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Abstract 

The steady laminar incompressible flow of an axisymmetric impinging jet of either a 

Newtonian fluid or a viscoplastic fluid of the Heschel-Bulkley type and the hydraulic jump of 

either a circular or polygonal shape on a solid disk is analyzed. The polygonal jump is induced 

by azimuthal dependence edge conditions: a non-circular disk or a circular disk with a variable 

edge film thickness. The thin-film and Kármán–Pohlhausen approaches are utilized as 

theoretical tools. 

To cross the jump smoothly, a composite mean-field thin-film approach is proposed. The stress 

singularity for a film freely draining at the disk edge is found to be equivalent to an infinite 

film slope. The flow in the supercritical region is insensitive to the gravity strength, but is 

greatly affected by the viscosity. The existence of the jump is not necessarily commensurate 

with the presence of recirculation. 

The disk size is found to can affect the film thickness in the subcritical region, vortex size and 

jump length significantly. The jump is relatively steeper with a stronger recirculation zone for 

a higher obstacle. Scaling laws for the jump properties, such as the jump radius and length, and 

edge film thickness, are proposed. The surface scaling separating the regions of existence/non-

existence of the recirculation is found through numerical results. 

The non-circular jump originated from the disk non-circularity or periodic edge film thickness 

is found. The balance of mass and momentum is established in the radial and azimuthal 

directions. The geometry of a non-circular disk has little influence on the jump shape. A small 

azimuthal variation in the edge thickness for a circular disk leads to a significant loss of axial 

symmetry. An increase in the number of peaks and valleys appears as the disk radius decreases. 

The viscoplastic jump is found to occur closer to impingement, with growing height, as the 

yield stress increases; the subcritical region becomes invaded by the pseudo-plug layer. The 

viscosity does not influence sensibly the jump location and height except for small yield stress; 

only the yielded layer is found to remain sensitive to the power-law rheology for any yield 

stress.  
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Summary for Lay Audience 

The impinging jet and hydraulic jump is a phenomenon that can be observed in the kitchen 

sink daily. When opening the tap, a column of water from the faucet impacts the bottom of the 

sink, spreading radially outward, and a water film rises abruptly at a critical radial location, a 

hydraulic jump forms. Although it is simple at first glance, the impinging jet and hydraulic 

jump have a complex flow structure and extensive industrial applications, such as rinsing, 

cleaning, cooling and coating. The appearance of a hydraulic jump can significantly influence 

the characteristics of flow, and the performance of related applications. In industrial 

applications, the fluid employed may not be a common fluid such as water or oil, but a complex 

fluid such as mud, pastes and concentrated suspensions. The current thesis presents a 

theoretical investigation of the circular impinging jet of common and complex fluids, and the 

hydraulic jump of either a circular or polygonal shape on a solid disk. The polygonal jump is 

induced by azimuthally dependent edge conditions: a non-circular disk or a circular disk with 

a variable edge film thickness. To investigate the flow features at the jump level, a composite 

model for a continuous jump is proposed. The momentum balance equations are established in 

both the radial and azimuthal directions for a polygonal jump. The model that takes the 

rheology of complex fluid into account is also presented. It is found that a larger flow rate, 

smaller viscosity, and lower gravity level lead to a larger jump radius. The existence of the 

jump is not necessarily commensurate with the presence of recirculation. The geometry of a 

non-circular disk has little influence on the jump shape. A small azimuthal variation in the 

edge thickness for a circular disk leads to a significant loss of axial symmetry. The complex 

fluid jump is found to occur closer to impingement, with growing height compared with the 

common fluid. 
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Chapter 1  

1 Introduction 

1.1 Background and applications 

Circular hydraulic jumps are a common phenomenon in our daily lives, which can be 

widely observed when opening a kitchen faucet. When the water from the tap impacts the 

solid plate of the sink, a thin liquid film in the vicinity of the impact point is formed. As 

the flow spreads outward in the radial direction, the film thickness abruptly increases at a 

specific radial location to a significantly thicker film (see Figure 1-1). This sudden increase 

in liquid film thickness is known as the hydraulic jump. In addition to the increase in film 

thickness, this phenomenon is accompanied by a decrease in wall shear stress and heat 

transfer ability, as well as the formation of a vortex near the solid (Watson 1964; Craik et 

al. 1981; Liu et al. 1993; Askarizadeh et al. 2020).  

(a) 
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Figure 1-1: (a) Schematic illustration of an impinging jet and circular hydraulic jump, 

(b) a water jet and formed hydraulic jump in a kitchen sink. 

The hydraulic jump is also widely observed near various hydraulic structures, including 

block ramps, rock sills and rock weirs (Palermo & Pagliara 2018). The hydraulic jump in 

these scenarios is normally called the planar hydraulic jump, which has been extensively 

explained in undergraduate fluid mechanics textbooks (Kundu et al. 2016; White 2006). 

Figure 1-2 illustrates a planar jump near a dam on the St. Joseph River in Niles, Michigan. 

In this figure, the hydraulic jump occurs, as high-speed flow discharges into a region of 

slower velocity. The planar hydraulic jump is widely used to dissipate kinetic energy and 

reduce potential damage and erosion to the bed of the hydraulic facility. Extensive studies 
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have been conducted to investigate factors influencing the dissipative process, such as bed 

roughness and channel slope (Ead & Rajaratnam 2002; Palermo & Pagliara 2018). 

Although the current thesis focuses on the circular jump, we will also investigate some 

relevant characteristics extensively studied in the planar jump. 

 

Figure 1-2: Planar hydraulic jump on the St. Joseph River in Niles, Michigan (from 

flickr) 

Despite its simplicity and common occurrence in daily life, the investigation of impinging 

jet flow and the resulting hydraulic jump is of great interest and importance for both 

industrial and academic communities.  

The most common application of impinging jet flow is surface rising and cleaning. Except 

for using the impinging jet to wash personal vehicles, it is also extensively employed as a 

component of cleaning-in-place systems. The utilization of liquid jet cleaning in the food, 

pharmaceutical, and chemical industries is significant, as it can effectively tackle the 

problem of fouling layers or residual soil layers that accumulate on surfaces during material 

processing. (Oevermann et al. 2019). Similar applications can also be found in the cleaning 

of air heaters in power plants. In this case, pressurized high-pressure water, chemicals, or 

even liquid nitrogen are utilized to remove accumulated fly ash, dust, and oil from the 

surface of the heat exchanger (Hovland et al. 2011). This cleaning process can effectively 

prevent the reduction of heat transfer rate within the heaters.  
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The impinging jet can also be used in many practical cooling applications. For instance, in 

power electronic modules, a jet of water or other types of coolant is directed onto the upper 

surface of the semiconductor package to effectively remove heat (Wadsworth & Mudawar 

1990; Jörg et al. 2017). Efficiently dissipating the heat generated by these electronic 

components is crucial to prevent overheating and ensure optimal performance. Additional 

cooling applications can be observed in the piston chamber of car engines, heat treatment 

processes for steel, and hot strip rolling production lines. In these situations, effective 

cooling processes are employed to manage and regulate temperatures, ensuring the proper 

functioning of the engine, desired material properties in steel, and efficient production in 

rolling lines (Melaniff 2003; Linz 2011). 

Impinging jet technology also finds additional applications in industrial coating (Weinstein 

& Ruschak 2004) and chemical reactors (Pask, Nuyken & Cai 2012). For example, in 

chemical reactors utilizing impinging jet, liquid impinging at the center of a rotating disk. 

The liquid then spreads over the surface of the disk, and the resulting liquids are collected 

through an outlet. The use of impinging jets with rotating disks can generate centrifugal 

forces, resulting in a highly sheared liquid film. This film facilitates efficient mass transfer, 

favouring processes such as absorption, stripping, mixing, and reaction (Pask et al. 2012). 

These capabilities make impinging jet systems valuable in enhancing the efficiency and 

effectiveness of various chemical processes within reactors. 

The occurrence of a hydraulic jump when a jet impinges on a surface, regardless of whether 

the surface is horizontal, vertical, flat, or wavy, is quite common. As mentioned earlier, the 

fast and thin film inner the hydraulic jump offers several advantages such as high mass and 

heat transfer rates, as well as high shear stress. These characteristics make it favourable for 

numerous applications. On the other hand, downstream of the hydraulic jump, the flow 

becomes slower, resulting in a significant decrease in mass and heat performance (Mohajer 

& Li 2015). To cover larger surface areas, multiple impinging jets are often employed, so 

it is important to adopt an appropriate arrangement for the jets. Therefore, accurately 

predicting the radius of the hydraulic jump becomes crucial to ensure optimal performance 

in related applications. 
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The investigation of the hydraulic jump phenomenon holds significant interest within the 

academic community, in addition to the above-mentioned applications in industry. The 

earliest document of the hydraulic jump phenomenon can be traced back to the description 

by Leonardo da Vici in the 1500s. However, it was Rayleigh (1914), who conducted the 

first theoretical investigation on this phenomenon. Since then, numerous studies have 

contributed to this simple but fascinating phenomenon. 

The flow for an impinging jet and hydraulic jump can be divided into two regions, the 

supercritical and subcritical regions, which correspond to the flow up- and down-stream of 

the location of the hydraulic jump. The determination of whether the flow is supercritical 

or subcritical flow is based on whether the local Froude number is greater or less than 1 

(Kundu et al. 2016). The local Froude number is defined as 

l

u
Fr

gh
= ,          (1.1.1) 

in which u  is the average velocity of the flow, g is the acceleration due to gravity and h  

is the height of the flow. The bar above the variable denotes a dimensional variable or 

parameter. Clearly, the super- and sub-critical flow means that the average velocity is larger 

and smaller than the velocity of linear surface waves gh , respectively (Watanabe et al. 

2003). This transition from supercritical to subcritical flow bears a resemblance to the 

transition from supersonic to subsonic flow in aerodynamics. An analogous situation can 

be observed with a supersonic jet, where the surrounding air undergoes a transition from 

supersonic flow ( cM u u 1=  , where M is Mach number, u  is the velocity of the object 

and cu  is the sound speed) to subsonic flow (M < 1). Consequently, the investigation of 

circular hydraulic jumps can contribute to the advancement of research involving transition 

effects. 

Although the appearance of the hydraulic jump is simple, the flow structure exhibits 

significant complexity. Based on the experimental observations of Liu & Lienhard (1993), 

Ellegaard et al. (1996), and numerical simulations of themselves, Askarizadeh et al. (2020) 
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classified hydraulic jump into five distinct types based on the configuration of the roller 

and separation bubble. By increasing the height of the obstacle mounted at the disk edge, 

different types of hydraulic jumps can be obtained. Type 0 corresponds to a circular 

hydraulic jump without the presence of either a vortex near the disk or a roller at the free 

surface (Figure 1-3a). Type Ia represents a hydraulic jump with a single vortex near the 

disk (Figure 1-3b), while type Ib refers to a jump with a roller formed at the free surface 

(Figure 1-3c). As indicated in Askarizadeh et al. (2020), the type Ib type was not reported 

in Ellegaard et al. (1996), or in Bush et al. (2006) and other related studies, as the 

occurrence of this type is possible during the transition from type Ia to type II, where a 

very weak separation bubble keeps appearing and disappearing. In fact, in the experimental 

work of Chang et al. (2001), they found that the vortex near the plate disappeared when 

the flow rate exceeded a critical value, resulting in a much smoother jump profile. When 

both a separation bubble near the disk and a roller near the free surface are observed, 

hydraulic jumps are called type IIa (Figure 1-3d) or type IIb (Figure 1-3e). The difference 

between type IIa and type IIb is the distinct shape appearance of the jump. Type IIb exhibits 

a tiered structure, which is referred to as a "double-jump" by Bush et al. (2006). 

 

Figure 1-3: Schematic illustration of different types of hydraulic jump structures. 
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1.2 Methodologies 

The main approach and assumptions adopted in the thesis will be presented. The boundary 

layer theory and thin-film approach, as well as the Kármán–Pohlhausen (K–P) approach 

for a Newtonian fluid will be introduced first. The Herschel-Bulkley constitutive model 

will be presented, and the difference in the methodologies between a Newtonian fluid and 

a viscoplastic fluid of the Herschel-Bulkley type will be discussed. 

1.2.1 Boundary layer theory and thin-film approach for a 
Newtonian fluid 

For laminar Newtonian flow, the boundary layer theory implies that the viscous effects 

play a significant role within a thin layer adjacent to the solid plate, which is known as the 

boundary layer. In contrast, the influence of viscosity is negligible in the bulk region away 

from the solid. This inviscid outer flow corresponds to the inviscid limiting solution 

(Schlichtling & Gersten 2000). The laminar boundary layer equations for non-

axisymmetric flow are written as 

u u 1 v w
0

r r r z

  
+ + + =

  
,                  (1.2.1a) 

2 2

2

u v u u v 1 p u
u w

r r z r r z

    
+ + − = − + 

     
,                (1.2.1b) 

2

2

v v v v uv 1 p v
u w

r r z r r z

    
+ + + = − + 

     
,               (1.2.1c) 

1 p
g 0

z


− + =

 
.                   (1.2.1d) 

Here, the bar denotes a dimensional variable. u , v  and w  are the velocities in r  (radial), 

  (azimuthal) and z  (vertical) directions, respectively. p  is the pressure. ρ is the fluid 

density, and ν is the kinematic viscosity of the fluid. ρ and ν are parameters of the fluid, so 

they are not barred. g is the gravity acceleration.  
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For the axisymmetric laminar flow, v 0=  and 0  = , so the above laminar boundary 

layer equations become 

u u w
0

r r z

 
+ + =

 
,                   (1.2.2a) 

2

2

u u 1 p u
u w

r z r z

   
+ = − + 

    
,                 (1.2.2b) 

1 p
g 0

z


− + =

 
.                   (1.2.2c) 

Figure 1-4a illustrates the schematic description of the boundary layer formed on a flat 

plate, showing the velocity distribution within this thin layer. It is observed that the velocity 

within the boundary layer increases continuously from zero at the solid surface toward the 

outer velocity. However, there is no distinct border between the boundary layer and the 

outer inviscid layer. To define the thickness of the boundary layer δ, a criterion has been 

established. The boundary layer thickness is artificially defined as the distance from the 

solid surface to the point where the velocity reaches 99% of the outer velocity or free stream 

velocity (Schlichtling & Gersten 2000). In addition, the flow within the boundary layer can 

undergo separation, and experiences reverse flow, which is shown in Figure 1-4b. In this 

case, a significant thickening of the boundary layer occurs, as the presence of backflow in 

the vicinity of the plate. The occurrence of separation is determined by the condition that 

the velocity gradient perpendicular to the wall becomes zero at the wall ( )z 0
u z 0

=
  =

(Schlichtling & Gersten 2000). 

As indicated above, the general boundary layer is bound by the fluid in the inviscid layer 

and the solid. However, the thin-film theory specifically focuses on the dynamics of a thin 

liquid layer flowing over a solid surface, where a distinct liquid-air interface is present. 

This is known as the free-surface thin-film flow, as schematically depicted in Figure 1-4c. 

Within the thin-film flow, the velocity distribution exhibits characteristics akin to those 

observed in boundary layers. The velocity gradient and shear stress near the free surface 

are negligible, as the viscosity of the air is much lower compared with the viscosity of the 
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liquid. At the liquid-air interface, a pressure boundary condition is typically imposed, 

taking into account the air pressure (and surface tension when substantial surface curvature 

is present). In the present thesis, the theoretical analysis heavily relies on the assumptions 

inherent in the boundary-layer equations and the thin-film theory. 

 

Figure 1-4: A schematic illustration of (a) the boundary layer, (b) the boundary layer 

separation and (c) the thin-film flow. 

1.2.2 The Kármán–Pohlhausen approach for a Newtonian fluid 

The Kármán–Pohlhausen (K–P) approach is a well-established and widely used method 

for solving boundary layer equations in fluid dynamics. The K-P approach is initially 

introduced by Kármán (1921) and Pohlhausen (1921), and it provides a practical and 

efficient way to approximate the velocity profile within the boundary layer. 

One important aspect of the boundary layer equation (1.2.2) is that the partial derivatives 

with respect to the radial coordinate are of the first order. This is due to the fact that high 

velocity (Reynolds number), results in a one-way problem, implying only one boundary 

condition is required in the streamwise (radial) direction. In the absence of transverse 

(vertical) pressure gradients, an exact solution for the boundary layer equations is attainable 

(Watson 1964; Schlichtling & Gersten 2000). However, the presence of hydrostatic 

pressure renders an exact solution impractical, as the problem is weakly elliptic (Bowles 

& Smith 1992; Higuera 1994; Bowles 1995). 

Consequently, the K-P approach, known for its effectiveness and accuracy (Schlichtling & 

Gersten 2000), is adopted. The procedures involve integrating the boundary layer equations 

between the solid surface and the upper edge of the boundary layer or the free surface, and 

approximating the velocity profile with a parabolic or cubic velocity profile which satisfies 
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the physic boundary condition and the conservation of mass. The approximation of the 

velocity profile with a parabolic or cubic velocity profile is quite accurate, which is 

illustrated in figure 1-5, in which the parabolic and cubic velocity profiles are compared 

against the exact similarity solution of Watson (1964) for a thin-film flow. The parabolic 

and cubic velocity profiles (normalized by the surface velocity) are 

2u
2

U
= −  ,   

3u 3 1

U 2 2
= −  ,           (1.2.3a, b) 

respectively. Here, u is the radial velocity, U is the surface velocity, and η = z/h, in which 

h is the film height. The velocity profiles are obtained by satisfying the no-slip condition 

at the solid, the no-shear condition at the free surface, and u/U = 1 at the free surface. 

 

Figure 1-5: Comparison of Watson’s (1964) similarity velocity profile against the 

parabolic and cubic velocity profiles for a thin-film flow. 

A depth-averaged model can be obtained by integrating the original boundary equations 

between the solid plate and the upper edge of the boundary layer or the free surface. By 

adopting an approximation for the velocity profile (normally parabolic or cubic velocity 

profile) which satisfies the physic boundary condition and the conservation of mass, the 
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boundary-layer thickness, film thickness and wall shear stress can be obtained from the 

depth-average model.  

In a formal numerical method, discretization (and meshing) in both the streamwise and the 

transverse directions are required. However, the K-P approach eliminates the need for 

vertical discretization by imposing a specific velocity distribution profile. This 

approximation for the velocity profile replaces the need for vertical meshing with a single 

layer of mesh cells with variable heights of each control volume. The solution is then 

obtained through integration in the horizontal direction, which either admits an analytical 

solution or can be accurately obtained with a high-order Runge-Kutta method.  

1.2.3 Herschel-Bulkley constitutive model and its influence on the 
methodologies 

Unlike Newtonian fluids, such as water and mineral oils, which follow the fundamental 

rheological equations described by Newton's law of viscosity and maintain a constant 

viscosity regardless of the applied shear rate, there are numerous fluids in our daily lives 

and of industrial significance that are non-Newtonian fluids. The viscoplastic fluid is one 

type of non-Newtonian fluid and exhibits flow properties intermediate between those of a 

solid and a liquid. There is a threshold stress, known as yield stress, that is required for the 

fluid to flow. If the applied stress is below this threshold, the fluid behaves like an ideal 

rigid solid. However, the fluid exhibits viscous features if the applied stress surpassed the 

yield stress (Bird et al. 1983). Viscoplastic fluid encompasses a wide range of materials 

including concentrated suspensions, pastes, emulsions, foams, composites, grease, polymer 

solutions, paints, glues and coal-oil slurries (Bird et al. 1983; Utracki 1988; Nguyen & 

Boger 1992; Ancey 2007; de Souza Mendes 2009; Mullai Venthan et al. 2022). Some 

examples that people can observe in daily life are shown in figure 1-6. 
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Figure 1-6: Some viscoplastic materials in different flow configurations. (a) A 

collapsed extrusion of toothpaste (Kamrin & Mahadevan 2012), (b) a ketchup splatter 

(Luu & Forterre 2009), (c) a dambreak of blue-coloured Carbopol on an incline 

(Cochard & Ancey 2008), and (d) a mud volcano (Photograph from the USGS). 

There are several different constitutive models that can describe the behaviour of 

viscoplastic materials, such as the Bingham model, the Herschel-Bulkley model and the 

Casson model. Among them, the Herschel-Bulkley model may be the most widely used 

model, which is written as (Bird et al. 1983) 

n 1 0
ij ijK −  

 =  +  
 

, for 0   ,              (1.2.4a) 

ij 0 = ,     for 0   ,              (1.2.4b) 

where ij  is the excess stress tensor, and ij  is the rate-of-strain tensor. Here, 

jk jk
1

2
 =    and jk jk

1

2
 =    are the second invariants of ij  and ij , respectively. 

0  is the yield stress, K is the consistency, and n is the power-law index. This model also 

includes the Bingham, power-law and Newtonian models, in the limits n = 1 and B = 0, 
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respectively. Also, for n ≤ 1 the Herschel-Bulkley fluid is shear thinning, and for n > 1 it 

is shear thickening above a certain shear rate. A schematic illustration of Newtonian and 

viscoplastic fluids is given in figure 1-7. Some typical rheological parameters for shear-

thining and shear-thickening viscoplastic fluids, as well as the Bingham fluid, are presented 

in Table 1. 

 

Figure 1-7: A schematic illustration of the stress-strain rate relationship for 

Newtonian and viscoplastic fluids. 

Table 1: Typical rheological parameters for different viscoplastic fluids. 

Constants Carbopol/water solution Silicic lava Fresh concrete 

Density, ρ (kg.m-3) 1000 1000 2600 ~2400 

Yield stress, 0  (Pa) 5.03 8.03 105 54.655 

Consistency, K (Pa.sn) 2.455 7.18 109 64.688 

Power-law index, n 0.437 0.418 1 1.193 

The data for Carbopol/water solution are taken from Jalaal et al. (2021) and Chambon 

et al. (2014), the data for Silicic lava is taken from Griths & Fink (1993), McBirney & 

Murase (1984), Shaw (1969), and the data for fresh concrete are from Wang et al. (2022). 

One can also refer to Fiorot & Maciel (2019) for more viscoplastic materials. 
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Due to the influence of yield stress and shear-rate-dependent viscosity, it can be observed 

that the stress tensor of a viscoplastic fluid of the Heschel-Bulkley type is different from 

that of a Newtonian fluid. Hence, the boundary layer equation would be different from 

(1.2.1) and (1.2.2). In this scenario, the boundary layer equations of a viscoplastic fluid for 

an axisymmetric flow are 

u u w
0

r r z

 
+ + =

 
,                   (1.2.5a) 

rz
u u 1 p

u w
r z r z

   
+ = − + 

    
,                 (1.2.5b) 

1 p
g 0

z


− + =

 
,                   (1.2.5c) 

where  

( ) ( )
n

rz z 0 zK u sgn u = +  , for rz 0   ,              (1.2.6a) 

zu 0= ,     for rz 0   .              (1.2.6b) 

Clearly, when n = 1 and 0 0 = , the Newtonian limit (1.2.2) is recovered. Due to the yield 

stress of the fluid, the flow of a free surface flow includes a fully-yielded layer and a 

pseudo-plug layer. As illustrated in figure 1-8, a fake yield surface exist at z = h0. A lower 

layer of fluid for 0 < z <h0 is the fully-yielded layer where the radial velocity has a 

parabolic-like profile. In the region h0 < z <h, the radial velocity becomes plug-like and 

independent of z to leading order when considering the asymptotic flow field expansion in 

powers of the film thickness-to-length ratio (Walton & Bittlest 1991; Balmforth & Craster 

1999). This difference in velocity profile is one of the fundamental differences between the 

flow of a Newtonian fluid and a viscoplastic fluid (see figure 1-4c for comparison). 
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Figure 1-8: A schematic illustration of  the thin-film flow for a viscoplastic fluid. 

The K-P approach is also suitable for the flow of a viscoplastic fluid, and has been widely 

used in previous investigations (Jiang & LeBlond; Liu & Mei 1994). However, in contrast 

to the parabolic or cubic velocity profiles adopted in equation (1.2.3), it is customary to use 

to velocity profile motivated by both the equilibrium uniform flow and the lubrication 

approximations (Balmforth & Liu 2004). In this case, the velocity profile in the pseudo-

plug layer is 

( )( )n 1 nu
1 1

U

+
= − −  ,         (1.2.7) 

which satisfies the no-slip condition at the solid, no-shear at the fake yield surface, and 

continuous velocity at the fake yield surface. Here, U is the velocity in the pseudo-plug 

layer, and η = z/h0. Clearly, (1.2.7) collapses onto the parabolic velocity profile (1.2.3a) 

for a Newtonian fluid when n = 1. 

1.3 Literature review 

Extensive investigations have been dedicated to the flow of impinging jet and hydraulic 

jump phenomena. In this case, prior research regarding this area is discussed, aligning with 

the primary objectives of the present thesis. 

1.3.1 The hydrodynamics of the impinging jet and circular 
continuous jump 

As indicated earlier, the first theoretical work on a two-dimensional hydraulic jump was 

conducted by Rayleigh (1914) by using an inviscid assumption. Later, Birkhoff & 

Zarantonello (1957) examined the circular hydraulic jump formed on a flat disk when a 
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vertical jet impinges on this disk. Similarly, the inviscid theory was utilized in their 

investigation. Clearly, the inviscid theory can lead to inaccuracy, especially in situations 

when the influence of viscosity is important. To overcome this drawback, Watson (1964) 

considered the influence of viscosity on the flow upstream of the jump. Specifically, 

Watson (1964) analysed the flow in the developing-boundary layer near impingement with 

the K-P approach, and the fully-viscous layer upstream of the jump by using a similarity 

transformation method. Since the flow in the supercritical region is thin and largely inertia 

dominant, the influence of gravity was neglected in this region. The jump profile was 

assumed as a shock, and the location of the hydraulic jump was determined by utilizing 

force and momentum balance equations, assuming a known uniform film height in the 

subcritical region given the slow motion of the flow. Watson’s thin-film approach became 

the basis for numerous later theoretical and experimental studies. 

Watson’s (1964) theory was tested against his own experiments, showing a reasonable 

agreement between his theory and experiments. The discrepancy between the theory and 

experiments was attributed to the neglect of the width of the jump. The experiments 

conducted by Azuma & Hoshino (1984a, b) demonstrated the validity of Watson’ (1964) 

theory in the supercritical region. When the flow is laminar and the liquid surface remains 

smooth, Watson's (1964) theory accurately captured the height profile measured in Azuma 

& Hoshino (1984a). In addition, the measured surface velocity in the experiments of 

Azuma & Hoshino (1984b) also agrees closely with Watson’s (1964) theory in the fully 

viscous region. As for predicting the jump radius, Watson’s (1964) theory was also tested 

against experiments of Craik et al. (1981), Errico (1986), Stevens & Webb (1992), Bush 

& Aristoff (2003) and Baonga et al (2006). These experimental investigations 

demonstrated that Watson’s (1964) theory works well for a relatively large jump radius. 

However, Liu & Lienhard (1993) observed that Watson’s predictions were least 

satisfactory in the limit of a relatively weak jump (of large width). In this case, the effects 

of surface tension become important, which motivated Bush & Aristoff (2003) to include 

the effects of surface tension in the force and momentum balance equation, leading to better 

agreement with the experiment. 
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Both the theory of Watson (1964) and the corrected theory by Bush & Aristoff (2003) 

assumed a uniform inviscid downstream flow, as the knowledge of the flow immediately 

downstream of the jump is required to determine the jump radius through the force and 

momentum balance equation. Clearly, this assumption is reasonable when an obstacle is 

amounted at the disk edge as have done in the experiments of Watson (1964) and Bush & 

Aristoff (2003), especially for a relatively high obstacle. However, a uniform flow 

assumption in the downstream region is inadequate, if the flow on the flat disk can drain 

freely at the disk edge. Especially, the flow characteristics in the subcritical region cannot 

be reflected through this uniform flow assumption. To capture the behaviour downstream 

of the jump for a free draining scenario, Duchesne et al. (2014) examined the downstream 

flow using the lubrication approach, given the flow in the subcritical region is largely 

inertialess and gravity driven. A good agreement between their theoretical predictions and 

their measurements for the height profile was obtained. Later, Wang & Khayat (2018) 

incorporated Watson’s (1964) theory in the supercritical region and lubrication approach 

in the subcritical region to investigate the impinging jet flow and hydraulic jump on a 

rotation disk. The jump radius is still determined through the force and momentum balance 

equation. 

Although the aforementioned theories can generate reasonable results for the flow field and 

jump radius, they cannot capture the flow in the vicinity of the jump accurately. 

Furthermore, the underlying cause of the hydraulic jump is not explored in these theories. 

In this case, another branch of studies can better address these issues and initially began 

from the theoretical work of Tani (1949). In contrast to the theoretical work of Watson 

(1964), Tani (1949) retained the hydrostatic pressure term in the momentum equation. By 

averaging the momentum equation in the vertical direction, and assuming a self-similar 

parabolic velocity profile, Tani (1949) derived an ordinary differential equation for the film 

height, indicating a single spiral critical point. The hydraulic jump is believed to occur due 

to separation induced by the increasing pressure gradient before reaching the infinite slope 

of the film height, explaining the abrupt thickening of the film (Tani 1949). This approach 

was adopted by Bohr et al. (1993) and used in both super- and sub-critical regions. By 

connecting the solution in both regions through a shock, they found that the jump location 
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is close to r = 1 in their notation, suggesting that the jump radius as 5 8 3 8 1 8Q g− − , where 

Q is the flow rate, ν is the kinematic viscosity and g is the gravity acceleration. The constant 

of this scaling law depends on the velocity profile and is 0.73 for a self-similar parabolic 

velocity profile. It is obvious that this scaling law does not take the influence of disk radius 

into account, as it was found that the disk size only has an extremely weak influence on the 

jump radius (Bohr et al. 1993). The scaling law can generally capture the trend of the jump 

radius, but the discrepancy between this scaling law and experiments can arise in some 

situations (Duchesne et al. 2014). Kasimov (2008) also utilized a similar approach to that 

of Bohr et al. (1993), and incorporated the curvature of the plate at the disk edge and added 

the surface tension effect at the jump level. However, a boundary condition was arbitrarily 

imposed at a location slightly larger than the jet radius in Kasimov (2008). Wang & Khayat 

(2019) developed the theories of Watson (1964) and Bohr et al. (1993) by incorporating 

the gravity term in both the developing boundary layer and fully viscous layer regions. In 

this case, the problem can be solved from the impinging point, and no empirical initial 

conditions are needed. The jump location is assumed to coincide with the singularity of the 

resulting ordinary differential equation for film height. The result of their theoretical results 

yields good agreement with the experimental data for high-viscosity fluids. 

Later, to capture the profile and flow feature at the jump, Bohr et al. (1997) and Watanabe 

et al. (2003) accounted for the additional gravity effect by adopting a non-self-similar cubic 

velocity profile, which includes a shape parameter and satisfies the momentum equation at 

the disk. The presence of the additional shape parameter in the assumed velocity profile 

prevents the formation of the critical point and the singularity of the averaged first-order 

differential equation. The resulting second-order differential equation enables them to 

cross the jump smoothly (in contrast to a shock-like jump profile obtained through 

momentum balance equation), and capture the flow features more accurately at the jump. 

However, two experiments point which lies immediately up- and down-stream of the jump 

are needed in their solution to fix the boundary conditions. Clearly, their method required 

some prior knowledge about the jump location. In this regard, even though their theory 

showed good agreement with the earlier measurements of Bohr et al. (1996), it remains 

somewhat semi-empirical. A similar approach was later adopted by Bonn, Andersen & 
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Bohr (2009) to study the hydraulic jump in a channel. However, results showing jump-like 

profiles were only presented to describe the vortex, whereas their comparison against 

measurements was limited to the simplified (first-order) version of the model in which the 

jump was treated as an abrupt shock connecting an inner and an outer solution. 

As mentioned earlier, the happening of hydraulic jumps has been attributed to boundary 

layer separation caused by an increase in hydrostatic pressure (Tani 1949). To gain further 

insight into the underlying cause of the hydraulic jump, Gajjar & Smith (1983) examined 

the flow behaviour in a uniform velocity layer with a thin viscous sublayer at its bottom in 

the limit of a large Reynolds number. Their investigation revealed that the jump is the result 

of a viscous-inviscid interaction, and showed that it is only in a viscous sub-sublayer near 

the wall where the flow reacts to the reverse hydrostatic pressure gradient and separates 

from the wall. Bowles (1995) examined the free-interaction problem of the planar flow of 

a sloped liquid layer over an obstacle, in which he described the internal structure of the 

continuous jump as dominated by the viscous-inviscid interaction between the hydrostatic 

pressure gradient and the viscous effects near the solid wall (see also the earlier work of 

Gajjar & Smith (1983) and the dissertation of Bowles (1990)). As Bowles (1995) observes, 

the free interaction in the internal jump structure involves one of two types of mechanism, 

depending on the pressure development: “The pressure may increase, possibly leading to 

separation (a compressive interaction) or it may decrease, leading perhaps to a finite-

distance singularity in the solution (an expansive interaction).” Higuera (1994) solved the 

boundary-layer equations numerically to generate the jump profile for two-dimensional 

flow. The boundary condition near the disk edge was fixed by matching the downstream 

flow with the flow at the edge of the plate. 

Since the pioneering works of Watson (1964) and Tani (1949), numerous experimental, 

theoretical and numerical investigations have been contributed to the study of circular 

hydraulic jump, covering many aspects of the characteristics of hydraulic jump. The 

influence of flow rate has been examined extensively in previous studies. Craik et al. 

(1981) conducted experimental investigations to examine the instability of the circular 

hydraulic jump. In their study, a circular water jet impinges into a rectangular tank 

equipped with outlets at its corners. Their observations revealed that the instability 
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occurred when the local Reynolds number at the leading edge of the hydraulic jump 

exceeded a critical value. Before the onset of oscillatory instability, experimental 

measurements suggested that the jump radius increases with the flow rate, but agreeing 

poorly with the prediction of Watson’s (1964) theory. Additionally, their measurements 

demonstrated that the length of the recirculation zone near the bottom of the tank increased 

with increasing flow rate, reaching a maximum at a specific flow rate. However, as the 

flow rate further increased, the recirculation zone diminished, and oscillatory instability 

showed. Similarly, Rao & Arakeri (2001) also investigated the influence of the flow rate 

on various characteristics of the flow and jump using a circular flat disk without any 

restriction at its edge. They observed that the measured jump radius also increases with the 

flow rate and agrees closely with the scaling law of Bohr et al. (1993). As for the maximum 

film height in the subcritical region, their measured film profile showed distinct behaviour 

depending on the disk size. For a larger disk size, the maximum film height exhibited a 

monotonic increase with the flow rate. However, for a relatively smaller disk size, it 

exhibited a non-monotonic trend, increasing initially within a smaller range of flow rates 

and then decreasing as the flow rate exceeded a certain threshold, reaching a maximum at 

a certain flow rate. In contrast to the observation of Craik et al. (1981) for flow separation, 

the experiments of Rao & Arakeri (2001) indicated that the separation length increases 

monotonically with the increase of flow rate. They attributed this observation to the 

influence of a fast-moving fluid flowing over the recirculation zone, thereby elongating the 

separation bubble. Hansen et al. (1997) also conducted experimental studies on the 

influence of flow rate by using fluids of different viscosity for a disk without any obstacle 

at the disk edge. In their experiments, they found that the jump radius follows a power law 

b
Jr Q , where Jr  is the jump radius, Q is the flow rate and b is the power law index, with 

b 0.77  for water, and b 0.72  for the oil with viscosity ν = 15 cSt. In addition, they 

observed that the film height immediately downstream of the jump is almost constant, and 

only decreases abruptly at the edge of the disk. Duchesne et al. (2014) examined the 

influence of flow rate on a disk without any barrier at the disk edge. Their measurements 

revealed different features for the maximum film height immediately downstream of the 

jump from the observation of Hansen et al. (1997), suggesting that the maximum film 

height increases monotonically with the flow rate. Interestingly, they found that the local 
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Froude number immediately downstream of the jump is essentially a constant. Based on 

this observation, they proposed a scaling law which can fit their experimental data better 

than the scaling law of Bohr et al. (1993). This scaling law also takes into account the 

influence of disk radius, showing a weak dependence on the disk size.  

The influence of viscosity on the jump radius has been examined in the experimental works 

of Hansen et al. (1997) and Duchesne et al. (2014), they observed that higher viscosity of 

the fluid leads to a smaller jump radius. In addition, Hansen et al. (1997) found that the 

hydraulic jump is more stable for a higher-viscosity fluid. A more comprehensive 

numerical study was conducted by Passandideh-Fard et al. (2011) using the volume-of-

fluid method. The influence of flow rate, viscosity, gravity, and the height of the obstacle 

placed at the disk edge on the jump radius were explored in their simulations. In their work, 

the film thickness at the disk edge was controlled by placing an obstacle at the disk edge. 

Their numerical results suggested that the jump radius is in agreement with the scaling law 

of Bohr et al. (1993) when the viscosity of the fluid is varied. To understand the role of 

gravity in the formation of circular hydraulic jumps, Askarizadeh et al. (2019) conducted 

thorough numerical investigations under different conditions. Their results indicated that 

there are two regimes in the jump formation: gravity- and capillary-dominant flow regimes. 

Their results led them to conclude that the presence of gravity remains an essential factor 

in the formation of both developing and developed hydraulic jumps, and its influence 

cannot be disregarded. Furthermore, when considering varying viscosity, they observed a 

decrease in the jump radius with increasing viscosity, not only for developed hydraulic 

jumps but also for developing jumps. Fernandez-Feria et al. (2019) also observed a similar 

pattern in the simulations regarding the influence of viscosity on the jump radius. However, 

despite extensive examination of the influence of viscosity on the jump radius, the 

relationship with film profile, the jump length (the distance between the leading and the 

trailing edge of the jump) and the existence of vortex have not been extensively explored 

in these works. 

Avedisian & Zhao (2000) examined the effects of the lower gravity on the jump radius and 

downstream flow features by conducting experiments in a drop tower with water as the 

working fluid. They observed that the jump was pushed towards the disk edge and the jump 
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profile becomes smoother (a larger jump length) as the gravity level decreased. In addition, 

it is easier to observe waves in the subcritical region for the lower gravity condition. The 

numerical simulation works of Fernandez-Feria et al. (2019) and Askarizadeh et al. (2019) 

also explored the influence of gravity, they found similar patterns for the jump radius, but 

no wave observations are reported in their studies. 

1.3.2 The influence of azimuthally varying edge conditions on the 
hydraulic jump 

Although extensive work in the literature has been devoted to understanding circular 

hydraulic jump, the investigation of the formation and structure of the non-circular jump 

is relatively recent, focusing essentially on the spontaneous destabilization of the circular 

jump and the onset of the stable non-circular jump. 

Stationary polygonal jumps were first observed by Ellegaard et al. (1998) in their 

experiments. They utilized ethylene glycol as the working fluid and varied the film height 

in the subcritical region by adjusting the height of an obstacle mounted at the disk edge. 

They observed the type Ia jump when the film thickness in the subcritical region is small. 

In this case, the surface velocity flows outward everywhere, and a separation bubble forms 

near the solid disk under the jump. As the film thickness in the subcritical region increases, 

the jump becomes steeper (jump length becomes smaller). When the film height in the 

subcritical region exceeded a critical value, a notable transition occurred: the surface 

velocity immediately downstream of the jump changed from outward flow to inward flow, 

leading to the appearance of a polygonal hydraulic jump. They observed that the number 

of sides (mode number) of the polygonal jump increases with the downstream flow height 

first, then this number decreases by one side at a time when the downstream flow height 

increases further. They observed a hysteresis effect as several polygons could be stable for 

the same flow parameters, accompanied by a flow spiralling towards the corner. Bush et 

al. (2006) carried out a parametric study on steady polygonal jumps and the flow structure, 

using a similar apparatus as Ellegaard et al. (1998) and glycerol-water solutions and pure 

mineral oil as the working fluids. They reported a new class of steady two-tiered, Type IIb, 

asymmetric jump forms, with vortices adjoining the jump, resembling cat’s eyes, three- 

and four-leaf clovers, bowties and butterflies. Bush et al. (2006) also examined the 
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influence of surface tension on the polygonal hydraulic jump structure. By adding a 

surfactant, they noticed that the polygonal jump relaxes into a circular form, and expands 

slightly. They compared their measurements of the jump radius with the earlier theoretical 

predictions of Bush & Aristoff (2003), which is a theory suitable for predicting the jump 

radius for circular hydraulic jump, and found that the agreement was not as close as in the 

case of axisymmetric flow. They attributed the discrepancy to the neglect of the influence 

of dynamic pressure downstream of the jump. They suggested that the symmetry-breaking 

mechanism behind the onset of the non-circular jump probably results from a capillary 

instability of the circular jump, and proposed an empirical equation for the instability 

wavelength of steady non-circular jumps.  

Steady polygonal hydraulic jumps were theoretically examined through a 

phenomenological model proposed by Martens et al. (2012). They found that a polygonal 

jump emerges with a wavelength in the order of the roller width based on the Rayleigh-

Plateau instability. In their model, a dimensionless equation for predicting the number of 

polygonal hydraulic jump corners was presented based on mass conservation and radial 

force balance between the hydrostatic pressure and viscous stresses on the roller surface. 

The surface tension effect was neglected as the free surface profile of the jump and the 

curvatures could not be accurately modelled. They also reported that the outer line of the 

vortices adjoining the jump is circular, suggesting the azimuthal flow observed 

downstream of the jump only exists in this circular region. The measured height profiles 

indicate that the downstream height at the corner is higher than at the valley, although the 

heights far downstream are almost the same for these two directions. They also observed 

that the flow upstream of the jump is purely radial and independent of azimuthal direction, 

and the measured height profile at the corner and valley directions for the upstream of the 

jump region are the same. These observations corroborate the earlier findings of Bush et 

al. (2006). 

Steady polygonal hydraulic jumps were also investigated experimentally extensively by 

Teymourtash & Mokhlesi (2015) who used a similar apparatus to that of Ellegaard et al. 

(1998) with ethylene glycol as the working fluid. They explored the region of stability for 

polygonal jumps and the dependence of this region on the flow parameters by varying the 
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obstacle height, nozzle diameter and flow rate. They reported a rotational wave 

encompassing the whole Type II circular jump with only one continuous surface vortex. In 

addition, rotational polygonal hydraulic jumps with a constant angular velocity were also 

observed in their experiments. The comparison between experimental data of both stable 

and rotational polygonal jumps and theoretical prediction by using the circular hydraulic 

jump theory of Bush et al. (2006) revealed a clear discrepancy, especially for the rotational 

jumps. 

Of closer relevance to the present thesis are the studies on the hydraulic jump on a non-

circular disk, which was examined both experimentally and numerically (Ferreira et al. 

2002; Asadi et al. 2020; Nichols & Bostwick 2020; Esmaeeli & Passandideh-Fard 2020). 

A numerical investigation of a circular jet impinging on a square disk mounted on a square 

obstacle was examined by Ferreira et al. (2002). They implemented different upwind 

schemes for the convection term of the Navier-Stokes equations, and found that the shape 

of the hydraulic jump on the square disk was almost perfectly circular or square depending 

on the scheme used, implying the asymmetry of the disk may or may not affect the shape 

of the jump. They attributed the departure from the circular shape to the effect of grid 

orientation. Asadi et al. (2020) examined the influence of the downstream obstacle 

geometry and parameters such as the flow rate, the jet diameter and the downstream 

obstacle height on the stability range of the circular jump. Three glass obstacle shapes were 

used, namely, a circle, a square, and a triangle, which were placed on the target circular 

glass plate. Asadi et al. (2020) stated that the axisymmetric theory could not predict the 

location of the jump for cases with an obstacle, as the jump is of Type IIb. 

1.3.3 The viscoplastic circular hydraulic jump 

In the studies mentioned earlier, the working fluids in the experimental, numerical and 

theoretical works are Newtonian. However, many fluids of industrial significance are 

viscoplastic fluids, and the rheology of these fluids can significantly change the behaviour 

of related flow phenomena. The existence of the yield stress in a viscoplastic fluid can 

significantly change the flow structure compared to the counterpart of a Newtonian fluid. 

More explicitly, a viscoplastic flow exhibits a yield surface, which separates the fully 

yielded layer from the plug layer.  
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Bird et al. (1983) examined a unidirectional flow of a Bingham fluid between two fixed 

parallel plates driven by a fixed pressure gradient (Poiseuille flow). The channel had a 

length of L in the horizontal direction (x-axis) and a width of 2h in the vertical direction 

(z-axis), with the origin located in the middle of two plates. The flow is unidirectional in 

the horizontal direction, ( )u u z= , and the constant pressure gradient is 

( )L 0dp dx P P L= − , in which 0P  and LP  are the pressure at x = 0 and L, respectively. 

The continuity equation is already satisfied, and the simplified momentum equation is 

xzdp dx d dz=  . Recalling the constitutive model (1.2.4), only the shear stress xz  

survives in the current problem and n = 1 for a Bingham fluid, so 

( ) ( )xz z 0 zK u sgn u = +   for xz 0   , and zu 0=  for xz 0   . In addition, the no-slip 

boundary condition must be satisfied at the surface of both plates, 

( ) ( )u x, z h u x, z h 0= − = = = . Because of the symmetry of the problem ( )zu x, z 0 0= = , 

it is sufficient to solve for the solution in the upper part of the channel only (0 < z < h). By 

integrating the momentum equation once between 0 and h and using the symmetric 

condition at z = 0, one finds that the yield surface, at which xz 0 =  , is located at 

( )0 0 0 Lz h L P P= =  − . By integrating the momentum equation twice, using the 

constitutive model, and no-slip and symmetric conditions, the velocity in the yielded layer 

is ( )
( ) 2
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2

0 2

P P h hz z
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, and the velocity in the plug layer 

is ( )
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. Figure 1-9 schematically 

illustrates the velocity profile of a Bingham fluid for Poiseuille flow. Clearly, a yield 

surface exists for a Bingham fluid, which divides the flow into two regions: the yielded 

layer and the plug layer. The velocity in the plug layer is constant and independent of the 

horizontal variable. 
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Figure 1-9: A schematic illustration of the velocity profile of Bingham fluid for a 

Poiseuille flow.  

However, the plug flow is generally not a true plug, but a pseudo-plug flow. This character 

was first recognized by Walton & Bittleston (1991), who examined analytically and 

numerically the flow of a Bingham fluid in an eccentric annulus. By assuming the ratio of 

the variation of the gap between two cylinders to the mean radius is much smaller than 1 

(ε ≪ 1), they conducted an asymptotic expansion in powers of ε. Their solution suggested 

that the velocity in some parts of the plug layer varies around the annulus and the stress 

exceeds the yield stress, contrasting with the plug flow observed in the 2-D channel flow 

(Bird et al. 1983); velocity is a constant and independent of the horizontal variable. Later, 

Balmforth & Craster (1999) also employed an asymptotic expansion in powers of ε (where 

ε is the ratio of the characteristic thickness of the layer to the horizontal length scale) to 

investigate a flow of Bingham fluid down an inclined plate by using lubrication approach. 

Their solution revealed that the flow within the plug layer is weakly yielded at higher order 

in ε, despite appearing as a plug at the leading order solution. In this case, they identified 

the plug layer in this context as a pseudo-plug layer, and the yield surface which separates 

the fully yielded layer and pseudo-plug layer should be a fake yield surface. This feature 

was further examined by Liu, Balmforth & Hormozi (2019) in their theoretical and 

numerical studies of the inertialess viscoplastic flow of the Herschel-Bulkley type flows 

down an inclined surface. In their study, they improved the lubrication theory by 

incorporating higher-order terms in ε. This improved model agrees closely with their 
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numerical simulations and agrees with the experimental observation of Chambon et al. 

(2009, 2014, 2017) to some extent. Moreover, their research also indicated that the rigid 

plug observed in the upstream uniform region is disrupted as the flow progresses 

downstream due to the extensional stress across the plug, giving rise to a weakly yielded 

layer, referred to as a pseudo-plug layer. 

To the best of the author’s knowledge, the influence of the rheology on an impinging jet of 

viscoplastic fluid and the resulting hydraulic jump has not been investigated. However, 

there are numerous studies that have examined the influence of yield stress and shear-rate 

dependence of the viscosity on the flow behaviour. Generally, the mobility of the 

viscoplastic fluid can be significantly reduced when the yield stress is large. In their 

numerical investigation on a finite mass of viscoplastic flow of Bingham type sliding down 

a slope under the water and the generated surface waves, Jiang & Leblond (1993) found 

that the extend and the velocity of the mudslide, as well as the amplitude of the resulting 

surface waves, decreased significantly due to the existence of yield stress. They also 

reported that the velocity of the pseudo-plug layer decreases with an increasing yield stress, 

and the front velocity is smaller for higher yield stress. In addition, the mudslide flow on 

the slope finally came to a halt when the wall shear stress falls below the yield stress. 

Similar feature on the influence of yield stress on the spreading distance or pseudo-plug 

layer velocity can also be observed in the spread of flow down an inclined plane (Huang 

& García 1998; Balmforth et al. 2002; Balmforth et al. 2007a) and on a shallow and wide 

curved channel (Mei & Yuhi 2001), the spread of a droplet on a prewetted horizontal plate 

(Jalaal et al. 2021), the flow inception following the release of a volume of fluid or dam-

break flow (Matson & Hogg 2007; Liu et al. 2016, 2018), and the squeezing of a thin film 

(Koblitz, Lovett & Nikiforakis 2018; Muravleva 2019), no matter the fluid is of Bingham 

or Heschel-Bulkley type. 

In contrast to the consistent influence of yield stress mentioned above, the influence of the 

shear-rate dependence of the viscosity on the spreading distance and film depth is more 

complex and less consistent compared to that of yield stress. In their study of mud flow 

down a slope, Huang & García (1998) found that a more shear-thinning fluid has a shorter 

spread distance and a thicker flow depth away from the wave front. They also observed 
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that the influence of shear thinning on the spreading distance diminishes as the yield stress 

rises. Balmforth et al. (2000) also reported the influence of the power-law viscosity and 

yield stress on the shape of a lava dome at a certain time, which is consistent with the 

finding of Huang & García (1998). In contrast, Liu et al. (2018) reported that the power-

law viscosity has little effect on the final shape of the slump. Interestingly, the influence of 

the power-law index may not be consistent from one region to another of the flow. For 

instance, for squeeze film flow between two disks, the calculations of Muravleva (2019) 

show that, in the core region of the flow, the fully-yielded layer thickness as well as the 

second stress invariant at the disks decreases with increasing power-law index. The 

opposite is true near the edge of the disks. The influence of the power-law rheology was 

found to depend significantly on the level of yield stress. Although most viscoplastic fluids 

exhibit a shear-thinning character, some do possess a shear-thickening viscosity, such as 

concentrated diblock copolymer solutions (Bauer et al. 1995) and cement mixtures 

(Heirman et al. 2008,2009; Yahia 2011; Estelle & Lanos 2012). 

To the best of the author’s knowledge, there is not much investigation focused on the 

impinging jet of viscoplastic fluids and hydraulic jump, except for the investigations by 

Ogihara & Miyazawa (1994), Shu & Zhou (2006), Zhou et al. (2007) and Ugarelli & 

Federico (2007), for yield stress flow in a rectangular channel. Ogihara & Miyazawa (1994) 

conducted experimental investigations in a rectangular channel to analyze the impact of 

yield stress on flow behaviour and the occurrence of hydraulic jumps. The working fluid 

in their experiment is a mixture of water and bentonite, which can be regarded as a 

Bingham fluid. Their experiments showed that the critical depth increased dramatically 

when the relative yield stress exceeds 0.1 Pa. Shu & Zhou (2006), and Zhou et al. (2007) 

examined theoretically the planar hydraulic jump on a horizontal plate for a Bingham fluid 

(the two studies are essentially the same). They assumed a parabolic velocity profile for 

both the super- and sub-critical regions, which is motivated by the lubrication 

approximations. By using the mass and momentum balance equation across the jump, they 

derive an approximate expression for the conjugate depths. However, the flow field 

immediately upstream of the jump, including the pseudo-plug layer velocity, the film 

height and the wall shear stress, were simply assumed. They determined the flow 

immediately downstream of the jump by using the mass and force balance across the jump. 
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Moreover, the flow character in both the upstream and downstream regions of the jump 

was not examined. Later, Ugarelli & Federico (2007) used a similar approach, adopting the 

Herschel-Bulkley model. They evaluated the error, mainly stemming from neglecting 

viscous effects, introduced by the adoption of the approximate solution by solving the 

equations numerically.  

Similar to the work of Newtonian fluid mentioned in the previous section, a thin-film 

approach and K-P approach have also been widely used for steady and transient flow 

problems involving thin layers of viscoplastic fluids. The depth-averaged approach was 

proposed to study the water waves generated by an underwater Bingham viscoplastic 

landslide on a gentle uniform slope by Jiang & Leblond (1993). The K-P approach was 

also employed by Liu & Mei (1994) to investigate the flow of a mud layer down a gentle 

slope, in an effort to understand the periodic shocks or roll waves that are caused by 

unstable disturbances of small amplitude. Later, the depth-averaged approach was adopted 

for a viscoplastic fluid of the Heschel-Bulkley type by Huang & García (1998), who 

examined the dynamics of the mud-slide problem, which was simplified to a 2D, unsteady, 

and low-Reynolds-number laminar flow. Generally, the K-P depth-averaged method is 

particularly suited for fast-moving free-surface flow problems, with non-negligible inertia 

(Ancey 2007). For slow-moving viscoplastic flow problems, the lubrication approach is 

utilized, as for the spread of lava (Balmforth & Craster 1999; Balmforth et al. 2000), the 

dam-break flow (Matson & Hogg 2007; Liu et al. 2016, 2018), and surges down an inclined 

surface (Liu et al. 2019). 

1.4 Objectives and Outline of the Thesis 

1.4.1 The objectives of the thesis 

As mentioned in the previous sections, the main theory utilized in the studies of the circular 

hydraulic jump is Watson’s (1964) theory or the corrected theory by Bush & Aristoff 

(2003), which assumes that the jump profile is shock-like. In this case, it is impossible to 

examine the flow structure at the jump. The model proposed by Bohr et al. (1996) and 

Watanabe et al. (2003) can cross the jump smoothly, but two experiment points near the 

leading and trailing edge of the jump are needed to fix the boundary conditions. To 



29 

 

overcome the drawbacks of the previous approaches, the thesis will propose a coherent 

composite approach, which does not need any empirically or numerically adjusted 

boundary conditions, for the continuous circular hydraulic jump. The influence of flow 

rate, viscosity and gravity on the jump location, film height profile and the vortex structure 

at the jump are investigated as well. 

Bohr et al. (1993) proposed a scaling for the hydraulic jump radius, which did not take the 

influence of disk size into account. In contrast, Duchesne et al. (2014) established their 

scaling law by assuming that the Froude number (immediately downstream of the jump) 

based on the jump location and height ( JFr ) is constant, and their scaling law involves the 

disk radius. Clearly, their scaling law is therefore semi-empirical since the value of JFr  

must be imposed from the experiment. In the experimental works focusing on the circular 

hydraulic jump, different behaviour for the dependence of the maximum film height in the 

subcritical region on the flow rate for different fluids and different disk size was reported 

(Hansen et al. 1997; Rao & Arakeri 2001; Duchesne et al. 2014; Mohajer & Li 2015). 

Although many studies showed that the disk size has negligible influence on the disk radius 

(Bohr et al. 1993), the influence of the size of the disk has not been examined thoroughly. 

Experimental and numerical investigations showed that different types of hydraulic jumps 

would show if the thickness of the film at the disk edge increased (Ellegaard et al. 1998; 

Bush et al. 2006; Teymourtash et al. 2016; Askarizadeh et al. 2019), but rarely theoretical 

work contributed to this aspect. The thickness at the disk edge is still largely an unaddressed 

problem, and there are two main approaches to determine the film height or equivalent 

conditions at the disk edge for a free-draining situation; imposing an infinite slope (Bohr 

et al. 1993; Kasimov 2008; Dhar et al. 2020), or assuming the edge thickness to be 

essentially equal to the capillary length (Duchesne et al. 2014; Ipatova et al. 2021; 

Duchesne & Limat 2022). As indicated in the experimental work of Duchesne et al. (2014), 

the edge film thickness also follows a weak power law dependence on the flow rate. 

However, this weak power law dependence feature was not examined fully. In addition, 

the existence and non-existence of jump and vortex under the jump also remain an unclear 

problem. Therefore, with the proposed coherent composite approach, the thesis will further 

investigate the characteristics of the continuous circular hydraulic jump, mainly focusing 
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on the effect of disk size, and film thickness at the disk edge on the flow features, as well 

as the interplay between flow rate and disk size. The existence and non-existence of the 

hydraulic jump and the vortex under the jump on the flow parameters will be explored. 

Many experimental and numerical works illustrated that the azimuthal flow in the 

subcritical region showed when the circular hydraulic jump transformed into the polygonal 

hydraulic jump. However, Waston’s (1694) theory or the improved one by Bush & Aristoff 

(2003) is still utilized to compare with the measured jump radius, which showed poor 

agreement between the measured and predicted jump radius. To accommodate the 

azimuthal velocity observed in the subcritical region, a model that includes the balance of 

mass and momentum in both the radial and azimuthal directions will be proposed. The 

thesis will not explore the spontaneous non-circular hydraulic jump, but will study the 

influence of the geometry of the disk and varied film thickness at the disk edge on the jump 

radius and flow features.  

The existing studies on the circular hydraulic jump are using Newtonian fluid as the 

working fluid, but many fluids of industrial applications are viscoplastic fluids. In addition, 

extensive research showed that both the yield stress and the shear-rate dependence 

viscosity can affect the spreading of the flow, as well as the flow structure. In the current 

thesis, a model that takes the rheology of the viscoplastic fluid into account will be 

presented. The influence of yield stress and power law index on the jump radius and the 

flow characteristics in both super- and sub-critical regions will be explored. 

1.4.2 The outline of the thesis 

In Chapter 2, to obtain a smooth jump profile without any empirically or numerically 

adjusted boundary conditions, a coherent composite approach will be proposed. The theory 

will be validated against extensive experiments and Navier–Stokes simulations. The effect 

of flow rate, viscosity and gravity on the flow structure will be examined. In Chapter 3, the 

characteristics of the continuous circular hydraulic jump will be explored. Based on the 

continuous model proposed in Chapter 2, we will further investigate the effects of disk size, 

and film height at the disk edge on the flow structure. The interplay between the flow rate 

and disk size will be examined further. In addition, the existence and non-existence of 
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vortex and jump on the flow parameters will be investigated. Furthermore, we will propose 

a scaling law for the jump radius, which takes the effect of the disk size into account. In 

Chapter 4, to explore the effect of azimuthally varying edge conditions on the hydraulic 

jump, a model that considered the mass and momentum balance equation in both the radial 

and azimuthal directions will be proposed. The effect of both the geometry of a non-circular 

disk and a variable film thickness at the disk edge for a circular disk on the jump radius 

and flow characteristics will be explored. In Chapter 5, a model for viscoplastic impinging 

jet flow and hydraulic jump will be presented. The constitutive model utilized is the 

Herschel-Bulkley model. The influence of the yield stress and shear-rate dependence 

viscosity on the jump radius, as well as the flow in both super- and sub-critical regions will 

be investigated. In Chapter 6, the overall concluding remarks and suggestions for future 

works will be given. 
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Chapter 2  

2 A coherent composite approach for the continuous 
circular hydraulic jump and vortex structure1 

Nomenclature 

a  Radius of jet, m 

Fr  Froude number, 𝐹𝑟 = 𝑊 √𝑔𝑎⁄  

𝐹𝑟𝑙  Local Froude number, 𝐹𝑟𝑙 = 𝐹𝑟〈𝑢〉 √ℎ⁄  

𝐹𝑟𝐽  Froude number immediately downstream of the jump, 𝐹𝑟𝐽 = 𝐹𝑟 2𝑟𝐽𝐻𝐽
3/2⁄  

g  Acceleration due to gravity, 𝑚 𝑠2⁄  

Ga  Galileo number, 𝐺𝑎 = 𝑅𝑒2 𝐹𝑟2⁄  

h  Dimensionless film thickness 

ℎ̅  Dimensionless rescaled height film thickness 

ℎ0  Dimensionless film thickness at 𝑟 = 𝑟0 

ℎ1  Dimensionless film thickness at 𝑟 = 𝑟1 

ℎ𝑐  Dimensionless critical height ℎ𝑐 = ℎ(𝑟 = 𝑟𝑐), when 𝐹𝑟 2𝑟𝑐ℎ𝑐
3/2

= 1⁄  

ℎ𝑚𝑎𝑥  Dimensionless (maximum) film thickness at 𝑟 = 𝑟𝑚𝑎𝑥 

________________________________ 

1 A version of this chapter has been published as - 

Wang, W., Baayoun, A. & Khayat, R.E. 2023 A coherent composite approach for the continuous circular 

hydraulic jump and the vortex structure. J. Fluid Mech. 966, A15. https://doi.org/10.1017/jfm.2023.374 

https://doi.org/10.1017/jfm.2023.374
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ℎ∞  Dimensionless film thickness at the disk edge 

𝐻𝐽1  Dimensionless measured jump height 

𝐻𝐽2  Dimensionless jump height based on lubrication approach 

𝐻𝑣𝑜𝑟𝑡𝑒𝑥 Dimensionless height of the vortex under the jump 

𝐿𝑣𝑜𝑟𝑡𝑒𝑥  Dimensionless length of the vortex under the jump 

m  Dimensionless momentum flux, 𝑚 =
𝑅𝑒

𝑟

𝑑

𝑑𝑟
∫ 𝑟𝑢2𝑑𝑧

ℎ

0
 

p  Dimensionless pressure 

Q  Volume flow rate, 𝑚3 𝑠⁄  

r  Dimensionless radial coordinate 

𝑟̅  Dimensionless rescaled radial coordinate 

𝑟0  Dimensionless transition point of the hydrodynamic boundary layer 

𝑟1  Dimensionless radial location of the leading edge of the hydraulic jump 

𝑟𝑐  Dimensionless critical radius when 𝐹𝑟 2𝑟𝑐ℎ𝑐
3/2

= 1⁄  

𝑟𝑠  Dimensionless radial location of singularity reached 

𝑟𝑚  Dimensionless radial location of maximum film thickness 

𝑟∞  Dimensionless disk radius 

𝑟𝐽  Dimensionless jump radius 

Re  Reynolds number, 𝑅𝑒 = 𝑊𝑎 𝜈⁄  

u  Dimensionless horizontal velocity 
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U  Dimensionless free surface velocity 

〈𝑢〉  Dimensionless depth average velocity 

w  Dimensionless vertical velocity 

W  Average jet velocity, 𝑊 = 𝑄 𝜋𝑎2⁄ , 𝑚 𝑠⁄  

z  Dimensionless vertical coordinate 

Greek Symbols 

δ  Dimensionless hydrodynamic boundary layer thickness 

ε  Dimensionless perturbation parameter 

η  Scaled vertical coordinate, 𝜂 = 𝑧 ℎ⁄  

θ  Azimuthal coordinate 

ν  Kinematic viscosity, 𝑚2 𝑠⁄  

ρ  Density of fluid, 𝑘𝑔 𝑚3⁄  

𝜏𝑤  Dimensionless wall shear stress 
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2.1 Introduction 

When a circular liquid jet impinges vertically onto a horizontal disk, it spreads radially 

outwards as a thin film. At a certain radial position, the film exhibits a circular hydraulic 

jump or a sudden rise in the thickness (Middleman 1995). This phenomenon is of pivotal 

fundamental importance in free-surface flow, and it is of relevance to many practical 

applications  (Ishigai et al. 1977; Kate, Das & Chakraborty 2007; Mohajer & Li 2015; 

Askarizadeh et al. 2020). The formation of the jump is associated with a flow separation 

and the creation of a separation bubble, or a recirculating vortex, at the bottom in 

conjunction with the jump (Bohr et al. 1996; Ellegaard et al. 1996), resulting from the film 

thickening across the jump and the simultaneous decrease in velocity. In turn, this induces 

a rise in pressure, which acts as an adverse wind to the flow, enabling it to separate into 

regions of upstream and downstream velocities of the type I jump (Bohr et al. 1998). Both 

the separation length and the vortex size depend on the flow conditions (Nakoryakov, 

Pokusaev & Troyan 1978; Craik et al. 1981; Rao & Arakeri 2001). The predictions of the 

jump radius and structure, the free-surface height and the vortex size have been of primary 

interest in the literature. However, the flow involving a circular hydraulic jump still lacks 

a coherent and systematic predictive theory for these different hydrodynamic features, even 

under laminar and steady-state conditions. Existing theoretical models are semi-empirical 

as they require some input from experiment to ensure the well-posedness of the problem. 

The objective of the present study is to develop a theoretical approach that addresses this 

issue and other drawbacks of existing models. 

In the presence of gravity, the thin-film equations do not admit a similarity solution such 

as in the approach formulated by Watson (1964). Instead, the flow is commonly treated 

theoretically by reducing the boundary-layer equations using a mean-field or depth-

averaging of the Kármán-Pohlhausen (KP) type (Schlichtling & Gersten 2000). In the 

absence of surface tension, the thin-film approximation results in a hydrostatic pressure 

distribution that reflects the gravitational effect in the flow. By adopting a simple (often 

parabolic or cubic) velocity profile across the film layer, reasonably accurate quantitative 

predictions of the flow field and film profile can be obtained (Kurihara 1946; Tani 1949; 

Bohr, Dimon & Putkaradze 1993, Kasimov 2008; Wang & Khayat 2019). However, the 
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choice of the (radial) velocity profile constitutes a crucial step in the formulation. Almost 

any simple profile can lead to reasonably accurate prediction of the jump radius and height, 

but a more judicious choice is needed to capture more accurately the flow field. In this 

respect, the common practice has been to adopt a simple similarity profile, yielding a first-

order equation for the film thickness, or a non-similarity profile that yields a second-order 

equation. We therefore refer to first- and second-order formulations when resulting in first- 

and second-order equations governing the film thickness, respectively. Various 

mechanisms can yield the second-order correction such as the inclusion of normal diffusive 

term (Razis, Kanellopoulos & van der Weele 2021) or gravity effect (Bohr, Putkaradze, & 

Watanabe 1997; Watanabe, Putkaradze & Bohr 2003) by ensuring that the velocity profile 

satisfies the radial momentum equation at the disk.  

The first-order model is typically derived by imposing a similarity profile for the radial 

velocity component. As a result, a singularity in either the velocity gradient or the film 

surface slope emerges at a finite radius, which is often assumed to coincide with the 

location of the jump (Kurihara 1946; Tani 1949; Wang & Khayat 2019). This approach is 

particularly attractive for two main reasons. On the one hand, the problem is reduced to a 

one degree of freedom, thus necessitating only one boundary condition, typically imposed 

at some upstream location. On the other hand, the location of the jump is determined 

without requiring any knowledge of the subcritical flow. Once the jump is located, the 

subcritical flow can be determined using a lubrication approach, which was shown to give 

reasonable prediction ((Duchesne, Lebon & Limat 2014; Wang & Khayat 2019). 

Alternatively, Bohr et al. (1993) and Kasimov (2008) integrated the film equation radially 

forward upstream and backward downstream, hence generating inner and outer solutions, 

respectively. They assumed a simple parabolic velocity profile everywhere in the flow. In 

their inner solution, a boundary condition was arbitrarily imposed at a location slightly 

larger than the jet radius. In their outer solution, an infinite slope of either the average 

velocity or the film thickness was considered to coincide with the edge of the disk. 

Subsequently, Bohr et al. (1993), Kasimov (2008) and Dhar, Das & Das (2020) located the 

jump upon matching both solutions through a Rayleigh shock (Rayleigh 1914) that satisfies 

the continuity of mass and radial momentum fluxes across the shock. Later, Wang & 

Khayat (2019) adopted a similar solution process, but included a developing boundary-



46 

 

layer region near impact, thus allowing the fixing of an upstream boundary condition at the 

transition location between the boundary and viscous layers. The validity of the first-order 

model has been tested, yielding good agreement against experiment and numerical 

simulation, particularly for the jump radius. However, the model suffers from significant 

fundamental drawbacks as it prohibits proper analysis of the jump structure: the jump can 

only be treated as a (discontinuous) shock, with no possibility of examining the separation 

downstream or the viscous-inviscid interaction leading up to jump, the ellipticity of the 

boundary-layer equations is lost and the upstream influence cannot be addressed (Bowles 

& Smith 1992; Higuera 1994; Bowles 1995). We address these issues in some detail in the 

present study. 

In an effort to capture the smooth variation of the jump and the vortex structure, second-

order corrections were introduced by Bohr et al. (1997) and Watanabe et al. (2003). They 

accounted for additional gravity effect by ensuring their velocity profile to satisfy the 

momentum equation at the disk. The presence of the resulting additional shape parameter 

in the cubic velocity profile prevents the formation of the critical point and the singularity 

of the averaged first-order model, allowing the capture of the flow separation. However, 

two experimental points are needed in their solution to fix the boundary conditions, and 

some prior knowledge of the location of the jump is required. In this regard, even though 

their theory showed good agreement with the earlier measurements of Bohr et al. (1996), 

it remains somewhat semi-empirical. A similar approach was later adopted by Bonn, 

Andersen & Bohr (2009) to study the hydraulic jump in a channel. However, results 

showing a jump-like profile were only presented to describe the vortex, whereas their 

comparison against measurements was limited to the simplified (first-order) version of the 

model in which the jump was treated as an abrupt shock connecting an inner and an outer 

solution. Fernandez-Feria, Sanmiguel-Rojas & Benilov (2019) obtained the jump profile 

by numerically integrating the boundary-layer equations. Their approach accommodates 

only an upstream boundary condition specified at some radial location close to impact. 

Similarly, Higuera (1994) solved the boundary-layer equations numerically to generate the 

jump profile for two-dimensional flow. Unlike Fernandez-Feria et al. (2019), he ensured 

the upstream influence from the downstream flow condition at the edge of the disk. 
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More recently, Roberts & Li (2006) derived a model based on centre-manifold theory to 

describe the dynamics of thin films on curved substrates. A smooth profile was generated 

for the circular hydraulic jump on a flat substrate, and the vortex was captured as well. 

However, they simply imposed the boundary conditions in a manner similar to Watanabe 

et al. (2003). Mikielewicz & Mikielewicz (2009) proposed a simple model based on the 

solution of Bernoulli’s equation for the planar viscous fluid flow, which incorporates the 

dissipation losses due to the change of the film thickness as well as the presence of eddies 

following the jump. The model does not predict the radius of the jump as accurately as the 

averaged boundary-layer equations. Moreover, the model requires a prior knowledge of the 

size of the vortex, which, in their case, was fixed as a quarter of the subcritical depth. A 

more serious attempt was made by Razis et al. (2021) to capture the continuous jump in an 

inclined channel. They extended the Saint-Venant equations by including the effect of the 

longitudinal normal stress. They derived analytically an approximate expression for the 

jump length as a function of the Froude and effective Reynolds numbers, highlighting the 

strong interplay among inertia, gravity and viscous diffusion, as contributing to the balance 

of forces that shape the jump. 

The aim of the present study is to present a coherent approach that predicts the different 

features of the continuous circular hydraulic jump problem. We are particularly interested 

in predicting the continuous jump profile so the effects of the flow conditions on the 

separation length and the vortex size can be explored. The rest of this paper is organized 

as follows. In section 2.2, we describe the general problem and physical domain. In section 

2.3, we formulate the problem in terms of the general governing equations and boundary 

conditions in each region of the flow. The KP integral method is adopted, and the solution 

strategy is clearly described with a case illustration. In section 2.4, we validate our 

theoretical predictions against existing numerical and experimental results. Some further 

results and analysis are given in section 2.5, where we examine the influence of the flow 

rate over the same experimental range as that of Duchesne et al. (2014). Flow details are 

considered which were not reported in their experiment. Additional results on the influence 

of gravity and viscosity are also given. Finally, concluding remarks are given in section 

2.6. 
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2.2 The physical domain and problem statement 

Consider the steady laminar incompressible flow of a circular (axisymmetric) jet of a 

Newtonian fluid emerging from a nozzle of radius a, impinging at a volume flow rate Q on 

a flat disk of radius R  lying normal to the jet direction. The flow configuration is 

depicted schematically in figure 1, where dimensionless variables and parameters are used. 

The problem is formulated in the ( )r, , z  fixed coordinates, with the origin coinciding with 

the disk center. The flow is assumed to be independent of θ, thus excluding polygonal flow. 

In this case, ( )u r, z  and ( )w r, z  are the corresponding dimensionless velocity 

components in the radial and vertical directions, respectively. The r-axis is taken along the 

disk radius and the z-axis is taken along the jet axis. The length and the velocity scales are 

conveniently taken to be the radius of the jet a, and the average jet velocity 2W Q a  , 

both in the radial and vertical directions. Since the pressure is expected to be predominantly 

hydrostatic for a thin film, it is scaled by ρga, where g is the acceleration due to gravity. In 

the absence of surface tension, two main dimensionless groups emerge in this case: the 

Reynolds number Re Wa=  , where ν is the kinematic viscosity, and the Froude number 

Fr W ag= . Another useful and related number is the Galileo number 
2 2Ga Re / Fr= . 

 

Figure 2-1: Schematic illustration of the axisymmetric jet flow impinging on a flat 

stationary disk and the hydraulic jump of type I with one vortex downstream. Shown 

are the developing boundary-layer region ( 𝟎 < 𝒓 < 𝒓𝟎 )and the fully-developed 

viscous region (𝒓𝟎 < 𝒓 < 𝒓∞). The fully-developed viscous region comprises a region 

(𝒓𝟎 < 𝒓 < 𝒓𝟏) where gravitational effects are moderate, and a second region where 
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gravitational effects are strong (𝒓𝟏 < 𝒓 < 𝒓∞). All notations are dimensionless. In this 

case, the jet radius is equal to one. The film is allowed to fall freely over the edge of 

the disk where an infinite slope in the film thickness occurs, 𝒉′(𝒓 = 𝒓∞) → −∞ . 

Shown in dashed-red curve is the schematic film-thickness profile reflecting the 

approach of Wang & Khayat (2019), terminating with a singularity at a finite radius 

denoted here by 𝒓𝒔 . The jump location coincides with 𝒉′′(𝒓𝑱) = 𝟎 , and 𝒉(𝒓𝒎) =

𝒉𝒎𝒂𝒙. 

As shown in figure 2-1, we identify three main regions of the flow: a developing boundary-

layer region ( )00 r r   where gravity is essentially dominated by inertia, a fully-

developed viscous region ( )0 1r r r   with moderate gravitational effect and a fully-

developed viscous region ( )1r r r   with strong gravitational effect. The jump is a 

smooth transition region that connects the (upstream) supercritical and the (downstream) 

subcritical regions. Again, the analysis of the boundary-layer region, near impact, is crucial 

in order to fix an upstream boundary condition for the thin-film viscous flow, relevant to 

the jet conditions. Throughout this study, the stagnation or impingement region is not 

considered, and the boundary layer is assumed to originate at the stagnation point. 

However, we examine in some detail the validity of this assumption (see §§2.3.1). 

The boundary layer grows until it reaches the film surface at the transition location 0r r= . 

Here, the film thickness is defined as ( )0 0h h r r =  which corresponds to an upstream 

boundary condition for the flow in the fully-developed viscous region. We denote by ( )r  

the boundary-layer thickness. The leading edge of the boundary layer is taken to coincide 

with the disk center. We let ( ) ( )U r u r, z h =  denote the velocity at the free surface. 

Assuming the jet and stagnation flows to be inviscid irrotational, the radial velocity outside 

the boundary layer is then ( )0U 0 r r 1  =  as the fluid there is unaffected by the viscous 

stresses. We recall that both velocity components have been scaled by the (inviscid) jet 

velocity W. The potential flow ceases to exist in the fully-developed viscous region 

0r r r  , and U becomes dependent on r. We note that 0r  is the location beyond which 
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the viscous stresses become appreciable right up to the free surface, where the entire flow 

is of the boundary-layer type. We follow Rojas et al. (2010) and take the jump location  

to coincide with the vanishing of the concavity: ( )Jh r r 0 = = . We denote by mr r=  the 

location of the maximum film height: ( )m maxh r r h= = . The definition of the jump radius 

at the location where the free surface changes concavity is reasonable as this location is 

very close to the start of the separation zone which is experimentally considered as the 

location of the jump in the literature (Bohr et al. 1996). Downstream of the jump, the film 

decreases in thickness and eventually falls freely over the edge of the disk, at r r= , where 

an infinite (downward) slope in thickness is assumed (Bohr et al. 1993; Kasimov 2008; 

Dhar et al. 2020). In fact, we shall see that the infinite slope is directly related to the stress 

singularity expected to occur at the disk edge (Higuera 1994; Scheichl, Bowles & Pasias 

2018). More details on the condition at the disk edge and upstream influence will be given 

later. Finally, we shall assume throughout the present study that the locations 1r  and mr  

coincide with the locations of the leading and trailing edges of the jump, respectively. 

Unless otherwise specified, the Reynolds number is assumed to be moderately large so that 

our analysis is confined to the laminar regime. Consequently, for steady axisymmetric thin-

film flow, in the presence of gravity, the mass and momentum conservation equations are 

formulated using a thin-film or Prandtl boundary-layer approach, which amounts to 

assuming that the radial flow varies much slower than the vertical flow (Schlichting & 

Gersten 2000). We observe that the pressure for a thin film is hydrostatic as a result of its 

vanishing at the film surface (in the absence of surface tension) and the small thickness of 

the film, yielding ( ) ( )p r, z h r z= − . By letting a subscript with respect to r or z denote 

partial differentiation, the reduced dimensionless relevant conservation equations become 

r z
u

u w 0,
r

+ + =   ( )r z zz2

Re
Re uu wu h u

Fr
+ = − + ,         (2.2.1a, b) 

where a prime denotes total differentiation with respect to r. These are the thin-film 

equations commonly used to model the spreading liquid flow (Tani 1949; Bohr et al. 1993, 
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1996; Kasimov 2008; Wang & Khayat 2019). At the disk, the no-slip and no-penetration 

conditions are assumed to hold at any r. In this case: 

( ) ( )u r, z 0 w r, z 0 0= = = = .              (2.2.2a, b) 

At the free surface ( )z h r= , the kinematic and dynamic conditions for steady flow take 

the form 

( ) ( ) ( )w r,z h u r, z h h r= = = ,  ( )zu r, z h 0= = .         (2.2.3a, b) 

The conservation of mass at any location upstream and downstream of the jump yields the 

following relation in dimensionless form: 

( )
( )h r

0

1
u r,z dz

2r
= .          (2.2.4) 

Finally, a useful expression for the convective terms is obtained by first eliminating the 

transverse velocity component by noting from (2.2.1a) and (2.2.2b) that 

( )
z

0

1
w r,z, t r udz .

r r

 
 = −
 
 

  In this case 

( ) ( )
z

2
r z rr

0 z

1 1
uu wu ru u ru dz

r r

 
 + = −
 
 

 .       (2.2.5) 

The flow field is sought separately in the developing boundary-layer region for 00 r r  , 

the fully-developed viscous region with moderate gravity for 0 1r r r   and fully-

developed viscous region with strong gravity for 1r r r  . Additional boundary 

conditions are needed, which are given when the flow is analysed in each region. 
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2.3 Formulation and solution strategy 

In this section, we first present the formulation of the steady flow in the developing 

boundary-layer region in order to obtain the upstream boundary condition needed for the 

flow in the fully-developed viscous region. Next, we present the formulations of the flow 

in the fully-developed viscous region. In particular, effects of moderate gravity and strong 

gravity are discussed. We see that, depending on the level of importance of the gravitational 

effects, different governing equations can be used in different regions. The general strategy 

to obtain a unique solution of the free-surface profile and flow field, and to locate the jump, 

is finally described. 

Aside from some specific cases, boundary-layer and thin-film flows are generally non-self-

similar in character (Schlichtling & Gersten 2000; Drazin & Riley 2006). Therefore, we 

seek an approximate solution in each flow region. An integral approach of the KP type 

(Schlichtling & Gersten 2000) is adopted in the developing boundary-layer and fully-

developed viscous regions. The KP method has been widely adopted in the literature for 

steady and transient jumps, not only when the thin-film equations are parabolic (Watson 

1964; Bush & Aristoff 2003; Kate et al. 2007; Dressaire et al. 2010; Prince et al. 2012; 

Wang & Khayat 2018; Baayoun et al. 2022) but also when the equations are weakly elliptic 

(Tani 1949; Bohr et al. 1993; Bohr et al. 1997; Watanabe et al. 2003; Kasimov 2008; 

Fernandez et al. 2019; Wang & Khayat 2019; Dhar et al. 2020; Ipatova et al. 2021). The 

problem becomes weakly elliptic when the relatively weak effect of gravity upstream of 

the jump is not neglected in the analysis. In this case, the upstream influence caused by the 

downstream condition is small but not negligible. It is well established from the literature 

for impinging jet flow and hydraulic jump (Prince et al. 2012/2014; Wang & Khayat 

2018/2019/2020; Baayoun et al. 2022) that a cubic similarity velocity profile taken in the 

supercritical region leads to close agreement with Watson’s (1964) similarity solution. 

Consequently, in this study, we also adopt a cubic profile for the velocity, which is 

considered to be the leading-order solution in a comprehensive spectral approach for 

nonlinear flow (Khayat & Kim 2006). Other profiles such as the parabolic profile were also 

used in the literature (Bohr et al. 1993; Kasimov 2008). 
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2.3.1 The flow in the impingement zone and boundary-layer region 
(0 < 𝑟 < 𝑟0) 

As depicted in figure 2-1, we assume that the inception of the boundary layer coincides 

with the stagnation point, thus assuming the impingement zone to be negligibly small, 

which is a common practice for an impinging jet. In fact, the velocity outside the boundary 

layer rises rapidly from 0 at the stagnation point to the impingement velocity in the inviscid 

far region. The impinging jet is predominantly inviscid close to the stagnation point, and 

the boundary-layer thickness remains negligibly small. Obviously, this is the case for a jet 

at relatively large Reynolds number. Indeed, the analysis of White (2006) shows that the 

boundary-layer thickness is constant near the stagnation point, and is estimated to be 

( )1/2O Re− . Ideally, the flow at the boundary-layer edge should correspond to the (almost 

parabolic) potential flow near the stagnating jet, with the boundary-layer leading edge 

coinciding with the stagnation point (Liu & Lienhard 1993). However, the assumption of 

uniform horizontal flow near the wall and outside the boundary layer is reasonable. The 

distance from the stagnation point for the inviscid flow to reach uniform horizontal velocity 

is small, of the order of the jet radius (Lienhard 2006). In the absence of gravity, the steady 

flow acquires a similarity character. In this case, the position or effect of the leading edge 

is irrelevant. This assumption was adopted initially by Watson (1964), and has been 

commonly used in existing theories (see e.g. Bush & Aristoff 2003; Prince et al. 2012, 

2014; Wang & Khayat 2018, 2019, 2020). 

Nevertheless, in an effort to validate the assumption of negligible impingement zone, we 

find it helpful to examine its extent for the free-surface jet. We therefore assume, given the 

strong inertia of the downward jet, that the flow above the viscous layer is purely inviscid. 

For a free-surface jet with no surface tension, Lienhard (2006) showed that the radial 

velocity component of the potential flow is given by ( ) ( )2U r cr O r= + , where c = 0.46. 

The radial velocity component in the stagnation region is then expressed as 

( ) ( ) ( )u r, z U r F=   in terms of the similarity variables ( )
1/2

z c Re = , and 

( )
U

w r,z U F F / cRe
r

 
= − + 

 
. A prime indicates total differentiation. Substituting into 
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(2.2.1b) and neglecting gravity effects, the equation for F becomes (see also Maiti 1965) 

2F 2FF F 1 0  + − + = , which is solved subject to ( ) ( )F 0 F 0 0= =  and ( )F ~ 1 →  . 

The boundary-layer height in the impingement zone is then given by / c Re =  , where 

  is a constant that depends on Re. The extent of the impingement zone is assessed once 

the flow is sought in the developing boundary-layer region. 

In this region, the boundary layer grows with radial distance, eventually invading the entire 

film depth, reaching the free surface at the transition, 0r r= , where the fully-developed 

viscous region begins. For 00 r r   and above the boundary layer outer edge, the free 

surface lies at some height ( ) ( )z h r r=   . The flow in the developing boundary-layer 

region is assumed to be sufficiently inertial for inviscid flow to prevail between the 

boundary-layer outer edge and the free surface (see figure 2-1). In this case, the following 

conditions at the outer edge of the boundary layer ( )z r=   and beyond must hold: 

( )0u r r , z h 1    = ,  ( )z 0u r r , z 0 =  = .          (2.3.1a, b) 

The height of the free surface in the developing boundary-layer region is determined from 

mass conservation inside and outside the boundary layer. Therefore, for 0r r , (2.2.4) 

becomes 

( )
( )

( ) ( )
r

0

1
u r,z dz h r r

2r



+ −  = .        (2.3.2) 

Upon integrating (2.2.1b) across the boundary-layer thickness and considering the integral 

form of the convective terms in (2.2.5), we obtain the following weak form: 

( ) w2
0

Re d Re
ru u 1 dz h

r dr Fr



− = −  −  .        (2.3.3) 
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Here we introduced the wall shear stress or skin friction ( ) ( )w zr u r, z 0  = . For 

simplicity, we choose a similarity cubic profile for the velocity, satisfying conditions 

(2.2.2a) and (2.3.1). Thus, we let 

( ) ( )3
0

3 1
u r r , z f

2 2
 = −    ,        (2.3.4) 

where z =  . Clearly, (2.3.4) does not satisfy the momentum equation at the disk. In this 

case, the effect of gravity is not accounted for in the velocity profile. This assumption 

should be reasonable as the effects of gravity are negligible near impingement where inertia 

is more dominant (Watson 1964). In this case, (2.3.4) represents a self-similar velocity 

profile in the boundary-layer flow. 

Upon inserting (2.3.4) into (2.3.2) and (2.3.3), we obtain the following equations for the 

boundary-layer and free-surface heights: 

3 1
h

8 2r
−  = ,   ( ) 2

2

39 Re Re 3
r h

280 r 2Fr

   =  + .         (2.3.5a, b) 

These equations are solved numerically subject to ( )r 0 0 = = . The transition location is 

found when the boundary-layer thickness becomes equal to the film thickness. 

Consequently, the boundary condition for the film thickness at the transition location 

( )0 0h h r r =  is obtained. Clearly, the formulations presented for the flow in the 

developing boundary-layer region are the same as those of Wang & Khayat (2019). 

Figure 2-2 illustrates the influence of inertia (Re) and gravity (Fr) on the size of the 

impingement zone and the boundary-layer profile dictated by (2.3.5). The intersection 

indicates the extent of the impingement zone, which depends on Fr (figure 2-2a) and Re 

(figure 2-2b). We recall that the height of the viscous layer in the impingement zone does 

not change with position and is independent of Fr for a Newtonian jet, and behaves like 

1/ Re . Figure 2a shows that the extent of the impingement zone decreases as Fr increases, 

remaining essentially of O(1). The extent saturates asymptotically to the value 1.22 for 

infinite Fr, when gravity is neglected in (2.3.5). Figure 2-2b indicates that the length of the 
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impingement zone is essentially insensitive to the variation of the Reynolds number; only 

its thickness decreases with Re. Therefore, we conclude that, unless the Froude number is 

very low such as under strong gravity or low flow rate of the jet, the impingement-zone 

length is of the order of the jet radius, and can be neglected (see also Lienhard 2006). 

 

Figure 2-2: Influence of gravity and viscosity on the size of the impingement zone 

(distance between the origin and the point of intersection with the boundary-layer 

height). (a) Influence of 𝑭𝒓 for 𝑹𝒆 = 100, and (b) influence of 𝑹𝒆 for 𝑭𝒓 = 4. The 

horizontal lines are the thickness of the viscous layer in the impingement zone, and 

the curves are the boundary-layer profiles emanating from the origin.  

2.3.2 The flow in the fully-developed viscous region (𝑟0 ≤ 𝑟 ≤ 𝑟∞) 

Downstream of the transition point ( )0r r , the potential flow ceases to exist, with the 

velocity at the free surface becoming dependent on r: 

( ) ( )0u r r , z h U r = = .         (2.3.6) 

In this case, the weak form of the momentum equation (2.2.1b) reads: 

h
2

w

0
2

Re d
ru dz

Re

Fr
hh

r dr
= − −  .        (2.3.7) 
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If the similarity velocity profile ( ) ( ) ( )0u r r , z U r f =  is adopted, where ( )f   is still 

given in (2.3.4) with z / h = , then, after eliminating U 4/5rh=  using (2.2.4), we 

recover, from (2.3.7), the film thickness equation of Wang & Khayat (2019): 

2 2 3 2 2

5 68 1 1 68 Re 3
Re h

175 175 2h4Fr r h rh r

   
− = −   

   
,      (2.3.8) 

which is solved subject to ( )0 0h r r h= = . This equation is equivalent to that developed 

originally by Tani (1949). Although it (or equivalent model) has been extensively (and 

successfully) used in the literature (Bohr et al. 1993; Kasimov 2008; Wang & Khayat 2019; 

Fernandez-Feria et al. 2019; Dhar et al. 2020), it presents significant drawbacks when 

describing the jump structure and flow. Clearly, equation (2.3.8) exhibits a singularity at 

some finite radial position. The jump radius is typically assumed to lie between two 

singular points reached when (2.3.8) is integrated forward (from some initial location) and 

backward when integrated from the disk edge (Bohr et al. 1993; Kasimov 2008). 

Alternatively, unlike other approaches, Wang & Khayat (2019) integrated (2.3.8) starting 

from the transition point. They successfully identified the jump radius as coinciding with 

the location of the singularity, validating their approach against experiment. Fernandez-

Feria et al. (2019) validated further this approach through comparison against their 

numerical solution of the boundary-layer equations. However, the flow downstream of the 

singularity cannot be captured by continuing the solution beyond the singularity. 

Consequently, equation (2.3.8) cannot be used to describe the continuous jump or to 

capture the vortex structure downstream of the jump. Finally, given the inherent ellipticity 

of the boundary-layer problem, equation (2.3.8) cannot account for any upstream influence 

(Bowles & Smith 1992; Higuera 1994). Next, we address these issues by considering the 

second-order model. 

We again assume a cubic velocity profile subject to conditions (2.2.2a), (2.2.3b) and 

(2.3.6). In order to obtain a continuous jump profile, we take the profile to satisfy the 

momentum equation (2.2.1b) at the disk, namely ( )zz2

Re
h u r,z 0 0

Fr
− + = = . In this case, 
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the radial velocity profile is non-self-similar, and is given as a function of the surface 

velocity U(r) and the gravitational term 2

2Re

Fr
h h  as 

( )
2 2

2 2 2 2 3

20
Re Re Re

Fr Fr

1
u r r ,z 6U h h 2 h h 2U h h

4 Fr

    
   = − +  − +     

    
.   (2.3.9) 

Here ( )z / h r = . We observe that the non-self-similarity is due to the presence of the 

gravity term. An equivalent profile to (2.3.9) was adopted by Watanabe et al. (2003), who 

introduced a shape parameter λ(r), and the profile by Bonn et al. (2009) for the hydraulic 

jump in a channel. Clearly, if (2.3.9) is adopted, the skin friction coefficient or wall shear 

stress is given by ( )w 2

1 Re
r

4 F

U
6 hh

h r

 
 = − 

 
. The flow separation points are identified by 

setting ( )w 0r = . This is the case when h  is relatively large and positive. In contrast, the 

flow separation cannot be captured if the similarity profile is used, as it yields 

( )w
3 U

2
0

h
r =  . Upon substituting (2.3.9) into (2.2.4) and (2.3.7), we obtain 

2

2 24
h h 30

r

Re

r
U

hF
 = − ,                 (2.3.10a) 

2

2 2

2
2 2 4 2

2 4

1 Re 3 3 U
h h 41U hU hh

140 6 2Re hFr 4Fr

1 Re 27 Re h
Uh h U h h h

28 5 r

11

r 6F Fr0

 
  − + = + 

 

  
  + − − +     

,            (2.3.10b) 

respectively. We observe that system (2.3.10) is equivalent to the system of equations 

(2.25) in Watanabe et al. (2003). Eliminating U, we obtain an ordinary differential equation 

of second order in h: 
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( )

( )

2

2 2

2 4 3 2

2 3 3

22

2

r h 4 rh h 41 h 1632Re rh 6
Re Re

Re
h

Re

300r
Fr Fr

2 r h h 5rh h 41Reh 2h
r

1
r F

' .00r
F

   + = − 
 

  −
 
 


+

 

+


+

       (2.3.11) 

We refer to system (2.3.10) or equation (2.3.11) as the second-order model. It is not 

difficult to see that equation (2.3.8) can be deduced from (2.3.11) for small film thickness, 

slope and curvature. However, it is helpful to proceed in a more systematic manner, and 

derive a hierarchy of equations, reflecting the (small) level of the film thickness. 

For this, we introduce more appropriate length scales for the radial position and the film 

thickness; recall that the jet radius has been adopted so far as the common length scale. 

Thus, a suitable scaling that reduces (2.3.11) to a one-parameter equation is: 

2/3 2 1/3r Re Fr r , h Re h−= = .              (3.12a, b) 

When the rescaled variables (2.3.12) are used, (2.3.11) reduces to an equation involving 

only one parameter, namely 2/3 4Re Fr− −  , which is indeed typically small in practice. 

For instance, for the flow of silicone oil in the experiment of Duchesne et al. (2014), Re = 

169.1 and Fr = 16.87 so 74 10− =  . Therefore, we take  as perturbation or ordering 

parameter to generate the following equations to first and second orders: 

( ) ( ) 32 3O : 136 rh 525r 350 0r h h   − =− ,             (2.3.13a) 

( ) ( ) ( )

( ) ( )

2 3/2 2 4 3 2 2

2 3 3/2 3 2

O : r h 4 rh h 41 h 1632 rh 6300r

2r h h h 5rh h h 41 h 2100r

    + =  −

   −  + +  + 
 

.     (2.3.13b) 

Several observations are made here. Model (2.3.8) is recovered to ( )O  , with a slight 

difference as equation (2.3.13a) has a factor of one instead of the factor 5/4 on the left-

hand side of equation (2.3.8). The original second-order equation (2.3.11) corresponds to 
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the ( )2O   equation (2.3.13b). The hierarchy in (2.3.13) shows how the effect of gravity, 

in particular, influences the type of film equation. We therefore deduce that equation 

(2.3.13a) or (2.3.8) is suitable for a flow under moderate gravity effect, and equation 

(2.3.13b) or (2.3.11) should be the choice under relatively strong gravity effect. This 

important observation forms the basis of our solution strategy. 

2.3.3 Solution strategy 

In order to obtain a unique free-surface profile that ensures a smooth continuous jump, the 

following steps are taken in the solution process: 

(1) System (2.3.5) is solved subject to ( )r 0 0 = =  over the range 00 r r   to obtain the 

boundary-layer and film-thickness profiles between the impingement point and the 

transition point 0r r= . 

(2) Subject to the boundary condition ( )0 0h r r h= =  obtained, equation (2.3.8) is 

integrated forward in r over the range 0 sr r r  , hence generating a film thickness 

profile that exhibits a singularity at some finite radius sr r= . Although this location 

is not used in the solution process, it gives a close estimate of the jump location (Wang 

& Khayat 2019). 

(3) Next, we integrate the second-order equation (2.3.11) over the range 1r r r  , 

where 0 1 sr r r   (see figure 2-1), subject to the known values of the height 

( )1h r r=  and slope ( )1h r r =  from the solution of (2.3.8). The location of the starting 

point 1r  for the solution of (2.3.11) is determined by ensuring that ( )h r r = → − . 

In sum, the composite film profile is determined by solving system (2.3.5) over the range 

00 r r  , equation (2.3.8) over the range 0 1r r r   and equation (2.3.11) over the range 

1r r r  . We take the jump location Jr r= , to coincide with ( )Jh r 0 = . Hence, 1r  is the 

leading edge of the jump. Finally, it is important to point out that, given the sensitivity of 

the solution of equation (2.3.11) on the initial conditions and the ensuing numerical 

instability (Watanabe et al. 2003; Roberts & Li 2006), the solution must begin at a location 
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close to the jump, thus rendering crucial the introduction of the boundary-layer and 

moderate-gravity regions. This, in turn, ensures the imposition of appropriate boundary 

conditions: ( )1h r r=  and ( )1h ' r r= . 

2.3.4 Upstream influence and the free-interaction problem 

Figure 2-3 illustrates the solution process of the two-point boundary-value problem, with 

Re = 800, Fr = 5 and 𝑟∞ = 25 . The flow for 10 r r   covers the developing boundary-

layer and moderate gravity regions. Equation (2.3.11) is solved subject to five different 

initial conditions corresponding to five locations of the leading edge and height of the jump. 

The figure illustrates the strong influence of the starting location 1r r=  and ( )1 1h h r r= =  

on the ensuing solution of equation (2.3.11), and how the film profile (figure 2-3a) and 

wall shear stress (figure 2-3b) can be obtained uniquely over the entire domain. We recall 

that 1 sr r , where sr  is the location of the singularity reached by solving the first-order 

equation (2.3.8) with initial conditions at 0r 4.18=  (red curve). In particular, the figure 

illustrates how the jump profile is influenced by the choice of 1r . When 1r  is close to sr , 1r  

= 11.30, the film profile follows closely the first-order solution but avoids the singularity 

exhibited by the solution of the first-order equation (2.3.8), rising slightly and dropping 

soon after. For a smaller 1r , here 1r  = 11.00, the profile extends further in the subcritical 

region and becomes singular at some location upstream of the disk edge. Only one value, 

1r  = 10.79, ensures that the tail singularity ( )wh , → −  →   occurs at r r= . When 1r  

is taken further upstream., the profile overshoots the edge of the disk. The process 

illustrates clearly how the upstream influence is ensured in the present approach. 
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Figure 2-3: A sample case (𝑹𝒆 = 800, 𝑭𝒓 = 5 and 𝒓∞ = 𝟐𝟓 ), illustrating the shooting 

method and the effect of the upstream and downstream boundary conditions on the 

jump location (upstream influence). The distributions of film profiles (a) and the wall 

shear stress (b) are obtained for different initial conditions. The green solid and 

dashed curves correspond to the profiles of the film and boundary layer, respectively, 

in the developing boundary-layer region. Here, the transition location is at 𝒓 = 𝒓𝟎 =

 𝟒. 𝟏𝟖. (green vertical line). The red curve corresponds to the variation of the film 

thickness in the moderate-gravity viscous region, obtained by solving the first-order 

equation (2.3.8), and exhibiting a singularity at 𝒓 = 𝒓𝒔 = 𝟏𝟐. 𝟑 (red vertical line). The 

black and blue curves show branches of the solution for the film thickness variation 

in the strong-gravity viscous region obtained by solving the second-order equation 

(2.3.11). Depending on the value of 𝒓𝟏 (and consequently 𝒉𝟏) the solution may or may 

not reach the edge. The unique solution to the problem (blue curve), corresponding 

to an infinite slope at the edge of the disk, is obtained for 𝒓𝟏 = 𝟏𝟎. 𝟕𝟗𝟑𝟏 (blue vertical 

line). 

The profiles in figure 2-3, obtained subject to different initial conditions, are reminiscent 

of the profiles in figure 3 of Bowles (1995), who examined the free-interaction problem of 

the planar flow of a sloped liquid layer over an obstacle. Bowles described the internal 

structure of the continuous jump as dominated by the viscous-inviscid interaction between 
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the hydrostatic pressure gradient and the viscous effects near the solid wall (see also the 

earlier work of Gajjar & Smith (1983) and the dissertation of Bowles 1990). As Bowles 

(1995) observes, the free interaction in the internal jump structure involves one of two 

types of mechanism, depending on the pressure development: “The pressure may increase, 

possibly leading to separation (a compressive interaction) or it may decrease, leading 

perhaps to a finite-distance singularity in the solution (an expansive interaction).” The 

solution branches in our figure 2-3 reflect the two possibilities, namely an expansive 

interaction with a singularity and no separation for 1r  = 11.00 and 11.30, and a compressive 

interaction for 1r  = 10.20, 10.60 and 10.79 with separation. We recall that imposing these 

different initial locations is equivalent to imposing different initial film heights provided 

through the solution of equation (2.3.8). 

Similarly, by varying the initial conditions, Bowles (1995) sought the solution for the 

sloped film flow by imposing a perturbation on the otherwise uniform film surface and 

corresponding half-Poiseuille flow far upstream. The flow was sought as a superposition 

of the base flow and an exponentially developing flow. The resulting (linearized) 

eigenvalue problem was solved numerically. Bowles found that the type of film profile 

obtained depends on the level of the perturbation of the uniform film. For a perturbed film 

with a slightly diminished thickness, the film profile was found to terminate in an expansive 

interaction, similar to the two profiles starting at 1r  = 11.00 and 11.30 in our figure 2-3, 

with the derivative of the layer’s depth becoming large and negative (figure 2-3a). The 

corresponding skin friction in figure 2-3b becomes large and positive, while the depth of 

the film remains finite of O(1). Higuera (1994) showed that this type of singularity is 

algebraic rather than logarithmic as in the problem of the free interaction in hypersonic 

flow (Brown, Stewartson & Williams 1975; Bowles 1990). For a perturbed film with a 

slightly augmented height relative to the upstream uniform height, Bowles (1995) found 

that the film surface becomes horizontal far downstream (with no singularity). For a 

relatively large bed slope, a jump emerges for a positively perturbed film height. In that 

case, a separation occurs with compressive interaction, which is reflected in our figures 2-

3a and 2-3b for 1r  = 10.20, 10.60 and 10.79. Figure 2-3a indicates that if the solution starts 

at a relatively distant 1r  from impingement, a weak jump forms as a result of strong viscous 
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and weak inertial effects; the film comes to a halt. Conversely, if the initial distant 1r  is 

closer to impingement, fluid accumulates with a strong jump and upward slope, causing 

the development of an adverse pressure gradient and a separation. Consequently, we 

highlight an important distinction from the observations of Bowles (1995), which we 

demonstrate throughout the present study: the hydraulic jump can actually form without 

being followed by a recirculation zone. Finally, it is worth mentioning that the magnitude 

of the perturbations imposed by Bowles (1995) was relatively small (of the order of 10-6 to 

10-2 compared to 1, the normalized film depth). This suggests that the solution is sensitive 

to initial conditions, which is also the case in our computations (see also Watanabe et al. 

2003). 

2.3.5 Asymptotic flows 

Two well-established limit flows are worth including for reference. The first is the limit of 

infinite Froude number in the supercritical region. We note that the supercritical flow 

consists essentially of a balance between inertia and viscosity effects with negligible 

gravity effects. This limit was first considered by Watson (1964) and later adopted by 

others (see Wang & Khayat 2019 and references therein). For Fr →, the solution of 

equations (2.3.5) upstream of the transition point reduces to 

( )0
70 r

r r 2
39 Re

  = ,   ( )0
1 210 r 2

h r r
4 13 Re r

 
 = +  

 
,     (2.3.14,a, b) 

( )0U r r 1 = .                  (2.3.14c) 

The transition point is determined by setting ( ) ( )0 0r h r = , yielding 
1 3

0
78Re

r
875

 
=  

 
, 

which is closely reflected in figure 2-3. Based on (2.3.14a), the boundary layer grows like 

r , and the film height decreases predominantly like 1/r, as is also reflected in figure 2-3. 

Downstream of the transition point, the flow is governed by equations (2.3.8). Setting 

Fr →, it is not difficult to show that the solution reduces to 
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( )0

2233 1 17
r r

5 r
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340 r 136 Re
 = + ,  ( )0

r
r

h
r

4
U

5
= ,        (2.3.15a, b) 

suggesting that h decreases like 1/r for small r and increases like 2r  for large r, as reflected 

in figure 2-3. For comparison, Watson’s expressions are reproduced here in dimensionless 

form:  

( )
( )

0

23c 3 3c 1 2 r
h

8 r Re3 3
r r

−  
 = +


, ( )0

23 3
r r

c
U

4 rh
 =


,       (2.3.16a, b) 

where c = 1.402. Comparison of the numerical coefficients between (2.3.15) and (2.3.16) 

reveals a surprisingly close agreement between Watson’s similarity solution and that based 

on the cubic velocity profile (see also Prince et al. 2012). 

The second asymptotic flow often used in the literature is the limit of negligible inertia in 

the subcritical region. The flow is captured using lubrication theory, which consists of 

integrating equation (2.2.1b) subject (2.2.2a) and (2.2.3b) to obtain the parabolic velocity 

profile 

2

2

Re z
u h hz

2Fr

 
= − 
 
 

. Upon using the mass conservation equation (2.2.4), we 

obtain the equation for h. This finally yields the following profiles for the film thickness 

and surface velocity: 

1/4
2

4 rFr
h h 6 ln

Re r




  
= +  

   

,   
3

U
4rh

= ,        (2.3.17a, b) 

where we recall h  to be the thickness at the edge of the disk. 

2.4 Validation 

In this section, we validate our approach against existing measurements and numerical 

simulation. Additional features are reported on the flow observed and simulated, which 

illustrates the capabilities of our approach to capture some of the jump and vortex structure 

not captured by existing models.  
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2.4.1 Validation against numerical models 

We first validate our approach against the numerical solutions of the Navier-Stokes (NS) 

equations and the boundary-layer equations (2.2.1) of Fernandez-Feria et al. (2019), as 

well as the depth-averaged model of Kasimov (2008). Unlike the first-order equation 

(2.3.8) which requires upstream and downstream boundary conditions to generate the inner 

and outer solutions (Kasimov 2008; Wang & Khayat 2019), the boundary-layer equations 

(2.2.1) and equation (2.3.11) can accommodate two boundary conditions specified at the 

same or two different radial locations. However, specifying the two boundary conditions 

at the same location, such as near impact, may not generate an accurate profile, as seen in 

figure 2-4a from the boundary-layer profile. In this regard, Higuera (1994) recognized the 

elliptic nature of the boundary-layer equations, and the need to ensure the upstream 

influence of the flow near the edge; boundary conditions must be imposed upstream and 

downstream of the jump. We note that Kasimov (2008) imposed (arbitrarily) the surface 

velocity and the film thickness at a radius 20% larger than the jet radius. At this radius, 

Kasimov set the surface velocity equal to the jet velocity at impingement, and the film 

thickness was imposed by satisfying the conservation of mass. As shown in figure 2-4a, 

our approach yields a better agreement with the Navier-Stokes solution compared with the 

boundary-layer and the first-order models. Clearly, the boundary-layer solution, which is 

not subject to a downstream boundary condition, fails to capture the free-surface profile 

close to the edge of the disk. On the other hand, the condition ( )h ' r r= → −  imposed 

in our approach and in the first-order model of Kasimov (2008) yields a close agreement 

with the Navier-Stokes solution. We see that Kasimov’s solution overestimates the 

supercritical film thickness and underestimates the jump location. This is a consequence of 

the over-representation of viscous friction when using the parabolic profile. Moreover, this 

model cannot capture the vortex below the jump due to the shock-like assumption of the 

jump and the simple similarity profile adopted. Our close agreement with the NS 

supercritical profile confirms the necessity of first determining the boundary-layer flow 

near impact; this yields the suitable upstream boundary condition for the solution of 

equation (2.3.8), and further (2.3.11), in the viscous region. Simultaneously, the treatment 

of the flow in the developing boundary-layer region circumvents the need to fix arbitrarily 
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or empirically an upstream boundary condition as in the case of Kasimov (2008) or 

Fernandez-Feria et al. (2019).  

 

Figure 2-4: (a) Comparison of the free-surface profile based on the present approach 

against the boundary-layer and Navier-Stokes profiles of Fernandez-Feria et al. 

(2019), as well as the depth-averaged based profile of Kasimov (2008) for 𝑹𝒆 = 854.29, 

𝑭𝒓 = 97.19 and 𝒓∞  = 80. (b) Visualization of the flow field based on the present 

approach (𝑼 and 𝝉𝒘 distributions in inset).  

Figure 2-4b shows our predictions of the flow streamlines, as well as the wall shear stress 

and the surface velocity distributions (inset). The flow structure clearly shows a vortex at 

the bottom in conjunction with the jump. The shear stress decreases monotonically 

upstream of the jump. This monotonicity is expected given the weak gravity effect in the 

supercritical region; in the boundary-layer region, the wall shear stress w 3 / 2 =  , and 

further downstream, the film slope is negligibly small and (2.3.9) indicates that 

w 3U / 2h  . In the vicinity of the jump, a recirculation zone appears, corresponding to 

( )w r 0  . The separation and the reattachment of the flow are the consequence of the 

rapid change of the hydrostatic pressure induced by the rapid increase of the film thickness 

at the jump. We note that profile (2.3.9) indicates that w vanishes when 
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2 2U e hR rh / 6F= . Consequently, (2.3.10a) reduces to 
2 2FRe h / r rhh 6 / = , indicating 

that h 0  . Thus, the separation and reattachment occur below the ascending film portion; 

the vortex is therefore confined below the jump (Higuera 1994). The vortex also takes a 

similar shape to that based on the boundary-layer approach of Higuera (1994), as well as 

the second-order models of Watanabe et al. (2003), Roberts & Li (2006) and Bonn et al. 

(2009). The vortex is always placed under the jump region as a result of the balance 

between the shear forces applied by the disk and the flow above the vortex, which are 

directed towards the disk edge, and the hydrostatic pressure force, directed towards the 

impingement zone (Higuera 1994). The surface velocity U decreases after experiencing a 

weak maximum (not visible here).  

Figure 2-5 shows a further comparison between the present approach and the numerical 

solution of the boundary-layer equations of Fernandez-Feria et al. (2019). Shown are the 

radial distributions of the film profile h (figure 2-5a), the wall shear stress w  (figure 2-

5b), the gravity term 
2

Re

Fr
hh−  (figure 2-5c) and the radial momentum flux term 

h
2

0

Re d
m ru dz

r dr
   (figure 2-5d) in equation (2.3.7). The comparison of the flow details 

shows surprisingly close agreement given the simplicity of the present approach and its 

capability in reproducing the physical mechanisms at the jump. As Fernandez-Feria et al. 

(2019) observed, upstream of the jump the radial momentum flux almost balances the shear 

stress at the wall, the gravitational term being almost negligible in comparison with the 

inertial and viscous terms. Close to the jump inception, the shear stress drops suddenly 

(figure 2-5b), becoming negative but small in magnitude. This drop is compensated by the 

abrupt growth of the gravity term (figure 2-5c) to balance the momentum flux (figure 2-

5d), causing the jump to form (figure 2-5a). Hence, while the shear stress is negative and 

small in the recirculating flow region, the momentum flux is balanced almost exclusively 

by gravity. Further downstream, inertia becomes negligible, leaving the viscous and gravity 

forces in balance. Thus, downstream of the recirculation zone, the flow reaches a 

lubrication limit so that the velocity profile is practically parabolic. This is the reason why 

the lubrication assumption in the subcritical region yields an accurate description of the 
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flow (Duchesne et al. 2014; Wang & Khayat 2018, 2019). However, and as we discuss 

below, the lubrication character in the bulk subcritical region does not extend all the way 

to the edge of the disk, where inertia, viscosity and gravity (as well as surface tension) 

become equally important (Higuera 1994). Fernandez-Feria et al. (2019) mentioned that 

the boundary-layer or thin-film approach equations are no longer valid (nor, of course, is 

the lubrication approximation) near the edge of the disk. This is, of course, true in principle 

as |h′| becomes very large at the edge. However, as our calculations and the agreement in 

figure 2-4 suggest, the boundary-layer or the present thin-film approach seems to hold 

around the sharp corner at the edge of the disk; the coincidence of the singularity with the 

edge location turns out to be sufficient to account for the upstream influence analysed by 

Higuera (see below). 



70 

 

 

Figure 2-5: Comparison of the present approach (solid curves) against the numerical 

solution of the boundary-layer equations (open circles) of Fernandez-Feria et al. 

(2019) for the radial distributions of (a) the film profile, (b) the wall shear stress, (c) 

the gravity term and (d) the radial momentum flux term in equation (2.3.7). Here the 

liquid is silicone oil with 𝑹𝒆 = 164.98, 𝑭𝒓 = 16.87 and 𝒓∞ = 31. 
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2.4.2 Comparison against experiment 

Next, we validate our approach against the measurements of Duchesne et al. (2014) for 

silicone oil (20 cSt) of density 3960 kg m−  and kinematic viscosity 5 2 12 10 m s− − . The 

liquid was injected downward from a jet of radius a = 1.6 mm onto a horizontal circular 

disk of radius R  = 15 cm. The flow conditions in dimensionless form correspond to Re 

= 169.1, Fr = 16.87 and r 93.75 = . The comparison of the free-surface profiles based on 

our approach and experiment is shown in figure 2-6. We also included the prediction from 

the Navier-Stokes numerical solution of Zhou & Prosperetti (2022). As in the numerical 

simulation of Wang & Khayat (2021), the steady state was reached through the evolution 

of the transient flow. Zhou & Prosperetti (2022) reported that the computational domain 

was initially full of a gas medium with density and viscosity three orders of magnitude 

smaller than those of the liquid. The jet was injected from the inlet with a uniform velocity 

profile. For all wall boundaries the no-slip condition was used. At the outlet of the domain, 

the flow was essentially fully developed, with the static pressure fixed to a reference value. 

A standard outlet condition was used for the velocity; the velocity gradient normal to the 

boundary was set equal to zero.  

The present approach agrees well with experiment, but like the numerical solution it 

underestimates slightly the supercritical film thickness. Measuring the film height in this 

thin-film region may be associated with uncertainties. In contrast, in the subcritical region, 

the theoretical and numerical predictions almost fit all the experimental data points, except 

near the disk edge. The agreement with the Navier-Stokes solution of Zhou & Prosperetti 

(2022) is surprisingly close. We recall that the effect of surface tension was neglected in 

our model but was included in the numerical simulation (see also Wang & Khayat 2021), 

confirming that, in this case, the effect of surface tension may only be important near the 

edge and at the jump. We recall that the agreement was equally close between our approach 

and the numerical simulation in the absence of surface tension (figure 2-4). We discuss the 

edge thickness in more detail later. As far as the location of the jump is concerned, we see 

that the experimental data suggest a slightly smaller jump radius than that predicted by our 

approach and the numerical simulation. However, our theoretical prediction of the free-

surface profile agrees well with the numerical one in the jump region. Finally, we have also 
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included in figure 2-6 the subcritical profile based on the lubrication solution for reference, 

showing close agreement with experimental and numerical results, with some discrepancy 

near the jump. 

 

Figure 2-6: Comparison of the free-surface profiles between our present approach 

(black solid line) and the measurements (open blue circles) of Duchesne et al. (2014). 

The Navier-Stokes solution of Zhou & Prosperetti (2022) is also included (red solid 

line) as well as the lubrication solution (green dashed line). Arrows point to the jump 

heights 𝑯𝑱𝟏 = 𝒉𝒎𝒂𝒙  and 𝑯𝑱𝟐  based on the present and lubrication approaches, 

respectively. Here, 𝑹𝒆 = 169.1, 𝑭𝒓 = 16.87 and 𝒓∞ = 93.75.  

Further theoretical details of the flow in figure 2-6 are given in figure 2-7, where we show 

our predictions of the flow streamlines (figure 2-7a), the wall shear stress (figure 2-7b) as 

well as the surface velocity (figure 2-7c) profiles. The flow structure in figure 2-7a clearly 

shows a vortex at the bottom in conjunction with the jump. The film thickness predicted 

using the first-order model (2.3.8) (depicted by the red curve) does not cross the jump since 

it terminates by a singularity. Nevertheless, the location of the singularity ( )sr r=  is shown 

to be close to the end of the separation zone predicted using the second-order theory.  

Figure 2-7b depicts the distribution of the wall shear stress over the entire disk. The shear 

stress decreases monotonically upstream of the jump. As mentioned earlier, this 

monotonicity is expected given the weak gravity effect in the supercritical region. In this 
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case, (2.3.9) indicates that w 3U / 2h  , which explains the sharper drop of the stress than 

the velocity as h increases with r. Further downstream, near the jump, a small separation 

zone corresponding to w 0   is observed over the range 7.93 r 9.58  . We recall from 

our earlier observation that separation occurs while the film slope is positive. Therefore, 

the vortex is confined between J mr and r , with ( ) ( )J mh r h r 0 = = . Simultaneously, U 

decreases, after experiencing the maximum shown in the inset of figure 2-7c. Indeed, at the 

separation point, we recall that 
2

2

Re 6
h h

rhFr
 = , leading to 

1
U

rh
= . In this case, 

2

2 2 5

1 Fr 6
U 0

Rer h r h
 = − −  . Downstream of the separation region, the wall shear stress 

remains almost unchanged before exhibiting a sharp increase at the disk edge. The stress 

profile mimics well the flow condition at the disk edge, where a corner or stress singularity 

occurs (Higuera 1994; Scheichl et al. 2018). This, in turn, justifies taking an infinite slope 

at the edge of the disk. The correlation between the stress singularity and infinite slope 

becomes evident when we deduce the wall shear stress from profile (2.3.9) and use 

(2.3.10a) to eliminate U: 
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r r r r
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   = = − = −  −   

   
,  (2.4.1) 

which confirms the equivalence between the stress and geometrical singularities, and 

justifies taking an infinite slope at the edge of the disk as a result of the stress singularity 

(Higuera 1994; Kasimov 2008; Dhar et al. 2020). 

Figure 2-7c shows that the surface velocity remains equal to one in the developing 

boundary-layer region, then decreases, under viscous effects, almost linearly until the jump 

occurs. A small rise in the surface velocity is observed near the jump (see the inset of figure 

2-7c, showing a small bump in U at r 7.93 ). In fact, U experiences a local maximum, 

coinciding with the change in the concavity at the jump radius. Indeed, upon differentiating 

(2.3.10a) and noting the dominance of the surface slope, we see that 
2

2Re

Fr

1
U hh

15
  , 

reflecting the increase in U at the jump location. Further downstream, U decrease 
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monotonically and maintains an almost constant value in the subcritical region. In fact, 

inertia in this region is negligible, so the flow can be predicted reasonably well using the 

lubrication theory (see Duchesne et al. 2014; Wang & Khayat 2018, 2019; Baayoun et al. 

2022). However, as discussed by Higuera (1994), inertia becomes important again as the 

flow approaches the edge, resulting in a velocity increase close to the edge. Unlike the 

lubrication approach, our theory captures the flow complexity near the edge (see next).  

 

Figure 2-7: Flow details corresponding to the profile in figure 2-6 using the present 

approach. Shown are the flow streamlines (a), the wall shear stress distribution (b) 

and the surface velocity distribution (c). The results are plotted in dimensionless form 

with 𝑹𝒆 = 169.10, 𝑭𝒓 = 16.87 and 𝒓∞  = 93.75. In (a), the red curve represents the 

supercritical free surface of the film, showing a singularity, predicted using the first-

order model (2.3.8). 
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Figure 2-8 shows the influence of Fr on the jump radius in figure 2-8a, on the maximum 

film height maxh  in figure 2-8b, and on the Froude number at the jump in figure 8c. The 

measurements of Duchesne et al. (2014) are included for comparison over the same range 

of Fr as the experiment. The dependence on Fr reflects the dependence on the jet flow rate, 

in which case the Galileo number is maintained at 
2 2Ga Re / Fr= = 100. Our predictions 

are in good agreement with the measurements, essentially over the entire range of flow 

rates, reflecting a growth 7/10
Jr ~ Fr  (inset in figure 2-8a). This behaviour is essentially 

the same as the one reported by Hansen et al. (1997), based on their measurements for 

silicone oil ( )0.72
Jr ~ Fr . 

Figure 2-8b shows an overall good agreement for maxh  against the measurements of 

Duchesne et al. (2014), suggesting that 4/25
maxh ~ Fr  (inset in figure 2-8b). This growth 

is most likely accompanied by a similar or faster growth of the supercritical film thickness, 

eventually leading to the vanishing of the jump as gravity continues to weaken (see below). 

Duchesne et al. (2014) observed that the Froude number at the jump, 3/2
J J maxFr Fr / 2r h , 

is independent of Fr. Figure 2-8c shows that this independence seems to hold when we 

compare our prediction against the measured JFr . Indeed, recalling from figures 2-8a and 

2-8b that 7/10
Jr ~ Fr  and 4/25

maxh ~ Fr , we deduce that 0.06
JFr ~ Fr , confirming the 

quasi Fr independence. 
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Figure 2-8: Influence of 𝑭𝒓 (flow rate) on (a) the jump radius 𝒓𝑱 (inset shows 𝒓𝑱 ≈

𝟏. 𝟎𝟖𝑭𝒓𝟕/𝟏𝟎), (b) the maximum film height 𝒉𝒎𝒂𝒙 (inset shows 𝒉𝒎𝒂𝒙 ≈ 𝟏. 𝟑𝟐𝑭𝒓𝟒/𝟐𝟓) 

and (c) the Froude number at the jump 𝑭𝒓𝑱 over the experimental flow rate range of 

Duchesne et al. (2014), corresponding to 50.11 < 𝑹𝒆 < 551.25 or 𝑮𝒂 = 100. Theoretical 

results (black solid curves) are compared against the measurements (blue circles) of 

Duchesne et al. (2014). In (c), the open blue and red circles represent the 𝑭𝒓𝑱 values 

based on the measured heights 𝑯𝑱𝟏 and the height 𝑯𝑱𝟐 (see figure 2-7). 

Figure 2-9 shows the dependence of the jump location on the Froude number (flow rate), 

where comparison is carried out against the measurements of Hansen et al. (1997), the 

spectral inertial-lubrication solution of Rojas et al. (2010) as well as the Navier-Stokes 

solution of Zhou & Prosperetti (2022) for water and silicone oil. We have included our 

results using the same log–log ranges used by Rojas et al. (2010) in their figure 2 and Zhou 

& Prosperetti (2022) in their figure 3. Our predictions are in close agreement with both 
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numerical results. The agreement with the oil data is quite good. That with the water data 

is less so, although our results are in very close agreement with those of Rojas et al. (2010) 

and Zhou & Prosperetti (2022). We may also note that Hansen et al. (1997) stated that the 

radius of the jump was oscillating for Q greater than approximately 3 115cm s−  (Fr > 1.5) 

so that the experimental data reported are mean values. Zhou & Prosperetti (2022) noted 

that the unsteadiness mentioned by Hansen et al. (1997) was not observed in their 

simulation. We also recall that Rojas et al. (2010) had to impose the thickness at the edge 

of the disk as measured by Hansen et al. (1997). Both the present theoretical and existing 

numerical predictions tend to overestimate equally the jump radius compared to the 

measurements for water. The discrepancy appears to be higher for low flow rates, for a 

given liquid. A plausible explanation for the discrepancy is the difficulty in accurately 

locating the jump radius in reality. The qualitative and quantitative agreement with the 

numerical models is especially encouraging given the simplicity of the present approach 

compared with the spectral approach and numerical simulation. 

 

Figure 2-9: Comparison of our approach (solid lines) for the jump radius with the 

measurements of Hansen et al. (1997) (open circles). Results for water (𝑮𝒂 = 627840) 

are in red, those for silicone oil (𝑮𝒂 = 2790) are in blue. The dash-dotted lines are the 

predictions of the spectral inertial-lubrication model developed by Rojas et al. (2010), 

and the dashed lines those of the Navier–Stokes simulations of Zhou & Prosperetti 

(2022). 
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2.4.3 The nature of the subcritical flow 

The present approach seems to capture well the turn-around usually observed at the edge 

of the disk. This is particularly obvious from our comparison with experiment and the 

solution of the boundary-layer and Navier-Stokes equations as shown in figures 2-4a, 2-5a 

and 2-6. As the work of Higuera (1994) suggests, both inertia and gravity become 

important at the edge. Obviously, inertia is neglected in a lubrication approach for the 

subcritical flow, which seems to yield an accurate description of the flow, including the 

vicinity of the jump, but less so near the edge, where the acceleration of the flow tends to 

infinity as a result of strong gravity effect (Duchesne et al. 2014; Wang & Khayat 

2018/2019). Consequently, at the edge, the wall shear stress should exhibit a (corner) 

singularity, and viscous effects are confined to a thin boundary layer that develops near the 

wall, similar to the free-surface flow exiting a channel (Tillet 1968; Khayat 2014, 2016, 

2017). Higuera (1994) carried out a matched asymptotic expansion and developed the 

solution in the viscous thin layer near the plate and matched it to the bulk solution in the 

inviscid region lying above. Higuera also estimated the order of magnitude of the region 

near the edge where inertial effects cease to be negligible in the subcritical region to be 

1
3

/3
2

3

Fr Re
1 x O

L

  
 − =  
     

. This range is recast here in terms of the jet Froude and Reynolds 

numbers, where L is the half-length of the plate scaled by the half-width of the jet, and x = 

1 coincides with the plate edge. We follow Higuera (1994), and establish a similar estimate 

in our axisymmetric case by balancing the inertial term with the hydrostatic pressure 

gradient term in the momentum equation (2.2.1b), or by setting 
dU

Re U
dr

~
2

Re dh

drFr
, where 

U and h are the subcritical surface velocity and film thickness. On the other hand, ignoring 

the convective terms, and integrating (2.2.1b), we arrive at the lubrication result: 

2

2

1 Re dh
U h

2 drFr
= − . Following Higuera (1994) and setting h 0  , we obtain from 
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(2.3.17a): 

1/4
2 r6Fr

h ln
Re r


  

=   
   

. Finally, the range where inertial effects become 

important near the edge is 

1
2 3

/

8

3
r Fr Re

1 O
r r 

  
 − =  
     

. 

2.5 Further results 

In this section, we examine further the influence of the flow rate on the flow and jump 

structure over the same range of flow rates as considered by Duchesne et al. (2014). We 

also keep the same conditions as in their experiment. In this case, 5 Fr 55   and 

Re GaFr= , where the Galileo number remains very close to Ga 100= . Although the 

additional theoretical details reported in this section do not have their counterpart in the 

experiment of Duchesne et al. (2014), the aim of including them here is to motivate further 

measurements. The influence of gravity and viscosity is also examined. We particularly 

focus on the film profile, the wall shear stress distribution and the flow field in the vicinity 

of the jump. 

2.5.1 The influence of the flow rate 

Further details of the influence of the flow rate on the flow are reported in figure 10, where 

the radial distributions of the film profile, wall shear stress and surface velocity are shown 

in figures 2-10a, 2-10b and 2-10c, respectively. Although similar or equivalent flow details 

were not reported by Duchesne et al. (2014), the results in figure 2-10 and this section 

correspond to the same range of flow rates and conditions of their experiment. Figure 2-

10a shows that the boundary-layer thickness diminishes with increasing flow rate, 

following closely (2.3.14a), with the film thickness profile well reflected in (2.3.14b). The 

figure indicates that although the jump radius and height both grow with the Froude number 

(as shown in figure 2-8), the shape of the jump, particularly its steepness or slope, is 

insensitive to the Froude number. While the supercritical region extends and diminishes in 

thickness, the subcritical region shrinks in length with diminishing thickness growth with 

flow rate, evolving from an essentially linear to a logarithmic (lubrication) profile 

(excluding the vicinity of the edge). Figure 2-10b suggests that the recirculation zone 
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increases with flow rate, with the rate of drop in the wall shear stress diminishing until it 

eventually vanishes. Hence, the vortex beneath the jump widens but the height behaves 

inconsistently as the flow rate increases.  

Although the surface velocity appears to decrease monotonically with radial distance 

(figure 2-10c), this is not the case upon local scrutiny. We have already seen in figure 2-7c 

that U experiences a weak maximum just where the stress drops. This is confirmed further 

in the first inset of figure 2-10c for Fr = 5 where a relatively strong maximum occurs. The 

second inset in figure 2-10c indicates that while the velocity increases with distance as the 

flow approaches the edge of the disk at relatively low Fr, it decreases with distance at 

relatively high Fr. Physically, this reversal in trend is the result of the enhanced 

accumulation of the subcritical fluid with increasing flow rate. 

It is worth mentioning first that the trend reversal in figure 2-10c is not predictable for 

subcritical lubrication flow. Indeed, recalling (2.3.17b) above or (5.6) from Wang & 

Khayat (2019) for the parabolic velocity profile for lubrication flow, we see from mass 

conservation that 
3

U
4rh

=  or 
2

3 h
U h

r4rh

 
 = − + 

 
. When applied at the edge of the disk, 

and recalling the dominant slope, this relation yields 
2

3h
U

4r h




 


  − , confirming that U  

is always positive for a draining fluid ( )h 0  . Rewriting equation (2.3.10b), after using 

(2.3.10a), as 

2

2 2 2

1 11 3 3 U 12 1 h
24U hU hh U h

35 rh 2Re h 35 r4Fr r h

    
  − − = + + − +    

    
,   (2.5.1) 

we first observe that the coefficient of U  is always negative at the edge for any flow rate. 

Consequently, when applying equation (2.5.1) at the disk edge, we see that the sign of U  

depends on the competition among gravity, viscosity and inertia effects, represented by the 

terms 
2

3
hh

4Fr
 , 

3 U

2 Re h
 and 

2

2 2

12 1 h
U h

35 rr h

  
− +  

  
, respectively, on the right-hand 

side of (2.5.1). As we recall from Wang & Khayat (2019), the thickness and velocity at the 
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edge of the disk are ( )2/3h O Fr =  and ( )2/3U O Fr−
 = , respectively. Therefore, the 

viscous term is ( )1 4/3O Re Fr− −  and is negligible at the edge, so that 

2

2 2 2

3 12 1
U ~ h U h

354Fr r h
   

 

  
 −  + −  

    

. From (2.3.10a), we deduce that 

2 2 2U 1 r h  −  is always negative. For relatively small flow rate (Fr < 25 in figure 2-10c), 

U  is positive, and becomes negative as Fr exceeds a critical value (Fr > 25).  

 

Figure 2-10: Influence of the Froude number (flow rate) on (a) the film profile, (b) 

wall shear stress (inset shows amplification in the downstream vicinity of the jump) 

and (c) surface velocity (insets show local profile for 𝑭𝒓 = 5 and amplification near 

the disk edge). Here, 𝑮𝒂 = 100 (50.11 < 𝑹𝒆 < 551.25) and 𝒓∞ = 93.75, corresponding 

to the range of flow rate in the experiment of Duchesne et al. (2014). 
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One of the difficulties plaguing both theory and experiment is the identification of the jump 

location (Hansen et al. 1997; Rojas et al. 2013; Duchesne et al. 2014). Ideally, the jump 

location should correspond to the location where the local Froude number Frl  reaches 

unity, changing from Fr 1l  in the supercritical region to Fr 1l  in the subcritical region. 

In the present work, we assumed that the jump location coincides with the vanishing of the 

film surface concavity: ( )Jh r r 0 = = . We now verify the plausibility of this assumption 

by examining the value of Frl  at the jump radius. We introduce the local Froude number 

in terms of the average velocity and film height as Fr Fr u / h=l . Noting from (2.2.4) 

that u 1/ 2rh= , then 3/2Fr Fr / 2rh=l . Figure 2-11 depicts the influence of Fr (flow rate) 

on the distribution of Frl  for the same range of flow rates as in the experiment of Duchesne 

et al. (2014) and the profiles in figure 2-10. We have also plotted in the inset the critical 

radius that satisfies 3/2
c cFr / 2r h 1=  as a function of Fr (flow rate), where ( )c ch h r r =  

is the critical height, along with the theoretical and measured jump radius from figure 2-

8a. The inset shows that the Jr  and cr  profiles are surprisingly close, hardly distinguishable. 

This excellent agreement confirms the accuracy of our assumption, ( )Jh r r 0 = = , for 

identifying the location of the jump. The sharp drop of Frl  with distance in figure 2-11 

shows how quickly the effect of gravity increases in the supercritical region and across the 

jump, mostly relative to inertia (see figure 2-10c). Figure 2-11 also shows a sharp increase 

in Frl , reflecting a drop in gravity effects compared with inertia. 
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Figure 2-11: Influence of 𝐹𝑟 (flow rate) on the local Froude number 𝑭𝒓𝑱. Inset shows 

the distribution of the numerically predicted jump radius (black solid curve) and the 

critical radius (red dashed curve), as well as the experimental data of Duchesne et al. 

(2014) (open blue circles). Here, 𝑮𝒂  = 100 and 𝒓∞  = 93.75, corresponding to the 

experiment parameters. 

Figure 2-12 shows the dependence of the vortex size, namely vortex length vortexL  and 

vortex height vortexH , on the flow rate or Fr, for the same range as in the experiment of 

Duchesne et al. (2014). The vortex length vortexL  increases monotonically with Fr, 

behaving roughly like 1/2Fr . Therefore, increasing the flow rate stretches the jump region 

in the streamwise direction (see also figures 2-10a), and thereby increasing the size of the 

recirculation zone (refer to the vertical dotted lines in figure 2-12b to 2-12d that delimit the 

jump length). However, the growth of the jump and vortex lengths is not commensurate 

with the growth of the vortex height, which tends to level off or saturates with increasing 

flow rate. The vortex immediately downstream of the jump also takes a similar shape to 

the one based on the boundary-layer approach of Higuera (1994), as well as the second-

order models of Watanabe et al. (2003) and Bonn et al. (2009).  
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Figure 2-12: Dependence of the vortex size and structure on Fr (flow rate). (a) The 

vortex length and height and (b)-(d) the vortex structure for 𝑭𝒓 = 5-55 (vertical dotted 

lines delimit the jump region/length). Here 𝑮𝒂 = 100 and 𝒓∞ = 93.75, corresponding 

to the parameters in the experiment of Duchesne et al. (2014). 

2.5.2 The jump of type 0 

Referring back to figure 2-10, we saw in particular from figure 2-10b that the vortex 

strength weakens with increasing flow rate, but the vortex does not vanish since its size 

remains essentially insensitive to the increase in the flow rate. Simultaneously, the jump 

intensity or steepness also remains, surprisingly, unaffected by the flow rate as the vortex 

strength diminishes. This begs the question as to whether a hydraulic jump can indeed exist 

for some flow conditions in the absence of recirculation. Some but little evidence of the 

existence of a type-0 jump can be found in the literature, particularly for a jump with an 

obstacle placed at the edge of the disk. Liu & Lienhard (1993) observed several forms of 

the circular hydraulic jump that appeared sequentially in their experiments as the 

downstream thickness was increased. For a small difference between the supercritical and 
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subcritical depth, they observed a smooth jump of gradually increasing depth without any 

flow reversal. Later, the numerical simulation of Passandideh-Fard et al. (2011) showed 

that a circular jump exists with no flow separation if the obstacle height is relatively small. 

More recently, a similar observation was made by Saberi et al. (2020) in their simulation 

for a jump on a convex target plate. Finally, Askarizadeh et al. (2020) observed that for 

small obstacles (disk height-to-diameter ratio < 0.05), the flow exhibits no vortices, and 

the streamlines perfectly follow the interfacial shape that represents the circular jump, 

which they termed as a jump of type 0. We next examine two situations by varying the 

effects of gravity and viscosity where separation may or may not occur. 

The influence of gravity is assessed in figure 2-13 by varying Fr and keeping Re and the 

disk size fixed. Figure 2-13a shows that as the jump radius and height increase with Fr, the 

jump gets washed out of the disk for large Fr. This increasing trend of the jump radius with 

Fr also agrees with the simulation results of Passandideh-Fard et al. (2011) and the 

measurements of Avedisian & Zhao (2000); both groups investigated the influence of 

gravity on the hydraulic jump. We emphasize that although the effect of gravity is weak in 

the supercritical region, this effect is crucial to include in the formulation for establishing 

the proper upstream conditions for the flow in the viscous region. In contrast, the subcritical 

film thickness increases significantly with Fr, as more flow accumulates (unable to drain) 

under lower gravity. In fact, the influence of Fr on the film thickness in both the 

supercritical and subcritical regions corroborates well the profiles in figure 2 of Higuera 

(1994) for a planar jump. Figure 2-13b indicates that w  decreases sharply with Fr 

downstream of the recirculation, but eventually saturates for large Fr. The boundary layer 

and film thickness as well as the wall shear stress remain essentially uninfluenced by 

gravity in the supercritical region, confirming the weak influence of gravity ahead of the 

jump, and the earlier predictions of Wang & Khayat (2018, 2019). This is particularly 

evident from the inset in figure 2-13b. 

In the region near the jump, where the film height undergoes a significant change, the 

response is not as consistent. In fact, the influence of Fr on the separation length in figure 

13b is not monotonic; the vortex size increases with Fr, reaches a maximum and decreases, 

to eventually vanish at some critical Froude number (Fr ≈ 13); the non-monotonic response 



86 

 

is also illustrated in figures 2-13d to 2-13g. Therefore, the jump can exist without a 

recirculation at a finite Froude number. The disappearance of the vortex suggests that there 

is no more flow separation, which is reflected by the wall shear stress remaining positive 

over the entire disk range (figure 2-13b). Recalling the discussion on the dissipation model 

by Mikielewicz & Mikielewicz (2009) and their figure 3, it is clear that a constant value of 

P, which is roughly the ratio of the downstream film height and the mean vortex radius, is 

unrealistic, as the vortex does not exist when Fr is sufficiently large, leading to an infinite 

P in this situation. It is worth noting that the hydraulic jump is not an essentially vortex or 

flow-separation phenomenon as indicated by Craik et al. (1981). The numerical simulation 

of Passandideh-Fard et al. (2011) also showed hydraulic jumps without flow separation. 

Here in figure 2-13a we show that the hydraulic jump still exists when the vortex 

disappears. In order to confirm that the profile is indeed a hydraulic jump in the absence of 

a vortex, we plot the value of the local Froude number in figure 2-13c, showing that the 

local Froude number is equal to unity where the surface concavity vanishes. The inset in 

figure 2-13c also confirms that the critical radius coincides with the jump radius. In reality, 

the disappearance of the recirculation bubble may be associated with an instability at high 

Fr; the flow may become oscillatory and then turbulent downstream of the jump where the 

depth has increased (Craik et al. 1981). However, and as we confirm below, the existence 

of the recirculation is intimately tied to the strength of the upstream curvature of the jump 

and the jump steepness. 
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Figure 2-13: Influence of the Froude number (gravity) on (a) the free surface profile 

(solid curves) and the boundary-layer thickness (dashed curves), (b) the wall shear 

stress and (c) the local Froude number. The inset in (c) shows the distribution of the 

numerically predicted jump radius (black solid curve) and the critical radius (red 

dashed curve). (d)-(g) The streamlines for 𝑭𝒓 = 2, 5, 10 and 15. Here, 𝑹𝒆 = 800 and 

𝒓∞ = 25. 

The influence of the viscosity is depicted in figure 2-14, where Re is varied and Fr is fixed. 

As expected, a larger Re (lower fluid viscosity) results in a thinner boundary layer and film 

thickness in the developing boundary-layer region (figure 2-14a). In contrast to the effect 

of gravity, the supercritical flow is evidently dependent on viscous effects, as depicted by 

the dependence of the film (figure 2-14a) and stress (figure 2-14b) profiles. As Re 

increases, the film profile becomes flatter, with a weakening of the supercritical minimum 

and subcritical maximum film thickness, as the jump is pushed towards the disk edge 

(figure 2-14a). The increase in the jump radius is in agreement with the simulation of 

Passandideh-Fard et al. (2011). The jump becomes essentially non-existent at a relatively 

large value of Re. Simultaneously, the vortex diminishes in size as Re increases, and 

vanishes at Re much smaller than that corresponding to the vanishing of the jump (figure 

2-14b). The distribution of the local Froude number in figure 2-14c also confirms the 

existence of the jump for all Re values. 

This clearly shows that the existence of a jump is not necessarily accompanied by the 

formation of a vortex (figures 2-14d to 2-14g). Finally, it is interesting to observe that the 

rate of increase of w  with Re in the supercritical region (inset of figure 2-14b) is 

essentially the same as near the edge of the disk. We also observe that the strength of the 

singularity of the stress (equivalently of the film slope) at the edge weakens considerably 

with Re. 



89 

 

    

    



90 

 

Figure 2-14: Influence of 𝑹𝒆 (viscosity) on (a) the free surface profile (solid curves) 

and the boundary-layer thickness (dashed curves), (b) the wall shear stress and (c) 

the local Froude number. The inset in (c) shows the distribution of the numerically 

predicted jump radius (black solid curve) and the critical radius (red dashed curve). 

(d)-(f) The streamlines around the jump region for 𝑹𝒆 = 200, 400, 600 and 800. Here, 

𝑭𝒓 = 10 and 𝒓∞ = 25.  

2.6 Conclusion 

We examined the structure of the circular hydraulic jump and the recirculation appearing 

for a jet impinging on a disk. We formulated a composite mean-field thin-film approach, 

which consists of subdividing the flow domain into three regions of increasing gravity 

strength: a developing boundary layer near impact, an intermediate supercritical viscous 

layer leading up to the edge of the jump and a region comprising the jump and subcritical 

flow. The flow is assumed to drain at the edge of the disk. Unlike existing formulations 

that capture the continuous jump profile and the recirculation zone, the present approach 

does not require any empirically or numerically adjustable boundary conditions. The 

governing boundary-layer equations for the thin film are elliptic given the presence of the 

hydrostatic pressure gradient in the original boundary-layer equations, thus resulting in a 

two-point boundary-value problem, requiring upstream and downstream boundary 

conditions, particularly at the edge of the disk. The ellipticity is preserved through the 

presence of the gravity term in the velocity profile that was taken to satisfy the momentum 

equation at the disk. We demonstrated that the stress or corner singularity for a film 

draining at the edge is equivalent to the infinite slope of the film surface, which we impose 

as the downstream boundary condition. We validated our approach against existing 

measurements and numerical data. Comparison against numerical solutions of the 

boundary-layer equations and Navier-Stokes equations showed excellent agreement 

(figures 2-4 to 2-6), as well as that against existing models of the averaged film equations 

(figure 2-4). Comparison against existing measurements of the film profile and jump radius 

also showed close agreement and/or equally accurate predictions as existing numerical 

solutions (figures 2-6, 2-8 and 2-9).  
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In an effort to stimulate further experimental work, we examined the influence of flow rate 

(inertia) in some detail, over the same range of experimental conditions as that of Duchesne 

et al. (2014). The results in §2.5.1 highlight the influence of the flow rate on the film profile 

and vortex structure (figures 2-10 and 2-12). The film profile was found to have a 

significant influence on the jump size and vortex structure. We also address and resolve 

one of the difficulties facing theory and experiment in identifying the jump location. We 

assumed the jump radius to coincide with the change in the film surface concavity. We 

showed that this assumption is accurate since the predicted jump radius is very close to the 

critical radius based on the local Froude number (figure 2-11). 

Finally, the flow in the supercritical region remains insensitive to the change in gravity 

(figure 2-13) but is greatly affected by viscosity (figure 2-14). The existence of the jump 

is not necessarily commensurate with the presence of a recirculation zone. We identify as 

type 0 the class of such jumps. 
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Chapter 3  

3 The characteristics of the continuous circular hydraulic 
jump 2 

Nomenclature 

a  Radius of jet, m 

Bo  Bond number, 𝐵𝑜 = 𝜌𝑔𝑎2 𝜎⁄  

𝐸𝐽−  Dimensionless energy head at the leading edge of the jump 

𝐸𝐽+  Dimensionless energy head at the trailing edge of the jump 

Δ𝐸𝐽  Dimensionless relative energy loss, Δ𝐸𝐽 = 𝐸𝐽− − 𝐸𝐽+ 

Fr  Froude number, 𝐹𝑟 = 𝑊 √𝑔𝑎⁄  

𝐹𝑟𝑙  Local Froude number, 𝐹𝑟𝑙 = 𝐹𝑟〈𝑢〉 √ℎ⁄  

𝐹𝑟𝐽  Froude number at the trailing edge of the jump, 𝐹𝑟𝐽 = 𝐹𝑟 2𝑟𝐽𝐻𝐽
3/2⁄  

𝐹𝑟𝐽−  Froude number at the leading edge of the jump, 𝐹𝑟𝐽− = 𝐹𝑟 2𝑟𝐽ℎ𝐽
3/2⁄  

𝐹𝑟𝐽+  Froude number at the trailing edge of the jump, 𝐹𝑟𝐽+ = 𝐹𝑟 2𝑟𝐽𝐻𝐽
3/2⁄  

g  Acceleration due to gravity, 𝑚 𝑠2⁄  

Ga  Galileo number, 𝐺𝑎 = 𝑅𝑒2 𝐹𝑟2⁄  

________________________________ 

2 A version of this chapter has been submitted for publication as - 

Wang, W., Baayoun, A. & Khayat, R.E. 2023 The characteristics of the continuous circular hydraulic jump. 

J. Fluid Mech. 
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h  Dimensionless film thickness 

ℎ0  Dimensionless film thickness at 𝑟 = 𝑟0 

ℎ𝐽  Dimensionless film thickness at 𝑟 = 𝑟𝐽− 

ℎ∞  Dimensionless film thickness at the disk edge 

𝐻𝐽  Dimensionless film thickness at 𝑟 = 𝑟𝐽+ 

𝐻𝑠  Dimensionless static thickness of the film at the disk edge 

𝐻𝑣𝑜𝑟𝑡𝑒𝑥 Dimensionless height of the vortex under the jump 

𝐿𝑣𝑜𝑟𝑡𝑒𝑥  Dimensionless length of the vortex under the jump 

𝐿𝐽  Dimensionless jump length, 𝐿𝐽 = 𝑟𝐽+ − 𝑟𝐽− 

p  Dimensionless pressure 

Q  Volume flow rate, 𝑚3 𝑠⁄  

r  Dimensionless radial coordinate 

𝑟0  Dimensionless transition point of the hydrodynamic boundary layer 

𝑟𝑠  Dimensionless radial location of singularity reached 

𝑟∞  Dimensionless disk radius 

𝑅∞  Dimensional disk radius, m 

𝑟𝐽  Dimensionless jump radius 

𝑅𝐽  Dimensional jump radius, m 

𝑟𝐽−  Dimensionless radial location of the leading edge of the hydraulic jump 
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𝑟𝐽+  Dimensionless radial location of the trailing edge of the hydraulic jump 

Re  Reynolds number, 𝑅𝑒 = 𝑊𝑎 𝜈⁄  

u  Dimensionless horizontal velocity 

U  Dimensionless free surface velocity 

〈𝑢〉  Dimensionless depth average velocity 

w  Dimensionless vertical velocity 

W  Average jet velocity, 𝑊 = 𝑄 𝜋𝑎2⁄ , 𝑚 𝑠⁄  

z  Dimensionless vertical coordinate 

Greek Symbols 

𝛼  Dimensionless parameter, 𝛼 = 𝑅𝑒1/3𝐹𝑟2 

𝛽  Dimensionless parameter, 𝛽 = 𝑅𝑒−1/3𝑟∞ 

δ  Dimensionless hydrodynamic boundary layer thickness 

η  Scaled vertical coordinate, 𝜂 = 𝑧 ℎ⁄  

θ  Azimuthal coordinate 

𝜃𝑌  Static contact angle 

ν  Kinematic viscosity, 𝑚2 𝑠⁄  

ρ  Density of fluid, 𝑘𝑔 𝑚3⁄  

σ  Surface tension of fluid, 𝑁 𝑚⁄  

𝜏𝑤  Dimensionless wall shear stress 
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3.1 Introduction 

In a recent study (Wang et al. 2023), we proposed a theoretical treatment to simulate the 

continuous circular hydraulic jump and recirculation for a jet impinging on a disk. We 

formulated a composite mean-field thin-film approach, which consists of subdividing the 

flow domain into three regions of increasing gravity strength: a developing boundary layer 

near impact, an intermediate supercritical viscous layer leading up to the edge of the jump, 

and a region comprising the jump and subcritical flow. The film was assumed to drain at 

the edge of the disk.  

Earlier efforts to capture the smooth variation of the jump and the vortex structure are 

credited to Bohr et al. (1997) and Watanabe et al. (2003), who introduced second-order 

corrections and accounted for additional gravity effects by ensuring their velocity profile 

satisfies the momentum equation at the disk. The presence of the resulting additional shape 

parameter in the cubic velocity profile prevents the formation of the critical point and the 

singularity of the averaged first-order model (Wang & Khayat 2019), allowing the capture 

of the flow separation. However, two experimental points near the leading and trailing 

edges of the jump are needed in their solution to fix the boundary conditions, and some 

prior knowledge of the location of the jump is required. In this regard, even though their 

theory showed good agreement with the earlier measurements of Bohr et al. (1996), it 

remains somewhat semi-empirical. A similar approach was later adopted by Bonn et al. 

(2009) to study the hydraulic jump in a channel. Roberts & Li (2006) derived a model 

based on centre-manifold theory to describe the dynamics of thin films on curved 

substrates. A smooth profile was generated for the circular hydraulic jump on a flat 

substrate, and the vortex was captured as well. However, they simply imposed the 

boundary conditions in a manner similar to Watanabe et al. (2003). A more serious attempt 

was made by Razis et al. (2021) to capture the continuous jump in an inclined channel. 

They extended the Saint-Venant equations by including the effect of the longitudinal 

normal stress. They derived analytically an approximate expression for the jump length as 

a function of the Froude and effective Reynolds numbers, highlighting the strong interplay 

among inertia, gravity and viscous diffusion, as contributing to the balance of forces that 

shape the jump. 
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Unlike existing formulations that capture the continuous jump profile and the recirculation 

zone, our approach does not require any empirically or numerically adjustable boundary 

conditions. The governing boundary-layer equations for the thin film are elliptic given the 

presence of the hydrostatic pressure gradient in the original boundary-layer equations, thus 

resulting in a two-point boundary value problem, requiring upstream and downstream 

boundary conditions, particularly at the edge of the disk. The ellipticity is preserved 

through the presence of the gravity term in the velocity profile that was taken to satisfy the 

radial momentum equation at the disk. We demonstrated that the stress or corner singularity 

for a film draining at the edge is equivalent to the infinite slope of the film surface, which 

we imposed as the downstream boundary condition. We validated extensively our approach 

against existing measurements and numerical simulation. Measurement data were taken 

from Hansen et al. (1997) and Duchesne et al. (2014) for fluids of different viscosities and 

decades of flow rates. Comparisons were made for the film profile, jump location as well 

as the local Froude number. Comparison against the spectral inertial-lubrication model of 

Rojas et al. (2010), the numerical solution of the boundary-layer equations of Fernandez-

Feria et al. (2019), the Navier-Stokes solution of Zhou & Prosperetti (2022), as well as 

existing mean-field models (Kasimov 2008; Dhar et al. 2020). Overall, agreement with our 

numerical predictions was surprisingly close; the reader is particularly referred to the 

validation section 4 of Wang et al. (2023). 

The aim of the present study is to use our recent formulation and solution procedure (Wang 

et al. 2023) to examine the different features of the type 0 and type I circular hydraulic 

jumps and elucidate the flow structure in each case. Since our numerical approach was 

extensively validated against experiment and numerical simulation, it will be used to 

establish and test new scaling arguments for the jump location, jump length, conjugate 

depth ratio, energy loss across the jump and film thickness at the edge of the circular disk. 

Using a first-order model, Bohr et al. (1993) located the jump by matching the up- and 

downstream solution branches through a Rayleigh shock (Rayleigh 1914), and proposed a 

scaling for the hydraulic jump radius as /8 /8 /85 3 1
JR ~ Q g− − , where Q is the flow rate of 

the jet,  is the kinematic viscosity of the fluid, and g is the acceleration due to gravity. 

More recently, Duchesne et al. (2014) established their scaling law by assuming that the 
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Froude number based on the jump location and height ( JFr ) is constant, and eliminating 

the jump height assuming lubrication flow to obtain an implicit relation: 

( ) 5 3 1/8 /83/ /8 8
JJ ln R R ~R Q g−


−    , involving the disk radius, R . Their scaling law 

is therefore semi-empirical since the value of JFr  must be imposed from experiment. We 

shall revisit this issue and elucidate the conditions for the validity of existing scaling laws 

and demonstrate the need for a more accurate scaling law for the jump radius.  

We examine another important flow characteristic: the thickness at the edge of the disk, 

which remains largely unaddressed in the literature, as the flow near the disk edge 

experiences a complex interplay of inertia, gravity and surface tension (Higuera 1994). For 

the situation when the flow drains freely off the disk edge, there are mainly two approaches 

to determine the film height or equivalent conditions at the disk edge; imposing an infinite 

slope (Bohr et al. 1993; Kasimov 2008; Dhar et al. 2020), or assuming the edge thickness 

to be essentially equal to the capillary length (Duchesne et al. 2014; Ipatova et al. 2021; 

Duchesne & Limat 2022). As indicated in the experimental work of Duchesne et al. (2014), 

the edge film thickness also follows a weak power law dependence on the flow rate. 

Although we have extensively validated our approach (Wang et al. 2023) for a film freely 

draining at the disk edge, we further verify our model against the numerical solution of the 

Navier-Stokes equations of Askarizadeh et al. (2019, 2020) when an obstacle is placed at 

the disk edge. We also examine the influence of the obstacle height on the jump and vortex 

structure. In addition, we examine the jump length and its relation to the vortex size. By 

balancing the drag at the disk in the jump region with fluid inertia, and assuming dominant 

viscous over gravity effects, Avedisian & Zhao (2000) obtained a relation between the 

length of the jump and its radius as J J JL R / h ~ Q /  , where Jh  is the film thickness at 

the leading edge of the jump (see also the different treatment of Razis et al. (2021) for the 

planar jump).  

The rest of this paper is organized as follows. In section 3.2, we briefly review the general 

problem and physical domain; we review the formulation of the problem and the solution 

strategy in terms of the general governing equations and boundary conditions in each 

region of the flow. In section 3.3, we examine the influence of the disk geometry on the 
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jump and flow structure, namely the influence of the disk size and the height of the obstacle, 

which is often placed at the edge of the disk to control the subcritical film height and jump 

location. Further validation is conducted by comparing our approach against existing 

numerical simulation. Detailed scaling analyses are formulated in section 3.4 for the jump 

radius, jump length, energy loss, conjugate depth ratio and thickness at the edge of the disk. 

The scaling laws are validated against our approach and existing experimental and 

numerical data. In section 3.5, we conduct further parametric studies and scaling to explore 

the overall regions of existence for the two types (0 and 1) of jump. Finally, concluding 

remarks and discussion are given in section 3.6. 

3.2 Review of the physical domain and problem 
formulation 

In this section, we first present the formulation of the steady flow in the developing 

boundary-layer region in order to obtain the upstream boundary condition needed for the 

flow in the fully-developed viscous region. Next, we present the formulations of the flow 

in the fully-developed viscous region. In particular, effects of moderate gravity and strong 

gravity are discussed. We shall see that, depending on the level of importance of the 

gravitational effects, different governing equations can be used in this region.  

3.2.1 The physical domain and problem statement 

Consider the steady laminar incompressible flow of a circular (axisymmetric) jet of a 

Newtonian fluid emerging from a nozzle of radius a, impinging at a volume flow rate Q on 

a flat disk of radius R  lying normal to the jet and gravity direction. The flow 

configuration is depicted schematically in figure 3-1, where dimensionless variables and 

parameters are used. The problem is formulated in the ( )r, , z  fixed coordinates, with the 

origin coinciding with the disk center. The flow is assumed to be independent of θ, thus 

excluding polygonal flow. In this case, ( )u r, z  and ( )w r, z  are the corresponding 

dimensionless velocity components in the radial and vertical directions, respectively. The 

r-axis is taken along the disk radius and the z-axis is taken along the jet axis. The length 

and the velocity scales are conveniently taken to be the radius of the jet, a, and the average 
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jet velocity 2W Q a  , both in the radial and vertical directions. Since the pressure is 

expected to be predominantly hydrostatic for a thin film, it will be scaled by ρga, where g 

is the acceleration due to gravity. In the absence of surface tension, two main dimensionless 

groups emerge in this case: the Reynolds number Re Wa=  , where ν is the kinematic 

viscosity, and the Froude number Fr W ag= . Another useful and related number is the 

Galileo number 
2 2Ga Re / Fr= . 

 

Figure 3-1: Schematic illustration of the axisymmetric jet flow impinging on a flat 

stationary disk and the hydraulic jump of type I with one vortex downstream. Shown 

are the developing boundary-layer region ( 𝟎 < 𝒓 < 𝒓𝟎 ) and the fully-developed 

viscous region (𝒓𝟎 < 𝒓 < 𝒓∞). The fully-developed viscous region comprises a region 

(𝒓𝟎 < 𝒓 < 𝒓𝑱−) where gravitational effects are moderate, and a second region where 

gravitational effects are strong (𝒓𝑱− < 𝒓 < 𝒓∞). All notations are dimensionless. In 

this case, the jet radius is equal to one. The film is allowed to fall freely over the edge 

of the disk where an infinite slope in the film thickness occurs, 𝒉′(𝒓 = 𝒓∞) → −∞. 

The red dashed- curve is the schematic film-thickness profile reflecting the approach 

of Wang & Khayat (2019), terminating with a singularity at a finite radius denoted 

here by 𝒓𝒔 . The jump location coincides with 𝒉′′(𝒓𝑱) = 𝟎 , and 𝒉(𝒓𝑱−) = 𝒉𝑱 , and 

𝒉(𝒓𝑱+) = 𝑯𝑱. The downward arrow represents the gravitational acceleration. 

As shown in figure 3-1, we identify three main regions of the flow: a developing boundary-

layer region ( )00 r r   where gravity is essentially dominated by inertia, a fully-
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developed viscous region ( )0 Jr r r −   with moderate gravitational effect, and a fully-

developed viscous region ( )Jr r r−    with strong gravitational effect. The jump is a 

smooth transition region that connects the (upstream) supercritical and the (downstream) 

subcritical regions. Again, the analysis of the boundary-layer region, near impact, is crucial 

in order to fix an upstream boundary condition for the thin-film viscous flow, relevant to 

the jet conditions. Throughout this study, the stagnation or impingement region is not 

considered, and the boundary layer is assumed to originate at the stagnation point (Wang 

et al. 2023).  

The boundary layer grows until it reaches the film surface at the transition location 0r r= . 

Here, the film thickness is defined as ( )0 0h h r r =  which corresponds to an upstream 

boundary condition for the flow in the fully-developed viscous region. We denote by ( )r  

the boundary-layer thickness. The leading edge of the boundary layer is taken to coincide 

with the disk center. We let ( ) ( )U r u r, z h =  denote the velocity at the free surface. 

Assuming the jet and stagnation flows to be inviscid irrotational, the radial velocity outside 

the boundary layer is then ( )0U 0 r r 1  =  as the fluid there is unaffected by the viscous 

stresses. We recall that both velocity components have been scaled by the (inviscid) jet 

velocity W. The potential flow ceases to exist in the fully-developed viscous region 

0r r r  , and U becomes dependent on r. We note that 0r  is the location beyond which 

the viscous stresses become appreciable right up to the free surface, where the entire flow 

is of the boundary-layer type. We follow Rojas et al. (2010) and take the jump location Jr  

to coincide with the vanishing of the concavity: ( )Jh r r 0 = =  . We denote by Jr r +=  the 

location of the maximum film height: ( )J Jh r r H+= = . The definition of the jump radius 

at the location where the free surface changes concavity is reasonable as this location is 

very close to the start of the separation zone which is experimentally considered as the 

location of the jump in the literature (Bohr et al. 1996). Downstream of the jump, the film 

decreases in thickness and eventually falls freely over the edge of the disk, at r r= , where 

an infinite (downward) slope in thickness is assumed (Bohr et al. 1993; Kasimov 2008; 
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Dhar et al. 2020). In fact, we shall see that the infinite slope is directly related to the stress 

singularity expected to occur at the disk edge (Higuera 1994; Scheichl, Bowles & Pasias 

2018). Finally, we shall assume throughout the present study that the locations Jr −  and Jr +  

coincide with the locations of the leading and trailing edge of the jump, respectively, and 

we denote the film height at Jr −  as ( )J Jh r r h−= = . 

Unless otherwise specified, the Reynolds number is assumed to be moderately large so that 

our analysis is confined to the laminar regime. Consequently, for steady axisymmetric thin-

film flow, in the presence of gravity, the mass and momentum conservation equations are 

formulated using a thin-film or Prandtl boundary-layer approach, which amounts to 

assuming that the radial flow varies much slower than the vertical flow (Schlichting & 

Gersten 2000). We observe that the pressure for a thin film is hydrostatic as a result of its 

vanishing at the film surface (in the absence of surface tension) and the small thickness of 

the film, yielding ( ) ( )p r, z h r z= − . By letting a subscript with respect to r or z denote 

partial differentiation, the reduced dimensionless relevant conservation equations become 

r z
u

u w 0,
r

+ + =   ( )r z zz2

Re
Re uu wu h u

Fr
+ = − + .         (3.2.1a, b) 

where a prime denotes total differentiation with respect to r. These are the thin-film 

equations commonly used to model the spreading liquid flow (Tani 1949; Bohr et al. 

1993/1996; Kasimov 2008; Wang & Khayat 2019). At the disk, the no-slip and no-

penetration conditions are assumed to hold at any r. At the free surface ( )z h r= , the 

kinematic and dynamic conditions must hold. In this case: 

( ) ( )u r, z 0 w r, z 0 0= = = = ,              (3.2.2a, b) 

( ) ( ) ( )w r,z h u r, z h h r= = = ,  ( )zu r, z h 0= = .         (3.2.2c, d) 

The flow field is sought separately in the developing boundary-layer region for 00 r r  , 

the fully-developed viscous region with moderate gravity for 0 Jr r r −  , and fully-
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developed viscous region with strong gravity for Jr r r+   . Additional boundary 

conditions are needed, which will be given when the flow is analysed in each region. 

3.2.2 The flow in the boundary layer region (0 < 𝑟 < 𝑟0) 

In this region, the boundary layer grows with radial distance, eventually invading the entire 

film depth, reaching the free surface at the transition, 0r r= , where the fully-developed 

viscous region begins. For 00 r r  , the free surface lies at some height ( ) ( )z h r r=    

and is above the boundary-layer outer edge. The flow in the developing boundary-layer 

region is assumed to be sufficiently inertial for inviscid flow to prevail between the 

boundary-layer outer edge and the free surface (see figure 3-1). In this case, the following 

conditions at the outer edge of the boundary layer ( )z r=   and beyond must hold: 

( )0u r r , z h 1    = , ( )z 0u r r , z 0 =  = . Subject to these conditions, the weak form of 

the conservation equations for 0r r , become 

0

1
u dz h

2r



+ −  = ,  ( ) w2
0

Re d Re
ru u 1 dz h

r dr Fr



− = −  −  ,         (3.2.3a, b) 

where ( ) ( )w zr u r, z 0  =  is the wall shear stress or skin friction. For simplicity, we 

choose a similarity cubic profile for the velocity: 

( ) ( )3
0

3 1
u r r , z f

2 2
 = −    ,        (3.2.4) 

where z =   , leading to the following problem for the boundary-layer and free-surface 

heights: 

3 1
h

8 2r
−  = ,  ( ) 2

2

39 Re Re 3
r h

280 r 2Fr

   =  + , ( )r 0 0 = = .         (3.2.5a-c) 

The transition location is found when the boundary-layer thickness becomes equal to the 

film thickness. Consequently, the boundary condition for the film thickness at the transition 
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location ( ) ( )0 0 0h h r r r r = =  =  is obtained. Clearly, the formulations presented for the 

flow in the developing boundary-layer region are the same as those of Wang & Khayat 

(2019). 

3.2.3 The flow in the fully-developed viscous region (𝑟0 ≤ 𝑟 ≤ 𝑟∞) 

Downstream of the transition point ( )0r r , the potential flow ceases to exist, with the 

velocity at the free surface becoming dependent on r: ( ) ( )0u r r , z h U r = = . In this case, 

the weak form of equation (3.2.1) reads: 

h

0

1
udz

2r
= ,   

h
2

w

0
2

Re d
ru dz

Re

Fr
hh

r dr
= − −  .         (3.2.6a, b) 

If the similarity velocity profile: ( ) ( ) ( )0u r r , z U r f =  is adopted, where ( )f   is still 

given in (3.2.4) with z / h = . The film thickness and surface velocity are governed by 

(Wang et al. 2023): 

4
U

5rh
= ,  

2 2 3 2 2

5 68 1 1 68 Re 3
Re h

175 175 2h4Fr r h rh r

   
− = −   

   
,        (3.2.7a, b) 

( )0 0h r r h= = .                   (3.2.7c) 

This model is equivalent to that developed originally by Tani (1949), and has been 

extensively (and successfully) used in the literature (Bohr et al. 1993; Kasimov 2008; 

Wang & Khayat 2019; Fernandez-Feria et al. 2019; Dhar et al. 2020). However, equation 

(3.2.7b) exhibits a singularity at some finite radial position, which is taken to coincide with 

the jump location (Wang & Khayat 2019). 

In order to capture the continuous jump, we again assume a cubic velocity profile that 

satisfies the momentum equation (3.2.1b) at the disk or ( )zz2

Re
h u r,z 0 0

Fr
− + = = . In this 
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case, the radial velocity profile is non-self similar, and is given as function of the surface 

velocity U(r) and the gravitational term 
2

2Re

Fr
h h  as 

( )
2 2

2 2 2 2 3

20
Re Re Re

Fr Fr

1
u r r ,z 6U h h 2 h h 2U h h

4 Fr

    
   = − +  − +     

    
.   (3.2.8) 

Here z / h = . We observe that the non-self-similarity is due to the presence of the gravity 

term. An equivalent profile to (3.2.8) was adopted by Watanabe et al. (2003), who 

introduced a shape parameter λ(r), and by Bonn et al. (2009) for the hydraulic jump in a 

channel. Clearly, if (3.2.8) is adopted, the skin friction coefficient or wall shear stress is 

given by ( )w 2

1 Re
r

4 F

U
6 hh

h r

 
 = − 

 
. Substituting (3.2.8) into (3.2.6) we obtain the 

following second-order system in U and h: 

2

2 24
h h 30

r

Re

r
U

hF
 = − ,                   (3.2.9a) 
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h h 41U hU
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3 3 U 1 Re 27 Re h
hh Uh h U h h h

Re h 1

11
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 
 − + 

 

  
   = + + − − +     

.        (3.2.9b) 

Equations (3.2.9) are integrated subject to the following boundary conditions obtained from 

the solution of (3.2.7): 

( ) ( ) ( )J J J Ju U r r , h h r r , h r r− − = = = = = → − .       (3.2.10a-c) 

The solution strategy consists of solving problem (3.2.5) to determine the film thickness h 

and boundary-layer height  over the range 00 r r  , then finding U and h in the fully 

viscous region 0 Jr r r −   by solving (3.2.7b) subject to (3.2.7c). The flow field and film 

profile over the remainder fully-viscous region Jr r r−   , as well the (yet unknown) 
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location of the leading edge of the jump Jr r −=  are then determined by solving system 

(3.2.9) subject to (3.2.10). The reader is referred to Wang et al. (2023) for more details on 

the solution strategy. 

We observe that system (3.2.9) is equivalent to the system of equations (3.2.25) in 

Watanabe et al. (2003). Eliminating U, we obtain an ordinary differential equation of 

second order in h: 

( )

( )
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2 2
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' .00r
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   + = − 
 

  −
 
 


+

 

+


+

       (3.2.11) 

Next, we consider two well-established limit flows for reference. The first is the limit of 

infinite Froude number in the supercritical region. We note that the supercritical flow 

consists essentially of a balance between inertia and viscosity effects with negligible 

gravity effects. This limit was first considered by Watson (1964) and later adopted by 

others (see Wang & Khayat 2019 and the references therein). For Fr →, the solution of 

problem (3.2.5) upstream of the transition point reduces to: 

( )0
70 r

r r 2
39 Re

  = ,  ( )0
1 210 r 2

h r r
4 13 Re r

 
 = +  

 
,       (3.2.12a, b) 

( )0U r r 1 = .                  (3.2.12c) 

The transition point is determined by setting ( ) ( )0 0r h r = , yielding 

1 3

0
78Re

r
875

 
=  

 
. 

Thus, in the absence of gravity effect, the boundary layer height grows like r , and the 

film height decreases predominantly like 1/r. Downstream of the transition point, the flow 

is governed by equations (3.2.7). Setting Fr →, it is not difficult to show that the solution 

reduces to: 
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( )0

2233 1 17
r r

5 r
h

340 r 136 Re
 = + ,   ( )0

r
r

h
r

4
U

5
= ,       (3.2.13a, b) 

suggesting that h decreases like 1/r for small r and increases like 
2r  for large r.  

These expressions are surprisingly in close agreement with Watson’s similarity solution 

and that based on the cubic velocity profile (see also Prince et al. 2012 and Wang et al. 

2023). The behaviour based on (3.2.12)-(3.2.13) reflects qualitatively the profiles in the 

presence of gravity as illustrated in figure 3-2. 

The second asymptotic flow often used in the literature is the limit of negligible inertia in 

the subcritical region. The flow is captured using lubrication theory, which consists of 

integrating equation (3.2.1b) to obtain the parabolic velocity profile 
2

2

Re z
u h hz

2Fr

 
= − 
 
 

, 

yielding the following profiles for the film thickness and surface velocity: 

1/4
2

4 rFr
h h 6 ln

Re r




  
= +  

   

,  
3

U
4rh

= ,         (3.2.14a, b) 

where we recall h  to be the thickness at the edge of the disk. In addition, (3.2.14a) 

requires imposing the value of the edge thickness h . In contrast, this value is determined 

accurately by our numerical approach.  

3.3 The influence of the disk geometry 

In this section, we examine the influence of the disk geometry, namely the disk radius and 

the height of the obstacle placed at the edge of the disk. In our recent paper (Wang et al. 

2023), we have exclusively focused on the case of flows draining freely at the edge of the 

disk. In practice, an obstacle is placed to control the film thickness and explore its influence 

on the jump and flow structure. 
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3.3.1 The influence of the disk size 

The disk size is expected to be of significant influence on the flow and jump structure. For 

a given flow rate, the jump location and shape are affected by the amount of fluid 

accumulated downstream, which is directly related to the disk size. In their solution of the 

Navier-Stokes equations, Fernandez-Feria et al. (2019) considered the flow on two disks 

of different diameters without accounting for the surface tension effect. Their data is 

reported here in our figures 3-2a and 3-2b (red symbols) from their figures 6a and 6b for 

two disk sizes: r  = 53.33 and 80 (in units of a), respectively, for a flow of water-glycerol 

mixture at Re = 854.29 and Fr = 97.19. Comparison of our predictions in figures 3-2a and 

3-2b (solid black curves) yields an overall close agreement for both disk sizes. In the 

absence of surface tension, the numerical profiles exhibit some waviness or ripples at the 

trailing edge of the jump, which is not captured by our solution or the pseudospectral 

solution of the full boundary-layer equations of Fernandez-Feria et al. (2019). The ripples 

are typically predicted by the Navier-Stokes solution, and are attenuated by surface tension 

(Fernandez-Feria et al. 2019; Askarizadeh et al. 2019; Wang & Khayat 2021). This issue 

will be discussed further when we examine the influence of the disk obstacle (refer to figure 

3-8 below, showing the Navier-Stokes profiles of Askarizadeh et al. (2020) with small 

ripples for weak surface tension, and no ripples for moderate surface tension). 
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Figure 3-2: Comparison of the free-surface profile based on the present approach 

against the Navier-Stokes profiles of Fernandez-Feria et al. (2019) for Re = 854.29, Fr 

= 97.19 and (a) r∞ = 53.33, (b) r∞ = 80. 

Figure 3-3 illustrates further the influence of the disk size for Re = 854.29 and Fr = 97.19. 

It is striking to see from figures 3-3a and 3-3b how insensitive the supercritical flow is to 

the variation of r , a trend well contrasted with the flow in the subcritical region, agreeing 

with the numerical simulation of Fernandez-Feria et al. (2019). The subcritical film depth 

increases with increasing disk size, causing w  to decrease. The jump moves slightly 

upstream as a result of the accumulated viscous drag and gravity (figures 3-3a and 3-3b). 

The jump response is consistent with the measurements of Rao & Arakeri (2001), the 

Navier-Stokes solution of Fernandez-Feria et al. (2019), the scaling law (3.4.6) of 

Duchesne et al. (2014) as well as our scaling law (3.4.5) (see section 3.4). Our numerical 

calculations (shown in the inset of figure 3-3a) suggest that 19 20
Jr r−

 , reflecting a weak 

dependence, which may explain the absence of the disk size dependence in the scaling law 

of Bohr et al. (1993). Both our scaling law (3.4.5) and (3.4.6) of Duchesne et al. (2014) 

propose an implicit relation for the jump radius with a logarithmic dependence on the disk 

size. The vortex becomes increasingly apparent as a result of the jump steepening with 

increasing disk size. Below a critical disk size, the recirculation vanishes (figures 3-3c to 
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3-3e). It is expected that no jump exists if the disk is sufficiently small (Rao & Arakeri 

2001). The profiles for a small disk with no separation are reminiscent of the profiles with 

expansive interaction discussed by Bowles (1995) for the flow over a sloped bed. Similarly, 

the profiles over a larger disk with separation correspond to a compressive interaction. 

 

 

Figure 3-3: Influence of the disk radius r∞ on (a) the free surface profile (solid curves) 

the boundary-layer thickness (dashed curves), and (b) the wall shear stress. Shown in 

(c)-(e) are the streamlines for r∞ = 40, 50 and 60. The inset in (a) shows the dependence 

of the jump radius and maximum film height on the disk radius. Here, Re = 854.29, 

Fr = 97.19 are parameters used in Fernandez-Feria et al. (2019). 
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3.3.2 The interplay between the flow rate and disk size 

Although the jump position does not seem to be significantly influenced by the disk radius, 

the flow field and vortex structure appear to be more sensitive to the disk size (3- 2 and 3-

3). These jump features are further examined by varying the flow rate over the same 

experimental range as Duchesne et al. (2014) but for a disk almost twice and four times 

smaller. Figure 3-4 illustrates the influence of the flow rate on the film profile for a disk of 

radius r 93.75 =  (figure 3-4a), r 50 =  (figure 3-4b) and r 25 =  (figure 3-4c). Figure 3-

4a typically illustrates the film profiles for a film draining at the edge of the disk at different 

flow rates. Although similar or equivalent flow details were not reported by Duchesne et 

al. (2014), the profiles in figure 3-4a correspond to the same range of flow rates and 

conditions of their experiment. The figure shows that the boundary-layer thickness 

diminishes with increasing flow rate, following closely (3.2.12a), with the film thickness 

profile well reflected in (3.2.12b). The figure indicates that although the jump radius and 

height both grow with the Froude number, the shape of the jump, particularly its steepness 

or slope is insensitive to the Froude number. While the supercritical region extends in 

length and diminishes in thickness, the subcritical region shrinks in length with diminishing 

thickness growth with flow rate, evolving from an essentially linear to a logarithmic 

(lubrication) profile (excluding the vicinity of the edge). We shall refer extensively to this 

figure when examining various characteristics of the jump.  

Figure 3-4c shows that the monotonic growth of the film height in figures 3-4a and 3-4b is 

clearly replaced by a height that increases with the flow rate, reaching an overall maximum 

and decreases as the flow rate is increased further. The results seem to suggest that a 

maximum for maximum film height will show as well when r  = 93.75 and 50 if the flow 

rate increases further. Figure 3-4c also shows a significant change in the film profile in the 

subcritical region as well as smoothening in the jump region compared to figure 3-4a. We 

expect, and as we confirm below, a gradual and significant change in the flow field and 

vortex structure as the disk size increases. 
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Figure 3-4: Influence of the Froude number (flow rate) on the film profile for three 

different disk sizes: (a) 𝒓∞ = 𝟗𝟑. 𝟕𝟓, (b) 𝒓∞ = 𝟓𝟎 and (c) 𝒓∞ = 𝟐𝟓. Here, Ga = 100 

(50.11 < Re < 551.25), corresponding to the range of flow rate in the experiment of 

Duchesne et al. (2014). Dash-dotted curves in (a)-(c) represent the locus of the 

maximum film height.  

In our earlier study (see figure 6 of Wang et al. 2023), we compared our theoretical 

prediction for the film profile over the entire domain against the measurements of 

Duchesne et al. (2014) for silicon oil (20 cSt) of density 3960 kg m−  and kinematic 

viscosity 5 2 12 10 m s− − . The liquid was injected downward from a jet of radius a = 1.6 

mm onto a horizontal circular disk of radius R  = 15 cm. However, although the 

comparison led to a close agreement against experiment, the validation was limited to a 
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film profile for one flow rate, namely Q = 17 
3cm / s . In an effort to explore the 

supercritical flow, Duchesne (2014) reported measurements in his thesis for three different 

flow rates concentrated on the supercritical and jump regions. In his figure V.4, they 

considered the film profiles for Q = 7.7, 11 and 17 
3cm / s  against the predictions of 

Watson (1964), which showed some agreement in the supercritical region at small flow 

rate.  

Figure 3-5 shows the comparison of the free-surface profiles based on our approach and 

experiment for a disk of 15 cm radius or r 93.75 = . The flow conditions in dimensionless 

form correspond to Fr = 7.64, 10.92 and 16.87 in figures 3-5a, 3-5b and 3-5c, respectively. 

We also included the prediction from the Navier-Stokes numerical solution of Zhou & 

Prosperetti (2022) for the highest flow rate in figure 3-5c. The theoretical profiles agree 

well with experiment but, like the Navier-Stokes numerical solution, they underestimate 

slightly the supercritical film thickness at the jump, especially for the highest flow rate 

considered (figure 3-5c). In contrast, and as we shoed previously (see figure 6 of Wang et 

al. 2023), in the subcritical region, the theoretical and numerical predictions almost fit all 

the experimental data points, except near the disk edge. The agreement with the Navier-

Stokes solution of Zhou & Prosperetti (2022) is surprisingly close. We recall that the effect 

of surface tension was neglected in our model but was included in the numerical simulation 

(see also Wang & Khayat 2021), confirming that, in this case, the effect of surface tension 

may only be important near the edge and at the jump. As to the location of the jump, the 

experimental data suggest a slightly smaller jump radius than predicted by our approach 

and the numerical simulation.  
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Figure 3-5: Comparison of the free-surface profile in the supercritical and jump 

regions based on the present approach against the measurements of Duchesne (2014) 

for three different flow rates. Here, Ga = 100 and 𝒓∞ = 93.75. The green curves are 

based on expressions (3.2.12a,b) and (3.2.13a), the red curve in (c) is from the Navier-

Stokes solution of Zhou & Prosperetti (2022), the blue circles are from Duchesne 

(2014), and the black curves are from the present approach.  

Further details on the influence of the disk size on the jump and vortex structure are 

reported in figure 3-6 for the jump radius, and figure 3-7 for the jump height (figure 3-7a), 

length (figure 3-7b) and vortex length (figure 3-7c). The profiles are shown for three 

different disk sizes: r 93.75 = , r 50 =  and r 25 = . Figure 3-6a confirms the overall 

lack of sensitivity of the jump radius to the size of the disk, simultaneously indicating a 

decrease in the jump radius with increasing disk size. The figure also suggests, albeit in a 

faint manner, the tendency of the jump radius to grow linearly with the flow rate for the 

smaller disk size, in agreement with the measurements of Mohajer & Li (2015), reported 

in their figure 4. In figures 3-6b and 3-6c, we compare our theoretical predictions against 

the measurements of Duchesne (2014), available only for r 93.75 = , r 50 = . We also 

added the radius distributions based on our scaling law (3.4.5) which we establish in section 

3.4.1, showing a close agreement with both theory and experiment. 
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Figure 3-6: Influence of Fr (flow rate) for different disk sizes on the jump radius. 

Shown in (a) is the prediction based on the present approach, in (b) and (c) are the 

comparison between the present approach, the measurement of Duchesne (2014), and 

the present scaling (3.4.5) for 𝒓∞  = 93.75 and 50, respectively. Here Ga = 100, 

corresponding to the parameters in the experiment of Duchesne et al. (2014). 

As to the jump height, figure 3-7a suggests that the height does not always increase 

monotonically with the flow rate. In fact, JH  reaches a maximum for a disk of radius 

r 25 = . In addition, the height varies rather insignificantly with the flow rate, remaining 

essentially constant, again in agreement with the data in figure 4 of Mohajer & Li (2015), 

as well as the earlier observation of Hansen et al. (1997). The non-monotonicity is also 

reflected in the response of the jump length and vortex size in figures 3-7b and 3-7c, 

respectively. In fact, Craik et al. (1981) found that the jump length increases monotonically 

with the flow rate (see their figure 6). A similar trend was also observed by Rao & Arakeri 
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(2001) for a relatively large disk (see their figure 6), but they reported a decrease in the 

jump length with increasing flow rate for a small disk (see their figure 7). The monotonic 

increase in the vortex length was observed by Rao & Aeakeri (2001), while the non-

monotonic behaviour was illustrated by Craik et al. (1981). Both JL  and vortexL  are 

overall smaller for a smaller disk size. The jump becomes of type 0 (no vortex) when Fr 

exceeds 39 for r 25 = . In addition, as indicated by Chang et al. (2001), the vortex under 

the jump disappears when the flow rate is smaller than a critical value, meanwhile, the 

jump length experiences a transition and becomes much wider (see their figure 9).  

Finally, Chang et al. (2001) reported that, as the jump radius decreases significantly, the 

surface tension effect becomes important. They also noted that this feature corresponds to 

the type II jump observed by Ellegaard et al. (1998), who found that a surface roller appears 

under the free surface, and the jump becomes much smoother. The Navier-Stokes solution 

of Askarizadeh et al. (2020) confirmed that as the surface roller appears, the vortex near 

the wall disappears. Clearly, this particular phenomenon is beyond the scope of our current 

study. 
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Figure 3-7: Influence of Fr (flow rate) for different disk sizes on (a) maximum film 

height, (b) jump length and (c) vortex length. Here Ga = 100, corresponding to the 

parameters in the experiment of Duchesne et al. (2014). 

3.3.3 The influence of the obstacle height at the edge of the disk 

Although we have extensively validated the present approach in Wang et al. (2023) for a 

film freely draining at the disk edge, we further verify our model against the numerical 

solution of the Navier-Stokes equations when an obstacle is placed at the disk edge. 

Askarizadeh et al. (2019) explored the origin of the hydraulic jump. They identified two 

different flow regimes in the jump formation: gravity- and capillary-dominant flow 

regimes. They found that gravity effects are important for a flow with high viscosity, 

density and flow rate, as well as low surface tension. Later, Askarizadeh et al. (2020) 

investigated the heat transfer in the jump region. In figure 3-8, we compare our approach 

against their simulated flow for a flow of density ρ = 1100 kg/m3 and kinematic viscosity 
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ν = 10 cSt, at a flow rate Q = 30 ml/s. The simulated jet is injected from a nozzle of radius 

a = 2.5 mm, impinging onto a horizontal circular disk of radius R∞ = 40 mm. For the flow 

with surface tension σ = 10 mN/m, the obstacle was 1 mm high at the disk edge (figure 3-

8a), and 0.05 mm for σ = 45 mN/m (figure 3-8b), with corresponding simulation data taken 

from Askarizadeh et al. (2019) and (2020), respectively. The two figures indicate that the 

film thickness at the disk edge, resulting from the combined obstacle height and capillary 

length, is sensibly the same. 

The predicted profiles based on our approach are generally in good agreement with the 

numerical simulation for both regimes. Recalling that surface tension effects are neglected 

in the present study, figures 3-8a and 3-8b suggest a minimal importance of surface tension, 

the discrepancy being localised at the jump level. For low surface tension (dominant 

gravity), our profile is slightly lower with a milder curvature than the exact numerical 

profile (figure 3-8a). The ripple immediately downstream of the jump is commonly 

predicted in numerical simulations without surface tension (Fernandez-Feria et al. 2019; 

Wang & Khayat 2021; Zhou & Prosperetti 2022). At higher surface tension, the numerical 

curvature is milder, and our prediction for the film height at the jump is slightly higher than 

the result of the numerical simulation (figure 3-8b). The agreement in the supercritical is 

very close, which is not surprising given the absence of strong film curvature, except for 

very near jet impingement. Figure 3-8c depicts the predicted flow field as well as the wall 

shear stress and surface velocity distributions (inset), to be contrasted against the simulated 

flow field reproduced in figure 3-8d from the Navier-Stokes solution of Askarizadeh et al. 

(2020). A vortex near the disk under the jump is clearly visible and is similar to the 

numerical prediction, especially for the height of the vortex, but the latter displays a wider 

vortex due to the smoother jump profile at the jump region; the maximum of film height is 

close to the obstacle placed at the disk edge, which may be caused by the presence of the 

obstacle that is not captured by our approach. We observe that the edge singularity usually 

reflected at the edge of a draining fluid is not present for an edge with an obstacle (see 

next).  
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Figure 3-8: Comparison of the free-surface profiles between our approach (black 

solid line) and the Navier-Stokes solution of Askarizadeh et al. (2019) and (2020), 

shown in red symbols in (a) and (b), respectively, for σ = 10 and 45 mN/m, and 

corresponding obstacle heights of 1 and 0.05 mm. Predicted and simulated flow fields 

are shown in (c) and (d), respectively, with the inset in (c) depicting the surface 

velocity and wall shear stress distributions. In all cases, Re = 381.97, Fr = 9.76, 𝒓∞ = 

16. 
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We explore further the effect of the film thickness at the disk edge by Re = 381.97, Fr = 

9.76 and r∞ = 16. Similar to the experimental measurements of Bohr et al. (1996) and the 

Navier-Stokes solution of Askarizadeh et al. (2020), figure 3-9 indicates that the flow in 

the supercritical region is unaffected by the value of the film thickness at the disk edge. In 

contrast, the flow in the subcritical and jump regions is significantly influenced when h∞ 

varies. Figure 3-9a shows that the film thickness in the subcritical region increases overall 

with h∞, pushing the jump location closer to the impinging jet, in agreement with Bohr et 

al. (1996), Passandideh-Fard et al. (2011) and Askarizadeh et al. (2019, 2020). However, 

as we show in the inset of figure 3-6a, both the jump radius and maximum film height 

saturate to a constant value in the lower range of h , which is the case when the flow 

drains freely at the disk edge. It also suggests that the flow at the jump is not sensitive to 

the edge condition for the free draining situation, as long as the film thickness at the disk 

edge is close to a draining fluid thickness with no obstacle. Meanwhile, the wall shear stress 

in the subcritical region is greatly affected; the wall shear stress decreases overall as flow 

is slowed down when the film thickness in the subcritical region is increased (figure 3-9b), 

and the strength of the separation zone increase with the increase of h∞ as a result of the 

steepening of the jump (figure 3-9b to 3-9e). In fact, Askarizadeh et al. (2020) also showed 

that the heat transfer characteristics also exhibit similar features as the wall shear stress. 

Although we have shown that the vortex size increases with the rise of h∞, the behaviour 

of the vortex size is much more complex in reality. The surface tension becomes important 

when the jump radius becomes smaller, and instability will also appear as the film height 

rises. In this case, the size of the vortex near the wall will decrease until it disappears (Craik 

et al. 1981; Chang et al. 2001; Bohr et al. 1996; Askarizadeh et al. 2020), and hydraulic 

jump either becomes unstable (Craik et al. 1981) or transfer to a type Ib jump (only a 

surface roller shows) then type II jump (Bohr et al. 1996; Askarizadeh et al. 2020); with 

both a wall vortex and a surface roller. As the current study focuses on the type I jump or 

type Ia jump (Askarizadeh et al. 2020), the surface tension effect is not considered.  
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Figure 3-9: Influence of the film thickness at the disk edge on (a) the free surface 

profile (solid curves) and the boundary-layer thickness (dashed curves), and (b) the 

wall shear stress. Shown in (c)-(e) are the streamlines for 𝒉∞ = 0.65, 0.85 and 1.05. 

The inset in (a) shows the dependence of the jump radius and maximum film height 

on the film thickness at the disk edge. Here, Re = 381.97, Fr = 9.76 and 𝒓∞ = 16 are 

parameters corresponding to the simulation of Askarizadeh et al. (2019, 2020). 

3.4 Scaling analysis 

In Wang et al. (2023), we have extensively validated our approach against existing 

measurements and numerical simulations for a flow draining freely at the disk edge. In the 

current study, we establish scaling laws for the jump properties, such as the jump radius 
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and length, vortex size, energy loss across the jump, and conjugate depth ratio, among 

others. 

3.4.1 The scaling law for the jump radius 

By considering the horizontal momentum conservation across the jump, and assuming 

lubrication flow downstream of the jump, Higuera (1994) derived an expression for the 

jump location in the plane. Following his treatment, we first consider the weak form of the 

radial momentum equation (3.2.6), which takes the following approximate form across a 

narrow jump: 

( ) ( ) ( ) ( )
h HJ J

2 2 2 2
J J J J J w J2

0 0

Re
Re u r ,z dz u r ,z dz H h L r r

2Fr
− +

 
 −  − +  =
 
 
  ,   (3.4.1) 

where JL  is the jump length and ( ) ( )w J z Jr r u r r , z 0 = = = =  is the wall shear stress at 

the jump. Here, Jr −  and Jr +  are radial locations immediately upstream and downstream of 

the jump, with corresponding heights ( )J Jh h r r − =  and ( )J JH h r r + = , respectively. 

Assuming the jump length to be relatively small ( )J JL r , the gravity term to be 

negligible compared to the momentum flux in the supercritical region, and the momentum 

flux term to be negligible compared to the gravity term in the subcritical region, equation 

(3.4.1) reduces to 

( )
hJ 2

2 J
J 2

0

H
u r ,z dz

2Fr
−  .         (3.4.2) 

When gravity is negligible, the supercritical velocity profile (3.2.8) reduces to 

( ) ( )J Ju r , z u f− =  , where we recall ( )J J J Ju U r 4 / 5r h−= =  from (3.2.7a) and (3.2.10a), 

and ( )f   from (3.2.4), with Jz / h = , yielding ( )
hJ

2
J 2

J J0

272 1
u r ,z dz

875 r h
− = . Thus, we 

have 
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J

J J

4 34 Fr
H

5 35 r h
 .          (3.4.3) 

The flow downstream of the jump must be analysed in order to determine the still unknown 

jump radius rJ. The earlier estimates imply that the convection terms in equation (3.2.1b) 

are negligible in this region, and then the balance of viscous and pressure forces for 

lubrication flow leads to the following downstream jump height from (3.2.14a): 

1/4
2

4
J

J

rFr
H h 6 ln

Re r




  
= +  

   

, where we recall 

2/31/3
27 Fr

h
70 r




  
   

   
 from (3.4.8) below. 

Finally, recalling from (3.2.13a) the supercritical thickness
2

J

J
J

r233 1 175
h

340 r 136 Re
= + , we 

obtain the desired equation for the jump radius: 

2
J

8/34/3 2

4
J J

22

J

4 r233 1 1 r75

3

27 Fr Fr
6 ln

70 r Re r

544 Fr

8 40 r 136 R5 r e7

−





   
= ++

  
      

        
.   (3.4.4) 

This equation can be simplified for a disk of relatively large diameter so the first term on 

the right-hand side is negligible ( )h 0 → . In addition, the jump tends to occur 

downstream of the ascending portion of the film thickness so that 
J

J

2r175
h

136 Re
 , yielding 

1/8

J

1/4 3/8
Jr Fr Re

r
ln

r


  

=   
   

,        (3.4.5) 

where  is a constant, that depends only on the type of velocity profile adopted in the 

averaging process. For a cubic profile,  = 2/3. If the logarithmic dependence is dropped, 

we recover the scaling law of Bohr et al. (1993), who suggested the value  = 0.73 

(compared to 0.67). Relation (3.4.5) is very similar to the scaling law of Duchesne et al. 

(2014), which we recast here as  
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3/8

J

1/4 3/8
Jr Fr Re

r
ln

r


  

=   
   

,        (3.4.6) 

where 
3/8

1
J

1
Fr

2 6

− 
 =  

  
 is constant. We observe that Duchesne et al. (2014) established 

their scaling law by assuming that 3/2
J J JFr Fr / 2r H  is constant, therefore allowing them 

to eliminate JH  between this relation and the lubrication result (3.2.14a) 

1/4
2

J
J

rFr
H 6 ln

Re r


  

=   
   

 to obtain the expression for Jr . Their scaling law is therefore 

semi-empirical since the value of JFr  must be imposed from experiment. In contrast, 

relation (3.4.4) and its simplified form (3.4.5), as well as that of Higuera (1994) for a planar 

jump, are fully theoretical. 

Figure 3-10 shows the comparison between our scaling law (3.4.5) and other laws, 

including the measurements of Duchesne et al. (2014) in figure 3-10a, and those of Hansen 

et al. (1997) in figure 3-10b. As expected, the scaling law (3.4.6) of Duchesne et al. (2014) 

fits best their measurements in figure 3-10a as JFr  was empirically adjusted. The 

discrepancy of the scaling of Bohr et al. (1993) becomes evident for Fr > 35, which is most 

likely due to the shock-like jump assumed in obtaining the scaling law. Figure 3-10b shows 

that our scaling law (3.4.5) is as accurate as that of Rojas et al. (2013). This latter relates 

the radius of the jump, in particular, to the height downstream of the jump (see their relation 

(15)). In the absence of surface tension, the relation, written here as 

( )( )
1/4

2 2
J Jr 9 / 70 ReFr / H 

  
, is based on their spectral approach for inertial-lubrication 

flow (Rojas et al. 2010) and the inviscid Belanger equation (White 2006). 

We recall that Rojas et al. (2013) fixed their downstream thickness from experiment in 

both their numerical solution and scaling. It is important to observe that our scaling law is 

not expected to remain accurate for low viscosity fluids because it is based on the 

lubrication assumption. However, it seems to yield a reasonably accurate description if  is 
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slightly readjusted from 2/3. We have taken  = 0.45 in figure 3-10b for water. Finally, the 

discrepancy at low flow rates is not surprising since it was difficult to observe the jump, so 

the first few data points are not reliable (Hansen et al. 1997). Another source for the 

discrepancy at low flow rates for (3.4.5) and existing scaling laws is the narrow or shock-

like assumption of the hydraulic jump made when deriving the scaling.  

 

 

Figure 3-10: Comparison of scaling laws for the influence of the Froude number (flow 

rate) on the jump radius. Our scaling law (3.4.5) is compared in (a) against those of 

Bohr et al. (1993) and Duchesne et al. (2014), and in (b) against the scaling law of 

Rojas et al. (2013). Measurements of Duchesne et al. (2014) are added in (a) and those 

of Hansen et al. (1997) in (b) for reference. In (b), results for water (ν = 1cSt) (Ga = 

627840) are in red, those for silicon oil (ν = 15cSt) (Ga = 2790) are in blue, and those 

for silicon oil (ν = 95cSt) (Ga = 70) are in green. 

Finally, we show how our scaling law (3.4.5) can be used to estimate the (constant) value 

of JFr . We consider the flow on a large disk so Jr r  . In this case, assuming lubrication 
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subcritical flow, evaluating (3.2.14a) at the jump, and keeping the dominant terms, we have 

1/4
2

J
Fr

H 6 ln r
Re



 
  

 
 

. Simultaneously, (3.4.5) reduces to ( )1/4 3/8 1 8
J

/
ln rr Fr Re

−
 . 

Then, recalling the definition 
( )

3/2

1/43J /J 8JFr Fr / 2r H
1

2 6 ln r

= =
 

, we then have 

( )
1/43/8J

1

2 6 l
Fr

n r
=


,         (3.4.7) 

which clearly demonstrates that JFr  is independent of Fr (or Re), and depends only on the 

size of the disk. If  is taken equal to 0.54 (instead of 0.67 for a cubic profile), then (3.4.7) 

yields to JFr 0.32= , in agreement with the data from the measurements of Duchesne et al. 

(2014) for r 93.75 = , based on the jump height estimated from lubrication flow. It is 

important to recall that we arrived at (3.4.7) by assuming that the jump radius is small 

relative to the disk radius ( )Jr r . As we shall see later, the constancy of JFr  may not 

hold under some flow conditions. 

3.4.2 The film thickness and velocity at the edge of the disk 
without an obstacle 

The thickness at the edge of the disk remains largely unaddressed in the literature, as the 

flow near the disk edge experiences a complex interplay of inertia, gravity and surface 

tension (Higuera 1994; Wang et al. 2023). For the situation when the flow drains freely off 

the disk edge, there are mainly two approaches to determine the film height or equivalent 

conditions at the disk edge; imposing an infinite slope (Bohr et al. 1993; Kasimov 2008; 

Dhar et al. 2020), or assuming the edge thickness to be essentially equal to the capillary 

length (Duchesne et al. 2014; Ipatova et al. 2021; Duchesne & Limat 2022). As indicated 

in the experimental work of Duchesne et al. (2014), the edge film thickness also follows a 

weak power law dependence on the flow rate.  

To explore the small variation of the film height at the disk edge, we follow Yang & Chen 

(1992) and Yang et al. (1997), and utilize the minimum mechanical (Gibbs free) energy 



131 

 

principle for the dynamic thickness contribution. We thus consider the minimum of the 

energy flux, and set 

h
2 2

0

1
Fr u h urdz 0

h 2

  
+ = 

  
  at r r= . This principle states that a fluid 

flowing over the edge of a disk under the influence of a hydrostatic pressure gradient will 

adjust itself so that the mechanical energy within the fluid will be minimum with respect 

to the film thickness at the disk edge. Since the flow is predominantly slow and of 

lubrication character in the subcritical region (Duchesne et al. 2014), we then can use 

2

3

3 z
u hz

22rh

 
= − 

 
 

 (Wang & Khayat 2019), yielding the following estimates for the edge 

thickness (and average velocity 
1

u
2r h


 

= ): 

2/31/3
27 Fr

h
70 r




  
   

   
.         (3.4.8) 

Although expression (3.4.8) seems to yield overall a good agreement with numerical and 

experimental results, they are not expected to hold when the subcritical flow deviates from 

lubrication flow, especially near the disk edge where inertia (and possibly surface tension) 

effects become tangible. Our own numerical predictions suggest that the flow can 

accelerate considerably near the edge for the local Froude number Frl  to exceed unity near 

the edge (see figure 11 in Wang et al. 2023). We recall the local Froude number in terms 

of the average velocity and film height as Fr Fr u / h=l . Noting from (3.2.6a) that 

u 1/ 2rh= , then
3/2Fr Fr / 2rh=l . Upon setting Fr 1=l  at the edge of the disk, we obtain 

2/31/3
1 Fr

h
4 r




  
=   

   
.          (3.4.9) 

Aside from a few percentage difference in the coefficients, expressions (3.4.8) and (3.4.9) 

yields the same dependence of the edge thickness on the flow parameters, involving only 

the Froude number and disk radius. The validity of the two estimates is established by 
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comparison against our numerical result. Figure 3-11 shows that the numerical predictions 

for the edge thickness (figures 3-11a and 3-11b) and average velocity (figure 3-11c) follow 

closely (3.4.8) for low flow rates and (3.4.9) for high flow rates. The numerical (solid) 

curves in figure 3-11 fall in between the two estimates over the entire Fr range considered. 

It eventually merges with the (3.4.9) curve as Fr increases beyond the range shown. 

Recalling that we determine the edge condition by assuming an infinite slope at the disk 

edge, the obtained film thickness at the disk edge indeed depends on the flow conditions, 

which we explore further below. In other words, the flow upstream is sensitively influenced 

by edge conditions (Higuera 1994). 

Here, for the experimental measurement of film thickness at the disk edge in Duchesne et 

al. (2014), as they found that the film thickness at the disk edge is only weakly dependent 

on the flow rate, we then only try to compare our predictions with the dynamic thickness 

at the disk edge, which is the original measured thickness minus the static thickness 

Y
s

2
H sin

2Bo

 
=  

 
 (Wang & Khayat 2019), where 

2ga
Bo




=  is the Bond number, in 

which γ is the surface tension, γ = 20mN/m, and Y  is the contact angle, Y  = π/4. The 

close agreement in figure 3-11b between our numerical profile and the measurements of 

Duchesne (2014) highlights the very presence of the dynamic component of the thickness 

at the edge of the disk. 
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Figure 3-11: Influence of 𝐹𝑟 (flow rate) on film thickness h∞ and surface velocity 

Fr<u∞> at the edge of the disk. Shown in (a) and (c) are predictions based on the 

present approach against expressions (3.4.8) and (3.4.9), and in (b) is the comparison 

between the present approach and the measurements in Duchesne (2014). Here, Ga = 

100 (50.11 < Re < 551.25) and 𝒓∞ = 93.75, corresponding to the range of flow rates in 

the experiment of Duchesne et al. (2014).  

Figure 3-12 displays the influence of the disk radius on the film thickness at the edge for 

two different flow rates corresponding to Re = 854, Fr = 97 (in red) and Re = 356, Fr = 194 

(in blue), for 50 r 80  . The solid curves correspond to our numerical predictions and 

the dashed curves are based on expression (3.4.9), showing a close agreement. This also 

indicates that the local Froude number has reached unity near the edge as a result of flow 

acceleration. The edge thickness decreases essentially at the same rate with respect to the 

disk radius independently of the flow rate. The decrease of h  in the figure appears to be 
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almost linear in both cases but it follows the 
2/3r −

  behaviour shown in (3.4.9). We have 

also added four values of the edge thickness based on the Navier-Stokes solution of 

Fernandez-Feria et al. (2019), which agree with our predictions and expression (3.4.9) to 

within a few percent; the two red circles correspond to the Navier-Stokes profiles in figures 

3-2a and 3-2b.  

 

Figure 3-12: Influence of r∞ (disk radius) on thickness h∞ at the edge of the disk. Here, 

red curves and circle symbols correspond to Re = 854, Fr = 97, and blue curves and 

circle symbols correspond to Re = 356, Fr = 194. Simulation results come from the 

Navier-Stokes solutions of Fernandez-Feria et al. (2019). 

3.4.3 The jump length and vortex size 

We identify the jump length, J J JL r r+ − − , as the difference in position between the 

leading edge of the jump and its trailing edge (location of maximum film height). Figure 

3-13 illustrates the dependence of the jump length, vortex length and height on the film 

thickness at the disk edge for the same parameter range used in figure 3-8. All three 

quantities increase when the subcritical film thickens. In particular, both the jump and 

vortex lengths grow at the same rate, while the vortex height grows more rapidly with the 

film thickness. We already reported in figure 3-7 that the jump and vortex lengths 

experience the same growth rate with the flow rate, especially in the lower Fr range. 

Whether the correlation between the jump length and vortex size exists under more general 

conditions is an interesting and fundamental issue, which we explore further next. 
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Figure 3-13: Dependence of the jump length, vortex length and vortex height on the 

film thickness at the disk edge. Here, Re = 381.97, Fr = 9.76 and 𝒓∞  = 16 are 

parameters corresponding to the simulation of Askarizadeh et al. (2019, 2020). 

By balancing the drag at the disk in the jump region with fluid inertia, and assuming 

dominant viscous over gravity effects, Avedisian & Zhao (2000) obtained a relation 

between the length of the jump and its radius as J J JL r / h Re , where Jh  is the film 

thickness at the leading edge of the jump (see also the different treatment of Razis et al. 

(2021) for the planar jump). An approximate relation among the jump length, location and 

height can be derived by applying equation (3.2.11) at Jr −  and Jr + . We observe that both 

the slope and concavity are relatively small at these two locations (Bush & Aristoff 2003), 

so (3.2.11) reduces to 136Reh 525r , yielding ( ) ( )J J J J JL r r / H h 136Re/ 525+ −− −  . 

If we take ( )J J Jr r r / 2− + + , we obtain a more general relation than Avedisian & Zhao 

(2000): 

J J
J

J

H h68
L Re

525 r

−
 .                   (3.4.10) 

We can further simplify this expression to obtain a relation between the jump length and 

jump radius. We first note that at the leading edge of the jump, Jr r −= , where the film 

slope is small, equation (3.2.7b) yields ( )
1/3

2 2
J Jh 272Fr / 875r . The trailing edge, 

Jr r += , is part of the subcritical region where the local Froude number is sensibly constant 
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(Duchesne et al. 2014; Wang & Khayat 2019; Wang et al. 2023), except perhaps near the 

edge where the flow may accelerate. Recalling the definition of the local Froud number at 

the jump location, we have ( )
2/3

J J JH Fr / 2r Fr= . In this case: 

1/3
2

J 5
J

Fr
L CRe

r

 
  

 
 

.                   (3.4.11) 

where 

2/3 1/3

J

68 1 272
C

525 2Fr 875

     = −   
    

 is a constant that depends on JFr  . Interestingly, 

if the scaling law of Bohr et al. (1993) is used: 3/8 1/4
Jr 0.73Re Fr , then we find from 

(3.4.11) that 3/8 1/4
JL 0.73C Re Fr . In other words, the jump length also scales like the 

jump radius. Perhaps a more accurate estimate would be to adopt the scaling law (3.4.5) or 

that of Duchesne et al. (2014), which account for the influence of the disk radius. Thus, by 

applying the scaling law (3.4.5) to determine the jump radius, we use (3.4.11) to obtain an 

estimate of the jump length in terms of the flow parameters Re, Fr and r . We suspect that 

the vortex length may follow closely (3.4.11) if a different constant than C is used. 

Although it is difficult to establish this correlation, it is worth assessing its validity 

numerically (see next). 

Figure 3-14 shows the influence of the flow rate on the jump and vortex lengths, based on 

the profiles corresponding to the flow rate range of Duchesne et al. (2014) in figure 4a. 

The behaviour of the jump length LJ with respect to the flow rate agrees qualitatively with 

the measurements of Craik et al. (1981) (see their figure 6) and Rao & Arakeri (2001) (see 

their figure 6). Figure 3-14 shows that the dependence of the jump length on the flow rate 

follows closely 1/2
JL ~ Fr . This behaviour becomes closely mimicked by estimate 

(3.4.11) once the dependence of Jr  on the flow rate is established. This can be done by 

adopting the scaling law (3.4.5). Alternatively, for the range of flow rates considered in 

figure 3-14, which is the same as the range examined by Duchesne et al. (2014), the data 



137 

 

in figure 3-10a suggest that the jump radius follows closely 7/10
Jr 1.08Fr , yielding the 

1/2
JL ~ Fr  behaviour in figure 3-14. Incidentally, the 7/10

Jr ~ Fr  behaviour is also 

consistent with the measurements of Hansen et al. (1997). 

The measurements of Duchesne et al. (2014) suggest that JFr 0.37  for the range of flow 

rates considered, yielding C = 0.07. Given the simplifying assumptions made to obtain 

(3.4.11), we have adjusted this value to JFr 0.32  to obtain the closer agreement shown 

in figure 3-14. The vortex length also appears to follow closely the same dependence on 

the flow rate, namely 1/2
vortexL ~ Fr . Finally, and as we shall see below, the monotonicity 

depicted in figure 3-14 is lost for the variation of the jump and vortex lengths with respect 

to parameters other than the flow rate, and consequently (3.4.11), does not always hold. 

 

Figure 3-14: Influence of the Froude number (flow rate) on the jump and vortex 

lengths. Solid and dash-dotted curves based on our predictions and dashed curve 

based on expression (3.4.11). Here 𝑭𝒓𝑱  = 0.32, Ga = 100 and 𝒓∞  = 93.75, 

corresponding to the parameters in the experiment of Duchesne et al. (2014). 

3.4.4 The energy loss and conjugate depth 

For the flow of an impinging jet and hydraulic jump, the supercritical film thickness 

follows closely the analytical expression (3.2.13a) given the negligible gravity effect over 

a wide range of the supercritical region, up to the leading edge of the jump. Consequently, 
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if the jump occurs close to the jet impact point then J
J

233 1
h

340 r
 , reflecting the dominant 

radial spreading effect, and if it occurs further downstream, then 

2
J

J
r175

h
136 Re

 , implying 

the dominant viscous effect (Bowles & Smith 1992). We again consider the influence of 

flow rate over the experimental range of Duchesne et al. (2014), and recall that the jump 

radius follows closely 
7/10

Jr 1.08Fr . Recalling that Re GaFr=  with Ga = 100 yields 

7/10
Jh 0.64Fr−  and 

2/5
Jh 0.15Fr , close and far from impingement, respectively. 

Referring to figure 3-4a, these two trends correspond roughly to the small flow rate range 

(Fr < 10) when ( )Jr O 1= , and the higher range (Fr > 10), respectively. The overall 

behaviour for the supercritical thickness at the leading edge of the jump may then be given 

from (3.2.13a). As to the film height immediately downstream of the jump, our numerical 

predictions indicate that 
4/25

JH 1.3Fr  (Wang et al. 2023). In sum, we have the following 

dependence on the flow rate (Froude number) based on our approach, for the film heights 

at the leading and trailing edge of the jump: 

7/10 2/5
Jh 0.64Fr 0.15Fr− + ,  

4/25
JH 1.3Fr ,       (3.4.12a, b) 

which, in turn, yield 

43/5
J

J
0 6/250.49Fr 0.12

1

h Fr

H

− +
 .                 (3.4.13) 

These expressions are used to produce the plots in figure 3-15. The behaviour (3.4.12b) of 

JH , based on our approach, agrees closely with the measurements of Duchesne et al. 

(2014), as shown in figure 3-15a. Our numerical results overlap with the predictions of 

expression (3.4.12a) for Jh , and also agree with the available measurements of Duchesne 

(2014). We have also added in the inset of figure 3-15a the data from figure 7 of Craik et 

al. (1981), who investigated the stability of the hydraulic jump for a water jet impinging 

onto a rectangle tank with outflow at four corners. The data is included only for reference, 
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showing a similar trend to our approach. As indicated in the numerical simulation work of 

Askarizadeh et al. (2019), there are two different flow regimes in the jump formation, 

gravity- and capillary-dominant flow regimes, and the role of surface tension is significant 

when the flow regime is capillary dominant. Clearly, the high surface tension value of the 

working fluid in the experiments of Craik et al. (1981) results in the non-negligible effect 

of surface tension. More importantly, the tank container used as the impinging plate and 

unclear downstream flow condition for a certain Jh  in Craik et al. (1981) make the 

quantitative comparison unachievable.  

The estimate of J JH h  (3.4.13) is used to plot the conjugate depth ratio against Fr (flow 

rate) in figure 3-15b, which shows a close agreement with our numerical solution. More 

importantly, it helps elucidate the origin of the non-monotonicity in figure 3-15b, and a 

similar behaviour of the Froude numbers at the leading and trailing edge and energy loss 

across the jump, which we examine shortly. The behaviour of the conjugate depth ratio in 

figure 3-15b should be contrasted with that of Higuera (1994) in his figure 3. Interestingly, 

Higuera’s figure shows a monotonically decreasing depth ratio with the Froude number, 

thus corresponding to the descending part of the curves in figure 3-15b. The absence of an 

ascending branch in Higuera’s formulation is due to the nature of his supercritical profile, 

which increases predominantly linearly with the streamwise distance for a planar hydraulic 

jump in a 2D channel. Consequently, and as we can see from his figure 2, this implies 

monotonically increasing Jh   and JH , yielding the monotonically decreasing behaviour 

in his figure 3. 
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Figure 3-15: Influence of Fr (flow rate) on (a) the film depth immediately upstream 

and downstream of the jump, and (b) the conjugate depth ratio. Here Ga = 100 and 

𝒓∞ = 93.75, corresponding to the parameters in the experiment of Duchesne et al. 

(2014). Inset in (a) shows the experimental measurements of Craik et al. (1981) for Re 

= 265.46 – 1238.44, Fr = 0.18 – 0.85, and the grey dashed curve in the inset is included 

for visual guidance. 

In the hydraulic jump literature, it is customary to consider the conjugate depth ratio and 

relative energy loss across the jump in terms of the supercritical approaching Froude 

number J 3/2
J J

Fr
Fr

2r h
− =  (Lawson & Phillips 1983; Palermo & Pagliara 2018). The Froude 

number at the trailing edge of the jump J 3/2
J J

Fr
Fr

2r H
+ =  (equal to JFr  introduced earlier) is 

also of interest. To establish the expression of JFr −  and JFr + , we first recall the momentum 

balance equation (3.4.1) for a shock-like jump, assuming JL 0 . To further proceed, a 
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velocity profile in both super- and sub-critical regions is required. Liu & Lienhard (1993) 

assumed a uniform velocity both up- and down-stream of the jump, and obtained an 

expression between the depth ratio and the supercritical approaching Froude number. More 

accurate profiles, parabolic, cubic or a combination of them, are extensively employed to 

study the flow of hydraulic jump, yielding a good agreement with experiment and 

numerical simulation (Bohr et al. 1993; Kasimov 2008; Wang & Khayat 2018, 2019; Dhar 

et al. 2020). For simplicity, we adopt the cubic velocity profile (3.2.8) for both regions and 

neglect gravity: ( ) ( )3U
u Uf 3

2
=  = −  . Of course, choosing a parabolic velocity profile 

for both regions is also widely used in studies on hydraulic jumps (Bohr et al. 1993; 

Kasimov 2008; Dhar et al. 2020), and can lead to a similar result. By substituting 

( )u Uf=  , and recalling 
4

U
5rh

=  from (3.2.13b), the momentum balance equation (3.4.1) 

reduces to 

( )
2

J
J J2

J J

r544 1
H h

875 h H Fr

 
 + 

 
.                 (3.4.14) 

This equation can be rearranged to yield the local Froude numbers at the leading and 

trailing edge of the jump in terms of the conjugate depth ratio J JH h : 

J J
J

J J

H H875
Fr 1

2176 h h
−

 
= + 

 
, and J J

J
J J

h h875
Fr 1

2176 H H
+

 
= + 

 
.        (3.4.15a,b) 

Once expression (3.4.13) of the conjugate depth ratio is used, the leading and trailing 

Froude numbers become functions of Fr (flow rate), and are next compared to our present 

approach and experiment. 

We examine in figure 3-16 the dependence of JFr −  (figure 3-16a) and JFr +  (figure 3-16b) 

on Fr over the same experimental range of flow rates of Duchesne et al. (2014). In contrast 

to the monotonic behaviour of JFr −  observed in the planar hydraulic jump (Higuera 1994), 

the JFr −  of the circular hydraulic jump increases over the smaller range of flow rate (Fr < 
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10) and decreases over the larger range of flow rate (Fr > 10), exhibiting a maximum at Fr 

≈ 10. This behaviour of JFr −  is well captured by the expression (3.4.15a) and the 

behaviour of the conjugate depth ratio in figure 3-15b. The discrepancy between the present 

approach and the prediction from the expression (3.4.15a) is expected, since the inviscid-

viscous interaction comes into play at the leading edge of the jump (Bowles & Smith 1992; 

Higuera 1994; Bowles 1995), which is not reflected in (3.2.13a). In addition, the shock-

like assumption adopted in the momentum balance equation (3.4.14) also can result in 

discrepancy. The almost constant JFr +  reflected in the measurements of Duchesne et al. 

(2014) is also well reflected in both our numerical calculation and the expression (3.4.15b). 

However, the theoretical profiles in figure 3-16b suggest the presence of non-monotonic 

responses that are not clearly visible from experiment. Both profiles based on our current 

approach and expression (3.4.15b) show a decrease in JFr +  for smaller Fr, consistent with 

experiment, reaching a minimum, and an increase over the higher Fr range, which is 

somewhat consistent with experiment. Perhaps more precise measurements will show a 

more coherent trend similar to theory. We emphasise again, that the non-monotonic 

response in figure 3-16 and other figures is the result of the non-monotonicity of the 

conjugate depth ratio with respect to the radial distance. 
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Figure 3-16: Influence of Fr (flow rate) on the Froude number (a) 𝑭𝒓𝑱− at the leading 

edge and (b) 𝑭𝒓𝑱+ at the trailing edge of the jump. Here Ga = 100 and 𝒓∞ = 93.75, 

corresponding to the parameters in the experiment of Duchesne et al. (2014). 

We next follow Palermo & Pagliara (2018), and introduce the energy dissipation as the 

difference in the total energy heads 
22

J J J
1

E Fr u h
2

− −= +  and 

22
J J J

1
E Fr u H

2
+ += +  at the leading and trailing edge of the jump, respectively, where 

h

0

1
u udz

h
=   is the local average velocity. Recalling from the mass conservation equation 

(3.2.6a) that u 1/ 2rh= , then the energy dissipation becomes

2
J J J J2 2 2 2

J

J

J J J

1 1 1
E E Fr h H

8 r h r H
E − +

− +

 
− = − + − 

 
 

  . It is not difficult to show, upon 

recalling the definition of the jump length J J JL r r+ −= −  and the approximation 

( )J J Jr r r / 2− + +  for the jump radius, that the relative energy dissipation is 
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2 2
2 J J J
J 2

J JJ

J

J
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J

L h H
Fr 1 1 2 1

r hH
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rE

−

−

−−

    
 − + + −   
 

=
   

+
.               (3.4.17) 

after recalling JL  from (3.4.11), JFr −  from (3.4.15a) and the conjugate depth ratio J JH h  

from (3.4.13). This expression is the same as expression (12) of Lawson & Phillips (1983), 

who investigated the turbulent circular hydraulic jump from a source with a circular 

deflection plate to control its exiting height. If we further assume that J JL r , then we 

recover essentially expression (8) of Palermo & Pagliara (2018) for a horizontal channel, 

who examined the energy dissipation for a jump in a sloped channel with a rough bottom. 

Both research groups found that their theory agrees well with the experimental data 

available either from the existing literature or their own measurements. In particular, they 

found that the relative energy dissipation always increases monotonically with the 

approaching Froude number. They attributed the monotonicity to that of the conjugate 

depth ratio. As we shall see next, the monotonic behaviour is not preserved for the circular 

hydraulic jump as a result of the non-monotonic depth ratio in our current problem (see 

figure 3-17). 

Figure 3-17 illustrates the influence of the Froude number on the relative energy dissipation 

J JE E −  over the same range of flow rates as in the experiment of Duchesne et al. (2014). 

The relative energy dissipation J JE E −  exhibits a maximum after a relatively rapid 

increase in the low Fr range, reaching a maximum and decrease rather slowly with 

increasing Fr. The non-monotonic response is at first surprising since it has not been 

predicted or observed in the hydraulic jump literature (see Palermo & Pagliara (2018) and 

the references therein). There are important differences between the flow across the present 

circular jump and that across the typical jump in a channel. For the present jump, both the 

supercritical and subcritical film thickness vary significantly with the radial position as a 

result of jet impingement and film drainage at the edge of the disk. We have shown how 

these differences can lead to the non-monotonic response for the depth ratio in figure 3-

15b. Clearly, the maximum of the energy dissipation is closely tied to the maximum in the 

conjugate depth ratio. To confirm the trend predicted by the present approach, we have 
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also computed the distributions based on the simpler shock-jump model (Bohr et al. 1993; 

Wang & Khayat 2019), and also found a similar response, which is based on expression 

(3.4.17) and shown in figure 3-17. 

 

Figure 3-17: Influence of Fr (flow rate) on the relative energy loss. Here Ga = 100 and 

𝒓∞ = 93.75, corresponding to the parameters in the experiment of Duchesne et al. 

(2014). 

As mentioned earlier, it is customary in the hydraulic jump to examine the influence of the 

approaching Froude number on the jump parameters (Lawson & Phillips 1983; Liu & 

Lienhard 1993; Higuera 1994; Palermo & Pagliara 2018). Liu & Lienhard (1993) showed 

that the depth ratio J JH h  is a monotonic function of the approaching Froude number by 

considering the momentum balance equation (3.4.1) and assuming a uniform velocity 

u 1 2rh=  both up- and downstream of the jump, yielding 

2J
J

J

H 1
1 8Fr 1

h 2
−

 
= + − 

 
.                (3.4.18a) 

Using a cubic velocity profile in both regions, we obtained (3.4.15a), which is rewritten as 

2J
J

J

H 1
1 10Fr 1

h 2
−

 
 + − 

 
.                (3.4.18b) 
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By substituting the depth ratio (3.4.18a,b) into (3.4.17) and adopting a shock-like jump 

assumption JL 0= , we obtain the relation between the approaching Froude number and 

the relative energy loss: 

( )

( )

4 2 2 2
J J J J

2
2
J J

J 2

8Fr 38Fr 8 10Fr 8 8Fr 1E

8Fr 1 1 r
E

F 2

− −

−

− −

− −

+ + − + +
= =

 
+ − + 

 

,             (3.4.19a) 

for a uniform velocity profile, and  

( )

( )

4 2 2 2
J J J J

2
2 2
J J

J

10Fr 48Fr 8 12Fr 8 10Fr 1E

10F Fr
E

r 1 1 2

− − − −

− −
−

+ + − + +


 
+ − + 

 

,            (3.4.19b) 

for a cubic velocity profile. 

Figure 3-18 illustrates the influence of the approaching Froude number JFr −  on the relative 

energy dissipation J JE E −  (figure 3-18a) and the conjugate depth ratio J JH h  (figure 

3-18b) based on the parameters used in the experiments of Lawson & Phillips (1983) and 

Liu & Lienhard (1993). The theoretical profiles correspond to estimates (3.4.18a, b) for the 

depth ratio and (3.4.19a, b) for the relative energy loss, which are widely used in planar 

and circular hydraulic jumps, and also used in figures 3-16 and 3-17. We also include the 

experimental measurements of depth ratio and relative energy loss of Liu & Lienhard 

(1993) and Lawson & Phillips (1983). Overall, the comparison is favourable, especially 

for the relative energy loss. As to the conjugate depth ratio, the agreement is good up to 

JFr 14− . For larger values, the theoretical profiles appear to pursue their almost linear 

growth while the (scattered) experimental data suggest a constant or slightly decaying 

trend. It should be noted that parameters used both in Lawson & Phillips (1983) and Liu & 

Lienhard (1993) are much higher than encountered in laminar hydraulic jump studies, 

leading to an even turbulent hydraulic jump in Lawson & Phillips (1983). 
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Figure 3-18: Influence of the supercritical approaching Froude number 𝑭𝒓𝑱− on (a) 

the relative energy loss 𝚫𝑬𝑱 𝑬𝑱−⁄  and (b) the conjugate depth ratio 𝑯𝑱 𝒉𝑱⁄ . 

3.5 Further parametric assessment 

After validating our approach against experiment and numerical simulation, and reporting 

a detailed account of the influence of the flow rate in this and earlier studies of Wang et al. 

(2023), we observed the non-monotonic behaviour for the jump length and vortex size, so 

we now examine theoretically the effects of gravity (Fr) and viscosity (Re) on the flow 

structure. We particularly focus on the conditions of jump and vortex existence in the 

parameter space. 

3.5.1 Influence of the gravity 

The influence of gravity on the vortex size and jump length is shown in figure 3-19, where 

the vortex length, vortex height and jump length are plotted against Fr for different Re and 

a disk radius r∞ = 25 in figures 3-19a, 3-19b and 3-19c, respectively. The behaviour for Re 

= 800 corresponds to the flow in figure 13 of Wang et al. (2023). In contrast to the 
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behaviour in figures 3-13 and 3-14, and similar to figures 3-7b and 3-7c for r∞ = 25, the 

vortex and jump sizes in figure 3-19 do not behave monotonically with respect to Fr. For 

any Re considered in the figure, the vortex size initially increases with Fr, attaining a 

maximum, while the jump length decreases to a minimum coinciding with the maximum 

of the vortex length. The vortex decreases in size to eventually vanish while the jump 

continues to extend in length, but exhibits a maximum before it continues to shrink. Both 

the maximum in vortex length and the minimum in jump length occur at the same Froude 

number. The growth rate in the vortex length and the drop rate in the jump length with Fr 

are much weaker than the growth rate of the vortex height, but both vortex length and 

height vanish at the same Froude number, signalling the disappearance of the recirculation 

zone. It is interesting to note that the vortex length and height do not achieve the maximum 

values at the same Fr.  

 

Figure 3-19: Influence of gravity on the vortex and jump size. Shown is the 

dependence of (a) the vortex length, (b) the vortex height and (c) the jump length on 

Fr for different Re for a disk of dimensionless radius 𝒓∞ = 25. 
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3.5.2 Influence of the viscosity 

Figure 3-20 shows the dependence of the vortex size (figures 3-20a and 3-20b) and the 

jump length (figure 3-20c) on Re for different Fr. In contrast to the effect of gravity in 

figure 3-19, the response with Re is essentially monotonic for the vortex size. Over the 

range of Re considered, we see that as viscosity decreases (Re increases), the jump 

lengthens and the vortex shrinks in size to eventually disappear at a rate that increases with 

increasing Fr. However, we observe that the jump length exhibits a maximum at any 

Froude number if a wider range of Re is considered; this is reflected in figure 3-20c for Fr 

= 25. 

 

 

Figure 3-20: Influence of viscosity on the vortex and jump size. Shown is the 

dependence of (a) the vortex length, (b) the vortex height and (c) the jump length on 

Re for different Fr for a disk of dimensionless radius 𝒓∞ = 25. 
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3.5.3 Existence of the jump and the recirculation zone 

Although our discussion has been in terms of the three parameters Re, Fr and r , it is 

helpful to introduce the following transformation (Wang & Khayat 2019): 

1/3r Re r→ ,   ( ) ( )1/3z,h, Re z,h,− →  ,          (3.5.1a, b) 

u u→ ,   2/3w Re w−→ .             (3.5.c, d) 

In this case, the problem is reduced to a two-parameter problem, involving 

1/3 2Re Fr  ,    1/3Re r−
   ,          (3.5.2a, b) 

as the two parameters. 

The results reported above clearly indicate that a jump may form with no recirculation 

downstream. There are also instances where the jump itself does not appear or is so weak 

that is difficult to identify its location. This is clearly illustrated in figure 3-4c for Fr = 55 

and r 25 =  where the jump is washed down close to the edge, exhibiting a large jump 

length (figure 3-7b). We therefore expect the jump to simply not form for some flow 

parameter range (particularly for low viscosity), with the liquid flowing off the edge as a 

very thin film over the entire disk, resembling supercritical flow. Figure 3-21 shows three-

dimensional perspectives of the simultaneous influence of Re and Fr on the vortex size and 

jump length, summarizing our findings. In particular, figures 3-21a and 3-21b show the 

region (bottom dark blue region) where the vortex has essentially disappeared, while the 

jump length has increased. 
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Figure 3-21: Influence of Fr and Re on the maximum length (a) and maximum height 

(b) of the separation zone in a 3D plot. Another dimensionless parameter is 𝒓∞ = 25. 

The curves projected on the 𝑳𝒗𝒐𝒓𝒕𝒆𝒙𝑭𝒓 and 𝑯𝒗𝒐𝒓𝒕𝒆𝒙𝑭𝒓 planes are for Re = 400 (red 

lines), 600 (green lines), 800 (blue lines) and 1000 (cyan lines), and the curves 

projected on the 𝑳𝒗𝒐𝒓𝒕𝒆𝒙𝑹𝒆 and 𝑯𝒗𝒐𝒓𝒕𝒆𝒙𝑹𝒆 planes are for Fr = 2 (red lines), 10 (green 

lines), 17 (blue lines) and 25 (cyan lines). Also shown in (c) is the influence of Fr and 

Re on the jump length in a 3D plot. 

We estimate the limit condition for the non-existence of the jump by recalling (3.4.5). 

Noting that the jump disappears (falls off the edge) when it reaches the edge of the disk, 

setting Jr r=  and keeping the dominant terms in (3.4.5) yields: 

3/8 3/4
1/4 3

1/
/8

4
4 70

r Fr
136

Re
5 1 775 2


     

      
     

. The numerical coefficient is very close to 

unity, so that: 

1/4 3/8r Fr Re =  or 8 =  ,         (3.5.3) 
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represents the boundary in the parametric space ( )Fr,Re, r  or plane ( ),   for the 

existence of the jump. We recall (3.5.2) for the expressions of  and . 

The region of existence for the recirculation zone is established numerically from the data 

in figures 3-19 to 3-21, which turned out to be above the surface: 

10/3 2 9Re Fr 9r / 50=  or 99 / 50 =  .       (3.5.4) 

Figures 3-22a and 3-22b show the regions of existence of the jump and the vortex in the 

two-parameter plane ( ),   and corresponding three-dimensional perspective. The region 

of vortex existence lies above the surface in figure 3-22c. This surface therefore represents 

the disk radius below which no vortex exists. Gravity and viscosity enhance the formation 

of recirculation. 

 

 

Figure 3-22 Marginal separation curve in the (α, β) plane for the existence of the 

hydraulic jump and vortex on a flat solid disk. The log-log plot in (b) reflects the 
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scaling laws (3.5.3) and (3.5.4) for the separation curve. The region of existence of a 

vortex in (c) lies above the surface. The curves projected on the 𝒓∞𝑭𝒓 plane are for 

Re = 400 (red lines), 600 (green lines), 800 (blue lines) and 1000 (cyan lines), and the 

curves projected on the 𝒓∞𝑹𝒆 plane are for Fr = 2 (red lines), 10 (green lines), 17 (blue 

lines) and 25 (cyan lines). 

3.6 Concluding remarks 

In a recent study (Wang et al. 2023), in an effort to capture the continuous hydraulic jump 

and flow structure for a jet impinging on a disk, we proposed a composite mean-field thin-

film approach consisting of subdividing the flow domain into three distinct connected 

regions of increasing gravity strength: a developing boundary layer near the impact of 

negligible gravity, an intermediate supercritical viscous layer of moderate gravity, and a 

region comprising the jump and subcritical flow of strong gravity. Unlike existing models, 

the approach does not require any empirically or numerically adjusted boundary 

conditions. We demonstrated that the stress or corner singularity for a film draining at the 

edge is equivalent to an infinite slope of the film surface, which we imposed as the 

downstream boundary condition that ensures the upstream influence. The approach was 

extensively validated against existing experiment and numerical simulation of the 

boundary-layer and Navier-Stokes equations. In section 3.2, we briefly reviewed the 

general problem and physical domain; as well as the formulation of the problem and the 

solution strategy in terms of the general governing equations and boundary conditions in 

each region of the flow. 

In the present study, we further validated our approach, and examined the characteristics 

and structure of the continuous circular hydraulic jump and recirculation. In section 3.3, 

we examined the influence of the disk geometry on the jump and flow structure, namely 

the influence of the disk size and the height of the obstacle, which is often placed at the 

edge of the disk to control the subcritical film height and jump location. We further 

validated our approach against the numerical simulation of Fernandez-Feria et al. (2019). 

We found the influence of the disk size to be significant, especially in the subcritical region. 

Below a critical disk radius, the jump transits from type I to type 0, after which the 
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recirculation zone has faded. The supercritical flow and, to a lesser extent, the jump 

location are surprisingly insensitive to the variation of the disk size (figure 3-3). In an effort 

to stimulate further experimental work, we examined the influence of the disk size over the 

same experimental flow rate and conditions of Duchesne et al. (2014); see figure 3-4. 

Unlike the location of the jump, the jump height, jump length and vortex size are strongly 

affected by the disk size, all decreasing with increasing disk radius for r 25 =  when Fr is 

larger than a certain value, and exhibiting a non-monotonic response (maximum) with 

respect to the flow rate (see figures 3-4, 3-6 and 3-7, including further validation against 

experiment). We also explored the influence of the obstacle height, often placed at the edge 

of the disk in practice. The jump is relatively steep with a strong recirculation zone for a 

high obstacle. As the obstacle height decreases, the jump moves downstream, and the 

recirculation zone shrinks to disappear below a critical obstacle height. The supercritical 

flow remains unaffected (figure 3-9). Upon comparing our approach against the Navier-

Stokes solution of Askarizadeh et al. (2019), we found that our predicted film profile 

remains close to the simulated profiles in the presence and absence of surface tension 

(figure 3-8); the surface tension effect is unimportant in this case. 

Detailed scaling analyses were formulated in section 3.4 for the jump radius, jump length, 

energy loss, conjugate depth ratio and thickness at the edge of the disk in the presence and 

absence of an obstacle. The scaling laws were validated against our approach and existing 

experimental and numerical data. By keeping the dominant terms in the momentum balance 

equation across the jump, we derived a new scaling law (3.4.5) based on the conservation 

equations across the jump and lubrication flow for the jump height: 

1/4 3/

1/

J

8
J

8
r 2

lr
r

Fr Rn
3

e
  

  
   

. This scaling is similar to that proposed by Duchesne et al. 

(2014) but does not require any empirical input or adjustment. It generalizes that of Bohr 

et al. (1993) to include the effect of the disk size, and appears to hold well for flows at high 

and low flow rates (see figure 3-10).  

The film thickness at the edge of the disk remains largely unaddressed in the literature. We 

showed that, in addition to the static component, the thickness being proportional to the 
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capillary length (Duchesne & Limat 2022), there is a dynamic component: 

( )
2/3

h ~ Fr / r   that we established by minimizing the Gibbs free energy of the flow at 

the disk edge. We also showed that this behavior is also the consequence of the flow 

becoming supercritical near the disk edge, and was validated against the measurements of 

Duchesne (2014) in figure 3-11 and the Navier-Stokes solutions of Fernandez-Feria et al. 

(2019) in figure 3-12. By assuming negligible film slope and curvature at the leading edge 

of the jump and maximum height at the trailing edge, we showed that the jump length is 

related to the jump radius as ( )
1/3

2 5
J JL ~ Re Fr / r  or (3.4.11), which reduces to 

1/2
JL ~ Fr   when Fr represents the dimensionless flow rate. This behaviour is reflected in 

figure 3-14 in close agreement with our numerical predictions over the range of 

experimental flow rates of Duchesne et al. (2014). The figure also shows that the vortex 

length follows the same behaviour as the jump length. Unfortunately, we were unable to 

establish the behaviour of vortexL  using scaling arguments as we did for JL .  

In contrast to channel flow, the energy dissipation exhibits a maximum at some flow rate 

(or Fr), which we showed to result from the non-monotonic behaviour of the depth ratio, 

originating from the descending and ascending branches of the film thickness in the 

supercritical region for an impinging jet (figure 3-15). This connection was missed in the 

existing literature, particularly studies on channel flow or flows where the developing 

boundary-layer and viscous-film regions were not fully accounted for in the supercritical 

formulation for a circular jump. In the work of Higuera (1994), for instance, the conjugate 

depth ratio was predicted to monotonically decrease with the Froude number due to the 

linearly growing film profile upstream. The non-monotonicity of the conjugate depth ratio 

and energy loss, as well as the local Froude number, with respect to the flow rate, reflected 

in figures 3-15, 3-16 and 3-17, was confirmed by incorporating the supercritical film 

thickness behaviours close and far from impingement, as reflected by (3.4.12a). Finally, 

the presence of the jump is not necessarily commensurate with that of a recirculation, 

reflecting a jump of type 0; the existence of the vortex closely depends on the upstream 

curvature and steepness of the jump. Our calculations suggest that the surface in the 

parametric space separating the regions of existence/non-existence of the recirculation is 
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given by the universal relation 
10/3 2 9Re Fr 9r / 50=  (figure 3-22). The jump itself can be 

washed down off the edge of the disk, particularly at low viscosity and small disk size 

(figure 3-4c).  
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Chapter 4  

4 The influence of azimuthally varying edge conditions on 
the hydraulic jump3 

Nomenclature 

a  Radius of jet, m 

A  A constant amplitude 

Bo  Bond number, 𝐵𝑜 = 𝜌𝑔𝑎2 𝜎⁄  

Fr  Froude number, 𝐹𝑟 = 𝑊 √𝑔𝑎⁄  

g  Acceleration due to gravity, 𝑚 𝑠2⁄  

h  Dimensionless film thickness in the supercritical region 

H  Dimensionless film thickness in the subcritical region 

𝐻0  Dimensionless film thickness at disk edge for a circular disk of radius 𝑅∞0 

ℎ1  Dimensionless film height at 𝑟 = 𝑅1 

ℎ2  Dimensionless film height at 𝑟 = 𝑅2 

ℎ𝐽  Dimensionless film thickness immediately upstream of the jump 

𝐻𝐽  Dimensionless film thickness immediately downstream of the jump 

𝐻∞  Dimensionless film edge thickness for a circular disk (function of θ) 

________________________________ 

3 A version of this chapter has been published as - 

Wang, W. & Khayat, R.E. 2022 The influence of azimuthally varying edge conditions on the hydraulic 

jump. Acta Mech. 233, 3679-3698. https://doi.org/10.1007/s00707-022-03295-3 

https://doi.org/10.1007/s00707-022-03295-3
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𝐻∞0  Dimensionless constant film edge thickness 

p  Dimensionless pressure 

P  The perimeter of the jump 

Q  Volume flow rate, 𝑚3 𝑠⁄  

r  Dimensionless radial coordinate 

𝑅1  Dimensionless radial location of the inner bound on the jump 

𝑅2  Dimensionless radial location of the outer bound on the jump 

𝑟0  Dimensionless transition point of the hydrodynamic boundary layer 

R  Dimensionless radius used for a non-circular disk, 𝑅 = 𝑅∞ − 𝑅∞0 

𝑅∞  Dimensionless disk radius 

𝑅∞0  Dimensionless average radius of the disk for a non-circular disk 

𝑟𝐽  Dimensionless jump radius 

𝑟𝐽𝑚𝑒𝑎𝑛  Dimensionless mean jump radius for non-circular jump 

𝑟𝐽𝑚𝑖𝑛  Dimensionless minimum jump radius for non-circular jump 

𝑟𝐽𝑚𝑎𝑥  Dimensionless maximum jump radius for non-circular jump 

Δ𝑟𝐽  Dimensionless jump width of 

Δ𝑟  Dimensionless width of a control volum 

Re  Reynolds number, 𝑅𝑒 = 𝑊𝑎 𝜈⁄  

T  The departure function of 𝜃 for the edge thickness 
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u  Dimensionless horizontal velocity in the supercritical region 

U  Dimensionless horizontal velocity in the subcritical region 

𝑢𝐽  Dimensionless horizontal velocity immediately upstream of the jump 

𝑈𝐽  Dimensionless horizontal velocity immediately downstream of the jump 

v  Dimensionless azimuthal velocity in the supercritical region 

V  Dimensionless azimuthal velcocity in the subcritical region 

𝑉𝐽  Dimensionless azimuthal velocity immediately downstream of the jump 

w  Dimensionless vertical velocity in the supercritical region 

W  Dimensionless vertical velocity in the subcritical region 

We  Weber number, 𝑊𝑒 = 𝐵𝑜𝐹𝑟2 

z  Dimensionless vertical coordinate 

Greek Symbols 

𝛼0, 𝛼𝑘, 𝛼𝑛, 𝛽𝑛 Coefficients of expansion 

Λ  The jump inner area 

δ  Dimensionless hydrodynamic boundary layer thickness 

θ  Azimuthal coordinate 

𝜃𝑌  Static contact angle 

ν  Kinematic viscosity, 𝑚2 𝑠⁄  

ρ  Density of fluid, 𝑘𝑔 𝑚3⁄  

σ  Surface tension of fluid, 𝑁 𝑚⁄  
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4.1 Introduction  

Although extensive work in the literature has been devoted to the understanding and 

prediction of the hydraulic jump structure, forming when a circular liquid jet impinges on 

a solid disk, most of the work concentrated on the axisymmetric flow and the resulting 

circular jump. Some of the most significant practical relevance is in jet cooling (Baonga et 

al. 2006; Askarizadeh et al. 2020; Wang & Khayat 2020). Watson (1964) analysed the 

isothermal flow in the developing boundary layer near impingement, and the fully-viscous 

layer upstream of the jump. Watson’s thin-film approach became the basis for numerous 

later theoretical and experimental studies. Watson’s theory was tested in a number of 

experimental investigations, including those of Watson himself, Craik et al. (1981) and 

Baonga et al. (2006). Liu & Lienhard (1993) observed that Watson’s predictions were least 

satisfactory in the limit of a relatively weak jump. The effect of surface tension was further 

examined by Mohajer & Li (2015). To capture the behaviour downstream of the jump, 

Duchesne et al. (2014) examined the downstream flow using the lubrication approach. 

Good agreement between their theoretical predictions for the height profile and their 

measurements is observed. Some extensions have been considered, such as the spread of 

an impinging non-Newtonian jet by Zhao & Khayat (2008), the formation of a hydraulic 

jump on an inclined plane by Kate, Das & Chakraborty (2007) and Benilov (2015), and 

impingement on a rotating disk by Ozar, Cetegen & Faghri (2003), Wang & Khayat (2018) 

and Ipatova et al. (2021). The influence of slip was examined by Dressaire et al. (2010), 

Prince, Maynes & Crockett (2012) and Khayat (2016). The influence of gravity on the 

jump radius was studied by Avedisian & Zhao (2000), Wang & Khayat (2019), 

Askarizadeh et al. (2019), Fernandez-Feria et al. (2019) and Dhar et al. (2020). 

The investigation of the formation and structure of the non-circular jump is relatively 

recent, focusing essentially on the spontaneous destabilization of the circular jump and the 

onset of stable non-circular jump. Some of the experimental work was conducted by 

Ellegaard et al. (1998), Andersen et al. (2010) and Martens et al. (2012). To a lesser extent, 

theoretical stability analyses (Kasimov 2008), as well as a variational approach (Watanabe 

2013) were also carried out. Perhaps the most compelling attempts to model steady non-

circular jumps were made by Martens et al. (2012) and Rojas & Tirapegui (2015). In the 
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present study, we focus our attention on another mechanism for the generation of non-

circular jumps, namely by imposing azimuthally varying conditions at the edge of the disk. 

This is an important problem in pattern generation, which can be pursued in practice under 

very controlled and systematic conditions. Although there is little direct relevance of the 

present problem to the spontaneous jumps, we will highlight the similarities and differences 

with the edge induced jumps. Stationary non-circular jumps were first observed by 

Ellegaard et al. (1998) in ethylene glycol. The increased downstream flow was varied by 

raising or lowering the obstacle mounted around the disk. They observed that the number 

of sides or wavenumber of the non-circular jump increases with the downstream flow 

height first, then this number decreases by one side at a time when the downstream flow 

height increases further. They observed a hysteresis effect as several polygons could be 

stable for the same flow parameters, accompanied by a flow spiralling towards the corner. 

Martens et al. (2012) proposed a phenomenological model based on mass conservation and 

radial force balance between the hydrostatic pressure and viscous stresses on the roller 

surface. They found that a non-circular jump emerges with a wavelength in the order of the 

roller width based on the Rayleigh-Plateau instability. The surface tension effect was 

neglected as the free surface profile of the jump and the curvatures could not be accurately 

modelled. They observed that the flow upstream of the jump is purely radial and 

independent of azimuthal direction, as the measured height profile at the corner and valley 

directions for the upstream of the jump region are the same. These observations corroborate 

the earlier findings of Bush et al. (2006). A more rigorous approach was later proposed by 

Rojas & Tirapegui (2015), who derived the thin-film equations, including inertia, by 

averaging the conservation equations and adopting a polynomial representation of the flow 

field from Taylor expansion about the conditions at the disk. The resulting coupled film 

equations were further reduced by neglecting the azimuthal velocity component. Other 

studies devoted to fully non-axisymmetric flow configurations include the case of an 

inclined impinging jet and, more recently, the flow in the presence of non-circular obstacles 

placed close to the disk edge (Ferreira et al. 2002). Of some relevance is the asymmetric 

jump on an inclined plane (Watanabe et al. 2003; Benilov 2015), and the jet on a 

microindented disk Dressaire et al. (2010). Like Rojas & Tirapegui (2015) also neglected 

the azimuthal flow component for an inclined jet. Recently, this problem was further 
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addressed by Abdelaziz & Khayat (2022) who solved the fully coupled problem. They 

found that the azimuthal velocity can be negligible in the region near impingement, it 

becomes of the same order of magnitude further downstream in the fully-viscous region 

and the jump. 

In the present study, we do not attempt to model the steady spontaneous non-circular jump 

observed in the experimental literature, typically resulting from the destabilization of the 

axisymmetric flow. We examine theoretically the influence of the azimuthally varying 

edge conditions on the structure of the induced non-circular hydraulic jump and non-

axisymmetric flow field. In particular, we examine the effect of disk non-circularity and 

non-axisymmetric edge film thickness. In contrast to the spontaneous emergence of non-

circular jump, the non-circularity of the jump is induced systematically by varying the edge 

conditions. The two types of edge conditions should easily be imposable in practice for a 

circular jet impinging on a non-circular disk and/or an azimuthally periodic obstacle to 

control the variation of the film thickness at the disk edge. Given the nonlinearity of the 

problem, the present study becomes one of pattern generation, and it is therefore important 

to examine the response in the jump shape induced by the periodicity of the conditions at 

the edge of the disk. Clearly, the mechanism behind the generation of the non-circular jump 

is different from that behind the spontaneous jump; while the (so far) observed spontaneous 

jumps are of type II, the jump generated by varying edge conditions is expected to be of 

type I. A major advantage of the present problem over the spontaneous jump problem is 

that it can be easily investigated experimentally, under very controlled conditions, thus 

allowing the generation of numerous non-circular jump patterns and complex flow fields. 

The jump is treated as a discontinuity with the subcritical flow assumed inertialess of the 

lubrication type. In this limit, the vortex structure downstream of the jump cannot be 

captured. The inclusion of inertia and the consequent higher-order polynomial 

representation of both the radial and azimuthal velocity components would be extremely 

challenging for varying edge conditions given the additional boundary conditions required 

to solve the film thickness equation. We refer the reader to some relevant studies conducted 

for the circular jump (Watanabe et al. 2003; Rojas et al. 2010, 2013) and the numerical 

treatment of the non-circular jumps (Rojas & Tirapegui 2015). Although rollers of type I 

and type II jumps were possible to predict, a thin-film approach typically involves limiting 
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assumptions and drawbacks, such as the need for additional experimental data and the 

shooting method (Watanabe et al. 2003), and neglecting the azimuthal component of the 

velocity (Rojas & Tirapegui 2015). The latter assumption becomes particularly 

problematic for a non-circular jump with strong peaks and valleys or severe azimuthal 

variation (Abdelaziz & Khayat 2022).  

The paper is organized as follows. The general non-axisymmetric formulation and physical 

domain are described in section 4.2. The treatment of the supercritical flow is briefly given 

in section 4.3. The momentum balance across a non-circular jump is formulated in section 

4.4. Also in this section, we include the effect of surface tension by extending the 

formulation to a non-circular jump. Validation and results are covered in section 4.5, where 

we examine the influence of the non-circular disk geometry on the jump shape and height, 

as well as the influence of a periodic thickness at the edge of a circular disk. Finally, 

concluding remarks and discussion are given in section 4.6. 

4.2 Physical domain and problem statement 

We consider the steady incompressible flow of a circular jet of a Newtonian liquid 

emerging from a nozzle of radius a, impinging at a volume flow rate Q normal to a flat 

disk, which may or may not be circular. The flow configuration is depicted schematically 

in figure 4-1, where dimensionless variables and parameters are used. The flow is assumed 

to be laminar upstream and downstream of the jump. We refer the reader to the book of 

Acheson (2005) for some of the fundamentals behind the planar hydraulic jump. The 

problem is formulated in the ( )r, , z   fixed coordinates, with the origin coinciding with 

the stagnation point of the jet. The axial symmetry is broken by the disk non-circularity or 

the θ-dependent distribution of the film thickness along the edge of a circular disk, thus 

causing the formation of a non-circular hydraulic jump. We denote by ( )u r, , z , ( )v r, , z  

and ( )w r, , z  the dimensionless velocity components in the radial, azimuthal and vertical 

directions, respectively. The r-axis is taken along the disk radius and the z-axis is taken 

normal to the disk. The length and the velocity scales are conveniently taken to be the 

radius of the jet, a, and 2W Q a   in all directions. Since the pressure is expected to be 
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predominantly hydrostatic for a thin film, it will be scaled by ρga, g being the gravitational 

acceleration. Three main dimensionless groups emerge in this case: the Reynolds number 

Re Wa=  , where ν is the kinematic viscosity, the Froude number Fr W ag=  and the 

Bond number 2Bo ga=   , where σ is the surface tension.  
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( )u r, , z  

Inviscid region 

r 

( )h r,  

1 
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Subcritical 
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Figure 4-1: Schematic illustration of the non-axisymmetric flow of a circular jet 

impinging on a flat stationary disk, and the hydraulic jump of type I. Shown are the 

developing boundary-layer region, the fully-developed viscous region, and the 

subcritical region downstream of the jump. All notations are dimensionless.  

Following the usual treatment (Watson 1964; Bush & Aristoff 2003; Prince et al. 2012; 

Wang & Khayat 2018, 2019), we assume the stagnation flow region to be negligible, and 

identify three distinct flow regions for the jet over the disk, with smooth passage from one 

region to the next. The region ( )00 r r    will be referred to as the developing boundary-

layer region, with boundary-layer thickness ( )r,  , outside which the flow is inviscid and 

uniform. Here ( )0r   is the location of the transition point at which the viscous stresses 

become appreciable right up to the free surface, where the whole flow is of the boundary-

layer type. The region between the transition point and the jump, ( ) ( )J0 r rr     , will be 
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referred to as the fully-developed viscous region, and is bounded by the disk and the free 

surface ( )z h r,=  . The jump may occur upstream or downstream of the transition point. 

Referring to figure 4-1, we conveniently introduce the supercritical film thickness 

(upstream of the jump) as ( ) ( )Jh r, h r r , =   , and the subcritical thickness (downstream 

of the jump) as ( ) ( )JH r, h r r ,    . The heights immediately upstream and downstream 

of the jump are denoted by ( ) ( )J Jh h r r ,  =   and ( ) ( )J JH H r r ,  =  , respectively. In 

this study, the fluid is assumed to be drained at the edge of the disk, at ( )r R=  , and the 

flow remains steady, with the film thickness denoted by ( ) ( )H H r R ,  = =  . The 

subcritical height ( )H r,  is generally different from the height ( )JH  .  

For steady non-axisymmetric thin-film flow, the mass and momentum conservation 

equations are formulated using Prandtl boundary-layer approach (Schlichting & Gersten 

2000). We note that the pressure is hydrostatic, and vanishes at the free surface, yielding 

( ) ( )p r, , z h r, z =  − . By letting a subscript with respect to r,  or z denote partial 

differentiation, and eliminating the pressure, the reduced dimensionless conservation 

equations become 

r z
vu

u w 0,
r r

+ + + =                    (4.2.1a) 

2

r z r zz2

v v Re
Re uu u wu h u

r r Fr


 
+ + − = − + 

 
 

,               (4.2.1b) 

r z zz2

hv uv Re
Re uv v wv v

r r rFr




 
+ + + = − + 

 
.               (4.2.1c) 

At the solid disk, the no-slip and no-penetration conditions are assumed to hold for any r 

and : 

( ) ( ) ( )u r, , z 0 v r, , z 0 w r, , z 0 0 = =  = =  = = .            (4.2.2a-c) 
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At the free surface ( )Jz h r r ,=    or ( )Jz H r r ,=   , the kinematic and dynamic 

conditions for steady flow take the form: 

( ) ( ) ( )
( )

( )r

v r, , z h
w r, , z h u r, , z h h r, h r,

r


 =
 = =  =  +  ,    (4.2.3) 

( ) ( )z zu r, , z h v r, , z h 0 = =  = = .              (4.2.4a-b) 

The effect of surface tension will be accounted for across the non-circular jump. The 

conservation of mass at any location upstream and downstream of the jump yields the 

following relation in dimensionless form: 

( )
( )h r,2

0 0

u r, , z dzd
r




  =  .         (4.2.5) 

The flow field is sought separately in the developing boundary-layer region, for 

( )00 r r   , the fully developed viscous region, for ( ) ( )0 Jr r r    , and the hydraulic 

jump region, for ( ) ( )Jr r R    .  

4.3 The axisymmetric supercritical flow 

We shall now argue that the supercritical flow remains axisymmetric for a thin film, and is 

therefore not affected by the loss of axial symmetry at the jump level and the subcritical 

flow downstream of the jump. For a circular jet, the thin-film equations (4.2.1) are solved 

subject to conditions on the velocity and film thickness at some small distance from the 

stagnation point. Consequently, for a circular jet, and close to the impingement point, we 

have 

( ) ( )u r 0, , z ~ 1, v r 0, , z ~ 0→  →  .             (4.3.1a-b) 

An additional constraint on the film thickness is obtained from the conservation of mass 

(4.2.5), which, based on (4.3.1), suggests the following integral equation for ( )h r, : 
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( )
2

0

h r, d ~
r




  .          (4.3.2) 

Conditions (4.3.1) and constraint (4.3.2) clearly indicate that, unless some azimuthal 

dependence is imposed on the film thickness or velocity near impingement, such as the 

case of a jet of non-circular cross section or an inclined jet (Abdelaziz & Khayat 2022), the 

film surface remains axisymmetric, with ( )h r, ~ 1 2r  for small r, independently of  . 

Additionally, the adherence condition (4.2.2b) at the solid disk and the stress-free condition 

(4.2.4b) at the film surface ensure that the azimuthal velocity component vanishes 

everywhere, with equation (4.2.1c) identically satisfied. Consequently, the supercritical 

flow upstream of the (non-circular) jump remains axisymmetric. This conclusion is 

physically plausible given the relatively high strength of the circular impinging jet; there 

is simply no mechanism for the supercritical flow to lose its axial symmetry. Indeed, 

Martens et al. (2012) observed that the supercritical flow remains axisymmetric upstream 

of a non-circular jump, which is evident in their figure 4-3, where the film height was 

measured in the supercritical region of a pentagonal hydraulic jump in ethylene glycol. In 

particular, they found that the film height in the radial directions through a corner and a 

valley are the same, indicating no dependence of the height on the azimuthal angle. They 

measured the film heights across the corner and the valley of the jump, and found that they 

are identical. They noted that the supercritical film thickness is below the threshold for a 

transition to occur in the supercritical region when the circular type-I jump loses its stability 

to the non-circular type-II jump (see also Jannes et al. 2011). These observations were also 

echoed by Bush et al. (2006) in their experimental investigation of the stability of the 

hydraulic jump.  

The solution procedure of the supercritical flow, in the developing boundary-layer and 

fully-developed viscous regions, can be found in several references, and will not be pursued 

here (Watson 1964; Prince et al. 2012; Wang & Khayat 2018, 2019). 
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4.4 The non-axisymmetric subcritical flow formulation 

We examine the flow and the film height in the subcritical region downstream of the jump, 

in particular the location and height of the jump. The vertical velocity component is first 

eliminated by noting from (4.2.1a) that 

( ) ( ) ( )
z z

0 0

1 1
w r, ,z r u r, , z dz v r, , z dz

r r r

  
  = −  − 
  
 

  . In this case: 

( ) ( ) ( )( )
z

2
r z rr

0

v 1 1 u
uu u wu ru uv ru v dz

r r r z r
 

 
 + + = + − +

   
 .             (4.4.1a) 

( )
z

r z rr
0

v v uv u v
uv v wv uv 2 v v u v dz

r r r z r r
  

   
 + + = + + − + +     

 .            (4.4.1b) 

Using these relations, the integral forms of (4.2.1a-b) become 

( )
h h h

2 2
r z2

0 0 0

Re Re
ru dz uvdz v dz hh u r, , z 0

r r Fr

  
 + − = − −  =
  
 

   ,             (4.4.2a) 

( )
h h h

Re Re h2ruvdz v dz uvdz h v r, , z 0z2r r rFr0 0 0

 
  + + = − −  =  

 

   .            (4.4.2b) 

4.4.1 Conservation of momentum across the jump 

Across the jump, equations (4.4.2) are applied for a control volume of width r  in the 

radial direction. Assuming finite changes with respect to r and  , we have 

( )
h h h 2

2 2
z2

0 0 0

1 r r Re h
Re u dz uvdz v dz ru r, , z 0

r r 2Fr

   
  +  − = − −   =
 
 

   .            (4.4.3a) 

( )
h h h 2Re r Re r h2ruvdz v dz r uvdz rv r, , z 0z2r 2rFr0 0 0

 
    +  +  = − −   =

  
 

   .              (4.4.3b) 
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We conveniently introduce the following change in notation for the subcritical velocity: 

( ) ( )JU r, , z u r r , , z    ,  ( ) ( )JV r, , z v r r , , z    .          (4.4.4a-b) 

Since the width of the jump r  is assumed to be small, equations (4.4.3) reduce to 

( ) ( ) ( ) ( )
h H HJ J J2 2

2 2J J J
J J J J2

J0 0 0

H h dr1
u ,z dz U ,z dz U ,z V ,z dz

r d2Fr

−
=  −  −  

   ,            (4.4.5a) 

( ) ( ) ( )
J JH H2 2

2J J J J
J J J2

JJ 0 0

H h dr dr1
U ,z V ,z dz V ,z dz

d r d2Fr r

−
= −   − 

   ,             (4.4.5b) 

Here ( ) ( )( )J Ju ,z u r r , z  =   is the velocity just upstream of the jump. Their expression 

for a cubic profile is available from earlier axisymmetric formulations (Bohr et al. 1993; 

Rojas et al. 2013; Wang & Khayat 2019): 

( )
3

J 3
J J J J

2 z z
u ,z 3

5h r h h

 
 = − 

 
 

,  ( )
2
J

J
J

r175 233 1
h

136 Re 340 r
 = + .         (4.4.6a-b) 

We note that ( ) ( )J JU ,z U r r , , z  =   and ( ) ( )J JV ,z V r r , , z  =   are the velocity 

components just downstream of the jump. We observe that the jump can occur before 

( )J 0r r  or after ( )J 0r r  the transition location in the supercritical region. The jump 

height is completely determined as a function of the Froude and the Reynolds numbers 

once the subcritical velocity profiles ( )JU , z  and ( )JV , z  are determined.  

4.4.2 Accounting for surface tension effect 

Bush & Aristoff (2003) extended Watson’s theory by including radial curvature force due 

to surface tension. Comparison with their experimental measurements show that the 

surface tension correction becomes particularly significant for a jump of small radius and 

height. It is therefore expected that surface tension effect can become significant for a non-

circular jump where sharp peaks and valleys emerge as we shall see. We follow closely the 
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treatment of Bush & Aristoff (2003), and extend their formulation for the non-circular 

jump. We refer to the flow through the control volume across the jump shown in figure 4-

2, which is similar to that adopted by Martens et al. (2012) in their theoretical model.  

dS

θ

hJ(θ)

HJ(θ)

R1(θ) R2(θ)

drdθ

r

z

R (θ)

dz

ds  

Figure 4-2: Schematic of the control volume across the hydraulic jump. Arrows 

indicate direction of velocity components. 

We consider the radial and azimuthal components of the surface tension force associated 

with the azimuthal curvature of the jump. If we define the jump surface as 

( ) ( )J r, , z z h r, 0 = −  = , then the resulting radial curvature force over a surface element 

2 2 2
rdS rd ds rd dr dz r 1 h drd=  =  + = +   may be expressed as 

( )
( )

( )2

1

R
1 2

r

R

d Bo d 1 h rdrF n n


−



=   + ,       (4.4.7) 

where ( )1R   and ( )2R  . represent the inner and outer bounds on the jump, defined as 

the nearest points up- and downstream of the jump. The unit normal becomes

( )

( )

1
z r r

2 2 2
r

J r, , z h r h

J r, , z 1 h r h

e e e
n

−
 

−


  − −
= =

  + +

, where ( )r z, ,e e e  is the vector base in the 
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cylindrical polar system. Noting that

r
22 2 2 2 2 2

r r

hrh1 1

r r r1 h r h 1 h r h

n 

− −
 

 
 = − −

 + + + +

, we then have 

R2 2
r r r

r2 2 22 2 2 2 2 2
rR r r1

hdF rh 1 h1 1
h dr

d Bo r r 1 h r h1 h r h 1 h r h


−− −

 

 
+  = +

    + ++ + + + 

 ,    (4.4.8a) 

R2 2
r r

2 2 22 2 2 2 2 2
rR r r1

dF h hrh 1 h1 1
dr

d Bo r r r1 h r h1 h r h 1 h r h

  
−− −

 

 
+  = +

    + ++ + + + 

 , (4.4.8b) 

We approximate the integrals by recognizing that the radial variation of the film thickness 

is dominant in the limit of a sharp jump; we expect the azimuthal variation of h to remain 

finite, thus excluding the emergence of sharp corners, so that rh h . Consequently, in 

the limit 1 2R R→ , rh →  , so that 
r

2 2 2
r

rh
~ r

1 h r h−
+ +

, 2 2 2
r

h
~ 0

1 h r h



−
+ +

 and 

2
r

2 2 2
r

1 h
~ 1

1 h r h−


+

+ +
. In this case, equations (4.4.8) reduce to 

2

1

R
r

r

R

dF 1
h dr

d Bo


  ,   

R2

R1

dF h1
dr

d Bo r

 
  .           (4.4.9a-b) 

Clearly, 

R2

r 2 1

R1

h dr h h= − . Applying Leibniz’ rule, 

2 2

1 1

R R
2 2 1 1

2 1R R

dR h dR hh h
dr dr

r r d R d R

  
= − + 

    
  . We note that the area under the jump 

vanishes in the limit 1 2R R→  so that 

R2

R1

h
dr ~ 0

r . Recalling that 1 Jh h  and 2 Jh H , 

expressions (4.4.8) become 
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J Jr H hdF

d Bo

−



,  

J J J

J

dF dr H h1

d Bo d r


 −

 −  
    

.         (4.4.10a-b) 

Clearly, the result of Bush & Aristoff (2003) is recovered in the limit of an axisymmetric 

jump.  

4.4.3 The subcritical flow field and film height 

We follow Duchesne et al. (2014), and adopt a lubrication flow approach. In this case, a 

differential equation for H can be obtained by neglecting the inertial terms in equation 

(4.4.1), yielding the following profile for the velocity components: 

( )
2

r2

Re z
U r, , z H Hz

2Fr

 
 = − 

 
 

,               (4.4.11a) 

( )
2

2

Re z
V r, ,z H Hz

2Fr r


 
 = − 

 
 

,               (4.4.11b) 

( )
22

2
rr r r2

H HRe z z
W r, ,z rH H H rH

2 r 3 rFr r

 
   

 = − + + − − −   
    

.          (4.4.11c) 

Substituting (4.4.6) and (4.4.11a-b) in (4.4.5), and including the force components (4.4.10), 

finally yields 

( )
2

5J J J
J J r J r2 2 4 2

J J J J

H h H dr1 272 2 Re
H h H H H

Wer 15 d2Fr 875h r Fr r


  +

+ − − = − +       

,          (4.4.12a) 

( )
22 2

5 5J J J
J J J J r2 4 2 4

J J

H h H dr1 2 Re 2 Re
H h H H H H

Wer 15 d 152Fr Fr r Fr




  +
− − + = −  

   

.          (4.4.12b) 

We note that 

J

r
r r

H
H

r =


=


 and 

r rJ

H
H

=


=


 are partial derivatives of the thickness 

downstream of the jump evaluated at the jump radius. We next seek the evaluation of 
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( )H r, . Clearly, all the terms in the square bracket in (4.4.12b) are positive except the 

surface tension term. This suggests that surface tension tends to weaken the variation of 

the jump radius in the azimuthal direction. Also, (4.4.12b) suggests that a peak or a valley 

is bound to form whenever rH  or H  vanish. 

The equation for ( )H r,  is obtained from mass conservation. We first integrate the 

continuity equation (4.2.1a) across the film, and use the kinematic condition (4.2.3) to 

eliminate w, to arrive at 

( )
( )

( )
( )H r, H r,

0 0

rU r, , z dz V r, ,z dz 0
r

 
 

 +  =
   .               (4.4.13) 

Substituting (4.4.11a-b) and integrating lead to the following Laplace’s equation for 

( )H r, , along with the most general conditions at the disk edge: 

( )( ) ( )
4 2 4

2

H 1 H
r + 0, H r R , H

r r r
 

   
= =   =  

    

,        (4.4.14a, b) 

( ) ( )Jr r R    .                 (4.4.14c) 

In addition, periodicity is also imposed, namely ( ) ( )H 0 H 2  = =  =   and

( ) ( )R 0 R 2  = =  =  . We observe that the edge conditions are written in its most 

general form to accommodate specification of the thickness at a circular or non-circular 

disk. We note that another way of obtaining the H equation (4.4.14a) is to evaluate (4.4.11c) 

at the free surface z = H and use the kinematic condition (4.2.3). An additional constraint 

on H is deduced from mass conservation when substituting (4.4.11a) into (4.2.5), yielding 

2 2
4

0

d Fr
H d 12

dr Re r




 = − .                (4.4.15) 
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The formulation must collapse onto the axisymmetric theory when ( )H   and ( )R   are 

both constant.  

4.5 Results and discussion 

The numerical results are reported for two flow configurations for a non-circular hydraulic 

jump: the flow on a non-circular disk with constant film thickness at the disk edge, and the 

flow on a circular disk with azimuthally periodic film thickness imposed at the disk edge. 

We begin by validating the theoretical approach. 

4.5.1 Validation 

In order to validate the formulation, particularly justifying the assumption of lubrication 

flow in the subcritical region, we resort to comparison with experimental data for the 

circular jump since no data exists for us to assess the non-axisymmetric formulation. For 

the flow on a circular disk of radius R , and an imposed constant edge thickness 

( )H H r R = = , equation (4.4.12a) and the solution of (4.4.15) reduce to (Bohr et al. 

1993; Rojas et al. 2013; Wang & Khayat 2019) 

( )J J
J J2 2

J J J J

H h 1 272 3 1
H h 0

Wer 175h 2H2Fr 5r

   +
+ − − − =   

   
,              (4.5.1a) 

( )

1/4
2

4 RFr
H r H 6 ln

Re r




  
= +  

   

.                 (4.5.1b) 

In this case, (4.4.12b) is identically satisfied. When evaluating (4.5.1b) at the jump location 

Jr r= , and substituting for JH  into (4.5.1a), and substituting Jh  from (4.4.6b), we obtain 

a nonlinear algebraic equation for Jr . Comparison between our predictions and the 

measurements of Duchesne et al. (2014) is reported in figure 4-3 for the film thickness 

distribution with distance in the super- and subcritical regions for silicon oil (20 cSt). The 

data are reproduced here in dimensionless form from their figure 2, corresponding to Re = 
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169, Fr = 16.88, Bo = 1.19 and a normalized disk radius R 94 = . The value of the 

thickness at the edge of the disk is determined from 

2 31 3
Y2 3 Fr

H = sin
2 40 RBo




    
+    

    
,       (4.5.2) 

which comprises a static contribution in terms of the contact angle and a dynamic 

contribution based on the minimization of free energy at the disk edge (Wang & Khayat 

2018, 2019). In this case, the contact angle is taken as Y 50 = . Figure 4-3 shows that the 

theoretical predictions, based on (4.5.1)-(4.5.2), are generally in close agreement with the 

experiment of Duchesne et al. (2014), slightly underestimating (overestimating) the 

measured thickness in the supercritical (subcritical) regions. The location of the jump is 

predicted accurately while the jump height is slightly higher than experiment. 

 

Figure 4-3: Free-surface profile. Comparison between theoretical predictions and the 

measurements of Duchesne et al. (2014) for silicon oil (20 cSt). Results plotted in 

dimensionless form with Re = 169, Fr = 16.88, Bo = 1.19, R∞ = 94. 



180 

 

We next report results for non-axisymmetric flows. In an effort to keep the results 

practically and physically realistic, we have limited the parameter range close to 

experiment of Duchesne et al. (2014), 

4.5.2 The non-circular jump on a non-circular disk 

We consider the flow for a non-circular disk of radius ( ) ( )0R R R  = +   and impose 

a constant thickness 0H  at the edge of the disk. In this case, the problem (4.4.14) reduces 

to 

( )( )
4 2 4

02

H 1 H
r + 0, H r R , H

r r r
 

   
= =   = 

    

,          (4.5.3a, b) 

( ) ( )R 0 R 2  = =  =  .                  (4.5.3c) 

We shall examine three typical edge shapes, namely the triangular, square and pentagonal 

disk geometry. In general, the forms are given by 

( )
( )

L
R , 0 p

2 tan p cos
  =    

 
,       (4.5.4) 

where p is the number of sides or wavenumber, and L is the side length. In this case, 

( )
( )

p

0

0

p p L
R R d ln sec tan

2 tan p p p



 
  

=   = + 
    

  is the average radius, which is 

directly related to p and L. The deviation from the average radius is conveniently expressed 

as ( ) ( )k
k 1

R a cos kp



=

 =  , where 

( ) ( )
( )

( )
p p

k 1

0 0

cos kp2p p L
a R cos kp d d

tan p cos

 

 


=    = 

     . 

Problem (4.5.3) admits a series solution of the form: 
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( ) ( ) ( )4 4 n
0 0 n n

n 1

H r, H r r cosn sin n


=

 = +  +   +  ,     (4.5.5) 

where ( )
2

4 4 0
0 0

RFr
H r H 6 ln

Re r




 
= +  

 
 is the (axisymmetric) thickness distribution 

(4.5.1b) for a circular disk of radius 0R . We note that expansion (4.5.5) satisfies readily 

(4.4.15). Although (4.5.5) satisfies the Laplace’s equation in (4.5.3a), it does not satisfy 

the boundary condition at the disk edge. Therefore, the expansion coefficients in (4.5.5) 

are determined by first applying (4.5.4) at the non-circular edge: 

( ) ( )4 n 4
0 0 n n 0

n 1

H R R cosn sin n H


  
=

+  +   +  = .     (4.5.7) 

Noting that ( )
2

4 4 0
0 0

RFr
H R H 6 ln

Re R


 



 
= +  

 
, we next project (4.5.7) onto each mode to 

obtain the following set of algebraic equations for the expansion coefficients: 

( )
2 22

n
0 n n

0n 1 0 0

RFr
2 R cosn sin n d 6 ln d

Re R

 



=

 
 +   +   =  

 
   ,            (4.5.8a) 

( )
2 22

n
n n

n 1 0 0

Fr
R cosn sin n cosm d 6 cosm ln R d

Re

 

 
=

  +    =     ,            (4.5.8b) 
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2 22

n
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n 1 0 0

Fr
R cosn sin n sin m d 6 sin m ln R d

Re

 

 
=

  +    =     ,            (4.5.8c) 

If N modes are considered, then there are 2N + 1 unknown coefficients to evaluate. The 

linear algebraic system as well as the integrals are treated numerically using MATLAB. 

We begin by considering the influence of the disk geometry on the shape, location and 

height of the hydraulic jump. Figures 4-4 illustrates the response for a silicon oil jet 

impinging on a triangular disk, under similar flow conditions as in the experiment of 

Duchesne et al. (2014); refer also to in figure 4-3. Figure 4-4a shows polar plots of the 
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jump radius ( )Jr  , transition radius 0r , disk radius ( )R   and its average radius 0R . 

Figures 4-4b and c show the dependence of ( )R  , ( )Jr  , ( )Jh   and ( )JH   on the 

polar angle , and corresponding axisymmetric levels, including the averaged jump radius 

and heights. Generally, regardless of the disk geometry, we find little deviation of the jump 

from circular, except perhaps for the triangular disk where the jump shows some flattening 

along the sides of the disk, along with additional modulation, which is also reflected in the 

asymmetric pattern in figure 4-4a, but is particularly evident in figure 4-4c for the jump 

height. The axisymmetric radius Jaxir  is close to J minr , and is not equal to Jmeanr . A 

similar response is predicted for Jaxih . As to JaxiH , it remains sensibly higher than ( )JH   

(for any disk geometry). We also observe (not shown) that while the upstream height 

( )Jh   depends sensibly on the disk geometry, the downstream height ( )JH   seems 

uninfluenced. Finally, the relatively little influence of the non-circular disk geometry on 

the non-circularity of the jump is typical. However, the loss of axial symmetry is quite 

tangible throughout the subcritical flow region as we demonstrate next. 
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Figure 4-4: Hydraulic jump on a triangular disk. The figure shows (a) polar plots of 

the jump radius rJ(θ), transition radius r0, disk radius R∞(θ) and its average R∞0. The 

dependence on the azimuthal angle is also shown for (b) rJ(θ) and R∞(θ),and (c) hJ(θ) 

and HJ(θ), with corresponding axisymmetric levels. The parameters used are Re = 

169, Fr = 16.88, Bo = 1.19, H∞0 = 1.3 and R∞0 = 12. 

Figure 4-5 depicts the flow details for the triangular disk. A 3D perspective of the film 

surface topography is shown in figure 4-5a. The location of the jump is fairly identifiable 

as it is surrounded by the brown region of the subcritical flow. A couple of surprising 

aspects typically found for any geometry are worth noting. The film thickness in the 

subcritical region is essentially independent of geometry. Another aspect is the weak 

azimuthal dependence of the height everywhere in the subcritical region, even for the 

current triangular disk. One would expect a non-axisymmetric distribution near the disk 

corners. However, the uniform distribution of the film height has been observed 

experimentally for non-circular jumps. Martens et al. (2012) measured the height profiles 

of the observed pentagonal hydraulic jump in ethylene glycol. They found that the height 

remains essentially the same at a distance downstream of the jump (see their figure 3). 

Closer to the jump they found that the height JH  is slightly larger downstream of the jump 

corner than the jump valley, corroborating the plots in figure 4-3. 

More details of the flow field are shown in figures 4-5b to 4-5d where the radial and 

azimuthal velocity contours are reported, as well as the flow field. Although the jump shape 

is close to circular, figure 4-5b shows that the subcritical flow field is strongly non-
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axisymmetric, and is, generally, significantly influenced by the disk geometry. The radial 

and azimuthal velocity components are of the same order of magnitude in subcritical 

region, particularly along the sides. The flow is strongest across the side and weakest 

through the corner where the fluid traverses the longest distance before reaching the disk 

edge, thus experiencing the dominant viscous resistance, weakening considerably at the 

corner. The azimuthal flow vanishes in the corner and mid-side directions due to symmetry. 

This is somewhat similar to the flow field at the surface of the spontaneous triangular jump 

of Martens et al. (2012), which is illustrated in their figure 4. In that case, the azimuthal 

flow is essentially confined behind the valley regions where the rollers are present, leaving 

the flow to expel radially between successive valley regions or corner. Figure 4-5c 

indicates that the strength of the radial flow is at least one order of magnitude higher 

upstream of the jump compared to the strength downstream. Figures 4-5c and 4-5d confirm 

that the subcritical radial and azimuthal flow strengths are of the same order of magnitude, 

which is surprising given the highly circular character of the jump. Given the relative 

uniformity of the supercritical film thickness and the constant thickness imposed along the 

edge, and as a result of mass conservation, the flow tends to remain radial across the mid 

side, and azimuthal between the corner and the mid side.  
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Figure 4-5: Surface film height (a), the flow field(b), the radial (c) and azimuthal (d) 

velocity contours at the surface for a jet on a triangular disk for Re = 169, Fr = 16.88, 

Bo = 1.19, H∞0 = 1.3, and R∞0 = 12. 

We see here that the jump shape departs significantly from circularity when it is large 

relative to the disk (for instance, at large flow rate). The important question is then: what 

are the flow conditions most favourable to jump non-circularity? We address this question 

by next considering the parametric influence on the characteristics of the jump shape. In 

particular, we examine the effects of flow rate, surface tension and disk size (average 

radius) for triangular, square and pentagonal disks.  

Figures 4-6, 4-7 and 4-8 illustrate the influence of the Froude number, Weber number and 

disk size on the shape and size of the jump. The dependence of both the maximum and 

minimum radii is shown. The circular jump radius, corresponding to a disk of radius 0R , 

is also included for reference. The influence of the flow rate in figure 4-6 is generated by 

changing the Froude and Reynolds number, keeping the Bond number fixed, thus making 

the influence of Fr equivalent to that of the flow rate. For small flow rate (Fr < 10), the 

jump is small and remains essentially circular as it is relatively unaffected by the disk 

geometry, for any pattern. At larger flow rate, the jump radius displays non-circularity as 

reflected by the widening between the minimum and maximum radii. This is particularly 

obvious for the triangular geometry. Interestingly, and in contrast to the case of 

spontaneous non-circular jumps, the axisymmetric radius is generally not equal to the 

average radius, for any geometry. The growth in the difference J J max J minr r r  −  
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depends strongly on the disk geometry and the Froude number as shown in the inset of 

figure 4-6. Although the growth for the triangular disk with respect to Fr is the most 

obvious, it is in fact the slowest. The general dependence is found to follow a power law, 

roughly like ( )7 3p /412
Jr 5p Fr

+
   for any disk geometry, where we recall p is the number 

of sides.  

 

Figure 4-6: Influence of the flow rate (Froude number) on the maximum and 

minimum jump radii for a triangular disk (red curves), square disk (green curves), 

pentagonal disk (blue curves) and circular disk (black curve). The inset shows the 

influence of Fr on the difference between the maximum and minimum jump radii, 

ΔrJ. Here, Re = 100 - 170, Bo = 1.19, H∞0 = 1.14 - 1.3 and R∞0 = 12. 

The dependence on the Weber number (for fixed Re and Fr) in figure 4-7 indicates that 

surface tension tends to prohibit the growth of the jump, as in the axisymmetric case 

(Aristoff & Bush 2003). For liquids with low surface tension, the non-circularity of the 

jump becomes apparent as the difference between the maximum and minimum radius 

increases with We. The increase in the mean radius was also observed by Bush et al. (2006) 

in their experimental investigation of the stability of the circular jump, and is consistent 

with their earlier theoretical predictions for the influence of the curvature force (Bush & 

Aristoff 2003). This growth, however, is not indefinite; an asymptotic limit is reached at 
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infinite We as indicated by the horizontal asymptotes in the inset of figure 4-7. The 

predicted influence of surface tension is opposite to that reported by Bush et al. (2006) for 

glycerine-water mixture, who observed that, for a given Reynolds number, the circular 

jump tends to remain stable at high Weber number, as indicated in their figure 8a. 

Obviously, the mechanism of spontaneous non-circular jump formation is not the same as 

the one induced by disk geometry. They also found that the triangular jump is easiest to 

observe at relatively low surface tension. Our results also indicate that the non-circularity 

of the jump on a triangular disk is fastest growing with Weber number. The general 

dependence is found to follow roughly 
4 1 5

J
1 1

r p We p
4 10

−  − , for the small to mid range 

of We, for any disk geometry. The lower inset in figure 4-7 shows the behaviour for large 

We, including the asymptotic levels. 

 

Figure 4-7: Influence of the surface tension (Weber number) on the maximum and 

minimum jump radii for a triangular disk (red curves), square disk (green curves), 

pentagonal disk (blue curves) and circular disk (black curve). Here, Re = 169, Fr = 

16.88, H∞0 = 2.41 - 1.3 and R∞0 = 12. The lower inset shows the influence of We and 

asymptotes for large surface tension on the difference between the maximum and 

minimum jump radii, ΔrJ (H∞0 = 2.22 - 0.58 and R∞0 = 24) 
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The influence of the disk size is reported in figure 4-8, where the jump minimum and 

maximum radii are plotted against 0R . One expects a jump on a larger disk to be more 

circular than on a smaller disk (considering all remaining parameters are the same). This 

response is indeed reflected in figure 4-8. Interestingly, the curves also show that 

9 p 1
J 0

10
r p R

3

− −
  , suggesting that the jump on a higher-sided disk becomes circular 

more rapidly as the disk size increases. 

 

Figure 4-8: Influence of the non-circular disk size on the maximum and minimum 

jump radii for a triangular disk (red curves), square disk (green curves), pentagonal 

disk (blue curves) and circular disk (black curve). The inset shows the influence of 

R∞0 on the difference between the maximum and minimum jump radii, ΔrJ. Here, Re 

= 169, Fr = 16.88, Bo = 1.19, H∞0 = 1.3 - 1.1. 

Finally, a general perspective of the character of the non-circular jump is shown in figure 

4-9, illustrating the relation between the jump width Jr  and the aspect ratio / PH ,   

is the jump inner area, P is the perimeter and H is the downstream height (averaged in the 

azimuthal direction). Each set of data correspond to a given Froude number (or flow rate) 

for non-circular jumps corresponding to a disk geometry ranging from the triangular to the 

13-sided planforms. We see that the jump width generally increases sharply with the aspect 
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ratio, particularly for multiple-sided disk planforms. For a given Froude number, the jump 

width remains independent of the aspect ratio for multi-sided disks (p > 8), displaying 

essentially the limit of a circular disk. Obviously, the limit Jr 0 →  corresponds to a 

circular jump with an aspect ratio that increases with flow rate. For p > 8, The jump width 

increases sensibly with the aspect, at a rate that increases with Fr. This behaviour roughly 

linear, of the form 
3 2 9 4

J
2 1

r Fr Fr
25 PH 40


  − . We note that the zero axisymmetric jump 

width is recovered in the limit of small Froude number.  

 

Figure 4-9: Dependence of the jump width ΔrJ on the normalized jump area for 

various disk shapes (modes) with number of sides ranging from 3 to 13. Each set 

comprises symbols and fitting curve, corresponding to Re = 170, Fr = 17, H∞0 = 1.30 

(red), Re = 150, Fr = 15, H∞0 = 1.26 (green), Re = 130, Fr = 13, H∞0 = 1.22 (blue) and 

Re = 100, Fr = 10, H∞0 = 1.14 (cyan), Bo = 1.19. Below the solid line the jump width is 

independent of the aspect ratio. 

4.5.3 The non-circular jump on a circular disk, Imposed edge film 
thickness 

For a circular disk, 0R R =  is constant. We therefore impose the edge thickness as 

( ) ( )H r R , H =  =  . In this case, the problem (4.4.14) formally becomes 



190 

 

( ) ( )
4 2 4

2

H 1 H
r + 0, H r R , H

r r r
 

   
= =  =  

    

, ( )JR r R   ,  (4.5.9) 

where the edge thickness is generally imposed as ( ) ( )4 4
0H H AT  = +  , where 0H  is 

the constant edge thickness corresponding to axisymmetric flow, given in (4.5.2), A is a 

constant (amplitude) and ( )T   is the departure function of . We seek the solution of 

problem (4.5.9) as a combination of an axisymmetric component ( )4
0H r , satisfying 

( )0 0H r R H = = , and a non-axisymmetric component: 

( ) ( ) ( )
n

4 4
0 0 n nn

n 1

r
H r, H r + + cosn sin n

R



= 

 =    +  ,              (4.5.10) 

which satisfies (4.4.15). Here takes the same form as (4.5.1b): 

( )
2

4 4
0 0

RFr
H r H 6 ln

Re r




 
= +  

 
. Applying (4.5.10) at the disk edge, we have 

( ) ( ) ( )4 4 4
0 0 n n 0

n 1

H H cos n sin n H AT


  
=

 = +  +   +  = +  .             (4.5.11) 

Consequently, the expansion coefficients are readily determined through 
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2

0

0

A
T d

2



 =  
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2

n

0

A
T cosn d



 =   
  , ( )

2

n

0

A
T sin n d



 =   
  .  (4.5.12a-c) 

Unlike the case of a non-circular disk, where the coefficients are obtained as a numerical 

solution of the algebraic system (4.5.8), involving numerically evaluated integrals, the 

coefficients in (4.5.12) are straightforward to evaluate analytically or numerically, 

depending on ( )T  . The film thickness and its derivatives are then evaluated at the jump 

radius from (4.5.10), and substituted in equations (4.4.12), which are solved numerically 

to determine the jump radius and height. 
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We saw, in the case of a non-circular disk, the peaks and the valley of the jump are in phase 

with the maximum and minimum of the imposed edge radius, with the same wavenumber 

(see figure 4-4). This is not always the case for a variable edge thickness. As an illustration, 

consider the influence of the edge film thickness on the shape of the jump and flow field 

for the simplest wave form of ( )H  , corresponding to ( )T sin =  . Figure 4-10 depicts 

the response for different disk sizes, corresponding to 4 R 7  . All other parameters 

remain fixed to Re = 322, Fr = 3.3, Bo = 6 and wave amplitude A = 0.6. The H  profiles 

in figure 4-10a show that the edge thickness decreases as the disk radius increases as a 

result of the 2/3R −
  behaviour of the dynamic contribution in (4.5.2) for 0H . For the 

largest disk size considered ( )R 7 = , figures 4-10b and 4-10c suggest that the jump shape 

is triangular, although the shape appears to be circular. When the disk size is mildly 

decreased ( )R 6 = , the jump begins to exhibit an overall triangular shape with smooth 

corners and displays a concavity at the valley. For an even smaller disk size ( )R 5 = , the 

jump acquires well defined six sides with emerging new peaks and valleys, well visible for 

the lowest disk size considered ( )R 4 = . We have added the transition r = 0r  for 

reference, which indicates that the jump occurs in the fully-viscous region for R 5 7 = −  

and inside the developing boundary-layer region for R 4 = , We observe that little 

variation in the edge thickness causes a relatively large loss of circularity in the jump. Next, 

we present the flow details for a large and a small disk radius. 
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Figure 4-10: Influence of the circular disk size (4 ≤ R∞ ≤ 7) on a non-circular hydraulic 

jump induced by edge thickness azimuthal variation H∞(θ) shown in (a). The jump 

radius rJ(θ) is shown in (b). Corresponding polar plots of the jump radius rJ(θ) and 

transition radius r0 are shown in (c). Here, Re = 322, Fr = 3.3, Bo = 6, H∞0 = 1.26, 1.29, 

1.32, 1.38 and A = 0.6. 

The flow details for a relatively large disk size are shown in figure 4-11, for R 7 = . 

Although the supercritical flow strength remains unaffected by the loss of axial symmetry 

just upstream of the jump, the subcritical flow diminishes in strength overall as shown in 
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figure 4-11a to 4-11c. Both the subcritical radial and azimuthal velocity components 

remain of the same order-of-magnitude. In this case, the jump occurs downstream of the 

transition point (dashed circle). The supercritical thickness decreases monotonically with 

distance (figure 4-11d), resulting in a thickness larger at a valley than a corner. This 

behaviour is reminiscent of the measured profiles of Martens et al. (2012); see their figure 

4. In this case, the film is not allowed to thicken before reaching the jump as in the 

axisymmetric case. The jump height is approximately the same just downstream of a peak 

and a valley, but behave oppositely further downstream. The increase in film thickness 

explains the radial flow reversal shown in figure 4-11c. It is important to mention that the 

flow fields in the present type I jump and type II jump (Marten et al. 2012) are different 

despite the similarity in the triangular jump shape. The flow reversal in the r-z plane is not 

predicted in the present formulation. 
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Figure 4-11: Details of the flow for R∞ = 7: radial (a) and azimuthal (b) velocity 

contours at the film surface, (c) flow field and (d) film thickness profiles in the corner 

and valley directions. Here, Re = 322, Fr = 3.3, Bo = 6., H∞0 = 1.26 and A = 0.6. 

Finally, additional details on the jump shape and flow field are shown in figures 4-12 for a 

smaller disk, of radius R 4 = . A three-dimensional perspective of the flow geometry is 

given in figure 4-12a. In particular, we see that the film height is essentially uniform 

downstream of the jump, confirming that a small imposed azimuthal change in the film 

thickness at the disk edge yields a significant azimuthal variation in the shape of the jump 

and the subcritical flow field. The surface shape is reminiscent of the clover-shaped 

hydraulic jump visualized by Bush et al. (2006). Although the predicted jump is of type I 

and the visualized jump is of two-tiered type IIb, the two shapes present some similarity. 

They both exhibit the same number of corners, primary and secondary valleys. The 

projections of the radial (figure 4-12c) and azimuthal (figure 4-12d) velocity contours 

indicate that the azimuthal flow is of the same strength as the radial flow for a disk of small 

size ( )R 4 = . More importantly, the radial flow appears to reverses direction across from 

the secondary valley (figure 4-12b), becoming weaker with increasing size, eventually 

vanishing altogether. We have not observed this flow for the non-circular disk, regardless 

how sharp the disk corners are. Obviously, a negative radial velocity emerges wherever the 

film thickness increases with radial distance: rH 0  in (4.4.12a). 
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Figure 4-12: Details of the flow for R∞ = 4: (a) film surface topography, (b) flow 

field, (c) radial and (d) azimuthal velocity contours at the film surface. Here, Re = 

322, Fr = 3.3, Bo = 6, H∞0 = 1.38 and A = 0.6. 

4.6 Concluding remarks and discussion 

In this study, we examine theoretically the influence of the azimuthally varying conditions 

at the edge of the target disk on the shape and height of the resulting non-circular jump and 

flow field. Two types of edge conditions are considered: the non-circular edge and periodic 

edge thickness. Our aim is not to model or simulate the spontaneous non-circular jumps 

observed in the literature, typically resulting from the destabilization of the circular jump. 

Our aim, given the nonlinearity of the problem, is to establish the intricate relation between 

periodic edge conditions and the non-circular jump.  
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We show that the supercritical flow remains axisymmetric for a thin film, regardless of the 

subcritical flow, given the relatively high strength of the impacting jet. We thus confirm 

the observations and measurements upstream of the non-circular jump reported in the 

literature. The loss of axial symmetry occurs at the jump level, where the balance of 

momentum across the jump is established in both the radial and azimuthal directions. We 

account for surface tension effect across the jump by extending the axisymmetric 

formulation of Bush & Aristoff (2003) for a non-circular jump. The subcritical flow is 

assumed to be of the lubrication type, and the subcritical film thickness distribution is 

shown to obey the Laplace’s equation in the polar plane.  

Since the flow is entirely controllable, we show how the flow parameters can be varied 

systematically to study their influence on the jump shape. It is important to mention that 

the present approach is based on well-established assumptions and methodology for 

axisymmetric flow, and extended here to cover non-axisymmetric flow. The present study 

illustrates how the axial symmetry of the type I jump can be broken by the edge conditions, 

which has not been treated so far since the usually observed spontaneous jumps are of the 

type II. Finally, varying edge conditions and flow parameters should also enable future 

experiments to be conducted in a controlled and methodological manner. 

For a non-circular disk and constant film thickness at the edge, we find that the disk 

geometry has little influence on the shape of the jump, except if the jump occurs close to 

the disk edge as it departs from the circular form (figure 4-4). However, the subcritical 

flow field is highly non-axisymmetric even for an apparently circular jump (figure 4-5). 

The mean radius and height of the jump do not usually correspond to the axisymmetric 

jump on a circular disk of equivalent radius (figure 4-4). This is particularly the case as the 

wavenumber (number of sides) of the disk increases (hexagonal as opposed to triangular). 

Surface tension is shown to prohibit flow asymmetry and jump non-circularity (figure 4-

7), a behaviour opposite to the case of the spontaneous non-circular jump (Bush et al. 

2006). It is important to observe that the mechanisms behind the loss of axial symmetry 

are not the same in the two cases. For a jet impinging on a circular disk with an azimuthally 

periodic film thickness at the edge, we find that a small azimuthal variation in the film 

thickness leads to a significant loss of axial symmetry. The nonlinearities in the balance 
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equations across the jump cause an increase in the peaks and valleys as the disk radius 

decreases. This is illustrated in figure 4-12 for an imposed sinusoidal thickness, yielding a 

jump similar to the three-leaf clover jump reminiscent of the spontaneous non-circular 

jump observed by Bush et al. (2006).  

Finally, we emphasize that the aim of the present study is to demonstrate how various jump 

patterns can be generated by varying edge conditions in a controlled and systematic 

manner, which can easily be realized in practice. Although some apparent features may be 

reminiscent of the spontaneous jumps observed in the literature, the current formulation 

cannot predict the structure of such jumps, which are usually of type II, exhibiting a single 

step (type IIa) or a double step (type IIb), always accompanied by a vortex roller 

downstream of the jump. Unlike the flow reversal in the polar plane reported in figures 4-

11 and 4-12, the flow reversal in a type II jump occurs in a circular reservoir, under the 

vortex (in the r-z plane). The liquid spreads radially downstream of the vortex (Martens et 

al. 2012), also in contrast with the present predictions.  

We envisage, in the future, to extend the current formulation to capture the vortex flow in 

the vertical plane, induced by edge variation. The challenges will undoubtedly be daunting. 

One of the major obstacles is relaxing the assumption of the discontinuous (shock-like) 

jump, and replacing it by a continuous radial variation of the film height. Although this has 

been done for a circular jump (Watanabe et al. 2013), the practical implementation of a 

similar formulation for a non-circular jump is far from obvious. The presence of higher-

order derivatives of the film thickness in the radial direction requires additional boundary 

conditions, which are typically imposed from experiment near impingement and at the 

circular disk edge. Consequently, some kind of a shooting method is needed, which is 

straightforward for axisymmetric flow, but inenvisageable for azimuthally varying flow 

due to the coupling between the radial and azimuthal flow components. In an effort to make 

the problem manageable, Rojas et al. (2015) simply neglected the azimuthal velocity 

component, an assumption which may hold for a non-circular jump that is mildly non-

circular. The flow fields in figures 4-11 and 4-12 indicate that the radial and azimuthal 

velocity components are of the same strength, even for the milder triangular jump in figure 

4-11. Another potential difficulty in employing the fully coupled thin-film equations with 
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inertia is the resulting nonlinear equation for the film thickness in the subcritical region, 

which must be solved numerically in the r −  plane. In contrast, the present Laplace’s 

equation (4.4.15a) admits a (Fourier) series solution, fully compliant with the imposed 

periodic conditions at the edge.  
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Chapter 5  

5 The viscoplastic circular hydraulic jump4 

Nomenclature 

a  Radius of jet, m 

B  Bingham number, 𝐵 = 𝜏0𝑎 𝜌𝜈𝑊⁄  

Bo  Bond number, 𝐵𝑜 = 𝐶𝑎𝑅𝑒 𝐹𝑟2⁄  

Ca  Capillary number, 𝐶𝑎 = 𝜌𝜈𝑊 𝜎⁄  

Fr  Froude number, 𝐹𝑟 = 𝑊 √𝑔𝑎⁄  

𝐹𝑟𝐽−  Froude number immediately upstream of the jump 

𝐹𝑟𝐽+  Froude number immediately downstream of the jump 

g  Acceleration due to gravity, 𝑚 𝑠2⁄  

h  Dimensionless film thickness in the supercritical region 

ℎ0  Dimensionless fully-yielded layer thickness in the supercritical region 

ℎ01  First-order departure for the dimensionless fully-yielded layer thickness 

ℎ0𝑚𝑖𝑛  Dimensionless fully-yielded layer thickness at 𝑟 = 𝑟0𝑚𝑖𝑛 

ℎ0𝑚𝑎𝑥1  Dimensionless fully-yielded layer thickness at 𝑟 = 𝑟0𝑚𝑎𝑥1 

________________________________ 

4 A version of this chapter has been published as - 

Wang, W., Khayat, R.E. & de Bruyn J.R. 2023 The viscoplastic circular hydraulic jump. Phys. Fluids. 35, 

063115. https://doi.org/10.1063/5.0155678 

https://doi.org/10.1063/5.0155678
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ℎ0𝑚𝑎𝑥2  Dimensionless fully-yielded layer thickness at 𝑟 = 𝑟0𝑚𝑎𝑥2 

ℎ1  First-order departure for the dimensionless film thickness 

ℎ𝑐𝐽  Critical film height at the jump 

H  Dimensionless film thickness in the subcritical region 

𝐻0  Dimensionless fully-yielded layer thickness in the subcritical region 

𝐻𝑁  Dimensionless film thickness for a Newtonian fluid 

ℎ𝐽  Dimensionless film thickness immediately upstream of the jump 

ℎ0𝐽  Dimensionless fully-yielded layer thickness right upstream of the jump 

𝐻𝐽  Dimensionless film thickness immediately downstream of the jump 

𝐻0𝐽  Dimensionless fully-yielded layer thickness right downstream of the jump 

𝐻∞  Dimensionless film thickness at the disk edge 

𝐻0∞  Dimensionless fully-yielded layer thickness at the disk edge 

K  Consistency index, 𝑃𝑎 ∙ 𝑠𝑛 

𝐿𝐽  Dimensionless jump length, 𝐿𝐽 = 𝑟𝐽+ − 𝑟𝐽− 

n  Power-law index 

p  Dimensionless pressure 

Q  Volume flow rate, 𝑚3 𝑠⁄  

r  Dimensionless radial coordinate 

𝑟0  Dimensionless transition point of the hydrodynamic boundary layer 
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𝑟𝑚𝑖𝑛  Dimensionless radial location for the local minimum ℎ0 

𝑟0𝑚𝑎𝑥1  Dimensionless radial location for the first local maximum ℎ0 

𝑟0𝑚𝑎𝑥2  Dimensionless radial location for the second local maximum ℎ0 

𝑅∞  Dimensional disk radius 

𝑟𝐽  Dimensionless jump radius 

𝑟𝐽−  Dimensionless radial location immediately upstream of the jump 

𝑟𝐽+  Dimensionless radial location immediately downstream of the jump 

Re  Reynolds number, 𝑅𝑒 = 𝑊𝑎 𝜈⁄  

u  Dimensionless horizontal velocity in the fully-yielded layer 

U  Dimensionless velocity in the pseudo-plug layer 

𝑈𝐽−  Dimensionless pseudo-plug layer velocity at 𝑟 = 𝑟𝐽− 

𝑈𝐽+  Dimensionless pseudo-plug layer velocity at 𝑟 = 𝑟𝐽+ 

𝑈𝑁  Dimensionless free surface velocity for a Newtonian fluid 

〈𝑢𝐽−〉  Dimensionless depth average velocity at 𝑟 = 𝑟𝐽− 

〈𝑢𝐽+〉  Dimensionless depth average velocity at 𝑟 = 𝑟𝐽+ 

w  Dimensionless vertical velocity 

W  Average jet velocity, 𝑊 = 𝑄 𝜋𝑎2⁄ , 𝑚 𝑠⁄  

z  Dimensionless vertical coordinate 

Greek Symbols 
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𝜒1, 𝜒2, 𝜒3 Intergrals 

𝛾̇  The second invariant of 𝛾̇𝑖𝑗, 𝑠−1 

𝛾̇𝑖𝑗  The rate-of-stress tensor, 𝑠−1 

δ  Dimensionless boundary layer thickness for a Newtonian fluid 

ε  Dimensionless perturbation parameter 

η  Scaled vertical coordinate, 𝜂 = 𝑧 ℎ⁄
0 

θ  Azimuthal coordinate 

ν  Effective kinematic viscosity 𝜈 = 𝐾𝜌−1(𝑊 𝑎⁄ )𝑛−1, 𝑚2 𝑠⁄  

ρ  Density of fluid, 𝑘𝑔 𝑚3⁄  

σ  Surface tension of fluid, 𝑁 𝑚⁄  

𝜏0  The yield stress, Pa 

𝜏𝑤  Dimensionless wall shear stress 

𝜏  The second invariant of 𝜏𝑖𝑗 

𝜏𝑖𝑗  The excess stress tensor 
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5.1 Introduction  

The thin-film flow over a solid is significant in numerous industrial applications, such as 

cleaning, cooling, coating, and etching (Hsu et al. 2011; Walker et al. 2012; Reay 2013; 

Barnes 1999; Kaneko et al. 2007). In reality, many fluids of industrial significance are non-

Newtonian, exhibiting flow properties intermediate between those of a solid and a liquid. 

A threshold stress, known as yield stress, is required for the fluid to flow. For an applied 

stress below the yield stress, the fluid exhibits ideal rigid solid behaviour, and does not 

deform. However, as the applied stress exceeds this threshold value, the fluid exhibits a 

viscous character (Bird et al. 1983). This important class of fluids, referred to as 

viscoplastic fluids, encompasses a wide range of materials including concentrated 

suspensions, pastes, emulsions, foams, composites, grease, polymer solutions, paints, glues 

and coal-oil slurries (Bird et al. 1983; Utracki 1988; Nguyen & Boger 1992; Ancey 2007; 

de Souza Mendes 2009; Mullai Venthan et al. 2022). For an overview of viscoplastic flow 

modelling, stability analysis, thin-film and lubrication flows, constitutive models, and 

applications, we refer the reader to the review by Balmforth et al. (2014). The rheology of 

the fluid can significantly change the behaviour of related flow phenomena. Both the yield 

stress and the shear-rate dependence of the viscosity can change the spread distance, film 

height, surface velocity of the film and other flow behaviour for the spread of a viscoplastic 

fluid (Jiang & Leblond 1993; Huang & García 1998; Balmforth et al. 2000; Liu et al. 2016, 

2018, 2019; Jalaal et al. 2021). Given the significant impact of the fluid rheology on the 

flow, we examine the spread of a viscoplastic jet and the structure of the emerging 

hydraulic jump as the jet impinges on a circular disk. We anticipate that a viscoplastic jet 

exhibits fundamentally different features not observed for a Newtonian jet.  

More explicitly, a viscoplastic flow exhibits a yield surface under and above which are the 

fully-yielded (shear layer) and plug layers, respectively. However, the plug flow (a region 

with no velocity gradients and infinite viscosity) is generally not a true plug, but a pseudo-

plug flow (a region of predominantly elongational character), as earlier identified in a 

bounded annular flow by Walton & Bittleston (1991), and the yield surface has been 

referred to as a fake yield surface (Balmforth & Craster 1999; Liu et al. 2019). As the 

pseudo-plug layer exists for any film flow, that raises the question as to its shape and 
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thickness in the supercritical and subcritical regions of an impinging jet, and, particularly 

across the jump. More precisely, a jump in the film surface is expected to occur as in a 

Newtonian fluid. In this case, what is the profile of the (fake) yield surface, a jump or a 

drop? Another crucial issue that we shall scrutinize is the nature of the transition from the 

developing boundary layer (near impingement) to the fully-viscous layer (the thin-film 

region where the viscous stress become appreciable right up to the free surface), which has 

been extensively investigated for a Newtonian fluid (refer to the earlier work of Watson 

1964, the more recent studies of Wang & Khayat 2018/2019 and the references therein). In 

other words, what happens to the transition when the Newtonian boundary layer is replaced 

by the viscoplastic fully-yielded layer? 

The mobility of the viscoplastic fluid can be significantly reduced when the yield stress is 

large. In their numerical simulation of wave generation due to underwater plastic mudslide 

flow, Jiang & Leblond (1993) reported that the velocity of the pseudo-plug layer decreases 

with increasing yield stress, and the front velocity is smaller for a higher yield stress as 

well. A similar behaviour for the phase velocity of the stationary wave front was later 

predicted by Mei & Yuhi (2001) when they examined a Bingham fluid down a shallow 

channel of finite width. In fact, the flow of a viscoplastic fluid comes to a halt when the 

stress falls below the yield stress, as in the spread of flow down an inclined plane (Jiang & 

Leblond 1993; Huang & García 1998; Balmforth et al. 2002; Balmforth et al. 2007a) and 

on a shallow and wide curved channel (Mei & Yuhi 2001), the spread of a droplet on a 

prewetted horizontal plate (Jalaal et al. 2021), the flow inception following the release of 

a volume of fluid or dam-break flow (Matson & Hogg 2007; Liu et al. 2016, 2018), and 

the squeezing of a thin film (Koblitz, Lovett & Nikiforakis 2018; Muravleva 2019).  

We expect the shear-rate dependence of the viscosity to influence the spreading distance 

and film depth as well, affecting, in turn, the location and height of the jump. The influence 

of the power-law rheology can be less consistent than that of the yield stress. In their study 

of mud flow down a slope, Huang & García (1998) found that a more shear-thinning fluid 

has a shorter spread distance and a thicker flow depth away from the wave front. They also 

observed that the influence of shear thinning on the spreading distance diminishes as the 

yield stress rises. Balmforth et al. (2000) also reported the influence of the power-law 
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viscosity and yield stress on the shape of a lava dome at a certain time, which is consistent 

with the finding of Huang & García (1998). In contrast, Liu et al. (2018) reported that the 

power-law viscosity has little effect on the final shape of the slump. Interestingly, the 

influence of the power-law index may not be consistent from one region to another of the 

flow. For instance, for squeeze film flow between two disks, the calculations of Muravleva 

(2019) show that, in the core region of the flow, the fully-yielded layer thickness as well 

as the second stress invariant at the disks decrease with increasing power-law index. The 

opposite is true near the edge of the disks. The influence of the power-law rheology was 

found to depend significantly on the level of yield stress. We shall explore the interplay 

between the effect of yield stress and the effects of shear-thinning. We note that, although 

most viscoplastic fluids exhibit a shear-thinning character, some do possess a shear-

thickening viscosity, such as concentrated diblock copolymer solutions (Bauer et al. 1995) 

and cement mixtures (Heirman et al. 2008/2009; Yahia 2011; Estelle & Lanos 2012). 

The spread of an impinging Newtonian jet and the emergence of a hydraulic jump over a 

smooth solid surface has been examined extensively. Given the close relevance to the 

methodology and analysis employed in this study, it is helpful to briefly review the 

Newtonian literature. Early predictions for the planar jump based on inviscid theory were 

reported by Rayleigh (1914), but did not yield a good agreement with the experiment. 

Although Tani (1949) later considered viscous effects, the dominant influence of viscosity 

was addressed much later. Watson (1964) analysed the flow in the developing-boundary 

layer near impingement, and the fully-viscous layer upstream of the jump. Watson’s thin-

film approach became the basis for numerous later theoretical and experimental studies. 

Watson’s theory was tested in a number of experimental investigations, including those of 

Watson himself, Craik et al. (1981), Stevens & Webb (1992), Bush & Aristoff (2003) and 

Baonga et al (2006). Liu & Lienhard (1993) observed that Watson’s predictions were least 

satisfactory in the limit of a relatively weak jump (of large width). Watson neglected 

surface tension effects, which were later included by Bush & Aristoff (2003) for a small 

circular jump radius, leading to better agreement with the experiment. To capture the 

behaviour downstream of the jump, Duchesne et al. (2014) examined the downstream flow 

using the lubrication approach. A good agreement between their theoretical predictions for 

the height profile and their measurements was obtained. Some extensions have been 
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considered, such as the spread of an impinging power-law jet by Zhao & Khayat (2008), 

the formation of a hydraulic jump on an inclined plane by Kate et al. (2007) and Benilov 

(2015), and impingement on a rotating disk by Ozar et al. (2003), Wang & Khayat (2018) 

and Ipatova et al. (2021). The influence of slip was examined by Dressaire et al. (2010), 

Prince et al (2012) and Khayat (2016). The influence of gravity on the jump radius was 

studied by Avedisian & Zhao (2000) and Wang & Khayat (2019). Finally, it is worth 

mentioning that the role of surface tension has generated recent debate since the 

controversial claims of Bhagat et al. (2018) and Bhagat & Linden (2020) that surface 

tension is at the origin of the circular jump. The claims were later challenged (Duchesne et 

al. 2019; Wang & Khayat 2021 Duchesne & Limat 2022) given the overwhelming 

evidence in early and recent studies of the importance of gravity in jet impingement and 

hydraulic jump formation (see also the recent account of Yamamura et al. 2022). 

Here we examine the spread of an impinging jet and the hydraulic jump of a viscoplastic 

liquid, as there are very few investigations of this flow problem. Despite the significant 

progress in understanding the general free surface flows of yield fluids, studies dealing 

with the characteristics of the hydraulic jump or the transition from the supercritical to the 

subcritical regimes are relatively scarce. Notable exceptions are the papers by Ogihara & 

Miyazawa (1994), Shu & Zhou (2006), Zhou et al. (2007) and Ugarelli & Federico (2007), 

for yield stress flow in a rectangular channel. Experiments were conducted by Ogihara & 

Miyazawa (1994) on a hydraulic jump in a Bingham fluid using a mixture of water and 

bentonite. They observed that the critical depth increased dramatically when the relative 

yield stress exceeds 0.1. Shu & Zhou (2006) and Zhou et al. (2007) examined the planar 

hydraulic jump on a horizontal plate for a Bingham fluid (the two studies are essentially 

the same). They derive an approximate expression for the conjugate depths. However, the 

flow field immediately upstream of the jump, including the pseudo-plug layer velocity, the 

film height and the wall shear stress, were simply assumed. They determined the flow 

immediately downstream of the jump by using the mass and force balance across the jump. 

Moreover, the flow character in both the upstream and downstream regions of the jump 

was not examined. Later, Ugarelli & Federico (2007) used a similar approach, adopting the 

Herschel-Bulkley model. They evaluated the error, mainly stemming from neglecting 

viscous effects, introduced by the adoption of the approximate solution by solving the 
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equations numerically. Clearly, the influence of the rheology of a viscoplastic fluid on the 

thin film flow of an impinging jet and subsequent hydraulic jump has not been investigated.  

As mentioned earlier, a thin-film approach is used to describe the spread of the impinging 

jet and the resulting hydraulic jump. More specifically, the depth-averaged approach of the 

Kármán–Pohlhausen (KP) type (Schlichtling & Gersten 2000) is used in the supercritical 

region (where the average velocity is larger than the velocity of the surface wave), and the 

lubrication approach is employed in the subcritical region (where the average velocity is 

smaller than the velocity of the surface wave), typically as in Newtonian formulations 

(Duchesne et al. 2014; Wang & Khayat 2019). In fact, these approaches have also been 

widely used for steady and transient flow problems involving thin layers of viscoplastic 

fluids. The depth-averaged approach was proposed to study the water waves generated by 

an underwater Bingham viscoplastic landslide on a gentle uniform slope by Jiang & 

Leblond (1993). The KP approach was also employed by Liu & Mei (1994) to investigate 

the flow of a mud layer down a gentle slope, in an effort to understand the periodic shocks 

or roll waves that are caused by unstable disturbances of small amplitude. Later, the depth-

averaged approach was adopted for a viscoplastic fluid of the Heschel-Bulkley type by 

Huang & García (1998), who examined the dynamics of the mud-slide problem, which was 

simplified to a 2D, unsteady, and low-Reynolds-number laminar flow. Generally, the KP 

depth-averaged method is particularly suited for fast-moving free-surface flow problems, 

with non-negligible inertia (Ancey 2007). For slow-moving viscoplastic flow problems, 

the lubrication approach is utilized, as for the spread of lava (Balmforth & Craster 1999; 

Balmforth et al. 2000), the dam-break flow (Matson & Hogg 2007; Liu et al. 2016, 2018), 

and surges down an inclined surface (Liu et al. 2019). 

In the present work, we explore the spread of a thin film of viscoplastic fluid flowing on a 

solid disk as a result of an impinging jet. The paper is organized as follows. The general 

axisymmetric formulation and physical domain are described in section 5.2. The treatment 

of the supercritical flow is given in section 5.3. The formulation of the subcritical flow and 

momentum balance across the jump are presented in section 5.4. The influence of the yield 

stress and viscosity, and other parameters on the hydraulic jump are covered in section 5.5. 

Finally, concluding remarks and discussion are given in section 5.6. 
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5.2 Physical domain and problem statement 

Consider the axisymmetric steady laminar incompressible flow of a circular jet of a 

viscoplastic fluid of the Herschel-Bulkley type, emerging from a nozzle of radius a, and 

impinging vertically on a horizontal circular disk at a volume flow rate Q. The general 

constitutive Herschel-Bulkley model is written as (Bird et al. 1983):  

n 1 0
ij ijK −  

 =  +  
 

,   for 0   ,             (5.2.1a) 

ij 0 = ,      for 0   ,             (5.2.1b) 

where ij  is the excess stress tensor, and ij  is the rate-of-strain tensor. Here, 

jk jk
1

2
 =    and jk kj

1

2
 =    are the second invariants of ij  and ij , respectively. 

We denote the yield stress by 0 , the consistency by K, and the power-law index by n. 

This model also includes the Bingham, power-law and Newtonian models, in the limits n 

= 1 and B = 0, respectively. Also, for n 1  the Herschel-Bulkley fluid is shear thinning, 

and for n > 1 it is shear thickening above a certain shear rate. 

As indicated by Bird, Armstrong & Hassager (1987), the incompressible generalized 

Newtonian fluid model should be used only for shearing flows, or at least flows that are 

very nearly shearing. Bird et al. (1983) also indicate that the Bingham model can yield 

correct predictions for steady shear flows. Clearly, the Herschel-Bulkley model is also a 

generalized Newtonian fluid model, and should therefore be restricted to shearing 

dominated flows. However, extensive theoretical studies adopted the Herschel-Bulkley 

model to examine flows that are not purely shear flows, yielding a good agreement with 

experimental mearsuements (Balmforth et al. 2000; Liu et al. 2018). In our present 

problem, we have shown in the appendix that the contribution of the elongation terms is 

negligible for a thin film, and the flow is a shear-dominated flow in both the supercritical 

and subcritical regions. At the jump, the thin-film assumption is expected to break down. 

However, we treat the jump as a shock, and apply the conservation of mass and momentum 
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across the jump. In this case, the treatment is confined to the supercritical and subcritical 

regions, which are treated as thin films. Consequently, the Herschel-Bulkley model should 

be valid over the entire domain. We also observe that the von Mises criterion appears to be 

appropriate for yield-stress fluids. Measurements of yield stress for squeeze flow seem to 

correspond to equivalent measurements under shear for some materials in accord with the 

von Mises condition (Engmann et al. 2005; Rabideau et al. 2009). Of course, given the 

wide range of types of viscoplastic materials, one cannot rule out exceptions to this rule. 

For further details, the reader is referred to the review of Balmforth et al. (2014). 

The problem is formulated in the dimensionless ( )r, z  coordinates, with the origin 

coinciding with the stagnation point of the jet. Gravity is in the negative z direction. In this 

case, we denote by ( )u r, z  and ( )w r, z  the corresponding dimensionless velocity 

components in the radial and vertical directions, respectively. The r-axis is taken along the 

disk radius and the z-axis is normal to the disk. The jet radius a is taken as the length scale, 

and the average jet velocity 
2W Q a   as the velocity scale. The shear stress is 

normalized with respect to W a,  where ( )
n 11K W a 

−− =   is an effective kinematic 

viscosity scale. Since the pressure is expected to be predominantly hydrostatic for a 

boundary layer or a thin film, it will be scaled by ρga, g being the gravitational acceleration 

and ρ the density of the fluid. Four main dimensionless groups emerge in this case: the 

Reynolds number 2 nnRe W K a aW −=  = , the Froude number Fr W ag= , the 

Bingham number 0B a W=    and the capillary number Ca W=    (equivalently, 

the Bond number 
2Bo Ca Re Fr= ), where σ is the surface tension. Since Re must be a 

monotonically increasing function of W, the form of Re found here suggests that the 

validity of the boundary-layer or thin-film approach is restricted to the range n < 2 (Acrivos 

et al. 1960). In other words, a boundary-layer flow is expected to form when W is large. 

However, if n > 2, Re 0→  for large W, and the boundary-layer approximation breaks 

down. Therefore, we shall limit our results to the range n < 2. 
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5.2.1 The physical domain 

The flow configuration is depicted schematically in figure 5-1, identifying the supercritical 

and subcritical regions upstream and downstream of the jump, respectively. The 

dimensionless disk radius is denoted by R . The stagnation region is neglected, which is 

an assumption widely adopted in the Newtonian case (Watson 1964; Bush & Aristoff 2003; 

Prince et al. 2012; Wang & Khayat 2019). We will revisit this assumption for a viscoplastic 

fluid in subsection 5.3.4. We take the Bingham number to be of order one or smaller, so 

the yield and viscous stresses are of similar strengths. We assume the jet to be sufficiently 

inertial, so the jet should be largely inviscid on impact, and a potential flow arises over the 

stagnation zone. As the fully-yielded layer develops near the wall, it displaces the outer 

potential flow away from the wall.  

After being diverted into the horizontal outflows, the velocity in this situation has little 

shear, and so should be largely controlled by the yield stress, with viscous effects appearing 

over a growing shear layer as pictured in figure 5-1. As mentioned earlier, unlike a 

Newtonian jet, the diverted flow is not a true plug flow, but a pseudo-plug flow which was 

earlier identified in a bounded annular flow by Walton & Bittleston (1991), and the yield 

surface is a fake yield surface (Balmforth & Craster 1999; Liu et al. 2019). 

The analysis for a viscoplastic fluid is similar to that for a Newtonian fluid. The influence 

of the yield stress and non-linear viscosity on the vertical profile of the radial velocity, and 

the emergence of the pseudo-plug layer, constitute the fundamental difference between the 

two formulations (Liu & Mei 1989; Balmforth et al. 2007a). As illustrated in figure 5-1, a 

lower layer of the fluid for 00 z h   is fully-yielded where the radial velocity has a 

parabolic-like profile. In the region 0h z h  , the radial velocity becomes plug-like and 

independent of z to leading order when considering the asymptotic flow field expansion in 

powers of the film thickness-to-length ratio. However, the fluid in the pseudo-plug region 

is not entirely unyielded. In fact, inclusion of higher-order terms in the shallow-water 

expansion suggests that the normal stresses are of the same order as the shear stress, making 

the overall stress slightly above the yield stress to permit the radial expansion (Balmforth 

& Craster 1999; Balmforth & Liu 2004; Liu et al. 2019). A similar phenomenon is 
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encountered for a power-law fluid, where the shear and elongation rates become 

comparable at the edge of the boundary layer (Denier & Dabrowski 2004) and near the 

surface of a thin film (Zhao & Khayat 2008). 
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Figure 5-1: Schematic illustration of the axisymmetric jet of a viscoplastic fluid 

impinging on a flat stationary circular disk and the hydraulic jump. Shown are the 

supercritical and subcritical regions. All notations are dimensionless. 

5.2.2 Governing equations and boundary conditions 

For steady axisymmetric thin-film Newtonian flow, the mass and momentum conservation 

equations are formulated using Prandtl’s boundary-layer approach in terms of a 

perturbation or ordering parameter 1  , which is the ratio of the transverse to the 

streamwise length scales or the film thickness to its length (Schlichting & Gersten 2000). 

The treatment is similar for a yield-stress fluid; we refer the reader to equations (2.3), (2.15) 

and (2.16) of Balmforth et al. (2000). Nevertheless, we detail the proper scaling of the 

conservation equations and boundary conditions in the appendix, adding the effect of 

surface tension.  

Various levels of approximation can be envisaged, depending on the values of Re, Fr and 

Ca. If inertia and gravity are of equal strengths, then for impinging jet flow we generally 
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have ( )1Re O −=   or larger and ( )Fr O 1=  or smaller. Even the jet flow of a relatively 

strongly viscous fluid like silicon oil occurs at Re = 169 and Fr = 14.9 (Duchesne et al. 

2014; Wang & Khayat 2019), yielding a Bond number Bo = 1.2. In this case, recalling 

from (A10a) that ( ) ( )2
rz r, z h O = =  , then (A10b) indicates that surface tension effects 

are important only if ( )2Bo O=   or smaller. Therefore, surface tension effects are 

negligible, so ( ) ( )2p r, z h O= =  . These observations are expected to hold for an 

impinging viscoplastic jet, with surface tension typically smaller than that of water (Jalaal 

et al. 2015). Consequently, neglecting terms of ( )2O  , the dimensionless conservation 

equations reduce to: 

r z
u

u w 0
r

+ + = ,                   (5.2.2a) 

( )r z z2

Re
Re uu wu h

Fr
+ = − +  .                 (5.2.2b) 

We follow the usual treatment of viscoplastic films (Balmforth et al. 2000; Balmforth & 

Liu 2004; Liu et al. 2016; Muravleva 2019)), and neglect surface tension effects, so the 

pressure is hydrostatic and vanishes at the free surface, yielding ( ) ( )p r, z h r z= − . It was 

eliminated from equation (5.2.2b). It is important to mention that surface tensions are not 

necessarily precluded in viscoplastic flows. They become important in elongation rather 

than shear-dominated viscoplastic flows, such as surface-tension-driven viscoplastic 

fingering (de Bruyn et al. 2002) and the pinch-off, bending, and buckling of free 

viscoplastic sheets and filaments (Balmforth et al. 2010; Balmforth & Hewitt 2013; 

German & Bertola 2010a, b; Kamrin & Mahadevan 2012; Rahmani et al. 2011). We refer 

the reader to the review of Balmforth et al. (2014) for further discussion. For simplicity, 

we have denoted by  the r-z component of the excess stress. We also let a subscript r or z 

denote partial differentiation, and a prime denote total differentiation (with respect to r). 

The non-dimensional Herschel-Bulkley constitutive model is deduced from (5.2.1) to read: 
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( ) ( )
n

z zu B sgn u = + ,  for B  ,               (5.2.3a) 

zu 0= ,    for B  .               (5.2.3b) 

We note that the viscoplastic fluid is shear thinning for any n, except for n > 1 when the 

shear rate is relatively large. At the disk, the no-slip and no-penetration boundary 

conditions are assumed to hold for any r: 

( ) ( )u r, z 0 w r, z 0 0= = = = .              (5.2.4a, b) 

At the free surface ( )z h r= , the kinematic and dynamic conditions for steady flow take 

the form: 

( ) ( )w r,z h u r, z h h= = = ,  ( )r, z h 0 = = .          (5.2.5a, b) 

It is worth noting that the vanishing of the shear stress at the free surface is also the result 

of the small film thickness, slope and curvature. In this regard, we observe that the 

statement of Bhagat & Linden (2020) at the end of their appendix B is misleading: “The 

analysis implies that only for a completely flat film (that the vanishing of the shear rate) 

can be trivially satisfied. In all other cases the tangential stress is non-zero.” In fact, a 

simple rescaling of their expression (B5) shows that the shear rate is of O(ε3). A vanishing 

shear stress at the film surface is commonly assumed in the Newtonian literature (see, e.g., 

Bohr et al. 1993; Oron et al. 1997; Ruyer-Quil & Manneville 1998, 2000; Watanabe et al. 

2003; Zhou & Prosperetti 2022), as well as for a viscoplastic film (see conditions (3.6) in 

Balmforth et al. 2000; subsection 2.2 in Balmforth & Liu 2004). 

On the other hand, the question remains as to whether the vanishing of the shear stress at 

the surface and the thin-film assumption are valid along the jump where the thin-film 

assumption can conceivably break down. In the present study, as in the majority of the 

studies on the hydraulic jump, we assumed a shock-like jump and used the balance of mass 

and momentum across the shock to obtain the jump radius. In other words, we do not cross 

the jump smoothly, so the thin-film assumption remains valid up to the jump on both the 
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supercritical and subcritical sides. In fact, previous studies (Watanabe 2003, Bonn et al. 

2009) showed that the thin-film approach can still be used for a smooth jump and leads to 

good agreement against experiment. 

In general, one can assume that there is a fake yield surface at ( )0z  h r=  with 00 h h 

, below which is the fully-yielded layer for 00 z h   and above which is the pseudo-plug 

layer for 0h z h  . At the outer edge of the fully-yielded layer and beyond (i.e., at the 

fake yield surface and in the pseudo-plug layer), the following conditions must hold:  

( ) ( )0u r,h z h U r ,  =    ( )z 0u r,h z h 0  = ,         (5.2.6a, b) 

where ( )U r  is the surface velocity which prevails over the entire pseudo-plug layer.  

Upon integrating equation (5.2.2a) over the entire film thickness, and recalling (5.2.6a), 

then conservation of mass yields the following relation in the dimensionless form: 

( ) ( )
h0

0

0

1
u r,z dz U h h

2r
+ − = .        (5.2.7) 

Recalling (5.2.3a), (5.2.5b) and (5.2.6b), the momentum equation (5.2.2b) in the pseudo-

plug layer can be simplified by integrating it between the fake yield surface and the film 

height. Consequently, the momentum equations in the pseudo-plug and fully-yielded layers 

become 

2
0

B Re
Re UU h

h h Fr
 = − −

−
,   0h z h  ,              (5.2.8a) 

( )r z z 2

Re
Re uu wu h

Fr
+ =  − ,  00 z h  .              (5.2.8b) 

In principle, these equations apply over the entire flow domain. However, some simplifying 

assumptions will be made as we treat the supercritical and subcritical regions separately. 
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5.3 The influence of the yield stress on the supercritical 
flow 

In this section, we present the formulation of the problem in the supercritical region. A 

vertically averaged model for a viscoplastic fluid is adopted to obtain the weak form of the 

conservation equations. Gravity is assumed to be negligible given the dominant strength of 

the jet inertia. The asymptotic limits of small yield stress are derived for a Bigham fluid. 

The limit of a Newtonian flow is also discussed for reference. 

5.3.1 The depth-averaged formulation and velocity profile 

We start by examining the flow in the supercritical region, which includes both the fully-

yielded and pseudo-plug layers. We observe that the pressure for a thin film is essentially 

hydrostatic as a result of its vanishing at the film surface and the small thickness of the 

film. In addition, upstream of the jump, the variation of the film thickness with radius is 

expected to be smooth and gradual. In this case, the radial variation of the hydrostatic 

pressure is also small. According to the calculations of Prince et al. (2012), the hydrostatic 

pressure exerts less than 0.4% cumulative influence on the dynamics of the thin film, and 

is thus negligible upstream of the hydraulic jump. This is generally assumed in models of 

hydraulic jump flow, in which the hydrostatic pressure is only included downstream of the 

jump where the film is relatively thicker (Watson 1964; Bush & Aristoff 2003; Dressaire 

et al. 2010; Prince et al. 2012). In this case, in the absence of gravity ( )Fr →  , equations 

(5.2.8) reduce to 

0

B
Re UU

h h
 = −

−
,    0h z h  ,              (5.3.1a) 

( ) n 1
r z z zzRe uu wu nu u−+ = ,   00 z h  .              (5.3.1b) 

We have chosen ( )zsgn u 1=  in equation (5.2.3a) to hold over the entire flow domain. 

Separation is not expected to occur in the supercritical region. As to the subcritical region, 

we recall that our present study is based on the assumption that the jump is a shock. In this 
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case, the recirculation zone cannot be captured. Therefore, we assume the radial velocity 

in the fully-yielded layer to be of the form (Liu & Mei 1994) 

( ) ( ) ( )J 0u r r ,0 z h U r f   =  ,  0z h = ,     (5.3.2) 

where ( )f   is a monotonic function that will be specified shortly. Using (5.3.2), the mass 

conservation equation (5.2.7) yields the following relation ( )Jr r : 

( )1 0h
1

,
2rU

1 h−  +=           (5.3.3) 

where ( )
1

1 0
f d =   . The vertical velocity component is eliminated by noting from 

(5.2.2a) that ( ) ( )
z

0
r

1
w r,z r u r, z dz

r

 
= −

  
 , resulting in 

( ) ( )
z2

r z r0r z

1 u
uu wu ru ru dz

r r

 
+ = −  

 
 . Consequently, upon integrating (5.3.1b) over the 

fully-yielded layer, we obtain the integral form of the momentum equation upstream of the 

jump in the fully-yielded layer: 

( ) ( ) ( )
h h0 0

2 n
z

0 0

1 d U d 1
ru dz ru dz u r,z 0

r dr r dr Re
− = − =  .     (5.3.4) 

Upon substituting the velocity profile (5.3.2) into (5.3.4), we have 

( ) ( )
n n

2 3
2 0 1 0 n

0

rU
rh U U rh U

Re h

  −  = − ,       (5.3.5) 

where ( )
1 2

2 0
f d =    and ( )3 f 0 = . The problem upstream of the jump is now 

governed by equations (5.3.1a), (5.3.3) and (5.3.5), with the three unknowns being U, h 

and 0h . We note that these three equations are similar to equations (3.4-3.6) in Huang & 

García (1998) for a stable Heschel-Bulkley flow in the plane in the limit of no gravity, and 
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collapse onto equations (25-27) in Liu & Mei (1994) and (6.2-6.4) in Balmforth & Liu 

(2004) for a stable Bingham flow in the plane in the limit of no gravity upon setting n =1 

and choosing a parabolic velocity profile. 

The film height h can be eliminated by using (5.3.3), thus reducing the problem to a second-

order system governing U and 0h : 

( )1 0
2B

2 rh U 1 U r
Re

 − = ,                  (5.3.6a) 

( ) ( ) ( )
n n 1
3

2 1 0 2 1 0 1 2 0 n
0

rU
2 rh U rUh h U

Re h

−  −  +  −  =  −  − .             (5.3.6b) 

In this case, h is obtained from (5.3.3). Equations (5.3.6a, b) are solved numerically subject 

to ( )U r 0 1= =  and ( )0h r 0 0= = . It is helpful to verify whether the system (5.3.6) 

becomes singular at some locations. A singularity is possible only if 1 0rh U2 1 0 − = , 

which, from (5.3.3), implies that 0h h= . However, the pseudo-plug layer must always 

exist (Balmforth & Craster 1999). We can thus conclude that system (5.3.6) has no 

singularity except for when 0r U h 0= = = , which happens at the origin or when the flow 

comes to a halt (refer to Wang & Khayat 2019 for further discussion on the emergence of 

the singularity in the presence of gravity for a Newtonian fluid). 

We assume that the radial velocity component ( )u r, z  in the fully-yielded layer satisfies 

the no-slip condition at the surface of the disk, and the vanishing of the shear rate and 

continuity of the velocity at the fake yield surface. In this case, the profile ( )f   in (5.3.2), 

must satisfy ( )f 0 0=  from (5.2.4a), ( )f 1 1=  from (5.2.6a), ( )f 1 0 =  from (5.2.6b). In 

this study, we follow Ng & Mei (1994), Huang & García (1998) and Hogg & Pritchard 

(2004) and take 

( ) ( )( )n 1 n
f 1 1

+
 = − −  ,   0 1  .     (5.3.7) 

In this case, the χ integrals defined above become  
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1
n 1

2n 1

+
 =

+
,  

( )

( )( )

2

2

2 n 1

2n 1 3n 2

+
 =

+ +
,  3

n 1

n

+
 = .         (5.3.8a-c) 

For a Bingham fluid, 1 2 / 3 = , 2 8 /15 =  and 3 2 = .  

Although the similarity profile (5.3.7) results from the solution of the lubrication flow of a 

viscoplastic fluid, it is imposed here in the presence of inertia. This is commonly done for 

Newtonian flow for which the parabolic profile is recovered from (5.3.7) when n = 1. The 

profile (5.3.7) is obviously one of many that can be used. Generally, low-order self-similar 

profiles have extensively been adopted for the film spread and hydraulic jump. They lead 

to an accurate description of the overall flow, are simple when treating nonlinear flows, 

and are compatible with the exact profile for the lubrication flow in the subcritical region. 

The parabolic profile was earlier used by Bohr et al. (1993) and later by Kasimov (2008). 

The cubic profile was adopted by Prince et al. for a flow on a disk with isotropic (2012) 

and anisotropic (2014) slip, by Wang & Khayat (2018) and Ipatova et al. (2020) for the 

flow on a rotating disk, and Wang & Khayat (2019) on a stationary disk, including heat 

transfer (Wang & Khayat 2020) and transient flow (Baayoun et al. 2022).  

The plausibility of profile (5.3.7) for viscoplastic flow is motivated by both the equilibrium 

uniform flow and the lubrication approximations (Balmforth & Liu 2004). However, 

despite their successful use in vertically averaged thin-film models, parabolic or simple 

similarity profiles may not be a good choice as they yield inaccurate critical conditions for 

the instability of Newtonian (Ruyer-Quil & Manneville 2000) and viscoplastic (Balmforth 

& Liu 2004) flows. In addition, self-similar profiles do not satisfy the momentum equation 

at the surface of the disk. As a result, they are unable to describe the vortex structure 

downstream of the jump (Watanabe et al. 2003; Roberts & Li 2009). On the other hand, 

their use has been tested and proven effective in the majority of depth-averaging nonlinear 

models. Recently, Li et al. (2021) carried out the numerical simulation based on the lattice 

Boltzmann method of the fully developed flow of a Herschel-Bulkley fluid in straight and 

curved pipes. They found that the velocity profile obtained from their numerical simulation 

agreed well with the profile (5.3.7). Finally, the earlier experimental measurements of 

Chambon et al. (2014) in an inclined conveyor-belt channel also suggest that the velocity 
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profile obtained from the lubrication approximation is valid for a Herschel-Bulkley type 

fluid. 

5.3.2 The influence of the viscosity and yield stress 

 

 

 

Figure 5-2: Influence of the yield stress on the film thickness 𝒉 and the fully-yielded 

layer thickness 𝒉𝟎 in the supercritical region (𝑹𝒆 = 50). Shown are the profiles for 𝒏 

< 1 (a-c), 𝒏 = 1 (d-f) and 𝒏 > 1 (g-i). 

Figure 5-2 illustrates the influence of the yield stress on the film and fully-yielded layer 

heights in the supercritical region for n < 1 (figures 5-2a to 5-2c), n = 1 or a Bingham fluid 
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(figures 5-2d to 5-2f) and n > 1 (figures 5-2g to 5-2i). The results for B = 0.001 correspond 

essentially to a power-law fluid (Watson 1964; Zhao & Khayat 2008; Wang & Khayat 

2019). In this case, and regardless of the level of viscosity, the fully-yielded layer is a 

boundary layer that grows with distance until it intersects the free surface at the transition 

location r = r0 (figures 5-2a, 5-2d, 5-2g). For B > 0.001, while the film thickness exhibits 

the typical behaviour predicted for a Newtonian jet (almost parabolic with a minimum at 

some radial distance), the fully-yielded layer thickness exhibits a more complex behaviour, 

which is strongly dependent on the fluid type. The film becomes thicker as B increases, as 

is generally the case for a thin viscoplastic film (Mei & Yuhi 2001; Balmforth et al. 2000, 

2002; Balmforth et al. 2007b, Matson & Hogg 2007; Liu et al. 2016, 2018). In contrast, 

the fully-yielded layer thickness exhibits increasingly pronounced local maximum and 

minimum at 0 maxr  and 0 minr , respectively (B = 0.5 and 1).  

The overall fully-yielded layer thickness decreases with increasing B (Jiang & Leblond 

1993; Balmforth et al. 2007a, b; Balmforth et al. 2000, 2002), following closely the growth 

of the free surface height for n < 1 (figures 5-2a to 5-2c). For a Bingham fluid (figures 5-

2d to 5-2f), 0h  grows at a slower rate than h. For n > 1 (figures 5-2g to 5-2i), the pseudo-

plug layer becomes even thicker, abruptly invading the entire film at some point 

downstream. However, as we shall argue later, this abrupt response may not be observed 

in reality since a hydraulic jump may form upstream of this abrupt point. Moreover, the 

thin-film model may cease to be valid in the presence of a steep curvature (Balmforth et 

al. 2007b; Matson & Hogg 2007; Liu et al. 2016, 2018, 2019). Finally, and importantly, 

the absence of a transition point for a yield-stress fluid allows a formulation that is 

uniformly valid over the entire supercritical region. In contrast, for power-law and 

Newtonian fluids, the supercritical region is subdivided into a developing boundary-layer 

and fully-viscous sub-regions, and the flow is matched at the transition point (Watson 

1964; Wang & Khayat 2019; Zhao & Khayat 2008). In other words, the fully-viscous flow 

formulation is uniformly valid and applies over the entire supercritical region for a 

viscoplastic fluid, no matter how small the yield-stress is. 

Figure 5-3 illustrates the influence of the yield stress on the distribution of the pseudo-plug 

layer velocity (figure 5-3a) and wall shear stress (figure 5-3b) for a Bingham fluid, as well 
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as the influence of non-linear viscosity on the wall shear stress (figure 5-3c) and shear rate 

(figure 5-3d). Very similar profiles of U are obtained for any n (not shown). The curve for 

B = 0.001 depicts the discontinuity in dU/dr at the transition point, typically predicted for 

power-law and Newtonian flows. In this case, the velocity near the impingement region 

remains close to 1, which then starts to decrease suddenly at the transition point. This 

singularity is smoothed over for B > 0.001; in this case, dU/dr is continuous, decreasing 

monotonically with distance. The pseudo-plug layer velocity decreases faster as B 

increases.  

The wall shear stress or skin friction ( ) ( )w r r, z 0 =  =  is given by 

( )
n

n
w 3 n

0

U
r B

h
 =  + .          (5.3.9) 

Figure 5-3b indicates that the wall shear stress overall increases with the yield stress. This 

larger shear stress is the result of a thinner fully-yielded layer caused by a higher yield 

stress as shown in figure 5-2. Again, yield stress tends to smooth the discontinuity exhibited 

by a power-law or Newtonian fluid. In fact, for large r, 0U h ~ 0  and w ~ B  in (5.3.9); 

the flow comes to a halt while the film thickens. In this limit, the thin film approach breaks 

down, and the elongational flow terms become important. Comparing the development of 

the wall shear stress for different n in figure 5-3c, we observe that the fluid with a larger n 

has a higher w  near impingement and a lower w  away from impingement. A similar 

trend was observed for squeeze flow (see figure 6 of Muravleva 2019). Finally, figure 5-

3d shows the influence of viscosity on the shear rate along the wall, which is predominantly 

large over a wide distance, essentially over the entire supercritical region. It is smaller than 

unity further downstream, which explains the reversal in the trend for the shear stress 

depicted in figure 5-3c. 
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Figure 5-3: Influence of the yield stress on the distribution of (a) the pseudo-plug layer 

velocity and (b) the wall shear stress for a Bingham fluid (𝒏 = 1). Also shown is the 

influence of viscosity on the distribution of (c) the wall shear stress and (d) the wall 

shear rate for 𝑩 = 0.5. Here 𝑹𝒆 = 50. 

Further insight into the film structure is gained by examining figure 5-4, where we depict 

the influence of the yield stress on the minimum film height minh  and its radial location 

minr  (figure 5-4a), the first local maximum in the fully-yielded layer thickness 0 max1h  

and its location 0 max1r  (figure 5-4b), the local minimum in the fully-yielded layer 

thickness 0 minh  and its location 0 minr  (figure 5-4c), and the second local maximum in 

the fully yielded-layer thickness 0 max 2h  and its location 0 max 2r  (figure 5-4d) for any 

viscoplastic fluids. The power-law fluid results are recovered in the limit B 0→ . As shown 

in figure 5-4a, the minimum film height increases almost at the same rate with increasing 

B for the three different types of fluid, and its location occurs closer to the impingement 

point for higher B (see also figure 5-2). On the other hand, increasing B results in a thinner 
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fully-yielded layer, with a drop in 0 max1h , 0 minh  and 0 max 2h , occurring closer to the 

impingement point, as shown in figures 5-4b to 5-2d.  

Generally, the character of the fully-yielded layer thickness and its dependence on the yield 

stress depend strongly on the value of n. Although the behaviour of the heights of the local 

minimum and maxima is always monotonically decreasing with respect to B, their 

locations are not, as is particularly obvious from figures 5-4b and 5-4c. Finally, the yielded 

layer height for n > 1 tends to flatten for high yield stress, as suggested from figures 5-4c 

and 5-4d for B > 1. 

 

 

Figure 5-4: The influence of the yield stress on (a) the minimum film height 𝒉𝒎𝒊𝒏 and 

its location 𝒓𝒎𝒊𝒏 , (b) the first local maximum thickness  𝒉𝟎𝒎𝒂𝒙𝟏  and its 

location 𝒓𝟎𝒎𝒂𝒙𝟏, (c) the local minimum thickness 𝒉𝟎𝒎𝒊𝒏 and its location 𝒓𝟎𝒎𝒊𝒏, and (d) 

the second local maximum thickness 𝒉𝟎𝒎𝒂𝒙𝟐  and its location 𝒓𝟎𝒎𝒂𝒙𝟐  of the fully-

yielded layer, for 𝒏 = 0.5 (solid lines), 1 (dash-dotted lines) and 1.8 (dashed lines). 

Here 𝑹𝒆 = 50. 
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5.3.3 The limit of Newtonian supercritical flow and small B 
correction 

By inspecting (5.3.1a), we suspect that the Newtonian limit may not necessarily be 

reachable as B 0→  since 0h h→ , suggesting a singularity in this limit. The Newtonian 

limit is often assumed to exist, at least as a reference (Balmforth et al. 2000). We explore 

this issue by briefly reviewing the Newtonian limit first, and then assuming it to be the 

leading-order solution as we try to capture the flow for small B. In order to keep the analysis 

manageable, we restrict it to a Bigham fluid. 

5.3.3.1 The Newtonian limit 

As mentioned earlier, one of the striking differences between the viscoplastic and 

Newtonian formulations is the absence of a developing boundary-layer region in the former 

case. We recall that for a Newtonian impinging jet, the problem is formulated by assuming 

the presence of a developing boundary-layer near impingement, and a fully-developed 

viscous region further downstream  (Watson 1964; Wang & Khayat 2019). The two meet 

at the transition point 0r r=  as figure 5-2d indicates. Importantly, different Karman-

Pohlhausen formulations are applied separately for 0r r  and 0r r . This is not the case 

for a viscoplastic fluid, and only one uniformly valid formulation is needed, yielding 

equations (5.3.3) and (5.3.6), valid over the entire supercritical region, and used to 

determine the three unknowns U, h and 0h . We show here that the viscoplastic formulation 

does reduce to a uniformly valid Newtonian formulation when we set B = 0 and n = 1. In 

this limit, two solution branches emerge from equation (5.3.6a), namely U 0 =  and 

1 0rh2 U 1 = , corresponding, respectively, to the pre- ( )0r r  and post-transition ( )0r r  

ranges in the supercritical region. We note that equations (5.3.6b) and (5.3.3) remain valid 

in both ranges. For the first solution branch, we note that since ( )U r 0 1= = , then 

( )0U r r 1 = . Consequently, we recover the Newtonian flow in the developing boundary-

layer region ( )0r r : 



228 

 

( )NU r 1= ,   ( )
( )

3

1 2

2 r
r

3 Re


 =

 − 
,        (5.3.10a, b) 

( ) ( )
( )

3
N 1

1 2

2 r 1
h r 1

3 Re 2r


= −  +

 − 
.              (5.3.10c) 

Here we identify 0h  as the boundary-layer thickness . The transition point 

( )
1 3

1 2
0 2

1 3

3 Re
r

8

  − 
=  

   

 is reflected in figure 5-2d. Based on (5.3.10), the boundary layer 

grows like r , and the film height decreases predominantly like 1/r, as is also reflected in 

figure 5-2d.  

The second solution branch in the fully-developed viscous region ( )0r r  yields 

( )
2

1 3 2 1
N

2 1 2

2 3r 1
h r

3 Re 4 r

   − 
= +

  
,  ( )N

1 N

1
U r

2 rh
=


,       (5.3.11a, b) 

suggesting that U decreases like 1/r as reflected in figure 5-3a. In sum, the behaviour 

indicated in (5.3.10) and (5.3.11) corresponds to the ranges 0r r  and 0r r , respectively, 

and corroborates the numerical predictions in figures 5-2 and 5-3 for B = 0.001 and n = 1. 

Next, we examine the behaviour for small B, and whether the Newtonian flow can indeed 

be recovered in the limit B 0→  for a Bingham fluid. For this, we need to examine the flow 

separately for 0r r  and 0r r , taking the Newtonian limit as the leading-order solution. 

We attempt regular power-series expansions, but include only the first-order departure.  

5.3.3.2 The small B correction for 0r r  

For 0r r , we write 

N 1 0 01 1h h Bh , h Bh , U 1 BU= + =  + = + ,         (5.3.12a-c) 
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where  and hN are given in (5.3.10). Substituting (5.3.12) into (5.3.3) and (5.3.6), we 

obtain the following equations for the first-order departures: 

( )
( )

1
1

N
1 11 0

U 1
h , U

2r h
1

Re
h = = −

− 
−  − ,        (5.3.13a, b) 

( ) ( ) ( ) ( ) 01
1 01

3
2 1 1 2 1 2

2 r U
R

rh
r U r

e
h   +

 −  +  −


 =
  

.            (5.3.13c) 

Equation (5.3.13b) indicates that the problem becomes singular at the transition radius 

0r r=  where Nh =  . Expansion (5.3.12) is therefore valid in the bulk range 00 r r  . 

The bulk solution is obtained for small r subject to homogeneous conditions at r = 0, with 

N
1

h
2r

−   . In this case, it is not difficult to show that for small r, 

2B
U 1 r

Re
 − ,  N

12 B
h h r

Re2

− 
 + ,          (5.3.14a, b) 

( )

5
32 1

0 3/2 3
1 2

211 7 r
h B

3 Re10

 − 
  −

 − 
,              (5.3.14c) 

where we recall that hN and  are given in (5.3.10). We see that both U and 0h  decrease 

with B, while the film thickness increases as a result of increasing yield stress. U acquires 

a parabolic character. 

5.3.3.3 The small B correction for 0r r  

For 0r r , we write 

N 1 0 N 01 N 1h h Bh , h h Bh , U U BU= + = + = + ,       (5.3.15a-c) 

where UN and hN are recalled from (5.3.11). Substituting (5.3.15) into (5.3.3) and (5.3.6), 

we obtain the following equations for the first-order departures: 
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( ) 1
1 01 1 2

N N N

1 01
U1

h h , h
Re

1 h
U U 2rU

−  −− = − =


,       (5.3.16a, b) 

( ) ( ) ( ) ( ) 3 01
2 1 N 1 N 01 2 1 N 01 N N 1 N 01 2

N

rh
2 r h U U h rU h rh h U U h

Re h


     −  + +  −  + + + = 

.                   (5.3.16c) 

This problem is also singular since both NU  and Nh  are discontinuous at the transition 

location 0r r= . In this case, we examine the solution for large r, and note that 

2
1 3

N
2

2 r
h

3 Re

 



 and 2

N 2 3
1 3

3 Re
U

4 r




 
. Upon eliminating 1h , the equations for 01h  and 

1U  reduce to: 

1
2

N NN

1 01
U

h
U 1

Re U2rU



+ ,               (5.3.17a) 

( ) ( ) ( ) ( ) 3 01
2 1 N 1 2 1 N 01 1 2 N 1 2 1 N 01 2

N

rh
2 rh U rU h 3 h U 5 2 U h

Re h


  −  +  −    −  +  −  + . 

                   (5.3.17b) 
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Figure 5-5: Comparison between the exact and the small-𝑩  asymptotic profiles. 

Shown are the pseudo-plug layer velocity 𝑼 (a), the film height 𝒉 (b) and pseudo-plug 

layer thickness 𝒉𝟎 (c) for Bingham fluid 𝒏 = 1 and 𝑩 = 0.5. Here 𝑹𝒆 = 50. The solid 

lines are the exact numerical results, and the dashed lines are the asymptotic results. 

These equations admit the exact solution 1 2 2
1

2

5

12Re
U r=

 + 
−


 and 

( )3 2
1 3 1 2

3

7
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2 5 7

2
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e
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7R

   − 
=


. In this case, 

( )3 2
1 3 1 2 1 2 7

N 3 3
2

2 8 5 7B
h h r

Re 27

    +  − 
= +


,              (5.3.18a) 

( )3 2
1 3 2 1 1 2

3 3
2

7
0 N N

2

2B B
h h r , U U r

2 7 5 5

12Re Re27

   −   + 


= − = − ,      (5.3.18b, c) 

where we recall UN and hN from (5.3.11). 
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Figure 5-5 illustrates the small B behaviour against the numerical profiles for B = 0.5 (n = 

1). The singularity is clearly depicted by the asymptotic profiles (5.3.13) and (5.3.17). We 

observe good agreement with the exact solution for small r. The discrepancy for large r, 

which is particularly visible in figures 5-5b and 5-5c, is due to our neglecting terms of 

higher order in B in (5.3.12) and (5.3.15). Therefore, the problem becomes singular in the 

limit B = 0, and expansions (5.3.12) and (5.3.15) are valid only far from the origin. The 

composite solution can be obtained using matched asymptotic expansion between the 

region including the origin and the bulk region. This issue will not be explored here. 

5.3.4 The impingement zone 

Finally, as depicted in figure 5-1, we assume that the inception of the yielded layer 

coincides with the stagnation point, thus assuming the impingement zone to be negligibly 

small. This is common practice for a Newtonian jet. In fact, the velocity outside the 

boundary layer rises rapidly from 0 at the stagnation point to the impingement velocity in 

the inviscid far region. The impinging jet is predominantly inviscid close to the stagnation 

point, and the boundary-layer thickness remains negligibly small. Obviously, this is the 

case for a jet at a relatively large Reynolds number. Indeed, the analysis by White (2006) 

shows that the boundary layer thickness is constant near the stagnation point, and is 

estimated to be ( )1/2O Re− . Ideally, the flow at the boundary-layer edge should correspond 

to the (almost parabolic) potential flow near the stagnating jet, with the boundary-layer 

leading edge coinciding with the stagnation point (Liu & Lienhard 1993). However, the 

assumption of uniform horizontal flow near the wall and outside the boundary layer is 

reasonable. The distance from the stagnation point for the inviscid flow to reach uniform 

horizontal velocity is small, on the order of the jet radius (Lienhard 2006). In the absence 

of gravity, the steady flow acquires a similarity character. In this case, the position or effect 

of the leading edge is irrelevant. This assumption was adopted initially by Watson (1964), 

and is commonly used in existing theories (see, for instance, Higuera 1994; Bush & 

Aristoff 2003; Prince et al. 2012; Wang & Khayat 2018, 2019, 2020). 

In contrast to a Newtonian jet, the impingement zone thickness for a power-law fluid varies 

with r (Maiti 1965; Koneru & Manohar 1968). In an effort to examine the impingement 



233 

 

zone for the impinging free-surface jet, we briefly revisit first the development of Maiti 

(1965) using our notations, but we limit the analysis to a power-law fluid, and account only 

qualitatively for the yield stress effect; a rigorous treatment of the impingement zone is 

quite involved and is beyond the scope of our study. We therefore assume, given the strong 

inertia of the downward jet, that the flow above the yielded region is purely inviscid and 

not pseudo-plug. 

For a free-surface jet with no surface tension, Lienhard (2006) showed that the radial 

velocity component of the potential flow is given by ( ) ( )2U r cr O r= + , where c = 0.46. 

The radial velocity component in the stagnation region is then expressed as 

( ) ( ) ( )u r, z U r F=  in terms of the similarity variables 
( ) ( )

1/1 n
1 n / 1 n2 n Re

z c r
n

+
− +− 

 =  
 

, where F is governed by (Maiti 1965) 

( )
n 1 23n 1

F F FF F 1 0
n 1

− +
   + − + =

+
,               (5.3.19a) 

( ) ( ) ( )F 0 F 0 0, F ~ 1= =  →  .           (5.3.19b-d) 

Although Maiti (1965) provided a power-series solution for this problem, we solve (5.3.19) 

numerically as a boundary-value problem. The boundary layer height in the impingement 

zone becomes 

( ) ( ) ( )
1/1 n

n 1 / 1 nn 2 n
r c r

Re

+
− +−


 

 =   
 

,                (5.3.20) 

where   is a constant that depends on n. Figure 5-6 illustrates the interplay between the 

viscosity and yield stress in the impingement zone for a viscoplastic fluid with n < 1 (figure 

5-6a), n = 1 (figure 5-6b) and n > 1 (figure 5-6c). The intersection between  and h0 

indicates the extent of the impingement zone, which depends on n and B. For n < 1,  

exhibits a singularity at the stagnation point and decreases at a diminishing rate with the 

radial distance. The boundary layer height is independent of r for a Newtonian jet, and 
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behaves like 1/ Re . For n > 1,  rises with an infinite slope from zero at the stagnation 

point and tends to level off at large r. The impingement zone length depends weakly on B 

for n < 1 (figure 5-6a), and is essentially insensitive to the level of the yield stress for n≥1 

(figures 5-6b and 5-6c). This dependence is expected to be even weaker when yield-stress 

effects are accounted for. In this case, we expect the fully-yielded layer thickness in the 

stagnation zone for a viscoplastic fluid to be smaller than for the power-law fluid. Figure 

5-6 suggests that the length of the impingement zone (distance between the origin and the 

intersection point) is slightly larger than 1 for n < 1 (figure 5-6a), slightly smaller than 1 

for Newtonian and Bingham fluids (figure 5-6b), and much smaller than 1 for n > 1 (figure 

5-6c). In sum, and similar to a Newtonian jet (Lienhard 2006), the impingement zone length 

for a viscoplastic jet is of the order of jet radius. 

 

 

Figure 5-6: The size of the impinging zone (distance between the origin and the 

intersection point). The black lines are the boundary-layer thickness obtained from 

the expression (5.3.20), and the color lines are the result from the solution of equations 

(5.3.6) for the fully-yielded layer. (a) 𝒏 = 0.8, (b) 𝒏 = 1, and (c) 𝒏 = 1.2. 



235 

 

5.4 Formulation of the subcritical viscoplastic flow and the 
hydraulic jump 

In the subcritical region, the film is relatively thick, and the flow is slow. In this case, the 

effect of gravity is no longer negligible. We adopt a lubrication flow approach in this 

region, as it has been extensively used in studies of the hydraulic jump for a Newtonian 

fluid (Duchesne et al. 2014; Wang & Khayat 2018, 2019, 2020). This approach has been 

used in various viscoplastic flow problems as well (Liu & Mei 1989; Balmforth & Craster 

1999; Balmforth et al. 2007a, b; Matson & Hogg 2007; Liu et al. 2016, 2018, 2019). In 

addition to the general formulation, we will discuss the determination of the film thickness 

at the edge of the disk and the jump length. 

5.4.1 The flow in the subcritical region 

By neglecting the effect of inertia, equations (5.2.8a) and (5.2.8b) reduce to: 

2
0

Re B
H

H HFr
 = −

−
,    0H z H  ,     (5.4.1) 

2

n 1
z zz

Re
H nu

F
u

r

− = ,    00 z H  .     (5.4.2) 

Here, we use H and H0 for the film height and fully-yielded layer thickness in the subcritical 

region to differentiate them from h and h0 in the supercritical region. Integrating equation 

(5.4.2) twice and using conditions (5.2.4a) and (5.2.6b), we can obtain the velocity profile 

in the fully-yielded layer as 

( )

n 1
n 11 n

n
n

J 0 0
0 0

n B z
u r r ,0 z H H 1 1

n 1 H H H

+
+  

    
   = − −    

+ −    
 

.    (5.4.3) 

The velocity in the pseudo-plug layer is obtained by setting 0z H= : 

( )

n 11 n

n
J 0

0

n B
U r r H

n 1 H H

+
 

 =  
+ − 

.        (5.4.4) 
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We note that the model employed here is the gravity-driven shallow viscoplastic model 

(Liu & Mei 1989; Balmforth & Craster 1999; Balmforth et al. 2007a/b; Matson & Hogg 

2007; Liu et al. 2016, 2018, 2019). Expression (5.4.4) suggests that the subcritical surface 

velocity decreases as a result of the decreases in the yielded-layer height and relative 

increase in the pseudo-layer height. 

Upon substituting (5.4.3) and (5.4.4) into (5.2.7), the conservation of mass yields  

n 11 n

n
00

0

n B n 1
H H H

n 1 H H 2n 1 2r

+
   

− =   
+ − +  

.      (5.4.5) 

Evidently, H(r) and ( )0H r , and therefore U(r), depend on position r, highlighting how the 

flow in 0H z H   is only a pseudo-plug, which is an extensional flow in the radial 

direction (Muravleva 2019).  

H and 0H  are governed by equations (5.4.1) and (5.4.5), which can be solved as a 

differential-algebraic system. A more convenient alternative is to differentiate (5.4.5) to 

obtain a second-order system of ODEs. In this case, two boundary conditions are needed, 

for H and 0H .  

5.4.2 Estimating the edge thickness and yielded layer height 

We, therefore, choose to impose the film thickness ( )H H r R  =  at the edge of the 

disk. The height ( )0 0H H r R  =  of the fully-yielded layer at the edge is then obtained 

from (5.4.5). The present approach and existing literature do not capture well the flow 

usually observed at the edge of the disk. For a Newtonian film, Watson (1964) simply 

assumed a constant film height downstream of the jump, but this assumption makes no 

sense here if we consider a free-dropping condition at the disk edge, and a complex 

upstream influence of the actual conditions in the subcritical region should be taken into 

account. The specification of H  remains largely unaddressed in the literature given the 

simultaneous influence of inertia, gravity and surface tension near the edge (Higuera 1994). 
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Direct measurements by Duchesne et al. (2014) of the edge thickness, give a nearly 

constant (independent of the jet flow rate) value when using silicone oil as the working 

fluid. This constant thickness, for a liquid of surface tension σ, is very close to the capillary 

length g   of the fluid, which results from the balance of forces between the 

hydrostatic pressure and the surface tension (Young-Laplace law) at the disk perimeter. 

This value is also consistent with the measurements of Dressaire et al. (2010) for water and 

high flow rate. Consequently, we assume that the film thickness at the edge of the disk is 

essentially equal to the capillary length. The dimensionless form of the film thickness at 

the disk edge is therefore 

1
Fr

H c
ReCa

 = ,          (5.4.6) 

where c1 is a constant dependent on the wetting properties of the edge of the disk. Its value 

should not exceed 2  (Landau & Lifshitz 1987). Expression (5.4.6) has been extensively 

used for the Newtonian problem (Duchesne et al. 2014; Wang & Khayat 2018/2019, 

Ipatova et al. 2021; Duchesne & Limat 2022), yielding a good agreement with experiment, 

particularly for the jump location and film profile. We observe that (5.4.6) should hold for 

both Newtonian and viscoplastic fluids; in the latter case, the fully-yielded layer thickness 

at the disk edge is deduced from (5.4.5). 

On the other hand, and as the work of Higuera (1994) suggests, both inertia and gravity 

can become important near the edge. The acceleration of the flow increases significantly 

due to the strong effect of gravity around the edge. Consequently, at the edge, the wall 

shear stress should exhibit a singularity, and viscous effects are confined to a thin boundary 

layer that develops near the wall. In this case, we estimate the edge thickness by balancing 

the inertial and the hydrostatic pressure forces in the radial momentum equation, which 

gives ReUU~
2

Re
H

Fr
 , where U and H are the subcritical pseudo-plug velocity and film 

thickness. Equivalently, we set 
2U ~

2

H
2

Fr
. To keep the treatment tractable, we limit the 

argument to a Bingham fluid. In this case, (5.4.4) and (5.4.5) reduce to: 
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0

0

1 B
U H

2 H H

 
=  

− 
,  

3
0

0 2
0

BrH2
H H

3 1 BrH
= +

−
,           (5.4.7a, b) 

respectively. Substituting for U and H, assuming both H and H0 to be small near the edge 

of the disk, and keeping dominant terms, we see that 

1/32/3 4

0 2 3
Fr Fr

H H c 1 c B
R R

 
 

  


   = −           

, where c2 and c3 are positive constants. 

Wang & Khayat (2019) obtained an exact expression in the Newtonian limit based on the 

minimization of the free energy at the edge of the disk, yielding 

1/3

2
3

c .
40

 
=  

 
 In addition, 

one can ask: at what distance from the disk edge does inertia become important? For the 

planar flow of a Newtonian fluid over a plate, Higuera (1994) estimated the order of 

magnitude of the region near the edge where inertia effects cease to be negligible in the 

subcritical region, to be 

31
2 3

3

/
Fr Re

1 x O
L

 
− =  

 
 

. This range is recast here in terms of the 

jet Froude and Reynolds numbers, where L is the half-length of the plate scaled by the half-

width of the jet, and x = 1 coincides with the edge of the plate. A similar formula for the 

axisymmetric flow of a Newtonian fluid: 
3

/31
2

8

r Fr Re
1 O

R R 

 
− =  

 
 

, where we recall R  

to be the dimensionless disk radius. Similarly, for a Bingham fluid, keeping terms of order 

B, and recalling the leading-order term 

1
2 4R6Fr

H ln
Re r


  

   
   

 for a Newtonian fluid 

(Duchesne 2014), we arrive at the following correction for the distance upstream of the 

edge where inertial effects become important for a weakly viscoplastic fluid: 

/31
2 3

2

8

r Fr Re 8
1 O 1 BR H

R 3R
 

 

     − = −         

. Consequently, this distance diminishes as 

the yield stress and disk radius increase.  



239 

 

Clearly, an accurate estimate of the edge thickness remains an open issue. The 

measurements of Duchesne et al. (2014) give a thickness very close to (5.4.6) with c1 = 1, 

for both partially and fully wetted disks. This means that inertia effects are not as important 

as surface tension. This corroborates the findings of Wang & Khayat (2019) in their 

comparison between theory and experiment for the location and height of the jump. Given 

these observations and since the present estimates above point to an even more diminished 

effect of inertia due to the yield stress, and therefore the dominance of surface tension near 

the edge, we adopt expression (5.4.6), setting c1 = 1, in the calculations reported below. 

5.4.3 Conservation of mass and momentum across the jump 

To determine the location of the hydraulic jump, the momentum balance is applied across 

the jump. The balance equation takes the same form as in the Newtonian case. Adding the 

radial contribution of surface tension (Bush & Aristoff 2003; Duchesne et al. 2014; Wang 

& Khayat 2019), we have 

( ) ( ) ( )
h HJ J

2 2 2 2 J J
J J J J2

J0 0

H hRe
Re u r ,z dz u r ,z dz H h

r2Fr

1

Ca
− +

 
−

 − = − +
 
 
  .   (5.4.8) 

Here, we conveniently let Jr −  and Jr +  denote the radial position immediately up- and 

downstream of the jump, respectively. We also recall that ( )J Jh h r r − =  and 

( )J JH H r r + =  are the film height immediately upstream and downstream of the jump, 

with corresponding pseudo-plug layer velocities denoted JU −  and JU + . It should be noted 

that the influence of the yield stress enters into the balance equation through the parameters 

in the supercritical and subcritical regions. It does not show explicitly in equation (5.4.8). 

This is a consequence of the abrupt jump assumption, resulting in the vanishing of the shear 

stress term. We note that the gravity term immediately upstream of the jump is kept in 

(5.4.8). Although this term is generally negligible for a Newtonian or power-law jump 

(Zhao & Khayat 2008), it is expected to be more significant for a smaller jump height, as 

in the viscoplastic case. We also note that equation (5.4.8) is similar to equation (69) in Liu 

& Mei (1994) for a stable Bingham flow shock. Finally, we observe that although the 
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surface tension effect is generally less important for viscoplastic fluids relative to 

Newtonian fluids, it is expected to be somewhat significant since the jump occurs closer to 

impingement as a result of the yield stress, leading to a smaller jump radius (see section 

5.5). Following Duchesne et al. (2014), we can estimate the jump radius when the surface 

tension effect is significant. By equaling the surface tension term with the gravity term in 

equation (5.4.8), we obtain a relation between the jump radius and average height 

2

J
J J

Fr 2
r

ReCa H h+
. This relation shows that thicker jumps occur closer to impingement, 

and the product of jump radius and height is equal to the capillary length. 

Upon carrying out the integrals over the fully-yielded and pseudo-plug layers, and using 

the velocity profiles (5.3.2), (5.4.3) and (5.4.4), equation (5.4.8) reduces to 
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H hRe
Re U h 1 h U H 1 H H h

r2Fr
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            (5.4.9) 

We note that 
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n
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n B
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 

=  
+ − 

 is readily available from (5.4.4). Along 

with equations (5.4.1) and (5.4.5) for the fully-yielded and pseudo-plug layer heights, 

equation (5.4.9) is used to determine the jump location. 

5.4.4 The jump length for a Bingham fluid 

Finally, another quantity of interest is the jump length (or width). Although we assumed a 

shock-like jump in our work, it is still possible to estimate the length of the jump. We 

follow closely the treatment of Avedisian & Zhao (2000), and apply the momentum 

balance across the jump of finite length JL . By balancing the drag at the disk in the jump 

region with the fluid inertia, and assuming the dominance of viscous over gravity effects, 

Avedisian & Zhao (2000) obtained a relation between the length of the jump and its radius 

as J J JL r / h 2 Re  (in our notations) for a Newtonian fluid, where Jh  is the film thickness 

just upstream of the jump (see also the different treatment of Razis et al. (2021) for a planar 
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jump). In order to keep the treatment tractable, we limit the analysis to a Bingham fluid 

without surface tension effects. In this case, equation (5.4.9) is modified to read 

( ) ( )( ) ( ) ( )2 2 2 2
J J 2 0J J J 2 0J J J J w J2

Re
Re U h 1 h U H 1 H H h L r r

2Fr
− ++  − − +  − = − +  =       , 

                     (5.4.10) 

where we recall that 
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(5.3.3) and (5.4.7), respectively. From (5.3.9) the wall stress on one side of the jump is 
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J
J

0
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h
r 2 B−

− = + , while from (5.4.3) the stress on the other side is 
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+ = + . Its mean value at the jump is then ( ) J J
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r r B
h H

.
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The jump length can then be found explicitly from (5.4.10) in terms of the heights of the 

super- and subcritical films, and the yielded layer thickness at the jump as 
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                     (5.4.11) 

after using 
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−
 from (5.4.7b).  

For a Newtonian film, B 0= , 0J Jh h=  and 0J JH H= , so that (5.4.11) reduces to 
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The approximation holds when J Jh H . 

If we further neglect gravity, then J J2
J

1 J J

Reh Reh2
L

2 r 5 r


 =


, which is slightly different 

from J
J

J

Reh
L 2

r
  of Avedisian & Zhao (2000). The difference in the numerical factors 

results from the way we treated the integrals in (5.4.8). Finally, an explicit relation between 

the jump length and radius can be obtained by substituting 
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3 Re
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 (which applies 

near the jump) from (5.3.11a), and 
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which suggests, given the dominance of the ( )2O Re  term, that J JL ~ r . This means that 

the jump length is of the same order of magnitude as the jump radius. It is important to 

recall that this result is based on our including the stress term at the disk in equation 

(5.4.10), which does not correspond strictly to a shock. 

5.5 The influence of the yield stress and viscosity on the 
hydraulic jump 

In this section, we report on the influence of the yield stress and viscosity on the entire 

flow, the supercritical and subcritical regions as well as the hydraulic jump. We will also 

report on the interplay among yield stress, viscosity, gravity, surface tension and disk size.  

5.5.1 The film and yielded layer profiles 

The overall effect of the yield stress and viscosity is illustrated in figure 5-7, which depicts 

the film height and shear layer thickness over the entire disk. Again, the result for B = 

0.001 exhibits essentially the flow of a power-law fluid. In this limit, in the supercritical 
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region, the fully-yielded layer coincides with the boundary layer, and the fully-yielded 

layer invades essentially the entire film thickness after the transition point. This is also the 

case in the subcritical region where the pseudo-plug layer is almost non-existent (figures 

5-7a, 5-7d and 5-7g). With an increase in fluid yield stress, the jump occurs further 

upstream (closer to impingement), the jump is higher, and the fully-yielded layer thickness 

decreases, especially in the subcritical region; overall, the pseudo-plug layer thickens. The 

subcritical profile in figure 5-7f is reminiscent of the “almost plastic” flow predicted by 

Balmforth & Liu (2004) for B 1→ , when the pseudo-plug fills almost the entire layer, 

reflecting how the fluid becomes dominated by the yield stress. Balmforth & Liu (2004) 

also observed that the problem can be reduced more directly in a manner similar to 

Oldroyd’s (1947) “plastic boundary-layer theory.” In contrast, both the film height and the 

fully-yielded layer thickness in the supercritical region remain relatively unaffected by 

fluid yield stress in comparison with the subcritical region. An interesting phenomenon is 

observed in figures 5-7h and 5-7i; the level of the fake yield surface immediately 

downstream of the jump becomes smaller than the surface level immediately upstream of 

the jump. It is clear that this feature can be achieved by either increasing the yield stress 

(see figures 5-7g to 5-7i) or increasing the power law index (see figures 5-7c, 5-7f and 5-

7i). In fact, we will see this behaviour as well when reducing the disk size. 
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Figure 5-7: Influence of the yield stress on the film thickness h and the fully-yielded 

layer thickness h0 in the supercritical and subcritical regions. Shown are the profiles 

for 𝒏 < 1 (a-c), 𝒏 =1 (d-f) and 𝒏 > 1 (g-i). Here, 𝑹𝒆 = 50, 𝑭𝒓 = 15, 𝑪𝒂 = 2 and 𝑹∞ = 8. 

Unlike the influence of the yield stress on the jump location, the influence of the power-

law rheology on the jump location is only felt when B is small. However, visible 

differences can be seen in the influence of n on downstream heights; both the film height 

and fully-yielded layer thickness decrease with the increase of n in the subcritical region. 

The influence of the power-law index on the fully-yielded layer thickness is similar to the 

observation in Muravleva (2019), where the fully-yielded layer thickness shrinks with the 

growth of the power-law index for the central part where the pseudo-plug layer velocity is 

small, although this feature is contrary when B is relatively large. As for the thinner film 

height for a larger n value, it is similar to the observation in Huang & García (1998), who 

reported a thinner film depth away from the wave front for a large power-law index when 

fixing yield stress. We also note that the dependence of 0h  on n in the subcritical region is 

different from the behaviour of 0h  in the supercritical region, where 0h  increase with the 

increase of n. This behaviour is also observed in Muravleva (2019), as the fully-yielded 
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layer thickness decreases and increases with increasing of n in the central (small pseudo-

plug layer velocity) and outer (large pseudo-plug layer velocity) regions, respectively. 

Interestingly, the influence of the power-law rheology is only manifest when B is small. 

For larger yield stress, the fluid behaves increasingly as a Bingham fluid as far as the jump 

radius and height are concerned; only the fully-yielded layer thickness remains sensitive to 

the power-law rheology. 

Figure 5-8 illustrates the influence of the yield stress on the pseudo-plug layer velocity 

(figure 5-8a) and wall shear stress (figure 5-8b) distributions in both the supercritical and 

subcritical regions for a Bingham fluid. The velocity and stress decrease with the radial 

distance in the supercritical region, drop sharply across the jump as a result of the film 

thickening, and then remain relatively flat further downstream. The velocity and stress 

increase sharply at the disk edge as the flow accelerates under gravity, especially for the 

more viscoplastic fluid. In reality, we expect the flow to be singular at the disk edge. As 

the jump radius becomes smaller with the increase in B, the difference between the 

subcritical and supercritical pseudo-plug layer velocity and wall shear stress increases 

significantly, and a smaller pseudo-plug layer velocity is observed in the subcritical region. 

Interestingly, in contrast to the film height, we see that the velocity is far more influenced 

by yield stress in the supercritical region. 
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Figure 5-8 Influence of the yield stress on the pseudo-plug layer velocity 𝑼 (a) and the 

wall shear stress 𝝉𝒘 (b) for a Bingham fluid. Insets show the magnification over the 

subcritical region. Here, 𝑹𝒆 = 50, 𝑭𝒓 = 15, 𝑪𝒂 = 2 and 𝑹∞ = 8. 

5.5.2 The jump radius and height 

Further details on the influence of the yield stress on the hydraulic jump location for the 

three types of fluid and heights for a Bingham fluid are given in figure 5-9. The radius of 

the jump decreases monotonically with B for all fluid types. The value of n seems to have 

a small effect on the radius of the jump, especially for large B (figure 5-9a). The decrease 

in jump radius is expected, as the yield stress reduces the spread of the flow. A similar 

effect has also been observed in previous studies on the spreading of viscoplastic fluid 
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films and drops (Jiang & Leblond 1993; Huang & García 1998; Balmforth et al. 2000, 

2002; Balmforth et al. 2007a; Jalaal et al. 2021) and viscoplastic dambreaks (Mei & Yuhi 

2001; Balmforth et al. 2007b; Matson & Hogg 2007; Liu et al. 2016, 2018). The increase 

in jump size with increasing n found for small B is reminiscent of the findings of Huang & 

García (1998) and Balmforth et al. (2000), who reported that, for the mud flows down a 

slope or the spreading of isothermal lava domes, a smaller value of n results in a shorter 

spreading distance.  

In addition, the results of Huang & García (1998) also show that the influence of the power-

law index n on the spreading distance diminishes with rising yield stress, so a weaker 

dependence of spreading distance on n is expected when the yield stress increases. Liu et 

al. (2016, 2018) reported that the final state of a dam-break flow is controlled by the yield 

stress, and is either independent of or weakly dependent on the nonlinear viscosity, which 

seems to be consistent with the behaviour observed in figure 5-9a. Moreover, if B is 

sufficiently large, the jump radius becomes smaller than 1, meaning that the jump occurs 

in the impingement zone. In fact, Higuera (1994) found that the jump may crash onto the 

inlet when the Froude number is sufficiently small. This situation gives rise to another flow 

regime, which is not considered here.  
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Figure 5-9: The influence of yield stress on (a) the hydraulic jump location 𝒓𝑱 for 𝒏 = 

0.5, 1 and 1.8, and (b) the film height and fully-yielded layer thickness immediately 

upstream of the jump, 𝒉𝑱  and 𝒉𝟎𝑱 , downstream of the jump, 𝑯𝑱  and 𝑯𝟎𝑱 , and the 

critical film height at the jump 𝒉𝒄𝑱 for 𝒏 = 1. Here 𝑹𝒆 = 50, 𝑭𝒓 = 15, 𝑪𝒂 = 2, and 𝑹∞ 

= 8. 

Figure 5-9b illustrates the influence of the yield stress on the film height and shear layer 

thickness immediately upstream ( Jh  and 0Jh ) and downstream ( JH  and 0JH ) of the 

jump, and on the critical film height at the jump cJh , for the Bingham fluid. JH  grows 

significantly with increasing B, whereas 0Jh , Jh  and 0JH  decrease weakly with B for B 



249 

 

> 0.2. We also include in figure 5-9b the critical film height at the jump, cJh , which 

separates the supercritical and subcritical regions (Liu & Lienhard 1993; Liu & Mei 1994; 

Watanabe et al. 2003). We determine cJh  by following the treatment of Watanabe et al. 

(2003). It is not difficult to show, in the absence of surface tension, and approximating the 

velocities immediately up- and downstream of the jump with the average velocities, that 

the jump height ratio J JH h  can be obtained from (5.4.8) in terms of the local upstream 

and downstream Froude numbers 
22

J J JFr uFr h− −=  and 
22

J J JFr uFr H+ +=  

as 
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where Ju −  and Ju +  are the mean radial velocities across the film immediately up- and 

downstream of the jump. Upon setting J JH h = 1 in (5.5.1), and noting that 

J J J J
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u h u H

2r
− += =  from (5.2.7), we obtain the critical height at the jump: 
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.          (5.5.2) 

Noting that ( )
3/2

J cJ JFr h h− =  and ( )
3/2

J cJ JFr h H+ = , we see, as in the Newtonian case 

(Watanabe et al. 2003), that J cJ Jh h H   and J JFr 1 Fr− +  , confirming that the jump 

connects a supercritical flow with JFr 1−   on the shallower side ( J cJh h ) to a subcritical 

flow with JFr 1+   on the deeper side ( J cJH h ). We note that the expression for cJh  in 

(5.5.2) depends on the yield stress through the jump radius. In fact, as the jump radius 

decreases with increasing yield stress, the critical height increases (see figure 5-9b). 

Finally, although we assumed gravity to be negligible in the supercritical region, we 

obtained expressions (5.5.1) and (5.5.2) assuming that the effect of gravity becomes 

important at the leading edge of the jump. 
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5.5.3 Further parametric study 

We now illustrate the influence of gravity on the jump location and corresponding heights 

only for a Bingham fluid in figure 5-10, as the trends for n < 1 and n > 1 Herschel-Bulkley 

fluids are similar. It is clear that the profile of the jump location of a Bingham fluid remains 

similar regardless of the yield stress; the jump size increases with increasing Fr until it 

reaches a maximum value, then decreases almost linearly (figure 5-10a). We note that this 

trend of Jr  is different from that measured by Avedisian & Zhao (2000) for water, who 

reported that the jump radius grows as gravity drops. This discrepancy is expected since 

the film thickness at the disk edge was fixed for different levels of gravity in the experiment 

of Avedisian & Zhao (2000), whereas, in the present case, H  rises with the diminishing 

of gravity (increasing of Fr) as (5.4.6) suggests. Higuera (1994) also showed that the jump 

radius grows with the reduction of gravity in a range of small Froude number in agreement 

with our results, but he did not investigate the large Fr range. In contrast to the non-

monotonic response of the jump radius, the film height immediately downstream of the 

jump increases almost linearly with increasing Fr, whereas the fully-yielded layer thickness 

immediately up- and downstream of the jump and the film height immediately upstream of 

the jump almost remain constant in the whole range of Fr, and so are not influenced by 

gravity (figure 5-10b). 
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Figure 5-10: The influence of gravity on (a) the hydraulic jump location 𝒓𝑱 for 𝑩 = 

0.001, 0.05, 0.5 and 1, and (b) the film height and fully-yielded layer thickness 

immediately upstream of the jump, 𝒉𝑱 and 𝒉𝟎𝑱, downstream of the jump, 𝑯𝑱 and 𝑯𝟎𝑱, 

and the critical film height at the jump 𝒉𝒄𝑱 for 𝑩 = 0.5. Here 𝑹𝒆 = 50, 𝑪𝒂 = 2, 𝒏 = 1 

and 𝑹∞ = 8. 

The interplay between surface tension and yield stress for a Bingham fluid is illustrated in 

figure 5-11, where the jump radius (figure 5-11a) and heights (figure 5-11b) are plotted 

against Ca. Figure 5-11a indicates that surface tension tends to inhibit the growth of the 

jump for any value of B. In particular, this corroborates the theoretical predictions of 

Aristoff & Bush (2003) and the experimental work of Bush et al. (2006) for a Newtonian 

jet. Generally, the influence of Ca on the radius of the jump is significant only when Ca < 
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3; beyond this value, Jr  grows slowly with Ca, approaching the asymptotic limit obtained 

by excluding the surface tension effect in equations (5.4.6) and (5.4.8). A similar response 

is observed for the heights at the jump, which are almost independent of surface tension 

for large Ca (figure 5-11b). 

 

Figure 5-11: The influence of surface tension on (a) the hydraulic jump location 𝒓𝑱 

for 𝑩 = 0.001, 0.05, 0.5 and 1, and (b) the film height and fully-yielded layer thickness 

immediately upstream of the jump, 𝒉𝑱 and 𝒉𝟎𝑱, downstream of the jump, 𝑯𝑱 and 𝑯𝟎𝑱, 

and the critical film height at the jump 𝒉𝒄𝑱  for 𝑩  = 0.5. The dashed lines are 

asymptotic limits obtained by excluding the surface tension effect (𝑪𝒂  ⟶ ∞) in 

equations (5.4.6) and (5.4.8). Here 𝑹𝒆 = 50, 𝑭𝒓 = 15, 𝒏 = 1 and 𝑹∞ = 8. 
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The influence of the size of the disk on the hydraulic jump location and heights is given in 

figure 5-12. The jump radius decreases monotonically with the disk size, as for a 

Newtonian fluid (Kasimov 2008), but the influence of R  for a fluid with higher yield 

stress is more pronounced (figure 5-12a). In addition, the jump can be washed out past the 

edge of the disk if the disk radius is not large enough, and this critical disk radius decreases 

with increasing yield stress (figure 5-12a). Figure 5-12b shows the influence of the radius 

of the disk on the film height and fully-yielded layer thickness immediately upstream of 

the jump, Jh  and 0Jh , downstream of the jump, JH  and 0JH , and the critical film height 

at the jump cJh  for B = 0.5. The jump height JH  increases substantially with the disk 

radius, whereas 0Jh , Jh  and 0JH  generally exhibit little change over the range of the disk 

radius considered here. The interesting behaviour of 0Jh , Jh  and 0JH  for small R  is 

shown in more detail in the inset; the yield surface on the upstream side of the jump 

surpasses the yield surface height downstream when the disk size is small enough. 
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Figure 5-12: The influence of the radius of the disk 𝑹∞ on (a) the hydraulic jump 

location 𝒓𝑱 for 𝑩 = 0.001, 0.05, 0.5 and 1, and (b) the film height and fully-yielded 

layer thickness immediately upstream of the jump, 𝒉𝑱 and 𝒉𝟎𝑱, downstream of the 

jump, 𝑯𝑱 and 𝑯𝟎𝑱, and the critical film height at the jump 𝒉𝒄𝑱 for 𝑩 = 0.5. Here 𝑹𝒆 = 

50, 𝑭𝒓 = 15, 𝑪𝒂 = 2, and 𝒏 = 1. Inset in (b) shows enlarged behaviour for the small 

range of disk radius. 

Next, we explore whether the local downstream Froude number JFr +  for the viscoplastic 

fluid remains constant. In the measurements of Duchesne et al. (2014) for silicon oil, they 

found that this local Froude number is independent of the flow rate, kinematic viscosity 

and surface tension. Later, Mohajer & Li (2015) also found that the local Froude number 

is independent of the flow rate and disk size, but depends on surface tension. They 
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attributed this discrepancy to the difference in the edge flow conditions between their work 

and the work of Duchesne et al. (2014). Wang & Khayat (2019) gave an analytical and 

numerical perspective for this constant local Froude number. Recently, Dhar et al. (2020) 

reported that the Froude number immediately downstream of the jump varies mildly for a 

planar hydraulic jump when the Reynolds number, channel length and channel inclination 

are varied. Using the data from our results above, we explore whether JFr +  is independent 

of the yield stress, gravity, surface tension and disk size. For this, we normalize the range 

of parameters B, Fr, Ca and R  in figures 5-9 to 5-12 over the interval 0 to 1; each 

parameter P is now normalized according to ( ) ( )Nor min max minP P P / P P= − − . We note 

that the local downstream Froude number JFr +  falls between 0.15-0.19 for large ranges 

when varying B, Fr, Ca and R , which seems to suggest that JFr +  is almost a constant for 

the viscoplastic fluid, although this Froude number still has a weak dependence on these 

parameters. As we can see in figure 5-13, JFr +  is strongly dependent on B, Fr, Ca and R  

when these parameters are small. The reason for the strong correlation between JFr +  and 

B or R  for the small range may be because the jump is close to the disk edge (see figures 

5-9 and 5-12 for reference). In fact, the disk size is much larger than the jump radius in the 

experiments of Duchesne et al. (2014). 
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Figure 5-13: Dependence of 𝑭𝒓𝑱+ on yield stress, gravity, surface tension and disk 

size. Here 𝑹𝒆  = 50, 𝑭𝒓  = 15, 𝑪𝒂  = 2, 𝑩  = 1, 𝒏  = 1 and 𝑹∞  = 8 unless otherwise 

indicated in the figure. 

Finally, we revisit some results of Zhou et al. (2007) on the planar jump in an open channel 

of relevance to the measurements of Ogihara & Miyazawa (1994), who examined the flow 

of Bingham fluids made of water and bentonite mixtures in a rectangular open channel. 

Figure 5-14 shows the dependence of the conjugate height ratio on the local Froude number 

upstream of the jump. The comparison between the theoretical results of Zhou et al. (2007) 

and the experimental data is included in the inset for reference. Zhou et al. observed that 

the experimental data are scattered, which may be due to the difficulty to measure the 

conjugate depths in the hydraulic jump. Their theoretical results as well as ours suggest a 

linear growth of the conjugate depth ratio with JFr − . 
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Figure 5-14: The dependence of the conjugate height ratio 𝑯𝑱/𝒉𝑱  on the local 

upstream Froude number 𝑭𝒓𝑱−. Here 𝑹𝒆 = 601 - 1203, 𝑩 = 0.2 -0.1, 𝑪𝒂 = 0.6 – 1.2, 𝑹∞ 

= 30 and 𝒏 = 1. Inset shows the theoretical result of Zhou et al. (2006) in red line and 

the measurements of Ogihara & Miyazawa (1994) in blue × symbols. 

Figure 5-15 shows the dependence of the critical height on the Froude number, 

corresponding to the range of flow rate from the measurements of Ogihara & Miyazawa 

(1994) in the inset, which includes the theoretical result of Zhou et al. (2007). Our curve 

exhibits essentially a linear growth with flow rate with a decreasing slope in the higher Fr 

range. The trend is similar for both theory and experiment. 
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Figure 5-15: The dependence of the critical height on the flow rate or Froude number. 

Here 𝑹𝒆 = 601 - 1203, 𝑩 = 0.2 -0.1, 𝑪𝒂 = 0.6 – 1.2, 𝑹∞ = 30 and 𝒏 = 1. Inset shows the 

theoretical result of Zhou et al. (2006) in red line and the measurements of Ogihara 

& Miyazawa (1994) in blue × symbols. 

5.6 Concluding remarks and discussion 

In this study, we examined theoretically the spread of a jet impacting on a circular disk and 

the hydraulic jump structure of a viscoplastic fluid of the Heschel-Bulkley type. The 

supercritical flow is assumed to be of sufficient strength for inertia and viscous forces to 

dominate gravity. A depth-averaged approach is used to cast the conservation equations in 

weak form. The velocity profile is imposed in the fully-yielded region that satisfies 

conditions at the disk and the fake yield surface. The subcritical flow is assumed to be 

inertialess with dominant gravity and viscous effects. The jump is treated as a shock, where 

the balance of mass and momentum is established in the radial direction, including the 

effect of surface tension across the jump.  

In contrast to the Newtonian flow, the viscoplastic flow does not require two separate 

formulations in the supercritical region, namely formulations in the developing boundary-

layer and the fully-viscous sub-regions as suggested originally by Watson (1964). We show 

that the supercritical formulation for the fully-yielded and pseudo-plug layers is uniformly 
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valid in the radial direction between the impingement zone and the jump. Consequently, 

and importantly, a viscoplastic jet does not experience the discontinuity in the film height, 

pseudo-plug layer velocity gradient, and shear stress, predicted for a Newtonian film at the 

transition radial location along the disk (see Wang & Khayat 2018, 2019 and the references 

therein). We note that the viscoplastic formulation, which is valid over the entire 

supercritical region, is practically applicable for a non-yield stress (power-law or 

Newtonian) fluid by fixing the Bingham number to a small value (figures 5-2a, 5-2d and 

5-2g). 

We find that a larger yield stress leads to a lower pseudo-plug layer velocity and a higher 

wall shear stress (figure 5-3). The jump is found to occur closer to impingement, with 

growing height, as the yield stress increases; the subcritical region becomes increasingly 

invaded by the pseudo-plug flow layer (figures 5-7 and 5-9). In contrast, the influence of 

the power-law rheology (shear-rate dependence of the viscosity) is much weaker, except 

for a fluid with a small yield stress. The jump radius exhibits a maximum when varying 

the level of gravity, with increasing jump height immediately downstream of the jump 

(figure 5-10). The effect of gravity diminishes with increasing yield stress. We find that 

the location and height of the jump are increasingly influenced by surface tension as the 

yield stress increases (figure 5-11). We also assessed the influence of the disk radius, and 

found that a jump would not occur if the disk is smaller than a critical size. However, 

plasticity tends to enhance the formation of the jump compared to a Newtonian jet (figure 

5-12). For a sufficiently large disk, the jump would occur in the impingement zone. We 

did not explore the flow details in the limits of small or a large disk. We suspect the thin-

film approach breaks down if the film extent is too small (as in a transient moving film). 

For a large disk, the flow would likely behave as in the case of a surging fluid until steady 

conditions are reached.  

The subcritical flow requires the value of the film and shear-layer heights at the edge of 

the disk. The value of the edge thickness or equivalent condition remains unaddressed in 

the Newtonian literature, and several different approaches have been proposed, such as 

posing a constant subcritical film height, and imposing an infinite slope (Kasimov 2008; 

Dhar et al. 2020). However, here we adopted the most likely plausible condition (Duchesne 
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et al. 2014; Ipatova et al. 2021) by assuming the edge thickness to be essentially equal to 

the capillary length as in expression (5.4.6). This is equivalent to balancing the gravity and 

surface tension forces at the edge of the disk based on the Young-Laplace law. We also 

derived an estimate of the edge thickness when inertia and gravity are in balance for a 

Bingham fluid. Following Higuera (1994), we also determined the order of magnitude of 

the distance from the edge where inertia effects become important. For a Newtonian fluid, 

the influence of surface tension was found greater than that of inertia (Wang & Khayat 

2018, 2019). 

The interplay between the yield stress and power-law rheology was found to be 

inconsistent, depending on the level of the yield stress, particularly downstream of the 

jump. As figure 5-7 indicates, the location and height of the jump remain relatively 

insensitive to the power-law rheology, except for very small yield stress. In contrast, the 

flow in the fully-yielded layer is very much influenced by the power-law index. The shear 

layer diminishes in thickness with increasing n, leaving an increasingly thicker pseudo-

plug layer. Given our approximation of the jump as a shock makes it is difficult to see what 

the real profile looks like. In this regard, what would the type of the smooth jump be? 

Would the Newtonian classification still hold (Bush & Aristoff 2003)? Given the small 

thickness at the edge of the disk, the jumps in figure 5-7 would likely correspond to type I, 

containing an eddy or a separation bubble near the disk, whose inner edge is located very 

close to the position of the abrupt change on the surface. Whether n < 1 or n > 1, figure 5-

7 suggests that the eddy would be confined to a height closer to the disk due to the yield 

stress. This jump type is likely to lose its stability if the downstream thickness is increased, 

such as when a rim is imposed at the edge of the disk. In this case, what state will the jump 

transit to? Would wave-breaking occur as in the type II jump, where the flow develops an 

additional eddy? This roller is not likely to form beneath the film surface, as for a 

Newtonian fluid, given the relatively thick pseudo-plug layer. Capturing the vortex flow 

below a smooth jump has been challenging for a Newtonian fluid (Watanabe et al. 2003; 

Rojas et al. 2013), and is worth investigating for the viscoplastic case. In the present study, 

we adopted the generalized parabolic velocity profile for the Herschel-Bulkley model. In 

order to capture the vortex structure, a higher-order polynomial or spectral representation 

is needed that satisfies additional boundary conditions such as the momentum equation at 
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the disk. This, in turn, brings about a change in the class of the averaged governing system 

from parabolic to elliptic, thus transforming the problem from an initial-value to a two-

point boundary-value problem. In this case, we expect the resulting upstream influence 

(Higuera 1994) to pose additional or different challenges for a viscoplastic fluid. 

Additional interesting potential studies of relevance are worth mentioning here. First, many 

viscoplastic fluids can suffer an apparent slip along the solid surface, which is caused by a 

thin dilute layer near the wall (Piau & El-Kissi 1994; Jalaal et al. 2015; Muravleva 2019). 

The existence of an apparent slip can result in a lower wall shear stress and a large spread 

distance, as well as other consequences. It should be noted that the slip for a viscoplastic 

fluid on a smooth surface is not a true slip, but an apparent slip, which means that the fluid 

slips at the surface of a thin-fluid film near the solid (Cloitre & Bonnecaze 2017; Wang et 

al. 2021); a thin-dilute layer exists near the wall for a viscoplastic fluid. In fact, this 

apparent slip can be suppressed by manipulating the roughness of the wall surface, since 

the roughness can disrupt the thin-lubricated or thin-dilute layer. However, in order to 

inhibit slip by surface roughness, surface features that are much larger than the particle size 

or the largest dominanting heterogeneity are created (Ballesta et al. 2013; Zakhari & 

Bonnecaze 2021). To describe the slip characteristic of the system, an effective slip length 

is normally used due to the complexity of the actual flow system (Niavarani & Priezjev 

2009; Tsai et al. 2009; Dubov et al. 2018). In this case, it would be interesting to to study 

the influence of roughness on the impinging viscoplastic jet and the resulting hydraulic 

jump. In fact, the influence of microdecorated surfaces on the thin-film Newtonian flow 

has already been investigated by Dressaire et al. (2010), who found that the patterned 

surface roughness modified the shape of the hydraulic jump. This modification resulted 

from the apparent slip between the liquid of the main flow and the liquid trapped in the 

microtextured surface. 

Second, another interesting aspect is the influence of wettability on the flow of a 

viscoplastic fluid. For a Newtonian liquid droplet on an ideal flat solid surface, the 

wettability can be characterized by Young’s equation, whereas the Wenzel model and 

Cassie-Baxter model can describe the wettability of a droplet on a surface with roughness 

(Lu, Wang & Duan 2016). For the dynamic wetting, it is usually characterized by the 



262 

 

relationship between the dynamic contact angle and the contact line velocity or the 

spreading radius versus the spreading time. There are already several studies focusing on 

the influence of the yield stress on the contact angle. Jalaal et al. (2021) investigated the 

effect of the yield stress on the spreading of a viscoplastic droplet on a chemically treated 

glass (to suppress any slip) both experimentally and theoretically. They found that the yield 

stress prohibits the spreading of the yield stress fluid, as the droplet converges to a final 

equilibrium shape once the driving stresses inside the droplet fall below the yield stress. In 

fact, Jørgensen (2016) also found a similar feature for the spreading of the viscoplastic 

droplet. These aspects can potentially be incorporated for a more accurate estimate of the 

thickness of the film as it drains at the edge of the disk (see figure 5-1), as well as when 

studying the transient formation of the hydraulic jump as it spreads before reaching the 

edge of the disk and the steady state.  

Third, the present approach is based on a leading-order shallow-water formulation, where 

normal stress components are neglected. However, we suspect that the extensional and 

shear flows are of comparable strengths in the vicinity of the jump, and higher-order 

corrections are needed (Balmforth & Craster 1999; Balmforth & Liu 2004; Liu et al. 2019). 

Finally, a considerable effort has been devoted to the treating of the transient flow of 

viscoplastic fluid films, such as the expansion of lava domes (Balmforth et al. 2000), the 

evolution of extruded inclined domes (Balmforth et al. 2002), the transient spreading after 

a dam collapse (Liu et al. 2016, 2018), and the evolution of roll waves (Balmforth & Liu 

2004), just to name a few. These studies can be of close relevance to the jump and vortex 

formation for an impinging viscoplastic jet. 

Clearly, and in conclusion, there are many aspects left out in the present study of 

fundamental importance. The study should constitute the corner stone for future 

endeavours to elucidate the rich phenomena brought about by yield stress and fluid 

rheology for jet impingement and hydraulic jump of viscoplastic fluids. 
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Chapter 6  

6 Conclusion and recommendations for future works 

6.1 Conclusion  

In this thesis, the impinging axisymmetric jet of either a Newtonian or a viscoplastic fluid 

and the hydraulic jump of either a circular or a polygonal shape on a flat solid disk is 

examined theoretically. The polygonal hydraulic jump is induced by either the non-

circularity of the disk or the azimuthal dependence film thickness at the disk edge. The 

thin-film approach and Kármán–Pohlhausen approach are adopted as the theoretical 

methods.  

In Chapter 2, a composite mean-field thin-film approach consisting of subdividing the flow 

domain into three regions of increasing gravity strength (a developing boundary layer near 

impact, an intermediate supercritical viscous layer leading up to the edge of the jump and 

a region comprising the jump and subcritical flow) for the circular hydraulic jump of 

Newtonian fluid is proposed. Unlike the existing models (Watanabe et al. 2003; Roberts & 

Li 2006), the approach does not require any empirically or numerically adjusted boundary 

conditions. The model is validated extensively against the existing experimental 

measurements, numerical simulations of the boundary-layer equations and Navier-Stokes 

equations. The jump location is assumed to coincide with the change of concavity of the 

film surface, which is a reasonable assumption as the predicted jump radius is very close 

to the critical radius based on the local Froude number. It is found that a larger flow rate, 

smaller viscosity, and lower gravity level lead to a larger jump radius. In addition, the flow 

in the supercritical region is insensitive to the gravity level but is greatly affected by the 

viscosity of the fluid. Moreover, it is found that the existence of the jump is not necessarily 

commensurate with the presence of a recirculation zone.  

In Chapter 3, based on the proposed composite approach, the characteristics of the circular 

hydraulic jump of Newtonian fluid are further investigated. The approach is further 

validated against both experiments and numerical simulations of Navier-Stokes equations. 

Although the flow in the supercritical region and jump radius is insensitive to the disk 
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radius, the flow in the subcritical region and vortex structure are found to be significantly 

affected by the disk size; the jump length and height, as well as the vortex size, decrease 

with the decrease of disk radius. The interplay between flow rate and disk size shows that 

the monotonicity of the jump height, jump length and vortex length with flow rate does not 

hold as the disk size becomes smaller than a critical value. By imposing the film thickness 

at the disk edge as the boundary condition, the approach is used to examine the influence 

of film edge thickness. It is found that the jump radius is pushed closer to the impingement 

as the edge film thickness increase, accompanied by a higher jump height, a steeper jump 

and a stronger recirculation zone. By keeping the dominant terms in the momentum balance 

equation across the jump, and assuming subcritical lubrication flow, a scaling law that takes 

the influence of disk size into account is proposed theoretically: 

( )
1/8 1/4 /

J
3 8

Jr Fr
2

ln
3

Rer r    . For a free-draining flow scenario, the film thickness at 

the disk edge is found to comprise a static component (capillary length), and a dynamic 

thickness component. The dynamic thickness component ( ( )
2/3

h ~ Fr / r  ) is 

established by minimizing the Gibbs free energy of the flow at the disk edge, and is also 

the consequence of the flow becoming supercritical near the disk edge. By assuming 

negligible film slope and curvature at the leading edge of the jump and maximum height 

at the trailing edge, the jump length is found to be related to the jump radius as 

( )
1/3

2 5
J JL ~ Re Fr / r . The vortex length follows the same behaviour. The energy loss and 

conjugate depth ratio exhibit a maximum with the flow rate, which originates from the 

descending and ascending branches of the film thickness in the supercritical region. The 

presence of the jump is not necessarily commensurate with that of a recirculation; the 

existence of the vortex closely depends on the upstream curvature and steepness of the 

jump. The surface separating the regions of existence/non-existence of the recirculation is 

given by the universal relation 10/3 2 9Re Fr 9r / 50= . The jump can be washed off the edge 

of the disk, particularly at low viscosity and small disk size. 

In Chapter 4, the polygonal hydraulic jump of a Newtonian fluid induced by the azimuthal-

dependent edge condition is studied theoretically. In contrast to the spontaneous non-
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circular hydraulic found by Ellegaard et al. (1998), the loss of axial symmetry in the current 

thesis is induced by disk non-circularity or periodic edge film thickness. The jump is 

assumed to be shock-like, where the mass and momentum balance equation is used to 

determine the radius of the jump. To take the azimuthal flow in the subcritical region into 

consideration, the balance of mass and momentum is established in both the radial and 

azimuthal directions, including the non-axisymmetric effect of surface tension across the 

jump. It is found that the geometry of a non-circular disk has little influence on the shape 

of the jump, except when the jump occurs close to the disk edge, but the subcritical flow 

field can be highly non-axisymmetric even for an apparently circular jump. For a jet 

impinging on a circular disk with a variable film thickness at the disk edge, a small 

azimuthal variation in the edge thickness leads to a significant loss of axial symmetry. The 

nonlinearities in the balance equations across the jump cause an increase in the number of 

peaks and valleys as the disk radius decreases. Flow reversal occurs in the polar plane at 

alternating valleys. 

In Chapter 5, the spread of a jet impacting on a circular disk and the hydraulic jump of a 

viscoplastic fluid of the Herschel-Bulkley type are examined theoretically. The depth-

averaging approach is employed in the supercritical region, and the assumed velocity 

profile in this region is motivated by both the equilibrium uniform flow and the lubrication 

approximations (Balmforth & Liu 2004). The subcritical flow is assumed to be inertialess 

of the lubrication type. The jump is treated as a shock, where the balance of mass and 

momentum is established in the radial direction, including the effect of surface tension 

across the jump. In contrast to the Newtonian jet, which requires separate formulations in 

the developing-boundary layer and fully-viscous layers, the supercritical formulation for 

the fully-yielded and pseudo-plug layers is uniformly valid between the impingement zone 

and the jump. Consequently, a viscoplastic jet does not experience the discontinuity in the 

film height, pseudo-plug layer velocity gradient and shear stress, exhibited by a Newtonian 

film at the transition location. The jump is found to occur closer to impingement, with 

growing height, as the yield stress increases; the subcritical region becomes invaded by the 

pseudo-plug layer. The viscosity does not influence sensibly the jump location and height 

except for small yield stress; only the yielded layer is found to remain sensitive to the 

power-law rheology for any yield stress. In particular, shear thickening can cause the fully-
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yielded layer to drop in height despite the jump in the film surface. It is also found that the 

jump would not occur if the disk was smaller than a critical size, but the yield stress tends 

to enhance the formation of the jump compared to a Newtonian jet. An almost constant 

local downstream Froude number also exists for a viscoplastic fluid. Finally, the current 

model can reduce to the limiting cases of Bingham, power-law and Newtonian fluids. 

6.2 Recommendations for future works 

For the proposed composite mean-field thin-film approach, the effect of surface tension is 

not included in this approach. Bush & Aristoff (2003) has established a corrected theory of 

Waston (1964), which takes the surface tension effects into account. They found that the 

surface tension effects become important when the jump radius is small. In addition, as 

shown in the current thesis, the surface tension effects also become important at the disk 

edge (see also Higuera 1994). Moreover, Askarizadeh et al. (2019) found that there are two 

different regimes in the jump formation: gravity- and capillary-dominant flow regimes. In 

this case, a model that includes the surface tension effects is work that is worth to be done 

in the future. 

For the polygonal hydraulic jump induced by the azimuthally dependent edge conditions, 

the jump is assumed to be shock-like. In this case, the flow structure at the jump level is 

unclear. To gain a more comprehensive understanding of the flow features of the polygonal 

hydraulic jump, the approach proposed in Chapter 2 can be extended to the polygonal 

hydraulic jump. In this case, the flow characteristics, especially, the vortex structure at the 

jump level can be analyzed in detail. 

For the impinging jet and hydraulic jump of viscoplastic fluid of Heschel-Bulkley type, the 

jump is also assumed to be shock-like, the boundary layer condition at the disk is no-slip, 

but many viscoplastic fluids can suffer an apparent slip along the solid surface, which is 

caused by a thin dilute layer near the wall (Piau & El-Kissi 1994; Jalaal et al. 2015; 

Muravleva 2019). In this case, it is worth exploring the slip effect on the flow and hydraulic 

jump. 
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 Appendices 

Appendix A: The thin-film equations and boundary conditions 

In this appendix, we follow closely the treatment of Balmforth et al. (2000) to derive 

equations (5.2.2a-5.2.2b) and (5.2.3a-5.2.3b) from the full conservation equations. These 

equations govern the motion of the thin film flow of a yield-stress fluid. Consequently, we 

assume the film thickness to be small relative to its (horizontal) length. We therefore need 

to rescale the dimensionless variables in section 5.5.2 to assess their accurate weight in the 

equations and boundary conditions, leading up to the formulation in that section. In 

dimensional form, the conservation of mass and momentum for axisymmetric flow are 

r z
u

u w 0
r

+ + = ,         (A1a) 

( ) rr
r z r rr r rz zuu wu p , ,

r

 − 
 + = − +  + + ,     (A1b) 

( ) rz
r z z zr r zz zuw ww p g , ,

r


 + = − − +  + + .     (A1c) 

A subscript for the velocity components u and w as well as a comma for the deviatoric 

stress components ij  denote partial differentials. In addition to 

( ) ( )u r, z 0 w r, z 0 0= = = = , equations (A1) are solved subject to the kinematic and 

dynamic conditions at the free surface z = h(r): 

w uh= ,  ( )r r rr r z z r rz z z zzn t n t n t n t 0 + +  +  = ,            (A2a, b) 

( )2 2
r rr r z rz z zzp n 2n n n n− +  +  +  = −  .     (A2c) 

Here  is the constant surface tension, t and n are the tangent and normal unit vectors at 

the surface, and ( )n n   is the normal curvature force per unit area associated with the 

local curvature of the free surface, n . We thus have: 
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r z
2 2

h 1
n ,n

1 h 1 h


= − =

 + +

, r z
2 2

1 h
t , t

1 h 1 h


= =

 + +

,            (A3a, b) 

2

1 rh
n

r 1 h

 
 = −  

 
+ 

.        (A3c) 

For a Herschel-Bulkley fluid, the constitutive model is conveniently reproduced from (2.1): 

n 1 0
ij ijK −  

 =  +  
 

,   for 0   ,   (A4a) 

ij 0 = ,      for 0   .   (A4b) 

Here, we recall ( )2 2 2 2
rz rr zz

1

2
 =  +  +  +   and ( )2 2 2 2

rz rr zz
1

2
 =  +  +  +   

are the second invariants of ij  and ij , respectively. We also have 

rr r rz zr z r zz z2u , u w , 2w , 2u / r =  =  = +  =  = .             (A6a-d) 

Thus, we take the jet radius a as the length scale in the vertical direction for r, and the 

radius of the disk R as the length scale in the vertical direction for z. In this case, the jet 

radius is assumed to be small relative to R so that a / R 1    becomes the small 

perturbation parameter in the problem. The radial velocity component u and pressure p 

remain scaled by the jet velocity W and ga , respectively, while the vertical velocity 

component w is rescaled by W . In this case, we take  W/R as the scale for rr ,   and 

zz , and W/a for rz zr =  , where we recall 

n 1
W

K
a

−
 

   
 

. In this case, equation (A1a) 

and condition (A2a) retain their original form in terms of the rescaled variables, and 

equations (A1b) and (A1c) are recast as: 

( ) ( )
2

2
r z r rr r rz z rr2

Re
Re uu wu p , ,

rFr



 + = − +   + +  −  ,   (A8a) 
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( ) ( )2 rz
r z z zr r zz z2

Re
Re uw ww p 1 , ,

rFr

 
 + = − + +   + + 

 
.   (A8b) 

The dimensionless deviatoric normal and shear stress components are: 

n 1
rr r

B
2 u− 

 =  + 
 

,  
n 1

zz z
B

2 w− 
 =  + 

 
,             (A9a, b) 

n 1 B u
2

r

−


 
 =  + 

 
,  ( )n 1 2

rz zr z r
B

u w− 
 =  =  + +  

 
,                       (A9c, d) 

where ( )
22

2 2 2 2
z r r z2

u
u w 2 u w

r

 
 = +  +  + + 

 
 

 is scaled by W/ a . On using (A9), 

conditions (A2b) and (A2c) become 

( ) ( )2 2 2
rr zz rzh 1 h 0 −  −  + −   = ,       (A10a) 

( ) ( )
2

2 2 3 2 2 2
rr rz zz2 2 2

Re rh
1 h p h 2 h 1 h

CarFr 1 h

 
     − +  +   −   +  = + 

 
+  

. (A10b) 

Various levels of approximation can be envisaged, depending on the local values of Re, Fr 

and Ca. If inertia and gravity are of equal strengths, then for impinging jet flow in the 

supercritical region, we generally have ( )1Re O −=   or larger and ( )Fr O 1=  or smaller. 

On the other hand, in the subcritical region, Re is typically of O(1), and ( )Fr O=  , then 

inertia effects can be neglected. 

Clearly, (A10a) indicates that ( ) ( )2
rz r, z h O = =  . In this case, (A10b) indicates that 

unless the Bond number ( )2

2

Ca Re
Bo O

Fr
 =   or smaller, surface tension effects are 

negligible. Consequently, (A10b) reduces to ( ) ( ) ( )
2

2
zz

Fr
p r,z h r,z h O

Re
= =   = =   in 



281 

 

the supercritical and subcritical regions, and we recover the hydrostatic pressure equation: 

zp 1= − , leading to ( )p r, z h z= − . When substituted into (A8a), we see that the equation 

reduced to 

( )r z rz z2

Re
Re uu wu h ,

Fr
 + = − +  ,       (A11) 

after neglecting terms of ( )2O  . We therefore conclude that equations (5.2.2) are 

recovered when terms of ( )2O   and smaller are neglected, with negligible surface tension 

effects, as well as the vanishing of the shear stress at the film surface or (5.2.5b). 
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