : cos t−s e n s i t i v e c l a s s f i c a t i o n models #

###

import pandas as pd

import numpy as np

import imblearn

from imblearn . under sampl ing import RandomUnderSampler

from sk l ea rn . compose import make column transformer

from sk l ea rn . p r ep roc e s s i ng import OrdinalEncoder

from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from sk l ea rn . p r ep roc e s s i ng import MinMaxScaler

from sk l ea rn import metr i c s

i n t eg ra t ed = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ in t eg r a t ed . csv ’)

c a t ego r i c a l c o l umns = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ date ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ ,

’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ , ’ pna yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’ death yn ’]

numerical columns = [’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ , ’ d ea th ra t e ’]

f i l t e r f e a t u r e s = [’ mechvent yn ’ , ’ i cu yn ’ , ’ hosp yn ’ , ’ age group ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ pna yn ’ , ’medcond yn ’ ,

’ sob yn ’ , ’ headache yn ’ , ’ date ’ , ’ runnose yn ’ , ’ s th roat yn ’]

wrapper f ea ture s = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ f e v e r yn ’ ,

’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ , ’medcond yn ’ ,

’ myalgia yn ’ , ’ nauseavomit yn ’ ,

140

’ pna yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’Non COVID Percent ED ’ ,

’ Non COVID Percent IP ’]

embedded features = [’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ c h i l l s y n ’ , ’ d ia r rhea yn ’ ,

’ f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ ,

’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ ,

’ pna yn ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ ,

’Non COVID Percent ED ’]

i n t e r s e c t i o n s e t = [’ hosp yn ’ , ’medcond yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ mechvent yn ’ ,

’ pna yn ’ , ’ i cu yn ’ , ’ age group ’ ,

’ headache yn ’ , ’ sob yn ’]

un i on s e t = [’medcond yn ’ , ’ d ia r rhea yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ , ’ c h i l l s y n ’ ,

’ hosp yn ’ , ’ abxchest yn ’ , ’ f e v e r yn ’ ,

’ mechvent yn ’ , ’ i cu yn ’ , ’ hc work yn ’ , ’ age group ’ , ’ cough yn ’ ,

’ nauseavomit yn ’ , ’ sex ’ , ’ pna yn ’ , ’ date ’ ,

’ s th roat yn ’ , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ ,

’ abdom yn ’ , ’ myalgia yn ’ , ’ sob yn ’ , ’ runnose yn ’ ,

’ headache yn ’]

f e a t u r e s e t d i c = { ’ f i l t e r f e a t u r e s ’ : f i l t e r f e a t u r e s ,

’ wrapper f ea ture s ’ : wrapper f eatures ,

’ embedded features ’ : embedded features ,

’ i n t e r s e c t i o n s e t ’ : i n t e r s e c t i o n s e t ,

’ un i on s e t ’ : un i on s e t }

df = in t eg ra t ed . copy ()

drop d e a t h r a t e column s i n c e i t c on t a i n s l o t o f mi s s ing va l u e

df = df . drop (columns = [’ dea th ra t e ’])

conve r t nominal columns from s t r i n g to numer ica l l a b e l by Or id ina lEncoder

p r e p r o c e s s e i n g = make column transformer (

(OrdinalEncoder (handle unknown=” use encoded va lue ” , unknown value = np . nan) , c a t ego r i c a l c o l umns))

df . l o c [: , c a t ego r i c a l c o l umns] = p r e p r o c e s s e i n g . f i t t r a n s f o rm (df [c a t ego r i c a l c o l umns])

fo r age group , date , race , Non COVID Percent ED and Non COVID Percent IP ,

s c a l e d them down to range (0 ,1)

s c a l e r = MinMaxScaler ()

df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]] =

s c a l e r . f i t t r a n s f o rm (df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” ,

’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]])

df . head ()

s p l i t t r a i n i n g and t e s t i n g sub s e t , use ” s t r a t i f y ” parameter

to ensure t h e r a t i o o f dea th ca s e s i s t h e same in bo th t r a i n&t e s t .

d f t r a i n , d f t e s t = t r a i n t e s t s p l i t (df , t e s t s i z e =0.2 , s t r a t i f y=df [’ death yn ’] , random state=100)

y t r a i n = d f t r a i n [’ death yn ’]

y t e s t = d f t e s t [’ death yn ’]

141

print (y t r a i n . va lue counts ())

print (y t e s t . va lue counts ())

use imbalance−l e a rn l i b r a r y to under−samp l ing t h e dea th ca s e s

f o r t h e t e s t d a t a s e t to avo id low−p r e c i s i o n & high−accuracy .

rus = RandomUnderSampler (random state=200)

d f t e s t unde r , y t e s t unde r = rus . f i t r e s amp l e (d f t e s t , y t e s t)

print (’ Test ing s e t \n ’)

print (’ a f t e r under−sampling : \n ’ , y t e s t unde r . va lue counts ())

print (’ b e f o r e under−sampling : \n ’ , y t e s t . va lue counts ())

’ ’ ’

The f o l l o w i n g c o s t s e n s i t i v e / we i gh t ed models are t r a i n e d on the unba lanced t r a i n i n g s e t .

But are e v a l u a t e d on ba l anced t e s t i n g s e t w i th undersampl ing method .

’ ’ ’

SVM

use th e parameter c l a s s w e i g h t to a ch i e v e t h e cos t−s e n s i t i v e / we i gh t ed SVC c l a s s i f i e r

from sk l ea rn . svm import SVC

svc = SVC(c l a s s we i gh t = ’ balanced ’)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n [va lue]

x t e s t = d f t e s t und e r [va lue]

svc . f i t (x t r a i n , y t r a i n)

y pred = svc . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ weighted svm . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

de c i s i o n t r e e

use t h e parameter c l a s s w e i g h t to a ch i e v e t h e cos t−s e n s i t i v e / we i gh t ed d e c i s i o n t r e e c l a s s i f i e r

142

from sk l ea rn . t r e e import Dec i s i o nT r e eC l a s s i f i e r

d e c i s i o n t r e e = De c i s i o nT r e eC l a s s i f i e r (c l a s s we i gh t = ’ balanced ’)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n [va lue]

x t e s t = d f t e s t und e r [va lue]

d e c i s i o n t r e e . f i t (x t r a i n , y t r a i n)

y pred = d e c i s i o n t r e e . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ w e i g h t ed d e c i s i o n t r e e . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

Lo g i s t i c r e g r e s s i o n

use t h e parameter c l a s s w e i g h t to a ch i e v e t h e cos t−s e n s i t i v e / we i gh t ed L o g i s t i c r e g r e s s i o n

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

l og r eg = Log i s t i cReg r e s s i on (s o l v e r = ’ saga ’ , max iter = 5000 , c l a s s we i gh t = ’ balanced ’)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n [va lue]

x t e s t = d f t e s t und e r [va lue]

l o g r eg . f i t (x t r a i n , y t r a i n)

y pred = log r eg . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

143

with open(’ we ighted log r eg . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

###

#Chapter 5 . 5 : ANN #

###

import pandas as pd

import numpy as np

import matp lo t l ib . pyplot as p l t

import imblearn

from imblearn . over sampl ing import SMOTENC

from imblearn . under sampl ing import RandomUnderSampler

from sk l ea rn . compose import make column transformer

from sk l ea rn . p r ep roc e s s i ng import OrdinalEncoder

from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from sk l ea rn . p r ep roc e s s i ng import MinMaxScaler

from sk l ea rn . neura l network import MLPClass i f ier

from sk l ea rn . c l u s t e r import KMeans

import math

from sk l ea rn import metr i c s

i n t eg ra t ed = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ in t eg r a t ed . csv ’)

c a t ego r i c a l c o l umns = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ age group ’ , ’ date ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ ,

’ mechvent yn ’ , ’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ , ’ pna yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ , ’ death yn ’]

numerical columns = [’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ , ’ d ea th ra t e ’]

f i l t e r f e a t u r e s = [’ mechvent yn ’ , ’ i cu yn ’ , ’ hosp yn ’ , ’ age group ’ ,

’ a c u t e r e s pd i s t r e s s yn ’ , ’ pna yn ’ , ’medcond yn ’ ,

’ sob yn ’ , ’ headache yn ’ , ’ date ’ , ’ runnose yn ’ , ’ s th roat yn ’]

wrapper f ea ture s = [’ abdom yn ’ , ’ abxchest yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ age group ’ , ’ c h i l l s y n ’ , ’ cough yn ’ , ’ f e v e r yn ’ ,

’ headache yn ’ , ’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ ,

’medcond yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ ,

’ pna yn ’ , ’ sex ’ , ’ sob yn ’ , ’ s th roat yn ’ ,

’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]

embedded features = [’ a c u t e r e s pd i s t r e s s yn ’ , ’ age group ’ , ’ c h i l l s y n ’ ,

’ d ia r rhea yn ’ , ’ f e v e r yn ’ , ’ hc work yn ’ , ’ headache yn ’ ,

144

’ hosp yn ’ , ’ i cu yn ’ , ’ mechvent yn ’ , ’medcond yn ’ ,

’ myalgia yn ’ , ’ pna yn ’ , ’ runnose yn ’ , ’ sex ’ , ’ sob yn ’ ,

’Non COVID Percent ED ’]

i n t e r s e c t i o n s e t = [’ hosp yn ’ , ’medcond yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ mechvent yn ’ , ’ pna yn ’ , ’ i cu yn ’ , ’ age group ’ ,

’ headache yn ’ , ’ sob yn ’]

un i on s e t = [’medcond yn ’ , ’ d ia r rhea yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ c h i l l s y n ’ , ’ hosp yn ’ , ’ abxchest yn ’ , ’ f e v e r yn ’ ,

’ mechvent yn ’ , ’ i cu yn ’ , ’ hc work yn ’ , ’ age group ’ ,

’ cough yn ’ , ’ nauseavomit yn ’ , ’ sex ’ , ’ pna yn ’ , ’ date ’ ,

’ s th roat yn ’ , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’ ,

’ abdom yn ’ , ’ myalgia yn ’ , ’ sob yn ’ , ’ runnose yn ’ ,

’ headache yn ’]

f e a t u r e s e t d i c = { ’ f i l t e r f e a t u r e s ’ : f i l t e r f e a t u r e s ,

’ wrapper f ea ture s ’ : wrapper f eatures ,

’ embedded features ’ : embedded features ,

’ i n t e r s e c t i o n s e t ’ : i n t e r s e c t i o n s e t ,

’ un i on s e t ’ : un i on s e t }

df = in t eg ra t ed . copy ()

drop d e a t h r a t e column s i n c e i t c on t a i n s l o t o f mi s s ing va l u e

df = df . drop (columns = [’ dea th ra t e ’])

conve r t nominal columns from s t r i n g to numer ica l l a b e l by Or id ina lEncoder

p r e p r o c e s s e i n g = make column transformer (

(OrdinalEncoder (handle unknown=” use encoded va lue ” , unknown value = np . nan) , c a t ego r i c a l c o l umns))

df . l o c [: , c a t ego r i c a l c o l umns] = p r e p r o c e s s e i n g . f i t t r a n s f o rm (df [c a t ego r i c a l c o l umns])

fo r age group , date , race , Non COVID Percent ED and Non COVID Percent IP ,

s c a l e d them down to range (0 ,1)

s c a l e r = MinMaxScaler ()

df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” , ’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]] =

s c a l e r . f i t t r a n s f o rm (df [[” age group ” , ” date ” , ” rac e e thn i c i ty comb ined ” ,

’Non COVID Percent ED ’ , ’ Non COVID Percent IP ’]])

df . head ()

s p l i t t r a i n i n g and t e s t i n g sub s e t , use ” s t r a t i f y ” parameter

to ensure t h e r a t i o o f dea th ca s e s i s t h e same in bo th t r a i n&t e s t .

d f t r a i n , d f t e s t = t r a i n t e s t s p l i t (df , t e s t s i z e =0.2 , s t r a t i f y=df [’ death yn ’] , random state=100)

y t r a i n = d f t r a i n [’ death yn ’]

y t e s t = d f t e s t [’ death yn ’]

use imbalance−l e a rn l i b r a r y to over−samp l ing t h e dea th ca s e s f o r t h e t r a i n i n g d a t a s e t .

smote nc = SMOTENC(c a t e g o r i c a l f e a t u r e s=l i s t (range (0 , 25)) , random state = 100)

d f t r a i n ov e r , y t r a i n ov e r = smote nc . f i t r e s amp l e (d f t r a i n , y t r a i n)

145

print (’ Training s e t \n ’)

print (’ a f t e r over−sampling : \n ’ , y t r a i n ov e r . va lue counts ())

print (’ b e f o r e over−sampling : \n ’ , y t r a i n . va lue counts ())

print (’\n ’)

use imbalance−l e a rn l i b r a r y to under−samp l ing t h e dea th ca s e s

f o r t h e t e s t d a t a s e t to avo id low−p r e c i s i o n & high−accuracy .

rus = RandomUnderSampler (random state=200)

d f t e s t unde r , y t e s t unde r = rus . f i t r e s amp l e (d f t e s t , y t e s t)

print (’ Test ing s e t \n ’)

print (’ a f t e r under−sampling : \n ’ , y t e s t unde r . va lue counts ())

print (’ b e f o r e under−sampling : \n ’ , y t e s t . va lue counts ())

#Now l e t ’ s b u i l d MLP c l a s s i f i e r

mlp c l f = MLPClass i f ier (h i d d e n l a y e r s i z e s = (5 , 2) ,

a c t i v a t i on = ’ l o g i s t i c ’ , l e a r n i n g r a t e = ’ adapt ive ’ , max iter = 5000)

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

m lp c l f . f i t (x t r a i n , y t r a i n ov e r)

y pred = mlp c l f . p r ed i c t (x t e s t)

r epor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’ m lp c l f . tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

RBFN

h t t p s ://www. madrasresearch . org / po s t / r a d i a l−ba s i s−f un c t i on s−neura l−networks

146

from sk l ea rn . c l u s t e r import KMeans

import math

d f l i s t = []

keys = []

for key , value in f e a t u r e s e t d i c . i tems () :

x t r a i n = d f t r a i n o v e r [value]

x t e s t = d f t e s t und e r [va lue]

x t r a i n = x t r a i n . to numpy ()

x t e s t = x t e s t . to numpy ()

K cent= 6

km= KMeans(n c l u s t e r s= K cent , max iter= 5000)

km. f i t (x t r a i n)

cent= km. c l u s t e r c e n t e r s

max=0

for i in range (K cent) :

for j in range (K cent) :

d= np . l i n a l g . norm(cent [i]− cent [j])

i f (d> max) :

max= d

d= max

sigma= d/math . sq r t (2∗ K cent)

shape= x t r a i n . shape

row= shape [0]

column= K cent

G= np . empty ((row , column) , dtype= f loat)

for i in range (row) :

for j in range (column) :

d i s t= np . l i n a l g . norm(x t r a i n [i]− cent [j])

G[i] [j]= math . exp(−math .pow(d i s t , 2) /math .pow(2∗ sigma , 2))

GTG= np . dot (G.T,G)

GTG inv= np . l i n a l g . inv (GTG)

fac= np . dot (GTG inv ,G.T)

W= np . dot (fac , y t r a i n ov e r)

row= x t e s t . shape [0]

column= K cent

G test= np . empty ((row , column) , dtype= f loat)

for i in range (row) :

for j in range (column) :

d i s t= np . l i n a l g . norm(x t e s t [i]− cent [j])

G test [i] [j]= math . exp(−math .pow(d i s t , 2) /math .pow(2∗ sigma , 2))

y pred= np . dot (G test ,W)

147

y pred= 0 .5∗ (np . s i gn (y pred −0.5)+1)

repor t = metr i c s . c l a s s i f i c a t i o n r e p o r t (y te s t under , y pred , ou tput d i c t=True)

df = pd . DataFrame (repor t) . t ranspose ()

keys . append (key)

d f l i s t . append (df)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(’RBFN. tex ’ , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

VOC

The following code implements the procedures described in Chapter 6,

with each specific VOC are analyzed with the intersection feature subset.

###

#Chapter 6 : VOC #

###

import pandas as pd

import numpy as np

import imblearn

from imblearn import over sampl ing

from imblearn . over sampl ing import RandomOverSampler

from sk l ea rn . compose import make column transformer

from sk l ea rn . p r ep roc e s s i ng import OrdinalEncoder

from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from sk l ea rn . p r ep roc e s s i ng import MinMaxScaler

from sk l ea rn . svm import SVC

from sk l ea rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from sk l ea rn . neura l network import MLPClass i f ier

from sk l ea rn import metr i c s

i n t e r s e c t i o n s e t = [’ hosp yn ’ , ’medcond yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ mechvent yn ’ , ’ pna yn ’ , ’ i cu yn ’ , ’ age group ’ ,

’ headache yn ’ , ’ sob yn ’]

148

c a t e g o r i c a l c o l = [’ hosp yn ’ , ’medcond yn ’ , ’ a c u t e r e s pd i s t r e s s yn ’ ,

’ mechvent yn ’ , ’ pna yn ’ , ’ i cu yn ’ , ’ age group ’ ,

’ headache yn ’ , ’ sob yn ’ , ’ death yn ’]

drop columns = [’ abdom yn ’ , ’ abxchest yn ’ , ’ date ’ , ’Non COVID Percent ED ’ ,

’ c h i l l s y n ’ , ’ cough yn ’ , ’ d ia r rhea yn ’ , ’ f e v e r yn ’ , ’ Non COVID Percent IP ’ ,

’ s f e v e r yn ’ , ’ hc work yn ’ , ’ myalgia yn ’ , ’ nauseavomit yn ’ ,

’ r a c e e thn i c i ty comb ined ’ , ’ runnose yn ’ , ’ sex ’ , ’ s th roat yn ’]

outbreak = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/ outbreak . csv ’)

outbreak = outbreak . drop (columns = [’ dea th ra t e ’])

outbreak = outbreak . drop (columns = drop columns)

AlphaBeta = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/AlphaBeta . csv ’)

AlphaBeta = AlphaBeta . drop (columns = [’ dea th ra t e ’])

AlphaBeta = AlphaBeta . drop (columns = drop columns)

Gamma = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Gamma. csv ’)

Gamma[’ dea th ra t e ’] = Gamma[’ dea th ra t e ’] . f i l l n a (Gamma[’ dea th ra t e ’] . median ())

Gamma = Gamma. drop (columns = drop columns)

Delta = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Delta . csv ’)

Delta [’ dea th ra t e ’] = Delta [’ dea th ra t e ’] . f i l l n a (Delta [’ dea th ra t e ’] . median ())

Delta = Delta . drop (columns = drop columns)

Omicron = pd . r ead csv (’E: /WesternU MSc/ re s ea r ch paper /CDC data/Omicron . csv ’)

Omicron [’ dea th ra t e ’] = Omicron [’ dea th ra t e ’] . f i l l n a (Omicron [’ dea th ra t e ’] . median ())

Omicron = Omicron . drop (columns = drop columns)

v o c l i s t = [outbreak , AlphaBeta , Gamma, Delta , Omicron]

voc d i c = { ’ outbreak ’ : outbreak , ’ AlphaBeta ’ : AlphaBeta ,

’Gamma ’ : Gamma, ’ Delta ’ : Delta , ’Omicron ’ : Omicron}

for key , value in voc d i c . i tems () :

d f l i s t = []

keys = []

df = value . copy ()

conve r t nominal columns from s t r i n g to numer ica l l a b e l by Or id ina lEncoder

p r e p r o c e s s e i n g = make column transformer (

(OrdinalEncoder (handle unknown=” use encoded va lue ” ,

unknown value = np . nan) , c a t e g o r i c a l c o l))

df . l o c [: , c a t e g o r i c a l c o l] = p r e p r o c e s s e i n g . f i t t r a n s f o rm (df [c a t e g o r i c a l c o l])

fo r numer ica l columns s c a l e d them down to range (0 ,1)

s c a l e r = MinMaxScaler ()

i f ’ d ea th ra t e ’ not in df . columns :

149

df [[” age group ”]] = s c a l e r . f i t t r a n s f o rm (df [[” age group ”]])

else :

d f [[” age group ” , ’ dea th ra t e ’]] = s c a l e r . f i t t r a n s f o rm (df [[” age group ” , ’ dea th ra t e ’]])

s p l i t t r a i n i n g and t e s t i n g sub s e t , use ” s t r a t i f y ” parameter to

ensure t h e r a t i o o f dea th ca s e s i s t h e same in bo th t r a i n&t e s t .

d f t r a i n , d f t e s t = t r a i n t e s t s p l i t (df , t e s t s i z e =0.2 , s t r a t i f y=df [’ death yn ’] , random state=100)

x t r a i n = d f t r a i n [d f t r a i n . columns [˜ d f t r a i n . columns . i s i n ([’ death yn ’])]]

x t e s t = d f t e s t [d f t e s t . columns [˜ d f t e s t . columns . i s i n ([’ death yn ’])]]

y t r a i n = d f t r a i n [’ death yn ’] . astype (’ i n t ’)

y t e s t = d f t e s t [’ death yn ’] . astype (’ i n t ’)

use imbalance−l e a rn l i b r a r y to over−samp l ing t h e dea th ca s e s f o r t h e t r a i n i n g d a t a s e t .

smote = over sampl ing .SMOTE()

x t r a i n ove r , y t r a i n ov e r = smote . f i t r e s amp l e (x t ra in , y t r a i n)

use imbalance−l e a rn l i b r a r y to over−samp l ing t h e dea th ca s e s f o r

the t e s t d a t a s e t to avo id low−p r e c i s i o n & high−accuracy .

ros = RandomOverSampler (random state=200)

#rus = RandomUnderSampler (random s ta t e =200)

#x t e s t u n d e r , y t e s t u n d e r = rus . f i t r e s am p l e (x t e s t , y t e s t)

x t e s t ov e r , y t e s t o v e r = ros . f i t r e s amp l e (x t e s t , y t e s t)

l o g r eg = Log i s t i cReg r e s s i on (s o l v e r = ’ saga ’ , max iter = 5000)

l og r eg . f i t (x t r a i n ov e r , y t r a i n ov e r)

#y p r e d l o g r e g = l o g r e g . p r e d i c t (x t e s t u n d e r)

#r e p o r t l o g r e g = me t r i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t u n d e r , y p r e d l o g r e g , o u t p u t d i c t=True)

y p r ed l og r eg = log r eg . p r ed i c t (x t e s t o v e r)

r e p o r t l o g r e g = metr i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t ov e r , y pred log r eg , ou tput d i c t=True)

d f l o g r e g = pd . DataFrame (r e p o r t l o g r e g) . t ranspose ()

keys . append (’ l o g r eg ’)

d f l i s t . append (d f l o g r e g)

svc = SVC(c l a s s we i gh t = ’ balanced ’)

svc . f i t (x t r a i n , y t r a i n)

#y p r e d s v c = svc . p r e d i c t (x t e s t u n d e r)

#r e p o r t s v c = me t r i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t u n d e r , y p r e d s v c , o u t p u t d i c t=True)

y pred svc = svc . p r ed i c t (x t e s t o v e r)

r epo r t s v c = metr i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t ov e r , y pred svc , ou tput d i c t=True)

d f s v c = pd . DataFrame (r epo r t s v c) . t ranspose ()

keys . append (’ c o s t s e n s i t i v e s v c ’)

d f l i s t . append (d f s v c)

m lp c l f = MLPClass i f ier (h i d d e n l a y e r s i z e s = (5 , 2) , a c t i v a t i on = ’ l o g i s t i c ’ ,

l e a r n i n g r a t e = ’ adapt ive ’ , max iter = 5000)

m lp c l f . f i t (x t r a i n ov e r , y t r a i n ov e r)

#y pred mlp = m l p c l f . p r e d i c t (x t e s t u n d e r)

#repo r t m l p = me t r i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t u n d e r , y pred mlp , o u t p u t d i c t=True)

150

y pred mlp = mlp c l f . p r ed i c t (x t e s t o v e r)

report mlp = metr i c s . c l a s s i f i c a t i o n r e p o r t (y t e s t ov e r , y pred mlp , output d i c t=True)

df mlp = pd . DataFrame (report mlp) . t ranspose ()

keys . append (’mlp ’)

d f l i s t . append (df mlp)

df = pd . concat (d f l i s t , keys = keys)

df = df . round (2)

d i sp l ay (df)

with open(”%s . tex ” % key , ’w ’) as t f :

t f . wr i t e (df . t o l a t e x ())

t f . c l o s e ()

Hyperparameter Tuning

Here, we present a table showing the optimal parameter values for se-

lected models that are considered in Sections 5.3.2-5.3.4 in the main text.

Classifier Best Macro F1 Score Best Hyperparameters

DecisionTree 0.936432 ’max features’: ’sqrt’, ’splitter’: ’random’

RandomForest 0.936463 ’criterion’: ’gini’, ’max features’: ’log2’, ’n estimators’: 10

Logistic Regression 0.929522 ’C’: 0.01, ’max iter’: 5000, ’penalty’: ’l2’, ’solver’: ’newton-cg’

Table A1: Best Hyperparameters for Some Classifiers Used in the Study

	Learning Mortality Risk for COVID-19 Using Machine Learning and Statistical Methods
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Three CDC Datasets on COVID-19
	COVID-19 Case Data
	Data Source and Pre-Processing
	Objective and Pre-Processed Data

	Hospital Data
	Data Source
	Objective and Data Pre-Processing

	Vaccination Data
	Data Source
	Objective and Data Pre-Processing

	Data Preparation
	COVID-19 Case Data
	Missing Values
	Correcting and Converting Datatype

	Hospital Data
	Extracting Useful Subset
	Converting
	Plotting

	Vaccination Data
	Subsets of Death Information
	Converting and Creating

	Summary of Variables After Pre-processing
	Data Integration and Division
	Integration
	Division

	An Overview of Machine Learning Methods
	Feature Selection
	Filter Method
	Wrapper Method
	Embedded Method

	Machine Learning Models
	Support Vector Machines
	Decision Tree
	Random Forest
	Logistic Regression
	K-Nearest Neighbour
	Gaussian Naïve Bayes
	Artificial Neural Networks

	Cost-Sensitive Classification Models
	Cost-Sensitive SVM
	Cost-Sensitive Decision Tree
	Cost-Sensitive Logistic Regression

	Data Learning
	Feature Selection
	Encoding Categorical Variables
	Learning with the Filter Method
	Learning with the Wrapper Method
	Learning with the Embedded Method
	Results with Intersection and Union

	Data Balancing
	Over-Sampling on Training Set
	Under-Sampling on Testing Set

	Learning with Machine Learning Models
	Learning with the Support Vector Machine
	Learning with the Decision Tree
	Learning with the Random Forest
	Learning with the Logistic Regression
	Learning with the K-Nearest Neighbor
	Learning with the Gaussian Naïve Bayes
	Learning with the Artificial Neural Networks

	Learning with the Cost-Sensitive Classification Models
	Learning with the Cost-Sensitive SVM
	Learning with the Cost-Sensitive Decision Tree
	Learning with the Cost-Sensitive Logistic Regression

	Summary
	Statistical Analysis

	COVID-19 Variant of Concerns
	Outbreak
	AlphaBeta
	Gamma
	Delta
	Omicron
	Summary
	Statistical Analysis

	Summary and Discussion
	References
	Appendix
	Data Pre-processing
	Feature Selection
	Data Analysis
	VOC
	Hyperparameter Tuning

