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ABSTRACT: Electrosprayed protein ions can retain native-like conformations. The intramolecular 

contacts that stabilize these compact gas phase structures remain poorly understood. Recent work 

has uncovered abundant salt bridges in electrosprayed proteins. Salt bridges are zwitterionic BH+/A- 

contacts. The low dielectric constant in the vacuum strengthens electrostatic interactions, suggesting 

that salt bridges could be a key contributor to the retention of compact protein structures. A problem 

with this assertion is that H+ are mobile, such that H+ transfer can convert salt bridges into neutral 

B0/HA0 contacts. This possible salt bridge annihilation puts into question the role of zwitterionic 

motifs in the gas phase, and it calls for a detailed analysis of BH+/A- vs. B0/HA0 interactions. Here 

we investigate this issue using molecular dynamics (MD) simulations and electrospray experiments. 

MD data for short model peptides revealed that salt bridges with static H+ have dissociation energies 

around 700 kJ mol-1. The corresponding B0/HA0 contacts are one order of magnitude weaker. When 

considering the effects of mobile H+, BH+/A- bond energies were found to be between these two 

extremes, confirming that H+ migration can significantly weaken salt bridges. Next, we examined 

the protein ubiquitin under collision-induced unfolding (CIU) conditions. CIU simulations were 

conducted using three different MD models: (i) Positive-only runs with static H+ did not allow for 

salt bridge formation and produced highly expanded CIU structures. (ii) Zwitterionic runs with static 

H+ resulted in abundant salt bridges, culminating in much more compact CIU structures. (iii) Mobile 

H+ simulations allowed for the dynamic formation/annihilation of salt bridges, generating CIU 

structures intermediate between scenarios (i) and (ii). Our results uncover that mobile H+ limit the 

stabilizing effects of salt bridges in the gas phase. Failure to consider the effects of mobile H+ in 

MD simulations will result in unrealistic outcomes under CIU conditions. 
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Introduction 

In aqueous solution, most proteins spontaneously fold into compact structures.1 Deciphering the 

interplay of stabilizing and destabilizing factors that shape these native conformations remains a 

formidable challenge.2-4 A major contributor to the stability of the native state in solution is the 

clustering of hydrophobic residues in the core, reflecting the tendency of nonpolar side chains to 

avoid water.1, 5 Native proteins are also stabilized by H-bonds and van der Waals interactions. 

Another factor that is often mentioned in this context is the formation of salt bridges.6 

A salt bridge is a zwitterionic contact between a protonated basic site (BH+) and a 

deprotonated acidic site (A-). BH+ can be Arg+, Lys+, His+, or the N-terminus (NT+), while A- can 

be a carboxylate of Glu-, Asp-, or the C-terminus (CT-). In addition to electrostatic attraction, each 

salt bridge involves at least one H-bond.7, 8 Crystallography has shown that most salt bridges are on 

the protein surface.9 The role of these contacts for proteins in solution remains unclear. Salt bridge 

formation requires partial desolvation of BH+ and A-, a process that is energetically unfavorable.8, 

10 Also, attractive positive/negative interactions are weakened by the high dielectric constant of 

water, and by dissolved salts that cause Debye-Hückel screening.9, 11 As a result, the stabilizing 

effects of salt bridges in solution are likely very small.8-11 

Electrospray ionization (ESI)12 generates gaseous biomolecular ions, creating opportunities 

for protein stability studies complementary to those in solution. [M + zH]z+ protein ions produced 

by “native” ESI can maintain solution-like conformations.13-21 This structural robustness has been 

attributed to kinetic trapping, i.e., the presence of large activation barriers that preclude transitions 

to thermodynamically stable gas phase structures.19, 22-25 Many aspects of gaseous proteins remain 

poorly understood,19, 26, 27 largely because mass spectrometry (MS) and ion mobility spectrometry 

(IMS) experiments only provide low-resolution structural insights. Molecular dynamics (MD) 

simulations have therefore become an important tool in this area.24, 26, 28-34 
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 Solvent removal during ESI has profound implications for intramolecular contacts. The lack 

of water implies a substantial weakening of the hydrophobic effect.24, 35-38 The change in dielectric 

constant from water (ε ≈ 80) to vacuum (ε = 1) strengthens electrostatic interactions, keeping in 

mind the 1/ε dependence in Coulomb’s Law.5, 39, 40 Thus, salt bridges should be much more stable 

in vacuum than in water.5, 39 Some studies even suggest that gas phase salt bridges can be more 

stable than covalent bonds.40, 41 Despite this seemingly straightforward assertion, the role of salt 

bridges in the gas phase is yet to be fully explored. 

 As a starting point, one has to ask if salt bridges can even exist in the gas phase. Early studies 

suggested that the high proton affinity (PA) of carboxylates will annihilate salt bridges via H+ 

transfer, thereby generating charge-neutralized motifs.42, 43  

 

BH+/A-      →←      B0/HA0  (1) 

 

Accordingly, many gas phase MD studies on [M + zH]z+ ions have been conducted in “positive-

only” mode, i.e., by allowing for exactly z BH+ sites without any A-.28, 29, 32, 44 However, recent 

experimental and computational work has uncovered that zwitterionic motifs including salt bridges 

can be highly abundant in electrosprayed biomolecular ions.30, 31, 45-50 

 A back-of-the-envelope calculation51 qualitatively illustrates under what conditions a salt 

bridge can exist in the gas phase (Figure 1A). When treating BH+ and A- as point charges, and when 

neglecting entropy effects (T|ΔS| << |ΔH|),42 the free energy of reaction 1 can be expressed as 

    

Δ𝐺 ൌ  PAሺBሻ െ PAሺA-ሻ ൅
𝑒ଶ

4𝜋𝜀଴𝑟
                          ሺ2ሻ 

 

Figure 1 displays ΔG as a function of distance r between the two point charges, using PA values of 

Lys and Asp-. The zwitterionic state Lys+/Asp- is favored when the distance is small (ΔG > 0 for r 
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< 0.26 nm), as ΔG is dominated by the electrostatic attraction between the two charges. For larger 

distances the electrostatic attraction diminishes, favoring charge-neutralized Lys0/Asp0 (ΔG < 0 for 

r > 0.26 nm). Such H+ transfer is in line with QM/MM data,52 reflecting the mobile nature of H+ in 

gaseous proteins.52-56 Similarly, salt-bridged Ser8
+ clusters release Ser0 moieties upon collisional 

activation, suggesting that dissociation is concomitant with salt bridge neutralization.57 Numerous 

studies45-49 support the prediction of Figure 1B that gas phase salt bridges exist only for base/acid 

sites that are in close proximity to one another. Figure 1C plots the distance dependence of the 

Lys+/Asp- potential energy (V(r) = -PA(Lys) – e2/4ε0), as well as V(r) = -PA(Asp-) for the Lys0/Asp0 

neutralized form. As r increases, H+ transfer causes a crossover from the former to the latter V(r) 

profile, generating an effective V(r) that is indicated by the magenta dots in Figure 1C. 

To be clear, the simple model of eq. 2 (Figure 1) was introduced only to highlight the 

problem in a qualitative fashion. For predicting the protonation state of a base/acid pair more 

accurately, one has to consider charge solvation47, 55, 58-60 and H-bonding between the base/acid 

moieties.7, 8 The MD data discussed below take into account all of these details, as well as Lennard-

Jones interactions among the participating atoms (see below).60 

The preceding considerations highlight an interesting conundrum. On the one hand, salt 

bridges are expected to be very strong in a low dielectric vacuum environment.5, 39, 40 They should 

therefore help preserve compact conformations in the gas phase.30, 45, 47 On the other hand, salt 

bridges appear to be fragile because they can undergo annihilation via H+ transfer - although the 

neutralized B0/HA0 may still stabilize the protein to some extent by retaining H-bonding.30 Thus, 

much remains to be learned regarding the role of salt-bridged vs. neutral base/acid contacts in the 

gas phase. 

The stability of gaseous proteins can be probed by exposing them to collisional heating.21, 49, 

61-66 Collisions with background gas gradually raise the internal energy and trigger collision-induced 
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unfolding (CIU) which can be probed by IMS.28, 65-68 Here we explore the effects of salt bridges on 

the CIU behavior of ubiquitin, a commonly used model protein.19, 30, 31, 45, 67, 69, 70 Ubiquitin ions 

generated by native ESI possess a number of salt bridges,30, 45 making them suitable for examining 

the role of BH+/A- vs. B0/HA0 contacts. We combine experiments and simulations, with emphasis 

on a mobile H+ MD technique30, 60 that captures the capability of H+ to migrate in gaseous proteins,52-

56 allowing for the formation/annihilation of salt bridges (eq. 1). This method overcomes a key 

limitation of traditional MD simulations, where protonation patterns remain static throughout the 

entire run.24, 26, 28, 29, 31, 33, 34 We find that, despite the fleeting nature of charge-charge contacts, salt 

bridges promote the preservation of compact structures during CIU. However, this stabilization is 

less pronounced than might be expected from zwitterionic models that neglect the mobile nature of 

H+. 

 

 

Methods 

ESI-MS and IMS. Native ESI experiments were performed on a Synapt G2Si time-of-flight mass 

spectrometer (Waters, Milford, MA). Bovine ubiquitin (8565 Da, Sigma, St. Louis, MO) was 

electrosprayed at +2.8 kV using a standard Z-spray ESI source at 5 µL min-1 in 10 mM aqueous 

ammonium acetate solution (pH 7) under gentle ion sampling conditions (source temperature 25 ○C, 

desolvation temperature 40 ○C, sampling cone 5 V). Collisional heating was implemented in the trap 

cell with Ar as collision gas. Following quadrupole selection of 6+ ions, the trap collision energy 

was adjusted to values between zero and 80 V. Collision cross sections (Ω) were measured in N2 

buffer gas by traveling wave IMS, and a calibration procedure was employed for converting arrival 

time distributions to He Ω values.71 



 7 

 

Protein Molecular Dynamics Simulations. Vacuum MD simulations on ubiquitin were performed 

using Gromacs 2016 with GPU acceleration,72 with the X-ray coordinates 1UBQ as starting point. 

Bond distances were constrained, and the integration step was 1 fs. Runs were conducted without 

cutoffs for Lennard Jones or Coulomb interactions.30 Side chain protonation patterns were controlled 

using the Gromacs pdb2gmx module. The simulations employed the OPLS-AA/L force field73 

which has been widely used for earlier MD studies on gaseous protein ions including ubiquitin.30, 45, 

74-76 Also, OPLS-AA/L has been validated against ab initio gas phase data.73 The protein was 

equilibrated at 300 K for 30 ns, followed by 100 ns of heating at a rate of 7 K ns-1 for a final 

temperature of 1000 K. Similar to earlier simulations,32 the background gas surrounding the protein 

during CIU was not modeled explicitly. This strategy reflects the fact that structural changes 

experienced by protein ions are indistinguishable for different slow heating methods, e.g., gas 

collisions or exposure to blackbody infrared radiation.56 The temperature was controlled using the 

Nosé-Hoover algorithm77 which resulted in more stable runs at high temperature than other 

thermostats. All runs were repeated five times with different initial velocities that were sampled at 

random from a Maxwell-Boltzmann distribution at the desired temperature.  

Mobile H+ simulations were conducted as described30, 60 by complementing Gromacs with 

in-house Fortran code and bash scripts. MD runs were dissected into 142 ps segments. After each 

segment the H+ residing on all protonated sites (NT+, Arg+, Lys+, His+, Asp0, Glu0, CT0) were 

redistributed using an energy minimization procedure that takes into account the PA of all possible 

acceptor sites. The following PA values in kJ mol-1 were used: 886.6 (NT), 918.0 (Lys), 1002.0 

(Arg), 952.7 (His), 1452.7 (Asp-), 1453.5 (Glu-), 1450.0 (CT-).42 In addition, energy minimization 

considered the electrostatic contributions from all atoms. In this way we accounted for 

intramolecular charge solvation, as well as H-bonding (OPLS-AA/L treats H-bonds as electrostatic 
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contacts, with hydrogen Lennard-Jones ε and  values of zero).78 Ideally, the mobile H+ simulations 

would involve QM/MM,52, 79, 80 ab initio MD81-84 or DFT/MD methods.85 However, the 

computational cost of those methods precludes their application to large systems such as proteins, 

particularly for simulations on long time scales (hundreds of nanoseconds). In contrast, the mobile 

H+ method used here can readily be used for large systems and long simulation windows. Despite 

the conceptual simplicity of our mobile H+ method it has proven to robust, yielding results that are 

consistent with experimental observations. Examples include the formation of salt bridge networks 

on the surface of protein ions generated by native ESI,30 and the ejection of highly charged 

monomers from collisionally heated complexes.51 

Neutral His was modeled as N2-H tautomer (HisE), which dominates over the HisD form 

in peptides and proteins.86 He collision cross sections of MD structures were calculated using the 

trajectory method in Collidoscope87 at 300 K (prior to equilibration), 300 K (after equilibration), 

475 K, 650 K, 825 K, and 1000 K. 

 

Peptide Pulling Simulations. Center of mass (COM) pulling simulations (also known as steered 

MD88-90) were conducted on small model peptides in vacuum at 300 K. These MD runs used existing 

Gromacs tools91 with static protonation patterns and neutral peptide termini. Peptide 1 contained a 

basic residue and peptide 2 contained Glu. Charged and neutral side chains were tested. The initial 

peptide conformations were excised from a ubiquitin MD structure surrounding salt-bridged Lys11 

and Glu34. To simplify the simulations both Thr12 and Lys33 were changed to Ala, yielding Gly-

Lys-Ala (peptide 1) and Ala-Glu-Gly (peptide 2). For simulations involving other peptide 1 versions, 

Lys → Arg or Lys → His substitutions were performed using Pymol. Following energy 

minimization, the peptides were equilibrated for 100 ps at 300 K while restraining heavy atoms 

(excluding the basic/acidic side chains) in a 3D harmonic potential with a force constant of 1000 kJ 
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mol-1 nm-2. This equilibration ensured relaxed side chain contacts (salt bridges and/or H-bonds) prior 

to pulling. A force F was then applied to the peptide 1 COM, such that peptide 1 was pulled away 

from peptide 2 in positive y direction, while the aforementioned position restraints were retained for 

peptide 2. F did not act on the side chains of Lys, Arg, His and Glu. The COM harmonic pulling 

force constant was Kpull = 1000 kJ mol-1 nm-2 and the pulling speed was vpull = 0.001 nm ps-1. 

Preliminary tests (not shown) revealed that simulations with five times higher vpull generated F(t) 

profiles that were virtually identical to those discussed below. All pulling runs were repeated five 

times with different equilibrated starting structures. 

 

 

Results and Discussion 

Prior to studying the role of salt bridges during protein CIU, it is instructive to examine small model 

systems. For this purpose we performed gas phase MD simulations on peptides that were linked by 

a BH+/A- salt bridge or by a B0/HA0 contact. COM pulling91 was applied to assess the peptide 

interaction strength. Peptide 1 was attached to a virtual spring while peptide 2 was held in place. 

Pulling on the spring with constant velocity exerted a gradually increasing force F(t) on peptide 1, 

culminating in rupture of the peptide-peptide contacts. We performed these pulling simulations 

under traditional MD conditions,24, 26, 28, 29, 31, 33, 34  where H+ were not allowed to transfer from one 

site to another. Subsequently we explored how the outcome of these simulations would change when 

allowing for H+ transfer. 

 

Pulling Data for Salt-Bridged Gas Phase Peptides. Figure 2A depicts the salt-bridged peptides 

Gly-Lys+-Ala (peptide 1) and Ala-Glu--Gly (peptide 2). The direction of the force F(t) acting on 

peptide 1 is indicated. Rupture of the Lys-NH3
+/-OOC-Glu salt bridge occurred at t ≈ 2096 ps. F(t) 
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showed a near-linear increase (Figure 2B). Consistent with earlier COM pulling studies,91  this F(t) 

behavior is dominated by the harmonic nature of the pulling force (Hooke’s Law: |F(t)| = Kpull × vpull 

× t), rather than the Coulomb forces, H-bonds, and Lennard-Jones contacts that connect the two 

peptides. The distance between the closest Lys+/Glu- atoms remained almost constant up until the 

dissociation event (Figure 2C). Dissociation is marked by a sudden distance increase (Figure 2C) 

that coincides with a force drop-off (Figure 2B). The triangular F(t) profiles in Figure 2B are 

reminiscent of mechanical protein unfolding experiments which also involve the dissociation of 

noncovalent contacts.90 

The F(t) profiles show some deviations from linearity for early simulation times (up to ~ 700 

ps, Figure 2B). These nonlinearities arise from the rupture of secondary H-bonds that had formed 

during equilibration (between NT0 of peptide 1 and Glu- of peptide 2, and between Lys+ and a 

backbone CO of peptide 2 (Figure 2A, 1 ps). These secondary contacts dissociated long before 

rupture of the Lys+/Glu- salt bridge. For example, at t = 1200 ps the secondary H-bonds had 

disappeared while the salt bridge persisted (Figure 2A). 

 

Pulling Data for Neutral Gas Phase Peptides. Pulling simulations were repeated under conditions 

where the two peptides interacted through a Lys0/Glu0 contact (Figure 2D-F). The two neutral side 

chains initially formed a H-bond, either Lys-NHꞏꞏꞏOC-Glu or Lys-NꞏꞏꞏHO-Glu. In addition, some 

starting structures had a secondary H-bond between Lys-NH and a backbone CO of peptide 2 (Figure 

2D, 1 ps). Pulling quickly ruptured this secondary contact, generating a scenario where the side 

chains were H-bonded via Lys-NꞏꞏꞏHO-Glu for all runs (Figure 2D, 660 ps). Subsequently, these 

Lys0/Glu0 contact dissociated (Figure 2D, 794 ps). This Lys0/Glu0 dissociation took place much 

earlier (830 ± 60 ps, Figure 2F) than for the Lys+/Glu- scenario (2010 ± 60 ps, Figure 2C). 
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Dissociation Energies of Salt-Bridged vs. Neutral Contacts. For quantifying the interaction 

strength associated with the Lys+/Glu- and Lys0/Glu0 scenarios of Figure 2 we determined peptide-

peptide dissociation energies (DE) according to  

 

    𝐷𝐸 ൌ ׬ 𝐹ሺ𝑡ሻ 𝑣௣௨௟௟ 𝑑𝑡
ଷ଴଴଴ ௣௦
଴    (3) 

 

In this equation, F(t) is the pulling force as a function of time (Figure 2B/E), and vpull = 0.001 nm 

ps-1 is the pulling velocity. DE values obtained in this way are (1070 ± 10) kJ mol-1 for the salt-

bridged system, and (86 ± 4) kJ mol-1 for the neutral peptides. These dramatically different DEs are 

in line with the expectation that salt bridges in the gas phase are very stable.39, 40 However, a detailed 

understanding of base/acid contacts requires us to consider two additional issues. 

(1) The DE values calculated from eq. 3 include contributions from Lys/Glu contacts as well 

as secondary H-bonds (explained above). The latter can be excluded using a linear extrapolation 

strategy (Figure S1). This procedure yields corrected DE values that exclusively reflect the 

Lys+/Glu- or Lys0/Glu0 contacts, (880 ± 10) kJ mol-1 and (40 ± 10) kJ mol-1, respectively. 

(2) The MD runs of Figure 2A-C assume that the zwitterionic state will persist in perpetuity, 

ignoring the possibility that the salt bridge may undergo neutralization via H+ transfer (eq 1, Figure 

1).47, 53-55, 58-60 Lys+/Glu- → Lys0/Glu0 conversion would prematurely terminate the F(t) profiles of 

Figure 2B. Unfortunately, it is difficult to combine mobile H+ simulations30, 60 with COM pulling.91 

For assessing the implications of H+ transfer we applied a “workaround”, where coordinates were 

exported from Lys+/Glu- pulling trajectories at various time points. Each of these snapshots was 

analyzed using the mobile H+ algorithm to test if the Lys+/Glu- state would spontaneously convert 

to Lys0/Glu0. We found that this zwitterionic → neutral conversion becomes favorable for time 

points later than (1200 ± 200) ps, indicated by the vertical lines in Figure 2B/C. A salt bridge DE 

value that allows for mobile H+ is thus obtained by integrating eq. 3 between zero and the dashed 
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lines in Figure 2B, instead of using 3000 ps as the upper bound. After correcting for issues (1) and 

(2) we found that the Lys+/Glu- salt bridge has a DE of (200 ± 100) kJ mol-1. 

Simulations analogous to the Lys/Glu runs of Figure 2 were conducted for Arg/Glu and 

His/Glu-linked peptides (Figures S2, S3). The chemical moieties tested in these three types of runs 

cover all possible base/acid contacts, keeping in mind that the NT has an amine group (akin to Lys) 

while Asp and the CT are carboxylic acids (akin to Glu). The DE values obtained in this way (Table 

1) reveal that mobile H+ reduce the strength of salt bridges by 17% (Arg+) to 75% (Lys+). Salt bridges 

involving Arg+ are most stable because the high PA of Arg42 tends to retain the mobile H+ on Arg+, 

thereby favoring the preservation of the zwitterionic state. Even after correcting for issues (1) and 

(2), BH+/A- salt bridges were found to be roughly one order of magnitude more stable than the 

corresponding B0/HA0 contacts (Table 1).  

 

Collision-Induced Unfolding Experiments. Native ESI experiments on ubiquitin showed 

[ubiquitin + 6H]6+ to be the most abundant ion (Figure 3A). These 6+ ions were quadrupole-selected 

and exposed to collisional heating by increasing the trap collision energy (CE). Mass spectra 

acquired at low CE exclusively showed the covalently intact protein (0 V up to ~50 V, Figure 3B). 

Higher CE values (50 – 80 V) started to cause collision-induced dissociation (CID), i.e., the rupture 

of covalent bonds that resulted in b and y fragments (Figures 3C and S4).92, 93 

IMS data acquired under the most gentle settings (CE = 0 V, Figure 3D) were dominated by 

ions with  ≈ 1035 Å2, corresponding to compact native-like conformers.19, 30 A less abundant 

satellite peak at ~1190 Å2 in Figure 3D represents a sub-population that is slightly unfolded.30 This 

second species results from heating in the ion sampling interface of the Synapt G2Si instrument. 

The G2Si utilizes a step-wave ion guide that enhances sensitivity, while being more activating than 

some other interfaces. When using CE = 0 on a different type of instrument (a Synapt G2) that has 
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a simple stacked-ring ion guide interface94 we were able to acquire ESI-IMS data without the ~1190 

Å2 species, attesting to more gentle source conditions (Figure S5). These instrument differences are 

of no concern for the current work, because our focus is on unfolding events. 

Exposure of [ubiquitin + 6H]6+ to increasing collisional activation caused CIU, evident from 

shifts to larger  in Figure 3D-G. At high CE (80 V, Figure 3G) the mobilogram had its maximum 

at  ≈ 1490 Å2 which corresponds to extensively unfolded ubiquitin. Earlier IMS experiments95 on 

[ubiquitin + 6H]6+ after both solution-phase unfolding and extensive collisional heating yielded 1525 

Å2, which is close to the value seen in Figure 3G. Unfortunately, CE values beyond 80 V could not 

be accessed in our experiments because the ions were destroyed by CID (Figure 3C), and because 

IMS signal was lost (note that the data in Figure 3G are already very noisy). 

The presence of covalent CID products in our experiments (b and y ions in Figures 3C and 

S4) reveals that protein heating at CE = 80 V is sufficiently harsh to allow the dissociation of bonds 

with threshold energies of 200-300 kJ mol-1.96 These energies are on the same order of magnitude 

as the salt bridge DE values determined in this work (last row for each base/acid pair in Table 1). In 

other words, the occurrence of covalent CID confirms that the rupture of salt bridges during the CIU 

is energetically feasible – even for salt bridges that have not previously been converted to B0/HA0 

contacts by transfer of a mobile H+. 

 

Collision-Induced Unfolding Simulations. It is known from previous work that compact ubiquitin 

ions at low CE possess a number of salt bridges.30, 45 How do these BH+/A- linkages behave during 

collisional heating? What would happen if they were replaced with B0/HA0 contacts? Do the BH+/A- 

linkages promote the retention of compact conformations, keeping in mind that mobile H+ can cause 

salt bridge annihilation (eq. 1)? It is challenging to answer these questions experimentally because 

one cannot easily alter the protonation behavior of specific side chains. In contrast, MD simulations 
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allow the properties of titratable sites to be tightly controlled. We therefore conducted vacuum MD 

runs using three different charge models to examine the CIU behavior of [ubiquitin + 6H]6+. 

Following equilibration at 300 K the ions were heated to 1000 K. 

 (1) Positive-only simulations with static H+ exclusively used BH+ charges. The lack of A- 

implies the absence of salt bridges. H+ were not allowed to migrate. Such simulations represent the 

most simplistic type of gas phase protein MD.29, 97 Five static protonation patterns were tested, all 

of which had their positive charges distributed over the protein surface. Preference was given to 

protonation of Arg which has the highest PA42 (Figure S6A). MD runs conducted under these 

conditions initially retained native-like conformations (Figure 4A) where many of the neutral 

titratable sites were engaged in B0/HA0 H-bonds, along with H-bonds to non-titratable side chain 

and backbone sites (Figure S7). Heating to 1000 K generated highly extended CIU structures where 

most of the noncovalent contacts were disrupted (Figure 4A). 

(2) Zwitterionic simulations with static H+ employed both BH+ and A- sites, using the 

protonation patterns depicted in Figure S6B. MD runs of this type have previously been conducted 

on a range of proteins.45, 76, 98 While allowing for the known presence of salt bridges in gaseous 

proteins,30, 31, 45-50 this approach still does not permit H+ migration. Compact ubiquitin conformers 

early during the MD runs had various salt bridges at the protein surface. CIU structures populated 

toward the end of the heating process (Figure 4B) were more compact than for the positive-only 

scenario (Figure 4A). Throughout the runs, each A- was in salt bridge contact with at least one BH+. 

These salt bridge motifs ranged from simple BH+/A- pairs to larger clusters. An example of the latter 

can be seen in Figure 4B at 1000 K where NT+/Glu51-/Lys29+/Asp21-/Lys33+ are clustered together. 

(3) Mobile H+ simulations30, 60 allow for H+ transfer, governed by PA values and 

conformation-dependent electrostatic energies.30, 60 This type of simulation accounts for H+ 

migration that is known to take place in gaseous proteins.52-56 Protein conformations populated 
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during heating are depicted in Figure 4C, starting with native-like conformers at 300 K all the way 

to unfolded structures at 1000 K. Throughout these runs the number of A- sites fluctuated due to the 

reversible deprotonation of carboxylates. As discussed earlier (Figures 1, 2B), the viability of 

zwitterionic motifs depends on the distances and the electrostatic environment of the participating 

sites. This is reflected in the gradual A- accumulation early during the runs; the initial (crystal) 

structure did not yield any salt bridges, whereas side chain reorientation after 30 ns of gas phase 

equilibration at 300 K yielded 3 ± 1 A- (Figures 5A, S6C). Similar to Figure 4B, all A- sites in the 

mobile H+ simulations formed salt bridges with at least one BH+. Unfolded conformers at high 

temperature were somewhat less conducive to the formation of zwitterionic motifs, because 

base/acid moieties tended to be separated during CIU (consistent with the predictions of Figure 1). 

As a result, the number of salt bridges decreased as the temperature approached 1000 K (Figure 5A). 

 

CIU Behavior of the Three MD Models. CIU events can be characterized by tracking the radius 

of gyration (Rg). For temperatures between 300 K and 400 K all MD runs retained compact structures 

with Rg ≈ 1.2 nm. At higher temperatures the three models exhibited markedly different behavior 

(Figure 5B). Positive-only static H+ simulations produced the most expanded CIU structures with 

Rg ≈ 3.2 nm at 1000 K (blue, Figure 5B). Zwitterionic static H+ runs remained much more compact, 

with Rg ≈ 2.4 nm at 1000 K (red, Figure 5B). This difference reflects the strong BH+/A- contacts that 

favor more compact CIU structures in the zwitterionic model. In contrast, the weak B0/HA0 and 

charge-dipole contacts of the positive-only model (Figure S7) are easily disrupted, favoring more 

expanded structures. The CIU differences of these two static H+ models are consistent with our COM 

pulling simulations, where BH+/A- had DE values that were roughly one order of magnitude larger 

than for B0/HA0 (first two lines for each base/acid pair in Table 1).  
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Mobile H+ runs (black, Figure 5B) produced Rg values intermediate between those of the 

static models. From this result it can be concluded that salt bridges reduce the extent of CIU 

compared to all-positive scenarios. This is true even when considering the fact52-56 that strongly 

bound BH+/A- can convert to weak B0/HA0 contacts as the result of mobile H+ (eq. 1). However, the 

fleeting nature of salt bridges in the mobile H+ model renders them less effective stabilizers than for 

the static H+ zwitterionic model. The intermediate Rg values of the mobile H+ simulations are 

consistent with Table 1, where DE values for mobile H+ salt bridges (third line for each base/acid 

pair) are between those of the static BH+/A- and B0/HA0 contacts.  

 

Gas Phase Structures: MD and Experiments. Figure 5C shows  values for the three MD models 

at various stages of heating. Positive-only static H+ runs produced the largest  at 1000 K. 

Significantly smaller values were seen for the zwitterionic static H+ runs. The mobile H+  values 

were intermediate between those of the two static H+ models. These trends are consistent with the 

Rg data of Figure 5B, although the  values in Figure 5C show considerable standard deviations that 

reflect the heterogeneity of the MD structures. There is no straightforward relationship between  

and other measures of protein “size” (such as Rg),99 which explains why the profile shapes of Figure 

5B do not exactly match those of Figure 5C. 

 The two horizontal lines in Figure 5C represent experimental  maxima for the most gentle 

and for the harshest conditions. The value measured at CE = 0 V agrees well with the MD-generated 

300 K  values for all three models. This agreement supports the fidelity of the computational and 

experimental strategies used in this work.  

 Comparing  values of MD-generated CIU structures with experimental CE = 80 V ions is 

less straightforward for a number of reasons: (1) From existing data on thermometer ions it is 
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difficult to determine the effective temperature of highly excited ions in CIU experiments.100, 101 

Moreover, it is unclear how to map experimental ion temperatures to a specific MD temperature.33 

(2) The extent of experimental CIU is limited by the fact that excess heating destroys the ions via 

CID (see protein fragments at CE = 80 V, Figure 3C). This is in contrast to MD simulations where 

proteins remain covalently intact at any temperature. (3) The MD time scale (130 ns) is much shorter 

than the heating time of ions in the trap cell (ms). (4) Collisionally heated proteins may undergo 

structural changes as they lose internal energy in the ~300 K gas during storage and/or passage 

through the IMS device.94 As a result of issues 1-4, it is not clear which of the MD temperature 

points should be compared to the CE = 80 V experiments. Figure 5C reveals that the CE = 80 V 

experimental  agrees with both the mobile H+ model and the positive-only static H+ model for an 

MD temperature of 650 K. The zwitterionic static H+ runs yielded a  value that was 23% lower 

than the experimental result at this temperature (Figure 5C). 

Overall, the data in Figure 5C suggest that the CE = 80 V experimental conditions are 

roughly comparable to an MD temperature of 650 K. The MD-generated  values in this range only 

show a small difference between the mobile H+ model and the positive-only static H+ runs. A 

significantly lower  was obtained for the zwitterionic model with static H+. This pattern reiterates 

that mobile H+ significantly reduce the stabilizing effects of salt bridges. 

 

 
Conclusions 

An analogy may help illustrate the key question explored in this work. Consider two engine parts 

that are held together by a nut and a bolt, e.g., in a car. If properly fastened, the nut/bolt system will 

provide a very stable mechanical connection. Now imagine a scenario where the nut is not properly 

tightened. The two engine parts will remain connected as long as the nut is in place. However, 
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mechanical agitation can cause the nut to become undone, such that the connection between the 

engine parts becomes precariously weak. The “loose nut” in this analogy the mobile H+ in a salt 

bridge that can convert a strong BH+/A- bond into a weak B0/HA0 contact. 

The known presence of zwitterionic motifs in gaseous biomolecular ions30, 31, 45-50 makes it 

tempting to assume that zwitterionic MD models adequately describe the behavior of electrosprayed 

ions. However, when neglecting the effects of mobile H+, zwitterionic models overestimate the 

extent to which salt bridges stabilize protein structures under CIU conditions. The reason for the 

limited usefulness of static zwitterionic models is that they retain the initial user-defined charge 

patterns in perpetuity, not allowing for the fact52-56 that H+ migration can change the location of 

charge sites, along with the formation/ annihilation of zwitterionic motifs. Unfortunately, standard 

MD force fields that are widely used for gas phase simulations do not allow for mobile H+.73, 102 The 

application of mobile H+ models, as in the current work and a handful of previous studies,30, 32, 52, 60 

seems an important step toward a more realistic description of gaseous biomolecular ions.  

Mobile H+ models account for the fleeting nature of zwitterionic motifs, providing a 

description that is more realistic than traditional MD strategies that use static positive-only or static 

zwitterionic patterns. However, we agree with the opinion recently expressed by some community 

members103 that mobile H+ algorithms of the type used here are still quite simplistic and have to be 

further refined in the future. Work in this direction is currently ongoing in our laboratory. 

 

 

Supporting Information 

Figures S1-S7: Integration methods for DE determination; COM pulling MD simulations for 

Arg/Glu; COM pulling MD simulations for His/Glu; Ubiquitin CID spectrum; Ubiquitin IMS data 
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acquired on Synapt G2Si and G2; Ubiquitin protonation patterns; [ubiquitin + 6H]6+ H-bonds in 

positive-only model.  
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Table 1. Gas phase dissociation energies (DE, in kJ mol-1) of salt brige vs. neutral base/acid side 
chain contacts. Data were generated for peptide 1 (Gly-Base-Ala, where Base = Lys or Arg or His) 
and peptide 2 (Ala-Glu-Gly). Raw data are illustrated in Figures 2 and S1-S3. The initial two lines 
for each base/acid pair are for static protonation patterns; H+ migration is only considered for the 
third entries. Two possible tautomers were considered for neutral His (HisD and HisE) which have 
a Nε-H or Nδ-H group, respectively.86 
 
 
 
Lys/Glu    salt bridge  neutral 
 
uncorrected    1070 ± 10  86 ± 4   
eq. 3 value (static H+) 
 
after correction for   880 ± 10  40 ± 10  
secondary H-bonds (static H+) 
 
after addtl. correction for  200 ± 100  n/a   
mobile H+ 
 
    
Arg/Glu    salt bridge  neutral 
 
uncorrected    940 ± 30  100 ± 20   
eq. 3 value (static H+) 
 
after correction for   720 ± 20  60 ± 10 
secondary H-bonds (static H+) 
 
after addtl. correction for  600 ± 100  n/a   
mobile H+ 
 
 
His/Glu    salt bridge  neutral (HisD)  neutral (HisE)    
 
uncorrected    920 ± 60  100 ± 10  90 ± 10  
eq. 3 value (static H+) 
 
after correction for   600 ± 20  30 ± 10  20 ± 10 
secondary H-bonds (static H+) 
 
after addtl. correction for  300 ± 200  n/a   n/a 
mobile H+ 
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Figure 1. (A) Simple point charge model that qualitatively illustrates the behavior of a basic/acidic 
side chain pair in the gas phase. The residues can either be zwitterionic and form a salt bridge (left), 
or they can form a neutralized pair (right). (B) Free energy ΔG of the neutralization reaction, 
calculated as a function of distance r using eq. 2 with PA(A-) = 1453 kJ mol-1 (Asp-) and PA(B) = 
918 kJ mol-1 (Lys).42 The neutralized pair is favored for large r, implying that H+ transfer will take 
place as r increases. (C) Potential energy profiles V(r) of the zwitterionic form and the neutralized 
form. H+ transfer causes the system to cross over from one profile to the other, indicated by the 
magenta dots. Note: The mobile H+ MD simulations discussed later employed a more sophisticated 
strategy that also considers H-bonding, intramolecular charge solvation, and Lennard-Jones 
interactions. 
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Figure 2. MD pulling results for peptide 1 (Gly-Lys-Ala) and peptide 2 (Ala-Glu-Gly) in the gas 
phase. The Lys/Glu side chains are engaged in noncovalent contacts. Peptide 1 is being pulled, 
peptide 2 is immobilized. (A-C) Salt-bridged Lys+/Glu- scenario. (D-F) Neutralized Lys0/Glu0 
scenario. Panels A/D: Representative MD snapshots, with Lys/Glu shown as spheres. Panels B/E: 
Pulling force F(t). Panel C: Distance of the closest Lys-H O-Glu contact vs. time. Panel F: Distance 
of the Lys-N H-Glu contact vs. time. Time profiles show overlays of five independent runs for each 
condition. Vertical lines in B/C indicates where Lys+/Glu- would convert to Lys0/Glu0 (although this 
H+ transfer event was not allowed to take place for the runs in this figure). 
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Figure 3. ESI-MS and collision-induced unfolding of [ubiquitin + 6H]6+ on a Synapt G2Si 
instrument. The trap collision energy (“CE”) that controls the extent of collisional heating is 
indicated in each panel. (A) Native ESI mass spectrum. (B) Same as in panel A, but after quadrupole 
selection of the 6+ charge state. (C) Same as in panel B, but with extensive collisional activation 
that starts to rupture covalent bonds. Some CID products are annotated (fragment ion identification 
was performed using the UCSF Protein Prospector; see Figure S4 for additional details). (D-G) 
Collision cross section distributions at different collision energies. 
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Figure 4. Snapshots taken from MD trajectories during heating of gaseous [ubiquitin + 6H]6+. The 
protein ions were equilibrated at 300 K for 30 ns, followed by gradual heating to 1000 K over 100 
ns. (A) Positive-only scenario with static H+. (B) Zwitterionic scenario with static H+. (C) MD 
simulation with mobile H+. Titratable side chains are shown as sticks; Arg/Lys/His in cyan and 
Glu/Asp in pale red. Blue and red spheres represent BH+ and A- sites, respectively. 
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Figure 5. MD results for heating of [ubiquitin + 6H]6+ in the gas phase. The temperature profile for 
these CIU simulations is indicated along the top, i.e., 30 ns of equilibration at 300 K, followed by 
100 ns of gradual heating up to 1000 K. (A) Number of negative charges (A- sites) in mobile H+ 
simulations. (B) Radius of gyration (Rg) for runs conducted under different conditions: static H+ 
(positive-only), static H+ (zwitterionic), and with mobile H+. (C) Ω values of the MD-generated 
structures. Dashed lines indicate experimental Ω values. All MD profiles are averages of five 
independent simulations for each condition; error bars represent standard deviations. 
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