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Abstract

Cluster randomization trials are popular in situations where the intervention needs to be

implemented at the cluster level, or logistical and/or financial reasons require the choice of

randomization at the cluster level, or minimization of contamination is needed. It is very

common for cluster trials to take measurements before randomization and again at follow-up,

resulting in a clustered pretest-posttest design. For continuous outcomes, the cluster-adjusted

analysis of covariance approach can be used to adjust for accidental bias and improve efficiency.

However, a direct application of this method is inappropriate if the measurements are not on an

interval scale, yet such data are very common in practice.

In this thesis, we propose nonparametric methods for trials with a clustered pretest-posttest

design, focusing on estimation of the treatment effect. We quantify treatment effects using the

win probability, defined as the probability that a randomly selected subject in the treatment

group has a more favourable outcome than one in the control group. The methods for data

analysis and sample size planning for estimating win probability rely on subject-specific win

fractions created from outcome measurements at baseline and follow-up. Specifically, the win

fraction for a subject is given by the difference between the rank of the observation among all

observations in the combined sample of two groups and its rank among observations in its own

group divided by the sample size of the comparison group. The cluster-adjusted analysis of

covariance is then applied to win fractions created from baseline and follow-up measurements.

The proposed methods, which may be considered as an extension of Zou (2021) for follow-up

measurements, are applicable to studies with binary, ordinal, count, and continuous outcomes

without making parametric assumptions.

Simulation results demonstrated that the methods for constructing confidence intervals for

the win probability performed well in terms of coverage and average interval width, even when

the number of clusters is small as 5 clusters per arm. The methods for sample size estimation

also performed well in terms of the probability of achieving a pre-specified precision.

The methods are illustrated using data from two published cluster randomization trials with
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Summary for lay audience

Cluster randomization trials are popular in situations where the intervention needs to be

implemented at the cluster level, or logistical and/or financial reasons require the choice of

randomization at the cluster level, or minimization of contamination is needed. It is very

common for cluster trials to take measurements before randomization and again at follow-up,

resulting in a clustered pretest-posttest design. For continuous outcomes, the cluster-adjusted

analysis of covariance approach can be used to adjust for accidental bias and improve efficiency.

However, a direct application of this method is inappropriate if the measurements are not on an

interval scale, yet such data are very common in practice.

In this thesis, we propose nonparametric methods for trials with a clustered pretest-posttest

design, focusing on estimation of the treatment effect. We quantify treatment effects using the

win probability, defined as the probability that a randomly selected subject in the treatment

group has a more favourable outcome than one in the control group. The methods for data

analysis and sample size planning for estimating win probability rely on subject-specific win

fractions created from outcome measurements at baseline and follow-up. Specifically, the win

fraction for a subject is given by the difference between the rank of the observation among all

observations in the combined sample of two groups and its rank among observations in its own

group divided by the sample size of the comparison group. The cluster-adjusted analysis of

covariance is then applied to win fractions created from baseline and follow-up measurements.

The proposed methods, which may be considered as an extension of Zou (2021) for follow-up

measurements, are applicable to studies with binary, ordinal, count, and continuous outcomes

without making parametric assumptions.

Simulation results demonstrated that the methods for constructing confidence intervals for

the win probability performed well in terms of coverage and average interval width, even when

the number of clusters is small as 5 clusters per arm. The methods for sample size estimation

also performed well in terms of the probability of achieving a pre-specified precision.
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Chapter 1

Introduction

Randomized controlled trials are important tools to assess the magnitude of treatment effects

in evidence-based medicine, where individual subjects are allocated into different intervention

arms, and the outcomes between study arms are compared. Conventional trials randomize in-

dividuals into different study arms; however, randomizing clusters (groups) of individuals into

different intervention arms could be the more feasible design due to practical reasons, such as

avoiding logistic convenience or intervention contamination (Donner et al., 1981). Trials with

such a design are referred to as cluster randomization trials and are often chosen to evaluate

the effectiveness of educational programs or policy change because the implementation of the

intervention occurs at the cluster level.

As in individually randomized trials, it is common for cluster randomization trials to mea-

sure the outcome variable at baseline and include it in the analysis to increase the efficiency

and control for accidental imbalance at baseline. Analysis of covariance (ANCOVA) with ad-

justment for clustering is generally recommended to analyze data from cluster trials with such

a design (Hooper et al., 2018). However, this approach could be invalid or inappropriate when

mean comparisons of the outcome have no clear interpretation, which is common when the

outcome is measured on an ordinal scale, such as the Likert scale or the modified Rankin scale.

We consider an effect measure that requires no unit of the outcomes for interpretation, defined
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2 Chapter 1. Introduction

as the probability of one randomly chosen participant in the treatment arm having a better

outcome over a randomly selected participant in the control arm (Zou, 2021). Although Zou

(2021) refers to this probability as the Mann-Whitney (MW) probability, reflecting the under-

lying parameter in the MW test, we prefer the term win probability (WinP) and focus on its

estimation for cluster randomization trials with baseline measurements in this thesis. We also

develop corresponding formulas for sample size estimation. The development of our methods

is motivated by Zou (2021) based on ranks and extended to include baseline measurements to

increase efficiency and reduce bias from accidental baseline imbalance.

We will briefly introduce randomized controlled trials, followed by a brief review of ana-

lyzing trials that involve ordinal scale outcomes and their limitations in current literature. We

will also review sample size estimation and discuss the statistical challenges. Finally, we will

finish this chapter with the objectives and organization of this thesis.

1.1 Randomized controlled trials

A randomized controlled trial allocates participants randomly into the control group or the in-

tervention group, such that the group assignment for a participant is purely due to chance and

free of confounding from other factors. Randomization enables the statistical testing of no

treatment effect by creating comparable groups that only differ by interventions; hence, we can

quantify how likely the differences between study groups are merely due to chance. Statisti-

cal theories based on identical distribution and independent observations are often applied to

analyze data from such trials to estimate an effect measure that answers clinically important

questions.

Three fundamental issues in designing a trial include: specifying eligibility criteria for en-

rolling subjects, choosing meaningful interventions and defining outcome measurements that

are reliable and responsive (Pocock, 2013). The treatment effect is then quantified by com-

paring the outcomes between studying arms according to the scientific questions. Common
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effect measures to quantify treatment effects are mean difference for continuous outcomes, risk

difference/ratio for binary outcomes and hazard ratio for survival outcomes.

Although the focus of randomized controlled trials is to compare the outcome after the par-

ticipants received the intervention for some defined time periods, it is common to utilize the

information of the same outcome variable measured before randomization. The benefit of in-

cluding the baseline measurement in an analysis of covariance is that it improves efficiency and

adjusts for accidental bias caused by baseline imbalance (Vickers and Altman, 2001). However,

such an approach could yield mean comparisons which are challenging to interpret when the

outcome is measured in an ordinal scale, or the outcomes do not have a clear and interpretable

unit.

1.2 Measurement scale and effect measure

To define a meaningful effect measure, it is important to consider the measurement scale of the

outcomes. The measurement scale can be categorized into four types: nominal, ordinal, inter-

val and ratio, where the latter measurement scales contain more information (Stevens, 1946).

Nominal outcomes are mutually exclusive categories that cannot be compared numerically,

such as region, gender or blood type. Ordinal outcomes allow the determination of greater,

equal or lesser for any two outcomes, but the equality of intervals does not hold. For example,

in the stage of cancer, the later stage implies severer cancer, but a progression from stage III to

stage IV is not the same as a progression from stage I to stage II (intervals are not equal). The

well-known Likert scale that each item goes from 1=‘strongly disagree’ to 5=‘strongly agree’

also falls into this category (Likert, 1932). Interval or ratio scales are often dimensional phe-

nomena that can be directly measured, such as body temperature in Celsius and blood pressure

in millimetres of mercury (mmHg). Differences in the numeric values in the interval and ratio

scale are meaningful and can be compared; however, we cannot compare the differences in the

numeric values for ordinal outcomes. Hence, statistical methods for ordinal outcomes can be
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applied to interval and ratio outcomes, but not vice versa.

The development of methods in this thesis will be focused on ordinal and the methods

are also applicable to interval and ratio scales, without relying on the normality assumption.

Ordinal outcomes are commonly used in medical research when the phenomenon cannot be

directly measured, such as the intensity of pain, depression and lifestyle changes which often

involve self-reported questionnaires. With more and more rating scales being developed in

different specialties, ordinal scales are often used in medical studies (Svensson, 2000). For

example, the visual analogue scale measures the participants’ pain intensity on a 10-point scale

(continuous), with 0 being no pain and 10 being the worst pain (Huskisson, 1974). Another

example is the modified Rankin Scale widely used in stroke trials (Broderick et al., 2017). It is

a 7-point scale representing ‘no symptom at all, ‘no significant disability despite symptoms’,

‘slight disability’, ‘moderate disability’, ‘moderately severe disability’, ‘severe disability’ and

‘death’.

Ordinal outcomes do not have meaningful units but can be comparable, where greater,

lesser or equal can be determined between two outcomes. The numbers assigned to the ordi-

nal outcomes are arbitrary, leading to different mean differences when different numbers are

assigned. Stevens (1946) suggests that outcomes should be analyzed with statistics invariant

under the measurement scale, in other words, the analysis method should yield the same result

regardless of the numbers assigned to the ordinal outcomes. A natural way to analyze ordinal

outcomes is to use only the rank information of the outcomes, which guarantees invariance

after rescaling.

In practice, ordinal outcomes are often tested by a two-sample t-test or Mann-Whitney

(MW) test representing parametric and nonparametric approaches, respectively (Forrest and

Andersen, 1986). The t-test tests whether the two intervention arms have the same mean,

whereas the MW tests whether the outcomes from the two intervention arms come from the

same distribution. Parametric methods such as a t-test could increase the chance of erroneous

conclusions when applied to the data on ordinal scale (Jamieson, 2004). Additionally, the
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assignment of different numeric to ordinal outcomes can result in different magnitudes of mean

differences, complicating the interpretation of the treatment effect.

Another problem using parametric methods on ordinal outcomes is that averaging ordinal

outcomes is not sensible when the interval between each unit could have a different meaning

(Kuzon et al., 1996). For example, averaging 0=‘no symptom at all’ and 6=‘death’ in the

modified Rankin Scale results in 3=‘moderate disability’. It is hard to argue that going from

no symptoms to moderate disability is the same as going from moderate disability to death.

Another difficulty arises in interpreting when a non-integer value appears in mean difference

for ordinal outcomes. For example, it is hard to explain what a 0.7-point improvement means

for a patient. For these two reasons nonparametric methods are more favourable for ordinal

outcomes.

The consolidated standards of reporting trials (CONSORT) have encouraged researchers

to not only report hypothesis testing but also report the effect size with a confidence interval

(Moher et al., 2010). For ordinal outcomes, the probability of a treated outcome is more

favourable than a randomly untreated outcome can be more easily understood by most people

compared to the mean difference (Moses et al., 1984). This probability has various names in the

medical research literature, such as the area under the receiver operating characteristic curve

(AUC) literature (Bamber, 1975), relative effect (Brunner and Munzel, 2000), concordance

statistic (Harrell et al., 1996; Zou et al., 2022), the probability of a better outcome (Colditz

et al., 1988) and the win probability (Hayter, 2012; Zou et al., 2022, 2023). We will refer

to this effect measure as the win probability (WinP) throughout this thesis because it better

conveys the core idea of this measure. The WinP came from the estimand of the MW test

and was recognized long ago to be a suitable effect size measure for ordinal outcomes (Moses

et al., 1984). The journal Statistics in Medicine in 2006 devoted a special issue to confidence

intervals for the WinP with independent outcomes (D’Agostino et al., 2006).
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1.3 Cluster randomization trials

A cluster randomization trial, also referred to as a group randomization trial, randomizes

groups of individuals into different intervention arms, where individuals in the assigned groups

receive the same intervention (Donner et al., 1981). Clusters can be formed from various types

of intact units, such as communities, patients registered under the same general practitioners,

or groups formed temporarily (Donner and Klar, 2000).

Randomizing clusters is done for practical reasons such as increasing intervention com-

pliance, reducing the risk of contamination, and avoiding logistic inconveniences of the trial

(Donner and Klar, 2000). Such design has become the standard for evaluating educational and

healthcare programs. It is also popular for vaccine efficacy trials to capture population-level

effects (Hayes and Moulton, 2017).

A cluster randomization trial is less efficient than an individual randomization trial with the

same number of individuals because the outcomes within the same cluster are more likely to

be similar to each other than the outcomes from different clusters (Donner and Klar, 2000).

Such correlation could be due to the similarities of characteristics within clusters, such as

socioeconomic status, disease severity or other demographics because individuals within the

same cluster could interact with each other. For example, if households were recruited in a

trial, the members would likely influence each others’ outcomes. Due to the correlated nature

of individuals within clusters, statistical methods for cluster randomization trials must account

for within-cluster correlation (Donner et al., 1981).

Designing and analyzing cluster randomization trials have largely been based on paramet-

ric methods for continuous or binary outcomes (Donner and Klar, 2000; Hayes and Moulton,

2017). However, analyzing ordinal outcomes in cluster randomization trials based on paramet-

ric methods that aggregate the outcomes as cluster-specific means and compare them could be

questionable because comparing cluster-specific means is meaningless with ordinal outcomes.

Zou (2021) proposed to use nonparametric methods to quantify the treatment effect in clus-
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ter randomization trials using WinP, where WinP was referred to as the MW probability. The

method can be summarized in two steps. First, outcomes are transformed into the win frac-

tions, obtained by subtracting the rank of such outcome in its own arm from its rank among the

whole sample and divided by the sample size of the comparison arm. Second, the WinP and

its variance are estimated with mean win fractions and variance of win fractions, respectively.

This method is compatible with any type of outcome, including continuous, ordered category,

binary and count outcomes, as they can all be transformed into win fractions from rankings.

1.4 Baseline adjustment for cluster randomized trials

It is common for participants to be assessed before and after receiving the intervention in

cluster randomization trials, resulting in a pretest-posttest design. There are three approaches

for analyzing the outcomes of such trials. The first focuses on analyzing the posttest outcome,

ignoring the pretest outcome. The second approach analyzes the difference between pretest and

posttest outcomes, resulting in a change from baseline analysis. The third approach analyzes

posttest outcomes, treating pretest outcomes as a covariate, commonly known as the analysis

of covariance (ANCOVA). Although all three approaches provide unbiased estimates of the

treatment effect in randomized controlled trials, the ANCOVA approach provides the highest

power because some of the posttest variances are explained by the pretest, hence reducing

the residual variance (Van Breukelen, 2006). Another appealing property of ANCOVA in a

randomized study is that it provides a consistent estimate of the treatment effect even if the

effect between the pretest and postest is non-linear or the interaction term is misspecified (Yang

and Tsiatis, 2001), and the variance estimate is also robust to misspecification (Wang et al.,

2019) if randomization ratio is 1:1, or if the sandwich estimator is used for variance estimation

(Bartlett, 2020).

Accounting for baseline is more appealing and important for cluster randomization trials

than individual randomization trials for a few reasons. Accidental imbalance is more likely
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to occur in cluster randomization trials when a small number of clusters are randomized. Ad-

ditionally, cluster randomization trials require more participants to maintain the same power

as individual randomization trials. Thus, increasing power through baseline adjustment could

reduce the cost of the trial.

For continous outcomes, the ANCOVA approach can be implemented with the mixed model

approach (Laird and Ware, 1982) or the generalized estimating equation (GEE) method (Liang

and Zeger, 1986) to account for the correlated outcomes in cluster randomization trials. The

mixed model includes a fixed effect from the treatment and a random effect from clustering to

account for correlation within clusters.

The GEE method treats the clustering effect as a nuisance parameter and focuses on esti-

mating the marginal effect of the treatment on the response. The method requires specifying

a covariance structure of the marginal means for estimation. However, the treatment effect

can be consistently estimated even if the covariance structure is misspecified. The treatment

effect estimated from the GEE is the population-averaged effect regardless of which cluster the

individuals belong to. On the other hand, the treatment effect from the mixed model is the

conditional effect of the individuals belonging to the same cluster. When the treatment effect

is expressed as the mean difference on the raw scale, the population-averaged effect and the

conditioned effect are the same (Hubbard et al., 2010). However, for binary and ordered cate-

gory outcomes, this property does not hold when the effect measure requires a non-linear link

function between the outcome and covariates.

There is currently little research on nonparametric methods for baseline adjustment in clus-

ter randomization trials. Based on the methods by Zou (2021), we propose two baseline adjust-

ment approaches for the WinP. The first one extends the weighted least square method proposed

by Koch et al. (1998) to cluster randomization trials with (co)variance estimators incorporat-

ing the clustering effect (Zou, 2021). The WinP is adjusted by the magnitude of the baseline

imbalance and the strength of the correlation between baseline and follow-up in the weighted

least square method. It is similar to ANCOVA approach but uses a weighted least square es-
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timator instead, resulting in a different correlation estimate between baseline and follow-up.

The second one extends the mixed model ANOVA for estimating WinP in Zou (2021) by in-

cluding the baseline win fractions as a covariate. Although it is known that the weighted least

square method is asymptotically equivalent to ANCOVA for independent outcomes (Lesaffre

and Senn, 2003), such a result does not hold for correlated outcomes, which will be discussed

in Chapter 3.

1.5 Sample size for Mann-Whitney test

There are a large number of sample size formulas for the MW test. The most simple formula

involves only the variance of the MW test under the null hypothesis and assumes the data has

no ties (Noether, 1987). The variance under the null is a function of the sizes of both arms.

Therefore, the formula by Noether (1987) is convenient to use but at the cost of imprecision

when the true effect is far from the null because the variance under the alternative depends

on the distribution function of the outcomes and could be far from the variance under the

null. Additionally, omitting ties can result in increasing variance for the treatment effect hence

increasing the required sample size. The remedy for this problem is to incorporate the variance

of the MW test under both the null and alternative hypotheses while accounting for ties. Most

work in the literature assumes the outcome follows certain distributions to derive the variance

of the MW test under the alternative hypothesis and derive sample size formulas based on it

(Rahardja et al., 2009; Happ et al., 2019).

Another sample size estimation approach uses proportional odds assumption for the ordinal

data (Whitehead, 1993). The proportional odds assumption implies that if we collapse the 2×K

frequency table of the outcomes (assuming K categories for the outcomes) into a 2× 2 table by

selecting a category as the cutoff, the odds ratios are the same regardless of which category is

selected. The proportional odds assumption is usually hard to check beforehand, and it could

deteriorate the precision of the sample size formula when such an assumption is violated.
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The CONSORT, the standard guideline for reporting clinical trials, emphasizes the limit

of reporting a single p-value and encourages reporting confidence intervals. The sample size

formulas covered by Rahardja et al. (2009) and Happ et al. (2019) are based on hypothesis

testing, which focuses on detecting the treatment effect away from the null hypothesis. Those

sample size formulas could be less useful for trials focusing on estimating the treatment effect

as the null hypothesis is not of interest.

For individually randomized trials, Zou et al. (2022, 2023) developed sample size formulas

focused on the estimation of WinP. They use win fraction from pilot data to obtain the variance

components for sample size estimation. One can also generate hypothetical pilot data based

on expert knowledge of the treatment effect on the outcome distribution, the win fractions can

then be derived and their variance can be used for sample size estimation. Since their method

uses ranks to calculate the win fractions, it can be easily applicable to continuous, binary and

ordered category outcomes, as long as they can be ranked. To our knowledge, there is no

sample size formula for estimating WinP in cluster randomization trials.

1.6 Objectives and organization of the thesis

This thesis aims to provide statistical methods for analyzing and determining sample size for

cluster randomization trials with baseline measurements. The specific objectives are:

1. Propose the WinP estimator adjusted for baseline measurements in cluster randomization

trials using the weighted least square approach and mixed model approach.

2. Derive the variance estimators for the adjusted WinP estimates and their asymptotic prop-

erties. Compare the efficiency of the weighted least square approach to the mixed model

approach.

3. Derive sample size formulas focusing on confidence interval estimation for cluster ran-

domization trials with baseline adjustments. Discuss important design considerations,

such as the properties of the correlation coefficient associated with WinP.
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4. Evaluate the finite sample performance of our proposed methods to estimate the WinP in

cluster randomization trials using simulation studies focusing on the coverage rate and

confidence interval width.

5. Evaluate the performance of sample size formulas using simulation studies focusing on

the assurance probability, that is the probability of the lower limit of WinP exceeds a

prespecified precision.

The thesis is organized as follows. We review the literature on WinP in Chapter 2, followed

by proposed methods for confidence interval estimation of WinP in Chapter 3 and sample

size estimation in Chapter 4. The performance of the proposed methods is evaluated through

simulation in Chapter 5. Chapter 6 illustrates the methods using data from two cluster ran-

domization trials. Finally, we summarize the thesis, discuss our findings, and suggest future

research directions in Chapter 7.



Chapter 2

Win probability in randomized controlled

trials

The purpose of this chapter is to review relevant or essential methods for the win probability

(WinP) in randomized controlled trials. We will provide a formal definition of the WinP and

review its relation to other effect measures in clinical trials. We will first review methods of

WinP for an individual randomization trial in Section 2.1, which includes baseline adjustment

methods and sample size estimation, followed by methods of WinP for cluster randomization

trials in Section 2.2.

2.1 Definition of the win probability

Consider a two-arm individual randomization controlled trial. Suppose ni subjects are allocated

to arm i, with i = 1 for control and i = 2 for treatment. The size of the trial is therefore

N = n1 + n2. Let Yi j denote the outcome of the jth subject, j = 1, 2, · · · , ni, in the ith arm.

Denote the left-continuous distribution function as F−(x) = P(X < x) and right-continuous

as F+(x) = P(X ≤ x), we define the distribution function as the average of right- and left-

12
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continuous distribution functions

F(x) = 0.5[F−(x) + F+(x)] = P(X < x) + 0.5P(X = x) (2.1)

to handle data with ties (Akritas et al., 1997). Denote the outcomes from arm i follows Yi, the

win probability (WinP) is defined as,

WinP =
∫

F1(x)dF2(x) = Pr(Y2 > Y1) + 0.5Pr(Y2 = Y1) , (2.2)

which is the probability that a randomly chosen outcome in the treatment arm wins (or is better

than) a randomly chosen outcome in the control arm plus half the probability of a tie. This

definition includes ties making it more useful for ordinal outcomes where ties occur naturally.

The assigned weight of 0.5 for tied outcomes is a result of randomly breaking the ties without

favouring any arm (Putter, 1955). When there is no treatment effect, the distributions of both

intervention arms are the same, hence WinP=0.5. A higher WinP indicates a stronger positive

treatment effect, with a value of one implying that all participants in the treatment arm have a

better outcome than the participants in the control arm.

There are various names for WinP in the literature due to its usefulness in comparing two

groups in medical studies. Zou et al. (2023) identified at least 12 terms for WinP includ-

ing the area under the receiver operating characteristic curve in diagnostic literature (Bamber,

1975), the concordance statistic in evaluating the performance of prediction models (Harrell

et al., 1996; Zou et al., 2022), the relative treatment effect (Brunner and Munzel, 2000) and

probabilistic index (Thas et al., 2012). Since the WinP is an underlying measure of the Mann-

Whitney (MW) test, it is also referred to as the MW probability (Newcombe, 2006; Zou, 2021).

We prefer the term WinP because it does not require a statistics background to understand win-

ning and it better conveys the benefit of receiving the treatment.

The WinP is related to many other effect measures. For binary outcomes, the WinP is
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related to risk difference ∆ by

WinP = (∆ + 1)/2 .

For ordered categories with pi as the row vector of proportions for each category for arm i,

WinP = p1Ωp′2 ,

where p′2 denotes the transpose of p2 and Ω is an upper triangle matrix of ones but half on

the diagonal (Zou, 2021). For continuous outcomes from normal distributions Yi ∼ N(µi, σ
2
i ),

WinP can also be written as

WinP = Pr(Y1 < Y2) = Pr(Y1 − Y2 < 0)

= Pr

Y1 − Y2 − (µ1 − µ2)√
σ2

1 + σ
2
2

<
−(µ1 − µ2)√
σ2

1 + σ
2
2


= Pr

Z < µ2 − µ1)√
σ2

1 + σ
2
2


= Φ

 µ2 − µ1√
σ2

1 + σ
2
2

 ,
where Φ is the standard normal cumulative distribution function. The special case of equal

variance (σ2
1 = σ

2
2 = σ

2) yields WinP = Φ(ES/
√

2) where ES = (µ2 − µ1)/σ is the Cohen’s

effect size (Cohen, 1988). As a reference benchmark for the Cohen’s effect size, values 0.2,

0.5 and 0.8 are considered as small, medium and large effect size, which corresponds to 0.56,

0.64 and 0.71, respectively, for WinP.

Another useful treatment effect measure is the number needed to treat (NNT), which is the

expected number of patients needed to be treated until there is one more patient with a better

outcome. It is the reciprocal of risk difference for binary outcomes (Laupacis et al., 1988).
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Therefore, NNT can also be obtained from WinP for binary outcomes by

NNT =
1

2WinP − 1
.

For continuous and ordered categories outcomes, Zimmermann and Rahlfs (2014) showed that

NNT =
1

WinP − 0.5
,

by calculating areas of risk differences on the percentile-percentile plot comparing the distri-

butions between treatment and control arms. The NNT is interpreted as the number needed to

treat to see an improvement of one category on average for ordered category outcomes. The

linear relationship between WinP and other treatment effect measures suggests that WinP can

be easily transformed for other effect size measures.

2.1.1 Estimators of the win probability and variance

Most of the literature relates WinP estimation to the U-statistic theory where WinP can be

estimated by

ŴinP =

∑n1
i=1

∑n2
j=1 Hi j

n1n2
. (2.3)

where Hi j = H(Y1i,Y2 j) = I(Y1i < Y2 j) + 0.5I(Y1i = Y2 j) is the Heaviside function yielding

values of 1, 0, 0.5 for a win if Y2 j > Y1i, a loss if Y2 j < Y1i and ties if Y2 j = Y1i, respectively.

The Heaviside function is referred to as the kernel in U-statistic theory (DeLong et al., 1988),

where asymptotic properties are derived with the kernel as the basic unit (Lee, 1990). The

values of the kernel are correlated to each other by definition since they share the same indices.

The variance formula is given by (Bamber, 1975)

Var(ŴinP) = [WinP(1 −WinP) + (n1 − 1)Q1 + (n2 − 1)Q2] /n1n2 ,
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where Q1 = Cor(Hi j,Hk j) and Q2 = Cor(Hi j,Hik) are the correlations between two Heaviside

functions comparing one outcome from one arm to two outcomes from the other arm. We can

estimate Qi empirically by

Q̂1 =

∑n1
i=1

∑n1
k,i

∑n2
j=1 Hi jHk j

n1n2(n1 − 1)
− ŴinP

2

Q̂2 =

∑n1
i=1

∑n2
j=1

∑n2
k, j Hi jHik

n1n2(n2 − 1)
− ŴinP

2
,

where the calculation can be demanding because of the triple summation over the Heaviside

functions.

A common approach to reducing the calculation complexity is to assume parametric as-

sumptions of the outcomes, where Q1 and Q2 can be expressed as a function of WinP. Hanley

and McNeil (1982) used the negative exponential distribution for Y1 and Y2 to yield Q1 =

2WinP2/(1 +WinP) −WinP2 and Q2 = WinP/(2 −WinP) −WinP2, which provide the most

conservative variance estimate among the exponential family. Newcombe (2006) used the beta

distribution for Y1 ∼ Beta(1, γ + 1) and Y2 ∼ Beta(γ, 1), where Γ is the gamma function and γ

is solved in ŴinP = 1 − Γ2(γ + 1)/Γ(2γ + 1), where ŴinP is estimated by equation (2.3). The

variance of ŴinP in this model is

Var(ŴinP) =
(n1 + n2 − 2)[1 − 2Γ2(γ + 1)/Γ(2γ + 1) + Γ(2γ + 1)Γ(γ + 1)/Γ(3γ + 1)]

n1n2

+
WinP(1 −WinP)

n1n2
.

These variance formulas can be used to construct Wald-type confidence interval by substitut-

ing WinP with ŴinP in the variance formulas for ŴinP ∓ zα/2
√

Var(ŴinP), or Wilson score

confidence interval by solving |ŴinP −WinP|/
√

Var(ŴinP) ≤ zα/2 for WinP, where zx is the

upper quantile of a standard normal distribution.

Newcombe (2006) conducted simulation studies to compare Wald-type interval to Wilson

score interval with the negative exponential variance estimator. His simulation study showed
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Table 2.1: Relation between the win fractions and the Heaviside function for estimating WinP.
XXXXXXXXXXXXTreatment

Control
Y11 Y12 · · · Y1n1 Win fraction

Y21 H11 H12 · · · H1n1 w21 = H1.

Y22 H21 H22 · · · H2n1 w22 = H2.
...

...
...

. . .
...

...

Y2n2 Hn21 Hn22 · · · Hn2n1 w2n2 = Hn2.

Win fraction w11 = 1 − H.1 w12 = 1 − H.2 · · · w1n1 = 1 − H.n1 ŴinP = H..
Note: Hi j = I(Y1i < Y2 j) + 0.5I(Y1i = Y2 j) and ŴinP = H.. = w2. = 1 − w1..

that Wald-type interval yields under-coverage and wider intervals, whereas Wilson score in-

terval with the negative exponential variance estimator and the average size of two arms by

n∗1 = n∗2 = (n1 + n2)/2 − 1 (use n∗1 and n∗2 instead of n1 and n2 in variance formula) main-

tains the coverage rate for most combinations of WinP and the distribution of the outcomes.

However, the nuisance parameters Q1 and Q2 could be poorly estimated when the parametric

assumptions are violated (Perme and Manevski, 2019). It is unreliable to estimate the variance

without empirically estimating Q1 and Q2 as the correlation between the kernels Hi j could vary

by the choice of outcome distributions.

To reduce the calculation complexity without parametric assumption, one can first trans-

form the outcome to ‘win fraction’ and then estimate the variance of ŴinP with win frac-

tions. The win fraction, denoted by wi j, of an outcome is the proportion of ‘wins’ it achieves

compared to all the outcomes in the other arm. The win fraction can be calculated from the

Heaviside function, and the WinP can be estimated by averaging the win fractions. We have

demonstrated the calculation of the win fractions and the WinP in Table 2.1. Note that the win

fraction is related to the distribution functions that the win fraction of subject j in the treatment

arm is w2 j = P(Y1 < Y2 j) + 0.5P(Y1 = Y2 j) = F̂1(Y2 j) and can be viewed as the probability for

subject j in the treatment arm winning a randomly selected subject in the control arm (Zou,

2021). Similarly, w1 j = F̂2(Y1 j), as the probability for subject j in the control arm winning a

randomly selected subject in the treatment arm. The calculation of the win fraction can then

be simplified using ranks by utilizing the relationship between the win fraction and the empir-
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ical distribution function. The rank of Yi j in arm i, denoted by ri j, is related to the empirical

distribution function Fi by

ri j =

ni∑
k=1

I(Yik < Yi j) + 0.5
ni∑

k=1

I(Yik = Yi j) + 0.5

= ni

∑ni
k=1

[
I(Yik < Yi j) + 0.5I(Yik = Yi j)

]
ni

+ 0.5

= niF̂i(Yi j) + 0.5 .

The first equality follows by the counting process occurred in ranking Yi j in arm i. We first

count how many outcomes are less than our given outcome as C1 =
∑ni

k=1 I(Yik < Yi j), and count

the number of tied outcomes as C2 =
∑ni

k=1 I(Yik = Yi j). The rank of Yi j is then C1 + C2/2 +

0.5. The second equality then follows naturally by the empirical estimator of the distribution

function

F̂i(Yi j) =

∑ni
k=1

[
I(Yik < Yi j) + 0.5I(Yil = Yi j)

]
ni

.

Similarly, the rank of Yi j in the whole sample is related to the combined distribution by Ri j =

NF̂(Yi j)+ 1
2 , where F̂(x) is the empirically estimated distribution function from combining both

arms, NF̂(x) = n1F̂1(x) + n2F̂2(x). We can estimate the win fraction wi j from Ri j and ri j by

w2 j = F̂1(Y2 j) =
NF̂(Y2 j) − n2F̂2(Y2 j)

n1
=

R2 j − r2 j

n1

w1 j = F̂2(Y1 j) =
NF̂(Y1 j) − n1F̂1(Y1 j)

n2
=

R1 j − r1 j

n2
.

The quantities w2 j and 1 − w1 j are also referred to as the placement value(Hanley and Hajian-

Tilaki, 1997), structural components of U-statistics and ‘ridits’ (relative to an identified distri-

bution) as pointed out by Zou et al. (2023).
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To derive the variance of ŴinP, the ŴinP is decomposed by Zou (2021) as

ŴinP =
∫

F̂1(x)dF̂2(x)

=

∫
F̂1(x) − F1(x) + F1(x)d

(
F̂2(x) − F2(x) + F2(x)

)
=

∫
F̂1(x) − F1(x) + F1(x)d

(
F̂2(x) − F2(x)

)
+

∫
F̂1(x) − F1(x) + F1(x)dF2(x)

=

∫
F̂1(x) − F1(x)d

(
F̂2(x) − F2(x)

)
+

∫
F1(x)dF̂2(x) −

∫
F1(x)dF2(x)

+

∫
F̂1(x)dF2(x)

=

∫
F1(x)dF̂2(x) +

∫
F̂1(x)dF2(x) −WinP +

∫
F̂1(x) − F1(x)d

(
F̂2(x) − F2(x)

)
=

∫
F1(x)dF̂2(x) + 1 −

∫
F2(x)dF̂1(x) −WinP +

∫
F̂1(x) − F1(x)d

(
F̂2(x) − F2(x)

)
≈ 1 −WinP +

∫
F1(x)dF̂2(x) −

∫
F2(x)dF̂1(x) , (2.4)

because
∫

F̂1(x)dF2(x) = 1−
∫

F2(x)dF̂1(x) by integration by parts and
∫

F̂1(x)−F1(x)d
(
F̂2(x) − F2(x)

)
converges to zero in probability since empirical distributions are consistent estimators. The

equation (2.4) implies the variance of ŴinP is obtained by

Var(ŴinP) = Var
[
1 −WinP +

∫
F1(x)dF̂2(x) +

∫
F2(x)dF̂1(x)

]
= Var

[∫
F1(x)dF̂2(x)

]
+ Var

[∫
F2(x)dF̂1(x)

]
= Var


∑n1

j=1 F̂2(Y1 j)

n1

 + Var


∑n2

j=1 F̂1(Y2 j)

n2


= Var(w1.) + Var(w2.) , (2.5)

where Var(wi.) can be estimated consistently by the sample variance of win fractions. The

win fractions are asymptotically independent as long as n1 → ∞ and n2 → ∞ and w1 j and w2 j

converge to F2(Y1 j) and F1(Y2 j), respectively. A rigorous proof of the asymptotic independence

is provided by Sen (1967). Zou et al. (2023) also showed that the covariance between two win
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fractions within the same arm is bounded by the inverse sample size of the other arm.

2.1.2 Baseline adjustment for win probability

In randomized controlled trials, the outcomes are often measured at baseline and the follow-up

after interventions. Adjustment of the baseline outcome is recommended in the CONSORT

statement for clinical trials (Moher et al., 2010). The main purpose of baseline adjustment in

randomized controlled trials is to improve efficiency by variance reduction. The stronger the

correlation between baseline and follow-up, the more efficiency is gained. In addition, baseline

adjustment reduces accidental bias caused by the imbalance of baseline measurements that

occurred by chance.

Common strategies of baseline adjustment include analysis of covariance (ANCOVA),

which treats the baseline outcome a covariate, t-test on change from baseline to follow-up,

and repeated-measure analysis of variance (ANOVA) with constraints on the baseline. The

ANCOVA is generally considered as the most powerful method for randomized studies in the

literature (Vickers and Altman, 2001). However, direct application of ANCOVA to ordinal

outcomes could yield mean comparisons that is difficult to interpret.

A nonparametric way of adjusting the baseline for the WinP is the weighted least square

method by Koch et al. (1998), which is essentially a regression of the arm-specific mean.

Denote the baseline assessment by Xi j and the baseline imbalance as δ̂ = X2. − X1.. The

weighted least square method regresses Y = (ŴinP, δ̂)
′

to X = (1, 0)
′

by the following model

Y = βX , (2.6)

where β is the adjusted WinP after constraining δ = 0. Since ŴinP and δ̂ are correlated and

have different variances, it is reasonable to weight them based on the inverse of their covariance
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matrix given by

Σ−1 =

 V̂ar(ŴinP) Ĉov(ŴinP, δ̂)

Ĉov(ŴinP, δ̂) V̂ar(δ̂)


−1

=
1

det(Σ)

 V̂ar(δ̂) −Ĉov(ŴinP, δ̂)

−Ĉov(ŴinP, δ̂) V̂ar(ŴinP)

 ,

where det(Σ) = V̂ar(ŴinP)V̂ar(δ̂)−Ĉov
2
(ŴinP, δ̂) is the determinant of the covariance matrix of

Y . The weighted least square estimator of adjusted WinP, denoted as ŴinP
∗

, is hence obtained

as

ŴinP
∗

= β̂ = (X
′

Σ−1X)−1X
′

Σ−1Y

= ŴinP −
Ĉov(ŴinP, δ̂)

V̂ar(δ̂)
δ̂ (2.7)

and the variance for this estimator can be estimated with

V̂ar(ŴinP
∗

) = (X
′

Σ−1X)−1X
′

Σ−1V̂ar(Y)(Σ
′

)−1X(X
′

Σ−1X)−1

= Var(ŴinP) −
Cov2(ŴinP, δ̂)

Var(δ̂)
, (2.8)

where the covariance between ŴinP and δ̂ can be estimated by decomposing it into the sum-

mation of sample covariances between win fractions and baseline measurements for both arms;

detailed proof is provided in Chapter 3.

Alternatively, the weighted least square method for adjusting WinP can be explained by

the conditional distribution of ŴinP. Consider ŴinP and δ̂ follow a bivariate normal with

mean u = (WinP, 0)
′

and the covariance matrix Σ. The conditonal distribution of ŴinP given δ̂
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follows a normal distribution with a mean of

uc =WinP +
Cov(ŴinP, δ̂)

Var(δ̂)
δ̂ ,

and variance of Var(ŴinP) − Cov2(ŴinP, δ̂)/Var(δ̂). This implies the unadjusted estimator of

WinP is biased by the difference between marginal and conditional mean for WinP. An unbiased

adjusted estimator for WinP can then be obtained by

ŴinP
∗

= ŴinP −
Ĉov(ŴinP, δ̂)

V̂ar(δ̂)
δ̂

and the variance of this estimator can be estimated by

V̂ar(ŴinP
∗

) = V̂ar(ŴinP) −

[
Ĉov(ŴinP, δ̂)

]2

Var(δ̂)
.

These are equivalent to weighted least square estimators shown in equations (2.7) and (2.8),

respectively.

Another way to quantify the baseline imbalance is to use WinP of baseline instead of the

mean difference (Schacht et al., 2008). In such a case, the term δ̂ in (2.7) is substituted by

ŴinPX − 0.5 where WinPX is the win probability of the baseline measurement.

Recently, Zou et al. (2023) proposed regressing the win fractions of follow-up outcomes,

wi j, by the treatment indicator and the win fractions for baseline measurement using the fol-

lowing linear model

wi j = β0 + β1ti j + β2wx
i j + ϵi j ,

where ti j is the treatment indicator (1 = treatment, 0 = control), wx
i j is the win fraction for

baseline assessment and ϵi j is the error term. Since w2. + w1. = 1 and w2. = ŴinP , the mean

difference in win fractions is related to WinP by w2. −w1. = 2ŴinP− 1. It then follows that the
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adjusted WinP is estimated by ŴinP
∗

= β̂1/2 + 0.5 because β̂1 is the adjusted mean difference

of win fractions between the treatment and control arms for follow-up.

Another regression framework for adjusting WinP is the probabilistic index model (PIM)

by Thas et al. (2012). This model uses the pairwise comparison Hi j as the dependent variable

and the treatment indicator and baseline assessment as independent variables in a regression

model. The PIM approach is much more computationally intensive because they use n1n0

pairwise comparisons to regress, whereas the approach proposed by Zou et al. (2023) only

involves n1 + n0 win fractions to regress. In addition, the PIM requires a logistic link func-

tion to connect WinP and the covariates, which can cause noncollapsibility problem yielding

different interpretation between adjusted and unadjusted effects (Robinson and Jewell, 1991).

Another drawback is there is no closed-form formula for the variance; bootstrap could be used

to estimate the variance but it is unclear how to extend it to cluster randomization trials.

2.1.3 Confidence interval estimation

Once the adjusted WinP and its variance are estimated, several strategies are available to con-

struct confidence interval for WinP. DeLong et al. (1988) proposed a large sample 2-sided

confidence interval given by

(L1,U1) = ŴinP
∗

∓ zα/2

√
V̂ar(ŴinP

∗

) ,

where zx is the upper quantile of the standard normal distribution. A small-sample correction

can be made by using the t-statistic instead of z-statistic, where the degrees of freedom follows

by Satterthwhaite’s approximation (Brunner and Munzel, 2000),

df =

[
V̂ar(w1.) + V̂ar(w2.)

]2

V̂ar
2
(w1.)/(n1 − 1) + V̂ar

2
(w2.)/(n2 − 1)

.
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Another approach is to use df = N − 2 because the variances of two arm-specific means are

estimated; hence two degrees of freedom are lost.

The range restriction of WinP from 0.5 to 1 suggests that the sampling distribution could

be asymmetric. Therefore, symmetric confidence intervals of WinP could suffer from under

coverage and imbalanced tail errors (Newcombe, 1998), leading to disagreement between hy-

pothesis testing and confidence intervals of the treatment effect. The logit-transformed intervals

that adjust the location can be employed as they yield higher coverage and narrower intervals

(Newcombe, 1998), where the empirical coverage is close to nominal coverage, and the tail

errors are more balanced. The logit-transformed confidence interval (L2,U2) is given by

L2 =
exp(l2)

1 + exp(l2)
, U2 =

exp(u2)
1 + exp(u2)

,

where

l2, u2 = ln
ŴinP

∗

1 − ŴinP
∗ ∓ talpha/2,df

√
V̂ar(ŴinP

∗

)

ŴinP
∗

(1 − ŴinP
∗

)
.

Newcombe (2001) also proposed the arsinh-transformed confidence interval on the logit scale

for binomial proportions, which is essentially the Wilson interval on the logit scale. The arsinh

transformed confidence interval is given by

L3 =
exp(l3)

1 + exp(l3)
, U3 =

exp(u3)
1 + exp(u3)

,

where

l3, u3 = ln
ŴinP

∗

1 − ŴinP
∗ ∓ 2arsinh

tα/2,df

√
V̂ar(ŴinP

∗

)

ŴinP
∗

(1 − ŴinP
∗

)

 ,
and arsinh(x) = ln(x +

√
x2 + 1) is the arsinh transformation. Newcombe (2001) showed that

the asrinh-transformed interval (L3,U3) is always contained in the logit-transformed interval
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(L2,U2), implying the former one has higher efficiency. The degrees of freedom for confidence

interval construction of adjusted WinP follow from the Satterthwaite approximation by Schacht

et al. (2008)

dfs =
(
∑2

i=1 τ
2
i )2∑2

i=1 τ
2
i /(ni − 1)

,

where

τ2
i =

1
ni

V̂ar(wi j) +

 Ĉov(ŴinP, δ̂)

V̂ar(δ̂)

2

V̂ar(Xi j) − 2
Ĉov(ŴinP, δ̂)

V̂ar(δ̂)
Ĉov(wi j, Xi j)

 .
In case where dfs < 1, we use one as degrees of freedom instead.

2.2 Sample size for the Mann-Whitney test

Most sample size formulas related to WinP were developed focused on the Mann-Whitney

(MW) test, which tests whether two groups are from the same distribution against one is

stochastic superior to the other. A distribution is stochastic superior to the other if its cu-

mulative distribution function (CDF) is greater than the other CDF at any point, or graphically

one CDF completely falls under the other.

Denote the size of the trial as N and the fraction of participants in the treatment arm as f .

The treatment and control arm sizes are therefore N f and N(1− f ), respectively. Although the

sample size formula by Noether (1987) is derived from the z-test of the MW test statistic U, it

is the same as sizing of WinP because WinP = U/(n1n2) and n1 and n2 are factored out from U

to derive the sample size. Hence, the sample size for the MW test at α level with 1 − β power

can be derived from a z-test of WinP = 0.5, which can be written as

(zα/2σ1 + zβσ2)2 = (WinP − 0.5)2 , (2.9)

where zx is the upper quantile of a standard normal distribution, σ2
1 and σ2

2 are the variances

of ŴinP under the null and alternative hypothesis, respectively. The next section presents the
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estimation of σ2
i and sample size requirements based on different parametric assumptions.

2.2.1 Continuous outcomes

The variance of ŴinP under the null for continuous outcome was derived by Mann and Whitney

(1947) as σ̃2
1 = (N + 1)/[12N2 f (1 − f )]. One can also arrive with a similar variance formula

using win fractions under the null hypothesis that the outcomes from both groups follow the

same distribution. Under the null hypothesis, the win fractions follow a continuous uniform

distribution U(0, 1) and the variance of win fractions wi j are 1/12 for both group, i = 1, 2.

The variance of ŴinP under the null hypothesis can be derived as the following according to

equation (2.5)

Var(ŴinP|H0) = Var(w1.) + Var(w2.)

=
1

12N f
+

1
12N(1 − f )

=
1

12N f (1 − f )
.

Assuming the variance of ŴinP under the alternative does not differ much from the variance

under the null, σ1 and σ2 are both substituted by σ̃1 into equation (2.9) and solving for N yields

the sample size formula by Noether (1987):

N1 =
(zα/2 + zβ)2

12 f (1 − f )(WinP − 0.5)2 . (2.10)

This formula emphasizes maintaining the significance level, so it is only suitable when WinP

is close to 0.5. When WinP is far from 0.5, the approximation of σ2 by σ1 could be inaccurate,

resulting in over/underestimates of sample size (Shieh et al., 2006). Therefore, it is reasonable

to shift the focus to the distribution of ŴinP under the alternative when the trials focus on

effect estimation, as most trials usually will not have WinP close to 0.5. The variance under
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the alternative was derived by Bamber (1975)

σ̃2
2 = [WinP(1 −WinP) + (n1 − 1)Q1 + (n2 − 1)Q2] /(n1n2) ,

where Q1 = P(Y11 < Y21,Y11 < Y22) − WinP2 and Q2 = P(Y11 < Y21,Y12 < Y21) − WinP2,

respectively. This formula requires estimation of Q1 and Q2 from pilot studies. The probability

P(Y11 < Y21,Y11 < Y22) is estimated empirically by n−1
1 n−1

2 (n2 − 1)−1 ∑n1
i=1

∑n2
j=1

∑n2
k, j Hi jHik,

and P(Y11 < Y21,Y12 < Y21) is estimated similarly by n−1
1 n−1

2 (n1 − 1)−1 ∑n1
i=1

∑n2
j=1

∑n1
k,i Hi jHk j.

Solving the equation (2.9) for N with σ̃2
2 yields a sample size formula similar to Wang et al.

(2003):

N2 =

[
(zα/2 + zβ)

√
12 f Q1 + 12(1 − f )Q2

]2

12 f (1 − f )(WinP − 0.5)2 . (2.11)

The major difference between N2 and N1 is that N2 incorporates the variance under the alter-

native, which improves in maintaining power (Shieh et al., 2006), making it more appropriate

when WinP is not close to 0.5.

When the treatment effect causes a location-shift of the distribution of outcomes, such as

a reduction in blood pressure, it is common to test the group means using a two-sample t-test

due to its high power in most settings (Fay and Proschan, 2010). However, mean comparison

in the t-test requires the outcome to possess interval properties, and the t-test could be less

powerful than the MW test when the treatment also affects the shape of the distributions, such

as skewness or spread. Some authors considered the location-shift alternative hypothesis of

the MW test for sample size planning. Chakraborti et al. (2006) proposed using pilot data to

construct the empirical distribution functions of both intervention arms and then estimate WinP

from the distribution functions. Sample size can then be estimated using either formula (2.10)

or (2.11). Rosner and Glynn (2011) showed that under the normal distribution location-shift

model, the two quantities in σ2
2 can be written as Q1 = Q2 = Φ2(Φ−1(WinP),Φ−1(WinP), 0.5)−

WinP2, where Φ2(a, b, 0.5) = P(Z1 < a,Z2 < b) is the cumulative standard bivariate normal
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distribution function of Z1 and Z2 with their correlation coefficient being 0.5 and Φ−1(WinP)

is the standardized mean difference under normality assumption. Rosner and Glynn’s variance

estimator depends solely on WinP, which could be helpful in the planning stage when Q1 and

Q2 cannot be reliably estimated and the sizes of both groups differ substantially. A disadvantage

of this method is that they are only developed for the location-shift model; when treatment

also affects the shape of the distribution, the validity of this method is unclear. Additionally,

the location-shift assumption may not always be appropriate. For example, suppose a trial

aimed at reducing alcohol consumption and an investigator expects the new intervention to cut

alcohol consumption by half. In that case, a change in the quantile of the distribution by 50%,

i.e F2(x/2) = F1(x), fits better than a location-shift model.

2.2.2 Ordered category outcomes

We have described several sample size formulas for outcomes without ties, which are incom-

patible with ordered category outcomes that have ties naturally. Suppose there are K categories

where category c, c = 1, · · · ,K, has proportion pc in the treatment arm and qc in the control

arm. The variance of ŴinP under the null can then be estimated by (Emerson and Moses, 1985)

σ̃2
1 =

N + 1
12N2 f (1 − f )

−
1

12N3(N − 1) f (1 − f )

K∑
c=1

Tc ,

where Tc = N3[ f pc+(1− f )qc]3−N[ f pc+(1− f )qc] is the variance reduction from conditioning

on the total count of each tie, hence σ̃2
1 is a conditional estimator. Zhao et al. (2008) used a

simpler formula to approximate σ̃2
1 by dropping the second term in Tc yielding

σ̃2
1 =

1 −
∑K

c=1 f pc + (1 − f )qc)3

12N f (1 − f )
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Using the simpler variance for both null and alternative hypothesis in (2.9) and solving for N

yields:

N3 =
(zα/2 + zβ)2

[
1 −

∑K
c=1 { f pc + (1 − f )qc}

3
]

12 f (1 − f )(WinP − 0.5)2 . (2.12)

Wellek (2017) derived the variance under alternative variance by separately estimating Pr(Y1 <

Y2) and Pr(Y1 = Y2) and considering the correlation between Pr(Y1 < Y2) and Pr(Y1 = Y2)

in addition to the correlation of the pairwise comparison of outcomes. Although this method

provides an unbiased formula, it brings in the complicated correlated nature of U-statistics. An

advantage of his formula is that the variance is derived without conditioning on the ties; hence

the variance is usually smaller, leading to a smaller sample size.

Lachin (2011) proposed to plan sample size for categorical outcomes based on the Cochran

– Mantel – Haenszel (CMH) mean score test (Cochran, 1954; Mantel, 1963; Mantel and Haen-

szel, 1959). When the rank of each categories in the whole sample is used as the scores, the

test statistic is a function of the mean rank difference and the variance of the test statistic is

derived by assuming the proportions of each categories follow a multinomial distribution and

the scores for each category are assumed fixed with given sample size. Under the alternative

hypothesis, the test statistic is a squared normal distribution with unit variance and a mean of

Nτ2 =

[∑K
c=1 vc(pc − qc)

]2[
f −1 + (1 − f )−1] ,

where vc =
∑c−1

i=1 hi + 0.5hc is the cumulative probability of category c of combining both arms

with hc = f pc + (1 − f )qc and V = vΣv′ with v = (v1, · · · , vK) and Σ is the (co)variance

matrix of v from a multinomial distribution. The statistic Nτ2 follows a noncentral chi-squared

distribution with one degrees of freedom, hence sample size can be estimated by

N4 =
Φ2(1, α, β)
τ2 , (2.13)
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where Φ2(1, α, β) is the noncentrality parameter (ncp) for the noncentral chi-squared distri-

bution with one degrees of freedom to have 1 − β power in a α level test. In other words,

Pr(χ2
1,ncp < qα) = β where χ2

1,ncp is a noncentral chi-squared distribution with one degrees of

freedom, Φ2(1, α, β) as the noncentrality parameter and qα is the critical value for a chi-squared

distribution with α level.

Happ et al. (2019) proposed to use placement values to estimate the variance of ŴinP under

the alternative as the summation of the arm-specific sample variances of placement values.

Note that placement values are the same as the win fractions in the treatment arm but equal to

one minus the win fractions in the control arm. The variance under the null is obtained by a

pooled sample variance of placement values, with the mean of placement values being forced

to 0.5 under the null hypothesis. They then used these two variances with equation (2.9) for

sample size estimation. Their method also focused on hypothesis testing but is more accurate

when the WinP is not close to the null.

Recently, Zou et al. (2023) proposed to use win fractions to extend sample size formulas

for continuous outcomes to be compatible with any outcomes that can be ranked. The formula

is derived based on the result that the variance for the estimator of WinP can be expressed

by the mean difference of win fractions. Hence, planning sample size for WinP is essentially

planning sample size for the mean difference of win fractions. Since win fractions can be

obtained as long as the outcomes can be ranked, the method by Zou et al. (2023) can be

used for continuous, binary and ordered category outcomes. Additionally, the formula by Zou

et al. (2023) was derived with the aim of confidence interval estimation of WinP; therefore,

the assurance probability of the lower limit above a certain value was used in the sample size

formula, where the statistical power of testing WinP = 0.5 is a special case by specifying the

lower limit of WinP as 0.5 in the sample size formula.
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2.3 Estimation of the win probability for cluster randomiza-

tion trials

The usefulness of WinP in cluster randomization trials as an effect measure was only noticed

recently by Zou (2021). We cannot apply the methods reviewed in previous section for indi-

vidual randomization trials to data from a cluster randomization trial as the variance of ŴinP

could be underestimated due to the correlation between individuals within the same cluster. In

this section, we will review related methods for WinP in cluster randomization trials to identify

the gaps in the literature.

2.3.1 Estimating the win probability and its variance

Zou (2021) proposed methods estimating WinP and its variance for cluster randomization trials.

We summarize the methods here. Denote ki as the number of clusters in each arm (i = 1 for

control, i = 2 for treatment), and mi j as the size of cluster j in arm i, j = 1, · · · , ki. The total

number of clusters is k = k1 + k2, the size of arm i is Mi =
∑ki

j=1 mi j, and the size of the trial

is N = M1 + M2. The outcome of the lth subject in the jth cluster in arm i is denoted by Yi jl.

The win fraction of Yi jl is obtained similarly as the case for the independent outcomes ignoring

clusters. In short, one ranks the outcomes Yi jl with the whole sample and its intervention arm,

which are denoted as Ri jl and ri jl, respectively. The win fraction for Yi jl is then calculated by

wi jl = (Ri jl − ri jl)/(N − Mi). The point estimator of WinP is obtained by the mean of win

fractions in the treatment arm

ŴinP =

∑k2
j=1

∑m1 j

l=1 w2 jl

M2
=

∑k2
j=1 w2 j.

M2
=

∑k2
j=1 m2 jw2 j.∑k2

j=1 m2 j
, (2.14)

where w2 j. =
∑m2 j

l=1 w2 jl and w2 j. =
∑m2 j

l=1 w2 jl/m2 j.

The expression (2.14) implies that ŴinP is also a ratio estimator or a weighted mean esti-

mator. Following the decomposition of ŴinP for independent outcomes as shown in equation
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(2.4), the variance of ŴinP can be obtained as

Var(ŴinP) = Var


∑k1

j=1

∑m1 j

l=1 w1 jl

M1

 + Var


∑k2

j=1

∑m2 j

l=1 w2 jl

M2


= Var(w1..) + Var(w2..) ,

where wi.. =
∑ki

j=1

∑mi j

l=1 wi jl/
∑ki

j=1 mi j is the mean win fractions of arm i.

To account for the clustering effect, Zou (2021) proposed three estimators of Var(wi..). The

first variance estimator is from the sampling survey literature, recognizing ŴinP as a ratio

estimator,

V̂ar (wi..) =
ki

(ki − 1) M2
i

ki∑
j=1

(
wi j. − mi jwi..

)2
.

This estimator is identical to the estimator from the area under the receiver operating charac-

teristic curve literature (Obuchowski, 1997), which was derived using the U-statistic theory.

The second variance estimator for ŴinP is based on a weighted mean estimator,

V̂ar (wi..) =
1

(ki − 1) Mi

ki∑
j=1

mi j

(
wi j. − wi..

)2
,

where each individual in the trial is equally weighted instead of clusters being equally weighted.

Weighting each cluster equally is less common for cluster randomization trials because it ig-

nores the fact that including an additional large cluster reduces the variance more than including

an additional small cluster.

Lastly, Zou (2021) proposed to analyze the win fractions with a mixed model that yields

the variance estimator,

V̂ar(wi..) = σ̂2/Mi + σ̂c
2/ki ,

where σ̂2 and σ̂c
2 are respectively the within and between cluster variance components es-
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timated from the mixed model. This approach can also yield an estimate of the intraclass

correlation coefficient (ICC) from the mixed model, which may be useful for planning future

trials. We can use a t-statistic with k − 2 degrees of freedom to construct confidence intervals

because two variances are estimated from cluster means. Simulation studies by Zou (2021)

showed that the three variance estimators performed equally well with the logit-transformed

and arcsine-transformed intervals compared with Wald-type intervals.

Other related works of WinP for cluster randomization trials mostly focus on the MW

test. Rosner and Grove (1999) derived the variance of the test statistic under the null while

accounting for clustering. The method is computationally extensive as the correlation induced

by pairwise comparison is more complicated for clustered samples; the pairwise correlation

is likely different for the outcomes sampled from different clusters. Dutta and Datta (2016)

proposed to estimate the variance through a jackknife approach by deleting one cluster at a time

for cluster means of raw scale. However, their method is inappropriate for ordinal outcomes

because they require averaging the raw outcomes for each cluster.

2.3.2 Sample size based on Mann-Whitney test

Rosner and Glynn (2011) proposed to estimate the sample size for the MW test based on a

location-shift model with normality assumption for cluster randomization trials. Their method

extends the method for individually randomized controlled trials (Rosner and Glynn, 2009) to

cluster randomization trials. Their method only requires the specification of WinP, a constant

cluster size, and the intraclass correlation. They only evaluated the performance with small

constant cluster sizes of 2 for ophthalmological studies. It is less known how it performs in

other cluster randomization trial settings.

For sample size planning for the WinP, Obuchowski (1997) suggested first calculating the

sample size as if WinP is estimated from an individually randomized controlled trial, then

increasing it by a factor to account for the variance increased due to cluster randomization,

which is a common approach to (Donner et al., 1981).



34 Chapter 2. Literature review

Parametric assumptions are usually hard to justify, especially for ordinal outcomes. Gener-

ally it is advocated to analyze the data with the same methods used for sample size planning.

Therefore, it is desirable to have a sample size formula that does not require parametric as-

sumptions.

2.4 Summary

The WinP is a natural way to quantify the treatment effect for ordinal outcomes. It can be

estimated with the win fractions of the outcomes, where the win fraction of an outcome is the

proportion of wins that outcome achieved by comparing to all the outcomes in the other arm.

The estimator for WinP is the mean of win fractions for the treatment arm, and the variance

of this estimator is estimated by the sum of sample variances of mean win fractions from both

arms. We can treat win fractions as independent observations for individually randomized trials

but have to adjust for their correlations to each other within a cluster for cluster randomization

trials. The essence of the win fraction approach is to transform outcomes into win fractions

and then analyze them as continuous outcomes.

The advantage of the win fraction approach is that only the rank of the outcome is used,

being consistent with the ordinal property. Additionally, the win fraction approach unifies the

calculation for continuous, binary and ordered category outcomes regardless of the presence

of ties, thus makes planning sample size with trials focusing on estimating the WinP more

straightforward, as one does not need to worry about the ties and the type of data. This is

particularly useful for sample size estimation, as there is usually limited information available

in the planning stage of a trial.

Adjusting for baseline assessments could increase the efficiency of estimating the treat-

ment effect, reducing the required sample size to maintain the same power. We reviewed the

weighted least square approach and the regression approach to adjust WinP for baseline in

individually randomized trials, where the regression approach is steadily available in most sta-
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tistical software. However, methods to estimate baseline adjusted WinP have not been available

for cluster randomization trials. We will propose methods for cluster randomization trials by

building on Zou (2022c)’s work in Chapter 3. Sample size formulas focused on confidence

interval precision will be proposed in Chapter 4.



Chapter 3

Estimation of treatment effect in cluster ran-

domization trials with baseline measurements

In the previous chapter, we reviewed the literature on estimating the WinP as the treatment

effect in randomized controlled trials. Methods for baseline adjustment are only available for

individually randomized trials and lacking for cluster randomization trials.

This chapter develops methods for baseline adjustment of the WinP estimation in cluster

randomization trials with a focus on interval estimation. We will extend the weighted least

square method for (co)variance estimators to account for the correlated outcomes in a cluster

randomization trial. Large sample properties of those (co)variance estimators will be derived.

We will also propose a mixed model method for baseline adjustment as an analysis of covari-

ance model that accounts for clustering.

3.1 Notations

We focus on two-arm cluster randomization trials and define notations accordingly. Suppose

there are ki clusters randomized to arm i (i = 1 for control, i = 2 for treatment), where each

cluster consists of mi j members ( j = 1, ..., ki). The size of arm i is Ni =
∑ki

j=1 mi j, and the size

36
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of the trial is N = M1 + M2. The outcomes measured at follow-up are denoted as:

Yi jl = The outcomes for the lth participant in the jth cluster in the ith arm ,

where Yi jl ∼ Yi. We denote the distribution function for Yi as Fi, which is defined as the average

of the left- and right-continuous distribution function

Fi(x) = 0.5[F−i (x) + F+i (x)] ,

where F−i (x) = Pr(Yi < x) denotes the left-continuous distribution function and F+i (x) = Pr(Yi ≤

x) denotes the right-continuous distribution function. The WinP is the probability that a ran-

domly chosen participant in the treatment arm has a better outcome compared to a randomly

chosen participant in the control arm,

WinP =
∫

F1(x)dF2(x) = Pr(Y2 > Y1) + 0.5Pr(Y2 = Y1) , (3.1)

where ties are counted as both participants have an equal chance of winning each other. We

denote the baseline measurement by

Xi jl = The baseline measurement for the lth participant in the jth cluster in the ith arm ,

where Xi jl ∼ Xi and the distribution function for Xi is Gi. Although the t-test is often used

for testing the baseline imbalance in the literature, it ignores the ordinal nature of the baseline

measurement by calculating mean and standard errors on the original scale. We can better

quantify the baseline imbalance using the WinP for baseline measurements

WinPX =

∫
G1(x)dG2(x) = P(X2 > X1) + 0.5P(X2 = X1) ,

where randomization implies that G2 = G1; hence, WinPX = 0.5.
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We briefly review how WinP is estimated, where details are presented in Chapter 2. We

first transform the outcomes into win fractions. For each outcome Yi jl, the win fraction for it

is obtained from the rank of Yi jl in its arm, denoted as ri jl, and the rank of Yi jl in the whole

sample, denoted as Ri jl. The win fractions for outcomes in the treatment and control arm are

obtained respectively,

wY
2 jl = F̂1(Y2 jl) =

RY
2 jl − rY

2 jl

N − M2
=Win fraction of Y2 jl

wY
1 jl = F̂2(Y1 jl) =

RY
1 jl − rY

1 jl

N − M1
=Win fraction of Y1 jl .

Similarly, the win fractions for baseline measurements are obtained by

wX
2 jl = Ĝ1(X2 jl) =

RX
2 jl − rX

2 jl

N − M2
=Win fraction of X2 jl

wX
1 jl = Ĝ2(X1 jl) =

RX
1 jl − rX

1 jl

N − M1
=Win fraction of X1 jl ,

where RX
i jl and rX

i jl are the ranks of Xi jl in the whole sample and its intervention arm, respectively.

The point estimator of WinP is the mean of win fractions in the treatment arm

ŴinP = wY
2.. =

k2∑
j=1

n2 j∑
l=1

wY
2 jl/M2 ,

and the baseline imbalance is the mean of win fractions for baseline measurements

ŴinPX = wX
2.. =

k2∑
j=1

m2 j∑
l=1

wX
2 jl/M2 .

The variance of the estimators is estimated by the sum of the sample variances of win fractions
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for each arm,

V̂ar(ŴinP) =

∑k1
j=1

∑m1 j

l=1(wY
1 jl − 1 + ŴinP)2

M1
+

∑k2
j=1

∑m2 j

l=1(wY
2 jl − ŴinP)2

M2

V̂ar(ŴinPX) =

∑k1
j=1

∑m1 j

l=1(wX
1 jl − 1 + ŴinPX)2

M1
+

∑k2
j=1

∑m2 j

l=1(wX
2 jl − ŴinPX)2

M2
.

(3.2)

We will denote the WinP estimate adjusted by baseline measurements as ŴinP
∗

to avoid

confusion with ŴinP for follow-up outcomes in the rest of the chapter.

3.2 The weighted least square approach

The weighted least square approach of adjusting for baseline assessment is a regression model

with arm-specific means as the observations. The model assumes baseline imbalance oc-

curs only by chance in a randomized study hence constrains WinPX to 0.5. Denote Y =

(ŴinP, ŴinPX)′ and X = (1, 0)′, the adjustment model can be written as Y = WinP∗X, where

WinP∗ denotes the baseline adjusted WinP. The weighted least square estimator for WinP∗ is

ŴinP
∗

=
(
X
′

Σ−1X
)−1

X
′

Σ−1Y

= ŴinP −
Ĉov(ŴinP, ŴinPX)

V̂ar(ŴinPX)

(
ŴinPX − 0.5

)
, (3.3)

where Σ denotes the covariance matrix of ŴinP and ŴinPX. The estimator (3.3) indicates the

adjustment is determined by the strength of correlation between baseline and follow-up and the

magnitude of baseline imbalance by ŴinPX − 0.5.

The variance of ŴinP
∗

follows from the weighted least square method,

Var(ŴinP
∗

) = (X
′

WX)−1X
′

WVar(Y)W
′

X(X
′

WX)−1

= Var(ŴinP) −
Cov2(ŴinP, ŴinPX)

Var(ŴinPX)
, (3.4)
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where the variances are estimated by using sample variances shown in equation (3.2), and

the covariance of ŴinP and ŴinPX is estimated using sample covariances as shown in the

following section.

3.2.1 Covariance between ŴinP and ŴinPX

The covariance of the estimators ŴinP and ŴinPX is derived using the decomposition of ŴinP

into win fractions as shown by Zou (2021) as ŴinP = 1−WinP+
∫

F1(x)dF̂2(x)+
∫

F2(x)dF̂1(x)

and similarly, ŴinPX = 0.5 +
∫

G1(x)dĜ2(x) +
∫

G2(x)dĜ1(x). The asymptotic covariance

between ŴinP and ŴinPX is hence:

Cov(ŴinP, ŴinPX)

=Cov
[∫

F1(x)dF̂2(x) +
∫

F2(x)dF̂1(x),
∫

G1(x)dĜ2(x) +
∫

G2(x)dĜ1(x)
]

=Cov
[∫

F1(x)dF̂2(x),
∫

G1(x)dĜ2(x)
]
+ Cov

[∫
F1(x)dF̂2(x),

∫
G2(x)dĜ1(x)

]
︸                                             ︷︷                                             ︸

=0

+Cov
[∫

F2(x)dF̂1(x),
∫

G2(x)dĜ1(x)
]
+ Cov

[∫
F2(x)dF̂1(x),

∫
G1(x)dĜ2(x)

]
︸                                             ︷︷                                             ︸

=0

=Cov
[∫

F1(x)dF̂2(x),
∫

G1(x)dĜ2(x)
]
+ Cov

[∫
F2(x)dF̂1(x),

∫
G2(x)dĜ1(x)

]
=Cov

[
F̂2(Y1 jl), Ĝ2(X1 jl)

]
+ Cov

[
F̂1(Y2 jl), Ĝ1(X2 jl)

]
=Cov


∑k1

j=1

∑m1 j

l=1 wY
1 jl

M1
,

∑k1
j=1

∑m1 j

l=1 wX
1 jl

M1

 + Cov


∑k2

j=1

∑m2 j

l=1 wY
2 jl

M2
,

∑k2
j=1

∑m2 j

l=1 wX
2 jl

M2

 ,
where Cov

[∫
F1(x)dF̂2(x),

∫
G2(x)dĜ1(x)

]
= Cov

[∫
F2(x)dF̂1(x),

∫
G1(x)dĜ2(x)

]
= 0 be-

cause the outcomes in different arms are independent. The derivation implies that the co-

variance can be estimated by the sample covariances between arm-specific mean win fractions

at the follow-up and baseline:

Ĉov(ŴinP, ŴinPX) = Ĉov(wY
1..,w

X
1..) + Ĉov(wY

2..,w
X
2..) . (3.5)
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Although win fractions estimated from a finite sample are weakly correlated, they are asymp-

totically independent because wY
2 jl = F̂1(Y2 jl) → F1(Y2 jl) as M1 → ∞ (Akritas, 1990), where

a rigorous proof can be found in Sen (1967). We now proceed to propose estimators of

Ĉov(wY
i..,w

X
i..) that accounts for clusters.

3.2.2 Weighted covariance estimator

Denote the variance of win fractions at follow-up in arm i by Var(wY
i jl) = σ

2
i and the intraclass

correlation coefficient (ICC) for arm i by ρi. Standard theory from cluster sampling suggests

that the variance of cluster-specific mean of win fractions can be written as (Cochran, 1976),

Var(wY
i j.) =

σ2
i

mi j

[
1 + (mi j − 1)ρi

]
.

The most efficient way of combining the ki cluster-specific means is by weighting them in-

versely proportional to their variance (Casella and Berger, 2001, p.303), suggesting the ICC

weight

ωi j =
mi j/

[
1 + (mi j − 1)ρi

]
∑ki

j=1 mi j/
[
1 + (mi j − 1)ρi

] .
The ICC weighted covariance estimator is then

Ĉov
icc

(wY
i..,w

X
i..) =

1
ki − 1

ki∑
j=1

ωi j(w
Y
i j. − wY

i..)(w
X
i j. − wX

i..) . (3.6)

The efficiency of the estimator depends on how accurate the weights are (Donner and Klar,

2000, p.82). However, the weights are rarely known in advance since it involves the ICC of

win fractions. We can estimate the ICC using original scale, assuming the ICC is the same for

both arms.

Another method to estimate the ICC of win fractions is from an analysis of variance model

to obtain the variance among and within clusters for each arm (Donner and Klar, 2000, p.9).

Denote the mean square error among and within clusters by MSCi and MSWi from arm i,
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respectively , the ICC is given by

ρ̂i =
MSCi −MSWi

MSCi + (mi − 1)MSWi
,

where

mi =

(
Mi −

∑ki
j=1 mi j/Mi

)
ki − 1

.

One can also use the cluster size as weights, yielding ωi j = mi j/Mi and the cluster-size

weighted covariance estimator (Bland and Altman, 1995b)

Ĉov
size

(wY
i..,w

X
i..) =

1
ki − 1

ki∑
j=1

mi j

Mi
(wY

i j. − wY
i..)(w

X
i j. − wX

i..) . (3.7)

This weighting is more intuitive as every participants are equally weighted and does not require

knowledge of ICC. However, it could be less efficient than the ICC weighted estimator when

there is substantial variation in the cluster size (Kerry and Bland, 2001).

We will not consider assigning equal weights to cluster because it ignores larger clusters

contributing more information. Additionally, when the cluster size does not vary, cluster size

weight is the same to equal weights.

3.2.3 Asymptotic properties of the weighted covariance estimator

We now show the asymptotic properties of the weighted covariance estimator in equation (3.6).

The summation term in the covariance estimator for the treatment arm (i = 2) can be decom-
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posed as:

k2∑
j=1

ω2 j

(
wY

2 j. − wY
2..

) (
wX

2 j. − wX
2..

)
=

k2∑
j=1

ω2 j(w
Y
2 j. −WinP +WinP − wY

2..)(w
X
2 j. − 0.5 + 0.5 − wX

2..)

=

k2∑
j=1

ω2 j(w
Y
2 j. −WinP)(wX

2 j. − 0.5)︸                                    ︷︷                                    ︸
A

−

k2∑
j=1

ω2 j(w
Y
2 j. −WinP)(wX

2.. − 0.5)︸                                   ︷︷                                   ︸
B

−

k2∑
j=1

ω2 j(w
Y
2.. −WinP)(wX

2 j. − 0.5)︸                                   ︷︷                                   ︸
C

+

k2∑
j=1

(wY
2.. −WinP)(wX

2.. − 0.5)︸                              ︷︷                              ︸
D

,

where D converges to 0 in probability since wY
2.. →WinP and wX

2.. → 0.5 in probability. Hence

the limit distribution of the weighted covariance estimator determined by the limit distribution

of A, B and C. Denote the correlation of cluster-specific mean win fractions between the

baseline and follow-up for arm i as

ri = E[(wY
i j. −WinP)(wX

i j. − 0.5)] .

We refer ri as a temporal correlation because it matches clusters for two different time points

of measurements. Assuming the weights of each cluster are independent to the cluster-specific

means of win fractions, we have

E[A] = E

 k2∑
j=1

ω2 j(w
Y
2 j. −WinP)(wX

2 j. − 0.5)


=

k2∑
j=1

ω2 jE
[
(wY

2 j. −WinP)(wX
2 j. − 0.5)

]
=

k2∑
j=1

ω2 jr2

= r2 .
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By observing that wX
2.. ≈

∑k2
l=1 ω2lw

X
2l. for the ICC weight, we have

E[B] = E

 k2∑
j=1

ω2 j(w
Y
2 j. −WinP)(wX

2.. − 0.5)


≈ E

 k2∑
j=1

ω2 j(w
Y
2 j. −WinP)

k2∑
l=1

ω2l(w
X
2l. − 0.5)


= E

 k2∑
j=1

ω2
2 j(w

Y
2 j. −WinP)(wX

2 j. − 0.5)

 + E

∑
j,l

ω2 jω2l(w
Y
2 j. −WinP)(wX

2l. − 0.5)

︸                                             ︷︷                                             ︸
=0 because clusters are independent

=

k2∑
j=1

ω2
2 jE

[
(wY

2 j. −WinP)(wX
2 j. − 0.5)

]
=

k2∑
j=1

ω2
2 jr2 .

Note that ωi j = mi j/Mi,
∑k2

l=1 ω2lw
X
2l. = wX

2.. when cluster size weight is used. Similarly, E[C] ≈∑k2
j=1 ω

2
2 jr2. Therefore the expectation of the weighted covariance estimator is approximated to

(1 − 2
∑k2

j=1 ω
2
2 j)r2. Furthermore, when the cluster sizes are large, mi j/

[
1 + (mi j − 1)ρi

]
≈ 1/ρi

(Donner and Klar, 2000, p.88); hence, ωi j → 1/ki the covariance term for the treatment arm

converges to r2 as k2 → ∞. A similar inference for the control arm can be made, yielding the

weighted covariance estimator for the control arm converges to r1.

3.2.4 Ratio covariance estimator

Another strategy to account for clustering is to consider the arm-specific mean win fractions as

a ratio of the sum of win fractions over the sum of the size of clusters,

ŴinP = wY
2.. =

∑k2
j=1

∑mi j

l=1 wY
2 jl∑k2

j=1 m2 j
.

The covariance between WinP and WinPX is

Cov(ŴinP, ŴinPX) = Cov(wY
1..,w

X
1..) + Cov(wY

2..,w
X
2..) ,
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The covariance between wY
2.. and wX

2.. can be expressed with ratios by

Cov(wY
2..,w

X
2..) = Cov


∑k2

j=1

∑m2 j

l=1 wY
2 jl∑k2

j=1 m2 j
,

∑k2
j=1

∑m2 j

l=1 wX
2 jl∑k2

j=1 m2 j


= Cov


∑k2

j=1

∑mi j

l=1 wY
2 jl/k2∑k2

j=1 m2 j/k2
,

∑k2
j=1

∑mi j

l=1 wX
2 jl/k2∑k2

j=1 m2 j/k2


= E



∑k2

j=1

∑mi j

l=1 wY
2 jl/k2∑k2

j=1 m2 j/k2
− E(wY

2..)



∑k2

j=1

∑mi j

l=1 wX
2 jl/k2∑k2

j=1 m2 j/k2
− E(wX

2..)




When k2 is large,
∑k2

j=1 m2 j/k2 would be close to the mean cluster size of the population; hence

we can treat
∑k2

j=1 m2 j/k2 = M2/k2 as a constant. The covariance can be approximated by

Cov(wY
2..,w

X
2..) ≈

k2
2

M2
2

E



∑k2

j=1

∑m2 j

l=1 wY
2 jl

k2
−

WinP
∑k2

j=1 m2 j

k2



∑k2

j=1

∑m2 j

l=1 wX
2 jl

k2
−

WinPX
∑k2

j=1 m2 j

k2


 ,

(3.8)

since E[wY
2..] = WinP and E[wX

2..] = WinPX. Considering the cluster-specific summations as

the sampling unit from the population, the expectation term can be estimated with sample

covariance, implying equation (3.8) can be estimated by

Ĉov(wY
2..,w

X
2..) =

k2

(k2 − 1)M2
2

k2∑
j=1

 m2 j∑
l=1

wY
2 jl − m2 jŴinP

  m2 j∑
l=1

wX
2 jl − m2 jŴinPX

 .
Similarly, we can estimate Cov(wY

1..,w
X
1..) by

Ĉov(wY
1..,w

X
1..) =

k1

(k1 − 1)M2
1

k1∑
j=1

 m1 j∑
l=1

wY
1 jl − m1 jŴinP

  m1 j∑
l=1

wX
1 jl − m1 jŴinPX

 .
Thus, the ratio covariance estimator between ŴinP and ŴinPX can be estimated by

Ĉov
r
(ŴinP, ŴinPX) =

2∑
i=1

ki

(ki − 1)M2
i

ki∑
j=1

 mi j∑
l=1

wY
i jl − mi jw

Y
i..

  mi j∑
l=1

wX
i jl − mi jw

X
i..

 . (3.9)
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The estimator (3.9) is the same as the covariance estimator for comparing two ratios in the

survey literature (Cochran, 1976, p.181); hence we refer to it as the ratio covariance estimator.

The ratio estimator can be considered as the most statistically efficient way of combining

the ki cluster means if two conditions are satisfied (Cochran, 1976, p.158): (i) each cluster has

almost identical mean win fractions (ii) the variance of the mean win fractions is proportional

to the cluster size. The first condition implies that there is little variation between clusters, and

the within-cluster variation is much larger, leading to a small intraclass correlation coefficient.

This means that the ratio estimator is more useful in trials with a small number of large clusters

because a low intraclass correlation coefficient is more common in those trials. The second

condition implies that the optimal way to combine the cluster-specific means is by weighting

them with their size, i.e., the weighted estimator with cluster size as the weights will be optimal.

In the case of constant cluster size, both the weighted estimator and the ratio estimator are the

same.

We have proposed the ICC weighted covariance estimator in equation (3.6), the cluster size

weighted covariance estimator in equation (3.7) and the ratio covariance estimator in equation

(3.9) for ŴinP and ŴinPX using only independent cluster-specific summary statistics of win

fractions. The three covariance estimators are used with the weighted least square method

in equations (3.3) and (3.4) to estimate the adjusted WinP and its variance. The variance of

ŴinP can be written as the variance for independent outcomes inflated by the design effect,

1 + (m − 1)ρ (Donner and Klar, 2000)

Var(ŴinP) =
[
1 + (m − 1)ρ

]
2km

[
Var(wY

1 jl) + Var(wY
2 jl)

]
,

assuming constant cluster size (mi j = m), balanced design (ki = k) and homogeneous of ICC

(ρi = ρ). The asymptotic variance of the adjusted WinP from the weighted least square ap-
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proach can be derived from equation (3.4)

Var(ŴinP
∗

) = Var(ŴinP) −
Cov2(ŴinP, ŴinPX)

Var(ŴinPX)

= Var(ŴinP)

1 −
Cov2(ŴinP, ŴinPX)

Var(ŴinPX)Var(ŴinP)︸                        ︷︷                        ︸
r2

c


=

[
1 + (m − 1)ρ

]
2km

[
Var(wY

1 jl) + Var(wY
2 jl)

]
(1 − r2

c ) , (3.10)

where r2
c is the cluster-level correlation of baseline and follow-up win fractions from the

weighted least square approach.

3.3 The mixed model approach

The mixed model approach can be regarded as the analysis of the covariance (ANCOVA) of

the win fractions with mixed models, extending the analysis of variance of the win fractions

for cluster trials proposed by Zou (2021). The mixed model or generalized estimating equation

is generally recommended for ANCOVA for cluster trials with baseline measurements Hooper

et al. (2018). Since the WinP can be estimated with ŴinP = (wY
2.. − wY

1..)/2 + 0.5, we can

use an analysis of covariance to estimate the adjusted mean difference of win fractions. The

adjustment is meaningful because of the linear relation between the mean difference of win

fractions and the WinP. Denote the intervention indicator for a participant in arm i by Zi, (Zi = 1

for treatment, Zi = 0 for control), where we drop the cluster- and individual-level indices

because it is only determined by i in a cluster randomization trial. The mixed model can be

written as

wY
i jl = β0 + β1Zi + β2wX

i jl + αi j + ϵi jl , (3.11)
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where αi j ∼ N(0, τ2) and ϵi jl ∼ N(0, σ2) are the random effects on the cluster- and individual-

level, respectively, and they are assumed to be independent to each other. The treatment coef-

ficient β̂1 can be written as adjusted mean difference of win fractions between two arms

β̂1 = wY
2.. − wY

1.. − β̂2

(
wX

2.. − wX
1..

)
. (3.12)

Using a simple linear transformation of β̂1, we can estimate the WinP adjusted for baseline

imbalance:

ŴinP
∗

= β̂1/2 + 0.5 = ŴinP − β̂2(ŴinPX − 0.5) , (3.13)

where β̂2 is the correlation between baseline and follow-up win fractions. Equation (3.13)

also implies the mixed model constraints the baseline imbalance to 0.5 for randomized studies.

Although ŴinP
∗

is obtained by dividing β̂1 by two and plus 0.5, the variance of ŴinP
∗

is

estimated by V̂ar(̂β1), which is the sum of arm-specific mean win fraction variances.

In the case of a balanced design with constant cluster size, mi j = m, β̂2 can be seen as a

weighted sum of the correlations between win fractions at the cluster- and individual-levels

according to Klar and Darlington (2004),

β̂2 = p̂r̂c + (1 − p̂)r̂m ,

where rc is the temporal correlation of cluster-level means, and rm is the temporal correlation

of win fraction at individual-level. Note that in weighted least square approach, only rc is

estimated. The weight p is the proportion of between cluster variability over total variability

similar, it can be estimated by

p̂ =
σ̂2/m

∑2
i=1

∑ki
j=1 m(wX

i j. − wX
i..)

2

σ̂2/m
∑2

i=1
∑ki

j=1 m(wX
i j. − wX

i..)2 + (τ̂2 + σ̂2/m)
∑2

i=1
∑ki

j=1

∑m
l=1(wX

i jl − wX
i j.)2
,
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where τ̂2 and σ̂2 are the variances estimated at cluster level and individual level, respectively,

with restricted maximum likelihood. The temporal correlation at the cluster-level is estimated

by

r̂c =

∑2
i=1

∑ki
j=1(wX

i j. − wX
i..)(w

Y
i j. − wY

i..)∑2
i=1

∑ki
j=1(wX

i j. − wX
i..)2

, (3.14)

where the estimator weights every cluster equally. This is the same correlation used in the

weighted least square approach, when cluster sizes are constant. The correlation at the individual-

level rm is estimated with

r̂m =

∑2
i=1

∑ki
j=1

∑m
l=1(wX

i jl − wX
i j.)(w

Y
i jl − wY

i j.)∑2
i=1

∑ki
j=1

∑m
l=1(wX

i jl − wX
i j.)2

. (3.15)

Including individual-level correlation in estimating the correlation between baseline and follow-

up makes the mixed model approach different from the weighted least square approach. We ex-

pect the mixed model approach to have higher efficiency when the correlation at the individual-

level is higher than the correlation at the cluster-level for win fractions.

Assuming constant cluster size and homogeneous ICC (ρ = ρi), the asymptotic variance of

ŴinP
∗

from the mixed model approach is similar to the asymptotic variance in equation (3.10)

Var(̂β1) = Var(ŴinP
∗

)

=

[
1 + (m − 1)ρ

]
2km

[
Var(wY

1 jl) + Var(wY
2 jl)

]
(1 − r2

a) , (3.16)

where ra is a combination of cluster-level and individual-level correlations (Teerenstra et al.,

2012)

ra =
mρ

1 + (m − 1)ρ
rc +

1 − ρ
1 + (m − 1)ρ

rm .

Comparing equation (3.10) to equation (3.16) shows that the two approaches differs only by the
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correlation parameter for efficiency. The mixed model approach utilizes the correlation at both

cluster- and individual-levels, whereas the weighted least square approach only utilizes cluster-

level correlation. However, it should be noted that both approach estimates the treatment effect

(WinP) for individual-level inferences.

3.4 Confidence interval for the treatment effect

We have proposed the weighted least square and mixed model approaches to estimate the vari-

ance of the adjusted treatment effect. In this section we derive confidence intervals using those

variance estimates.

With the adjusted treatment effect ŴinP
∗

and its variance V̂ar(ŴinP
∗

) being estimated from

the previous sections, a two-sided (1−α)% confidence interval for the treatment effect is given

by

(L1,U1) = ŴinP
∗

∓ tα/2,df

√
V̂ar(ŴinP

∗

) ,

where tα/2,df denotes the upper α/2 quantile of a t distribution with df degrees of freedom.

We refer this to the Wald confidence interval, as it comes from the t-test of WinP∗ = 0.5. If

the mixed model approach was used to estimate WinP∗, the degrees of freedom of the regres-

sion coefficient for the treatment indicator can be used to construct confidence interval. When

weighted least square approach is used to estimate WinP∗, we use the Satterthwaite approxi-

mation of the degrees of freedom, which is commonly used in analyzing cluster randomization

trials to account for the heterogeneity of variances across clusters (Leyrat et al., 2018). The

variance of ŴinP
∗

from the weighted least square approach from equation (3.4) can be decom-

posed as

Var(ŴinP
∗

) = Var(ŴinP) −
Cov2(ŴinP, ŴinPX)

Var(ŴinPX)
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= Var(ŴinP) − r2Var(ŴinP)

= V̂ar(wY
1..) + V̂ar(wY

2..) − r2
[
V̂ar(wY

1..) + V̂ar(wY
2..)

]
= V̂ar(wY

1..)(1 − r2) + V̂ar(wY
2..)(1 − r2) .

Therefore, the degrees of freedom of V̂ar(ŴinP
∗

) can be approximated by

df =
s2

1 + s2
2

s2
1/(k1 − 1) + s2

2/(k2 − 1)
, (3.17)

where s2
i is the variance component of V̂ar(ŴinP

∗

) from arm i that is given by

s2
i =

1
ki

[
V̂ar(wY

i..)(1 − r2)
]
.

This formula is an extension of the formula for individually randomized trials proposed by

Schacht et al. (2008), and we assume the covariance between win fractions of baseline mea-

surement and outcome does not differ by study arm. Equation (3.17) shows that in a balanced

design k = k1 = k2 with small r, df is close to k − 1.

The Wald interval has been known to produce under-coverage intervals for probability pa-

rameters, and it could result in intervals outside [0,1] (Newcombe, 1998). Additionally, the

tail errors (non-coverage of right- or left-confidence limits) are asymmetric because Wald-type

intervals assume the variance of the estimator is the same across the whole interval.

An improvement can be made by building the interval on the logit scale by

l2, u2 = ln
ŴinP

∗

1 − ŴinP
∗ ∓ tα/2,df

√
V̂ar(ŴinP

∗

)

ŴinP
∗

(1 − ŴinP
∗

)
, (3.18)

and then transform back to the probability scale by the inverse logit function:

L2 =
exp(l2)

1 + exp(l2)
, U2 =

exp(u2)
1 + exp(u2)

, (3.19)
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which we will refer as the logit transformed interval. This transformation is common in ana-

lyzing proportions due to the wide use of logistic regression.

The Wilson confidence interval for proportions may also be considered due to its good

performance on coverage and avoidance of boundary problems. If WinP is treated as a pro-

portion, the (1 − α)% level Wilson confidence interval consists all WinP that satisfies |WinP −

ŴinP|/
√

Var(ŴinP) < tα/2, where Var(ŴinP) = WinP(1 −WinP)/N and N is the sample size.

However, the variance of ŴinP cannot be estimated as a proportion because it depends on the

outcome distributions of both intervention arm. We could use the closed-form expression of

the Wilson confidence interval on logit WinP as

logit(ŴinP) ∓ 2arsinh
{

0.5tα/2,df

√
Var[logit(ŴinP

∗

)]
}
,

where the variance of logit ŴinP
∗

is given by V̂ar(ŴinP
∗

)/[ŴinP
∗

(1− ŴinP
∗

)]2 and arsinh de-

notes the inverse hyperbolic sine function arsinh(x) = ln(x+
√

x2 + 1). The arsinh transformed

interval is hence constructed from

l3, u3 = ln
ŴinP

∗

1 − ŴinP
∗ ∓ 2arsinh

tα/2,df

√
V̂ar(ŴinP

∗

)

2ŴinP
∗

(1 − ŴinP
∗

)

 (3.20)

and apply the inverse logit function yielding,

L3 =
exp(l3)

1 + exp(l3)
, U3 =

exp(u3)
1 + exp(u3)

. (3.21)

Newcombe (2001) pointed out that the arsinh-transformed interval for proportions is always

contained in the logit-transformed interval, hence having higher efficiency for estimating pro-

portions. The work of estimating WinP for cluster trials using only follow-up outcome by

Zou (2021) also observed that arsinh-transformed confidence interval for WinP is on average

narrower than logit-transformed intervals in the simulation study.
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3.5 Summary and discussion

In this chapter, we developed the weighted least square and the mixed model approaches to es-

timate WinP while adjusting for baseline measurements. We developed cluster size weighted,

ICC weighted and ratio covariance estimators to be used with the weighted least square ap-

proach, making four estimators for adjusted WinP, including the mixed model approach. We

derived the asymptotic properties for the weighted covariance estimators and the ratio covari-

ance estimator. We also developed Wald type, logit transformed and arsinh transformed confi-

dence interval for the adjusted WinP, with the degrees of freedom approximation for intervals

constructed with weighted least square estimators.

Our methods can be summarized into the following steps. Transform the outcomes and

baseline measurements into win fractions using overall and group-specific ranks, and apply

either the weighted least square approach or the mixed model approach to estimate adjusted

WinP and its variance. Construct confidence intervals based on either Wald, logit transformed

or arsinh transformed confidence intervals. The mixed model approach is available for most

statistical software, as one only needs to obtain win fractions based on ranks and then regress

the win fractions of outcome on the win fractions of baseline measurement and treatment indi-

cator with the mixed model, specifying heterogeneity variance. On the other hand, the weighted

least square approach would require custom programming to obtain the estimates.

A statistical advantage of the mixed model approach of estimating WinP is its convenience

to compute. An additional advantage is no link functions are required to accommodate different

types of outcomes. For example, binary outcomes usually require the logit link with the mixed

model to estimate odds ratios, resulting in odds ratios that can only be interpreted conditional

on the cluster, which is different to the population-averaged odds ratio (Robinson and Jewell,

1991).

The weighted least square approach has the advantage that it uses only the cluster-level

summary statistics of win fractions, implying that the methods can be applied to cross-sectional
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designs, where the baseline and follow-up consist of different individuals. To be specific, one

obtains the win fractions for baseline and follow-up, respectively, and then uses the weighted

least square approach with the cluster-level mean of win fractions.

We examined the efficiency of the weighted least square approach and the mixed model ap-

proach by their asymptotic properties and showed that the weighted least square approach de-

pends only on cluster-level correlation, but the mixed model approach depends on both cluster-

level and individual-level correlation. Therefore, it is necessary to use examine the efficiency

of both approaches with finite samples.

Our method can be extended to stratified trials, where clusters are randomized within strata

to combine the estimates of the WinP in each stratum through weights. Donner and Klar (1993)

suggested weights as the product of intervention arm sizes over the size of the strata, which is

more efficient when the ICC does not differ much between strata. The variance is then obtained

as the sum of the weighted variances from each stratum.



Chapter 4

Sample size estimation for cluster random-

ization trials

Sample size planning is an important step in designing a randomized controlled trial that can

meet the study objectives without wasting excessive resources from recruiting an overpowered

trial or missing important findings from recruiting an under-powered trial.

To plan for a cluster randomization trial, it is common to first calculate the sample size

as if independent individuals are randomized and then increase it to account for cluster ran-

domization (Donner et al., 1981). The sample size formulas for individually randomized trials

presented in Chapter 2 focused on hypothesis testing rather than confidence interval estima-

tion, and mostly focused on the distribution of the test statistic under the null hypothesis. It is

unclear how those methods would work for estimation purposes, where the distribution of an

effect measure under the alternative is required.

One approach of sample size formula for effect estimation focuses on the width of the confi-

dence interval (Beal, 1989). However, sample size formulas developed by specifying the width

of the confidence interval are prone to underestimate the sample size because normal approx-

imation implies the sample variance is symmetrically distributed having zero skewness, but

chi-squared distributions are more appropriate (Kupper and Hafner, 1989). Another approach

55
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is to consider the confidence limits as random variables and plan the sample size to ensure

the confidence interval excluding a certain value with a given probability (Greenland, 1988).

This approach was used in the sample size formula derived by Zou (2012) for estimating the

intraclass correlation coefficient (ICC), focusing on the probability that the lower confidence

limit of ICC exceeds a certain value.

It is common for randomized trials to evaluate the effect of a certain intervention such that

the intervention can be applied if it is proven to improve the outcome by at least a minimal

clinically important difference. Following the same principle, we intent to develop a sample

size formula for WinP to ensure the lower limit of the WinP exceeding a certain threshold with a

reasonable chance. For example, using the minimal clinically important difference determined

by a small Cohen’s effect size, the sample size should allow the trial to have a reasonable chance

for the lower limits of the Win probability to exceed 0.56, which is the WinP corresponding to

the small Cohen’s effect size for normal outcomes.

4.1 Sample size for confidence interval estimation

We will develop a sample size formula such that the lower limit of ŴinP is greater than a

prespecified WinP with assurance probability 1− β. A benchmark of choosing the prespecified

lower bound for WinP can be 0.5, 0.56, 0.64 and 0.71 for zero, small, medium and large effect

sizes as a correspondence to Cohen’s effect size for normal distribution outcomes. We will

derive the sample size formula based on the logit-transformed confidence interval of WinP

because they were observed to have a better coverage and more balanced tail errors for WinP

(Zou, 2021) compared to a Wald type confidence interval.

The logit-transformed confidence interval as shown in equation (3.18) is

logit(WinPL), logit(WinPU) = logit(ŴinP) ∓ zα/2

√
Var(ŴinP)

ŴinP(1 − ŴinP)
,
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where zx is the upper x quantile of the standard normal distribution. The assurance probability

(1 − β) of the lower limit exceeding the specified minimal WinP, denoted by WinPl, can be

formulated as

1 − β = Pr
(
ŴinPL ≥WinPl

)
= Pr

logit(ŴinP) − zα/2

√
Var(ŴinP)

ŴinP(1 − ŴinP)
≥ logit(WinPl)

 . (4.1)

The asymptotic distribution of logit(ŴinP) can be obtained by applying the delta method yield-

ing

logit(ŴinP) ∼ N

logit(WinP),
Var(ŴinP)

WinP2(1 −WinP)2

 .
Equation (4.1) can be written as

1 − β =Pr

 logit(ŴinP) − logit(WinP)

WinP−1(1 −WinP)−1

√
Var(ŴinP)

≥
logit(WinPl) − logit(WinP)

WinP−1(1 −WinP)−1

√
Var(ŴinP)

+ zα/2


= Pr

Z ≥WinP(1 −WinP)
logit(WinPl) − logit(WinP)√

Var(ŴinP)
+ zα/2

 (4.2)

because

WinP(1 −WinP)
√

V̂ar(ŴinP)

ŴinP(1 − ŴinP)
√

Var(ŴinP)
→ 1

in probability. Applying the upper-quantile function of the standard normal distribution to both

sides yield

zα/2 + zβ =
[
logit(WinP) − logit(WinPl)

] WinP(1 −WinP)√
Var(ŴinP)

. (4.3)
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To obtain the sample size, we need to factor out the total sample size N in Var(ŴinP), which

can be written as the sum of the arm-specific sample variance of mean win fractions. Denoting

ϕ2
i as the variance of win fractions for arm i (i = 1 for control, i = 2 for treatment) and ni as the

size of arm i, we can write Var(ŴinP) as

Var(ŴinP) =
ϕ2

1

n1
+
ϕ2

2

n2

=
1
N

(1 + 1/s)
(
sϕ2

1 + ϕ
2
2

)
, (4.4)

where s is the ratio of subjects in the treatment arm over the control arm. A sample size formula

from equations (4.3) and (4.4) yields

N =
(
1 +

1
s

) {
zα/2 + zβ[

logit(WinP) − logit(WinPl)
]}2 sϕ2

1 + ϕ
2
2

WinP2(1 −WinP)2
, (4.5)

which is the sample size formula for individually randomized trials proposed by Zou et al.

(2023).

We now derive sample size for cluster randomized trials with fixed cluster size m by in-

creasing the variance (4.4) by the design effect D,

D = 1 + (m − 1)ρ ,

where ρ is the intraclass correlation coefficient (ICC) of follow-up win fractions assuming it is

the same for both arms. Therefore, Var(ŴinP) for a cluster randomized trial is

Var(ŴinP) =
1
N

(1 + 1/s)(sϕ2
1 + ϕ

2
2) {1 + (m − 1)ρ} .

Substituting this variance formula into equation (4.3) yields

zα/2 + zβ =
√

N
[
logit(WinPl) − logit(WinP)

] WinP(1 −WinP)√
(1 + 1/s)(sϕ2

1 + ϕ
2
2) {1 + (m − 1)ρ}

. (4.6)
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It follows that,

N =
(
1 +

1
s

) {
zα/2 + zβ[

logit(WinP) − logit(WinPl)
]}2 (

sϕ2
1 + ϕ

2
2

WinP2(1 −WinP)2

) [
1 + (m − 1)ρ

]
, (4.7)

where ϕ2
i can be substituted by the variance of win fractions from a pilot study.

Dividing the total sample size N by the cluster size m yields the required number of clusters

k to be randomized, k = N/m. The use of Z-statistic rather than t-statistic in (4.7) could

underestimate the sample size when the number of clusters is small, but it can be adjusted by

increasing the number of clusters by one in each arm with 95% confidence interval and by

two with 99% confidence interval for balanced trials (Snedecor and Cochran, 1989, p.104).

When variable cluster sizes are anticipated, a slightly anti-conservative approach can be taken

by replacing the cluster size m with the average cluster size m (Donner and Klar, 2000, p.57).

With given values of N, s, m, ρ, WinP and WinPl the assurance probability (1 − β) can be

derived from equation (4.6),

1 − β = Φ

WinP(1 −WinP)[logit(WinPl) − logit(WinP)]√
(1 + 1/s)(sϕ2

1 + ϕ
2
2) {1 + (m − 1)ρ}

√
N − zα/2

 (4.8)

where Φ(·) is the cumulative distribution function of standard normal distribution. Since equa-

tion (4.8) uses Z-score instead of t-score, it could underestimate the assurance probability, a

more exact calculation can be obtained by using the t distribution based on the number of

clusters k,

1 − β = Φt,k−2

WinP(1 −WinP)[logit(WinPl) − logit(WinP)]

(
√

1 + 1/s)[1 + (m − 1)ρ](sϕ2
1 + ϕ

2
2)

√
N − zα/2

 (4.9)

where Φt,k−2 is the cumulative distribution function of t-distribution with k − 2 degrees of free-

dom. Note that our sample size formula (4.7) can also be applied when the trial aims for

hypothesis by specifying θl = 0.5, since the exclusion of 0.5 of the confidence interval is
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the same as rejecting the null hypothesis. Therefore, the assurance probability corresponds to

power when θl = 0.5.

4.1.1 Estimation of win fractions for sample size planning

The distributions of the outcomes are required to obtain win fractions for sample size planning.

We can obtain the distributions of the outcomes depending on which information is available.

First, if pilot data is available from both intervention arms we can use them as the hypothetical

distributions. Second, if pilot data is available only for the control arm, we can create the hypo-

thetical distribution for the treatment arm using the knowledge of how much the treatment will

change the distribution of the outcome. Finally, instead of pilot data, if an outcome distribution

is only available for the control arm, we can still create the hypothetical distribution for the

treatment arm with background knowledge. For example, we can utilize a distribution shift for

continuous outcomes, or a one-category improvement is assumed for a categorical distribution.

In this section, we will discuss how to apply our sample size formula (4.7) in those different

situations.

4.1.1.1 Using pilot data for both arms

Before a cluster randomization trial starts, pilot data might be available from individually ran-

domization trials. We can then compute the win fractions for each of the individuals as re-

viewed (Happ et al., 2019) in Chapter 2. We first rank each individual in their own arm and in

the combined sample of two arms. The win fraction for an individual is obtained as the per-

centage of wins comparing their outcome to all outcomes one at a time in the other arm. It is

calculated by subtracting the rank within their arm from the rank in the whole sample divided

by the size of the opposite arm of the individual. The variance component ϕ2
i in equation (4.6)

is then obtained as the variance of win fractions for each arm by

ϕ2
i =

∑ni
j=1(wi j − wi.)2

ni
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where wi j is the win fraction of the jth outcome in the ith arm. We used ni instead of ni − 1 in

the denominator because we treat the data as theoretical.

As an illustration, consider pilot data available with 4 participants in the control arm with

outcomes of 1, 5, 5 and 7 and 3 participants with outcomes of 4, 6 and 8 in the treatment arm.

We rank each of the outcomes in the combined sample of two arms and subtract it by the rank

of the outcomes in its own arm to obtain the number of wins such outcome has compared to

the other arm. The win fraction for an outcome is then obtained from dividing the number of

wins by the number of comparisons made to such outcome, which is the number of participants

in the other arm. The WinP is obtained by the mean win fractions in the treatment arm. The

variance components ϕ2
i for sample size planning is obtained by the variance of win fractions

for arm i. The calculations of win fractions for each outcome are listed in Table 4.1.

Table 4.1: Calculation of win fractions for sample size planning from pilot data.

Treatment (n1 = 3) Control (n2 = 4)
Outcome 4, 6, 8 1, 5, 5, 7
Overall rank 2, 5, 7 1, 3.5, 3.5, 6
Arm-specific rank 1, 2, 3 1, 2.5, 2.5, 4
Wins (overall minus arm rank) 1, 3, 4 0, 1, 1, 2
Win fraction 1/4, 3/4, 4/4 0/3, 1/3, 1/3, 2/3
Mean win fraction 2/3 1/3

ϕ2
i = Var(win fraction)

[(1/4 − 2/3)2 + (3/4 − 2/3)2+

(4/4 − 2/3)2]/3 = 0.097

[(0/3 − 1/3)2 + (1/3 − 1/3)2+

(1/3 − 1/3)2 + (2/3 − 1/3)2]/4
= 0.222

WinP 2/3=0.66

Using the values in Table 4.1, we can determine the sample size for individually randomized

trials using equation (4.7). For example, the sample size in a balanced trial (s = 1) with 90%

assurance probability of 95% confidence interval excluding 0.5 can be obtained by

N = (1 + 1/1) (1 × 0.097 + 0.222)
{

z0.1 + z0.025[
logit(0.66) − logit(0.5)

]
0.66(1 − 0.66)

}2

= 302.6 ,

yielding 303 participants in total. If the randomization were performed at clusters with a size

of 10 and ICC of 0.1 and the required sample size is then increased to N(1 + (10 − 1)0.1) =
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574.9, yielding 575 participants in total. If we adjust for baseline measurement that have a

Spearman correlation with the follow-up outcomes as 0.3 for such cluster trial, the sample size

is decreased to N(1 + 1(10 − 1)0.1)(1 − 0.32) = 523.2, yielding 524 participants in total.

4.1.1.2 Using data available only for the control arm

The intervention for the control arm is usually current standard treatments that have been ac-

cessible for the target population for a while, implying the distribution of outcomes in the

control arm can be known from previous studies. With such information and the knowledge

of how the treatment could change the distribution of outcomes, we can create hypothetical

outcomes for the treatment arm based on the control arm outcomes. Most sample size for-

mulas for continuous outcomes in the literature assume a location shift of the outcomes under

the alternative hypothesis. However, the location-shift assumption is not always plausible or

meaningful in specifying the treatment effect. For example, consider the alcohol use disorders

identification test (AUDIT) that evaluates drinking habits and alcohol dependence used in the

SIPS trial reported by Kaner et al. (2013). The test score ranges from 0 to 40, where there

is no clear interpretation of a one-point increase in the AUDIT score, except a greater score

indicates more severe drinking. Furthermore, there are no generally accepted cut-offs for the

AUDIT score (Reinert and Allen, 2007), which complicates sample size estimation, as different

cut-offs could result in different sample sizes.

One way to avoid cut-offs in sample size planning is to assume the intervention results in

a change in the distribution of AUDIT score. However, an absolute change could be inap-

propriate because a reduction from three points to zero points is a considerable improvement,

but such a three-point reduction would not be relevant for someone who scored 40. There-

fore, a location-shift model cannot meaningfully describe the treatment effect, but a percentage

reduction of the score would be more relevant.

As an example, consider five individuals with the following AUDIT score: 4, 16, 20, 24 and

40. If clinicians expect a 25% reduction with a new education program, we can create hypo-
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thetical outcomes for the treatment arm by reducing the scores by 25% for the five individuals,

which yield 3, 12, 15, 18 and 30, respectively. Since a lower AUDIT score is preferable, we

rank the outcomes in reverse order (a higher score has a lower rank), resulting in WinP = 0.68

for this hypothetical data, and the variance components are ϕ2
1 = ϕ

2
2 = 0.0736 for both arms.

Suppose the clinicians wish to detect if the treatment effect is at least 0.64 (corresponding

to medium Cohen’s effect size for normal outcome) with a 90% chance under 5% level; the

required sample size for an individually randomized trial can be obtained by

N = (1 + 1/1) (1 × 0.0736 + 0.0736)
{

z0.1 + z0.025[
logit(0.68) − logit(0.64)

]
0.68(1 − 0.68)

}2

= 2052.5 ,

yielding 2,053 individuals need to be randomized. If the trial randomizes clusters with a size

of 100 and ICC of 0.01, the sample size is then increased to N(1 + (100 − 1)0.01) = 4084.5,

yielding 4085 participants in total, or 42 clusters in total without missing data.

4.1.1.3 Using a categorical distribution available only for the control arm with odds

ratio

When the distribution for the control arm and the odds ratios are known, the distribution for

the treatment arm can be obtained. The odds for outcome Y being better than category j is

defined by Odds j = Pr(Y > j)/Pr(Y ≤ j). The odds ratio for each category could be specified,

or proportional odds could be assumed such that the odds ratio is the same regardless of the

selected reference category j, which is common in practice (Agresti, 1999). Consider there

are q categories in the outcome, and denote p1 = (p11, p12, p13, · · · , p1q) as the row vector of

proportions for the control arm and p2 = (p21, p22, p23, · · · , p2q) as the row vector of propor-

tions for the treatment arm. The proportion of each category (p2 j) for the treatment arm can be

obtained from the proportion of the control arm and the odds ratio with

p2 j =
1 − s j

s jOR + 1 − s j
−

j−1∑
i=1

p2i, j = 1, 2, · · · , q − 1 , (4.10)
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where s j =
∑q

i= j+1 p1i. The WinP can be obtained by

WinP = p1Ωp′2 , (4.11)

where Ω is an upper triangle matrix of ones and halves on the diagonal, and p′i is the transpose

of pi. Applying delta method to equation (4.11) with respect to p′i yields the variance formula

(Zou et al., 2023)

ϕ2
1 = p2Ω

′Σ1Ωp′2

ϕ2
2 = p1ΩΣ2Ω

′p′1 , (4.12)

where Σi = diag(pi)− p′i pi is the covariance matrix of the multinomial distribution for pi. Note

that one can derive the same variance formula from win fractions as p2Ω and p1Ω are the win

fraction vectors for control arm and treatment arm, respectively.

The proportional odds model systematically shifts a proportion of the outcomes into a better

category, given the odds ratio is greater than one, but the proportion is not the same for all

categories. If a clinician expects the treatment to shift a fixed proportion (δ) of subjects into

a better category, the proportional odds model cannot be satisfactory. In such case, p2, j =

δp2, j−1 + p2, j(1 − δ) can be used to construct the distribution for the treatment arm.

As an example, we consider the control arm distribution from the diabetes treatment data

(Lachin, 2011) where the outcome is the level of albumin that is classified into normal, micro

and macro by the severity. Assuming a common odds ratio of 3, we can use equation (4.10)

to obtain the distribution for the treatment arm and use equations (4.12) to obtain the win

fractions, listed in Table 4.2. In this data, a lower albumin level is preferred, and the WinP is

0.60 with ϕ2
1 = 0.031 and ϕ2

2 = 0.058. Suppose the minimum WinP is 0.56, corresponding to

a small Cohen’s effect size for normally distributed outcome. An individually randomized trial

would need 1,830 participants to be randomized to have a 90% power at 5% level, and a total

of 3, 642 participants are required if the trial randomizes clusters of size 100 and ICC = 0.01.
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We have discussed different ways to obtain the hypothetical distribution when the treatment

has different effects on the outcome distribution. Our method unifies the calculation of sample

size regardless of the distributional assumptions, whereas it generally requires different sample

size formulas in the literature.

Table 4.2: Listing of the categorical probability of albumin level and its win fractions in the
parentheses assuming the common odds ratio is 3.

Albumin level
Group Normal Micro Macro

Control 0.85 (0.325) 0.10 (0.705) 0.05 (0.93)
Treatment 0.65 (0.425) 0.21 (0.900) 0.14 (0.975)

4.2 Design considerations

4.2.1 Baseline adjustment

When baseline assessment is anticipated in the analysis of a trial, accounting for the correlation

between the baseline and follow-up can reduce the required sample size of the trial while main-

taining the same accuracy. We have shown that the efficiency gained from baseline adjustment

depends on the correlation between baseline and follow-up win fractions of the cluster level in

Chapter 3.

Denote the temporal correlation of cluster-specific mean win fractions between baseline

(wX
i j.) and follow-up (wY

i j.) as rc = Cor(wX
i j.,w

Y
i j.) and the correlation of individual-specific win

fraction as r = Cor(wX
i jl,w

Y
i jl). Using the weighted least square approach, baseline adjustment

reduces the variance of ŴinP
∗

to

Var(ŴinP
∗

) =
1
N

(1 + 1/s)(sϕ̂2
1 + ϕ̂

2
2) {1 + (m − 1)ρ} (1 − r2

c ) .
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Hence the sample size required to maintain the same assurance probability would be

N∗ = (1 − r2
c )N ,

where N is the sample size without baseline adjustment from equation (4.7).

The efficiency gained from baseline adjustment in the mixed model approach depends on

the correlation between baseline and follow-up win fraction on both the cluster- and individual-

level (Teerenstra et al., 2012). To be specific, the correlation from the mixed model weights

cluster- and individual-level correlation by

ra =
mρ

1 + (m − 1)ρ
rc +

1 − ρ
1 + (m − 1)ρ

r , (4.13)

where ρ is the ICC of follow-up win fractions and m is the cluster size. The corresponding

sample size with such an analysis strategy is N∗ = (1 − r2
a)N. When the temporal correlation

for individuals and the cluster means are the same, the efficiency of the weighted least square

approach is the same as the efficiency of the mixed model approach.

4.2.2 Temporal correlation of win fractions

Our sample size formula is derived with the temporal correlation and ICC of win fractions;

however, these are rarely available in practice but the temporal correlation and ICC could be

available on the original scale. There is no closed-form relationship between the correlation of

win fractions and the correlation of the original scale in most cases. The relationship may be

examined with simulations. Since win fractions are obtained from ranks instead of the original

scale, it is possible to derive the equivalence of the Spearman correlation of the original scale

(Pearson correlation formula applied to ranks) and Pearson correlation of win fractions for

individually randomized trials.

To be specific, the Pearson correlation of the win fractions is equivalent to the Spearman

correlation of the original scale under the null hypothesis (WinP = 0.5). Suppose there are
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N subjects randomized with the treatment to control ratio s, with n1 = N/(1 + s) subjects in

the control arm and n2 = Ns/(1 + s) subjects in the treatment arm, where both are assumed

to have integer values. Denote the outcome for baseline as Xi j ∼ G, i = 1, 2, j = 1, 2, · · · , ni

and for follow-up as Yi j ∼ Fi. We drop the subscript for G because randomization implies the

distribution of baseline measurements is the same for both arms. The combined distribution of

the follow-up is hence,

F(x) = f1F1(x) + f2F2(x) ,

where f1 = 1/(1+ s) is the fraction of control arm and f2 = s/(1+ s) is the fraction of treatment

arm. The derivations in this section would make more sense and intuitive by using fi instead

of s. Therefore, we will use fi for the rest of this section. The rank of subject j within its arm

at baseline is denoted by rX
i j and rank of the same subject in the whole sample combining both

arms by RX
i j. Similarly, we denote the within-arm rank and total rank for follow-up as rY

i j and

RY
i j, respectively. The Spearman correlation rs is estimated by

r̂s =

∑2
i=1

∑ni
j=1(RX

i j − R
X
.. )(R

Y
i j − R

Y
.. )√∑2

i=1
∑ni

j=1(RX
i j − R

X
.. )2

√∑2
i=1

∑ni
j=1(RY

i j − R
Y
.. )2

.

Since the rank is related to the empirical distribution function by RX
i j = 0.5+NĜ(Xi j) and RY

i j =

0.5 + NF̂(Yi j), and the mean overall rank is only related to sample size R
X
.. = R

Y
.. = (1 + N)/2,

the Spearman correlation can be written in terms of the empirical distribution function,

r̂s =

∑2
i=1

∑ni
j=1

(
Ĝ(Yi j) − 0.5

) (
F̂(Xi j) − 0.5

)
√∑2

i=1
∑ni

j=1

(
Ĝ(Yi j) − 0.5

)2
√∑2

i=1
∑ni

j=1

(
F̂(Xi j) − 0.5

)2
.

Using the win fractions for Xi j, denoted as wX
i j, and for Yi j, denoted as wY

i j, the Pearson correla-
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tion of win fractions can be written as

r̂p =

∑2
i=1

∑ni
j=1(wX

i j − wX
.. )(w

Y
i j − wY

.. )√∑2
i=1

∑ni
j=1(wX

i j − wX
.. )2

√∑2
i=1

∑n
j=1(wY

i j − wY
.. )2

=

∑2
i=1

∑ni
j=1

(
RX

i j−rX
i j

N−ni
− wX

..

) (
RY

i j−rY
i j

N−ni
− wY

..

)
√∑2

i=1
∑ni

j=1

(
RX

i j−rX
i j

N−ni
− wX

..

)2
√∑2

i=1
∑ni

j=1

(
RY

i j−rY
i j

N−ni
− wY

..

)2

=

∑2
i=1

∑ni
j=1

(
NĜ(Xi j)−Ĝi(Xi j)

N−ni
− wX

..

) (
NF̂(Yi j)−F̂i(Yi j)

N−ni
− wY

..

)
√∑2

i=1
∑ni

j=1

(
NĜ(Xi j)−Ĝi(Xi j)

N−ni
− wX

..

)√∑2
i=1

∑ni
j=1

(
NF̂(Yi j)−F̂i(Yi j)

N−ni
− wY

..

)2

=

∑2
i=1

∑ni
j=1

(
Ĝ(Xi j) − 0.5

) (
1

1− fi
F̂(Yi j) −

fi
1− fi

F̂i(Yi j) − wY
..

)
√∑2

i=1
∑ni

j=1

(
Ĝ(Xi j) − 0.5

)2
√∑2

i=1
∑ni

j=1

(
1

1− fi
F̂(Yi j) −

fi
1− fi

F̂i(Yi j) − wY
..

)2
.

The Pearson correlation of win fractions is also closely related to the Pearson correlation based

on ranks but has a term that depends on the WinP (wY
.. ). When no treatment effect is present, i.e

F = F1 = F2, the two correlations are the same r̂p = r̂s since wY
.. = 0.5. However, they are not

the same under WinP , 0.5 because the combined distribution F depends on the magnitude of

WinP. We evaluated their relationship via a simulation study in Chapter 5.

4.3 Summary and discussion

In this chapter, we developed sample size formulas for cluster randomization trials focusing on

the confidence interval estimation of WinP. The sample size estimation can be summarized into

three steps. The first step is to obtain the variance of win fractions for each arm and estimate the

sample size as if independent individuals are randomized. The second step is to apply formula

for individually randomized trial Zou et al. (2023), and finally multiply the sample size for

independent outcomes by the design effect of randomizing clusters (and baseline adjustments).

Our work extends the sample size planning of WinP for individually randomized trials by Zou

et al. (2023) to cluster randomization trials.
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There are several sample size formulas for cluster randomization trials in the literature, as

reviewed by Rutterford et al. (2015) and Gao et al. (2015). The formulas in the literature de-

pend on the distribution of the outcome because different parametric assumptions are required

to analyze those outcomes. However, our formula can be used for any type of outcome with-

out any distributional assumptions. Additionally, our formula is derived for trials focusing on

effect estimation, whereas other formulas in the literature are mainly derived for hypothesis

testing.

Our sample size formula is derived based on the correlation and ICC of win fractions,

which are rarely known. The correlation and ICC of the original scale can be used with our

sample size formula for practicability, similar to the approach proposed by Zou et al. (2023)

for sample size estimation of individually randomized trials. Such an approach performed well

for individually randomized trials in simulation studies (Zou et al., 2023), but its performance

for cluster randomization trials still needs to be investigated.



Chapter 5

Simulation study

We have proposed estimators of win probability (WinP) and its variance with baseline adjust-

ments in Chapter 3 and thee corresponding sample size formulas in Chapter 4. We have shown

the (co)variance estimators based on the weighted least square estimators are consistent but

slightly biased in finite samples. In this chapter, we conduct simulation studies to evaluate the

performance of confidence intervals of WinP proposed in Chapter 3 and the performance of

sample size formulas proposed in Chapter 4 in finite sample settings. Our simulation studies

have the following specific objectives:

1. Evaluate the performance of the confidence intervals for WinP in terms of empirical

coverage rate and the empirical width. Confidence intervals based on the four variance

estimator of adjusted WinP are compared to the confidence interval of unadjusted WinP.

2. Evaluate the validity of our sample size formula based on the empirical assurance prob-

ability and empirical coverage rate of the confidence intervals constructed from data

generated with the size from our sample size formula.

3. Examine the relationship between temporal correlation of the raw outcome and its tem-

poral correlation of win fractions.

We organize the rest of this chapter as follows. Section 5.1 provides scenarios of real-world

70
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cluster randomization trials. Section 5.2 describes the data generation model. We present the

results of our simulation study in three sections. Section 5.3 focuses on evaluating the meth-

ods proposed in Chapter 3, confidence intervals for WinP adjusting for baseline measurement.

Section 5.4 evaluates the sample size formula proposed in Chapter 4. Section 5.5 focuses on

assessing the relationship between the correlation of ranks of the raw scale (Spearman cor-

relation) and the correlation of win fractions. We discuss and summarize our findings of the

simulation study at the end of this chapter.

5.1 Simulation settings

The methods in Chapters 3 and 4 focus on two-arm cluster randomization trials with baseline

measurements by assuming large number of clusters. The performance of our methods may be

affected by several factors, including the total number of clusters in the trial, average cluster

size, the intraclass correlation coefficient (ICC), the magnitude of treatment effect and the

correlation between baseline measurement and follow-up outcome. We will generate outcomes

from continuous, binary and ordered category distributions to assess the robustness under finite

samples.

As suggested by reviews of cluster randomization trials (Simpson et al., 1995; Varnell

et al., 2004), an average cluster size of 50 should suffice to represent a moderate cluster size.

We consider an average cluster size of 25 as a smaller cluster size. We generate variable

cluster size from binomial distribution with n = 50, 100 and p = 0.5, which results in an

average cluster size of 25 and 50, respectively. The variability of cluster size is often measured

by the coefficient of variation (CV) of cluster size, which is the standard deviation of cluster

sizes over mean cluster size. The CV of cluster size generated from binomial distribution is

hence CV =
√

(1 − p)/(np) and we have CV = 0.14 and 0.1 for cluster size from binomial

n = 50, 100 and p = 0.5, respectively. For cluster size with higher variability, cluster size

was generated from a discrete uniform distribution U(l, u), following Zou et al. (2005). The
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mean and variance of the distribution U(l, u) are (l+ u)/2 and (u− l)(u− l+ 2)/12 respectively,

implying the coefficient of variation is

CV =
√

(u − l)(u − l + 2)/3/(u + l) .

The closest integers of l, u are chosen as l = 24 and u = 76 to have a mean of 50 and CV

of 0.3. A higher coefficient of variation such as 0.5 can result in clusters with fewer than 10

participants; hence, it is not considered.

The ICC is set to be 0.01, 0.05 and 0.1 because these are more common in practice for

clusters as socially intact units (Eldridge et al., 2004). Higher ICC values are usually found in

studies with small cluster sizes but have more clusters to satisfy the conditions for large sample

theories.

We consider both balanced and unbalanced cluster assignments to treatment arms in our

simulation. For the balanced case, we consider 5 clusters in each arm to evaluate the perfor-

mance of our methods under a small sample size. We also consider 15 clusters in each arm as

this is more commonly used from a review of 152 trials (Eldridge et al., 2004). We will also

consider 10 clusters in one arm and 20 clusters in the other arm representing the unbalanced

assignment of clusters. The performance under those cases will be compared to the results with

15 clusters per arm to determine the consequence of unbalanced designs.

We will use Cohen’s effect size of 0.2, 0.5, and 0.8 as a small to large effect size, which

is equivalent to WinP = 0.56, 0.64, and 0.71, respectively, for outcomes following a normal

distribution. We will also use these three values of WinP for binary and ordered category

outcomes in our simulation study. Although small to medium effect sizes are more common

in practice, we will still consider the large effect size in evaluating the performance of interval

estimation of WinP from Chapter 3. However, for sample size estimation, we will only consider

WinP = 0.56, 0.60 because WinP ≥ 0.64 will yield sample sizes too small to conduct a cluster

randomization trial.
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The correlation between baseline and follow-up at individual level is assumed to be 0.3 and

0.5 as weak to medium correlation. Cluster randomization trials usually have more extended

follow-up periods than individually randomized trials hence a strong correlation of 0.7 is much

less likely. Spearman correlation is used because we focus on ordinal outcomes, where rank

is the only available information to compare outcomes. The parameters used in the simulation

study are summarized in Table 5.1.

Table 5.1: Parameters used to generate baseline measurement and outcomes for a two-arm
parallel cluster randomization trial.

Parameter values
WinPa 0.56, 0.64, 0.71

Total number of clusters (k) 10b,30
Average cluster size (n) 25, 50

Cluster size CVc 0, 0.1, 0.14, 0.3
ICCd(ρ) 0.01, 0.05, 0.1

Correlatione(r) 0.3, 0.5
Randomization ratio f 0.5, 1, 2

aWinP = Pr(Y1 < Y2)+0.5Pr(Y1 = Y2). b only considered for randomization ratio= 1. cCV: coefficient of variation.
dICC: intraclass correlation coefficient. e Spearman correlation coefficient between baseline and follow-up. f the
ratio of number of subjects in treatment arm over the control arm.

We now describe the covariance matrix used to simulate baseline measurement and follow-

up outcomes within a cluster. Denote ρ as the ICC, which is assumed to be the same for

both follow-up and baseline assessments, and r as the individual temporal correlation, which

is the correlation of baseline and follow-up within the same individual. The correlation of the

baseline measurements and follow-up outcomes within a cluster consisting of n subjects can

be expressed by the Kronecker product Σ = R ⊗ P, where

R =

1 r

r 1

 ,
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and P a diagonal n × n matrix with one on the diagonals and ρ on the off-diagonal,

P =



1 ρ · · · ρ

ρ 1 · · · ρ

...
...
. . .
...

ρ ρ · · · 1


.

Hence, Σ is

Σ =



1 ρ · · · ρ r rρ · · · rρ

ρ 1 · · · ρ rρ r · · · rρ
...
...
. . .

...
...
...
. . . rρ

ρ ρ · · · 1 rρ rρ · · · r

r rρ · · · rρ 1 ρ · · · ρ

rρ r · · · rρ ρ 1 · · · ρ

...
...
. . . rρ

...
...
. . .

...

rρ rρ · · · r ρ ρ · · · 1



(5.1)

The entries in the first n rows and n columns in Σ are correlations for baseline measurement

and the entries in the last n rows and n columns are correlation between follow-up outcomes,

where n is the cluster size. The other entries are the temporal correlation (same subject) or

the autocorrelation (different subject) of baseline measurement and follow-up outcome. We

assumed autocorrelation to be rρ because it should be weaker than both r and ρ. A higher au-

tocorrelation results in simulated outcomes with higher cluster-level temporal correlation. We

additionally consider higher autocorrelation as 0.9ρ for ordered category outcomes to simu-

late outcomes where cluster-level temporal correlation tends to be higher than individual-level

temporal correlation.

Based on the value of WinP, continuous outcomes are generated from a multivariate normal

distribution with unit standard deviation and the correlation matrix as described above. We
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assign the mean for control group as 0 and use the relation

WinP = Φ
(

u2
√

2

)

to obtain the mean for the treatment group (u2), which are 0.21, 0.51 and 0.78 corresponding

to WinP = 0.56, 0.64 and 0.71, respectively. For binary outcomes we consider the event rate as

0.1 for control group and use the relation

WinP =
p − 0.1 + 1

2

to obtain the event rate p for the treatment group, which are 0.22, 0.38 and 0.52 corresponding

to WinP = 0.56, 0.64 and 0.71, respectively.

We consider ordered category outcomes with five categories because Likert-like scales of-

ten have five or seven categories. To generate ordered category outcomes, we specify the prob-

abilities for each category for the control arm with the binomial distribution (4,0.5), where the

first category has probability of zero success from the binomial distribution, second category

has probability of one success, and so on. The probabilities of each category for the treatment

arm are specified by shifting some higher categories into the next category to obtain the desired

WinP as shown in Table 5.2.

Table 5.2: Probabilities of each category to generate ordered category outcomes with five cat-
egories.

Category 1 2 3 4 5
Control (q) 0.0625 0.2500 0.3750 0.2500 0.0625

Treatment (p)
WinPa = 0.56 0.0600 0.2500 0.2500 0.2560 0.1840
WinP = 0.64 0.0080 0.1000 0.4000 0.3560 0.1360
WinP = 0.71 0.0080 0.1000 0.2000 0.5080 0.1840

a The WinP is obtained by WinP= qΩp
′

, where q and p are the row vector of probabilities of each category for the
control arm and treatment arm respectively, and Ω is the upper triangle matrix of ones but half on the diagonal.
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5.2 Generation of ordered data

Correlated ordered category outcomes and correlated binary outcomes are generated by the

mean mapping method (Kaiser et al., 2011). The method generates correlated normal outcomes

and transforms them into ordered category outcomes by cutting off the normal outcome with

quantiles. As an example of the cut-off, suppose we intend to generate an ordered category

outcome of three categories with the probability of each category as (0.1, 0.3, 0.6). We first

calculate the cut-offs on a standard normal distribution such that the interval between cut-offs

forms an area with the corresponding probability. The cut-offs for probabilities (0.1, 0.3, 0.6)

are shown in Table 5.3.

Table 5.3: Example ordered category proportion and its cut-off points

Category 1 2 3
Proportion 0.1 0.3 0.6

Cumulative proportion 0.1 0.4 1
Cut-off Φ−1(0.1) = −1.28 Φ−1(0.4) = −0.25 Φ−1(1) = ∞

The next step is to sample from a standard normal distribution and transform it into an

integer corresponding to the ordered categories based on which interval of cut-offs it is in.

For example, suppose −1 is randomly sampled from a standard normal distribution, instead

of keeping the outcome as −1 it is converted into 2 because −1 lies within the interval of

(−1.28,−0.25).

To illustrate the mechanisms of the mean mapping method in generating correlated ordered

categories outcomes, we first consider the case where only two outcomes are generated and

we will extend it to the general case with any number of correlated outcomes. To generate

ordered category outcomes X and Y of q categories that have correlation r, we first draw from

a bivariate normal distribution with mean 0 and covariance matrix with ones on the diagonals

and an arbitrary chosen value p on the off-diagonal entries. The next step is to transform them

into ordered categories with the cut-offs and calculate the correlation of the ordered category

outcomes. Since X and Y are generated from bivariate normal distribution, the joint probability
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can be calculated by the cumulative function (Φ(x, y, p)) of the bivariate normal distribution by

Pr(X = x,Y = y) = Φ(qx, qy, p) − Φ(qx−1, qy, p) − Φ(qx, qy−1, p) + Φ(qx−1, qy−1, p) (5.2)

where qx denotes the cut-off quantile corresponding to category x. The correlation between X

and Y are r′ = E[XY] − E[X]E[Y], where Kaiser et al. (2011) derived an approximation for

E(XY) given as

E(XY) = r′
√

Var(X)Var(Y) + E(X)E(Y) − q2 + q
q−1∑
x=1

FX(x) + q
q−1∑
y=1

FY(y) , (5.3)

which depends only on r′ and the cumulative distributions of X and Y denoted as FX(x) and

FY(x), respectively.

Combining the relation in equation (5.2) and (5.3) through

E[r′] = E[XY] − E[X]E[Y]

=

q∑
x=1

q∑
y=1

xyPr(X = x,Y = y) −

 q∑
x=1

xPr(X = x)


 q∑

y=1

yPr(Y = y)


implies that the correlation of the ordered category outcomes r′ can be determined by p and

the joint and marginal probabilities of X and Y . Due to the complexity of the relation, the

mean mapping method calculates r′ by using equation (5.2) and (5.3) on a grid of possible

values of p from −1 to 1 incremented by 0.01. Out of the 200 values of p, the mean mapping

method finds the one that provides r′ closest to the desired r. The mean mapping method was

showed to be a valid and reliable method to generate correlated ordered category outcomes by

simulation studies (Kaiser et al., 2011). Generating more than two correlated outcomes follows

by sampling from a multivariate normal distribution instead of a bivariate normal distribution.

Generating ordered category outcomes for cluster randomization trials requires three cor-

relation parameters: (i) the individual temporal correlation r, (ii) the intraclass correlation

coefficient ρ, and (iii) the autocorrelation p. The mean mapping method solves correlation pa-
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rameters one by one with the method we described above and then generates correlated ordered

category outcomes with the desired correlation structure. Generating the baseline measure-

ments and follow-up outcomes for a cluster of size m requires sampling from a 2m-dimension

multivariate normal distribution with the covariance matrix shown in Equation (5.1).

5.3 Performance of interval estimation

We conducted a simulation study to evaluate the performance of interval estimation of WinP.

Four variance estimators of the WinP adjusted baseline are used: three variance estimators are

based on the weighted least square approach from equation (3.3 and 3.4), which are cluster

size weighted estimator in equation (3.7), ICC weighted estimator in equation (3.6) and ratio

estimator in equation (3.9), the fourth variance estimator is based on the mixed model approach

(3.13), which regresses the follow-up win fractions on the baseline win fractions in a mixed

model. Arsinh transformed confidence interval from equation (3.21) are constructed using

the four different variance estimates. The logit transformed confidence interval from equation

(3.19) have similar coverage to arsinh transformed intervals but are wider; hence, we will only

present the results of the arsinh transformed intervals.

For confidence interval estimation, the most important performance measure in a simulation

study is the empirical coverage as it measures the validity of the method. This criterion is

crucial for the WinP because the range of restriction and skewness of sampling distribution can

cause imbalanced tail errors. Another important performance measure for interval estimation is

the average width of the interval. Shorter interval width implies the study has higher efficiency

which is desirable for randomized controlled trials due to its high cost. Our proposed methods

use covariance analysis of the follow-up and baseline to increase efficiency based on large-

sample results (Teerenstra et al., 2012). It is unclear whether the efficiency gain is similar

for small samples. We will compare our confidence intervals to the intervals without baseline

adjustment to calculate the efficiency gained from baseline adjustment. All confidence intervals
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in this section are calculated at 5% significant level. The simulation study is conducted with

1,825 replicates such that the empirical coverage rate is acceptable if it is between 94% and

96% because 0.95 ∓ 1.96
√

0.95 × 0.05/1825 = (0.94, 0.96).

The simulation results for ordered categorical outcomes, continuous outcomes and binary

outcomes are presented in the followings.

5.3.1 Ordered category outcomes

Table 5.5 presents the simulation results for ordered category outcomes with five clusters per

arm. All four baseline adjusted confidence intervals showed acceptable coverage rates with

very few entries outside the range of (94%, 96%). The average confidence interval width from

the mixed model approach is the narrowest among the four baseline-adjusted confidence in-

tervals. Baseline adjustment by the weighted least square approach only yielded narrower

confidence intervals under medium correlation (r = 0.5).

Table 5.6 presents the simulation results for 15 clusters per arm. All four baseline-adjusted

confidence intervals showed acceptable coverage rates. The mixed model approach yielded the

narrowest confidence interval compared to the other three baseline adjusted intervals, but the

difference is smaller compared to Table 5.5 with five clusters per arm. Baseline adjustment

yielded efficiency regardless of the analysis method (mixed model or weighted least square) or

the scenarios.

Table 5.7 presents the simulation results for 20 clusters in the control arm and 10 clusters

in the treatment arm. Confidence intervals from the weighted least square approach are more

likely to overshoot the coverage rate (> 96%), and intervals from the mixed model approach

are more likely to undershoot the coverage rate (< 94%). However, most entries are still within

the acceptable range of (94%, 96%). The mixed model approach yielded the most narrow

confidence intervals compared to the intervals from the weighted least square approach. The

average width of confidence intervals from the weighted least square approach is only narrower

than the unadjusted intervals under medium correlation (r = 0.5). Comparing confidence
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interval widths between Table 5.7 and Table 5.6 shows that the imbalance design increases the

confidence interval width.

Table 5.8 presents the simulation results for 10 clusters in the control arm and 20 clusters in

the treatment arm. All four baseline adjusted confidence intervals showed satisfactory coverage

rates, with almost no entries outside the range (94%, 96%). Similar to previous findings, the

mixed model approach yields confidence intervals with the narrowest width, and the weighted

least square approach only gains efficiency under medium correlation (r = 0.5). Comparing the

confidence interval width between Tables Table 5.6 to Table 5.8, we observe that a balanced

design is the most efficient design, and having more clusters in the treatment arm is more

efficient than having more clusters in the control arm.

Table 5.9 presents the simulation results for 15 clusters per arm with high cluster size vari-

ability (coefficient of variation as 0.3) and high autocorrelation (0.9ρ) or low autocorrelation

(rρ). All four baseline adjustment methods have slightly more entries of coverage outside the

acceptable range (94%, 96%), with the intervals from the size-weighted estimator performing

the worst. The weighted least square approach has higher efficiency than the mixed model

approach under high autocorrelation, and the mixed model approach has higher efficiency un-

der low autocorrelation. This result is expected from the theoretical results in Chapter 3, where

the efficiency gained from baseline adjustment depends only on cluster-level correlation for the

weighted least square approach, but the efficiency depends on both cluster- and individual-level

correlation for the mixed model approach.

We presented the efficiency of our confidence intervals adjusted by baseline measurement

compared to unadjusted intervals for balanced design with different autocorrelation (resulting

in different cluster-level correlation) in Figure 5.1. We can observe that the weighted least

square approach gains more efficiency compared to the mixed model approach under high

autocorrelation, or high cluster-level correlation. Otherwise, the mixed model approach usually

gains more efficiency compared to the weighted least squared approach.
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Figure 5.1: Average efficiency (% reduction in interval width) of the confidence intervals from
the weighted least square approach (solid line) and the mixed model approach (dash line) com-
pared to interval without baseline adjustment. There are 15 clusters for each arm, with the
cluster size generated from uniform distribution (24,76).

5.3.2 Continuous outcomes

Table 5.10 presents the simulation results for continuous outcomes with five clusters per arm.

All four baseline-adjusted confidence intervals showed acceptable coverage rates. The aver-

age confidence interval width from the mixed model approach is the narrowest among the

four baseline-adjusted confidence intervals. Baseline adjustment by the weighted least square
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approach only yielded narrower confidence intervals under medium correlation (r = 0.5).

Table 5.11 presents the simulation results with 15 clusters per arm. All four baseline ad-

justed confidence intervals showed satisfactory coverage rates with no entries outside the range

of (94%, 96%). Similarly to previous results, the mixed model yields the most narrow confi-

dence intervals. Baseline adjustment with the weighted least square approach yields narrower

confidence intervals compared to unadjusted intervals regardless of the scenario.

Table 5.12 presents the simulation results for 20 clusters in the control arm and 10 clus-

ters in the treatment arm. All four baseline-adjusted confidence intervals showed acceptable

coverage rates. The mixed model approach yielded the most narrow confidence intervals, and

baseline adjustment by the weighted least square approach only yields narrower confidence

intervals under medium correlation (r = 0.5).

Table 5.13 presents the simulation results for 10 clusters in the control arm and 20 clus-

ters in the treatment arm. All four baseline adjusted confidence intervals showed acceptable

coverage rates, with a few entries of the mixed model approach falling below 94%. Similar

to previous findings, the mixed model approach yields confidence intervals with the narrowest

width, and the weighted least square approach only gains efficiency under medium correlation

(r = 0.5). Comparing the confidence interval width between Tables 5.11 to 5.13, we observe

that a balanced design is the most efficient design, and having more clusters in the treatment

arm is more efficient than having more clusters in the control arm.

5.3.3 Binary outcomes

Table 5.14 presents the simulation results for binary outcomes with five clusters per arm. All

four baseline adjusted confidence intervals and unadjusted intervals have a few entries of cover-

age falling below 94%. Under-coverage is more common for unadjusted intervals and adjusted

intervals from the mixed model approach. The average confidence interval width from the

mixed model approach is the narrowest among the four baseline-adjusted confidence intervals.

Baseline adjustment by the weighted least square approach does not yield narrower confidence
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interval width, even for medium correlation (r = 0.5).

Table 5.15 presents the simulation results with 15 clusters per arm. All four baseline ad-

justed confidence intervals showed acceptable coverage rates, but the size-weighted estimator

and the mixed model approach yielded a few more entries of coverage below 94%. Similarly to

previous results, the mixed model yields the most narrow confidence intervals. Baseline adjust-

ment with the weighted least square approach yields narrower confidence intervals compared

to unadjusted intervals regardless of the scenario.

Table 5.16 presents the simulation results for 10 clusters in the control arm and 20 clus-

ters in the treatment arm. All four baseline-adjusted confidence intervals showed acceptable

coverage rates. The mixed model approach yielded the most narrow confidence intervals, and

baseline adjustment by the weighted least square approach only yields narrower confidence

intervals under medium correlation (r = 0.5).

Table 5.17 presents the simulation results for 20 clusters in the control arm and 10 clusters

in the treatment arm. Unadjusted confidence intervals and intervals from the mixed model ap-

proach have more under-coverage entries compared to intervals from the weighted least square

approach. Similar to previous findings, the mixed model approach yields confidence intervals

with the narrowest width, and the weighted least square approach only gains efficiency under

medium correlation (r = 0.5). Comparing the confidence interval width between Tables 5.15 to

5.17, we observe that a balanced design is the most efficient design, and having more clusters

in the treatment arm is more efficient than having more clusters in the control arm.

5.4 Performance of sample size estimation

The performance of the sample size formula (equation 4.7) is evaluated using the empirical

assurance probability (i.e., the lower limit of 2-sided 95% CI for WinP being above 0.5). We

considered the nominal assurance probabilities of 80% and 90%. The performances of the

weighted least square and mixed model approaches are different due to the difference between
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cluster-level and individual-level temporal correlation. We evaluate the sample size formulas

using both approaches in terms of empirical coverage and assurance probability, where the ICC

weighted variance estimator is used to construct arsinh transformed confidence interval.

In this section, the most critical performance measures is the empirical assurance proba-

bility, although we also consider the empirical coverage. All the confidence intervals in this

section are calculated at 5% significant level. Each entries are calculated with 1,825 repli-

cates such that the empirical coverage rate is acceptable if it is between 94% and 96% because

0.95 ∓ 1.96
√

0.95 × 0.05/1825 = 0.94, 0.96, and the empirical assurance probability is sat-

isfactory if between 78.2% and 81.8% for 80% nominal assurance probability, and between

88.6% and 91.3% for 90% nominal assurance probability.

We assume the outcome has five ordered categories with the probabilities of each category

presented in Table 5.4. We then use equation (4.7) to calculate the sample size. Since the tem-

poral correlation of cluster means is often unknown in practice, we use the individual temporal

correlation on the raw scale in calculating sample size. Similarly, we use the ICC of the raw

scale in sample size calculation.

Although the number of clusters was suggested to be increased by two for studies with

5% level when 30 or fewer clusters are randomized, we do not include such adjustment in

our simulation study to confirm whether or not such adjustment is necessary. Hence, we will

additionally examine the performance of our sample size formula when less than 30 clusters

are randomized.

Table 5.4: Probabilities of each categories used to plan for the sample size.

Category 1 2 3 4 5
Control (q) 0.0625 0.2500 0.3750 0.2500 0.0625

Treatment (p)
WinP = 0.56 0.0430 0.1914 0.3627 0.3128 0.0901
WinP = 0.60 0.0332 0.1564 0.3415 0.3543 0.1146

a The WinP is obtained by WinP= qΩp
′

, where q and p are the row vector of probabilities of each categories for
the control arm and treatment arm respectively, andΩ is the upper triangle matrix of ones but half on the diagonal.

Table 5.18 presents the results for 80% assurance probability for sample size estimation.
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Both analysis methods maintained the assurance probability in most parameter combinations

when there are more than 20 clusters in the trial. Using the mixed model approach to analyze

the data results in a higher empirical assurance probability compared to the weighted least

square approach. This is coherent with previous results that the mixed model approach tends

to yield narrower confidence intervals.

Table 5.19 presents the results for 90% assurance probability for sample size estimation.

Assurance probability are maintained in most entries as most scenario results in sample size

more than 20 clusters. In Tables 5.18 and 5.19, we can see that our sample size formula

generally has acceptable performance when over 30 clusters are randomized. The empirical

assurance probability may be below the acceptable range when less than 30 clusters are ran-

domized; hence, increasing the total number of clusters by two for studies with 95% level and

by four for studies with 99% level could better maintain the assurance probability for studies

under 30 clusters (Donner and Klar, 2000, p.67).

The empirical assurance probabilities under different number of clusters are graphically

presented in Figure 5.2, where it can be seen that the mixed model approach generally has a

higher empirical assurance probability. This may be explained by the consistency of efficiency

gained for the mixed model approach under a small sample size, as observed previously.

5.5 Correlation on raw scale and win fractions

Our sample size formula was derived based on the Pearson correlation of the win fractions,

but such information is often not available in practice. The correlation on the original scale

may be used for the estimation of sample size to account for baseline adjustment and cluster-

ing. Although simulation results for the sample size formula were satisfactory, exploring the

relationship between the two correlations is still beneficial for future research. It also gives

the researcher more confidence to use the correlation of the original scale for the purpose of

sample size planning.
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Figure 5.2: Empirical assurance probability under small to large sample size. The y-axis is
the empirical assurance probability minus nominal assurance probability, hence >0 is more
preferable than < 0 for small sample size.

We will focus on comparing the individual temporal correlation of the original scale to the

individual temporal correlation of win fractions obtained from the same data. We will also

examine the relationship between the individual temporal correlation of the original scale and

the correlations of cluster means of win fractions since the latter are crucial in determining

the efficiency gained from baseline adjustment. To be specific, the temporal correlation of
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cluster means of win fractions relates to the efficiency gained from baseline adjustment using

the weighted least square approach, and the autocorrelation of cluster means of win fractions

relates to the efficiency gained from the mixed model approach. The ICC of the original scale

is also compared to the ICC of win fractions.

We generate data with two different correlation structures, where one has a lower autocor-

relation of different individuals within the same cluster, and the other has a higher correlation.

The temporal correlation of cluster means of win fractions is estimated by Pearson correlation

weighted by cluster size given by

rc =

∑2
i=1

∑ki
j=1 mi jw

X
i j.w

Y
i j. − MwX

...w
Y
...√∑2

i=1
∑ki

j=1 mi j(w
X
i j.)2 − M(wX

...)2
√∑2

i=1
∑ki

j=1 mi j(w
X
i j.)2 − M(wX

...)2
,

where wX
i j. and wY

i j. are the cluster-specific mean of win fractions for baseline and follow-up,

respectively, mi j is the size of cluster j in arm i, and M =
∑2

i=1
∑

j=1 mi j is the total number

of participants (Bland and Altman, 1995b). The individual temporal correlation ri is estimated

with repeated measure analysis of variance (ANOVA) to account for clustering (Bland and

Altman, 1995a). The ICC ρ is estimated using the ANOVA estimator (Donner and Klar, 2000),

and the autocorrelation of cluster means is estimated with

ra =
m..ρ

1 + (m.. − 1)ρ
rc +

1 − ρ
1 + (m.. − 1)ρ

ri ,

where m.. = M/(k1 + k2) is the mean cluster size.

We generated 1,825 replicates with given individual temporal correlation (r) and ICC of

the original scale and then estimated the individual temporal correlation, correlation of cluster

means, the autocorrelation of cluster means and ICC of win fractions. We summarized the

simulation results in Table 5.20, by presenting the mean of the correlation estimates and their

standard errors.

The individual temporal correlation and ICC of win fractions are relatively close to its
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counterpart on the original scale compared to the temporal correlation of cluster means. The

temporal correlation of cluster means of win fractions (rc) is smaller than the individual tem-

poral correlation of original scale r under low autocorrelation, where rc could be larger than r

under high autocorrelation. The differences between rc and r increase as WinP increase. Esti-

mating rc yields a much higher standard error than the individual temporal correlation of win

fractions. On the other hand, the autocorrelation (ra) is closer to r and has a smaller standard

error. This explains why the mixed model approach performs more reliably than the weighted

least square approach in efficiency in our simulation study.

The difference between r and ra or rc and their standard errors increases as the treatment

effect increases. This might explain why our sample size formula could be anticonservative

when only a small number of clusters are required. It is because estimating the temporal

correlation of cluster mean has a high standard error; hence, the required sample size varies

more when the data is analyzed with the weighted least square approach. On the other hand,

ra has a smaller standard error which implies that the sample size required when the data is

analyzed with the mixed model approach varies less.

5.6 Summary and discussion

We conducted simulation studies to evaluate the performance of estimating WinP for cluster

randomization trials with baseline assessments by the weighted least square and the mixed

model approach. Both methods of baseline adjustment have sufficient coverage from our sim-

ulation study. Baseline adjustment also reduced variance compared to the unadjusted estimates

in all scenarios for the mixed model approach. The weighted least square approach could lose

efficiency when only a few clusters are randomized because the temporal correlation of cluster

means is unstable and could be much smaller for a small sample size. Hence, losing degrees

of freedom for confidence interval construction may not make up for the efficiency gained in

variance estimation from baseline adjustment using the weighted least square approach. This
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is also confirmed in the simulation study for the sample size formula, where we observed low

assurance probability for the weighted least square approach when a small number of clusters

are randomized. The low assurance probability is due to the increased width of the confidence

interval from the weighted least square approach under a small sample size.

The mixed model approach has two advantages over the weighted least square approach.

The mixed model approach often has higher efficiency than the weighted least square approach.

The mixed model approach is better at maintaining the assurance probability with our sample

size formula. Another reason is that the mixed model is commonly available in most statistical

software without extra programming. One only needs to obtain the win fractions by ranks of

the outcomes and baseline measurements and then use the mixed model to analyze the win

fractions for effect estimation. In very rare cases, we did encounter simulated data sets that

cannot be analyzed with the mixed model approach due to the singularity of the covariance

matrix. The weighted least square approach could be an alternative choice in such cases.

The correlation of cluster means appears in the sample size formulas for cluster random-

ization trials, but it is often not known in practice. The approach we have taken in this thesis

is to use only the individual temporal correlation and the ICC on the original scale to estimate

sample size, although the formula was derived based on correlation and ICC on win fractions.

Our simulation study shows that such an approach works well for moderate to large sample

sizes. To maintain the assurance probability for small sample size, one can increase two clus-

ters to our sample size formula when less than 30 clusters are randomized for α = 0.5 and four

clusters for α = 0.01.

We evaluated the performance of our sample size formulas where the baseline measurement

and follow-up outcome come from the same individual, i.e, the clusters consist of the same

individuals over time. Our sample size formula is also applicable to cross-sectional designs,

where the recruitment occurs at both follow-up and baseline. The sample size formula for

cross-sectional cluster randomization trials is essentially the same for a trial where the same

individuals are followed, except that the autocorrelation of cluster means is smaller because
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individual temporal correlation is close to zero for cross-sectional designs. We expect our

formula would be liberal for cross-sectional designs if the individual temporal correlation were

used in sample size estimation because the temporal correlation of cluster mean win fractions

is often smaller than the individual temporal correlation as shown in our simulation study.
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Table 5.5: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with ordered category outcomes.
Each arm consists of 5 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size ∼ Binomial(50,0.5)

0.3 0.56 0.01 94.6317.31 95.1818.46 95.2918.62 94.8518.42 94.6316.37

0.05 95.1222.55 95.3423.98 95.4524.13 95.2323.95 95.0721.38

0.10 95.5127.38 95.2329.05 95.0729.17 95.3429.07 94.9025.96

0.64 0.01 94.7415.99 95.2917.11 95.6217.25 95.2317.07 94.4115.29

0.05 96.0520.75 94.7922.23 95.0722.36 94.7422.21 95.5619.95

0.10 94.9025.59 94.7927.18 94.7927.32 94.6327.17 94.3624.52

0.71 0.01 95.8915.24 95.2916.36 95.1816.50 95.1816.31 96.2714.64

0.05 95.1819.58 95.4520.97 95.9521.10 95.3420.95 95.0118.86

0.10 94.7424.13 95.1825.63 95.4525.76 95.1825.66 94.7423.21

0.5 0.56 0.01 95.1817.22 95.5116.82 95.5616.95 95.4516.79 95.2314.94

0.05 95.4022.69 95.6722.17 95.7322.31 95.6722.15 95.3419.69

0.10 93.9727.48 95.4027.06 95.4527.23 95.3427.03 94.6824.14

0.64 0.01 94.3015.96 94.9615.61 95.0115.75 94.8515.57 94.0313.91

0.05 95.6221.13 95.8420.72 96.0020.83 95.7820.71 95.8418.53

0.10 94.5225.65 95.4525.10 95.6225.25 95.4025.09 95.2922.56

0.71 0.01 95.7815.10 95.6214.96 95.6215.08 95.4514.93 95.5613.41

0.05 95.2319.58 95.0719.27 94.7919.44 94.7919.23 94.2517.31

0.10 95.5124.27 95.2923.80 95.4523.93 95.4023.79 94.7421.43

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.5813.22 95.5614.13 95.5614.19 95.4514.11 94.5212.47

0.05 95.1820.00 95.1221.35 95.3421.40 95.1221.35 94.5218.90

0.10 95.9525.62 95.7327.31 95.7827.39 95.7827.29 95.6224.29

0.64 0.01 94.4112.59 95.6213.50 95.6213.55 95.7813.49 94.7412.02

0.05 94.7418.63 95.6219.92 95.8419.97 95.4519.92 94.6317.78

0.10 95.7323.94 95.8425.51 95.9525.57 95.7825.51 96.0522.95

0.71 0.01 94.8511.70 95.1212.49 95.1812.54 95.0712.48 94.8511.24

0.05 94.5217.53 95.0118.76 94.9618.81 95.0118.75 94.9016.77

0.10 94.3022.40 94.5223.98 94.5824.05 94.5223.97 94.3621.51

0.5 0.56 0.01 93.7013.25 94.4713.02 94.5813.07 94.3613.00 93.9211.47

0.05 94.5819.98 94.5219.41 94.6319.46 94.5819.41 94.9617.19

0.10 94.0825.81 94.9025.07 94.7925.14 94.6325.06 95.0722.22

0.64 0.01 95.4012.39 95.5612.15 95.6712.20 95.4012.14 95.0110.82

0.05 94.1418.51 95.0118.16 94.9618.21 95.0718.17 94.8516.24

0.10 94.9024.06 95.2923.37 95.2923.43 95.0723.38 95.7321.00

0.71 0.01 94.6811.70 95.4511.58 95.5111.63 95.5111.57 95.0710.41

0.05 95.6217.62 95.5117.27 95.3417.32 95.6217.26 95.1215.45

0.10 95.0122.38 95.7822.01 95.7322.07 96.1122.00 95.6219.82
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.6: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with ordered category outcomes.
Each arm consists of 15 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 94.909.13 94.858.99 94.909.02 95.078.99 94.588.69

0.05 95.3412.04 95.0711.83 95.4011.90 95.1811.87 94.5211.45

0.10 95.5614.87 95.4514.61 95.5114.71 95.5614.68 95.0114.15

0.64 0.01 95.128.53 95.018.40 95.078.43 95.018.41 95.128.17

0.05 95.3411.22 95.6711.03 95.8411.09 95.8411.07 95.0110.74

0.10 95.1813.87 95.7313.64 95.7813.72 95.7813.70 95.3413.26

0.71 0.01 95.298.04 94.907.93 95.017.96 95.127.94 94.907.74

0.05 95.3410.50 95.6210.34 95.8410.40 95.6210.38 95.5110.11

0.10 95.0712.95 95.0712.74 95.0112.83 94.9612.80 95.2312.44

0.5 0.56 0.01 95.079.12 95.078.20 95.078.23 95.018.21 94.417.93

0.05 95.1212.05 95.2310.81 95.3410.87 95.0710.85 94.5810.47

0.10 95.4514.88 94.7913.34 94.9013.42 94.9013.41 94.5812.92

0.64 0.01 95.408.53 95.297.69 95.347.71 95.237.69 95.347.47

0.05 95.4511.24 95.6710.10 95.8410.15 95.8910.14 95.629.83

0.10 95.4013.89 95.6712.47 95.7812.54 95.6212.53 95.5112.12

0.71 0.01 95.018.02 95.297.28 95.297.30 95.347.28 94.907.10

0.05 95.5610.51 95.409.49 95.569.54 95.409.52 95.129.28

0.10 95.0712.96 95.4011.67 95.5611.74 95.5611.73 95.4511.41

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.077.10 95.846.96 95.846.97 95.896.97 95.406.72

0.05 95.1810.70 96.1110.50 96.1610.54 96.1110.53 95.5110.13

0.10 95.4013.92 95.6713.66 95.9513.72 95.7313.70 95.7313.15

0.64 0.01 96.116.61 95.896.50 95.896.51 95.786.50 95.566.32

0.05 96.009.94 95.959.76 96.009.80 95.959.79 95.849.48

0.10 96.0512.92 95.8912.69 95.9512.75 95.7812.73 96.1112.31

0.71 0.01 95.786.20 95.626.10 95.736.11 95.736.10 95.345.95

0.05 95.899.26 96.059.10 96.119.13 95.959.12 95.788.87

0.10 96.0012.02 96.1611.81 96.2711.87 96.0511.85 95.7311.50

0.5 0.56 0.01 95.407.10 95.956.34 96.056.35 96.116.35 95.626.13

0.05 95.4510.71 95.679.56 95.849.59 95.739.58 95.959.23

0.10 95.1213.92 95.4512.45 95.5112.50 95.6712.49 95.3411.99

0.64 0.01 95.626.61 95.565.91 95.625.92 95.345.92 95.515.75

0.05 95.459.94 95.568.89 95.678.91 95.568.91 95.738.63

0.10 95.3412.91 95.5111.56 95.6211.61 95.5111.59 95.4011.21

0.71 0.01 95.516.20 95.895.58 95.895.59 95.785.58 95.625.45

0.05 95.129.26 95.958.31 95.898.33 95.898.33 95.898.10

0.10 95.2912.02 95.5110.79 95.7310.84 95.6210.82 95.4510.51
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.7: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with ordered category outcomes.
The control arm consists of 20 clusters and the treatment arm consists of 10 clusters. Entries
are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 93.9710.10 94.3010.25 94.7410.39 94.5810.24 93.869.42

0.05 94.3013.25 94.9013.40 95.1213.56 94.9613.43 94.1912.34

0.10 94.2516.42 94.8516.63 94.7916.80 94.8516.70 94.4715.25

0.64 0.01 94.748.77 95.738.93 95.788.96 95.848.93 95.898.54

0.05 95.3411.58 95.5611.81 95.8411.82 95.5111.84 96.1611.30

0.10 94.4714.22 95.6214.49 95.8914.47 95.5614.56 95.6213.91

0.71 0.01 94.858.48 95.408.62 95.458.69 95.408.62 95.788.20

0.05 95.1811.10 96.1111.33 96.0011.39 95.8911.35 95.5110.71

0.10 94.5213.65 95.1213.89 95.2913.94 95.1813.94 95.2313.20

0.5 0.56 0.01 93.8610.06 93.269.31 93.489.44 92.889.31 92.608.57

0.05 94.3013.35 94.6312.36 94.7912.49 94.6812.38 94.3011.31

0.10 93.9716.34 94.1415.09 94.4115.21 94.1915.15 93.2113.87

0.64 0.01 94.258.75 94.968.16 94.858.18 95.078.16 94.687.78

0.05 93.9211.52 95.0110.72 94.9010.70 95.0110.75 94.7410.26

0.10 94.4714.28 95.4513.27 95.5613.24 95.5113.34 95.8412.72

0.71 0.01 94.748.38 95.627.86 95.517.92 95.517.86 94.907.45

0.05 94.7911.09 95.0110.38 94.8510.41 95.0710.41 94.689.83

0.10 94.5813.46 94.9612.51 94.7412.51 95.1812.56 95.4511.94

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.417.80 94.417.92 94.367.98 94.367.92 94.037.27

0.05 94.3611.68 94.6811.84 94.8511.92 94.5811.86 94.1910.81

0.10 94.5215.15 94.7915.35 95.0115.46 94.6815.39 93.7513.99

0.64 0.01 95.456.82 95.736.96 95.676.95 95.736.96 95.736.64

0.05 94.9010.19 94.7410.38 94.3610.35 94.7910.39 95.079.97

0.10 94.3013.32 95.5113.53 95.3413.50 95.5613.56 95.3413.06

0.71 0.01 95.236.49 95.896.64 95.846.66 95.896.64 95.406.30

0.05 93.979.67 94.589.84 94.589.85 94.589.86 94.309.31

0.10 94.4712.52 95.4012.75 95.1812.76 95.2912.78 95.5112.10

0.5 0.56 0.01 94.477.79 94.587.23 94.797.30 94.527.23 94.256.64

0.05 94.4111.72 95.4010.87 95.4010.94 95.4510.88 94.589.91

0.10 94.3615.21 95.5114.07 95.6714.16 95.3414.09 94.5212.86

0.64 0.01 94.796.75 95.406.29 95.186.27 95.406.29 95.186.00

0.05 94.7910.22 96.169.52 96.059.49 96.059.54 96.279.13

0.10 95.1813.29 95.8912.40 95.5612.33 95.7812.43 95.5611.91

0.71 0.01 94.366.51 96.056.11 95.956.12 96.226.11 96.005.77

0.05 94.589.71 94.909.03 94.689.03 94.859.04 94.798.57

0.10 94.6812.53 95.4511.73 95.3411.72 95.2311.75 94.7411.12
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.8: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with ordered category outcomes.
The control arm consists of 10 clusters and the treatment arm consists of 20 clusters. Entries
are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 93.979.22 94.969.40 94.969.39 94.589.41 95.518.98

0.05 95.3412.15 95.5112.38 95.5612.33 95.5612.41 95.4511.86

0.10 95.6215.10 95.8415.38 95.4515.29 95.8915.45 95.8914.76

0.64 0.01 94.419.24 94.859.39 95.349.51 94.909.40 94.748.72

0.05 94.8512.20 95.0112.35 95.1212.48 94.8512.37 94.5811.51

0.10 93.9214.97 94.2515.16 94.4715.29 94.4715.21 94.2514.11

0.71 0.01 94.308.54 95.518.71 95.898.79 95.348.72 95.298.22

0.05 94.0811.11 94.4111.31 94.4711.39 94.5811.34 94.4710.71

0.10 94.4113.83 95.2314.06 95.4514.14 95.2914.11 95.1213.32

0.5 0.56 0.01 94.309.15 95.678.58 95.408.54 95.848.58 95.348.20

0.05 94.4712.18 96.1611.36 95.7311.28 96.1611.40 95.6210.87

0.10 94.4115.13 95.1814.02 94.7413.91 95.0114.08 94.5213.43

0.64 0.01 94.089.21 94.258.56 94.198.67 94.198.56 94.307.97

0.05 93.5312.15 94.0311.28 94.1411.40 94.0311.31 94.4710.51

0.10 95.0114.98 95.4013.84 95.5613.95 95.5613.90 94.4112.88

0.71 0.01 94.368.52 95.297.96 95.458.03 95.187.96 95.347.53

0.05 95.2311.28 95.5110.48 95.8410.56 95.6210.51 95.569.93

0.10 94.6813.70 95.9512.72 95.8412.78 95.7312.78 95.8412.11

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.857.13 95.517.26 95.567.21 95.787.27 95.736.95

0.05 95.1810.81 95.7311.04 95.4510.95 95.5611.07 95.5110.58

0.10 94.6813.97 95.5114.26 95.2914.14 95.2314.29 95.7313.79

0.64 0.01 93.977.16 95.127.26 95.127.32 95.077.26 94.036.74

0.05 94.5810.67 94.9010.82 95.2310.90 94.7910.84 94.3010.06

0.10 94.6813.86 94.3014.02 94.7414.10 94.5214.05 94.9612.96

0.71 0.01 94.686.55 95.406.67 95.516.71 95.456.67 94.856.30

0.05 94.529.87 95.1810.01 95.1210.05 95.1210.03 94.909.46

0.10 94.0812.67 95.1212.89 95.0712.94 95.1212.92 94.7912.14

0.5 0.56 0.01 95.127.14 95.566.67 95.456.62 95.736.68 95.516.37

0.05 94.3010.75 94.799.99 94.479.88 94.9010.01 95.189.58

0.10 94.4714.03 95.6713.08 95.8412.95 95.6713.12 95.0112.64

0.64 0.01 94.797.13 94.966.62 94.906.67 94.856.62 94.686.15

0.05 94.0810.71 94.479.90 94.529.96 94.419.92 93.429.16

0.10 93.7013.97 95.4013.01 95.6213.08 95.4513.05 94.1911.95

0.71 0.01 94.856.58 95.016.17 94.966.20 95.076.17 94.795.83

0.05 94.909.79 95.459.05 95.519.09 95.299.07 95.628.61

0.10 94.7412.86 95.4511.93 95.3411.98 95.2911.95 95.6711.20
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.9: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with ordered category outcomes.
Each arm consists of 15 clusters with variable cluster size generated from discrete uniform
distribution (24, 76). Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
High auto correlationd

0.3 0.56 0.01 94.305.77 94.854.81 95.234.99 94.524.83 94.685.07

0.05 93.379.88 94.196.25 95.456.60 94.366.39 94.588.14

0.10 92.9313.30 93.757.54 95.347.92 93.977.80 94.7911.04

0.64 0.01 94.305.37 95.124.47 96.164.64 95.184.48 94.854.73

0.05 93.329.16 94.085.80 95.346.13 94.415.93 94.747.56

0.10 93.0412.33 93.707.01 95.297.37 93.707.25 94.9010.24

0.71 0.01 94.035.03 95.184.22 95.844.38 94.794.24 95.124.46

0.05 93.598.52 94.195.47 95.735.78 94.475.60 94.907.05

0.10 93.2611.47 94.086.63 95.346.96 93.976.86 94.859.54

0.5 0.56 0.01 94.145.78 94.584.32 95.234.49 94.144.34 94.304.43

0.05 93.219.87 93.535.78 94.856.07 93.595.94 94.366.78

0.10 93.2613.30 93.597.14 94.857.46 94.087.42 94.258.99

0.64 0.01 94.145.37 95.294.02 96.164.18 95.234.04 95.074.14

0.05 93.329.15 93.705.36 95.125.63 93.975.50 94.366.28

0.10 93.1512.33 93.866.63 94.906.93 94.086.89 94.148.32

0.71 0.01 94.365.03 95.183.83 95.893.97 95.123.84 95.453.93

0.05 93.978.51 94.145.08 94.965.33 94.035.22 95.125.88

0.10 93.2611.47 93.976.30 94.966.57 94.306.54 94.637.77

Low auto correlation
0.3 0.56 0.01 94.085.76 94.145.65 94.745.80 94.085.78 94.525.59

0.05 92.669.84 93.329.62 94.039.89 93.7510.09 93.929.49

0.10 92.4913.24 92.8812.93 93.8613.27 93.8613.63 93.9712.71

0.64 0.01 93.595.35 94.035.25 94.585.39 94.195.37 94.795.23

0.05 92.719.12 93.048.91 93.979.16 94.149.35 94.258.85

0.10 92.2712.28 92.6011.99 93.4212.30 93.8612.64 94.3611.86

0.71 0.01 93.815.01 94.634.92 95.235.05 94.415.04 94.364.92

0.05 93.048.49 93.758.30 94.528.53 94.198.70 94.368.26

0.10 92.3311.41 92.9311.14 93.7511.44 94.5811.75 94.4111.05

0.5 0.56 0.01 93.925.76 94.475.14 94.745.28 94.255.26 94.415.09

0.05 92.609.85 93.758.76 94.199.01 94.199.19 94.258.65

0.10 92.2713.25 93.2611.77 94.0812.07 93.9712.41 94.2511.56

0.64 0.01 93.865.36 94.794.78 95.184.91 94.964.89 94.964.77

0.05 92.779.13 93.648.11 94.528.34 94.308.50 94.748.06

0.10 92.4412.29 92.5510.92 93.4211.20 93.7011.52 94.2510.80

0.71 0.01 93.975.02 94.524.50 95.124.63 94.584.61 94.964.50

0.05 93.158.49 94.087.56 94.477.78 94.367.93 94.857.54

0.10 92.3811.42 93.2610.17 94.0310.43 94.0310.73 94.6810.09
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.10: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with continuous outcomes gen-
erated from normal distributions. Each arm consists of 5 clusters. Entries are presented as
coverage% × 100 confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 95.0717.61 95.7318.86 95.5619.01 95.8918.82 95.3416.94

0.05 94.2523.09 95.2324.68 95.4024.84 95.0124.65 94.7422.33

0.10 94.5828.07 94.8529.71 95.2329.87 95.0129.69 94.8527.02

0.64 0.01 94.5216.93 95.3418.17 95.6718.32 95.3418.12 94.6816.26

0.05 95.4522.02 96.0523.51 96.0023.66 95.9523.48 95.7321.27

0.10 94.9627.04 95.6728.64 95.6728.79 95.7828.63 95.0126.03

0.71 0.01 95.8415.74 95.7316.80 96.0016.94 95.4516.76 95.1215.12

0.05 95.5620.22 95.2921.66 95.4021.79 95.3421.65 95.3419.55

0.10 94.4724.73 95.7826.33 96.0526.48 95.8426.30 95.2323.80

0.5 0.56 0.01 95.1217.55 95.6217.35 95.6717.50 95.6717.31 95.5615.60

0.05 94.9622.95 94.2522.45 94.5222.61 94.2522.41 95.2320.27

0.10 94.8528.12 95.6727.51 95.9527.63 95.6227.53 95.6224.87

0.64 0.01 95.1216.95 95.5616.63 95.5616.76 95.5116.61 95.5614.98

0.05 95.4022.05 95.8421.47 96.0021.63 95.5621.44 95.3419.43

0.10 94.3026.68 94.4726.09 94.6826.25 94.3026.07 94.1423.67

0.71 0.01 95.1815.85 95.0115.70 95.0715.82 95.0715.67 95.1214.09

0.05 94.5820.30 95.0720.12 95.1820.26 95.1220.10 95.0118.11

0.10 95.0124.90 95.2324.53 95.2924.68 94.9024.52 94.8522.06

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.7313.75 95.6214.70 95.7814.74 95.6214.69 95.2913.21

0.05 95.6720.51 95.2321.91 95.2921.97 95.0121.91 95.4519.70

0.10 95.4526.37 95.7827.96 95.6228.03 95.6727.97 96.1125.35

0.64 0.01 94.1912.96 94.8513.85 95.0713.91 94.7413.84 94.0812.48

0.05 94.6819.60 94.8520.89 95.0120.95 94.7920.88 94.5818.82

0.10 96.4425.24 96.8826.92 96.8226.99 96.8226.91 96.3824.24

0.71 0.01 95.2312.15 95.1212.95 95.1213.00 95.1812.94 95.2311.68

0.05 95.2317.96 95.3419.20 95.4519.26 95.3419.18 95.8917.28

0.10 94.9623.06 95.0124.58 95.0124.64 95.0124.59 94.8522.19

0.5 0.56 0.01 95.0713.68 94.6313.45 94.6813.51 94.4713.44 94.4712.03

0.05 95.4520.28 95.0719.81 95.1819.87 95.4519.81 94.7917.85

0.10 94.3626.35 94.6825.59 94.6325.66 94.5225.59 94.5223.11

0.64 0.01 95.5613.21 96.3312.93 96.1612.98 96.5512.91 95.6711.61

0.05 94.9019.41 94.9019.03 95.0719.08 94.6819.03 95.0117.10

0.10 95.2325.26 95.5624.62 95.6224.67 95.4524.64 94.8522.26

0.71 0.01 95.4012.16 95.5112.04 95.5112.09 95.5112.03 95.6210.75

0.05 94.7417.85 94.7417.50 94.8517.56 94.9617.49 95.4015.67

0.10 95.2923.08 95.0122.55 95.2922.62 94.9622.53 94.4720.25
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.11: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with continuous outcomes gen-
erated from normal distributions. Each arm consists of 15 clusters. Entries are presented as
coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 95.409.35 95.519.21 95.519.24 95.679.21 95.299.00

0.05 95.5612.30 95.5612.10 95.6212.17 95.6212.14 95.1811.83

0.10 95.6215.18 95.2314.92 95.4015.02 95.2914.99 95.1814.58

0.64 0.01 95.628.95 95.568.82 95.568.85 95.628.83 95.568.62

0.05 95.6211.74 95.4511.55 95.6711.61 95.6711.58 95.1811.29

0.10 95.5614.47 95.3414.23 95.5114.33 95.2914.29 95.5113.90

0.71 0.01 95.678.31 95.788.21 95.788.24 95.738.21 95.628.01

0.05 95.4510.85 95.4010.68 95.4510.75 95.7310.72 95.1810.44

0.10 95.2913.35 95.3413.13 95.6213.23 95.4013.19 95.2912.83

0.5 0.56 0.01 95.569.35 95.678.43 95.678.45 95.738.43 95.078.23

0.05 95.5112.29 95.6711.05 95.5611.10 95.6711.08 94.9610.80

0.10 95.5615.17 95.5113.62 95.6713.71 95.6713.68 95.5113.31

0.64 0.01 95.458.95 95.518.09 95.628.12 95.518.09 95.297.90

0.05 95.4011.73 95.2310.56 95.2310.62 95.4510.59 95.0710.32

0.10 95.5614.46 95.6713.00 95.7313.08 95.6213.06 95.3412.70

0.71 0.01 95.298.31 95.407.55 95.457.58 95.567.55 95.567.37

0.05 95.5610.84 95.189.79 95.349.84 95.349.82 95.079.57

0.10 95.2313.35 95.5112.02 95.5112.10 95.3412.07 95.2911.74

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.297.25 95.077.12 95.187.13 95.077.12 95.126.96

0.05 94.7410.89 94.9010.68 94.9610.71 94.9610.70 95.1810.42

0.10 94.8514.15 94.6813.87 95.1813.93 94.9013.91 95.2313.53

0.64 0.01 95.456.93 94.856.80 94.906.82 94.906.81 95.236.65

0.05 94.6310.37 94.9610.17 94.9010.20 94.9010.20 95.349.93

0.10 95.0713.47 94.6813.21 95.0113.27 94.7913.24 95.4512.88

0.71 0.01 95.516.42 94.686.31 94.686.32 94.636.32 95.186.17

0.05 94.799.55 94.799.37 94.689.41 94.689.40 95.239.15

0.10 95.1212.40 94.6312.16 94.7412.22 94.6812.19 95.2911.86

0.5 0.56 0.01 95.517.25 95.076.49 95.076.51 95.016.50 95.016.35

0.05 94.9010.90 95.079.72 95.019.75 95.129.74 95.679.49

0.10 94.6314.16 95.0112.62 95.0112.67 94.9012.66 95.4512.32

0.64 0.01 95.566.93 94.686.22 94.746.23 94.856.23 94.966.08

0.05 94.8510.38 95.019.26 95.019.29 95.079.29 95.459.05

0.10 94.4113.48 94.8512.02 95.0112.07 94.9012.06 95.1811.73

0.71 0.01 95.516.42 94.905.79 94.905.80 95.075.79 95.235.66

0.05 95.079.56 94.858.55 95.018.58 94.908.57 95.298.35

0.10 94.9012.40 94.5211.08 94.8511.12 94.6311.11 95.1810.81
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.12: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with continuous outcomes gener-
ated from normal distributions. The control arm consists of 20 clusters and the treatment arm
consists of 10 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 94.689.87 95.4010.04 95.4010.13 95.1210.04 94.799.52

0.05 94.2513.01 95.2913.22 95.4513.29 95.3413.26 95.1212.57

0.10 94.9616.07 95.9516.31 95.8916.41 96.0016.37 95.8415.45

0.64 0.01 94.639.46 95.129.62 95.349.71 95.129.62 95.019.16

0.05 94.0312.39 94.4112.61 94.7912.68 94.6312.65 94.6811.96

0.10 94.8515.24 95.7315.51 95.8415.57 95.6715.57 95.6714.75

0.71 0.01 95.018.72 95.568.92 95.959.00 95.458.92 94.798.45

0.05 94.0311.46 94.5211.65 94.6311.73 94.7911.67 94.0811.06

0.10 94.9614.07 95.8914.30 95.7314.36 95.9514.36 95.4013.61

0.5 0.56 0.01 94.749.93 94.589.21 94.689.29 94.689.20 94.858.72

0.05 94.7413.02 95.8412.14 96.0512.20 95.7312.17 95.8911.51

0.10 94.7416.06 94.9614.89 95.0714.94 94.9014.95 94.9614.15

0.64 0.01 94.149.41 95.128.82 95.298.89 95.128.81 94.638.37

0.05 94.5812.43 94.7411.52 94.5211.58 94.5811.56 94.2510.95

0.10 94.6315.30 95.0714.17 95.2314.22 95.0114.22 94.5813.49

0.71 0.01 94.038.80 95.408.28 95.458.35 94.968.28 95.077.84

0.05 95.6211.58 95.4510.79 95.7810.86 95.5110.82 95.1210.22

0.10 94.7414.07 95.8913.11 95.9513.17 96.0513.16 95.7312.47

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.237.70 95.457.85 95.677.88 95.347.86 95.737.41

0.05 94.0811.47 95.4511.67 95.3411.71 95.5611.68 95.1211.06

0.10 94.5214.93 94.9615.14 94.7415.17 95.1215.17 95.1214.37

0.64 0.01 95.297.30 95.627.41 95.627.45 95.627.42 95.017.04

0.05 94.7910.91 95.2311.11 95.3411.14 95.1811.13 95.2910.49

0.10 95.3414.23 95.5614.48 95.5114.52 95.6214.52 94.9013.68

0.71 0.01 95.126.77 94.746.90 94.526.93 94.906.90 94.636.53

0.05 94.1410.06 94.4110.21 94.5810.24 94.3610.23 94.639.68

0.10 94.1913.08 95.2313.29 95.1813.33 94.9013.32 95.1812.56

0.5 0.56 0.01 94.637.68 95.127.13 95.237.15 95.237.13 95.186.74

0.05 93.8611.43 95.5110.61 95.8410.63 95.4010.64 95.5610.07

0.10 94.4714.86 94.4713.80 94.4113.82 94.3013.83 94.3613.09

0.64 0.01 93.707.34 95.626.84 95.456.88 95.846.84 94.966.48

0.05 93.5310.90 94.5810.10 94.4710.11 94.7410.11 94.369.53

0.10 94.3614.11 95.8913.14 96.0013.16 95.7313.18 95.6212.39

0.71 0.01 94.906.79 95.786.36 95.676.38 95.736.36 95.626.02

0.05 93.6410.08 94.259.38 94.309.39 94.309.40 93.978.88

0.10 94.4113.04 94.5812.09 94.5812.11 94.6812.11 94.6811.47
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.13: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with continuous outcomes gener-
ated from normal distributions. The control arm consists of 10 clusters and the treatment arm
consists of 20 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 94.309.85 94.9610.04 95.0710.08 94.7410.04 94.639.53

0.05 94.2512.93 94.5213.15 94.6313.24 94.6813.18 94.2512.52

0.10 93.8115.93 94.5216.19 94.4716.33 94.5816.25 93.9715.42

0.64 0.01 94.259.43 94.589.61 94.639.66 94.419.61 94.799.12

0.05 93.7012.34 94.5812.55 94.5812.64 94.6812.58 94.3011.95

0.10 93.8615.19 94.2515.44 94.3015.57 94.4115.50 93.9714.71

0.71 0.01 93.928.76 94.368.94 94.368.98 94.528.94 94.908.48

0.05 93.3211.41 94.3011.61 94.4111.69 94.5211.64 94.1911.05

0.10 93.7014.02 94.3014.26 94.2514.38 94.3014.31 93.8613.58

0.5 0.56 0.01 94.309.85 94.859.19 95.019.22 94.969.19 94.418.71

0.05 93.8612.92 94.5212.02 94.6312.09 94.7412.05 94.6311.43

0.10 93.4815.93 94.4114.80 94.5214.90 94.3014.86 94.4714.08

0.64 0.01 94.309.43 94.858.83 94.798.85 94.968.82 94.588.36

0.05 93.6412.34 94.5211.49 94.5811.55 94.5211.52 94.4110.93

0.10 93.2115.19 94.2514.12 94.2514.22 94.1914.18 94.1413.44

0.71 0.01 94.088.76 94.258.23 94.198.26 94.258.23 94.747.80

0.05 93.3211.40 94.6310.65 94.6310.71 94.5810.67 94.4110.13

0.10 93.5914.02 94.4113.06 94.3013.15 94.4713.11 93.9712.43

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.747.66 94.967.77 94.907.80 94.857.78 95.187.38

0.05 94.7911.50 94.8511.65 95.1811.71 94.9611.68 95.5111.05

0.10 94.7414.93 95.0715.13 95.2315.23 95.1215.16 95.7814.34

0.64 0.01 95.017.31 95.567.43 95.347.45 95.517.43 95.627.06

0.05 95.0710.95 95.0711.10 95.3411.16 95.0711.12 95.7310.53

0.10 94.8514.21 95.2914.40 95.1214.50 95.1214.43 95.8913.65

0.71 0.01 95.186.77 95.896.89 95.786.91 96.006.89 95.626.54

0.05 95.4010.08 95.0710.23 95.4010.28 95.1810.24 95.899.70

0.10 95.1813.07 95.3413.25 95.2913.35 95.4513.28 95.8912.56

0.5 0.56 0.01 94.967.66 94.797.10 94.967.12 94.907.11 95.346.74

0.05 94.7411.50 94.8510.62 94.8510.66 94.9610.64 95.6210.07

0.10 94.6314.94 94.8513.78 95.0713.85 95.1213.81 95.6713.06

0.64 0.01 95.127.32 95.566.80 95.566.81 95.406.80 95.786.45

0.05 95.1210.95 95.4010.12 95.3410.16 95.2310.14 95.629.59

0.10 94.7914.21 95.0113.12 95.1213.19 95.0713.15 95.6712.44

0.71 0.01 95.236.78 96.116.32 96.166.34 96.006.32 96.226.00

0.05 95.1810.09 95.459.34 95.519.37 95.299.35 95.678.85

0.10 94.9013.08 95.1812.09 95.2312.15 95.1212.11 95.7311.46
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.14: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with binary outcomes. Each arm
consists of 5 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 95.7311.07 96.1112.00 96.2212.09 96.0511.98 95.7810.56

0.05 94.7413.77 94.6314.85 94.7414.94 94.5814.82 93.7513.03

0.10 95.1216.62 95.0117.81 95.0117.89 95.0117.80 94.7915.61

0.64 0.01 94.9612.57 94.7913.65 94.5813.76 94.7413.62 94.3011.79

0.05 94.3616.52 94.9017.83 94.9617.92 94.7917.81 93.7015.28

0.10 93.8620.21 93.9221.73 94.0321.83 93.7021.71 92.4918.54

0.71 0.01 95.4512.82 94.6313.99 94.6314.09 94.6313.95 94.5212.07

0.05 93.6417.16 93.5918.57 93.8118.68 93.5318.54 92.5515.84

0.10 93.4820.98 93.7522.70 93.7522.78 93.5922.72 92.7119.26

0.5 0.56 0.01 95.2310.90 94.9010.99 95.1211.08 95.0110.96 94.259.62

0.05 94.3013.84 94.5813.82 94.7913.91 94.4713.81 94.4112.09

0.10 95.1816.78 94.5816.64 94.7916.73 94.4116.64 93.6414.54

0.64 0.01 95.0712.41 95.0712.72 95.2312.83 95.0112.69 95.0111.03

0.05 93.7516.54 93.9716.71 94.1416.82 93.9216.69 92.7114.35

0.10 94.3020.53 94.5220.79 94.4720.90 94.4120.78 92.8817.71

0.71 0.01 94.6312.96 94.6813.51 95.0113.63 94.7413.48 93.6411.61

0.05 94.9617.04 94.4117.57 94.7417.69 94.6317.55 93.1514.95

0.10 93.7020.94 94.1921.30 94.5821.42 93.9221.28 92.3818.12

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.368.40 95.459.06 95.459.09 95.409.05 94.307.97

0.05 94.1911.97 94.9612.83 94.9612.87 94.7912.83 94.1411.24

0.10 94.7415.44 94.7916.55 94.9016.58 94.5216.55 93.8114.39

0.64 0.01 94.799.76 95.1810.65 95.0710.69 95.2910.63 94.369.09

0.05 94.0314.52 94.1915.68 94.1915.72 94.1915.68 93.1513.33

0.10 93.4218.86 93.8120.29 93.7520.33 93.7520.30 91.9517.13

0.71 0.01 94.529.95 95.1810.82 95.2310.86 95.0710.82 93.929.30

0.05 93.9215.23 94.0316.47 94.1916.52 94.0316.47 93.2613.91

0.10 94.5219.60 94.5821.14 94.5821.17 94.5221.15 93.7017.80

0.5 0.56 0.01 94.088.34 94.908.45 94.858.49 94.858.44 93.757.40

0.05 94.3011.95 94.4711.92 94.3011.95 94.6311.92 94.0810.40

0.10 94.4715.29 94.6814.90 94.7914.93 94.8514.90 93.5313.06

0.64 0.01 93.759.72 93.759.90 93.869.95 93.869.89 93.048.49

0.05 93.5314.84 94.3615.13 94.3015.17 94.3615.14 93.0412.81

0.10 93.5919.14 94.0319.24 94.0319.29 93.9719.25 92.8816.33

0.71 0.01 94.9010.02 94.4110.40 94.5210.45 94.3010.39 93.928.88

0.05 92.8215.33 93.1015.59 93.2115.63 93.2115.60 91.7813.19

0.10 93.9219.65 92.9319.98 93.0420.04 93.0419.97 92.3816.91
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.15: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with binary outcomes. Each arm
consists of 15 clusters. Entries are presented as coverage% confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 94.965.99 94.475.87 94.635.88 94.475.87 94.585.65

0.05 94.367.92 93.977.72 94.037.74 93.867.75 93.977.44

0.10 94.639.78 94.039.49 94.309.53 93.979.54 93.539.14

0.64 0.01 94.686.65 93.926.51 93.976.53 94.306.52 94.086.24

0.05 94.798.84 94.638.62 94.418.65 94.748.65 94.088.25

0.10 94.3610.93 94.6810.62 94.9610.67 94.5810.68 94.1410.14

0.71 0.01 95.626.80 95.456.65 95.406.67 95.626.65 95.346.36

0.05 95.569.01 94.638.78 94.638.82 94.748.81 93.868.40

0.10 95.1211.18 94.8510.88 94.7410.95 94.7910.94 93.9210.37

0.5 0.56 0.01 94.685.98 94.685.31 94.635.32 94.585.31 94.745.13

0.05 94.587.92 94.636.92 94.586.94 94.686.94 94.306.70

0.10 94.479.78 94.528.50 94.528.53 94.638.54 93.538.24

0.64 0.01 94.856.60 93.976.54 93.976.56 93.866.53 94.146.23

0.05 94.308.78 94.258.33 94.308.37 94.198.34 94.038.00

0.10 93.8610.90 93.9210.03 94.0310.08 93.8610.07 93.489.73

0.71 0.01 94.796.76 94.636.71 94.686.73 94.636.71 93.756.38

0.05 94.038.96 94.038.51 94.258.56 94.148.53 93.488.17

0.10 94.4111.11 94.3010.24 94.4710.31 94.4110.29 94.039.92

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.624.62 95.734.51 95.734.52 95.674.52 95.014.35

0.05 95.567.02 95.566.81 95.626.83 95.626.83 95.126.55

0.10 95.129.13 94.748.84 94.798.86 94.908.86 94.528.48

0.64 0.01 95.515.15 95.235.03 95.235.04 94.965.04 95.184.82

0.05 94.907.83 95.127.62 95.187.64 95.297.64 95.017.26

0.10 95.2310.21 94.909.91 94.909.94 94.909.93 94.039.41

0.71 0.01 95.625.25 95.235.14 95.235.15 95.235.14 95.074.91

0.05 95.017.99 94.857.78 94.967.80 95.017.80 93.927.41

0.10 95.0110.43 94.8510.14 94.9610.18 94.6810.17 94.259.61

0.5 0.56 0.01 95.514.63 95.184.09 95.454.10 95.234.09 95.623.95

0.05 95.346.38 95.235.83 95.235.84 95.345.84 94.415.57

0.10 94.858.25 94.747.51 94.687.52 94.797.53 94.147.15

0.64 0.01 95.565.17 95.345.07 95.405.08 95.405.07 95.404.81

0.05 95.017.85 94.587.29 94.637.31 94.637.31 93.866.77

0.10 94.5810.24 94.589.49 94.589.52 94.529.52 93.598.75

0.71 0.01 95.345.25 95.235.15 95.185.16 95.405.15 95.074.90

0.05 95.348.01 95.187.40 95.237.42 95.237.41 94.587.17

0.10 95.5110.46 95.739.39 95.739.42 95.789.41 95.129.20
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.16: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with binary outcomes. The con-
trol arm consists of 10 clusters and the treatment arm consists of 20 clusters. Entries are
presented as coverage% × 100 confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 95.455.81 96.116.03 96.056.01 95.956.02 95.345.77

0.05 95.017.23 95.627.46 95.127.39 95.737.48 95.567.25

0.10 96.008.84 96.059.08 95.958.97 96.059.12 95.898.86

0.64 0.01 94.366.44 95.736.69 95.236.59 95.786.69 94.746.38

0.05 95.348.45 95.678.72 95.018.53 95.958.75 95.458.48

0.10 94.4110.39 95.1810.69 94.4710.45 95.4510.74 95.1810.49

0.71 0.01 93.646.56 95.236.82 94.966.71 95.126.83 94.306.51

0.05 95.458.60 96.008.89 95.458.69 96.058.92 95.958.60

0.10 94.5210.61 95.9510.94 95.6710.66 95.7310.99 95.7310.67

0.5 0.56 0.01 94.855.78 95.235.59 95.075.56 95.345.59 95.185.36

0.05 95.347.28 95.126.95 94.746.87 95.236.97 95.346.76

0.10 94.798.86 95.958.42 95.678.31 96.168.45 95.678.25

0.64 0.01 94.906.44 95.236.24 95.016.16 95.126.24 94.685.98

0.05 94.258.44 95.518.13 95.077.96 95.458.15 95.297.93

0.10 95.8910.48 96.1110.03 95.899.80 96.1110.08 96.059.88

0.71 0.01 95.296.54 95.456.48 95.186.39 95.406.48 95.456.18

0.05 95.408.70 96.498.50 95.898.31 96.558.53 96.058.24

0.10 95.0110.68 95.8410.32 95.3410.09 96.0010.36 96.0010.11

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 95.294.37 95.784.52 95.624.48 95.844.53 95.454.36

0.05 94.906.22 95.736.39 95.126.30 95.956.40 95.516.26

0.10 94.968.01 95.238.20 94.908.07 95.298.22 95.678.13

0.64 0.01 95.784.96 96.445.14 96.115.04 96.445.14 96.004.93

0.05 95.017.42 95.957.64 95.627.44 95.957.65 96.057.45

0.10 95.349.65 96.119.90 95.679.64 96.169.93 96.119.77

0.71 0.01 94.965.07 95.785.28 95.235.16 95.625.29 95.235.06

0.05 95.517.65 95.897.90 95.237.67 95.957.92 95.127.67

0.10 94.089.90 95.0110.18 94.529.91 95.1210.21 94.969.97

0.5 0.56 0.01 94.854.39 95.344.23 95.184.18 95.234.23 95.294.06

0.05 94.906.26 95.845.93 95.515.84 95.735.94 96.115.80

0.10 95.958.11 95.957.63 95.237.50 95.737.64 96.387.57

0.64 0.01 94.034.99 95.074.83 94.414.73 95.014.83 95.294.65

0.05 95.897.42 96.277.13 95.846.95 96.277.15 96.497.00

0.10 95.679.58 96.059.18 95.628.95 96.119.20 96.279.10

0.71 0.01 94.525.06 94.904.99 94.414.89 94.855.00 94.684.78

0.05 93.867.65 95.627.40 95.017.22 95.787.42 95.567.23

0.10 94.149.82 95.079.44 94.199.19 95.189.47 94.909.29
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.17: Performance of two-sided 95% arsinh-transformed confidence intervals for WinP
using four variance estimators in cluster randomization trials with binary outcomes. The con-
trol arm consists of 20 clusters and the treatment arm consists of 10 clusters. Entries are
presented as coverage% × 100 confidence interval length × 100.

ra WinPb ICCc Unadjusted Size weight ICC weight Ratio estimator Mixed model
Cluster size∼ Binomial(50,0.5)

0.3 0.56 0.01 94.796.64 95.076.73 95.076.78 95.186.73 94.796.13

0.05 94.418.79 94.748.84 94.968.94 94.588.87 93.428.06

0.10 93.3210.81 94.4710.79 94.5210.93 94.4710.83 93.329.86

0.64 0.01 95.077.51 95.127.62 95.407.69 95.077.62 93.976.88

0.05 93.9710.01 94.0810.07 94.3010.19 94.2510.10 92.669.07

0.10 93.2612.36 94.2512.37 94.7912.55 94.3012.43 92.6611.11

0.71 0.01 93.707.69 94.747.77 94.797.84 94.477.77 94.037.02

0.05 93.3210.21 94.7410.25 94.7910.38 94.5810.29 92.889.25

0.10 93.2612.67 93.9712.70 94.1912.89 94.1412.76 92.9911.39

0.5 0.56 0.01 94.086.63 95.186.09 95.566.13 95.236.09 94.635.59

0.05 93.708.78 93.817.89 94.257.97 94.147.92 93.597.28

0.10 94.1410.83 94.639.67 94.639.78 94.529.71 93.818.93

0.64 0.01 94.307.43 94.747.70 94.967.77 94.797.70 93.596.98

0.05 93.709.89 94.749.79 94.859.89 94.859.81 92.888.89

0.10 93.2612.28 93.8611.75 94.1911.88 93.9211.78 92.7110.79

0.71 0.01 93.487.61 95.017.91 95.297.98 94.637.90 93.647.15

0.05 93.5310.12 94.4710.04 94.6810.14 94.3610.06 92.999.10

0.10 93.4212.55 93.5912.03 93.9212.17 93.5912.07 92.6611.03

Cluster size∼ Binomial(100,0.5)
0.3 0.56 0.01 94.255.13 95.295.16 95.675.20 95.405.16 94.474.72

0.05 94.587.77 95.017.77 95.077.85 95.077.78 94.037.06

0.10 93.9710.08 94.3610.03 94.7910.16 94.3610.05 93.759.10

0.64 0.01 93.975.81 95.125.86 95.185.91 95.125.86 93.865.29

0.05 93.928.83 94.368.86 94.688.96 94.308.87 92.717.96

0.10 93.7011.52 94.8511.52 95.1211.67 94.9611.54 92.3810.29

0.71 0.01 95.235.94 95.186.01 95.296.06 95.236.01 94.305.42

0.05 94.589.04 94.799.08 95.299.18 94.859.09 93.758.14

0.10 94.2511.81 94.9611.84 95.3412.00 94.8511.86 93.3710.53

0.5 0.56 0.01 94.585.14 95.514.70 95.624.72 95.674.70 95.074.29

0.05 94.087.77 95.076.96 95.187.02 94.856.97 94.306.39

0.10 94.3610.08 94.148.97 94.259.06 94.088.99 94.088.24

0.64 0.01 94.305.85 94.906.01 95.016.05 94.906.01 93.425.39

0.05 94.148.86 95.128.51 95.518.58 95.188.52 93.977.80

0.10 93.1511.56 94.7910.74 95.0110.84 94.9610.76 93.489.98

0.71 0.01 93.645.95 94.526.11 94.746.15 94.256.11 93.705.50

0.05 93.429.10 94.798.77 94.748.84 95.078.78 93.598.00

0.10 93.4811.86 95.2311.07 95.4511.17 95.3411.09 93.7010.24
ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient.
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Table 5.18: Performance of sample size formula to ensure that the lower limit of a two-sided
95% confidence interval is no less than 0.5 with 80% assurance probability for ordered category
outcomes. The WinP is estimated with with the weighted least square approach (WLS) or the
mixed model approach.

WinPa = 0.56 WinP = 0.60
WLS Mixed WLS Mixed

rb ICCc sd k EAPe ECP f EAP ECP k EAP ECP EAP ECP
Cluster size=25

0.3 0.01 0.5 35 78.48 94.91 80.56 94.69 14 70.87 95.13 79.74 95.07
1 32 78.09 93.48 79.35 93.81 12 71.14 95.51 78.04 95.73
2 35 75.74 95.18 79.35 95.07 14 70.43 95.84 79.08 95.02

0.05 0.5 62 81.38 95.02 83.52 94.74 23 74.26 95.02 79.35 94.80
1 54 79.63 94.25 80.94 94.14 20 73.71 94.85 77.16 94.91
2 62 80.12 95.56 81.87 95.35 23 75.68 94.80 80.45 94.52

0.1 0.5 93 79.85 95.02 81.22 95.29 35 79.68 95.07 82.09 94.41
1 84 78.53 95.40 79.35 95.40 30 76.67 94.47 78.59 93.98
2 93 79.63 94.96 81.11 94.91 35 78.20 95.67 82.04 95.07

0.5 0.01 0.5 29 75.47 95.18 79.68 94.85 12 63.53 96.22 79.24 95.45
1 26 75.90 95.13 78.15 94.91 10 65.61 95.35 74.64 95.07
2 29 76.18 95.13 80.56 95.89 12 65.55 96.17 80.28 95.13

0.05 0.5 51 76.67 94.63 79.13 94.85 18 66.37 95.56 75.74 94.25
1 44 76.12 94.91 77.71 94.36 16 70.97 94.69 74.92 94.58
2 51 77.55 94.74 79.52 94.69 18 66.59 95.62 75.79 95.13

0.1 0.5 78 78.86 95.07 80.39 95.40 29 77.38 94.74 81.33 94.91
1 68 79.46 95.78 80.45 95.89 26 77.33 94.52 79.63 94.30
2 78 79.03 94.96 80.34 94.85 29 77.98 94.69 82.09 95.18

Cluster size=50
0.3 0.01 0.5 23 78.42 94.96 84.50 95.13 11 75.03 95.24 87.57 94.80

1 22 81.49 95.24 83.84 95.45 10 78.70 95.02 86.69 95.07
2 23 78.86 94.19 83.52 94.69 11 77.55 96.00 87.57 95.45

0.05 0.5 49 80.94 94.85 82.58 94.58 20 77.44 96.00 84.17 95.51
1 44 79.90 94.91 81.60 94.96 18 79.30 95.35 83.13 94.96
2 49 80.12 95.67 82.75 95.40 20 76.78 96.44 83.46 95.67

0.1 0.5 82 81.65 96.17 82.48 95.62 32 78.81 94.30 82.80 94.47
1 72 81.49 95.18 82.04 95.24 28 78.48 95.07 80.89 95.18
2 82 79.19 95.29 80.07 95.13 32 79.35 95.13 83.24 94.74

0.5 0.01 0.5 20 76.78 95.84 82.91 95.18 10 79.57 95.24 89.49 95.13
1 18 78.15 94.96 81.93 94.63 8 68.84 95.45 81.71 95.45
2 20 75.68 95.67 82.48 95.45 10 79.90 95.78 90.42 94.63

0.05 0.5 41 78.20 94.91 81.87 95.13 17 77.38 95.35 85.05 94.85
1 38 80.72 94.74 82.42 94.80 16 80.72 96.28 85.54 95.62
2 41 77.82 95.45 80.34 95.95 17 76.45 94.91 83.57 93.70

0.1 0.5 69 81.11 95.78 83.13 96.00 26 78.86 95.24 82.69 95.29
1 60 80.72 94.91 81.65 94.91 24 80.72 95.84 83.13 95.78
2 69 82.20 96.00 83.52 95.51 26 78.70 95.62 83.84 94.96

aWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). br: individual temporal correlation of the original scale. cICC:
intraclass correlation of coefficient. d s: randomization ratio of treatment over control. eEAP:empirical assurance
probability. f ECP: empirical coverage rate.
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Table 5.19: Performance of sample size formula to ensure that the lower limit of a two-sided
95% confidence interval is no less than 0.5 with 90% assurance probability for ordered category
outcomes. The WinP is estimated with with the weighted least square approach (WLS) or the
mixed model approach.

WinPa = 0.56 WinP = 0.60
WLS Mixed WLS Mixed

rb ICCc sd k EAPe ECP f EAP ECP k EAP ECP EAP ECP
Cluster size=25

0.3 0.01 0.5 47 89.21 94.69 91.57 94.69 18 82.80 95.29 89.76 94.25
1 42 88.99 94.74 89.92 95.07 16 85.98 94.58 89.21 94.74
2 47 89.38 94.63 90.47 94.96 18 82.58 95.84 88.77 95.40

0.05 0.5 81 89.05 94.80 90.31 94.58 30 86.53 94.58 89.98 94.36
1 72 89.54 95.73 89.59 95.29 26 86.64 94.69 88.06 94.58
2 81 89.76 95.02 90.31 95.24 30 85.16 94.52 88.94 93.48

0.1 0.5 126 89.92 94.69 90.58 95.02 45 86.14 94.69 88.34 93.98
1 112 89.65 94.63 90.09 94.80 40 88.17 94.69 89.27 94.41
2 126 90.74 94.91 91.18 94.74 45 87.40 94.41 89.54 94.30

0.5 0.01 0.5 39 88.50 95.45 91.02 95.35 15 77.88 96.11 88.44 95.13
1 34 87.46 94.36 88.44 94.30 12 78.42 96.55 84.72 95.45
2 39 87.95 95.18 90.14 95.13 15 78.64 94.91 88.94 94.80

0.05 0.5 68 88.72 94.96 90.20 95.51 24 84.01 94.19 88.94 94.47
1 60 89.49 94.36 89.59 94.30 22 86.80 95.35 88.44 95.18
2 68 90.58 96.00 91.46 96.00 24 83.02 94.69 87.40 94.36

0.1 0.5 104 89.10 94.58 90.47 94.25 38 89.27 95.35 91.35 95.07
1 92 90.80 94.85 91.13 94.74 34 88.06 93.70 89.43 93.15
2 104 90.85 95.40 91.79 95.13 38 88.17 94.63 90.31 94.41

Cluster size=50
0.3 0.01 0.5 31 91.29 94.41 93.10 94.36 13 87.84 96.22 94.30 95.84

1 28 91.18 95.40 92.55 95.56 12 89.38 96.22 92.88 95.18
2 31 91.35 94.63 93.15 94.69 13 87.95 95.62 94.03 95.13

0.05 0.5 64 89.87 95.29 91.57 95.62 26 90.53 95.51 92.44 95.18
1 60 91.84 95.24 92.22 95.13 24 91.84 96.00 93.21 95.67
2 66 91.51 95.13 92.44 95.07 26 90.85 95.56 93.26 95.13

0.1 0.5 108 88.66 95.29 89.81 95.67 41 89.65 94.74 91.29 94.80
1 96 91.24 95.84 91.62 95.67 38 91.73 95.18 92.72 95.02
2 108 89.65 95.07 89.92 95.29 41 89.38 95.67 91.24 95.56

0.5 0.01 0.5 26 90.14 94.80 92.28 94.96 11 81.65 95.29 92.44 94.63
1 22 87.84 95.24 89.43 95.29 10 85.60 95.40 91.29 94.69
2 26 90.36 95.35 93.37 94.69 11 83.95 95.89 92.77 94.74

0.05 0.5 54 90.20 95.35 91.79 94.69 22 90.91 95.56 94.30 96.06
1 50 91.35 95.95 92.17 95.67 20 89.65 95.62 92.55 95.40
2 54 90.53 95.45 91.40 94.74 22 90.25 95.18 93.48 95.07

0.1 0.5 90 89.38 95.07 90.58 95.02 35 90.53 96.00 92.83 95.51
1 80 90.31 94.96 90.85 95.13 32 90.85 94.80 92.11 94.03
2 90 89.38 95.84 90.53 95.78 35 89.49 95.40 91.68 94.85

aWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). br: individual temporal correlation of the original scale. cICC: intraclass
correlation of coefficient. d s: randomization ratio of treatment over control. eEAP:empirical assurance
probability. f ECP: empirical coverage rate.
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Table 5.20: Relation between correlation parameters on the original scale and win fractions.
Correlation parameters of win fractions are displayed with a tilde symbol. The columns with
SE are the standard error of the correlation parameter estimated with the win fractions.

ra WinPa ICCc r̃d SE. r̃ r̃e
c SE. r̃c r̃ f

a SE. r̃a ĨCC SE. ĨCC
g

Low autocorrelationh

0.3 0.56 0.01 0.29 0.15 0.19 0.52 0.26 0.09 0.01 0.09
0.05 0.29 0.16 0.23 0.49 0.25 0.17 0.05 0.13
0.10 0.29 0.17 0.25 0.47 0.26 0.19 0.10 0.17

0.64 0.01 0.29 0.16 0.09 0.57 0.23 0.11 0.01 0.09
0.05 0.29 0.16 0.13 0.55 0.18 0.21 0.05 0.13
0.10 0.29 0.17 0.16 0.54 0.19 0.24 0.09 0.17

0.71 0.01 0.28 0.16 0.06 0.58 0.22 0.11 0.01 0.09
0.05 0.28 0.16 0.09 0.57 0.15 0.22 0.05 0.13
0.10 0.28 0.17 0.11 0.56 0.14 0.26 0.09 0.17

0.5 0.56 0.01 0.48 0.14 0.31 0.51 0.44 0.08 0.01 0.09
0.05 0.48 0.15 0.38 0.47 0.42 0.15 0.05 0.13
0.10 0.48 0.15 0.42 0.45 0.43 0.17 0.10 0.17

0.64 0.01 0.48 0.14 0.15 0.56 0.39 0.11 0.01 0.09
0.05 0.48 0.15 0.22 0.55 0.30 0.20 0.05 0.13
0.10 0.48 0.16 0.27 0.53 0.31 0.23 0.09 0.17

0.71 0.01 0.47 0.14 0.10 0.57 0.37 0.12 0.01 0.09
0.05 0.47 0.15 0.14 0.57 0.25 0.22 0.05 0.13
0.10 0.47 0.16 0.18 0.56 0.23 0.25 0.09 0.17

High autocorrelation
0.3 0.56 0.01 0.29 0.02 0.31 0.26 0.30 0.09 0.01 0.01

0.05 0.29 0.02 0.56 0.18 0.48 0.14 0.05 0.02
0.10 0.28 0.03 0.67 0.14 0.61 0.13 0.10 0.03

0.64 0.01 0.29 0.02 0.15 0.32 0.25 0.11 0.01 0.01
0.05 0.29 0.03 0.31 0.28 0.31 0.19 0.05 0.02
0.10 0.28 0.03 0.42 0.24 0.40 0.20 0.09 0.03

0.71 0.01 0.28 0.02 0.10 0.33 0.23 0.11 0.01 0.01
0.05 0.28 0.02 0.20 0.31 0.23 0.21 0.05 0.02
0.10 0.28 0.03 0.28 0.29 0.28 0.23 0.09 0.03

0.5 0.56 0.01 0.48 0.02 0.39 0.24 0.46 0.08 0.01 0.01
0.05 0.48 0.02 0.60 0.17 0.57 0.12 0.05 0.02
0.10 0.48 0.02 0.70 0.13 0.67 0.11 0.10 0.03

0.64 0.01 0.48 0.02 0.19 0.31 0.40 0.11 0.01 0.01
0.05 0.48 0.02 0.33 0.27 0.38 0.18 0.05 0.02
0.10 0.48 0.02 0.44 0.24 0.45 0.19 0.09 0.03

0.71 0.01 0.47 0.02 0.12 0.33 0.37 0.11 0.01 0.01
0.05 0.47 0.02 0.22 0.31 0.30 0.21 0.05 0.02
0.10 0.47 0.02 0.30 0.28 0.33 0.23 0.09 0.03

ar: individual temporal correlation of the original scale. bWinP = Pr(Y1 < Y2) + 0.5Pr(Y1 = Y2). cICC: intraclass
correlation of coefficient of the original scale. d r̃: individual temporal correlation of win fractions. er̃c: temporal
correlation of cluster-mean win fractions. f r̃a: autocorrelation of cluster mean win fractions. g ĨCC: intraclass
correlation of coefficient of win fractions. hautocorrelation of individuals, used for data generation.



Chapter 6

Illustrative examples

6.1 Introduction

We studied the finite sample property of the proposed methods in Chapter 3 and Chapter 4

through simulation studies in Chapter 5. The confidence intervals for the adjusted win prob-

ability (WinP) maintain the coverage rate even for small samples (five clusters for each arm).

Confidence intervals based on the mixed model approach are consistently narrower than un-

adjusted intervals. Confidence intervals from the weighted least square approach are narrower

than the adjusted intervals only when at least 30 clusters are randomized in the trial and at least

medium strength of correlation between baseline and follow-up (r > 0.5).

We illustrate the statistical methods proposed in Chapter 3 and Chapter 4 with two pub-

lished cluster randomization trials with ordinal outcomes. We illustrate how they can be an-

alyzed with our methods. Sample sizes for future trials are estimated using different models

to derive the outcome distribution and variance components for sample size estimation. The

analyses in this chapter are only for illustration purposes of statistical methods, not for drawing

clinical conclusions. Before analyzing both trials, we briefly review the methods in the next

section.

An example SAS code of analyzing the data with our methods is provided in Appendix.

107
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6.2 Illustrating methods

Our methods of confidence interval estimation for WinP adjusted for baseline measurement

can be summarized in three steps:

1. Denote the jth outcome in arm i as Yi j, i = 1, 2 and j = 1, · · ·Ni. Rank the outcome

Yi j within its own arm (ri j) and the whole sample (Ri j), and obtain the win fraction for

the outcome by wi j = (Ri j − ri j)/(N − Ni) where ni is the size of arm i and N = n1 + n2

is the size of the trial. The win fraction wX
i j can be obtained similarly for the baseline

measurements.

2a. For the mixed model approach, regress the win fractions for the outcome by the win

fractions for the baseline measurement and the treatment indicator in a random intercept

model. The adjusted WinP is then obtained by dividing the regression coefficient of the

treatment indicator by two and then adding 0.5, whereas the variance of adjusted WinP

is obtained from the variance of the regression coefficient of the treatment indicator.

2b. For the weighted least square approach, calculate cluster-specific summaries (mean and

summation) of win fractions for the outcome and baseline measurement first and apply

one of the three (co)variance estimators in Chapter 3 with the weighted least square

approach to obtain adjusted WinP and its variance.

3. Obtain the arsinh-transformed interval with equations (3.20) and (3.21). The degrees of

freedom for the weighted least square approach are based on the Satterthwaite approx-

imation, and the degrees of freedom for the mixed model approach are the same as the

degrees of freedom for the regression coefficient.

To estimate the sample size required for the lower limit of WinP exceeding a certain thresh-

old, denoted by WinPl, the variance of estimating WinP can be obtained from hypothetical

distributions or pilot data. To be specific the sample size can be obtained in three steps:
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1. Obtain the win fractions of the outcomes from either pilot data or hypothetical distri-

bution. For ordered categorical outcomes, the win fractions for each category can be

obtained by summing the probability of inferior categories in the other arm plus half of

the probability of the same category in the other arm. If prior knowledge of treatment

effect is based on the common odds ratio, the probabilities of each category for the treat-

ment arm can be obtained from the common odds ratio and the probabilities of each

categories for the control arm, additional details can be found in Subsection 4.1.1.3.

2. Calculate the variance of win fractions in each arm and estimate the sample size required

for an individually randomized trial focusing on estimating the (1 − α)100% confidence

interval of WinP, with the lower limit exceeding WinPl with 1 − β probability. The

formula is given by

N =
(
1 +

1
s

) {
zα/2 + zβ[

logit(WinP) − logit(WinPl)
]}2 sϕ2

1 + ϕ
2
2

WinP2(1 −WinP)2
, (6.1)

where s is the randomization ratio of treatment over control and ϕ2
i is the variance of win

fractions for arm i.

3. Adjust the sample size in (6.1) by the designing features of the trial. For cluster random-

ization trials, N should be multiplied by {1 + (m − 1)ρ}, where m is the mean cluster size,

and ρ is the intraclass correlation coefficient for the outcome. When baseline measure-

ment is included in the analysis, the sample size is decreased by multiplying N by 1− r2,

where r is the correlation between baseline measurement and follow-up outcome.

Simulation results in Chapter 5 indicate that we safely use r and ρ of the original scale in

our sample size formula, even though the formula is derived for correlation parameters of win

fractions.
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6.3 A trial for evaluating the treatment of Crohn’s disease

As the first example, we consider the randomised evaluation of an algorithm for Crohn’s treat-

ment (REACT) trial (Khanna et al., 2015), which is a cluster randomization trial aiming to

evaluate the effectiveness of early combined immunosuppression (ECI). The trial randomizes

practices to provide conventional care or ECI to their patients. Crohn’s disease is a type of

inflammatory bowel disease that can lead to abdominal pain, diarrhea and other complications.

The exact cause of Crohn’s disease is unknown, but genetic and immune responses are known

associated factors.

The conventional care of Crohn’s disease usually starts with the use of corticosteroids, fol-

lowed by the use of antimetabolites and TNF antagonists if the symptoms are not controlled.

Although such step-care avoids overtreatment of low risk patients, it also delays highly effective

treatments for patients at greater risk of complications. Additionally, long-term use of corticos-

teroids is associated with infection and mortality; hence, ECI that applies the antimetabolites

and TNF antagonists earlier could be a more appealing treatment strategy.

The severity of Crohn’s disease was assessed by the Harvey-Bradshaw index (HBI), which

is the score of summing five disease-related components (Harvey and Bradshaw, 1980). The

five components are status of well-being (from 0=very well to 4=terrible), the severity of ab-

dominal pain (from 0=none to 3=severe), number of liquid stools per day, presence of abdom-

inal mass (from 0=none to 3=definite and tender), and the number of related complications

(from 0 to 8). There is no clear interpretation of an one-unit increase or decrease of HBI, ex-

cept a higher score indicates more disease activity. The trial used a cut-off of four points to

dichotomize HBI and compared the proportion between the ECI group and the conventional

management group because no widely accepted minimal clinical difference was established for

HBI. The lack of meaningful units for the HBI left investigators no choice but to dichotomize

the index even though statistical power could be compromised.
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Figure 6.1: HBI score from the REACT trial. A higher HBI score indicates more severe
Crohn’s disease.

6.3.1 Estimation of the win probability

Zou (2021) has used this data set to illustrate the method for follow-up outcome only. We

use the HBI at a two-year follow-up for this illustration and only include individuals with

complete records for baseline and follow-up HBI. A total of 17 practices were assigned to the

conventional management group, and 19 practices were assigned to the ECI group. There is

a substantial variation of the cluster sizes (number of patients under a practice) due to loss of

follow-up, with the smallest cluster having 7 patients and the largest having 58 patients. The

HBI of both baseline and follow-up are displayed in Figure 6.1 where the distribution of both

arms is highly overlapped.

After using step one in Section 6.1 to obtain the win fractions for the outcome from the

ranks, we use a mixed model with the win fractions as the dependent variable and treatment



112 Chapter 6. Illustrative examples

indicator as the independent variable. We obtained the unadjusted WinP from dividing the

regression coefficient by two and adding 0.5, which yields 0.49; this approach was used by

Zou (2021) to illustrate estimating unadjusted WinP for this data set. To obtain adjusted WinP

from the mixed model approach, we added the baseline win fraction as a covariate to the mixed

model, yielding the regression coefficient for treatment indicator β̂1 = 0.013 and its standard

error SE(β̂1) = 0.023, yielding ŴinP = 0.507 and its standard error as 0.023. The 95% arsinh-

transformed confidence interval is obtained by first calculate with equation (3.20),

(l, u) = ln
0.507

1 − 0.507
∓ 2arsinh

[
t0.025,34

0.023
2 × 0.507(1 − 0.507)

]
= (−0.160, 0.212)

where the degrees of freedom is obtained from the mixed model output. We did not consider

small-sample adjustments on the degrees of freedom here because our data consists of 36 clus-

ters. We then apply the inverse logit function to l and u yielding,

(L,U) = (0.460, 0.533) (6.2)

and the p-value = 0.568 is obtained from the p-value of the regression coefficient.

To obtain adjusted WinP from the weighted least square approach, we first obtain the

cluster-specific means and summation of follow-up and baseline win fractions, respectively. A

list of the cluster-level summary statistics that are required in the weighted least square method

is shown for four clusters in Table 6.1 for illustration. The size-weighted WinP and its variance

are obtained from equations (3.3) and (3.4), respectively. The size-weighted (co)variances are

estimated from equation (3.7) using cluster size, follow-up mean cluster-specific win fractions

and baseline mean cluster-specific win fractions (columns 3,4 and 6 in Table 6.1). The ICC

weighted estimator can be obtained similarly with the (co)variances estimated from equation

(3.6), where the ICC is obtained from the analysis of variance of follow-up win fractions as
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Table 6.1: Cluster-level summary statistics of four clusters for the REACT trial.

Cluster id arm size Mean(wY
i j.)

a Sum(wY
i j.)

b Mean(wX
i j.)

c Sum(wX
i j.)

d

1 0 42 0.475 19.954 0.451 18.942
2 0 47 0.669 31.425 0.735 34.545
3 1 51 0.456 23.273 0.361 18.391
4 1 24 0.465 11.148 0.378 9.074

a The cluster-specific mean of follow-up win fractions. b The cluster-specific summation of follow-up win frac-
tions. c The cluster-specific mean of baseline win fractions. d The cluster-specific summation of baseline win
fractions.

0.076. The ratio estimator is obtained from the cluster-specific summation of win fractions

(columns 5 and 7 in Table 6.1) with the (co)variance estimated from equation (3.9). The P-

values of testing WinP = 0.5 from these three estimators are obtained from t-tests where the

degrees of freedom are obtained from Satterthwaite approximation in equation (3.17). The

results without baseline adjustment and with baseline adjustment by the weighted least square

approach and mixed model approach are presented in Table 6.2.

The adjusted analysis showed treatment effect in the opposite direction from the unadjusted

results, with all of the adjusted WinP > 0.5. However, all the analyses showed non-significant

effects. The proportion of HBI scores smaller or equal to four points at one-year follow-up also

did not show a significant difference (Khanna et al, 2015).

The individual temporal correlation is 0.481 for the original scale and 0.486 based on win

fractions, whereas the intraclass correlation coefficients are 0.050 and 0.076 based on the orig-

inal scale and win fractions, respectively. The temporal cluster correlation of the small differ-

ence in ICC and individual temporal correlation between the original scale and win fractions

confirms the analysis based on the original scale or win fractions should not have a big differ-

ence in the conclusion regarding the treatment effect.

6.3.2 Sample size estimation

The WinP in this trial is too small to be realistic for a future trial to plan sample size based

on such WinP. Hence, we consider a hypothetical scenario where the pilot data have a total of
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Table 6.2: Treatment effect estimation of the REACT trial.

Method Estimate θ (95%CI) p-value
Unadjusted 0.491 (0.429, 0.554) 0.784

Size weighted 0.519 (0.473, 0.565) 0.405
Ratio 0.521 (0.475, 0.568) 0.347

Size+ICC weighted 0.517 (0.469, 0.565) 0.470
Mixed model 0.507 (0.460, 0.553) 0.568

17 participants in the conventional group and 19 participants in the ECI group. The pilot data

is generated from sampling one individual from each cluster, and the HBI in the ECI group is

reduced to yield a WinP of 0.64. The variance of win fractions is 0.088 for the conventional

group and 0.092 for the ECI group. We calculate the required sample size for an individual

trial with WinP = 0.64 to have 80% chance to have the 95% confidence interval excluding

WinPl = 0.56 corresponding to a small effect size using equation (6.1),

N = (1 + 1) (0.088 + 0.092)
{

z0.2 + z0.025[
logit(0.64) − logit(0.56)

]
0.64(1 − 0.64)

}2

= 476.6 ,

yielding 478 individuals in a balanced trial.

For a cluster randomization trial with a mean cluster size of 40 and an ICC of 0.01, the

required sample would then be increased to N[1 + (40 − 1) × 0.01] = 662.4, yielding a total of

663 individuals. However, since one only uses intact clusters of size 40, this means 9 clusters

in each arm for a total of 720 individuals are required if no missing data occurs.

6.4 A trial for evaluating educational interventions of smok-

ing prevention

As another example, we consider the television, school, and family smoking prevention and

cessation project (TVSFP), which is a cluster randomization trial aiming to evaluate effective-

ness of educational programs at preventing smoking for students (Flay et al., 1995). Smoking

was the leading preventable cause of mortality and morbidity in the United States; thus, delay-
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ing the onset of tobacco use or lower the prevalence of tobacco use was a major public health

issue. The aim of the trial was to evaluate the effectiveness of social resistance curriculum and

mass media for students on altering smoking behavior or prevent from experimental tobacco

use. Previous studies mostly focused the effect of school-based intervention along, where

TVSFP considers the complement effect from school-based and media-based intervention.

A total of 47 schools from Los Angeles and San Diego were randomized in a factorial

design with two interventions: (i) television intervention and (ii) social-resistance classroom

curriculum. For this illustration, we use a subset of the data that contains 28 schools from Los

Angeles, where the data is available online at https://content.sph.harvard.edu/

fitzmaur/ala/tvsfp.txt (accessed on August 18 2022).

The outcome is the knowledge score obtained from the number of questions correctly an-

swered in the questionnaire, which ranges from 0 to 7. The data was analyzed by Hedeker

and Gibbons (1994) with a mixed model comparing the mean difference of scores for different

intervention arms. Mean comparison on the knowledge score can take on non-integer values,

which leads to difficulty in interpreting mean differences. Additionally, the difficulty of each

question is not the same. It is hard to argue whether a student with a score of 3 at baseline and

4 at follow-up shows the same improvement as a student with 6 at baseline and 7 at follow-up.

The data was also analyzed by categorizing the score into four categories to make the categories

have a more uniform proportion and fitted with a mixed logistic model (Raman and Hedeker,

2005), where the treatment effect is estimated with odds ratio. However, the categorization is

rather arbitrary and could potentially lose information.

6.4.1 Win probability estimation

We consider only the social-resistance classroom curriculum as the intervention (14 schools) in

this illustration, any school that did not receive the curriculum is in the control arm (14 schools).

The sizes of the schools vary substantially from 18 students to 136 students. The proportion of

the score at baseline and follow-up is displayed in Figure 6.2, where we can see that students

https://content.sph.harvard.edu/fitzmaur/ala/tvsfp.txt
https://content.sph.harvard.edu/fitzmaur/ala/tvsfp.txt
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Figure 6.2: Knowledge score from the number of questions answered correctly regarding to-
bacco and health from the TVSFP study.

who received the curriculum tend to have higher knowledge scores. After obtaining the win

fractions for the outcome with the steps in Section 6.1, we fitted a mixed model with the win

fractions as the dependent variable and treatment indicator as the independent variable to obtain

unadjusted WinP from dividing the regression coefficient by two plus 0.5, which is 0.59. To

obtain adjusted WinP from the mixed model approach, we add in the baseline win fraction

as a covariate to the mixed model, yielding the regression coefficient for treatment indicator

β̂1 = 0.200 and its standard error SE(β̂1) = 0.024, yielding ŴinP = 0.600 and its standard error

as 0.024. The 95% arsinh-transformed confidence interval is then obtained from equations

(3.20) and (3.21) as (0.551, 0.645), and the p-value < 0.001 is obtained from the p-value of the

regression coefficient.

We follow similar steps in our illustration of the weighted least square approach for the

REACT trial to obtain cluster-specific summaries of win fractions and use them with equations
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(3.3) and (3.4) to obtain the adjusted WinP and its variance for three different (co)variance es-

timators, respectively. We presented the results without baseline adjustment and with baseline

adjustment by the weighted least square approach and the mixed model approach in Table 6.3.

All five estimates do not include 0.5 in the confidence interval, and adjusted analyses showed a

reduction of confidence interval width around 15%. The individual temporal correlation is 0.3

for the original scale and 0.27 for win fractions, whereas the ICC is 0.04 and 0.05 for the orig-

inal scale and win fractions, respectively. The data from TVSFP also showed small differences

in ICC and individual temporal correlation between the original scale and win fractions.

Table 6.3: Treatment effect estimation of the TVFSP trial.

Method Estimate θ (95%CI) p-value
Unadjusted 0.593 (0.539, 0.646) <0.001

Size weighted 0.612 (0.569, 0.653) <0.001
Ratio 0.611 (0.568, 0.652) <0.001

Size+ICC weighted 0.612 (0.567, 0.656) <0.001
Mixed model 0.600 (0.551, 0.648) <0.001

6.4.2 Sample size estimation

For illustrating obtaining win fractions for sample size estimation with different methods, we

assume we do not have the pilot data for both arm, but we assume the treatment effect from

prior studies suggested a common odds ratio of 3.5 and use the distribution of knowledge score

of the no curriculum group to obtain the distribution for the treatment arm by equation (4.10).

The win fractions and the proportions are listed in Table 6.4, which yields WinP = 0.61. The

probabilities of each categories for both group in Table 6.4 can be used to obtain the variance

of win fractions from equation (4.12) as 0.073 for the control arm and 0.072 for the treatment

arm.

Suppose the aim of the trial is to determine whether or not the curriculum has at least a

small effect size, which means whether or not the lower limit WinPl > 0.56 is the interest of the

trial. Additionally, suppose the stakeholders of the trial intend to have more schools receiving
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the curriculum, implying a randomization ratio of 2:1 for treatment to control (s = 2). We

calculate the sample size for an individual trial to have 80% chance to have the lower limit of

95% confidence interval exceeding 0.56 using equation (6.1),

N = (1 + 1/2) (2 × 0.073 + 0.072)
{

z0.2 + z0.025[
logit(0.61) − logit(0.56)

]
0.61(1 − 0.61)

}2

= 1065.9 ,

yielding 1,066 individuals, or 356 individuals to the control arm and 712 individuals to the

treatment arm.

The average school size of the data set is around 60 and the ICC is 0.04. Hence, a future

trial randomizing schools from the same area would then need a total of 3,582 individuals

(N[1 + (60 − 1) × 0.04] = 3581.4), or 20 schools for the control arm and 40 schools for the

treatment arm. If we include the baseline knowledge score in the analysis with a correlation

with the follow-up as 0.3, the sample size would be N[1 + (60 − 1) × 0.04](1 − 0.32) = 3259.1,

yielding 3,260 individuals, or 18 schools for the control arm and 36 schools for the treatment

arm if no missing data occurs.

Table 6.4: Proportions of the knowledge scores from pilot data corresponding to a common
odds ratio of 3.5.

Knowledge score 0 1 2 3 4 5 6 7
Control 0.05 0.22 0.28 0.22 0.16 0.05 0.01 0.01

Treatment 0.01 0.08 0.16 0.23 0.30 0.14 0.04 0.04

6.5 Discussion

We have illustrated the estimation of WinP while adjusting for baseline with data from two

published cluster randomization trials. The distributions of the outcomes in these two trials are

different, resulting in different effect measures and different analysis methods in the literature.

For example, the HBI score is dichotomized at 4 points in the REACT trial, which is a popular

approach for ordinal outcomes when a meaningful effect measure is hard to define on the raw
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scale. However, dichotomizing outcomes could lead to loss of power (Altman and Royston,

2006). Additionally, such an approach complicates baseline adjustment because the non-linear

link in the logistic or proportional odds model results in noncollapsibility. In contrast, the

adjusted WinP from our method has the same interpretation as the unadjusted WinP.

The efficiency gained from baseline adjustment for the mixed model approach is similar to

the weighted least square approach in both examples, which could be explained by both ex-

amples having sufficient number of clusters (around 30) for large sample theory to be relevant.

Our simulation results in Chapter 5 also showed that both approaches have similar efficiency

when 30 or more clusters are randomized.

We also illustrated sample size estimation of trials focusing on estimating WinP from pilot

data or information derived from the two published cluster randomization trials. The key is

to use the pilot data or information regarding the distribution of the outcomes to obtain the

variance of win fractions and estimate the sample size as if individuals were randomized. The

next step is to adjust the sample size by design considerations such as cluster randomization or

baseline adjustment. Our method treats win fractions as continuous, making adjustments for

design considerations more straightforward.

We have illustrated our statistical methods in designing and analyzing cluster randomiza-

tion trials with baseline adjustment from two published trials. We will summarize this thesis

and discuss the potential impact and future research in the next chapter.



Chapter 7

Summary and discussion

7.1 Summary

Ordinal outcomes are ubiquitous in randomized trials because the intervention effect often

cannot be measured directly from physical phenomenons. By ordinal we mean both categorical

and continuous data. It can appear as a single ordinal item such as the Rankin scale (Rankin,

1957), a summation of multiple ordinal items such as the Harvey-Bradshaw index (Harvey

and Bradshaw, 1980), or a score derived from a questionnaire such as the number of correctly

answered questions.

Ordinal outcomes do not have a clear clinical interpretation of a one-unit increase. Hence,

comparing the mean of such outcomes is difficult to interpret as a treatment effect. Addition-

ally, non-integer mean differences could be difficult to interpret. A better way to quantify the

treatment effects for ordinal outcomes is the probability that a randomly chosen individual in

the treatment arm wins over a randomly chosen individual in the control arm, i.e. the win

probability (WinP). Estimation of WinP can be done using rank information.

We reviewed the literature on analyzing and sample size planning of WinP in Chapter 2 and

categorized them into three approaches based on different variance estimators. The parametric

approach derives the variance estimator based on distributional assumptions, such as normal

120
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distribution or other distributions from the exponential family. However, such distributional

assumptions often are violated for ordinal outcomes due to the range restriction and skewness.

One nonparametric approach is based on all the pairwise comparisons between outcomes,

where the pairwise comparison results in one if the treated outcome wins over the untreated

outcome, half if the treated outcome is tied to the untreated outcome and zero otherwise. The

pairwise comparisons are incorporated in a regression framework by the probabilistic index

model (Thas et al., 2012). It is computationally demanding as it regresses on N1 × N2 pairs of

pairwise comparisons, where Ni is the sample size of arm i. Moreover, the pairwise compar-

isons are correlated even for independent outcomes; hence, complicating the variance estima-

tion and impeding the extension to clustered outcomes.

We have used an alternative approach that is based on the win fractions for each participant,

which is the probability of such a participant winning over all the participants in the other

arm. The win fractions are asymptotically independent of each other and can be analyzed

with statistical models for continuous outcomes (Zou et al., 2023), making it more feasible to

extend the methods to correlated outcomes in cluster trials. Although the win fractions can be

obtained from averaging the pairwise comparisons between outcomes, using the arm-specific

ranks and overall ranks of outcomes to obtain the win fractions reduces the calculation time

and complexity because only N1 + N2 win fractions are used for regression.

This thesis developed methods for confidence interval estimation and sample size estima-

tion of WinP while adjusting for baseline measurements in cluster randomization trials by ex-

tending methods for continuous outcomes into a nonparametric framework with win fractions.

Our methods for confidence interval estimation of WinP in Chapter 3 can be summarized in

three steps: (i) obtaining the win fractions for the outcomes and the baseline measurements

with ranks. The win fraction is the number of wins over the number of comparisons, where the

number of wins of an outcome is obtained by the overall rank minus the rank in its own arm

(ii) estimating the adjusted WinP and the variance with the mixed model approach or weighted

least square approach to adjust for baseline measurements and clustering, and (iii) constructing
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confidence intervals based on logit-transformation or arsinh-transformation to improve cover-

age and balance of tail errors.

The extended weighted least square approach of Koch et al. (1998) uses the cluster-specific

mean of win fractions to obtain point and variance estimates, whereas the mixed model ap-

proach regresses an individual’s follow-up win fraction by baseline win fraction and treatment

indicator. The main difference between the two approaches is that the efficiency gained for the

weighted least square approach depends only on the temporal correlation of cluster-specific

mean of win fractions, whereas the efficiency of the mixed model approach additionally de-

pends on individual temporal correlation of win fractions.

We developed our methods based on asymptotic results; hence, we examined the finite

sample properties by simulation studies. To be specific, we examined the coverage and width

of confidence intervals constructed with our estimators under small sample sizes, with 10 or

30 clusters in total and an average of 25 or 50 individuals in each cluster. We considered

small (r = 0.3) and medium (r = 0.5) individual temporal correlations and weak and strong

autocorrelations resulting in weak or strong cluster-level temporal correlation.

Our simulation results showed that the mixed model approach often outperforms or is at

least similar to the weighted least square approach in terms of efficiency because the mixed

model depends on both individual and cluster temporal correlations; hence, the efficiency

gained is less affected by the cluster temporal correlation, which is unreliably estimated with

few number of clusters.

One advantage of the mixed model approach is that it is already available in most statistical

software without writing additional scripts. It only needs to rank the outcomes to obtain the win

fractions and then regress them with the mixed model while specifying variance heterogeneity.

The WinP is obtained by dividing the regression coefficient of the treatment indicator by two

plus 0.5, where the variance of the estimated WinP is directly obtained as the variance of the

regression coefficient.

We developed sample size formulas in Chapter 4 by extending the sample size formula for
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continuous outcomes into a nonparametric framework by using individual win fractions as the

analysis unit. Our method can be summarized into two steps: (i) estimate the sample size with

the variance of win fractions as if independent individuals are randomized, and (ii) increase

the sample size to account for the design effect, such as randomizing clusters or adjusting for

baseline imbalance.

We illustrated different strategies to obtain the variance of win fractions from pilot studies

or expert knowledge. Sample size formulas in the literature mostly focused on hypothesis

testing, making them less useful for trials focusing on effect estimation. Our sample size

formula is developed focusing on effect estimation; however, it can also be used for trials

focusing on hypothesis testing because assurance probability is equivalent to power when the

lower limit of WinP is 0.5.

Although, in theory, our sample size formula will have the highest precision when correla-

tion and ICC of win fractions are known, our simulation results in Chapter 5 showed acceptable

performance even if we use correlation and ICC of the original scale. We proved that the Spear-

man correlation of the original scale and the Pearson correlation of the win fractions are equal

when WinP = 0.5. This might explain why the correlation of win fractions differs to the cor-

relations of the original scale more when WinP is larger. However, it should not be a concern

since studies with such a large effect are rare, and they only require a small sample size.

In summary, this thesis has developed statistical methods for interval estimation and sample

size planning of WinP with baseline adjustments in cluster randomization trials. The validity

of our methods was proven asymptotically and examined for finite samples with simulation

studies.

7.2 Discussions

Ordinal continuous outcomes in the literature are often analyzed by mean comparisons fol-

lowed by reporting the Cohen’s effect size, which assumes the normality of outcomes. The
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normality assumption is often violated for ordinal outcomes due to the range restriction and

skewness of the distribution. A simulation study by Zou et al. (2023) showed that the confi-

dence intervals developed from the normality assumption could have under coverage when the

normality assumption is violated. They investigated the confidence interval of WinP from an

analysis of (co)variance model on the original scale, where WinP = Φ(ES/
√

2) and ES is the

Cohen’s effect size obtained from the analysis of (co)variance model.

Note that the relationship between WinP and Cohen’s effect size only holds for outcomes

following normal distributions, which is often untenable in practice. Another problem with

such an approach is that the mean difference of the original scale will always have decreased

variance from baseline adjustment, leading to a bigger WinP. Although it can be avoided by

using the variance of the unadjusted mean difference, it requires fitting two models to obtain

the adjusted WinP.

The proportional odds model is an alternative option for ordinal outcomes, where the model

assumes a common odds ratio across the categories of the outcome. However, such an as-

sumption is often violated in practice and could lead to misleading results when it is violated.

Furthermore, the noncollapsibility of the odds ratio complicates baseline adjustment and meta-

analysis because adjusted odds ratios are different from the population-averaged odds ratio.

In addition, the number of parameters needed to be estimated increases as the range of the

outcome increases, making the proportional odds assumption more unplausible.

Ordinal outcomes with a wide range is not uncommon, as the HBI at two-year follow-up in

the REACT trial ranged from 0 to 28 and at baseline ranged from 0 to 52. Although it is pos-

sible to collapse the outcome into fewer categories to avoid violation of the proportional odds

assumption and make the model more parsimonious, the cutoffs to define the new categories

are arbitrary, and different cutoffs could have different results. In addition, it makes comparing

results from multiple studies complicated or impossible.

The problems associated with the parametric approach and proportional odds model for

ordinal outcomes do not have simple solutions. It was until recently Zou (2021) proposed a
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rank-based method in estimating WinP focusing on the follow-up outcome, where the method

accommodates any distributions as long as the outcomes can be ranked. We extended his

method to include baseline measurements in the analysis. Cluster randomization trials often

take additional measurements of the outcome at baseline before assigning intervention to the

clusters, and it is desirable to include baseline measurement in the analysis to increase effi-

ciency. Additionally, cluster randomization trials are more prone to baseline imbalance due to

the recruitment of participants occurring after interventions are assigned to clusters.

We also derived sample size formulas for cluster randomization trials with ordinal out-

comes, where only formulas for individually randomized trials (Zou et al., 2022) are available

prior to our work. Applying their formula to cluster randomization trials will result in under-

powered studies.

Our methods build on the general ideal of Zou et al. (2023) that applies regression methods

to win fractions of each outcome. The win fractions are obtained from the ranks of the outcome,

making it applicable to any outcome as long as it can be ranked. Most other rank-based methods

in the literature focused on hypothesis testing (Akritas, 1990; Akritas et al., 1997) that cannot

be used for confidence interval estimation. The potential of ranks in quantifying the treatment

effect with confidence intervals has only been utilized recently (Zou, 2021; Zou et al., 2023).

We note that ranking an outcome is inherently calculating the number of wins of such an

outcome compared to others. Although such a link was pointed out long ago by Hoeffding

(1948), it was only recently utilized by Zou (2021) to estimate WinP for cluster randomization

trials. In fact, the WinP could be the only sensible effect measure for ranks because the mean

rank difference is linearly related to WinP by the formula, mean rank difference = N(WinP −

0.5).

A competing method in the literature to our method would be the probabilistic index model

(PIM) by Thas et al. (2012), which regresses on the pairwise comparison of outcomes by

covariates. The pairwise comparisons are correlated even for individually randomized trials

because a participant can be compared with all the other participants in the other arm, respec-
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tively. Therefore, it is unclear how to extend the PIM for correlated outcomes. Additionally,

the PIM could require a logit or a probit link function to produce estimates within the [0, 1]

range, where the link function can result in noncollapsibility, complicating the interpretation

of the treatment effect after adjusting for baseline.

Estimating WinP with win fractions only requires an identity link in the regression model;

hence, it is free from non-collapsibility, therefore, the baseline-adjusted WinP estimates the

same underlying parameter as the unadjusted WinP. Another advantage is that it can be ex-

tended to meta-analysis with classical methods, as discussed by Zou et al. (2022). Finally, the

PIM is computationally demanding as it regresses on N1 × N2 pairwise comparisons. On the

other hand, our method regresses on N1 + N2 win fractions, which is more suitable for cluster

randomization trials as they usually have more participants.

Methods based on placement values (Hanley and Hajian-Tilaki, 1997) are similar to our

methods as the placement values are the same as win fractions in the treatment arm and one

minus win fractions in the control arm. However, placement values are difficult or impossible

to be used in a regression model because the mean placement values are the same for both

arms. On the other hand, win fractions can be easily used with linear regression models.

We have focused on our methods in cohort design, where the same individual is being

followed through the trial. However, our method is also applicable to cross-sectional designs,

where different individuals are assessed at different time points. The most intuitive way to

do so is to apply the weighted least square approach because only the cluster means of win

fractions are required.

7.3 Future research

We only developed methods for baseline adjustment by analysis of covariance (ANCOVA)

and ignored changes from baseline analysis since it has lower power compared to ANCOVA

in randomized studies (Van Breukelen, 2006). Change from baseline could be more useful
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for non-randomized studies by adjusting for preexisting differences (Van Breukelen, 2006).

However, it is not clear whether the win fractions can be analyzed with a change from the

baseline model and if the treatment parameter in such a model is meaningful. It is hard to

argue if a change from baseline is comparable for two individuals measured by an ordinal

scale. A more feasible research topic for this is the analysis of covariance with win fractions

for non-randomized studies. We did not discuss this because treatment effects have different

interpretations for randomized and non-randomized studies.

Our simulation study evaluated the validity of our methods and the efficiency gained from

baseline adjustment. However, baseline adjustment can also increase the credibility of the re-

sults by making the two arms more comparable. When a considerable magnitude of imbalance

at baseline occurs, it is hard to argue whether or not the treatment effect is confounded by

the baseline imbalance. Previous research in the context of individually randomized trials has

found that baseline adjustment improves the coverage of the confidence interval of WinP (Zou

et al., 2023), which could be due to the bias reduction of adjusted WinP.

We have focused our attention on cluster randomization trials with two intervention arms.

However, trials with more than two intervention arms are not uncommon. For example, the

TVSFP trial has four intervention arms due to the block design, where we only used the cur-

riculum variable as an intervention for illustration. Extending our method to trials with more

than two intervention arms can be one of the future research topics. For trials that compare

several different interventions to one control, the WinP for each intervention compared to the

control can be estimated with our method.

The WinP comparing different arms could be correlated since the control arm consists of

the same participants. The work by DeLong et al. (1988) that compares multiple correlated

areas under the receiver operating curve might be suitable to compare these correlated WinPs

with the use of our (co)variance estimators based on cluster means of win fractions. Such an

approach may be more appropriate for post hoc analyses as it is essentially pairwise comparing

intervention arms.
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Another approach to analyzing trials with more than two intervention arms is to define

WinP as the probability of a participant winning to any outcomes in other arms, similar to

the relative treatment effect with respect to all distributions in the trial defined by Brunner

et al. (2017), except they also compare within-arm outcomes for factorial hypothesis testing

purposes. In such an approach, the win fractions are obtained by calculating the wins of an out-

come over all other arms, which can be obtained from the overall ranks minus the arm-specific

ranks. This approach could be more useful in identifying the most effective combination of

interventions in the study.

In Chapter 6, we illustrated our methods with the REACT trial, which randomizes gas-

troenterology practices to provide standard step-care or early combined immunosuprression to

their patients with Crohn’s disease. The primary outcome, Harvey-Bradhaw Index (HBI), was

measured at baseline and once every six months, and we analyzed patients who completed the

assessment at the two-year follow-up as an illustration. However, there were 32% of the partic-

ipants had missing outcome at two-year follow-up, where the information of these participants

could be partially recovered from the previous assessments. In addition, our analysis is only

free from bias if we assume the missingness of an outcome is independent of both the value of

the outcome and the baseline measurements Rubin (1976), i.e., missing completely at random;

however, such an assumption is often unrealistic. For example, participants in the control arm

that have worse outcomes could be less encouraged to show up in the trial, resulting in an

underestimate of the treatment effect.

Extending our methods to incorporate missing data is especially useful as missing data is

ubiquitous in medical research. It is common to assume the data is missing at random, where

the missingness can be fully accounted by other observed values. Hence, the distribution of the

missing values can be estimated from the observed values by multiple imputations, which often

assume normality (Sterne et al., 2009), making it inappropriate for ordinal outcomes. Other

popular methods are also based on parametric assumptions, where the likelihood function needs

to be specified (Carpenter and Smuk, 2021). One way to avoid parametric assumptions could be
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trying to use information from previous assessments to estimate the win fractions and include

them in a mixed model as it provides unbiased estimates when the data are missing at random

(Albert, 1999).

Since most trials make regular measurements of the primary outcome over time, the treat-

ment effect could be quantified over time instead of just focusing on one time point of mea-

surement. For example, the group difference of HBI over time was also tested by Khanna et al.

(2015) in the REACT trial to see if the treatment benefits patients over time. Similarly, a trialist

could ask if the WinP for treated participants increases through time, which can be answered

by a mixed model of win fractions that includes treatment by time interaction (Albert, 1999). A

positive coefficient of the interaction term indicates an increase in WinP over time, indicating

an improvement through time.

Finally, comparing multiple endpoints is also an important future research topic because the

efficacy of the intervention cannot be sufficiently measured with one variable in most cases. For

example, one of the objectives of the REACT trial was to evaluate whether combining multiple

drugs at once will increase drug-related complications compared to gradually administrating

the drugs. Consequently, they compared adverse outcomes such as surgery, hospital admission

and disease or drug-related complications, respectively.

Multiple endpoints are commonly analyzed by error-rate controlling methods (Sankoh

et al., 1997) that aim at controlling the overall type I error from multiple testing by assign-

ing a smaller significance level for each individual test. However, Sankoh et al. (1997) showed

in simulation studies that such an approach did not maintain type I error when the number

of multiple testing increases and the correlation between the endpoints strengthens. Another

approach is to consider summarizing the endpoints, where O’Brien (1984) proposed a rank-

based test that could provide some insights. To be specific, he proposed to rank participants

by different endpoints and add up all the ranks for each participant. His test then compares the

rank-sum between intervention arms. Hence, adding up all the wins for each participant could

potentially be a method to extend our method for multiple endpoints. Extensions of methods



130 Chapter 7. Summary and discussion

of O’Brien (1984) and Wei and Lachin (1984) to cluster randomization trials could be a fruitful

research topic (Zou and Zou, 2023).
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Appendix A

SAS code for WinP estimation of TVSFP

trial

/* Im po r t TVSFP d a t a

x : b a s e l i n e Kscore

y : fo l l ow −up Kscore

s i : t r e a t m e n t i n d i c a t o r 1= t r e a t m e n t 0= c o n t r o l

s c h o o l I D : ID f o r c l u s t e r

* /

/ * 1 . c o n v e r t d a t a t o win f r a c t i o n s * /

p roc s o r t d a t a= t v s f p ; by d e s c e n d i n g s i ;

/* o b t a i n o v e r a l l r ank * /

p roc rank d a t a= t v s f p o u t= o v e r a l l ;

v a r x y ;

r a n k s o v e r a l l x o v e r a l l y ; run ;

/* o b t a i n w i t h i n group rank * /

p roc rank d a t a= t v s f p o u t=group ; by d e s c e n d i n g s i ;

v a r x y ;
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r a n k s groupx groupy ; run ;

ods l i s t i n g c l o s e ;

/* o b t a i n s i z e f o r t h e o t h e r arm (N−N i ) * /

p roc f r e q d a t a= t v s f p ;

t a b l e s s i / o u t= s i z e 4 o t h e r ( drop=p e r c e n t ) ; run ;

d a t a s i z e 4 o t h e r ;

s e t s i z e 4 o t h e r ;

s i = 1 − s i ; run ;

d a t a WinF ;

merge o v e r a l l g roup s i z e 4 o t h e r ; by d e s c e n d i n g s i ;

winf =( o v e r a l l y − groupy ) / c o u n t ;

w i n f b a s e =( o v e r a l l x − groupx ) / c o u n t ;

keep s c h o o l I D s i w i n f b a s e winf x y ; run ;

p roc p r i n t d a t a=WinF ( obs =10 ) ;

run ;

/ * 2 . R e g r e s s i o n on win f r a c t i o n s * /

p roc mixed d a t a= WinF method = reml ;

c l a s s s c h o o l I D s i / r e f=FIRST ;

model winf = s i w i n f b a s e / ddfm = b e t w i t h i n ;

random i n t e r c e p t / s u b j e c t= s c h o o l I D ( s i ) t y p e=cs ;

l smeans s i / d i f f c l ;

ods o u t p u t D i f f s= e s t ( keep = E s t i m a t e S t d E r r DF ) ;

run ;

/ * 3 . O b t a in c o n f i d e n c e i n t e r v a l and p o i n t e s t i a m t e s * /

d a t a r e s u l t s ;

merge e s t ;

a l p h a =0 . 0 5 ;
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p o i n t = ( E s t i m a t e + 1 ) / 2 ;

l g t P o i n t = l o g ( p o i n t / (1 − p o i n t ) ) ;

c r i t = t i n v (1− a l p h a / 2 , Df ) ;

se1 = S t d E r r / ( p o i n t *(1− p o i n t ) ) ;

l 1 = l g t P o i n t − c r i t * se1 ;

u1 = l g t P o i n t + c r i t * se1 ;

l o g i t l o w e r = l o g i s t i c ( l 1 ) ;

l o g i t u p p e r = l o g i s t i c ( u1 ) ;

l 2 = l g t P o i n t − 2* a r s i n h ( c r i t /2 * se1 ) ;

u2 = l g t P o i n t + 2* a r s i n h ( c r i t /2 * se1 ) ;

a s i n e l o w e r = l o g i s t i c ( l 2 ) ;

a s i n e u p p e r = l o g i s t i c ( u2 ) ;

t t e s t = ( p o i n t − . 5 ) / S t d E r r ;

p v a l u e = 2*(1− p r o b t ( abs ( t t e s t ) , DF ) ) ;

run ;

p roc p r i n t d a t a= r e s u l t s ;

v a r p o i n t l o g i t l o w e r l o g i t u p p e r a s i n e l o w e r a s i n e u p p e r p v a l u e ;

run ;
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