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Abstract 20 

Statistical learning is an ability that allows individuals to effortlessly extract patterns from 21 

the environment, such as sound patterns in speech. Some prior evidence suggests that 22 

statistical learning operates more robustly for speech compared to non-speech stimuli, 23 

supporting the idea that humans are predisposed to learn language. However, any 24 

apparent statistical learning advantage for speech could be driven by signal acoustics, 25 

rather than the subjective perception per se of sounds as speech. To resolve this issue, 26 

the current study assessed whether there is a statistical learning advantage for 27 

ambiguous sounds that are subjectively perceived as speech-like compared to the 28 

same sounds perceived as non-speech, thereby controlling for acoustic features. We 29 

first induced participants to perceive sine-wave speech (SWS)—a degraded form of 30 

speech not immediately perceptible as speech—as either speech or non-speech. After 31 

this induction phase, participants were exposed to a continuous stream of repeating 32 

trisyllabic nonsense words, composed of SWS syllables, and then completed an explicit 33 

familiarity rating task and an implicit target detection task to assess learning. Critically, 34 

participants showed robust and equivalent performance on both measures, regardless 35 

of their subjective speech perception. In contrast, participants who perceived the SWS 36 

syllables as more speech-like showed better detection of individual syllables embedded 37 

in speech streams. These results suggest that speech perception facilitates processing 38 

of individual sounds, but not the ability to extract patterns across sounds. Our findings 39 

suggest that statistical learning is not influenced by the degree of perceived linguistic 40 

relevance of sounds, and that it may be conceptualized largely as an automatic, 41 

stimulus-driven mechanism. 42 
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Keywords: statistical learning, speech, sine-wave speech, auditory perception  43 

1. Introduction 44 

 Statistical learning, our ability to become sensitive to patterns in the environment, 45 

has provided an important mechanistic explanation for language acquisition since its 46 

initial documentation in the context of speech segmentation (Saffran et al., 1996a). In 47 

this study, infants were presented with a continuous stream of trisyllabic nonsense 48 

words, with no pauses or other acoustic cues to mark word boundaries. Thus, the 49 

probabilities of syllables co-occurring with one another provided the only indication of 50 

where individual words started and ended within the stream. After listening to the 51 

stream, infants were able to successfully discriminate between words and foil items 52 

through their looking time behaviour, providing evidence that they had extracted the 53 

statistical information in the stream to discover the embedded words. 54 

 Since this seminal study, subsequent research has shown that statistical learning 55 

is present across many domains outside of language (e.g., Conway & Christiansen, 56 

2005; Fiser & Aslin, 2001; Saffran et al., 1999; Van Hedger et al., 2022). In one such 57 

study, conducted by Saffran and colleagues (1999), participants were exposed to a 58 

stream of six “tone words,” each of which consisted of a sequence of three pure tones. 59 

On a subsequent two-alternative forced-choice recognition task, participants succeeded 60 

in discriminating between tone words and foil sequences, providing a clear 61 

demonstration that statistical learning also operates across non-linguistic auditory 62 

stimuli – that is, auditory stimuli that lack a clear communicative purpose. Subsequent 63 

research has found that listeners can also extract patterns embedded in non-linguistic 64 

noises (Gebhart et al., 2009), everyday environmental sounds (Siegelman et al., 2018), 65 
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tactile sequences (Conway & Christiansen, 2005), visual stimuli (e.g., Bulf et al., 2011; 66 

Kirkham et al., 2002; Fiser & Aslin, 2001), and multimodal contexts (Mitchel et al., 2014; 67 

Seitz et al., 2007). Further, statistical learning is present not only in infants but also in 68 

older children and adults (e.g., Moreau et al., 2022; Raviv & Arnon, 2018; Saffran et al., 69 

1996b, 1997), as well as in nonhuman animals, including dogs (Boros et al., 2021) and 70 

cotton-top taramins (Hauser et al., 2001). These observations have led to a general 71 

consensus that statistical learning is not a “special” language-specific mechanism, but is 72 

domain-general in that it is present across modalities, domains, and even species 73 

(Aslin, 2017).   74 

 However, while statistical learning may be considered domain-general in that it is 75 

present in many learning contexts, it shows important differences depending on 76 

stimulus modality and learning domains, suggesting that it may not be a truly unitary 77 

mechanism (Frost et al., 2015; Frost et al., 2019). For example, an early study found an 78 

advantage for statistical learning of non-linguistic tones, as compared to tactile and 79 

visual stimuli, which persisted even after controlling for low-level perceptual differences 80 

between stimuli (Conway and Christiansen, 2005). Another study reported that changes 81 

in presentation rate have opposite effects on auditory and visual statistical learning: 82 

auditory statistical learning benefits from faster presentation rates, whereas visual 83 

statistical learning benefits from slower rates (Emberson et al., 2011). In addition, 84 

different types of statistical learning follow different developmental trajectories; statistical 85 

learning for speech sounds is stable from childhood into adulthood; in contrast, 86 

statistical learning improves with age for visual stimuli and non-linguistic tones (Arciuli & 87 
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Simpson, 2011; Moreau et al., 2022; Raviv & Arnon, 2018; Schlichting et al., 2017; 88 

Shufaniya & Arnon, 2018; for review, Forest et al., 2023).  89 

 These findings, which indicate that statistical learning is not equivalent across 90 

modalities, are not easily accommodated within frameworks that treat statistical learning 91 

as a single unitary mechanism. Further evidence against a unitary view of statistical 92 

learning comes from low interindividual correlations in statistical learning performance 93 

across modalities and stimulus materials (Siegelman & Frost, 2015; Siegelman et al., 94 

2017). While an individual’s statistical learning performance within a given domain is 95 

relatively stable, as assessed by test-retest reliability, performance on one task does not 96 

predict performance on a parallel tasks in a different domain (e.g. syllables to visual 97 

shapes; Siegelman & Frost, 2015). Taken together, these results suggest that there are 98 

nonoverlapping mechanisms supporting statistical learning abilities in different domains, 99 

supporting a “pluralist” view of statistical learning (Frost et al., 2015; Frost et al., 2019). 100 

According to this viewpoint, statistical learning is supported not only by domain-general 101 

mechanisms (e.g. Schapiro et al., 2014; Covington et al., 2018; Conway, 2020; 102 

Batterink et al., 2019), but also by modality-specific mechanisms that are united by 103 

similar computational principles. These modality-specific mechanisms operate within 104 

distinct networks and are governed by different constraints, depending on task domain 105 

and modality (Frost et al., 2015, Frost et al., 2019; Conway, 2020).  106 

1.1. Is speech a privileged target for statistical learning? 107 

 The consensus that there are important differences in statistical learning as a 108 

function of learning domain raises a more specific question of whether statistical 109 

learning operates differently—and perhaps more robustly—for speech than non-speech. 110 
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Human infants prefer to listen to speech compared to other auditory stimuli (Shultz & 111 

Vouloumanos, 2010), and neuroimaging studies in adults have found greater activation 112 

in left auditory cortex for speech compared to other sounds (Binder et al., 2000; Narain 113 

et al., 2003; Parviainen et al., 2005; Scott et al., 2000; Vouloumanos et al., 2001). 114 

These results are in line with the general idea that speech is “special,” engaging unique 115 

neural and cognitive mechanisms not engaged by other auditory stimuli (Belin et al., 116 

2000; Liberman, 1982; Marno et al., 2015; Moore, 2000).  117 

 Infant studies of artificial grammar rule learning also support this notion, 118 

suggesting that babies more readily extract simple grammar rules (e.g., “AAB” or “ABB” 119 

rules) from speech than from non-speech auditory stimuli, such as tones or animal 120 

sounds (Dawson & Gerken, 2009; Marcus et al., 2007). A number of theoretical 121 

hypotheses (which are not mutually exclusive) have been proposed to account for this 122 

speech advantage in rule learning, including that speech (1) better captures and holds 123 

infants’ attention (Schultz & Vouloumanos, 2010; Vouloumanos & Werker, 2004), (2) 124 

represents a communicative signal (Rabagliati et al., 2012; Ferguson & Lew-Williams, 125 

2016), (3) is more familiar than other signals to infants, which facilitates learning 126 

(Saffran et al., 2007; Thiessen, 2012), and/or (4) may be processed by specific 127 

mechanisms that have been tuned to speech as humans evolved the capacity for 128 

language (Rabagliati et al., 2012; Marcus & Rabagliati, 2008, as cited in Ferguson & 129 

Lew-Williams, 2016). By extension, speech could also represent a privileged target for 130 

the statistical learning of embedded units in continuous sound sequences, in infants and 131 

adults alike. 132 
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 Current evidence on whether there is indeed a statistical learning advantage for 133 

speech sounds is conflicting. A recent study by Ordin and colleagues (2021) supports 134 

the idea that there is a speech advantage in statistical learning. Participants were 135 

presented with embedded triplet sequences that were fully linguistic in nature (made up 136 

of natural syllables), semi-linguistic (made up of syllables that contained atypical 137 

acoustic cues), and non-linguistic (made up of environmental sounds such as animal 138 

noises and footsteps), and then asked to make old/new judgments for triplets from the 139 

sequences and foils. Performance was highest in the syllable condition compared to the 140 

semi-linguistic and non-linguistic conditions, providing support for a speech advantage 141 

for statistical learning. This result also converges with rule learning studies in infants, 142 

which have found a general advantage for speech stimuli over non-speech stimuli, as 143 

described above (e.g., Dawson & Gerken, 2009; Marcus et al., 2007).  144 

 However, not all studies point to a clear linguistic advantage for statistical 145 

learning. In the previously described “tone words” study by Saffran and colleagues 146 

(1999), both age groups successfully segmented the tone stream, and no significant 147 

differences were found between their performance on the tone version and the syllable 148 

version of the task from a previous study (Saffran et al., 1996b). Similarly, another study 149 

by Saffran (2002) presented adults and children with linguistic or non-linguistic auditory 150 

“sentences,” made up of nonsense words for the linguistic group (e.g. kiff flor lum dupp) 151 

and sequences of sounds such as bells, chimes, and drums for the non-linguistic group. 152 

Both groups learned successfully and again, no significant differences were found 153 

between conditions. Finally, a more recent study by Siegelman and colleagues (2018) 154 

compared statistical learning of syllables and everyday environmental sounds. Overall 155 
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performance was similar between the two conditions, again suggesting that statistical 156 

learning occurs with similar efficacy for speech and non-speech sounds.  157 

 Yet, even in situations where overall learning is comparable for linguistic and 158 

non-linguistic items, there is evidence that linguistic items still might exhibit distinct 159 

patterns of learning. For example, more nuanced analyses of the Siegelman and 160 

colleagues (2018) data revealed that individual test items in the syllable condition 161 

showed much lower internal consistently than in the sound condition. Additional 162 

experiments indicated that participants’ performance was influenced by the degree to 163 

which test items corresponded to the phonotactics of their own native language of 164 

Hebrew (see also Elazar et al., 2022). These results suggest that learners’ prior 165 

knowledge and expectations may critically impact statistical learning of linguistically-166 

relevant speech sounds, an effect that is less pronounced for non-linguistic sounds 167 

(though see Van Hedger et al., 2022 for evidence of effects of prior knowledge on 168 

statistical learning of instrument notes). Thus, even in the absence of overall 169 

performance differences, there may be qualitative differences in how statistical learning 170 

operates for speech versus non-speech sounds, particularly with respect to how 171 

learning interacts with other cognitive factors. 172 

1.2. Differences between speech and non-speech sounds 173 

 Part of the difficulty in assessing whether there may be a statistical learning 174 

advantage for speech is that speech sounds and non-speech sounds, such as tones 175 

and environmental noises, differ in many ways. Previous learning studies comparing 176 

speech and non-speech have used different types of artificial languages, different 177 

syllable inventories, and many different types of non-linguistic sounds (e.g. Marcus et 178 
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al., 2007; Ordin et al., 2021; Saffran et al., 1999; Saffran, 2002; Siegelman et al., 2018). 179 

Thus, conflicting results across studies could—in principle—be at least partially 180 

attributable to surface features of the learning materials. For example, speech sounds 181 

and other natural auditory stimuli such as musical instruments and everyday object 182 

sounds differ in fundamental frequency, timbre, aperiodicity, spectral variability, spectral 183 

envelope, and temporal envelope (Ogg & Slevc, 2019). Any number of these low-level 184 

acoustic features that differ between speech and non-linguistic stimuli may influence 185 

perception, ease of encoding, and consequently statistical learning performance. In 186 

other words, statistical learning differences between speech and non-speech—when 187 

observed—could reflect signal-driven differences in lower-level processes, such as the 188 

perception of individual items, rather than statistical learning per se.   189 

 A study by Thiessen (2012) highlights the importance of considering acoustic 190 

features when comparing statistical learning of speech versus non-speech sounds. The 191 

authors of this study reasoned that speech contains more redundant cues to an abstract 192 

rule than are typically available in non-linguistic stimuli, and that such redundancy may 193 

facilitate rule learning. For example, a string such as “ga ti ga” instantiates the “ABA” 194 

rule at multiple levels: at the syllable level, at the individual phoneme level (both the 195 

initial consonant and final vowel differentiate the A and B elements) and at the level of 196 

phonetic features (e.g., voicing). To test the importance of redundancy, the authors 197 

presented infants with syllable sequences that contained reduced redundancy, in which 198 

only the vowels, rather than both vowels and consonants, signaled the underlying rule 199 

(e.g. “ba bi ba” rather than “ga ti ga”). When redundancy was reduced, infants’ rule 200 

learning was impaired, suggesting that speech may allow for easier learning than non-201 
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linguistic stimuli at least in part because of the redundant information in the acoustic 202 

signal. These results underscore the importance of accounting for acoustic differences 203 

in comparisons of statistical learning between speech and non-speech stimuli. 204 

 In addition to their acoustic differences, speech sounds also differ from non-205 

speech sounds in terms of their subjective value or perceived relevance to the listener. 206 

In contrast to tones or environmental noises, speech sounds are a linguistically relevant 207 

signal and serve a critical communicative purpose. This communicative value could in 208 

part explain why speech captures infants’ attention to a greater degree than non-speech 209 

(e.g., Vouloumanos & Werker, 2004, 2007; Vouloumanos et al., 2010), or why auditory-210 

relevant regions within the left temporal lobe are more strongly activated for speech 211 

than non-speech (Belin et al., 2000; Binder et al., 2000; Dick et al., 2007; Scott et al., 212 

2000), although here too acoustic differences cannot be ruled out. To our knowledge, 213 

no previous studies have directly examined whether the communicative value of speech 214 

per se may play a role in potential statistical learning differences between speech and 215 

non-speech sounds.  216 

 In the current study, we tested the hypothesis that speech may serve as a 217 

privileged target for statistical learning due to its subjective value as a communicative 218 

signal, over and above any effects of acoustic differences between speech and non-219 

speech. To address this hypothesis, we leveraged “sine-wave speech” (SWS), a 220 

manipulation that allows for comparing the processing of identical acoustic stimuli that 221 

may be perceived from highly speech-like to un-speechlike. SWS is a degraded form of 222 

natural speech consisting of time-varying sine waves modelling formant frequencies, 223 

with fewer sine waves corresponding to greater degradation of the signal (Remez et al., 224 
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1981). This degraded audio retains the phonetic properties of the original speech, but 225 

typically fails to be perceived as phonetic by naïve listeners, who may experience it as a 226 

sequence of whistles, chirps, and other types of “science fiction” sounds. SWS lacks 227 

many of the acoustic features that make speech sound natural, such as a fundamental 228 

frequency. However, it can still be perceived as speech if instructions to attend to the 229 

speech-like qualities of the stimuli, or information about its true nature, are given. For 230 

example, participants may suddenly perceive SWS as speech if they are played the 231 

intact, original audio immediately prior to the SWS version. Notably, once participants 232 

are induced into perceiving the SWS as speech, there is no known method to revert 233 

them back into hearing it as non-speech (Silva & Bellini-Leite, 2020). SWS thus 234 

provides a tool for manipulating listeners’ subjective, top-down perception of a signal as 235 

speech versus non-speech, while holding the physical stimuli constant. Essentially, this 236 

approach can be used to isolate speech-specific perceptual effects on statistical 237 

learning, independent of any acoustic differences. 238 

1.3. The Current Study 239 

 The aim of the current experiment was to investigate whether statistical learning 240 

operates differently for sounds perceived as more speech-like compared to sounds 241 

perceived as non-speech in the absence of acoustic differences between stimuli. 242 

Participants initially completed an induction task, in which we attempted to induce them 243 

to perceive SWS syllables as either speech or non-speech sounds. They were then 244 

exposed to a continuous stream of repeating trisyllabic “words” composed of SWS 245 

syllables, and then completed two behavioural tasks to measure their statistical learning 246 

of the words: (1) an explicit familiarity rating task, in which participants rated their 247 
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familiarity with the original words and two types of foil items and (2) a target detection 248 

task, which requires participants to make speeded responses to embedded syllables 249 

within continuous speech streams. This task does not require the conscious retrieval of 250 

previously learned information, providing an implicit measure of learning (Batterink et 251 

al., 2015). Finally, to determine each participants’ subjective perception of the SWS, 252 

participants indicated on a 1-10 scale how speech-like they perceived the stimuli to be, 253 

and then transcribed SWS syllables and full SWS sentences.  254 

 As described previously, both low-level acoustic differences as well as high-level 255 

differences in perceived linguistic relevance could contribute to differences in statistical 256 

learning for speech versus non-speech sounds. Our experimental design allows us to 257 

isolate the role of subjective speech perception in statistical learning, independently of 258 

acoustic factors. If the subjective perception of sounds as linguistically relevant is an 259 

important factor for statistical learning, we would expect that learners who perceive the 260 

ambiguous SWS stimuli as speech-like to a greater degree to show better statistical 261 

learning performance on both measures. In contrast, if the primary factor driving 262 

differences in statistical learning of speech versus non-speech is the acoustic signal, we 263 

would expect no relationship between statistical learning performance and listeners’ 264 

perception of the SWS stimuli, given that the stimuli themselves are identical. As we 265 

were interested in both positive and null findings, all analyses were substantiated with a 266 

Bayesian approach. 267 

2. Method 268 

2.1. Participants 269 
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 A total of 200 participants were recruited from online participant recruitment 270 

platforms Prolific (n = 65; Palan & Schitter, 2018) and Amazon Mechanical Turk through 271 

CloudResearch (n = 135; Litman et al., 2017). Amazon Mechanical Turk participants 272 

were initially recruited; however, because a substantial proportion failed the study’s 273 

attention check (as described in detail later), we recruited a second group of participants 274 

from Prolific in hopes of obtaining participants who would perform better on this 275 

attention check. All Amazon Mechanical Turk recruited participants were 276 

CloudResearch-approved, indicating that they had been screened and shown proof that 277 

they engage in tasks in an attentive manner. All Prolific participants had approval rates 278 

between 90-100%, indicating that a high percentage of their submissions for other 279 

research studies had been approved by the researchers. All participants reported 280 

English as their primary language, were above 17 years old, and had normal or 281 

corrected-to-normal hearing. Of the 200 participants, 100 were assigned to the speech 282 

induction condition, while the remaining 100 were assigned to the non-speech induction. 283 

Participants were financially compensated for their time. 284 

 Of the 200 participants, a total of 73 participants were excluded from analysis; 43 285 

were excluded due to failing to pass both attention checks embedded in the exposure 286 

stream (as described in greater detail later); 23 because their data failed to save to our 287 

servers; and 3 due to making no responses during the target detection task. Finally, 1 288 

participant was excluded due to not having normal or corrected-to-normal hearing, and 289 

3 participants were excluded due to failing to meet the inclusion criteria of having 290 

English as their primary language, based off their answers to the post-study survey. 291 

Thus, final analyses comprise data from 71 participants in the speech induction (SI) 292 
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condition (mean age = 40.2 y; SD = 11.8 y; 37 men; 34 women), and 56 participants in 293 

the non-speech induction (NSI) condition (mean age = 39.3 y; SD = 12.0 y; 29 men; 27 294 

women). 295 

2.2. Stimuli 296 

 The experimental stimuli consisted of 12 syllables recorded by a male native 297 

English speaker, taken from Batterink and Paller (2019), in addition to 24 corresponding 298 

SWS manipulated forms of these syllables, comprised of single-sine wave (highly 299 

degraded) and three-sine wave (moderately degraded) versions of each of the original 300 

syllables. Each syllable sound file was 300 ms. Manipulated forms of the syllables were 301 

created in Praat (Boersma & Weenick, 2022) using a script by Darwin (2003). The 302 

unmanipulated (original) forms and single-sine wave (highly degraded) forms of the 303 

syllables were used only as primes in the induction task. The three-sine wave 304 

(moderately degraded) forms comprised the key experimental stimuli that were used 305 

throughout all statistical learning tasks, as well as the syllable transcription task. 306 

 The 12 three-sine wave syllables were combined to create 4 trisyllabic nonsense 307 

words (e.g. tafuko, rigimi, rupuni, fitisu). To form the continuous artificial speech stream, 308 

these trisyllabic nonsense words were concatenated pseudorandomly, without pauses 309 

between words, with the constraint that the same word never occurred consecutively. 310 

Thus, the transitional probabilities of neighbouring syllables were 1.0 within a word, and 311 

0.33 across word boundaries. The stream consisted of 600 syllables (200 words) 312 

presented at a rate of 300 ms per syllable (i.e. 3.3 Hz), with each of the 4 words 313 

repeated 50 times, for a total duration of 3 minutes. To control for potential syllable-314 

specific idiosyncrasies, the syllables in a given word were each assigned to the first, 315 
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second, and third position across three conditions, counterbalanced across participants 316 

(Language A: tafuko, rigimi, rupuni, fitisu; Language B: fukota, gimiri, puniru, tisufi; 317 

Language C: kotafu, mirigi, nirupu, sufiti). The experimental script was programmed in 318 

jsPsych (de Leeuw et al., 2023). 319 

2.3. Procedure 320 

 All tasks were performed online on the participants’ own laptops or personal 321 

computers. To minimize distractions during the study, participants were asked to 322 

complete the tasks in a quiet listening environment and to use headphones for the 323 

entire duration of the session. Each session began with a volume adjustment task 324 

during which participants listened to a thirty-second noise and adjusted their sound 325 

volume to a comfortable level.  326 

The experimental procedure is summarized in Figure 1, and consisted of four 327 

main phases, as described below. Participants completed one of two different versions 328 

of the induction task depending on whether they were assigned to the SI or NSI 329 

condition. All other tasks, including the key SWS stimuli, were identical between groups. 330 
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 331 

Figure 1. A summary of the experimental procedure. The induction task in the speech 332 
induced condition consisted of judging whether pairs of intact syllables and moderately 333 
degraded syllables matched. The induction task in the non-speech induced condition 334 
consisted of judging whether pairs of moderately degraded and heavily degraded 335 
syllables matched. Participants were exposed to 3 minutes of repeating nonsense 336 

words composed of the key SWS syllables. To measure learning, participants then 337 
completed a familiarity rating task, in which they rated the familiarity of words and foils, 338 
and a target detection task, in which they responded each time they detected a target 339 

syllable in a continuous stream consisting of the nonsense words. Finally, for each of 340 
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the 12 key SWS syllables, participants were asked to indicate how speech-like they 341 
thought they were, and then transcribed the SWS syllables and sentences to the best of 342 

their ability. Task order was identical for all participants. 343 

2.3.1. Induction Task  344 

This task was designed to induce participants to perceive the key SWS stimuli as 345 

either speech (SI condition) or as non-speech (NSI condition). In this task, participants 346 

were presented with “matched pairs” of syllables and instructed to intentionally learn the 347 

syllable pairings. The SI participants were told that they would be listening to speech 348 

syllables, and that each syllable would be followed by a distorted version of itself. They 349 

were then presented with syllable pairs comprised of the intact, non-manipulated 350 

version of each syllable (e.g. “fu”) followed by the target SWS version of the same 351 

syllable (e.g. the three-sine-wave version of “fu”), in order to draw their attention to the 352 

speech-like qualities of the SWS syllables. In contrast, the NSI participants were told 353 

that they would be listening to robotic noises artificially generated by a computer. The 354 

NSI participants were then presented with syllable pairs consisting of the highly 355 

degraded version of each syllable (e.g. the single-sine wave version of “fu”) followed by 356 

the target SWS version. 357 

The task was made up of an initial training phase, followed by a test phase. In 358 

the training phase, participants were simply presented with two repetitions of each of 359 

the 12 pairs (24 total trials) and were instructed to pay careful attention as they would 360 

be tested on the pairs later. Next, participants completed 40 test trials, comprised of 36 361 

correctly paired syllables and 4 mismatched pairs. On each test trial, participants were 362 

asked to judge whether the two sounds made up a correctly matched pair by pressing 363 

one of two corresponding keys. 364 
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2.3.2. Exposure Stream  365 

Next, participants were presented with the three-minute continuous stream of 366 

nonsense words, made up of the same key SWS syllables for both induction groups. 367 

They were instructed to pay attention to the stream, and were told they may be tested 368 

on their knowledge of the stream later in the study. To ensure participant engagement in 369 

the online testing environment, two attention checks were embedded within the 370 

exposure stream, consisting of 4 s pauses inserted randomly at two of nine preselected 371 

times in the stream. Prior to beginning the task, participants were instructed to listen for 372 

pauses and to press the spacebar key within 4 s whenever they heard a pause. Failure 373 

to detect both pauses resulted in participant exclusion from subsequent analyses. 374 

2.3.3. Statistical Learning Tasks 375 

Next, participants completed two behavioural tests of statistical learning, in the 376 

order indicated below. 377 

 2.3.3.1. Familiarity Rating Task 378 

This task is designed to assess explicit memory of the nonsense words (e.g. 379 

Batterink & Paller, 2017, 2019). On each trial, participants listened to a syllable triplet 380 

made of the key SWS syllables, and rated how familiar it sounded to them on a scale 381 

from 1 (very unfamiliar) to 4 (very familiar). A total of 12 trials were presented, with 4 382 

trials consisting of words from the exposure stream (e.g. tafuko), 4 trials consisting of 383 

part-words (i.e. a syllable pair from a word in the exposure stream combined with an 384 

additional syllable from a different word, e.g. rufuko), and 4 trials consisting of non-385 

words (syllables from the stream that had never occurred together, e.g. rupufu). 386 
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Evidence of explicit memory for the words would be provided by higher ratings to words, 387 

followed by part-words, with non-words rated as least familiar. 388 

2.3.3.2. Target Detection Task 389 

This task measures participants’ response times to target syllables embedded 390 

within shortened versions of the speech stream, and can reveal statistical learning in the 391 

form of prediction effects, in the absence of explicit memory or intentional retrieval of the 392 

learned words (Batterink et al., 2015). On each trial, participants were presented with a 393 

target SWS syllable; they were allowed to replay this target syllable as many times as 394 

they wished. They then listened to a shortened version of the exposure stream (~14.5 395 

s), containing the four trisyllabic nonsense words concatenated together four times each 396 

in pseudorandom order (48 syllables total), in the same manner as the Exposure 397 

stream. Participants were instructed to press the spacebar each time they heard that 398 

target syllable as quickly and accurately as possible by pressing the spacebar. 399 

Each of the 12 SWS syllables acted as a target three times overall, yielding a 400 

total of 36 streams. Across all streams, this yielded a total of 144 targets, 48 within each 401 

syllable position (1st, 2nd, 3rd). Stream order was randomized for every participant. 402 

Successful learning of the speech stream would be reflected by faster reaction times to 403 

target syllables that occurred in the medial or final position of a trisyllabic word relative 404 

to syllables that occurred in the initial position, due to the opportunity to predict the 405 

target (Batterink et al., 2015, 2019; Batterink & Paller, 2017). 406 

2.3.4. Speech Perception Task 407 
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This task was designed to examine participants’ perception and comprehension 408 

of the key SWS stimuli, and contained three parts. As illustrated in Figure 1, this was 409 

always the final task in the experiment, in order to avoid suggesting the communicative 410 

nature of SWS to participants in the NSI group. 411 

 2.3.4.1. Overall Subjective Speech Perception Rating. 412 

Participants were presented with an open-response textbox and asked to 413 

describe the sounds that they had heard in the study. Using a slider, they were then 414 

asked to rate the extent to which they had heard the SWS as speech-like, with the scale 415 

ranging from 1 (I never heard the sounds as speech) to 10 (I always heard the sounds 416 

as speech). 417 

 2.3.4.2. Syllable Transcription 418 

Participants then listened to each of the 12 key SWS syllables one at a time and 419 

were asked whether they thought it sounded like speech (yes/no response). If a 420 

participant indicated that they heard a syllable as speech, they were then asked to 421 

transcribe the syllable to the best of their ability by typing their response into an open-422 

response textbox. 423 

 2.3.4.3. Sentence Transcription 424 

As a test of generalized SWS perception, participants listened to 10 SWS 425 

sentences from the Harvard sentences database (IEEE, 1969) and transcribed each 426 

one to the best of their ability. An example of one of the sentences is, “The glow 427 

deepened in the eyes of the sweet girl.” Participants were instructed to spell each word 428 

as accurately as possible. 429 
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2.3.5. Survey 430 

Finally, participants were redirected to a Qualtrics survey containing basic 431 

demographic questions about age, gender identity, and language fluency. 432 

2.4. Statistical Analyses  433 

 For all t-tests, the Student’s t-test was utilized unless the assumption of equal 434 

variances was violated. Welch’s unequal variances t-tests were instead used whenever 435 

Levene’s Test was significant. 436 

 Bayes Factors were calculated for each test, using the default prior provided by 437 

JASP. This prior uses a Cauchy distribution, centered around 0, with a width parameter 438 

of 0.707. The reported Bayes Factors (BF10) represent how likely the alternative 439 

hypothesis is relative to the null hypothesis; values above 1 indicate evidence 440 

supporting the alternative hypothesis, whereas values below 1 provide evidence 441 

supporting the null hypothesis over the alternative hypothesis. As an example, a BF10 of 442 

4 indicates that, given the data, the alternative hypothesis is four times likelier than the 443 

null hypothesis. In contrast, a BF10 of 0.25 would indicate that the alternative hypothesis 444 

is one-fourth as likely as the null hypothesis. Conventional means of interpreting the 445 

relative strength of Bayes Factors regard BF10 = 3-10 as moderate evidence, such that a 446 

BF10 of 4 suggests moderate evidence for the alternative hypothesis over the null 447 

hypothesis (Schmalz et al., 2023). Bayes Factors can also be reported using BF01, the 448 

inverse of BF10, which presents the likelihood of the null hypothesis relative to the 449 

alternative hypothesis. Thus, a BF01 of 4 indicates that the null hypothesis is four times 450 

likelier than the alternative hypothesis. BF10 values are reported for each test in this 451 
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study; however, for any tests that result in null findings, BF01 is also be reported for ease 452 

of interpretation. 453 

2.4.1. Induction Task 454 

Each participant’s accuracy on the matched pairs test was calculated. 455 

Additionally, as there were many more “match” trials than “mismatch” trials, we also 456 

computed d' scores as a bias-free measure of participants’ sensitivity to the presence of 457 

a match. D’ was computed as the difference between the z-transforms of participants’ 458 

hit rate (i.e. the proportion of matched trials that they correctly identified as matching) 459 

and false alarm rate (the proportion of mismatched trials that they incorrectly identified 460 

as matching) in the task. 461 

2.4.2. Statistical Learning Tasks 462 

For all analyses of the statistical learning tasks, Greenhouse–Geisser corrections 463 

were reported for factors with more than two levels. 464 

2.4.2.1. Familiarity Task 465 

Average familiarity ratings were computed for each word category (Word, 466 

Partword, Nonword) and entered into a 2x3 mixed effects ANOVA with induction 467 

condition (speech induced, non-speech induced) as a between-subjects factor and word 468 

category (non-word, part-word, word) as a within-subjects factor. 469 

Additionally, for subsequent correlational analyses, “familiarity rating scores” 470 

(Batterink & Paller, 2017, 2019) were calculated by subtracting the average of a 471 

participants’ rating of partwords and nonwords from their average rating of a word. 472 
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Perfect sensitivity to words over foils on this measure would be a score of 3, with any 473 

positive value suggestive of learning, as this would reflect higher scores for words 474 

compared to both pseudo- and non-words. 475 

2.4.2.2. Target Detection Task 476 

Following the inclusion criteria of previous studies, responses that occurred 477 

within 1200 ms following target onset were considered valid hits (Batterink & Paller, 478 

2017, 2019). All other responses were considered false alarms. 479 

2.4.2.2.1. Detection Score 480 

For each participant, we first calculated the number of targets that were correctly 481 

detected and the total number of false alarms. We then computed an overall “detection 482 

score,” which represents a conservative estimate of a participant’s sensitivity to the 483 

targets in the stream, computed as the overall number of hits divided by the overall 484 

number of false alarms (Number of Hits/Number of False Alarms). Given that the “target 485 

response” window (4 targets x 1200 ms = 4800 ms) for each stream was half the length 486 

of the “false alarm” windows (total stream length of 14400 ms – “target response” length 487 

of 4800 ms = 9600 ms), we reasoned that any score greater than 0.5 would provide 488 

evidence of above-chance detection performance (with 0.5 indicating that hits occurred 489 

half as frequently as false alarms, as would be expected if responses were distributed 490 

randomly across the stream, without regard for the actual target locations). In other 491 

words, a detection score of >0.5 would indicate that participant’s responses were more 492 

likely to occur within a “target response” window than a “false alarm” window, providing 493 

evidence of target detection at above-chance levels. 494 
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2.4.2.2.2. Reaction Time  495 

In addition to already-reported exclusions (see section 2.1.), 3 additional 496 

participants who only responded to initial targets were excluded from the RT analysis, 497 

as their mean response times could not be computed for second and third position 498 

targets. Furthermore, participants with a detection score of 0.5 or below were also 499 

excluded from this analysis (n = 32). We reasoned that if a participant is unable to 500 

detect the syllables at an above-chance level, any differences in their RTs cannot be 501 

considered a valid measure of statistical learning. To summarize, 35 additional 502 

participants were excluded from this analysis, yielding a final n of 92 participants. 52 of 503 

these participants completed the speech induction (mean age = 40.0 y, SD = 11.5 y; 28 504 

men; 24 women), and the remaining 40 were from the NSI group (mean age = 39.7 y, 505 

SD = 13.1 y; 19 men; 21 women). For thorough reporting, a parallel analysis that also 506 

includes data from participants who scored below chance on detection can be found in 507 

Supplementary Materials (n = 124).  508 

For each participant, mean RTs for detected targets were calculated for each 509 

target position (initial, medial, final). Mean RTs were then entered into a 2 x 3 repeated-510 

measures ANOVA with induction group as the between-subject factor and target 511 

position (initial, medial, final) as the within-subject factor. In addition, to quantify 512 

statistical learning performance using a single metric while controlling for individual 513 

differences in baseline response times, a “RT prediction score” was computed by 514 

subtracting the average RT for the final syllable position from the average RT for the 515 

initial syllable position and dividing it by the average RT for the initial syllable position 516 

[(RT1-RT3)/RT1; Batterink & Paller, 2019]. This calculation adjusts for potential 517 
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differences in baseline RTs between individuals, allowing us to measure statistical 518 

learning across individuals with different RT baselines. 519 

2.4.3. Speech Perception Tasks 520 

2.4.3.1. Syllable Transcription 521 

Scoring for this task was done by allocating 1 point for each syllable that was 522 

fully correctly transcribed (with alternative spellings such as “mee” or “me” designated 523 

as correct), and 0.5 points for each syllable that was partially correct, with either the 524 

consonant or vowel transcribed correctly (e.g. typing “mee” when the SWS syllable 525 

being played is “gee”). Average accuracy across the 12 total syllables in the task was 526 

then computed for each participant. 527 

2.4.3.2. Sentence Transcription 528 

Each SWS sentence contained 5 keywords (e.g. in the sentence “Pluck the bright 529 

rose without leaves” the keywords would be “pluck,” “bright,” “rose,” “without,” and 530 

“leaves”). While participants wrote out the entire sentence, their scores were calculated 531 

as the proportion of correctly transcribed keywords. Misspelled words were marked as 532 

incorrect. 533 

3. Results 534 

 We first report the results from the induction task. Following this, we then 535 

characterize participants’ perception of the key SWS stimuli, as assessed through our 536 

three speech perception tasks (Figure 1). Although these speech perception tasks were 537 

completed at the end of the session, we report these results second, as they are 538 
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needed to understand the subsequent statistical learning analyses. We then turn to our 539 

main set of results, which concerns performance on our two measures of statistical 540 

learning—the familiarity rating and the target detection tasks—and how performance on 541 

these tasks relates to perception of SWS stimuli. 542 

3.1. Induction Task  543 

 Participants generally performed well on the matched pairs test, with an average 544 

accuracy rate of 90.7% (SD = 8.1%). Not surprisingly, given that they were presented 545 

with non-degraded syllable primes, speech induced (SI) participants outperformed non-546 

speech induced (NSI) participants on this task (SI: mean = 94.9%; SD = 5.2%; NSI: 547 

mean = 85.4%; SD = 8.1%; t(88.96) = -7.64, p < .001, d = -1.40; BF10 = 9.79 x 109). 548 

The average d’ was 2.33 (SD = 1.05), with SI participants also outperforming NSI 549 

participants on this measure (SI: mean = 2.93; SD = 0.82; NSI: mean = 1.58; SD = 0.79; 550 

t(125) = -9.39, p < .001, d = -1.68; BF10 = 1.27 x 1013). 551 

3.2. Speech Perception Tasks 552 

3.2.1. Overall Subjective Speech Perception Rating 553 

Reponses on the scale, ranging from 1 to 10, showed that SI participants (M = 554 

6.37, SD = 2.32) rated the SWS as sounding significantly more speech-like overall than 555 

the NSI participants (M = 5.38, SD = 2.79), t(106.71) = -2.14, p = .035, d = -0.39; BF10 = 556 

1.62. Nonetheless, there was considerable overlap in the scores, such that some NSI 557 

participants perceived the stimuli to sound more speech-like, while some SI participants 558 

perceived the stimuli to not sound very speech-like. The distribution of participant 559 

responses on the scale are presented in Figure 2A. 560 
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3.2.2. Syllable Transcription 561 

 As expected, participants in the SI group (M = 53.8%, SD = 28.3%) judged a 562 

significantly higher percentage of SWS syllables to be speech-like compared to the NSI 563 

participants (M = 35.7%, SD = 29.2%), t(125) = -3.52, p < .001, d = -0.63; BF10= 44.24. 564 

Additionally, SI participants (M = 29.5%, SD = 18.3%) also correctly transcribed a 565 

significantly larger proportion of the 12 SWS syllables than the NSI participants (M = 566 

11.5%, SD = 11.2%), t(118.36) = -6.82, p < .001, d = -1.19; BF10 = 4.34 x 106 (see 567 

Figure 2B). 568 

 569 

 570 
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 571 

Figure 2. (A) The distribution of participant responses on the subjective speech 572 
perception scale. The error bars represent the standard error of the mean. (B) 573 
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Participants’ accuracy in syllable transcription task. The error bars represent the 574 
standard error of the mean. *p < .05; ***p < .001. 575 

3.2.3. Sentence Transcription 576 

 Participants correctly transcribed 48.4% of the keywords in total (SD = 21.4%). 577 

 Somewhat unexpectedly, there was no significant difference in the keyword 578 

transcription accuracy between SI participants (M = 49.4%, SD = 22.2%) and NSI 579 

participants (M = 47.0%, SD = 20.5%), t(125) = -0.64, p = .521, d = -0.12; BF10 = 0.23 580 

[BF01 = 4.35]. This suggests that the speech induction training on individual syllables did 581 

not generalize to novel sentences. However, across all participants, there was a 582 

significant positive correlation between accuracy on the syllable transcription task and 583 

sentence transcription task, r(125) = 0.38, p < .001; BF10 = 1867.35 (see Figure 3), 584 

suggesting that performance on these two tasks reflects a common ability. 585 

 586 
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587 
Figure 3. The correlation between the percentage of SWS sentences and the key SWS 588 
syllables that participants transcribed accurately (r = 0.38, p < .001). 589 

3.3. Statistical Learning Tasks 590 

 As just described, while the two induction groups showed significant differences 591 

on self-reported subjective speech perception and on SWS syllable transcription 592 

accuracy, there was considerable overlap between the groups on these measures. In 593 

addition, there were no group differences on the sentence transcription task. These 594 

results indicate that our speech perception manipulation only partially altered 595 

participants’ perception of the key SWS syllables, rather than producing a dramatic 596 

transformation of participants’ percepts. Thus, as a further test of the relationship 597 

between statistical learning and speech perception, we examined correlations between 598 
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participants’ accuracy on the SWS syllable transcription task—taking this as a measure 599 

of speech perception—and their statistical learning performance. Hence, in the following 600 

section, for both our measures of statistical learning, we report (1) differences in 601 

performance between our two a priori defined groups and (2) correlations between 602 

accuracy on the syllable transcription task and statistical learning performance. 603 

3.3.1. Familiarity Task 604 

As expected, across both induction groups, words were rated as the most 605 

familiar, followed by part-words, with non-words rated as the least familiar, leading to a 606 

significant effect of word type, F(1.98,248.18) = 18.00, p < .001, η2p = 0.13; BF10 = 2.48 607 

x 105 (see Figure 4A). 608 

Supporting the hypothesis that statistical learning operates in a similar manner 609 

across stimuli perceived as linguistically-relevant and irrelevant, performance on the 610 

familiarity rating task was not significantly different between the two induction groups 611 

(Main Effect of Induction: F(1,125) = 6.45 x 10-3, p = .936, η2p = 5.16 x 10-5; BF10 = 0.22 612 

[BF01 = 4.54]; Word Type x Induction: F(1.98,248.18) = 0.34, p = .714, η2p = 0.0027; 613 

BF10 = 0.07 [BF01 = 14.3]). 614 

Further, there was no significant correlation between participants’ syllable 615 

transcription accuracy and their familiarity rating scores, r(125) = 0.09, p = .34, with the 616 

Bayes Factor indicating moderate evidence (Schmalz et al., 2023) for the null 617 

hypothesis of no relation between these two measures (BF10 = 0.18 [BF01 = 5.55]; see 618 

Figure 4B). This result indicates that more accurate perception of the stimuli as syllables 619 

did not lead to better performance on the familiarity measure. 620 
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 621 

Figure 4. (A) Participants’ ratings of triplet familiarity from the familiarity rating task. The 622 
error bars represent the standard error of the mean. (B) The correlation between 623 
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participants’ familiarity rating score and the percentage of key SWS syllables that they 624 
transcribed accurately (r = 0.09, p = .34). 625 

3.3.2. Target Detection Task 626 

3.3.2.1. Overall Detection Rate 627 

Participants correctly responded to 67.4% (SD = 20.0%) of the targets on 628 

average and made an average of 148.7 false alarms total (SD = 101.2). Accuracy rate 629 

was relatively low and false alarms were relatively high compared to previous versions 630 

of this task (e.g. Batterink et al., 2015; Batterink & Paller, 2017, 2019). This relatively 631 

poor performance may be attributed to the manipulated nature of the syllables, which 632 

made them more difficult to identify. Nonetheless, participants performed significantly 633 

above chance, as assessed by the detection score (M = 0.98, SD = 0.92; t(126) = 5.91, 634 

p < .001, d = 0.52; chance is 0.5 on this measure), with no significant difference in 635 

performance between the SI participants (M = 1.05, SD = 0.95) and NSI participants (M 636 

= 0.90, SD = 0.89), t(125) = -0.93, p = .355, d = -0.17; BF10 = 0.28 [BF01 = 3.57]. 637 

 Interestingly, there was a significant positive correlation between the Detection 638 

Measure values and syllable transcription accuracy, r(125) = 0.29, p = .001; BF10 = 639 

22.39, as presented in Figure 5. This result indicates that participants who more 640 

accurately perceived the stimuli as syllables were also better able to detect them in the 641 

continuous speech sequences. 642 

 643 

 644 

 645 
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 646 

Figure 5. (A) Participants’ detection score values on the target detection task (chance is 647 
0.5). The error bars represent the standard error of the mean. (B) The correlation 648 
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between participants’ Detection Measure values on the target detection task and the 649 
percentage of key SWS syllables that they transcribed accurately (r = 0.29, p = .001). 650 

3.3.2.2. Reaction Time 651 

As expected, across both groups, RTs were the fastest for final-position 652 

syllables, second fastest for medial-position syllables, and slowest for initial-position 653 

syllables, as shown in Figure 6A, leading to a significant effect of syllable position, 654 

F(1.68,150.76) = 61.69, p < .001, η2p = 0.41; BF10 = 4.17 x 1018. Notably, there was no 655 

significant difference in the RTs between induction groups, either overall or as a 656 

function of syllable position (Main Effect of Induction: F(1,90) = 0.06, p = .802, η2p = 657 

7.00 x 10-4; BF10 = 0.24 [BF01 = 4.17]; Position x Induction: F(1.68,150.76) = 1.14, p 658 

= .315, η2p = 0.01; BF10 = 0.19 [BF01 = 5.26]). 659 

 Additionally, there was no significant correlation between RT prediction effect 660 

and syllable transcription accuracy, r(90) = 0.12, p = .253; BF10 = 0.25 [BF01 = 4.00], as 661 

shown in Figure 6B. This suggests more accurately perceiving the SWS stimuli as 662 

syllables did not lead to an enhanced ability to predict final position syllables. For a 663 

summary of the Bayes Factors for the study’s statistical learning measures, see Table 664 

1. 665 

 While the above analysis excludes participants who failed to detect syllables at 666 

above-chance levels, we also report results from the full sample (see Supplementary 667 

Materials). We note that the overall pattern of findings is largely similar between the two 668 

analyses. 669 

 670 

 671 



36 
 

 

 672 

Figure 6. (A) Participants’ average reaction times for each of the syllable positions in 673 
the target detection task. The error bars represent the standard error of the mean. (B) 674 
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The correlation between participants’ RT prediction effect and the percentage of key 675 
SWS syllables that they transcribed accurately (r = 0.12, p = .253). 676 

 677 

Table 1 678 

Summary of Bayes Factor Results for Statistical Learning Performance 679 

Task BF01 Strength of evidence in favour of null 

Familiarity Task   

Main Effect of Induction 4.54 Moderate 

Word Type x Induction 14.29 Strong 

Correlation 5.55 Moderate 

Target Detection Task   

Main Effect of Induction 4.17 Moderate 

Position x Induction 5.26 Moderate 

Correlation 4.00 Moderate 

Note. Moderate evidence: BF01 = 3-10. Strong evidence: BF01 = 10-30. The null 680 

hypothesis here indicates no impact of speech perception on statistical learning 681 

performance. 682 

4. Discussion 683 

 In the current study, we examined whether statistical learning occurs more 684 

robustly for sounds subjectively perceived as speech relative to those perceived as non-685 

speech, independently of stimulus acoustics. The key novel aspect of the current study 686 

was the use of SWS to eliminate acoustic differences between stimuli perceived 687 

linguistically versus non-linguistically. Overall, we found that statistical learning operates 688 

similarly for stimuli, regardless of the degree to which they are perceived as 689 

linguistically-relevant. Participants who were induced into hearing syllables as speech-690 

like did not show any significant differences in performance on our two statistical 691 

learning measures compared to participants induced into hearing the syllables as non-692 
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linguistic sounds. In addition, participants’ ability to linguistically label individual SWS 693 

syllables did not predict their statistical learning performance. Taken together, these 694 

results provide no strong evidence of a statistical learning advantage for sounds 695 

perceived as more speech-like, instead suggesting that statistical learning occurs 696 

indiscriminately across auditory stimuli, regardless of their linguistic relevance. 697 

 More specifically, on the familiarity rating task, we observed no significant 698 

difference in ratings between the speech induced and non-speech induced group, as 699 

well as no significant correlation between participants’ accuracy in transcribing the SWS 700 

syllables and their familiarity rating score. Similarly, on the target detection task, there 701 

was no significant difference in the RTs between the induction groups, nor was there a 702 

significant correlation between participants’ SWS syllable transcription accuracy and the 703 

magnitude of their RT prediction effect. Thus, taken together, our results suggest that 704 

statistical learning operates largely similarly across physically identical auditory stimuli, 705 

regardless of participants’ perception of the stimuli as more or less speech-like. 706 

Importantly, we found that the speech induced (SI) group was better at identifying 707 

the SWS syllables by their linguistic labels than the non-speech induced (NSI) group, as 708 

demonstrated by significantly higher accuracy on the syllable transcription task (30% 709 

accuracy for the SI group versus 12% for the NSI). We also found that participants in 710 

the SI group rated the syllables as subjectively more speech-like than participants in the 711 

NSI group, although the difference in subjective ratings were small. These findings 712 

provide a key manipulation check and indicate that our induction task did produce 713 

differences in the subjective perception of SWS syllables between the two groups. 714 

However, we note that our induction task did not produce a dramatic perceptual 715 



39 
 

 

transformation of the syllables, as can be found when sentences are used as stimuli 716 

(Davis & Johnsrude, 2007; Remez et al., 1981), and was also limited in its 717 

generalizability, with no effect on participants’ ability to transcribe full sentences. We 718 

return to this general point in the Limitations section. 719 

Previous findings in the literature have suggested that statistical learning shows 720 

important differences across domains and may be governed by modality- and domain-721 

specific constraints (e.g., Siegelman & Frost, 2015; Siegelman et al., 2017; Frost et al., 722 

2015; Conway et al., 2020; Van Hedger et al., 2022). For example, several findings 723 

point to the idea that statistical learning is influenced by the shared resemblance 724 

between novel words in the speech stream and existing words in learners’ native 725 

language, with words that share native language phonotactic patterns being more easily 726 

segmented and/or subsequently recognized (Siegelman et al., 2018; Elazar et al., 2022; 727 

Finn & Hudson Kam, 2008).  Our results provide initial evidence that domain-specific 728 

constraints for statistical learning are at least partially attributable to sensory-level 729 

processes, and not necessarily to higher-level cognitive mechanisms related to the 730 

conceptual categorization of incoming stimuli. For example, networks in auditory cortex 731 

may be better equipped to process and encode incoming novel words that have high 732 

acoustic overlap with existing words in the learner’s lexicon, which in turn could facilitate 733 

binding between syllables and lead to observed “linguistic entrenchment” effects 734 

(Siegelman et al., 2018).  In contrast, the judged linguistic relevance of an ambiguous 735 

signal may be a later-occurring, downstream process that does not directly impact 736 

statistical learning. 737 
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Our approach differed from several previous statistical learning studies in that we 738 

did not directly compare learning of speech versus non-speech stimuli (cf. Hoch et al., 739 

2013; Marcus et al., 2007; Ordin et al., 2021; Saffran, 2002; Saffran et al., 1999; 740 

Siegelman et al., 2018), which differ in both low-level acoustic features and in 741 

communicative relevance. Instead, we assessed the statistical learning of acoustically 742 

identical ambiguous stimuli that differed in the degree to which they were subjectively 743 

perceived as speech, allowing us to address the more specific question of whether the 744 

subjective linguistic value (Berent et al., 2021; Rabagliati et al., 2018) of auditory 745 

stimuli—in and of itself—influences statistical learning. To our knowledge, no previous 746 

study has directly examined this question in adults. However, there is some relevant 747 

prior work in infants, which has examined whether the meaningfulness or 748 

communicative relevance of stimuli increases infants’ success in learning abstract 749 

repetition rules (such as AAB or ABA). Ferguson and Lew-Williams (2016) presented 750 

infants with a video prime in which tones were embedded in a natural conversation 751 

between two actors, thereby inducing the infants to believe that tones are a 752 

communicative signal. In a subsequent rule learning phase, infants who were 753 

communicatively primed successfully learned abstract rules from tones, whereas 754 

unprimed infants failed to show learning. This finding suggests that infants learn better 755 

from stimuli that are communicatively relevant. Supporting this conclusion, a recent 756 

meta-analysis of 20 papers (Rabagliati et al., 2018) found that infants are better able to 757 

learn abstract repetition rules from stimuli that are communicatively or ecologically 758 

meaningful—such as spoken syllables, communicatively primed tones, or natural 759 

categories such as dogs or faces—than meaningless stimuli such as geometric shapes 760 
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or tones. In a follow-up experiment designed to directly test this idea, Rabagliati and 761 

colleagues (2018) had infants view either a prime video that portrayed gestures as 762 

communicative and meaningful, or a control video, and then exposed them to 763 

sequences of gestures following an ABB or ABA pattern. Again, as in Ferguson and 764 

Lew-Williams (2016), only infants primed to view gestures as a communicative signal 765 

displayed evidence of rule learning.  Altogether, these studies suggest that the 766 

communicative status of a stimulus enhances abstract rule learning in infants. 767 

In contrast to this general finding in infants, the present results fail to support the 768 

idea that the perceived linguistic relevance of auditory stimuli influences or enhances 769 

statistical learning in adults. This divergence could potentially be attributed to any 770 

number of factors that differ between prior work in infants and the current study, 771 

including the population under investigation (adults versus infants), the type of learning 772 

(abstract grammatical rule learning versus statistical learning of embedded words in 773 

continuous speech), and/or the experimental manipulation used to bias the linguistic 774 

relevance of the stimuli. For example, it may be the case that infants show larger 775 

differences in learning between communicative and noncommunicative signals 776 

compared to adults, in line with the idea that infancy represents a critical period for 777 

language acquisition, during which the brain is highly tuned to speech and other 778 

communicative signals (Vouloumanos et al., 2010; Vouloumanos & Werker, 2004, 2007; 779 

Werker & Hensch, 2015). Another possibility is that findings from abstract grammatical 780 

rule learning (e.g., learning of rules such as AAB or ABA) are not directly generalizable 781 

to the type of statistical learning under investigation in the current study. Rule learning 782 

involves extracting an abstract rule and generalizing to novel instances, whereas 783 
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statistical learning involves extracting repeating, item-based regularities from 784 

unsegmented input, without a generalization component. While these two types of 785 

learning appear to be closely related in certain ways (Aslin & Newport, 2012), they may 786 

be influenced by different factors and operate under different sets of constraints 787 

(Endress & Bonatti, 2007; Endress & Mehler 2009; Peña et al., 2002; Thiessen, 2017).   788 

Finally, we must also consider the possibility that our SWS manipulation did not 789 

produce sufficiently diverse percepts of the identical stimuli across individual 790 

participants to produce robust differences in statistical learning. Most prior work 791 

investigating the processing and intelligibility of SWS have used meaningful sentences 792 

(Corcoran et al., 2023; Khoshkhoo et al., 2018; Remez et al., 1981). In contrast, we 793 

applied the sine-wave manipulation to isolated syllables, such that participants’ 794 

perception of the SWS stimuli could not benefit from top-down prediction provided by 795 

semantic context. Thus, it is conceivable that even participants who achieved high 796 

scores on syllable transcription accuracy may not have experienced a clear speech 797 

percept for each syllable. However, a critical point arguing against this possibility is that 798 

we did find a significant and highly robust correlation between participants’ individual 799 

syllable transcription accuracy and overall detection performance for individual syllables 800 

in the target detection task. Based on this result, we can conclude that participants 801 

experienced real, meaningful variability in their perceptions of the SWS stimuli that was, 802 

at minimum, sufficient to robustly predict performance on a separate task. That we did 803 

not find similar robust correlations between syllable identification and statistical learning 804 

performance suggests that any speech-perception advantage in statistical learning—if it 805 

exists at all—is likely to be very small.  806 
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The finding that syllable comprehension accuracy predicted overall syllable 807 

detection performance in the target detection task is also interesting in and of itself. This 808 

result suggests that ability to perceive ambiguous auditory stimuli as more speech-like 809 

and the ability to correctly assign linguistic labels to those stimuli facilitate the online 810 

identification of the ambiguous stimuli under challenging circumstances, i.e., when the 811 

target stimulus is embedded within a continuous stream of similar-sounding sounds. An 812 

analogous finding has been reported in the visual domain using a visual search 813 

paradigm (Lupyan & Spivye, 2008; Klemfuss et al., 2012). Participants in these studies 814 

were presented with arrays of rotated numbers (“2” and “5”), and were asked to indicate 815 

for each trial whether the display was homogenous or contained an oddball. 816 

Interestingly, participants who were given the linguistic labels or who spontaneously 817 

noticed that the shapes were rotated numbers were faster to respond to the arrays 818 

compared to participants who were told that the stimuli were abstract shapes. One 819 

proposed explanation for this result is that the top-down effects of a linguistic cue may 820 

sharpen visual feature detectors, with feedback connections from linguistic 821 

representations providing a mechanism for biasing or amplifying activity in perceptual 822 

detectors associated with those representations (Lupyan & Spivye, 2008). An 823 

alternative explanation is that the benefit of linguistic cues on stimulus identification may 824 

occur because language provides a "ready form of efficient coding,” thereby reducing 825 

the burden on working memory (Klemfuss et al., 2012). Similar mechanisms operating 826 

at both the perceptual and post-perceptual level could also explain the current findings. 827 

The ability to perceptually transform a degraded, ambiguous target stimulus into a 828 

verbalizable syllable (e.g. “ba”) may have sharpened auditory feature detectors for that 829 



44 
 

 

sound signal, and may also have facilitated the maintenance of the target stimulus in 830 

working memory during the subsequent stream presentation. 831 

4.1. Limitations 832 

As previously alluded to, a limitation in this study was that the speech induction 833 

task had only a moderate impact on participants’ overall subjective speech perception. 834 

As shown in Figure 2A, the speech induction manipulation did not cleanly divide 835 

participants into two groups, as some speech-induced participants indicated that they 836 

perceived the sounds as relatively un-speechlike, and vice-versa for the non-speech 837 

induced participants. In addition, the speech induced group’s transcription accuracy of 838 

the SWS syllables—while better than the non-speech induced group’s—was still fairly 839 

low (approximately 30% accuracy). An ideal induction manipulation would have led all 840 

the speech-induced participants to accurately perceive the SWS stimuli as speech, and 841 

the non-speech induced participants to report hearing the stimuli as non-speech, as was 842 

our original intention. This would have allowed for a cleaner comparison between 843 

participants speech-induced and non-speech-induced participants, capitalizing on the 844 

benefits of an experimental design using random assignment. Because our induction 845 

did not result in a clear division between groups, and to account for the continuous, non-846 

binary nature of speech perception, we adopted a complementary approach that tested 847 

whether an individual’s syllable transcription accuracy predicted their statistical learning 848 

performance. However, with this approach there is a possibility that any correlations 849 

between transcription performance and statistical learning performance (should they be 850 

observed) could be inflated by unintended third variables, such as an individual’s 851 

general motivation or interest in the experimental tasks. Ultimately, we believe it would 852 
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be challenging to design a perfectly effective speech induction task when using isolated 853 

syllables as SWS stimuli, given their processing cannot benefit from top-down lexical 854 

information, which plays an important role in the perceptual learning of distorted speech 855 

(Davis et al., 2005). To further probe the role of linguistic relevance in statistical 856 

learning, future work could leverage other types of experimental manipulations, such as 857 

using priming videos to induce participants into believing that neutral stimuli are a 858 

communicative signal (e.g., Ferguson & Lew-Williams, 2016; Rabagliati et al., 2018). 859 

Finally, while the current study demonstrates that overall statistical learning 860 

performance is similar as a function of listeners’ subjective speech perception, our study 861 

design does not allow us determine whether this equivalent performance is supported 862 

by a common underlying mechanism or set of mechanisms, or by different mechanisms 863 

that depend on speech perception. For example, it is possible that triplets perceived as 864 

nonspeech may be segmented and learned as holistic or gestalt-like units, whereas 865 

triplets perceived as speech may be learned by extracting sequential syllable patterns—866 

pairs and then triplets—unfolding over time. The theoretical possibility of different 867 

mechanisms varying by stimulus material is supported by findings by Siegelman and 868 

colleagues (2018), as previously mentioned in the Introduction. This study 869 

demonstrated similar overall levels of statistical performance for auditory non-verbal 870 

stimuli (everyday sounds) and syllables, which nonetheless belied important differences 871 

in the internal consistency of test items between conditions, reflecting different 872 

influences on performance that vary by domain. Although we would consider that the 873 

possibility of different mechanisms that are equally effective to not necessarily represent 874 

the most parsimonious explanation for the current data, the present study design cannot 875 
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rule it out. Future studies could leverage approaches such as EEG or neuroimaging to 876 

examine this possibility directly. 877 

4.2. Conclusions 878 

 In summary, our results provide evidence that statistical learning operates largely 879 

indiscriminately across auditory stimuli, regardless of the degree to which they are 880 

perceived linguistically. In contrast, linguistic perception robustly improves the 881 

identification of individual target stimuli embedded in a continuous auditory sequence. 882 

These results generally support previous findings of similar statistical learning 883 

performance for speech stimuli and non-speech stimuli (Saffran et al., 1999; Saffran, 884 

2002; Siegelman et al., 2018), and raise the possibility that previous demonstrations of 885 

the statistical learning advantage for verbal materials (e.g., Hoch et al., 2013; Ordin et 886 

al., 2021) may mainly be driven by acoustic differences between the classes of stimuli. 887 

These results contribute to the literature on domain-specific versus domain-general 888 

contributions to statistical learning, suggesting that statistical learning may be 889 

conceptualized as a largely bottom-up mechanism that undiscerningly captures 890 

regalities in input regardless of higher-level context. 891 

 892 
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 895 
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