April 2016

Life Satisfaction among Aboriginal Peoples in the Canadian Prairies: Evidence from the Equality, Security and Community Survey

Christopher P. Barrington-Leigh
McGill University, chris.barrington-leigh@mcgill.ca

Sabina Sloman

Follow this and additional works at: http://ir.lib.uwo.ca/iipj

Part of the Inequality and Stratification Commons, Other Economics Commons, and the Social Statistics Commons

Recommended Citation

DOI: 10.18584/iipj.2016.7.2.2

This Research is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in The International Indigenous Policy Journal by an authorized administrator of Scholarship@Western. For more information, please contact nspence@uwo.ca.
Life Satisfaction among Aboriginal Peoples in the Canadian Prairies: Evidence from the Equality, Security and Community Survey

Abstract
Subjective measures of overall quality of life are built in to numerous surveys in Canada and around the world, and are increasingly analyzed and used as indicators of human well-being and social progress. Yet, even in Canada, federal surveys exclude Aboriginal peoples on-reserve and, in general, there are very few data sources on life satisfaction among Aboriginal respondents. We report on two exceptional surveys that do solicit life satisfaction assessments from Aboriginal respondents, and compare inferences from these data to the general Canadian population. We generally find comparable effects of objective life circumstances for the two groups, and use these to explain some of the advantages and disadvantages affecting life satisfaction in each sample. On the other hand, we find an unusual coefficient on the survey income measure for on-reserve Aboriginal respondents, likely indicating that total income is not appropriately measured by the standard income question. We propose that policy interest in life satisfaction measures for gauging effective avenues for improving lives is appropriate in the case of Aboriginal groups in Canada, just as for other populations in Canada and around the world.

Keywords
life satisfaction, subjective well-being, social determinants, Aboriginal, Canada

Acknowledgments
We are grateful to Stéphanie Laroche-Pierre for editing help. This research was supported by the Social Sciences and Humanities Research Council of Canada, and by the Fonds de recherche du Québec – Société et culture.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This research is available in The International Indigenous Policy Journal: http://ir.lib.uwo.ca/iipj/vol7/iss2/2
Life Satisfaction among Aboriginal Peoples in the Canadian Prairies: Evidence from the Equality, Security, and Community Survey

In 2010, the Canadian government endorsed the UN Declaration on the Rights of Indigenous People (UNDRIP), "reaf[irming] its commitment . . . to improve the well-being [emphasis added] of Aboriginal Canadians" (Aboriginal Affairs and Northern Development Canada [AANDC]¹, 2010, para. 16). Formally adopted by the UN General Assembly in 2011, UNDRIP has the potential to have significant and far-reaching implications for Indigenous communities globally. UNDRIP recognizes that the rights enumerated by the 1948 UN Declaration of Human Rights (UNDHR) extend to Indigenous communities and further entrenches rights that “constitute the minimum standards for the survival, dignity and well-being [emphasis added] of the indigenous peoples of the world” (UN General Assembly, 2007, p.11). Among UNDHR rights is “the right to a standard of living adequate for the health and well-being [emphasis added] of himself [the global citizen] and of his family” (UN General Assembly, 1948, Article 45). On top of its international commitments,² Indigenous and Northern Affairs Canada (INAC), a department of the federal government of Canada, has an explicit mandate to “[support] Aboriginal people (First Nations, Inuit and Métis) and Northerners in their efforts to improve social well-being [emphasis added] and economic prosperity” (AANDC, 2015, Mandate section, paras. 1-2). The UNDHR, UNDRIP, and official Canadian public policy all hold well-being as a standard for achievement. It is therefore of obvious and primary importance to understand well-being, its determinants, and the aspects of well-being that transcend cultural, ethnic, and geographic dimensions—and those that do not.

On the other hand, among these bodies, or more broadly among thinkers on the subject of human welfare, there can be little expectation of a firm consensus on a single definition or even defining features for an empirically accountable meaning of well-being. Ideally, Aboriginal communities like all others should be able to define their own overarching concepts of well-being. Indeed, if these concepts are to be meaningful and actionable, societies must define corresponding measurements for them as well.

In this article, we embrace a prominent development among economists, psychologists, and policy makers, which is to use a single, well-specified measure of well-being—individuals’ self-reported overall satisfaction with life (SWL)—and bring the available evidence to bear on the issue of well-being among Aboriginal peoples in Canada. This measure is narrow in its specification because it consists of the data generated from responses to a single survey question; yet, it is broad in scope because it encompasses anything and everything that is salient to whoever is answering the question. In fact, assessing human well-being or social objectives through SWL is, in principle, the most accommodating method of all for letting societies self-define their criteria for progress or what has been called “thriving,” because it leaves that task up to each individual to carry out, independently, when responding to the question.³

¹ Note that at the time of writing the federal department was named Aboriginal Affairs and Northern Development Canada (AANDC). It was renamed Indigenous and Northern Affairs Canada (INAC) in November 2015 by the newly elected government. These names refer to the same federal department.
² It should be noted that Canada subsequently failed to ratify the 2010 declaration in 2014.
³ See Diener, Inglehart, and Tay (2013) for more on the validity of life satisfaction as a measure of the quality of respondents’ lives.
The next section further introduces the SWL approach and contextualizes our study within the literature. We then provide a detailed overview of the data used in this analysis and describe its limitations. Afterward, our model is explained, followed by the results of our estimates of general SWL trends among Aboriginal peoples based on the available data. We compare these to trends within the general Canadian population and use them to explain differences between groups. Finally, we conclude with suggestions for future research.

Scope and Context

The canonical life satisfaction question, as stated in the surveys we used, is the following: “Now a question about life satisfaction. On a scale of 1–10 where ONE means dissatisfied and TEN means satisfied, all things considered how satisfied are you with your life as a whole these days?”

Responses to this single question are obtained from large surveys and, when aggregated, constitute a subjective but quantitative measure of participants’ cognitive evaluations of their lives. Unlike measures of psychological affect, mood, or happiness, responses to cognitive life evaluation questions capture not only an individual’s assessment of these somewhat involuntary emotional states but also any and all more cognitive experiences, judgments, and aspirations that an individual may deem relevant to the superlatively broad question.

Life Satisfaction as an Overarching Measure of Welfare

In recent years, there has been a high level of interest among policy makers around the use of an overarching measure of subjective well-being, and in particular with satisfaction with life as a self-reported quantitative measure, to complement existing metrics of economic welfare and social progress. Evidence of this trend includes Prime Minister Cameron’s well-being initiative in the U.K. (Cameron, 2010; UK Office of National Statistics, 2011); Stiglitz, Sen, and Fitoussi’s (2009) report commissioned by President Sarkozy of France; the Organization for Economic Co-Operation and Development’s (OECD, n.d., 2011) Better Life Initiative; the U.N.’s (2012, 2013, 2015) World Happiness Reports; U.S. Federal Reserve Chair Bernanke’s (2010) speech on well-being; and a growing number of more local initiatives in which subjective well-being is measured and targeted at the civic level.

In line with these developments is a large and rapidly growing academic literature on the measurement of the subjective well-being and its determinants among individuals and populations at the community, city, and national levels (see for example overviews by Dolan, Peasgood, & White, 2008; Frey & Stutzer, 2002; J. Helliwell & Barrington-Leigh, 2010). In economics, this topic began to gain attention in the 1970s with Dick Easterlin questioning whether economic growth led to increased happiness and with the Leyden School in the Netherlands investigating the relationship between subjective assessments and income (Van Praag, 1971).

A number of the grounds for natural scepticism about the interpretation of such data have, after numerous studies as well as some philosophical treatments, been relatively well addressed. Above all, the now vast empirical experience with these data is a basis for considerable confidence that respondents are doing what one would hope they might be doing, and indeed the data show many robust and intuitive relationships between important life circumstances and individuals’ SWL reports.
As the availability of data and analysis on life satisfaction has increased, an interpretation in line with Aristotle’s original thoughts on comprehensively evaluating a life has become attractive. Moreover, as globally comparable data have come to light, so have the most important findings of all for interpreting SWL responses. These relate to the universality of how people respond to the question and, by implication, its meaning across cultures and translations. As described by J. Helliwell, Barrington-Leigh, Harris, and Huang (2010), the factors accounting for variation among individuals’ responses to cognitive evaluation of life questions are remarkably consistent among countries and world regions. The variation in average response to the question is enormous (with country means ranging from ∼3 to ∼8) while the statistically inferred importance of different economic and social variables appears to be similar everywhere.

One interpretation is that this coherence reflects the degree to which psychological well-being appears to be driven and mediated largely by (universal) social factors (see for example Aknin et al., 2013). This finding that we are highly social creatures in terms of our experienced well-being (as well as our behaviour) stands in some contrast to the more material consumptive focus that commonly emerges from economic analyses. In addition, the large variability of responses and their predictability from measurable and varying conditions addresses another natural concern—that because aspirations should affect satisfaction, those living in difficult circumstances may hold lower aspirations and therefore not exhibit lower satisfaction. Judging from data at all geographic levels, this appears not to be the case.

On the other hand, a great deal of effort goes into ensuring that welfare comparisons are made on objective bases, and the support for using SWL would not be nearly so strong if not for the intuitive and consistent (though arguably not dominant) relationship found between SWL responses and traditional economic indicators.

Aboriginal Peoples in Canada

Clearly, both objective and subjective metrics of well-being are useful. There is a large body of research on the objective well-being of the Aboriginal community in Canada, most of which paints a discouraging picture. The evidence that the Aboriginal population suffers from disproportionate levels of discrimination and socioeconomic disadvantage in comparison to the rest of the Canadian population is undisputed (Abele, 2004). The risk of avoidable death for First Nations adults is twice that of non-Aboriginal adults (Park, Tjepkema, Goedhuis, & Pennock, 2015). A 1999 to 2003 study by Health Canada (2009) on First Nations and Inuit health shows that among those living on-reserve the rate of unemployment during that four-year interval was 4 times that of the overall Canadian population, the median annual income was less than half that of the overall Canadian population, and almost a quarter of First Nations housing units have water supply deemed “inadequate.”

Cognitive life evaluations are now measured every year in most countries and, in some like Canada, are a feature of a number of major government surveys. Nevertheless, while there are now hundreds of thousands of Canadian respondents to the SWL question, the samples do not properly represent those who identify as Aboriginal. The role of this article is to begin to fill this important gap using a small survey conducted on-reserve and off-reserve in the Prairies. Although the survey was carried out in 2003 and the data are relatively small, the well-being responses have remained unreported, as well as being
Because of the growing importance of the SWL approach, we investigate them here and compare them to some larger surveys, which excluded reserves.

Below, we find that Aboriginal respondents have tended to report surprisingly high life evaluations given their lower average scores on objective measures. Given the increasing importance of subjective well-being as a policy direction and in broad discussions on the nature of social progress, it is important to assess what the data show for Aboriginal peoples because they are an under sampled population within Canada, even if those data are yet sparse. In light of this and of the stark objective challenges mentioned above experienced by many Aboriginal communities, we remain cautious and sceptical in our interpretation of our own findings.

This study is intended to complement the existing literature on Aboriginal well-being and its various indicators. Below, we refer specifically to Chandler and Lalonde (1998), who looked at suicide rates among Aboriginal groups in British Columbia; Kirmayer, Boothroyd, Tanner, Adelson, and Robinson (2000), who examined the determinants of psychological distress among the Cree of James Bay using an index created by Santé Québec; Whitbeck, McMorris, Hoyt, Stubben, and LaFromboise (2002), who looked at depressive symptoms among American Indians in the upper Midwest; and Wingert (2010), who used the Community Well-Being Index and individual scores on the Psychological Well-Being Manifestation Scale as indicators of well-being.

Population Scope

Below, we address a number of dimensions on which the samples we used are limited in comparison with any complete representation of Aboriginal populations. As Wingert (2010) explained, “Aboriginal is a social construction that encompasses a diverse group of people with vastly different ancestry, histories, colonial experiences, contemporary conditions, and cultures” (pp. 141–142). However, as with national-level analyses, a certain amount of aggregation allows us to establish a basis from which more culturally- and identity-specific analyses can proceed. This article focuses on the subjective well-being of a small sample of on-reserve and off-reserve First Nations and Métis peoples in the Canadian Prairies.

Data and Methods

The data used in this analysis is drawn from two components of the Equality, Security, and Community Survey (ESC) Project, and occasionally from the General Social Survey, Cycle 24 (GSS24). The ESC project was a two-part project run by the Institute for Social Research at York University. This analysis is based on Wave 2 of the ESC, which was completed between 2002 and 2003, and sampled 5,654 Canadians from all 10 provinces (hereafter referred to as the general ESC sample). Households were chosen via a random digit dialling mechanism, and one adult respondent within each household was randomly selected using the “next birthday” mechanism (Northrup, 2002). From 2004 to 2005, an additional subsample of 608 self-identifying Aboriginal respondents from Manitoba, Saskatchewan, and Alberta were given an almost identical version of the ESC questionnaire, modified only slightly to be reflective of dynamics specific to the Aboriginal context (hereafter referred to as the Aboriginal ESC sample) (Harell, Matthews, & Panagos, 2009). According to a document published by the Institute for 4 After dropping all observations where the respondent’s Aboriginal identity was unclear, the effective sample size was 604. See the section on Aboriginal identity for details.
Social Research at York University (2004), respondents in this subsample were selected via a mechanism similar to that used in the general ESC sample—the distinguishing characteristic of the Aboriginal subsample being that phone numbers eligible for random dialling were limited to census tracts in Alberta, Manitoba, and Saskatchewan containing an Aboriginal reserve or a relatively concentrated urban Aboriginal population.

We also make occasional reference to data from the GSS24 from the year 2010 (Social and Aboriginal Statistics Division, 2011). Like the ESC sample, the GSS sample consists of randomly selected Canadian households \((n = 15,390)\). The GSS24 also includes an Aboriginal identification indicator, so an effective Aboriginal subsample can be pulled from the GSS24 data \((n = 579)\). We hereafter refer to these samples as the general GSS sample and Aboriginal GSS sample, respectively. We use these samples for comparative testing of the robustness of trends found in the Aboriginal ESC sample. ESC data from both the general and Aboriginal samples are weighted according to number of adults in the household. GSS24 data are weighted according to the “person weight” constructed by Statistics Canada (Social and Aboriginal Statistics Division, 2011).

Population Definitions

It is important to keep in mind that the data used are by no means fully representative of the Aboriginal population of Canada. This section will briefly highlight some of the gaps and biases of this data set.

Aboriginal identity. Aboriginal identity is derived from a respondent’s answer to the identity-screening question. This question asks: “The study we are conducting today is designed to ask Aboriginal people how they feel about social, economic, and political issues affecting their communities, so could you please tell me if you are an Aboriginal person, that is, a North American Indian, Métis or Inuit?” (Institute for Social Research at York University, n.d., p. 1).

In an effort to confine our sample to self-identifying Aboriginal persons, we drop the four observations where a respondent identified as “not an Aboriginal person” or “don’t know.”

Of those who responded “yes” to the Aboriginal identity indicator \((n = 302, \text{ or } 50\% \text{ of respondents})\), 55% of the sample \((n = 167)\) identified as North American Indian and 9.6% \((n = 29)\) identified as Métis (the remaining 35% responded “other”). We can assess the representativeness of this distribution using data from the 2001 Census of Canada, which indicated that 62% of the Aboriginal population identified

5 When we refer to the general GSS sample, we refer to the sample of all GSS respondents \((n = 15,390)\). This includes the 579 self-identifying Aboriginal respondents. We do not exclude the Aboriginal GSS subsample from what we refer to as the general GSS sample. Since the general ESC questionnaire does not include an Aboriginal identification indicator, we cannot control for the possibility that the general ESC sample includes self-identifying Aboriginal people. Therefore, excluding the Aboriginal subsample from the general GSS sample would add nothing to comparative analysis between the two general samples. We also speculate that since the Aboriginal GSS subsample accounts for less than 4% of GSS respondents, this decision does not have a significant statistical impact on our results.
as North American Indian, 30% as Métis, and 4.6% as Inuit (Statistics Canada, 2003). We can see that our sample is heavily skewed towards North American Indian respondents, and that both Métis and Inuit peoples are significantly underrepresented.

Geographical location. This sample is confined to Manitoba, Saskatchewan, and Alberta. Data from the 2001 Census show that these provinces contain approximately 45% of Canada’s total Aboriginal population (Statistics Canada, 2003). This research is thus missing what could be valuable insight into distinct and relevant differences between this sample and the remaining 55% of the Aboriginal population in Canada. The sample is also limited to census tracts identified as having a relatively concentrated Aboriginal population. The analysis therefore also lacks any insight into the effects of being isolated from a larger Aboriginal community on SWL.

Reserve status and the urban–rural divide. After weighting, the sample population is 70% on-reserve. A total of 84% of the sample were living on-reserve and/or in a rural location, leaving only 16% living off-reserve in an urban centre (see Table 1). However, again using 2001 Census data, Siggner (2003) found that approximately only 1 out of 3 self-identifying Aboriginal persons lived on a reserve, with 51% living on a reserve and/or in a rural area. This heavy bias towards on-reserve and rural respondents provides an extremely valuable snapshot of SWL when these conditions hold, but results may not be further generalizable.

We often differentiate between the on-reserve and off-reserve subsamples in the Aboriginal ESC sample. It is important to note that the data treat reserve status and urban–rural location as two separate variables. Therefore, on-reserve status should not be taken to be indicative of rural location, and vice versa (see Table 1 for details on the reserve status and urban-versus-rural distribution of our data). The urban, on-reserve cell is small because urban reserves are rare in Canada (although they may also be growing in number; see Peters, 2007).

Phone ownership. The random dialling method of selection introduces a sample bias against those without telephones. The issue is well-articulated by Carson and Martin (1999): “Random digit dialing could be seen to discriminate against those without a telephone (the lowest socioeconomic groupings), those unwilling to be forthcoming, and groups with fewer telephones per person” (p. 91). It is important to remember that these data may not be representative of the most critical and pervasive socioeconomic divides between on-reserve Aboriginal communities and the general population. In future research, other random sampling methods should be explored.

As mentioned in the introduction, we choose to focus our analysis on responses to the SWL question, to the exclusion of other SWB measures (for a comprehensive discussion of SWB measurements, see OECD, 2013). The wording of the question, given earlier, is identical in the two surveys, so differences in question wording of the SWL question are not an issue in comparative analysis. However, the wording and order of other survey questions is not identical. These differences in the question context or antecedents could shift mean responses or even cause a priming bias, in which certain salient aspects of life feature more prominently in respondents’ estimates of their overall satisfaction as a result of being

6 2001 Census data are used here in favour of more recent census data because they are the last census data collected before the Aboriginal oversample project began in 2004.
recently mentioned in the survey. For descriptive purposes, we proceed using ordinary least squares (OLS) regression models with SWL as the dependent variable.

<table>
<thead>
<tr>
<th>Table 1. Reserve Status and Urban–Rural Demographics in the Aboriginal Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
</tr>
<tr>
<td>% On-reserve</td>
</tr>
<tr>
<td>% Off-reserve</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Model

This analysis draws from research done by J. F. Helliwell, Barrington-Leigh, Harris, and Huang (2009) on variables that have a consistent impact on SWB in data simultaneously covering most countries of the world. While there are now numerous studies following this basic method on other national data sets, many with a similar or overlapping set of explanatory variables, we refer in particular to J. F. Helliwell et al. (2009) as an internationally valid reference model. Drawing from the findings of this study, nine variables strongly predictive of SWL were identified or derived from the ESC responses. We have added three variables to capture labour market status because unemployment is one of the strongest predictors of life satisfaction in the broad literature; yet, it is absent in the Gallup World Poll used by J. F. Helliwell et al. (2009). Inclusion of these labour market indicators had little effect on the coefficients for income or any others. A weighted OLS model using these variables was then applied to the Aboriginal subsample. A comparative analysis between our model and the international findings of J. F. Helliwell et al. (2009) is detailed in the next section.

The base model describing SWL for individual \(i \) is a linear combination of the predictive factors, along with an idiosyncratic error \(\varepsilon \):

\[
\text{SWL}_i = \beta_0 + \beta_{\text{female}}i + \beta_{\text{age}}i + \beta_{\text{age}^2}i + \beta_{\text{married}} + \beta_{\text{divorced}}i + \\
\beta_{\text{health}}i + \beta_{\text{asinh(HH income)}}i + \beta_{\text{family}}i + \beta_{\text{friends}}i + \\
\beta_{\text{student}}i + \beta_{\text{working}}i + \beta_{\text{unemployed}}i + \\
\beta_{\text{institutional trust}}i + \beta_{\text{household size}}i + \\
\beta_{\text{log(number of children)}}i + \varepsilon_i
\]

(1)

Equation 1. OLS regression equation. Variables defined below.
As mentioned above, these data are unique in that they provide a lens into various aspects of life on-reserve in the Canadian Prairies. However, it is a narrow lens, and due to the small sample size, we rarely distinguish between the on-reserve and off-reserve Aboriginal populations in our main analysis. Suggestive but generally statistically insignificant differences do arise between the two populations. For completeness, relevant models that differentiate between the two subsamples are included in Appendix B.

Household size is included in all models for weighting purposes. It should be noted that the household size variable in the GSS24 is capped at six household members.

Below is a brief summary of our hypotheses based on the relationships of variables to SWB in the study by J. F. Helliwell et al. (2009), and a description of how each variable was constructed from the ESC data. Additional tables of weighted mean levels of the model variables are included in Appendix A.

Gender

J. F. Helliwell et al. (2009) find a significant positive coefficient associated with being female. We constructed a dummy variable indicating female identification.

Age

Age is included in the model in a quadratic form to allow for the U-shaped variation of SWL over the life course found in numerous studies (e.g., Blanchflower & Oswald, 2008; J. F. Helliwell et al., 2009). Research shows that SWL tends to decline with age until some time in middle age, and then steadily increases into old age. To be consistent with this trend, the age coefficient in this model is expected to be negative, while the age^2 coefficient is expected to be positive. For more convenient scaling, we follow J. F. Helliwell et al. (2009) and calculate the age^2 variable as (age/100)^2.

Marital Status

J. F. Helliwell et al. (2009) find a significant positive correlation between SWB and being married, and a significant negative correlation between SWB and being divorced, separated, or widowed, as compared with being unattached. In the ESC survey, respondents were asked their marital status. A dummy variable married is coded 1 if a respondent is married, and 0 otherwise. For model conciseness, we have coded a dummy variable divorced as 1 if a respondent identified as divorced, separated, or widowed, and 0 otherwise.

Health

Meta-analyses have shown that there is a significant and persistent positive correlation between subjective health measures and SWB (Okun, Haring, Haring, & Witter, 1984). J. F. Helliwell et al. (2009) regress SWB against national average life expectancy, and find a positive correlation. Respondents gave a personal assessment of their own health rated on a 5-point scale ranging from poor...
to excellent. We recoded responses into a discrete 5-point scale between 0 and 1, with 0 indicating a response of poor health and 1 indicating a response of excellent health.\(^7\)

Household Income

J. F. Helliwell et al. (2009) find a significant positive coefficient on the log of household income variable in their SWB model. Household income is included in the model after a log-like transformation,\(^8\) in order to reflect research that shows that income yields diminishing marginal utility to economic agents.

The ESC survey asked respondents for an estimate of total household income to the nearest thousand. However, a significant number of respondents chose not to respond to this question. A follow-up question asked respondents which income bracket includes their household income. Income brackets are defined in increments of $10,000. For example, the lowest income bracket a respondent can choose is “less than $20,000,” the subsequent is “$20,000–$29,999,” and the highest is “$100,000 or more.”

It is difficult to choose which household income variable to use in modelling. Using the precise income value variable gives more precise information on the relationship between income and other variables. However, a respondent’s income bracket can be inferred from his or her precise income value, while the reverse is not the case. A model using the precise income variable implies the loss of all observations where the respondent chose not to respond to the precise income question. This is potentially problematic not only because of the loss of confidence in a model associated with a smaller sample size, but also because there may be a bias inherent in a sample that does not include respondents who do not know or choose not to report their precise household incomes. Because of these advantages, the household income variable used in this analysis is an indicator of a respondent’s income bracket.

The household income variable is defined using the midpoint in each $10,000 income bracket.\(^9\) Responses to the precise income value question were recoded to be included in the income bracket sample. To avoid a significant decline in sample size due to a lack of response to the household income variable by many respondents, missing observations have been recoded to the arithmetic mean of asinh(household income). A similar process was followed for the GSS data.

\(^7\) Personal assessments of health from respondents in the general ESC sample have been recoded under the assumption that the initial observations were coded in reverse—for example, a label of “excellent” has been coded “0” for the purposes of analysis, while a label of “poor” has been coded “1.” This is due to properties of the health variable in this sample that strongly suggest that the variable was miscoded in the first place. For example, health is much more similarly distributed to the health variable in the GSS data set if it is recoded as suggested. Similarly, a highly significant yet negative correlation between the SWL and health variables persisted in the general ESC sample, despite consistent evidence from other data sets used in this study and other literature that health is strongly positively correlated with SWL. If labels are re-interpreted as suggested, the correlation coefficient reflects the highly significant positive relationship consistent with the empirically validated trend.

\(^8\) Rather than using the standard natural log function, we used an inverse hyperbolic sine transform, similar to log() for large values, in order to accommodate 0 income values in the GSS. Our treatment is consistent with other published analyses using the ESC survey (e.g., Helliwell & Putnam, 2004).

\(^9\) The exceptions are the top and bottom categories. Where a respondent reported total household income in the “less than $20,000” category, a value of $10,000 was coded. The “above $100,000” category was coded as $100,000.
Social Support

J. F. Helliwell et al. (2009) find a significant positive correlation between SWB and reports of “having someone to count on,” demonstrating the value people place on a strong social support network. To highlight this, the ESC-based model includes both friends and family variables. Family is included to reflect an intuitive sense of the importance of family to the Canadian population and literature that confirms its especial importance in the Aboriginal context (Castellano, 2002). Indeed, family is shown to be very significant in the general ESC model.

Family is coded by the response to the question, “How often do you see family members who do not live with you?” It takes a value between 0 and 1, with 1 indicating every day and 0 indicating less often to never. Friends is coded by the response to the question, “How often do you see close friends—not your husband or wife or partner or family member, but people you feel fairly close to?” and was coded on the same scale as family.

Similar variables are not readily available in the GSS data. Family and friends are thus necessarily excluded from the GSS model, and any results obtained about the role of social networks in SWB assessments is based solely on the ESC data set. In addition, it should be noted that, as in most surveys, the available social support measures does not do justice to its multidimensional nature, especially given the empirical importance of social supports for life satisfaction.

Institutional Trust

Finally, the model looks at institutional trust within the two populations. J. F. Helliwell et al. (2009) showed that there is a negative correlation between SWB and perceived corruption in business and government at the country level. This study uses the sum of the response to two questions to generate an institutional trust variable:

- How much do you trust the government in Ottawa to do what is right? Do you trust it almost always, most of the time, only some of the time, or almost never?

- How much do you trust the government in [PROVINCE] to do what is right? Do you trust it almost always, most of the time, only some of the time, or almost never?

Responses to either question range from almost never (0) to almost always (3).

Similar variables are not readily available in the GSS data.

Number of Children

Although not examined in J. F. Helliwell et al. (2009), the variable log(child) has been included after preliminary analysis showed that the coefficient contained explanatory power. Plenty of other studies have also included this variable, sometimes with a particular focus on the effect of having more children on life satisfaction (see for example Myrskylä & Margolis, 2014). In the ESC samples, the variable number of children is coded as a participant’s response to the question: “How many children do you have, including any no longer living with you?”
A natural logarithmic transformation is applied to the variable to reflect a theoretical assumption that children produce diminishing marginal returns, an assumption that is encouraged by more significant results when log(child) is used in place of the untransformed number of children variable. As with the household income variable, missing observations have been recoded to the arithmetic mean of log(child) to avoid a significant decline in sample size. The GSS variable conveying number of children takes values only until 4, with 4 corresponding to “4 or more children.” Because of this, we do not apply the logarithmic transformation to the number of children variable when working with the GSS data.

Estimation Results

One might expect that lower objective well-being indicators (discussed in brief in the introduction) are reflected in lower SWL levels amongst Aboriginal peoples. Table 2 shows that the mean self-reported SWL scores in each sample are strikingly similar, especially between the two subsamples in each data set. In other words, the mean SWL score in the Aboriginal ESC sample is closest to the mean score in the general ESC sample, and the same is true with respect to the two GSS subsamples. Figure 1 illustrates the distribution of SWL responses among the four subsamples. In each case, there are familiar modal points at 1, 5, and 10, in addition to the value of 8, which is most common in Canada. We can see that the distributions of responses from the general ESC, general GSS, and Aboriginal GSS samples are quite similar. However, the distribution of responses from the Aboriginal ESC sample has an extra enhancement of response 5 and above all an enhancement at the top value (10). Except for this modal category of 10, the Aboriginal ESC responses have a flatter distribution compared to the others, even though the means are similar.

Are similar SWL means indicative of similar socioeconomic circumstances between the general and Aboriginal ESC samples? This is not the case (see Table 3). It is apparent that respondents in the Aboriginal samples tend to have lower incomes than respondents in the general samples. The unemployment rate in the general sample is 5.9%, while it is 19% in the Aboriginal sample — almost 4 times higher (Table 4). Also remarkably, the high school completion rate of the general ESC sample is 84%, while it is only 50% in the Aboriginal ESC sample.

10 This is consistent with some degree of priming bias, mentioned in the Data and Methods section.
11 Although indicative of a pervasive socioeconomic divide, these estimates are rough. The calculation rounds down to the nearest $10,000 per year the incomes of respondents who chose to report an income bracket, as opposed to a precise estimate — 22% in the general ESC sample and 41% in the Aboriginal sample (these proportions do not include respondents who did not include any kind of household income estimate). The calculated averages are therefore likely significantly below their true values.
Table 2. Weighted Mean Levels of Self-Reported SWL in Each Subsample

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th></th>
<th>Aboriginal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
<td>GSS</td>
<td>ESC</td>
<td>GSS</td>
</tr>
<tr>
<td>Satisfaction with life (SWL)</td>
<td>8.0</td>
<td>7.6</td>
<td>7.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Standard error</td>
<td>.03</td>
<td>.02</td>
<td>.11</td>
<td>.11</td>
</tr>
</tbody>
</table>

Figure 1. Histogram of life satisfaction responses in each data sample.
Table 3. Mean Household Income in Each Subsample

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th></th>
<th>Aboriginal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
<td>GSS</td>
<td>ESC</td>
<td>GSS</td>
</tr>
<tr>
<td>Household Income (CAD $100,000)</td>
<td>57</td>
<td>73</td>
<td>34</td>
<td>56</td>
</tr>
<tr>
<td>Standard Error (CAD $100,000)</td>
<td>.5</td>
<td>.5</td>
<td>1.4</td>
<td>.3</td>
</tr>
</tbody>
</table>

Table 4. Unemployment/Non-employment and High School Completion Rates in Each Sample

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th></th>
<th>Aboriginal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
<td>GSS</td>
<td>ESC</td>
<td>GSS</td>
</tr>
<tr>
<td>Unemployment/ non-employment rate (%)(^a)</td>
<td>5.9</td>
<td>36.0</td>
<td>19.0</td>
<td>42.0</td>
</tr>
<tr>
<td>High school completion rate (%)</td>
<td>84.0</td>
<td>75.0</td>
<td>50.0</td>
<td>59.0</td>
</tr>
</tbody>
</table>

\(^a\) The unemployment rate in the ESC data is derived from the number of respondents that identify explicitly as unemployed. The GSS does not ask explicitly for a respondent’s employment status, so we present the non-employment rate from the number of respondents that reported not having a job in the last week.

Here attention should also be brought to the differences—or lack thereof—between the general and Aboriginal GSS24 samples. Unlike with the ESC samples, differences between the two populations, in terms of income, employment, and education, are much smaller (again refer to Tables 3 & 4). In fact, mean weighted household incomes and rates of employment are essentially identical between the two populations. High school completion rates in the two populations do differ, albeit by much less than in the two ESC samples. These similarities should be stressed. They suggest that the Aboriginal population sampled by the GSS is much more similar to the general Canadian population with regards to important socioeconomic indicators than is the primarily rural, on-reserve Aboriginal population sampled by the ESC survey. In the rest of this section, we discuss ways in which coefficients estimated using data from the Aboriginal GSS sample mirror coefficients estimated using data from the general GSS sample much more closely than do the coefficients estimated using the ESC counterparts. Differences between the explanatory power of variables in the Aboriginal and more general ESC data are discussed in the context of objective differences between the ESC Aboriginal and broader Canadian populations. That these objective differences do not characterize the GSS populations is consistent with the remarkable similarity across the GSS Aboriginal and general samples.

We next discuss the base model estimates. All final models are included in Appendix B.
Household Income

The estimated coefficient on asinh(household income) is .30 ($p < .0005$) in the general ESC sample, which is consistent with the findings of J. F. Helliwell et al. (2009). However, in the Aboriginal ESC sample, the income coefficient is estimated to be −.37 ($p < 0.10$). This negative relationship between SWL and income persists even if especially high-income/low-SWL observations are removed from the sample.

When a similar regression is run on the general GSS sample ($n = 14,895$), we find an income coefficient of .12 ($p < .0005$). When the same regression is run on the Aboriginal GSS subsample ($n = 569$), the estimated income coefficient is insignificant and constrained to be significantly more positive than the value found in the Aboriginal ESC sample. It is, however, important to recognize that the GSS24 gives no information about the on-reserve status of Aboriginal respondents, and therefore does not capture differences in on-reserve and off-reserve dynamics. Table 5 presents estimates for the differentiated on-reserve and off-reserve Aboriginal ESC samples, none of which are statistically significant.

A non-parametric investigation of the bivariate relationship between income and SWL is shown in Figure 2. There appears to be some consistency in slope among three of the four samples, while the Aboriginal ESC group is, with weak statistical significance, divergent from the normal upward trend.

Could the weak or negative SWL–income trend be indicative of an absent regressor? In both ESC samples, there is a highly significant positive bivariate relationship between household income and a high school completion indicator for the category high school. It is easy to speculate that what appears to be an income–SWL relationship in the Aboriginal ESC models is actually an education–SWL relationship. If the high school completion indicator is included in the models, its coefficient is insignificant in the general and on-reserve samples; yet, is −.58 in the off-reserve model with a p-value of .088 (see Table 6). Although this finding in the off-reserve sample is interesting in and of itself, the inclusion of the high school variable has little to no impact on the other regressors; most notably, the household income coefficients remain well within one standard error of their original values. These results do not change if log(household income) is deleted from the projected model and replaced with high school. Education in itself cannot explain the inverse SWL–income relationship in the Aboriginal ESC sample.

12 The reader is reminded that the GSS model omits the family, friends, and trust variables. Any comparisons with the magnitude of the household income coefficient in the ESC models are therefore misguided.
Table 5. Household Income Coefficients in Aboriginal Models of SWL (ESC)

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>559</td>
<td>-.232</td>
<td>.807</td>
</tr>
<tr>
<td>166</td>
<td>-.046</td>
<td>.871</td>
</tr>
<tr>
<td>393</td>
<td>-.244</td>
<td>.274</td>
</tr>
</tbody>
</table>

Figure 2. Kernel-weighted local polynomial smoothing of SWL versus household income.
Table 6. Coefficients on a High School Completion Indicator Model of SWL, Estimated Using Aboriginal ESC Data

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>p-value</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td>-0.052</td>
<td>0.807</td>
<td>559</td>
</tr>
<tr>
<td>Off-reserve sample</td>
<td>-0.584</td>
<td>0.088</td>
<td>166</td>
</tr>
<tr>
<td>On-reserve sample</td>
<td>0.077</td>
<td>0.760</td>
<td>393</td>
</tr>
</tbody>
</table>

Gender

The coefficient estimate on the variable *female* in the general ESC model is .20 ($p < .0005$). Interestingly, the female coefficient in the Aboriginal model is almost twice as high, with an estimated value of .48 ($p = .038$). However, the general estimate falls within the 95% confidence interval of the Aboriginal estimate, although the converse is not true.

Interestingly, we note a significant difference between the coefficients for *female* in the on-reserve and off-reserve Aboriginal ESC samples. The two samples are compared in Table 7.

Age

In the general ESC sample, the estimated coefficients on age and age2 are consistent with the trend identified in J. F. Helliwell et al. (2009). A negative coefficient of −4.1 on the linear age term, and a positive coefficient 5.7 on the quadratic age term ($p < .0005$ for both coefficients) suggest that SWL is U-shaped with respect to age. More specifically, the data suggest that, controlling for all other regressors, SWL levels tend to decrease with age until approximately age 36, and to increase thereafter. Age curves estimated for both the general and Aboriginal GSS samples are similarly shaped.

While the estimate for age in a quadratic form in the Aboriginal ESC model is not inconsistent with those of the ESC general sample or GSS subsamples, the coefficients are also not statistically different from zero. Estimates for the Aboriginal GSS data are drawn from a similarly sized sample ($n = 569$, while in the Aboriginal ESC sample $n = 559$); yet, the coefficients reach a higher level of statistical significance. Removing the age2 term to yield a model that is linear in age gives a more significant and positive coefficient from the Aboriginal ESC data (see Appendix B for a model of SWL in the Aboriginal ESC sample incorporating age in a linear form).

To investigate the evolution of SWL over the life course in more detail, we estimate the nonparametric, unconditional (i.e., without controlling for other variables, as is done in the regressions described above) dependence of SWL on age in Figure 3. Separate estimates for each of the four samples show that the Aboriginal sample relationships are consistent with their general population counterparts for each survey. While the U-shape is less distinct in the ESC data, a consistent pattern is the rise in reported satisfaction in older years, at least until retirement age.
Table 7. Coefficients on Variable Female in Aboriginal Models of SWL (ESC)

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Coefficient</th>
<th>p-value</th>
<th>Sample size</th>
<th>Percentage identifying as female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td>.447</td>
<td>.038</td>
<td>559</td>
<td>51%</td>
</tr>
<tr>
<td>Off-reserve models</td>
<td>.643</td>
<td>.073</td>
<td>166</td>
<td>57%</td>
</tr>
<tr>
<td>On-reserve models</td>
<td>.402</td>
<td>.127</td>
<td>393</td>
<td>49%</td>
</tr>
</tbody>
</table>

Figure 3. Kernel-weighted local polynomial smoothing of SWL versus age.
Marital Status

The married and divorced coefficients are similar in the general and Aboriginal samples, and reflect the findings in J. F. Helliwell et al. (2009). That is, being divorced, separated, or widowed is predictive of being significantly less satisfied as compared with those who are single or married, and that being married is generally predictive of a significantly higher life satisfaction than being single. Like other results we report in this section, these relationships hold after controlling for the other characteristics in the model.

Health

Meta-analyses have shown that there is a significant and persistent positive correlation between subjective health measures and SWB (Okun et al., 1984). Estimates from all samples are consistent with this finding.

Interestingly, the coefficient estimate on health for the Aboriginal ESC sample is almost twice as high as the coefficient estimate in the general sample. However, there is significant overlap between each of their respective 95% confidence intervals.

Social Support

Coefficient estimates for family and friends in the Aboriginal ESC sample are significantly higher than in the general ESC sample. Family in the general sample has a coefficient of .37 ($p < .0005$), while friends has a coefficient of .64 ($p < .0005$). In the Aboriginal ESC sample, the estimated coefficient on family is .93 ($p = .020$), while the estimated coefficient on friends is 1.1 ($p = .011$). In other words, among the Aboriginal ESC sample, respondents that see their family or friends more often have a SWL level on average a whole point higher. This is consistent with literature that suggests that family (both immediate and extended) and community are central aspects of Aboriginal lifestyle and identity (Castellano, 2002; Chandler & Lalonde, 1998). Also indicative of the importance of social support to well-being: In a study of psychological distress on the James Bay Cree, Kirmayer et al. (2000) found that having fewer than five close friends was significantly associated with a higher level of psychological distress.

Here we also note differences between the on-reserve and off-reserve Aboriginal samples. Amongst the off-reserve subsample, the friends variable has a higher and more significant coefficient estimate than the family variable. The reverse is true for the on-reserve population.

From Table 8 we can see that estimates for family are similar in magnitude in the on-reserve and off-reserve populations (although substantially different in significance). The highest and most significant estimate is in fact in the smallest subsample—the estimate on friends in the off-reserve subsample. Refer to Table 9 to see that differences in the arithmetic means of the social support variables are insignificant.

Here we also mention the potential explanatory power of geography. Restricting the general ESC sample to respondents in Alberta, Saskatchewan, and Manitoba leads to an increase in the estimated coefficient of friends to .93 ($p < .0005$), although a decline in magnitude and significance in the estimated coefficient of family.
Table 8. Coefficients on Family and Friends in Aboriginal Models of SWL (ESC)

<table>
<thead>
<tr>
<th></th>
<th>Family</th>
<th>Friends</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>p-value</td>
<td>Coefficient</td>
<td>p-value</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Total sample</td>
<td>.927</td>
<td>.020</td>
<td>1.07</td>
<td>.011</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>Off-reserve</td>
<td>.957</td>
<td>.106</td>
<td>1.77</td>
<td>.004</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>On-reserve</td>
<td>.957</td>
<td>.056</td>
<td>.802</td>
<td>.137</td>
<td>393</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Mean Levels of Social Support Indicators in the Differentiated Aboriginal ESC Subsamples

<table>
<thead>
<tr>
<th></th>
<th>Family</th>
<th>Friends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-reserve</td>
<td>.71 (Several times per week)</td>
<td>.72 (Several times per week)</td>
</tr>
<tr>
<td>On-reserve</td>
<td>.73 (Several times per week)</td>
<td>.74 (Several times per week)</td>
</tr>
</tbody>
</table>

Note. Descriptions in parentheses correspond to the response option that is numerically closest to the sample mean.

Institutional Trust

The institutional trust coefficient is positive, consistent with the findings of J. F. Helliwell et al. (2009), and has a similar estimated coefficient in both models.

Number of Children

Using the general ESC data, the estimated coefficient on log(child) is .13 (p = .021). Using data from the Aboriginal ESC sample, the coefficient on log(child) is more than three times as high (.46, p = .022, see Table 10). Estimated coefficients on number of children in both GSS samples are statistically insignificant.13

13 This may be because the variable number of children in the GSS data literally conveys less information, since it is capped at four.
Table 8. Coefficients on Log(child) in Aboriginal Models of SWL (ESC)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>p-value</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td>.457</td>
<td>.022</td>
</tr>
<tr>
<td>Off-reserve</td>
<td>.399</td>
<td>.248</td>
</tr>
<tr>
<td>On-reserve</td>
<td>.513</td>
<td>.043</td>
</tr>
</tbody>
</table>

Labour Market Status

Three dichotomous (indicator) variables capture some information about the labour market status of respondents, namely whether the respondent is a student, is unemployed, or is working (either employed or self-employed). The omitted category includes all other out of the labour market statuses, including retirement, child-raising, and home production. As mentioned earlier, inclusion of these indicators did not affect the estimates of any other coefficients, including income, much. However, as with income, labour market indicators present interesting contrasts between the Aboriginal populations and the general population, especially within the ESC survey.

In the general population samples, unemployment has an enormous negative effect beyond that associated with any loss of income. This finding is nearly universal in the broader literature. In addition, working in the labour market and being a student are both predictive of significantly lower life satisfaction than being out of the labour market (largely through retirement or home production).

The picture in the Aboriginal ESC estimate tells a different story. We find an insignificant (and smaller than for the general population) coefficient on unemployment for Aboriginal respondents in the ESC, and a highly positive effect of paid work. These differences may reflect the differing objective conditions in the population, since nearly a fifth of Aboriginal respondents report being unemployed, as compared with 6% in the general population, and only 47% of Aboriginal respondents report having a job, in comparison with 62% of the general population. Similarly, the proportion of respondents reporting retirement is nearly 3 times as high among the general population as in the Aboriginal ESC sample.

While there is other evidence for and against the contextual effect of higher unemployment rates mitigating the harm of individual unemployment (Chadi, 2014; Clark, Knabe, & Rätzel, 2010; Oesch & Lipps, 2013), we have not modelled the endogenous reference effects explicitly. Instead, a simpler interpretation of estimated coefficients is that in both cases they give the best estimate of the marginal benefits of changing our independent variables, such as individual employment status. Statistically, the magnitudes of coefficient estimates are not inconsistent across samples, but they are suggestive of a
larger benefit of having a job and lower cost of being unemployed for the Aboriginal sample, as compared with being out of the labour force.\[^{14}\]

Difference Accounting

Differences in attributes and circumstances between two groups can be used to explain the difference in an outcome such as life satisfaction using a Blinder-Oaxaca decomposition (Blinder, 1973; J. Helliwell & Barrington-Leigh, 2010; Oaxaca, 1973). This model separates differences in SWL into those due to differences in average group attributes and those due to differences in the importance (i.e., coefficients in Equation 1 of those attributes. Figure 4 illustrates the first of these two contributions, known as the “explained” component. Using a common set of coefficients for the explanatory variables,\[^{15}\] the decomposition accounts for the significantly lower mean SWL amongst the Aboriginal ESC sample as compared with that of the general population ESC sample. The difference, shown as a dark green bar with 95% confidence interval indicated by whiskers, is approximately 0.13 on the 11-point SWL scale.

The remaining bars illustrate the interpretation of a number of features of our results so far, as well as introducing new insights. While the model correctly predicts, based on differences in mean attributes between the two groups, that the mean Aboriginal SWL is lower than that of the general sample, it actually greatly overestimates this difference, predicting a ~0.48 point lower response from the Aboriginal survey. This reflects one of the more surprising findings of the present investigation: that Aboriginal people in the survey report a relatively high SWL in both the ESC and the GSS. The values shown by blue bars disaggregate the predicted difference according to contributions from each explanatory variable or group of variables. They have the following interpretation.

Given the importance of self-reported health in explaining life satisfaction responses generally, the considerably lower average health status reported by Aboriginal people gives rise to a large predicted negative impact on their SWL. Similarly, other objective differences predict lower SWL for Aboriginal peoples: lower incomes, a higher unemployment rate, lower marriage rates, younger average age (see Figure 3), and lower levels of reported trust. On the other hand, these detractors from life satisfaction are offset, in the Blinder-Oaxaca decomposition, by three factors predictive of higher Aboriginal SWL. Aboriginal respondents reported a significantly higher frequency of visits with family and with friends, both of which are strong supports for SWL, and they reported having more children, which in our model was also predictive of higher SWL. The other factors included in our estimates did not significantly contribute to explaining the observed SWL gap.

\[^{14}\] Employment and unemployment are not in general simply related because they both omit potential workers who are out of the workforce and not looking for a job, for instance because they are discouraged from trying, or are retired, disabled, or studying. Indeed, the state of unemployment, or “looking for a job,” is a subjective one and its meaning may vary with the context. In the present case, heterogeneity within the omitted category across our two samples may also be contributing to different baselines. The gap in coefficients between unemployed and employed is not statistically different between the two samples.

\[^{15}\] This decomposition is computed using a model estimated on a pooled set of the two ESC samples. This gives coefficient values very close to those discussed above and reported in Table B1.
The estimation results section focused on differences in the size of effects estimated in our model. By contrast, the Blinder-Oaxaca decomposition interprets the two populations using a common set of coefficients. The discrepancy between observed and predicted ΔSWL in Figure 4 is largely a result of the inconsistency of estimated coefficients.

Note that, in particular, the large explanatory contributions of income and unemployment in Figure 4 reflect the general population effect strengths, while based on the estimates from the Aboriginal
respondents, these conditions (curiously) have little impact. On the other hand, the socially-related factors, namely contact with family and friends, marital status, number of children, and trust, would have quite similar predictive contributions under the alternative coefficients, as would both health and age. In addition, the effect of differences in the other levels of labour force statuses would mirror, with a similar magnitude, that of unemployment in our analysis. In the present context, employment and unemployment may amount to two sides of the same coin.

The view from this accounting thus presents a way to understand the observed difference in life satisfaction as an outcome of differing objective and subjective life conditions, while also highlighting the surprisingly small scale of that observed difference. The difference between the top two bars in Figure 4 may be said to quantify the “surprisingly high” average SWL response among Aboriginal respondents.

Conclusion

In summary, we find generally consistent patterns in the relationship between marginal differences in individual characteristics and reported life satisfaction between the Aboriginal and general population samples in the ESC and GSS. These findings are therefore consistent with the standard interpretation of models of SWL like those presented here, implying that small changes in life circumstances may be expected to lead to changes in experienced well-being that are similar across groups. It also supports the kind of analyses done in the previous section and elsewhere in the literature, in which differences in life satisfaction among two or more groups is accounted for using their observed attributes and conditions. These conditions are possibly more directly or meaningfully amenable to influence through policy than life satisfaction itself, and thus both the Blinder-Oaxaca accounting and the baseline estimate coefficients may generally be interpreted as providing an indication of the well-being benefit of pursuing different proximate policy objectives.

On the other hand, not all marginal effects were estimated to be the same for the two groups. The primary factor in these differences was undoubtedly the small sample size available for Aboriginal respondents.

While the point estimates of the effects of several variables—family, friends, gender and number of children—in the Aboriginal ESC sample are on the order of twice as large as those in the general population, these differences are only marginally significant statistically, and must therefore be subject to verification in larger studies. However, we find a significant distinction between the general and Aboriginal ESC samples with regards to the importance of household income, employment, and unemployment.

A negative relationship between household income and SWL among on-reserve Aboriginal respondents is in stark contrast to the persistent positive coefficient in the general Canadian population sample and the existing literature. Similarly, the data provides no evidence for any normal positive conditional relationship between income and SWL among the off-reserve Aboriginal peoples in the GSS and ESC.

One may react with two classes of response to such discrepancies. The first is to suspect that there is a problem with the SWL measure, in particular in its comparability across the differing circumstances faced by different communities and cultures. In this view, if the responses given by Aboriginal respondents are nearly as high as for the non-Indigenous Canadians, who have, on average, better
material conditions, then the SWL measure is not to be trusted. Less dramatically, if the importance of
different life circumstances in supporting high life satisfaction varies with context, it is difficult to use
them to inform policy priorities and to make benefit–cost judgments. Also, in this case, the inferences
made from measurements on the lives of the general population should not be used to make normative
judgments about priorities for Aboriginal communities. Indeed, the Aboriginal experience in Canada is
unique on several dimensions, including political, interpersonal, cultural, and socioeconomic
dimensions. The reduced-form estimates used here and in many analyses of SWL are always subject to
the caveat that causality almost certainly runs two ways between SWL and many of our “explanatory”
variables. We can in this work shed only limited light on the nature of missing variables—or unique
causal pathways among available variables—which are particularly important for our small and
geographically restricted sample of Aboriginal communities.

One particular feature is unusual in the SWL responses from Aboriginal respondents and relates to
possible measurement challenges and cultural norms. As shown in Figure 1, there is an enhancement at
the three round-number focal points—1, 5, and 10—in the two Aboriginal samples as compared with
their general population counterparts. Although the effect is hard to quantify without making
assumptions, this focusing on the extremes and midpoint of the scale could be sufficient to account for
the “surprisingly high” mean SWL response in these samples.

The other possible reaction is also cautious, and consists in looking for reasons to doubt the
completeness of the limited set of explanatory variables on hand. This outlook is inspired by the
remarkable consistency among coefficients estimated for SWL models across more than 150 countries
around the world (J. F. Helliwell et al., 2009). In addition, as mentioned above, the statistical
inconsistency in coefficients measured in the present study is actually quite limited; larger samples are
needed for better resolution. Not only is the linear, stylized, and “reduced form” model of equation (1)
only a working model of how one might bring different conditions together to explain variation in
experienced life quality (SWL), but it also reflects the limited set of variables at hand in the surveys.
There may, for instance, be unmeasured aspects of life that are positive for Aboriginal peoples and would
go further towards explaining the relatively high SWL reports from Aboriginal respondents. As an
example, the negative coefficient on income for on-reserve respondents suggests that some substitution
is going on between market income and some other benefit. Indeed, the formal, or market, orientation of
the standard income question is not appropriate for respondents with substantial direct natural resource
income, such as subsistence hunting, or substantial non-market trade. Going further, less reliance on
market income may even be associated with higher SWL, in accordance with the negative sign on the
income term.

More broadly, a repeated lesson from quantitative studies on SWL is the importance of social supports
over material ones. Our findings support this intuition, in that five social factors loom large in the
accounting of Figure 4 and can explain both part of the SWL deficit in the Aboriginal sample as well as
some of the advantage that comes with more frequent social and family interactions. Other social
dimensions are important and may be particularly important for the Aboriginal population, but are not
measured. For instance, the degree of cultural continuity has been shown to be protective against suicide
Chandler and Lalonde (1998), but is not available in our model.
As promised at the outset, we remain somewhat agnostic on the interpretation of the patterns and apparent anomalies that the ESC and GSS data present. The analysis provided here may be evidence for bringing the increasingly ubiquitous SWL approach to populations who have so far been under-sampled. This method is established and standardized enough for evaluating human outcomes and experience in the broadest sense that the biggest anomaly in the Canadian data appears simply to be the near lack of measurements for some of the most disadvantaged in Canada.

Therefore, the policy implications from our findings, with all of the above caveats, may be stated as follows: In accordance with a trend among other populations and governments around the world, Aboriginal peoples in Canada might consider embracing the measurement of life satisfaction as an overarching measure of well-being that does not impose external priorities nor outside concepts of development. Second, any group doing so must also emphasize the measurement of a diverse set of measures, objective when possible, of the social supports of well-being, including measure of interactions and links, of trust in institutions and various groups, and of belonging and social identity. Third, and tentatively, our findings suggest that these social supports should possibly rank higher in current development priorities than the huge and possibly more obvious material deficits faced by the Aboriginal respondents in our sample. Of course, these social supports are in principle, and also empirically based on international data, rather interwoven with material supports, but estimates like ours are meant to disentangle the marginal benefits of improving each.

The SWL approach consists in finding things that matter and have variation, and in then measuring those and evaluating their potential to improve life. If this approach to policy has the potential to be useful for Aboriginals, surveys asking about SWL must also cover the dimensions of people’s lives that are most significant to those being surveyed. Such dimensions cannot be identified in advance; as well, doing so will always be an incomplete and ongoing task, and the details may vary with the population being surveyed. Above all, that insightful task will ultimately lie in the hands of the populations themselves.
References

Oesch, D. & Lipps, O. (2013). Does unemployment hurt less if there is more of it around? A panel analysis of life satisfaction in Germany and Switzerland. *European Sociological Review, 29*(5), 955–967. doi: http://dx.doi.org/10.1093/esr/jcs071

Statistics Canada. (2003). *Aboriginal identity population, 2001 counts, for Canada, provinces and territories 20% sample data.* Retrieved from http://www12.statcan.ca/english/census01/products/highlight/Aboriginal/Page.cfm?Lang=E&Geo=PR&View=1a&Table=1&StartRec=1&Sort=2&B1=Counts01&B2=Total

Table A1. Percentage of Respondents Identifying as Female in Each Subsample

<table>
<thead>
<tr>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
</tr>
<tr>
<td></td>
<td>53%</td>
</tr>
</tbody>
</table>

Table A2. Mean Age in Each Subsample

<table>
<thead>
<tr>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
</tr>
<tr>
<td>Age</td>
<td>44</td>
</tr>
<tr>
<td>Standard error (years)</td>
<td>.24</td>
</tr>
</tbody>
</table>

Table A3. Mean Self-Reported Health Level in Each Subsample.

<table>
<thead>
<tr>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
</tr>
<tr>
<td>Health</td>
<td>.72 (Pretty good)</td>
</tr>
<tr>
<td>Standard Error</td>
<td><.005</td>
</tr>
</tbody>
</table>

Note. Descriptions in parentheses correspond to the response option that is numerically closest to the sample mean.
Table A4. Mean Levels of Social Support Indicators in the ESC Samples

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>.53 (At least once a week)</td>
<td>.72 (Several times a week)</td>
</tr>
<tr>
<td>Friends</td>
<td>.64 (At least once a week)</td>
<td>.73 (Several times a week)</td>
</tr>
</tbody>
</table>

Note. Descriptions in parentheses correspond to the response option that is numerically closest to the sample mean.

Table A5. Mean Levels of Institutional Trust Indicators in the ESC Samples

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust</td>
<td>2.3</td>
<td>1</td>
</tr>
<tr>
<td>Standard Error</td>
<td>.02</td>
<td>.07</td>
</tr>
</tbody>
</table>

Table A6. Mean Household Size in Each Subsample

<table>
<thead>
<tr>
<th></th>
<th>Total Canadian</th>
<th>Aboriginal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESC</td>
<td>GSS(^a)</td>
</tr>
<tr>
<td>Household size</td>
<td>3.6</td>
<td>3.0</td>
</tr>
<tr>
<td>Standard Error</td>
<td>.11</td>
<td>.01</td>
</tr>
</tbody>
</table>

\(^a\) The variable indicating household size in the GSS data is capped at six household members.
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td>2.7 (.12)</td>
<td>3.0 (.16)</td>
<td>2.5 (.17)</td>
</tr>
<tr>
<td>Off-reserve</td>
<td>2.6 (.24)</td>
<td>3.1 (.34)</td>
<td>1.8 (.30)</td>
</tr>
<tr>
<td>On-reserve</td>
<td>2.8 (.13)</td>
<td>2.9 (.19)</td>
<td>2.6 (.18)</td>
</tr>
</tbody>
</table>

Note. Standard errors are in parentheses.
Appendix B: OLS Regressions of Satisfaction with Life in Each Sample

<table>
<thead>
<tr>
<th></th>
<th>Aboriginal ESC</th>
<th>Off-Reserve</th>
<th>On-Reserve</th>
<th>Aboriginal ESC</th>
<th>General ESC</th>
<th>ESC (AB, SK and MB)</th>
<th>GSS (Aboriginal)</th>
<th>GSS (1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>.48**</td>
<td>.61*</td>
<td>.43</td>
<td>.48**</td>
<td>.20****</td>
<td>0.023</td>
<td>0.11</td>
<td>-0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.36)</td>
<td>(0.26)</td>
<td>(0.22)</td>
<td>(0.05)</td>
<td>(0.1)</td>
<td>(0.21)</td>
<td>(0.036)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>age/100</td>
<td>-4.0</td>
<td>-1.79</td>
<td>-4.2</td>
<td>2.7***</td>
<td>-4.1****</td>
<td>-0.23</td>
<td>-6.2*</td>
<td>-6.1****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.8)</td>
<td>(5.8)</td>
<td>(5.1)</td>
<td>(0.94)</td>
<td>(1.04)</td>
<td>(2.1)</td>
<td>(3.7)</td>
<td>(0.67)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(age/100)^2</td>
<td>7.6*</td>
<td>7.8</td>
<td>7.1</td>
<td>5.3****</td>
<td>2.1</td>
<td>10.2**</td>
<td>7.6****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.9)</td>
<td>(5.6)</td>
<td>(5.3)</td>
<td>(1.01)</td>
<td>(2.0)</td>
<td>(4.2)</td>
<td>(0.69)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>.43*</td>
<td>0.035</td>
<td>0.39</td>
<td>0.35</td>
<td>.32****</td>
<td>.52***</td>
<td>-0.11</td>
<td>.25****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.47)</td>
<td>(0.32)</td>
<td>(0.25)</td>
<td>(0.069)</td>
<td>(0.16)</td>
<td>(0.23)</td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divorced</td>
<td>-0.36</td>
<td>-1.12</td>
<td>-0.2</td>
<td>-0.36</td>
<td>-.44****</td>
<td>-0.28</td>
<td>-1.35***</td>
<td>-37****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.72)</td>
<td>(0.4)</td>
<td>(0.34)</td>
<td>(0.098)</td>
<td>(0.21)</td>
<td>(0.47)</td>
<td>(0.076)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>1.95****</td>
<td>2.9****</td>
<td>1.77****</td>
<td>1.97****</td>
<td>1.18****</td>
<td>.69**</td>
<td>2.3****</td>
<td>2.2****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.38)</td>
<td>(0.62)</td>
<td>(0.48)</td>
<td>(0.39)</td>
<td>(0.14)</td>
<td>(0.32)</td>
<td>(0.38)</td>
<td>(0.076)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeing family</td>
<td>.85**</td>
<td>1.00*</td>
<td>.83*</td>
<td>.82**</td>
<td>.37****</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.59)</td>
<td>(0.49)</td>
<td>(0.39)</td>
<td>(0.092)</td>
<td>(0.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeing friends</td>
<td>1.05***</td>
<td>1.74****</td>
<td>0.81</td>
<td>1.09****</td>
<td>.65****</td>
<td>.91****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(0.62)</td>
<td>(0.52)</td>
<td>(0.39)</td>
<td>(0.11)</td>
<td>(0.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trust</td>
<td>.20***</td>
<td>0.15</td>
<td>.21**</td>
<td>.21***</td>
<td>.092****</td>
<td>.17****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.13)</td>
<td>(0.087)</td>
<td>(0.074)</td>
<td>(0.018)</td>
<td>(0.038)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log(Number of children)</td>
<td>.47**</td>
<td>0.37</td>
<td>.53**</td>
<td>.41**</td>
<td>.12**</td>
<td>0.05</td>
<td>0.18</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.35)</td>
<td>(0.25)</td>
<td>(0.19)</td>
<td>(0.057)</td>
<td>(0.13)</td>
<td>(0.15)</td>
<td>(0.032)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>.82**</td>
<td>-0.0007</td>
<td>.98**</td>
<td>.72**</td>
<td>-.14*</td>
<td>-0.12</td>
<td>0.15</td>
<td>-15***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.42)</td>
<td>(0.43)</td>
<td>(0.34)</td>
<td>(0.076)</td>
<td>(0.14)</td>
<td>(0.29)</td>
<td>(0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.043</td>
<td>-0.004</td>
<td>-0.02</td>
<td>-0.038</td>
<td>-.82****</td>
<td>-.89**</td>
<td>-0.31</td>
<td>-1.21****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.63)</td>
<td>(0.47)</td>
<td>(0.39)</td>
<td>(0.15)</td>
<td>(0.35)</td>
<td>(0.52)</td>
<td>(0.17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>0.53</td>
<td>0.58</td>
<td>0.57</td>
<td>0.55</td>
<td>-.27**</td>
<td>-0.02</td>
<td>0.17</td>
<td>-28***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.57)</td>
<td>(0.53)</td>
<td>(0.43)</td>
<td>(0.13)</td>
<td>(0.26)</td>
<td>(0.41)</td>
<td>(0.086)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asinh(Household income)</td>
<td>-.37*</td>
<td>-0.014</td>
<td>-.41*</td>
<td>-.39*</td>
<td>.30****</td>
<td>.22**</td>
<td>0.029</td>
<td>.11****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.25)</td>
<td>(0.2)</td>
<td>(0.049)</td>
<td>(0.1)</td>
<td>(0.074)</td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household size</td>
<td>0.002</td>
<td>-0.16</td>
<td>0.046</td>
<td>0.011</td>
<td>0.002</td>
<td>0.004</td>
<td>-0.003</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.1)</td>
<td>(0.066)</td>
<td>(0.056)</td>
<td>(0.005)</td>
<td>(0.012)</td>
<td>(0.12)</td>
<td>(0.027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.6****</td>
<td>3.5</td>
<td>5.9****</td>
<td>4.5****</td>
<td>5.5****</td>
<td>4.9****</td>
<td>6.3****</td>
<td>5.9****</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.18)</td>
<td>(2.2)</td>
<td>(1.47)</td>
<td>(0.97)</td>
<td>(0.34)</td>
<td>(0.71)</td>
<td>(1.3)</td>
<td>(0.31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>559</td>
<td>166</td>
<td>393</td>
<td>559</td>
<td>5428</td>
<td>1252</td>
<td>569</td>
<td>14895</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aboriginal ESC</td>
<td>Off-Reserve</td>
<td>On-Reserve</td>
<td>Aboriginal ESC</td>
<td>General ESC</td>
<td>ESC (AB, SK and MB)</td>
<td>GSS (Aboriginal)</td>
<td>GSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2(adj)</td>
<td>0.191</td>
<td>0.297</td>
<td>0.16</td>
<td>0.188</td>
<td>0.11</td>
<td>0.116</td>
<td>0.145</td>
<td>0.146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Regression coefficients with standard errors in brackets.

* * p < .1. * * * p < .05. * * * * p < .01. * * * * * p < .001