
A Transformer-Based Classification System for Volcanic Seismic Signals

(1) Department of Statistics and Actuarial Sciences, (2) Department of Earth Sciences, Western University, (3) Seismic Research Centre, The University of the West Indies

Anthony Rinaldi(1), Cindy Mora-Stock(1,2), Alexander Hemming(1), Rodrigo Contreras-Arratia(3), Cristian Bravo(1)

Introduction Methods Discussion

(A)

(D)

(B)

(C)

(A) (B)

• Volcanic seismic signals are a key element in volcano 
monitoring to assess the state of unrest and a possible 
eruption style and timing

• Different sources generate different types of events, with 
somewhat distinct frequency content, envelope, and 
length

• Typical types of volcanic events classic to most volcanoes:
• Long-period Earthquake (LP) → associated with fluid 

movement, due to hydrothermal activity, or gas/ 
magma moving through cracks

• Tremor (TR) → thought to be trains of LPs. A constant 
rumbling lasting from minutes to months

• Volcano-tectonic (VT) → associated with fragile 
fracture around chambers and feeding dykes

• Tectonic (TC) → also called Volcano Distal (VD), typical 
to crustal faults outside the volcanic edifice

The Problem: 
In cases of unrest or an eminent eruption, the amount of 
events (data) generated would requires a fast and reliable 
source of classification, which is currently a labour intensive 
task mostly done by humans.

Our Proposal:
Create a Deep Neural Network (DNN) model that includes 
multi-head self-attention to automatically classify volcanic 
seismic signals, reducing human bias.

Data

Each event represents a one-minute signal sampled at 
100Hz (10 milliseconds), resulting in 6,000 features

1. Clean Llaima Data (Canário et al. 2020) – 3592 events 
• Classes: 1488 TC, 1310 VT, 490 TR, and 304 VT

2. Raw Llaima Data – 1074 events
• Classes: 1033 LP and 41 TR

3. Raw St. Vincent Data – 8,279 events
• Classes: 7420 LP and 859 VT
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Results

• We use the model proposed by Canário et al. (2020) as the baseline for comparison and propose a novel model architecture for 
the classification task

Figure 3. Proposed DNN Model Architecture. (A) DNN network including CNN layers, Residual CNN layers with skipped connections, LSTM block for positional encoding, and a
multi-head self-attention block. X sz Y mp denotes a layer with filter size of X and Y filter maps. (B) Breakdown of the Residual CNN block used in the model architecture. Spatial 
dropout layers set ¼ of feature maps to zero.

Figure 1. Examples of Volcanic Events. (A) LP event. (B) TR event. (C) VT event. 
(D) TC event. Events from Llaima volcano, dataset available from Canário et al. 
(2020).

• Our proposed model achieves 96.1% accuracy with the benchmark model achieving 94.5% accuracy on dataset (1)

 LP TC TR VT

LP 242 13 0 3

TC 1 306 2 2

TR 0 4 89 0

VT 2 1 0 54

 LP TC TR VT

LP 242 10 4 2

TC 1 298 10 2

TR 2 3 88 0

VT 5 0 0 52

Figure 4. Model Confusion Matrices. Rows represent the true classes from the data. Columns represent the predicted classes from the models. (A) Our proposed model. 
(B) Baseline model.

• Models are compared using accuracy for dataset (1) and AUC (area under ROC) for datasets (2) and (3) due to the class imbalance

• Optimal number of training epochs is selected using cross-validation for dataset (2)

• The test set performance metric (AUC) is bootstrapped to understand its distribution since the severe class imbalance can result 
in misleading performance metrics

Figure 5. Bootstrap Distribution of Test Set AUC. Each dataset and model/method pair are bootstrapped 10,000 times. (A) Raw Llaima Dataset. (B) Raw St. Vincent Dataset.
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• We visualize the attention heads to better understand 
how the model attends to each of the four different 
classes of events

• Attention plots are a way to better understand the black-
box methods of DNNs

Figure 6. Attention plots for clean Llaima data. (A) LP attention. (B) TR 
attention. (C) VT attention. (D) TC attention.

(A) (B)

(A)

(B)

(C)

(D)

(A) (B)

Figure 7. Attention plots for raw Llaima data. (A) LP attention. (B) TR attention.

Figure 8. Attention plots for raw St. Vincent data. (A) LP attention. (B) VT 
attention.
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Conclusion

• Attention plots are similar for LP and VT events, and are 
similar for TR and TC events, aligning nicely with the 
visual shape of the events

• Attention plots are similar for the same event types 
across different datasets, indicating that the multi-head 
self-attention mechanism is attending to similar 
information across different volcanoes

• Our proposed model architecture provides minor 
improvements over existing approaches on pre-
processed data

• When considering raw signals coming directly from 
monitoring stations, our model outperforms existing 
approaches by a great margin

• Where our model will excel is in stations where human 
capital is limited and there is difficulty in identifying all 
volcanic events


