
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-30-2023 10:00 AM

Migration in Edge Computing Migration in Edge Computing

Arshin Rezazadeh, Western University

Supervisor: Lutfiyya, Hanan, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Arshin Rezazadeh 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Data Science Commons, Numerical Analysis and Scientific Computing Commons, OS and

Networks Commons, and the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Rezazadeh, Arshin, "Migration in Edge Computing" (2023). Electronic Thesis and Dissertation Repository.
9797.
https://ir.lib.uwo.ca/etd/9797

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9797?utm_source=ir.lib.uwo.ca%2Fetd%2F9797&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Mobile IoT applications often require low response time and high bandwidth. These

applications include virtual reality, augmented reality, and online gaming. Currently, most

data processing is done in the cloud. However, for latency-sensitive applications, the latency

may need to be reduced. Edge and fog computing can be used to place application services

close to mobile devices to reduce latency. However, as mobile devices move, latency

increases, which can be decreased by moving the service to a closer edge/fog server. This can

be addressed by migrating services so that the mobile device can receive services from the

new server. These services can be run on a single or multiple virtual machines or containers.

 Application services must be migrated together. Delays in multi-service migration can

occur because some application services migrate faster than others, requiring them to wait for

the rest of the services to migrate before continuing their tasks. However, in the last decade,

most migration research has focused on cloud computing rather than edge and fog

computing. Furthermore, migration methods and models are primarily intended for cloud

applications.

This thesis focuses on migration techniques for managing IoT applications in edge and

fog computing environments while considering the characteristics of IoT applications, the

networking characteristics of the edge and fog servers, and the migration parameters of

running IoT applications. This thesis contributes to the current state of the art by presenting

the following contributions in fog and edge computing environments:

1. A comprehensive literature review and limitations on the migration of IoT

applications from different perspectives, namely downtime and migration time

reduction strategies, optimization techniques, and identifying critical parameters of

migration.

iii

2. A new migration method for latency-sensitive IoT applications to reduce downtime

and migration time, including performance evaluations and comparisons to well-

known migration methods.

3. New comprehensive models with non-average parameter values for higher precision

and accuracy, including comparative analysis of the parameters that impact the

performance of the investigated migration methods.

4. A new bandwidth allocation strategy for multi-service migrations of IoT applications

to reduce downtime and migration time, including performance evaluations.

Keywords

Edge computing, fog computing, multi-service migration, downtime, migration time,

bandwidth adjustment, machine learning, reinforcement learning.

iv

Summary for Lay Audience

Internet-of-things (IoT) and cloud computing have been well-known in the last decade.

However, there will be a data surge soon with massive data generation by IoT applications

that the cloud cannot tolerate. Furthermore, mobile IoT applications often require low

response time and high bandwidth. These applications include virtual reality, augmented

reality, and online gaming. Currently, most data processing is done in the cloud. However,

for latency-sensitive applications, the latency may need to be reduced. Edge and fog

computing can be used to place application services in servers close to mobile devices to

reduce latency. However, as mobile devices move, latency increases, which can be decreased

by moving the service to a closer edge/fog server. Migrating services can address this so the

mobile device can receive services from the new server.

Mobile device service migration for multi-service applications is critical in edge and fog

computing. With the growing use of multi-service applications, it is critical to ensure that all

application services complete their migration in parallel to avoid waiting time and additional

delays in latency-sensitive applications. Delays in multi-service migration can occur because

some application services migrate faster than others, requiring them to wait for the rest of the

services to migrate before continuing their tasks and remaining operational. However, in the

last decade, most migration research has focused on cloud computing rather than edge and

fog computing. Furthermore, migration methods and models are primarily intended for cloud

applications. The advancement of technology, the introduction of 5G and 6G networks, and

evolving applications create a demand for migration techniques in edge and fog computing to

support mobility with low response time.

The edge and fog computing paradigms are dynamic, distributed, and heterogeneous.

Therefore, it is challenging to fully exploit the capabilities of this computing paradigm for

various IoT-driven application scenarios in the absence of effective migration strategies for

IoT application management.

This thesis focuses on various migration techniques for managing IoT applications in

edge and fog computing environments while considering the characteristics of IoT

v

applications and networking of the edge and fog servers and the migration parameters of

running IoT applications.

vi

Co-Authorship Statement

This thesis contains several articles written by Arshin Rezazadeh and supervised by Professor

Hanan Lutfiyya. The articles are based on research done at the University of Western Ontario

as part of the author's doctoral research. These works are discussed in chapters two through

five. I primarily contributed to all chapters under the supervision of Professor Hanan

Lutfiyya, and Davoud Abednejad assisted with parts of the experiments in Chapter 3.

vii

Acknowledgments

Ph.D. is an exciting journey filled with incredible experiences that would not be possible

without the encouragement and support of many people. Now that my journey is coming to

an end, I would like to take this opportunity to share my deepest gratitude to everyone who

has supported me on this journey.

Before anything else, I would like to express sincere thanks to my supervisor, Professor

Hanan Lutfiyya, for providing me with the opportunity to pursue my studies under

her supervision. I would like to express my appreciation for her ongoing encouragement,

productive comments, advice, and support throughout all of the challenging and delightful

moments of my Ph.D. adventure.

I would also like to thank Dr. Dan Lizotte, Dr. Kostas Kontogiannis, and Dr. Roberto

Solis-Oba for their informative courses that provided very insightful perspectives on

concepts related to my research. My research has also been enhanced by the support of

fellow students and friends Mohsen Shirpour, Amir Haghighati Maleki, Duff Jones and

Davoud Abednejad.

I would also like to thank the faculty and staff at Western University's Department of

Computer Science for their support. I also thank the Computer Science Department's admin

staff, especially Janice M Wiersma and Ange Muir, who continuously supported and

responded to many queries throughout my Ph.D. candidature.

Lastly, and most importantly, I am grateful to my spouse for her everlasting love,

devotion, appreciation, and understanding.

Arshin Rezazadeh

London, Ontario, Canada

October 2023

viii

Table of Contents

Abstract ... ii

Summary for Lay Audience ... iv

Co-Authorship Statement... vi

Acknowledgments... vii

Table of Contents ... viii

List of Tables .. xii

List of Figures .. xiii

Preface.. xvi

Chapter 1 ... 1

1 Introduction .. 1

1.1 Methodologies... 3

1.2 Research Questions and Objectives .. 4

1.3 Thesis Contributions ... 5

1.4 Thesis Organization .. 7

Chapter 2 ... 10

2 Background, Related Work, and Limitations ... 10

2.1 Introduction ... 10

2.1.1 Paper Selection Method .. 12

2.1.2 Outline... 13

2.2 Background on Traditional Migration Methods ... 14

2.2.1 Migration Phases ... 14

2.2.2 Traditional Migration Methods ... 15

2.2.3 Limitations of Migration Methods .. 21

ix

2.3 Downtime and Migration Time Reduction ... 23

2.3.1 Reducing Downtime and Migration Time by Reducing the Data Transfer

Amount ... 23

2.3.2 Reducing Downtime and Migration Time Using Optimization and

Machine Learning Techniques .. 25

2.3.3 Limitations .. 27

2.4 Multi-Service Migration in Edge Computing ... 27

2.4.1 Multiple Service Migration using Optimization and Machine Learning

Techniques .. 28

2.4.2 Service Migration Performance Analysis and Comparison 29

2.4.3 Limitations .. 30

2.5 Migration Modeling in Edge Computing .. 31

2.5.1 Single VM/container Migration Models ... 34

2.5.2 Multiple VM/containers Migration Model ... 41

2.5.3 Limitations .. 43

2.6 Research Gaps ... 46

Chapter 3 ... 48

3 MiGrror: Mitigating Downtime in Mobile Edge Computing, An Extension to Live

Migration .. 48

3.1 Introduction ... 49

3.2 Background and Related Work ... 51

3.2.1 Background: Fundamental Migration Techniques in Mobile Edge

Computing... 51

3.2.2 Migration Strategies in Mobile Edge Computing 53

3.2.3 Contribution .. 56

3.3 MiGrror: Mirroring Service on Fog/Edge Migration.. 57

3.3.1 Description of Pre-copy .. 58

3.3.2 Description of MiGrror ... 59

x

3.3.3 Synchronized Proposed Algorithms ... 60

3.3.4 A Smart City Scenario .. 65

3.4 Results and Discussions .. 66

3.4.1 Simulation Setup ... 66

3.4.2 Performance Characteristics ... 67

3.4.3 Simulation Results .. 68

3.5 Summary ... 70

Chapter 4 ... 72

4 A Non-average Multi-microservice Migration Modelling Approach 72

4.1 Introduction ... 73

4.2 Background and Related Work ... 80

4.3 A Pre-copy Migration Mathematical Model for Multiple VMs/Containers Using

Average Parameter Values - the Pre-copy Migration Model 84

4.4 Mathematical Model of Multiple VMs/Containers Migration using Non-average

Parameter Values – MiGrror Model ... 90

4.5 Performance Evaluation and Discussions ... 96

4.5.1 Results using Average Parameter Values and the Dataset........................ 97

4.5.2 Non-average Parameter Value Results using the Dataset 98

4.5.3 Non-dataset Parameter Values .. 100

4.6 Summary ... 109

Chapter 5 ... 111

5 A Novel Bandwidth Allocation Strategy for Multi-service Migration 111

5.1 Introduction ... 112

5.2 Related Work .. 114

5.3 MiGrror Migration Model... 116

5.4 Bandwidth Allocation Strategy ... 119

5.5 Testbed Evaluation.. 123

xi

5.5.1 Testbed Setup .. 123

5.5.2 Experimental Results .. 124

5.5.3 Results using Synthesized Data .. 128

5.6 Summary ... 131

Chapter 6 ... 133

6 Conclusions and Future Directions .. 133

6.1 Summary of Contributions .. 133

6.2 Future Research Directions ... 135

6.2.1 Asynchronous MiGrror – Generalizing Migration Methods 136

6.2.2 Stateless MiGrror .. 137

6.2.3 Mirror to Multiple Destinations .. 137

6.2.4 MiGrror Integration with Other Techniques ... 138

6.2.5 Non-average Models ... 138

6.2.6 Optimize both Downtime and Migration Time for Multi-containerized

Applications .. 138

6.2.7 Bandwidth Allocation Strategy Integration with Other Techniques 139

6.2.8 Network Traffic Reduction ... 139

6.2.9 Load Balancing and Cloud Computing... 139

6.2.10 Energy Consumption .. 140

6.2.11 Inter-Vendors Migration ... 140

6.3 Final Remarks ... 140

Bibliography ... 141

Appendix A: Bandwidth Strategy for Pre-copy .. 154

Curriculum Vitae .. 159

xii

List of Tables

Table 2.1: Symbols and Definitions.. 33

Table 4.1: Symbols and Definitions.. 86

xiii

List of Figures

Figure 1.1 The thesis structure. ... 8

Figure 2.1 Prior to and after the VM/container hand-off. ... 14

Figure 2.2 Cold migration method .. 16

Figure 2.3 Pre-copy live migration method .. 17

Figure 2.4 Post-copy live migration methods ... 19

Figure 2.5 Hybrid-copy live migration method .. 20

Figure 2.6 Pre-copy iterations (rounds) [42]... 34

Figure 2.7 Various values of memory dirtying rates during migration 44

Figure 3.1 Distinction between MiGrror and Pre-Copy. .. 58

Figure 3.2 Workflow of offloading service migration in mobile edge computing 61

Figure 3.3 A smart city scenario. (a) top; (b) middle; (c) bottom. (Image location: Nathan

Phillips Square, Toronto, ON Canada, from maps.google.ca. Red car from ferrari.com, both

accessed Dec. 2020). ... 64

Figure 3.4 Results: top left: (a) Average downtime; top right: (b) Total network usage;

middle left: (c) Data loss; middle right: (d) Average delay; bottom: (e) Average migration

time. .. 68

Figure 4.1 Various values of memory dirtying rates during migration. 76

Figure 4.2 Pre-copy iterations (rounds) [42]... 81

xiv

Figure 4.3 Comparison of the pre-copy and MiGrror migration methods using the dataset's

average parameter values (blue: Pre-Copy, red: MiGrror) (left: Downtime, middle: Migration

Time, right: Migration Overhead)... 97

Figure 4.4 Comparison of the dataset's average and non-average parameter values using

MiGrror migration (left: Downtime, middle: Migration Time, right: Migration Overhead,

blue: pre-copy, red: MiGrror using average values, green: MiGrror using non-average

values). .. 99

Figure 4.5 Downtime, Migration Time, and Migration Overhead as functions of

VM/container size for the pre-copy and MiGrror migration methods using non-dataset

parameter values (blue: Pre-Copy, red: MiGrror) (top: 𝝀𝒊, 𝒋 varies between 0.04 and 0.515,

middle: 𝝀𝒊, 𝒋 is constant and set to 0.25, bottom: 𝝀𝒊, 𝒋 is constant and set to 0.5) 101

Figure 4.6 Downtime, Migration Time, and Migration Overhead as functions of Transfer

Rate for the pre-copy and MiGrror migration methods using non-dataset parameter values

(blue: Pre-Copy, red: MiGrror). .. 103

Figure 4.7 Downtime, Migration Time, and Migration Overhead as functions of Memory

Dirtying Rate for the pre-copy and MiGrror migration methods using non-dataset parameter

values (blue: Pre-Copy, red: MiGrror). ... 105

Figure 4.8 Downtime, Migration Time, and Migration Overhead as functions of λ_(i,j) for the

pre-copy and MiGrror migration methods using non-dataset parameter values (blue: Pre-

Copy, red: MiGrror). ... 107

Figure 4.9 The pre-copy and MiGrror Downtime as a function of their Migration Time (blue:

Pre-Copy, red: MiGrror). .. 108

Figure 5.1 Various values of memory dirtying rates during migration. 113

Figure 5.2 The concept of use increased bandwidth during the initial stage of migration. Left

(A): Original bandwidth, Right (B): Increased Bandwidth for the initial and final stages. .. 120

Figure 5.3 Comparison of the MiGrror migration method with and without the use of

bandwidth strategy (light green: MiGrror without bandwidth strategy - using original

xv

bandwidth, greys: MiGrror using bandwidth strategy; 2x, 5x, and 10x: twofold, fivefold, and

tenfold transfer rate only during the first and last migration stages) (left (A): Downtime,

middle (B): Migration Time, right (C): Migration Overhead). ... 125

Figure 5.4 Comparison of the MiGrror migration method with and without the use of

bandwidth strategy (light green: MiGrror without bandwidth strategy, dark green: increase

transfer rate for entire migration by %10, greys: MiGrror using bandwidth strategy; %15,

%20, and %25 increase transfer rate only during the first and last migration stages) (left (A):

Downtime, middle (B): Migration Time, right (C): Migration Overhead). 126

Figure 5.5 Comparison of the MiGrror migration method with and without the use of

bandwidth strategy (light green: MiGrror without bandwidth strategy, greys: MiGrror using

bandwidth strategy; %15, %20, and %25 increase transfer rate only during the first and last

migration stages, and decrease transfer rate during middle migration stages by %10) (left (A):

Downtime, middle (B): Migration Time, right (C): Migration Overhead). 127

Figure 5.6 Comparison of the MiGrror migration method with and without the use of

bandwidth strategy (red: MiGrror, greys: MiGrror using bandwidth strategy; 2x, 5x, and 10x:

twofold, fivefold, and tenfold transfer rate only during the first and last migration events)

(left (A): downtime, middle (B): Migration time, right (C): Migration Overhead). 130

Figure 5.7 Comparison of the MiGrror migration method with the use of bandwidth strategy

with twofold transfer rate only during the first migration event (green: Migration Overhead

Reduction, purple: Percentage of the first MiGrror event). .. 131

Figure 6.1 Summary of future research directions.. 136

xvi

Preface

Main Contributions

This thesis research was conducted in the Department of Computer Science at the University

of Western Ontario. The main contributions of the thesis are discussed in Chapters 2-6 and

are based on the following publications:

• Arshin Rezazadeh, Hanan Lutfiyya “A Novel Sustainable Bandwidth Allocation

Strategy for Multiple Service Migration in 5G/6G Edge Computing,“ GLOBECOM

2023 - 2023 IEEE Global Communications Conference, IEEE, Dec. 2023, pp. 1211–

1217

• Arshin Rezazadeh, Hanan Lutfiyya “Multi-microservice Migration Modelling,

Comparison, and Potential in 5G/6G Mobile Edge Computing: A Non-average

Parameter Values Approach,” IEEE Access –accepted

• Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “Hybrid-MiGrror: An

Extension to the Hybrid Live Migration to Support Mobility in Edge Computing,”

Journal of Ubiquitous Systems & Pervasive Networks, Vol. 18, No. 1, pp. 39-48,

January 2023 [INVITED PAPER]

• Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “MiGrror: Mitigating

Downtime in Mobile Edge Computing, An Extension to Live Migration, “Procedia

Computer Science, Vol. 203, pp. 41-50, 2022 [BEST PAPER AWARD]

• Arshin Rezazadeh, Hanan Lutfiyya “Migration in Edge Computing: Review and

Challenges,” –submitted

1

Chapter 1

1 Introduction

Supporting latency-sensitive applications to be used by mobile devices requires placing

one or more application services in remote computing resources to address the limited

capacity of a mobile device. Mobile IoT applications often require low response time and

high bandwidth [1]–[3]. These applications include virtual reality (VR), augmented

reality (AR), online gaming, and smart vehicle applications. Currently, data processing is

typically done in the cloud. However, the latency may be too high for latency-sensitive

applications [3]. Edge and fog computing can be used to place application services in

servers close to mobile devices in order to reduce latency [4]. However, as mobile

devices move, the latency can increase, which can be mitigated by moving the service to

another edge/fog server [1]. Migrating services can address this so the mobile device can

receive services from the new server.

There is an increasing need to integrate multiaccess edge computing (MEC) with

future mobile Internet-of-Things (IoT) devices and associated applications in the 5th

Generation of Mobile Technology (“5G”) [5], [6]. In this context, application services

run on edge nodes close to devices, offer low response times and reduce remote traffic

between devices and the cloud. Edge presence is fundamental to the success of the 5G/6G

and the associated MEC standard demonstrated by the European Telecommunications

Standards Institute (ETSI) [7]–[10].

2

When user mobility is considered, there is a need to migrate services for mobile

devices. The edge servers host the applications to maintain proximity between mobile

devices and edge [1], [6]. Therefore, services must follow users to maintain proximity.

This requires service migration. These services can be run on single or multiple Virtual

Machines (VMs) or containers of an application. Regardless of whether the services are

hosted on VMs or containers, application services must be migrated together.

Service migration for multi-container applications is critical for mobile devices in

edge and fog computing [5], [11]. With the increasing use of multi-containerized

applications [5], including dependent tasks, it is crucial to ensure that all application

containers finish their migration in parallel to prevent waiting time and further delays in

latency-sensitive applications. This is especially important in the presence of dependent

tasks that can be found in more than 75% of multi-containerized applications [12]. Recent

research focuses on migrating multiple services [13]–[24]. Delays in multi-container

migration can occur, as some application containers can complete their migration sooner

than others, requiring them to wait to complete the migration of the rest of the containers

before continuing their tasks and remaining operational.

Furthermore, when considering load balancing, services should migrate to balance the

load; some edge nodes may become overloaded due to changing workloads, while others

may remain underutilized [14]. However, most migration research in the last decade has

focused on cloud computing rather than edge and fog computing. Migration techniques

and models are fundamentally designed for cloud applications as well. The advancement

of technology, the introduction of 5G and 6G networks, and evolving applications, create

a demand for migration techniques to support mobility with low response time in edge

and fog computing.

The edge paradigm aims to decrease latency by transferring intensive computational

services from the cloud to the network edge. Though transferring these tasks to the edge

may cause some delay, it will be minor compared to the benefits of performing these

heavy tasks on higher-performance edge devices [25].

3

Researchers may have a different definition of fog computing. Some regard fog

computing as a subset of edge computing, while we consider it as a superset of edge

computing [26]. The fog extends from a user device to the cloud, while edge computing

is only present at the network's edge. As a result, the fog paradigm includes the edge

paradigm. Although fog definitions may lack coherence, existing literature indicates that

most fog research employs similar language when describing the topology of fog

networks.

1.1 Methodologies

In our research, we use a systematic research methodology.

• Qualitative Comparison: We conduct a thorough analysis of each research

problem, identifying critical parameters, thoroughly researching literature

techniques, and comparing them to our proposed method.

• Modeling: We use modeling techniques to address our research challenges.

We 1) develop a comprehensive model that represents the key elements of our

system and 2) formulate the problem by establishing specific topics of

interest, including downtime and migration time. We extend the current

models with an innovative approach that increases the precision and accuracy

of models.

• Algorithms: We propose migration algorithms for mobile IoT applications in

Edge and Fog computing environments. These fundamental algorithms are

designed to solve migration problems. In addition, these algorithms can

integrate into machine learning-based approaches to solve optimization

problems.

• Evaluation: The proposed techniques in this thesis have been evaluated using

three methodologies, namely analytical, discrete event-driven simulation, and

4

practical implementation. Due to limited accessibility and management costs,

simulation is a common evaluation methodology to evaluate the proposed

algorithms in complex and large-scale systems. In this thesis, we used Python

3 as an analytical tool and MobFogSim simulation toolkit [27] for simulation.

Innovative method, algorithms, and models resulted from our research methodology.

1.2 Research Questions and Objectives

Mobile IoT applications often require low response time and high bandwidth [1], [3].

Currently, they are mostly run on the cloud, but the latency may be high for some mobile

IoT applications. To satisfy the need for a lower response time, edge computing is an

option [28]. However, as mobile devices move, the latency may increase. Migration can

solve this problem, but presently, some limitations, e.g., lengthy downtimes and

migration times, need to be improved for latency-sensitive services. Downtime and

migration time are the two primary parameters in migration [14]. This thesis aims to

enhance the Quality of Experience (QoE) for the user of IoT applications in Edge and

Fog Computing environments. In order to accomplish this objective, we address the

following research questions in an effort to resolve significant migration issues:

Q1: How to reduce migration downtime for latency-sensitive applications? Most

research uses the pre-copy migration method [28], which produces significant downtime

ranging from hundreds of milliseconds (𝑚𝑠) to several seconds (𝑠) [29]–[36]. Consider a

head-mounted device with an AR application. Some components of this application

require migration since they must preserve the user's data, such as the assets in front of

the user and their position. This app requires a latency of less than 17 𝑚𝑠 to function

properly [3], whereas most stated research output latencies and even only downtimes

exceed 17 𝑚𝑠. The user's QoE may suffer as a result of such a long delay, especially for

latency-sensitive applications, and there is a demand for a new approach to more

seamless migration that replaces the pre-copy migration technique.

5

Q2: How to reduce migration time for latency-sensitive applications? Due to the

limited resources of Edge/Fog servers, it may not always be possible to execute real-time

IoT applications on these servers. Therefore, with a shorter migration time, resources can

be made available to other services faster. Consequently, it is necessary to develop new

migration methods to support latency-sensitive and real-time service migrations for IoT

users while minimizing service interruptions during migration.

Q3: How to more accurately model multi-service migration time and downtime?

Migration modeling has been used in studies [13]–[24], [37]–[42] to predict the future

behavior of a system. Most research, however, is based on average parameter values and

assumes that the input parameter values will remain unchanged. One of our objectives is

to model downtime and migration time more accurately so that we can better understand

future behavior.

Q4: How to effectively increase bandwidth utilization for multi-service migrations to

decrease downtime and migration time? It has been a long time since migrations made

use of dedicated bandwidth. This means that each VM/container has a set amount of

bandwidth to use for data transfer during migration. One of our objectives is to redesign

this bandwidth assignment model and use bandwidth more efficiently. The new design is

expected to result in less downtime and migration time.

1.3 Thesis Contributions

This thesis makes the following contributions to the above-mentioned research problems:

1. A comprehensive review of the existing migration approaches and their

limitations in Edge and Fog computing environments.

2. Investigates efficient migration methods to reduce downtime and migration time

while considering mobility support in Edge and Fog computing environments

(addresses Q1 and Q2).

6

• A migration method designed to reduce downtime and migration time in Edge

and Fog computing environments.

• Algorithms for migration in Edge and Fog computing environments

• Mobility support with a use-case scenario.

• Reducing the data transfer amount during hand-off.

• Performance evaluation and comparisons to well-known migration methods,

e.g., pre-copy method.

• Capable of integrating with additional techniques, including compression and

machine learning (ML).

3. Puts forward models with non-average parameter values for higher precision and

accuracy in Edge and Fog computing environments (addresses the Q3).

• Mathematical migration models for heterogeneous multiple VMs/containers in

Edge and Fog computing environments.

• Utilize non-average and classical average values for parameters, such as the

transfer rate and memory dirtying rate, during each migration period of every

single VM/container.

• A new downtime model

• A new migration time model

• A new migration overhead model

• A comparative analysis of the input parameters that impact the performance of

the investigated migration methods, such as MiGrror and pre-copy methods.

7

4. Proposes bandwidth allocation strategy for multi-service migrations of IoT

applications in Edge and Fog computing environments (addresses the Q4).

• A novel bandwidth allocation strategy for multi-service migration in Edge and

Fog computing environments.

• Adjusting migration bandwidth for multi-containerized applications.

• Enhanced utilization of bandwidth for parallel service migration.

• Reduced bandwidth requirements for migrating multiple services in Edge and

Fog computing environments.

• Performance evaluation and comparisons were made.

1.4 Thesis Organization

Figure 1.1 shows the structure of this thesis. The rest of this thesis is organized as

follows:

• Chapter 2 presents the background and related work of current migration

approaches and their limitations in Edge and Fog computing environments. This

chapter is derived from:

– Arshin Rezazadeh, Hanan Lutfiyya “Migration in Edge Computing: Review

and Challenges,” –submitted

• Chapter 3 presents the new migration method, MiGrror, for latency-sensitive IoT

applications to reduce downtime and migration time. This chapter is derived from:

8

Figure 1.1 The thesis structure.

9

– Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “MiGrror:

Mitigating Downtime in Mobile Edge Computing, An Extension to Live

Migration, “Procedia Computer Science, Vol. 203, pp. 41-50, 2022 [BEST

PAPER AWARD]

– Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “Hybrid-MiGrror:

An Extension to the Hybrid Live Migration to Support Mobility in Edge

Computing,” Journal of Ubiquitous Systems & Pervasive Networks, Vol. 18,

No. 1, pp. 39-48, January 2023 [INVITED PAPER]

• Chapter 4 presents a new migration model with non-average parameter values to

improve the precision of the output parameters. This chapter is derived from:

– Arshin Rezazadeh, Hanan Lutfiyya “Multi-microservice Migration

Modelling, Comparison, and Potential in 5G/6G Mobile Edge Computing: A

Non-average Parameter Values Approach,” IEEE Access –accepted

• Chapter 5 presents a novel bandwidth allocation strategy for migrating multi-

containerized IoT applications to reduce downtime and migration time in Edge

and Fog computing environments. This chapter is derived from:

– Arshin Rezazadeh, Hanan Lutfiyya “A Novel Sustainable Bandwidth

Allocation Strategy for Multiple Service Migration in 5G/6G Edge

Computing,“ GLOBECOM 2023 - 2023 IEEE Global Communications

Conference, IEEE, Dec. 2023, pp. 1211–1217

• Chapter 6 concludes the thesis with a summary of the findings and offers new

directions for future research.

Since the terms fog computing and edge computing are used interchangeably in the

literature, we will primarily use the term edge computing in the rest of this thesis for

clarity, which can refer to either edge or fog computing.

10

Chapter 2 1

2 Background, Related Work, and

Limitations

This chapter investigates and reviews existing edge computing migration techniques

from various perspectives, including downtime, migration time, migration models,

bandwidth utilization, optimization, and performance evaluation. Separate limitations for

each perspective on migration in edge computing environments are proposed based on

an in-depth review of the literature. Finally, research gaps for enhancing the edge

computing paradigm are identified and discussed.

2.1 Introduction

Supporting latency-sensitive applications to be used by mobile devices requires placing

one or more application services in remote computing resources to address the limited

capacity of a mobile device. Mobile IoT applications often require low response time and

high bandwidth [1]–[3]. These applications include virtual reality (VR), augmented

reality (AR), gaming and smart vehicle applications. Currently, data processing is

1
 This chapter is derived from:

• Arshin Rezazadeh, Hanan Lutfiyya “Migration in Edge Computing: Review and Challenges,” –

submitted

11

typically done in the cloud. However, the latency may be too high for latency-sensitive

applications [3]. Edge computing can be used to place application services in servers

close to mobile devices in order to reduce latency [4]. However, as mobile devices move,

the latency can increase, which can be mitigated by moving the service to another edge

server [1].

There is an increasing need to integrate multiaccess edge computing (MEC) with

future mobile Internet-of-Things (IoT) devices and associated applications in the 5th

Generation of Mobile Technology (“5G”) [5], [6]. In this context, application services

run on edge nodes close to devices, offer low response times and reduce remote traffic

between devices and the cloud. Edge presence is fundamental to the success of the 5G/6G

and the associated MEC standard demonstrated by the European Telecommunications

Standards Institute (ETSI) [7]–[10].

When user mobility is considered, there is a need to migrate services for mobile

devices. The edge servers host the applications to maintain proximity between mobile

devices and edge [1], [6]. Therefore, services must follow users to maintain proximity.

This requires service migration. Furthermore, when considering load balancing, services

should migrate to balance the load; some edge nodes may become overloaded due to

changing workloads, while others may remain underutilized [14].

The advancement of technology, the introduction of 5G and 6G networks, and

evolving applications, creates a demand for techniques to support mobility with low

response time. This Chapter focuses on the following:

1. Migration papers with the goals of reducing downtime and migration

time.

2. New migration techniques within edge computing that provide better

service availability, user mobility support, and low response time

compared to the traditional migration approaches.

12

3. Papers focusing on migration models to analyze and optimize downtime

and migration time; These models can apply to single or multiple services

undergoing migration [13]–[24], [37]–[42].

There are different research topics related to the edge computing that researchers are

currently working on around. This includes but are not limited to resource management

[43], data security and privacy [44], offloading modeling [45], Data analytics in MEC

[46], Vehicular MEC [47], Edge-computing-enabled Smart Cities [48], Edge Computing

for Internet of Things [49], Integrated blockchain and edge computing [50], edge

computing in 5G [51], and Mobile Augmented Reality with 5G MEC [52].

2.1.1 Paper Selection Method

The concept of computing resources closer to mobile devices is found in MEC, fog and

edge computing [53]–[55].

Over ten thousand papers on MEC, fog, and edge computing have been published in

the last five years, mostly from 2018, using the search terms "fog computing," "edge

computing," and "MEC multiaccess edge computing." However, some older studies are

included as they are a base of other research, such as the pre-copy migration technique

[56], and fundamental studies that researchers still cite, such as fog computing [57]. All

references are in English, and the vast majority, have been peer-reviewed. The exceptions

are references from ETSI and the comsoc.org websites.

In the second pass of paper selection, we added "survey" to the above search terms

("fog computing survey," "edge computing survey," and "MEC multiaccess edge

computing survey"), followed by "migration" ("migration fog computing survey,"

"migration edge computing survey," and "migration MEC multiaccess edge computing

survey").

13

We then selected papers that focused on migration. We did not include papers that

focused on aspects of computing that did not focus on migration and were not addressed

by this document, such as the energy consumption and load balancing of migration

techniques.

In the subsequent passes of paper selection, we surveyed migration

algorithms and migration modeling. Selected papers included research on

reducing downtime and migration time in both migration algorithms and migration

modeling since users expect low-latency response time in modern mobile IoT

applications while on the move. These papers are categorized in the following sections

based on how the authors handle downtime and migration time, as well as how they

model migration techniques to handle single and multiple service migrations. Multiple

service migration has received increased focus recently, especially in light of modern

containerized applications.

2.1.2 Outline

The remainder of this Chapter is organized as follows: Section 2.2 provides background

information about fundamental migration techniques borrowed from cloud computing.

Section 2.3 discusses how researchers reduce downtime and migration time from various

perspectives. Section 2.4 describes multi-service migration in edge computing. Section

2.5 presents the models used to characterize migration techniques, followed by research

directions in Section 2.6.

In this Chapter, a node refers to a MEC/edge node, and source and destination refer to

source and destination MEC/edge nodes. Edge and fog Computing concepts are also

referred to as "edge."

14

2.2 Background on Traditional Migration Methods

Edge computing reduces remote network traffic while providing low latency for client-

server communications. These services must run on edge nodes that are physically close

to devices in order to consistently provide such low latencies. We investigate migration

methods and requirements for future mission-critical IoT applications, which

demand mobility support and a real-time response [9], [58]. IoT mobile devices have

limited resources for running multiple containerized services, and client-server latency

worsens when fog-edge services must migrate to maintain proximity with users as the

user devices move, as seen in figure 2.1.

One of the developing fog-edge computing solutions for the IoT infrastructure is the

container.

Figure 2.1 Prior to and after the VM/container hand-off.

2.2.1 Migration Phases

Migration is the process of transferring a running virtual machine (VM) or container

from one edge node to another or the cloud without disrupting applications [59]. The

hand-off is a component of migration [29] that is triggered when a device disconnects

15

from one access point (AP) and connects to another AP. Downtime caused

by VM/container migrations ranges from seconds to a few minutes [29]–[36]. The

amount of downtime and page faults significantly impact the end-to-end delay [60]–[62].

Furthermore, because the user equipment (UE) must migrate from the old to the new

connection point throughout the migration process, it is unable to access services or data

during hand-off. There has been considerable work focused on reducing downtime [29],

[31]–[35], [39], [63], [64]. Downtime occurs when a virtual machine or a container is

unavailable during migration, which occurs when UE moves and hands off from one edge

node to another. Data transfers are required when migrating VMs or containers. Recent

research has focused on reducing the amount of data transferred during hand-off using

different metrics such as runtime and offline characteristics. The research focuses on

predicting the best time to trigger a hand-off and improving the selection of edge nodes to

allow for shorter processing times [32], [34], [65], [66]. The stated techniques mostly use

live migration approaches borrowed from cloud computing, which uses the pre-copy

migration method [56] to reduce migration downtime [2], [29], [31]–[35], [65]–[68]. The

following subsection will cover the techniques used in the stated studies.

2.2.2 Traditional Migration Methods

Stateful migration occurs when the service's state (including CPU, register, signal, and

memory states) is stored; otherwise, stateless migration occurs [62], [65]. This document

focuses on stateful migration methods.

The rest of this section provides an overview of the traditional stateful migration

methods: cold, pre-copy, post-copy, and hybrid-copy migration methods. In recent

years, these methods have been widely used in cloud computing and are currently

employed in edge computing as well [13]–[24], [37]–[42].

16

Figure 2.2 Cold migration method

2.2.2.1 Cold Migration Method

A cold migration occurs when the VM/container execution is paused at the source. The

data and contents of the VM/container’s memory pages are transmitted to the target node

that will host the VM/container. Service is then resumed at the destination by the host.

During this period, applications running on a UE are unable to access the service until the

VM/container resumes execution at the new location. As a result, the cold migration

method involves a significant amount of downtime. Figure 2.2 shows that downtime

and total migration time are the same for cold migration [62]. The total migration time

is the amount of time needed to complete the migration process. Cold migration has the

highest amount of downtime among migration methods [69].

2.2.2.2 Live Migration Methods

Live migration allows virtual machines and containers to remain operational for most of

the migration process as opposed to cold migration, which causes significantly more

downtime than live migration methods [70]. The live migration methods [70] include the

following: pre-copy, post-copy, and hybrid migration. The rest of this section is an in-

depth discussion of these methods.

17

Figure 2.3 Pre-copy live migration method

2.2.2.2.1 Pre-Copy Live Migration Method

Pre-copy migration sends the entire VM/container state from the current node to the

target node. An iteration is a round in which pre-copy waits for memory changes to be

sent at the end of each round. The current node then resends dirty pages, which are

updated memory pages from the previous iteration, over multiple iterations. Upon

receiving the hand-off signal, the current node pauses the source VM/container execution

to prevent memory and state modification and transfers the final dirty page and the latest

changes in the runtime (execution) state, such as CPU and register updates, to the target

edge node. Finally, the VM/container resumes operation on the target edge node [63].

The primary distinction between pre-copy and cold migration methods is the transmission

phase. The transmission in the cold migration method includes the entire VM/container

state (primarily related to the first iteration in the pre-copy method). This always involves

memory pages as well as the runtime state of the VM/container being transferred.

18

On the other hand, in the pre-copy migration method, the source node sends the

updated memory pages throughout the pre-copy stage, as well as any runtime state

modifications. Therefore, since less data is transmitted while the VM/container is paused

during hand-off, the pre-copy method downtime is usually less than the cold migration

downtime [71]. The pre-copy method downtime is less deterministic since it is heavily

influenced by the memory dirtying rate [69]. Finally, in contrast to the cold method, the

pre-copy method typically transmits each memory page multiple times, which may have

a negative impact on the total amount of data transmitted throughout the migration

process and, consequently, the total migration time [62]. The steps of pre-copy

migration are depicted in figure 2.3.

2.2.2.2.2 Post-Copy Live Migration Method

As presented in figure 2.4, before transferring the latest state from the source to the

target, the post-copy migration method [72] pauses the VM/container execution to

prevent runtime state changes. The state is then transferred to the target, along with the

minimum memory and state required to resume the VM/container. The VM/container is

then resumed at the target [73]. An access problem occurs when the VM attempts to

access a page that the target has not received. A page fault occurs, and the source

transmits the faulty page to the target [74]. When the VM/container is restarted at the

target node during the post-copy process, any applications executing in the VM/container

continue to run at the target. After sending all remaining pages, the page transfers to the

target stops, and the VM/container post-copy migration is complete [75]. There are

several distinct types of post-copy methods, each with its own distinct approach in the

fourth stage, where page transfers may occur between the source and the target [72]. Each

memory page is copied only once during the post-copy migration. As a result, it transmits

a volume of data equal to that transferred during the cold migration phase but less than

that transmitted during the pre-copy stage.

19

Figure 2.4 Post-copy live migration methods

Additionally, as with cold migration, the downtime incurred by the post-copy method

is independent of the rate of memory dirtying generated by the service running in the

VM/container and the total amount of data to be moved to the target. In comparison, cold

or pre-copy migrations preserve the source node's current state throughout migration. As

a result, if the target node fails during the migration, the most recent state of a transferred

VM/container is likely to be lost since the service was updated at the target after hand-off

[73]. One alternative for reducing the duration of residual dependencies on the source

node is to "push" the VM/container's memory pages proactively from the origin to the

destination edge node while the virtual machine or container is still running on the target.

As a result, each memory page is delivered only once, and page transfers can be

transmitted more quickly using the active pushing process rather than relying solely on

demand paging [72].

20

Figure 2.5 Hybrid-copy live migration method

2.2.2.2.3 Hybrid-Copy Live Migration Method

Both pre-copy and post-copy methods, as previously discussed, have a number of

drawbacks: (1) Non-deterministic downtime occurs during the pre-copy phase, and (2)

service performance during the post-copy phase is affected by faulted pages [62]. Figure

2.5 depicts the hybrid-copy migration method [76] that integrates pre- and post-copy

methods to overcome limitations and improve capabilities. The first four stages of hybrid

migration are identical to those of pre-copy migration. The entire state and then dirty

21

pages are sent to the destination while the virtual machine or container remains

operational on the source node [63], [64]. The VM/container is then paused after the

hand-off is triggered, and its state is transmitted. The VM/container can be restarted at

the target when the memory and CPU state have been delivered. The most recent

VM/container's execution state and memory pages are now present in the target node.

However, pages may have been dirtied throughout the pre-copy process. Accordingly,

the final phase of the hybrid method is to transfer dirty pages to the target node using the

post-copy method [77]. While the post-copy method transfers the entire memory and

CPU states after the hand-off, the hybrid method in the pre-copy phase sends only the

generated dirty pages after the hand-off. Other studies that have focused on other

techniques have measured the performance of the hybrid method and compared them to

other live migration techniques [78]–[81]. In addition to these studies, researchers have

used the same hybrid migration concept, generally introduced the same technique, and

measured the performance by comparing hybrid with pre- and post-copy methods [63],

[64]. Still, other studies have found that the hybrid method outperforms both pre- and

post-copy migrations regarding downtime and migration time [62], [63].

2.2.3 Limitations of Migration Methods

2.2.3.1 Pre-Copy and Post-Copy Migration Limitations

There are two variables that affect pre-copy migration that consequently affect the

number of dirty pages transferred: the first is the memory dirtying rate of the service

hosted on the container, that is, the rate at the service updates memory pages, and the

second is the size of data transmitted throughout the pre-copy stage, since the more data

transmitted during that stage, the longer the service requires to transmit dirty

memory [62].

22

Post-copy migration has two disadvantages [62]. First, since a significant portion of

the target container's state and memory is unavailable immediately following the hand-

off, page faults deteriorate service performance by delaying access to memory pages at

the target after the VM/container is started. Since memory pages must be accessed

remotely, this remote access can be incompatible with the delay-sensitive services

available in the context of edge computing [82]. The second disadvantage is that this

strategy spreads the VM/container's total current state across both origin and target nodes

during migration. When a post-copy method is in process, the source node is still

transferring memory pages to the destination; however, the restarted VM/container may

update some of these pages. This can increase delays since the data should be transferred

from the remote node, the source.

2.2.3.2 Hybrid-Copy Migration Limitations

Since hybrid migration uses pre- and post-copy approaches, the amount of data to be

sent and the memory dirtying rate in the source edge node continues to influence the

performance of this method. The use of pre-copy before hand-off causes the hybrid

method to transfer a large amount of data, which still correlates with the dirtying page

rate of services running at the source. Nonetheless, since these parameters affect the

faulty page numbers after the hand-off triggers, they should increase the delay and total

migration time; however, this does not have a negative impact on the hybrid approach's

downtime because it only transfers minimal state and memory from the source to the

destination during hand-off [62]. Furthermore, the hybrid method has the same

limitations as the post-copy approach stated in this subsection. IoT and 5G applications

demand a novel design that synchronizes the source and destination more frequently than

the current methods during migration.

23

2.3 Downtime and Migration Time Reduction

Researchers employ various strategies to reduce migration time. In recent years, the focus

has been on various prediction-based approaches, e.g., [16], [32], [34], [40], [41], [65],

[66], and data transfer approaches, e.g., [2], [29], [31], [33], [35], [67], [68] that are used

to reduce migration time. All the stated references used in this chapter address

the fog/edge computing domain. The fog/edge computing domain has been the primary

focus of recent work. This is because earlier efforts focused on clouds and had to be

modified for edge computing since edge computing requirements differ from cloud

computing [1].

Migration within the fog/edge computing domain differs from a cloud data center

since the network is typically a WAN [1]. The applications also differ, e.g., AR

applications. The latency is higher than what would be found in a cloud network [1].

Furthermore, the path of a mobile device user is not always clear. The implication is that

the mobile device may be out of range of any server that it communicates with. This may

result in downtime that starts before the handover. Recent work on migration focuses on

reducing the data transferred, predicting trajectories of mobile devices, and predicting

memory dirty rates to reduce downtime and migration time.

2.3.1 Reducing Downtime and Migration Time by Reducing the

Data Transfer Amount

Data transfer approaches focus on reducing the amount of data transferred during hand-

off to fundamentally reduce downtime, resulting in significantly reduced latency and

migration time and, as a result, improved user QoE. To reduce transfer size during hand-

off, Ma et al. [29], [67] proposed an improved migration technique based on the

hierarchical structure of the container file system. Transferring the basic image only at

the beginning of the migration, followed by iterative memory difference, can help reduce

transfer size during hand-off. In the best-case scenario, they had 2.7 seconds of

24

downtime. Machen et al. [35] proposed a layered migration framework that supports

container and virtual machine technologies. The framework breaks the application into

various layers and transfers only the missing layers to the destination. This layered

method can reduce downtime by transmitting less data from the source to the destination

during hand-off. They assessed their performance using various applications, such as

video streaming and gaming servers. They significantly lowered overall migration times

but with a two-second average downtime for a small container. This time is still

unacceptable for delay-sensitive applications, such as the stated head-mounted AR

application.

Farris et al. [68] used the pre-copy method in stateless migration to achieve low

latency by transferring as little data as possible during hand-off. Data is sent prior to

hand-off to achieve lower latency using the pre-copy migration method. In the best-case

scenario, their experiments had more than a second latency. To reduce downtime, Addad

et al. [31] used memory, partial, and full migration strategies with predefined and non-

predefined user paths, as well as different numbers of pre-copy iterations. This is

accomplished and considers users' mobility patterns by storing the container files in a

shared storage pool accessible to all edge nodes, which proactively sends data, resulting

in less data to transfer during hand-off. Performance evaluation is done using video

streaming and small-size containers, but they have more than one second of downtime in

their best-case scenario.

Zhou et al. [33] propose a hardware accelerator that, instead of software, uses

hardware implementation to expedite data transmission reduction computations and, as a

result, service migration. In their best-case scenario, they achieve about 300 milliseconds

(𝑚𝑠) of downtime. In another study, Puliafito et al. [2] stated that an AR application that

uses a smart helmet should have a maximum end-to-end latency of 20 𝑚𝑠. This study

used pre-copy and proactively sent data using compression before hand-off, resulting in

less data transfer during hand-off. Despite their proposal, they still have 3.67 seconds of

downtime in the best-case scenario.

25

Most papers on reducing downtime aim to reduce the transfer rate during hand-off by

reducing data transfer during that period.

2.3.2 Reducing Downtime and Migration Time Using

Optimization and Machine Learning Techniques

Prediction-based methods are used to reduce downtime that starts before the hand-off.

Handover can be triggered when the value of a metric, such as the Received Signal

Strength Indicator (RSSI), falls below a pre-set threshold value. The ideal threshold value

would be sufficient for the migration process to occur with minimal service disruption.

However, there are other factors to be considered, e.g., the load on the wireless links and

the speed of the UE. This makes it difficult to determine a fixed threshold value. A poor

threshold value results in the handover occurring too late or too early. Prediction-based

approaches consider multiple metrics as well as a prediction of the UE's movement to

determine the migration destination. For example, Ngo et al. [66] used the pre-copy

method and proactively sent data prior to hand-off by memory checkpointing before and

during the migration phase to determine the time to trigger hand-off and the destination

edge node. In their study, the downtime period and migration start simultaneously, unlike

other studies where the migration starts earlier than the downtime. The downtime period

in this work may start during the handover time, which represents the time that the

service is unavailable as the result of a weak RSSI signal. Although this re-definition

influences results, in the best-case scenario, their experiments show about 7 seconds of

total downtime and about 300 𝑚𝑠 of end-to-end delay, even with this re-definition. This

also makes it difficult to compare with most work where downtime corresponds to

handover.

Yang et al. [34] developed a multi-tier MEC server deployment framework based on

the pre-copy method to predict the next node based on the UE's position, direction, speed,

and delay requirements. Their experiments demonstrate several seconds of downtime

when using various prediction-based techniques with varying UE speeds. Majeed et al.

26

[65] use four regression models to predict offloading time in MEC using various runtime

and offline metrics such as CPU and disk utilization, network bandwidth, and container

image size to reduce end-to-end latency compared to their other evaluated ML

approaches. In the best-case scenario, they achieved multi-seconds of delay by

proactively transferring data prior to hand-off and employing the pre-copy method.

Pomalo et al. [32] used K-Nearest Neighbor, Logistic Regression, Random Forest,

and XGBoost machine learning (ML) algorithms. They aim to predict the amount of time

the migration service should start in advance of the new edge node in order to continue

service without interruptions based on UE's route and speed. Their results were evaluated

by comparing these ML approaches to determine which method best handled service

continuity. This study requires the path type, e.g., main road, highway, and train, to

predict the proper migration start time; otherwise, their approach produces long

downtimes. Furthermore, they stated that their approach still has downtime, but did not

specify its exact amount. The research mentioned above reduces downtime when

compared to other ML approaches. The downtime is reduced because handover is

triggered earlier by taking into consideration factors such as the load on the wireless links

and the speed of the UE.

The authors of [40] propose an adaptive VM monitoring strategy for migrating a

single VM using pre-copy and post-copy methods. They developed an autoregressive

model to predict the dirty memory rate and use it to reduce migration downtime,

migration time, and the data transfer amount. The model's output value is determined by

a linear combination of a stochastic variable and the previous model's values. Tang et al.

[16] use reinforcement learning with deep Q-learning container migration to propose

power consumption, delay, and migration cost models. They compare their algorithm to

other ML algorithms, including static threshold, median absolute deviation, and

interquartile range regression. The authors of [41] use the pre-copy migration time,

downtime, round-trip time, and energy consumption models to reduce delay and energy

consumption in wireless connections with a bandwidth manager.

27

2.3.3 Limitations

The pre-copy migration method is mostly used for migration. The downtime for latency-

sensitive and real-time applications is longer than expected when using the pre-copy

method. As stated in this section, most research proposes a technique to overcome the

lengthy pre-copy downtime. However, the limitation of the work that focuses on reducing

downtime is that the assumption is that pre-copy is used. Most of the work does not focus

on reducing downtime during the hand-off.

2.4 Multi-Service Migration in Edge Computing

Application services can be run on single or multiple VMs or containers. Regardless of

whether the services are hosted on VMs or containers, application services must be

migrated together. With the increasing use of multi-containerized applications [5] where

there is dependency among tasks, it is crucial to ensure that all application containers

finish their migration in a timely fashion to prevent waiting time and further delays

in latency-sensitive and real-time applications. This is especially important in the

presence of dependent tasks that can be found in more than 75% of multi-containerized

applications [12].

Recent research includes migrating multiple services [13]–[15], [17]–[24]. Delays in

multi-container migration can occur, as some application containers can complete their

migration sooner than others, requiring them to wait for the migration completion of the

remaining containers before continuing their tasks and remaining operational. Suppose a

virtual tour guide with an Augmented Reality (AR) application on a mobile head-

mounted device uses containerized microservices. As a basic containerized AR

application, one microservice captures the environment from the device, and another

microservice renders the AR data to the device. Each of the stated microservices can

make use of single or multiple containers. This application needs ultra-low response time

for smooth functionality. For such real-time applications, [3] recommends a maximum

28

response time of 17 𝑚𝑠 for an AR application to maintain end-user quality of experience

at a desired level.

The rest of this section describes migration approaches that use optimization and ML

techniques for migration.

2.4.1 Multiple Service Migration using Optimization and

Machine Learning Techniques

This section describes migration approaches that employ optimization and ML techniques

to migrate multiple services in parallel. The authors of [14] use Geometric Programming

to assign transfer and compression rates to each VM in order to reduce the total migration

time of multiple VMs. They consider parameters including VM size, memory dirtying

rate, transfer rate, and compression ratio of VMs. They evaluate their experiments with

up to seven VMs and nine pre-copy iterations. Maheshwari et al. [18] developed a cost

model for multi-container migration that considers container size, number of containers,

memory dirtying rate, bandwidth, and load at an edge node that supports mobility. The

authors include migration time and computation time in their migration cost model and

employ a Min-Max model to minimize the migration cost. Liu et al. [22] build a

migration cost model by predicting the memory dirtying rate and employing parameters

such as VM size and transfer rate. They use a cost model for multi-VM and employ

adaptive bandwidth allocation to reduce migration costs.

In another study, Sun et al. [21] use an M/M/C/C queuing migration model to

quantify performance metrics, e.g., the average waiting time of each migration request.

The objective is to optimize migration time and minimize downtime for multiple-VM

migration. Satpathy et al. [15] compared migration model performance for multiple VMs,

including comparisons based on VM size, memory dirtying rate, and available

bandwidth. Using a platform based on a software-defined network (SDN), He et al. [17]

evaluated the performance of multiple VM migration models. They consider migration

29

time and downtime to be two of their most important criteria. To balance server load,

Zhang et al. [13] proposed a set of algorithms for optimizing load balancing and

migrating multiple containers among cloud servers in order to balance server load. Their

primary focus is load balancing; migration would occur as a result of server load

balancing with the migration time model.

Similarly, Forsman et al. [23] present a load-balancing solution that reduces the

migration cost of multiple VMs. Initially, they identify the overloaded and underutilized

nodes and then estimate the loads by the algorithm described in [83] to balance the load.

They consider migration time, downtime, and data transfer amount in their cost model. In

another study, Satpathy et al. [19] propose a VM placement strategy for cloud servers

while modeling multiple-VM migration with downtime and migration time. Considering

power constraints, Elsaid et al. [20] examine the migration cost of multiple VMs using

migration time and power consumption. Cerroni [24] investigates the cost of migrating

multiple VMs based on downtime and migration time using the Markovian model. The

network overhead and throughput degradation are also components of the migration cost

model.

2.4.2 Service Migration Performance Analysis and Comparison

This section reviews migration analyses and comparisons of pre-copy, post-copy, and

hybrid copy methods [37], [38], [42]. The papers in this section compare and discuss the

various migration methods without proposing an ML technique. Mandal et al. [42]

investigate the effects of bandwidth provisioning on pre-copy downtime and migration

time for different bandwidth provisioning. They also investigate the effects of varying the

number of pre-copy iterations on migration time. The authors of [37], [38] investigate

how the input parameters of the pre-copy, post-copy, and hybrid-copy migration methods

affect the output parameters. Input parameters include the number of pre-copy iterations,

various transfer rates, and various memory dirtying rates, while output parameters

30

include downtime, migration time, and the amount of data transferred during the

migration process.

2.4.3 Limitations

Most studies have prioritized reducing migration time, including those discussed in this

section that examined multi-service migration. One limitation of these methodologies is

their exclusive focus on minimizing migration times, while ignoring minimizing

downtimes, of multiple containers. The issue is that the bandwidth allocated to each

container is assumed to be constant throughout the migration process, as in [14]. Each

container's task may differ, resulting in a distinct volume of data that must be

synchronized between the source and destination during the migration process. As a

result, regardless of the volume of data to be transferred, the bandwidth allocation

would remain constant throughout the downtime for the rest of the migration.

The main point is that each container generates a different amount of data that must

be transferred during downtime. This phenomenon can cause varying lengths of

downtime and service unavailability. As indicated in the introductory section of this

chapter, containers of an application can be dependent on each other. Containers with

longer downtimes can cause longer periods of service unavailability for users than those

with shorter downtimes. As previously stated, real-time applications such as the AR

application require a response time of no more than 17 𝑚𝑠 [3]. However, most research

has resulted in significantly longer downtimes, as mentioned in section 2.3. As a result,

it is critical to consider the reduction of downtimes for multiple services as well as the

reduction of migration times.

Bandwidth utilization of migration also can be improved when migrating multiple

containers. As described in section 2.2, the entire memory of the container is transferred

first, followed by the transfer of modified memories that occur during the migration

process. We observed that in most research studies when a container is allocated a

31

specified bandwidth during the migration, said container utilizes the assigned bandwidth

for the duration of the migration process and remains unchanged thereafter. Because of

the size of the container memory, the transfer of the initial migration stage can be time-

consuming. However, studies have shown that dirty memory data is less than container

memory data [29], [62]. As a result, in the intermediate stages of the migration, it is

possible to transfer dirty memory using less bandwidth. Therefore, optimizing the

utilization of available bandwidth can be accomplished by modifying bandwidth

allocation to containers belonging to different users at the initial, intermediate, and

final stages of migration. When the source is transmitting a large amount of data,

particularly during the early stages of migration [29], [62], more bandwidth is required to

allow for the efficient transfer of said data. According to existing literature, when the

source transmits dirty memory during the intermediate stages of migration, the volume of

data to be transferred is relatively small [29], [62]; consequently, we can use only a small

amount of bandwidth. Ultimately, there may be a requirement for increased bandwidth

towards the final stage of the migration process, particularly during downtime. As such,

the utilization of higher bandwidth during the final stage of migration has the potential to

mitigate the duration of such downtime.

Consequently, rather than maintaining uniform bandwidth allocation for

each container, modifying the bandwidth allocation for each container during multiple

container migrations can potentially reduce both migration time and downtime.

2.5 Migration Modeling in Edge Computing

Migration modeling is used by researchers in [13]–[24], [37]–[42] to understand future

system behavior. The primary goal of the stated models is to determine the cost or

outcome of migration by defining appropriate input parameters. Accurately

characterizing and predicting the outputs is essential for a migration model [83]. For

example, in this chapter, we will apply equation (2.6), which is the migration time model,

32

to deduce that increasing the transfer rate reduces migration time. In this example, the

model's output is migration time, and one of the input parameters is transfer rate.

Modeling the migration requires several input parameters, including the size of

VM/container memory, memory dirtying rate, and transfer rate. The output parameters of

the migration models are primarily migration time, downtime, and data transfer amount

during migration, which can be defined as the model's cost or outcome to be predicted by

models.

Service migration for multi-container applications is critical for mobile devices in

edge computing [5], [11]. This section reviews migration models for multiple

VMs/containers to support mobility. We start with migration models for a single

VM/container since these serve as the foundation for multiple VM/container models, and

then we review migration models for multiple VMs/containers.

Several studies on live migration modeling have been conducted over the last decade.

Most of these migration models base their research on a single VM or container

migration [16], [37]–[42]. These models primarily focus on downtime and migration time

and compare live migration methods based on various input values, such as pre-copy

iterations, memory dirtying rate, bandwidth, and VM/container size, using datasets,

implementations, or their assumptions. A subset of these papers provides models and

compares various parameters of live migration methods [16], [37], [38], [40], while

others employ estimation and optimization techniques to reduce migration costs, such as

downtime and migration time [39], [41], [42].

Despite extensive research on modeling the migration of a single VM/container, few

authors focus on modeling multiple-VM/multiple-container migration [13]–[15], [17]–

[24]. Some of these studies focus on the number of VMs/containers and provisioned

bandwidth in addition to the stated input values. Most of these studies focus on

modeling multiple-VM migration [14], [15], [17], [19]–[24] in order to optimize the

33

migration performance of multiple VMs, while authors in [13], [18] focus on

modeling multiple-container migration.

Table 2.1: Symbols and Definitions

Parameter Description

𝑉𝑗
𝑃𝑟𝑒 Dirty memory generated during round 𝑖 for single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 using pre-copy method, ∀ 𝑖 ∈ {1, … , 𝑚}

𝑉𝑠
𝑃𝑟𝑒 Memory amount in the stop-and-copy phase for a single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 using pre-copy migration method

𝑀 Memory size of a 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 (single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 migration)

𝑟̅ Average transfer rate (bandwidth) for 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in pre-copy migration method (single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 migration)

𝑑̅ Average memory dirtying rate for 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in pre-copy migration method (single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 migration)

𝑡𝑖
𝑃𝑟𝑒 Time to transfer 𝑉𝑖

𝑃𝑟𝑒 in pre-copy migration, ∀ 𝑖 ∈ {1, … , 𝑚}

𝜆 𝑑̅ 𝑟̅⁄ , for single 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 migration

𝑀𝑗 Memory size of any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, ∀ 𝑗 ∈ {1, … , 𝑝}

𝑟̅𝑗 Average transfer rate (average bandwidth) available for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration method

𝑉𝑖,𝑗
𝑃𝑟𝑒 Dirty memory generated during round 𝑖 for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑚}

𝑉𝑠,𝑗
𝑃𝑟𝑒 Memory amount in the stop-and-copy phase for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration method

𝑑̅𝑗 Average memory dirtying rate for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration method

𝑡𝑖,𝑗
𝑃𝑟𝑒 Time to transfer 𝑉𝑖,𝑗

𝑃𝑟𝑒 in pre-copy migration, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑚}

𝑇𝑀𝑗
𝑃𝑟𝑒𝐶𝑜𝑝𝑦

 Total migration time for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for the pre-copy migration method

𝑇𝐷𝑗
𝑃𝑟𝑒𝐶𝑜𝑝𝑦

 Downtime for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for both pre-copy migration method

𝜆𝑗 𝑑̅𝑗 𝑟̅𝑗⁄ , ∀ 𝑗 ∈ {1, … , 𝑝}

𝐵 Total maximum bandwidth reserved for the entire migration between two edge nodes

𝑇𝐴𝑗
𝑃𝑟𝑒𝐶𝑜𝑝𝑦

 Amount of data to be migrated during migration, for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy method

𝜏 The inter-iteration delay in pre-copy migration method

𝑇𝐷𝑗
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

 Downtime for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for hybrid-copy method

𝑉𝑐,𝑗
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

 CPU state size of 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 which is part of the memory size for hybrid-copy method

𝑇𝑗
𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡

 Time required to process and copy a single memory page

𝑃𝑆𝑗
𝑀𝑒𝑚 Memory page size

𝑇𝑗
𝑓𝑝

 Page fault processing time to locate the page fault and request the page from the source

𝑃𝐹𝑗 Probability of page faults

𝑇𝑀𝑗
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

 Total migration time for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for hybrid-copy method

𝑤𝑗 Number of memory pages (window size) will be transferred when a page fault occurs for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗

𝑇𝐴𝑗
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

 Total data amount to be transmitted during hybrid-copy migration for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗

𝑇𝑀𝑗
𝑃𝑜𝑠𝑡−𝑁𝑃𝐹−𝐻𝐶 Part of migration time for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 if there is No Page Fault during the post-copy phase of hybrid-copy migration

𝑇𝑀𝑗
𝑃𝑜𝑠𝑡−𝑃𝐹−𝐻𝐶 Part of migration time for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 if Page Fault occurs in the post-copy phase of hybrid-copy migration

This section describes existing pre-copy, post-copy, and hybrid-copy migration

models that use average parameter values derived from [14]–[18], [21], [22], [37]–[42].

Although these models are not completely identical, the pre-copy migration for multiple

VMs/containers will be modeled using the same concept as [14]–[18], [21], [22], [37]–

[42] in this chapter. Therefore, all equations in this chapter are representative of [14]–

[18], [21], [22], [37]–[42]. Downtime and migration time are the two primary parameters

for migration modeling analysis [14]. Downtime is an important performance metric for

end-users, which must be as low as possible to avoid service interruptions [14]. The total

34

migration time must be as short as possible because it consumes computational and

network resources from both the origin and the target edge nodes [14]. The amount of

data that must be transmitted during the migration process of multiple VMs/containers is

also considered in this document. We will examine the downtime, migration time,

and transferred data during migration for the pre-copy, post-copy, and hybrid-copy

migration models, which utilize a single VM/container and, the pre-copy model, which

uses multiple VMs/containers.

2.5.1 Single VM/container Migration Models

2.5.1.1 Pre-Copy Migration Model

This section describes existing pre-copy, post-copy, and hybrid-copy migration models

derived from references [14]–[18], [21], [22], [37]–[42] that use single VMs/containers.

Table 1 defines parameters and their notations for the models described in this paper. In

the table, the 𝑀, 𝑑̅, and 𝑟̅ represent the VM/container memory size, average memory

dirtying rate, and average transfer rate (average bandwidth) available during migration

for any VM/container, respectively. The parameters specified affect migration time

(𝑇𝑀𝑃𝑟𝑒𝐶𝑜𝑝𝑦) and downtime (𝑇𝐷𝑃𝑟𝑒𝐶𝑜𝑝𝑦). Higher 𝑀 and 𝑑̅ levels increase migration time

and downtime, while higher 𝑟̅ levels decrease migration time and downtime.

Figure 2.6 Pre-copy iterations (rounds) [42]

35

During the first iteration of the pre-copy method, the entire VM/container memory is

transferred from the origin edge node to the target. Thus, the data transmitted throughout

the first round, i.e., 𝑉1
𝑃𝑟𝑒, may be calculated as follows:

𝑉1
𝑃𝑟𝑒 = 𝑀 (2.1)

During pre-copy migration, the 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 remains active at its origin, making

the memory dirty during the transfer process. The pre-copy iterations then transfer only

the dirty memory of the previous round. The amount of data transmitted during round 𝑖

for a 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 may be calculated using the subsequent equation:

𝑉𝑖
𝑃𝑟𝑒 = 𝑑̅. 𝑡𝑖−1

𝑃𝑟𝑒 (2.2)

Once 𝑖 reaches 𝑚, the final iteration, known as stop-and-copy, commences.

Additionally, the required time for the data transfer of iteration 𝑖 for a 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟,

i.e., 𝑡𝑖
𝑃𝑟𝑒, may be iteratively determined using equations (2.1) and (2.2) as follows:

𝑡1
𝑃𝑟𝑒 =

𝑉1
𝑃𝑟𝑒

𝑟̅
+ 𝜏 =

𝑀

𝑟̅
+ 𝜏 (2.3)

here 𝜏 is the inter-iteration delay shown in figure 6.

𝑡2
𝑃𝑟𝑒 =

𝑉2
𝑃𝑟𝑒

𝑟̅
+ 𝜏 =

𝑑̅𝑡1
𝑃𝑟𝑒

𝑟̅
+ 𝜏 = 𝜆𝑡1

𝑃𝑟𝑒 + 𝜏 = 𝜆 (
𝑀

𝑟̅
+ 𝜏) + 𝜏 (2.4)

here 𝜆 is the average memory dirtying rate divided by the average transfer rate, 𝑑̅/𝑟̅,

for a VM/container. Thus, 𝑡𝑖
𝑃𝑟𝑒 can be calculated as follows:

𝑡𝑖
𝑃𝑟𝑒 =

𝑉𝑖
𝑃𝑟𝑒

𝑟̅
+ 𝜏 = 𝜆𝑡𝑖−1

𝑃𝑟𝑒 + 𝜏 =
𝑀

𝑟̅
𝜆𝑖−1 + 𝜏 (

1 − 𝜆𝑖

1 − 𝜆
) (2.5)

Therefore, the migration downtime for a VM/container, i.e., 𝑇𝐷𝑃𝑟𝑒𝐶𝑜𝑝𝑦, may be

calculated as:

36

𝑇𝐷𝑃𝑟𝑒𝐶𝑜𝑝𝑦 =
𝑀

𝑟̅
𝜆𝑚 + 𝜆𝜏 (

1 − 𝜆𝑚

1 − 𝜆
) (2.6)

By applying the downtime model, it can be inferred that reducing the memory size of

a VM/container, 𝑀, will result in a decrease in downtime. Similar outcomes can be

deduced upon decreasing the value of 𝜆. Furthermore, increasing the transfer rate would

result in a reduction in downtime.

The total migration time for a VM/container, i.e., 𝑇𝑀𝑃𝑟𝑒𝐶𝑜𝑝𝑦 with 𝑚 number of pre-

copy transfer rounds followed by a final stop-and-copy round, is given by:

𝑇𝑀𝑃𝑟𝑒𝐶𝑜𝑝𝑦 =
𝑀

𝑟̅

1 − 𝜆𝑚

1 − 𝜆
+ 𝜏

𝑚(1 − 𝜆) − 𝜆(1 − 𝜆𝑚+1)

(1 − 𝜆𝑗)
2 +

𝑀𝑗

𝑟̅
𝜆𝑚 + 𝜆𝜏 (

1 − 𝜆𝑚

1 − 𝜆
) (2.7)

By utilizing the migration time model, it can be inferred that a decrease in

VM/container memory size and an increase in transfer rate result in a reduction in

migration time. A decrease in the value of 𝜆 correlates with a reduction in migration time.

Given that 𝜆 is defined as the memory dirtying rate divided by transfer rate, it is

reasonable to anticipate reduced migration time when the memory dirtying rate is

decreased.

The total amount of data to be sent during the pre-copy migration for a

VM/container, i.e., 𝑇𝐴𝑃𝑟𝑒𝐶𝑜𝑝𝑦, is given by:

𝑇𝐴𝑃𝑟𝑒𝐶𝑜𝑝𝑦 = (∑ 𝑉𝑖
𝑃𝑟𝑒

𝑚

𝑖=1

) + 𝑉𝑠
𝑃𝑟𝑒 = 𝑀 + (∑ 𝑑̅𝑡𝑖−1

𝑃𝑟𝑒

𝑚

𝑖=2

) + 𝑑̅𝑡𝑚
𝑃𝑟𝑒

= 𝑀 + 𝑀𝜆
1 − 𝜆𝑚

1 − 𝜆
+ 𝜏𝑑̅

𝑚(1 − 𝜆) − 𝜆(1 − 𝜆𝑚+1)

(1 − 𝜆)2
+ 𝑀𝜆𝑚

+ 𝑑̅𝜏 (
1 − 𝜆𝑚

1 − 𝜆
)

(2.8)

37

where 𝑉𝑖
𝑃𝑟𝑒 is the dirty memory generated throughout iteration 𝑖, 𝑉𝑠

𝑃𝑟𝑒 is the memory

amount in the stop-and-copy phase, 𝑡𝑖−1
𝑃𝑟𝑒 is the time to transfer 𝑉𝑖

𝑃𝑟𝑒 during iteration 𝑖,

and 𝑑̅ is the average memory dirtying rate, for a 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 in pre-copy migration

method.

Equations (2.6, 2.7, 2.8), subject to:

∑ 𝑟̅

𝑝

𝑗=1

≤ 𝐵 𝑎𝑛𝑑 𝜆 < 1 (2.9)

By applying the data transfer amount model, a reduction in the total amount of transferred

data can be observed by reducing both 𝑀 and 𝜆. See section 4.3 for further information.

2.5.1.2 Post-Copy Migration Model

The migration downtime for a VM/container, i.e., 𝑇𝐷𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦 is the time to transfer the

CPU states from the source to the destination and can be calculated as:

𝑇𝐷𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦 =
𝑉𝑐

𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦

𝑟̅
 (2.10)

where 𝑉𝑐
𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦

 is the CPU state size of a VM/container and part of the memory size.

The previous equation implies that the duration of the downtime associated with the post-

copy method ought to be very small.

The total migration time for a VM/container, i.e., 𝑇𝑀𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦, is given by:

𝑇𝑀𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦 = (1 − 𝑤. 𝑃𝐹)
(𝑀 − 𝑉𝑐

𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦
)

𝑟̅

+ 𝑃𝐹 (𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡 +
𝑃𝑆𝑀𝑒𝑚(𝑤 − 1)

𝑟̅
)

(𝑀 − 𝑉𝑐
𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦

)

𝑃𝑆𝑀𝑒𝑚

(2.11)

38

where 𝑃𝐹 is the probability of page faults of a VM/container, and 𝑤 is the number of

memory pages that will be transferred when a page fault occurs for a VM/container

during post-copy migration method. The page fault time, i.e., 𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡, is the amount

of time required to transfer and process a single memory page of a VM/container after

hand-off in the post-copy method and is given by:

𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡 =
𝑃𝑆𝑀𝑒𝑚

𝑟̅
+ 𝑇𝑓𝑝 (2.12)

where 𝑃𝑆𝑀𝑒𝑚 is the memory page size of a VM/container and 𝑇𝑓𝑝 is the page fault

processing time to locate the page fault and to request the page from the source during the

post-copy migration method.

Thus, the total amount of data to be sent during the post-copy migration for a

VM/container, i.e., 𝑇𝐴𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦, is given by:

𝑇𝐴𝑃𝑜𝑠𝑡𝐶𝑜𝑝𝑦 = 𝑀 (2.13)

The post-copy data transfer model demonstrates a reduction in the amount of data that

needs to be transmitted compared to the pre-copy data transfer.

2.5.1.3 Hybrid-Copy Migration Model

The migration downtime for a VM/container, i.e., 𝑇𝐷𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 is the time to transfer

the CPU states from the source to the destination and can be calculated as:

𝑇𝐷𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 =
𝑉𝑐

𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

𝑟̅
 (2.14)

where 𝑉𝑐
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

 is the CPU state size of a VM/container and part of the memory

size.

39

The hybrid-copy migration method is divided into the pre-copy phase (before hand-

off) and the post-copy phase (after hand-off).

The page fault time, i.e., 𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡, is the amount of time required to transfer and

process a single memory page of a VM/container after hand-off in post-copy phase of

hybrid-copy migration and is given by:

𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡 =
𝑃𝑆𝑀𝑒𝑚

𝑟̅
+ 𝑇𝑓𝑝 (2.15)

where 𝑃𝑆𝑀𝑒𝑚 is the memory page size of a VM/container and 𝑇𝑓𝑝 is the page fault

processing time to locate the page fault and to request the page from the source during the

post-copy phase of hybrid-copy method.

Further, the total hybrid-copy migration time for a VM/container, i.e.,

𝑇𝑀𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦, with 𝑚 number of pre-copy phase transfer rounds, followed by a stop-

and-copy round, and a post-copy phase, is given by:

𝑇𝑀𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 = 𝑇𝑀𝑃𝑟𝑒𝑃ℎ𝑎𝑠𝑒 + 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒 + 𝑇𝐷𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 (2.16)

The 𝑇𝑀𝑃𝑟𝑒𝑃ℎ𝑎𝑠𝑒 is calculated similarly to the pre-copy method for a VM/container

given by:

𝑇𝑀𝑃𝑟𝑒𝑃ℎ𝑎𝑠𝑒 =
𝑀

𝑟̅

1 − 𝜆𝑚

1 − 𝜆
+ 𝜏

𝑚(1 − 𝜆) − 𝜆(1 − 𝜆𝑚+1)

(1 − 𝜆𝑗)
2 (2.17)

and 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒 for a VM/container is given by:

𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒 = 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑁𝑃𝐹−𝐻𝐶 + 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑃𝐹−𝐻𝐶 (2.18)

where 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑁𝑃𝐹−𝐻𝐶 is the part of migration time for a VM/container if no

page fault occurs during the post-copy phase. The 𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑃𝐹−𝐻𝐶 is a part of

migration time for a VM/container if a page fault occurs during the post-copy phase of

the hybrid-copy migration method.

40

𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑁𝑃𝐹−𝐻𝐶 = (1 − 𝑤. 𝑃𝐹)
(𝑉𝑠

𝑃𝑟𝑒 − 𝑉𝑐
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

)

𝑟̅
 (2.19)

where 𝑃𝐹 is the probability of page faults of a VM/container, and 𝑤 is the number of

memory pages which will be transferred when a page fault occurs for a VM/container

during post-copy phase of hybrid-copy migration. Correspondingly, 𝑉𝑠
𝑃𝑟𝑒 is the amount

of data generated in the last round of the pre-copy phase and can be calculated for a

VM/container as follows:

𝑉𝑠
𝑃𝑟𝑒 = 𝑀𝜆𝑚 + 𝑑̅𝜏 (

1 − 𝜆𝑚

1 − 𝜆
) (2.20)

And:

𝑇𝑀𝑃𝑜𝑠𝑡𝑃ℎ𝑎𝑠𝑒−𝑃𝐹−𝐻𝐶

= 𝑃𝐹 (𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡 +
𝑃𝑆𝑀𝑒𝑚(𝑤 − 1)

𝑟̅
)

(𝑉𝑠
𝑃𝑟𝑒 − 𝑉𝑐

𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦
)

𝑃𝑆𝑀𝑒𝑚

(2.21)

Then:

𝑇𝑀𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 =
𝑀

𝑟̅

1 − 𝜆𝑚

1 − 𝜆
+ 𝜏

𝑚(1 − 𝜆) − 𝜆(1 − 𝜆𝑚+1)

(1 − 𝜆𝑗)
2

+ (1 − 𝑤. 𝑃𝐹)
(𝑉𝑠

𝑃𝑟𝑒 − 𝑉𝑐
𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

)

𝑟̅

+ 𝑃𝐹 (𝑇𝑃𝑎𝑔𝑒𝐹𝑎𝑢𝑙𝑡 +
𝑃𝑆𝑀𝑒𝑚(𝑤 − 1)

𝑟̅
)

(𝑉𝑠
𝑃𝑟𝑒 − 𝑉𝑐

𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦
)

𝑃𝑆𝑀𝑒𝑚

+
𝑉𝑐

𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦

𝑟̅

(2.22)

41

The total amount of data to be sent during the hybrid-copy migration for a

VM/container, i.e., 𝑇𝐴𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦, is given by:

𝑇𝐴𝐻𝑦𝑏𝑟𝑖𝑑𝐶𝑜𝑝𝑦 = 𝑀 + 𝑀𝜆
1 − 𝜆𝑚

1 − 𝜆
+ 𝜏𝑑̅

𝑚(1 − 𝜆) − 𝜆(1 − 𝜆𝑚+1)

(1 − 𝜆)2
+ 𝑀𝜆𝑚

+ 𝑑̅𝜏 (
1 − 𝜆𝑚

1 − 𝜆
)

(2.23)

By comparing the models of the hybrid-copy method with pre-copy and post-copy

methods, it is evident that the utilization of the hybrid-copy method results in reduced

post-copy downtime and approximately expedited pre-copy migration time at the same

time. As a result, the hybrid-copy method combines the benefits of both pre-copy and

post-copy methods.

2.5.2 Multiple VM/containers Migration Model

This section describes existing pre-copy migration models derived from references [14]–

[18], [21], [22], [37]–[42] that use multiple VMs/containers. The 𝑀𝑗 is the memory size

of any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. The migration downtime for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐷𝑗
𝑃𝑟𝑒,

using equations (2.1) to (2.6), may be calculated as:

𝑇𝐷𝑗
𝑃𝑟𝑒 =

𝑀𝑗

𝑟̅𝑗
𝜆𝑗

𝑚 + 𝜆𝑗𝜏 (
1 − 𝜆𝑗

𝑚

1 − 𝜆𝑗
) (2.24)

where 𝜆𝑗 is the average memory dirtying rate divided by the average transfer rate, 𝑑̅𝑗 𝑟̅𝑗⁄ ,

for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, and 𝜏 is the inter-iteration delay shown in figure 2.6. We use a

maximum value here since VMs/containers are dependent on, and interact with, one

another, and some must wait for others to respond to each user. The maximum amount of

downtime during pre-copy migration is expressed as follows:

𝑇𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
𝑃𝑟𝑒 = 𝑚𝑎𝑥{𝑇𝐷1

𝑃𝑟𝑒, 𝑇𝐷2
𝑃𝑟𝑒 , 𝑇𝐷3

𝑃𝑟𝑒, … , 𝑇𝐷𝑝
𝑃𝑟𝑒} (2.25)

42

where 𝑝 is the number of VMs/containers.

The migration time for every 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝑀𝑗
𝑃𝑟𝑒 with 𝑚 number of pre-

copy transfer rounds followed by a final stop-and-copy round, is given by:

𝑇𝑀𝑗
𝑃𝑟𝑒 =

𝑀𝑗

𝑟̅𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2 +

𝑀𝑗

𝑟̅𝑗
𝜆𝑗

𝑚

+ 𝜆𝑗𝜏 (
1 − 𝜆𝑗

𝑚

1 − 𝜆𝑗
)

(2.26)

The maximum migration time when the 𝑟̅𝑗 network transfer rate is assigned for each

𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration can be expressed as:

𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑒 = 𝑚𝑎𝑥{𝑇𝑀1

𝑃𝑟𝑒 , 𝑇𝑀2
𝑃𝑟𝑒 , 𝑇𝑀3

𝑃𝑟𝑒 , … , 𝑇𝑀𝑝
𝑃𝑟𝑒} (2.27)

where 𝑝 is the number of VMs/containers.

Accordingly, the total data transfer amount during migration for any 𝑉𝑀𝑗/

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐴𝑗
𝑃𝑟𝑒, can be calculated as:

𝑇𝐴𝑗
𝑃𝑟𝑒 = (∑ 𝑉𝑖,𝑗

𝑃𝑟𝑒

𝑚

𝑖=1

) +𝑉𝑠,𝑗
𝑃𝑟𝑒 = 𝑀𝑗 + (∑ 𝑑̅𝑗𝑡𝑖−1,𝑗

𝑃𝑟𝑒

𝑚

𝑖=2

) + 𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

= 𝑀𝑗 + (𝑑̅𝑗 ∑ 𝑡𝑖−1,𝑗
𝑃𝑟𝑒

𝑚

𝑖=2

) + 𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

= 𝑀𝑗 + 𝑀𝑗𝜆𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏𝑑̅𝑗

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2

+ 𝑀𝑗𝜆𝑗
𝑚 + 𝑑̅𝑗𝜏 (

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
)

(2.28)

43

where 𝑉𝑖,𝑗
𝑃𝑟𝑒 is the dirty memory generated throughout iteration 𝑖, 𝑉𝑠,𝑗

𝑃𝑟𝑒 is the memory

amount in the stop-and-copy phase, 𝑡𝑖−1,𝑗
𝑃𝑟𝑒 is the time to transfer 𝑉𝑖,𝑗

𝑃𝑟𝑒 during iteration 𝑖,

and 𝑑̅𝑗 is the average memory dirtying rate, for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy

migration method.

The total transferred data for all VMs/containers throughout the migration process is

represented by the following equation:

𝐷𝑎𝑡𝑎𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑒 = {𝑇𝐴1

𝑃𝑟𝑒 + 𝑇𝐴2
𝑃𝑟𝑒 + 𝑇𝐴3

𝑃𝑟𝑒 + ⋯ + 𝑇𝐴𝑝
𝑃𝑟𝑒} (2.29)

Equations (2.24) to (2.28) subject to:

∑ 𝑟̅𝑗

𝑝

𝑗=1

≤ 𝐵 𝑎𝑛𝑑 𝜆𝑗 < 1 (2.30)

2.5.3 Limitations

The models provided need to be more accurate to represent real-world scenarios.

Most research uses average input parameter values to analyze the migration of

multiple services, as found in [13]–[24], [37]–[42]. This research uses the pre-copy live

migration method [56]. The input parameters, including memory dirtying rate, transfer

rate, and container size, can change continuously throughout the migration process for

every single container of an application, especially when mobility is considered.

However, memory dirtying rate and container size fluctuate over time due to the task of

each container. Figure 2.7 depicts the various memory dirtying rates during a migration

process derived from the CSAP dataset [84]. As the end user's device that runs

applications moves, the transfer rate can also fluctuate, resulting in different distances

and signal strength to the base station and varying available bandwidth [85].

44

The problem is that while the stated input parameters can change continuously

throughout the migration process, most migration models for multiple

services assume that the parameter values remain constant in contrast to what we see

in figure 2.7.

Figure 2.7 Various values of memory dirtying rates during migration

As a result, migrating mission-critical multi-containerized applications of mobile IoT

devices that use only average parameter values can result in outputs that deviate from

their realistic outputs. The issue with depending exclusively on average parameter values

is that the results for output parameters, downtime, migration time, and data transfer

amount are similar, using the same average values for input parameters. In contrast,

these results can vary for non-average parameter values with the same average values

for input parameters.

45

To illustrate the previously discussed limitations of the current migration models,

consider, for instance, two migration processes with the same average parameter values

(e.g., transfer rate and memory dirtying rate) but with varying values throughout the

migration. In this example, if the memory dirtying rate increases at the end of the

migration, it can significantly impact downtime since downtime occurs at the end of the

migration [6], and this increased memory dirtying rate requires transferring a higher-than-

average dirty memory rate. The same holds true if the transfer rate drops at the end of the

migration and the dirtied memory data must transfer at a lower-than-average transfer rate.

In both cases above, using average parameter values yields the same results, whereas

using actual (non-average) parameter values yields different results. In this case, data

must be transferred at a slower-than-average rate.

The same situation as described above occurs due to using average parameter values

in current models, while the actual (non-average) transfer rate was lower at the beginning

in this example. As a result, if input parameters are higher or lower than their average

value at crucial points during the migration, they can severely affect downtime and

migration time. These situations deteriorate when critical parameters are extremely

higher or lower than average, and in these cases, they significantly affect downtime and

migration time.

However, these critical conditions are hidden when constructing the edge

computing environment using only average input parameter values. As a result, new

migration models in edge computing are required to achieve more accurate and

precise results for multi-container mission-critical IoT applications that consider user

mobility.

Another problem with using non-average parameter values for the pre-

copy migration method is that pre-copy typically uses a limited number of rounds

(iterations), which is incompatible with constantly changing parameter values, namely

memory dirtying rate. The number of iterations is typically 10-30 rounds in previously

stated migration models. Since input parameters such as memory dirtying and transfer

46

rates can fluctuate in short intervals, these parameters can change multiple times in every

pre-copy round. Therefore, there is no single value for each input parameter in each

iteration of the pre-copy migration method. Using non-average parameter values would

be unreasonable under these conditions, as there is no way to use the pre-copy method to

utilize every single value of input parameters throughout the migration.

Therefore, another migration method is needed with actual (non-average) input

parameter values in migration models to provide a refined, rational, migration analysis,

which takes into account low response time and mobility, in multi-containerized edge

computing environments.

2.6 Research Gaps

With the advent of modern applications, the demand for real-time responses is becoming

increasingly unavoidable. The mobility of IoT devices increases this demand. According

to existing research, current migration methods are incapable of meeting the latency

requirements of mission-critical applications.

To satisfy the demand for rapid response, availability, and continuity of services for

users, edge computing migration requires additional research. Current migration methods

require new methods or modifications. Since they are fundamentally designed for cloud

applications, these methods cannot meet the latency and availability requirements for

mobile IoT devices. This research will focus on modifying and developing new

migration methods that can use actual parameter values rather than only averages. We

developed an alternative method to the pre-copy method to overcome its limitations.

Using actual parameter values can lead to new innovative strategies for overcoming

additional challenges, such as improved bandwidth utilization. This strategy represents

an additional perspective that we are examining in the context of our research.

47

Moreover, all migration models are based on average parameter values, although

these parameters, such as memory dirtying rate and transfer rate, constantly change

during the migration process. These average values can be detrimental for

comprehending the migration process and for designing practical components. In

addition, the pre-copy method, which is widely applied in the literature, cannot work with

parameters other than average parameters due to its reliance on a limited number of

rounds. Since parameters such as memory dirtying rate and transfer rate can fluctuate

multiple times per round, these limited rounds prevent accurate results and

comprehension.

New methods should be incorporated into existing techniques, such as ML

techniques, to reduce downtime and migration time further and provide more service

availability and continuity for users.

48

Chapter 3 2

3 MiGrror: Mitigating Downtime in

Mobile Edge Computing, An

Extension to Live Migration

User devices, called User-Equipment (UE), capable of working with cloud

computing, have grown exponentially in recent years, leading to a significant increase in

data production. Moreover, upcoming Internet-of-Things (IoT) applications such as

virtual and augmented reality and intelligent transportation will require low latency,

communications, and processing. Edge computing is a revolutionary criterion in which

dispersed edge nodes supply resources near end devices because of the limited resources

available on UEs. Rather than transmitting massive amounts of data to the cloud, edge

nodes could filter, analyze, and process the data they receive using local resources.

Mobile Edge Computing (MEC), in particular, has the potential to significantly reduce

2
 This chapter is derived from:

• Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “MiGrror: Mitigating Downtime in

Mobile Edge Computing, An Extension to Live Migration, “Procedia Computer Science, Vol. 203,

pp. 41-50, 2022 [BEST PAPER AWARD]

• Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “Hybrid-MiGrror: An Extension to the

Hybrid Live Migration to Support Mobility in Edge Computing,” Journal of Ubiquitous Systems

& Pervasive Networks, Vol. 18, No. 1, pp. 39-48, January 2023 [INVITED PAPER]

49

processing delays and network traffic between UEs and servers when user mobility is

considered. Mobility is essential since it affects user applications' response time. This

Chapter represents a novel technique for migration that minimizes delay and downtime by

utilizing edge computing. Our proposed method syncs more frequently than the pre-copy

method, which is the most used migration method that synchronizes (syncs) the source

and destination only based on multiple rounds. When compared to established migration

methodologies, our results indicate that our mechanism has less latency, downtime,

migration time, and packet loss. These results allow delay-sensitive applications that

require ultra-low latency to function smoothly during migration.

3.1 Introduction

Cloud computing provides storage and computing power to be used by third-party

services. Currently, many applications (apps) use cloud computing [86]. Cloud

computing infrastructures are scalable and accessible via flexible pay-as-you-go models.

There are limitations to relying solely on cloud resources [87]. One challenge is the long

distance between cloud computing resources and data sources/receivers. Consider

Internet-of-Things (IoT) applications that monitor the sensors of a physical object. Data

must be processed in real-time or near real-time if the application has strict Quality of

Service (QoS) and Quality of Experience (QoE) requirements. Accessing cloud resources

may require multiple hops. The latency in communicating data from data sources to the

cloud may not be timely enough for a delay-sensitive application that requires real-time

responses [26], [88], [89].

Fog computing was proposed with the goal to distribute computing, storage, control

and networking services at the network edge, where data is generated [57]. This reduces

the latency since fewer hops are required to transfer data. However, complications occur

if a mobile User Equipment (UE) moves, and hence it may move away from the node that

is hosting a service with which it is communicating with. Real-time video streaming and

conferencing, face recognition, online gaming, augmented reality (AR), and virtual

50

reality (VR) are examples of applications [29] impacted by mobility. Mobile Edge

Computing (MEC) envisions that fog computing resources are provided at the edge of the

network [90]. Services can be deployed as a virtual machine (VM) or as a container that

is placed on a fog node. Migrating VM/containers that encapsulate a service between

edge nodes can be used to deal with UE mobility.

Migration in MEC typically refers to the process of moving a running virtual machine

(VM) or a container from the current edge node to either an edge node or cloud without

disconnecting applications [59]. Hand-off is a component of migration [29] and is

triggered when a device disconnects from an edge node's access point (AP) and connects

to the AP of another edge node. VM/container migration typically results in downtime

ranging from a few seconds to a few minutes [29]–[36]. This downtime accounts for a

significant portion of the delay [60]–[62]. Furthermore, the UE is unable to access

services and data during hand-off because it must relocate from the previous connection

point to the next. Their downtimes are typically greater than one second, which

negatively affects latency, QoS, and QoE requirements, while low latency and real-time

apps, such as some AR applications, are in demand. An AR application in a head-

mounted device, for example, requires less than 17 millisecond (𝑚𝑠) of end-to-end delay

to function smoothly [3], whereas most research delays and downtimes exceed this

number and cannot support real-time responses. These findings highlight the need for a

new approach to further reduce delay and downtime for modern applications, which

could also be integrated into most existing techniques.

Efforts have been made to reduce VM/container migration downtime when a UE

hands off from one edge node to another. Data transfers are required when migrating

VMs or containers. Recent research has focused on reducing the amount of data

transferred during hand-off using different metrics such as runtime and offline

characteristics. Their research focuses on predicting the best time to trigger a hand-off

and improving the selection of edge nodes to allow for shorter processing times [32],

[34], [65], [66]. These approaches mostly use live migration approaches borrowed from

51

cloud computing, which uses the pre-copy migration technique [56], to reduce migration

downtime [2], [29], [31]–[35], [65]–[68].

During migration, the pre-copy method transfers data from the source to the

destination in predefined rounds[62], whereas our proposed approach synchronizes data

between source and destination more frequently as data at the source changes. The main

advantage of our proposed technique is that more frequent synchronization results in less

data transfer during hand-off.

Most research uses the pre-copy method, while the work described in this Chapter

focuses on an alternative to pre-copy that improves the performance of the migration

method by reducing downtime when handover is triggered.

The rest of this Chapter is organized as follows: Section 3.2 provides background

information on traditional migration techniques and related work. Section 3.3 discusses

the design of our approach to edge infrastructure. Section 3.4 evaluates the proposed

method, and Section 3.5 summarizes this Chapter.

3.2 Background and Related Work

3.2.1 Background: Fundamental Migration Techniques in

Mobile Edge Computing

Stateless migration occurs when the state (which may include CPU, register, signal, and

memory states) of the services of the users is not saved; otherwise, it is stateful migration

[62], [65]. The primary focus of this paper is on stateful migration techniques. In this

subsection, we provide a sketch of the most fundamental approaches to stateful

migration. We will use these methods for comparison and evaluation in section IV.

Cold migration: The VM/container execution is halted at the source. The

VM/container is then transferred to the destination and resumes as soon as the

52

VM/container becomes available at the destination. Apps hosted on the UE cannot access

their service during this time until the VM/container restarts execution at the new

location. Cold migration produces a lengthy downtime compared to live migration

methods [62] since live migration methods enable VMs/containers to continue running

during most of the migration process [62], [70]. These techniques are described below.

Post-copy migration: This live migration technique first freezes the VM/container to

stop run-time state modification and then transfers the latest state to the destination. The

VM/container continues operating at the target while the remainder of the latest state is

being transferred. The VM/container is connected to the destination while still reading

data from the source until the state transfer is completed [62].

Pre-copy migration: With this live migration technique, the entire VM/container

state from the source to the destination is transferred. It then transmits modified memory

pages, called dirty pages, over several iterations. It later stops the VM/container

execution at the source node to copy the last dirty page to the destination. Finally, the

VM/container continues execution at the destination [62]. Pre-copy requires more data

transfer than post-copy during migration since dirty pages must be periodically sent

before hand-off. However, post-copy causes longer delays because it still has some data

in the source that must be read from the destination until the state transfer is completed

[62].

Hybrid-copy migration: Both pre-copy and post-copy methods, as previously

discussed, have drawbacks: (𝑖) Non-deterministic downtime occurs during the pre-copy

phase; (𝑖𝑖) service performance during the post-copy stage is affected by faulted pages

[62]. The first stage of hybrid-copy migration is identical to pre-copy migration, sending

the entire state and then dirty pages to the destination while the virtual machine or

container remains operational on the origin [63], [64]. The VM/container is then

paused after the hand-off is triggered, and its state is transmitted. The VM/container can

be restarted at the target when the state and memory have been delivered. The most

recent VM/container's execution state and memory pages are now present in the target.

53

However, pages may have been dirtied throughout the pre-copy process. Accordingly, the

final phase of the hybrid method is to transfer dirty pages to the target using the post-

copy method [77]. Since the hybrid technique sends only the dirty pages after the hand-

off, it typically transfers fewer memory pages than post-copy. According to the

abovementioned research findings, the hybrid technique outperforms both pre- and post-

copy migrations.

3.2.2 Migration Strategies in Mobile Edge Computing

Researchers employ various strategies to reduce migration time. In recent years the focus

has been on various prediction-based, e.g., [32], [34], [65], [66] and data transfer

approaches, e.g., [2], [31], [33], [35], [57], [67], [68] that are used to reduce migration

time. The data transfer approach papers focus on reducing the amount of data transferred

during hand-off to fundamentally reduce downtime, resulting in significantly reduced

latency and migration time and, as a result, user QoE. While prediction-based methods

reduce downtime, latency, and migration time when compared to other ML techniques,

they do not fundamentally reduce them. In the following, we will provide a brief

description of each paper.

Data Transfer: To reduce transfer size during hand-off, Ma et al. [29], [67] proposed

an improved migration technique based on the hierarchical structure of the container file

system. Transferring the basic image only at the beginning of the migration, followed by

iterative memory difference, can help reduce transfer size during hand-off. In the best-

case scenario, they had 2.7 seconds of downtime. Machen et al. [35] proposed a layered

migration framework that supports container and virtual machine technologies. The

framework breaks the application down into various layers and transfers only the missing

layers to the destination. This layered method can reduce downtime by transmitting less

data from the source to the destination during hand-off. They assessed their performance

using various applications, such as video streaming and gaming servers. They

significantly lowered overall migration times but with a 2-second average downtime for a

54

blank container. This time is still unacceptable for delay-sensitive applications, such as

the stated head-mounted AR application. Farris et al. [68] used the pre-copy technique in

stateless migration to achieve low latency by transferring as little data as possible during

hand-off. They send data ahead of time before handing off to achieve lower latency. In

the best-case scenario, their experiments had more than a second latency. To reduce

downtime and migration time, Addad et al. [31] use memory, partial, and full migration

strategies with predefined and non-predefined paths, as well as different numbers of pre-

copy iterations. They accomplish this by storing the container files in a shared storage

pool accessible to all edge nodes and proactively sending data, resulting in less data to

transfer during hand-off. They evaluate their performance using video streaming and

blank containers, but they have more than one second of downtime in their best-case

scenario. Most papers on reducing downtime and delays aim to reduce transfer time

during hand-off by reducing data transfer during that period. On the other hand, Zhou et

al. [33] propose a hardware accelerator concept to expedite data transmission reduction

computations and, as a result, service migration. They achieve about 300 𝑚𝑠 of

downtime in their best-case scenario. Puliafito et al. [2] stated that an AR application that

uses a smart helmet should have a maximum end-to-end latency of 20 𝑚𝑠. This study

used pre-copy and proactively sent data using compression before hand-off, resulting in

less data transfer during hand-off. Despite their proposal, they still have 3.67 seconds of

downtime in the best-case scenario.

Prediction-Based Approaches: Handover can be triggered when the value of a

metric, such as the Received Signal Strength Indicator (RSSI) falls below a preset

threshold value. The ideal threshold value would provide sufficiently for the migration

process to occur with minimal disruption of service. However, there are other factors to

be considered, e.g., the load on the wireless links and the speed of the UE. This makes it

difficult to determine a fixed threshold value. A poor threshold value results in the

handover being done too late or too early. Prediction-based approaches consider multiple

metrics as well as a prediction of the UE’s movement to determine the migration

destination. For example, Ngo et al. [66] used the pre-copy method and proactively sent

55

data prior to hand-off by memory checkpointing before and during the migration phase in

order to determine the time to trigger hand-off and the destination edge node. The

downtime period and migration start simultaneously in their work, unlike other work

where the migration starts earlier than the downtime. The downtown period in this work

covers the handover time, which represents the time that the service is unavailable, but it

also includes a period of time when the service is up. Although this re-definition

influences results, in the best-case scenario, their experiments show about 7 seconds of

total downtime and about 300 𝑚𝑠 of end-to-end delay, even with this re-definition. This

also makes it difficult to compare with most work where downtime corresponds to

handover.

Yang et al. [34] developed a multi-tier MEC server deployment framework based on

the pre-copy method in order to predict the next node based on the UE’s position,

direction, speed, and delay requirements. Their experiments demonstrate several seconds

of downtime when using various prediction-based techniques with varying UE speeds.

Majeed et al. [65] use four regression models to predict offloading time in MEC using

various runtime and offline metrics such as CPU and disk utilization, network bandwidth,

and container image size to reduce end-to-end latency compared to their other evaluated

ML approaches. In the best-case scenario, they achieved 1.4 seconds of delay by

proactively transferring data prior to hand-off and employing the pre-copy technique.

Pomalo et al. [32] used K-Nearest Neighbor, Logistic Regression, Random Forest,

and XGBoost machine learning (ML) algorithms to predict how much time the migration

service should start in advance to the new edge node in order to continue service without

interruptions. Their results were evaluated by comparing these ML approaches to

determine which method best-handled service continuity. This study requires the path

type, e.g., main road, highway, and train, to predict the proper migration start time;

otherwise, it produces long downtimes. Furthermore, they stated that their approach still

has downtime but did not specify its exact amount. The research mentioned above

reduces downtime when compared to other ML algorithms. The downtime is reduced

56

because handover is triggered earlier by taking into consideration factors such as the load

on the wireless links and the speed of the UE. Our work is able to reduce downtime

regardless of when the handover is triggered. As a result, in most cases, the two method

groups mentioned above, prediction-based and data-transfer, can be combined to achieve

better performance results.

Zhang and Zheng suggest a deep Q-network (DQN) for task mobility in [91]. They

envision MEC servers with a single user traveling between places. The reward function

incorporates the cost of migration and the QoS. This method is compared to both a

dynamic programming method and a method without migration, and it outperforms both

in DQN simulations.

Moon et al. [92] optimize for server load balancing and migration cost while achieving

delay requirements in a MEC-based vehicular network using a deep Q-learning (DQL)

technique. The DQL strategy performs more tasks and works better at load balancing

than the other three approaches. This method takes into account many jobs, yet they are

independent of one another.

Wang et al. [93] present an RL technique to microservice task coordination. Their

migration strategy is pre-copy migration. They use a Markov Decision Process

(MDP) framework to represent the issue, and their RL solution is based on Q-learning.

When it comes to delays, they decide that downtime is more important than total

migration. Finally, the authors prioritize "microservice coordination" delay above

downtime and overall migration time.

3.2.3 Contribution

The pre-copy migration method is used in most of the studies mentioned. Most of the

included work described in this section still results in significant downtime, delay, and

migration time. The issue with the previously mentioned studies is that they continue to use

pre-copy as the primary transfer method [2], [29], [31]–[35], [65]–[68] while reducing

57

transfer size during hand-off [2], [31], [33], [35], [57], [67], [68]. Consider an AR

application in a head-mounted device. This app requires a latency of less than 17 𝑚𝑠 to

operate appropriately [3], whereas the above-mentioned research latencies and even solely

downtimes outputs exceed 17 𝑚𝑠. As a result of such a long delay, the user's QoE may suffer,

and there is a demand for a new approach to smoother migration that replaces the pre-copy

migration technique.

MiGrror is a solution to the problem mentioned above; it is intended for applications

that require a low-latency or real-time response. Using MiGrror rather than pre-copy may

result in less downtime, delay, and migration time. The pre-copy technique is based on

rounds, but memory contents may change more than once during a round, and the source

must wait for a certain amount of time before sending dirty pages from the source to the

destination. As a result, the source may send dirty pages at a low rate until the hand-off

triggers. To improve the efficiency of future IoT and 5G applications, a new design is

required that synchronizes more frequent memory differences from the source to

destination during migration, reducing the transfer size during hand-off and, thus,

downtime and delay. In the remainder of this Chapter, we will present our approach as a

complement to current research, i.e., prediction-based methods and other techniques,

since it can be used instead of pre-copy, resulting in less downtime and delays than pre-

copy.

3.3 MiGrror: Mirroring Service on Fog/Edge Migration

This section presents a new migration algorithm and workflow based on VM/container

mirroring that we refer to as MiGrror (a combination of terms migration and mirror). We

use mirroring in our approach to synchronize the source and destination VM/containers

more quickly during hand-off.

58

Figure 3.1 Distinction between MiGrror and Pre-Copy.

3.3.1 Description of Pre-copy

This subsection presents the pre-copy method. With pre-copy, a node is selected for

migration. A VM/container is initialized on the target node. This is followed by

transferring the memory state to the target node even as the VM/container executes on the

source node. This transfer is round 1. For round 𝑖, where 𝑖 > 1, a page is transmitted if it

has been written to (dirtied). The rounds typically end based on a predefined number. At

this point, the VM/container on the source node is terminated, and devices using it are

now expected to use the VM/container on the target node. It is critically important to

minimize the downtime when the VM/container stops running. During this time, the

VM/container stops running, and the service/data are inaccessible. Since downtime

59

contributes to performance loss, this should be kept as low as possible, if not zero. We

define downtime as follows:

𝑡𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 + 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑡𝑟𝑒𝑠𝑢𝑚𝑒 (3.1)

where 𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 is the time required to stop the VM/container and calculate the latest

dirty memory, and 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the time required to transfer the last dirty memory of the

VM/container, which is calculated as follows:

𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑛𝑎𝑙 𝑑𝑖𝑟𝑡𝑦 𝑚𝑒𝑚𝑜𝑟𝑦 𝑑𝑎𝑡𝑎 (𝑏𝑖𝑡𝑠) / 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (3.2)

This is defined as the time necessary to disconnect from the current AP (the AP of the

source edge node) and connect to the next AP (AP of the destination edge node). We

define 𝑡𝑟𝑒𝑠𝑢𝑚𝑒 as the time needed to resume a VM/container at the destination based on

the received data after hand-off. Since 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 has the largest impact on downtime and

migration time when compared to other stated parameters [62], we focused on 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

to reduce downtime.

3.3.2 Description of MiGrror

Fig. 3.1 depicts the distinction between the MiGrror and pre-copy approaches. Assume a

UE is moving from one node to another. As illustrated in Fig. 3.1, pre-copy transmits

dirty memory at the end of a round, representing a predefined amount of time. With

MiGrror, the goal is to reduce the amount of data that must be transferred during

downtime in order to achieve higher performance; therefore, we focused on reducing

𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟. The distinction between the two methods is that MiGrror, as shown at the

bottom of Fig. 3.1, uses events to synchronize (sync) the source and destination as events

occur, rather than waiting for the end of a round as pre-copy does. Each memory change

at the source causes an event to be generated, indicating that the source and destination

must be synced. MiGrror does not need to wait for a period of time to elapse. Instead,

60

MiGrror allows the possibility of multiple synchronizations of the source and destination

during the period of time that corresponds to the pre-copy's round in order to mirror the

current VM/container available at the destination. These 𝑛 MiGrror sync events and 𝑚

rounds of pre-copy are depicted in Fig. 3.1. In most cases, 𝑛 is expected to be larger than

𝑚 since MiGrror syncs as soon as a memory change occurs and sends memory

differences as soon as they become available. A small amount of dirty memory remains

when hand-off is triggered. After the hand-off trigger, this data is the final memory

difference that the source sends to the destination for synchronization. This is less

memory than the last round in pre-copy since other memory differences have already

been transmitted. As a result, 𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is reduced in MiGrror when compared to pre-

copy.

Consequently, as shown in Fig. 3.1, downtime is reduced compared to pre-copy. The

diagram's right-most section represents the resumption time required to restart the

VM/container at the destination. The remainder of this section will discuss MiGrror.

3.3.3 Synchronized Proposed Algorithms

Algorithm 3.1 describes the synchronized migration pseudo-code for the source edge

node, from which migration starts at. Algorithm 3.2 depicts the synchronized migration

pseudo-code for the destination edge node, which is where migration completes.

Fig. 3.2 shows the design details of our entire workflow. The source edge node is the

node that is currently providing services to end-user applications. After these steps are

completed, the destination will provide the migrated service. The specifics of these steps

are described in the rest of this section.

S1: Service Running on the Source Edge Node

When a UE is in range, the source edge node, or cloud, transmits the base image to

the subsequent potential edge node (see algorithm 3.1, line 1). This action clones the base

61

image to be received by the destination (see algorithm 3.2, lines 1 and 2). Consequently,

the source does not need to transfer the base image during migration since it has already

been transmitted.

Figure 3.2 Workflow of offloading service migration in mobile edge computing

S2: Send the Pre-Dump Memory

Before receiving the migration request, the source edge node synchronizes a memory

snapshot (algorithm 3.1, lines 2 and 3) to the target (algorithm 3.2, lines 3 to 5). To

reduce the size of the transferred memory image during hand-off, MiGrror checkpoints

the source container first, then dumps (stores content of memory) a snapshot of

VM/container memory in step S2 without interrupting the VM/container service at the

current edge node. This procedure may be repeated as the memory of the VM/container

in the current node hosting the service changes. In order to reduce the total time, it is

possible to run steps S1 and S2 concurrently.

62

Algorithm 3.1: MiGrror (at the Source)

 1: send base image to Destination (or send from the cloud);

 2: create pre-dump memory snapshots;

 3: send pre-dump to Destination;

 4: wait for migrationRequest;

 5: handoffSignalReceived = False;

 6: while handoffSignalReceived == False

 7: switch (Event) /* memory change OR handoffRequest */

 8: case Memory change

 9: checkpoint();

10: calculate_memory_difference();

11: send_sync_event();

12: case handoffRequest

13: handoffSignalReceived = True

14: do hand-off();

15: stop VM/container;

16: wait for T seconds then release VM/container

Algorithm 3.2: MiGrror (at the Destination)

 1: receive base image;

 2: start VM/container;

 3: receive pre-dump from Source;

 4: apply pre-dump;

 5: restore VM/container;

 6: wait for migrationRequest;

 7: handoffSignalReceived = False;

 8: while handoffSignalReceived == False

 9: receive memoryDifference;

10: apply memoryDifference;

11: restore VM/container;

12: case handoffRequest

13: handoffSignalReceived = True

14: do hand-off();

15: communicate from this edgeNode to UE;

S3: Migration Request, Checkpoint, Memory Difference Transmission, and Apply

Memory Difference

The source edge node synchronizes a memory snapshot to the target after receiving

the migration request that activates the migration signal (algorithm 3.1, line 4 at source,

and algorithm 3.2, line 6 at destination). The cloud-edge control mechanism initiates the

migration request (step S3 in Fig. 2). Upon activation of the migration signal, MiGrror

synchronizes the source and destination. The source node waits for memory changes and

signal to start handover events. A memory change event (algorithm 3.1, line 8) triggers a

checkpoint (algorithm 3.1, line 9) of the VM/container on the source edge node to obtain

a memory snapshot. It then compares two consecutive snapshots (algorithm 3.1, line 10)

to determine memory differences in order to determine the dirty memory. The source

then sends the memory difference to the destination edge node (algorithm 3.1, line 11 at

the source, and algorithm 3.2, lines 9 and 10 at the destination), where it is re-assembled.

MiGrror transfers memory differences as memory changes at the source edge node

63

without interrupting the VM/container service (synchronous mirroring). Depending on

the policy, it may sync to one or more nodes. A mirror of the source's VM/container

resumes running at the destination as a result of mirroring the source and destination.

Consequently, we can eliminate much of the usual VM/container resumption time at the

destination when the migration process is finished. Furthermore, mirroring could start

prior to the migration request, depending on the application requirements.

S4: Restore VM/Container in the Destination Edge Node

The memory difference from the source edge node is received by the destination,

which then restores the VM/container with the received dirty memory (algorithm 3.2, line

11).

S5: Stop Source VM/Container and Hand-off, Service Running on the Target Edge

The source sends the most recent state to the destination after receiving the hand-off

signal. The destination now has all of the needed data. This data was acquired as a result

of cloning in S1, mirroring in S2, S3, and restoring in S4. Control is handed off to the

next edge node after the hand-off triggers (algorithm 3.2, line 14), and the VM/container

on the source node is stopped (algorithm 3.1, line 15). Simultaneously, the destination

edge node will proceed to step S1 in order to prepare for the future possible migration.

S6: Clean Up the Source Edge Node and Failure Recovery

Removing the footprints of the existing container will result in a cleaned source edge

node. Algorithm 3.1, line 16 represents the waiting time before the migrated

VM/container is released. The benefit of the waiting period is that if the end-user moves

back or it may serve as a back-up if the next node’s connection is lost.

64

Figure 3.3 A smart city scenario. (a) top; (b) middle; (c) bottom. (Image location:

Nathan Phillips Square, Toronto, ON Canada, from maps.google.ca. Red car from

ferrari.com, both accessed Dec. 2020).

65

3.3.4 A Smart City Scenario

Consider a road on which a mobile UE is travelling. The mobile UE could run various

applications, such as an AR app in a head-mounted device. As illustrated in Fig. 3.3, a

UE will leave the node 𝑖 range and enter the node 𝑗 range. Node 𝑖 is the source in this

diagram, and node 𝑗 is the destination.

Fig. 3.3 depicts a mobility model, edge nodes, migration, and hand-off. As shown in

Fig. 3.3, the end-user moves from point 𝐴 to point 𝐶 while maintaining the connection for

apps and services. Fig. 3.3a depicts the user at point 𝐴, where the migration starts. When

the end-user is within the node 𝑖 range, mirroring starts. As a result, a live copy of the

source node's data resides at the destination is always ready to use.

As the end-user device advances, it reaches point 𝐵 in Fig. 3.3b. The hand-off that

occurs on point 𝐵 helps keep apps alive and connected throughout the migration. It

connects the current edge node (node 𝑖) to the new one (node 𝑗). At this point, apps data

should have completed transferring from node 𝑖 to 𝑗, allowing apps to continue providing

services when the end-user reaches point 𝐶, as shown in Fig. 3.3c.

When the user arrives at point C, the previous node has completed the VM/container

migration (source node 𝑖). As a result, apps receive service from the new edge node

(destination node 𝑗). This fashion occurs every time a user moves from one location to

another. Since data is quickly mirrored to destinations, the hand-off at point 𝐵 will be as

seamless as possible. Our proposed method also assists apps in handling their services

while the end-user moves from one edge node range to another. This performance comes

at a cost, which could be a loss of network bandwidth during mirroring.

66

3.4 Results and Discussions

This section describes the simulation setup and reveals insights from the simulation

results of the proposed approach.

3.4.1 Simulation Setup

We use MobFogSim [27] for our simulations and extend it to provide results in this

section. MobFogSim is an extension of iFogSim [94] that supports device mobility and

VM/container migration. iFogSim is an extension of CloudSim [95]. Moreover, we use

real-time mobility patterns of UEs. These patterns are embedded in MobFogSim using

the Simulation for Urban Mobility (SUMO) [96] tool and Luxembourg SUMO Traffic

(LuST) [97]. The latter is a dataset that studied vehicles in Luxembourg over a 24-hour

period, covering an area of 156 𝑘𝑚2 and 932 𝑘𝑚 of road captured in 2015. Our

simulation used this dataset to determine the vehicle's position, speed, time, and

movement direction.

In this study, to analyze our proposed method's performance, we performed an

experimental evaluation using a Virtual Machine running on an Ubuntu 18.04.5 LTS with

a 2.2 𝐺𝐻𝑧 quad-core processor, 64 𝐺𝐵𝑠 of storage, and 32 𝐺𝐵𝑠 of memory. We assumed

a mobile edge computing infrastructure with 2 𝑀𝑏𝑝𝑠 bandwidth for each UE and 100

𝑀𝑏𝑝𝑠 bandwidth for each AP. Other features, such as a processing limit of 281 𝑀𝐼𝑃𝑆,

can also be used to describe UE configuration. Processing power estimated by Million

Instructions Per Second (𝑀𝐼𝑃𝑆).

We used a variety of input values as part of the simulation environment. We

considered a square 10 x 10 km area with 144 uniformly distributed edge nodes as the

environment. Each edge node is linked to a single AP with a 1000-meter signal range. A

simulation ends once the user finishes the migration processes. The migration process

starts once the user reaches the migration point, defined at 40 meters from its connected

67

AP (source node's AP) coverage boundary. Our migration strategy selects the one with

the lowest distance (Euclidean distance) between the user and the access point of the

candidate edge nodes present in the user's path. The stated dataset determines the user

speed, and the network bandwidth between edge nodes is set to 100 𝑀𝑏𝑝𝑠 with a latency

of 1 𝑚𝑠.

3.4.2 Performance Characteristics

We evaluate methods using the following five metrics:

Downtime is the duration of transferring a stopped VM or container from one edge

node to another and restarting it. The VM/container ceases to function during this period,

and the associated services/data become unavailable.

Network usage is the amount of data transferred between the source and destination

nodes when migration has been triggered.

Data loss refers to the amount of data that a UE needs to transmit to/receive from an

edge node during downtime but will not be able to do so because there is no connectivity

between the UE and the edge node. This metric represents a disruption of service.

Average delay is the latency between a mobile UE that runs an application and the

edge node that runs the corresponding VM/container. Delay does not include packet loss.

The shorter the value, the less time that users wait to receive data from the migrated

service hosted on the destination edge node and hence a higher performance for their

running apps.

Average migration time is referred to as the time needed to prepare, perform various

transfers, and restart the VM/container at the destination edge node. It is then completed

when the VM/container restarts for the final time with all required data at the destination

edge node.

68

Figure 3.4 Results: top left: (a) Average downtime; top right: (b) Total network

usage; middle left: (c) Data loss; middle right: (d) Average delay; bottom: (e)

Average migration time.

3.4.3 Simulation Results

The simulation results were then compared in terms of (𝑖) downtime, (𝑖𝑖) network usage,

(𝑖𝑖𝑖) packet loss, (𝑖𝑣) average delay, and (𝑣) average migration time. We ran 30

69

simulations with the same configurations. It is worth noting that we used post-copy via

pseudo-paging in our experiments.

Fig. 3.4a demonstrates that the cold migration downtime is the longest, lasting more

than 100ms. The downtime for post-copy migration is less than that for cold migration

[62], which is to be expected. Pre-copy has less downtime than post-copy, slightly over

10ms; nonetheless, this downtime may be unacceptable for applications with stringent

real-time requirements [98]. MiGrror has the shortest downtime of any of the four

evaluated approaches, at roughly 9.5 𝑚𝑠. This downtime should be acceptable for almost

all applications, especially for some 5G apps that need a very short delay, mostly less

than a 10 𝑚𝑠 end-to-end latency [98].

Fig. 3.4b illustrates the amount of data transferred for migration. Cold and post-copy

migration methods transfer the least amount of data since they only send memory data to

the destination once. However, MiGrror and pre-copy migration methods send memory

pages many times, as shown in the graph. MiGrror, in particular, has the most transferred

data because it sends more memory differences than the other migration approaches. An

approach that uses less bandwidth is more acceptable. This volume of data transfer may

be the MiGrror approach's disadvantage when used. However, the bandwidth of 5G

networks is more than ten times that of 4G networks, ranging from 1 to 10 𝐺𝑏𝑝𝑠 [99]. To

provide reasonable downtime for future highly delay-sensitive applications requiring a

low-latency response, edge nodes using our migration approach could communicate with

each other more than traditional methods and thus consume more bandwidth. It is, yet,

dependent on the application requirements and use-cases. An app may require ultra-low

latency or may have bandwidth constraints. Different characteristics affect the use of the

mentioned migration methods and should be selected deliberately.

As demonstrated in Fig. 3.4c, cold migration has the highest data loss during

downtime. Since it produces longer downtime than other methods, it affects its data loss.

At the same time, data loss for the post-copy and pre-copy migration is around 6% and

4%, respectively. MiGrror has the lowest amount, approximately 2 percent data loss

70

during downtime. This value is expected because MiGrror has the lowest downtime

among the assessed methods, revealing another strength of the proposed migration

approach.

The average delay is presented in Fig. 3.4d. The average delay does not consider

dropped packets and only considers packets that arrive at their destination. Cold

migration provides the shortest latency; however, we should consider data loss because

the simulation does not account for it in measurements. Nonetheless, when compared to

other approaches, MiGrror has the shortest average latency, which is 10% less than the

post-copy method and 9% less than the pre-copy method. These results demonstrate there

is less delay in being able to use the migrated service. This supports the smooth operation

of latency-sensitive applications in the edge environment.

The average migration time for each approach is depicted in Fig. 3.4e. Cold and post-

copy migration approaches require shorter migration time than other methods since data

is not sent several times before hand-off. The essential contrast is between the pre-copy

and MiGrror because they both send data prior to hand-off. As shown in Fig. 3.4e,

MiGrror's migration time is less than that of the pre-copy.

3.5 Summary

This Chapter discussed the importance of VM/container migration in mobile edge

computing. Migration can take into account the edge node's geographical location in

relation to the user, user direction and speed, and network characteristics of the user and

the edge node. Four mechanisms for the VM/container migration have been sketched and

then simulated. We consider the user's mobility and wireless connectivity in the

simulation. Our results reveal that MiGrror provides promising results when used to

support MEC applications with mobile users, particularly when the latency is critical.

This performance may come at the expense of increased bandwidth usage for some

applications.

71

While MiGrror is a promising migration method in edge computing, understanding its

performance and the future behavior of a system using MiGrror is vital. Measuring the

performance is essential when comparing MiGrror to other migration methods. In order

to fully understand the performance of the MiGrror, its model must be developed. The

model must incorporate crucial factors, including downtime and migration time.

Furthermore, unlike other research that relied solely on average values, the MiGrror

migration model requires non-average values due to the continuous transfer of dirty

memories from the source to the destination. The subsequent Chapter will discuss the

MiGrror migration method's models.

72

Chapter 4 3

4 A Non-average Multi-microservice

Migration Modelling Approach

This Chapter analyzes the performance of the MiGrror migration method and the

pre-copy live migration method when the migration of heterogeneous multiple

VMs/containers is considered. Researchers use mathematical modeling to comprehend

the behavior of a future system. This Chapter presents mathematical models for the stated

methods and provides migration guidelines and comparisons for services to be

implemented as multiple containers, as in microservice-based environments. Experiments

demonstrate that MiGrror outperforms the pre-copy technique and, unlike conventional

live migrations, can maintain less than 10 milliseconds of downtime and reduce

migration time with a minimal bandwidth overhead. The results show that MiGrror can

improve service continuity and availability for users. Most significant is that the model

can use average and non-average values for different parameters during migration to

achieve improved and more accurate results, while other research typically only uses

3
 This chapter is derived from:

• Arshin Rezazadeh, Hanan Lutfiyya “Multi-microservice Migration Modelling, Comparison, and

Potential in 5G/6G Mobile Edge Computing: A Non-average Parameter Values Approach,” IEEE

Access –accepted

73

average values. This Chapter shows that using only average parameter values in

migration can lead to inaccurate results.

4.1 Introduction

New cloud-based applications (apps) have emerged due to the cloud’s virtually infinite

accessible resources and extensive service offerings [86], [100], [101]. Moreover,

microservices are gaining increasing interest as a potent architectural practice for

delivering software services. In this approach, applications are designed as a set of

modules known as microservices, with each module focused on one component of the

entire application [102]. Currently, microservices are delivered utilizing container

frameworks rather than virtual machines (VMs). Although the microservices concept was

originally built for the cloud context, it is gaining traction as a viable solution for edge

computing environments [103]. However, these advancements have been followed by

challenges for delay-sensitive applications with strict delay requirements [26]. Mobility

support and low latency cannot be accommodated by the present cloud computing

paradigm [87]. In order to solve these issues, the fog [57] and edge computing [4]

paradigms have been proposed that seek to expand cloud resources and services and

bring them closer to the network’s edge where data is generated. Consequently, end-to-

end latency is lower since the data is transmitted across fewer hops.

Multi-access/Mobile edge computing (MEC) was recently introduced as a key enabler

of future 5G and 6G networks, shifting services from large remote cloud servers to an

ubiquitous architecture of micro servers close to access networks and base stations [104]–

[106]. This proximity can help MEC provide its main characteristics: mobility support,

real-time response, and high bandwidth [107], which is especially important for mobile

Internet-of-Things (IoT) devices. These characteristics are vital for demanding

applications such as autonomous vehicles, healthcare, virtual reality, augmented reality,

and online gaming [4], [29], [108], [109], particularly when migration is involved. With

more users shifting to edge computing and microservices, managing resources is

74

becoming more challenging. Mobile devices at the network’s edge may be repositioned

between various MEC nodes. When this movement occurs, corresponding microservices

may require migration between MEC nodes to keep proximity to the device [6].

Furthermore, some MEC nodes may become overloaded due to changing workloads,

while others may stay underutilized on the same network infrastructure [14].

In some modern applications, multiple cooperating services are required in

microservices-based environments to provide certain services; thus, we may need to

consider migrating multiple microservices [21] for those containers that need to be in

proximity to the device. Each containerized application may make use of multiple

containers. Furthermore, each mobile IoT device may run multiple applications; in this

environment, multiple container migration is inevitable [5], [11]. Therefore, we need to

investigate the simultaneous migration of multiple containers. Assume a smart city in

which tourists are traversing with their mobile IoT devices. The mobile IoT devices are

running applications such as augmented reality (AR) and virtual reality (VR) for a virtual

tour guide in the context of the metaverse. The mobile IoT devices are connected to the

edge to reduce application latency (turn-around time) and to provide more bandwidth. As

a basic example of a containerized metaverse application, one microservice captures the

environment from the device, and another microservice renders the AR data to the

device. Each microservice can use single or multiple containers in its tasks. For the VR

component of the application, another service deploys virtual reality components to the

mobile device. This application needs ultra-low response time for smooth functionality.

For such real-time applications, Salman et al. [3] suggests an end-to-end response

threshold of 17 milliseconds (𝑚𝑠); otherwise, it cannot meet real-time latency

requirements. While tourists traverse the city, mobile IoT devices require the migration of

some containers in order to keep their connections alive. The remaining containers, e.g.,

containers that render the environment, can replicate without migration to reduce

response time. Since the applications require high bandwidth and ultra-low latency,

migrations and hand-offs must occur fast enough to keep the applications' response time

as minimal as possible.

75

The hand-off is a migration component [29] that is triggered when a device

disconnects from the access point (AP) of an edge node and connects to another node’s

AP on the same network infrastructure. Downtime occurs when a VM or container is

unavailable during migration while a device is handed off from one edge node to the next

[28]. Downtime caused by VM/container migrations lies in the range of seconds to

minutes [29]–[36]. The delay is strongly affected by the amount of downtime and page

faults [60], [61]. Moreover, since the mobile IoT device must migrate from the old

connection point to the new one throughout the procedure, it cannot access services or

data during hand-off. There has been considerable work focused on reducing downtime

[29], [31]–[35], [39]. Live migration techniques could facilitate downtime issues by

sending and receiving data while the VM or container is still operating at the source or

destination.

The pre-copy live migration proposed by Clark et al. [56], mostly used in literature,

moves data from the source to the destination in pre-determined rounds that regularly

transfer changes from the source to the destination. Despite pre-copy lowering the

downtime compared to the non-live migration method, the VM/containers are not

synchronized (sync) immediately following a change in the memory from the source

[28]. This late synchronization causes more data to be required to transfer after hand-off

and, consequently, high downtime and migration time for delay-sensitive applications

[28]. Some or all application components of intelligent transportation, virtual reality,

healthcare, augmented reality, and online gaming requires ultra-low latency for data

processing and communication [9].

The stated end-to-end response is difficult to achieve with the pre-copy method which

led Rezazadeh et al. [28] to propose the MiGrror migration technique for faster

synchronization between source and destination, which results in less data transmitted

during hand-off and, consequently, less migration time and downtime compared to the

pre-copy method. The MiGrror technique mirrors memory from the source to the

destination in the same way that mirroring is used in wide-area network servers. In this

76

analysis, the pre-copy method ends and hands off when the number of rounds reaches a

pre-defined threshold, e.g., 10-30 rounds in most research. To ensure fairness, we initiate

the hand-off for both methods at the same time: pre-copy and MiGrror.

Figure 4.1 Various values of memory dirtying rates during migration.

Furthermore, another limitation of the previous work on migration is that the

evaluation typically assumes average input parameter values during migrations. The input

parameters considered in this research are the transfer rate (provisioned

bandwidth), memory dirtying rate, and memory size of the VM/container

(VM/container size). However, the given input parameter values fluctuate over time

during migration. Memory dirtying rate and container size values vary during the

migration process depending on the task for each VM/container of an application.

Moreover, the transfer rate can vary throughout the migration since the

user's mobility causes changes in the distance between the user's device and its services,

resulting in diverse signal strength and available bandwidth for each VM/container of an

application [85].

77

Studies [13]–[24], [37]–[42] use migration modelling to comprehend the future

behavior of a system. Although most research employs average parameter values [13]–

[24], [37]–[42] and assumes the input parameter values remain unchanging, our study

demonstrates that the results vary since the input parameters can constantly change

during the migration. Our results show it is essential to learn if these parameters are

higher or lower at the beginning, middle, and end of the migration, considering migration

time and downtime as output parameters. Downtime and migration time are the two

primary output parameters in migration [14].

The models provided need to be more accurate to represent real-world scenarios.

Figure 4.1 depicts the various memory dirtying rates during a migration process derived

from the CSAP dataset [84]. The CSAP dataset consists of a comprehensive collection of

over 40,000 instances of live migration samples accumulated over a span of several

months. The dataset comprises multiple parameters, namely the memory dirtying rate and

transfer rate.

The figure depicts hundred values representing the data that must be transferred from

the source to the destination during migration. The values presented in figure 4.1 were

obtained from a snapshot of the CSAP dataset. The values presented in figure 4.1 were

obtained from a subset of the CSAP dataset and subsequently averaged. In our

experiments, we observed the identical trend displayed in figure 4.1 and described in

reference [29].

The problem is that while the stated input parameters can change continuously

throughout the migration process, most migration models [13]–[24], [37]–[42] for

multiple services assume that the parameter values remain constant in contrast to what

we see in figure 4.1.

As a result, using only average parameter values can result in output parameters that

differ from their realistic outputs because output parameters can be similar, when using

the same average values for input parameters. In contrast, the outputs for non-average

78

input parameters can deviate, while maintaining the same average input values.

Consequently, utilizing non-average parameter values can produce different results while

their averages remain unchanged. Using non-average input parameter values can result in

more precise migration time and downtime outcomes. In addition, innovative strategies

for migrating multiple VMs/containers are possible when considering non-average

parameter values.

To exemplify the discussed current migration models' limitations, consider two

migration procedures with the same average parameter values (e.g., transfer rate and

memory dirtying rate) but varying values during the migration process. In this example,

increasing the memory dirtying rate at the end of the migration significantly impacts

downtime since downtime occurs when the migration is complete [6], and this increased

memory dirtying rate requires transferring a higher-than-average memory dirtying rate.

The same holds true when we decrease the transfer rate at the end of the migration and

the dirtied memory data transfers at a lower-than-average transfer rate. In both cases,

using average parameter values generates the same migration time and downtime,

whereas using actual (non-average) parameter values generates different outputs.

The same concern as described above occurs due to employing average parameter

values in current migration models while decreasing the actual (non-average) transfer rate

at the beginning of the migration in this example. As a result, if input parameters are

higher or lower than their average value at crucial points - at the beginning and the end of

the migration process, they can negatively affect downtime and migration time. These

situations worsen when parameters at the given critical migration points are significantly

higher or lower than average, and in these cases, they extremely affect downtime and

migration time.

However, these crucial states are hidden when developing the edge computing

environment, relying exclusively on average input parameter values. As a result, new

migration models in edge computing are required to achieve more accurate results for

multi-container mission-critical 5G/6G mobile IoT applications. This paper presents

79

mathematical models for the pre-copy and MiGrror migration methods, offering a new

perspective on modelling by utilizing both average and non-average values during

MiGrror migration, while typically, only average values are considered in the literature

[13]–[24], [37]–[42]. The research in this paper takes into account non-average values of

transfer rate, memory dirtying rate, and VM/container size for the MiGrror technique in

addition to average values. Our experiments show that the results of both average and

non-average parameter values for the pre-copy method are mostly identical since memory

changes several times in each round. However, the MiGrror method can consider a larger

number of synchronizing events, which is advantageous since using actual (non-average)

parameter values rather than average ones is possible when employing the MiGrror

method. We take this novel approach since some parameters, such as memory dirtying

rate, may change several times during the migration. To the best of our knowledge, this is

the first time that different values of bandwidth, memory dirtying rate, and VM/container

size, rather than classical average values, are considered during the migration of each

single VM or container. To distinguish between these two types of modelling, we also

consider average parameter value results and compare them to non-average parameter

value results in section 4.5. Furthermore, the non-average MiGrror migration model is

applicable regardless of whether machine learning approaches, compression, or other

methods are used to decrease migration time and downtime.

In this Chapter, we first model the migration of multiple containers for both stated

migration methods. We do this by first using average values of the CSAP dataset [84],

then non-average values, followed by non-dataset input values. We also compare the

migration overhead of both methods listed and discuss which is better suited to specific

scenarios.

The main contributions of this Chapter are summarized as follows:

• We present the MiGrror mathematical migration model for heterogeneous

multiple VMs/containers. This is the first MiGrror model that considers the

simultaneous migration of multiple VMs/containers.

80

• For the first time, we use non-average and classical average values for the

transfer rate, memory dirtying rate, and VM/container size, during each migration

period of every single VM/container for the MiGrror method.

• We conducted experiments to analyze the input parameters that impact the

performance of the investigated migration methods.

The remainder of this Chapter is structured as follows: Section 4.2 delivers

background and related work on classic migration strategies. Section 4.3 describes and

compares the classic pre-copy live migration model used in this analysis with the new

model. Section 4.4 presents models of the MiGrror migration for multiple

VMs/containers. Section 4.5 provides evaluations and discussions, and Section 4.6

summarizes this Chapter.

4.2 Background and Related Work

This section provides a high-level overview of edge computing live migration techniques,

as well as models for migrating multiple VMs and containers. Live migration allows

virtual machines and containers to remain operational for most of the migration process

[39]. First the pre-copy and post-copy live migration methods are summarized, followed

by the MiGrror technique, and finally, the migration model studies are reviewed.

Pre-copy Live Migration Technique: With pre-copy migration [56], the entire

VM/container state is sent from the current node to the target node. An iteration is a

round in which the pre-copy waits for memory changes to send at the end of each round.

The source then resends dirty pages, which are updated memory pages from the previous

iteration, over a number of iterations. Upon receiving the hand-off signal, the source

VM/container pauses execution to prevent memory and state modification and transfers

the final dirty page and the latest changes in the runtime (execution) state, which includes

CPU and register updates, to the target edge node. Finally, the VM/container resumes

81

operation on the target edge node. Since the pre-copy technique typically transmits each

memory page multiple times, it may have a negative impact on the total amount of data

transmitted throughout the migration process and, consequently, the total migration

time [28]. Figure 4.2 shows the pre-copy iterations and related symbols.

Figure 4.2 Pre-copy iterations (rounds) [42].

MiGrror Migration Technique: The MiGrror migration method [28] was

introduced to reduce migration time and downtime when compared to the pre-copy

method. This objective is accomplished by synchronizing the source and destination more

frequently, resulting in a mirror of the VM/container at the destination, similar to how

mirroring is done in wide-area network servers [28], [110]. This technique reduces the

amount of data transferred during hand-off. Despite the intention to use more bandwidth,

the results indicate that this method outperforms pre-copy in terms of downtime, delay,

and total migration time. Furthermore, the amount of data transferred during migration is

greater than that of live migration techniques. Since 5G and 6G networks have

significantly more available bandwidth than previous generations, increasing bandwidth

usage between MEC nodes in this approach should not substantially impact overall

performance [28], [99]. This method will be examined by presenting a mathematical

model in section 4.4, followed by results and discussion in section 4.5.

Post-copy Live Migration Technique: Before transferring the latest state from the

source to the target, the post-copy migration technique [72] pauses the VM/container

execution to prevent runtime state changes. The state is then transferred to the target,

82

along with the minimum memory and state required to resume the execution of the

VM/container. The VM/container is then resumed at the target. An access problem occurs

when the VM attempts to access a page that the target has not yet received. In this

condition, a page fault occurs, and the source transmits the faulty page to the target.

When the VM/container is restarted at the target node during the post-copy process, any

applications executing in the VM/container continue to run at the target. After sending all

remaining pages, the page transfers to the target stops, and the VM/container post-copy

migration is complete.

Modelling Live Migration Techniques: Several research studies on live migration

modelling have been conducted over the last decade. Most of them base their research on

the use of a single VM or container migration [16], [37]–[42]. The studies primarily

focus on downtime and migration time and compare live migration techniques based on

various input values, such as pre-copy iterations, page dirtying rate, bandwidth, and

VM/container size, using datasets, implementations, or their assumptions. A subset of

these papers provides models and compares various parameters of live migration methods

[16], [37], [38], [40], while others employ estimation and optimization techniques to

reduce migration costs, such as downtime and migration time [39], [41], [42]. Despite

extensive research on modelling the migration of a single VM/container, few authors

focus on modelling multiple-VM/multiple-container migration [13]–[15], [17]–[24].

Some of these studies focus on the number of VMs/containers and provisioned bandwidth

in addition to the stated input values. Most of these studies focus on modelling multiple-

VM migration [14], [15], [17], [19]–[24] to optimize the migration performance of

multiple VMs, while authors in [13], [18] focus on modelling multiple-container

migration. The authors in [13]–[24], [37]–[42] employ only average parameter values.

Single Service Migration: Altahat et al. [39] propose a neural network-based model

that predicts VM migration performance metrics for pre-copy and post-copy methods as

well as different application workloads to analyze the migration models under various

workloads. Metrics include downtime, migration time, and the amount of data transferred

83

during the migration process. They compare their model to Linear Regression, SVR, and

SVR with bagging. The authors of [40] propose an adaptive VM monitoring strategy for

migrating a single VM using pre-copy and post-copy methods. They develop an

autoregressive model to predict the dirty memory rate and use it to reduce migration

downtime, migration time, and the data transfer amount. The model's output value is

determined by a linear combination of a stochastic variable and the previous model's

values. Tang et al. [16] use reinforcement learning with deep Q-learning container

migration to propose power consumption, delay, and migration cost models. The

evaluation compares their algorithm to other ML algorithms, including static threshold,

median absolute deviation, and interquartile range regression. Baccarelli et al. [41] use

the pre-copy migration time, downtime, round-trip time, and energy consumption models

to reduce delay and energy consumption in wireless connections with a bandwidth

manager.

Multiple Service Migrations: The authors develop adaptive bandwidth allocation in

[14], [18], [22] to minimize migration time in their models. Singh et al. [14] use Geometric

Programming to assign transfer and compression rates to each VM in order to reduce the

total migration time of multi VMs. The parameters considered include VM size, memory

dirtying rate, transfer rate, compression ratio, and the number of pre-copy iterations of

VMs. They evaluate their experiments with up to seven VMs and nine pre-copy iterations.

Maheshwari et al. [18] developed a cost model for multi-container migration, considering

container size, number of containers, memory dirtying rate, bandwidth, and load at an edge

node that supports mobility. They use a Min-Max model to minimize the migration cost.

Liu et al. [22] build a migration cost model by predicting the memory dirtying rate and

employing parameters such as VM size and transfer rate. They use a cost model for multi-

VM and employ adaptive bandwidth allocation to reduce migration costs.

Migration Models that Prioritize Downtime and Migration time: The following

papers consider migration to be the primary or secondary contribution of their analysis. In

more detail, Sun et al. [21] use an M/M/C/C queuing migration model to optimize

84

migration and reduce downtime and migration time for multiple VMs. Satpathy et al. [15]

compare migration model performance for multiple VMs, including comparisons based

on VM size, memory dirtying rate, and available bandwidth. Using a platform based on a

software-defined network (SDN), He et al. [17] evaluate the performance of multiple VM

migration models. They consider migration time and downtime to be two of their most

important criteria. To balance server load, Zhang et al. [13] propose a set of algorithms

for optimizing load balancing and migrating multiple containers among cloud servers in

order to balance server load. The primary focus is load balancing; migration would occur

as a result of server load balancing with the migration time model. Similarly, Forsman et

al. [23] present a load-balancing solution that reduces the migration cost of multiple

VMs. They also include migration time and downtime in their cost model. In another

study, Satpathy et al. [19] propose a VM placement strategy for cloud servers while

modelling multiple-VM migration with downtime and migration time. Considering power

constraints, Elsaid et al. [20] examine the migration cost of multiple VMs using

migration time and power consumption. Cerroni [24] investigates the cost of migrating

multiple VMs based on downtime and migration time using the Markovian model. The

network overhead and throughput degradation are also components of the migration cost

model.

4.3 A Pre-copy Migration Mathematical Model for

Multiple VMs/Containers Using Average Parameter

Values - the Pre-copy Migration Model

This section describes existing pre-copy migration models for multiple VMs/containers

that use average parameter values [14]–[18], [21], [22], [37]–[42] that will be used in our

experiments. Although the stated pre-copy migration models are not completely identical,

the pre-copy migration for multiple VMs/containers in this section will be modelled

derived from the models used in [14]–[18], [21], [22], [37]–[42], so that we can compare

the pre-copy results with the proposed migration model. We use only average parameter

85

values for the pre-copy method since considering non-average parameter values is

ineffective. This method typically employs a limited number of rounds, e.g., 10-30

rounds in most research [14]; however, this is incompatible with constantly changing

parameter values, such as memory dirtying and transfer rates. The transfer rate and

memory can change multiple times in each round of the pre-copy migration in short

intervals. Therefore, there is no single value for the stated parameters for each round of

the pre-copy.

Furthermore, since the pre-copy migration method uses a limited number of rounds,

results for both average and non-average parameter values are mostly identical. Utilizing

non-average parameter values based on the preceding discussions would be inefficient, as

the pre-copy method cannot employ every single value of each input parameter during

the migration. Downtime and migration time are the two primary parameters for

migration modelling analysis [14]. Downtime is an important performance metric for

end-users, which must be as low as possible to avoid service interruptions [14]. The total

migration time must be as short as possible because it consumes computational and

network resources from both the origin and the target MEC nodes [14]. The amount of

data that must be transmitted during the migration of multiple VMs/containers is also

considered as an overhead metric of the migration process in this paper. Table 1 defines a

number of key parameters and their notations for the models described in this paper. In

the table, 𝑀𝑗, 𝑑̅𝑗, and 𝑟̅𝑗 represent the VM/container memory size, average memory

dirtying rate, and average transfer rate (average bandwidth) available during migration

for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, respectively. The parameters specified affect migration time

(𝑇𝑀𝑗
𝑃𝑟𝑒) and downtime (𝑇𝐷𝑗

𝑃𝑟𝑒). Higher 𝑀𝑗 and 𝑑̅𝑗 levels increase migration time and

downtime, while higher 𝑟̅𝑗 levels decrease migration time and downtime. The remainder

of this section will examine the downtime, migration time, and migration overhead of

the pre-copy migration model.

86

During round one, the entire memory of any 𝑉𝑀𝑗 or 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 is transferred from

the source to the destination. As a result, the data transmitted during round one, i.e., 𝑉1,𝑗
𝑃𝑟𝑒,

may be calculated using the equation below:

𝑉1,𝑗
𝑃𝑟𝑒 = 𝑀𝑗 (4.1)

The memory becomes dirty throughout the transfer as the 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 remains

active at the source during pre-copy migration. Then, the pre-copy rounds transfer just

the memory that was dirtied during the preceding round. The amount of data sent at

round 𝑖 for every 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 is:

𝑉𝑖,𝑗
𝑃𝑟𝑒 = 𝑑̅𝑗𝑡𝑖−1,𝑗

𝑃𝑟𝑒 (4.2)

Table 4.1: Symbols and Definitions

Parameter Description

𝑚 The number of migration iterations in the pre-copy method

𝑛 The number of migration events in the MiGrror method

𝑝 The number of VMs/Containers to be migrated

𝑉𝑖,𝑗
𝑃𝑟𝑒 Dirty memory generated during round 𝑖 for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑚}

𝑉𝑖,𝑗
𝑀𝑖𝑟 Dirty memory generated during event 𝑖 for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in MiGrror, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑛}

𝑉𝑠,𝑗
𝑃𝑟𝑒, 𝑉𝑠,𝑗

𝑀𝑖𝑟 Memory amount in the stop-and-copy phase for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy and MiGrror migration methods

𝑀𝑗 Memory size of any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, ∀ 𝑗 ∈ {1, … , 𝑝}

𝑟̅𝑗 Average transfer rate (average bandwidth) available for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration method

𝑟𝑖,𝑗 Available transfer rate (bandwidth) during event 𝑖 for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗in MiGrror migration method

𝑟𝑠,𝑗 Available transfer rate (bandwidth) in the stop-and-copy phase for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in MiGrror migration method

𝑡𝑖,𝑗
𝑃𝑟𝑒 Time to transfer 𝑉𝑖,𝑗

𝑃𝑟𝑒 in pre-copy migration, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑚}

𝑡𝑖,𝑗
𝑀𝑖𝑟 Time to transfer 𝑉𝑖,𝑗

𝑀𝑖𝑟 in MiGrror migration, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑛}

𝑑̅𝑗 Average memory dirtying rate for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration method

𝑑𝑖,𝑗 Memory dirtying rate during event 𝑖 for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗in MiGrror migration method

𝑇𝑀𝑗
𝑃𝑟𝑒, 𝑇𝑀𝑗

𝑀𝑖𝑟 Total migration time for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for both pre-copy and MiGrror methods

𝑇𝐷𝑗
𝑃𝑟𝑒, 𝑇𝐷𝑗

𝑀𝑖𝑟 Downtime for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 for both pre-copy and MiGrror migration methods

𝜆𝑗 𝑑̅𝑗 𝑟̅𝑗⁄ , ∀ 𝑗 ∈ {1, … , 𝑝}

𝜆𝑖,𝑗 𝑑𝑖−1,𝑗/𝑟𝑖,𝑗, ∀ 𝑗 ∈ {1, … , 𝑝} and ∀ 𝑖 ∈ {1, … , 𝑚}

𝜆𝑠,𝑗 𝑑𝑛,𝑗/𝑟𝑠,𝑗

𝐵 Total maximum bandwidth reserved for the entire migration between two MEC nodes

𝑇𝐴𝑗
𝑃𝑟𝑒, 𝑇𝐴𝑗

𝑀𝑖𝑟 Migration overhead, amount of data to be migrated during migration, for any 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy and MiGrror methods

𝜏 The inter-iteration delay in pre-copy migration method

𝜏𝑖,𝑗 The time between two consecutive events 𝑖 and 𝑖 + 1 in MiGrror migration method for 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗

As soon as 𝑖 reaches 𝑚, the final round, i.e. stop-and-copy, begins. We assume that

all VMs and containers have 𝑚 rounds and that every single 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 stops

execution after 𝑚 rounds before the stop-and-copy phase. Furthermore, the time

87

necessary for the transfer round 𝑖 for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑡1,𝑗
𝑃𝑟𝑒, may be recursively

calculated using equations (4.1) and (4.2) as follows:

𝑡1,𝑗
𝑃𝑟𝑒 =

𝑉1,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 =

𝑀𝑗

𝑟̅𝑗
+ 𝜏 (4.3)

where 𝜏 is the inter-iteration delay shown in Figure 2.

𝑡2,𝑗
𝑃𝑟𝑒 =

𝑉2,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 =

𝑑̅𝑗𝑡1,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 = 𝜆𝑗𝑡1,𝑗

𝑃𝑟𝑒 + 𝜏 = 𝜆𝑗 (
𝑀𝑗

𝑟̅𝑗
+ 𝜏) + 𝜏

=
𝜆𝑗𝑀𝑗

𝑟̅𝑗
+ 𝜆𝑗𝜏 + 𝜏 =

𝜆𝑗𝑀𝑗

𝑟̅𝑗
+ 𝜏(1 + 𝜆𝑗)

(4.4)

where 𝜆𝑗 is the average memory dirtying rate divided by the average transfer rate,

𝑑̅𝑗 𝑟̅𝑗⁄ , for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗.

𝑡3,𝑗
𝑃𝑟𝑒 =

𝑉3,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 =

𝑑̅𝑗𝑡2,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 = 𝜆𝑗𝑡2,𝑗

𝑃𝑟𝑒 + 𝜏 =
𝑀𝑗

𝑟̅𝑗
𝜆𝑗

2 + 𝜏 (
1 − 𝜆𝑗

3

1 − 𝜆𝑗
) (4.5)

…

𝑡𝑖,𝑗
𝑃𝑟𝑒 =

𝑉𝑖,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
+ 𝜏 = 𝜆𝑗𝑡𝑖−1,𝑗

𝑃𝑟𝑒 + 𝜏 =
𝑀𝑗

𝑟̅𝑗
𝜆𝑗

𝑖−1 + 𝜏 (
1 − 𝜆𝑗

𝑖

1 − 𝜆𝑗
) (4.6)

Thus, the migration downtime for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐷𝑗
𝑃𝑟𝑒, may be calculated

as:

𝑇𝐷𝑗
𝑃𝑟𝑒 =

𝑉𝑠,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
=

𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

𝑟̅𝑗
= 𝜆𝑗𝑡𝑚,𝑗

𝑃𝑟𝑒 =
𝑀𝑗

𝑟̅𝑗
𝜆𝑗

𝑚 + 𝜆𝑗𝜏 (
1 − 𝜆𝑗

𝑚

1 − 𝜆𝑗
) (4.7)

where 𝑉𝑠,𝑗
𝑃𝑟𝑒 represents the data during hand-off for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. We use a

maximum value here since containers are dependent on, and interact with, one another,

88

and some must wait for others to respond to each user. The maximum amount of

downtime during pre-copy migration is expressed as follows:

𝑇𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
𝑃𝑟𝑒 = 𝑚𝑎𝑥{𝑇𝐷1

𝑃𝑟𝑒, 𝑇𝐷2
𝑃𝑟𝑒 , 𝑇𝐷3

𝑃𝑟𝑒, … , 𝑇𝐷𝑝
𝑃𝑟𝑒} (4.8)

Further, the total migration time for every 𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝑀𝑗
𝑃𝑟𝑒 with 𝑚

number of pre-copy transfer rounds followed by a final stop-and-copy round, is given by:

𝑇𝑀𝑗
𝑃𝑟𝑒 = ∑ 𝑡𝑖,𝑗

𝑃𝑟𝑒

𝑚

𝑖=1

+ 𝑇𝐷𝑗
𝑃𝑟𝑒 = (

𝑀𝑗

𝑟̅𝑗
∑(𝜆𝑗)

𝑖−1
𝑚

𝑖=1

+
𝜏

1 − 𝜆𝑗
∑(1 − 𝜆𝑗)

𝑖
𝑚

𝑖=1

) + 𝑇𝐷𝑗
𝑃𝑟𝑒

=
𝑀𝑗

𝑟̅𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2 + 𝑇𝐷𝑗

𝑃𝑟𝑒

=
𝑀𝑗

𝑟̅𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2 +

𝑀𝑗

𝑟̅𝑗
𝜆𝑗

𝑚

+ 𝜆𝑗𝜏 (
1 − 𝜆𝑗

𝑚

1 − 𝜆𝑗
)

(4.9)

The maximum migration time by assigning network transfer rate 𝑟̅𝑗 for each 𝑉𝑀𝑗/

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in pre-copy migration can be expressed as:

𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑒 = 𝑚𝑎𝑥{𝑇𝑀1

𝑃𝑟𝑒 , 𝑇𝑀2
𝑃𝑟𝑒 , 𝑇𝑀3

𝑃𝑟𝑒 , … , 𝑇𝑀𝑝
𝑃𝑟𝑒} (4.10)

Thus, the total amount of data, migration overhead, to be sent during migration for

any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐴𝑗
𝑃𝑟𝑒, is given by:

89

𝑇𝐴𝑗
𝑃𝑟𝑒 = ∑ 𝑉𝑖,𝑗

𝑃𝑟𝑒

𝑚

𝑖=1

+ 𝑉𝑠,𝑗
𝑃𝑟𝑒 = 𝑀𝑗 + ∑ 𝑑̅𝑗𝑡𝑖−1,𝑗

𝑃𝑟𝑒

𝑚

𝑖=2

+ 𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

= 𝑀𝑗 + (𝑑̅𝑗 ∑ 𝑡𝑖−1,𝑗
𝑃𝑟𝑒

𝑚

𝑖=2

) + 𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

= 𝑀𝑗 + 𝑀𝑗𝜆𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏𝑑̅𝑗

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2

+ 𝑑̅𝑗𝑡𝑚,𝑗
𝑃𝑟𝑒

= 𝑀𝑗 + 𝑀𝑗𝜆𝑗

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
+ 𝜏𝑑̅𝑗

𝑚(1 − 𝜆𝑗) − 𝜆𝑗(1 − 𝜆𝑗
𝑚+1)

(1 − 𝜆𝑗)
2

+ 𝑀𝑗𝜆𝑗
𝑚 + 𝑑̅𝑗𝜏 (

1 − 𝜆𝑗
𝑚

1 − 𝜆𝑗
)

(4.11)

The total migration overhead during migration for all VMs/containers is expressed as

follows:

𝐷𝑎𝑡𝑎𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑒 = {𝑇𝐴1

𝑃𝑟𝑒 + 𝑇𝐴2
𝑃𝑟𝑒 + 𝑇𝐴3

𝑃𝑟𝑒 + ⋯ + 𝑇𝐴𝑝
𝑃𝑟𝑒} (4.12)

For downtime, migration time, and total migration overhead, subject to:

∑ 𝑟̅𝑗

𝑝

𝑗=1

≤ 𝐵 (4.13)

where 𝐵 is the total maximum reserved bandwidth for the entire migration between

two edge (MEC) nodes, and:

0 ≤ 𝑟̅𝑗 ≤ 𝐵 and 𝜆𝑗 < 1 (4.14)

90

4.4 Mathematical Model of Multiple VMs/Containers

Migration using Non-average Parameter Values –

MiGrror Model

This section describes the MiGrror [28] migration model, which for the first time, uses

non-average parameter values for transfer rate (bandwidth), memory dirtying rate, and

VM/container size during migration. Downtime, migration time, and migration overhead

(the amount of data that must be transferred during migration) of multiple

VMs/containers are all modelled. Since stated parameters, such as memory dirtying rate,

are likely to change and do not have a fixed value during the migration process, the use of

non-average parameter values can lead to more accurate migration time and downtime

results. Most researchers used average parameter values. However, our proposed

migration time and downtime models revealed that the results would be different if these

parameters were higher or lower at the beginning, middle, and end of the migration

process with the same average parameter value, as discussed in the introduction. The

problem with relying solely on average parameter values is that the migration and

downtime results will be identical, while these results for non-average parameter values

will vary. This is a critical limitation of the current models.

To illustrate the previously discussed limitation of the current migration models,

consider, for instance, two migration processes with the same average parameter values

(e.g., transfer rate and memory dirtying rate) but with varying values throughout the

migration. In this example, if the memory dirtying rate increases at the end of the

migration, it can significantly impact downtime since downtime occurs at the end of the

migration [6], and this increased memory dirtying rate requires transferring a higher-than-

average dirty memory rate. The same holds true if the transfer rate drops at the end of the

migration and the dirtied memory data must transfer at a slower-than-average transfer

rate. In both cases above, using average parameter values yields the same results, whereas

using actual (non-average) parameter values yields different results. In this case, data

must be transferred at a slower-than-average rate.

91

The same situation as described above occurs due to using average parameter values

in current models, while the actual (non-average) transfer rate was lower at the beginning

in this example. As a result, if input parameters are higher or lower than their average

value at crucial points during the migration, they can severely affect downtime and

migration time. These situations deteriorate when critical parameters are extremely

higher or lower than average, and in these cases, they significantly affect downtime and

migration time.

These findings imply that it is advantageous to know when the value of a parameter

has a more significant impact on the result and that we can control the result by precisely

selecting other parameter values, when it is possible, to achieve desired results. As a

result, using non-average parameter values can provide greater insight and control over

the migration process, particularly for 5G and 6G networks. However, these critical

conditions are hidden when constructing the edge computing environment using only

average input parameter values. As a result, new migration models in edge computing

are required to achieve more accurate and precise results for multi-container mission-

critical IoT applications that consider user mobility.

To address these issues, we propose developing new models for multi-container

migrations which support mobility and more accurately characterize migration

downtime, migration time, and migration overhead, than current models for ultra-low and

real-time applications. The models will employ explicit input parameter details which

occur throughout the migration process as well as the requirements of applications that

provide services to end users. These input parameters include memory dirtying rate,

transfer rate, and container size.

Using non-average input parameter values can prevent failure related to a lack of

comprehension of the stated crucial conditions. In addition, using non-average parameters

can provide a more encouraging understanding, including additional details of output

parameter values, specifically downtime and migration time, throughout the migration

process. Furthermore, the migration process is more precisely controlled by selecting

92

available input parameters, namely transfer rate, in order to achieve the desired results,

particularly for mobility support and latency-sensitive applications in 5G/6G mobile

networks.

To the best of our knowledge, the MiGrror migration method [28] is the only option

for using non-average parameter values during migration, as it transfers dirty memory as

soon as it becomes available. Therefore, we will employ the MiGrror migration method

in our models.

Table 1 describes the modelling parameters. In the table, 𝑀𝑗, 𝑑𝑖,𝑗, and 𝑟𝑖,𝑗 represent

the memory size, memory dirtying rate during event 𝑖, and available transfer rate during

event 𝑖 in migration for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, respectively. The specified parameters

affect migration time (𝑇𝑀𝑗
𝑀𝑖𝑟) and downtime (𝑇𝐷𝑗

𝑀𝑖𝑟). Higher 𝑀𝑗 and 𝑑𝑖,𝑗 levels

increase migration time and downtime, whereas higher 𝑟𝑖,𝑗 levels decrease migration time

and downtime. It is also critical that different levels of 𝑟𝑖,𝑗 and 𝑑𝑖,𝑗 occur at the beginning,

end (during hand-off), as well as the middle of the migration process. The 𝑟𝑖,𝑗 and 𝑑𝑖,𝑗

levels are more critical for migration time at the beginning of the migration process, and

these levels are more critical for downtime at the end of the migration process. The levels

of both stated parameters have the least impact on migration time and downtime in the

middle. The remainder of this section presents the MiGrror model.

During the first event, the entire memory of any 𝑉𝑀𝑗 or 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 is transferred

from the source to the destination. So, the data sent during event one, i.e., 𝑉1,𝑗, can be

computed using the equation given below:

𝑉1,𝑗
𝑀𝑖𝑟 = 𝑀𝑗 (4.15)

The memory becomes dirty throughout the transfer as the 𝑉𝑀/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 remains

active at the source during MiGrror migration. Then, memory-change events transfer just

the memory that was dirtied during the preceding event. The amount of data sent at event

𝑖 for every 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 is:

93

𝑉𝑖,𝑗
𝑀𝑖𝑟 = 𝑑𝑖−1,𝑗𝑡𝑖−1,𝑗

𝑀𝑖𝑟 (4.16)

Furthermore, the time necessary for the transfer event 𝑖 for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e.,

𝑡1,𝑗
𝑀𝑖𝑟 , may be recursively calculated using equations (4.15) and (4.16) as follows:

𝑡1,𝑗
𝑀𝑖𝑟 =

𝑉1,𝑗

𝑟1,𝑗
+ 𝜏1,𝑗 =

𝑀𝑗

𝑟1,𝑗
+ 𝜏1,𝑗 (4.17)

where 𝑟1,𝑗 is the available transfer rate during the first event in migration for 𝑉𝑀𝑗/

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, and 𝜏1,𝑗 is the time between the first and second consecutive events of

MiGrror migration for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗.

𝑡2,𝑗
𝑀𝑖𝑟 =

𝑉2,𝑗
𝑀𝑖𝑟

𝑟2,𝑗
+ 𝜏2,𝑗 =

𝑑1,𝑗𝑡1,𝑗
𝑀𝑖𝑟

𝑟2,𝑗
+ 𝜏2,𝑗 = 𝜆2,𝑗𝑡1,𝑗

𝑀𝑖𝑟 + 𝜏2,𝑗

= 𝜆2,𝑗 (
𝑀𝑗

𝑟1,𝑗
+ 𝜏1,𝑗) + 𝜏2,𝑗 = 𝜆2,𝑗

𝑀𝑗

𝑟1,𝑗
+ 𝜆2,𝑗𝜏1,𝑗 + 𝜏2,𝑗

(4.18)

𝑡3,𝑗
𝑀𝑖𝑟 =

𝑉3,𝑗
𝑀𝑖𝑟

𝑟3,𝑗
+ 𝜏3,𝑗 =

𝑑2,𝑗𝑡2,𝑗
𝑀𝑖𝑟

𝑟3,𝑗
+ 𝜏3,𝑗 = 𝜆3,𝑗𝑡2,𝑗

𝑀𝑖𝑟 + 𝜏3,𝑗

= 𝜆3,𝑗𝜆2,𝑗

𝑀𝑗

𝑟1,𝑗
+ 𝜆3,𝑗𝜆2,𝑗𝜏1,𝑗 + 𝜆3,𝑗𝜏2,𝑗 + 𝜏3,𝑗

(4.19)

𝑡4,𝑗
𝑀𝑖𝑟 =

𝑉4,𝑗
𝑀𝑖𝑟

𝑟4,𝑗
+ 𝜏4,𝑗 = 𝜆4,𝑗𝑡3,𝑗

𝑀𝑖𝑟 + 𝜏4,𝑗

= 𝜆4,𝑗𝜆3,𝑗𝜆2,𝑗

𝑀𝑗

𝑟1,𝑗
+ 𝜆4,𝑗𝜆3,𝑗𝜆2,𝑗𝜏1,𝑗 + 𝜆4,𝑗𝜆3,𝑗𝜏2,𝑗 + 𝜆4,𝑗𝜏3,𝑗 + 𝜏4,𝑗

(4.20)

94

…

𝑡𝑖,𝑗
𝑀𝑖𝑟 =

𝑉𝑖,𝑗
𝑀𝑖𝑟

𝑟𝑖,𝑗
+ 𝜏𝑖,𝑗 = 𝜆𝑖,𝑗𝑡𝑖−1,𝑗

𝑀𝑖𝑟 + 𝜏𝑖,𝑗 (4.21)

where 𝜏𝑖,𝑗 is the time between two consecutive events 𝑖 and 𝑖 + 1 in MiGrror

migration for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. Moreover, 𝜆𝑖,𝑗 is the memory dirtying rate of the previous

event, event 𝑖 − 1, divided by the transfer rate of the current event, event 𝑖, for any

𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, and is equal to 𝑑𝑖−1,𝑗/𝑟𝑖,𝑗. Then:

𝑡𝑖,𝑗
𝑀𝑖𝑟 = 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆2,𝑗

𝑀𝑗

𝑟1,𝑗
+ 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆2,𝑗𝜏1,𝑗 + 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆3,𝑗𝜏2,𝑗

+ 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆4,𝑗𝜏3,𝑗 + ⋯ + 𝜆𝑖,𝑗𝜆𝑖−1,𝑗𝜏𝑖−2,𝑗 + 𝜆𝑖,𝑗𝜏𝑖−1,𝑗 + 𝜏𝑖,𝑗

(4.22)

Thus, the migration downtime for 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 i.e., 𝑇𝐷𝑗
𝑀𝑖𝑟 can be calculated as:

𝑇𝐷𝑗
𝑀𝑖𝑟 =

𝑉𝑠,𝑗
𝑀𝑖𝑟

𝑟𝑠,𝑗
=

𝑑𝑛,𝑗𝑡𝑛,𝑗
𝑀𝑖𝑟

𝑟𝑠,𝑗
= 𝜆𝑠,𝑗𝑡𝑛,𝑗

𝑀𝑖𝑟

= 𝜆𝑠,𝑗 (∏ 𝜆𝑖,𝑗

𝑛

𝑖=2

𝑀𝑗

𝑟1,𝑗
+ ∏ 𝜆𝑖,𝑗

𝑛

𝑖=2

𝜏1,𝑗 + ∏ 𝜆𝑖,𝑗

𝑛

𝑖=3

𝜏2,𝑗 + ∏ 𝜆𝑖,𝑗

𝑛

𝑖=4

𝜏3,𝑗

+ ⋯ + 𝜆𝑛,𝑗𝜆𝑛−1,𝑗𝜏𝑛−2,𝑗 + 𝜆𝑛,𝑗𝜏𝑛−1,𝑗 + 𝜏𝑛,𝑗)

(4.23)

where 𝑉𝑠,𝑗
𝑀𝑖𝑟 and 𝑟𝑠,𝑗 represent the data sent and the available transfer rate during

hand-off, respectively, and 𝜆𝑠,𝑗 is 𝑑𝑛,𝑗/𝑟𝑠,𝑗 for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. We use a maximum

value here since containers are dependent on, and interact with, one another, and some

must wait for others to respond to each user. The maximum amount of downtime during

MiGrror migration is expressed as follows:

95

𝑇𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
𝑀𝑖𝑟 = 𝑚𝑎𝑥{𝑇𝐷1

𝑀𝑖𝑟 , 𝑇𝐷2
𝑀𝑖𝑟 , 𝑇𝐷3

𝑀𝑖𝑟 , … , 𝑇𝐷𝑝
𝑀𝑖𝑟} (4.24)

Further, the total MiGrror migration time for every 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝑀𝑗
𝑀𝑖𝑟

with 𝑛 number of transfer events followed by a final stop-and-copy event, is given by:

𝑇𝑀𝑗
𝑀𝑖𝑟 = ∑ 𝑡𝑖,𝑗

𝑀𝑖𝑟

𝑛

𝑖=1

+ 𝑇𝐷𝑗
𝑀𝑖𝑟

(4.25)

The maximum migration time by assigning network transfer rate 𝑟𝑖,𝑗 for each

𝑉𝑀𝑗/𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 in MiGrror migration can be expressed as:

𝑇𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑀𝑖𝑟 = 𝑚𝑎𝑥{𝑇𝑀1

𝑀𝑖𝑟 , 𝑇𝑀2
𝑀𝑖𝑟 , 𝑇𝑀3

𝑀𝑖𝑟 , … , 𝑇𝑀𝑝
𝑀𝑖𝑟} (4.26)

Thus, the total amount of data, migration overhead, to be sent during MiGrror

migration for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐴𝑗
𝑀𝑖𝑟, is given by:

𝑇𝐴𝑗
𝑀𝑖𝑟 = ∑ 𝑉𝑖,𝑗

𝑀𝑖𝑟

𝑛

𝑖=1

+ 𝑉𝑠,𝑗
𝑀𝑖𝑟 = 𝑀𝑗 + ∑ 𝑑𝑖−1,𝑗𝑡𝑖−1,𝑗

𝑀𝑖𝑟

𝑛

𝑖=2

+ 𝑑𝑛,𝑗𝑡𝑛,𝑗
𝑀𝑖𝑟

(4.27)

The total migration overhead during migration for all VMs/containers is expressed as

follows:

𝐷𝑎𝑡𝑎𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛
𝑀𝑖𝑟 = {𝑇𝐴1

𝑀𝑖𝑟 + 𝑇𝐴2
𝑀𝑖𝑟 + 𝑇𝐴3

𝑀𝑖𝑟 + ⋯ + 𝑇𝐴𝑝
𝑀𝑖𝑟} (4.28)

For downtime, migration time, and total migration overhead, subject to:

∑ 𝑟𝑖,𝑗

𝑝

𝑗=1

≤ 𝐵 (4.29)

where 𝐵 is the total maximum reserved bandwidth for the entire migration between

two edge (MEC) nodes, and:

96

0 ≤ 𝑟𝑖,𝑗 ≤ 𝐵 and 𝜆𝑖,𝑗 < 1 (4.30)

4.5 Performance Evaluation and Discussions

Several parameters may affect migration performance, including container size, transfer

rate, and memory dirtying rate. This section investigates how various parameters affect

migration performance. We use the CSAP dataset [84] and our experiments to model pre-

copy and MiGrror migration methods. The migration time, downtime, and migration

overhead (transferred data) numbers given in the results are the averages of ten

distinctive migration runs of each model using the Python code we developed. The pre-

copy method terminates when the number of rounds (iterations) reaches a predefined

threshold of 10 rounds (𝑚 = 10). To be fair in our comparisons, we trigger the hand-off

for both migration methods at the same time. Furthermore, we use 20 VMs/containers

(𝑝 = 20) to migrate from the source to the destination during migration. We divide the

total bandwidth (𝐵) by the number of VMs/containers (𝑝) for non-dataset values, and the

transfer rate for each 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗 is the same. Additional considered parameters

vary and are detailed in the subsections that follow.

Since we, unlike other researchers, consider non-average parameter values, we

calculate the minimum, maximum, median, average, and standard deviations of the stated

parameters to examine the dataset in more depth. The transfer rate (𝑟𝑖,𝑗) ranges between a

minimum of 50 𝑚𝑒𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑀𝑏𝑝𝑠) and a maximum of 150 𝑀𝑏𝑝𝑠. The

median, average, and standard deviation are 108.5, 105.385, and 29.79, respectively. The

memory dirtying rate (𝑑𝑖,𝑗) is another parameter for which we consider non-average

values. The minimum value is 0.02323 𝑀𝑏𝑝𝑠, and the maximum is 145.076 𝑀𝑏𝑝𝑠. The

median and average memory dirtying rates are 18.52 and 28.979, respectively, with a

standard deviation of 31.89. Memory sizes for VMs and containers (𝑀𝑗) range from a

minimum of 249.41 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠 (𝑀𝐵) to a maximum of 4080.94 𝑀𝐵. The median,

97

average, and standard deviation are 813.326, 1049.83, and 625.268, respectively. The

final parameter considered is 𝜆𝑖,𝑗, which is the memory dirtying rate divided by the

transfer rate. During the migration process, the minimum and maximum 𝜆𝑖,𝑗 are

0.000196718 and 0.999938322. The median and average are 0.166656325 and

0.274938801, respectively, with a standard deviation of 0.292347702.

Figure 4.3 Comparison of the pre-copy and MiGrror migration methods using the

dataset's average parameter values (blue: Pre-Copy, red: MiGrror) (left: Downtime,

middle: Migration Time, right: Migration Overhead).

4.5.1 Results using Average Parameter Values and the Dataset

We investigate the performance of the pre-copy and MiGrror using average parameter

values of VM/container size, memory dirtying rate, and transfer rate for each

VM/container in this subsection. Figure 4.3 illustrates that downtime is the most

noticeable distinction between the pre-copy and MiGrror. In our experiments, the median

downtime for pre-copy is 265.924 𝑚𝑠, while the median downtime for MiGrror is less

than 1 𝑚𝑠. The pre-copy downtime is unacceptable for future 5G and 6G delay-sensitive

applications since it results in prolonged service interruptions during migration. The

MiGrror technique, on the other hand, generates much less downtime than the pre-copy

technique since it uses live mirroring between the source and destination.

98

Furthermore, as illustrated in the figure, the migration time using the MiGrror

technique is less than that of the pre-copy technique, with maximums of 23.65 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

(𝑠) and 23.93 𝑠, respectively. Using non-average parameter values in the subsequent

subsection, non-average parameter value subsection, reveals a significantly larger

difference. With the shorter migration time, resources at the source can be made available

to other containers more quickly.

Although the MiGrror reduces downtime and migration time, it comes at a cost:

migration overhead. However, the cost is negligible. Since the MiGrror method

synchronizes faster than the pre-copy method, it requires more bandwidth to mirror

changes from the source to the destination. The MiGrror consumes more bandwidth than

pre-copy, but it is only a negligible 1.16% increase in total migration overhead. Despite

the additional overhead of 1.16%, downtime and migration time are reduced.

4.5.2 Non-average Parameter Value Results using the Dataset

This subsection examines the performance of the pre-copy and MiGrror techniques. For

the MiGrror method, we use average and non-average parameter values for memory

dirtying rate, transfer rate, and VM/container size and compare them to the results of the

classical pre-copy model, which only uses average parameter values.

We cannot compare non-average parameter values of MiGrror and pre-copy since the

pre-copy uses a limited number of rounds, and the stated parameters can change many

times during each round. Therefore, only non-average parameter values of the MiGrror

migration method, and average parameter values of both the pre-copy and MiGrror

migration methods, are presented in Figure 4.4.

Figure 4.4 is the best representation of why we must consider non-average parameter

values in contrast to the traditional view of using only average parameter values. The

figure depicts that fluctuations of downtime, migration time, and migration overhead are

unanticipated even when using the same method, MiGrror. To clarify, when using

99

average and non-average parameter values, neither the mean nor the median of the results

is identical or even close. The same pattern holds true for the maximum and the minimum

of the results.

Figure 4.4 Comparison of the dataset's average and non-average parameter values

using MiGrror migration (left: Downtime, middle: Migration Time, right:

Migration Overhead, blue: pre-copy, red: MiGrror using average values, green:

MiGrror using non-average values).

Consider the MiGrror results with average and non-average parameter values.

Although the median downtime for average parameter values is roughly four times that of

non-average parameter values, the maximum downtime using average parameter values

is roughly 50% of non-average parameter values. Furthermore, the maximum migration

time using average parameter values and non-average parameter values differs by about

25%, while the minimum migration time using average and non-average parameter

100

values differs by more than 32%. Moreover, when using average parameter values, the

standard deviation of the downtime is only 0.21, whereas when using non-average

parameter values, it is 3.81. This high standard deviation results from memory dirtying

rate of the last event, which directly affects downtime, according to the model and

results. The standard deviation of migration time follows the same pattern, when using

average and non-average parameter values at 0.30 and 3.46, respectively. The difference

in standard deviation between average and non-average parameter values for migration

overhead is substantial; 22.36 and 346.33, respectively. Consequently, using non-average

parameter values provides us with a new perspective to improve future applications and

prevent unanticipated outcomes, such as those shown in Figure 4.4, when implementing

them in the real world. These findings highlight the practicality of using non-average

parameter values when analyzing data.

We demonstrate that the MiGrror migration overhead is only 0.5% greater than the

pre-copy migration overhead on average, which is an additional advantage of utilizing

non-average parameter values. However, when using average parameter values, the

MiGrror overhead amount is 1.19% greater than the pre-copy migration overhead on

average.

4.5.3 Non-dataset Parameter Values

This section studies the performance of the pre-copy and MiGrror models in terms of

several parameters: container size, memory dirtying rate, and transfer rate. We use

average parameter values with synthesized data in this subsection to make a fair

comparison since we cannot calculate the pre-copy results using the non-average

parameter values as explained in the previous subsection. Each subsection focuses on one

of these three parameters, with the final subsection focusing on 𝜆𝑖,𝑗 variations.

101

Figure 4.5 Downtime, Migration Time, and Migration Overhead as functions of

VM/container size for the pre-copy and MiGrror migration methods using non-

dataset parameter values (blue: Pre-Copy, red: MiGrror) (top: 𝝀𝒊,𝒋 varies between

0.04 and 0.515, middle: 𝝀𝒊,𝒋 is constant and set to 0.25, bottom: 𝝀𝒊,𝒋 is constant and

set to 0.5)

4.5.3.1 Performance based on Varying VM/Container Size

Figure 4.5 illustrates the impact of varying VM/container sizes on downtime, migration

time, and migration overhead. The first row of 3-D figures represents the variations in

VM/container size in terms of different 𝜆𝑖,𝑗 ratios and the corresponding results. The

102

figure also depicts the downtime, migration time, and migration overhead for various

VM/container sizes with 𝜆𝑖,𝑗 set to 0.25 in the middle row and 0.5 in the bottom row.

This figure shows that increasing the VM/container size has no meaningful effect

on MiGrror downtime. Only with high 𝜆𝑖,𝑗 ratios does pre-copy downtime increase, but

the increase is negligible since the difference is less than 4% between the smallest and

largest VM/container sizes. However, increasing the VM/container size increases

migration time and overhead. It is also evident that the difference between migration time

and overhead of the researched methods becomes more apparent with a higher 𝜆𝑖,𝑗. In

addition, as shown in the figure, migration time and overhead increase as the

VM/container size increases.

4.5.3.2 Performance based on Variation of Transfer Rate

Figure 4.6 illustrates how various transfer rates affect downtime, migration time, and

migration overhead for the pre-copy and MiGrror migration methods. We consider 200

𝑀𝐵 as a typical size for a container which also is considered a lightweight VM.

Furthermore, we consider that there is a 1000 𝑀𝑏𝑝𝑠 total bandwidth for all

VMs/containers. The VM/container size and memory dirtying rate are fixed at 200 𝑀𝐵

and 50 𝑀𝑏𝑝𝑠 (since we assume there are 20 VMs/containers), respectively. The figure

represents that increasing transfer rates reduces pre-copy downtime significantly, from

1421 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑚𝑠) to 70 𝑚𝑠, but the value is still relatively high. However,

MiGrror downtime begins at 22 𝑚𝑠 and ends at 1.1 𝑚𝑠, which is still superior to the pre-

copy. In terms of migration time, the MiGrror is 5.65% less than that of pre-copy at low

transfer rates, and less than 1% at high transfer rates. In terms of migration overhead, the

MiGrror consumes 14.61% more bandwidth than pre-copy at a low transfer rate, but this

decreases to 4.15% more bandwidth consumption at a high transfer rate.

103

Figure 4.6 Downtime, Migration Time, and Migration Overhead as functions of

Transfer Rate for the pre-copy and MiGrror migration methods using non-dataset

parameter values (blue: Pre-Copy, red: MiGrror).

104

These findings imply that pre-copy downtime is still unacceptable for latency-

sensitive mobile IoT applications, even with a high transfer rate. In addition, increasing

the transfer rate converges the migration time and overhead of both methods. These

results indicate that when the transfer rate is high, and the downtime is nonessential, such

as in applications with no delay constraints. The performance of both approaches is

nearly identical. However, when the transfer rate is limited, MiGrror outperforms pre-

copy in terms of downtime and migration time.

Furthermore, as shown in the figure, migration time and overhead decrease as the

transfer rate rises. The same pattern applies to pre-copy downtime but not MiGrror

downtime. MiGrror downtime is low from the beginning.

4.5.3.3 Performance based on Variation of Memory Dirtying Rate

Figure 4.7 illustrates how various memory dirtying rates affect downtime, migration time,

and migration overhead for the pre-copy and MiGrror migration methods. The

VM/container size and transfer rate are fixed at 200 𝑀𝐵 and 200 𝑀𝑏𝑝𝑠, respectively. The

figure depicts that increasing memory dirtying rates increases pre-copy downtime

significantly, from around 20 𝑚𝑠 at a 5 𝑀𝑏𝑝𝑠 transfer rate to more than 700 𝑚𝑠 at a 100

𝑀𝑏𝑝𝑠 transfer rate. However, MiGrror downtime begins at less than 1 𝑚𝑠 and ends at 11

𝑚𝑠 with the same transfer rates, which is still superior to the pre-copy. In terms of

migration time, the MiGrror is 0.21% less than that of the pre-copy at a low transfer rate

and the migration time improves to 4.72% at a high transfer rate. In terms of migration

overhead, the MiGrror consumes 0.91% more bandwidth than pre-copy at a low transfer

rate, but this increases to about 9% more bandwidth consumption at a high transfer rate.

These findings imply that pre-copy downtime is still unacceptable for latency-

sensitive mobile IoT applications, even with a low memory dirtying rate. In addition,

decreasing the transfer rate converges migration time and overhead of both methods.

These results indicate that when the memory dirtying rate is low and the downtime is

105

nonessential, such as in applications with no delay constraints, the performance of both

approaches is nearly identical. However, when the memory dirtying rate is high, MiGrror

outperforms pre-copy in terms of downtime and migration time.

Figure 4.7 Downtime, Migration Time, and Migration Overhead as functions of

Memory Dirtying Rate for the pre-copy and MiGrror migration methods using non-

dataset parameter values (blue: Pre-Copy, red: MiGrror).

106

Furthermore, as shown in the figure, migration time and overhead increase as the

memory dirtying rate rises. The same pattern applies to pre-copy downtime but not

MiGrror downtime.

4.5.3.4 Performance based on variation of 𝜆𝑖,𝑗 (memory dirtying rate

divided by transfer rate)

Figure 4.8 illustrates how various 𝜆𝑖,𝑗 rates affect downtime, migration time, and

migration overhead for the pre-copy and MiGrror migration methods. The VM/container

size is fixed at 200 𝑀𝐵. The figure shows increasing 𝜆𝑖,𝑗 rates increase pre-copy

downtime significantly, from 60 𝑚𝑠 at a 0.08 𝜆𝑖,𝑗 rate to more than 700 𝑚𝑠 at a 0.50 𝜆𝑖,𝑗

rate. However, MiGrror downtime begins at 0.95 𝑚𝑠 and ends at 11 𝑚𝑠 with the same

𝜆𝑖,𝑗 rates, which is still superior to the pre-copy. In terms of migration time, the MiGrror

is 0.69% less than that of the pre-copy at a low 𝜆𝑖,𝑗 rate and the difference is raised to

more than 6.65% at 0.65 𝜆𝑖,𝑗 rate. In terms of migration overhead, the MiGrror consumes

0.98% more bandwidth than the pre-copy at a 0.0275 𝜆𝑖,𝑗 rate, but this increases to a

9.63% more bandwidth consumption at a 0.5 𝜆𝑖,𝑗 rate.

These findings imply that while the MiGrror downtime is acceptable, pre-copy

downtime is still unacceptable for latency-sensitive mobile IoT applications, even with a

low 𝜆𝑖,𝑗 rate. In addition, decreasing the transfer rate converges migration time and

overhead of both methods. These results indicate that when the 𝜆𝑖,𝑗 rate is low, and the

downtime is nonessential, such as in applications with no delay constraints, the

performance of both approaches is nearly identical. However, when the 𝜆𝑖,𝑗 rate is high,

MiGrror outperforms pre-copy in terms of downtime and migration time. In fact, only

when the 𝜆𝑖,𝑗 is low the pre-copy downtime is acceptable.

Furthermore, as shown in the figure, migration time and overhead increase as the 𝜆𝑖,𝑗

rate rises. The same pattern applies to pre-copy downtime but not MiGrror downtime.

107

Figure 4.8 Downtime, Migration Time, and Migration Overhead as functions of

λ_(i,j) for the pre-copy and MiGrror migration methods using non-dataset

parameter values (blue: Pre-Copy, red: MiGrror).

108

Figure 4.9 The pre-copy and MiGrror Downtime as a function of their Migration

Time (blue: Pre-Copy, red: MiGrror).

4.5.3.5 Further Discussion

Figure 4.9 shows the relationship between downtime and migration duration for the pre-

copy and MiGrror migration methods. As pre-copy downtime increases, migration time

increases linearly. This finding means that we cannot use the pre-copy method after a

certain value when application downtime or migration time is critical. For instance, if an

application cannot tolerate more than 100 𝑚𝑠 without interrupting users, we cannot use

the pre-copy for that application, even if the migration time falls within that application's

tolerance range. Using MiGrror, however, the rate of increase in downtime is

significantly lower than its migration time. This finding indicates that by employing the

MiGrror method, the MEC is able to service applications, as in the stated example, with a

greater amount of migration time, since the MiGrror downtime is still within the

tolerance range of the application.

Furthermore, as shown in figures 4.6, 4.7, and 4.8 as well as in the modelling results,

the memory dirtying rate directly impacts the amount of memory transfer at each

109

MiGrror migration event. The MiGrror method reduced downtime by lowering the final

amount of memory transfer, as shown in the results and equation (4.23).

Moreover, based on equations (4.7, 4.9, 4.23, 4.25) and figures 4.6 and 4.8, it is

evident that with the same overall bandwidth, increasing the number of containers will

reduce the transfer rate of each container, resulting in longer migration times. The

transfer rate also slightly increases container downtimes. We skip the figure for the

preceding argument since it can be inferred from figures 4.6 and 4.8.

4.6 Summary

In this Chapter, we model the MiGrror method for multi-service migrations for the first

time. We use non-average parameter values as well as traditional average parameter

values for downtime, migration time, and migration overhead for the first time. We

illustrated that the MiGrror migration time and downtime outperform the pre-copy ones.

As demonstrated in the Chapter, utilizing non-average parameters allows for a better

understanding of what occurs during migration and more accurate results. Outputs can

deviate drastically during crucial migration phases when actual (non-average) input

parameters vary while their averages are unchanged. As previously stated, outputs during

critical stages of the migration process can vary significantly if actual (non-average) input

parameter values differ while their averages remain constant. Using non-average input

parameter values in migration models can provide a refined, rational, migration analysis,

which takes into account low response time and mobility, in multi-containerized edge

computing environments. As a result, we use non-average parameter values to obtain

more accurate results and comprehension of the environment.

Furthermore, we demonstrated that MiGrror improves user service continuity and

availability. Keeping these in mind, using non-average parameter values enables us to

understand the memory dirtying rate pattern during migration and enables us to adjust

bandwidth accordingly to achieve the desired results with higher performance and better

110

bandwidth utilization. In the following Chapter, we use MiGrror models to reduce

downtime and migration time further by adjusting the bandwidth during migration.

111

Chapter 5 4

5 A Novel Bandwidth Allocation

Strategy for Multi-service Migration

We intend to use bandwidth more efficiently. In this regard, we want to reduce

downtime and migration time by adjusting the bandwidth at specific periods. To

accomplish this, we employ the non-average MiGrror migration model, which enables us

to adjust the bandwidth in accordance with the migration timing and provides a

comprehensive understanding of the migration process. We utilize the MiGrror migration

method and its downtime, migration time, and migration overhead models to propose a

novel strategy for increasing bandwidth for short critical periods instead of maintaining

increased bandwidth throughout the entire migration process. Our novel strategy

drastically reduces downtime and migration time while enhancing bandwidth utilization

by freeing up additional bandwidth during migration, which increases bandwidth

availability for other services. The findings indicate that, even without using additional

bandwidth, adjusting the timing of a bandwidth increase/decrease for services improves

performance. The results are comparable to increasing the bandwidth for the entire

migration duration with equivalent bandwidth consumption.

4
 This chapter is derived from:

• Arshin Rezazadeh, Hanan Lutfiyya “A Novel Sustainable Bandwidth Allocation Strategy for

Multiple Service Migration in 5G/6G Edge Computing,“ GLOBECOM 2023 - 2023 IEEE Global

Communications Conference, IEEE, Dec. 2023, pp. 1211–1217

112

5.1 Introduction

Mobile IoT applications often require low response time and high bandwidth [1]. These

applications include virtual reality (VR) and augmented reality (AR) in the context of the

metaverse, as well as gaming and smart vehicle applications. Due to limited computing

resources on the mobile device, there may be a need for application services to be hosted

elsewhere. Cloud computing resources are an option, but the latency may be too high for

some mobile IoT applications. To satisfy the need for a lower response time, computing

power must be closer to the data sources [28], [111]. This is often referred to as edge

computing. However, as mobile devices move, the latency may increase. This can be

addressed by migrating services where a service runs on a virtual machine (VM) or a

container. An application may consist of multiple services where there is dependency

among the application services [5], [12]. With the increasing use of multi-containerized

applications [5], it is crucial to ensure that all application containers minimize delays for

latency-sensitive and real-time applications.

Migrating services in parallel can be used to reduce delays. For a real-time

application, it is recommended that the maximum response time is 17 milliseconds to

maintain end-user quality of experience at a desired level [3]. Most of the research has

yet to achieve this response time [28]. One reason for the lengthy response time is that

most research uses the pre-copy live migration method [56] to analyze the migration of

multiple services in parallel, as found in [14], [17]. The input parameters that influence

the migration includes memory dirtying rate, transfer rate (provisioned bandwidth),

and container size. The values of these input parameters can change continuously

throughout the migration for any of the containers of an application. Downtime and

migration time are metrics used to assess migration [14]. Downtime is the time required

to transfer a stopped container from one location to another location. Migration time is

the time required to perform various transfers and preparation to restart the container at

the new location, and migration overhead is the amount of data transferred between the

two locations during the migration process [28]. Containers use their assigned bandwidth

113

during migration; thus, the assigned bandwidth is unavailable until the container releases

the bandwidth after the migration. Reducing migration time and downtime can be

achieved by increasing the bandwidth for containers so that migration can be completed

faster. However, using increased bandwidth throughout the entire duration of the

migration may not be efficient [112].

Figure 5.1 Various values of memory dirtying rates during migration.

The contribution of this Chapter is an approach that uses planned bandwidth

adjustments at specified times to reduce migration time and downtime. The

motivation is illustrated in Fig. 5.1, which depicts the various memory dirtying rates

during a migration process derived from our experiments. The figure depicts ten values

representing the data that must be transferred from the source to the destination during

migration. The values presented in Fig. 5.1 were obtained from a snapshot of the

experiments. In our experiments, we observed the identical trend displayed in Fig. 5.1

and described in reference [29].

With our approach we increase the bandwidth for short periods at specified times,

i.e., the initial migration stage that transfers the entire container significantly impacts

migration time. Therefore, increasing the bandwidth during this stage would have a

114

higher impact than when the data being transferred is small. The bandwidth can also be

increased during the migration's final stage (the stop-and-copy phase) when the final dirty

memory is transferred. Increasing bandwidth during this stage reduces downtime. Our

evaluation shows this strategy can reduce downtime, migration time, and migration

overhead without additional bandwidth.

This Chapter is organized as follows: Section 5.2 provides related work, and Section

5.3 delivers the pre-copy limitations and MiGrror model [113]. Section 5.4 proposes a

bandwidth strategy using the MiGrror method for multiple service migrations. Section

5.5 provides evaluations and discussions, and Section 5.6 summarizes this Chapter.

5.2 Related Work

Multiple strategies are employed by researchers to decrease migration and downtime.

This includes reducing data transfer, using migration models and ML techniques, and

adjusting the bandwidth.

Reduction of Data to be Transferred: One approach to reduce downtime is to

reduce handoff data. Ma et al. [29] proposed a hierarchical container file system-based

migration technique to reduce hand-off transfer size. Hand-off transfer size can be

reduced by compression and transferring iterative memory difference. Machen et al. [35]

proposed a framework that divides each application by layers and transmits only the

missing layers only. By transmitting less data, this layered method reduces hand-off

downtime. Puliafito et al. [2] proposed a smart helmet AR response time of 20 𝑚𝑠. This

study used the pre-copy technique and compression before hand-off to reduce data

transfer during hand-off. To reduce the total migration time of multiple VMs, Singh et al.

[14] assigned compression and transfer rates to each VM using Geometric Programming

by considering parameters such as VM size, memory. Ma et al. [29] proposed a

hierarchical container file system-based migration technique to reduce hand-off transfer

115

size. Hand-off transfer size can be reduced by compression and transferring iterative

memory difference.

Bandwidth Adjustment: Bhardwaj et al. [112] highlights that allocating maximum

bandwidth for VM migration leads to bandwidth wastage. Zhang et al. [13] proposed

algorithms for optimizing load balancing and the migration of multi-container between

cloud servers to balance server load. Migration is used to balance the load of servers.

Zhang et al. [114], [115] proposed a bandwidth modification for the stop-and-copy phase

to guarantee bandwidth allocation for the final stage of the migration based on the

anticipated memory dirtying rate. This work considered migration of a single VM. To

reduce the total migration time of multiple VMs, Singh et al. [14] assigned compression

and transfer rates to each VM using Geometric Programming by considering parameters

such as VM size, memory dirtying rate, transfer rate, and compression ratio of VMs.

Chaufournier et al. [116] use multi-path TCP to improve VM migration time by using

several paths simultaneously for a connection, i.e., packets to and from an application

traverse multiple network paths concurrently. The use of multiple paths provides the

potential for increased bandwidth. However, this work is limited to focusing on a single

VM/container without considering the VMs/containers that compose an application.

Liu et al. [22] describe an adaptive network bandwidth allocation algorithm that relies on

predicting the dirtying rate within a specified time window. The prediction is based on

measuring the page dirtying rate of each VM before the VM is deployed. This is used to

model the memory access of the VM in order to determine bandwidth. Dharmaraj et al.

[117] proposed a bandwidth allocation mechanism based on estimating data transmission

cost, response time and throughput. This is used to determine the best server and

communication path within a cloud environment. Zhang et al. [114] developed a

theoretical model to analyze how much bandwidth is required to guarantee the required

migration time and downtime. Sampling is done every ten milliseconds for 10 seconds.

This sampled data is used to determine the distribution of dirtying pages’ frequency to be

used in a theoretical model to determine bandwidth. The second aspect of this work is

116

that a new transport model is proposed since TCP focuses on fairly allocating bandwidth

to flows and thus is difficult in practice [118]. Generally, the predictions are not always

accurate [119].

Migration Models: Maheshwari et al. [18] created a cost model and used the Min-

Max model to reduce migration costs for migrating multiple containers. Their model is

based on container size and number, bandwidth, and memory dirtying rate at a mobility-

supporting edge infrastructure. Satpathy et al. [15] used VM size, memory dirtying rate,

and available bandwidth to compare migration performance for multiple VMs. He et al.

[17] evaluated migration models on a software-defined network platform. Migration and

downtime are considered the most crucial metrics in their model.

Limitations: Despite some progress in reducing downtimes, the research cited does

not address the issue of time-sensitive applications adequately. Furthermore, there has not

been a study that incorporates strategic bandwidth allocation during migration at specific

times.

5.3 MiGrror Migration Model

This section presents a migration model that is used for the proposed bandwidth

adjustment technique. The pre-copy migration method [56] transfers the complete state of

a container from the edge node that currently hosts the container to the destination. The

procedure is carried out in iterations, with memory changes transferred at the end of each

iteration. The source node transfers dirty memory over multiple iterations, which are

updated memory pages from the previous iteration. Once the hand-off signal is triggered,

the source container stops memory modification and transfers the final dirty memory to

the destination. According to section 5.2, the pre-copy method can result in lengthy

downtimes, which is unsuitable for modern applications that require low latency.

Another problem with using the pre-copy migration method is that pre-copy uses a

limited number of rounds (iterations), e.g., 10-30 rounds [14]. Memory dirtying and

117

transfer rates can fluctuate within short intervals in a round, i.e., these values

can change multiple times during any pre-copy round [29], [113]. Adjusting the

bandwidth for every change in memory (dirty memory) is infeasible when a high

fluctuation is not always predictable. The bandwidth could be increased for the entire pre-

copy process, but it may not be effective since many of the rounds may have little data to

send [17].

The MiGrror migration method [28] is designed to reduce migration time and

downtime compared to the pre-copy method. This is achieved by mirroring the container

between the source and destination, as in servers [120]. The MiGrror method mirrors the

data from the sender to the receiver as each memory change generates a transfer event,

which can occur multiple times during the migration. MiGrror uses migration stages

numbered from 1 to 𝑛, with the stop-and-copy phase labelled as 𝑠. The MiGrror

migration method [28] uses every single parameter value during migration rather than

waiting for a round to complete, as it transfers dirty memory as soon as it becomes

available. As a result, less data is transferred during the hand-off process, resulting in less

downtime and migration time compared to the pre-copy method [28]. Therefore, we

use the MiGrror method to adjust bandwidth in short periods, resulting in better

bandwidth utilization. This is due to MiGrror's fine granularity, which employs a high

number with short durations of dirty memory transfers. The results [28] show that

MiGrror has lower downtime. Therefore, our research will employ the MiGrror migration

method to apply the proposed bandwidth strategy. While Pre-copy can produce good

results, incorporating MiGrror can further elevate them.

We are studying a multiple-container MiGrror migration model [113], which we use

in equations (5.1) – (5.3). The MiGrror model can use and observe the effects of every

parameter value during migration. This provides information about the various stages of

migration and how parameter values affect downtime and migration time. This

information is then used to develop the proposed bandwidth allocation strategy. The 𝑀𝑗 is

118

the memory size of any 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. The migration downtime for any 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e.,

𝑇𝐷𝑗
𝑀𝑖𝑟, may be calculated as:

𝑇𝐷𝑗
𝑀𝑖𝑟 = 𝜆𝑠,𝑗 (∏ 𝜆𝑖,𝑗

𝑛

𝑖=2

𝑀𝑗

𝑟1,𝑗
+ ∏ 𝜆𝑖,𝑗

𝑛

𝑖=2

𝜏1,𝑗 + ∏ 𝜆𝑖,𝑗

𝑛

𝑖=3

𝜏2,𝑗 + ∏ 𝜆𝑖,𝑗

𝑛

𝑖=4

𝜏3,𝑗 + ⋯

+ 𝜆𝑛,𝑗𝜆𝑛−1,𝑗𝜏𝑛−2,𝑗 + 𝜆𝑛,𝑗𝜏𝑛−1,𝑗 + 𝜏𝑛,𝑗)

(5.1)

where 𝜏𝑖,𝑗 is the time between two consecutive stages of migration 𝑖 and 𝑖 + 1

(𝑡𝑖,𝑗
𝑀𝑖𝑟 , 𝑡𝑖−1,𝑗

𝑀𝑖𝑟) in MiGrror migration for 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. Moreover, 𝜆𝑖,𝑗 is the memory dirtying

rate of the previous stage, stage 𝑖 − 1, divided by the transfer rate of the current event,

stage 𝑖, for any 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, and is equal to 𝑑𝑖−1,𝑗/𝑟𝑖,𝑗. Accordingly, 𝜆𝑠,𝑗 is equal to

𝑑𝑛,𝑗/𝑟𝑠,𝑗. Equation (5.1) shows that increasing the transfer rate, 𝑟𝑠,𝑗, in the dominator of

𝜆𝑠,𝑗 will decrease downtime. The migration time for every 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝑀𝑗
𝑀𝑖𝑟 with

𝑛 number of transfer events followed by a final stop-and-copy event, is given by:

𝑇𝑀𝑗
𝑀𝑖𝑟 = (∑ 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆2,𝑗

𝑀𝑗

𝑟1,𝑗
+ 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆2,𝑗𝜏1,𝑗 + 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆3,𝑗𝜏2,𝑗

𝑛

𝑖=1

+ 𝜆𝑖,𝑗𝜆𝑖−1,𝑗 … 𝜆4,𝑗𝜏3,𝑗 + ⋯ + 𝜆𝑖,𝑗𝜆𝑖−1,𝑗𝜏𝑖−2,𝑗 + 𝜆𝑖,𝑗𝜏𝑖−1,𝑗 + 𝜏𝑖,𝑗)

+ 𝑇𝐷𝑗
𝑀𝑖𝑟

(5.2)

Equation (5.2) shows that increasing the transfer rate of the initial stage of this

equation will reduce the migration time. This is due to 𝑀𝑗, the 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 size to transfer,

having a higher value than the other stages. The migration overhead to be sent during

MiGrror migration for any 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗, i.e., 𝑇𝐴𝑗
𝑀𝑖𝑟, is given by:

119

𝑇𝐴𝑗
𝑀𝑖𝑟 = 𝑀𝑗 + ∑ 𝑑𝑖−1,𝑗𝑡𝑖−1,𝑗

𝑀𝑖𝑟

𝑛

𝑖=2

+ 𝑑𝑛,𝑗𝑡𝑛,𝑗
𝑀𝑖𝑟

(5.3)

Equation (5.3) shows that the migration overhead is related to the 𝑡𝑖,𝑗
𝑀𝑖𝑟 (1 ≤ 𝑖 ≤ 𝑛),

which will be used in Section IV to clarify how the bandwidth strategy can reduce

migration overhead.

5.4 Bandwidth Allocation Strategy

This section describes a bandwidth strategy based on the MiGrror migration model. A

container is typically assigned a specific bandwidth, which is used throughout the

migration process [14]. As a result, the assigned bandwidth amount is unavailable to

other containers until the container releases it at the end of the migration. Having

additional bandwidth during migration will decrease the downtime and migration time.

The proposed bandwidth strategy is to use only additional bandwidth when it highly

impacts downtime and migration time. Additional bandwidth can be accessed by any

container, not for the entire migration, but only when needed most. Efficient multiple-

service migration requires planned bandwidth adjustments at specified times to reduce

migration time and downtime. This makes it easier to make bandwidth available to

other containers. The rest of this section describes how this is achieved. In this Chapter,

bandwidth refers to the available bandwidth for migration.

The MiGrror model indicates that the stated parameters are more influential based on

their position in the formulas. As an illustration, based on equation (5.2), the transfer rate

of the initial stage is more critical for migration time than middle migration stages. This

is because the initial migration stage consists of 𝑀1, and its value is greater than the

middle migration stages since represent the copy of the container at the destination node.

Increasing the 𝑟1,𝑗 on the dominator in the equation, reduces its value and, consequently,

migration time. Similarly, for downtime, the transfer rate of the final event is more

120

critical than the transfer rates of other events during the migration process. This is

because the latest dirty memory is transferred during the final migration stage. For

example, increasing the transfer rate during the final migration stage reduces downtime

more than increasing it during the middle migration stages.

Figure 5.2 compares using the original bandwidth and the bandwidth allocation

strategy. We assume that each application uses multiple containers. The increased

bandwidth strategy is favorable when multiple users require migration due to mobility.

Moreover, as depicted in figure 5.2-A, containers can use the entire reserved bandwidth

for migration in a parallel manner to achieve improved bandwidth utilization. In a typical

edge environment, there are typically multiple users, and each user runs multiple

applications, with each application receiving service from one or more containers.

Therefore, there are numerous containers on an edge node, and at any given time slot, a

number of containers could have started migration (initial migration event, event number

1), be in the midst of migration (migration event number 𝑖, 𝑤ℎ𝑒𝑟𝑒 2 ≤ 𝑖 ≤ 𝑛), or have

completed the migration and handing off (final migration event, event number 𝑠) from

the current to the next edge node. This is how this strategy responds to the real world.

Figure 5.2 The concept of use increased bandwidth during the initial stage of

migration. Left (A): Original bandwidth, Right (B): Increased Bandwidth for the

initial and final stages.

121

Figures 5.2-A and 5.2-B illustrate two sets of services that require migration, namely

applications and their corresponding containers. The services in set #1 will undergo

parallel migration, as will those in set #2. The scenario assumes services in set #1 will

begin migration prior to the services in set #2. We use the above concept with container

bandwidth assignment modifications, as shown in figure 5.2-B. As depicted in figure 5.2-

B, we assign the extra bandwidth only to the initial and final migration stages. As a

result, this strategy can reduce the output parameters, namely migration time, only when

specified and without using additional bandwidth for the whole migration process.

Therefore, rather than using additional bandwidth throughout the migration process,

our bandwidth strategy focusses on using increased bandwidth selectively. Equations

(5.1) and (5.2) indicates that additional bandwidth should be used during the initial

migration event. This event occurs during the first step of MiGrror migration when

transferring the container. At 𝑡1,𝑗
𝑀𝑖𝑟 , we increase 𝑟1,𝑗 for any 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. 𝑡2 is related to 𝑡1,

𝑡3 is related to 𝑡2, and so on, until 𝑡𝑛. Equation (5.2) shows that increasing the transfer

rate of the initial event will decrease 𝑡1, causing domino-like effects on the rest of the

migration timeslots 𝑡1 to 𝑡𝑛. The percentage of improvement varies depending

on container size, memory dirtying rate, and transfer rate. As seen in experiments in

section 5.5, using this increased bandwidth strategy significantly reduces migration time

which is substantial for future 5G and 6G applications. Moreover, with a shorter

migration time, resources at the source can be made available to other containers more

quickly.

We employ the same concept to reduce downtime: Equation (5.1) of the MiGrror

model, increasing bandwidth only during the hand-off, when the last dirty memory is

transferred, directly affects downtime. In fact, during the stop-and-copy phase, we

increase the 𝑟𝑠,𝑗 for any 𝑉𝑀𝑗/𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑗. The 𝑟𝑠,𝑗 is in the denominator of 𝜆𝑠,𝑗, so an

increase has a direct impact on downtime. Providing more bandwidth in this short period

for a specific container handing off from a source to a destination, will reduce downtime

by the factor of the increased bandwidth during hand-off. Given that downtime is a small

122

percentage of the overall migration process, according to our results, providing additional

bandwidth during this time is worthwhile to ensure smooth migration for future 5G and

6G applications.

Furthermore, there is an additional benefit to implementing the new bandwidth

allocation strategy. As seen with equations (5.2) and (5.3), this strategy decreases

migration overhead since these equations depend on 𝑡𝑖,𝑗
𝑀𝑖𝑟 (1 ≤ 𝑖 ≤ 𝑛), employing the

increased bandwidth allocation strategy will reduce migration time. This shorter

migration time forces the source to have less time to synchronize containers to the

destination, reducing migration overhead. The percentage of improvement varies

depending on container size, memory dirtying rate, and transfer rate. Consequently, the

migration overhead decreases despite the utilization of additional bandwidth, and the

reduced bandwidth is made available for use by other applications.

Investigating the MiGrror model [113] and according to equation (5.2), we

discovered that the transfer rate of the initial migration phase significantly impacts

migration time and downtime, whereas the middle migration phases have less impact on

the given parameters. This is because the data to be transferred is high and this is likely

higher than data in other rounds. As a result, rather than increasing total bandwidth for all

services, we maintain total bandwidth for all users while increasing transfer rates only in

the initial and final phases and decreasing transfer rates in the middle phases. Since

multiple containers are servicing various users' applications at any given time, a transfer

rate reduction in the middle migration phases will save bandwidth for services that are

either in the initial or final migration phases. The most significant point is that the initial

and final migration phases account for only a portion of the total migration time.

Therefore, reducing the transfer rate of the middle migration phases by 𝑥% will save this

bandwidth for the initial and final migration phases by more than 𝑥%. The input

parameters determine the saved bandwidth; for instance, if half of the containers (which

correspond to different users) want to migrate simultaneously, they can have

approximately 2𝑥% more bandwidth for the initial and final migration phases. Assume a

123

simple scenario: we have 1000 (megabits per second) total bandwidth for 20 containers,

each with 50 Mbps. We can save 100 Mbps with a 10% transfer rate reduction for the

middle phases, which means 5 Mbps for each container. If we need to migrate half of the

containers simultaneously, we can use 100 Mbps for ten users during the initial and final

migration phases, which is a 20% increase. This number can vary, and in section 5.5, we

conduct experiments based on various assumptions. In most cases, the performance is

better than the traditional bandwidth approach, which assigns 100% bandwidth to all

migration phases. In the following section, we demonstrate the effectiveness of this idea

by presenting results.

5.5 Testbed Evaluation

Several factors, such as container size, transfer rate, and memory dirtying rate, can

impact performance in the migration process. This section will explore how adjusting the

transfer rate can affect these parameters. We used experiments for the first part of the

analysis. Our results include the average migration time, downtime, and migration

overhead from ten separate migration runs.

5.5.1 Testbed Setup

The experiments were carried out using the following setup: four Raspberry Pi 3 B+

(Broadcom BCM2837B0 Cortex-A53 @1.4GHz, 1GB RAM) as IoT devices running

various application containers, two Raspberry Pi 4B (Broadcom BCM2711 Cortex-A72

@1.8GHz, 4GB RAM) as edge nodes, and a PC (Intel 12 cores @2.10 GHz, 16.0 GB

RAM) as a coordinator edge node that sends requests to other nodes to start migrations and

ends them. We used UDP for communication since it transfers messages faster than TCP.

To create a heterogeneous container environment, we applied containers of varying given

parameter values. Fedora 38 is used as the operating system, with CRIU 3.17 [121] for

checkpoint-restore and the Linux 𝑠𝑡𝑟𝑒𝑠𝑠 tool to generate memory loads. Furthermore, we

124

use 12 heterogeneous containers (for multiple applications) to migrate from the source to

the destination during migration in our experiments. In this section, we divide the results

into two parts: one uses the experimental data, and another, synthesized data. Considered

parameter values vary and are discussed in detail in the following subsections.

To analyze the data, we selected parameters randomly and calculated the minimum,

maximum, median, average, and standard deviations of 𝑟𝑖,𝑗 and 𝑀𝑗. The transfer rate

(𝑟𝑖,𝑗) varies between 40 𝑚𝑒𝑔𝑎𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (𝑀𝑏𝑝𝑠) and 250 𝑀𝑏𝑝𝑠. The median,

average, and standard deviation are 115.81, 118.37, and 33.88, respectively. Memory

sizes (𝑀𝑗) range from a minimum of 163.72 𝑚𝑒𝑔𝑎𝑏𝑦𝑡𝑒𝑠 (𝑀𝐵) to a maximum of

1165.29 𝑀. The median, average, and standard deviation are 364.14, 403.92, and 294.56,

respectively. Input parameters are randomly selected from the given values. In this

section, we use the same values for all experiments rather than the increase/decrease in

transfer rates for bandwidth strategy. For example, if 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟1 has a size of 400 𝑀𝐵,

we use the same amount in our experiments.

5.5.2 Experimental Results

This section presents the performance of the MiGrror methods with and without using the

proposed strategy based on the given parameters using experiments for the given testbed

in this chapter. Figure 5.3 depicts the downtime, migration time, and migration overhead

of the MiGrror migration method with and without the increased bandwidth allocation

strategy. As shown in the figure, we increase the bandwidth of the last event by a factor

of two, five, and ten compared to its original bandwidth. When compared to the initial

bandwidth results, the downtime for the MiGrror method that employs the bandwidth

strategy is 50% at twofold bandwidth, 20% at fivefold bandwidth, and 10% at tenfold

bandwidth. For instance, when the downtime is 8.50 𝑚𝑠 with the original bandwidth, it

drops to 4.25 𝑚𝑠 using double the bandwidth. Furthermore, the downtime decreases to

1.70 𝑚𝑠 and 0.85 𝑚𝑠, respectively, when bandwidth is increased by fivefold and tenfold

125

compared to the original bandwidth. We achieved these results while using the additional

bandwidth for less than 0.02 percent of the total migration duration.

Figure 5.3 Comparison of the MiGrror migration method with and without the use

of bandwidth strategy (light green: MiGrror without bandwidth strategy - using

original bandwidth, greys: MiGrror using bandwidth strategy; 2x, 5x, and 10x:

twofold, fivefold, and tenfold transfer rate only during the first and last migration

stages) (left (A): Downtime, middle (B): Migration Time, right (C): Migration

Overhead).

Furthermore, as shown in the figure, using the MiGrror technique with the increased

bandwidth allocation strategy reduces migration time between 25% and 36%, using a

twofold increase in transfer rate only at the first migration event, compared to using the

initial bandwidth. In addition, compared to the original bandwidth of the MiGrror

technique, the migration time decreases between 36% and 58% using a fivefold increased

transfer rate at the first event of migration. Migration time reduction for a tenfold

increased transfer rate at the first migration event is between 44 and 63 percent. Because

of the shorter migration time, resources at the source can be made more quickly available

to other containers, allowing more users and containers to be served with higher

performance while using the same available resources, such as memory and processing

power—additionally, the shorter migration time results in a reduction in migration

overhead.

126

The decreased migration overhead is a result of fewer dirty memory transfers during

the migration, as the migration is shorter when using an increased bandwidth allocation

strategy. The source node must transfer fewer dirty memories, resulting in a reduction in

migration overhead. For example, compared to the original bandwidth of the MiGrror

technique, the migration overhead decreases by 14% using a twofold increased transfer

rate at the first event of migration. In addition, compared to the original bandwidth of the

MiGrror technique, the migration overhead decreases by 19% using a fivefold increased

transfer rate at the first event of migration. Migration overhead reduction for a tenfold

increased transfer rate at the first migration event is 21 percent. These results indicate

that, despite increasing bandwidth for a period of time during migration, we can reduce

migration overhead, and this benefit should be considered when employing

the bandwidth allocation strategy.

Figure 5.4 Comparison of the MiGrror migration method with and without the use

of bandwidth strategy (light green: MiGrror without bandwidth strategy, dark

green: increase transfer rate for entire migration by %10, greys: MiGrror using

bandwidth strategy; %15, %20, and %25 increase transfer rate only during the first

and last migration stages) (left (A): Downtime, middle (B): Migration Time, right

(C): Migration Overhead).

Figure 5.4 shows another example of the proposed strategy's strength. The light green

bars show the results of MiGrror, while the dark green bars show what happens when

10% more bandwidth is assigned to each container for the entire migration duration. The

127

grey bars represent bandwidth increases of 15%, 20%, and 25% for only the initial and

final migration stages. The plots show that bandwidth utilization increased as downtime,

migration time, and migration overhead decreased when the proposed strategy was used.

For example, when there is a 20% increase in bandwidth for the initial and final stages of

migration, 50% of containers require simultaneous migration. Bandwidth utilization

increases as the proportion of containers requiring simultaneous migration decreases.

This means that the better the performance, the lower the percentage of available

bandwidth for the initial and final migration stages.

Figure 5.5 Comparison of the MiGrror migration method with and without the use

of bandwidth strategy (light green: MiGrror without bandwidth strategy, greys:

MiGrror using bandwidth strategy; %15, %20, and %25 increase transfer rate only

during the first and last migration stages, and decrease transfer rate during middle

migration stages by %10) (left (A): Downtime, middle (B): Migration Time, right

(C): Migration Overhead).

Another example of the proposed strategy's strength is shown in figure 5.5. The light

green bars represent the MiGrror results. The grey bars represent bandwidth increases of

15%, 20%, and 25% for only the initial and final migration stages, while the transfer rate

of the middle migration stages is reduced by 10% to free up bandwidth and is assigned to

the initial and final migration stages. Again, the plots show that bandwidth utilization

increased when the proposed strategy was used while downtime, migration time, and

migration overhead decreased when compared to the results of the original bandwidth.

128

For example, when there is a 20% increase in bandwidth for the initial and final stages of

migration, 50% of containers require simultaneous migration. Bandwidth utilization

increases as the proportion of containers requiring simultaneous migration decreases.

This means that the better the performance, the lower the percentage of available

bandwidth for the initial and final migration stages.

5.5.3 Results using Synthesized Data

This section presents the performance of the proposed strategy based on the given

parameters using synthesized parameter values, which include container size, memory

dirtying rate, and transfer rate. This section demonstrates the contrast between using the

proposed bandwidth strategy compared to the original bandwidth by employing various

input parameter values. Further details regarding these values will be provided in this

section. Figure 5.6 illustrates how various rates of increased bandwidth affect downtime

and migration time when using the MiGrror migration method. The container size is fixed

at 200 𝑀𝐵. According to the results, increasing bandwidth rates reduce MiGrror

downtime by the factor of increased bandwidth. When the downtime is 10 𝑚𝑠, for

instance, doubling the last event's transfer rate (bandwidth) reduces the downtime to 5

𝑚𝑠. The bandwidth strategy has a non-linear effect on MiGrror migration time. For

example, when using a 2𝑥 transfer rate than the original transfer rate during the migration

first event, the reduction is 12.57% at a 0.025 𝜆𝑖,𝑗 rate, but this drops to a 7.51%

reduction at a 0.4 𝜆𝑖,𝑗 rate.

These results indicate that a bandwidth strategy can significantly reduce downtime

with minimal additional bandwidth consumption. This strategy also reduces migration

time, which varies according to the parameters. In addition, with this strategy, the

doubled bandwidth of the first migration event lasts 3.66 percent of the entire migration

process at a 0.5 𝜆𝑖,𝑗 rate and 7.14 percent at a 0.25 𝜆𝑖,𝑗 rate. These findings indicate that

we require double the bandwidth to achieve the stated results in only 3.66 to 7.14 percent

129

of the total migration time at a 0.025-0.5 𝜆𝑖,𝑗 rate. It gets even better when we see a

fivefold and tenfold bandwidth reduction of 11.49-16.33 percent and 12.82-17.58

percent, respectively. The first event of fivefold and tenfold increased bandwidth lasts

1.58-3.08 and 0.84-1.65 percent of the entire migration process. The results also indicate

that as the bandwidth of the initial migration event increases, the migration time

decreases in a nonlinear fashion. For instance, a twofold transfer rate reduces migration

time by 12.57 percent at the initial event, while a tenfold transfer rate reduces it by 17.58

percent. Moreover, from a different perspective, the period required to maintain a twofold

transfer rate in the twofold case is 7.13 percent of the entire migration process, whereas

the tenfold case requires only 1.65 percent of the entire migration process.

The bandwidth strategy also has a non-linear effect on MiGrror migration overhead.

For instance, when using a 2𝑥 transfer rate instead of the original transfer rate during the

migration first event, the reduction is 1.61% at a 0.025 𝜆𝑖,𝑗 rate, but this increases to an

8.22% reduction at a 0.4 𝜆𝑖,𝑗 rate. The results of the increased bandwidth strategy show

that the bandwidth usage is reduced compared to when using the original bandwidth. This

means even though we increase the bandwidth for a short period, we decrease the

overall bandwidth usage. This leads to a better bandwidth utilization. Fig. 6 shows that

when the migration first event uses a twofold transfer rate rather than the original transfer

rate, and the 𝜆𝑖,𝑗 rate is less than 0.175, the migration overhead is greater than the

overhead decrement using the bandwidth strategy. However, for higher 𝜆𝑖,𝑗 rates, the

bandwidth strategy results in lower total migration overhead, taking into account the

amount of increased bandwidth during the migration process as well as the amount of

reduction by the bandwidth strategy. For example, using a 2𝑥 transfer rate compared to

the original transfer rate during the first migration event reduces the migration overhead

by 8.70% at a 0.5 𝜆𝑖,𝑗 rate, while the first migration event only lasts 4.4% of the total

migration time. This data indicates that, in some cases, despite temporarily increasing the

bandwidth during migration, the overall migration overhead is less than when using the

130

original bandwidth. Therefore, this advantage should be considered when employing the

bandwidth allocation strategy.

Figure 5.6 Comparison of the MiGrror migration method with and without the use

of bandwidth strategy (red: MiGrror, greys: MiGrror using bandwidth strategy; 2x,

5x, and 10x: twofold, fivefold, and tenfold transfer rate only during the first and last

migration events) (left (A): downtime, middle (B): Migration time, right (C):

Migration Overhead).

131

This strategy is ideal for latency-sensitive mobile IoT applications and those that

require rapid migration, such as users with high-speed mobility. These users require a

swift migration from one MEC node to another because the user speed does not permit a

slow migration since there are data to transfer before the user leaves the MEC range, and

they risk an incomplete migration.

Figure 5.7 Comparison of the MiGrror migration method with the use of bandwidth

strategy with twofold transfer rate only during the first migration event (green:

Migration Overhead Reduction, purple: Percentage of the first MiGrror event).

Figure 5.7 illustrates how and when we can transfer less data in order to save network

traffic. The intersection of two lines to the right of the figure indicates that with higher

Lambda, the transferred data is reduced in comparison to the original bandwidth. This

diagram gives network designers a good idea of how to design their infrastructure

sustainably with less network traffic.

5.6 Summary

This Chapter employs the MiGrror migration method. The nature of the MiGrror

migration method introduced in Chapter 3 requires using non-average parameter values

132

in models. We were able to consider realistic values for each parameter using MiGrror

since we used non-average parameter values for MiGrror models in Chapter 4, unlike

other research that only uses average parameter values. As a result, we were able to

develop a novel bandwidth allocation strategy that reduces downtime and migration time

while transferring less data than traditional approaches. In addition, we investigate the

optimal time to increase the transfer rate for the increased bandwidth allocation strategy

during both the initial migration event to reduce migration time and during the final

migration event to reduce downtime. As a result of utilizing the proposed strategy, we

reduced downtime and migration time.

133

Chapter 6

6 Conclusions and Future Directions

This chapter concludes the thesis by summarizing the works and principal

contributions. It also highlights and discusses future research directions to improve edge

computing concepts.

6.1 Summary of Contributions

The Internet of Things (IoT) has become a vital component of everyday life due to the

perpetual evolution of software and hardware technologies and the widespread

availability of the Internet. The Internet of Things involves a wide range of application

scenarios with various resource requirements, including computationally intensive or

latency-sensitive ones. As a distributed computing paradigm, edge computing involves

including remote servers in addition to those located close to IoT devices. Thus,

particularly for mobile users, it provides heterogeneous resources to support a wide

variety of applications. It has already attracted considerable interest from both industry

and academia. However, with the advent of modern applications, the demand for latency-

sensitive and real-time responses is becoming increasingly unavoidable. The mobility of

IoT devices increases this demand. According to existing research, current migration

methods cannot satisfy the latency requirements of mission-critical applications. Edge

computing migration requires additional research to satisfy the demand for rapid

134

response, availability, and continuity of services for users. Since they are fundamentally

designed for cloud applications, these methods cannot meet the latency and availability

requirements for mobile IoT devices. This thesis focused on modifying and developing

new migration methods, models, and strategies to overcome the stated limitations as an

alternative to current migration methods in highly distributed and dynamic edge

computing environments.

Chapter 1 provides a high-level overview of edge computing migration.

Subsequently, critical challenges associated with edge computing migration are

highlighted and explained. This chapter also addressed the research questions addressed

in this thesis.

Chapter 2 provides the existing migration techniques for IoT applications in edge

computing from different perspectives, including traditional migration techniques, how

downtime and migration time were reduced in other research, single and multiple

migrations, and migration models. Then, a survey of the recent literature is provided,

considering each perspective. Finally, the limitations and research gaps of each

perspective are described.

Chapter 3 presents a novel migration technique that reduces downtime and migration

time in edge computing environments. Our findings show that MiGrror performs well

when used to support mobile IoT applications, particularly when latency is critical. These

results enable delay-sensitive applications that require low latency to run smoothly during

migration. First, a comparison of MiGrror and pre-copy methods is presented. Second, a

MiGrror workflow is proposed. Following that, two algorithms are presented, one for the

source-side edge node and one for the destination-side edge node. The results are then

discussed.

Chapter 4 analyzes the performance of the MiGrror migration method and the pre-

copy live migration method when migrating heterogeneous multiple VMs/containers. In

this Chapter, we use non-average parameter values as well as traditional average

135

parameter values for downtime, migration time, and migration overhead. This Chapter

demonstrates how MiGrror can improve user service continuity and availability. This is

accomplished using non-average values for various parameters, allowing us to better

understand the migration process and produce more accurate results. This Chapter shows

how using only average parameter values in migration can result in inaccurate results.

Initially, the pre-copy mathematical model was examined. The non-average MiGrror

downtime, migration time, and migration overhead models were then presented. Finally,

we evaluated the performance of the models utilizing both a dataset and synthesized data.

Chapter 5 puts forward a novel bandwidth allocation strategy for migrating multiple

services in edge computing environments. The non-average MiGrror migration model

provides a better understanding of the migration process, allowing us to adjust the

bandwidth based on migration timing. In this Chapter, we reduced downtime, migration

time, and migration overhead by better utilizing the bandwidth. Initially, we exemplified

the problem. We subsequently presented the bandwidth allocation strategy for the

purpose of migrating multiple services. Finally, we conducted experiments and utilized

synthesized data to illustrate the efficacy of the strategy.

The preceding chapters share several migration techniques, models, and strategies

in edge computing environments, which is a timely contribution to the state-of-the-art.

6.2 Future Research Directions

This thesis addressed several challenges and limitations associated with the migration

of IoT applications in edge computing environments. However, edge computing

paradigms can be improved further by addressing several key issues that require

additional research. Figure 6.1 provides an overview of the future directions discussed in

this section.

136

Figure 6.1 Summary of future research directions.

6.2.1 Asynchronous MiGrror – Generalizing Migration Methods

MiGrror migration method rapidly synchronizes the source and destination edge nodes

when dirty memory becomes available. Consequently, the MiGrror method improves

service availability. Meanwhile, the pre-copy synchronizes the source and destination

edge nodes, typically 10-30 times during each migration procedure. As a result, MiGrror

137

is very fast for some applications, e.g., backup/restore and online banking applications,

that do not require real-time or quick response time, and pre-copy may need to be faster.

Asynchronous synchronization (Async MiGrror) could be developed for these situations

based on various migration parameters such as time periods, amount of dirty memory

generated, data transfer amount in each data transmission, and other factors such as

distance between the device and the edge node. It could also be a combination of several

parameters that determine when it is appropriate for a scenario to transmit data during the

migration procedure. The use of various parameters to decide when to transfer data

during migration can be achieved by generalizing both MiGrror and pre-copy methods

that can be customized to meet the needs of the service. These requirements include not

only the "time periods" parameter used in the pre-copy but also any parameter that affects

performance and available resources.

6.2.2 Stateless MiGrror

A MiGrror extension could be used in stateless migration. Since stateless containers do

not need to maintain states, they can be replicated by cloning or mirroring from the

source node or cloud to the potential destination nodes without requiring migration.

However, some data may still be attached to containers, which those containers require in

order to preserve the user's data.

6.2.3 Mirror to Multiple Destinations

Using MiGrror and mirroring from a source to multiple potential destination nodes

should also be advantageous when the source is unsure of the succeeding possible node to

migrate to or when the application requires collaboration with more than one node to

achieve higher performance. This is also advantageous when multiple edge nodes use the

same container.

138

6.2.4 MiGrror Integration with Other Techniques

Since the MiGrror migration method is an alternative to the pre-copy, integrating

MiGrror with existing ML and non-ML techniques can result in novel strategies to reduce

downtime, delay, and migration time even further. As an example, the MiGrror model

can be integrated with other migration approaches, such as that described in [29], using

compression for the migration model to improve accuracy. In addition, the new migration

model can be integrated with ML-based techniques to provide a detailed view of

expected outputs. In another example, the new MiGrror model with non-average

parameter values can improve output precision and reduce migration times for multiple

containers of the research described in [14].

6.2.5 Non-average Models

This thesis would lead to future research exploring models using non-average parameter

values in order to better understand and optimize migration parameters using the non-

average parameter values. Most current migration models assume average inputs, which

can make models less effective in real-world scenarios. Furthermore, designing and

working with non-average models is more challenging than working with current models

that use average inputs and require additional research.

6.2.6 Optimize both Downtime and Migration Time for Multi-

containerized Applications

Current research is focused only on optimizing migration times for multiple services. The

proposed MiGrror model can be used to dynamically optimize both downtime and

migration times in multi-containerized (and multi-VM) environments using non-average

parameter values, unlike previous research that only focused on optimizing migration

139

times using average parameter values. This optimization could be accomplished by

dynamically modifying the allocated transfer rate for multiple services.

6.2.7 Bandwidth Allocation Strategy Integration with Other

Techniques

The proposed bandwidth allocation strategy described in this thesis can also be

incorporated into other approaches, such as machine learning techniques, to achieve even

higher performance than current techniques.

6.2.8 Network Traffic Reduction

It could be investigated whether using the proposed bandwidth strategy can use less

bandwidth during the migration and achieve the same results as when the original

bandwidth is used without employing a bandwidth strategy throughout the migration.

6.2.9 Load Balancing and Cloud Computing

The MiGrror method, models, and bandwidth strategy could be investigated for use in

load balancing in edge networks and cloud servers. Current migration techniques for load

balancing require supporting applications with fast response times. As a result, in an edge

environment, some applications may require service migration from one edge node to

another to balance the load, with or without considering mobility. Those applications that

require a quick response can benefit from the MiGrror migration method, models, and

bandwidth strategy.

140

6.2.10 Energy Consumption

It could be investigated whether using the proposed migration method, model, and

bandwidth strategy can use less or more energy during the migration, and the results

could be compared with the pre-copy migration method.

6.2.11 Inter-Vendors Migration

It might be examined while shifting between vendor partners. Several challenges, such as

privacy and security, must be addressed when migrating between different edge

computing environments. Furthermore, both parties should be aware of the protocols.

6.3 Final Remarks

The edge computing paradigm has evolved into the digital world's backbone,

allowing IoT-driven solutions to be deployed for various use cases, such as healthcare,

transportation, science, and entertainment, just to mention a few. To effectively utilize the

potential of edge computing, efficient and dynamic migration methods of mobile IoT

applications are vital, affecting user QoE. In this thesis, we investigated how to migrate

services efficiently for the smooth execution of heterogeneous IoT applications across

distributed edge servers. The migration method, algorithms, mathematical models, and

strategy proposed in this thesis reduce downtime and migration time of mobile IoT

applications while also improving user QoE. The research presented in this thesis on the

migration of mobile IoT applications will enable edge service providers to perform

migration successfully and efficiently at scale in highly heterogeneous, dynamic, and

complex edge computing environments. Furthermore, the findings of this research can

help to advance the innovations and developments of IoT and edge computing systems.

141

Bibliography

[1] R. Singh, R. Sukapuram, and S. Chakraborty, ‘A survey of mobility-aware

Multi-access Edge Computing: Challenges, use cases and future

directions’, Ad Hoc Networks, vol. 140, p. 103044, Mar. 2023, doi:

10.1016/j.adhoc.2022.103044.

[2] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, and F. Longo, ‘Design

and evaluation of a fog platform supporting device mobility through

container migration’, Pervasive Mob Comput, vol. 74, p. 101415, 2021,

doi: https://doi.org/10.1016/j.pmcj.2021.101415.

[3] S. M. Salman, T. A. Sitompul, A. V. Papadopoulos, and T. Nolte, ‘Fog

Computing for Augmented Reality: Trends, Challenges and Opportunities’,

in 2020 IEEE International Conference on Fog Computing (ICFC), IEEE,

Apr. 2020, pp. 56–63. doi: 10.1109/ICFC49376.2020.00017.

[4] K. Rao, G. Coviello, W.-P. Hsiung, and S. Chakradhar, ‘ECO: Edge-Cloud

Optimization of 5G applications’, in 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), IEEE,

May 2021, pp. 649–659. doi: 10.1109/CCGrid51090.2021.00078.

[5] O. Oleghe, ‘Container Placement and Migration in Edge Computing:

Concept and Scheduling Models’, IEEE Access, vol. 9, pp. 68028–68043,

2021, doi: 10.1109/ACCESS.2021.3077550.

[6] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘A Survey on Service Migration in

Mobile Edge Computing’, IEEE Access, vol. 6, pp. 23511–23528, 2018,

doi: 10.1109/ACCESS.2018.2828102.

[7] S. Kekki et al., ‘MEC in 5G networks’, European Telecommunications

Standards Institute (ETSI), no. 28. pp. 1–28, Jun. 2018. Accessed: Nov. 26,

2022. [Online]. Available:

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G

_FINAL.pdf

[8] F. Giust et al., ‘MEC Deployments in 4G and Evolution Towards 5G’,

European Telecommunications Standards Institute (ETSI), no. 24. pp. 1–

24, Feb. 2018. Accessed: Nov. 26, 2022. [Online]. Available:

https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp24_mec_deploym

ent_in_4g_5g_final.pdf

[9] D. Sabella, ‘ETSI MEC Standard Explained – Part II’, IEEE

Communications Society. Accessed: Nov. 26, 2022. [Online]. Available:

142

https://techblog.comsoc.org/2021/12/18/etsi-mec-standard-explained-part-

ii/

[10] D. Sabella and A. J. Weissberger, ‘Multi-access Edge Computing (MEC)

Market, Applications and ETSI MEC Standard-Part I’, IEEE

Communications Society. Accessed: Nov. 26, 2022. [Online]. Available:

https://techblog.comsoc.org/2021/12/15/multi-access-edge-computing-

mec-market-applications-and-technology-part-i/

[11] N. Verba, K.-M. Chao, A. James, D. Goldsmith, X. Fei, and S.-D. Stan,

‘Platform as a service gateway for the Fog of Things’, Advanced

Engineering Informatics, vol. 33, pp. 243–257, Aug. 2017, doi:

10.1016/j.aei.2016.11.003.

[12] M. Goudarzi, M. Palaniswami, and R. Buyya, ‘Scheduling IoT

Applications in Edge and Fog Computing Environments: A Taxonomy and

Future Directions’, ACM Comput Surv, vol. 55, no. 7, pp. 1–41, Jul. 2023,

doi: 10.1145/3544836.

[13] W. Zhang, L. Chen, J. Luo, and J. Liu, ‘A two-stage container management

in the cloud for optimizing the load balancing and migration cost’, Future

Generation Computer Systems, vol. 135, pp. 303–314, Oct. 2022, doi:

10.1016/j.future.2022.05.002.

[14] G. Singh and A. K. Singh, ‘Optimizing multi-VM migration by allocating

transfer and compression rate using Geometric Programming’, Simul

Model Pract Theory, vol. 106, p. 102201, Jan. 2021, doi:

10.1016/j.simpat.2020.102201.

[15] A. Satpathy, M. N. Sahoo, A. Mishra, B. Majhi, J. J. P. C. Rodrigues, and

S. Bakshi, ‘A Service Sustainable Live Migration Strategy for Multiple

Virtual Machines in Cloud Data Centers’, Big Data Research, vol. 25, p.

100213, Jul. 2021, doi: 10.1016/j.bdr.2021.100213.

[16] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, ‘Migration Modeling

and Learning Algorithms for Containers in Fog Computing’, IEEE Trans

Serv Comput, vol. 12, no. 5, pp. 712–725, Sep. 2019, doi:

10.1109/TSC.2018.2827070.

[17] T. He, A. N. Toosi, and R. Buyya, ‘Performance evaluation of live virtual

machine migration in SDN-enabled cloud data centers’, J Parallel Distrib

Comput, vol. 131, pp. 55–68, Sep. 2019, doi: 10.1016/j.jpdc.2019.04.014.

[18] S. Maheshwari, S. Choudhury, I. Seskar, and D. Raychaudhuri, ‘Traffic-

Aware Dynamic Container Migration for Real-Time Support in Mobile

Edge Clouds’, in 2018 IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), IEEE, Dec. 2018, pp.

1–6. doi: 10.1109/ANTS.2018.8710163.

143

[19] A. Satpathy, S. K. Addya, A. K. Turuk, B. Majhi, and G. Sahoo, ‘Crow

search based virtual machine placement strategy in cloud data centers with

live migration’, Computers & Electrical Engineering, vol. 69, pp. 334–350,

Jul. 2018, doi: 10.1016/j.compeleceng.2017.12.032.

[20] M. E. Elsaid, A. Shawish, and C. Meinel, ‘Enhanced Cost Analysis of

Multiple Virtual Machines Live Migration in VMware Environments’, in

2018 IEEE 8th International Symposium on Cloud and Service Computing

(SC2), IEEE, Nov. 2018, pp. 16–23. doi: 10.1109/SC2.2018.00010.

[21] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu, ‘A new technique for

efficient live migration of multiple virtual machines’, Future Generation

Computer Systems, vol. 55, pp. 74–86, Feb. 2016, doi:

10.1016/j.future.2015.09.005.

[22] H. Liu and B. He, ‘VMbuddies: Coordinating Live Migration of Multi-Tier

Applications in Cloud Environments’, IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 4, pp. 1192–1205, Apr. 2015, doi:

10.1109/TPDS.2014.2316152.

[23] M. Forsman, A. Glad, L. Lundberg, and D. Ilie, ‘Algorithms for automated

live migration of virtual machines’, Journal of Systems and Software, vol.

101, pp. 110–126, Mar. 2015, doi: 10.1016/j.jss.2014.11.044.

[24] W. Cerroni, ‘Network performance of multiple virtual machine live

migration in cloud federations’, Journal of Internet Services and

Applications, vol. 6, no. 6, pp. 1–20, Dec. 2015, doi: 10.1186/s13174-015-

0020-x.

[25] M. Schneider, J. Rambach, and D. Stricker, ‘Augmented reality based on

edge computing using the example of remote live support’, in 2017 IEEE

International Conference on Industrial Technology (ICIT), IEEE, Mar.

2017, pp. 1277–1282. doi: 10.1109/ICIT.2017.7915547.

[26] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,

‘Fog Computing: A Comprehensive Architectural Survey’, IEEE access,

vol. 8, pp. 69105–69133, 2020, doi: 10.1109/ACCESS.2020.2983253.

[27] C. Puliafito et al., ‘MobFogSim: Simulation of mobility and migration for

fog computing’, Simul Model Pract Theory, vol. 101, pp. 1–25, 2020, doi:

https://doi.org/10.1016/j.simpat.2019.102062.

[28] A. Rezazadeh, D. Abednezhad, and H. Lutfiyya, ‘MiGrror: Mitigating

Downtime in Mobile Edge Computing, An Extension to Live Migration’,

Procedia Comput Sci, vol. 203, pp. 41–50, 2022, doi:

10.1016/j.procs.2022.07.008.

[29] L. Ma, S. Yi, N. Carter, and Q. Li, ‘Efficient Live Migration of Edge

Services Leveraging Container Layered Storage’, IEEE Trans Mob

144

Comput, vol. 18, no. 9, pp. 2020–2033, Sep. 2019, doi:

10.1109/TMC.2018.2871842.

[30] R. Das and S. Sidhanta, ‘LIMOCE: Live Migration of Containers in the

Edge’, in 2021 IEEE/ACM 21st International Symposium on Cluster,

Cloud and Internet Computing (CCGrid), IEEE, May 2021, pp. 606–609.

doi: 10.1109/CCGrid51090.2021.00070.

[31] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck, ‘Fast

Service Migration in 5G Trends and Scenarios’, IEEE Netw, vol. 34, no. 2,

pp. 92–98, 2020, doi: 10.1109/MNET.001.1800289.

[32] M. Pomalo, V. T. Le, N. El Ioini, C. Pahl, and H. R. Barzegar, ‘Service

Migration in Multi-domain Cellular Networks based on Machine Learning

Approaches’, in 2020 7th International Conference on Internet of Things:

Systems, Management and Security (IOTSMS), IEEE, Dec. 2020, pp. 1–8.

doi: 10.1109/IOTSMS52051.2020.9340223.

[33] Z. Zhou, X. Li, X. Wang, Z. Liang, G. Sun, and G. Luo, ‘Hardware-

assisted Service Live Migration in Resource-limited Edge Computing

Systems’, in 2020 57th ACM/IEEE Design Automation Conference (DAC),

IEEE, Jul. 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218677.

[34] R. Yang, H. He, and W. Zhang, ‘Multitier Service Migration Framework

Based on Mobility Prediction in Mobile Edge Computing’, Wirel Commun

Mob Comput, vol. 2021, pp. 1–13, 2021, doi: 10.1155/2021/6638730.

[35] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, ‘Live

Service Migration in Mobile Edge Clouds’, IEEE Wirel Commun, vol. 25,

no. 1, pp. 140–147, Feb. 2018, doi: 10.1109/MWC.2017.1700011.

[36] J. Jeong, J. Ha, and M. Kim, ‘ReSeT: Reducing the Service Disruption

Time of Follow Me Edges over Wide Area Networks’, in 2019 22nd

Conference on Innovation in Clouds, Internet and Networks and

Workshops (ICIN), IEEE, Feb. 2019, pp. 159–166. doi:

10.1109/ICIN.2019.8685918.

[37] M. A. Altahat, A. Agarwal, N. Goel, and M. Zaman, ‘Analysis and

Comparison of Live Virtual Machine Migration Methods’, in 2018 IEEE

6th International Conference on Future Internet of Things and Cloud

(FiCloud), IEEE, Aug. 2018, pp. 251–258. doi:

10.1109/FiCloud.2018.00044.

[38] M. A. Altahat, A. Agarwal, N. Goel, and J. Kozlowski, ‘Dynamic Hybrid-

copy Live Virtual Machine Migration: Analysis and Comparison’,

Procedia Comput Sci, vol. 171, pp. 1459–1468, 2020, doi:

10.1016/j.procs.2020.04.156.

[39] M. A. Altahat, A. Agarwal, N. Goel, and M. Zaman, ‘Neural Network

Based Regression Model for Virtual Machines Migration Method

145

Selection’, in 2021 IEEE International Conference on Communications

Workshops (ICC Workshops), IEEE, Jun. 2021, pp. 1–6. doi:

10.1109/ICCWorkshops50388.2021.9473749.

[40] Z. Wang, D. Sun, G. Xue, S. Qian, G. Li, and M. Li, ‘Ada-Things: An

adaptive virtual machine monitoring and migration strategy for internet of

things applications’, J Parallel Distrib Comput, vol. 132, pp. 164–176, Oct.

2019, doi: 10.1016/j.jpdc.2018.06.009.

[41] E. Baccarelli, M. Scarpiniti, and A. Momenzadeh, ‘Fog-Supported Delay-

Constrained Energy-Saving Live Migration of VMs Over MultiPath

TCP/IP 5G Connections’, IEEE Access, vol. 6, pp. 42327–42354, 2018,

doi: 10.1109/ACCESS.2018.2860249.

[42] U. Mandal, P. Chowdhury, M. Tornatore, C. U. Martel, and B. Mukherjee,

‘Bandwidth Provisioning for Virtual Machine Migration in Cloud: Strategy

and Application’, IEEE Transactions on Cloud Computing, vol. 6, no. 4,

pp. 967–976, Oct. 2018, doi: 10.1109/TCC.2016.2545673.

[43] C.-H. Hong and B. Varghese, ‘Resource Management in Fog/Edge

Computing: A Survey on Architectures, Infrastructure, and Algorithms’,

ACM Comput Surv, vol. 52, no. 5, pp. 1–37, Sep. 2020, doi:

10.1145/3326066.

[44] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, ‘Data Security and

Privacy-Preserving in Edge Computing Paradigm: Survey and Open

Issues’, IEEE Access, vol. 6, pp. 18209–18237, 2018, doi:

10.1109/ACCESS.2018.2820162.

[45] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, ‘A survey on

computation offloading modeling for edge computing’, Journal of Network

and Computer Applications, vol. 169, p. 102781, 2020, doi:

https://doi.org/10.1016/j.jnca.2020.102781.

[46] D. Liu, Z. Yan, W. Ding, and M. Atiquzzaman, ‘A Survey on Secure Data

Analytics in Edge Computing’, IEEE Internet Things J, vol. 6, no. 3, pp.

4946–4967, 2019, doi: 10.1109/JIOT.2019.2897619.

[47] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, ‘Vehicular Edge

Computing and Networking: A Survey’, Mobile Networks and

Applications, vol. 26, no. 3, pp. 1145–1168, 2021, doi: 10.1007/s11036-

020-01624-1.

[48] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and C. S.

Hong, ‘Edge-Computing-Enabled Smart Cities: A Comprehensive Survey’,

IEEE Internet Things J, vol. 7, no. 10, pp. 10200–10232, 2020, doi:

10.1109/JIOT.2020.2987070.

[49] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,

‘Survey on Multi-Access Edge Computing for Internet of Things

146

Realization’, IEEE Communications Surveys & Tutorials, vol. 20, no. 4,

pp. 2961–2991, 2018, doi: 10.1109/COMST.2018.2849509.

[50] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, ‘Integrated Blockchain

and Edge Computing Systems: A Survey, Some Research Issues and

Challenges’, IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp.

1508–1532, 2019, doi: 10.1109/COMST.2019.2894727.

[51] Q. Pham et al., ‘A Survey of Multi-Access Edge Computing in 5G and

Beyond: Fundamentals, Technology Integration, and State-of-the-Art’,

IEEE Access, vol. 8, pp. 116974–117017, 2020, doi:

10.1109/ACCESS.2020.3001277.

[52] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, ‘A Survey

on Mobile Augmented Reality With 5G Mobile Edge Computing:

Architectures, Applications, and Technical Aspects’, IEEE

Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1160–1192, 2021,

doi: 10.1109/COMST.2021.3061981.

[53] A. Yousefpour et al., ‘All one needs to know about fog computing and

related edge computing paradigms: A complete survey’, Journal of Systems

Architecture, vol. 98, pp. 289–330, 2019, doi:

https://doi.org/10.1016/j.sysarc.2019.02.009.

[54] H. Elazhary, ‘Internet of Things (IoT), mobile cloud, cloudlet, mobile IoT,

IoT cloud, fog, mobile edge, and edge emerging computing paradigms:

Disambiguation and research directions’, Journal of Network and

Computer Applications, vol. 128, pp. 105–140, 2019, doi:

https://doi.org/10.1016/j.jnca.2018.10.021.

[55] P. Zhang, M. Zhou, and G. Fortino, ‘Security and trust issues in Fog

computing: A survey’, Future Generation Computer Systems, vol. 88, pp.

16–27, 2018, doi: https://doi.org/10.1016/j.future.2018.05.008.

[56] C. Clark et al., ‘Live Migration of Virtual Machines’, in Proceedings of the

2nd Conference on Symposium on Networked Systems Design and

Implementation - Volume 2, in NSDI’05. USA: USENIX Association,

2005, pp. 273–286.

[57] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘Fog computing and its role

in the internet of things’. Association for Computing Machinery, pp. 13–

16, 2012. doi: 10.1145/2342509.2342513.

[58] ETSI GR MEC 031 V2.1.1 (2020-10), ‘Multi-access Edge Computing

(MEC) MEC 5G Integration’, European Telecommunications Standards

Institute (ETSI). pp. 1–47, 2020. Accessed: Nov. 26, 2022. [Online].

Available:

https://www.etsi.org/deliver/etsi_gr/MEC/001_099/031/02.01.01_60/gr_M

EC031v020101p.pdf

147

[59] I. Martinez, A. S. Hafid, and A. Jarray, ‘Design, Resource Management

and Evaluation of Fog Computing Systems: A Survey’, IEEE Internet

Things J, pp. 2494–2516, 2020, doi: 10.1109/JIOT.2020.3022699.

[60] P. S. Junior, D. Miorandi, and G. Pierre, ‘Stateful Container Migration in

Geo-Distributed Environments’, in 2020 IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), IEEE, Dec. 2020,

pp. 49–56. doi: 10.1109/CloudCom49646.2020.00005.

[61] M. Bonanni, F. Chiti, and R. Fantacci, ‘Mobile Mist Computing for the

Internet of Vehicles’, Internet Technology Letters, vol. 3, no. 6, pp. 1–6,

2020, doi: https://doi.org/10.1002/itl2.176.

[62] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A.

Puliafito, ‘Container Migration in the Fog: A Performance Evaluation’,

Sensors, vol. 19, no. 7, pp. 1–22, 2019, [Online]. Available:

https://www.mdpi.com/1424-8220/19/7/1488

[63] L. Conforti, A. Virdis, C. Puliafito, and E. Mingozzi, ‘Extending the QUIC

Protocol to Support Live Container Migration at the Edge’, in 2021 IEEE

22nd International Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM), IEEE, Jun. 2021, pp. 61–70. doi:

10.1109/WoWMoM51794.2021.00019.

[64] U. Deshpande, D. Chan, T.-Y. Guh, J. Edouard, K. Gopalan, and N. Bila,

‘Agile Live Migration of Virtual Machines’, in 2016 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), IEEE, May

2016, pp. 1061–1070. doi: 10.1109/IPDPS.2016.120.

[65] A. A. Majeed, P. Kilpatrick, I. Spence, and B. Varghese, ‘Modelling Fog

Offloading Performance’, in 2020 IEEE 4th International Conference on

Fog and Edge Computing (ICFEC), IEEE, May 2020, pp. 29–38. doi:

10.1109/ICFEC50348.2020.00011.

[66] M. V. Ngo, T. Luo, H. T. Hoang, and T. Q. S. Ouek, ‘Coordinated

Container Migration and Base Station Handover in Mobile Edge

Computing’, in GLOBECOM 2020 - 2020 IEEE Global Communications

Conference, IEEE, Dec. 2020, pp. 1–6. doi:

10.1109/GLOBECOM42002.2020.9322368.

[67] L. Ma, S. Yi, and Q. Li, ‘Efficient service handoff across edge servers via

docker container migration’. Association for Computing Machinery, p.

Article 11, 2017. doi: 10.1145/3132211.3134460.

[68] I. Farris, T. Taleb, H. Flinck, and A. Iera, ‘Providing ultra-short latency to

user-centric 5G applications at the mobile network edge’, Transactions on

Emerging Telecommunications Technologies, vol. 29, no. 4, pp. 1–14,

2018, doi: https://doi.org/10.1002/ett.3169.

148

[69] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino,

‘Virtualization and Migration at the Network Edge: An Overview’, in 2018

IEEE International Conference on Smart Computing (SMARTCOMP),

IEEE, Jun. 2018, pp. 368–374. doi: 10.1109/SMARTCOMP.2018.00031.

[70] R. de J. Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville, ‘Virtual

Network Functions Migration Cost: from Identification to Prediction’,

Computer Networks, vol. 181, pp. 1–16, 2020, doi:

https://doi.org/10.1016/j.comnet.2020.107429.

[71] M. Terneborg, J. K. Ronnberg, and O. Schelen, ‘Application Agnostic

Container Migration and Failover’, in 2021 IEEE 46th Conference on

Local Computer Networks (LCN), IEEE, Oct. 2021, pp. 565–572. doi:

10.1109/LCN52139.2021.9525029.

[72] M. R. Hines, U. Deshpande, and K. Gopalan, ‘Post-copy live migration of

virtual machines’, SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 14–26,

2009, doi: 10.1145/1618525.1618528.

[73] D. Fernando, J. Terner, K. Gopalan, and P. Yang, ‘Live Migration Ate My

VM: Recovering a Virtual Machine after Failure of Post-Copy Live

Migration’, in IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, IEEE, Apr. 2019, pp. 343–351. doi:

10.1109/INFOCOM.2019.8737452.

[74] M. Gundall, J. Stegmann, C. Huber, and H. D. Schotten, ‘Towards Organic

6G Networks: Virtualization and Live Migration of Core Network

Functions’, in Mobile Communication - Technologies and Applications;

25th ITG-Symposium, 2021, pp. 1–6. Accessed: Feb. 22, 2023. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9657178

[75] U. Deshpande and K. Keahey, ‘Traffic-sensitive Live Migration of Virtual

Machines’, Future Generation Computer Systems, vol. 72, pp. 118–128,

2017, doi: https://doi.org/10.1016/j.future.2016.05.003.

[76] S. Sahni and V. Varma, ‘A Hybrid Approach to Live Migration of Virtual

Machines’, in 2012 IEEE International Conference on Cloud Computing in

Emerging Markets (CCEM), IEEE, Oct. 2012, pp. 1–5. doi:

10.1109/CCEM.2012.6354587.

[77] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, ‘A Survey on Virtual Machine

Migration: Challenges, Techniques, and Open Issues’, IEEE

Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1206–1243, 2018,

doi: 10.1109/COMST.2018.2794881.

[78] M. Gundall, J. Stegmann, C. D. Huber, and H. D. Schotten, ‘Towards

Organic 6G Networks: Virtualization and Live Migration of Core Network

Functions’, ArXiv, vol. abs/2110.12737, 2021.

149

[79] K. Govindaraj, M. Saha, A. Artemenko, and A. Kirstaedter, ‘Investigation

of Uninterrupted Service Live Migration Using Software-Defined

Networking’, in 2019 International Conference on Networked Systems

(NetSys), IEEE, Mar. 2019, pp. 1–6. doi: 10.1109/NetSys.2019.8854521.

[80] A. Randazzo and I. Tinnirello, ‘Performance Analysis of Memory Cloning

Solutions in Mobile Edge Computing’, in 2018 Fifth International

Conference on Internet of Things: Systems, Management and Security,

IEEE, Oct. 2018, pp. 256–261. doi: 10.1109/IoTSMS.2018.8554666.

[81] Z. Lei, E. Sun, S. Chen, J. Wu, and W. Shen, ‘A Novel Hybrid-Copy

Algorithm for Live Migration of Virtual Machine’, Future Internet, vol. 9,

no. 3, pp. 1–13, 2017, [Online]. Available: https://www.mdpi.com/1999-

5903/9/3/37

[82] D. Sabella, A. Reznik, and R. Frazao, Multi-Access Edge Computing in

Action. CRC Press, 2019. doi: 10.1201/9780429056499.

[83] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, ‘Performance and energy

modeling for live migration of virtual machines’, in Proceedings of the

20th international symposium on High performance distributed computing,

New York, NY, USA: ACM, Jun. 2011, pp. 171–182. doi:

10.1145/1996130.1996154.

[84] C. Jo, Y. Cho, and B. Egger, ‘A machine learning approach to live

migration modeling’, in Proceedings of the 2017 Symposium on Cloud

Computing, New York, NY, USA: ACM, Sep. 2017, pp. 351–364. doi:

10.1145/3127479.3129262.

[85] M. M. Rajendra, M. Patra, and M. Srinivasan, ‘Optimal Rate and Distance

Based Bandwidth Slicing in UAV Assisted 5G Networks’, in ICC 2022 -

IEEE International Conference on Communications, IEEE, May 2022, pp.

1–6. doi: 10.1109/ICC45855.2022.9839047.

[86] A. Javed, J. Robert, K. Heljanko, and K. Främling, ‘IoTEF: A Federated

Edge-Cloud Architecture for Fault-Tolerant IoT Applications’, J Grid

Comput, vol. 18, no. 1, pp. 57–80, 2020, doi: 10.1007/s10723-019-09498-

8.

[87] A. V Dastjerdi and R. Buyya, ‘Fog Computing: Helping the Internet of

Things Realize Its Potential’, Computer (Long Beach Calif), vol. 49, no. 8,

pp. 112–116, 2016, doi: 10.1109/MC.2016.245.

[88] O. Debauche et al., ‘Towards Landslides Early Warning System With Fog

- Edge Computing And Artificial Intelligence’, Journal of Ubiquitous

Systems and Pervasive Networks, vol. 15, no. 02, pp. 11–17, Mar. 2021,

doi: 10.5383/JUSPN.15.02.002.

150

[89] J. Abdelaziza, M. Adda, and H. Mcheick, ‘An Architectural Model for Fog

Computing’, Journal of Ubiquitous Systems and Pervasive Networks, vol.

10, no. 1, pp. 21–25, Mar. 2018, doi: 10.5383/JUSPN.10.01.003.

[90] M. Chiang and T. Zhang, ‘Fog and IoT: An Overview of Research

Opportunities’, IEEE Internet Things J, vol. 3, no. 6, pp. 854–864, Dec.

2016, doi: 10.1109/JIOT.2016.2584538.

[91] C. Zhang and Z. Zheng, ‘Task migration for mobile edge computing using

deep reinforcement learning’, Future Generation Computer Systems, vol.

96, pp. 111–118, Jul. 2019, doi: 10.1016/j.future.2019.01.059.

[92] S. Moon, J. Park, and Y. Lim, ‘Task Migration Based on Reinforcement

Learning in Vehicular Edge Computing’, Wirel Commun Mob Comput, vol.

2021, pp. 1–10, May 2021, doi: 10.1155/2021/9929318.

[93] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, ‘Delay-

Aware Microservice Coordination in Mobile Edge Computing: A

Reinforcement Learning Approach’, IEEE Trans Mob Comput, vol. 20, no.

3, pp. 939–951, Mar. 2021, doi: 10.1109/TMC.2019.2957804.

[94] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, ‘iFogSim: A

toolkit for modeling and simulation of resource management techniques in

the Internet of Things, Edge and Fog computing environments’, Softw

Pract Exp, vol. 47, no. 9, pp. 1275–1296, 2017, doi: 10.1002/spe.2509.

[95] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.

Buyya, ‘CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning

algorithms’, Softw Pract Exp, vol. 41, no. 1, pp. 23–50, 2011, doi:

10.1002/spe.995.

[96] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, ‘SUMO –

Simulation of Urban MObility: An Overview’. ThinkMind, 2011. [Online].

Available: https://elib.dlr.de/71460/

[97] L. Codeca, R. Frank, and T. Engel, ‘Luxembourg SUMO Traffic (LuST)

Scenario: 24 hours of mobility for vehicular networking research’, in 2015

IEEE Vehicular Networking Conference (VNC), IEEE, Dec. 2015, pp. 1–8.

doi: 10.1109/VNC.2015.7385539.

[98] S. Panwar, ‘Breaking the millisecond barrier: Robots and self-driving cars

will need completely reengineered networks’, IEEE Spectr, vol. 57, no. 11,

pp. 44–49, 2020, doi: 10.1109/MSPEC.2020.9262144.

[99] M. Agiwal, A. Roy, and N. Saxena, ‘Next Generation 5G Wireless

Networks: A Comprehensive Survey’, IEEE Communications Surveys &

Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, doi:

10.1109/COMST.2016.2532458.

151

[100] B. Sonkoly et al., ‘Scalable edge cloud platforms for IoT services’, Journal

of Network and Computer Applications, vol. 170, pp. 1–18, 2020, doi:

https://doi.org/10.1016/j.jnca.2020.102785.

[101] S. Yangui, ‘A Panorama of Cloud Platforms for IoT Applications Across

Industries’, Sensors, vol. 20, no. 9, pp. 1–19, 2020, [Online]. Available:

https://www.mdpi.com/1424-8220/20/9/2701

[102] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov,

‘Microservices: The Journey So Far and Challenges Ahead’, IEEE Softw,

vol. 35, no. 3, pp. 24–35, May 2018, doi: 10.1109/MS.2018.2141039.

[103] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, ‘Experimental evaluation

of LXC container migration for cloudlets using multipath TCP’, Computer

Networks, vol. 164, p. 106900, Dec. 2019, doi:

10.1016/j.comnet.2019.106900.

[104] P. Kathiravelu, Z. Zaiman, J. Gichoya, L. Veiga, and I. Banerjee, ‘Towards

an internet-scale overlay network for latency-aware decentralized

workflows at the edge’, Computer Networks, vol. 203, p. 108654, Feb.

2022, doi: 10.1016/j.comnet.2021.108654.

[105] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘Mobile Edge

Computing A key technology towards 5G’, European Telecommunications

Standards Institute (ETSI), no. 11. pp. 1–16, Sep. 2015. Accessed: Sep. 09,

2022. [Online]. Available:

https://www.etsi.org/images/files/etsiwhitepapers/etsi_wp11_mec_a_key_t

echnology_towards_5g.pdf

[106] C. Li, C. Qianqian, and Y. Luo, ‘Low-latency edge cooperation caching

based on base station cooperation in SDN based MEC’, Expert Syst Appl,

vol. 191, p. 116252, Apr. 2022, doi: 10.1016/j.eswa.2021.116252.

[107] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, ‘Mobile Edge

Computing and Networking for Green and Low-Latency Internet of

Things’, IEEE Communications Magazine, vol. 56, no. 5, pp. 39–45, May

2018, doi: 10.1109/MCOM.2018.1700882.

[108] A. A. Mutlag, M. K. Abd Ghani, N. Arunkumar, M. A. Mohammed, and O.

Mohd, ‘Enabling technologies for fog computing in healthcare IoT

systems’, Future Generation Computer Systems, vol. 90, pp. 62–78, 2019,

doi: https://doi.org/10.1016/j.future.2018.07.049.

[109] U. Ramachandran, H. Gupta, A. Hall, E. Saurez, and Z. Xu, ‘A Case for

Elevating the Edge to be a Peer of the Cloud’, GetMobile: Mobile

Computing and Communications, vol. 24, no. 3, pp. 14–19, Jan. 2021, doi:

10.1145/3447853.3447859.

[110] A. Rezazadeh, D. Abednezhad, and H. Lutfiyya, ‘Hybrid-MiGrror: An

Extension to the Hybrid Live Migration to Support Mobility in Edge

152

Computing’, Journal of Ubiquitous Systems & Pervasive Networks, vol.

18, no. 1, pp. 39–48, 2023, doi: 10.5383/JUSPN.18.01.006.

[111] S. Aleyadeh, A. Moubayed, P. Heidari, and A. Shami, ‘Optimal Container

Migration/Re-Instantiation in Hybrid Computing Environments’, IEEE

Open Journal of the Communications Society, vol. 3, pp. 15–30, 2022, doi:

10.1109/OJCOMS.2022.3140272.

[112] A. Bhardwaj and C. Rama Krishna, ‘Efficient multistage bandwidth

allocation technique for virtual machine migration in cloud computing’,

Journal of Intelligent & Fuzzy Systems, vol. 35, no. 5, pp. 5365–5378, Nov.

2018, doi: 10.3233/JIFS-169819.

[113] A. Rezazadeh and H. Lutfiyya, ‘Multi-microservice migration modelling,

comparison, and potential in 5G/6G mobile edge computing: A non-

average parameter values approach’, arXiv:2305.10977 [cs.NI], 2023,

Accessed: May 17, 2023. [Online]. Available:

https://arxiv.org/abs/2305.10977

[114] J. Zhang, F. Ren, R. Shu, T. Huang, and Y. Liu, ‘Guaranteeing Delay of

Live Virtual Machine Migration by Determining and Provisioning

Appropriate Bandwidth’, IEEE Transactions on Computers, vol. 65, no. 9,

pp. 2910–2917, Sep. 2016, doi: 10.1109/TC.2015.2500560.

[115] J. Zhang, F. Ren, and C. Lin, ‘Delay guaranteed live migration of Virtual

Machines’, in IEEE INFOCOM 2014 - IEEE Conference on Computer

Communications, IEEE, Apr. 2014, pp. 574–582. doi:

10.1109/INFOCOM.2014.6847982.

[116] L. Chaufournier, P. Sharma, F. Le, E. Nahum, P. Shenoy, and D. Towsley,

‘Fast transparent virtual machine migration in distributed edge clouds’, in

Proceedings of the Second ACM/IEEE Symposium on Edge Computing,

New York, NY, USA: ACM, Oct. 2017, pp. 1–13. doi:

10.1145/3132211.3134445.

[117] S. Dharmaraj and P. Kavitha, ‘Cloud Network Communication

Performance Improvement Using a Stochastic Bandwidth Allocation and

Swarm Optimization Algorithm’, 2023, pp. 113–125. doi: 10.1007/978-

981-19-2538-2_11.

[118] A. Al-Najjar, S. Layeghy, and M. Portmann, ‘Pushing SDN to the end-host,

network load balancing using OpenFlow’, in 2016 IEEE International

Conference on Pervasive Computing and Communication Workshops

(PerCom Workshops), IEEE, Mar. 2016, pp. 1–6. doi:

10.1109/PERCOMW.2016.7457129.

[119] J. Zhang, E. Dong, J. Li, and H. Guan, ‘MigVisor: Accurate Prediction of

VM Live Migration Behavior using a Working-Set Pattern Model’, ACM

153

SIGPLAN Notices, vol. 52, no. 7, pp. 30–43, Sep. 2017, doi:

10.1145/3140607.3050753.

[120] A. Leivadeas, N. Pitaev, and M. Falkner, ‘Analyzing the Performance of

SD-WAN Enabled Service Function Chains Across the Globe with AWS’,

in Proceedings of the 2023 ACM/SPEC International Conference on

Performance Engineering, New York, NY, USA: ACM, Apr. 2023, pp.

125–135. doi: 10.1145/3578244.3583722.

[121] ‘CRIU’. [Online]. Available: https://criu.org/Docker

154

Appendix A: Bandwidth Strategy for

Pre-copy

This section presents the performance of the pre-copy migration with and without using

the proposed bandwidth strategy in Chapter 5 to reduce downtime and migration time of

multiple services.

Figure A.1 depicts the downtime, migration time, and migration overhead of the pre-

copy migration method with and without the increased bandwidth allocation strategy. As

shown in Figure A.1, we increase the bandwidth of the last migration round by a factor of

two, five, and ten compared to its original bandwidth. When compared to the initial

bandwidth results, the downtime for the pre-copy method that employs the bandwidth

strategy is 50% at twofold bandwidth, 20% at fivefold bandwidth, and 10% at tenfold

bandwidth. For instance, when the downtime is 320 𝑚𝑠 with the original bandwidth, it

drops to 160 𝑚𝑠 using double the bandwidth. Furthermore, the downtime decreases to 80

𝑚𝑠 and 40 𝑚𝑠, respectively, when bandwidth is increased by fivefold and tenfold

compared to the original bandwidth. We achieve these results while using the additional

bandwidth (additional transfer rate) for less than 2.5 percent of the total migration

duration.

Furthermore, as shown in Figure A.1, using the pre-copy technique with the increased

bandwidth allocation strategy reduces migration time between 21.99% and 35.31% using

a twofold increase in transfer rate only at the first migration round, compared to using the

initial bandwidth. In addition, compared to the original bandwidth of the pre-copy

technique, the migration time decreases between 37.31% and 56.51% using a fivefold

increased transfer rate at the first event of migration. Migration time reduction for a

tenfold increased transfer rate at the first migration event is between 42.90 and 63.57

percent.

155

Figure A.1 Comparison of the pre-copy migration method with and without the use of

bandwidth strategy (light green: pre-copy without bandwidth strategy - using original bandwidth,

greys: pre-copy using bandwidth strategy; 2x, 5x, and 10x: twofold, fivefold, and tenfold transfer

rate only during the first and last migration stages) (left (A): Downtime, middle (B): Migration Time,

right (C): Migration Overhead).

Because of the shorter migration time, resources at the source can be made more

quickly available to other containers, allowing more users and containers to be served

with higher performance while using the same available resources. Additionally, the

shorter migration time results in a reduction in migration overhead. The decreased

migration overhead is a result of fewer dirty memory transfers during the migration, as

the migration is shorter when using an increased bandwidth allocation strategy. The

source node must transfer fewer dirty memories, resulting in a reduction in migration

overhead. For example, compared to the original bandwidth of the pre-copy technique,

the migration overhead decreases by 17% using a twofold increased transfer rate at the

first event of migration. In addition, compared to the original bandwidth of the pre-copy

technique, the migration overhead decreases by 23% using a fivefold increased transfer

rate at the first event of migration. Migration overhead reduction for a tenfold increased

transfer rate at the first migration event is 24 percent. These results indicate that, despite

increasing bandwidth for a period of time during migration, we can reduce migration

overhead, and this benefit should be considered when employing the bandwidth

allocation strategy.

156

Figure A.2 Comparison of the pre-copy migration method with and without the use of

bandwidth strategy (light green: pre-copy without bandwidth strategy, dark green: increase transfer

rate for entire migration, greys: pre-copy using bandwidth strategy; %15, %20, and %25 increase

transfer rate only during the first and last migration stages) (left (A): Downtime, middle (B):

Migration Time, right (C): Migration Overhead).

Figure A.2 shows another example of the proposed strategy's strength. The light green

bars show the results of pre-copy using the original bandwidth, while the dark green bars

show what happens when 10% more bandwidth is assigned to each container for the

entire migration duration. The grey bars represent bandwidth increases of 15%, 20%, and

25% for only the initial and final migration stages. The plots show that bandwidth

utilization increased as downtime, migration time, and migration overhead decreased

when the proposed strategy was used. For example, when there is a 20% increase in

bandwidth for the initial and final stages of migration, 50% of containers require

simultaneous migration. Bandwidth utilization increases as the proportion of containers

requiring simultaneous migration decreases. This means that the better the performance,

the lower the percentage of available bandwidth for the initial and final migration stages.

Another example of the proposed strategy's strength is shown in Figure A.3. The light

green bars represent the pre-copy results using the original bandwidth. The grey bars

represent bandwidth increases of 15%, 20%, and 25% for only the initial and final

migration stages, while the transfer rate of the middle migration stages is reduced by 10%

to free up bandwidth and is assigned to the initial and final migration stages. Again, the

plots show that bandwidth utilization increased when the proposed strategy was used

157

while downtime, migration time, and migration overhead decreased when compared to

the results of the original bandwidth. For example, when there is a 20% increase in

bandwidth for the initial and final stages of migration, 50% of containers require

simultaneous migration. Bandwidth utilization increases as the proportion of containers

requiring simultaneous migration decreases. This means that the better the performance,

the lower the percentage of available bandwidth for the initial and final migration stages.

Figure A.3 Comparison of the pre-copy migration method with and without the use of

bandwidth strategy (light green: pre-copy without bandwidth strategy, greys: pre-copy using

bandwidth strategy; %15, %20, and %25 increase transfer rate only during the first and last

migration stages, and decrease transfer rate during middle migration stages by %10) (left (A):

Downtime, middle (B): Migration Time, right (C): Migration Overhead).

Figure A.4 depicts the most significant results. To generate this figure, we use the

bandwidth strategy to reduce total bandwidth by 10% (grey bars) and compare the results

to regular pre-copy using 100% bandwidth (light green bar). Even with less bandwidth,

the downtime is lower than the original pre-copy, as shown in Figure A.4. Furthermore,

the migration time is slightly shorter than when using the original pre-copy. The only

parameter that has increased is migration overhead, which has increased slightly. The

results of Figure A.4 show that, despite the bandwidth strategy's reduced bandwidth,

downtime and migration time are still lower than when using 100% bandwidth and the

original pre-copy.

158

Figure A.4 Comparison of the pre-copy migration method with and without the use of

bandwidth strategy (light green: pre-copy without bandwidth strategy, greys: pre-copy using

bandwidth strategy; %15, %20, and %25 increase transfer rate only during the first and last

migration stages, and decrease transfer rate during middle migration stages by %10) (left (A):

Downtime, middle (B): Migration Time, right (C): Migration Overhead).

159

Curriculum Vitae

Name: Arshin Rezazadeh

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 2023 Ph.D.

Iran University of Science and Technology

Tehran, Tehran, Iran

2008 M.Sc.

Shahid Chamran University of Ahvaz

Ahvaz, Khuzestan, Iran

2004 B.Sc.

Honors and Western Graduate Research Scholarship (WGRS)

Awards: 2018-2022

Best Paper Award, FNC 2022 conference

Invited submission to special issue of the International Journal of

Ubiquitous Systems and Pervasive Networks (for the FNC 2022

paper)

IEEE Globecom conference 2023 Travel Grant.

Related Work Graduate Research Assistant

Experience The University of Western Ontario

2018-2023

Graduate Teaching Assistant

The University of Western Ontario

2018-2023

160

Related Publications:

Arshin Rezazadeh, Hanan Lutfiyya “A Novel Sustainable Bandwidth Allocation

Strategy for Multiple Service Migration in 5G/6G Edge Computing,“ GLOBECOM

2023 - 2023 IEEE Global Communications Conference, IEEE, Dec. 2023, pp. 1211–

1217

Arshin Rezazadeh, Hanan Lutfiyya “Multi-microservice Migration Modelling,

Comparison, and Potential in 5G/6G Mobile Edge Computing: A Non-average

Parameter Values Approach,” IEEE Access –accepted

Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “Hybrid-MiGrror: An

Extension to the Hybrid Live Migration to Support Mobility in Edge Computing,”

Journal of Ubiquitous Systems & Pervasive Networks, Vol. 18, No. 1, pp. 39-48,

January 2023 [INVITED PAPER]

Arshin Rezazadeh, Davoud Abednejad, Hanan Lutfiyya “MiGrror: Mitigating

Downtime in Mobile Edge Computing, An Extension to Live Migration, “Procedia

Computer Science, Vol. 203, pp. 41-50, 2022 [BEST PAPER AWARD]

Arshin Rezazadeh, Hanan Lutfiyya “Migration in Edge Computing: Review and

Challenges,” –submitted

	Migration in Edge Computing
	Recommended Citation

	Migration in the Edge Computing Environment

