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Abstract 

This thesis proposes the concept of the Policy-based Autonomic Smart City Management 

System, an innovative framework designed to comprehensively manage diverse aspects of 

urban environments, ranging from environmental conditions such as temperature and air 

quality to the infrastructure which comprises multiple layers of infrastructure, from sensors 

and devices to advanced IoT platforms and applications. Efficient management requires 

continuous monitoring of devices and infrastructure, data analysis, and real-time resource 

assessment to ensure seamless city operations and improve residents' quality of life. 

Automating data monitoring is essential due to the vast array of hardware and data exchanges, 

and round-the-clock monitoring is critical. Efficient resource use is key to cost reduction, 

making resource-sensitive infrastructure management crucial. This system is implemented 

based on the MAPE-K approach that collects the data, monitors it, analyzes it, and makes real-

time decisions based on predefined policies without the need for human intervention.  

The thesis introduces a novel model for an autonomic management system for smart cities, a 

general, end-to-end model of a smart city and delves into the algorithms and policies that 

underpin this system, illustrating how they interpret the data to optimize urban operations. 

Unique to the models is the assumption that smart cities will leverage existing platforms for 

IoT Management and monitoring. The autonomic management system assumes the presence 

of such components and leverages their capabilities. A prototype autonomic management 

system based on this is presented and used to demonstrate the approach.  The primary objective 

of the Autonomic Smart City Management System is to enhance urban efficiency, 

sustainability, and overall quality of life for city residents, all while reducing the necessity for 

labor-intensive manual monitoring and management. By harnessing technology to streamline 

operations, this system aims to not only improve urban functionality but also result in long-

term cost savings. 

Keywords 

Autonomic Smart City Management System, Internet of Things (IoT), Monitoring, Smart 

Cities, Policy-based Management 
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Summary for Lay Audience 

An autonomic smart city management system is a computerized system that helps manage 

various aspects of a city from the environment, such as temperature and air quality, to the 

infrastructure such as the performance of computers and networks. Think of it like a "brain" 

for a city that uses sensors, cameras, and other technologies to collect data about what is 

happening in the city and manages those devices 24/7 without any human intervention. This 

system uses algorithms and policies to analyze data and make decisions to improve the city's 

operations. For example, if there is heavy traffic on a particular road, the system can 

automatically adjust traffic signals to reduce congestion. Similarly, if the response time of an 

application is higher than a threshold, the system can decrease it automatically by assigning 

more resources to a particular process. The purpose of an autonomic smart city management 

system is to enhance cities' efficiency, sustainability, and livability for their inhabitants while 

reducing the necessity for manual monitoring and management. By using technology to 

streamline operations, cities can be efficient and save money in the long run.   
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Chapter 1 Introduction 

Recent advances in electronics and wireless communications have enabled the design and 

construction of sensors with low power consumption, small size, reasonable price, and created 

a variety of uses [1].  This rapid development of technology has also inspired the idea of the 

“smart city” and made “smart city” initiatives the mainstream of much urban activity.  The 

advances in sensors and related technology are broadly referred to as the Internet of Things 

(IoT). IoT refers to a network of devices such as sensors, wearable gadgets, and anything that 

has the ability of connecting to other devices, that send and receive the data and communicate 

with other devices through communication protocols.  

There are various definitions for IoT, and they can provide somewhat different points of view.  

Zanella et al.  [1], defined IoT as an architecture of a massive number of heterogeneous devices 

and end systems that can provide open access to datasets for service development. The authors 

note that because of the diversity of devices, technologies, and services that may exist in a 

smart city, creating this architecture is extremely complicated. They also consider the 

technologies and protocols in an urban IoT to support the smart city and its administration. 

They implemented the Padova smart city project to collect environmental data such as 

temperature, humidity, carbon monoxide level, etc. and also monitor the streetlights operation. 

Gubbi et al. [2] defined IoT as an environment of Wireless Sensor Network (WSN) 

technologies that allow the measurement of environmental factors. Their IoT network consists 

of WSN devices such as embedded sensors and actuators that exist in the environment and 

share the information to create a Common Operating Picture (COP). Our definition of the 

Internet of Things (IoT) in this research is a combination of interconnected objects with a 

unique identifier such as sensors, vehicles, smartphones, home appliances, wearable gadgets 

and even medical equipment that can interact with each other, send, or receive data through 

the internet or other communication technologies like MQTT, COAP, etc. This definition 

includes a large number of heterogeneous connected nodes.  

A smart city is a city that benefits from the Internet of Things capabilities to improve the life 

of its citizens. In a smart city, IoT is used to provide connectivity among all the entities and 
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devices within the city. The entities can be software and hardware elements and a smart city 

may contain tens of thousands of these elements. According to a prediction published by the 

International Data Corporation (IDC) in 2020, the number of connected devices around the 

globe would be 55.7 billion by 2025 and 75% of which will be used in an IoT ecosystem [3]. 

This number of devices produce a huge amount of data and monitoring that data in real-time 

is a demanding task. Aside from that, any smart city network and IoT infrastructure need to 

be monitored to ensure that everything works smoothly and efficiently to achieve their goal - 

which is providing services and resources to their users.  

Working with smart cities introduces distinctive challenges and considerations compared to 

conventional systems. Unlike isolated systems, smart cities involve a complex, interconnected 

web of diverse elements, including infrastructure, technology, and community dynamics. The 

sheer scale and diversity of data sources within a smart city present unique challenges in terms 

of data management, and analysis. Additionally, smart cities often require interdisciplinary 

collaboration, as the integration of various technologies and services necessitates expertise in 

urban planning, IoT, data science, and more. Furthermore, the dynamic nature of urban 

environments, with continuous changes and unexpected events, demands adaptable and 

resilient systems. In navigating these complexities, it becomes increasingly evident that an 

autonomic, policy-based smart city management system is not just beneficial but essential. 

Such an advanced system provides a framework for automating decision-making processes, 

responding dynamically to changing conditions, and ensuring efficient management of urban 

resources. It is crucial to emphasize that our work is built upon existing foundations, 

particularly leveraging advancements in monitoring and IoT platforms. 

In this research, we assume that the smart city infrastructure has several layers: from sensors 

and devices at the base tier to complex IoT platforms, third-party applications, and managerial 

units at the upper tiers. Large-scale smart city management is a challenging task because the 

IoT environment is subject to a lot of uncertainties. Unpredictable natural disasters, wireless 

communication problems, radio interference, failure of the IoT nodes, resource limitation, 

calibration of sensors, dynamic network topology, and even excessive network traffic during 

a data overload can be some of the uncertainties in the IoT environment that should be 



3 

 

 

considered during smart city management. Management requires data collection and analysis, 

device tracking, determining resource status in real-time, deploying new versions of software, 

determining performance problems or device failures, reconfiguration of connections and 

applications on failures or for performance reasons.  Management needs to produce the proper 

action plan in accordance with resources’ status and available actions to ensure that the smart 

city infrastructure can continue to operate and support the services and overall quality of life 

for the city’s residents.  

Due to the massive number of heterogeneous hardware and software elements, and protocols 

in a smart city and the huge amount of data transferring between the devices, and the shortage 

of financial, technical and personnel resources, monitoring, analysis, and management of data 

should be done as automatically as possible to limit the human resources needed to maintain 

the infrastructure.  Since problems in a smart city might happen during the night or on 

holidays, it is critical that monitoring and management be done constantly 24/7 to avoid 

problems.  Further, the optimal use of resources in a smart city is very important in order to 

reduce capital and operating costs, so management of the infrastructure should also be 

sensitive to how resources are being consumed. 

Our research focuses on autonomic management methods to support the management of smart 

city infrastructure and environment.  Such an approach requires the collection of operational 

data about the elements of a smart city infrastructure.  This data is operational data and would 

be in addition to the data that the components, e.g., the IoT devices, in the smart city, would 

be generating.  We will focus on the creation of policy-based autonomic methods that use this 

operational data to manage aspects of a smart city. Using policy-based methods for this 

purpose makes autonomic management more straightforward by focusing on defining the 

policies and adjusting them.  

 The creation of a policy-based autonomic management system for a smart city requires that 

we address a number of important questions:  

• How can we monitor the performance of the operational side of the smart city 

infrastructure to ensure it works well as a whole e.g., the connections, response time, etc.? 
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• How can we decrease human intervention in smart city management? 

• How can we efficiently and automatically monitor and manage the resources within 

the smart city infrastructure, e.g., sensors, bandwidth, storage, CPU, memory, etc.?  

• What is an appropriate architecture for an autonomic system that is an integral part of 

a smart city infrastructure? 

• What are the autonomic services required for managing aspects of a smart city? 

• Assuming a policy-based approach, what kinds of policies are needed to manage the 

smart city infrastructure? 

 

Our research addresses these questions.  The contributions of our work are:  

1. A Comprehensive Model of a Smart City Infrastructure: Previous work has 

considered different aspects of a smart city infrastructure, but none have considered 

addressing the management of the end-to-end infrastructure, i.e., from sensors to hosts 

and applications.  We introduce a model that captures the entire infrastructure of a 

smart city and considers how to manage many aspects. 

2. Models Which Leverage the Presence of Existing Components:  There has been 

significant work on platforms, applications and tools to support IoT and analysis of 

sensor data.  Current work on smart cities makes use of such tools and so it is likely 

that such tools will be used in the future.  We assume that this is the case and 

incorporate central ones into our model of a smart city and into our model of autonomic 

management.  In particular, we assume: 

a. An IoT platform that is used for managing of and interaction with sensors 

within the smart city. 

b. The presence of a data filtering component as part of the data collection process 

from sensors. 

c. The presence of a performance monitoring component as part of the autonomic 

management system. 
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These types of components are becoming commonplace, especially IoT platforms and 

applications for filtering data.  It is reasonable to expect that smart cities will leverage 

these and that autonomic management methods must be able to leverage these as well.  

We have introduced a model for autonomic management with this in mind. 

3. Real-time Sensor Data Insights: Our work delves into the real-time monitoring of 

sensor attributes and measurements that are complementary to what an IoT platform 

may provide demonstrating the integration of the IoT platform with our model of 

autonomic management. 

4. Policy-Based Autonomic Management Model: We present a policy-based model for 

the autonomic management of smart cities. 

5. Management Interface: We introduce a management interface providing 

administrators with invaluable insights into action execution. This empowers them 

with the necessary information to ensure that the smart city operations are in alignment 

with the high-level goals. 

6. Demonstration of the Utility and Scope of the Models:  Based on our models, 

prototypes for smart city infrastructure and the autonomic management system are 

presented and used to demonstrate the effectiveness of the models and advantages of 

autonomic management. 

These contributions collectively advance the field of smart city management, paving the way 

for more efficient, autonomous, and data-driven urban environments. 

The remaining sections of this thesis are structured as follows. In Chapter 2, we will delve into 

the background of IoT management, monitoring and management of smart city environments, 

autonomic computing, and autonomous management. We will also review relevant literature 

in these areas to provide a comprehensive understanding of the research domain. 

Chapter 3 introduces our model of a smart city and the various components that we have 

integrated to create an enhanced smart city model. This chapter will lay the foundation for the 

rest of the thesis and provide readers with a clear understanding of the theoretical framework 

we have developed. 
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Moving on, Chapter 4 will present our model of an autonomic smart city management system 

(ASCMS) and provide a detailed explanation of its internal architecture. This Chapter will be 

instrumental in helping readers grasp the core concept of our research - an autonomous system 

that can manage a smart city environment and infrastructure. 

Chapter 5 will showcase the prototypes of the smart city and the autonomic management 

system. In particular, we introduce our substantive autonomic management system prototype 

which captures the key aspects of our proposed ASCMS.  We will also provide a rationale for 

our technology choices and explain why each component was selected for the prototypes and 

describe the operational aspects of our prototypes. In this Chapter, we will also present the 

policies that we have defined in the ASCMS. We will provide a detailed explanation of each 

policy to ensure a comprehensive understanding. 

In Chapter 6, we will showcase a range of examples and experiments conducted using a 

prototype autonomic smart city management system (ASCMS) and assess its performance. 

We will illustrate the state of the smart city before and after the ASCMS makes changes based 

on policies, highlighting how it effectively manages the entire smart city ecosystem.  

To conclude the thesis, Chapter 7 will serve as a comprehensive summary of our findings and 

contributions. Subsequently, we will elucidate the limitations inherent in our research. It is 

crucial to acknowledge these constraints as they offer valuable insights into the scope and 

potential directions for future endeavors. By openly addressing the limitations of our work, 

we aim to contribute to the ongoing dialogue surrounding the development and refinement of 

smart city management systems. Finally, we will explore potential avenues for future research 

in this field, fostering opportunities for further exploration and advancement. 

Overall, this thesis aims to introduce a comprehensive system for autonomic smart city 

management and demonstrate it through a substantive prototype in order to show its potential 

to enhance the sustainability, efficiency, and livability of smart cities without human 

intervention. 
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Chapter 2 Background and Literature Review  

In this Chapter, we present the key concepts and research background. Subsequently, we 

undertake a thorough exploration of existing literature pertaining to autonomous management.   

We conclude the Chapter by discussing what challenges are effectively addressed in the 

domain of autonomous management. Concurrently, we deliberate on the challenges that still 

need resolution. This reflective analysis not only underscores the advancements achieved in 

mitigating specific issues but also illuminates the dynamic landscape, pinpointing areas where 

further research and innovative solutions are imperative for continued progress. 

2.1 Background 

This section starts with a review of smart city definitions and describes what we mean by this 

term in our research. We then review previous research on smart city data management. 

Because the Internet of things is the centerpiece of any smart city, we then review the 

definition of IoT and its management to get a sense of what IoT means and what requirements 

should be satisfied to manage an IoT network. Also, we will clarify how each of the 

requirements relates to each other.  After reviewing the requirements for the management of 

IoT, we examine several IoT platforms, their characteristics, and features. After that, some of 

the tools and platforms for software instrumentation and monitoring will be explored. This 

section ends with an examination of research on autonomic computing. 

2.1.1 What is a Smart City? 

There is not a rigid definition for a smart city because it depends on how one looks at this 

concept. The following provides some different definitions of what different researchers 

perceive as smart cities that are relevant to our research. 

The term “Smart City” was coined by Cisco and IBM [4] to describe a city that benefits from 

information and communications technology and automation. This term was used to refer to 

“a city that makes a conscious effort to innovatively employ information and communication 

technologies (ICT) to support a more inclusive, diverse and sustainable urban environment”. 
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Bakıcı et al.  [5] defined the smart city as a high-tech and advanced physical environment that 

provides a connection between citizens, information and city elements to increase the quality 

of life for its citizens, create a more sustainable, efficient and transparent public 

administration, and promote innovation and facilitate access to the information. This paper 

mainly focuses on Barcelona's smart city model and explores the main components of the 

Smart City strategy of Barcelona. 

According to the ISO report published in 2015 [6], a city is a system of systems that has a 

specific history, environmental and societal context. But when it comes to a smart city it 

should reach its goals by using the resources in an efficient and consistent manner. Not only 

should all of the components of the smart city such as people, infrastructure, institutions, 

finances, facilities etc. work effectively but also, they should also cooperate in a harmonious 

and smooth way to help the city flourish and promote growth and innovation in the city. 

In Zygiaris’s work [7], the term “smart city” has a general meaning of an IT-based urban 

ecosystem and includes concepts such as greenness, openness, intelligence, and innovation, 

with the goal of environmental and social sustainability. 

Another definition for the smart city which is provided by Schleicher et al. [8], suggests that 

smart cities are cities that use communication technologies to provide their people with 

services and use information technology to make the use of their resources smarter and more 

effective. 

Fernandez-Anez [9] surveys the definitions of a smart city from different stakeholders’ 

perspectives and at the end provides a holistic definition for it:  

“A Smart City is a system that enhances human and social capital wisely using and interacting with 

natural and economic resources via technology-based solutions and innovation to address public issues 

and efficiently achieve sustainable development and high quality of life on the basis of a multi-

stakeholder, municipally based partnership.” [9] 

Smart cities, as defined by these papers share commonalities in their emphasis on technology-

driven urban development, efficiency, sustainability, and the enhancement of citizens' quality 
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of life. Technology, particularly information and communication technologies (ICT), is 

consistently highlighted as a key enabler. Efficiency and sustainability are overarching goals, 

with an emphasis on the interconnectedness of various urban elements.   

Smart city definitions vary in their focus areas, with Bakıcı et al. [5] exploring Barcelona's 

model and Zygiaris [7] emphasizing greenness, openness, intelligence, and innovation. This 

diversity underscores the multidimensional nature of the smart city concept. The ISO report 

[6] contributes a broader perspective, framing a city as a system of systems with historical, 

environmental, and societal dimensions, highlighting the complexity and interconnectedness 

of urban systems. Fernandez-Anez [9] takes a holistic approach, incorporating perspectives 

from various stakeholders to underscore the importance of human and social capital, multi-

stakeholder partnerships, and municipal involvement in shaping the understanding of smart 

cities. 

What we consider a smart city is a city that benefits from IoT to provide connectivity between 

its elements and manages them in an efficient and optimized way.  Thus, we assume the 

presence of and use of an IoT infrastructure, a network and computing infrastructure for data 

collection and applications important to the smart city, and a management system that 

monitors and manages the IoT and computing infrastructure of the smart city.   Our main focus 

is on monitoring and management of a smart city from the environment to the infrastructure. 

Our review of related work first starts by considering IoT platforms and then how such 

platforms are managed.  We then consider smart city platforms followed by approaches for 

management of smart city infrastructure.  We conclude by examining work on Autonomic 

Computing and its use in smart cities. 

2.1.2 IoT Platforms and Management 

Our view of a smart city is one that makes extensive use of IoT.  In this section, we review 

previous work on the development of IoT platforms.  These platforms are software 

environments that support the use of sensors and devices and a number have been developed 

with the use in smart cities in mind.   We also look at work related to the management of IoT 

environments in general and look at more specific work focused on IoT management in smart 
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cities. 

 

2.1.2.1 IoT Platforms  

Any IoT network consists of IoT devices that are connected to other devices and applications 

and transfer the data over the internet. An IoT platform can be looked at as a middleware 

between the devices and end-users which can connect the devices and sensors, collect, store 

their data, manage devices and users, and provide data visualization. Some of the more 

advanced platforms can even trigger alarms based on the data, control the actuators and 

devices in the network and support white labelling and multi-tenancy. There are many tools, 

services, and platforms for IoT and smart city management. Several solutions have been 

investigated as described briefly in this section.  

Snap4city [10] is an Open-source IoT/IoE platform that is proposed by DISIT Lab in response 

to providing the functional and non-functional requirements for the IoT network. Functional 

requirements are providing a platform for several operators, supporting varied real time 

communication, allowing users and stakeholders to create their desired applications, and 

managing the data. On the other hand, non-functional requirements are scalability, standard 

compliance, robustness, distributed, heterogeneity, interoperability, security, and privacy. 

This platform benefits from microservice architecture and includes a variety of components 

that are responsible for data collection, data storing and management, creating IoT 

applications and services, executing and controlling, representing the data, and providing 

access to data and services. This solution can support heterogeneous data and provides data 

analytics and insight into the city's condition through dashboards [11]. 

FIWARE [12] is another cloud base framework that supports the development of smart 

solutions such as smart cities, smart industry, smart health, and so on in a cheaper and faster 

way. It provides open-source software platforms that can be joined to other third-party 

components to create complex applications. This platform can capture and process big data 

and convert it into knowledge. FIWARE Lab has five components: i) Context processing, 

analysis and visualization, ii) Core context management, iii) Interface to IoT, robotics and 
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third-party systems, iv) Data/API management, publication, and monetization, and v) 

Deployment tools.  

Orchestra cities [13] is an open-source, multi-function smart city platform that provides an 

environment to connect devices and citizens and collect, analyze, and share data. This platform 

is made from microservices and can support multiple communication protocols and data 

formats.  Orchestra cities is an extension of the FIWARE platform and other than citizens and 

individuals, can be used by industry and the public sector. 

Fiwoo is a European data driven open IoT platform based on FIWARE [14] that allows users 

to create and design an IoT environment. Because of its simple user interface, the user can add 

their devices, create plans, and manage the devices, data and applications in real-time without 

any computer knowledge. This platform supports smart cities, smart ports, smart buildings, 

and smart industry [15]. 

Another IoT platform that supports smart cities in real-time is thethings.io [16]. This platform 

is a serverless solution and it can support most of the existing protocols from HTTP to MQTT 

and CoAP. thething.io provides cloud code processing, action management, data monitoring 

and visualization, and uses AI to analyze the data and give insights and improve the users’ 

products. It also offers some advice for monitoring and tracking the environment and 

machines.  

OpenIoT [17]is an open service framework written in Java that supports cloud-based services 

and uses a SaaS delivery model. This framework can be used for smart cities as well. The 

OpenIoT structure makes it easy not only for developers to create their services to keep up 

with the fast-paced growth of the Internet of Things ecosystem, but it also helps users to search 

for what services they need and use them in their products and applications [18]. OpenIoT can 

be used for device provisioning and management. This framework does not provide event 

detection and data analytics which are beneficial in the IoT environment [19]. In a paper 

written by da Cruz et al. that assessed some of the most popular IoT platforms it is said that 

OpenIoT does not comply with the security requirements [20].    
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The next open-source IoT platform is Thinger.io [21] which is hardware agnostic and provides 

a console that can process, monitor, and manage a huge amount of data in a cloud environment. 

Thinger.io supports modelling and implementing data fusion applications and allows remote 

monitoring through dashboards. Its usability ranges from smart buildings to smart grids and 

infrastructure. The free version of this platform can support up to 2 devices and provides some 

basic features such as dashboards, endpoints, and device management capabilities, but the 

platform does not enable management of the assets (such as buildings, regions, etc.), projects, 

accounts, etc. [22].  

Mainflux [23,24] is an open IoT cloud platform written in GO that supports secured 

connections over various protocols such as TLS, DTLS, MQTT, WebSocket, and so on. Like 

other IoT platforms, Mainflux can also offer device management and provisioning, access 

control, event management, and analytics.  One of the main advantages of this platform is that 

it can supply logging and instrumentation through OpenTracing and Prometheus. Its 

architecture is based on microservices containerized by Docker and deployed by Kubernetes. 

IoTivity [25] is a Korean-based open source IoT framework that is implemented based on 

Open Connectivity Foundation (OCF) standards and is written in C and Java. This framework 

works cross-platform because it has abstract interfaces that can be used to interact with the 

operating system. IoTivity has the ability to find nearby devices, send and receive the data, 

and manage the devices and the data in an IoT ecosystem. One of its drawbacks is that it only 

supports CoAP, not the other protocols [26,27].  

LinkSmart [28] is a free European semantic IoT middleware platform inspired by the Hydra 

project [29] that has a modular architecture and allows the fast development of smart 

applications for connecting heterogeneous devices. This platform extends the Hydra project 

by combining semantic web service and SOA principles to provide syntactic interoperability 

to the application level. Its architecture consists of device integration and abstraction layer, 

service provisioning, data management and processing, network and security, and human-

computer interaction. This platform supports smart city, smart building, smart energy, and 

industry 4.0. Its architecture consists of device integration and abstraction layer, service 

provisioning, data management and processing, network and security, and human-computer 
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interaction [30]. Da Cruz et al. claimed that LinkSmart does not offer device authentication, 

MAC, and IP storage per device, does not support communication methods other than the 

REST and its response time is high which is not good in a network with so many devices and 

huge amount of data [20].  

ThingsJS [31, 32] is a distributed IoT middleware written in JavaScript that uses a 

publish/subscribe (server/client model) communication paradigm and is able to run, manage 

and schedule JavaScript programs on heterogeneous devices. ThingsJS scheduler design 

benefits from Machine Learning to predict the execution time and SMT-based solver to 

optimize the execution time by considering the resource limitations. This framework also 

provides APIs and services for developers and monitors information about CPU and memory 

through a dashboard created by Express.js1 and react.js. Moreover, ThingsJS helps the 

migration of JavaScript programs and even process execution between the physical devices in 

the IoT environment. This platform can change device settings based on the sensor 

measurements. They describe a scenario that illustrates how the system can manage the 

temperature using the publish/subscribe model.  

ThingsBoard [33] is a flexible and scalable open-source IoT platform that is written in Java 

and can offer a wide variety of capabilities that are needed in an IoT network such as 

provisioning and management of sensors and devices, data collection and analysis, visualizing 

the real-time data with widgets on the dashboards, triggering alarms based on the data 

fluctuations, controlling the devices, and so many more. This platform is very scalable and 

customizable and can support different standard IoT communication protocols, like MQTT, 

COAP and HTTP, also it can define and manage users, customers, devices, assets, alarms, and 

dashboards. Because ThingsBoard deployment is also very flexible, it not only can be 

launched on a local computer but also can be deployed on cloud services such as AWS, Azure 

and so on. Also, ThingsBoard offers two types of architecture: Monolithic and Microservices. 

Finally, based on the amount and type of the data, it provides different options like SQL 

 

1
 Express.js or Express is a back-end web application framework for Node.js; https://expressjs.com/. 
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(PostgreSQL, HSQLDB), NoSQL (Cassandra) and hybrid approach which stores all the data 

related to ThingsBoard itself in PostgreSQL and time-series in Cassandra or timescale DB. 

There are numerous platforms available for managing and monitoring IoT networks, each with 

their own set of capabilities and features. However, after careful evaluation and analysis, we 

decided to choose ThingsBoard as the platform for our research. One of the key reasons for 

this decision is that ThingsBoard is an open-source platform, which means that it can be freely 

accessed, modified and customized by users. This makes it an extremely flexible and adaptable 

platform that can be tailored to suit the specific needs of different users and applications. 

Additionally, ThingsBoard is highly scalable and can easily handle large volumes of data, 

making it ideal for use in smart city scenarios where vast amounts of data need to be collected 

and analyzed. The platform also offers a range of advanced features and capabilities, such as 

real-time data visualization, rule engine, device management, and multi-tenancy support, 

among others. These features make it easier for users to manage and monitor their IoT 

networks and devices, and to make sense of the data generated by these devices. 

Overall, we believe that ThingsBoard is the ideal platform for our research, as it offers a wide 

range of capabilities and features that are essential for effective IoT network management and 

monitoring. Moreover, its open-source nature makes it a highly customizable and adaptable 

platform that can be tailored to meet the specific needs of different users and applications. 

2.1.2.2 Management of IoT networks  

Because there are massive numbers of heterogeneous devices and technologies in an IoT 

network, it needs to be managed in an efficient way. IoT device management includes the 

tasks and operations to support IoT solutions. This management has various aspects: 

1. Provisioning and Authentication: the management system should enable the devices 

to enroll into the system after verification of their identity by checking their 

credentials. Because in a smart city and IoT network delays should be avoided, in [34] 

the resource provisioning for IoT applications for Antwerp’s City of Things is 

proposed and it uses Integer Linear Programming and Fog Computing paradigm to 

decrease latency and increase energy efficiency. 
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2. Configuration and Control: To increase the IoT network performance and 

functionality, we need to configure or control the device settings or even restart the 

deployed devices. 

3. Monitoring and Diagnostics: Another task of a management system is to provide logs 

needed to monitor the network and detect bugs and faulty operations.  

4. Software Maintenance and Updates: Sometimes the reason behind issues, bugs or 

security problems in the network can be outdated device firmware. Therefore, one of 

the most important tasks of the management system is to be able to update the devices 

and maintain the overall network, and this action should take place remotely because 

of the high number of devices. [35] 

5. Security and Privacy: Also, the management system should ensure that the IoT 

network is safe and secure and there is no threat to the infrastructure.  

Gürgen, et al. [36], consider the management of the sensing devices to have the goal to 

improve the efficiency of the entities and it includes configuration, monitoring, and 

administration of them. They consider management to encompass four areas: network 

management, system management, application management, and device management. They 

proposed a common management framework for networked sensing devices and formed their 

approach based on three crucial characteristics of the management categories which are 

functional areas, hierarchical architectures, and management operations on data models. For 

the management function, they focused on configuration management, performance 

management, and software management. Their solution consists of three levels of architecture 

which are the most common ones among all management solutions: managers, agents, and 

managed entities. Finally, management operations include GET, SET, NOTIFY and ACT. In 

this research, the focus is mostly on providing some suggestions and recommendations on 

networked sensing device management and they do not talk about a specific management 

framework.   

Ersue et al. [37] provide some requirements for the management of constrained devices such 

as system management, protocol management, configuration management, functionality 

monitoring, self-management, access control and security management, energy management, 

traffic management, etc. The reason for reviewing this paper is that in an IoT network we deal 
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with so many devices that have constraints regarding CPU, memory, power and even 

bandwidth. Each of these categories has some sub-management tasks that are crucial to ensure 

that a specific management requirement is met. For example, the system management should 

offer features such as supporting multiple devices in a network, guaranteeing scalability, 

providing hierarchical management, etc. 

Aboubakar et al. [38] categorized IoT network management into two groups, traditional 

network management, and IoT low power network management. Then, they highlighted six 

operations that a traditional management system should provide notably: configuration 

management, topology management, security management, QoS management, fault 

management, and network maintenance and troubleshooting. Next, they continued by listing 

the challenges that exist in an IoT low power network such as device heterogeneity, dynamic 

network topology, resource limitations, and unreliable radio links. Subsequently, the 

requirements of IoT low power network management are identified to deal with the 

aforementioned challenges. Some of these requirements are similar to the traditional 

management requirements but some requirements specifically target low power networks 

including scalability, energy efficiency, security and self-configuration.  

Effective management in an IoT network is critical to ensuring the smooth functioning of a 

smart city. Such management involves several tasks such as device provisioning and 

authentication, configuration, and control of devices, monitoring and diagnostics, network 

recovery, and software maintenance and updates. As IoT forms the core of a smart city 

network and enables the monitoring and management of smart city devices and sensors, it is 

imperative to select a reliable and advanced platform that offers the above-mentioned features. 

The selection of such a platform assumes importance as devices require a platform to 

communicate with each other and the cloud. 

2.1.2.3 Monitoring and Management of IoT in Smart Cities 

When it comes to monitoring in an IoT network, there are two main approaches that can be 

taken. The first approach is centered around monitoring the sensors and devices that are part 

of the network, which entails gathering real-time data from these devices and closely 
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monitoring them. This type of monitoring is important because it provides valuable insights 

into the state of the network and allows for prompt action to be taken if any issues are detected. 

The second approach to monitoring in an IoT network is focused on infrastructure monitoring, 

which involves keeping track of the various platforms and components that make up the smart 

city ecosystem. Infrastructure monitoring in an IoT network is crucial to ensure the smooth 

operation of the entire system and it provides key metrics that allow for the performance of 

the network to be analyzed and optimized. It is through infrastructure monitoring that network 

administrators can gain a comprehensive understanding of the network's overall health and 

take steps to maintain or improve it. Infrastructure monitoring can help detect any issues or 

anomalies in the system, such as server downtime, network congestion, or security breaches, 

and take appropriate action to resolve them. Moreover, monitoring the usage of resources such 

as CPU, memory, and disk space can help optimize the utilization of the resources and avoid 

system overload. Therefore, it is essential to have a robust infrastructure monitoring system in 

place to ensure the reliability and scalability of the IoT network. 

In this section, we will explore some of the key metrics that are typically used to monitor the 

state of an IoT network's infrastructure. These metrics can include everything from network 

uptime and response time to system load and utilization rates. By tracking these metrics and 

analyzing the data they provide, network administrators can gain insights into the performance 

of the network and identify areas where improvements can be made. 

2.1.2.4 Tools for Instrumenting and Monitoring 

In the realm of performance monitoring for IoT networks and applications, there is a plethora 

of available tools and platforms. However, for the purpose of this section, we will examine a 

handful of the most widely recognized tools in the field. By doing so, we can gain insight into 

the features and capabilities offered by these tools and better understand their suitability for 

managing IoT networks. Ultimately, we will present our selected platform as the most suitable 

for our needs based on our assessment of the available options. 

Zipkin [39] is an open-source distributed tracing system designed to trace the application and 

measure the time for each service in a path and detect any failed operation in the application 
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or microservices architecture. Its architecture consists of 4 different components, Collector, 

Storage, Query service and Web UI. It supports various programming languages and integrates 

with other observability tools, making it a valuable tool for monitoring and optimizing 

distributed systems. To utilize Zipkin and incorporate it into your application, you need to 

include the Zipkin library in your platform.  

Unlike Zipkin which focuses on tracing, Prometheus [40] is for monitoring the system and 

collecting the metric data from a distributed environment. Six main components are involved 

in Prometheus architecture: Standalone server, Client libraries, Push gateway, Exporters, Alert 

manager, and Support tools. Prometheus follows a pull-based model, where it periodically 

retrieves metrics from configured targets such as applications, services, or even the underlying 

infrastructure components. This toolkit can collect and store the metrics as time-series data in 

its own database and it is written in Go.  

OpenCensus [41] is a comprehensive instrumentation platform that allows measuring, 

collecting, and exporting not only the time-series metrics but also distributed traces of a target 

microservice or even a monolithic application. The advantage of this tool is that it is flexible 

and not dependent on a specific system or software. It can provide the metrics about the 

application architecture, capture the time for each service and show how a request navigates 

through the services. This tool supports many languages such as C#, C++, Java, Python, and 

so on and it also benefits from Prometheus to collect the metrics and Zipkin or Jaeger [42] to 

trace the application. Unfortunately, this tool is no longer supported by the team. 

OpenTelemetry [43] is a vendor-neutral observability framework and a combination of 

OpenCensus and OpenTracing [44]. This platform offers two types of instrumentation: manual 

and auto instrumentation. This platform is like OpenCensus and it captures architecture 

metrics and distributed tracing data and sends them to the chosen backend such as Prometheus, 

Zipkin, Jaeger, Google cloud and so on. It can support a variety of programming languages 

and offers a library for Go, Java, Python etc. 

Datadog [45] is a service that can monitor servers, applications and other components in 

infrastructure and provide some helpful information about that infrastructure such as 
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performance metrics, traces, and logs. This software can be deployed on-premises or as SaaS 

and it is compatible with almost all of the operating systems. It supports cloud platforms like 

AWS, Red Hat OpenShift, Azure and google cloud. Using this platform, you can plan what 

features you need, and choose the services based on the monitoring scale. For example, you 

can select some features such as infrastructure, log management, database monitoring, 

synthetic monitoring, user monitoring, network monitoring and so on [46]. 

New Relic [47] is also a monitoring cloud-based platform that can gather metrics, logs and 

traces from software and similar to Datadog has so many capabilities like application 

monitoring, infrastructure monitoring, browser monitoring, network monitoring, etc. This 

platform has so many agents to monitor different technologies and languages such as android 

agent, iOS agent, java agent, python agent and so many other helpful ones. 

Grafana [48] is a tool that helps people analyze and visualize data from different sources. It 

has a user-friendly interface with customizable dashboards, so users can create interactive 

visualizations that make it easy to understand their data. It also can be connected to various 

types of data, like databases and cloud platforms. It provides a query editor allowing users to 

write queries and fetch data from these sources. Grafana possesses the capability to establish 

alerts and notifications based on predetermined conditions, allowing for heightened awareness 

of critical events. Grafana is widely used in the DevOps and monitoring communities because 

it helps monitor system performance, spot trends, and make informed decisions based on real-

time data. 

Dynatrace [49] is a cloud monitoring software intelligence platform that provides full 

environment observability and can keep track of application performance, availability, 

stability, and behaviour and optimize them in real time. This Application Performance 

Management (APM) platform can extract the dependencies inside an environment and 

increase productivity by providing operational insights. It can also give a very holistic real-

time view of what is going on within the environment and application through metrics and 

provide the application traces and instrumentation information. This solution is a scalable 

solution that can support the application and services installed on either a local computer or 

on the cloud platforms from AWS and Google Cloud Platform to Microsoft Azure and 
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Kubernetes. Dynatrace proposed an AI agent called Davis AI which can detect the diagnosis 

problems automatically in the environment and notify the administrators about them. 

Dynatrace offers two types of deployment: SaaS and Managed. In this research, the SaaS 

version is used. For performance monitoring, we use this platform because of its superior 

ranking on the Gartner website, with an overall score of 4.5 [50]. The platform's remarkable 

ratings in Integration & Deployment (4.6) and Product Capabilities (4.6) further solidified its 

appeal. It excelled across various factors, including monitoring servers (4.7), network (4.3), 

storage systems (4.4), databases (4.4), hypervisors (4.3), scalability (4.6), integration (4.4), 

customization, and ease of deployment, administration, and maintenance (all rated at 4.4). 

Moreover, the endorsement from 90 percent of peers underscored its effectiveness. Having 

worked with other platforms, Dynatrace stood out by delivering the specific information we 

needed, encompassing service and process metrics, as well as host metrics.  Also, it gives the 

flexibility we are looking for and it provides intelligent observability [51] which means we 

are able to not only get the traces and data flows in an application but also extract logs, metrics 

and other information about monitoring of the whole smart city environment. 

2.1.3 Emergence of Smart Cities  

There have been many different research efforts related to the idea of smart cities.  In the 

following, we first outline work that has made the utilization of the Internet of Things (IoT) 

in urban environments to enable the development of smart cities. This involves leveraging IoT 

technologies to enhance various aspects of city life, such as transportation, energy 

management, public safety, and environmental sustainability. We then describe platforms 

developed for building smart city infrastructure where we focus on those that are most closely 

aligned with our work. 

 2.1.3.1 IoT in Smart Cities 

IoT in smart cities is seen as an essential element in order to monitor a wide range of physical 

and environmental aspects of a smart city and in some cases enable changes to be made.  In 

the following, we review a number of efforts on the use of IoT to monitor and support activities 

within cities. 
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Sakhardande et al. [52] developed a disaster management and smart city monitoring system 

that employs hardware components rather than software. Sensors, actuators, WiFi adapters, 

power supplies and Arduinos are all found in each module of the system. The network 

topology is based on the star and every node has its own unique identifier. The system has two 

modes: monitoring and disaster management. The system gathers data in the first mode and 

transmits it to certain cloud servers for processing. When a node receives the alert signal, it 

terminates its monitoring task and switches to disaster management mode. This node then 

transmits that signal to other networks that it is connected to and this process continues until 

the signal reaches the nodes that are located in the affected area.  For a smart city with a huge 

number of sensors, using an Arduino in each module does not seem feasible. 

Suakanto et al. [53] developed a dashboard to present the measurement information of the 

state of the city of Bandung, Indonesia in real-time. This measurement information contains 

temperature, air and water quality, traffic, and so on. Their proposed system architecture 

consists of the sensors deployed in the city for data collection, and processing servers that 

receive the data from the sensors through Remote Terminal Unit(RTU) and over the internet. 

The unit responsible for displaying sensor data and the present state of the city is the user 

application dashboard. However, the proposed solution is limited to monitoring and 

presentation of data; there is no consideration of managing the infrastructure. 

A real-time data processing platform called My City Dashboard is introduced by Usurelu et 

al. [54] to process real-time data such as temperature and noise in a smart city. This platform 

is developed to support scalability, modularity, and pluggability. The platform comprises of 

four layers, each utilizing a diverse range of technologies. For example, the acquisition layer 

employs technologies such as Apache Kafka and RabbitMQ, while the processing layer makes 

use of Apache Spark and Flink. The persistence layer incorporates MongoDB and PostGIS 

modules for PostgreSQL. The dashboard layer, on the other hand, is constructed based on 

Service Oriented Architecture (SOA) and RESTful services. The dashboard that is provided 

by this solution represents the city map that is divided into tiles and for each tile, statistics are 

shown, such as the average, maximum and minimum. This solution focuses on the sensor data 
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and monitoring the state of each stream type, like noise, temperature and pollution, for a 

specific tile. 

An IoT architecture called Souly is proposed by Dryjanski et al.  [55] that focuses on 

monitoring and management of smart buildings and hotels as part of the IoT environment. 

This system consists of sensors and actuators, IoT gateway, a cloud platform, an 

administration panel, API modules and a mobile application. The main component of the 

system is a cloud platform which is responsible for data collection and processing, as well as 

providing reports and data monitoring. The data is stored in two databases, one for storing 

short-term data that can be used for monitoring purposes and the other database that stores 

room configuration and tenant information. This system uses an MQTT broker and receives 

the data using this protocol. Souly can provide information about the state of the devices in 

the building through the mobile and web panels as well as logs related to problems in memory 

allocation, applications and even unsuccessful logins. This architecture is also capable of 

triggering notifications regarding device failures.  

In [56], De Paolis et al. used the ThingsBoard IoT platform[33] and Spark to collect and 

analyze data. The process described involves collecting data from ThingsBoard using MQTT, 

and then using Apache Kafka to transfer the data to Spark Streaming for analysis. The data is 

cleansed and outliers are removed before being analyzed by Spark. This architecture is 

implemented in a smart health scenario where patients with respiratory issues are monitored. 

The sensors collect various measurements such as temperature, humidity, oxygen levels, CO2 

levels, and NO levels in the patient's body. 

Chen et al. [57] proposed a system that provides real-time monitoring data on water quality. 

This system is based on a wireless sensor network and developed using BIO (Bristol Is Open) 

to provide an experimental environment. The architecture they suggest consists of various 

modules such as data acquisition, power supply, data transmission, data storage, and 

redistribution. The data is transferred to data storage through WiFi and TCP/IP. To display the 

data through charts and graphs, they utilize a web application named Grafana. This monitoring 

system is efficient in measuring water quality parameters and displaying them, but it lacks 

alarm generation and data filtering before sending it to the database. 
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In [58] Rachmani et al. proposed a monitoring system to measure the PH and moisture in the 

soil.  The measurements obtained from PH sensors and soil moisture sensors are sent to the 

client node, which comprises a LoRa transceiver, an Arduino microcontroller, a Wemos d1, 

and a power supply. The client node then transmits the data to the master unit through a LoRa 

protocol every 8 hours. The master unit, which is connected to the Internet, transfers the data 

to the cloud for monitoring. The sensor values are displayed to the user in three forms: the 

latest value, table, and chart. Additionally, a status icon is included to notify the user about the 

soil condition.  

A monitoring and alarm system is proposed by Aarthi et al. [59] that is developed for drainage 

and waste management. This system can detect the blockage or high amount of toxic gases 

and generate alarms. The system is composed of various hardware and software components, 

including a DC power supply, an ultrasonic sensor, a gas sensor, GPS, a driver circuit, an IoT 

development kit, an Arduino microcontroller, and the Blynk app to control the devices over 

the internet using a graphical interface.  The Blynk App is a versatile mobile application for 

IOS and Android that allows easy internet-based control of devices like Arduino and 

Raspberry Pi through a user-friendly dashboard. In their proposed system the data is received 

from an ultrasonic sensor, gas sensor and GPS and then it can measure drainage depth, toxic 

gas levels, and temperature in a remote field. By tracking these metrics in real time and sharing 

them online, unnecessary visits to manholes can be avoided, and only essential trips can be 

made. This system helps with monitoring of drainage and waste management and does provide 

alarms for such events as blockage or high levels of toxic gases.   

The last related paper studied is proposed by Jha et al. [60] which is the most complete 

monitoring system we could find on this topic. The paper presents a framework that is a 

compilation of monitoring systems capable of monitoring all aspects of a smart city, ranging 

from air pollution to temperature and beyond. Their framework uses data analysis techniques 

and it can even predict how the data affects the smart city. In their framework for each smart 

city property, they created a separate monitoring system which includes air and noise 

monitoring and control system, a speed and web monitoring system (for vehicles), temperature 

and weather monitoring system (UV, wind,…), fire detection system, waste management 
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system, geographic information system. Their architecture also consists of a power supply, a 

display, a central control room and an alarm system. In their smart city model, all of the sensors 

and their corresponding systems are connected to a microcontroller unit(MCU) and the data 

are processed in that unit. Data analysis is done in this central unit to check whether the data 

are at dangerous levels and, if so, the system creates alarms, otherwise, the data is stored and 

displayed to the user.  

The aforementioned works illustrate the range of uses of IoT within city environments and are 

focused on monitoring and observing smart city conditions. For example, in the Sakhardande 

et al. [52] approach they focused on hardware and each module of their approach had to have 

all hardware elements from sensors to the Arduino. In the work done in the city of Bandung 

[53], there is no means for triggering alarms based on changes in the stream of data. My City 

Dashboard [54] can present the statistics for each tile on the map or cluster, but the manager 

is unable to extract the information for a specific sensor or building in that cluster, therefore, 

they cannot locate the origin of the problem to fix the issue. Although Souly[55] is quite 

similar to our approach and is able to monitor the sensors, detect issues and even trigger 

alarms, it is created specifically for hotels and buildings and focuses on one building or hotel 

at a time.  Even though in [56] the authors used the same IoT platform as ours, they directly 

fed it with their data and after that they did data cleaning and eliminating the outliers which 

could have been done before data reaching to the ThingsBoard. 

 Our approach to a model of the smart city is to ensure that the model can accommodate a 

wide range of assets and entities, particularly sensors and associated IoT platform, which is 

essential for a comprehensive smart city. This allows for a more holistic understanding of the 

city's overall functioning and performance. For example, we assume that there is (can be) data 

filtering between the devices and platforms, which helps in reducing the unnecessary 

transmission of data and thus conserves resources.  We also assume that there is the flexibility 

to scale data display for specific sensors, buildings, groups of buildings, or the entire city. This 

ensures that the information presented is relevant and useful for decision-making and that 

those charged with managing the smart city have access to real-time monitoring dashboards 
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and the current city status, which allows them to make informed decisions based on accurate 

data. 

Our approach stands out by not only introducing cutting-edge autonomic management but also 

by offering a seamless combination of this novel feature with administrator support, elevating 

it beyond traditional methods. In situations where the autonomic management alone may not 

fully address the complexities at hand, our system takes charge by promptly alerting 

administrators about any potentially hazardous conditions, contingent upon the corresponding 

policy being defined. This proactive and timely notification empowers administrators to 

respond swiftly and effectively to critical scenarios, mitigating risks with precision. This is 

seamlessly integrated into our existing infrastructure using the appropriate policy, eliminating 

the need for additional components. As a result, our approach not only ensures cost-

effectiveness but also supports efficient operations. By leveraging our approach, 

administrators can receive real-time alerts regarding any dangers that may arise within the 

system. Our solution proactively detects and promptly communicates such situations to the 

relevant personnel, under the condition that the associated policy is in place. This timely 

notification system empowers administrators to swiftly address issues before they escalate into 

major problems, thereby mitigating potential risks and minimizing downtime. 

Overall, our model aims to provide a comprehensive solution for monitoring and management 

of multiple assets and entities in smart city scenarios, while also being scalable and efficient. 

2.1.3.2 Platforms for Smart Cities 

Smart city platforms are crucial in providing the necessary support for managing the vast array 

of devices and systems that make up a smart city. These platforms provide a diverse array of 

vital capabilities necessary to facilitate the development and deployment of applications across 

a variety of smart cities, each possessing distinct functionalities. 

One of the key capabilities of these platforms is cloud and fog support. This capability allows 

for the deployment of cloud and fog computing infrastructure, which can provide additional 

processing power and storage for smart city applications. This can help to improve the 

performance of smart city systems by reducing latency and improving data processing speed. 
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Another important capability of smart city platforms is big data management. These platforms 

are equipped to handle the large amounts of data generated by smart city devices and 

applications. This data can be analyzed and processed to provide valuable insights and inform 

decision-making. Stream processing is also an essential capability provided by these 

platforms. It allows for real-time data processing and analysis, which is crucial for applications 

that require immediate action based on real-time data, such as traffic management systems. 

Dynamic network compatibility is another key feature of smart city platforms. This capability 

enables the integration of different network protocols and technologies, which is essential for 

ensuring seamless connectivity and communication between different devices and systems. 

Some of the most popular Internet of Things (IoT) platforms for building smart city 

applications available in the market include IBM Watson IoT, Microsoft Azure IoT, Google 

Cloud IoT, and AWS IoT. These platforms offer a suite of tools, services, and infrastructure 

to build, deploy, and manage IoT solutions at scale. They enable organizations to connect and 

communicate with a vast array of IoT devices, collect and analyze data, and derive actionable 

insights. In the context of smart city scenarios, these IoT platforms can be utilized to create 

and manage various applications and services that improve urban infrastructure, enhance 

resource management, and enhance the overall quality of life. 

Smart city platforms play a critical role in supporting smart city scenarios by providing 

essential capabilities such as cloud and fog support, big data management, stream processing, 

and dynamic network compatibility. The availability of a wide range of platforms in the 

market ensures that there is a platform that can meet the needs of different smart city 

applications. In this section, we will have a look at some of the smart city management 

platforms and their key features. 

SmartCityWare [61] is a service-oriented middleware that focuses on smart cities. The 

services in this platform are categorized into core services such as broker services, invocation 

services, location-based services, and security services, as well as environmental services that 

provide access to services provided by clouds, fogs, or devices. SmartCityWare uses Cloud of 

Things (CoT) to improve computation, optimization, and decision making along with Fog 

Computing to decrease latency, provide location-wise services, a better quality of service, 
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support for distributed applications, and so on. Although this integration provides both local 

and global monitoring, configuration, optimization to the smart city applications, it can be 

challenging for the developers.  

GAMBAS [62,63] middleware also focuses on smart city applications and provides a Software 

Development Kit (SDK) and a runtime system that can be used to develop such applications. 

This middleware can offer efficient data acquisition, privacy-preserving data distribution and 

interoperable data integration. GAMBAS architecture consists of three components: Android 

runtime, J2SE runtime and Distributed registry.  

CityPulse [19] is also a framework for big data processing, analytics and interpretation in 

smart cities that allows developers to create services and applications for citizens. This 

framework is able to capture, store and process the stream of data in real-time and provide the 

city condition at any moment along with the events and happenings in the city. CityPulse is 

composed of several components. The first set of components is categorized under large-scale 

data stream processing modules which allow data source interaction, data stream discovery 

and analysis. These components are data wrappers, resource management, data aggregation 

and federation, event detection, quality monitoring, fault recovery, geospatial database, and 

city dashboards. The next set of components is contextual filtering, event-based user-centric 

decision support and technical adaptation which fall under the adaptive real-time decision 

support module and can provide suggestions based on the state of the city. This framework is 

more advanced than the two smart city frameworks mentioned before, but it has not been 

updated since 2016 [64]. 

 

2.1.4 Autonomic Computing 

Autonomic computing is defined by IBM in 2005 [65] as the way that the computer systems 

respond to a change in the complex IT environment like healing, adaptation, or protection. 

Based on this guide, four attributes should be included in the system to have an autonomic 

computing system:  

• Self-configuration: The IT environment should configure itself to adapt to the changes. 
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• Self-healing: The IT environment should detect problematic operations and recover 

from them using the proper corrective actions. 

• Self-optimizing: The IT environment should be able to improve resource utilization 

and performance of the system. 

• Self-protecting: The IT environment should protect itself against attackers and 

vulnerabilities by taking proper actions. 

The components in an autonomic environment can work together and manage themselves and 

each other. A control loop as shown in Fig. 2.1 is a significant part of the autonomic 

architecture that has four main parts with access to shared knowledge. These four parts are 

monitor, analyze, plan, and execute forming the MAPE model.  

• Monitor: This part is responsible for collection, aggregation, filtering and reporting  

• Analyze: The analyze part should analyze the monitored data and model the situation 

• Plan: This part uses the policies and analyzed results to select the best action to adapt 

to the change 

• Execute: In this part the plans should be executed to achieve the goal 

Autonomic computing is beneficial to business systems and results in operational cost 

reduction, lower failure rate and response time, and increased security. 

 

Figure 2.1 MAPE-K Control Loop [65] 

Autonomic computing refers to systems that consist of autonomic elements that can manage 

themselves to accomplish the high-level goal set by the administrator [66]. This notion first 
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was inspired by the autonomic nervous system and introduced by IBM. Autonomic computing 

is defined as a large number of autonomous components that are formed in a hierarchy and 

are able to self-govern and interact with each other. The main principle of autonomic 

computing is self-management which means that the system can manage, maintain and adjust 

itself to the dynamic world and there is no need for a human to monitor and manage it. This 

type of system can monitor and optimize its status, detect errors, check for upgrades and 

configure itself in real-time. In this paper [66], it is mentioned that the autonomic system is a 

distributed and service-oriented infrastructure that is made by autonomic elements that interact 

with each other and manage their internal behaviour based on the rules that are set by the 

system administrator or even other elements. The autonomic elements’ tasks can correspond 

to their level in the hierarchy, for example in the higher levels the elements have more 

flexibility and are more dynamic. There can also exist an autonomic manager in the system 

that is responsible for monitoring and analyzing the elements and the entire environment and 

creating action plans for the autonomic system. Finally, in this paper, some of the engineering 

and scientific challenges of autonomic computing have been indicated.  

Sterritt et al. [67] also pointed out the origin of autonomic computing and provides an 

introduction to it. Its definition is very close to the above-mentioned one and like most of the 

papers in the realm of autonomic computing believes that an autonomic system is a system 

that is autonomic and self-managing environment and can hide the complexities in the system 

from the end-user. This paper also introduces some self-* features that are crucial to autonomic 

systems such as self-governing, self-adaptation, self-organization, self-optimization, self-

configuration, self-diagnosis of faults, self-protection, self-healing, self-recovery, and 

autonomy. The authors also considered the relationship between artificial intelligence and 

automaticity. AI techniques such as soft computing techniques, machine learning approaches 

and others, can be beneficial in helping to provide an autonomic environment. For example, 

Bayesian networks can be used for selecting the suitable autonomic algorithm or Markov 

decision process can be used for failure remediation, etc. 

Parashar et al [68] provide an introduction to autonomic computing and its challenges. Similar 

to other works that have been done in this area, it reiterates that the idea of autonomic 
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computing comes from the human nervous system. However, the authors found more 

similarities between autonomic computing and the nervous system and talked about a dynamic 

equilibrium and the fact that the system reacts to the change in the environment to maintain 

that equilibrium. In addition to that, they introduced Ashby’s ultra-stable system [68] in which 

some variables are defined that should be kept in a specific physiological threshold to 

guarantee the adaptiveness of the system. As a result, they believe that in the autonomic 

computing paradigm there should be a procedure that maintains this stable equilibrium in 

response to the changing environment. Some of the actions that can be taken to keep the 

stability of the system can be self-protection, self-recovery from failures, reconfiguration, the 

attempt to keep the performance of the system and self-optimization. Finally, some of the 

challenges are presented such as conceptual challenges, architecture challenges, middleware 

challenges and application challenges.  

Calinescu published a paper [69] related to general-purpose autonomic computing in which 

three criteria were identified that should be fulfilled for the generality of the autonomic 

computing system. These criteria are: 

• The autonomic computing framework should support heterogeneous ICT components 

such as software, hardware, etc. 

• It should provide self-* features and support for autonomic policies. 

• The framework should decrease the cost and effort of creating the autonomic system 

by enabling the developers to reuse the components and provide standards for different 

elements of the system and support modular development. 

In this paper [69], an architecture for general purpose autonomic systems is proposed which 

consists of a reconfigurable policy engine. This component is the main component of the 

system architecture, and it can manage resources and define the objectives that are defined by 

the user. To ensure the third criterion, in the architecture some adaptors are developed and 

utilized by using the interfaces for sensors and actuators. The policy engine includes 

components such as a runtime code generator, manageability adaptors proxies, high-level 

manageability adaptors, a scheduler, resource discovery, machine learning modules, and a 

probabilistic model checker. 
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The focus of this section was on autonomic computing, its definitions and its characteristics. 

The reason for studying autonomic computing is that for implementing the autonomous 

management system we should be aware of autonomic computing, its properties and its 

essential components. We found out that a system should include self-* attributes in order to 

have an autonomic computing feature. Some self-* attributes include but are not limited to 

self-configuration [65] [67], self-healing [65] [67], self-optimization [65] [67] [68], self-

protection [65] [67] [68], self-management [66] [67], self-governing [66] [67], self-adaptation 

[67], self-organization [67], self-diagnosis [67]. self-recovery [67] [68], and so on. In the 

studied papers, some methods have been utilized in order to have such a system for example 

in [65] a control loop is the main feature of the system which is based on the MAPE model. 

The authors in [66] introduced autonomic elements and autonomic managers. [67] benefited 

from AI techniques to bring automaticity into the system. In [68] the technique was based on 

a dynamic equilibrium inspired by the nervous system. Finally, in [69] their proposed 

architecture was based on a policy engine.  

2.2 Literature Review 

This section delves into a comprehensive examination of previous research focusing on 

autonomous management. Our exploration concludes with a thorough analysis of each paper, 

shedding light on the specific aspects addressed by each, and discussing any gaps or 

shortcomings in comparison to our proposed solution. By navigating through the current state 

of research in this domain, we aim to provide a detailed understanding of the existing literature 

landscape, paving the way for a more insightful evaluation of our proposed approach. 

2.2.1 Autonomous Management  

Autonomous management is a critical aspect of modern systems, especially in the context of 

complex and large-scale systems such as the Internet of Things (IoT) and smart cities. It refers 

to the ability of a system to manage itself without the need for constant human intervention. 

This section will delve into the concept of autonomous management, its key features, its 

applications in various domains and the approaches that have been proposed. We will also 

explore the challenges and opportunities associated with implementing autonomous 

management in complex systems. In Section 2.2.2, we will engage in a comprehensive 
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analysis of the papers centered around autonomous management. We will delve into the 

constraints and limitations of each study, highlighting the aspects they might have overlooked. 

We are seeking specific attributes in the papers under consideration. Initially, it is important 

to conduct a thorough assessment of the proposed solutions, encompassing prototype 

development, experimentation, and the presentation of case studies. A meticulous explanation 

of their structural intricacies and the technologies utilized is essential for a comprehensive 

evaluation. Moreover, a robust solution for autonomous smart city management should not 

only monitor and control the smart city environment but also its infrastructure. Operational 

performance is another focal point for a desirable solution. In the context of policy-based 

management, a desirable characteristic is the ability to seamlessly incorporate new rules and 

policies. Moreover, the solution's generality and adaptability to accommodate diverse 

requirements and network configurations are other pivotal considerations. This comparative 

evaluation will underscore the distinctive contributions of our research. 

In [70] Gurgen et al. introduced the characteristics of autonomic systems, and then they 

provided suggestions for self-aware cyber-physical systems for smart cities. The common 

properties of autonomic cyber-physical systems and a brief description for each of them are 

described in the following: 

• Self-adaptation means that when a change happens, the system should adjust itself to 

comply with the main objective. 

• Self-organization means that the system should be able to organize itself dynamically 

when nodes are being added or removed from the smart city network. 

• Self-optimization is when the system is able to manage the usage of its limited 

resources in an optimized way. 

• Self-configuration indicates when the system should perform real-time configuration 

of the devices automatically. 

• Self-protection is when the system can protect itself against attacks happening in the 

smart city without sacrificing the quality of service and experience. 

• Self-healing means that the system should monitor itself and fix the detected problems 

as fast as possible. 

• Self-description is another property of the system that belongs to each node in the 

system. Because of communication in the network, each node in the system should 

provide some information about itself to other objects.  

• Self-discovery is that the devices and even services in the system should be discovered 

automatically by the system. 
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• Self-energy-supplying means that the power supply of the entire system should be self-

harvesting. 

This paper suggested using the MAPE-K (Monitor- Analyze- Plan- Execute and Knowledge) 

model which is a well-known model for autonomous systems along with SOA and cloud 

computing to create a modular, reconfigurable, and extensible self-aware system. The crucial 

services provided by their self-aware middleware are data collection and processing, the 

composition of sensors and actuators, device management, and autonomic management. In 

the end, some suggestions are provided for self-manageable systems. 

Braten et al. [71] proposed a generalized cognitive model for autonomous IoT device 

management that reduces human intervention. This approach introduces a model that consists 

of two managers: the device manager, which is in charge of analyzing and planning the devices 

using the digital twin concept, and the system manager, responsible for assessing the system 

environment and determining how the external conditions influence the system and the 

devices. Each manager has its own procedural and declarative knowledge subcomponents. 

Moreover, the system contains control and adaptation loops. The adaptive loop follows the 

MAPE-K pattern, and it can take two paths based on the change in the environment or on the 

devices. There are two learning loops for each system manager and device manager 

respectively, and the last loop, the autonomic loop, is responsible for controlling the device in 

the short term. There are also explicit triggers in their model and their task is to control the 

data flow and behaviour of the system in accordance with decisions that are made locally. 

Using digital twin, this model ensures that the actions and adaptive instructions are 

synchronized because otherwise the manager’s interpretation of the effect of the action might 

be incorrect and learning processes might suffer.  This work focuses only on the environmental 

aspect of the IoT network and management of the IoT devices and they do not consider the 

operational aspects of the infrastructure. 

Kyriazis et al. [72] discussed the challenges and enablers for creating smarter, more reliable, 

and autonomous systems within the context of the Internet of Things (IoT). Their proposed 

conceptual architecture aims to enhance the sustainability of IoT applications by utilizing a 

large number of heterogeneous device platforms efficiently. The architecture incorporates 
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cross-platform channels for data, information, things, and decentralized management as shown 

in Fig. 2.2. These channels enable the development of an environment for IoT applications 

and facilitate the acquisition and analysis of situational knowledge to make things aware of 

conditions and events affecting IoT systems' behavior. For each channel, its tasks are 

represented in Fig. 2.2. The devices in the proposed architecture have the capability to share 

their data. Then in the information channel knowledge is derived from the data and leads the 

devices to be more autonomous. The decentralized channel in the proposed architecture 

utilizes technologies for efficient management and coordination of a large number of IoT 

devices. Rich metadata structures capture the "social behavior" of things, facilitating 

decentralized management of networks of things. The management mechanisms are described 

as "enhanced and autonomous," and their major importance lies in their ability to adapt to real-

world situations. By continuously analyzing raw data, the management mechanisms can 

provide a snapshot of the network of things' behavior and state at any given time. This analysis 

triggers actions concerning resource and data management, allowing for autonomous decision-

making and efficient operation of the IoT ecosystem.  While the proposed architecture 

showcases ideas such as decentralized management, enriched metadata structures, and 

autonomous decision-making, the absence of practical realization prevents it from being 

validated and applied in real IoT environments. 
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Figure 2.2 Cross-Platform Channels [72] 

In [73] Gurgen et al. proposed an approach based on ECA rules for autonomic management 

of sensing devices. According to this paper, smart devices are autonomous if they are self-

discovered, self-configured and self-healed. In this paper, a self-manageable autonomic 

platform is introduced which is based on the Event-Condition-Action paradigm. In the ECA 

paradigm, an action will occur when a specific event with a determined condition happens. 

An event is defined by four fields: type, content, element Id and timestamp. Also, management 

actions can be done to configure, install software or even perform a diagnosis using SET, GET 

and ACT.  

Another work that has been done in the field of autonomous management is mentioned by 

Sharrock et al. [74]. This paper also introduces a middleware that, like the paper by Gurgen et 

al. [73] uses ECA rules to provide the management of heterogeneous devices autonomously. 

This management offers remote deployment of software, performance monitoring, and 

dynamic configuration of the sensing devices through high-level policies.  To create this 
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middleware, they borrowed encapsulation mechanisms from TUNe [75] and applied those 

mechanisms to their management middleware, XSStreaMWare. TUNe is an autonomic 

management system that uses the Fractal component model which is a type of component 

model that supports modularity for a system and encapsulates software using wrappers and 

provides server and client interfaces to support incoming and outgoing method calls [75].  The 

XSStreaMWare middleware benefits from an ECA engine that upon happening an event with 

certain conditions, the defined action will take place. To define the ECA rules, they developed 

a Sensor Management Modeling Language (SMML). XSStreaMWare has a service-oriented 

distributed architecture, and its approach is dividing the environment into several regions and 

managing the regions by using a gateway that hosts adapters. Because the devices join or leave 

the network dynamically, upon detecting a new device this middleware checks the firmware 

version on the device and if it needs to be updated, the middleware removes the current version 

and installs the latest one. In addition to the software/firmware version, this middleware is 

able to reconfigure the device or even monitor and manage the overall performance.  As 

mentioned, the ECA rules are defined in a graphical language called SMML (Sensor 

Management Modeling Language). 

A multi-agent-based autonomic network management architecture is proposed by Arzo et al. 

[76] that uses mathematical modelling. This paper begins by summarizing the challenges of 

network management automation including system complexity, dynamicity, heterogeneity, 

and data volume. Paying attention to the network management cycle is important in order to 

provide automation. This cycle is composed of several steps: environment measurement, 

decision making, planning action strategy, and verifying it, and at last, action execution. 

Automated decision-making task contains six subtasks of data analytics, decision generation, 

organization, verification, execution, and monitoring system behaviour. Their management 

architecture, called MANA-NMS, divides the complex system into several reusable atomic 

modules that can perform each task autonomously in interaction with the environment and 

other agents. Their proposed architecture includes multiple autonomous agents that are based 

on intelligent algorithms like ML or DL. The management function can be done in three 

functionality levels: the physical layer, the device layer and the network layer. This approach 
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can effectively monitor and manage the network, but it does not consider the management of 

components of the broader smart city infrastructure which our research looks to address. 

Mezghani et al. [77] explores autonomic coordination of IoT device management that detects 

the dependencies between the isolated device management (DM) platforms and coordinates 

them, meaning that when an operation is going to be executed on the devices, this middleware 

autonomously organizes that execution. Their approach benefits from a knowledge component 

and has two phases: during the first phase, the integration phase, it accumulates the knowledge 

about DM servers, managed devices and device dependencies and in the second phase, the 

coordination phase, using the accumulated knowledge it performs several tasks such as 

planning the order of operations based on the coordination rules and arranging their execution. 

This coordination has several levels of complexity from static to dynamic. The authors provide 

details about the architecture and implementation of the first level coordination complexity 

which is static time-window coordination.  

The work by Ayeb et al. [78] focuses mainly on device management based on the coordination 

of autonomic loops for target identification, load, and error-aware device management for the 

IoT. Device management is described as consisting of four major operations as maintenance 

(firmware updates), provisioning, monitoring, and troubleshooting of the heterogenous 

devices that should be done remotely, constantly and without physical intervention. 

Heterogeneity, dynamicity, and scalability are the challenges of the IoT DM that they tried to 

address in their architecture. This paper mentions that after applying the DM operations, the 

devices should be monitored constantly to ensure that they continue operating as expected and 

the operation was successful. Their proposed architecture is a composition of three autonomic 

loops that are connected and can interact with each other: 1) operation generation and target 

identification, 2) decomposition enforcement and tracking, and 3) speed regulation. Their 

approach was interesting for the following reasons: i) specific devices can be identified and 

the operations can be performed on only those devices, ii) there is a monitoring component 

that observes notifications on firmware and configurations, device states, and some metrics 

about the infrastructure. Monitoring infrastructure metrics is done to detect QoS variations, 

diagnose warnings, and mitigate errors. The Decomposition, Enforcement and Tracking loop 
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monitors and adjusts device operations using various metrics, including average CPU usage 

and RAM load. 

Kosińska et al.  [79] proposed a model-driven autonomic management framework for cloud-

native applications called AMoCNA using high-level policies. An abstract view of the model 

is shown in Fig. 2.3. This model helps developers to understand which components are 

essential for a cloud environment. In their approach, the management process is done in the 

same place as the CNApps namely Cloud-native Execution Environment and this environment 

is controlled by Cloud-native Autonomic Manager. Requirements considered in this 

framework include: 

• The solution should be goal driven.  

• To guarantee application health and optimization, the framework should log metrics at 

every layer and metrics should get aggregated. 

• The architecture should include monitoring. 

• The QoS level should be kept as expected using the observable information of all 

execution components. 

• Autonomous management is achieved using high-level goals to prevent human 

intervention. 

• The feedback system is based on MAPE-K. 

• The solution should be extensible and take the environmental dynamicity into 

consideration. 
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Figure 2.3 Abstract Model of a Cloud-native Application Execution Environment [79]. 

Some components are important in this solution. For example, the Declarative management 

policy component refers to a high-level specification or set of rules based on the event-

condition-action concept that dictates the desired behavior and actions to be taken in managing 

a cloud-native environment. It provides a mean to define the expected outcomes and behaviors 
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without specifying the exact implementation details. The declarative management policy is a 

key component of the autonomic management framework for cloud-native applications 

(AMoCNA) and allows for policy-driven management and enables automation and autonomy 

in the management process. It guides the actions and decisions of the Cloud-native Autonomic 

Manager, which enforces the policies and carries out the necessary management tasks. The 

AMoCNA model has five logical layers of components:  Instrumentation, Observation, 

Management, Inference and Control. This framework has two types of microservices: 

management policy microservice that is responsible for managing the whole execution 

environment, and an autonomic element microservice. AMoCNA utilizes a rule engine for 

enforcing management policies in a Cloud-native context. However, specific details about the 

policies, such as their implementation and examples, are not explicitly mentioned. The text 

suggests that policies are defined using rules, and it can be inferred that policies may involve 

conditions and actions based on the collected metrics, allowing for dynamic management 

decisions. As an experiment, they defined two different policies to adjust the requests for CPU 

and found out that as the number of rules increases, the delay will increase as well.  

Having said that, this approach is the closest one to our research, but it lacks explicit 

consideration of smart cities and does not specifically mention or address smart cities as a 

domain of application for the proposed autonomic management framework. The focus of the 

paper is on the autonomic management of cloud-native applications, and the discussion 

revolves around cloud-native environments and their management requirements. Therefore, 

the paper does not explore the application of the framework in the context of smart cities. 

Therefore, they do not monitor and manage both the infrastructure performance and the sensor 

measurements.  

Decision‐making support for an autonomous software‐defined network orchestrator is 

presented by Saadon et al. [80]. In this paper the authors focused on autonomous SDN 

management, and they proposed a mathematical function to support decision-making at the 

orchestrator level.  Using this function, the orchestrator can decide which rule should be 

selected to ensure that the resources are allocated in an optimized way. Their proposed method 

starts by determining the applicable rules and then the mathematical function estimates the 
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rules and assigns a weight to each rule. Finally, the rule with the highest score will be selected 

by the orchestrator. Their focus is on software defined networks, and they only take 

applications and the rules into consideration. Also, using mathematical modelling despite 

linearity can have limitations and add unnecessary complexity.  

Lam et al. [81] proposed an autonomic approach based on the MAPE-K model for dynamic 

orchestration and configuration services in Industrial IoT. In this research, the control system 

is under real-time monitoring and adaptation takes place based on semantic policy to automate 

the orchestration. In the context of the Autonomic Adaptation System, semantic policies are 

expressed using Semantic Web technologies, such as the Semantic Web Rule Language 

(SWRL), SPARQL queries and the Resource Description Framework (RDF). Orchestration 

policies are expressed using the Semantic Web Rule Language (SWRL) and the monitoring 

data is stored in the central Knowledge Base (KB) using the Jena RDF (Resource Description 

Framework) Triplestore3. These technologies provide a standardized and expressive way to 

represent knowledge, making it easier to reason over the information and make informed 

decisions regarding system adaptation. As a practical use case, they used their approach in 

supply chain management to automate the monitoring of the storage tanks and supplying the 

raw material. This approach still depends heavily on having an administrator for management 

and is not employed in smart city contexts. 

Sampaio et al. [82] proposed a system called the Central IoT (CIoT) system, which aims to 

optimize power consumption in Internet of Things (IoT) and Fog Computing setups. The 

system utilizes advanced orchestration mechanisms to manage dynamic duty cycles, resulting 

in significant energy savings. It operates autonomously without requiring human intervention 

and can adjust power cycles based on contextual information such as environmental 

conditions, user behavior, regulations on energy utilization, and network resources. By 

leveraging IoT devices and Fog Computing, the CIoT system intelligently controls and 

optimizes power consumption in various scenarios, including smart homes, smart cities, smart 

agriculture, intelligent fire alarms, and intelligent traffic lights. The system's autonomic nature 

is attributed to its ability to function and optimize power consumption without human 

intervention, relying on advanced orchestration mechanisms provided by Fog Computing. 
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Although the specific policies used in the CIoT system are not mentioned, it can be inferred 

that policy-based mechanisms guide the system's operation and decision-making process to 

regulate energy utilization and optimize power consumption in an autonomous manner. 

Nalinaksh et al. [83] proposed autonomic internet of things ecosystems focusing on the 

application of autonomic computing in IoT deployments. It outlines four real-world pilots 

from the ASSIST-IoT project: port automation, smart worker protection, car engine 

monitoring, and car exterior monitoring. The paper emphasizes the lack of ready-to-use tools 

for designing model-based architectural self-adaptation in IoT ecosystems. The autonomy-

related requirements derived from the ASSIST-IoT project pilots include self-configuration, 

self-healing, self-optimization, and self-protection mechanisms across all four pilots. These 

requirements aim to enable next-generation IoT ecosystems with semi-autonomic behaviors. 

The paper by de Sousa et al. [84] introduces CLARA, a Closed Loop-based Zero-touch 

Network Management Framework for 5G systems. CLARA utilizes technologies like SDN, 

NFV, Network Slicing, and Intent-based Networking, along with policy-based closed control 

loops (CCL) to automate network and service management. It enables self-x properties and 

fulfills user requirements in a multi-domain environment. The framework leverages policies 

derived from user intent and implements them through a knowledge base, enabling flexibility 

and adaptation. CLARA's contributions include a modular CCL platform, translation of 

service intents into monitoring models, and prototype implementation. The paper emphasizes 

the need for novel approaches in network management to meet modern network and service 

demands, and CLARA aims to provide a comprehensive solution to achieve efficient network 

management and service provisioning. 

Kosinska et al. [85] introduce an experimental evaluation of a rule-based autonomic 

computing management framework for cloud-native applications. The focus is on assessing 

the effectiveness of this approach in governing system behavior and achieving compliance 

with CI/CD (Continuous Integration /Continuous Delivery/Deployment) objectives. The 

paper proposes a methodology for evaluating complex cloud-native environments and 

presents two categories of experiments. The first category evaluates the impact of dynamic 

resource adjustment on the system, emphasizing the importance of observability in 
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understanding the application state and the effectiveness of policy-based management. The 

second category assesses the rule-based approach's influence on autonomic management, 

demonstrating its accuracy even in scenarios with frequent modifications. The paper discusses 

the concept of a rule engine for enforcing management policies and highlights the benefits of 

the proposed MRE-K (Monitoring, Rule Engine, Execute, and Knowledge) loop concept. It 

also compares the declarative management policy approach to Kubernetes' available options.  

Villela Zavala et al. [86] proposed an Autonomic IoT framework to enable full autonomic 

behavior in IoT systems. It tackles challenges related to scalability, diversity of application 

domains, device heterogeneity, large device volumes, and ubiquity. The framework 

incorporates the Autonomic Control Loop (ACL) MAPE-K, consisting of four components: 

monitor, analyzer & planner, executor, and knowledge. The proposed framework does not 

require changes to the existing IoT architecture but adapts the system to specific IoT domains. 

It uses Utility Theory to achieve self-configuration and self-management, allowing the system 

to autonomously adapt and configure itself based on current conditions and requirements. The 

framework is validated through an experimental testbed in urban agriculture, specifically 

using hydroponic and aeroponic systems to grow maize crops. The experiments demonstrate 

that the proposed framework can manage the growth cycles of crops without human 

intervention, optimizing plant phenology and improving crop yields. The paper highlights the 

adaptability and optimization capabilities of the framework, making it suitable for various 

application domains. However, potential limitations include scalability challenges, 

implementation complexity, and resource constraints. In summary, the paper presents a 

promising Autonomic IoT framework that combines control principles and Utility Theory for 

self-configuration and self-management in IoT systems. The experimental results in urban 

agriculture show its potential benefits, but further research is needed to address potential 

limitations and ensure practicality in real-world IoT deployments. 

The paper by Riker et al. [87] introduces AGREEN, an autonomous solution for the autonomic 

management of group communication in Dense Internet of Things (DIoT) applications. 

AGREEN aims to achieve self-adaptable communication in DIoT environments by addressing 

challenges such as message loss, congestion, and energy consumption. It utilizes a group-
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oriented approach, creating monitoring groups of IoT devices with similar characteristics to 

facilitate efficient communication management. The fuzzy decision system in AGREEN 

considers various factors to dynamically adjust communication settings, including traffic loss, 

sensing relevance, energy harvested, and the number of monitoring nodes with renewable and 

non-renewable energy. AGREEN addresses energy consumption by utilizing a fuzzy logic 

controller to autonomously detect low-performance situations and make automated decisions 

regarding the number of group members, communication interval, and confirmable message 

rate. The paper identifies gaps in the existing literature regarding autonomic control of 

communication reliability, traffic production, and energy balancing in DIoT networks with 

heterogeneous energy sources. While AGREEN shows promise for achieving self-adaptable 

communication, the paper acknowledges limitations, such as the need for customization in 

different DIoT environments, and scalability challenges for large-scale networks. Overall, 

AGREEN presents an energy-efficient and reliable solution for DIoT scenarios, but further 

research and improvements are needed to address the identified limitations and make it more 

suitable for diverse IoT environments. 

Singh et al. [88] proposed autonomic resource management in a cloud-based and distributed 

system environment. The main objective of autonomic computing is to achieve self-

management capabilities, allowing the system to handle computing resources dynamically 

while concealing complexities from users. The approach focuses on four key aspects: self-

configuration, self-healing, self-optimization, and self-security. The paper proposes an 

autonomic engine for cloud management that embraces heterogeneous and dynamic cloud 

architectures, predicting IT system needs and reducing human involvement in issue resolution. 

Contributions of autonomic computing include self-configuring modules that adapt to 

changing conditions, self-healing components detecting and correcting defects, self-

optimizing modules adjusting services to meet user needs, and self-protecting features 

defending against attacks. However, the paper lacks detailed implementation information and 

comprehensive experimental analysis, while also inadequately addressing challenges. The 

conclusion emphasizes the need for a transformative shift in software system development to 

accommodate autonomous computation, calling for further research, and interdisciplinary 

work to address the challenges and enhance the practical relevance of autonomic computing. 
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Shukla et al. [89] explored the concept of autonomic cloud resource management within the 

context of Industry 4.0, which refers to the fourth industrial revolution characterized by 

automation, machine-to-machine and human-to-machine communication, and digitization in 

various industries. The main focus lies in examining how autonomic cloud computing can 

significantly enhance resource management and improve the efficiency of cloud services. The 

concept of autonomic computing is introduced, emphasizing its pivotal role in self-managing 

computer systems through adaptive technologies, thereby reducing the dependence on human 

intervention. Autonomic cloud computing is discussed as a means of leveraging cloud 

resources and services to meet user demands in a flexible and efficient manner. The paper 

delves into the challenges of managing cloud resources autonomously, which include the 

critical need for scalability, energy efficiency, and cost optimization. It introduces the notion 

of a resource pool and self-configurability to tackle these challenges effectively. A significant 

portion of the paper is dedicated to presenting a comprehensive architecture and methodology 

for autonomic cloud resource management. This methodology focuses on key aspects such as 

job execution, fault tolerance, and optimization processes. The paper emphasizes the essential 

role of autonomic computing in effectively managing cloud resources in this context. Various 

components and entities involved in the proposed architecture are described in detail. These 

include users, larger and smaller datasets, self-configurable nodes, fault detection 

mechanisms, and the resource pool. The paper concludes with a strong emphasis on the 

significance of autonomic cloud resource management in Industry 4.0. It highlights the 

numerous benefits of the proposed architecture, particularly in terms of resource utilization, 

user experience, and overall efficiency. Additionally, it acknowledges the need for further 

research and development in this evolving field. Overall, the paper underscores the immense 

potential of autonomic cloud resource management in addressing the challenges of resource 

allocation, scalability, and energy efficiency in cloud computing within the dynamic landscape 

of Industry 4.0. 

Mangla et al. [90] proposed a framework and architecture for autonomic resource management 

in cloud computing environments, with a focus on integrating fog computing and IoT. The 

framework aims to enable intelligent decision-making and efficient resource allocation 

through a control loop based on MAPE in response to the environment to achieve self-
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management. The proposed architecture introduces a three-layered approach: cloud layer, fog 

layer, and IoT layer. The fog layer, placed near end devices, acts as an intermediary between 

the cloud and IoT to optimize latency and address data processing challenges. It consists of a 

fog master and fog slaves, where the fog master performs IoT services and manages the fog 

slaves. Tasks are forwarded to the fog master from the IoT layer, and it decides whether to 

handle the task itself, delegate it to fog slaves, or send it to the cloud layer based on network 

parameters and resource requirements. The fog master serves as an autonomic manager, 

conducting functions such as monitoring, analyzing complex situations, planning actions, and 

executing them dynamically. Implementing autonomic computing in the fog layer reduces the 

burden on the cloud layer and enhances overall performance. The proposed architecture 

emphasizes efficiency in processing and energy consumption by leveraging the computational 

resources of fog nodes and the extended capabilities of the fog master. By integrating fog 

computing and autonomic computing principles, the architecture aims to optimize the 

processing of IoT data and overcome cloud computing limitations related to data volume and 

complexity. 

Patibandla et al. [91] investigated the concept of autonomic computing in cloud computing 

using architecture adoption models and its potential benefits for organizations, emphasizing 

improved resource utilization, cost optimization, data redundancy, and dynamic security 

modifications. It presents a case study focusing on the application of autonomous cloud 

management in the context of dengue fever prediction, a critical public health issue in tropical 

regions. The study utilizes the Cloudbus Workflow Engine, designed for grid-oriented 

workflow management, to automate the workflow process and optimize resource allocation. 

The workflow model is tailored to process and analyze spatial-temporal data related to dengue 

fever, aiming to achieve accurate and timely predictions for effective control. The 

methodology for performance evaluation involves several steps. A theoretical testbed is 

created, consisting of a hybrid cluster with multiple processors and memory, along with virtual 

machines deployed in a local network. The dengue fever prediction program utilizes recorded 

dengue cases and environmental evidence from a specific time period. The workflow design 

incorporates iterative scheduling and optimization, with tasks executed iteratively, adjusting 

resource allocation based on input data. The iterative scheduling algorithm actively adjusts 
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resource allocation and scheduling based on estimated execution time and cost. The 

optimization process follows a series of steps to reduce costs and consider resource 

constraints, including launching cloud resources, applying a greedy algorithm, and analyzing 

public cloud resources' cost-effectiveness. The performance evaluation demonstrates the 

effectiveness of the automated iterative optimization function, reducing runtime by 48% and 

public cloud usage expenses by 70% compared to a selfish approach. These results highlight 

the significance of adopting autonomous cloud management in various sectors beyond dengue 

fever prediction, such as eHealth, e-Science, e-Government, and e-commerce. The paper 

concludes by underlining the importance of autonomous software management and its 

potential to address cloud infrastructure management challenges.  

Zhou et al. [92] introduced SeaNet (Semantic Enabled Autonomic Management of Software 

Defined Networks), a graph-driven approach for autonomic management of software-defined 

networks, which harnesses the power of artificial intelligence for telecommunication network 

management. It begins by discussing the historical development of AI in this field and 

highlights the limitations of existing proposals that lack practical implementations and 

evaluations. To address these shortcomings, the authors introduce SeaNet, an architecture 

based on knowledge graphs and ontologies for autonomic network management. SeaNet's 

architecture comprises a knowledge graph constructor, a SPARQL engine, and a network 

management API. The knowledge base generator harmonizes unstructured data from various 

network sources into RDF triples using ontological concepts, enabling efficient reasoning 

through first-order logic formulas. To validate the practicality of SeaNet, extensive 

evaluations are conducted on computer networks and Wi-Fi networks using Mininet and 

Mininet-WiFi. The knowledge base generator is evaluated in terms of response time, showing 

a linear relationship with network scale. The overhead for generating knowledge bases is 

deemed acceptable for various network topologies. The Network Management API is 

rigorously evaluated, comparing SeaNet's methods to a leading network management 

controller, Ryu. SeaNet's "connectAll" method outperforms Ryu's application, especially in 

large networks, and exhibits superior code complexity, execution time, readability, and 

reusability. Additionally, the scalability of SeaNet is demonstrated through RDF reasoning. 

The efficiency of RDF-based reasoning remains consistent and unaffected by the scale of the 
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knowledge base. Overall, the evaluations confirm that SeaNet is a practical and efficient AI-

driven solution for autonomic SDN management. By leveraging knowledge graphs and 

ontologies, SeaNet provides a technology-independent approach, simplifying complex 

network tasks while achieving high-performance results in various network scenarios. 

Lin et al. [93] proposed autonomic security management for IoT smart spaces. A "smart space" 

can be described as an environment that integrates embedded sensors and devices. The 

primary objective of this research is to enhance the security of smart spaces by implementing 

an autonomic computing approach to manage IoT environments. The goal is to minimize 

manual effort while ensuring a desired level of security through the development of an 

autonomic manager. This manager will continuously monitor the smart space, analyze 

contextual information, and respond to potential security threats, thereby reducing liability 

and risks of security breaches. To achieve this, the researchers adopt the microservice 

architecture pattern and introduce a comprehensive ontology named Secure Smart Space 

Ontology (SSSO) based on RDF triples. This ontology allows for the description of physical 

infrastructure, facilities, services and contextual information in security-enhanced smart 

spaces. Building upon SSSO, they design an autonomic security manager consisting of four 

layers. The manager continuously monitors the managed spaces, analyzes the situation, and 

takes appropriate actions based on the defined policies to maintain the desired security level. 

The paper presents Secure Smart Space Ontology (SSSO), which incorporates service-

oriented, security-enhanced, event-driven, and context-rich features for IoT smart spaces. The 

proposed Autonomic Security Manager is developed as a microservice running in the smart 

space environment, following the MAPE-k method. The manager consists of four layers: 

Resource and Context, Triple Store, Manager, and Interface. The Resource and Context layer 

represents the physical infrastructure and contextual information, while the Triple Store layer 

stores RDF triples. The Manager layer implements the MAPE-k method, monitoring events, 

analyzing situations, planning actions, and executing commands. The Interface layer provides 

an API for interaction with the manager. The adaptive security policy allows for dynamic 

access control based on real-time data provided by services, written in SPARQL. The security 

manager queries the RDF graph to gather relevant information for analysis and decision-

making. The evaluation includes a model of a smart conference room with 32 devices, 66 
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services, 30 potential threats, and 28 adaptive policies. The autonomic security manager 

effectively responds to a series of 160 events, maintaining security through the MAPE-k 

method. The manager responds to events within two seconds, demonstrating its suitability for 

large-scale smart spaces. In conclusion, the proposed SSSO and Autonomic Security Manager 

offer an effective and scalable solution for secure IoT smart spaces. The ontology enables 

comprehensive description and management of services, while the manager ensures adaptive 

security control through policy evaluation and event-driven decision-making. The evaluation 

validates the system's capabilities and efficiency, making it suitable for various smart space 

scenarios. 

2.2.2 Discussion of Related Work  

In previous research, concepts such as the MAPE-K model [70, 71, 79, 84, 90,91,93], ECA 

paradigm [73, 74] and high-level policies were very central because in order to manage a 

system autonomously, we need to know what the goals of the whole system are, then we need 

to set rules to determine what action should be taken if a condition is met. In addition, the 

management system needs to be able to monitor the computational environment, analyze its 

state, plan the actions to achieve a desired goal, and then execute the planned action.  These 

actions typically require access to shared knowledge.  As noted, these steps are modeled as 

multiple control loops in the MAPE-K model. 

Most of the previous research on autonomous management has focused on specifically one or 

two aspects of the computational infrastructure of a smart city. Some of the research papers 

proposed an autonomic management system to organize the order of the operations that the 

administrator is going to perform on the devices, such as firmware update or diagnosis and the 

impact of those actions [77, 78]. In some cases, device management and how to make the 

devices discoverable, self-configurable and self-healed were also areas of attention [70, 71, 

77, 78].  

Gurgen [70] introduces a middleware that provides services for monitoring the city data and 

performs actions identified by various applications, but it lacks prototype development, 

experiments, and case studies. It briefly covers the middleware's functions, such as data 

collection and processing, composition of sensor and actuator services, and autonomic 
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management. However, it lacks detailed technical implementation. The study's classification 

as autonomic computing and smart city is somewhat misleading, as it primarily focuses on 

offering an autonomic life cycle management system for smart city applications rather than an 

automated management system for the smart city as a whole. Overall, the research would 

benefit from including practical examples, delving deeper into technical implementation, and 

addressing smart city management. In subsequent work, Gurgen et al. [73] mainly focused on 

the management of the sensor attributes and performance. Although some rules are defined 

for managing performance metrics, such as network parameters, it neglects to explain their 

adaptability over time in response to evolving system requirements. Additionally, while the 

paper addresses distributed hierarchical architecture and rule evaluation across various levels, 

it falls short in considering an analysis of the system's scalability concerning the growing 

number of sensors and managed elements. 

The work by Braten et al.  [71] was specifically able to manage two aspects of the smart city, 

devices and the whole system, which was interesting. This paper presents a general model for 

autonomous IoT device management. Additionally, it employs this model in a management 

system for solar-powered air quality sensing devices. However, the paper falls short in 

providing essential elaboration on both the specifics of the experimental environment and the 

intricate details involved in the development of the prototype. The primary emphasis is placed 

on device management, while infrastructure management is notably absent from the scope. 

Additionally, the study fails to address the crucial aspect of scalability, which is vital for 

assessing the model's applicability in larger, more complex IoT ecosystems.  

Kyriazis [72] proposed a conceptual architecture that primarily focuses on the components 

within an IoT network, but does not include any prototype implementation, experimental 

evaluation, or considers infrastructure performance. They note that enhancements are needed 

to ensure practical implementation and optimal system efficiency. 

The work by Sharrock et al.  [74] focused primarily on sensing devices, while our objective 

revolves around the smart city ecosystem. We aim to consider a broader range of performance 

metrics beyond just sensor battery life, encompassing CPU and memory usage. Furthermore, 
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we plan to incorporate the smart city environment to ensure a comprehensive and effective 

solution. 

 Arzo et al. [76] investigated network automation and divided a complex network into atomic 

and autonomic units that could interact with each other to improve reusability and scalability. 

The work does not consider the smart city context and so the model's application for 

monitoring and managing the urban environment remains unexplored. Mezghani et al. [77] 

introduce a coordinator as a mediator for isolated DM (Device Management) platforms, 

facilitating seamless execution of device management operations across multiple device fleets. 

The main emphasis lies in task coordination in IoT networks, with no focus on the 

environment, or performance aspects. The proposed technique employs graph-based methods 

and includes monitoring, analysis, and planning features. Ayeb et al. [78] also focus on device 

management and coordinating device operations, primarily fault detection. Their approach 

allows administrators to monitor performance, but it lacks the capability for autonomic 

performance management. 

The work by Kosińska et al.  [79, 85] was on the autonomic management of cloud-native 

applications. Their work was the most related one to our objectives and it demonstrated the 

feasibility and advantages of autonomic management of complex environments. They set 

some high-level policies, and the framework could adapt and reconfigure runtime in real-time 

based on predefined management policies in the form of event-condition-action. This 

capability serves as a proactive measure to mitigate potential SLA violations. As an 

experiment, they outlined two rules for a policy governing the adjustment of CPU requests for 

Pods. They also present an experimental evaluation of their work. Having said that, their work 

concentrates on Cloud applications and does not explore the potential implications for smart 

cities and their environments. Consequently, there's a gap in addressing sensor measurements 

and attributes. 

The work by Saadon et al. [80] recognizes the possibility of defining multiple rules 

simultaneously to support decision making for resource allocation but asserts that only one 

applicable rule will be chosen, though certain scenarios may require multiple rules. However, 

the study lacks a thorough exploration of potential interactions or conflicts between these 
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rules. Furthermore, the research discusses the function's adaptability but neglects to address 

how it will be updated over time to accommodate new rules and regulations, which is essential 

for maintaining its relevance and usefulness. Notably, the research overlooks smart cities in 

its approach.  

Lam et al.  [81] propose dynamic orchestration and configuration services in Industrial IoT 

Systems. It presents an approach for real-time adaptation capabilities. Nonetheless, a notable 

limitation is the lack of emphasis on performance metrics and operational management. 

Although memory consumption is monitored for comparison, the authors miss the opportunity 

to leverage this data for effective memory management.  Additionally, the paper's focus on 

the manufacturing domain raises questions about the generalizability of the proposed approach 

to diverse industries or domains with varying requirements and characteristics such as smart 

cities. 

The paper by Sampaio et al. [82] primarily centers on power consumption, but neglects to 

consider the unique aspects of the smart city environment and its performance of its 

infrastructure. There is a lack of explanation on how their approach could be effectively 

applied to large-scale IoT energy consumption scenarios. The research's narrow focus on a 

fire alarm system within a smart condominium restricts its exploration of potential 

applications or adaptability to other diverse IoT contexts. 

Nalinaksh et al. [83] only discuss existing tools that support the autonomic IoT ecosystem but 

falls short in proposing concrete solutions for autonomic management and real-world 

deployment and in the context of smart city management. 

In [84], de Sousa et al. utilized the MAPE-K model and policies for network management. 

However, a crucial aspect left unaddressed is the detailed explanation of how real-time 

network data will be collected, processed, and utilized for decision-making, monitoring, and 

policy enforcement. Also, the research does not discuss the issue of scalability, and there is a 

limited explanation of how the proposed solution can adequately handle the increasing 

network demands, growing traffic, nodes, and domains. Additionally, the study's focus solely 
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on network management limits its potential impact, as it does not explore the broader 

applicability of the approach to smart city environments and IoT networks. 

In [86], Villela Zavala et al. acknowledge the significance of the self-configuration autonomic 

property within the IoT Autonomic Architecture, which is crucial for addressing scalability, 

application domain diversity, and device heterogeneity. However, the specific mechanisms by 

which this self-configuration property achieves scalability are not clearly explained. As the 

IoT device and data volume increase, the framework's ability to handle a large number of 

connected devices becomes critical. The study does not present experimental results to 

evaluate the operation of their system.  Despite the title mentioning network management, 

there is a lack of elaboration on how the network itself is managed.  

Riker et al. in [87] proposed AGREEN. One of the limitations of AGREEN's approach lies in 

its reliance on the fuzzy decision system, which may not be universally suitable for all DIoT 

environments due to variations in input data accuracy and the quality of fuzzy rules, potentially 

adding complexity. Thus, customizing the system for different DIoT environments might be 

necessary. Another potential drawback is its scalability for large-scale DIoT networks, as it 

necessitates a monitoring group of IoT devices sharing similar characteristics, which could 

prove challenging in diverse networks with numerous devices and applications. Furthermore, 

AGREEN focuses on the management of IoT device communication, encompassing 

communication intervals and active devices, yet it overlooks the smart city environment and 

infrastructure. 

In research by Singh et al. [88] explicit detail about the experimental analysis is missing. While 

the researchers did create a pool of requests involving five autonomic machines across three 

distinct scenarios, they did not elaborate extensively on the specifics of these scenarios. This 

absence of detailed explanation leaves a gap in the understanding of the experimental design 

and its implications. Additionally, integrating the autonomic engine into existing cloud 

infrastructures and ensuring compatibility with diverse cloud service providers could present 

complex challenges that require meticulous planning and testing. Moreover, the study 

overlooks the considerations specific to smart cities and their environments. Furthermore, the 

evaluation process also lacks detailed elaboration. 
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The work by Shukla et al. [89] offers an overview of the challenges and high-level components 

of autonomic cloud resource management in Industry 4.0. However, for a more comprehensive 

evaluation, additional information is required, such as detailed insights into the algorithms, 

methodologies used in resource allocation, fault detection, and optimization, as well as 

concrete experimental results and real-world use cases. While a resource management diagram 

is provided, there is a notable absence of an explanation regarding resource allocation 

methods. Additionally, although the authors mention SLA violation and energy utilization, the 

desired or acceptable levels for these metrics remain unspecified. Moreover, the context of the 

research lacks a focus on smart cities and their environment. 

The research presented by Mangla et al. [90] is notable for its implementation of MAPE-K for 

autonomic management. The focus is on resource management at the fog layer, rather than the 

cloud, represents a notable advantage of their approach. However, to fully evaluate the 

proposed architecture's feasibility and effectiveness, more detailed technical information and 

concrete examples are needed because their work lacks insights into the implementation of 

their approach and how they define the policies, and how the execute function governs the 

execution of actions. The mechanisms for resource allocation and optimization should be 

further elaborated upon to provide a clearer understanding of their functionality. While the 

authors suggest that incorporating the fog layer can address scalability, a more explicit 

rationale for this claim would be beneficial, especially when considering the accommodation 

of a large number of devices or complex IoT deployments. Additionally, the research lacks 

attention to the management of performance and operational aspects of the environment, 

which could be a valuable aspect to explore. 

In [91], Patibandla et al. employed MAPE-K and utilized both public and private clouds, with 

a primary emphasis on resource management within the cloud environment. While they briefly 

mentioned the autonomic computing concept, they did not fully leverage it in the proposed 

algorithm; There is a lack of detailed insights into the formulation and definition of policies, 

which play a crucial role in guiding the system's decision-making process. Moreover, the 

research context does not explore smart cities and their ecosystem, limiting its scope and 

potential applicability in such dynamic urban environments. 
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SeaNet [92] is a methodology for autonomic network management in software-defined 

networks (SDNs), making use of graphs to facilitate the process. This research stands out due 

to its exceptional attention to scalability, highlighting it as a significant advantage of the 

approach. The evaluations include diverse topologies and host numbers, providing valuable 

insights into the system's performance. However, the study could benefit from exploring the 

broader applicability of SeaNet across various network technologies and industries. Currently, 

the generalizability of different contexts remains relatively unexplored, including the 

management of smart city networks and environment. 

The research proposed by Lin et al. [93] primarily centers on security management, offering 

an automatic security manager based on MAPE K that effectively safeguards smart spaces. 

The authors also defined policies for security assessment, providing a well-explained approach 

and architecture. However, due to the unavailability of suitable testbeds for microservices in 

regular IoT systems, they were unable to evaluate the solution in such contexts. While their 

focus on security in smart spaces is interesting, the study does not consider other critical 

criteria relevant to smart spaces. 

While previous research has addressed some aspects of autonomous management there are 

still significant gaps.  There is a need to develop an autonomous management system capable 

of managing the smart city ecosystem - both its environment and infrastructure with a focus 

on performance and operational management. A smart city environment may collect data 

about environmental factors such as light, temperature and pollution, but the smart city 

infrastructure includes resources and metrics about the smart city architectural elements.  As 

we will explain in detail in the next chapter, our system can monitor and manage the smart 

city environment as well as smart city infrastructure by checking the performance metrics and 

fixing the problems that happen in regard to those metrics. Our proposed policy-based system 

observes the key operational metrics and tries to improve and optimize them by performing 

managerial actions. Our system also can monitor the smart city environment factors and 

manage them by being in touch with the IoT platform and use of smart city applications. 
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Chapter 3 Smart City Model 

As discussed in the previous Chapter, rapid urbanization across the globe has led to a plethora 

of challenges for cities, including population growth, massive number of smart devices, and 

social inequality. In response to these challenges, the concept of the "smart city" has emerged 

as a model for urban development that leverages technology and data to improve the quality 

of life of its citizens. Smart cities are characterized by the use of advanced technologies and 

data analytics to optimize infrastructure, enhance services, and engage citizens in decision-

making processes.  

In this Chapter, we will dive deeper into our smart city model, exploring its key features, 

benefits, and challenges. Firstly, we will introduce the general smart city model, which has 

become widely accepted among researchers. This model typically consists of several 

interrelated components, including the smart city entities, an IoT platform and smart city 

administrators/managers. However, we believe that this model should be extended to include 

additional elements that are essential for a truly smart city, and we present our extended 

version of the model.  

To truly embody the concept of a smart city, it is important to prioritize not only the 

optimization of infrastructure performance but also ensure the monitoring and autonomous 

management of the city's systems. Infrastructure performance is essential for ensuring the 

smooth functioning of a city's critical systems. However, merely optimizing infrastructure 

performance is not enough to ensure that the city can efficiently handle unexpected events or 

adapt to changing circumstances. Constant monitoring of a city's systems allows for the early 

detection of issues before they become major problems. With the help of advanced sensors 

and monitoring technologies, it is possible to monitor a wide range of factors such as the status 

of the smart city resources, services, and processes. By analyzing this data in real-time, city 

officials can quickly identify potential issues and take proactive steps to mitigate them before 

they escalate. In addition to constant monitoring, autonomous management can significantly 

improve the operation of a smart city. A smart city operates around the clock, making it 

essential for management to be available 24/7. Automating management processes can help 

reduce human intervention and so can help the city function more efficiently and cost-
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effectively. Furthermore, autonomous management can also help to reduce human error, 

which is a common cause of system failures, and also free up human resources to focus on 

more complex tasks. However, it is important to ensure that the autonomous systems are 

properly designed and tested to prevent unintended consequences or safety risks. 

We first review the terminology we use in this research: 

• A smart city environment is based on geographical and physical viewpoints and 

frequently involves monitoring of environmental factors such as humidity, pollution, 

temperature, and light that the sensors can measure. 

• Smart elements, objects or things are general terms that include any sensors or devices 

that exist in a network and are connected to each other via a communication protocol. 

• In the realm of smart cities, sensors and devices play pivotal roles in creating 

interconnected and intelligent urban environments. Sensors serve as specialized 

components capable of measuring various physical factors, including temperature, 

humidity, motion, light, and more. These sensors act as data collectors, providing 

valuable information about the surrounding environment and converting it into 

electrical signals or readable outputs. On the other hand, devices in a smart city 

encompass a wide range of machines, including smartphones, smart appliances, 

gadgets, security cameras, and more that have multiple functionalities and can interact 

with users or other devices and perform specific tasks. They can be typically equipped 

with various sensors, processors, applications, and interfaces to execute their intended 

operations.  

• The smart city infrastructure refers to the technology architecture, components, 

sensors and devices, and connections that make up a smart city system.  Components 

are the fundamental building blocks that collectively form the intricate framework of 

a smart city architecture such as computational devices, network equipment, and data 

centers. In essence, the smart city architecture encompasses an amalgamation of 

diverse components interconnected to enable seamless functionality of the smart city. 

These components play a pivotal role in shaping the technological and infrastructural 

landscape, empowering the realization of a truly intelligent urban environment. These 
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components can be computing nodes, energy management systems, storage units, and 

data centers. 

• The smart city ecosystem encompasses all elements of a smart city, from the smart city 

environment to smart city infrastructure. This term is used to describe all the aspects 

of a smart city such as infrastructure performance metrics, sensor attributes and sensor 

measurements about the city environment (temperature, air quality, and more) 

• Telemetry data refers to the data that is generated by the sensors and devices in a smart 

city and can include environmental data, traffic and transportation data, energy 

consumption data, public safety data and more. Whereas the operational data is the 

data about the smart city infrastructure and is related to its daily operations. This data 

provides insights into the current state of different components such as IoT platform, 

storage, data filtering unit etc. The analysis of this data yields invaluable insights into 

the smart city infrastructure and the seamless operation of its interconnected systems. 

3.1 Smart City Features 

Smart city features refer to the advanced technologies and innovative solutions that are 

integrated into the urban environment to differentiate smart cities from traditional urban 

environments. These features include but not limited to: 

• Digital Infrastructure: Smart cities rely on advanced digital infrastructure, including 

high-speed internet connectivity, cheap and ubiquitous sensors, and data analytics 

tools, to provide high quality services for their citizens. 

• Online services: In a smart city, companies, organizations, institutions, and even the 

government provide their services through online platforms. 

• Data Analytics: Smart cities use data analytics to monitor and analyze urban systems 

and services, enabling real-time decision-making and optimization. 

• Integrated Services: Smart cities aim to integrate various urban services, such as 

transportation, energy, health, and waste management, to improve efficiency and 

reduce environmental impact. 
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• Citizen Engagement: Smart cities encourage citizen participation in decision-making 

processes and service delivery through digital platforms and community engagement 

programs. 

3.2 Smart City Benefits 

Smart cities have the potential to revolutionize the way we live and work. Smart cities offer a 

range of benefits for their residents. Some of the key benefits of smart cities include: 

• Improved Efficiency: By using the data that comes from a smart city and analyzing it, 

the smart city services can be more optimized and cost efficient. 

• Enhanced Quality of Life: In smart cities citizens can enjoy better quality of life due 

to better access to more efficient services and facilities such as health, education and 

transportation. 

• Increased safety: Because in a smart city some technologies such as surveillance 

cameras, smart traffic management systems, and emergency response systems are 

used, public safety is enhanced.  

• Environmental Sustainability: Smart cities benefit from cutting-edge technologies to 

provide more efficient waste management, decrease carbon emissions and reduce 

energy consumption therefore they can help to reduce environmental impact and 

promote sustainable development. 

• Economic Development: Smart cities can lead to significant cost savings for cities and 

a more efficient use of resources therefore smart cities can drive economic 

development by creating a favorable environment for businesses and encourage 

foreign investment. 

3.3 Smart City Challenges 

Although smart cities can improve efficiency and safety, quality of life of the citizens, and 

also provide environment sustainability and develop the economy, due to their complexity and 

multifaceted nature they face a range of challenges that need to be effectively tackled through 

appropriate solutions. While acknowledging the breadth of challenges associated with smart 



60 

 

 

cities, it is important to recognize that our research may not comprehensively address all the 

following challenges. Some of the key challenges include: 

• Integration: Smart cities face the challenge of ensuring seamless communication and 

cooperation between numerous organizations, institutions, and public and private 

sectors, all of which may have different standards and technologies. This requires 

establishing compatibility and interconnectedness between various systems, allowing 

for efficient sharing of information and resources. Failure to address this challenge can 

hinder the effectiveness of smart city initiatives and create barriers to innovation and 

progress. 

• Data Privacy and Security: Another challenge that smart cities should deal with is data 

privacy and security. In smart cities, devices and sensors and other components are 

connected to each other and send and receive data using communication protocols and 

this can raise concerns around privacy and security. Not only do we need to make sure 

that the communication channels are secure, but we must ensure that all of the 

components and devices are protected against attackers and security breaches. Other 

than this in a smart city we should make sure that the users are authorized, and the 

right users have access to the right data. However, this is one of the challenges that 

falls outside the scope of our current research. 

• Infrastructure Investment: Although we mentioned that smart cities can save us money 

and are cost efficient, the development of the advanced digital infrastructure needed 

for smart cities at the outset can be costly and require significant investment. 

• Equity: Smart city initiatives must ensure that all residents have equal access to smart 

city services and benefits, regardless of income or social status. 

• Citizen Engagement: All of the smart city citizens should be able to engage in the 

decision-making processes equally to ensure that their needs and perspectives are taken 

into account. 
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3.4 A Smart City Model 

In this section, we introduce a high-level model of a smart city that forms the foundation for 

our research.  We first introduce a basic model of a smart city that has emerged from much of 

the related research around smart cities. We then present an extended version of this basic 

model that we have adopted for our work. 

3.4.1 A Basic Smart City Model 

 A basic smart city model is illustrated in Fig. 3.1.  It is designed to keep the urban environment 

running smoothly. This model is composed of multiple layers, including devices and entities 

as well as an IoT (Internet of Things) platform or device management platform. This basic 

model serves as the cornerstone for numerous research papers on smart cities [53, 54, 57, 58, 

59].  Research into the development of smart cities has moved toward ensuring that a critical 

component of a smart city is some platform, here called the IoT Platform, that is specifically 

devoted to helping track, monitor and manage the sensors and end point devices in a smart 

city.  The rationale for the platform is the fact that smart cities are expected to make use of 

hundreds or thousands of sensing devices and that tools are needed to help deploy and manage 

those.  As discussed in Chapter 2, a number of IoT Platforms have been proposed having 

similar but also different characteristics, though the overarching goals are the same.  The third 

layer in the model consists of the smart city manager (team) who oversees everything and is 

responsible for ensuring that the smart city environment and its various smart elements are 

functioning properly. This includes monitoring environmental factors like temperature and 

light, as well as the status of sensors and devices, telemetry data, and even alarms and errors. 

By monitoring everything closely, the manager can detect potential problems quickly and 

resolve them before they become more serious, ensuring a stable and reliable smart city. 

  



62 

 

 

 

Figure 3.1 Basic Smart City Model. 

The basic smart city model serves as the foundation for a more advanced and sophisticated 

model that we will discuss later. The first layer of the basic smart city model (see Fig. 3.1) 

includes sensors and smart devices or things such as machines and robots, cameras, etc. that 

are deployed throughout the city. In a smart city, sensors and devices can be integrated to 
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support a variety of applications and services, such as smart health, smart transportation, smart 

energy, smart agriculture, and more. We have also included other devices, such as cameras 

and robots, as part of this first layer. Once the sensors and devices collect data, the data is then 

directed to the next component in the smart city model. To enable this transfer of data, there 

needs to be a robust connectivity infrastructure in place. This connectivity is based on 

communication methods such as MQTT, CoAP, RFID, 5G, or other communication protocols. 

These sensors and devices generate streaming and fluctuating data. This data is collected, 

processed, and visualized by the IoT platform or device management system. The device 

management platform should have the following capabilities: it should aggregate the data from 

a variety of different devices, process it in real-time and in different volumes, support 

heterogeneity, provide data visualization, generate alarms and notifications, assign devices to 

specific assets, and manage user’s assets, devices, and dashboards. The city’s management 

team is responsible for deploying applications and assessing the status of the city, monitoring 

the data from sensors and devices, perhaps even monitoring aspects of specific city buildings.  

Also, they must regularly check the operational status of the city’s infrastructure, such as the 

attributes of the devices, such as when they were last active or connected to the network, 

network traffic, etc. and must monitor alarms and errors generated by the system and take 

appropriate actions. 

Through the utilization of this basic model, we created a prototype for simulating a smart city. 

Using this smart city prototype, we conducted a series of experiments, effectively managing 

diverse facets of the smart city, including its intricate array of sensors and devices and also 

generating alarms based on data fluctuation. It is worth emphasizing that this fundamental 

model played a pivotal role in our research endeavors, culminating in the publication of a 

paper that showcased our findings and advancements in this domain [94]. 

The model depicted in Fig. 3.1 is designed to primarily provide data from the devices in a 

smart city. However, it is also necessary to monitor the different components of the smart city, 

including the connections between them, the computing nodes, and the fog and cloud 

infrastructure. We must keep track of resources, services, processes, and other important 

elements of the smart city's infrastructure. By monitoring all the different components of the 
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smart city, we can detect potential problems and take appropriate actions to prevent issues 

from escalating. For example, we can identify and resolve issues related to network 

connectivity, server performance, and software glitches. This can help to ensure that the smart 

city operates smoothly and provides a high-quality living environment for its residents.  

3.4.2 An Extended Model of a Smart City 

Our focus is on the infrastructure and operational components of the smart city.  While an IoT 

platform can help with some aspects of managing sensors and devices in a smart city, we also 

want to be able to manage all of the services and processes that make a smart city function 

effectively. Our ultimate goal is to create an autonomous and sustainable monitoring and 

management system that can support a smart city where citizens can thrive. 

In order to achieve a more comprehensive view of the smart city's infrastructure, we have 

expanded the smart city model beyond the IoT platform and added a monitoring and 

instrumentation platform. This platform is designed to provide a more detailed level of 

monitoring of the broader infrastructure and its components. The monitoring and 

instrumentation platform can extract performance metrics from various components, 

applications, and services, including getting data from the IoT platform. This framework 

should be capable of collecting data on various performance parameters, such as response 

times, throughput, and CPU usage. It enables the monitoring of different components, such as 

servers, network devices, and software applications, which helps to provide a more 

comprehensive view of the smart city's operational infrastructure. Moreover, the expanded 

smart city model offers a centralized view of the infrastructure, which enables administrators 

to identify performance trends and patterns. By monitoring aspects of the smart city 

infrastructure, we can detect issues and identify potential problems before they escalate into 

critical situations.  

The smart city model used in our research is shown in Fig. 3.2. This extended model provides 

a more comprehensive view of the smart city's infrastructure, including dependencies, internal 

components, and connections between various components. As shown in the figure, the 

extended model provides more detailed information on the operation of the smart city 
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infrastructure, which enables the management team to understand how different components 

work together.  

 

Figure 3.2 Refined Smart City Model.  

By understanding the dependencies between components, we can identify potential 

bottlenecks or points of failure and take preventive measures to ensure that the smart city 

infrastructure runs smoothly. In addition to the dependencies and connections, the extended 
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model should also include information about the internal components of the smart city 

infrastructure. This information is crucial in understanding the functioning of the different 

components and their impact on the overall performance of the smart city. The extended model 

also assumes the capability to monitor applications. One of the types of applications that we 

assume to be present in the smart city infrastructure is a data filtering application which is 

used to filter and classify the telemetry data and delete unwanted data before reaching the IoT 

platform. This unit ensures data cleanliness before entering and populating the database, 

optimizing resource usage, a critical aspect in the resource-constrained environment of a smart 

city, where vast amounts of data are handled.   

In this model, the first and second layers are taken as given in the basic model. We have added 

a monitoring and instrumentation platform to the basic model in order to monitor the 

components of the infrastructure and send the operational data, performance metrics and logs 

to the smart city management platform.  These multiple streams and variety of data from 

devices, applications, infrastructure, etc. create enormous problems for humans involved in 

monitoring and management of the smart city infrastructure.  While additional staff could be 

added to help manage the smart city infrastructure, at additional ongoing cost to the city, the 

complexity of the infrastructure is not so easily addressed.   Hence, some form of automation 

will be needed. 

In order to help address managing the operational aspects of a smart city, we proposed adding 

a monitoring and instrumentation component to create a new model with autonomic smart city 

management system, as illustrated in Fig.3.2.  The monitoring and instrumentation platform 

could then send the operational data, performance metrics, etc. to the autonomic smart city 

management system to be processed and analyzed based on some predefined policies.  Our 

Autonomic Smart City Management System (ASCMS) architecture takes inspiration from the 

MAPE-K model, which we will delve deeper into in Chapter 4. The MAPE-K model consists 

of four core components: Monitor, Analyze, Plan, and Execute. Each of these components has 

access to a shared knowledge base that helps them make informed decisions. For the 

monitoring component we use the monitoring and instrumentation platform to extract the 

performance data from the infrastructure along with some information from the IoT platform. 
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The autonomic smart city management system has several important duties to ensure that the 

smart city runs smoothly. These include checking the status of the smart city's infrastructure 

in real-time, making sure that all the sensors and devices are up-to-date with the latest software 

updates and security patches, fixing any connectivity issues that may arise, keeping track of 

performance metrics like response times and bandwidth, optimizing resource usage like CPU 

and storage space, resolving any hardware and software problems that occur, and providing 

centralized management for sensors and devices at a high level. These management tasks are 

done through the policies that drive the autonomic management system.  By executing these 

tasks, the autonomic smart city management system can help ensure that the smart city is 

functioning efficiently and effectively. 

What makes a smart city different than the other networks and its management more complex 

than others is the scale of it. A smart city includes many smaller networks, distributed systems, 

massive number of devices and sensors, applications, cloud platforms and so on. Therefore, 

its management is more complicated compared to other networks and systems. This 

management has many aspects such as sensor data management, performance management, 

resource management, failure management, etc.  Developing an autonomic management 

platform encompassing all these aspects is a long-term initiative.  In this research, we begin 

with an initial focus on autonomous performance management of the operational side of the 

smart city, aiming to establish the foundation for further research. 

In Chapter 5, we will present a smart city prototype that is based on the refined smart city 

model. This prototype will serve as our smart city simulator, and we will conduct experiments 

using this prototype to shed light on the management requirements of such a system. 

Specifically, we will monitor and visualize the telemetry data from simulated smart city 

devices in the prototype, providing insights into the performance of the system and identifying 

areas for improvement. 
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Chapter 4 An Autonomic Management Model for Smart Cities 

The Autonomic Management Model is a framework that aims to manage and optimize the 

smart city environment and infrastructure autonomously. The model is based on the principles 

of self-organization, self-management, and self-optimization. It provides a systematic 

approach to control and manage the environmental aspects of a smart city, the complex 

interactions between the different components of a smart city, and the infrastructure 

components and performance as well. 

Fig. 4.1 presents our model of the smart city along with the architectural framework of the 

Autonomic Smart City Management System (ASCMS), showcasing the interconnectedness 

and interdependencies between various components. Notably, the data filtering unit and IoT 

platform are seamlessly linked to the monitoring and instrumentation tool, allowing this tool 

to gather and analyze performance data from both. The monitoring and instrumentation tool 

serves a dual function: firstly, measuring operational metrics concerning these components 

and their internal elements, and secondly, promptly logging and reporting any infrastructure 

failures encountered. ASCMS receives these crucial metrics, failure data, and telemetry 

information, empowering it to effectively manage the smart city's infrastructure and 

environment. This management process is performed by applying specific rules and policies 

defined by the Policy Administrator. The smart city management system is designed with an 

essential feedback loop that plays a vital role in controlling and optimizing the overall smart 

city infrastructure, fostering a seamlessly operating ecosystem. 
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Figure 4.1 Autonomic Smart City Management System (ASCMS) 

As mentioned in the previous Chapter our autonomic smart city management system 

architecture (as shown in Fig. 4.2) has a built-in loop which is inspired by the MAPE-K 

architecture to control the whole smart city ecosystem. In the following we provide a detailed 

breakdown that correlates each component of our model with its corresponding element in the 

MAPE-K framework: 

Monitoring: The monitoring component monitors the environment and the smart city 

infrastructure. It furnishes essential performance metrics, resource utilization data, and 

comprehensive insights into the status of services and processes. In our research, we developed 

the "Perception and Data Collection Unit" to serve this objective.  It takes two streams of 

inputs: the performance metrics from the “Monitoring and Instrumentation component” and 

the telemetry data and sensor attributes from the IoT platform. 

Analysis: The analysis component is responsible for analyzing and processing the data 

collected by the monitoring component to identify patterns, trends and other information for 
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decision making process. The goal of this component is to gain some insights into the system’s 

behavior and identifying the areas for corrective actions. 

Planning: The planning component is in charge of figuring out what actions should be taken 

when the system is not working as it should be. High-level goals are used in this component 

that outlines what needs to be done to get the system back on track. In our Autonomic Smart 

City Management System (ASCMS) these policies are structured as Event Condition Action 

(ECA) rules. Each ECA rule describes what action should be taken based on a specific event 

and a particular condition. We developed the “Decision-making unit” with tasks comparable 

to those carried out by the analysis and planning components within the MAPE-K architecture. 

Execution: The execution component is responsible for putting the plan into action. Once the 

planning component has identified what needs to be done, the execution component carries 

out those actions on the parts of the system that need attention. Notably, in our model, we 

harness the same component to assume the responsibility for executing actions within the 

smart city ecosystem. 

Knowledge: The knowledge component is usually connected to other components and serves 

as a repository for information that can be used by the other components of the system. Within 

our ASCMS model, we established a policy repository tasked with housing policies and 

comprehensive information pivotal to the decision-making process; other information, such 

as firmware versions, are stored in other repositories used by the autonomic management 

system. 

In our proposed management system, we extract the performance metrics from the smart city 

infrastructure using the monitoring and instrumentation component and manage the whole 

infrastructure from the top to the bottom layers using the stored rules and policies as shown in 

Fig. 4.2. After receiving the performance metrics and sensor data, the decision-making 

component analyzes them based on the conditions stored in the policy engine. The policy 

engine contains the rules and conditions for maintaining the desired smart city ecosystem. 

Each policy is stored as the following: 

On (event) If (Condition) then (Action) 
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Based on the policies, an execution plan will be chosen by the decision-making component 

and performed under the supervision of the Execution component to keep the ecosystem 

balanced and try to optimize performance. For instance, in order to monitor and manage a 

delay in the system, we set a policy on the response time to control that metric or lower it.  

 

Figure 4.2 Autonomic Smart City Management System Model (ASCMS) 

Detailed descriptions of each component are provided below, offering comprehensive insights 

into their functionalities and characteristics. 

Monitoring and instrumentation component: This component plays a crucial role in 

continuously monitoring the smart city infrastructure and analyzing the performance metrics 

of various components and services in real-time. By leveraging advanced monitoring, this 

component provides valuable insights into the health and efficiency of smart city applications, 

infrastructure, and networks. This component measures and tracks essential factors that impact 
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the smart city's infrastructure performance and then transmits this data to the “Perception and 

data collection unit”. It can collect response times, resource utilization, error rates, and 

throughput, among other key metrics. These measurements offer a comprehensive view of the 

smart city's functionality. Real-time monitoring is a core feature of this component, allowing 

for immediate detection of anomalies or issues. 

Perception and data collection unit: This unit is responsible for gathering and receiving data 

from various sources in the smart city. The perception and data collection unit is divided into 

two sub-units - Telemetry and Performance Monitoring and Instrumentation (PMI) - each with 

unique responsibilities. The Telemetry sub-unit is responsible for collecting data from various 

sensors and devices. This data contains information about the city's environment in real-time, 

such as the quality of air, traffic flow, and temperature.  The majority of the telemetry data 

from the sensors might not be essential for management purposes, so it is directed to the IoT 

platform. However, there could be specific telemetry data that holds value for management. 

Hence, we selectively receive and integrate this significant data into our ASCMS. On the other 

hand, the PMI sub-unit receives the performance data about the smart city infrastructure. This 

sub-unit collects data about the performance of various components within the smart city 

infrastructure from the “Monitoring and instrumentation component”, including servers, 

storage devices, and processing units etc. This information is used to monitor the overall health 

of the smart city infrastructure and ensure that it is functioning efficiently. 

Policy repository, management policies and other information: In order to manage a smart 

city autonomously, the first step is to define policies that govern the system's behavior. These 

policies can be created using policy language specifically designed for autonomic 

management systems. By utilizing this language, administrators can establish policies in 

event-condition-action format related to infrastructure performance, sensor measurements, 

and other relevant areas. Once these policies have been established, the autonomic 

management system can leverage them to make informed decisions about how to effectively 

manage the smart city. When a condition is evaluated as true, it signifies the occurrence of an 

event that triggers the activation of the corresponding policy. Subsequently, the system 

initiates corrective actions in accordance with the predefined policy, to ensure policy 
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enforcement. These policies play a critical role in ensuring the efficient and effective operation 

of the smart city and its infrastructure. They define the necessary actions that should be taken 

in response to various events, such as traffic congestion, power outages, or extreme weather 

conditions. By proactively defining policies, the smart city can quickly adapt to changes and 

ensure the safety and comfort of its residents. For instance, a policy might increase the 

frequency of public transport services during rush hour to alleviate traffic congestion, or 

automatically switch to backup generators during a power outage. These policies can be 

defined with thresholds, such as the maximum acceptable level of traffic congestion or the 

minimum acceptable temperature for heating systems. As a result, policies can be triggered 

automatically when these thresholds are exceeded, without requiring human intervention. 

Repositories act as a central component within the system and serve as a centralized location 

for storing all information about policies and rules and other relevant information for decision-

making and actions of the autonomic management system. Policies are comprised of sets of 

rules and guidelines that specify how the smart city system should behave under certain 

conditions. Each policy is stored in an event-condition-action format, which is a common 

practice for policy-based systems. The event part of a policy refers to a triggering occurrence 

that prompts the system to respond. The condition part defines specific criteria that must be 

met before the system takes action, while the action component outlines the precise response 

the system should undertake in response to the event and condition.  

In addition to the policy repository, there may be other repositories containing information 

used by the management system.  Some of this information could be used in decision making 

and other information might be necessary for management actions.  The information would 

depend on the policies and actions defined for the management system. 

Decision-making unit: The decision-making unit is connected to the perception unit and the 

policy repository and can process the data coming from the perception unit and makes 

decisions based on predefined policies and rules stored in the policy repository. This unit is a 

combination of the analysis and planning components in the MAPE-K control loop. The 

Decision-making unit’s inputs are the telemetry data, metrics, logs, alarms and high-level 

policies. It makes decisions based on the following condition: 
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If (adaptation is needed based on the policy) then (trigger execution unit) 

One important aspect of the decision-making unit is the implicit loop that is used to ensure 

that the overall system is working as expected and the policies are met. This loop continually 

checks the status of the smart city factors and metrics and compares it to the desired state after 

the action has been performed. The ultimate goal of the decision-making unit is to create an 

autonomous smart city management system that can manage the city's environment and 

infrastructure without the need for human intervention. This goal can only be achieved through 

the constant monitoring and adjustment of the system, which is facilitated by the cyclical and 

recursive nature of the decision-making process. 

Execution unit: The execution unit is responsible for carrying out the actions determined by 

the decision-making unit. This layer is the final step in the autonomous decision-making 

process. The execution layer is connected to the decision-making unit and receives the 

decisions made by the system. These decisions are then translated into actions that are 

executed in the smart city environment and infrastructure.  To ensure the successful execution 

of actions determined by the decision-making unit, the execution layer must be equipped with 

essential resources and maintain control over the relevant infrastructure. This prerequisite 

necessitates a high degree of coordination and communication among all system components. 

Every time an action is executed, it requires the active involvement of all system components. 

The control loop should consistently iterate to ensure that the smart city ecosystem is steadily 

progressing toward its overarching high-level goals. This iterative process involves the 

synchronized effort of all components, ensuring the system's alignment with its strategic 

objectives. 

Device and infrastructure monitoring web platform: This component is not strictly part of 

the autonomic management system per se.  rather it provides an interface into the management 

system and is important for practical reasons and so is included in our model.  The platform 

provides access to and displays valuable information and metrics about the smart city 

ecosystem in one place. This platform allows city administrators to monitor various devices, 

sensors and the whole infrastructure. It presents real-time data and metrics that help 

administrators gain insights into the overall health of the infrastructure and ensure that 
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everything in the smart city is under control. Using this web platform, city administrators can 

view and analyze different types of data in the form of charts, graphs, and tables, which makes 

it easy for them to interpret and draw conclusions. It can also display alerts and notifications 

in case of any critical incidents, allowing administrators to know what is going on in the smart 

city.  

One of the key advantages of the autonomic management system is its ability to adapt to 

changing circumstances. The administrator can define multiple policies for one scenario and 

upon occurrence of each specific event the corresponding policy can be in effect. For example, 

for the temperature scenario the administrator can determine several ranges, and for each 

range, specific action can be defined. For instance, if the temperature is between t1 and t2 (t1 < 

temperature < t2), the decision-making unit can determine to turn the cooling system on to 

decrease the temperature, and the execution unit can implement the changes immediately.  

Alternatively, if the temperature is too high (temperature > t2), the decision-making unit could 

turn on the cooling system or take other actions (assuming that they are included in the policy 

specification) such as turning on misting systems or providing additional shade in outdoor 

areas to cool down the environment.  

The autonomic management system also promotes sustainability by optimizing the 

infrastructure performance and the use of resources such as CPU and memory. It can reduce 

CPU consumption by optimizing resource allocation, load balancing, process scheduling, and 

performance monitoring. By implementing these techniques, the system can improve system 

efficiency and reduce energy consumption. 

In the autonomic management system, the policies are defined and stored in the database 

beforehand. While monitoring the smart city components and infrastructure are being done 

using the monitoring platform, the management system selectively retrieves the metrics for 

which policies have been defined, facilitating a thorough analysis based on the specified 

policies. In this phase, the extracted metrics are analyzed and if a metric is based on a condition 

the planned action will be executed in the smart city infrastructure to adapt to the change.  
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Our proposed model provides smart city configuration and management through a rule-based 

engine that can automatically configure the smart city ecosystem and its infrastructure based 

on predefined policies. This model uses the control loop that can analyze the current state of 

the system and generate configuration actions accordingly that will be explained in detail in 

chapter 5. Similarly, our model provides healing capabilities by detecting and diagnosing 

issues within the ecosystem and infrastructure, and then implementing policy-based actions to 

resolve them. These actions may include restarting a service, configuring a sensor, assigning 

more resources, or modifying the smart city element’s settings. Finally, our model can help 

with optimizing resource utilization and maximizing smart city operational performance. Our 

system continuously analyzes the smart city's behavior and measurements and performs 

actions to improve its performance. To demonstrate the efficacy of our model, we will create 

prototypes to simulate the smart city architecture and autonomic management system and 

conduct experiments that show how it can automatically configure, manage, heal, and 

optimize the smart city ecosystem and its infrastructure. 

 In the next Chapter, we present our smart city prototype and autonomic management system 

prototype. The smart city prototype includes the simulation of various sensors and devices, a 

data filtering unit and the IoT platform. We illustrate our smart city prototype with some 

simple examples. We then describe the prototype for our automatic management system, 

which will have an instrumentation and monitoring platform along with other important 

components. We also present a number of our management policies that will be stored in a 

database to help with the management of the smart city.  
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Chapter 5 Prototypes and Management Policies 

In this Chapter, we describe our simulation of a smart city and our prototype autonomic 

management system.   Since we do not have access to an instrumented city, we must rely on 

a simulation of a smart city and demonstrate management of the simulated environment by 

our prototype management system. 

5.1 Smart City Prototype 

In this section, we provide an assessment of our smart city model by constructing a) a 

simulation of a smart city and b) evaluating components that would form part of our 

management system.  Since we do not have a smart city that we can use, we must rely on 

simulations to evaluate our overall approach.  We first present our smart city prototype and 

some initial experiments that were used to gain some insights into how to do monitoring and 

a better understanding of some of the issues in management.   This also provides background 

on the smart city prototype that was used for more extensive experiments with our 

management system. 

5.1.1 Smart City Prototype 

In our prototype, we explore some initial questions by creating a simulator that produces flows 

of data from sensors and devices in a smart city.  We use this prototype to help us understand 

the rules and use of the IoT platform and to assess the use of a platform that we would be using 

for our experimental evaluation.  The smart city prototype was composed of several different 

tools and components, as depicted in Fig. 5.1. It is based on the smart city model presented in 

Chapter 3 and encompasses two layers of that model.  

The first layer consisted of devices and sensors, as described in our smart city model. The 

second layer includes the IoT platform and the processing components, such as a data filtering 

unit. In our prototype, the data from sensors and devices (telemetry data) is directed to the data 

categorization and filtering unit which is Node-Red [95], a flow-based programming tool. The 

data categorization and filtering unit is used to clean and send the data to our IoT platform 

(ThingsBoard) via the HTTP protocol; as noted in our smart city model we have assumed the 

presence of some data filtering components. In our prototype we also make use of Node-Red 
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to simulate various streams of data. To monitor the sensors, we have chosen ThingsBoard to 

be our IoT platform. ThingsBoard was chosen for several reasons: 

• Supports popular communication protocols like MQTT, CoAP, HTTP, and so on.  

• Extensive documentation, user-friendliness and robustness 

• Customizable and extensible with the ability to add custom widgets. 

• Device-agnostic, no need for special adaptation or interoperability. 

• Capable of extracting telemetry measurements. 

• Data storage options include PostgreSQL and a hybrid mode with Cassandra for 

scalability. 

• Open-source with a free version available. 

• Scalable for monitoring from individual devices to large-scale deployments. 

• Compatible with heterogeneous hardware and software components. 

• Provides real-time device telemetry monitoring. 

• Supports simulated data for testing and experimentation.  

The ThingsBoard architecture consists of different components as specified and described 

below [96]: 

• The ThingsBoard Transport component is responsible for receiving the messages from 

the sensors and devices in the network using communication protocols, parsing the 

message, and pushing it into the message queues.  

• ThingsBoard Core handles REST API calls, WebSocket subscriptions on entity 

telemetry and attribute changes, stores the information about device sessions, and 

monitors the device connectivity state. 

• The ThingsBoard Rule Engine is considered the main component of the system, and it 

subscribes to incoming messages and processes them. This component uses Node-Red 

for creating the rules and flows. 

• The ThingsBoard web UI that is stateless and is written in Express.js. 

 

We created this smart city prototype to gain insight into several questions about the 

management activities in a smart city:  

• What aspects of a smart city need monitoring and management? 
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• How can we monitor and manage the resources in a smart city infrastructure to deal 

with challenges such as the huge amount of data? 

• Which features should an autonomic management system include? 

• What operational actions could be done by an autonomic management system? 

In this prototype, we explore the structure to enable components to collect the telemetry data 

from the sensors deployed in the smart city, categorize, and visualize them and provide a real-

time view of what is going on in the city. Telemetry data is composed of the measurement 

information about the environment in which the sensors are deployed and sometimes the 

details about the sensors and devices themselves. For our prototype, we assumed that our smart 

city contains several sensor objects whose data are collected, logged and stored in a dataset or 

data files.  
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Figure 5.1 Smart City Prototype 

For experimentation purposes, we use data collected from sensors used to monitor the quality 

of water deployed at Chicago beaches [97]. This dataset provides information about beach-

name, water temperature, turbidity, Transducer-depth, wavelength, wave-period, and battery 

life and contains more than 34,900 records. The chosen version of the IoT platform lacks 
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certain tools that are essential for classifying data in its rule engine. To address this limitation, 

we use Node-Red as our data filtering unit. This unit is responsible for separating and sorting 

the incoming data based on specific criteria. The data filtering unit receives information from 

various sensor objects through communication protocols. These sensors collect data from the 

environment and send it to the filtering unit for processing. By using this approach, we can 

ensure that the data received by our IoT platform is properly organized and categorized, which 

allows us to make better decisions based on that data. In Node-Red, a flow is created that starts 

with reading our sensor data from the dataset and clustering and filtering the data based on the 

sensor name using the switch node. Then each stream of data is guided to the corresponding 

output. After that, this output is sent to the related sensor in ThingsBoard using the HTTP 

protocol. To assign the Node-Red output to the correct device in ThingsBoard, the device 

access token is used that can be obtained from the ThingsBoard device details tab. Finally, the 

ThingsBoard IoT Platform is utilized to provide data visualization, analyze the data, and 

trigger alarms based on data fluctuations; The smart city prototype and the experiments 

conducted with it have been documented in a published paper [94]. 

In our prototype, we have designed an asset for each beach to be monitored. An asset is 

essentially a specific entity, such as a building or a house, which has been equipped with 

various sensors and can be managed using the IoT platform, ThingsBoard. Once an asset has 

been created, we then add a set of sensors to the device management section and assign them 

to the corresponding asset. Then each sensor in ThingsBoard receives the telemetry data that 

belongs to it and this telemetry data is then displayed in the latest telemetry tab, allowing users 

to easily access and analyze the data in real-time. One of the key benefits of ThingsBoard is 

its ability to handle multiple streams of telemetry data simultaneously. This means that even 

if there are multiple sensors sending data at once, the platform is able to manage the data and 

display it all within a single, easy-to-use interface. ThingsBoard offers a wide variety of 

widgets to create and customize a dashboard to visualize the data in real-time. It is also 

possible to develop a widget using HTML, CSS, and JavaScript in its built-in IDE.  In the next 

section, some experiments are described along with visualization of data.  

To summarize, the smart city prototype contains the following components: 
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Layer 1 – Devices and sensors 

This layer includes all the devices, sensors, and other things that are connected in a smart city 

and produce data in real-time. For our initial experiments, we simulate the smart city sensors 

using a dataset that had sensory data about the quality of water at Chicago beaches [97] and 

provide a dashboard that uses the data as in our simulated smart city. This data is raw and has 

some redundant or unnecessary information that is not useful for our simulated smart city 

environment.  It needs to be cleaned for our use in our simulated smart city environment.  

Layer 2- Data filtering and cleaning (Node-Red) 

The data filtering and categorization in our architecture are done by Node-Red. There are two 

reasons for adding this component. First, as is mentioned in the previous section the data is 

not cleaned, so we needed to make the data clean before entering and populating the database 

to save the resources which is very critical in the smart city environment where we deal with 

huge amount of data and limited resources. Also, our dataset includes all sensors’ data, and it 

is not categorized, so the data should be categorized based on the sensor number or name and 

each subset of data should go to the corresponding sensor in the ThingsBoard device section. 

Therefore, in this step, a flow is created to categorize the data. This flow starts by getting the 

data set and then a “switch” node is added for categorization purposes. In this node, the data 

classification is done using the sensor name. Then each stream of the data gets cleaned, filtered 

and navigated to the corresponding output and at last each output will be directed to the 

corresponding sensor or device in ThingsBoard using the POST method in HTTP. In this layer, 

it is also possible to apply machine learning techniques to the data.  

Layer 2 – Device monitoring and data visualization (ThingsBoard): 

The first layer, devices and sensors, is monitored using our selected IoT platform, which is 

ThingsBoard. ThingsBoard can operate over a long period of time and collect telemetry data 

and monitor them. On this side, after creating an asset for each building or region, and their 

assigned devices and sensors, the ThingsBoard is fed with the data coming from the previous 

layer. In this step, we are able to see the latest telemetry data for each device or sensor. Next, 

in order to perform the data visualization and monitoring task we have to make a dashboard. 
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Each dashboard includes some widgets that are responsible for the representation of the data 

in different formats such as tables, charts etc. In this step, it is also possible to set alarms based 

on the data fluctuations and notify the city authorities about critical events.  

5.1.2 Experiments with Smart City Prototype  

In this section, we present experiments done using ThingsBoard and our smart city prototype. 

We start with the representation of the state of one of the sensor attributes for all the deployed 

sensors. Then we continue by providing all the data for each sensor respectively. Lastly, we 

configure ThingsBoard to create an alarm when a certain condition is met. Our dataset is taken 

from [97] which consists of the sensory data coming from the sensors deployed in the water 

at several beaches in Chicago.  

5.1.2.1 Dashboard to Show the State of One Attribute for all Sensors. 

In our first experiment, we will focus on just one attribute that is common among all the 

sensors. Several sensors are added to the ThingsBoard in our prototype, and although these 

sensors have different functions, they all have a common attribute that needs monitoring - 

their battery life. Battery life is crucial to ensure the uninterrupted functioning of the sensors. 

The dashboard has been designed to include a digital gauge that represents the battery life of 

each sensor. Each sensor has its own gauge on the dashboard, ensuring that the battery life of 

each sensor is monitored individually in real-time. This feature allows for efficient tracking 

and management of the battery life of each sensor. For instance, Fig. 5.2 provides a clear visual 

representation of the battery life of all the sensors. and the administrator can check them 

regularly to ensure that they are in good condition. Apart from monitoring the battery levels 

in real-time, alarms can be set up to notify the administrator when the battery life goes below 

a particular threshold. This ensures that the administrator is alerted well in time and can take 

necessary steps to prevent any disruption in the functioning of the sensors. In the next section, 

we will talk about the alarms and how they are shown on the ThingsBoard dashboard. 
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Figure 5.2 ThingsBoard dashboard to show the battery life of the sensors. 

5.1.2.2 Visualization of the Telemetry Data by Sensor Location  

In our second experiment, we will aim to present the data coming from all the sensors deployed 

on the beaches. A separate dashboard is created for each asset. This dashboard presents the 

data collected by the sensors that are assigned to that particular asset. 

To present and visualize the data, a time-series table widget is used in the ThingsBoard 

dashboard. This widget enables us to extract telemetry data from the sensors and show it in a 

table format that is organized in separate sections split by tabs with the sensor location. This 

allows us to quickly and easily view the data for a particular sensor location. Fig. 5.3 provides 

an example of how this looks. 

Once the Node-Red flow is initiated, the data records start appearing one after the other in the 

dashboard. This feature allows us to monitor the data in real-time and observe any trends or 

patterns. 
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Figure 5.3 ThingsBoard time-series dashboard to show sensor telemetry data. 

5.1.2.3 Triggering Alarms and Generating Notifications. 

After collecting and analyzing the data from the sensors on the beaches, we create alarms 

based on sudden changes in the data. For instance, we have a sensor placed on each beach to 

measure wave height. By monitoring this sensor, we can create alarms to alert people living 

near the sea to be prepared for a possible tsunami or to evacuate their homes in the event of a 

catastrophic situation.  Alarms in ThingsBoard are manually set by the administrator and are 

limited in their expressibility. 

In this use case, we set a limit for the wave height. When the height of the waves exceeds this 

limit, an alarm is triggered, providing the time and severity of the situation. This enables 

people to quickly respond and take appropriate measures to ensure their safety. 

To help manage these alarms, we created an alarm dashboard that displays the relevant 

information in real-time. This dashboard presents the alarms created for each beach and 

enables us to track them efficiently and respond quickly if any emergency occurs. Fig. 5.4 

provides an example of how this looks. 
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Figure 5.4 ThingsBoard alarm dashboard 

5.1.3 Discussion on the Smart City Prototype 

The development of the prototype and experiments allowed us to better understand the entire 

process of IoT data collection, analysis, and management. In developing the smart city 

prototype and performing the experiments we could get a sense of how we can connect the 

devices and sensors to the IoT platform, how to categorize the data collected from these 

devices and sensors, and how to send and receive telemetry data effectively.  Moreover, we 

were able to visualize this data using dashboards, trigger alarms based on predefined limits, 

and how to filter the data, making it easier to analyze and interpret [94].  

As noted, we also wanted to use this prototype to help understand several questions pertaining 

to the autonomic management of a smart city. Some of the insight gained is outlined below: 

• What aspects of a smart city need monitoring and management? 

o Other than the sensors and devices that we knew already needed management, 

we found out that network and infrastructure performance and other resources 

need monitoring and management. 
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o The use of an IoT platform, ThingsBoard in our case, provides useful 

capabilities for managing aspects of sensors and collecting data about the 

sensors.  While such a platform can be useful with the monitoring and 

management of a smart city, it must be integrated into the overarching 

autonomic management system to ensure a seamless management 

environment. 

• How can we monitor and manage the resources in a smart city infrastructure to deal 

with challenges such as the huge amount of data? 

o In a smart city infrastructure, monitoring and managing the resources can be a 

challenging task due to the large amount of data generated by smart city 

elements and components. To effectively deal with this challenge, it is 

important to leverage autonomic management techniques. 

o To monitor the resources, instrumentation and monitoring tools can be 

employed to collect and analyze data from various smart city components. This 

data can be used to create a comprehensive view of the resources and their 

utilization in the smart city infrastructure.  While this prototype did not include 

a component to collect data about the infrastructure, our experience with 

ThingsBoard indicates that such a component would also need to be integrated 

with the autonomic management system; this is discussed more in the next 

section. 

o To manage the resources, policies can be defined and enforced to address any 

violations or issues that arise. These policies should be triggered automatically 

when certain conditions are met, allowing for proactive management of the 

resources. 

o It is important to note that this monitoring and management should be 

autonomic in nature. A smart city infrastructure operates 24/7 and relying on a 

single administrator or administrative team for monitoring and management is 

not optimal and efficient. Autonomic management can enable the infrastructure 

to self-manage, self-heal, and optimize its performance based on changing 

conditions and demands, thus increasing its efficiency and reliability. 
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• Which features or components should an autonomic management system include? 

o  Before building and conducting experiments with the prototype, we had a 

general idea of the components required for the autonomic management 

system, such as data reception from the smart city infrastructure, and a 

decision-making component. However, during the implementation of the 

prototype, we realized the necessity to store policies and information about 

thresholds and desired metric values. We also discovered that not only is the 

real-time monitoring of the smart city ecosystem crucial, but in some cases, 

real-time management is also necessary. Furthermore, we recognized the 

importance of establishing communication and collaboration among the system 

components to ensure effective coordination. Moreover, the realization of a 

feedback loop became evident as a means to continually monitor the smart city, 

perform tasks, and ensure conditions are met. These insights shaped the 

development of our autonomic management system. 

• What operational actions could be done by an autonomic management system? 

Although we had some ideas about some of the functionality of the Autonomic Smart 

City Management System such as configuration of the smart city ecosystem, from the 

prototype we could find out that an ideal autonomic smart city management system 

should include the below features:  

o Optimization: The system should be able to optimize the smart city 

infrastructure performance  

o Healing: The system should be able to identify and repair any issues or faults 

that arise in the smart city infrastructure without human intervention. 

o Policy-based management: The system should allow policies to be defined and 

enforced to ensure compliance with regulations and standards. 

o Resource monitoring: The system should be able to monitor resources 

dynamically and manage them. 

o Performance monitoring: The system should be able to monitor the 

performance of the infrastructure and detect any anomalies or deviations from 

expected behavior. 
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o Fault detection and diagnosis: The system should be able to detect and diagnose 

faults or issues in the infrastructure and take appropriate action. 

o Reporting: The system should be able to provide reporting capabilities to 

provide the administrators with a clear overview of the smart city environment 

and infrastructure, along with detailed insights into the outcomes of the actions 

executed within the smart city. 

By including these features in an autonomic management system, a smart city 

infrastructure can operate more efficiently, and reliably, while minimizing the need for 

human intervention. 

5.2 Autonomic Management System Prototype 

The autonomic management prototype is composed of several components as shown in Fig. 

5.5 that are built on top of the smart city prototype discussed in the previous section. These 

components work together to create a fully functional autonomic management system. The 

key components of the autonomic management prototype are as described in Chapter 4, these 

are: 



90 

 

 

 

Figure 5.5 Autonomic Smart City Management System Prototype 

Perception and data collection unit: This layer is responsible for receiving data from 

multiple resources in the smart city ecosystem.  

Performance monitoring and instrumentation unit: This layer can be a part of the 

autonomic management system or can be an external unit. In our prototype this layer is outside 

the system. The responsibility of this layer is to monitor the performance of the smart city 

infrastructure such as CPU, memory usage and so on. 

Policy repository: In this component all the policies are stored to be utilized for the decision-

making process. The policies define the rules and conditions under which certain actions are 

taken. 

Decision making unit: In this unit the collected data is analyzed, and the appropriate action 

is determined according to the stored policies. 
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Execution unit: This unit is responsible for executing the operational actions decided by the 

decision-making unit. 

The perception and data collection unit is responsible for collecting two types of data. The 

first type is called telemetry data, which comes from the IoT platform using the MQTT 

protocol. The second type is called performance monitoring data, and it comes from 

performance monitoring and instrumentation unit. In the previous section, we talked about the 

IoT platform. In this section, we'll discuss the monitoring and instrumentation platform, and 

we'll explain about the specific instrumentation platform we've chosen, which is called 

Dynatrace.  

The core algorithm of the Autonomic Smart City Management System is provided below: 

1. operational <- True 

2. while operational: 

3.  M <- Get_Metrics_Telemetry 

4.  I <- Get-Info 

5.  RR <- Get_Rules 

6.  R <- Check_Rules(RR) 

7.  for each rule in R: 

8.   A <- Extract_Actions(rule) 

9.   result <- Execution_Component(rule,A) 

10.   if not result: 

11.    report(A,rule) 

 

Each line of the algorithm is described in more detail as follows: 

1. Initiates the looping mechanism by setting a Boolean variable until it becomes false 

at some future point. 

2. Loop starts. 

3. The metrics and telemetry data are received by the “Perception and Data Collection 

Unit.” 

4. Essential information required for decision-making, such as thresholds, is retrieved 

from the repository. 

5. The "Get-Rules" function retrieves rules from the "Policy Repository." 
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6. “Check_Rules” evaluates the condition of policies in the “Decision Making Unit”.  

It returns a set of policies that have been violated or an empty set if none are 

violated. 

7. If there are policies that have been violated, each one is processed individually, 

and corresponding actions are carried out. 

8. Get action or actions associated with the specific policy. 

9. Invoke the Execution_Component to carry out the actions associated with the 

policy. If all actions are successfully executed, the Execution_Component returns 

True. 

10. If an action fails, a message is printed about which policy and actions failed. 

 

5.2.1 Monitoring and Instrumentation Framework 

In the previous section, the importance of monitoring and visualization of the sensor and 

device data, called telemetry data, was identified as essential in a smart city. But, as noted, in 

a smart city just collecting telemetry data is not sufficient - we also need to be able to collect 

data for the management of the smart city infrastructure.  There are many aspects to the 

management of smart city infrastructure; our research concentrates on not only the telemetry 

data and sensor attributes but the operational aspects of the architecture and aims to extract 

metrics, particularly performance metrics, from the smart city components. To extract those 

metrics a monitoring platform is used. This platform provides observability and measurement 

information about the smart city infrastructure through metrics, logs, and traces.  Some of the 

measurement metrics that can be obtained from the monitoring platform include response 

times, throughput, memory and CPU usage, etc. By monitoring these metrics, we can gain 

insight into how the smart city infrastructure is performing and identify any areas that may 

need improvement. For instance, if response times are slower than usual, we can investigate 

the cause and take action to improve performance. Additionally, the monitoring platform 

allows us to monitor each service and process individually, giving us a more granular view of 

the smart city's performance. 

To build our prototype, we selected Dynatrace as our monitoring and instrumentation 

platform. It allows us to keep an eye on all the components, processes, and services of the 

infrastructure, including Node-Red and ThingsBoard, and gather their performance metrics. 
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Because we consider extracting the performance metrics from the infrastructure, we first need 

to set up the monitoring agents on the infrastructure host to monitor its performance metrics, 

and then we can view the metrics in the dashboard. Based on [98] the formal definition of host 

is “computers that provide certain services or resources within a network that other 

participants within the network can then access and use.”. This host can be a cloud or local 

server. In our prototype, this host is a single machine where all the smart city infrastructure 

components are deployed. Fig. 5.6 to 5.11 present the dashboards and statistics that the 

Dynatrace instrumentation platform provides for Node-Red and ThingsBoard processes and 

services. 

Fig. 5.6 showcases a comprehensive dashboard illustrating the performance metrics of the 

Node-Red service. This dashboard offers insights into critical indicators such as response time, 

CPU usage, failure rate, and throughput. Additionally, it provides valuable information 

regarding the utilization of applications, databases, and other resources utilized by Node-Red. 

On the other hand, Fig. 5.7 represents the general Node-Red dashboard, encompassing a 

broader range of properties and tags. This dashboard offers specific details surrounding the 

Node-Red process. It provides a comprehensive and granular perspective on the functionality 

and performance of Node-Red, enabling a deeper understanding of its inner workings and 

capabilities. 
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Figure 5.6 Node-Red service Performance Metrics 

 

Figure 5.7 Node-Red Dashboard 
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Fig. 5.8 and Fig 5.10 present dashboards showcasing the performance metrics of the 

Thingsboard (SpringBoot) and ThingsBoard database (PostgreSQL) services. These 

dashboards provide insights into crucial indicators, including response time, failure rate, and 

throughput. These dashboards also have information about the components and data flow of 

the services. 

Fig. 5.9 and 5.11 feature the general Thingsboard (SpringBoot) and Thingsboard 

(PostgreSQL) dashboards, offering a range of properties and tags. These dashboards delve 

into the intricate technologies and specific details associated with these two processes, 

providing a comprehensive and detailed perspective on their functionality, performance and 

services that ThingsBoard processes are using. They enable a deeper understanding of the 

inner workings and capabilities of Thingsboard (SpringBoot) and Thingsboard (PostgreSQL). 

 

Figure 5.8 ThingsBoard (SpringBoot) Service Performance Metrics 
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Figure 5.9 ThingsBoard (Spring boot) Dashboard 

 

Figure 5.10 ThingsBoard (Database) Service Performance Metrics 
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Figure 5.11 ThingsBoard (Database) Dashboard 

Dynatrace is a commercial tool that provides extensive instrumentation and monitoring 

capabilities.  Like ThingsBoard, it provides key functionality needed for the management of 

applications and services in a smart city.  We must, however, ensure that it is integrated into 

the overall operation of the autonomic management system. 

5.2.2 Device and Infrastructure Monitoring Web Platform 

The device and infrastructure monitoring web platform is the optional component of the 

autonomic system, but we implemented it as an informational interface to provide metrics and 

data from ThingsBoard and Dynatrace in one place. Fig. 5.12 is the web platform for our 

autonomic smart city management system that is composed of several parts:  

The first component is the dashboard, which is accessible from the homepage and provides 

real-time updates on the performance metrics. This dashboard serves as a central hub where 

administrators can quickly assess the system's status.  

The device management page is the next page of our web platform, which is seamlessly 

integrated with our IoT platform. This page provides administrators with access to a wealth of 

information, including alarms, dashboards, and streaming data from the devices and sensors 

deployed throughout the smart city.  
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The next page is the infrastructure monitoring page which provides detailed insights into the 

performance metrics of the smart city infrastructure, presenting the metrics and their 

corresponding values in an easy-to-understand format. 

The last tab of the web platform is the infrastructure management which provides 

administrators with a comprehensive view of the results of any management actions taken 

within the system. Additionally, this page can present reports and notifications, allowing 

administrators to stay informed about the autonomic management system functionality. The 

management section has access to the policy engine and the result of the corrective actions. 

Upon successful completion of any corrective action, this page will promptly publish the 

results to notify administrators. 

The web platform is meant to serve as an informational platform for administrators and city 

authorities, intended to provide information rather than manage the smart city ecosystem. It 

provides them with valuable insights into how the autonomic smart city management system 

is functioning. If the metric is based on the condition stored in the policy engine, the 

corresponding action is planned and executed in the smart city ecosystem to ensure that the 

system operates in accordance with the high-level goals set by the administrators. To keep the 

administrators informed, every time a self-configuration takes place in the smart city 

ecosystem, a notification text appears on the screen. This notification acts as an alert 

mechanism, giving the administrators an indication that all components, the environment, and 

the whole infrastructure are under control. 

That being stated, the addition of pertinent capabilities opens the door for potential expansion, 

allowing for the integration of the management interface aspect, effectively serving as a 

management interface. It is worth noting that in our work the Autonomic Smart City 

Management System remains responsible for the overall management of the smart city and 

not the web platform.  
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Figure 5.12 Device and Infrastructure Monitoring Web Platform 

5.2.3 Management Policies 

This section presents the policies that we defined to manage the smart city environment and 

its infrastructure. For each event in a smart city, one or several policies have been defined and 

the proper action or actions are determined to deal with the problem or to adapt to the change. 

To make it easier for the administrator to add the policies to the database, we created a form 

that provides a graphic interface for adding the policies as shown in Fig. 5.13.   

 

Figure 5.13 Policy Form 
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The policies are stored in a robust SQLite3 database, ensuring efficient access and retrieval. 

Also, JSON is used for data handling and parsing the payload. The policy language serves as 

the framework for defining domain-specific policies. Within this language, each policy aligns 

with a distinct domain or area of concern. These policies are structured by a collection of rules, 

wherein each rule precisely articulates both a condition and a corresponding action. When the 

specified condition is satisfied, the associated action is executed. 

5.2.3.1 Sample Policy 

For example, one policy is defined as below: 

Sensor_Battery_Full: 

On Battery_full(s) 

If battery_level(s) == 100  

Then SwitchtoBattery(s) 

Policy Name: "Sensor_Battery_Full" is the name of the policy, which is a user-defined 

identifier for this specific rule. 

Event Trigger: "On Battery_full(s)" is the event trigger that specifies when this policy 

should be executed. In this case, the policy is triggered when the battery level reaches 100%.  

In this case, the policy evaluation component would check for data from ThingsBoard on 

battery levels.  

Condition: "if battery_level(s) == 100" is the condition that determines whether the 

policy's action should be executed. It checks if the battery level of a particular sensor 

(represented by 's') is equal to 100%. If this condition is met, the action will be performed. 

Action: "then SwitchtoBattery(s)" is the action that specifies what should happen when 

the condition is met. It indicates that the system should switch to battery power for the sensor 

represented by 's' when the battery level reaches 100%. For the simulation, we have 

implemented functions to simulate the real-world effects of each action that the prototype 

ASCMS could take. For instance, when executing the "SwitchtoBattery(s)" action, we 

have designed a function that changes the power source to the battery, while also gradually 
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depleting the battery level to mimic the authentic behavior. However, sometimes in instances 

such as updating firmware versions, the administrator may be required to write code and 

integrate it into the repository.  Note that such code, once written and added to the repository, 

can be used for updating firmware for the same type of sensors or even other similar sensors. 

As the core process of the autonomic management system executes, it dynamically retrieves 

attributes, evaluates the conditions, and triggers the appropriate actions accordingly.   

Following each iteration, the policy checker process momentarily pauses, allowing for a 

designated period of time to elapse. Subsequently, it resumes its task of evaluating the 

prevailing conditions to determine whether the activation of policies is warranted once more. 

This deliberate pause-and-resume approach ensures that our policies are consistently 

monitored and applied in a judicious manner. Our prototype system encompasses 12 distinct 

scenarios, for every scenario, its specific policy or policies are stored in the database. We 

provide an overview of the scenarios and policies in the following. 

5.2.3.2 Sensor Firmware Version 

There are several reasons for updating the sensor’s firmware: a) To improve the sensor 

functionality and accuracy; b) To fix issues and bugs; c) To protect it against security attacks; 

and d) To add new features to the sensor. For doing so, we first need to get the sensor's current 

version from the IoT Platform and compare it with the latest version. In case the sensor 

firmware version is outdated, the smart city management system needs to send a message to 

the IoT Platform that the sensor needs to be updated.  

Sensor Version: 

On NewFirmwareVersion(s)  

If firmwareVersion(s)! = latestVersion(s)  

Then UpdateSensorVersion(s) 

NewFirmwareVersion(s) is the detection of an event indicating the release of a new 

version of the firmware associated with a sensor “s”.  This would be triggered when the 

administrator adds a version to the repository.   The functions firmwareVersion(s) and 

latestVersion(s) are predicates that get the current version of the firmware for sensor s 
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and the latest firmware version for the sensor.  Then UpdateSensorVersion(s) would 

instruct the IoT platform to update the firmware of sensor s.  Note that the policy describes 

the condition for ANY sensor – as long as it has a firmware version (in practice – some sensors 

maybe very simple and not have any firmware – just hardware) 

5.2.3.3 Offline Sensor 

Occasionally, the sensor may go offline due to internal errors or a drained battery. To address 

such situations effectively, we follow a specific protocol. The "Sensor Offline" policy consists 

of three rules that form the foundation for managing the status of sensors, whether they are 

offline or online. Firstly, we attempt to resolve the issue by rebooting the sensor. If this step 

fails to restore connectivity and bring the sensor back into the network, it is likely that the 

battery needs recharging. Consequently, the power supply is switched to direct current (DC) 

to facilitate the charging process. However, if switching to DC power does not resolve the 

problem, the (ASCMS) triggers an application to promptly notify the operator. The 

lastConnectTime is the data that is received from ThingsBoard. 

The first solution when the sensor is offline (lastConnectTime(s)<currentTime) is 

that the ASCMS triggers a reboot operation. In order to address this, we defined the following 

policy: 

Sensor Offline: 

On SensorOffline(s)  

If lastConnectTime(s)<currentTime 

Then Reboot(s) 

in the above policy, Reboot () would send a message to the IoT Platform to reboot the 

specific sensor AND would set the reboot flag to True. 

To address the situation where a sensor has been recently rebooted, a separate rule comes into 

play. If a sensor(s) has been rebooted (reboot(s)==True) and possesses a DC capability 

(HasDC(s)), the autonomic management system initiates a message to the IoT Platform, 

instructing it to switch the sensor to DC power mode (SwitchToDC(s)) and changes the 

powerSource attribute to DC. 
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On SensorOffline(s)  

If lastConnectTime(s)<currentTime and reboot(s)==True and 

HasDC(s)  

Then SwitchToDC(s) 

Here, reboot(s)==True checks flag reboot of the sensor s to see if the sensor s was 

rebooted and if it has a DC capability then the Autonomic management system would send a 

message to the IoT platform to try to switch that sensor to DC. 

Then if none of the above solutions were helpful meaning that reboot flag is True and 

powerSource is DC but still the sensor is offline the system should initiate an application to 

notify the operator.  

On SensorOffline(s)  

If lastConnectTime(s)<currentTime and reboot(s)==True and 

powerSource(s)= “DC”  

Then NotifyOperator () 

So here is where the management system is generating a notification to seek human 

intervention. 

5.2.3.4 Response Time 

Based on [99] the response time below 10ms is acceptable but if the response time is constantly 

more than 10ms we need to be careful. If the waiting time for the storage takes more than 50 

ms, it should be taken very seriously. Therefore, we created the following policy to deal with 

this problem. The response time could be for a service, a process or an application. In this case 

we focus on the response time of an application. If the response time goes higher than 10ms 

we add compute nodes to decrease the response time and increase the overall performance. 

For simplicity, this approach uses vertical reactive scaling. It is vertical meaning that we add 

more resources to the service and also it is reactive which means when the mitigation takes 

place after the response time increased. The key limitation of reactive scaling is that after the 

system encounters the overload the management system can manage the resources and 

decrease the response time. To save resources and utilize them efficiently we can decrease the 

compute nodes if the workload is not massive, and the response time is acceptable (below 

10ms). 



104 

 

 

Check_Response_Time: 

On True 

If responseTime(app)> 10000  

Then addComputeNodes (app) 

An event “True” means that the policy is evaluated each time the core process is executed.  

In this case, any applications (“app”) that are being monitored by Dynatrace are checked. 

5.2.3.5 CPU Usage 

In this scenario, the focus is on efficient management of CPU usage to ensure it stays within 

an acceptable range. The system monitors the CPU percentage of the application and takes 

actions based on the observed usage. The administrator just needs to define a threshold value 

for CPU usage along with the corresponding event-condition-action rule. Then the system 

checks if the current CPU usage exceeds that threshold. If it does, the system takes proactive 

measures by temporarily pausing the execution of CPU-intensive tasks. This pause allows the 

system to alleviate the CPU load and prevent potential performance issues. 

CPU Usage: 

On True  

If cpuUsage (host, app)>80  

Then Pause (app) 

“On True” signifies that the process responsible for checking policy violations should 

periodically assess the condition and, when necessary, temporarily suspend the task to prevent 

CPU overuse. 

5.2.3.6 Memory Usage 

Memory usage management is a crucial aspect of system performance optimization. Similar 

to CPU usage management, the system strives to maintain memory usage within an acceptable 

range. By defining a high threshold value for memory usage and implementing an appropriate 

policy, the system ensures efficient memory utilization. The process begins with monitoring 

of the application's memory consumption. It should be noted that the measurement unit for 

memory usage is in bytes. If the observed memory usage exceeds the defined threshold, the 
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system takes proactive measures to regulate it. This may involve temporarily pausing the 

execution of memory-intensive tasks to alleviate the memory load. Additionally, if necessary, 

the system can handle memory assignment to address the excessive memory usage scenario. 

It is important to note that the system remains adaptive and responsive. When memory usage 

falls below the threshold, the paused tasks can be resumed to ensure smooth execution and 

optimal resource allocation. 

Memory Usage: 

On True  

If memoryusage (host, app) > 36000000 

Then assignMemory (app) 

Similar to the previous metrics, "On True" implies that the condition is assessed each time 

with regard to the memory usage of the specified application on the host. 

5.2.3.7 Alarms 

Sometimes a city faces a disaster or a problem that needs immediate attention and this can be  

realized from the telemetry data pattern. For instance, if the room temperature rises above  the 

normal threshold, the risk of fire can be inferred or if the wave length on the beach is higher 

than normal, it can be life threatening for the people who live near the beach. Sometimes 

sensors can be placed in locations that are very sensitive, like in a data centre where the 

temperature should be monitored regularly and in case it is near the threshold the cooling 

system should cool down the room as fast as possible. To deal with these scenarios we need 

to define some policies and determine the actions that need to take place accordingly. First the 

corresponding alarm should be generated and then the smart city management system should 

choose the proper action to be taken place. Different scenarios are explained in the following 

and the management algorithms are presented.  

Temperature: 

To manage temperature, there are two methods that can be employed. The first method 

involves defining alarms directly in the ThingsBoard platform and sending those alarms to the 

ASCMS. The second method involves retrieving temperature values from ThingsBoard and 
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implementing a policy based on predefined thresholds. In this method, a high-value threshold 

is established to determine when action needs to be taken. The policy can be defined such that 

if the temperature exceeds the threshold, a flag value is set to “True”, indicating the need to 

activate the cooling system. On the other hand, if the temperature is within the normal range, 

the cooling system remains off. 

This policy provides a flexible approach to manage the temperature. By defining the threshold 

appropriately, it is possible to respond to temperature variations and ensure optimal 

conditions. The use of predefined policies allows for automated decision-making based on the 

received temperature data and also enables general policies to be defined as well as being able 

to use temperature data in combination with other conditions for creating more complex 

policies. By implementing this policy, the system can effectively control the cooling system 

based on the temperature conditions. This not only helps maintain a comfortable environment 

but also enables energy efficiency by activating the cooling system only when necessary. 

Temperature: 

On temperature_high(location,s) 

If temperature(s)>20 

Then coolingSystem (location(s), True) 

Wave height: 

To effectively monitor and manage wave height, we employ a multi-step process. Firstly, we 

retrieve wave height data from ThingsBoard. Based on our dataset, we establish that wave 

heights typically range from 0 to 1.5. To effectively implement our policy, we designate the 

upper limit as 1. 

If the water level exceeds this predetermined threshold, we activate a flag, marking it as True. 

This flag serves as a trigger for an application that promptly notifies individuals living in close 

proximity to the water body. This notification system ensures that people are promptly 

informed of any potentially hazardous wave conditions. Additionally, we take into 

consideration the presence of a breakwater, which is a structure designed to reduce the impact 

of waves and provide protection. By setting the breakwater flag to True, we activate its 



107 

 

 

functionality, adding an extra layer of defense against wave energy. This breakwater serves as 

a barrier, dissipating or redirecting the force of incoming waves and creating a calmer zone of 

water behind it. 

By implementing this comprehensive approach, our policy effectively handles wave height. 

We utilize accurate data retrieval, real-time notifications, and the activation of a breakwater 

when necessary. This ensures the safety and well-being of individuals living near the water, 

while also safeguarding coastal infrastructure and ecosystems from the potentially damaging 

effects of high waves. 

Wave Height: 

On True  

If waveHeight(s)>1  

Then breakWater(beach_name, True) and 

notifyCitizens(beach_name) 

 

Water quality: 

Our primary goal is to guarantee the meticulous monitoring of water quality for a specific 

beach and implement effective management strategies based on this assessment. In pursuit of 

this objective, we place significant emphasis on the evaluation of turbidity, a pivotal parameter 

within our dataset that serves as an indicator of water quality. Turbidity refers to the measure 

of relative clarity or cloudiness of water, indicating the presence of suspended particles and 

impurities. 

Within our dataset, turbidity values span a specific range, typically varying from 0 to 1683.48. 

For optimal water quality, it is desirable to maintain turbidity below a certain threshold. Lower 

levels of turbidity signify clearer water and better conditions. Based on recommended 

guidelines, an ideal turbidity value for recreational purposes would be below 1 nephelometric 

turbidity unit (NTU). 

As part of our management policy, we establish the upper limit of turbidity at 50 NTU. This 

threshold serves as a crucial guideline, prompting us to take immediate action if the turbidity 
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exceeds this value. In such cases, it is of utmost importance to promptly notify individuals that 

swimming in the water is prohibited due to compromised water quality. In the event of high 

turbidity levels, which can pose potential health risks, the ASCMS triggers the activation of 

the notification system to ensure the safety and well-being of beachgoers by preventing them 

from swimming in water with high turbidity levels. 

By incorporating turbidity monitoring and aligning it with our management policy, we 

prioritize water quality and strive to maintain a safe and enjoyable experience for visitors to 

the beach. 

Water Quality: 

On True  

If turbidity(s,beach_name)>50 

Then notifySwimmers(beach_name) 

 

Traffic speed:  

The ASCMS is also capable of tracking traffic speed and initiating relevant notifications when 

a slowdown is detected. This proactive feature serves to notify drivers in the vicinity to reduce 

their speed as they approach the affected area. The ASCMS can activate the notification 

system to interact with applications such as Google Maps to provide real-time updates, while 

dynamically adjusting traffic boards like Emergency Detour Route signage (EDR) to alert 

approaching drivers. 

Furthermore, envisioning a future with advanced smart cities, where fully autonomous 

vehicles (level 5) are prevalent, our management system can extend its capabilities to 

communicate with these autonomous cars. By notifying the vehicles to reduce their speed, we 

can effectively prevent potential accidents from occurring. This integration of advanced 

technology ensures enhanced safety measures and contributes to the prevention of accidents 

in an increasingly connected and autonomous transportation landscape. 
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Traffic Speed: 

On True  

If trafficSpeed(location) < 20  

Then notifyAutonomousVehicles(True, location) and 

notifyGoogle(True, location) and trafficSign(True, 

location) 

5.2.3.8 Prioritization (Mission Critical vs Normal Data) 

In a smart city environment, telemetry data can be classified into two categories: normal data 

and mission-critical data. Normal data originates from sensors such as parking sensors, and 

while important, it holds a lower priority compared to the data generated by sensors directly 

related to citizen safety, security, or critical tasks. Ensuring the utmost safety and well-being 

of citizens is paramount, which is why our smart city management system places special 

emphasis on processing mission-critical data efficiently. 

To achieve this, our system allocates additional resources and prioritizes the transmission of 

mission-critical data. The key to this management task lies in determining the top priority 

among sensors or data streams. In our system, we accomplish this by assigning a priority 

attribute to each sensor, with values ranging from 1 to 9. Sensors with a priority value 

exceeding 5 are categorized as a high priority, resulting in an increase in data transmission 

from those sensors. 

This policy allows us to dynamically adjust priorities based on the evolving needs of the smart 

city. As the priority of a sensor can change from normal to critical, we adapt our resource 

allocation and data transmission accordingly. By implementing this approach, we effectively 

manage mission-critical data, ensuring swift processing and response, thus enhancing the 

overall safety and efficiency of our smart city ecosystem. 

Priority: 

On True  

If priority(s)>5  

Then increaseTransmission(s) 
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In evaluating this policy, the policy evaluation process checks the status of sensors registered 

with ThingsBoard.  If the priority of a sensor has increased beyond the threshold (5) then the 

policy is triggered. 

5.2.3.9 Power Supply 

Effective management of sensor power supply can be achieved through well-defined policies. 

While some sensors rely on batteries, operate on DC power, or even generate power internally, 

it is essential to implement strategies for managing sensor power supply in smart city systems. 

To facilitate this management, the first step involves integrating circuits2 into the sensors, 

enabling seamless switching between battery and DC power sources. Subsequently, the 

following policies can be established: 

1. When the battery level falls below a predetermined threshold and the sensor is powered 

by a battery, the system automatically switches the power source to DC. 

2. Conversely, if the sensor is powered by DC and the battery level reaches full capacity, 

the system reverts to using the battery as the power source. 

3. In addition to batteries and DC power, solar energy can serve as an alternative power 

source. If solar energy becomes insufficient, the sensor can transition back to operating 

on battery power. 

By implementing these policies, we ensure efficient power management, specifically 

addressing scenarios where the battery power becomes depleted. The ability to seamlessly 

switch power sources mitigates the risk of power outage and sustains uninterrupted sensor 

functionality. 

 

2 https://www.engineersgarage.com/automatic-power-supply-switching-for-battery-operated-devices-part-8-9/  

 

https://www.engineersgarage.com/automatic-power-supply-switching-for-battery-operated-devices-part-8-9/
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The Power Supply policy comprises two distinct rules, one for situations when the battery 

level is low and another for when it reaches full capacity. These rules, denoted as 

"battery_low" and "battery_high," are encapsulated within a singular policy named 

"Power Supply". 

On battery_low: The ASCMS monitors sensors to determine if they are operating on 

battery power. When the battery level falls below the predefined low threshold, the system 

triggers the SwitchToDC(s) event. This event promptly notifies the IoT Platform to 

transition the sensor from battery to DC power. This streamlined and automated approach 

optimizes power management, ensuring efficient resource utilization within the smart city 

ecosystem. 

Power Supply: 

On battery_low(s)  

If batteryLevel(s)<20 and powerSource == “battery”  

Then switchToDC(s) 

On battery_high: The ASCMS monitors sensors that are not powered by their own battery 

and checks if their battery level has reached a specific threshold. If the battery level is at 100% 

and the power source is currently set to DC, the system triggers the switchToBattery(s) 

action. This action initiates a seamless transition of the sensor’s power source back to the 

battery.  

On battery_high(s)  

If batteryLevel(s)==100 and powerSource == "DC"  

Then switchToBattery(s) 

5.2.3.10 Calculation Based Policies 

In addition to general policies, specific guidelines can be established to determine appropriate 

actions when the result of a calculation matches a predefined value. To achieve this, the IoT 

platform computes the outcome of a formula based on telemetry data received from sensors. 

The resulting answer is then forwarded to the smart city management system, which employs 

it to make informed decisions regarding necessary actions. Furthermore, the ASCMS is 

capable of independently calculating this information. 
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For instance, in a parking scenario, if the number of vehicles in the parking lot equals the total 

number of available parking spots, the Autonomic Smart City Management System (ASCMS) 

promptly signals the corresponding application to close the entrance gate. Simultaneously, it 

triggers the red coloration of the empty spot indicator or displays a message indicating that the 

parking lot is full. Furthermore, the ASCMS can calculate the number of available spots by 

subtracting the occupied spots from the total parking capacity and display this information on 

a garage status monitor. Additionally, this data can be transferred to a mobile application 

accessible to drivers, enabling them to stay informed about the availability of parking spots. 

Parking: 

On parkingFull(parking)  

If vehicleCount(parking)== totalSpaces(parking)  

Then updateParkingStatus(parking) 

 

Table 1: Defined Policies 

Domain Policy Definition  

Sensor 

attributes 

management 

Sensor 

firmware 

version 

Sensor firmware version:  

On NewFirmwareVersion(s) 

  If firmwareVersion(s)! = latestVersion(s) 

  Then UpdateSensorVersion(s) 

Sensor offline 

Sensor Offline: 

1.On SensorOffline(s)  

   If lastConnectTime(s)<currentTime 

   Then Reboot(s) 

 

2.On SensorOffline(s)  

  If lastConnectTime(s)<currentTime and 

reboot(s)==True and HasDC(s)  

  Then SwitchToDC(s) 

 

3.On Sensor Offline(s)  

  If lastConnectTime(s)<currentTime and 

reboot(s)==True and powerSource(s)= “DC”  

   Then NotifyOperator () 
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Sensor 

priority 

Priority: 

On True  

If priority(s)>5  

Then increaseTransmission(s) 

Power supply 

Power Supply: 

1.On battery_low(s)  

If batteryLevel(s)<20 and powerSource == 

“battery”  

Then switchToDC(s) 

2.On battery_high(s)  

If batteryLevel(s)==100 and powerSource == 

"DC"  

Then switchToBattery(s) 

Infrastructure 

performance 

management 

Response 

Time 

Check_Response_Time: 

On True 

If responseTime(app)> 10000  

Then addComputeNodes (app) 

CPU Usage  

CPU Usage: 

On True  

If cpuUsage (host, app)>80  

Then Pause (app) 

Memory 

usage 

Memory Usage: 

On True  

If memoryusage (host, app) > 36000000 

Then assignMemory (app) 

Sensor 

measurement 

and 

environment 

management 

Temperature 

Temperature: 

On temperature_high(location,s) 

If temperature(s)>20 

Then coolingSystem (location(s), True) 

Wave height 

Wave Height: 

On True  

If waveHeight(s)>1  

Then breakWater(beach_name, True) and 

notifyCitizens(beach_name) 

Water quality 

Water Quality: 

On True  

If turbidity(s,beach_name)>50 

Then notifySwimmers(beach_name) 
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Traffic speed 

Traffic Speed: 

On True  

If trafficSpeed(location) < 20  

      Then notifyAutonomousVehicles(True, 

location) and notifyGoogle(True, location) and 

trafficSign(True, location) 

Parking 

Parking: 

On parkingFull(parking)  

     If vehicleCount(parking)== 

totalSpaces(parking)  

     Then updateParkingStatus(parking) 

In the next Chapter, we delve into the practical implementation of the policies discussed 

earlier, aiming to manage various facets of a smart city autonomously, without human 

intervention. Through a series of carefully designed experiments, we evaluate the 

effectiveness of our approach by comparing the state of the city before and after the 

deployment of our Autonomic Smart City Management System (ASCMS). 

We analyze the outcomes to showcase the tangible improvements achieved with the ASCMS 

in place, highlighting the contrast between the normal operating conditions and scenarios 

where issues arise or when the smart city deviates from the desired conditions. This 

comparison serves to illustrate how the ASCMS acts promptly and effectively to manage and 

rectify the smart city ecosystem, ranging from environmental factors to critical infrastructure 

components. 
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Chapter 6 Experiments and Evaluation 

In this Chapter, we will present a number of different scenarios in which we illustrate our 

autonomic management system for our prototype smart city. We first begin by describing the 

experimental environment for our smart city including the number of simulated sensors and 

the datasets providing the data for those sensors, the attributes of the sensors and the 

infrastructure of the simulated smart city.  We will also describe the metrics and measurements 

that are collected (or can be collected) by our autonomic management system.  This is followed 

by several sections that present different scenarios and experiments illustrating the operation 

of our autonomic management system. 

6.1 Experimental Configuration 

We first introduce our smart city environment and then describe the metrics and measurements 

used by the autonomic management system. 

6.1.1 Smart City Configuration 

Our prototype smart city consists of 41 sensors and devices and 4 network nodes, 1 

computational node.   The network configuration is illustrated in Fig. 6.1.  
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Figure 6.1 Experimental Configuration 
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The system configuration hosting both the smart city prototype and ASCMS prototype 

includes: 

• Processor: Intel(R) Core (TM) i5-7500T CPU @ 2.70GHz with a processing speed of 

2.71 GHz 

• Memory: 8GB RAM 

• Operating System: Windows 10; 64-bit, 64-bit operating system 

Data for the sensors in our prototype smart city comes from the following associated datasets: 

There are 6 sensors that provide data on beaches and water.  There is one dataset for each of 

the sensors with the following information:  

• Beach Name: name of beach where measurement takes place. 

• Timestamp: The date and time when the measurements were taken. 

• Water Temperature: water temperature in Celsius degrees. 

• Turbidity: Water turbidity in Nephelometric Turbidity Units (NTU). As mentioned 

before “Turbidity” is the cloudiness or haziness of a liquid caused by suspended 

particles. 

• Transducer Depth: Transducer depth in meters. 

• Wave Height:  Wave height in meters. 

• Wave Period: Wave period in seconds. 

• Measurement ID: A unique record ID made up of the Beach Name and Measurement 

Timestamp. 

• breakWater: A flag representing if the breakwater is activated or not (added extra). 

The remaining sensors all make use of different data sets that are from the city of Aarhus, 

Denmark generated for August 2014 which includes: 

Five sensors that provide traffic data:  

• AvgSpeed: average measured speed  

• Timestamp: Date and time 

• vehicleCount: number of vehicles 

Five sensors that provide the pollution data and air quality: 

• Ozone. 

• Particullate_matter. 

• Carbon_monoxide. 

• Sulfure_dioxide. 

• Nitrogen_dioxide. 

• Timestamp. 

Three parking devices that provide data about parking garages:  
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• Vehiclecount – number of vehicles in garage at reporting time. 

• Updatetime – date and time at which data is reported. 

• Totalspaces – max spaces in garage. 

• Garagecode – code name of garage. 

One sensor with weather related data: 

• Date. 

• Time. 

• Temperature. 

• Humidity. 

• Dewpoint. 

• Air Pressure. 

• Wind Direction. 

• Wind Speed. 

• CoolingSystem. 

 

and 21 devices and sensors that are added to evaluate the scalability and adaptability of the 

ASCMS including: 

• 4 test devices that are assigned to a special customer. 

• 9 sensors that record the information for senior homes. 

• 1 sensor that only provides the temperature of a room. 

• 1 wind direction sensor 

• 1 rotating device that rotates based on the wind direction.  

• 1 thermostat sensor and 1 thermostat that can control the temperature. 

• 1 smart city sensor that is added to record all the data in one place. 

• 1 beach sensor that is another test sensor and can provide some information such as 

temperature, water quality and wave height. 

• 1 parking sensor that is for test.  

All sensors in our smart city prototype have the following attributes: 

• Version. 

• Priority. 

• LastConnectTime. 

• BatteryLevel. 

• PowerSource. 

• Reboot: a flag that represents whether the device or sensor rebooted or not. 

 

Incorporating all these sensors into the IoT platform enables us to demonstrate the utility of 

our model and showcase the functionality of our ASCMS. 
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6.1.2 ASCMS Configuration 

In addition to getting data about the attributes of the sensors and sensor measurements, the 

ASCMS has the capacity to receive a multitude of performance metrics from the monitoring 

platform. Dynatrace can provide network traffic, connectivity, retransmission, throughput, 

latency, available disk percentage, and so on. However, our primary concentration lies in the 

management of select metrics, including response time, host CPU usage, and host memory 

utilization. 

The rest of this chapter presents various scenarios executed in this simulated smart city 

environment to demonstrate the system's capabilities. To illustrate the operation and behavior 

of our ASCMS, we present screenshots of the IoT platform both before, during and after 

running the system. During the management system's operation, we capture and provide 

screenshots of the outputs, demonstrating the corrective actions in progress. For each scenario, 

we will also provide a chart illustrating the policy violations over time.  

 

6.2 Scenario 1: Management of Sensor Attributes 

In this scenario, we illustrate the effective management of sensors’ attributes.  We conduct 

various experiments to monitor and control crucial aspects such as sensor firmware versions, 

sensor priority, sensor offline and online status, and sensor power supply.  The aim is to 

demonstrate the management of these sensor attributes within a smart city environment, as 

well as for multiple sensors collectively. 

Our investigation also encompasses the dynamic alteration of these attributes while the 

autonomic management system is actively functioning. By doing so, we illustrate the system's 

capability to handle attribute changes in real-time, thus ensuring its efficiency and adaptability 

in a rapidly evolving environment. 

Managing sensor attributes is a vital component in optimizing the performance and 

functionality of sensor networks. By effectively controlling the firmware version, we can 

ensure that all sensors in a smart city are equipped with the latest updates and enhancements, 
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guaranteeing their compatibility with other components within the system. Additionally, the 

ability to adjust the sensor priority by administrators enables the ASCMS to allocate resources 

appropriately or change the data transmission accordingly, ensuring that critical tasks are 

prioritized and addressed promptly. The priority assigned to sensors can be dynamic and can 

vary based on the prevailing situation. In certain circumstances, an administrator may give a 

particular sensor a higher priority for a specific period and then sometime later its priority 

would revert to normal by setting a policy or by doing it manually. Additionally, in the event 

of a critical occurrence or disaster, if a relevant policy is defined, the ASCMS can 

automatically adjust sensor priorities without requiring manual intervention. For instance, if 

the Wave Height surpasses the dangerous threshold, ASCMS can swiftly assign the highest 

priority to sensors near the beach to expedite data processing and activate protective measures 

promptly. Conversely, there may be instances when a sensor's priority returns to a normal 

level. This could occur when the urgency of a specific situation subsides, or when other 

sensors become more critical due to evolving conditions. Adapting the priorities accordingly 

ensures that resources are distributed appropriately, optimizing the overall performance and 

responsiveness of the sensor network. 

Monitoring the offline and online status of sensors is crucial for maintaining the overall 

system's reliability. By actively managing this attribute, the system can promptly identify and 

rectify any connectivity issues, minimizing potential disruptions in data collection or system 

operations. Furthermore, managing the sensor power supply plays a pivotal role in ensuring 

uninterrupted functionality, preventing power-related failures and optimizing energy 

consumption. 

The experiments conducted in this study aim to illustrate the effectiveness and efficiency of 

our approach to management within a dynamic smart city context. By observing the autonomic 

management system's response to attribute changes in real-time, we can demonstrate its ability 

to adapt and adjust seamlessly, ensuring the optimal performance and reliability of the entire 

sensor network. 
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6.2.1 Relevant Policies 

The Autonomic Smart City Management System (ASCMS) operates based on the policies 

established by the system administrator. These policies serve as guidelines for managing the 

various sensor attributes, which are outlined as follows. 

6.2.1.1 Sensor Version 

To ensure optimal functionality and compatibility, it is important that the sensors get updated 

when a new version of the sensor firmware is released. We assume that it is the responsibility 

of the administrator to track versions of sensor firmware, e.g., through notices from vendors.  

Once the latest version has been identified by the administrator, we assume that it is stored in 

a database or a reference to it is stored in the data.  The administrator can define policies that 

enable the ASCMS to check versions. If a disparity exists between the version numbers of 

latest version and the current version, the system initiates the necessary steps to update the 

sensor's firmware version to the most recent one. The firmware version can also be obtained 

from the manufacturer, provided they offer the appropriate API for this purpose. 

The ASCMS automates the process of updating sensor firmware versions, alleviating the 

burden on administrators and eliminating the need for manual intervention to update firmware 

for every sensor. By streamlining this aspect of attribute management, system administrators 

can focus their attention on other critical tasks and defining policies while maintaining an up-

to-date and optimized sensor network. 

The policy for updating the sensor version is described below: 

Sensor Version: 

On NewFirmwareVersion(s)  

If firmwareVersion(s)! = latestVersion(s)  

Then UpdateSensorVersion(s) 

The NewFirmwareVersion(s)indicates that when a new version is released for the specific 

sensor, and the sensor firmwareVersion(s) diverges from the latestVersion(s) 

designated by the administrator in the knowledge base, the system takes action to promptly 

update the sensor version to align with the latest version. 
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6.2.1.2 Sensor Priority 

After defining the relevant policy, the ASCMS can manage and increase sensor data 

transmission, when it identifies a high sensor priority. This capability allows for data handling 

and prioritization based on the defined sensor priority threshold.  

This policy proves to be particularly valuable in scenarios where the priority of data may 

fluctuate within a smart city environment. A prime example is during times of disaster or 

emergency situations, where certain areas of the city require immediate attention and 

prioritization. In such cases, sensors deployed in the affected region can be assigned higher 

priority levels, ensuring that their data is transmitted rapidly and given precedence over data 

from other sensors.  

Below is the policy that helps with managing the sensor priority: 

Priority: 

On True  

If priority(s)>5 (5 is the threshold) 

Then increaseTransmission(s) 

Within this policy, the initial step entails the administrator establishing a defined 

threshold. Subsequently, the condition assesses whether the priority of the sensor "s" 

exceeds the set threshold. If this condition is met, the policy triggers the 

increaseDataTransmission(s) function, thereby elevating the data transmission rate of 

the particular sensor. This increase can happen by adding more resources or increasing 

bandwidth.  

6.2.1.3 Sensor Offline 

In certain situations, a sensor may experience an offline status due to various factors, such as 

low battery, software issues, or hardware malfunctions. To address this problem, several 

potential solutions can be considered. Firstly, if the sensor encounters a software issue, a 

simple reboot may suffice to resolve the problem. However, if the issue persists, it could 

indicate that the battery has drained, necessitating the possibility of connecting the sensor to a 

direct current (DC) power source for recharging if that option exists for the sensor. However, 
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achieving this capability might not be feasible for all sensors, particularly those utilizing 

disposable batteries, like AAA batteries. For rechargeable batteries, a circuit could be 

integrated to facilitate the transition from battery power to DC power. 

In the event that neither rebooting nor connecting to a DC power source resolves the problem, 

it is likely indicative of a hardware or major issue. In such cases, it becomes imperative for 

the system to promptly notify the administrator about the problem to initiate appropriate 

troubleshooting measures. 

To facilitate the implementation of these solutions, a policy has been devised based on the 

relationship between the sensor's last connection time and the current time. The 

lastConnectTime is initially recorded as a Unix timestamp and needs to be converted to a 

DateTime format for comparison with the current time. The policy is outlined as follows: 

• If the sensor goes offline and the lastConnectTime is earlier than the 

currentTime, initiate a reboot to attempt to resolve software issues. 

Sensor_Offline:  

On sensor_offline(s)  

If lastConnectTime(s)<currentTime 

Then reboot(s) 

• If the sensor is still offline, the lastConnectTime is earlier than the current time, 

and a reboot was successfully performed (reboot = true), connect the sensor to a DC 

power source to address potential battery depletion. 

Sensor_Offline_Reboot:  

On SensorOffline(s)  

If lastConnectTime(s)<currentTime and reboot(s)==True and 

HasDC(s)  

Then SwitchToDC(s) 

• If the sensor is still offline, the lastConnectTime is earlier than the current time, a 

reboot was successfully performed, the power_source is DC, and the problem 

persists, notify the operator or administrator of the situation, indicating a potential 

hardware or major issue. 
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Sensor_Offline_PowerSource:  

On sensor_offline(s)  

If lastConnectTime(s)<currentTime and reboot(s)==True 

   and power_source(s)==” DC”  

Then Notifyoperator() 

This combination of policies helps the system ensure a systematic and prioritized approach to 

addressing sensor offline situations. It combines logical steps such as rebooting, and power 

source switching with timely notifications to facilitate efficient problem resolution and 

minimize disruptions in data collection and system operations. 

 

6.2.1.4 Sensor Power Supply 

The power supply of the sensor is managed based on the level of its battery. The system 

incorporates a set of rules to ensure efficient power management. If the power supply is 

currently running on the battery and the battery level drops below a specified threshold, the 

system initiates a switch to the direct current (DC) power source. This switch helps prevent 

the sensor from losing power and ensures uninterrupted operation. Conversely, if the battery 

level reaches its maximum capacity and the sensor is connected to the DC power source, the 

system recognizes that the battery is fully charged. In this case, it is necessary to disconnect 

the sensor from the DC power source to avoid overcharging or wasting power. 

To provide flexibility and customization, the threshold value is defined by the system 

administrator. Administrators can set a specific threshold that aligns with the unique 

requirements and capabilities of the sensor. This allows for adaptability to different battery 

capacities, power consumption patterns, and operational needs. 

The power management policy can be summarized as follows: 

• On Battery_low: If the current battery level falls below the threshold defined by the 

administrator (battery_level(s)<threshold “where s represents a specific 

sensor”), the system triggers a switch to the DC power source. This ensures a 

continuous power supply and prevents the sensor from running out of battery. The 

threshold is set to 20 in this case. 
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Sensor_Battery_Low:  

On Battery_low(s)  

If battery_level(s)<threshold and powerSource == “battery” 

Then SwitchToDC(s) 

 

• On Battery_high: If the battery level reaches 100% capacity and the sensor is 

connected to the DC power source, the system recognizes that the battery is fully 

charged. To optimize power usage, the sensor is then disconnected from the DC power 

source, allowing it to rely solely on its battery for power. 

Sensor_Battery_Full:  

On Battery_high(s)  

If batteryLevel(s)==100 and powerSource == "DC"  

Then switchToBattery(s) 

 

By implementing this power management policy, the system ensures that the sensor always 

has a reliable power source while efficiently utilizing energy resources. This approach 

maximizes the sensor's operational uptime, prevents unnecessary power drain, and contributes 

to a sustainable and efficient power management strategy. 

 

6.2.2 Managing Sensor Attributes 

In our first experiment, we will demonstrate how the Autonomic Smart City Management 

System (ASCMS) manages sensor attributes in various scenarios. Within the ASCMS 

framework, a process is integrated to proactively monitor sensor attributes from the IoT 

Platform (ThingsBoard) and initiate corresponding policies when the specified conditions are 

met. 

The ASCMS exhibits its adaptability by checking the sensor attributes and dynamically 

adjusting them in real time, swiftly responding to changes that occur while it is running. This 

capability allows the ASCMS to maintain optimal attribute configurations and promptly 

address any deviations from the expected conditions. 
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Fig. 6.2 captures a screenshot from the IoT platform. It shows the sensor attributes that can be 

adjusted manually for one of the smart city sensors, in this case, the sensor name is “Sensor 

39”.  

 

Figure 6.2 Sensor Attributes for “Sensor 39” before action. 

In this scenario, we assume that the low threshold for the battery level of “Sensor 39” is 20. 

Based on the data about the sensor in the IoT platform, however, the batteryLevel is currently 

measured at 14, indicating a low charge. When the ASCMS identifies a policy that evaluates 

to TRUE, it carries out the actions specified in that policy. It recognizes the battery level falling 

below the defined threshold as shown in Fig. 6.3 and takes appropriate action to address the 

situation. In response, the ASCMS initiates a power source change, transitioning the sensor 

power source from its current state to the direct current (DC). As a result of this transition, the 

sensor's battery level begins to rise gradually, and the updates are getting published to the 

ThingsBoard (Fig. 6.3). As is apparent, the initial battery level commenced at 14. With each 

subsequent increase, the updated value is transmitted to ThingsBoard. In the provided 

screenshot, the reading stands at 30, yet the battery level steadily ascends until it reaches a full 

charge of 100. The ASCMS actively manages and monitors the attribute in real time using the 

autonomic feedback loop, ensuring that the battery level is efficiently going up. Screenshots 

in Fig. 6.3 to 6.5 depict the live output of the ASCMS during its runtime to trace what the 

system does while it is working step by step. It is essential to note that these individual figures 

appear sequentially in the output. For the sake of clarity and improved representation, we have 

divided them into several separate figures. 
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Figure 6.3 Managing the Battery Level. 

Other than the batteryLevel, the ASCMS identifies through policy Sensor_Offline that 

the lastConnectTime of the sensor differs from the current time (Fig. 6.4) indicating that the 

sensor is currently offline. To rectify this issue, the system takes action by rebooting the 

sensor. The reboot proves successful, resolving the offline status and restoring the sensor's 

functionality.  
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Moreover, during this process, the ASCMS recognizes that the sensor's priority level is 9, 

surpassing the threshold of 5 (Fig. 6.4) based on policy Priority. In reaction, the system 

exhibits dynamic adaptability by fine-tuning the data transmission rate for enhanced speed. 

Consequently, the pace of data transmission experiences an upswing, manifesting as a 

noticeable surge in the number of outputs generated within a designated timeframe. 

Conversely, when the priority falls below a threshold of 5, data transmission adopts a more 

conservative pace, resulting in fewer outputs produced over the same duration. This 

prioritization ensures that the data from the sensor with a higher priority level is transmitted 

at a faster rate compared to other sensors, enabling timely and efficient data delivery. 

 

Figure 6.4 Managing the sensor when it is offline and has high priority. 

 

Figure 6.5 Managing sensor version. 

Continuing the attribute analysis, the ASCMS proceeds to check the sensor's firmware version. 

It detects that the current version is 1.1.1, which differs from the latest available version of 
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2.6.2. Understanding the importance of maintaining up-to-date firmware, the system initiates 

a version update, changing the sensor's firmware to the latest version (Fig. 6.5).  

The results of these attribute management actions are depicted in Fig. 6.6. 

  

Figure 6.6 Sensor attributes after the ASCMS changes. 

Notably, the lastConnectTime attribute reflects an update as a result of the successful reboot. 

Additionally, the version attribute demonstrates the firmware upgrade to the latest version, 

now registered as 2.6.2. Furthermore, the power source attribute reflects a change as well. 

Initially, the sensor was connected to the DC power source, but as the battery level reaches its 

maximum capacity, the system disconnects the sensor from the DC power source, switching 

it back to the battery power source. 

This comprehensive attribute management performed by the ASCMS showcases its capability 

to efficiently handle various aspects of sensor operation and attributes. By addressing offline 

status, adjusting data transmission rates based on priority, updating firmware versions, and 

managing power sources, the ASCMS ensures the optimal functioning of sensors within the 

smart city ecosystem. 
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6.3 Scenario 2: Management of Smart City Infrastructure Using 
Performance Metrics 

In this scenario, the goal is to manage the smart city infrastructure using performance metrics. 

Although there are so many performance metrics that can be received from Dynatrace, metrics 

that are chosen for the management include CPU usage, memory usage and response time. 

These metrics are extracted from the host housing the IoT platform. This section is specifically 

focused on controlling the smart city infrastructure using these factors with our Autonomic 

Smart City Management System (ASCMS). 

6.3.1 Relevant Policies 

In this part, we provide a summarized presentation of the policies established for smart city 

infrastructure management, leveraging performance metrics. This overview serves as a 

convenient point of reference.  

6.3.1.1 CPU Usage 

The policy for controlling CPU utilization aims to maintain utilization within defined limits. 

The ASCMS monitors the CPU usage of an application on the host and triggers action to 

manage performance. The administrator needs to specify a CPU usage threshold (here is set 

to 80 percent) and the corresponding event-condition-action rule. The system evaluates 

whether the current CPU usage surpasses this threshold and if it does, the system takes action 

by temporarily halting CPU-intensive tasks. This temporary pause aims to reduce CPU load 

and prevent any potential performance problems. 

CPU Usage: 

On True  

If cpuUsage (host, app)>80  

Then Pause (app) 

6.3.1.2 Memory Usage 

Another critical factor in optimizing the infrastructure performance is memory usage. The 

system's goal is to keep memory usage within acceptable bounds by setting a high threshold 

value for memory consumption and implementing a suitable policy for efficient memory 



131 

 

 

utilization. In this policy the administrator defines the threshold which is 36000000 and when 

the observed memory usage exceeds this threshold, the system intervenes to maintain control. 

This intervention might include temporarily suspending memory-intensive tasks to ease the 

memory load. Furthermore, if necessary, the system can redistribute memory allocations to 

address the situation of excessive memory usage.  

Memory Usage: 

On True  

If memoryusage(host, app)>36000000 

Then assignMemory (app) 

 

6.3.1.3 Response Time 

The policy to manage the response time is defined based on the fact that a response time of 

more than 10 milliseconds needs attention. Focusing on application response time, the policy 

employs vertical reactive scaling, adding resources to reduce response time. However, this 

approach is reactive and may not prevent overloads. To save resources and optimize 

performance, compute nodes can be reduced when the workload is light and response times 

remain under 10 milliseconds. 

Check_Response_Time: 

On True 

If responseTime(app)> 10000  

Then addComputeNodes (app) 

 

6.3.2 Managing the Smart City Infrastructure 

This scenario is developed to monitor and manage the smart city’s infrastructure and its 

performance with a specific focus on monitoring CPU usage, memory utilization, and 

response time. In this experiment, our primary attention centers on a dedicated host serving as 

the backbone for the IoT platform. The first performance metric under scrutiny is CPU usage. 

To comprehend the system's operation, we first delve into its workflow. Initially, the 

administrator sets a predefined threshold value, which, in this experiment, stands at 80. 

Subsequently, the system continually receives CPU usage data. It then evaluates a condition: 

if the CPU usage surpasses the set threshold of 80, the tasks are temporarily halted. The system 
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also displays the executed action, as depicted in Fig. 6.7. It is worth noting that after the 

execution of this action, the CPU usage experiences a decline. In this experiment the ASCMS 

prints CPU usage values to demonstrate that when it falls within the normal range, the ASCMS 

refrains from activating any policies since the specified condition remains unmet. 

 

Figure 6.7 Managing CPU Usage. 

Another crucial performance metric to consider is response time, a key indicator of system 

efficiency and user satisfaction. In our pursuit of optimizing infrastructure performance, we 

have meticulously formulated a policy. This policy springs into action when the response time 

surpasses the critical threshold of 10. One of the primary actions taken is the dynamic 

allocation of additional compute nodes to the specific task at hand. By doing so, we proactively 

address performance bottlenecks, ensuring that the smart city infrastructure is optimized. 
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Figure 6.8 Managing Response Time while the ASCMS is working. 

The last performance metric that we consider in this research is memory usage which is very 

important in maintaining infrastructure performance. The threshold for this metric is 

36000000 bytes, meaning that if the memory usage goes above this value an action is executed 

and a simulated function is called that can print a message and also pause tasks and assign 

more memory to the host. The output of the system is provided in Fig. 6.9. The reason that the 

changed value of the memory usage is not displayed is that due to the complex memory 

management in Python processes, after executing an action, there is a delay before memory is 

released, preventing real-time updates to memory usage. Therefore, the reduction in reported 

memory usage may not be immediately visible, as memory is released gradually or as 

determined by the system's memory management strategies.  

 

Figure 6.9 Managing Memory Usage while the ASCMS is working. 

Fig. 6.10 illustrates the chronological sequence of policy violations for the management of 

smart city infrastructure. When a policy is breached, the system logs the incident (policy 

violation) along with its timestamp. This plot depicts the progression of policies executed by 

the ASCMS over time.   
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Figure 6.10 The sequence of policy violations over time. 

 

6.4 Scenario 3: Management of Smart City Environment and 
Communicating with IoT Platform. 

In this scenario, our focal point revolves around the management of the smart city 

environment, primarily facilitated through the collection of sensor telemetry data in real-time 

and communication with the IoT platform. For this scenario we have selected a range of 

metrics for monitoring and analysis such as temperature, wave height, water quality and 

parking status. We have to highlight that these metrics are coming from different specialized 

sensors.  As is explained in section 6.1 there are several sensors such as temperature sensors, 

beach sensors, and parking devices.  As highlighted in the previous scenario, it is important to 

recognize that these variables are dynamic and subject to change in real-time. This dynamicity 

serves as a testament to the ASCMS's prowess in effectively managing the smart city 
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environment under ever-evolving conditions. Sections 6.4.1.1 to 6.4.1.4 provide brief 

descriptions of the defined policies that are needed for this scenario. 

6.4.1 Relevant Policies 

In this section the policies for managing the smart city environment will be briefly presented. 

A detailed explanation of these policies can be found in Chapter 5, but we provide a concise 

summary for easy recall. These policies are defined to manage different environmental factors 

such as temperature, wave height, parking space, and water quality(turbidity). Events are 

determined by the policy execution process, which receives the telemetry data from the 

Perception Unit. 

6.4.1.1 Temperature 

The initial focal point of environment management lies in the realm of temperature. The 

temperature data is received from the temperature sensors embedded in the smart city and their 

data is received from the IoT platform. The process of changing the temperature can be 

managed by the IoT platform or a central thermostat but in this research, we take charge of 

overseeing and managing this metric to showcase the ability of our system to provide a high-

level management of the smart city environment. In this policy, the administrator establishes 

a predefined threshold (20 degrees Celsius).   We assume that the cooling system involved 

with this sensor is to be activated by the ASCMS. 

Temperature: 

On temperature_high(location,s) 

If temperature(s)>20 

Then coolingSystem (location(s), True) 

6.4.1.2 Wave Height 

In our discussion of datasets, one of our datasets pertains to telemetry data obtained from 

embedded sensors located at five distinct Chicago beaches. This dataset furnishes information 

regarding wave height, and we utilized its information as part of our hypothetical city for the 

assessment of our system. Notably, our analysis did not involve specific modelling for the city 

of Chicago. Additionally, we introduced an essential attribute known as the "breakwater," 



136 

 

 

which bears the responsibility of fortifying coastal regions and maritime infrastructure. Its 

primary function is to mitigate the potentially damaging effects of waves, tides, and currents. 

We have formulated a policy that hinges on the activation of the breakwater when the wave 

height exceeds a predefined threshold (1 meter). It is worth noting that while breakwaters are 

conventionally passive structures designed to offer protection against wave height, for the 

purposes of this study, we consider the hypothetical scenario where these structures can be 

activated to fulfill this vital role. Alongside the breakwater activation, we have incorporated 

an additional function designed to notify beachgoers in the vicinity, emphasizing the 

importance of being cautious about their own safety. 

Wave Height: 

On True 

If waveHeight(s)>1  

Then breakWater(beach_name, True)and 

  notifyCitizens(beach_name) 

 

6.4.1.3 Parking Space 

In modern urban landscapes, every city is endowed with numerous parking spaces, each a 

crucial element of daily mobility. The efficient and autonomous management of these parking 

spaces has become paramount, minimizing the need for human intervention. In response to 

this need, we considered a policy to monitor and oversee the utilization of parking spaces 

within the smart city. In our dataset, we have three parking devices, equipped to detect and 

record the status of parking spots in real-time. Moreover, we possess accurate data regarding 

the total number of parking spots available in each designated area.  

A policy has been defined such that when all parking spots in a given area reach full 

occupancy, it triggers an action. This action initiates a function that changes the parking sign 

to indicate that the parking area is at maximum capacity. 

Parking: 

On parkingFull(parking)  

If vehicleCount(parking)== totalSpaces(parking)  

Then updateParkingStatus(parking) 
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6.4.1.4 Water Quality 

The sensors placed at beaches provide data about water turbidity levels. This particular 

variable serves as a valuable indicator for assessing water quality. We have defined a policy 

that takes measures when the turbidity levels in the water deviate from the ideal conditions for 

safe swimming. It activates a function designed to promptly alert swimmers to the prevailing 

water quality.  

Water Quality: 

On True  

If turbidity(s,beach_name)>50 

  Then notifySwimmers(beach_name) 

 

6.4.2 Managing the Smart City Environment. 

Within this section, we systematically examine individual variables, though it is important to 

emphasize that the ASCMS can concurrently manage multiple variables. Our first variable of 

focus is temperature, as depicted in Fig.6.11. The initial temperature reading stands at 25 

degrees Celsius, with the cooling system currently deactivated (set to 0). It is worth noting 

that the predefined threshold is set at 20 degrees Celsius. This implies that if the temperature 

exceeds this threshold, the cooling system should be activated, gradually reducing the 

temperature over time. 

 

Figure 6.11 Temperature measurement for “Temperature Sensor 1”. 

Fig. 6.12 illustrates the ASCMS in action. It initially receives a temperature reading of 25 

degrees Celsius. Since this value surpasses the 20-degree threshold, the condition is met, and 

the system returns "True". Consequently, the prescribed action is executed, resulting in the 

activation of the cooling system. We have engineered a simulation function for the cooling 

system that accurately replicates its real-world functionality. Over time, the temperature 
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progressively declines, with each new data point being promptly transmitted to ThingsBoard 

for tracking and monitoring. This cycle persists until the condition is no longer met.  

 

Figure 6.12 Managing Temperature while the ASCMS is working. 
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The outcome following the final action execution is illustrated in Fig. 6.13. As evident, the 

temperature has dropped to 19 degrees Celsius, falling below the 20-degree threshold, while 

the cooling system remains active.  

 

Figure 6.13 Temperature after action execution. 

 Fig. 6.14 illustrates the wave height data and also the breakwater's value which is added to 

control the wave height. Specifically, we focus on the Montrose Beach sensor (MBS). The 

predetermined wave height threshold is set at 1 meter. This threshold serves as a critical 

marker; when the wave height surpasses this value, an automated action is triggered. 

To ensure the safety of the beachfront areas, we have simulated a function to activate the 

breakwater and simulate its functionality. This proactive measure guarantees the timely 

activation of the breakwater system, effectively shielding the adjacent beach areas from 

potential hazards.  As evident in Fig. 6.14, the initial wave height value is 1.3, surpassing the 

predefined threshold. When this policy is violated, it triggers an action. Subsequently, the 

wave height gradually diminishes, as illustrated in Fig. 6.15, until it reaches a point where the 

condition is no longer breached (0.9). The values presented in Fig. 6.16 depict the state after 

the most recent action has been executed. 

 

Figure 6.14 Wave height information before the action. 
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Figure 6.15 Managing wave height while ASCMS is working. 

 

Figure 6.16 Wave height after action execution 

In the realm of parking space management, the ASCMS continually compares the number of 

occupied parking spots to the total available spaces. When vacant spaces are detected, it 

initiates an action that triggers a function to display a message on the parking sign indicating 

that the parking space is not yet at full capacity. Conversely, when all parking spots are 

occupied, it invokes another function to alert people that the parking lot is indeed full. 
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Fig. 6.17 visually demonstrates the status of the parking area before action execution. If the 

number of vehicles in the parking lot remains lower than the total number of available spots, 

the corresponding output is as presented in Fig. 6.18. On the other hand, Fig. 6.19 illustrates 

a scenario where the total number of spots matches the vehicle count, signifying that the 

parking is at full occupancy. In this case, the output is determined by the information in Fig. 

6.20 and the action executed is labeled as "UpdateParking”. 

 

Figure 6.17 Parking information before the action. 

 

Figure 6.18 Parking sign when the parking lot is not full. 

 

Figure 6.19 Parking information before the action. 

 

Figure 6.20 Parking sign when the parking lot is full. 

Finally, we illustrate a policy dealing with water quality, with a particular focus on turbidity 

levels. As previously discussed, a turbidity reading exceeding 50 is indicative of unsuitable 

water quality for swimmers.  

When turbidity is below this 50-point threshold, no immediate action is taken Fig. 6.21. 

However, when the turbidity level surpasses 50, as demonstrated in Fig. 6.22, reaching a value 

of 200, our predefined policy comes into effect. This policy activates a specific action: the 



142 

 

 

initiation of a function designed to generate an alert on the beach signage Fig. 6.23. This timely 

alert serves as a crucial safety measure, informing beachgoers of the current water quality 

conditions and helping to ensure their well-being. 

 

Figure 6.21 Turbidity information when the level is below the threshold. 

 

Figure 6.22 Turbidity information when the level is above the threshold. 

 

Figure 6.23 Alert when turbidity is above the threshold. 

Fig. 6.24 visually represents the sequence of policy violation for smart city environment 

management.  
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Figure 6.24 The sequence of policy violation over time for smart city environment 

management. 

6.5 Scenario 4: Sensor Diversity and Policy Variability 

In this scenario, we illustrate a complex amalgamation of challenges involving sensor 

measurements, attributes, and infrastructure performance that unfold at different times and in 

varying sequences to demonstrate the capabilities and adaptability of the Autonomic Smart 

City Management System (ASCMS). This scenario showcases how ASCMS can monitor and 

manage diverse factors under varying conditions and timelines. 

These challenges include Sensor 1 operating with outdated firmware, an environment with 

elevated temperatures, a surge in CPU load, and Sensor 2 experiencing an offline status. These 

events occur at different times and in various orders. 
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In this scenario, the key focus lies on the chart representing the timeline of policy violations, 

as the output and before-and-after statuses remain consistent with previous scenarios. Fig. 6.25 

illustrates the chronological sequence of policy breaches, offering valuable insights into how 

ASCMS identifies and responds to environmental change, deviations in sensor attributes and 

infrastructure performance issues. 

 

Figure 6.25 The sequence of policy violations over time for scenario 4. 

 6.6 Discoveries and Reflections: Insights from Experimental 
Implementation 

Through the implementation of various scenarios and the execution of experiments, we gained 

valuable insights. Our initial observation was the feasibility of monitoring and managing 

infrastructural performance. Additionally, employing policies proved instrumental in reducing 

the need for human intervention; however, we recognized the importance of administrative 
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support in some areas, particularly in the face of hardware issues or actions requiring technical 

expertise. Another critical lesson emphasized the necessity for the control loop to iterate even 

for a singular metric or factor, continually assessing conditions. This adaptive approach 

proved vital, given the potential for abrupt changes in the smart city ecosystem. The 

experiments underscored the significance of leveraging an IoT platform for improved 

connectivity and integration with autonomous systems. Navigating diverse scenarios, 

including one with multiple policies, revealed the flexibility of our proposed system in 

simultaneously addressing various issues and policy violations. This experience underscored 

the importance of designing our solution to be versatile and adaptable, capable of handling a 

spectrum of real-world challenges. Furthermore, we recognized the efficacy of defining 

policies with multiple sub-rules, conditions, and actions, demonstrating the system's 

applicability to more complex environments.  
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Chapter 7 Summary, Conclusion and Future Work 

Our research focuses on autonomic management methods to support the management of smart 

cities.  Based on previous research, we have assumed that the smart city infrastructure has 

several layers: sensors and devices at the base tier to complex IoT platforms, third-party 

applications and managerial units at the upper tiers.  Unlike previous work which has 

considered aspects of managing sensors and managing aspects of smart cities, we have 

considered the challenges in managing the end-to-end infrastructure of a smart city.  Also, we 

have assumed that smart cities will utilize existing tools and applications, in particular relying 

on IoT platforms for handling sensors, applications for data filtering and monitoring and 

instrumentation systems for collecting the operational data. 

Any smart city has numerous heterogeneous devices, applications, networks, hosts, etc.  The 

management of the infrastructure will be daunting.  We have therefore focused on the use of 

policy-based management as a means to automate and help manage the infrastructure.  We 

have proposed an autonomic management system with the aim of managing our smart city. 

Using policy-based methods for this purpose makes autonomic management more 

straightforward by focusing on defining the policies and adjusting them. 

In this research we addressed the following questions: 

• How can we monitor the performance of the operational side of the smart city 

infrastructure to ensure it works well as a whole e.g., the connections, response time, 

etc.? 

• How can we decrease human intervention in smart city management? 

• How can we efficiently and automatically monitor and manage the resources within the 

smart city infrastructure, e.g., sensors, bandwidth, storage, CPU, memory, etc.?  

• What is an appropriate architecture for an autonomic system that is an integral part of a 

smart city infrastructure? 

• What are the autonomic services required for managing aspects of a smart city? 
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• Assuming a policy-based approach, what kinds of policies are needed to manage the 

smart city infrastructure? 

 

7.1 Contributions of the Work 

In the realm of smart city infrastructure, our research endeavors to address a series of pivotal 

questions and challenges. At the core of our work lies a commitment to advancing the 

understanding and management of smart city ecosystems, and in doing so, we have made 

several substantial contributions. Autonomic smart city management is a new topic and not 

enough work has been done in this field.  A few researchers have focused on monitoring the 

performance of the smart city architecture itself and considered autonomic management for 

some aspects of the IoT network only, such as the network or cloud-based applications, and 

most of that has focused on monitoring the smart city environment such as temperature, 

pollution, etc.  However, our purpose is to monitor not only the devices and sensors data and 

information in a smart city, but also the smart city infrastructure as well and we developed an 

autonomous system for the management of the network, services, processes, and applications. 

Using our approach, we could monitor the CPU and memory usage, response time, network 

status and so on.  

Contributions of our research are:  

First and foremost, we introduced a Comprehensive Model of a Smart City Infrastructure. 

While prior research has often focused on isolated aspects of smart city components, our 

model takes a holistic approach, capturing the entire spectrum of infrastructure elements - 

from sensors to hosts and applications. This holistic perspective allows us to delve into the 

complexities of managing the end-to-end infrastructure, providing valuable insights into how 

these various components interact and how they can be optimally managed. 

Second, our approach does not operate in isolation; instead, it leverages the presence of 

existing components. With the ubiquity of IoT platforms and data analysis tools for sensor 

data, we have incorporated these components into our model. We assume the presence of an 

IoT platform for sensor management, a data filtering component for data quality enhancement, 
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and a performance monitoring component integrated into the autonomic management system. 

By embracing these tools, we ensure that our model aligns with current technological trends 

and practices within the smart city landscape. 

Having a data filtering unit between the devices and the IoT platform that cleans the data 

before reaching the IoT platform is the first advantage of our approach. This unit is helpful 

because it prevents data redundancy in the databases and anomalies in the data. This process 

is important in smart city scenarios where we must manage a huge amount of data with limited 

resources. In addition to the aforementioned reason, we can apply machine learning techniques 

to the data in this unit. 

In addition to infrastructure management, we have delved into the realm of real-time sensor 

monitoring and management. Our research places a strong emphasis on monitoring sensor 

attributes and measurements in real-time, providing invaluable insights that complement the 

offerings of IoT platforms. This real-time insight empowers decision-makers and ensures that 

smart city operations can be fine-tuned for maximum efficiency and effectiveness. 

At the core of our research is the presentation of a Policy-Driven Autonomic Management 

Model, which is instrumental in streamlining and enhancing the efficiency and reliability of 

smart city operations. By introducing a policy-based approach, we empower smart cities to 

autonomously manage various aspects of their infrastructure, guided by established policies. 

Our approach to performance management leverages action policies to guide autonomic 

management decisions, defining a set of possible actions when specific objectives are violated. 

These objectives encompass not only ensuring quality of service requirements but also 

optimizing resource usage. Additionally, the use of configuration policies provides the ability 

to dynamically reconfigure components and applications, enabling systems to be easily 

deployable in diverse environments and under changing operational characteristics. 

To bridge the gap between technical complexities and practical administration, we introduce 

a Management Interface designed for administrators. This user-friendly interface provides 

crucial insights to empower administrators with the information needed to ensure that smart 

city operations align seamlessly with high-level goals and objectives. 
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Demonstrating the real-world utility of our models, we have created prototypes for smart city 

infrastructure and an autonomic management system. These prototypes serve as examples, 

illustrating the practical advantages of our models and the real-world potential of adopting 

autonomic management in smart cities. 

7.2 Limitations of the Work 

In this section, we address some of the constraints and limitations of our work, shedding light 

on areas where improvements and future exploration may be necessary. These limitations are 

provided in the following. 

Prototype: Our prototype was useful in demonstrating aspects of the overall approach, but it 

was limited in scope, limiting more extensive experimentation and evaluation. For example, 

in our prototype, we employed ThingsBoard as our IoT platform. However, there exists a 

plethora of alternative platforms suitable for integration within a city's IoT ecosystem. The 

ASCMS should possess the capability to accommodate this diversity in order to establish itself 

as a robust and adaptable solution.  

Experiments: We considered a single smart city configuration, i.e., the sensors, etc.  Additional 

environments could be constructed with different properties and configurations to enable more 

extensive experimentation and evaluation and to assess the scalability and performance of the 

prototype. While our work addresses infrastructure monitoring and performance management, 

it is important to note that the network configuration in a genuine smart city is considerably 

more intricate. In such environments, a multitude of network metrics necessitates monitoring 

and management due to the inherent complexity.  

Scenarios and Policies: It is also important to note that the scenarios presented here may not 

encompass all potential occurrences within a smart city. The actual actions taken in a real 

smart city may vary from our suggestions. Nevertheless, this research serves as an initial 

stepping stone. Once appropriate policies are established, the system can adapt to address a 

broader spectrum of scenarios and potential failures that may arise in an authentic smart city 

environment. 
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Pattern Prediction: Our system lacks the capability to proactively anticipate metric patterns, 

particularly in the realm of performance metrics or some environmental factors. Furthermore, 

it lacks the proactive capability to allocate additional resources, specifically in the case of 

memory, before reaching a point of saturation. We can define a threshold to avoid saturation, 

but it is important to note that this threshold remains fixed until manually adjusted by the 

administrator. 

Lack of Distributed Architecture: In our approach a centralized system is responsible for 

monitoring and managing the entire smart city ecosystem. While centralized systems offer 

operational efficiencies and streamlined management, they bring some limitations deserving 

of careful consideration. The specter of a single point of failure looms prominently, as any 

malfunction or downtime in the central node can disrupt the entire system. Additionally, the 

system's vulnerability to network dependencies exposes it to disruptions in connectivity. 

Security concerns heighten with the concentration of data in a centralized location, becoming 

an enticing target for unauthorized access. Recognizing these challenges, it becomes 

imperative to explore alternative options, such as distributed management, allowing for the 

collaboration and seamless communication of various management systems. This exploration 

could mitigate the identified limitations and contribute to more resilient and adaptable smart 

city infrastructure. 

Moreover, our autonomic management system, much like many automation approaches, 

utilizes the ECA (Event-Condition-Action) format for rule storage. It is important to note that 

this format, while widely used, may pose limitations in expressing rules that do not align 

seamlessly with its structure. 

Automated Rule Definition: The absence of automated rule definition and the system's 

inability to self-learn are also among the limitations of our work. 

 

7.3 Future Directions 

This research was only a starting point for autonomic management of the smart city 

infrastructure and there are several ideas that can be worked on as future directions. As 
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highlighted in the limitations section, there exist specific challenges that merit future attention 

and resolution.  

The prototype used to evaluate the approach, while complex, is still limited in many ways.  A 

more robust and more extensive prototype should be developed, perhaps based around 

interacting virtual machines.  More extensive smart city “environments” would also be needed 

for experimentation, e.g., more sensors, networks, hosts, and applications to evaluate the 

scalability of the system. A further extension might be to build a “smart city configuration” in 

a lab with actual sensors, applications, etc. and have it managed by an extended prototype. 

In the future we also need to measure the system's overhead to assess the efficiency of the 

management system, especially as it scales. This involves evaluating resource utilization, 

response times, and computational demands under varying conditions. Understanding the 

system's overhead will guide optimization efforts and ensure its adaptability and efficiency in 

accommodating the evolving demands of a growing smart city ecosystem.  

The prototype should also be extended to operate in a distributed computing environment.  

While components already communicate, enhancing the prototype to function in a distributed 

manner would be a natural extension.  This would then lead to considering how the model 

should be best mapped to a distributed architecture to enhance scalability and efficiency. 

Applying machine learning techniques to the management system would be beneficial to 

proactively predict the variable patterns and future resources and prevent resource saturation 

before happening. Another extension for future work can be adding autonomic performance 

management to the cloud infrastructure. 
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