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Abstract

This thesis examines current state-of-the-art Explainable Artificial Intelligence

(XAI) methodologies applicable to breast cancer diagnostics, as well as local

model-agnostic XAI methodologies more broadly. It is well known that AI is

underutilized in healthcare due to the fact that black box AI methods are largely

uninterpretable. The potential for AI to positively affect health care outcomes is

massive, and AI adoption by medical practitioners and the community at large

will translate to more desirable patient outcomes. The development of XAI is

crucial to furthering the integration of AI within healthcare, as it will allow med-

ical practitioners and regulatory bodies to become more comfortable and trusting

with respect to AI. The scope of this thesis is to examine XAI as it applies to

breast cancer diagnostics specifically. However, as we have chosen to discuss lo-

cal model-agnostic XAI methodologies, the techniques outlined in this thesis will

be applicable to all medical domains.

Keywords: Explainable Artificial Intelligence (XAI), local model-agnostic

explanations, breast cancer diagnostics
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Summary for Lay Audience

The main achievements of this thesis are as follows;

(1) Provide an in-depth technical overview of the theory behind state of the art

local XAI methodologies

(2) Extensively apply local XAI methodologies to unveil the inner workings of

a XGBoost black box model used to diagnose breast cancer with 96% accuracy,

using the Breast Cancer Wisconsin Diagnostic data set (BCW-D). This thesis is

the most exhaustive analysis of local XAI methodologies applied to breast cancer

diagnostics to date.

(3) Present a novel modification of the Biased Kernel SHAP algorithm called

Fixed Biased Kernel SHAP, used to efficiently and accurately approximate true

Kernel SHAP values, and evaluate the performance of this algorithm as compared

to the original Biased Kernel SHAP algorithm.
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Chapter 1

Introduction

1.1 Thesis overview and Contribution

In 2020, approximately 27,400 women were diagnosed with breast cancer in

Canada [20]. Every 1 out of 8 women will receive a positive breast cancer di-

agnosis at some point in their life [20]. For women, breast cancer is the leading

cause of cancer worldwide. Early detection, accurate diagnostics, and precisely

selecting the most effective treatments for breast cancer are the most important

tasks researchers must address in order to further favourable outcomes for breast

cancer patients. As the intersection of artificial intelligence and breast cancer

research continues to grow, we expect to see improvements in current mortality

statistics.

Advancements in artificial intelligence stand to benefit humanity at large with

its potential applications for healthcare. Predicting and diagnosing disease, as well

as advising state of the art treatments and predicting subsequent patient outcomes

to these treatments are the two domains in which AI stands to make its biggest

1



impact.

The contributions of this thesis include; (1) Provides a thorough technical

run-down of current state of the art local XAI methodologies (2) Provides the

most in depth research to date on applied local XAI methodologies for breast

cancer diagnostics from fine-needle aspirate data, using the BCW-D dataset [26].

(3) Thorough and novel illustrations that help visualize the inner workings of an

XGBoost model that achieves 96% diagnostic accuracy. Methods used include

ICE & C-ICE, LIME, exact (true) Kernel SHAP, Biased Kernel SHAP approx-

imation, and a novel algorithm called Fixed Biased Kernel SHAP. (4) Provides

a novel algorithm to efficiently approximate Kernel SHAP values, called Fixed

Biased Kernel SHAP. (5) A thorough analytical comparison between the various

XAI methodologies.

1.2 Thesis organization

In Chapter 2 we discuss XAI in the broad sense and how various XAI methodolo-

gies may be categorized, as well as the current literature surrounding the applica-

tion of XAI to breast cancer analytics. In Chapter 3 we take a deep dive into the

theory behind the current leading XAI methods including Individual Conditional

Expectation (ICE), Centered Individual Conditional Expectation (C-ICE), LIME,

and Kernel SHAP. In Chapter 4 we discuss methods for approximating Kernel

SHAP, a notoriously computationally expensive local XAI method. We present a

modified version of the Biased Kernel SHAP approximation method, called Fixed

2



Biased Kernel SHAP. Chapter 4 discusses these Kernel SHAP approximations

from a theoretical view point. Chapter 5 applies the approximation methods to a

patient from the BCW-D test set with a malignant diagnosis that was diagnosed

using an underlying XGBoost black box model, including our novel Fixed Biased

Kernel SHAP algorithm. Additionally in Chapter 5, we apply all of the local XAI

methods discussed in Chapter 3 to the same malignant case, providing an in depth

analysis of the results and comparison between these methods.

Chapter 5 is where we evaluate and apply our novel Fixed Biased Kernel

SHAP algorithm to explain the XGBoost algorithm used to predict breast can-

cer for the Breast Cancer Wisconsin Diagnostic dataset (BCW-D) dataset with

96% accuracy. We compare the performance of this algorithm versus a typical

Biased Kernel SHAP approximation algorithm. We provide conclusory explana-

tion tables at the end of each section in Chapter 5 to summarize the explanations

provided by the local XAI methods on the XGBoost model for a malignant case.

Finally, we compare the explanations and computational efficiency for all of the

local XAI methods presented in this paper. In Chapter 6 we conclude our thesis

and provide avenues for further research.

3



Chapter 2

Related Work

2.1 XAI Overview

Explainable AI (XAI) are methods that help users understand how black box artifi-

cially intelligent models arrive at their conclusions. It exists as a realm of artificial

intelligence research in and of itself, as practitioners across the board try to un-

veil how these incredibly complex methods function internally. While inherently

interpretable models such as linear regression, logistic regression, GLM, and sim-

ple decision trees have their own merits, they typically do not compete with more

complicated black box models such as random forests, XGBoost, and neural nets

of varying kinds. These black box models often offer superior accuracy at the cost

of training speed, and model complexity. XAI seeks to bridge the gap between

these convoluted black box models and human interpretability.

XAI methods can be broken down into two major categories; local and global

4



explanations. Local explanations are XAI methods that explain how a black box

model arrived at its output for a single, localized instance. For example, a local

XAI method may aim to explain exactly why an XGBoost model has predicted

that a patient has a malignant breast tumor. Global XAI methods on the other

hand, seek to explain how AI models make predictions on a comprehensive ba-

sis over an entire set of predictions. The focus of this thesis will be local XAI

methodologies, for more information on global XAI methodologies please con-

sult the research of Christopher Molnar [15].

Both global and local XAI methods may be either model-agnostic or model

specific. Model specific XAI methods are those that may only be applied to certain

underlying black box models, such as Tree SHAP which uses a Shapley Value

approach to demystifying deep tree-based machine learning models [13]. Model

agnostic XAI methods are those which may be applied to any underlying black

box model, and ensemble machine learning models which may use a series of

models. This thesis focuses specifically on local model agnostic XAI methods as

it applies to breast cancer diagnosis.

The three major local XAI methodologies used at present are local Inter-

pretable model-agnostic explanations (LIME), Individual Conditional Expecta-

tion plots (ICE) and Centered Individual Conditional Expectation plots (C-ICE),

and variations of model agnostic Shapley value methods. LIME will be discussed

in further detail both theoretically in Section 3.2 and as applied to breast cancer

diaganostics in Subsection 5.2.2. ICE and C-ICE plots will be discussed in further

detail both theoretically in Section 3.1 and applied to breast cancer diagnostics in

5



Subsection 5.2.1. Kernel SHAP, a model-agnostic XAI application of Shapley

values, will be discussed both theoretically in Section 3.3 and applied to breast

cancer diagnostics in Subsection 5.2.3.

In a time where Artificial Intelligence (AI) is exploding in popularity, there is

an ever increasing need for methods that uncover the inner workings of artificially

intelligent black box models. Some believe that the accuracy of AI models should

be enough to warrant the adoption of these technologies without understanding of

their inner workings, that we should simply trust AI to give us all the answers.

However, we believe that there is a growing need for methods that attempt to dis-

sect these algorithms to better understand their rationale. In the realm of medicine

and health care, both the legality and ethics of using AI to diagnose and treat

patients is of utmost consideration by healthcare and AI practitioners alike. Addi-

tionally, methods that seek to expose the contributing factors to a particular diag-

nosis may be of great importance when attempting to determine the best course of

treatment for a particular patient. As it relates to breast cancer, treatment will vary

greatly based on tumor subtypes and tumor presentation [25]. Furthermore, the

goal of this thesis is to provide the most robust analysis and application of local

model-agnostic XAI methods as it applies to breast cancer diagnostics to date.

2.2 XAI Applied to Breast Cancer

There are a multitude of data types and various kinds of datasets as it relates to

breast cancer. Although healthcare data is scarce relative to other sectors due
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to privacy and data collection concerns, there are various types of breast cancer

datasets such as those consisting of mammography images, fine needle aspirate

(FNA) images, FNA tabular data derived from FNA images, clinical information

from patients, gene expression data of patients, and RNA sequencing data (this

list is not exhaustive).

The current literature on XAI as it is applied to breast cancer is centered

around a few different purposes; recurrence prediction, diagnostic prediction,

treatment outcome prediction, and survival prediction.

Underlying models used in breast cancer related to XAI research include XG-

Boost, Random Survival Forests, Survival Support Vector Machines, Decision

Tree Induction Algorithms, Classification and Regression Trees (CART) , Multi-

layer Perceptron, Deep multi-layer perceptron, and Radial Basis Function Net-

works [7] [16] [16] [8] [9] [4].

Depending on the underlying classification method, the XAI methodology

applied to the problem may vary. As mentioned previously, XAI methodologies

may be applied post-hoc or a practitioner may just opt to use an intrinsically inter-

pretable model, meaning the underlying classification method is not a black box.

Most of the literature on XAI and breast cancer related issues make use of post-hoc

XAI methodology layered on top of black box underlying classification methods.

This is due to the fact that black box methodologies typically provide far superior

predictive accuracy compared to intrinsically interpretable models, and predictive

accuracy is of utmost importance for most medical use cases. The black box na-

ture of AI algorithms is a core reason for slow uptake of in-practice AI within
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healthcare, and furthermore, discovering appropriate XAI methodologies to use

in conjunction with these black box techniques is of utmost importance.

The literature presents a multitude of XAI methodologies used with breast

cancer datasets; SHAP, LIME, feature importance, partial dependence plots, case-

based reasoning, rainbow boxes, polar multi-dimensional scaling scatter plots,

linear projections, radviz, and heatmap visualizations [7] [8] [9] [11] [4] [3]. This

thesis takes its analysis and application of local XAI methods to the problem of

breast cancer diagnostics one step further by discussing and applying all of the

existing major methods, comparing the results between these methods, and pro-

viding a novel algorithm for Kernel SHAP approximation called Fixed Biased

Kernel SHAP.

When considering mammographic images, convolutional neural networks (CNNs)

are a frequented choice by practitioners. Heatmap visualizations are typically used

in conjunction with these CNN models used to detect breast cancer in images, as is

presented in the research by Binder et al. [3] and Montebello et al [10]. Heatmap

visualization is a particularly useful tool when examining mammographic images

as it highlights the pixels that contribute most heavily to the classification of either

malignant or benign.

It is important to note that mammographic images are not the only diagnos-

tic tool available for breast cancer. Typically when a tumor may be detected in a

mammographic image, a biopsy will be conducted to determine if the breast tissue

is malignant or benign. Fine-needle aspiration (FNA) is a technique wherein a fine

needle is used to extract suspicious breast tissue, and the tissue is then examined
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under a microscope for biopsy. Suspicious breast tissue in this case may be de-

tected when a physical examination is performed and a lump is found, or may be

as a result of image detection. Fine-needle aspiration is considered a minimally

invasive biopsy method compared to incisional or excisional biopsy [19].

The Breast Cancer Wisconsin datasets, both the original (BCW-O) and the

diagnostic dataset (BCW-D), have been integral in the development of machine

learning models for breast cancer research. Both datasets contain features that are

computed from digitized FNA images. BCW-D is cited in the literature on XAI

and breast cancer research through the works of Lamy et al. [11], Brito-Sarracino

et al. [4], Hakkoum et al. [8]. The BCW-D dataset is used throughout this thesis.
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Chapter 3

Local Model Agnostic XAI Methods,

Technical Overview

3.1 ICE and C-ICE

Individual Conditional Expectation (ICE) plots are the local alternative to Partial

Dependence Plots (PDP). Partial Dependence plots, while limited in their use due

to the assumption that features are independent [15], provide a relatively straight-

forward way of describing the relationship between the target variable (output of

the black box model) and a feature input when considering the entirety of the

dataset. PDP plots are generated by marginalizing the complement set of fea-

tures out, and perturbing the feature to be explained so that the average marginal

effect of changing this feature on the black box output is calculated and plotted

in a graph [12]. Put simply, PDPs help describe the average marginal effect on
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the target variable with increases or decreases in value for a given feature. The

focus of this thesis is on local explainable AI methodologies as it is applied to

breast cancer diagnosis, and as such we will limit our explanation of PDPs to the

aforementioned.

ICE plots are useful as they can uncover heterogenous effects of a feature,

which PDPs cannot [12]. ICE plots are most often graphically represented by

plotting a single line for each instance, and the line is formulated by holding the

complement set of features constant, and using the black box model to generate

new predictions while varying the value of the feature in question. Although ICE

plots are of use in determining heterogeneous trends in the data, they can some-

times be difficult to read or interpret due to the fact that the starting point for the

prediction for each line will differ [15], in other words the trajectory of various

lines may be similar between individual lines but not necessarily easily to see.

To solve this visualization problem that standard ICE plots face, we may use

a centered ICE plot as an alternative (C-ICE). A centered ICE plot will show the

difference in the prediction of f (x) from an anchor point, whereas an ICE plot will

show the total change in the prediction of f (x) from a starting point. The formula

for plotting a C-ICE plot for a given feature is as follows [15];

fcentered = f (x f eature, xcomplement) − f (xanchor, xcomplement) (3.1)

An more in depth analysis of ICE and C-ICE for breast cancer diagnosis in

a patient with a malignant diagnosis from the BCW-D dataset can be found in
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Subsection 5.2.1. We provide a sample ICE & C-ICE graph below for reference.

Figure 3.1: ICE for texture mean, XGBoost.
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Figure 3.2: C-ICE for texture mean, XGBoost.
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3.2 LIME

Local Interpretable Model-Agnostic Explanations (LIME), is an explainable AI

method that was first introduced by Ribeiro et al. in 2016 [17]. LIME generates

neighbours around an explanation instance, runs these neighbours through the un-

derlying black box model to get an expected prediction for each, and then fits a

local surrogate model on these generated neighbours. The local surrogate model

chosen may be any model that is considered interpretable, not limited to but in-

cluding; linear regression, logistic regression, decision trees, or generalized linear

models. When fitting the local surrogate model, LIME uses an exponential kernel

to assign higher weight to generated points that are closer to the explanation point

[15]. The formula for the exponential LIME kernel is shown below;

Weight =

√
exp

(
−

distance
kernel width2

)
(3.2)

As we see from the above equation, we must choose a kernel width when cal-

culating the weight for a generated neighbour. A larger kernel width equates to

a wider radius from the explanation point being considered as part of the neigh-

bourhood. This kernel width is often arbitrarily chosen, though more sophisticated

methods for choosing kernel width have been proposed [24].

The goal of LIME is to minimize a loss function, that considers the explana-

tion model g, the original model f , and the kernel defining the local neighbour-

hood around the explanation point πx′ . The below Equation 3.3 is the generic

LIME formula. It states that the optimal locally interpretable model agnostic ex-
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planation model represented by g, will minimize the difference between itself and

the black box model f , for some given neighbourhood πx′ . Additionally, there is

a penalty term added for surrogate models that are more complex represented by

Ω(g).

ε = arg min
g∈G

L( f , g, πx′) + Ω(g) (3.3)

Criticisms of LIME are that it may violate local accuracy, an axiom of additive

feature attribution methods, when the selected kernel weighting function and the

loss function are chosen arbitrarily, thus producing a surrogate model that is not

tangent to the black box model [14].

An applied example of LIME for breast cancer diagnosis can be found in

Subsection 5.2.2.

3.3 Shapley Values, SHAP, and Kernel SHAP

SHAP (SHapley Additive exPlanation) values are an explainable AI framework

first introduced by Lundberg et al. [14] in their paper entitled ‘A Unified Approach

to Interpreting Model Predictions’. SHAP values are related closely to Shapley

values, a concept derived from cooperative game theory by Lloyd Shapley in 1953

in his paper entitled ‘A Value for n-Person Games’ [18].

A cooperative game requires players and a game, which in the context of ma-

chine learning are the features of the model and the model prediction respectively.

For the purposes of this thesis we will not delve into the differences between
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cooperative games and other types of games that exist in game theory such as

non-cooperative games.

The payout from the game is the model prediction itself, and this payout must

be distributed equitably amongst the players based on their respective contribu-

tions. Shapley values are a unique solution that tell us how we should divide this

payout amongst the players and it is based on each feature’s contribution to the

game. For example, if we have a machine learning model f (x), then the Shapley

values will tell us how to divide the prediction of f (x) less its base value into the

contributions made by each of the features.

The formal definition for a Shapley value is shown below in Equation 3.4. θi

represents the Shapley value for feature i. S is a subset of players in a coopera-

tive game, and F is the set of all possible permutations of subsets. |S | and |F| are

the number of players in the subset and total number of players respectively.V is

the value function that takes in a subset of players in the game, and in the con-

text of machine learning it is the black box model output on a subset of features.

Ultimately, the equation details the marginal contribution of a player to the game.

θi =
∑

S⊆F−{i}

|S |!(|F| − |S | − 1)!
|F|!

(V(S ∪ i) − V(S )) (3.4)

Shapley values differ from SHAP values in that the formal Shapley value first

proposed by Lloyd Shapley [18] may use any value function that maps a coalition

of players (ie. a subset of players in the powerset of all possible permutations

of feature subsets) to the real number space V(S ) that satisfies the axioms of a
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Shapley value; efficiency, symmetry, dummy, and additivity. V(S ) represents the

value function for the coalition S . SHAP values are effectively the application of

Shapley values to machine learning models, wherein the machine learning model

is the value function V(S ).

When trying to evaluate the Shapley values of some cooperative game, we

must choose a value function that satisfies the axioms of a Shapley value. One

possible value function that returns Shapley values is shown below in Equation

3.5. The xS 1 through xS M represent the actual feature values for a particular coali-

tion/subset, where M is the total number of features. fS (xS ) denotes the marginal

function of f with respect to the subset S , meaning it takes in a subset of the total

features in the grand coalition. In order to calculate fS (xS ) we either need to re-

train f using only the features in the subset, or use the original model to calculate

the marginal value of f with respect to the subset. E[ f (X)] is the average target

value of the machine learning model training set.

V(S ) = V(xS 1 , xS 2 , xS 3 , ..., xS m) = fS (xS ) − E[ f (X)] (3.5)

We know that training machine learning models is more computationally ex-

pensive than producing predictions, so let’s suppose that fS (xS ) is computed by

using the original model f which is able to take in missing values for features.

Most machine learning models are not equipped to handle missing features and

this is a theoretical example to showcase the differences between Shapley values

and SHAP values. There are various ways in which a practitioner may simulate a
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feature being missing, however in this thesis we will use the background training

data set to simulate missing features.

So we’ve established by the formal definition of a Shapley value that we may

use any value function that satisfies the Shapley value axioms. And we also know

that one possible value for the value function that satisfies these axioms is given

in Equation (3.5) . Where SHAP values branch off from the general form of a

Shapley value, is that they tell us how to calculate the marginal value of f with

respect to the subset S . SHAP values make use of the fact that training new models

is an expensive feat, and that it’s faster to use the original model to calculate the

marginal function of the subset. SHAP says that we may use the expected value

of the function given the subset of features present in the subset.

fS (xS ) ≈ E[ f (x)|xS ] (3.6)

Now suppose we have some variable z′ that is a binary coalition vector that

represents the features present in the subset with 1 where the feature is present

and 0 where the feature is absent. If we had an instance x = [17, 4, 5, 9, 3] then x′

would be the grand coalition vector [1, 1, 1, 1, 1]. z′ is defined to be any coalition

(ie. subset) of the grand coalition vector, for example z′ = [1, 0, 1, 0, 1]. z is the

value representation of the binary coalition vector, so if z′ = [1, 0, 1, 0, 1], then

z = [17,missing, 5,missing, 3]. In this thesis we use the background data set

feature values, ie. the training set used to train the black box model, in order to

simulate missing features. This means that in order to calculate a coalitions value
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we will replace the feature values in the background dataset with the feature values

from the explanation point where the feature is present. The mapping function

hx(z′) takes in a binary coalition vector and returns the value coalition vector z (ie.

hx(z′) = z). With this new binary coalition notation we can assert that fx(z′) =

fS (xS ) = f (hx(z′)) = f (z) are all equivalent, but written in different notation.

Therefore we can rewrite Equation (3.6) as follows;

fx(z′) = f (hx(z′)) ≈ E[ f (z)|zs] (3.7)

The formal definition of SHAP values can be written as follows if we’re using

coalition notation, but this may also be rewritten in subset notation using xs instead

of zs:

θi( f , x) =
∑
z′⊆x′

|z′|!(|x′| − |z′| − 1)!
|x′|!

(E[ f (z)|zs] − E[ f (z)|zs−{i}]) (3.8)

Equation (3.4) initially looks different than Equation (3.8), but we know that

|S | is equal to |z′| and |F| is equal to |x′|. |x′| is equal to the number of elements

in the grand coalition (ie. the total number of players) and |z′| is equal to the

number of elements in the subset z′. Equation (3.8) is asserting that to calculate

the contribution of feature i, we must average the contributions of feature i to all

the coalitions/subsets of x′. Another difference to note between Equation (3.8)

and (3.4) is that the Shapley value in Equation (3.8) is a function of f (our orig-

inal machine learning model), and x (the point of interest to be explained). The

Shapley value in Equation (3.8) is a function of f and x because we are using a
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specified value function similar to (3.6) but where fS (xS ) is defined to be the con-

ditional expectation of f (z) given some subset zs as shown in Equation (3.7) . In

short, SHAP values are the machine learning application of Shapley values.

Now the computation of these conditional expectations of f based on some

subset zs is a computationally exhaustive task, particularly when features are not

independent and the black box model is not linear. This is because as the number

of features in a machine learning model increases, the number of possible feature

permutations rises exponentially. SHAP may be approximated in different ways

depending on whether or not we apply the optional assumption of feature inde-

pendence, however this is beyond the scope of this thesis. If one assumes feature

independence, one may approximate SHAP by employing the Shapley Sampling

Values method described in the original SHAP paper[14]. However, only assum-

ing feature independence and not model linearity requires us to use Equation (3.8)

which is a permutation form of computing Shapley values, and thus it requires an

exponentially large number of model evaluations, which is extremely expensive

and impractical in a higher dimension feature space.

This thesis focuses on how we may approximate SHAP under the assumptions

of both feature independence and model linearity by employing Kernel SHAP.

Kernel SHAP does not need to evaluate f (x), the original machine learning model

as many times as the permutation version of Shapley values described in equa-

tions (3.4) and (3.8) [14]. Additionally, Kernel SHAP has been shown to be a

faster approximation of SHAP values with similar accuracy as permutation based

approximation methods [14].
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Now let’s define an explainer model called g that takes in a binary coalition

vector as its argument;

g(z′) = g(z′1, z
′
2, z
′
3, ..., z

′
M) (3.9)

By the definition of what constitutes an additive feature attribution method, g

is a linear function that takes in a binary coalition vector as follows:

g(z′) = c0 +

M∑
i=1

ciz′i (3.10)

There are 3 desirable properties of feature attribution methods; local accu-

racy, missingness, and consistency. These properties are explained further in the

original paper presenting SHAP [14]. As this thesis focuses on local explana-

tion methods, we highlight that the local accuracy property refers to the fact that

we want our explanation model to explain some model f at a particular point x;

g(x′) = f (x) for some particular instance x.

f (x) = g(x′) = θ0 +
M∑

i=1

θix′i (3.11)

Lundberg et al. highlight that Shapley values are the only solution that satisfy

the 3 aforementioned desirable properties of additive feature attribution methods,

and that any explanation methods that do not follow the Shapley value formula

violate local accuracy and/or consistency. Furthermore, Lundberg et al. proposed

SHAP as an adaptation of Shapley values with a defined value function (the value

function noted in Equation (3.6)), that satisfy the 3 desirable properties of an
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additive feature attribution method. As previously mentioned, SHAP values are

very computationally expensive and Kernel SHAP provides a way to approximate

SHAP values that is faster than permutation based Shapley value methods, while

retaining similar accuracy.

Kernel SHAP assumes model linearity in addition to feature independence. It

is shown in the SHAP paper that Kernel SHAP minimizes a loss function using

certain parameters, and in doing so it recovers the SHAP values. The loss function

considers as arguments the original function, the explainer model g, and some

measure of distance between the original model and the explainer model. The

kernel which minimizes the loss function L is called the Shapley kernel and is

detailed below along with the implementation of the loss function which considers

the squared distance between the explainer model output for some coalition z′ and

the original model output for that coalition. The Shapley kernel proof may be

found in the original SHAP paper [14]. Ω(g) = 0 simply states that the Shapley

kernel does not use a regularization term on the explainer model. πx(z′) represents

the kernel weight applied to each subset z′, taking into account the total number

of features M, previous referred to as |x′|, and the number of subsets of size |z′|.

L( f , g, πx′) is the loss function that is to be minimized, and in layman’s terms it is

essentially stating that we want the smallest distance between the predictions of

the black box model and the explainer model that aims to emulate the black box

model.
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Ω(g) = 0 (3.12)

πx′(z′) =
M − 1(

M
|z′ |

)
|z′|(M − |z′|)

L( f , g, πx′) =
∑
z′⊆x′
πx′(z′)(g(z′) − fx(z′))2

So we know that by minimizing the loss function detailed in Equation (3.12),

we will recover the SHAP values under the assumption of model linearity and

feature independence (Kernel SHAP). Additionally, as Lundberg et al. point out,

using the Shapley Kernel definitions for the regularization term, the weighting

term, and the loss function are the solution to LIME that achieve local accuracy,

missingness, and consistency [14]. The algorithm for the computation of Kernel

SHAP values is discussed by Covert et al. in their research regarding Unbiased

versus Biased Kernel SHAP computations [5], and we provide the Biased Kernel

SHAP algorithm for posterity in Section 4.3.

In order to solve for exact (true) Kernel SHAP values we must evaluate our

machine learning model 2M times, where M is the number of features in the model.

For models containing a small number of features this is a feasible computation,

however as the dimensionality of a machine learning model increases the number

of model evaluations we must perform for true Kernel SHAP increases exponen-

tially. Thus the task of approximating true Kernel SHAP values in an computa-

tionally efficient manner is of utmost importance.

This thesis focuses on examining and modifying the Biased Kernel SHAP
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algorithm as presented by Covert et al. and discussed in Section 4.3, and also

the Ensemble of Random SHAPs methods, first introduced by Utkin et al. and

discussed in Section 4.2 [23] [5].
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Chapter 4

Approximating Kernel SHAP

4.1 Existing Methods

As noted in the original SHAP paper [14], practitioners may approximate SHAP

under the assumption of model independence, and not linearity, by the Shapley

sampling values method. In this context, the Shapley sampling values method at-

tempts to estimate the SHAP values using Equation (3.8), a permutation version

of the classic Shapley values under the assumption of feature independence. The

estimation of each feature’s SHAP value is done by sampling the marginal contri-

bution of a feature to all possible permutations of feature coalitions. This task is

often done by Monte Carlo integration, as noted by Aas et al. [1], and Strumbelj

et al. [21]. While the aforementioned sampling method does not assume model

linearity, it is shown in the original SHAP paper that Kernel SHAP, which does

assume model linearity, does not need to evaluate the original black box model as

many times in order to approximate SHAP, and it does so with competing accu-

racy [14].

25



Aas et al. propose a sampling method regarding relaxing the assumption of

feature independence in Kernel SHAP. They do so by estimating the conditional

probability distribution of the complement coalition xs given that xs is equal to

some coalition subset of features. This research provides quite interesting insight

to the effect of assuming feature independence when trying to predict SHAP val-

ues, however the authors note that it is still very computationally expensive and

does not provide a computational time benefit over Kernel SHAP [1]. Further-

more, the approximation methods studied in this thesis focus on approximating

Kernel SHAP under the assumptions of feature independence and model linearity.

We believe that a focus on model agnostic Kernel SHAP approximations is

imperative due to the fact that in practice, machine learning practitioners may opt

for ensemble pipelines containing different types of machine learning models [6].

As such we will not provide further detail on model-specific SHAP approxima-

tions such as DASP, [2], Deep SHAP [14], or Tree SHAP [13].

Covert et al. discuss the differences between the Kernel SHAP algorithm

which some practitioners have asserted is a biased algorithm [5]. However, they

detail that a Biased Kernel SHAP algorithm sustains a trivial increase in bias for

remarkably lower variance than an Unbiased Kernel SHAP algorithm, and thus

converges to true Kernel SHAP values much faster than its unbiased counter-

part. Producing true Kernel SHAP values for a particular explanation point re-

quires producing an exponentially large number of model predictions, specifically

2M · number of training samples, where M is the total number of features. This

is a challenging feat computationally if the number of features used as black box
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inputs is relatively high. Thus, using a sample of coalitions rather than the entire

power set is necessary to achieve computational efficiency. Knowing how many

coalitions samples to use to reasonably approximate true Kernel SHAP values is

also challenging. Covert et al. also address this challenge by suggesting the use

of a convergence detection algorithm such as Welford’s algorithm. More informa-

tion on how to use Welford’s aglorithm to detect Kernel SHAP convergence may

be found in their paper [5]. In addition to the convergence detection solution to

understanding when a sufficient number of coalition samples have been reached,

the authors also offer a variance reduction technique that involves coalition com-

plement sampling.

4.2 Ensemble of Random SHAPs

The Ensemble of Random SHAPs method was first introduced by Utkin et al.

[23]. In their research they present several algorithms that take the following

generalized approach; for a chosen level of t, construct coalitions of the original

explanation point x of size t, wherein the features that are selected for each of the

coalitions are chosen by some probability distribution and with replacement. For

example, if we have an original explanation point x = [1, 3, 7, 8, 9, 5, 0, 8, 11, 3],

we could construct t = 3, N = 4 number of coalitions of the original vector

as follows; z′1 = [1, 0, 0, 1, 1, 0, 0, 0, 0, 0], z′2 = [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], z′3 =

[0, 1, 0, 1, 1, 0, 0, 0, 0, 0], z′4 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]. The value representation

of the coalition vectors (ie. the vectors corresponding to z′ that have the values
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from the original explanation point substituted where the indices of z′i = 1) are

then run through Kernel SHAP separately to produce 3 different sets of exact

Kernel SHAP values. Using these algorithms, we are not returned Kernel SHAP

approximations for the features not present in a chosen coalition, and for a chosen

coalition we replace the data in the training set for each feature that is missing with

its average feature value. In the case of standardized data we would replace the

training data fed into the explainer model with 0 for features that are not present

in the given coaltion. Over N number of iterations, we are left with a set of Kernel

SHAP values from each z that correspond to the features present in each of these

coalitions. We then combine these Kernel SHAP values by simple averaging to

produce a final set of Kernel SHAP approximations.

ER-SHAP is the most rudementary algorithm presented in their paper [23],

and it uses a uniform distribution when selecting t number of features from the ex-

planation point to construct N coalition vectors, and the sets of Kernel SHAP ap-

proximations produced by each of the N iterations are then combined by a simple

average. In the example cited earlier wherein we have the coalition vectors z′1 =

[1, 0, 0, 1, 1, 0, 0, 0, 0, 0], z′2 = [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], z′3 = [0, 1, 0, 1, 1, 0, 0, 0, 0, 0],

and z′3 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0], we would produce 3 approximations for feature

1, 3 approximations for feature 2, 1 approximation for feature 3, 3 approximations

for feature 4, 2 approximations for feature 5, and no approximations for features

6-10. We average the approximations based on how many times each feature is

selected to be a part of a coalition vector, for example for feature 5 we would sum

the 2 Kernel SHAP approximations produced by ER-SHAP and then we would

28



divide by 2. The time complexity of this particular example would be 4 · 23 since

we performed 4 iterations of ER-SHAP and selected 3 features for each coalition,

so we perform 23 model evaluations each time that we iterate. The total number

of model evaluations for this example is 32.

4.3 Biased Kernel SHAP

This algorithm is the algorithm presented and analyzed in depth by Covert et al

in their research paper entitled ‘Improving Kernel SHAP: Practical Shapley Value

Estimation via Linear Regression’ [5]. We provide the algorithm for Biased Ker-

nel SHAP as presented by the aforementioned authors for posterity and to compare

with the Fixed Biased Kernel SHAP algorithm presented in this research paper.

To reiterate, a Biased Kernel SHAP algorithm sustains a trivial increase in

bias for remarkably lower variance than an Unbiased Kernel SHAP algorithm, and

thus converges to true Kernel SHAP values much faster than its unbiased coun-

terpart. Producing true Kernel SHAP values for a particular explanation point

requires producing an exponentially large number of model predictions, specifi-

cally 2M · number of training samples, where M is the total number of features.

We do not detail the technical difference between Unbiased and Biased Kernel

SHAP approximation algorithms, as it is out of scope for this thesis and covered

extensively by Covert et al [5].

It is important to note that in a Biased or Unbiased Kernel SHAP algorithm,

p(Z) is the probability distribution for which we use to sample coalitions, and
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it is determined by the Shapley kernel from Equation 3.12. Recall that πx′(z′) =

M−1
( M
|z′ |)|z′ |(M−|z′ |)

. The probability distribution of the coalitions is thus defined as follows

[5];

p(Z) =


N−1πx′(z′) if 0 < 1T z′ < M

0 otherwise

As in the above equation, N is the sum of the kernel weights for all coalition

sizes. We must divide the coalitions kernel weights by this sum in order to get

their respective probabilities. Furthermore, N is defined as follows;

N =
M−1∑
|z′ |=1

M − 1
|z′|(M − |z′|)

(4.1)
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Algorithm 1 Biased Kernel SHAP

Data: Training Data Set
Input: Explanation Point, Trained Black Box Model
Result: Kernel SHAP approximations

//Initialize
numFeatures = number of features in training set
numS amples = number of coalitions to sample 2numFeatures

n = 0
A = 0
b = 0

while n ≤ numS amples do
//Sample a coalition, compute matrix A, compute vector b
Sample z′ ∼ p(Z)
Asample = z′z′T

bsample = z′(v(z) − v(0))
n = n + 1
A+ = (Asample − A)/n
b+ = (bsample − b)/n

end

// Get Shapley value estimates
B = A−1(b − 1 · 1T A−1b−v(1)+v(0)

1T A−11 )
return B
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4.4 Fixed Biased Kernel SHAP

Unfortunately, the Ensemble of Random SHAPs algorithms presented by Utkin et

al. leave much to be desired. In particular, they give no explanation as to whether

or not the calculation of Kernel SHAP approximations for each iteration shall be

biased or unbiased, or whether the calculation of each set of Kernel SHAP ap-

proximations shall adhere to a t sized calculation or a full scale Kernel SHAP

approximation using a weight matrix that has dimensionality equal to the number

of features. Additionally, the authors provide no insight into how these algorithms

perform against Biased Kernel SHAP. As an alternative, we present a novel algo-

rithm called Fixed Biased Kernel SHAP that draws upon the advantages of both

the Biased Kernel SHAP algorithm and the front-loading aspect of the Ensemble

of Random SHAPs methods.

The algorithm is similar to Biased Kernel SHAP in that it uses the same cal-

culation for matrix A and and vector b, but it is also similar to the Ensemble of

Random SHAPs methods in that we select a t size coalition, and then we sample

only coalitions of that size in addition to their enumerations. Similarly to Biased

Kernel SHAP, Matrix A is the matrix representation of kernel weights, and b is

the vector representation of the average of the coalitions values less the black box

base value. The base value v(0), is the average target value of the training samples

fed into the black box model.

Fixed Bised Kernel SHAP differs from Biased Kernel SHAP in that the coali-

tions to be sampled are largely pre-determined by selecting a t coalition size to
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exclusively sample and enumerate. In Fixed Biased Kernel SHAP we do not dou-

ble count coalitions, for example if we have a 10 feature model and select t = 2,

then the maximum number of coalitions that could be sampled would be 55 since(
10
2

)
= 45 and

(
10
1

)
= 10. Note that in a 10 feature model, there are exactly 45

coalitions of size 2 and exactly 10 coalitions of size 1.

The algorithm for Fixed Biased Kernel SHAP can be found below, and the

evaluation of the algorithm’s performance versus Biased Kernel SHAP can be

found in Subsection 5.3.2.
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Algorithm 2 Fixed Biased Kernel SHAP

Data: Training Data Set
Input: Explanation Point, Trained Black Box Model
Result: Kernel SHAP approximations

//Initialize
numFeatures = number of features in training set
t = selected coalition size, 2 ≤ t ≤ numFeatures
f eaturesList = [i for i in range(0, numFeatures)]
grandCoalitionPowerS et = list(powerset( f eaturesList))
tCoalitions = [all t size coalitions from grandCoalitionPowerSet]
numS amples = total number of coalitions to sample ≤

∑t
i=1

(
numFeatures

i

)
A = 0
b = 0
n = 0

enumeratedCoalitions = set()
while n ≤ numSamples do
// Sample a t size coalition

sampleCoalition = sample coalition from tCoalitions ∼ p(Uni f orm)
coalitionS et = list(powerset(sampleCoalition))
tCoalitions.pop(sampleCoalition)

foreach coalition in coalitionSet do
if coalition not in enumeratedCoalitions then
// Compute matrix A, compute vector b
z′ = binary vector representation of coalition
Asample = z′z′T

bsample = z′(v(z) − v(0))
n = n + 1
A+ = (Asample − A)/n
b+ = (bsample − b)/n
enumeratedCoalitions.add(coalition)

end
end

end

// Get Shapley value estimates
B = A−1(b − 1 · 1T A−1b−v(1)+v(0)

1T A−11 )
return B
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Chapter 5

Applying Local XAI Methods to

Breast Cancer Diagnostics

5.1 Description of Data Set and Preprocessing

The experiments in this Chapter all use the Breast Cancer Wisconsin Diagnostic

(BCW-D) data set. This data set consists of features computed from fine needle

aspirate (FNA) tumor collection, wherein the values of the features describe the

nuclei characteristics found in the FNA image [26]. This data set has 569 records,

and 10 features reported by their mean, standard-error, and worst values (average

of the biggest 3 nuclei) [26]. The target variable for the BCW-D data set is a bi-

nary class indicating whether or not the patient has a malignant or benign tumor.

The 10 features are; Radius, Texture, Perimeter, Area, Smoothness, Compactness,

Concavity, Concave Points, Symmetry, and Fractal Dimension. The class distri-
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bution is somewhat imbalanced as there are 357 benign and 212 malignant cases.

Since this thesis computes exact Kernel SHAP results, we construct our models

using only the mean values of the 10 aforementioned features and leave out the

standard-error and worst feature values. Furthermore, we construct our models

for the BCW-D dataset using 10 features.

For the purposes of comparing local model agnostic XAI methods as in sec-

tion 5.2, we use an XGBoost model to produce predictions of tumor malignancy

from the BCW-D dataset. Prior to evaluating our model we standardize all 10 fea-

tures to a mean of 0 and standard deviation of 1 following a normal distribution.

Since the focus of this thesis is on Local Model Agnostic XAI methods and ap-

proximating Kernel SHAP, we will not provide supplementary detail on the inner

workings of XGBoost itself, since the XAI methods discussed in this paper may

be applied to any underlying black box model. The accuracy of our underlying

XGBoost model is 96%. The aforementioned black box model is trained using

an 80/20 train-test split from the BCW-D dataset, which translates to 455 training

samples and 114 test set samples.

This chapter applies local XAI methodologies to the same malignant case

and analyzes and summarizes the differences between the various methods. We

provide extensive and novel illustration to help visualize the explanation of the

underlying XGBoost model. Additionally, we provide a novel modification of the

Biased Kernel SHAP algorithm, called Fixed Biased Kernel SHAP, to efficiently

approximate Kernel SHAP values while retaining satisfactory accuracy.
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5.2 Method Application & Analysis

5.2.1 ICE and C-ICE

Figures 5.1, 5.2, 5.3, and 5.4, detail both the ICE & C-ICE plots for the top two

features contributing towards malignancy in the patient studied. The top contribut-

ing feature according to ICE and C-ICE is texture, followed by smoothness. This

is different than the average most impactful feature contributing towards malig-

nancy, which is area. For a complete technical rundown on the inner workings

of ICE & C-ICE please reference Section 3.1. The ICE & C-ICE plots for the

remaining features may be found in Appendix A.

Each of the black lines constitute a single patient’s ICE trajectory for the

114 patients in the BCW-D test set. The dashed blue line represents the average

ICE plots for all 114 patients. Since we standardized our features prior to train-

ing our XGB model, the average feature value is zero across all features. For

the texture feature in the malignant case studied, we see that at around -1 stan-

dardized deviations, the probability of malignancy starts to rise dramatically. To

produce the ICE & C-ICE graphs below, we provide a novel modification of the

sklearn.inspection.PartialDependenceDisplay graphs in order to highlight the lo-

cal malignant case studied in this chapter, as well as the benign case referenced in

Appendix A.
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Figure 5.1: ICE for texture mean, XGBoost.
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Figure 5.2: C-ICE for texture mean, XGBoost.
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For the smoothness feature seen below on the malignant case studied, we see

that at around -0.5 standard deviations, the probability of malignancy starts to

increase.

Figure 5.3: ICE for smoothness mean, XGBoost.
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Figure 5.4: C-ICE for smoothness mean, XGBoost.

41



This thesis provides a conclusory explanation table for the patient we study

with a positive malignancy diagnosis, for each of the local XAI methods pre-

sented. These tables aim to provide both clarity and ease of explanatory compar-

ison between methods. The conclusory explanation table for ICE and C-ICE is

shown in the table below.

Table 5.1: XGBoost Black Box - ICE & C-ICE Summary Table, Malignant Case.

42



5.2.2 LIME

This section details the outcome of applying LIME using a weighted logistic re-

gression, with no penalty, to a malignant case from the BCW-D dataset. We chose

not to construct our logistic regression using a penalty as it has been shown to

be disadvantageous to LIME performance [24]. For both the malignant and the

benign case, we compare and evaluate the outcome of using LIME using a kernel

width of 2.3717 and a kernel width of 0.9. The kernel width of 2.3717 was se-

lected as it is the default heuristic used in the LIME package created for python by

Ribiero et al.[22]., and it is roughly 75% of the square root of the number of fea-

tures (M=10). The kernel width of 0.9 was chosen randomly but with the intent of

choosing a significantly more localized kernel than the default kernel width. The

neighbourhood generated for the logistic regression used in LIME consisted of

4000 randomly generated data points following a normal distribution with mean 0

and standard deviation of 1. The weights used were generated using an exponen-

tial kernel as detailed in Equation 3.2. We provide extensive and novel illustration

to help explain the inner workings of the XGBoost model on the malignant case

studied.

As interpreting a logistic regression is not as straight forward as a simple

linear regression, we will go into some detail regarding logistic regression inter-

pretation. The formula for logistic regression is shown below;

y =
1

1 + e−z (5.1)
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In the above equation, z is the linear combination of coefficients produced by

the logistic regression multiplied by the feature values;

z = z0 + z1x1 + z2x2 + ... + zmxm (5.2)

Furthermore, it is naive to take the value of the coefficients in z and use them

as our feature importance interpretation, as the relationship between the coeffi-

cients and the output y is not linear [15].

Logistic regression gives us the probability that y = 1, in other words, the

probability of some event y occuring. We can get a better understanding of how

our coefficients influence the outcome of our model by looking at the odds of our

model y.

The odds of some event y occurring is defined as follows;

Odds =
P(y = 1)

1 − P(y = 1)
=

P(y = 1)
P(y = 0)

(5.3)

The equation for P(y=1) is given in 5.1. Furthermore, if we subtract P(y=1)

from 1, we know that by the law of total probability that this gives us P(y=0);

P(y = 0) = 1 −
1

1 + e−z =
1

1 + ez (5.4)

The odds of our model is then defined as follows;

Odds =
1

1 + e−z ÷
1

1 + ez = ez (5.5)
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If we want to understand how the odds change when a feature increases by a

factor of 1 unit, we can look at the ratio of odds [15];

Oddsxi+1

Oddsxi

=
z0 + z1x1 + zixi+1 + ... + zmxm

z0 + z1x1 + zixi + ... + zmxm
(5.6)

The above equation reduces to the following;

Oddsxi+1

Oddsxi

= exp(zi) (5.7)

This means that for every unit increase for a given feature, the odds increase

by a factor of exp(zi) [15].

However, we assert that looking at the absolute change in odds is also nec-

essary to fully understand the explanation model, as a base odds that is relatively

high or relatively low will skew the significance of the change. For example, if

our base odds are equal to 50 (relatively high), and feature xi+1 increases the odds

to 60, then our odds ratio will be 1.2. But let’s say that feature x j+1 increases

our odds to 100, then our odds ratio is 2. Feature xi increased absolute odds by

10 but feature x j increased odds by 50 which is 5 times as much as feature xi.

Furthermore, we also want to look at the absolute change in odds for each feature

after making isolated unit increases to each feature. The absolute change in odds

is defined as follows;

∆Absolute = Oddsxi+1 − Oddsxi (5.8)

In Figure 5.2 and in Figure 5.3 below, we summarize the results of our local
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weighted logistic regression for the malignant case from BCW-D using a kernel

width of 2.3717 (default width) and 0.9 respectively. The column ‘Value’ details

the feature values for the malignant case, and the right-adjacent column details

the logistic regression coefficients from our local LIME model. Additionally the

table includes the black box prediction which is 1 (malignant), the local prediction

which is also 1.

Black box accuracy details the accuracy between the predictions from our

XGB model on the BCW-D test set and the true BCW-D target values. Local ac-

curacy is the accuracy between the true BCW-D target values and the predictions

for these target values generated by the local logistic LIME models. The LIME

neighbourhood accuracy is the accuracy between the predictions from our XGB

model and the logistic LIME model on the 4000 generated neighborhood points,

taking the XGB predictions as our true values since the local interpretable LIME

model seeks to explain the XGB model. The LIME R2 score is the R2 score of

the predictions from our XGB model and the logistic LIME model on the 4000

generated neighborhood points.

Upon reading the below LIME summary tables for KW = 2.3717 and KW =

0.9, we take note that feature importance order based solely on the logistic regres-

sion coefficient values varies between the two differing kernel widths, though the

top 5 contributing features are the same. The top 5 contributing features based

solely on our Logistic LIME model coefficients are concave points, texture, area,

concavity, and smoothness.
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Table 5.2: XGBoost Black Box - Malignant Case LIME Summary, Kernel
Width=2.3717
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Table 5.3: XGBoost Black Box - Malignant Case LIME Summary, Kernel
Width=0.9
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It is important to consider more than just the logistic regression coefficient

itself when evaluating a LIME model that uses a logistic regression as its inter-

pretable model. The below graphs detail the relative change in odds that each

feature contributes when considering a logistic LIME model with kernel widths

2.3717 and 0.9 respectively. As a reminder, this calculation is simply ezi , in oth-

erwords it is e to the exponent of the respective feature coefficient value as shown

in Equation 5.7. The relative change in odds for all features while using a smaller

kernel width of 0.9 are higher for all features than that of the default kernel width

of 2.3717. As we use smaller kernel widths in LIME we tend to see higher adher-

ence to the local ML model, which in our case is evidenced by an R2 score of .57

for our 0.9 model and .5 for our default kernel width model.
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Figure 5.5: XGBoost Black Box - Malignant Case, Relative Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 2.3717
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Figure 5.6: XGBoost Black Box - Malignant Case, Relative Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 0.9
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Next we take a look at the equivalent graphs demonstrating the absolute change

in odds from isolated unit increases in each of the feature values. Here we can

understand the impact that each feature has on the change in odds, while elimi-

nating the issue of base odds skewing relative importance. We notice that both

the 0.9 and 2.3717 kernel width models have the same top 5 and bottom 5 con-

tributing features. This relationship holds true for the relative change in odds as

well. Furthermore, because the features contained in each of the aforementioned

feature importance buckets are the same for both kernel width LIME models, we

can predict that there is a fair chance that the feature importance ordering of true

Kernel SHAP values may be somewhat similar. We will examine this patient’s

malignancy diagnosis from a Kernel SHAP perspective in Subsection 5.2.3.
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Figure 5.7: XGBoost Black Box - Malignant Case, Absolute Change of Odds
Ratio from Isolated Unit Increase In Feature Value, Kernel Width = 2.3717
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Figure 5.8: XGBoost Black Box - Malignant Case, Absolute Change of Odds
Ratio from Isolated Unit Increase In Feature Value, Kernel Width = 0.9
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In Figures 5.9, and 5.10, we take the absolute value (modulus) of the absolute

change in odds from each of the isolated unit increases and compare them to

each other on a percentage basis of the sum of all the absolute values of absolute

change in odds. We use the absolute value of the absolute change in odds, because

producing a proportional visualization such as a pie chart requires this stipulation.

We see that in the 2.3717 kernel width LIME model that texture is ranked as the

highest as a percentage of the total sum of absolute value of the absolute change in

odds, whereas in the 0.9 kernel width LIME model the top percentage contribution

is concave points. The equivalent tables and figures for the benign case can be

found in Appendix B.
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Figure 5.9: XGBoost Black Box - Malignant Case, % Percent of Total Modulus
(Absolute Value) Absolute Change in Odds from Isolated Unit Increase For All
Features, Kernel Width = 2.3717

56



Figure 5.10: XGBoost Black Box - Maligant Case, % Percent of Total Modulus
(Absolute Value) Absolute Change in Odds from Isolated Unit Increase For All
Features, Kernel Width = 0.9

57



The conclusory explanation tables for the LIME method using a kernel width

of 2.3717 and 0.9 are shown below for the malignant case studied in this thesis.

We note that the top 5 features contributing to malignancy are the same for both

LIME models, however the ordering is different and the top contributing feature

is texture for the 2.3717 kernel width model and concave points for the 0.9 model.

Table 5.4: XGBoost Black Box - LIME Summary Table, Malignant Case, Kernel
Width 2.3717
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Table 5.5: XGBoost Black Box - LIME Summary Table, Malignant Case, Kernel
Width 0.9
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5.2.3 Kernel SHAP

In this Section we detail the result of generating exact (true) Kernel SHAP values

for our malignant case studied in this thesis. In this Section we provide novel

illustrations to enhance explanatory usefulness of the underlying XGBoost model

as it relates to true Kernel SHAP values. We will use these same illustrations in

Section 5.3 wherein we attempt to approximate these true Kernel SHAP values.

The equivalent figures for the benign case can be seen in Appendix C. In Figure

5.11 we see that the largest contributing feature to the positive malignant diagno-

sis is texture, as noted by the purple coloured bar with a Kernel SHAP value of

0.232. The second highest contributing feature to the diagnosis is concave points,

as noted by the aqua bar with a Kernel SHAP value of 0.189. The third high-

est contributing feature toward the diagnosis is concavity, and it is followed then

smoothness in fourth place. Figure 5.12 shows an alternative visualization of the

contributing Kernel SHAP values for this patient. We note that the top 5 and bot-

tom 5 contributing features for this patient’s malignant diagnosis based on Kernel

SHAP are the same as the top 5 contributing factors in both of the LIME models,

however the exact ordering of the feature importance does vary.
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Figure 5.11: XGBoost Black Box - Exact Kernel SHAP values - Malignant Case,
Kernel SHAP Additive Illustration
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Figure 5.12: XGBoost Black Box - Exact Kernel SHAP values - Malignant Case,
Kernel SHAP Bars Illustration
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This next visualization is generated by summing the absolute value of the

Kernel SHAP values for this patient, and then expressing the contribution of each

individual Kernel SHAP value as a percentage of that sum. This is similar to the

visualization that we produce in our LIME analysis of this patient in Figures 5.9,

and 5.10. We see that texture and concave points dominate the malignant diag-

nosis for this patient with a 50% contribution to the absolute value sum. The top

three contributing features, which includes concavity, contribute 65% of the sum

of the absolute Kernel SHAP values. The top four features contribute 78% of this

sum. Our Kernel SHAP analysis of this patient demonstrates that the contribution

of each feature is non-uniform.
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Figure 5.13: XGBoost Black Box - % of Total Modulus Kernel SHAP Values -
Malignant Case
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The conclusory explanation table for true Kernel SHAP values for the malig-

nant case studied in this thesis is shown below. We note that the top 5 features

contributing to malignancy are the same for both LIME models, however the or-

dering differs.

Table 5.6: XGBoost Black Box - True Kernel SHAP Summary Table, Malignant
Case
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5.3 Kernel SHAP Approximation Methods

This section details the results of applying three Kernel SHAP approximation

techniques; (1) Using LIME to infer Kernel SHAP, (2) the Biased Kernel SHAP

algorithm presented by Covert et al. [5] and (3) Our algorithm, Fixed Biased

Kernel SHAP.

5.3.1 Using LIME to predict Kernel SHAP

There are two general metrics of comparison we will use to evaluate the differ-

ences between the explanations produced by our logistic LIME models using

2.3717 and 0.9 kernel widths versus true Kernel SHAP values for the BCW-D

test set. These two metrics are 1) concordance index, and 2) Mean Squared Error.

The first metric we want to consider is concordance index, because it will

give us insight into how the ordering of feature importance compares between the

two methods. Concordance index is a measure of the number of concordant pairs

between two vectors, divided by the total number of pairs. Applied in our context,

concordance index for a given test set explanation is the number of concordant

pairs between the Kernel SHAP values and the LIME model feature importance.

If the true Kernel SHAP values for a given instance are such that KS HAPxi >

KS HAPx j for any two features of a given instance, and the LIME model feature

importance for that instance indicate that LIMExi > LIMEx j then this constitutes

a single concordant pair. To find the concordance index, we total the number

of concordant pairs between Kernel SHAP and LIME and divide it by the total
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possible pairs of features. This metric gives us insight into how the ordering of

Kernel SHAP values compare to the order of LIME feature importance values.

Naturally, a concordance index of 1 is the highest attainable value and a higher

concordance index indicates better performance.

In order to compare our LIME generated feature importances to Kernel SHAP,

we use the non-absolute value of the absolute change in odds from isolated unit

increases in each of the features from our LIME models. Since we know that the

sum of Kernel SHAP values for a given instance will equal the black box pre-

diction less the base value from the training set, we can use this sum alongside

our absolute change in odds to generate Kernel SHAP predictions from our LIME

models. Because we are using a logistic model as our explainable model, we can-

not simply take the coefficient values as our feature importance. As a reminder,

the absolute change in odds for a isolated unit increase in a given feature is given

by Equation 5.8. If we take the sum of these isolated increases and then divide

each of the absolute change in odds for each of the features by this sum, then

multiply these percentages by the sum of the Kernel SHAP values for a given in-

stance (which we know by taking the predicted value less the base value) and then

we have inferred the Kernel SHAP values using LIME for that instance. Natu-

rally, if the sum of the absolute change in odds is relatively high or relatively low,

this could inflate some of the inferred Kernel SHAP values. Furthermore, this

Kernel SHAP approximation method prioritizes speed over accuracy. Of course

we recognize this as an imperfect approximation, as the percentage contributions

from LIME are generated taking the sum of isolated unit increases in each fea-
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ture. However, using such an imperfect approximation of Kernel SHAP values by

LIME inference is still useful as we demonstrate below. Using these inferred Ker-

nel SHAP values for logistic LIME models that use a kernel width of 2.3717 and

0.9, we compare the inferred Kernel SHAP approximations with the actual Kernel

SHAP values for each of the test set instances in BCW-D. We plot the results of

the concordance index for each of the test set instances in the histograms below.

We observe an average concordance index of 0.76 for inferred Kernel SHAP val-

ues using both the default kernel width and a kernel width of 0.9. However, there

is less variability from the inferred Kernel SHAP predictions using the default

kernel width versus a kernel width of 0.9, as evidenced by a lower total sum of

squares of 1.27 versus 1.37.
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Figure 5.14: XGBoost Black Box - Comparing LIME vs Kernel SHAP - Con-
cordance Index of Inferred Kernel SHAP from Absolute Change in Odds From
Isolated Unit Increase in All Features (LIME) Vs Kernel SHAP, Kernel Width =
2.3717
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Figure 5.15: XGBoost Black Box - Comparing LIME vs Kernel SHAP - Con-
cordance Index of Inferred Kernel SHAP from Absolute Change in Odds From
Isolated Unit Increase in All Features (LIME) Vs Kernel SHAP, Kernel Width =
0.9
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The second metric we want to evaluate is the mean squared error between

our inferred Kernel SHAP values using our two logistic LIME models of varying

kernel widths. The histogram of these results can be seen in the below figures. We

observe an average MSE between inferred Kernel SHAP values and actual Kernel

SHAP values of 0.04 while using a LIME kernel width of 2.3717, and 0.06 while

using a LIME kernel width of 0.9. These results, compared with the concordance

index histograms from above, suggest that using a wider LIME kernel width such

as 2.3717 in conjunction with a logistic explainable model is more ideal than using

smaller kernel widths if the goal is to predict Kernel SHAP values using LIME.
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Figure 5.16: XGBoost Black Box - Comparing LIME vs Kernel SHAP - Mean
Squared Error of Inferred Kernel SHAP from Absolute Change in Odds From
Isolated Unit Increase in All Features (LIME) Vs Kernel SHAP, Kernel Width =
2.3717
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Figure 5.17: XGBoost Black Box - Comparing LIME vs Kernel SHAP - Mean
Squared Error of Inferred Kernel SHAP from Absolute Change in Odds From
Isolated Unit Increase in All Features (LIME) Vs Kernel SHAP, Kernel Width =
0.9
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The following graphs depict the Kernel SHAP approximation using LIME to

infer the Kernel SHAP values on the patient with a malignant tumor studied in this

thesis, using a kernel width of 2.3717. The equivalent figures for the benign case

can be seen in Appendix D. In figure 5.18 we see that the largest contributing fea-

ture to the positive malignant diagnosis is texture, as noted by the purple coloured

bar with an approximated Kernel SHAP value of 0.228. The second highest con-

tributing feature to the diagnosis is area, as noted by the magenta bar with an

approximated Kernel SHAP value of 0.19. The third highest contributing feature

toward the diagnosis is concave points, and it is followed then concavity in fourth

place. Figure 5.19 shows an alternative visualization of the contributing Kernel

SHAP value approximations for this patient.We note that the top 5 and bottom 5

contributing features for this patient’s malignant diagnosis are the same as the top

5 contributing factors when compared to the true Kernel SHAP values and both

of the LIME models, however the exact ordering of the feature importance does

vary.
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Figure 5.18: XGBoost Black Box - LIME Inferred Kernel SHAP Approximation
- Malignant Case, Additive Illustration, Kernel Width = 2.3717
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Figure 5.19: XGBoost Black Box - LIME Inferred Kernel SHAP Approximation
- Malignant Case, Bars Illustration, Kernel Width = 2.3717
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As mentioned previously, this next visualization is generated by summing the

absolute value of the Kernel SHAP approximation values for this patient, and

then expressing the contribution of each value as a percentage of that sum. We

see that texture and area dominate the malignant diagnosis for this patient with a

64% contribution to the absolute value sum. The top three contributing features,

which includes concave points, contribute 85% of the sum of the absolute Kernel

SHAP values. The top four features, which includes concavity, contribute 91% of

this sum. Ultimately, the results of the Kernel SHAP approximation using LIME

inference inflates the contribution of the top contributing features when compared

to the true Kernel SHAP values. For the malignant case, using LIME inference to

approximate Kernel SHAP values produces a squared error of 0.034 for the Kernel

SHAP value approximations for all 10 features.
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Figure 5.20: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using LIME Inferred Kernel SHAP Approximation - Malignant Case, Ker-
nel Width =2.3717
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The conclusory explanation table for the Lime Inferred Kernel SHAP approx-

imation algorithm is presented below.

Table 5.7: XGBoost Black Box - LIME Inferred Kernel SHAP Approximation
Summary Table
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5.3.2 Fixed Biased Kernel SHAP versus Biased Kernel SHAP

In this Subsection we look at how our Fixed Biased Kernel SHAP approximation

method compares to Biased Kernel SHAP.

To do so we ran our approximation algorithm and Kernel SHAP on the BCW-

D test set. We performed our Fixed Biased Kernel SHAP approximation method,

and Biased Kernel SHAP, on each of the 114 samples in the test set from the BCW-

D dataset, for an underlying XGB black box model. We evaluate both of these

algorithms compared to exact (true) Kernel SHAP on the basis of mean squared

error. We compared the results of these algorithms using a varying number of

coalition samples to see how they performed respective to each other when using

relatively low versus relatively high number of coalition samples.

To evaluate the effectiveness of both Fixed Biased Kernel SHAP and Kernel

SHAP, we calculated the true (exact) Kernel SHAP values for the BCW-D test

set values for the underlying black box model, XGBoost. Exact Kernel SHAP

values are found by enumerating the entire powerset of coalitions. This is very

computationally expensive as for a single instance that you wish to explain, it

requires 2M−2 model evaluations for every instance in the training data set, where

M is the number of features in the dataset. We subtract 2 from 2M because the

model evaluation for the grand coalition is known (it is simply the output of the

black box model with all features present), and the evaluation of the 0 or null

coalition is simply the average of the model output over the training data. For

simplicity, we will write 2M going forward. So for a given instance in the test

set, we completely enumerate its powerset, simulating ‘missing’ features by using
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the training set used to train the black box model. Thus we must perform this

enumeration of a single explanatory point for each of the training samples that

the black box model was built upon. So in fact, to get exact Kernel SHAP values

for a single instance, it is not simply 2M number of model evaluations we must

perform, but rather we must multiply 2M by the number of training samples as each

coalition will require us to produce model predictions in the amount of however

large the training set is. To reduce the additional computational expense due to

training data size, a machine learning practitioner may opt to apply clustering

techniques to summarize the training data. Since the size of the training data

set does not add exponentially higher computational expense but rather linearly

higher computational expense, we do not focus on reducing the impact on run

time from training data size in this thesis.

The results of our Fixed Biased Kernel SHAP approximation method at t=2

versus original Biased Kernel SHAP is seen below. The mean squared error is

the average across the BCW-D test set of 114 patients, wherein the squared error

between the Kernel SHAP approximation methods and true Kernel SHAP values

is summed for all 10 features. Thus this is the average (mean) across the BCW-D

test set, of the total squared error between the Kernel SHAP approximations and

true Kernel SHAP.
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Figure 5.21: Mean Squared Error of Fixed Biased Kernel SHAP approximations
and Biased Kernel SHAP for t=2, XGBoost
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We observe that our algorithm, Fixed Biased Kernel SHAP, outperforms Bi-

ased Kernel SHAP for a low number of coalition samples at t=2. This is evidenced

by observing the intersection of the blue line (our algorithm) with the orange line

(Kernel SHAP) at approximately 36 sample coalitions. Furthermore we can con-

clude that our algorithm provides superior Kernel SHAP approximations when

considering a relatively low number of samples and a t value of size 2.

The results of our Fixed Biased Kernel SHAP approximation method versus

original Biased Kernel SHAP is seen below for t=3.
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Figure 5.22: Mean Squared Error of Fixed Biased Kernel SHAP approximations
and Biased Kernel SHAP for t=3, XGBoost
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It is clear that the Biased Kernel SHAP algorithm is sensitive to the chosen

level of t, as our algorithm does not provide superior Kernel SHAP approxima-

tions to Biased Kernel SHAP at t=3 based on mean squared error. If a practitioner

has a large number of explanation points for which they wish to produce Kernel

SHAP approximations for, and if run time per explanation is of utmost consid-

eration, they may take a smaller subset of such explanations and fine tune the t

parameter using Bayesian optimization or any number of other optimization tech-

niques. Ultimately, it is a difficult task to approximate true Kernel SHAP values

in a more efficient and accurate manner than the Biased Kernel SHAP algorithm.

However, our algorithm provides an efficient way of producing reasonably accu-

rate Kernel SHAP approximations for a small number of coalitions. For example,

at t=2 and 25 coalitions, the MSE between Fixed Biased Kernel SHAP and true

Kernel SHAP across the entire 114 test set instances in the BCW-D dataset is

.017. At t=3 and 25 coalitions, the MSE between Fixed Biased Kernel SHAP and

true Kernel SHAP across the entire 114 test set instances is approximately .042.

This same figure at 25 coalitions for Biased Kernel SHAP is .022. Recall that

25 coalitions corresponds to 11,375 model predictions when we account for the

455 training samples used to train the XGBoost model. We computed an average

model prediction speed of .002934 and multiplying this number by 11,375 gives

us an approximate time to completion of 33.37 seconds per explanation point.

Our algorithm outperforms Biased Kernel SHAP for t=2 up until approximately

36 sampled coalitions. Of course, if the highest accuracy is of utmost consid-

eration then a higher number of coalition samples and using the original Biased
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Kernel SHAP algorithm will lead to more accurate approximations to true Kernel

SHAP values, but will come at a cost of lower computational efficiency.

The following graphs depict the Kernel SHAP approximation for the malig-

nant case using the Fixed Biased Kernel SHAP approximation method presented

in the algorithm table in Section 4.2, at a t=2 and sampling 25 coalitions. Recall

that 25 coalitions is equivalent to 11,375 model predictions as each coalition has

455 training samples. The equivalent figures for the benign case can be seen in

Appendix D. In Figure 5.23 we see that the largest contributing feature to the

positive malignant diagnosis is texture, as noted by the purple coloured bar with

an approximated Kernel SHAP value of 0.145. The second highest contributing

feature to the diagnosis is concave points, as noted by the aqua bar with an ap-

proximated Kernel SHAP value of 0.142. The third highest contributing feature

toward the diagnosis is concavity, and it is followed then smoothness in fourth

place. In fact, the top 5 contributing features are ordered in the exact same man-

ner as the true Kernel SHAP values for this patient, as noted in Figure 5.11 &

5.12. Figure 5.24 shows an alternative visualization of the contributing Kernel

SHAP value approximations for this patient. We note that the top 5 and bottom 5

contributing features for this patient’s malignant diagnosis are the same as the top

5 contributing factors when compared to the true Kernel SHAP values and both

of the LIME models, however the exact ordering of the feature importance does

vary.
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Figure 5.23: XGBoost Black Box - Fixed Biased Kernel SHAP Approximation -
Malignant Case, Additive Illustration
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Figure 5.24: XGBoost Black Box -Fixed Biased Kernel SHAP Approximation -
Malignant Case, Bars Illustration
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As mentioned previously, this next visualization is generated by summing the

absolute value of the Kernel SHAP approximation values for this patient, and

then expressing the contribution of each value as a percentage of that sum. We see

that texture and concave points dominate the malignant diagnosis for this patient

with a 45% contribution to the absolute value sum, and this is similar to the true

Kernel SHAP values for this patient wherein texture and concave points represent

a 50% contribution. The top three contributing features, which includes concavity,

contribute 60% of the sum of the absolute Kernel SHAP approximation values.

The top four features contribute 74% of this sum. Ultimately, the results of the

Kernel SHAP approximation using the fixed biased algorithm are quite similar to

the true Kernel SHAP values for this patient presented in Section 5.2.3. Using

the fixed biased algorithm produces a squared error of 0.021 for the Kernel SHAP

value approximations for all 10 features.
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Figure 5.25: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using Fixed Biased Kernel SHAP - Malignant Case
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The conclusory explanation table for the Fixed Biased Kernel SHAP approx-

imation algorithm applied to our malignant case using t=2, and 25 sampled coali-

tions is presented below.

Table 5.8: XGBoost Black Box - Fixed Biased Kernel SHAP Approximation
Summary Table, Malignant Case, t=2, 25 coalition samples

91



The following graphs depict the Kernel SHAP approximation using the biased

method presented in the paper by Covert et al. [5]. We use a sample size of 25

coalitions to compare with our t=2 Fixed Biased Kernel SHAP approximation

above. To reiterate, 25 coalitions is equivalent to 11,375 model predictions when

we account for the 455 training samples. The equivalent figures for the benign

case can be seen in Appendix D. In Figure 5.26 we see that the largest contributing

feature to the positive malignant diagnosis is concave points, as noted by the aqua

coloured bar with an approximated Kernel SHAP value of 0.168. The second

highest contributing feature to the diagnosis is concavity, as noted by the blue bar

with an approximated Kernel SHAP value of 0.167. The third highest contributing

feature toward the diagnosis is smoothness, and it is followed then texture in fourth

place. The top 5 contributing features are the same as the true Kernel SHAP

values for this patient, however the ordering is not exactly alike. In the biased

Kernel SHAP approximation, concave points and concavity are ranked as the top

two contributing features. Figure 5.27 shows an alternative visualization of the

contributing Kernel SHAP value approximations for this patient. We note that the

top 5 and bottom 5 contributing features for this patient’s malignant diagnosis are

the same as the top 5 contributing factors when compared to the true Kernel SHAP

values and both of the LIME models, however the exact ordering of the feature

importance does vary.
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Figure 5.26: XGBoost Black Box - Biased Kernel SHAP Approximation - Malig-
nant Case, Additive Illustration
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Figure 5.27: XGBoost Black Box - Biased Kernel SHAP Approximation - Malig-
nant Case, Bars Illustration
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As mentioned previously, this next visualization is generated by summing the

absolute value of the Kernel SHAP approximation values for this patient, and then

expressing the contribution of each value as a percentage of that sum. The top two

contributions to this sum are concave points and concavity, and collectively they

represent 41%.The top three contributing features, which includes smoothness,

contribute 56% of the sum of the absolute Kernel SHAP approximation values.

The top four features, which includes texture contribute 69% of this sum. Using

the biased algorithm produces a squared error of 0.026 for the Kernel SHAP value

approximations for all 10 features.

Figure 5.28: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using Biased Kernel SHAP - Malignant Case
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The conclusory explanation table for the Biased Kernel SHAP approximation

algorithm applied to our malignant case using 25 sampled coalitions is presented

below.

Table 5.9: XGBoost Black Box - Biased Kernel SHAP Approximation Summary
Table, Malignant Case, 25 coalition samples
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5.4 Method Comparisons and Summary

This Section details a brief conclusion overview of the XAI Methods studied in

this thesis, as well as their application to the patient studied with a malignant di-

agnosis from the BCW-D test set. Below we show a side-by-side comparison of

the feature importance ordering generated by each of the XAI methodologies ap-

plied to the malignant case. As you can see, the XAI method selected to gain a

better understanding of a local prediction will greatly impact the ordering of the

feature importance. What should be understood by the practitioner is that there

is a direct tradeoff between computational speed and accuracy of feature impor-

tance produced by local XAI methods, when using true Kernel SHAP values as

the ground truth explanation. Of course, producing true Kernel SHAP values is

the most accurate depiction of black box model reasoning, though it is an expo-

nentially expensive task as the number of features of a model grows.

We note from the tables below that for the malignant case studied in this

thesis, all of the seven XAI methods including the Kernel SHAP approximation

methods concluded the same top 5 and bottom 5 contributing features towards the

malignancy diagnosis, though the ordering within each of these buckets differs.
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Table 5.10: XGBoost Black Box - Feature Importance Ordering for Malignant
Case Using Local XAI Methods

Table 5.11: XGBoost Black Box - Feature Importance Ordering for Malignant
Case Using Kernel SHAP Approximation Methods
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Tables 5.12 & 5.13 provide side-by-side comparison of the number of model

predictions used for each of the local XAI methodologies applied to the malig-

nant case studied in this paper. Producing true Kernel SHAP values is a highly

computationally expensive task, as each instance will require 2NumFeatures model

predictions. Furthermore, Kernel SHAP approximation methods that balance ac-

curacy and computational expense are crucial to the development of trustworthy

XAI explanations.

As we can see in Table 5.13 below, using our Fixed Biased Kernel SHAP

algorithm at t = 2 for a relatively small coalition sample size equal to 25 produces

more accurate approximations to true Kernel SHAP values than the Biased Kernel

SHAP algorithm for the malignant case studied. In fact, Fixed Biased Kernel

SHAP provided consistently superior approximations to true Kernel SHAP at t=2

for our entire 114 test set samples in the BCW-D dataset, up to and including 36

coalitions, as evidenced in Figure 5.21. This is particularly useful if a practitioner

would like to produce fast approximations while also improving accuracy to true

Kernel SHAP.
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Table 5.12: XGBoost Black Box - Number of Model Predictions Used and Time
to Completion Using Local XAI Methods for Patient with Malignant Diagnosis

Table 5.13: XGBoost Black Box - Number of Model Predictions Used and Time
to Completion Using Kernel SHAP Approximations for Patient with Malignant
Diagnosis
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Chapter 6

Conclusion And Future Work

6.1 Conclusion

The development of accurate and efficient Local Model Agnostic Explanations

for black box Artificial Intelligence Models is of utmost importance. While there

are many options available to Machine Learning practitioners, the leading XAI

methodology for local explanations is based on Shapley Values. While there are

model-specific techniques available to approximate SHAP values, they do not of-

fer practitioners any solace to the conundrum of computationally expensive local

model agnostic explanations. Currently, the best option available remains the Bi-

ased Kernel SHAP algorithm as noted by Covert et al [5].

In regards to breast cancer diagnosis using black box methods and using local

XAI methods to explain these results, Fixed Biased Kernel SHAP provides a supe-

rior approximation true Kernel SHAP values for t=2 and a low number of coalition
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samples. This may be useful to practitioners in situations where a large number

of explanations must be generated and where limiting run time is of the highest

consideration. However, we recognize that it is still very challenging to provide

consistently superior model-agnostic approximations to true Kernel SHAP values

than the approximations generated by the Biased Kernel SHAP algorithm.

In conclusion, this thesis makes several important contributions which in-

clude; (1) Provides a thorough technical run-down of current state of the art local

XAI methodologies (2) Provides the most in depth research to date on applied

local XAI methodologies for breast cancer diagnostics from fine-needle aspirate

data, using the BCW-D dataset [26]. (3) Thorough and novel illustrations that

help visualize the inner workings of an XGBoost model which achieves 96% di-

agnostic accuracy. Methods used include ICE & C-ICE, LIME, and Kernel SHAP,

Biased Kernel SHAP approximation, and a novel algorithm called Fixed Biased

Kernel SHAP. (4) Provides a novel algorithm to efficiently approximate Kernel

SHAP values, called Fixed Biased Kernel SHAP (5) A thorough analytical com-

parison between the various leading XAI methodologies.

6.2 Future Work

There are a variety of techniques a practitioner may use to improve Kernel SHAP

approximations, as evidenced by Covert et al. [5]. One such technique is a vari-

ance reduction technique that involves sampling the complement coalition in ad-

dition to the coalition sampled at each iteration in the Biased Kernel SHAP al-
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gorithm. They detail in their work how although this technique increases the

number of model evaluations required at each game evaluation, it still provides

superior convergence to true Kernel SHAP values when accounting for the num-

ber of coalitions sampled. In addition to this variance reduction technique, a prac-

titioner may opt to use a convergence detection algorithm such as Welford’s to

understand when to optimally stop coalition sampling and produce final Kernel

SHAP approximations [5]. Future research may include an analysis of how both

complement sampling and convergence detection impact the results of our Fixed

Biased Kernel SHAP algorithm, and how these techniques perform when used to

generate explanations for black box models used for breast cancer detection.
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los Ponce de Leon Ferreira, et al. Explainable machine learning for breast

104



cancer diagnosis. In 2019 8th Brazilian Conference on Intelligent Systems

(BRACIS), pages 681–686. IEEE, 2019.

[5] Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value

estimation using linear regression. In International Conference on Artificial

Intelligence and Statistics, pages 3457–3465. PMLR, 2021.

[6] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. A survey

on ensemble learning. Frontiers of Computer Science, 14(2):241–258, 2020.

[7] Dongxiao Gu, Kaixiang Su, and Huimin Zhao. A case-based ensemble learn-

ing system for explainable breast cancer recurrence prediction. Artificial

Intelligence in Medicine, 107:101858, 2020.

[8] Hajar Hakkoum, Ali Idri, and Ibtissam Abnane. Artificial neural networks

interpretation using lime for breast cancer diagnosis. In World Conference

on Information Systems and Technologies, pages 15–24. Springer, 2020.

[9] Hajar Hakkoum, Ali Idri, and Ibtissam Abnane. Assessing and comparing

interpretability techniques for artificial neural networks breast cancer classi-

fication. Computer methods in biomechanics and biomedical engineering:

imaging & visualization, 9(6):587–599, 2021.

[10] Michele La Ferla, Matthew Montebello, and Dylan Seychell. An xai ap-

proach to deep learning models in the detection of ductal carcinoma in situ.

arXiv preprint arXiv:2106.14186, 2021.

105



[11] Jean-Baptiste Lamy, Boomadevi Sekar, Gilles Guezennec, Jacques Bouaud,

and Brigitte Séroussi. Explainable artificial intelligence for breast cancer:

A visual case-based reasoning approach. Artificial intelligence in medicine,

94:42–53, 2019.

[12] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Ex-

plainable ai: A review of machine learning interpretability methods. En-

tropy, 23(1):18, 2020.

[13] Scott M Lundberg and Su-In Lee. Consistent feature attribution for tree

ensembles. arXiv preprint arXiv:1706.06060, 2017.

[14] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model

predictions. Advances in neural information processing systems, 30, 2017.

[15] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[16] Arturo Moncada-Torres, Marissa C van Maaren, Mathijs P Hendriks, Sabine

Siesling, and Gijs Geleijnse. Explainable machine learning can outperform

cox regression predictions and provide insights in breast cancer survival.

Scientific reports, 11(1):6968, 2021.

[17] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust

you? explaining the predictions of any classifier. In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data

mining, pages 1135–1144, 2016.

106



[18] Lloyd S Shapley. A value for n-person games. Classics in game theory, 69,

1997.

[19] David F Sigmon and Saira Fatima. Fine needle aspiration. 2020.

[20] L Smith, S Bryan, P De, et al. Canadian cancer statistics advisory committee.

canadian cancer statistics 2018. 2018.
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Appendix A

ICE and C-ICE Plots
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Figure A.1: ICE for concave points mean, XGBoost.
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Figure A.2: C-ICE for concave points mean, XGBoost.
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Figure A.3: ICE for concavity mean, XGBoost.
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Figure A.4: C-ICE for concavity mean, XGBoost.
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Figure A.5: ICE for area mean, XGBoost.
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Figure A.6: C-ICE for area mean, XGBoost.
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Figure A.7: ICE for symmetry mean, XGBoost.
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Figure A.8: C-ICE for symmetry mean, XGBoost.
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Figure A.9: ICE for radius mean, XGBoost.
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Figure A.10: C-ICE for radius mean, XGBoost.
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Figure A.11: ICE for compactness mean, XGBoost.
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Figure A.12: C-ICE for compactness mean, XGBoost.
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Figure A.13: ICE for perimeter mean, XGBoost.
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Figure A.14: C-ICE for perimeter mean, XGBoost.
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Figure A.15: ICE for fractal dimension mean, XGBoost.
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Figure A.16: C-ICE for fractal dimension mean, XGBoost.
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Appendix B

LIME Using Logistic Regression,

Benign Case
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Table B.1: XGBoost Black Box - Benign Case LIME Summary, Kernel
Width=2.3717
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Table B.2: XGBoost Black Box - Benign Case LIME Summary, Kernel
Width=0.9
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Figure B.1: XGBoost Black Box - Benign Case, Relative Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 2.3717
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Figure B.2: XGBoost Black Box - Benign Case, Relative Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 0.9
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Figure B.3: XGBoost Black Box - Benign Case, Absolute Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 2.3717
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Figure B.4: XGBoost Black Box - Benign Case, Absolute Change of Odds Ratio
from Isolated Unit Increase In Feature Value, Kernel Width = 0.9
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Figure B.5: XGBoost Black Box - Benign Case, % Percent of Total Modulus
(Absolute Value) Absolute Change in Odds from Isolated Unit Increase For All
Features, Kernel Width = 2.3717
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Figure B.6: XGBoost Black Box - Benign Case, % Percent of Total Modulus
(Absolute Value) Absolute Change in Odds from Isolated Unit Increase For All
Features, Kernel Width = 0.9
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Appendix C

Kernel SHAP, Benign Case

Figure C.1: XGBoost Black Box - Exact Kernel SHAP values - Benign Case,
Kernel SHAP Additive Illustration
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Figure C.2: XGBoost Black Box - Exact Kernel SHAP values - Benign Case,
Kernel SHAP Bars Illustration
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Figure C.3: XGBoost Black Box - % of Total Modulus Kernel SHAP Values -
Benign Case
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Appendix D

Kernel SHAP Approximations,

Benign Case

Figure D.1: XGBoost Black Box - LIME Inferred Kernel SHAP Approximation -
Benign Case, Additive Illustration, Kernel Width = 2.3717
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Figure D.2: XGBoost Black Box - LIME Inferred Kernel SHAP Approximation -
Benign Case, Bars Illustration, Kernel Width = 2.3717
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Figure D.3: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using LIME Inferred Kernel SHAP Approximation - Benign Case
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Figure D.4: XGBoost Black Box - Fixed Biased Kernel SHAP Approximation -
Benign Case, Additive Illustration
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Figure D.5: XGBoost Black Box -Fixed Biased Kernel SHAP Approximation -
Benign Case, Bars Illustration

141



Figure D.6: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using Fixed Biased Kernel SHAP - Benign Case

Figure D.7: XGBoost Black Box - Biased Kernel SHAP Approximation - Benign
Case, Additive Illustration
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Figure D.8: XGBoost Black Box - Biased Kernel SHAP Approximation - Benign
Case, Bars Illustration
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Figure D.9: XGBoost Black Box - % of Total Modulus Approx Kernel SHAP
Values using Biased Kernel SHAP - Benign Case
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