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Abstract

Drawing parallels with the theory of hyperplane arrangements, we develop the
theory of arrangements of submanifolds. Given a smooth, finite dimensional, real
manifold X we consider a finite collection A of locally flat codimension 1 submanifolds
that intersect like hyperplanes. To such an arrangement we associate two posets: the
poset of faces (or strata) F(A) and the poset of intersections L(A). We also associate
two topological spaces to A. First, the complement of the union of submanifolds in
X which we call the set of chambers and denote by C(A). Second, the complement of
union of tangent bundles of these submanifolds inside TX which we call the tangent
bundle complement and denote by M(A). Our aim is to investigate the relationship
between combinatorics of the posets and topology of the complements.

Using the Nerve lemma we show that M(A) has the homotopy type of a finite
simplicial complex. We generalize the classical theorem of Salvetti [73, Theorem 1]
for hyperplane arrangements and show that this particular simplicial complex, called
the Salvetti complex and denoted by Sal(A), is completely determined by the face
poset (Theorem 3.2.7). We also characterize all the connected covers of Sal(A), thus
generalizing the work of Delucchi [23] and Paris [68], in Section 3.4. Some general
results regarding the cohomology of the tangent bundle complement are also proved.

We apply the general theory developed so far to some particular cases. First we
study arrangement of spheres. Among other things we obtain a closed form formula
for the homotopy type of M(A) (Theorem 4.1.12) and the spherical version of Orlik-
Solomon algebra (Theorem 4.1.17). Using the fact that a sphere is the universal
cover a projective space we apply all the previous results to study arrangements of
projective spaces. Then we study toric arrangements. As yet another case we consider
arrangements of topologically deformed hyperplanes that arise in the study of non-
realizable oriented matroids.

Finally we study the set of chambers C(A) of an arrangement A. We obtain
a formula for the number of chambers in terms of the intersection poset and the
Euler characteristic of intersections. This result generalizes the classical theorem of
Zaslavsky for hyperplane arrangements.
Keywords : Arrangements of hyperplanes, topological combinatorics, Salvetti com-
plex, Orlik-Solomon algebra, toric arrangements, topological representation theorem,
Euler characteristic.
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Preface

An arrangement of hyperplanes is a finite set A consisting of linear (or affine)
codimension 1 subspaces of Rl. These hyperplanes and their intersections induce a
stratification of the ambient space. The strata form a poset when ordered by inclusion
and the set of all possible intersections forms a poset ordered by reverse inclusion.
These posets contain important combinatorial information about the arrangement.
The topological objects associated with an arrangement A are the real complement
C(A) and the complexified complement M(A). The real complement is the comple-
ment of the union of hyperplanes in Rl, whereas the complexified complement is the
complement of the union of the complexified hyperplanes in Cl. Note that, unlike
C(A), the topological space M(A) is connected. There is also the link of an arrange-
ment which is defined to be the union of all hyperplanes.

One of the important aspects of the theory of arrangements is to understand the
interaction between the combinatorial data of an arrangement and the topology of
these complements or of the link. For example, one would like to comprehend to what
extent the combinatorial data of an arrangement control the topological invariants,
such as (co)homology or homotopy groups etc., of these related spaces.

A fundamental problem concerning C(A) is to express the number of chambers (i.e.
the number of its connected components) in terms of the combinatorial data. This
problem has a very long history going back to the works of Jacob Steiner. We refer
the reader to [41] for a comprehensive account. A pioneering result in this direction
was proved by Zaslavsky in [92]. Let L denote the lattice of intersections of these
hyperplanes, the characteristic polynomial of A is defined by

χ(A, t) =
∑

X∈L

µ(0̂, X) · tdimX

where µ is the Möbius function. Zaslavsky showed that |C(A)| = χ(A,−1). Recently,
Ehrenborg et al [30] have studied the arrangements of toric hyperplanes on a torus
and extended Zaslavsky’s result in this context.

Since the complexified complement M(A) is connected, the natural questions that
arise are about its cohomology, homotopy type and the fundamental group. The
cohomology calculations of an arrangement complement are credited to Brieskorn. He
computed the de Rham cohomology ring and showed that it is generated in degree 1 by
certain logarithmic forms. He also showed that the cohomology groups of M(A) have
a finer grading indexed by the intersections of the hyperplanes. Orlik and Solomon
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found the description of the (integral) cohomology ring of the complement. They
showed that it is the quotient of the exterior algebra on the set of hyperplanes by an
ideal determined by the underlying combinatorics. We refer the reader to [62, Chapter
2, 5] and [91] for more on the Orlik-Solomon algebras.

The topological study of the complement of a complexified hyperplane arrange-
ment can be traced back to the work of Arnold on braid groups and configuration
spaces. His results led Brieskorn to conjecture that the (complexified) complement of a
real reflection arrangement is a K(π, 1) space (i.e. its universal cover is contractible).
In 1973, Deligne settled this conjecture in [22]. His first step was to parametrize
the universal cover of the complement by sequences of adjacent chambers (popularly
known as either the positive paths or the galleries in the Coxeter complex). Using
the earlier work of Garside [37] on the conjugacy problem for braid groups he showed
that these positive paths can be expressed in a particular normal form. This normal
form was the main ingredient in proving that the constructed universal cover was
contractible. We should also note that it is still an open question whether having
a K(π, 1) complement is a combinatorial property. Deligne’s work has greatly influ-
enced research in hyperplane arrangements and geometric group theory. For example,
existence of a bi-automatic structure in finite type Artin groups as proved in [12] and
the discovery of Garside groups in [21] are consequences of Deligne’s ideas.

The combinatorial nature of Deligne’s proofs led to the search for combinatorial
models for the complement, i.e., cell complexes built using the combinatorial data of
an arrangement that are homotopy equivalent to the complement. One such model,
the Salvetti complex, was introduced by Salvetti in [73]. He showed that the incidence
relations in the face poset are sufficient to construct the Salvetti complex either as
a simplicial or as a CW complex. His construction was generalized to complex ar-
rangements in [7] where the authors also showed that the face poset determines the
homeomorphism type of the complement. Combinatorial models for the connected
covering spaces have also been constructed, see for example [23,68].

As for the fundamental group, Salvetti came up with a presentation and several
attempts by other mathematicians also followed. However, the task of expressing the
fundamental group in terms of the combinatorial data is far from complete. Unfortu-
nately because of the space limitations we skip the long but very exciting discussion
regarding homotopy groups of the complement.

We hope that by now the reader is convinced that the theory of hyperplane ar-
rangements provides a rich interplay between combinatorics and topology. In the
present thesis we generalize hyperplane arrangements to the level of manifolds. We
introduce the notion of arrangement of codimension 1 submanifolds, where the lo-
cal picture is like hyperplane arrangements. We study the real complement and the
tangent bundle complement, an analogue of the complexified complement. In this
context we proceed along a similar line of inquiry -
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do the combinatorics of an arrangement of submanifolds offer insight about the
topology of corresponding complements ?

After a prelude, the intention of which is to lay the foundations and state the rele-
vant background, we state the results obtained during our Ph.D. work that generalize
results about the hyperplane arrangements.

Thesis Organization

Chapter 1: We begin this chapter by a review of basic toplogical techniques
used in combinatorics. We mention topological aspects of posets and combinatorics
associated with certain cell complexes. We then move on to real arrangements of
hyperplanes in Section 1.2. Here we introduce basic notions and state Zaslavsky’s
theorem, that first appeared in his thesis and then in [92], regarding the number
of connected components. Section 1.3 is about the cohomology of the complexified
complement (i.e. the Orlik-Solomon algebra) and related combinatorics. We then
review the construction of the Salvetti complex in Section 1.4 and recall the basics of
oriented matroids in 1.5.

Chapter 2: In recent years a lot of sophisticated techniques from homotopy
are being used in combinatorial applications and the theory of arrangements is no
exception. In this chapter we focus on one such tool, the homotopy colimits. Inspired
by the beautiful paper [89] of Welker, Ziegler and Z̆ivaljević, we have taken a concrete
view point to explain homotopy colimits in Section 2.1. In Section 2.2 we present a
direct derivation of the Bousfield-Kan spectral sequence to compute the cohomology
groups of a homotopy colimit. Such a discussion of homotopy theoretic methods is
incomplete without mentioning the role played by groupoids. This is discussed in
Section 2.3. In each of these sections we survey the arrangement literature in order
to present the results that were proved using these homotopy theoretic techniques.

Chapter 3: This chapter is the crux of our work. Here we introduce the subman-
ifold arrangements and generalize some important results due to Deligne and Salvetti
in this setting. In Section 3.1, we first isolate the setting to which hyperplane ar-
rangements can be generalized. We then define the arrangement of submanifolds of
codimension 1 and present some examples. After this we introduce the tangent bundle
complement, which generalizes the complexified complement, in Section 3.2. We also
prove that it has the homotopy type of a finite dimensional simplicial complex. We
show that this simplicial complex is determined by the combinatorics of the incidence
relations obtained by submanifold intersections. In Section 3.3 we construct a regular
CW complex which also has the homotopy type of this complement. This particular
cell structure helps us better understand the relationships between the combinatorics
and the topology in the context of submanifold arrangements. In Section 3.3.1 we
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show that this CW complex has a special combinatorial structure which is very sim-
ilar to that of zonotopes. We use the theory of metrical-hemisphere complexes (first
introduced in [74]) to explain this combinatorial structure. Then we describe and
characterize the connected covering spaces of the tangent bundle complement using
the so called arrangement groupoid in Section 3.4. In Section 3.5 we describe how the
relations in the fundamental group of the complement depend on the face poset of
the arrangement. Section 3.6 is about the universal cover of a tangent bundle com-
plement; here we have generalized some aspects of Deligne’s original results proved
in [22]. Finally, in Section 3.7 we use homotopy theoretic tools introduced in the last
chapter to obtain a spectral sequence converging to cohomology of the tangent bundle
complement.

Chapter 4: The chapter is divided into two sections. In Section 4.1 we look at
arrangements of spheres. We start by defining what we mean by a codimension 1 sub-
sphere. It is well known that there are infinitely many embeddings of a codimension
1 subsphere in a sphere [72, Section 2.6]. In order to avoid pathologies and subtleties
we restrict our attention to the so-called tame sub-spheres [72, Section 1.8]. The main
theorem of this section is about the homotopy type of the tangent bundle complement.
We prove that the complement contains a wedge of equi-dimensional spheres and
obtain a closed form formula. We then move on to arrangements in projective spaces.
Using the fact that a sphere is the universal covering space of a projective space we
analyze the homotopy type of the tangent bundle complement. In Section 4.2 we study
arrangements of tori. Recently these arrangements have received a lot of attention.

Chapter 5: Here we concentrate on arrangements that correspond to non-realizable
oriented matroids. In Section 5.1 we quickly review oriented matroids and the topo-
logical representation theorem. In order to avoid undue topological subtleties we
restrict our attention to pseudosphere arrangements in the standard unit sphere. We
prove that to every such pseudosphere arrangement there corresponds an arrangement
of topologically deformed hyperplanes (pseudohyperplanes) in the ambient Euclidean
space. In Section 5.2 we first associate a connected subset of R2l to an arrangement
of pseudohyperplanes. We then proceed to prove that the spine of this space is the
Salvetti complex of the corresponding oriented matroid. Finally we apply some of the
theorems proved in Chapter 3 to this setting.

Chapter 6: This chapter is about the generalization of Zaslavsky’s result to
arrangements of submanifolds. In Section 6.1 we revise the theory of valuations on
a poset and the Euler characteristic as they are the main ingredients for our proof.
Then in Section 6.2 after introducing a generalization of the characteristic polynomial
we will establish a formula that combines the geometry and combinatorics of the
intersections in order to count the number of chambers. We compare Zaslavsky’s proof
in [93] with ours. Finally in Section 6.3 we look at some particular cases of manifolds
and comment about the f -vectors arising due to submanifold arrangements.
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Chapter 7: In this chapter we first summarize all our important results. Finally
we mention some unanswered questions and applications. Notably we outline a gen-
eralization of Coxeter arrangements. Finite Coxeter groups act on smooth manifolds
in the similar way they act on Euclidean spaces (see [18, Chapter 10]). The subman-
ifold arrangements that arise due this action are locally the Coxeter arrangements of
hyperplanes. The groups that arise in this context generalize Artin groups. We hope
to apply the results proved in this thesis to study these new types of groups.

xiv



Chapter 1

Arrangements of Real Hyperplanes

Hyperplane arrangements is a young branch of mathematics which has gained a lot of
attention in recent years. This subject represents a beautiful blend of combinatorics,
algebra and topology. It employs techniques from diverse areas such as convex geom-
etry, homotopy theory, algebraic geometry and then answers questions in seemingly
unrelated areas like geometric group theory and robotic motion planning. The book
Arrangements of Hyperplanes [62] by Peter Orlik and Hiroaki Terao is a very good
reference for understanding the modern developments of this subject.

As a simple example of hyperplane arrangements one can consider a finite collec-
tion of lines in the Euclidean plane. These lines intersect in finitely many points and
the complement of the union of these lines consists of a finite number of polygonal
regions. Hence to an arrangement of lines one can associate a 2-dimensional cell com-
plex into which these lines decompose the plane. Such arrangements and their several
generalizations have been studied by mathematicians starting from the early 19th
century. For example, consider the purely combinatorial problem of counting number
of connected components or partition problems in Euclidean spaces etc. Grünbaum’s
book [41] is an excellent reference for early work in this field. For more about the
history of this subject post Grünbaum’s book watch the lecture by Mike Falk [32].

This chapter reviews basic concepts and definitions that are relevant to the main
work of the thesis. The main motivation is to show how the combinatorial information
associated with an arrangement determines the topology of related spaces. We start
this introductory chapter by recalling some essential tools that we need from Topo-
logical Combinatorics. For comprehensive accounts we direct the reader to the thesis
of James Walker [86], survey by Björner [4] and (a more recent survey by) Wachs [85].

1



1. Arrangements of Real Hyperplanes 2

1.1 Topology of Posets

The main theme underlying our work is to understand interactions between combina-
torics and topology in a particular context. Most of the tools used in our work reflect
this theme. For the sake of completeness and in order to fix notation we lay out some
foundation in this section.

A finite (abstract) simplicial complex is a finite set V (vertex set) together
with a family ∆ of nonempty subsets of V (called simplices or faces) such that if
X ∈ ∆ and Y ⊆ X then Y ∈ ∆. The dimension of each simplex is one less than
its cardinality as a set and the dimension of ∆ is the maximum of dimensions of its
simplices. The complex consisting of all nonempty subsets of a (d+ 1)-element set is
called the d-simplex. Let ∆1,∆2 be two simplicial complexes. A simplicial mapping
of ∆1 into ∆2 is map f : V1 → V2 that takes simplices to simplices.

Now we associate a topological space to these abstract simplicial complexes. A
geometric n-simplex is the convex hull of the set V of d+1 affine independent points
in RN , for some N ≥ n. The convex hulls of the subsets of V are called subsimplices.
A closely related notion of standard n-simplex is defined as the convex hull of
standard unit basis in Rn+1. The following construction (and its generalizations) will
be used as a path to move from combinatorics to topology.

Definition 1.1.1. Given a finite abstract simplicial complex ∆, its standard geo-
metric realization is the topological space obtained by taking the union of standard
k-simplex in R|V |, for all simplices of dimension k.

Any topological space that is homeomorphic to the standard realization of ∆ is
called the geometric realization of ∆, and is denoted by |∆|.

By convention a topological statement about an abstract simplicial complex is
actually a statement about its geometric realization. For the sake of simplicity we
will not differentiate between abstract simplicial complex and its geometric realization.
We will let the context decide. A simplicial map between two simplicial complexes
induces a continuous map between the corresponding geometric realizations. In some
cases embedding of the geometric realization in some ambient space is important,
hence the notion of a geometric simplicial complex is also defined. However in this
thesis there will be no occasion to deal with this notion. Hence we will not go into
technical details and just note that the realization of an abstract simplicial complex
is an example of a geometric simplicial complex. On the other hand by considering
the vertex set of a geometric simplex as a face, we get an abstract simplicial complex
from a geometric one.

Definition 1.1.2. A partially ordered set, or simply poset, P = (P,≤) is a set together
with a relation ≤ that satisfies the following three axioms:



3 Topology of Posets

1. idempotency : for any x ∈ P , we have x ≤ x;

2. antisymmetry : for any x, y ∈ P , if x ≤ y and y ≤ x then x = y;

3. transitivity : for any x, y, z ∈ P , if x ≤ y and y ≤ z then x ≤ z.

Unless stated otherwise P is a finite set. The subposet P≤x := {y ∈ P | y ≤ x}
is called the principal ideal generated by x. (The notions P≥x, P<x, P>x are defined
analogously.) For x ≤ y define the open interval (x, y) := P>x ∩ P<y and the closed
interval [x, y] := P≥x ∩ P≤y. A totally ordered subset x0 < x1 < · · · < xk is called
a chain of length k. The length of P≤x is called height of x in P . Since P is finite
every element in P has finite height. Such posets are also called as ranked posets.
The rank function r : P → N is an order preserving function on the poset P . The
dual P ∗ of a poset P is the poset obtained by reversing the order. A poset map is an
order preserving (or reversing) function between two posets. Finally, the barycentric
subdivision of a poset P which is denoted by sd(P ) is the poset of finite nonempty
chains of P , ordered by inclusion.

Definition 1.1.3. The order complex ∆(P ) of a poset P is the abstract simplicial
complex whose vertices are all elements of P and whose k-faces are the k-chains of
P . Again, we will not differentiate between the order complex and its geometric
realization.

A poset map between two posets induces a simplicial (or continuous) map between
the corresponding order complexes. Given a simplicial complex ∆, the set of its
faces ordered by inclusion forms a poset which is called as the face poset. The order
complex of this face poset is called the (first) barycentric subdivision denoted by sd(∆).
The spaces |∆| and |sd(∆)| are homeomorphic. Thus from a topological viewpoint
simplicial complexes and posets can be considered equivalent notions.

There is one more natural way to associate a topological space to posets. The
ideals of a poset P form the basic open sets of a topology on P which is called as
the ideal topology. In most of the cases this topology is just T0 (i.e., any two points
are topologically distinguishable). This is the weakest separation condition and such
topological spaces are also known as the Kolmogorov spaces. We will not be using
this topology in our work and hence skip any detailed discussion about it. However,
in the next chapter this topology will appear briefly when we describe sheaves over
posets (see Section 2.2). The classical resources for the study of the ideal topology
are [56, 83] and a more recent work which deals with general (polyhedral) complexes
is [2].

The notion that encodes combinatorial as well as the topological information about
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a poset P is the Möbius function µ : P × P → Z. It is defined recursively as follows:

µ(x, x) = 1, for all x ∈ P
µ(x, y) = −

∑

x≤z<y

µ(x, z), for all x < y ∈ P

A poset is called bounded if it has a unique minimum element 0̂ and a unique
maximum element 1̂. For such a poset:

µ(P ) := µ(0̂, 1̂)

In case a poset is not bounded then one can define the augmented poset as P̂ :=
P
⋃{0̂, 1̂}, note that if P is bounded then (P,≤) ∼= (P̂ ,≤). The Möbius function

of a poset is used to obtain inversion formulas (which in some sense generalize the
principal of inclusion-exclusion).

Lemma 1.1.4. Let P be a poset and let f, g : P → C. Then

g(y) =
∑

x≤y

f(x)

if and only if

f(y) =
∑

x≤y

µ(x, y)g(x).

Let P be a finite poset with 0̂. The characteristic polynomial of P is defined
as the finite sum

∑
x∈P µ(0̂, x) · tr(x). The absolute value of the coefficient of tk in the

characteristic polynomial is called the k-th Whitney number (of the second kind).
The main reason to mention this function is its connection with the Euler char-

acteristic. The reduced Euler characteristic of a simplicial complex ∆ is defined to
be

χ̃(∆) :=
dim∆∑

i=−1

(−1)ifi(∆)

where fi(∆) is the number of i-faces of ∆.

Lemma 1.1.5. (Hall’s Theorem) For any poset P ,

µ(P̂ ) = χ̃(∆(P ))

Since the Euler characteristic is a topological invariant the value µP (x, y) depends
only on the topology of the open interval (x, y) of P . By (co)homology of a poset, we
usually mean the reduced simplicial (co)homology of its order complex.
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Next we consider the Nerve Lemma, which often helps simplify a given topologi-
cal space for combinatorial applications. Recall that an open covering of a topological
space is a collection of open subsets of the space such that their union is the space
itself. The nerve of an open covering is a simplicial complex whose vertices corre-
spond to the open sets and a set of k + 1 vertices spans a k-simplex whenever the
corresponding k + 1 open sets have a nonempty intersection (we will refer to the
geometric realization of a nerve as the nerve itself). In general the nerve need not
reflect the topology of the ambient space, but the following result (famously known
as the Nerve lemma) gives a useful condition when it does. The Nerve Lemma is
usually attributed to Borsuk. However there are many variations of this theorem in
the literature (see [4, Section 10] for history and [50, Theorem 15.21] for the proof).

Theorem 1.1.6. (Nerve Lemma): If U is a finite open cover of a topological space
X such that every non empty intersection of open sets in U is contractible, then
X ' nerve (U).

We end this section by mentioning some basic facts about the cell complexes
that frequently occur in Topological Combinatorics. It is often the case that given
some combinatorial data one would like to synthetically construct a topological space
consistent with the data. The geometric simplicial complex is one such example.
Here we describe two classes of cell complexes that are sufficiently close to simplicial
complexes. A convex polytope F is a bounded subset of Rd that is the solution of a
finite number of linear inequalities and equalities.

Definition 1.1.7. A Hausdorff space X is called a polyhedral (polytopal) com-
plex if there exists a family F of subsets of X called as the faces such that:

1. every element of F is a convex polytope;

2.
⋃
F∈F F

◦ = X;

3. if F, F ′ ∈ F and F 6= F ′ then F ◦ ∩ (F ′)◦ = ∅ but F ∩ F ′ ∈ F

where F ◦ is the relative interior of F .

From the definition it follows that simplicial complexes are examples of polytopal
complexes. If we allow all the polytopes to be cubes of various dimensions then we
have a cubical complex.

Next we consider the regular cell complexes. A subset e of a topological space X is
called a closed (open) k-cell if it is homeomorphic to (interior of) the standard k-ball
in Rk.

Definition 1.1.8. A regular cell complex (X,C) is a pair consisting of a Hausdorff
space X and a finite collection C of open cells in X such that
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1. X =
⋃
e∈C e,

2. the boundary e \ e of each cell is a union of some members of C.

A polytopal complex is clearly a regular cell complex, whose closed cells are the
participating polytopes and the whose underlying space is the union of the polytopes.
Now we state a result concerning regular cell complexes which is important from the
combinatorial view point.

Theorem 1.1.9. Let (X,C) be a regular cell complex and F(X) denote its face poset.
Then

∆(F(X)) ∼= X.

Furthermore, this homeomorphism can be chosen so that it restricts to a homeomor-
phism between e and ∆(F≤e), for all e ∈ C.

Finally an important and relevant corollary of the above theorem.

Corollary 1.1.10. Every d-dimensional regular cell complex can be embedded into
R2d+1 so that its barycentric subdivision is a geometric simplicial complex.

1.2 Basics of Hyperplane Arrangements

Hyperplane arrangements arise naturally in geometric, algebraic and combinatorial
instances. They occur in various settings such as finite dimensional projective or
affine (vector) spaces defined over field of any characteristic. In this section we will
formally define hyperplane arrangements and the combinatorial data associated with
it in a setting that is most relevant to our work.

Definition 1.2.1. A real, central arrangement of hyperplanes is a collection A =
{H1, . . . , Hk} of finitely many codimension 1 subspaces (hyperplanes) in Rl, l ≥ 1.
Here l is called as the rank of the arrangement.

If we allow A to contain affine hyperplanes (i.e., translates of codimension 1 sub-
spaces) we call A an affine arrangement. However we will mostly consider central
arrangements. Hence, an arrangement will always mean central, unless otherwise
stated. We also assume that all our arrangements are essential, it means that the
intersection of all the hyperplanes is the origin. For an affine subspace X of Rl, the
contraction of X in A is given by the sub-arrangement AX := {H ∈ A | X ⊆ H}. The
hyperplanes of A induce a stratification (cellular decomposition) on Rl, components
of each stratum are called faces.

There are two posets associated with A, namely, the face poset and the intersection
lattice which contain important combinatorial information about the arrangement.
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Definition 1.2.2. The intersection lattice L(A) of A is defined as the set of all
intersections of hyperplanes ordered by reverse inclusion.

L(A) := {X :=
⋂

H∈B

H | B ⊆ A, X 6= φ}, X ≥ Y ⇔ X ⊆ Y

Note that for affine arrangements, set of all intersections only form a poset and
not a lattice.

Definition 1.2.3. Let A be an arrangement with its intersection lattice L(A) and let
µ be the Möbius function of the lattice. Define characteristic polynomial of A as

χ(A, t) :=
∑

X∈L

µ(X) · tdim(X)

Definition 1.2.4. The face poset F(A) of A is the set of all faces ordered by inclusion:
F ≤ G if and only if F ⊆ G.

Codimension 0 faces are called chambers, the set of all chambers will be denoted
by C(A). A chamber is bounded if and only if it is a bounded subset of Rl. Two
chambers C and D are adjacent if they have a common face. As the complement of
the hyperplanes in Rl is disconnected, a natural question is to ask if the number of
chambers depend on the intersection data. Zaslavsky in his fundamental treatise [92]
studied the relationships between the intersection lattice of an arrangement and the
set of chambers. He developed the enumeration theory for hyperplane arrangements
by exploiting the combinatorial structure of the intersection lattice. His main result
is as follows:

Theorem 1.2.5 (Theorem A [92]). Let A be a central hyperplane arrangement in
Rl with L(A) as its intersection lattice and χ(A, t) be the associated characteristic
polynomial. Then the number chambers is given by (−1)lχ(A,−1) and the number of
bounded chambers is given by (−1)lχ(A, 1).

For the details regarding applications and more results of this kind see also [6]
and [62].

An interesting space associated with a real hyperplane arrangement A is its com-
plexified complement M(A) which is defined as follows:

Definition 1.2.6.
M(A) := Cl \ (

⋃

H∈A

HC)

where HC is the hyperplane in Cl with the same defining equation as H ∈ A.
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Note that since M(A) is of real codimension 2 in Cl, it is connected. In fact
it is an open submanifold of Cl with the homotopy type of a finite dimensional CW
complex [62, Section 5.1]. The study of this space was initiated in the works of Fox and
Neuwirth, Arnold, Brieskorn, Deligne in the 60’s and 70’s. Fox, Neuwirth and Arnold
were interested in some topological aspects of braid groups, Deligne was interested in
reflection groups whereas Brieskorn was studying singularity theory.

1.3 Cohomology of the Complement

Let us start by defining the Orlik-Solomon algebra associated with an arrangement.
The construction of the Orlik-Solomon algebra is completely combinatorial. This
algebra is also defined for complex arrangements (where hyperplanes are defined using
complex equations).

Let E1 be the free Z-module generated by the elements eH for every H ∈ A. Define
E(A) to be the exterior algebra on E1. For S = (H1, . . . , Hp) (1 ≤ p ≤ n), call S
independent if rank(∩S) := dim(H1 ∩ · · · ∩Hp) = p and dependent if rank(∩S) < p.
Notice the unfortunate clash of notations, this rank is different from the one used in
the intersection lattice. Geometrically independence implies that the hyperplanes of
S are in general position. Let I(A) denote the ideal of E generated by all ∂eS :=
∂(eH1 · · · eHp), where S is a dependent tuple and ∂ is the differential in E.

Definition 1.3.1. The Orlik-Solomon algebra of a complexified central arrangement
A is the quotient algebra A(A) := E(A)/I(A).

The following important theorem shows how cohomology of M(A) depends on the
intersection lattice. It combines the work of Arnold, Brieskorn, Orlik and Solomon.
For details and exact statements of their individual results see [62, Chapter 3, Section
5.4].

Theorem 1.3.2. Let A = {H1, . . . , Hn} be a complex arrangement in Cl. For every
hyperplane Hi ∈ A choose a linear form li ∈ (Cl)∗, such that ker(li) = Hi (1 ≤ i ≤ n).
Then the integral cohomology algebra of the complement is generated by the classes

ωi :=
1

2π

dli
li
,

for 1 ≤ i ≤ n. The map γ : A(A)→ H∗(M(A),Z) defined by

γ(eH) 7→ ωH

induces an isomorphism of graded Z-algebras.
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This theorem asserts that a presentation of the cohomology algebra of M(A) can
be constructed from the data that are encoded by the intersection lattice. Let us state
one more theorem that explicitly states the role of intersection lattice in determining
the cohomology of the complement.

Theorem 1.3.3. Let A be a nonempty complex arrangement and for X ∈ L(A) let
MX := M(AX). For k ≥ 0 there are isomorphisms

θk :
⊕

X∈Lk H
k(MX)→ Hk(M)

induced by the inclusion maps iX : M → MX (where Lk ⊂ L(A) consists of elements
of rank k).

We end this discussion by stating a relationship between the complexified com-
plement and the real complement. It has been shown that the Betti numbers of the
complexified complement depend only on the intersection lattice. This result can be
used to prove the following theorem which is also known as the M-property:

Theorem 1.3.4.
∑

i≥0 dim(H i(M(A),C)) = |C(A)|, i.e. the number of chambers is
equal to the sum of Betti numbers of M(A).

1.4 The Salvetti Complex

Unlike cohomology algebra it is not known to what extent the homotopy groups of the
complement can be determined combinatorially. However, there exists a construction
of a regular CW-complex, introduced by Salvetti, which models the homotopy type
of the complexified complement. Note that this cell complex, which we denote by
Sal(A), is defined using the face poset and not the intersection lattice.

Let us first describe its cells and how they are attached. The k-cells of Sal(A) are
in one-to-one correspondence with the pairs [F,C], where F is a codimension k face of
the given arrangement and C is a chamber whose closure contains F . A cell labeled
[F1, C1] is contained in the boundary of another cell [F2, C2] if and only if F1 ≤ F2 in
F(A) and C1, C2 are contained in the same chamber of (the arrangement) AF1 (with
the attaching maps being homeomorphisms).

Theorem 1.4.1 (Salvetti [73]). Let A be an arrangement of real hyperplanes and
M(A) be the complement of its complexification inside Cl. Then there is an embedding
of Sal(A) into M(A) moreover there is a natural map in the other direction which is
a deformation retraction.
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[p,B]

[p,A]

[B,B][A,A]

A Bp

Figure 1.1: Arrangement and associated Salvetti complex.

Example 1.4.2. As an example, consider an arrangement of a point on the real line.
There is one hyperplane p and two chambers A,B. The complexified complement in
this case is the punctured plane which has the homotopy type of a circle. Following
figure shows this arrangement and the associated Salvetti complex

As we are going to generalize this construction in Chapter 3 and extensively study
its combinatorial and topological properties we skip a detailed discussion here. There
is another proof of Salvetti’s result by Paris in [68]. We would like to mention this
result as we will adopt a similar strategy to prove our main result (Theorem 3.2.7)
in Chapter 3. Consider the following poset called as the Salvetti poset (see also [69,
Section 5.2]):

X = {(F,C) ∈ F(A)× C(A)}
the partial order on X is as follows:

(F1, C1) ≺ (F2, C2) ⇐⇒ F1 ≤ F2 and (C1)F2 = (C2)F2 as chambers of AF2

by CF we mean the chamber in AF which contains C.
We again denote by Sal(A) (which is now a simplicial complex) the geometric

realization of (X,≺).

Theorem 1.4.3 (Paris [68]). Let A be an arrangement of real hyperplanes and M(A)
be the complement of its complexification inside Cl. Then for every (F,C) ∈ X there
corresponds an open set of M(A) such that the union of all these sets is an open
covering of M(A). Moreover each of these open sets are contractible and so are their
intersections consequently Sal(A) has the homotopy type of M(A).

As a result, every d-chain in (X,≺) corresponds to a d-simplex in Sal(A), and every
simplex of Sal(A) is of this form. Note that in general the simplicial complex Sal(A)
is the barycentric subdivision of the CW complex Sal(A). Unlike the Orlik-Solomon
algebra the Salvetti complex is defined only for the (complexified) real arrangements.
See [7] for a generalization to complex arrangements.
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1.5 Oriented Matroids

Oriented matroids are intimately connected to the theory of real hyperplane arrange-
ments. As seen in the previous sections the combinatorial data associated with an
arrangement is encoded in the face poset and the intersection lattice. Oriented ma-
troids not only provide a combinatorial structure that combines the above posets but
they also supply rich techniques to study arrangements. In this section we introduce
oriented matroids and explain their relationship with hyperplane arrangements.

Let us first see how oriented matroids arise in the context of hyperplane arrange-
ments. Let A = {H1, . . . , Hn} be an arrangement of hyperplanes in Rl as before.
Associated with every hyperplane Hi ∈ A, there are two open half-spaces bounded
by the hyperplane, which will be denoted by H+

i (plus side) and H−i (minus side). Ac-
cordingly, we will use H0

i to denote the hyperplane itself which can be called as the
zero side. Using this we can subdivide the Euclidean space into strata of points that
have the same position with respect to hyperplanes in A. In order to achieve this we
assign a sign vector X(v) = (X1(v), . . . , Xn(v)) to every point v ∈ Rl as follows:

Xi(v) =





+ if x ∈ H+
i

0 if x ∈ H0
i

− if x ∈ H−i

Let F denote the set of all possible sign vectors that arise due to the induced
stratification. It is not very difficult to verify that following properties are satisfied
by F. Obviously |F| < 2n. Since we are considering only central arrangements
(0, . . . , 0) ∈ F. It is also clear that −v realizes opposite sign configuration that of
that of v. Hence, if X ∈ F then −X ∈ F. Suppose that a hyperplane H separates
two points v and w, but the hyperplane H ′ does not. Then the line segment joining
v and w intersects H in a point u. It also follows that XH(u) = 0, XH′ 6= 0 and
if there exists a hyperplane H ′′ such that XH′′ 6= 0 then H ′′ cannot contain both v
and w. Finally, suppose that there are two points u and w with possibly different
sign configurations and let L denote the line segment joining them. Then there exists
z ∈ L such that if XH(u) = 0 then XH(z) 6= 0 and for all H such that XH(w) 6= 0 we
have XH(w) = XH(z).

The idea behind oriented matroids is to formalize the properties satisfied by the
sign vectors of a hyperplane arrangement. Note that there are several other ways
to define oriented matroids, these definitions depend only on the context in which
oriented matroids arise. Essentially all the definitions are equivalent, for more details
about the axioms defining oriented matroids and their equivalence see [6, Chapter 3].

Let E be a finite set and consider sign vectors X, Y ∈ {−, 0,+}E. The support of
a vector X is X = {e ∈ E|Xe 6= 0}; its zero set is z(X) = E \X. The opposite of a
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vector X is −X, defined by (−X)e = −(Xe). The zero vector is 0 = (0, . . . , 0). The
composition of two sign vectors X and Y is X ◦ Y defined by

(X ◦ Y )e :=

{
Xe if Xe 6= 0

Ye otherwise

The separation set of X and Y is S(X, Y ) = {e ∈ E|Xe = −Ye 6= 0}. With these
terminologies in hand we can define oriented matroids using the covector axioms.
These axioms generalize the geometric properties of the signed vectors (of a hyperplane
arrangement) stated above.

Definition 1.5.1. A set L ⊂ {−, 0,+}E (of signed vectors) is the set of covectors of
an oriented matroid if and only if it satisfies:

(V0) 0 ∈ L,

(V1) X ∈ L⇒ −X ∈ L,

(V2) X, Y ∈ L⇒ X ◦ Y ∈ L,

(V3) if X, Y ∈ L and e ∈ S(X, Y ) then there exists Z ∈ L such that Ze = 0 and
Zf = (X ◦ Y )f = (Y ◦X)f for all f /∈ S(X, Y ).

We can also put a partial ordering on the sign vectors by comparing the vectors
component-wise and declaring 0 < +, 0 < −. It is now clear that the faces of an
arrangement are nothing but the sign vectors. They satisfy the above mentioned
axioms for oriented matroids and the face poset is isomorphic to the oriented matroid
with the sign ordering. Hence every hyperplane arrangement gives rise to an oriented
matroid and such an oriented matroid is called as realizable.

However it is not true that given an arbitrary oriented matroid there corresponds
an arrangement of hyperplanes. Such oriented matroids are called as non-realizable
oriented matroids. The Folkman-Lawrence topological representation theorem [34]
states that every oriented matroid is ‘almost ’ realizable. There exists a generalization
of hyperplane arrangements called as the pseudohyperplane arrangements and there
is a one-to-one correspondence between oriented matroids and pseudohyperplane ar-
rangements. A pseudohyperplane is a subset of the Euclidean space that is homeo-
morphic to a codimension 1 subspace. This homeomorphism topologically deforms
the subspace in some mild way. Originally the topological representation theorem
was stated in terms of pseudo-hemisphere arrangements. Later Arnaldo Mandel in
his thesis [55] achieved much simplification using PL topology. He reproved the theo-
rem in terms of sphere systems (popularly known as arrangements of pseudospheres).
However, we end this discussion and will come back to this in Chapter (5).
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Given an oriented matroid (E,L) it can be shown that the set L = {z(X)|X ∈ L}
forms the collection of flats of the matroid underlying (E,L). If (E,L) is realizable
then L is the lattice of intersections of the hyperplanes. Hence an oriented matroid
contains both the combinatorial data associated with an arrangement. All the results
mentioned in the previous sections can now be translated in the language of matroids.
For example, the Orlik-Solomon algebra can be defined for arbitrary matroids (the
ideal I is defined using circuits and the basis elements of the algebra correspond to
no-broken circuits).

In his thesis, Ziegler [94, Section 5.5] extended the construction of the Salvetti
complex to arbitrary oriented matroids. Hence to every oriented matroid one can
associate a simplicial complex and in case of a realizable oriented matroid this com-
plex has the homotopy type of the complexified complement of the corresponding
hyperplane arrangement. In their paper Gel‘fand and Rybnikov [39] studied the Sal-
vetti complex for arbitrary oriented matroids and showed that the cohomology ring
of this complex is isomorphic to the Orlik-Solomon algebra of the underlying matroid
(see also [7, Theorem 7.2]). For a more direct approach via discrete Morse theory
see [25, Prop. 2, Lemma 5.10], but this result only proves additive isomorphism. A
lot of work has been done towards studying the interaction between combinatorics of
an oriented matroid and the topology of its associated Salvetti complex, see [6, chap-
ters 2,5] for a detailed survey.



Chapter 2

Homotopy Theoretic Methods

In recent years a lot of techniques from homotopy theory have been used extensively to
solve problems in topological combinatorics (see [50] for some fascinating applications
and recent developments). One such technique is homotopy colimits, which is an
important idea developed by Quillen, Bousfield, Kan and others in the 70’s. It has
not only reached remarkable extension and depth but has also proved to be a versatile
tool in a lot of other areas of mathematics.

The aim of this chapter is to motivate and explain the construction of homotopy
colimits and how it is used to understand the homotopy type of the arrangement
complement. A lot of the literature on homotopy colimits is written in more abstract
setting and uses sophisticated language of model categories. The approach we want to
take here is more concrete; we would like to leave the complete generality of diagrams
over arbitrary categories and focus on small, directed categories (for other concrete
approaches, see [70,84]). The main motivation for our chapter is the work of Welker,
Ziegler and Z̆ivaljević [89] (before this article was published a preprint [88] was in cir-
culation which contains more results). They developed a useful toolkit for applications
of homotopy colimits in topological combinatorics and discrete mathematics.

We will start by defining homotopy colimits and then state some of the important
tools. Then we will mention how they were used in the context of arrangements. In
Section 2.2 we will describe how the Bousfield-Kan spectral sequence can be set up
in our setting. Then we derive an explicit formula for the first page of the sequence
and the first differential. We will end this chapter by a discussion on the fundamental
group of homotopy colimits.

14
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2.1 Homotopy Colimit

Given a bunch of topological spaces and maps between them, taking the colimit of
this data intuitively means that one should form a new space by gluing the domain
of every map onto its image. Colimit operation is a very common mathematical
construction which is usually formulated in the language of category theory. One of
the drawbacks of colimits in topology is that if one were to change any of the spaces
in the data up to homotopy then the homotopy type of the colimit might change.
As a result one needs homotopically smart gluing and it turns out that homotopy
colimit is the right construction. Many familiar spaces like spheres, projective spaces,
simplicial complexes, toric varieties and orbit spaces can be obtained by homotopy
colimit construction. Apart from being homotopy invariant, homotopy colimit is a
functorial construction and there are more than one ways of constructing it. Here we
will take a combinatorial viewpoint of homotopy colimits and will use results proved
in [89].

A diagram of spaces is a covariant functor

D : P → Top

from a small category P to the category topological spaces and continuous maps (in
this case D will be called a P -diagram). Since our viewpoint is combinatorial, we will
concentrate only on (finite) posets and not on any other small categories. Note that
poset is a small category, with objects being elements of the poset and morphisms
being defined from p to q if and only if p ≥ q (in which case hom(p, q) consists of a
single element).

Before stating the formal definition of homotopy colimits let us first explain the
intuitive idea behind it. Recall that the geometric realization (the order complex )
a poset (P,≤) is a geometric simplicial complex ∆(P ) whose vertices correspond to
the elements of P and k-simplices correspond to k-chains in (P,≤). Now given a
diagram of spaces D indexed over a poset P , the homotopy colimit construction is a
generalization of the order complex construction as follows:

• for each object p0 of P , take a copy of D(p0);

• for each k-chain p0 → · · · → pk of composable arrows in P , take a copy of
D(p0)×∆k (topological k-simplex);

and make identifications as follows -

• collapse D(p0)×∆k to something smaller if it arises from a chain containing an
identity arrow;
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• identify D(p0)× ∂∆k ⊂ D(p0)×∆k with the appropriate subspace arising from
chains of smaller lengths;

• finally identify D(p0)×∆0 with D(p1)×∆0 via the induced map D(p0 → p1).

The space which is obtained after taking the homotopy colimit of a diagram will be
called the homotopy colimit of the diagram and will be denoted by hocolimD. Now
the formal definition:

Definition 2.1.1. Consider a diagram D : P → Top over a poset P , then the homo-
topy colimit of D is defined as

hocolimD :=
∐

x∈P

(∆(P≤x)×D(x))/ ∼

where ∆ denotes the order complex and P≤x := {y ∈ P |y ≤ x}. The equivalence
relation ∼ is generated by following identifications

∆(P≤x)×D(y) ↪→ ∆(P≤y)×D(y)

and

∆(P≤x)×D(y)
id×fyx−→ ∆(P≤x)×D(x)

where y ≥ x and fyx : D(y)→ D(x).

Remark 2.1.2. Note that the above definition is not the standard definition used in
homotopy theory these days. The homotopy colimit of a diagram of spaces indexed
over a small category is defined to be the geometric realization of its simplicial re-
placement. What we have described above is this geometric realization. Also note
that the according to the standard convention the above index category (the poset)
is opposite. The simplicial replacements obtained are not isomorphic, although their
geometric realizations are homeomorphic. In order to be more precise we should men-
tion that homotopy colimit of a diagram is the colimit of its cofibrant replacement.
The above construction is an example of one such replacement. As our scope is lim-
ited and our focus is on combinatorial applications we end this discussion and refer
the interested reader to a modern textbook on homotopy theory.

A simple example of homotopy colimit is the homotopy pushout. Consider a
diagram of spaces given by

Z
f← X

g→ Y

The homotopy pushout is formed by taking

Z
∐
X
∐
Y
∐

(X ×∆1)f
∐

(X ×∆1)g

and then identifying
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• (X × {0})f ∼ X via 1X and (X × {1})f ∼ Z via f

• (X × {0})g ∼ X via 1X and (X × {1})g ∼ Y via g.

Our main purpose is to show the reader how these homotopy theoretic methods ap-
pear in the context of arrangements. Before stating results from the literature let
us mention some tools that are available to homotopy colimits. Most of the results
stated here are valid in a more general setting of homotopy theory. Since our scope
is limited to combinatorial applications we will not go in greater generality, proofs of
all these results can be found in the references mentioned. The first lemma is about
the relationship between the homotopy colimit and the usual colimit, it also gives us
the condition when they are homotopy equivalent.

Lemma 2.1.3 (Projection lemma [89,96]). Let P be a finite poset and let D : P → Top
be a diagram of spaces such that for each p ∈ P the induced map colimP<pD→ D(p)
is a closed cofibration. Then the natural projection map

hocolimPD→ colimPD

is a homotopy equivalence.

The next lemma says that homotopy colimit is a homotopy invariant construction.

Lemma 2.1.4 (Homotopy lemma [89]). Let D and E be two P -diagrams such that
there is a map αp : D(p) → E(p) for every p ∈ P . If αp is a (weak) homotopy
equivalence for every p then the induced map

α̂ : hocolimPD→ hocolimPE

is also a (weak) homotopy equivalence.

The lemma we are now going to state has proved to be very useful in arrangements
and an upcoming subject called moment angle complexes. This result describes the
homotopy type of homotopy colimits under certain condition.

Lemma 2.1.5 (Wedge lemma [96]). Let D be a P -diagram so that there exists points
cp ∈ D(p) ∀p ∈ P such that Image {(D(q → p))} = {cp} for all q → p. Then

hocolimPD ' ∆(P ) ∨
∨

p∈P

(D(p) ∗∆(P<p))

where the wedge is formed by identifying cp ∈ D(p) ∗∆(P<p) with p ∈ ∆(P ) for all p
and ∗ denotes the topological join operation.
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In its simplest form the next theorem provides sufficient conditions for a map
between two posets to be a homotopy equivalence at the level of order complexes. The
origin of this result can be traced back to a paper of McCord in 1966 [56]. Quillen
in his treatise on algebraic K-theory extended this result to establish condition for
which a functor between two categories induces a homotopy equivalence between the
classifying spaces (or homotopy colimits in general).

Theorem 2.1.6 (Quillen’s theorem A [89]). Let f : P → Q be a poset map such that
∆(f−1(Q≥q)) is contractible ∀q. If D is any Q-diagram and f ∗D the corresponding
(pull back) P -diagram then,

hocolimP (f ∗D)
'→ hocolimQD

We will now look at an explicit connection between order complex of a poset and
homotopy colimit of a diagram of spaces.

Definition 2.1.7. Let P be a poset. A diagram of posets is a functor D such that
for every p ∈ P there is a poset Qp and D(p) = ∆(Qp).

In this situation we construct a new poset, called as poset limit of the diagram
and denoted by PlimD as follows:

PlimD :=
∐

p∈P

{p} ×Qp

The order relations are

(p, q) ≥ (p′, q′)⇔
{
p ≥ p′ and

fpp′(q) ≥ q′

Note that this is a special case of the Grothendieck construction, see Section 2.3 below.

Lemma 2.1.8. ( Simplicial Model Lemma [88, Prop. 3.19]) Let D : P → Top be a
diagram of posets. Then

hocolimD ' ∆(PlimD)

Now let us turn to the theory of arrangements. We will mention some of the
important results that were proved using the above tools. The first work in this
context goes back to a paper of Ziegler and Z̆ivaljević [96] in which they studied
subspace arrangements. To be more precise, using the diagram tools mentioned above
they obtain some combinatorial formulas for the homotopy type of arrangement links.
With the help of these formulas they derive Goresky-MacPherson results concerning
homology of an arrangement link and its complement. We will start by defining
subspace arrangements.
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Definition 2.1.9. Arrangement of subspaces is a finite collection A = {A1, . . . , Am}
of affine subspaces in Rn s.t.

• A is closed under intersection, and

• for A,B ∈ A and A ⊆ B the inclusion is a cofibration.

Let P be the poset of all non-empty intersections of subspaces in A ordered by reversed
inclusion. We also define the link L :=

⋃n
i=1Ai.

Analogously we can define arrangements of spheres and arrangements of projective
spaces. We will not go into all details here and refer the reader to [96] for precise
statements and proofs. Also note that an affine hyperplane arrangement with its
intersections is an example of subspace arrangement. The theorem we want to state
is the following:

Theorem 2.1.10 (Homotopy type of Links [96]). If A is an arrangement of subspaces
with L as its link, then

L ' ∆(P ).

If Â is the compactified affine arrangement with L̂ as its link, then

L̂ '
∨

p∈P

(∆(P<p) ∗ Sd(p)).

If A is an arrangement of spheres then the homotopy type of the link is

L '
∨

p∈P

(∆(P<p) ∗ Sd(p)−1)

where d(p) is the dimension of the intersection corresponding to p.

Finally we would like to mention the work of Delucchi [23, 24] which the main
motivation behind our thesis work. In his thesis Delucchi introduced Salvetti-type
diagram models [23, Chapter 4] and Garside-type diagram models [23, Chaper 6] to
study topological covers of the complement of a complexified real arrangement. The
main reason behind Garside-type models was to (re)prove an important theorem of
Deligne [22] in a completely combinatorial setting. Since this is not directly relevant
at this point we will concentrate only on Salvetti-type diagram models. The results
proven in Delucchi’s thesis are:

Theorem 2.1.11 (Salvetti-type diagram model). Given a real arrangement of hyper-
planes A we define a diagram of spaces

D : F(A)→ Top
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with discrete spaces
D(F ) := {C ∈ C(A)|F < C}

and maps being inclusions

D(F1 → F2) : D(F1) → D(F2)

C 7→ F2 ◦ C

Then
hocolimFD ∼= Sal(A)

and

Theorem 2.1.12. Given a real arrangement of hyperplanes A, define a diagram of
spaces E over the dual face poset Fop by

E(F ) := Sal(A|F |)

and the maps being natural inclusion of subcomplexes

E(F1 → F2) : Sal(A|F1|) ↪→ Sal(A|F2|)

Then,
hocolimFopE ' Sal(A)

Theorem 2.1.11 can be stated in a much more general context and describes all
the connected covers of the Salvetti complex. As we will need to state a few more
definitions in order achieve that generality and since we are going to prove this the-
orem in the context of manifolds, the detailed discussion of these diagram models is
postponed to Section 3.4.

2.2 Cohomology of Homotopy Colimits

In this section we will apply the classical spectral sequence techniques to compute the
cohomology of homotopy colimits. In particular we would like to use the Bousfield-
Kan spectral sequence [9, Chapter XI]. This spectral sequence is defined for diagrams
of simplicial sets and is valid for any cohomology theory. After a brief introduction
we will apply elementary algebraic topology techniques to explicitly write down the
terms and the differentials of this spectral sequence. We will also mention some ap-
plications of this spectral sequence to hyperplane arrangements and combinatorics.
A homological version of this spectral sequence is discussed in [70], where it is intro-
duced as homology of posets with coefficients in a local system of groups (or diagram
of groups). We will follow [27] in order to define this spectral sequence.
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Let D : P → Top be a diagram of spaces, defined over an arbitrary poset P . Then
there is a spectral sequence converging to the cohomology of hocolimD, whose second
page is given by,

Er,s
2 = lim←−

rHs(D,Z)

Where,

• Hs(D,Z) is the functor P op → Ab obtained by composing D with Hs(−,Z).

• lim is the (left exact) limit functor AbP
op → Ab.

• lim←−
r is the r-th right derived functor of lim

The right derived functors of lim can be defined as the cohomology of a certain
cochain complex (cochains with coeffecient in a functor) over Z, details of this con-
struction can be found in [87, page 86]. In homotopy theory these derived functors
are also known as the cohomotopy groups of the cosimplicial replacement of a dia-
gram. If the indexing category is a poset of rank r then these derived functors are
non-zero only up to step r. The simplest example of this spectral sequence is the
Mayer-Vietoris sequence. A generalization of this spectral sequence to diagrams of
arbitrary categories is explained in [46].

The right derived functors of a left exact functors are reminiscent of sheaf cohomol-
ogy. It is interesting to note that the Bousfield-Kan spectral sequence can be realized
as the sheaf cohomology of a certain topological space. In his paper [1] Back lawski
introduced sheaf theory for posets and then showed that for a certain locally constant
sheaf defined over geometric lattices, the ranks of its cohomology groups are precisely
the Whitney numbers of the lattice. He also constructed a spectral sequence (which
is a particular case of the Bousfield-Kan spectral sequence) converging to the coho-
mology of a poset with coefficients in a sheaf [1, Corollary 4.2] (whose first page is
similar to the one mentioned in Theorem 2.2.6 below).

Let us apply the above approach to our case. Note that the order relation on a
poset P induces a topology in which chains of elements are open sets (more precisely
subposets like P≤x form a basis for the topology). Given a diagram of spaces D

indexed over P , this diagram defines a sheaf over P whose stalk at a point p ∈ P is
H∗(D(p),Z). After sheafification one can verify that cohomology groups of P with
coefficients in this sheaf are precisely the terms on the E2 page of the Bousfield-Kan
spectral sequence.

The first application of Bac lawski’s result in hyperplane arrangements is the Whit-
ney homology of the intersection lattice. It is shown that the sheaf cohomology of
the intersection lattice of a hyperplane arrangement is isomorphic to the associated
Orlik-Solomon algebra (see [62, Section 4.5] and [91, Theorem 3.3]). One more appli-
cation of this spectral sequence is due to Yuzvinsky [90]. Let A be an arrangement
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of hyperplanes in Cl and let S denote the symmetric algebra of (Cl)∗. Yuzvinsky
studied certain sheaves of S-modules on the intersection lattice L(A). Using spectral
sequence techniques and some other tools, he uncovered deeper connections between
combinatorics and topology of an arrangement (see also [62, Section 4.6]).

We now calculate the second page of the spectral sequence. As our diagram is
defined over a ranked poset, this rank structure defines a filtration on the homotopy
colimit which is used to set up the spectral sequence. The arguments we will use are
elementary and the overall strategy is similar to computation of cellular cohomology.
This type of spectral sequence first appeared in [79] but in more abstract setting of
semi-simplicial spaces. A homology version of this spectral sequence appears in [89]
to compute homology of toric varieties. Our treatment is similar to [23, Chapter 5].

Henceforth F denotes the face poset of a regular cell complex. Let D : F → Top
be a diagram of spaces and let X denote its homotopy colimit. In order to set up a
spectral sequence we will construct a filtration on X using the rank structure of F.
For 0 ≤ r ≤ rk(F), let

Xr :=
∐

rk(x)≤r

(∆(F≤x)×D(x))/ ∼

The equivalence relations are same as in the definition of X. Then clearly there
is an increasing filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xrk(F) = hocolimD

As we will consider the spectral sequence of the above filtration, we will need more
knowledge of the successive quotients Xr/Xr−1. Let Qr denote Xr/Xr−1 for r ≥ 0,
then we can write

Qr = [
∐

rk(x)≤r

∆(F≤x)×D(x)/
∐

rk(y)≤r−1

∆(F≤y)×D(y)]/ ∼

It is not very hard to see that the quotient is made up of wedge sum of pieces of
following type

Kx := [Σ(∆(F<x))×D(x)]/[{∗} ×D(x)]

= [Sr ×D(x)]/[{∗} ×D(x)]

where Σ denotes the unreduced suspension and x corresponds to an open r cell,
hence suspension of ∆(F<x) has the homotopy type of Sr. The identification is done
by choosing one of the suspension points, say {∗} and then collapsing {∗} × D(x).
All these pieces are glued at this distinguished base point, so the quotient is
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Qr =
∨

rk(x)=r

Kx

Given an increasing filtration on a space there is a spectral sequence converging to
the cohomology of the space with following E∗,∗0 and the differentials d∗,∗0 , see [35, page
134].

Er,s
0 = Cr+s(Xr, Xr−1) = Cr+s(Qr)

dr,s0 : Cr+s(Qr)→ Cr+(s+1)(Qr)

Let n = r+ s. The d0’s are the usual cochain differentials and the next page looks
as follows,

Er,s
1 = Hn(Qr) =

⊕

rk(x)=r

Hn(Kx)

The differentials dr,s1 : Hn(Qr)→ Hn+1(Qr+1) are the connecting homomorphisms
of the long exact sequence in homology of the triples (Xr+1, Xr, Xr−1) that arise from
the following short exact sequence

0→ Cn(Xr+1/Xr)
j∗→ Cn(Xr+1/Xr−1)

i∗→ Cn(Xr/Xr−1)→ 0 (2.2.1)

0→ Cn(Xr/Xr−1)
i→ Cn(Xr+1/Xr−1)

j→ Cn(Xr+1/Xr)→ 0 (2.2.2)

In order to have an explicit description of the first differentials we will compute
the cohomology of Kx. For notational simplicity let us write Sr × Z/({∗} × Z) for
Kx.

Lemma 2.2.1.

Hj(Sr × Z) =

{
Hj(Z) if j < r

Hj(Z)⊕Hj−r(Z) if j ≥ r

Proof. This is an application of Künneth’s theorem. The cochain complex C∗(Sr×Z)
is the tensor product C∗(Sr)⊗C∗(Z). Since Sr has one 0-cell and one r-cell, C0(Sr) =
Cr(Sr) = Z and zero for all other j. Hence Cj(Sr × Z) = Cj(Z) for j < r and
Cj(Sr×Z) = Cj(Z)⊕Cj−r(Z) for j ≥ r, with the differentials coming from C∗(Z).

Theorem 2.2.2. Let Z be a CW complex and {∗} denote a distinguished base point
of the r sphere Sr. Then,

Hk(Sr × Z/({∗} × Z)) =

{
0 if k < r

Hk−r(Z) if k ≥ r
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Proof. Consider the long exact sequence in cohomology for the CW pair (Sr×Z; {∗}×
Z).

For k < r

· · · → Hk(Sr×Z/{∗}×Z)
j∗→ Hk(Sr×Z)

i∗→ Hk(Z)
δ→ Hk+1(Sr×Z/{∗}×Z)→ · · ·

Now i∗ is an isomorphism due to Lemma 2.2.1, hence j∗ and δ are zero homomor-
phisms. Therefore exactness forces the cohomology groups of the quotients to be 0.
For the case k ≥ r we have,

· · · → Hk(Sr×Z/{∗}×Z)
j∗→ Hk(Z)⊕Hk−r(Z)

i∗→ Hk(Z)
δ→ Hk+1(Sr×Z/{∗}×Z)→ · · ·

Here i∗ is surjective and therefore the kernel of j∗ is Hk−r(Z) and δ is zero.

Corollary 2.2.3. Let D be a diagram of spaces over a poset F which is a face poset
of a regular cell complex, and consider the filtration of its homotopy colimit given by
the Xr as above. Then for any 0 ≤ r ≤ rk(F) and for any s ≥ 0 we have

Hr+s(Qr) ∼=
⊕

rk(x)=r

Hs(D(x))

Now for the differentials d1, we will give a concrete expression. Note that d1 is the
connecting homomorphism in the long exact sequence coming from the short exact
sequence 2.2.1. We start with a cocycle in Cn(Qr) and obtain its image in Cn+1(Qr+1),
(recall that n = r + s). Let [α] ∈ Hn(Qr) = ⊕(Hn(Kx)), without loss of generality
assume that [α] ∈ Hn(Kx) for some x ∈ F of rank r. As Kx ' (Sr×D(x)/{∗}×D(x)),
cells in Kx are of the form x × e where x is the unique r cell of Sr and e is a cell in
D(x) (by the choice of any cell structure on D(x)). The Künneth formula translates
product of cells to the tensor product of cochains. Hence we can rewrite the cochain
α as φ⊗ ψ ∈ Cr(Sr)⊗ Cn−r(D(x)). But it is a cocycle so the differential maps it to
0 in the tensor product resolution.

0 = δ(φ⊗ ψ)

= δF(φ)⊗ ψ + (−1)rφ⊗ δD(x)(ψ)

⇒ δD(x)(ψ) = 0

Hence the necessary condition that φ ⊗ ψ is a cocycle is that ψ is a cocycle in
Cn−r(D(x)). The map i : Xr/Xr−1 ↪→ Xr+1/Xr−1 is an inclusion so x × e is a cell
in Xr+1/Xr−1 too. Hence we can consider φ × ψ as a cochain in Cn(Xr+1/Xr−1).
Applying the coboundary map of this cochain complex we get

δ(φ⊗ ψ) = δφ⊗ ψ + (−1)rφ⊗ δψ = δφ⊗ ψ
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as δψ = 0. Note that φ is not a cocycle in Cn(Xr+1/Xr−1). Here δφ⊗ψ ∈ Cr+1(Sr+1)⊗
Cn−r(D(x)), but 1 ⊗ f ∗yx : Cr+1(Sr+1) ⊗ Cn−r(D(x)) → Cr+1(Sr+1) ⊗ Cn−r(D(y)) is
an isomorphism induced by the identification map fyx in the homotopy colimit, for
any y > x. It is clear that δφ⊗ f ∗yx(ψ) is a cocycle in Cn+1(Qr+1).

The cellular coboundary map for F has an explicit expression in terms of incidence
numbers,

δφ(y) = [x : y]φ(x) where rank(y) = r + 1

The map fyx : D(x) → D(y) induces the map f ∗yx : H∗(D(x)) → H∗(D(y)). The
cocycle now looks like

δφ⊗ f ∗yx(ψ) =
∑

rk(y)=r+1

[x : y]φ⊗ f ∗yx(ψ)

The tensor product on the right hand side can be removed because of the Künneth
isomorphism. All this discussion is summarized in the following theorem.

Theorem 2.2.4. Let D : F → Top be a diagram of spaces and suppose that F is a
face poset of a regular CW complex. Then there is a spectral sequence converging to
the cohomology of the homotopy colimit of D with the E1 page given by

Er,s
1 =

⊕

rk(x)=r

Hs(D(x))

and the differentials

dr,s1 (αx) =
∑

rk(y)=r+1

[x : y]f ∗yx(αx),

where [x : y] is the incidence index of x in y as cells of the CW complex, αx is a
cohomology class in Hs(D(x)) and f ∗yx is induced on cohomology by fyx : D(y)→ D(x).

The above result can be generalized to arbitrary posets. This is done by modifying
the diagram but without changing the homotopy colimit. Let P be an arbitrary poset
and sd(P ) denote the poset of chains in P ordered by inclusion. Then sd(P ) is
isomorphic to the face poset of ∆(P ) which is a regular cell complex. We have the
following lemma.

Lemma 2.2.5. Consider the poset map g : sd(P )→ P given by g(τ) = max τ , for a
chain τ in P . Given a diagram D : P → Top, define a new diagram g∗D as follows

(g∗D)(τ) := D(max τ)

(g∗D)(τ > τ ′) := D(max τ ≥ max τ ′) ∀τ, τ ′ ∈ P
Then the map g induces a homotopy equivalence

hocolim(g∗D) ' hocolim(D)
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Proof. Follows from the inverse image lemma in [89, lemma 4.7].

We can thus apply Theorem 2.2.4 to sd(P ) and construct a spectral sequence
converging the cohomology of hocolimD.

Theorem 2.2.6. Let D : P → Top be a diagram of spaces over any poset P . Then
there is a spectral sequence converging to H∗(hocolimD) with the E1 page given by,

Er,s
1 :=

⊕

x0<···<xr

Hs(D(xr)), xi ∈ P ∀i

and the differentials dr,s1 : Er,s
1 → Er+1,s

1 ,

(dr,s1 α)(x0 < · · · < xr+1) =
r∑

i=0

(−1)iα(x0 < · · · < x̂i < · · · < xr+1)

+ (−1)r+1f ∗xr+1xr
(α(x0 < · · · < xr))

where α(x0 < · · · < xr) is a cohomology class in Hs(D(xr)).

Proof. Follows from Lemma 2.2.5 and Theorem 2.2.4.

2.3 Groupoids and Arrangements

Now we look at the role played by the theory of groupoids in real arrangements.
Recall that a groupoid is a small category in which every morphism is invertible.
A prototypical example of groupoids is a group, which is a category with a unique
object and the morphisms are the group elements. The most important groupoid
that appears in arrangements is the arrangement groupoid (or the Deligne groupoid),
which we describe below. It was first introduced and used by Deligne in his seminal
paper [22, (1.25)]. The main use of this groupoid was to prove that the universal
cover of the (complexified) complement of a simplicial arrangement is contractible.
In his work, Salvetti used the category of positive paths (whose groupoid comple-
tion is the arrangement groupoid) [73, Part Two] to construct a CW structure of the
complexified complement of any hyperplane arrangement. In [74], Salvetti general-
ized his construction to metrical-hemisphere complexes and realized the arrangement
groupoid as the fundamental groupoid of the associated complexes. The first explicit
definition of the arrangement groupoid that works for all real arrangements appeared
in the work of Paris, he called it the oriented system (see [65–68]). Paris not only
defined it in a way that works for all arrangements but he also used it to characterize
all of the connected topological covers of an arrangement complement. The approach
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that we want to take here first appeared in Delucchi’s thesis [23, Section 2.1]. He used
the systematic language from category theory to define the arrangement groupoid and
from coverings of groupoid to characterize the covers of an arrangement complement
(see also [24]). Apart from hyperplane arrangements the Deligne groupoid is also
useful in the study of Artin groups (see [12]) and Garside groups (see [21]).

Another reason we want to consider groupoids is that the fundamental groupoid
commutes with the homotopy colimit. Calculation of the fundamental group of a
space could be quite complicated and complements of hyperplane arrangements are no
exception. There are various techniques available but they are not as straightforward
as calculations of (co)homology. Describing the fundamental group of a hyperplane
complement combinatorially is even more difficult. A central part of our work is to
generalize some aspects of hyperplane arrangements and their complexification. We
will see in the next chapter that in this general case the analogue of the complexified
complement can be seen as a homotopy colimit. Hence in this section we concentrate
on the computation of the fundamental group of a homotopy colimit.

Given a diagram of spaces we will consider the corresponding diagram of funda-
mental groups and then compute the homotopy colimit of this diagram. In order to
define such a homotopy colimit we will have to leave the realm of groups and enter
the world of groupoids. If the homotopy colimit is connected then knowing the fun-
damental groupoid is as good as knowing the fundamental group. The main reference
for this technique is [33] (see also [45]).

2.3.1 Arrangement (Deligne) groupoid

Let A be a real hyperplane arrangement in Rl. To such an arrangement we associate
a directed graph whose vertices correspond to chambers. For every pair of adjacent
chambers we join the corresponding vertices by a pair of oppositely oriented edges.
This graph is called as the arrangement graph and is denoted by G(A). To every graph
there corresponds a category called as the free category whose objects are the vertices
of the graph and the morphisms are the directed paths in that graph (see [53, II.7]).

A morphism in the free category of the arrangement graph can be written as an
expression

α = (a1, · · · , an)

where ai is an edge in the graph such that the terminal vertex of ai (denoted by t(ai))
is the initial vertex of ai+1 (denoted by s(ai+1)) for 1 ≤ i ≤ n. Then for the path
α, its initial vertex s(α) is s(a1) and its terminal vertex t(α) is t(an). If α, β are two
paths such that s(β) = t(α) then they can be composed into a single path αβ. Length
of a path is the number of edges it traverses, a path is called minimal if its length is
least among all the paths that connect its initial and terminal vertices.
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We are interested in the following two quotient categories of the free category
associated with an arrangement graph.

Definition 2.3.1. The category of positive paths (the positive category or the path
category) of an arrangement A is obtained from the free category of the arrangement
graph by identifying every two morphisms that come from positive minimal paths
having the same initial and terminal vertices. This category is denoted by G+(A).

The objects of this category correspond to the chambers of A and the identification
implies that given two chambers C,D they determine an equivalence class of the
minimal positive paths starting at C and ending at D; we denote any morphism
representing this class by (C → D).

Definition 2.3.2. The arrangement groupoid G(A) is obtained from the positive
category by groupoid completion, i.e., adding formal inverses to every morphism.

Let us see explicitly what the morphisms in this groupoid are. Each morphism
can be written as

α = (ε1a1, . . . , εnan)

where, each ai is an edge in the graph and εi ∈ {±1} denotes the direction in which
ai is traversed. The formal inverse of α is:

α−1 = (−εnan, . . . ,−ε1a1).

The equivalence relation ∼ on these paths induced by the identification in G+(A)
satisfies the following conditions:

1. if α ∼ β, then s(α) = s(β) and t(α) = t(β),

2. αα−1 ∼ s(α) for any path α,

3. if α ∼ β then α−1 ∼ β−1,

4. if α ∼ β and γ1 is a path such that t(γ1) = s(α), γ2 is a path such that
s(γ2) = t(α) then γ1αγ2 ∼ γ1βγ2.

Remark 2.3.3. In the language of homotopy theory [36] it would be convenient to say
that the groupoid G(A) can be identified with the category of fractions of G+(A) and
there is an associated canonical functor J : G+(A) → G(A) (see Theorem 3.4.6 for a
proof).

Remark 2.3.4. The arrangement graph is the (oriented) 1-skeleton of the Salvetti
complex. With this view point the arrangement groupoid can be seen as the collection
of homotopy classes of paths joining the 0-cells (i.e. the fundamental groupoid of the
Salvetti complex, see Definition 2.3.11 ).
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There is a covering theory of groupoids [11, Section 10.2] similar to that of topolog-
ical spaces. For simplicity we only mention the relevant facts here. We refer the reader
to [24, Section 1.4] where coverings of the arrangement groupoid are well explained
using examples.

Let G be a groupoid and x ∈ Ob(G) be an object. The set of all morphisms from
x to x has a natural group structure, this group is denoted by G(x) and is called as the
object group (of G at x). We assume that all our groupoids are connected, it means
that for any two objects there is a morphism going from one to the other. In case
of a connected groupoid G(x) ∼= G(y) hence we will denote the object group by π(G).
Also, so we use the language of paths when dealing with morphisms. Finally, the star
of the object x is the set

St(x) := {α ∈Mor(G)|s(α) = x}
Definition 2.3.5. A morphism of groupoids is a functor ρ : G′ → G between groupoids.
The morphism ρ is called covering if, for every z ∈ Ob(G′), the induced map

ρz : St(z)→ St(ρ(z))

is bijective. Given α, a morphism of G and any z ∈ ρ−1(s(α)), the lift of α at z is the
morphism ρ−1

z (α), and will be written α<z> when the covering ρ is understood. The
object group π(G′) is isomorphically mapped to a subgroup of π(G) and this subgroup
is called as the characteristic group of the covering.

One of the fundamental things about the covering space theory is the correspon-
dence between the subgroups of the fundamental group (of the base space) and the
topological covers (of the base space). This correspondence has a nice analogue in the
context of groupoids (see [11, Chapter 10]).

Theorem 2.3.6. Let G be a connected groupoid, H a subgroup of π(G) and x be an
object of the groupoid. Consider the groupoid G′ defined by setting Ob(G′) = {Hα|α ∈
St(x)}, the morphisms between Hα1 and Hα2 correspond to morphisms β from t(α1)
to t(α2) in G such that Hα1β = Hα2.

Then the functor ρ : G′ → G such that Hα 7→ t(α) is a covering of groupoids with
the characteristic group H.

Now let us put all this in the context of arrangements. We have already introduced
the Salvetti-type diagram models in the previous section. Here we will extend those
diagrams in order to characterize covers of the Salvetti complex.

Definition 2.3.7. Let G(A) denote the arrangement groupoid of a hyperplane ar-
rangement A. Given a cover ρ : Gρ → G(A), we define a diagram of posets Dρ indexed
over the dual face poset (F∗,≺) such that

Dρ(F
∗) := {v ∈ Ob(Gρ)|ρ(v) ≺ F ∗}
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endowed with the trivial order relation defined by setting v1 ≤ v2 if and only if v1 = v2,
and maps being inclusions

D(F ∗1 → F ∗2 ) : D(F ∗1 ) −→ D(F ∗2 )

v 7→ t(ρ(v)→ F2 ◦ ρ(v))<v>

where (ρ(v)→ F2 ◦ρ(v))<v> is the lift of the positive minimal path (ρ(v)→ F2 ◦ρ(v))
in G(A) that starts at v.

Following theorem classifies the covering spaces of the Salvetti complex.

Theorem 2.3.8. (Delucchi) For any topological cover p : S → Sal(A) of the Salvetti
complex of a locally finite real arrangement A, there exists a cover of the arrangement
groupoid ρ : G → G(A) such that the homotopy colimit of the associated diagram of
spaces hocolimDρ is isomorphic to S as a covering space of Sal(A).

As a corollary to the above theorem we have

Corollary 2.3.9. Let ρ̂ : Ĝ→ G(A) be the universal cover of G(A). Then hocolimDρ̂

is the universal cover of Sal(A).

Remark 2.3.10. For a simplicial arrangement A Deligne, in [22], first proved that
the morphisms of G+(A) satisfy a certain technical property (called the property D)
and that the canonical functor J : G+(A) → G(A) is faithful. Then he used this
information to show that the universal cover of the complexified complement M(A)
is contractible. Several reproofs of this result have appeared since, see [15,23,66,74].

2.3.2 Fundamental group of a homotopy colimit

Definition 2.3.11. Let Y be a CW complex and A be a choice of 0-skeleton for Y .
Then the fundamental groupoid of (Y,A) denoted by π̃1(Y,A) is defined as the small
category whose object set is A and whose morphisms are the homotopy classes of
paths between any two of these zero cells.

Before stating the main theorem let us gather some tools from homotopy theory.

Definition 2.3.12. For a small category C the trivial diagram is a functor that
assigns a point to every object of C. The nerve (the classifying space) of C, denoted
by |C|, is defined as the homotopy colimit of the trivial diagram.

In general nerve of a category can be quite complicated. On the other hand,
the nerve of a groupoid G is homotopy equivalent to

∐
αBGxα , where BGxα is the

classifying space of the vertex group Gxα for every isomorphism class {xα} of the
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objects in the groupoid [27, section 5.10]. Given a small category C, the fundamental
groupoid of C, denoted by π̃1C, is defined to be the fundamental groupoid of |C|.
This is equivalent to formally inverting all the morphisms in C. The important result
proved in [33], which we refer to as the general Seifert-van Kampen-Brown Theorem
is as follows:

Theorem 2.3.13. Let D : P → Top be a diagram of spaces and let π̃1D denote the
corresponding diagram of fundamental groupoids. Then there is a natural equivalence
of groupoids

π̃1(hocolim D)
∼=→ hocolim π̃1D

If the homotopy colimit is a connected space, this gives an isomorphism of groups.

Proof. See Theorem 1.1 in [33]

The only undefined notion in the above theorem is that of homotopy colimit of
a diagram of groupoids. We define this homotopy colimit using the Grothendieck
construction and Thomason’s theorem [27, 5.15]

Let F : I → Cat be a functor from a small category I to the category of small
categories. The Grothendieck construction on F , denoted by Gr(F ), is the category
whose objects are the pairs (i, x) where i is an object of I and x is an object of
F (i). An arrow (i, x)→ (j, y) in Gr(F ) is a pair (f, g) where f ∈ Hom(i, j) in I and
g ∈ Hom((F (f))(x), y) in F (j). Arrows compose according to the rule (f, g)·(f ′, g′) =
(f ′′, g′′), where f ′′ is the composite f · f ′ and g′′ is the composite of g with the image
of g′ under the functor F (f).

Definition 2.3.14. Let G : I → Gpd be a diagram of groupoids. The homotopy
colimit of G is defined as follows

hocolim G := π̃1Gr(G)

We will illustrate the Theorem 2.3.13 with the following example.

Example 2.3.15. As before let F denote the face poset of a connected, regular
CW complex Y . Consider the constant diagram D : F → Top which sends every
object in F to a point and every morphism to the identity map. Then clearly the
homotopy colimit of D has the homotopy type of Y and π̃1(hocolim D) ∼= π̃1(Y, ∗)
as isomorphism of groupoids. Now the corresponding diagram of groupoids π̃1D is
a diagram of trivial groupoids with the identity morphism. Hence the Grothendieck
construction is equivalent to F and π̃1Gr(π̃1D) ∼= π̃1(Y, ∗), but this is same as π1(Y, ∗)
since Y is connected.



Chapter 3

Arrangements of Submanifolds

This chapter contains most of the important results in the thesis. Here, we introduce
a generalization of real hyperplane arrangements which we call as the arrangements
of submanifolds of codimension 1. We consider situations in which finitely many
submanifolds of a given manifold intersect in a way that the local information is
same as that of a hyperplane arrangement but the global picture is quite different.
Intuitively speaking it means that for every point on that manifold there exists a
coordinate neighborhood homeomorphic to an arrangement of real hyperplanes. We
also introduce an analogue of the complexified complement in this new setting and
call it the tangent bundle complement. All the results proved in this chapter attempt
to answer the following question: how does the combinatorics of the intersections of
these submanifolds help determine the topology of the tangent bundle complement?

The chapter is organized as follows. In Section 3.1, we define the new object of
study, the arrangement of submanifolds and present some examples. After these def-
initions and examples we introduce the tangent bundle complement in Section 3.2
and then prove that it has the homotopy type of a finite dimensional simplicial com-
plex. We show that this simplicial complex is determined by the combinatorics of
the incidence relations obtained by submanifold intersections. The proof is similar to
that of Paris [68], where he reproves the theorem of Salvetti. In Section 3.3 we con-
struct a regular CW complex which also has the homotopy type of this complement.
This particular cell structure helps us better understand the relationships between
the combinatorics and the topology in the context of submanifold arrangements. In
Section 3.3.1 we show that this CW complex has a special combinatorial structure
which is very similar to that of zonotopes. We use the theory of metrical-hemisphere
complexes (first introduced in [74]) to explain this combinatorial structure. Then, we
describe and characterize the connected covering spaces of the tangent bundle com-
plement in 3.4. In Section 3.5 we describe how the relations in the fundamental group
of the complement depend on the face poset of the arrangement. In Section 3.6 we
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study the higher homotopy groups of the complement. We also isolate and restate
some of Deligne’s original arguments in this new setting in order to achieve a mild
generalization of his results. Finally, in Section 3.7 we use homotopy theoretic tools
introduced in the last chapter to obtain a spectral sequence converging to cohomology
of the tangent bundle complement.

This particular generalization of hyperplane arrangements and the complexified
complement is due to Tduesz Januskeweisz and Richard Scott. Their work is not
published but Richard Scott delivered a lecture in October 2004 at M.S.R.I. about
their work and a video recording of his talk is available at [78].

3.1 Definitions

In this section we propose a generalization of arrangements of hyperplanes. In order
to do this we isolate the following characteristics of a hyperplane arrangement:

1. there are finitely many codimension 1 subspaces (with nonempty intersections)
separating the ambient space,

2. there is a stratification of the ambient vector space into contractible pieces,

3. (the geoemetric realization of) the face poset (of this stratification) has the
homotopy type of the ambient space.

Any reasonable generalization of hyperplane arrangements should have these proper-
ties. Since smooth manifolds are locally Euclidean they are obvious candidates for
the ambient space. In this setting we can study arrangements of codimension 1 sub-
manifolds that satisfy certain nice conditions, for example, locally, we would like our
submanifolds to behave like hyperplanes.

Let us make this setting precise. An l-dimensional (topological) manifold is a sep-
arable metric space in which each point has a neighborhood (coordinate neighborhood)
homeomorphic to Rl. An embedding of a topological space X into a topological space
Y is a homeomorphism f : X → Y of X onto a subset of Y . Two such embeddings f, g
are said to be equivalent if there is a self homeomorphism h of Y such that hf = g.
Our focus is on the codimension 1 smooth submanifolds that are embedded as a closed
subset of a finite dimensional smooth manifold. These types of submanifolds behave
much like hyperplanes. The following are some of their well known properties.

Lemma 3.1.1. If X is a connected l-manifold and N is a connected (l− 1)-manifold
embedded in X as a closed subset, then X \ N has either 1 or 2 components. If in
addition H1(X,Z2) = 0 then X \N has two components.
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Proof. Consider the following exact sequence of pairs in mod 2 homology:

H1(X,Z2)→ H1(X,X \N,Z2)→ H̃0(X \N,Z2)→ H̃0(M,Z2) = 0

The first statement follows from the duality H1(X,X \ N,Z2) ∼= H l−1
c (S,Z2) = Z2.

For the second statement H1(X,Z2) = 0 implies that H̃0(X \N,Z2) = Z2.

Definition 3.1.2. A connected codimension 1 submanifold N in X is two sided if N
has a neighborhood UN such that UN \N has two connected components; otherwise
N is said to be one sided. Generally a disconnected codimension 1 submanifold is two
sided if each of its connected component. Moreover a submanifold separates X if its
complement has 2 components.

Note that being two sided is in some sense a local condition. For example, a point
in S1 does not separate S1, however, it is two sided. The following corollary follows
from the definitions.

Corollary 3.1.3. Every codimension 1 submanifold N is locally two sided in X; that
is, each x ∈ N has arbitrarily small connected neighborhoods Ux such that Ux\(Ux∩N)
has two components.

The following results give an homological criterion for a closed embedded manifold
to be two sided.

Lemma 3.1.4. Let X be a connected l-manifold and let N be a connected, (l − 1)-
submanifold embedded in X as a closed subset. Then N separates X if and only if the
inclusion induced homomorphism Hn−1

c (X,Z2) → Hn−1
c (N,Z2) (on the cohomology

with compact supports) is trivial.

Proof. Again the proof is a simple diagram chase:

Hn−1
c (X,Z2) −−−→ Hn−1

c (N,Z2) ∼= Z2

∼=
y

y∼=
H1(X,Z2) −−−→ H1(X,X \N,Z2) −−−→ H̃0(X \N,Z2) −−−→ 0.

Corollary 3.1.5. If X is a l-manifold and N is a (l− 1) manifold embedded in X as
a closed subset, where H1(N,Z2) ∼= 0 then N is two sided.

From now on we assume that a submanifold is always embedded as a closed subset.
An n-manifold N contained in the interior of an l-manifold X is locally flat at x ∈ N◦,
if there exists a neighborhood Ux of x in X such that (Ux, Ux ∩ N) ∼= (Rl,Rn). An
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embedding f : N → X such that f(N◦) ⊂ X◦ is said to be locally flat at a point
x ∈ N if f(N) is locally flat at f(x). Embeddings and submanifolds are locally flat if
they are locally flat at every point.

It is necessary to consider this class of submanifolds otherwise there exist patho-
logical cases. For example, the Alexander horned sphere, it is an (non flat) embedding
of S2 inside S3 such that the connected components of its complement are not even
simply connected (see [72, Page 65]). Rushing’s book [72] is an excellent refernce for
more examples on so called wild (non flat) embeddings and other important results
in the field of topological emebeddings. Finally we add a technical condition so that
these locally flat manifold intersect like hyperplanes.

Definition 3.1.6. Let X be a manifold of dimension l and let {N1, . . . , Nk}, (k ≥ 2)
be codimension 1, locally flat submanifolds of X. We say that these submanifolds
intersect like hyperplanes if and only if for every nonempty Y ⊆ X which can be
written as Y = ∩ji=1Ni, (j ≤ l) and for every x ∈ Y there exists an open neighborhood
Vx of x and a coordinate chart φx : Vx → Rl such that for each Ni containing x, the
image φx(Ni ∩ Vx) is a hyperplane passing through the origin.

The desired generalization of hyperplane arrangements is the following:

Definition 3.1.7. Let X be a connected, smooth, real manifold of dimension l. An
arrangement of submanifolds is a finite collection A = {N1, . . . , Nk} of codimen-
sion 1 locally flat smooth submanifolds in X such that

1. The Ni’s intersect like hyperplanes.

2. X \Ni has exactly two connected components for every i.

3. The intersections of Ni’s define a regular CW decomposition of X.

(the submanifolds in an arrangement are allowed to have more than one connected
component.)

Note that in the above definition we can use topological manifolds instead of
smooth manifolds. The reason we have restricted our attention to smooth manifolds
is because later we want to deal with the tangent bundle.

Before we convince the reader that this is the right setting, let us first look at
how we can associate combinatorial data to such an arrangement and a few examples.
Just like in the case of hyperplane arrangements, the intersection sets determined by
these submanifolds have a combinatorial structure.

Definition 3.1.8. The intersection poset denoted by L(A) is the set of connected
components of all possible intersections of Ni’s ordered by reverse inclusion, by con-
vention X ∈ L(A) as the smallest element. The rank of each element in L(A) is
defined to be the codimension of the corresponding intersection.
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However note that (similar to the case of affine hyperplane arrangements) in gen-
eral this poset need not be a geometric lattice. Also, using connected components of
intersections is not a new idea, see for example [93] and more recently [30,58] (in case
of toric arrangements). Now we move on to another poset associated with such an
arrangement.

Definition 3.1.9. Face poset F(A) : The intersections of these Ni’s in A define a
stratification of X as follows

F0(A) := X \ ∪ki=1Ni

F1(A) := ∪ki=1(Ni − ∪j 6=i(Ni ∩Nj))
...

Fk(A) = ∩ki=1Ni

X = F0(A) ∪ F1(A) ∪ · · · ∪ Fk(A)

The connected components in each stratum are called faces. Top dimensional faces
are called chambers and the set of all chambers is denoted by C(A). The collection of
all the faces F(A) = ∪Fi(A) is the face poset with the ordering F ≤ G⇔ F ⊆ G. It
is a graded poset and the rank of each face is its dimension.

Note that if there is no confusion about the arrangement, we will omit A and
denote the two posets by F and L. Let us look at some examples other than hyperplane
arrangements.

Example 3.1.10. Let X be the circle S1, a smooth one dimensional manifold, the
codimension 1 submanifolds are points in S1. Consider the arrangement A = {p, q} of
2 points. For both these points there is an open neighborhood which is homeomorphic
to an arrangement of a point in R. Figure 3.1 shows this arrangement and the Hasse
diagrams of the face poset and the intersection poset.

Example 3.1.11. As a 2-dimensional example consider an arrangement of 2 great
circles N1, N2 in S2. Figure 3.2 shows this arrangement and the related posets. The
face poset has two 0-cells, four 1-cells and four 2-cells. Also note that the order
complex of the face poset has the homotopy type of S2.

Example 3.1.12. Figure 3.3 shows an arrangement of 4 circles (i.e. 1-dimensional
tori) in a 2-torus and its combinatorial data. In this arrangement there are only 2
submanifolds each with exactly 2 connected components. These submanifolds cor-
respond to kernels of the characters r2 = 1 and s2 = 1, where r, s are parameters
describing S1 × S1. The atoms in the intersection poset correspond to the 4 con-
nected components of the submanifolds and the coatoms correspond to the 4 points.
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Figure 3.1: Arrangement of 2 points in a circle.
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Figure 3.2: Arrangement of 2 circles in a sphere.

Recall that the face poset of a hyperplane arrangement (to be precise, its geo-
metric realization) has the homotopy type of the ambient Euclidean space. From the
definition of the face poset it is clear that an arrangement of submanifolds stratifies
the manifold into open and contractible subsets. Theorem 1.1.9 implies that the face
poset of an arrangement has the homotopy type of the ambient manifold. We sum up
all the above arguments in Lemma 3.1.14 to show that arrangements of submanifolds
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Figure 3.3: Arrangement of 4 circles in a torus.

are locally arrangements of hyperplanes. But before that a few notations.

Definition 3.1.13. Let A be an arrangement of submanifolds, let Acc denote the set
of all connected components of members of A. For a point x ∈ X define the local
arrangement at x as follows

Ax := {N ∈ Acc | x ∈ N}

Similarly for a face F
AF := {N ∈ Acc | F ⊂ N}

The restriction of a local arrangement to an open set V ⊆ X is

AF |V := {N ∩ V |N ∈ AF}

Lemma 3.1.14. Let F be a face of an arrangement A (that is F ∈ F(A)). Then
there exists an open set VF ( X containing F and a map φ : VF → Rl such that

1. VF ∩N = ∅ for every N /∈ AF .

2. φ is a homeomorphism.

3. φ maps AF |VF to a central arrangement of hyperplanes in Rl.

Proof. If C is a chamber then take VC = C and φ to be a coordinate chart which maps
VC to the empty arrangement. Each submanifold N has an open neighborhood in X
which is homeomorphic to N × (−1, 1) (this is Brown’s bicollared theorem) see [72,
Theorem 1.7.5]. We call such an open neighborhood the bicollar of the submanifold.
Note that every other face F is homeomorphic to an open cell of some dimension and is
an intersection of finitely many codimension 1 submanifolds. Hence one can consider
the open set VF to be the intersection of all the bicollars containing F . Moreover this
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VF can be adjusted such that it intersects with only those faces which either contain
F or whose closure is contained in F .

Since X is a smooth manifold, there exists a homeomorphism φ : VF → Rl, say
a coordinate chart. If necessary φ can be composed with a homeomorphism of Rl
so that for each connected component N containing F , the set N ∩ VF is mapped
to a hyperplane in Rl. As φ is a homeomorphism it does not change the incidence
relations between the faces, thus preserving the combinatorial structure of the local
arrangement AF . The arrangement φ(AF |VF ) is central because of (1).

Thus every point x ∈ X has an open neighborhood Vx in X which is homeomorphic
to a central arrangement of hyperplanes with x at its origin. The hyperplanes in that
arrangement correspond to N ∩ Vx for every N ∈ Ax. Intuitively one can think of X
as a (stratified) manifold obtained by gluing central hyperplane arrangements.

3.2 The Tangent Bundle Complement

The aim of this section is to associate a connected topological space to submanifold ar-
rangements that generalizes the construction of complexified hyperplane complement.
Recall that given a hyperplane arrangement in Rl the complexified complement is
the space obtained by removing the union of complexified hyperplanes from Cl. If we
forget the complex structure then as a topological space, Cl (complexification of Rl) is
homeomorphic to R2l which also happens to be the tangent bundle of Rl. Each hyper-
plane H of Rl is homeomorphic to Rl−1 and its complexification HC is homeomorphic
to Cl−1, which, as before, is the tangent bundle of Rl−1. Hence the complexified com-
plement is also a complement inside the tangent bundle. This observation suggests a
different way of expressing the complexified complement (Definition (1.2.6)).

M(A) = TRl \
⋃

TRl−1

We use the above idea to define a generalization of the complexified complement
in case of submanifold arrangements.

Definition 3.2.1. Let X be a l-dimensional manifold and A = {N1, . . . , Nk} be
an arrangement of submanifolds. Let TX denote the tangent bundle of X and let
TA :=

⋃k
i=1 TNi. The tangent bundle complement of the arrangement A is

defined as
M(A) := TX \ TA

Note that M(A) is connected as it is of codimension 2 in TX. This idea of gener-
alizing hyperplane arrangements was explained to us by Prof. Tadeusz Januszkiewicz
during a conference at Ohio State University in May 2008. He and Prof. Richard
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Scott have some unpublished work on this subject (to watch the video recording of
Richard Scott’s talk regarding this, visit [78]).

The above definition clearly generalizes the usual notion of a complexified com-
plement. For a point x ∈ X, let Tx(A) denote

⋃
Tx(N) for all N ∈ Ax and define the

tangent space complement at x as

M(Ax) := Tx(X) \ Tx(A).

Then M(A) can be rewritten as follows

M(A) = {(x, v) | x ∈ X, v ∈M(Ax)}.

We start the study of M(A) by first understanding the tangent space complement
M(Ax).

Lemma 3.2.2. Let F ∈ F(A) for a submanifold arrangement A in X and φ : VF → Rl
be a coordinate chart for an open neighborhood VF of F . Then for every x ∈ VF ,
M(Ax) ∼= φ(VF \ (Ax|VF )).

Proof. Observe that since φ is a homeomorphism, the linear map (dφ)x : Tx(X) →
φ(VF ) (∼= Rl) is an isomorphism and for the same reasons Tx(N) ∼= φ(N ∩ VF ) (∼=
Rl−1) for every N ∈ Ax. The map Φ: M(Ax) → φ(VF \ (Ax|VF )) defined by sending
(x, v) 7→ (dφ)x((x, v)) is a homeomorphism because it is a restriction of (dφ)x. It is
also independent of the choice of coordinate charts.

Remark 3.2.3. Since φ(Ax|VF ) is an arrangement of hyperplanes in φ(VF ) (Lemma
3.1.14), Tx(A) is an arrangement of hyperplanes in Tx(X). Moreover, the two ar-
rangements have isomorphic face posets as well as intersection lattices.

As a consequence of the above lemma the connected components of the tangent
space complement M(Ax) can be indexed by the chambers of Ax|VF . Let F be a face
and C be a chamber of A such that F ⊆ C and for every x ∈ F define

CF (x) := {(x, v) ∈M(A) | Φ((x, v)) ∈ φ(C ∩ VF )} (3.2.1)

Figure 3.4 is a 2-dimensional example that intuitively illustrates Lemma 3.2.2,
showing the two homeomorphisms and a component CF (x) of the tangent space com-
plement.

Before stating the main theorem of this section let us mention one more definition.
A submanifold N of A separates two chambers C and D if and only if they are
contained in the distinct connected components of X \N . For two chambers C,D the
set of all the submanifolds that separate these two chambers is denoted by R(C,D).
The following lemma is now evident:
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Figure 3.4: The tangent space complement

Lemma 3.2.4. Let X be a l-manifold and A be an arrangement of submanifolds, let
C1, C2, C3 be three chambers of this arrangement. Then,

R(C1, C3) = [R(C1, C2) \R(C2, C3)]
⋃

[R(C2, C3) \R(C2, C1)]

Proof. Let N ∈ R(C1, C3) and let N+, N− denote the two connected components of
X \ N such that C1 ⊂ N+ and C3 ⊂ N−. The chamber C2 is either contained in
N+, in which case N ∈ R(C2, C3) \ R(C2, C1) or it is contained in N− in which case
N ∈ R(C1, C2)\R(C2, C3). The other direction follows from the definition of R(C,D).
See also [22, Lemma 1.2].

The distance between two chambers is defined as the cardinality of R(C,D) and
denoted by d(C,D). Given a face F and a chamber C of a submanifold arrangement
A, define the action of F on C as follows:

Definition 3.2.5. A face F acts on a chamber C to produce another chamber F ◦C
satisfying:
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1. F ⊂ F ◦ C

2. d(C,F ◦ C) = min {d(C,C ′) | C ′ ∈ C(A), F ⊂ C ′}.

Lemma 3.2.6. With the same notation as above, the chamber F ◦ C always exists
and is unique.

Proof. First, note that F ◦C = F if F itself is a chamber. Assume that the codimen-
sion of F is greater than or equal to 1. Hence, F is given by the intersection of some
submanifolds say, A′ = {N1, . . . , Nr}. The collection A′ need not be an arrangement
of submanifolds. However, A′ defines a stratification of the manifold and we will refer
to the codimension 0 components of this stratification as chambers. There exists a
unique chamber C ′ of A′ which contains C. Then define F ◦ C to be the unique
chamber of A that is contained in C ′ and whose closure contains F .

An easy consequence of the definition is that for two faces F, F ′

F ′ ≥ F implies F ′ ◦ (F ◦ C) = F ′ ◦ C.

Also, if F ≤ C then F ◦ C = C.
Now we state the main theorem of this section.

Theorem 3.2.7. Let A be an arrangement of submanifolds in an l-manifold X with
F as its poset and M(A) as the associated tangent bundle complement. Then there
exists a finite open cover of M(A) such that each open set is indexed by a face F and a
chamber C whose closure contains F . Moreover, each of these open sets is contractible
and their intersections are contractible.

Proof. First, for every face F fix an open open set VF that completely contains F and
has non-empty intersections with only those faces whose closures contain F (this is
possible because of Lemma 3.1.14) . For example, if C is a chamber then VC = C.
Observe that {VF | F ∈ F} is an open cover of X and the tangent bundle TX can
be trivialized on each of these open sets. Let h : VF ×Rl → π−1(VF ) denote the local
trivialization, where π : TX → X is the projection map.

In order to construct the required open cover, arbitrarily choose a face F and fix
it for rest of the proof (to avoid trivialities assume that F is not a chamber). Let C
be a chamber whose closure contains F .

For every point x ∈ VF the map hx := h(x,−) : Rl → π−1(x) is a linear isomor-
phism. Let y be an arbitrarily chosen point in F and CF (y) be the connected compo-
nent of M(Ay) corresponding to φ(C ∩VF ). Denote the open subset h−1

y (CF (y)) ⊆ Rl
by CF and define

W (F,C) := h(VF × CF ) ( π−1(VF ).
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For the sake of notational simplicity we will identify VF ×CF with its image. Clearly
W (F,C) is an open and contractible subset of M(A). For a chamber C we have
W (C,C) = C × Rl.

Now we show that these open sets cover M(A). Let (x, v) ∈M(A) be an arbitrary
point. Suppose that x ∈ F for some face F . As v ∈ M(Ax), so φ−1(Φ(v)) ∈ C ∩ VF ,
where C is some chamber whose closure contains F . Therefore (x, v) ∈ W (F,C). The
intersection of any two such open sets is given by

W (F,C) ∩W (F ′, C ′) = (VF ∩ VF ′)× (CF ∩ C ′F ′)

which is clearly contractible.

Example 3.2.8. Consider an arrangement A = {0} in R, it divides the real line in
two chambers A = (−∞, 0) and B = (0,∞). The tangent bundle complement of this
arrangement is the punctured plane, since {0} is the only point whose tangent space
is disconnected.

For p = 0 we take Vp = (−1, 1) and for the chambers we take VA = A and VB = B
as the coordinate neighborhoods. With this the open cover of M(A) is given by
setting:

1. W (p,A) = {(x, v) | x ∈ Vp, v < 0},

2. W (p,B) = {(x, v) | x ∈ Vp, v > 0},

3. W (A,A) = {(x, v) | x ∈ A, v ∈ R},

4. W (B,B) = {(x, v) | x ∈ B, v ∈ R}.

Figure 3.5 shows the open cover defined above of the tangent bundle complement.

Now going back to Theorem 3.2.7 we see that the above defined open covering
{W (F,C) | F ≤ C} of M(A) satisfies the hypothesis of the Theorem 1.1.6 (the Nerve
Lemma), hence the nerve of that open covering has the homotopy type of M(A). In
order to identify the simplices of this nerve we need to understand how the open sets
intersect.

Lemma 3.2.9. W (F,C)∩W (F ′, C ′) 6= ∅ if and only if F ≤ F ′ and either C ′ = C or
F ′ ◦ C = C ′.

Proof. By construction of these open sets we have,

W (F,C) ∩W (F ′, C ′) = (VF ∩ VF ′)× (CF ∩ C ′F ′)
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pA B

W (p,B)

W (p,A)

W(A,A)

W(B,B)

−1 1

Figure 3.5: Example of an open cover of the tangent bundle complement

Clearly VF ∩ VF ′ 6= ∅ if and only if F ≤ F ′. We also need the other intersection to be
nonempty,

CF ∩ C ′F ′ 6= ∅ ⇐⇒ (C ∩ VF ) ∩ (C ′ ∩ VF ′) 6= ∅ due to (3.2.1)

⇐⇒ (VF ∩ VF ′) ∩ (C ∩ C ′) 6= ∅
⇐⇒ C ∩ C ′ 6= ∅
⇐⇒ C ′ = F ′ ◦ C or C ′ = C

Which proves the theorem.

Let S denote an abstract set in bijection with the open sets in the above open
covering. We denote by (F,C) the element of S corresponding to W (F,C).

Lemma 3.2.10. The relation (F2, C2) ≤s (F1, C1) if and only if F1 ≤ F2 and F2◦C1 =
C2. defines a partial order on S.

Proof. The arguments are similar to the proof of [68, Lemma 3.1]. It is obvious that
the relation is reflexive and symmetric, let us check the transitivity. Pick 3 elements
such that (F3, C3) ≤s (F2, C2) and (F2, C2) ≤s (F1, C1).

The first inequality implies that F2 ≤ F3 and F3 ◦ C2 = C3. Similarly from the
second inequality we have, F1 ≤ F2 and F2 ◦ C1 = C2. Since F is a poset, F3 ≤ F1

and C3 = F3 ◦ (F2 ◦ C1) = F3 ◦ C1 which concludes the transitivity.
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With this partial order we can now characterize the chains in the nerve.

Lemma 3.2.11. Let A be an arrangement of submanifolds, then for a chain in S

there corresponds a chamber and a chain in F(A).

Proof. Let F0 ≤ · · · ≤ Fk be a chain in F and let C be a chamber. Then the Lemma
3.2.10 implies that (Fk, Fk ◦C) ≤s · · · ≤s (F0, F0 ◦C) is a chain in S. Moreover, using
the same lemma it can be shown that every chain in S is of this form.

Now we have proved that S is a partially ordered set and it follows that the
geometric realization of (S,≤s) and the nerve described by the open sets W (F,C) are
homeomorphic. A k-simplex in this nerve is a k-chain in (S,≤s). Let F0 ≤ · · · ≤ Fk
be a chain in F(A) and let C be a chamber (such that Fk ≤ C) then both of them
determine a simplex in the nerve given by

(Fk, C) ≤s · · · ≤s (F0, C)

In fact every simplex of the nerve is of this form. We summarize all this discussion in
the following definition.

Definition 3.2.12 (The Salvetti Complex). Let X be a smooth l-manifold and A

be an arrangement of codimension 1 submanifolds. Define the Salvetti poset as

S = {(F,C) ∈ F(A)× C(A) | F ≤ C}

and the partial order as

(F,C) ≤s (F ′, C ′) if and only if F ≤ F ′ and F ′ ◦ C = C ′

The Salvetti complex Sal(A) is defined as the geometric realization of (S,≤s) and it
has the homotopy type of the tangent bundle complement M(A).

Example 3.2.13. Let A be arrangement of 2 points in a circle. The complement
M(A) in this case is TS1 \ {p, q} (tangent bundle of a point is the point itself). As
TS1 ∼= S1 × R, the space M(A) is an infinite cylinder with 2 punctures. Hence
M(A) ' S1 ∨ S1 ∨ S1. Now we construct the Salvetti complex for this arrangement.

The following theorem states the connection between the manifold X and the
associated tangent bundle complement.

Theorem 3.2.14. Let X be a smooth manifold and A be an arrangement of subman-
ifolds, let M(A) denote the associated tangent bundle complement. Then the manifold
X is a retract of M(A).
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(p,A) (p,B) (q, A) (q, B)

(A,A)

(B,B)

Figure 3.6: Salvetti complex

Proof. Let r : S → F(A) be the map defined by (F,C) 7→ F . This map is order
reversing and induces a simplicial map on the geometric realizations which we will
again denote by r. For a chamber C define a new map ιC : F(A) ↪→ S by sending F
to (F, F ◦ C). This map is injective and order reversing, consequently it induces a
continuous injective map on the geometric realizations.

Let X(C) ⊂ Sal(A) denote the image of ιC , then X(C) ∼= X and in fact

Sal(A) =
⋃

C∈C(A)

X(C).

The composition r ◦ ιC is the identity on |F(A)| which establishes the claim.

Intuitively speaking, a submanifold arrangement is made by gluing central hyper-
plane arrangements in a compatible way. It is natural to ask whether the associated
tangent bundle complement is also made up of gluing together the Salvetti complexes
of these hyperplane arrangements. This is in fact true as we now prove. We show
that the complement M(A) is a homotopy colimit of a diagram of spaces over the
face poset. We make use of the fact that there is a combinatorial description of the
complement.

Proposition 3.2.15. Let X be a l-manifold and let A be an arrangement of codimen-
sion 1 submanifolds with F(A) as its face poset. If F ′ ≥ F are two faces then there is
an inclusion Sal(AF ′) ↪→ Sal(AF ) as simplicial complexes.

Proof. It suffices to prove that the Salvetti poset of AF ′ |VF ′ embeds into the Salvetti
poset of AF |VF . This follows if the face poset of AF ′ |VF ′ includes into the face poset
of AF |VF . But this is clear since F(A)≥F ′ ↪→ F(A)≥F .
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Theorem 3.2.16. Consider the diagram of spaces D : F(A) → Top, given by set-
ting D(F ) = Sal(AF ). The morphisms D(F ′ → F ) are the inclusions Sal(AF ′) ↪→
Sal(AF ). Then hocolimD ' Sal(A).

Proof. First observe that this is indeed a diagram of posets. Hence we need to show
that the poset map φ : PlimD → S defined by (F, (F ′, C)) 7→ (F ′, C) induces a
homotopy equivalence ∆(PlimD) ' Sal(A). The claim follows by the application of
Quillen’s Theorem A.

3.3 Combinatorics of the Cell Structure

In this section we construct a CW complex that has the homotopy type of the tangent
bundle complement. Inspired by the work of Deligne [22] on simplicial arrangements,
Salvetti, in his seminal paper [73], proved that the face poset of a real hyperplane
arrangement defines a CW complex embedded inside the complexified complement
and that the complex is a strong deformation retract of the complement. We now
show that the same construction also works for tangent bundle complements.

Let A be an arrangement of submanifolds in a l-manifold X and let F(A) denote
the associated face poset. By (X,F(A)) we will mean the regular cell structure of X
induced by the arrangement. Recall that F∗(A) denotes the dual face poset, we denote
by pair (X,F∗(A)) the dual cell structure. Every k-cell in (X,F(A)) corresponds to
(l − k)-cell in (X,F∗(A)) for 0 ≤ k ≤ l.

For the sake of notational simplicity, we will denote the dual, regular cell complex
induced by the given submanifold arrangement A by X∗(A) (X∗ if the context is
clear). The symbols C,D will denote vertices of X∗ and the symbol F k will denote
a k-cell dual to the codimension k-face of A. Note that a 0-cell C is a vertex of a
k-cell F k in X∗ if and only if the closure C of the corresponding chamber contains the
corresponding (l − k)-face. The action of the faces on chambers that was introduced
in Definition 3.2.5 is also valid for the dual cells. The symbol F k ◦ C will denote the
vertex of F k which is dual to the unique chamber ‘closest’ to the chamber C. The
partial order on the cells of X∗ will be denoted by ≺.

Recall that the dual cell complex of a central hyperplane arrangement has a ‘spe-
cial’ shape called as the zonotope (see [95, Lecture 7]). The dual cell structure of a
submanifold arrangement also has a special combinatorial structure which we describe
in the next section. Now given X∗(A) construct a CW complex S(A) of dimension l
as follows:

The 0-cells of S(A) correspond to 0-cells of X∗, which we denote by the pairs
〈C;C〉. For each 1-cell F 1 ∈ X∗ with vertices C1, C2, assign two homeomorphic
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copies of F 1 denoted by 〈F 1;C1〉 , 〈F 1;C2〉. Attach these two 1-cells in S(A)0 so that

∂
〈
F 1;Ci

〉
= {〈C1;C1〉 , 〈C2;C2〉}.

Orient the 1-cell 〈F 1;Ci〉 so that it begins at 〈Ci;Ci〉, to obtain an oriented 1-skeleton
S(A)1.

By induction assume that we have constructed the (k−1)-skeleton of S(A), 1 ≤ k−
1 < l. To each k-cell F k ∈ X∗ and to each of its vertex C assign a k-cell

〈
F k;C

〉
that is

isomorphic to F k. Let φ(F k, C) :
〈
F k;C

〉
→ S(A)k−1 be the same characteristic map

that identifies a (k−1)-cell F k−1 ⊂ ∂F k with the k-cell
〈
F k−1;F k−1 ◦ C

〉
⊂ ∂

〈
F k;C

〉
.

Extend the map φ(F k, C) to whole of
〈
F k;C

〉
and use it as the attaching map, hence

obtaining the k-skeleton. The boundary of every k-cell in given by

∂
〈
F k;C

〉
=
⋃

F≺Fk
〈F ;F ◦ C〉 . (3.3.1)

Now we prove a theorem that justifies the construction of this cell complex.

Theorem 3.3.1. The CW complex S(A) constructed above has the homotopy type of
the tangent bundle complement M(A).

Proof. First, note that the above construction implies that S(A) is a regular cell
complex. Let S(A) denote the poset of cells of S(A) ordered by inclusion. Then
it is indeed isomorphic to the Salvetti poset as described in the Definition 3.2.12.
Consequently the barycentric subdivision of S(A) is isomorphic to the (simplicial)
Salvetti complex Sal(A), hence to every k-cell 〈F ;C〉 in S(A) there corresponds an
ideal S(A)≤s[F,C] (a triangulation of that k-cell). The claim now follows from the
application of the Theorem 1.1.9.

Remark 3.3.2. In order to simplify the notations and the arguments we will not dis-
tinguish between the simplicial and the CW versions of the Salvetti complex. We use
the notation [F,C] to denote either a cell or its barycenter and hope that the context
will make it clear. More importantly, henceforth we will assume that the Salvetti
complex is equipped with the above defined cell structure.

Remark 3.3.3. The original proof of Salvetti (that appeared in [73]) in the context of
hyperplane arrangements is more direct. His idea is to first identify an open covering
of the complexified complement (as we did in Theorem 3.2.7). Rather than consid-
ering the nerve of this covering abstractly he constructs a simplicial complex that is
embedded inside the complexified complement. In order to define a CW structure on
this simplicial complex, pairs of triangulated dual cells and chambers are used. The
final step is to show that there is a strong deformation retraction from the complement
on to the CW complex. A similar approach could be used in case of a tangent bundle
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complement. However, a proof involving this kind of approach is very technical since
the construction of the nerve as an embedded simplicial complex is very complicated.
Also, such a proof might not shed any new light and this is the reason we have taken
an approach to construct the regular CW complex abstractly and then show that its
barycentric subdivision is isomorphic to the nerve of the tangent bundle complement.

Example 3.3.4. As an example of this construction consider the arrangement of 2
points in a circle (Example 3.1.10). The Figure 3.7 below illustrates the dual cell
structure induced by the arrangement and the associated Salvetti complex.

p q

A

B

[A,A]

[B,B]

[p,A] [p,B]

[q, B] [q, A]

A = {p, q}

(S1)∗

M(A) ' S1 ∨ S1 ∨ S1

Figure 3.7: Arrangement in S1 and the associated Salvetti complex

Example 3.3.5. Now we turn to the Salvetti complex associated with the arrange-
ment of 2 circles in S2 (Example 3.1.11). Note that the dual cell structure induced
by the arrangement consists of two (square shaped) 2-cells with their 1-skeleton iden-
tified. According to above construction, there are 4 vertices in the Salvetti complex
that correspond to 4 chambers. The eight 1-cells correspond to edge-chamber pairs
in the arrangement. Figure 3.8 shows the oriented 1-skeleton of the Salvetti complex.

Finally, there are eight (square shaped) 2-cells corresponding to point-chamber
pairs. It is clear, for example, that the boundaries of the two 2-cells [p1, C1] and
[p2, C1] are attached to the central square above. Hence, these eight 2-cells form four
copies of 2-spheres such that their equators are identified as shown in the figure. Note
that since the attaching maps are homotopically trivial we can collapse the boundaries
of the four 2-cells {[p2, Ci] | 1 ≤ i ≤ 4} to a point. Thus we get a wedge of a torus
and four copies of 2-spheres.

We now look at some obvious properties of the above defined CW structure and
also infer some more information about the tangent bundle complement.

Theorem 3.3.6. Let A be an arrangement of submanifolds in a l-manifold X and let
Sal(A) denote the associated cell complex. Then
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[C1, C1][C2, C2]

[C3, C3] [C4, C4]

[a1, C1]

[a1, C4]

[a1, C4]

[a2, C2][a2, C2] [a2, C1]

[a3, C3]

[a3, C2]

[a4, C4]

[a3, C3]

[a4, C3][a4, C3]

Figure 3.8: Arrangement in S2 and the associated Salvetti complex

1. There is a natural cellular map ψ : Sal(A) → X(A)∗ given by [F k, C] 7→ F k.
The restriction of ψ to the 0-skeleton is a bijection and in general

ψ−1(F k) = {C ∈ C(A)|C ≺ F k}

2. For every chamber C there is a cellular map ιC : X∗(A)→ Sal(A) taking F k to
[F k, F k ◦ C] which is an embedding of X∗(A) into Sal(A), and

Sal(A) =
⋃

C∈C(A)

ιC(X∗).

3. The absolute value of the Euler characteristic of the complement is the number
of bounded chambers.

4. Let the link of A (denoted by
⋃
A) be the union of submanifolds in A then
⋃

A '
∨

r

Sl−1

where r = |χ(M(A))|. When r = 0, the link is contractible.
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Proof. Claims (1) and (2) follow from the construction and the Theorem 3.2.14.
We prove (3) by explicitly counting cells in the Salvetti complex. The Euler

characteristic of a CW complex K is equal to the alternating sum of number of cells
of each dimension. Given a k-dimensional dual cell F k there are as many as |{C ∈
C(A)|F ≤ C}| k-dimensional cells in Sal(A). Hence for a vertex [C,C] ∈ Sal(A)
the number of k-dimensional cells that have this particular 0-cell as a vertex is equal
to the number of k-faces of F(A)∗ that contain C. The alternating sum of number
of cells that contain a particular vertex C of F∗(A) is equal to 1 − χ(Lk(C)), where
Lk(C) is the link of C in X∗(A). Applying this we get,

χ(Sal(A)) =
∑

C∈C(A)

(1− χ(Lk(C)))

If a chamber is unbounded then Lk(C) ' Bl and on the other hand if it is bounded
then Lk(C) ' Sl−1. Hence we have,

χ(Sal(A)) =
∑

C∈C(A)

(1− χ(Lk(C)))

=
∑

C unbounded

(1− 1) +
∑

C bounded

(1− [1 + (−1)l−1])

= (−1)l
∑

C bounded

1

Hence,
χ(M(A)) = (−1)l(number of bounded chambers).

Proof of (4) is now clear.

3.3.1 Metrical-hemisphere complexes

We now take a closer look at the above defined CW structure on Salvetti complexes in
order study its combinatorial properties. Our aim is to understand how the combina-
torial properties of the Salvetti complex associated to an arrangement of hyperplanes
generalize in the context of submanifold arrangements. In particular, we show that
even in the general context the combinatorial properties of the CW structure are
similar to that of a zonotope. Recall that a central arrangement of hyperplanes de-
composes the ambient Euclidean space into open polyhedral cones. As a matter of
fact every hyperplane arrangement is a normal fan of a very special polytope known
as the zonotope. Zonotopes can be defined in various ways: for example, projections
of cubes, Minkowski sums of line segments, dual (polar) of hyperplane arrangements
etc. Being a zonotope is a strictly geometric property and not combinatorial. For



3. Arrangements of Submanifolds 52

example, in R2 a parallelogram is a zonotope whereas an arbitrary quadrilateral need
not be, even though they have isomorphic face posets. For more on the relationship
between zonotopes and hyperplane arrangements see [95, Lecture 7] and [6, Section
2.2].

Definition 3.3.7. A zonotope is a polytope all of whose faces are centrally symmetric
(equivalently every 2-face is centrally symmetric). A zonotopal cell is a (closed) k-cell
such that its face poset is isomorphic to the face poset of a k-zonotope for some k.

The face poset of a zonotope has some special combinatorial properties, the most
important of which is the product structure. This product is basically the one on
the face poset of a hyperplane arrangement or on the set of covectors of an oriented
matroid. We show that the dual cells of a submanifold arrangement and the cells of its
associated Salvetti complex enjoy similar combinatorial structure. In order to do this
we do not use the language of zonotopes (since they are exclusive to Euclidean settings)
but use the language of metrical-hemisphere complexes. These cell complexes possess
all the essential combinatorial properties of a zonotope (and also of zonotopal tilings).
The metrical-hemisphere complexes (MH-complexes for short) were first introduced
in [74] where Salvetti generalized his construction and proved an analogue of Deligne’s
theorem for oriented matroids.

Let Q denote a connected, regular, CW complex (and |Q| be the underlying space).
The 1-skeleton of such a complex Q is a graph G(Q) with no loops (abbreviated to
G if the context is clear). The vertex set of this graph will be denoted by V G and
the edge set by EG. An edge-path in G(Q) is a sequence α = (l1, . . . , ln) of edges
that correspond to a connected path in |Q|. The inverse of a path is again a path
α−1 = (ln, . . . , l1). Two paths are composed by concatenation if ending vertex of
one of the paths is the starting vertex of another. The distance d(v, v′) between two
vertices will be the least of the lengths of paths joining v to v′. Given an i-cell ei ∈ Q,
Q(ei) := {ej ∈ Q : |ej| ⊂ |ei|} and let V (ei) = V G ∩Q(ei).

Definition 3.3.8. A regular CW complex Q is a QMH-complex (quasi-metrical-
hemisphere complex) if and only if there exist two maps

ω, ω : V G×Q→ V G

such that for all v ∈ V G, ei ∈ Q following properties are satisfied.

1. ω(v, ei) ∈ V (ei) and d(v, ω(v, ei)) = minimum{d(v, u)|u ∈ V (ei)}.

2. ω(v, ei) ∈ V (ei) and d(v, ω(v, ei)) = maximum{d(v, u)|u ∈ V (ei)}.

3. d(v, ω(v, ei)) = d(v, u) + d(u, ω(v, ei)) for all u ∈ V (ei).
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This definition imposes a strong restriction on the 1-skeletons of such complexes
(see [74, Proposition 1]).

Lemma 3.3.9. If Q is a QMH-complex then each circuit in G has an even number
of edges.

Proof. Assume that Q is a QMH-complex and let α = (l1, . . . , ln) be a circuit such
that edge l1 starts at a vertex v which is also the ending vertex of the edge ln. If n
is odd then the two paths α1 = (l1, . . . , l(n−1)/2) and α2 = (ln, . . . , l(n+3)/2) join the
vertex v respectively to the vertices v1, v2 of the edge l(n+1)/2, also they are of the
same length (n − 1)/2. Without loss of generality let v1 = ω(v, l(n+1)/2). Then there
must exist another path β joining v to v1 whose length is strictly less than (n− 1)/2.
Then α = (α1β

−1)(βl(n+1)/2α
−1
2 ) is a decomposition of α in circuits of shortest length.

Hence, n cannot be odd.

The next corollary follows from the above lemma and the definition of a zonotope
(see [6, Proposition 2.2.14]).

Corollary 3.3.10. Let Q be a closed k-cell which also is a QMH-complex. Then Q
is a zonotopal cell.

For any ei ∈ Q, indicate by G(ei) ⊂ G(Q) the subgraph corresponding to the
1-skeleton of ei and by dG(ei) the distance computed using G(ei).

Definition 3.3.11. A regular CW complex will be called a LMH-complex (local-
metrical-hemisphere complex) if and only if each Q(ei) is a QMH-complex with respect
to dG(ei). Moreover, the following compatibility condition also holds: if ek ∈ Q(ei) ∩
Q(ej), v ∈ V (ei) ∩ V (ej) then

ω(ej)(v, e
k) = ω(ei)(v, e

k), ω(ej)(v, e
k) = ω(ei)(v, e

k).

Here, ω(ej), ω(ej) are defined similar to ω, ω but using dG(ej).
Finally, Q will be called a MH-complex if Q is both a QMH-complex and a LMH-

complex and for all ei ∈ Q, ej ∈ Q(ei), v ∈ V (ei)

ω(v, ej) = ω(ei)(v, e
j) ω(v, ej) = ω(ei)(v, e

j)

Remark 3.3.12. Note that the 1-skeleton of a MH-complex has very special properties
with respect to the distance. It is not enough to have a cell complex all of whose
cells are zonotopal. Here are three examples that illustrate the special nature of MH-
complexes. The first example describes a cell complex (Figure 3.9) which is made
up of three square shaped 2-cells and one hexagonal 2-cell. The boundaries of the
three square shaped cells are glued to form a hexagon. Finally the boundaries of
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v1

v2

v3

v4

v5

v6

v7

v1

v2

v3

v4

v5

v6

Figure 3.9: Zonotopal complex which is not QMH.

these hexagons is identified. One can see that even though each cell in this complex
is zonotopal the distance maps ω and ω are not well defined.

Next we consider a cell complex made up of two 1-cells attached to an octagonal
2-cell. There is a one more trapezoidal 2-cell whose three 1-cells (in the boundary)
are attached to three 1-cells in the boundary of the octagonal cell as shown below in
Figure 3.10. The resulting complex is QMH but not LMH. Consider the 1-cell labeled
by e in the figure. There are two vertices, namely v1, v2, in its boundary. Considering
e as a member of the trapizoidal cell we see that the vertex v1 is closest to the vertex
v4. On the other hand as a member of the octagonal 2-cell vertex v2 is closest to v4.

v1

v2

v3

v1

v2

v3

v4

v4

e

e

Figure 3.10: A QMH complex without LMH structure.

The final example shows a cell complex (Figure 3.11) obtained by removing the
trapezoidal 2-cell from the first example. The resulting cell complex is both QMH
and LMH but not a MH-complex. Consider the 1-cell labeled by e, there are two
boundary vertices v1, v2. Considering e as a member of the octagonal cell the vertex
v2 is closest to v3. But in the whole complex the boundary vertex of e closest to v3 is
v1.
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e

v3

v1

v2

Figure 3.11: A QMH and LMH-complex which is not a MH-complex

The following lemma establishes the combinatorial connection between zonotopes
(zonotopal tilings to be specific) and MH-complexes. It states that the distance be-
tween any two vertices is the same no matter how it is measured, either locally or
globally (see [74, Proposition 5]).

Lemma 3.3.13. Let Q be a MH-complex, ei ∈ Q, v, v′ ∈ V (ei). Then,

d(v, v′) = dG(ei)(v, v
′).

Proof. Let α = (l1, . . . , ln) be a minimal path ofG(ei) between v and v′ (so dG(ei)(v, v
′) =

n). Let vj−1, vj be the vertices of lj ordered according to the orientation of α from v
to v′. Since α is minimal in G(ei) and Q is a MH-complex we have,

ω(ei)(v, lj) = vj−1 = ω(v, lj)

Hence, dG(ei)(v, vj) = dG(ei)(v, vj−1) + 1 and d(v, vj) = d(v, vj−1) + 1 for j = 1, . . . , n
which proves the lemma.

We now state the theorem that generalizes the relationship between hyperplane
arrangements and zonotopes.

Theorem 3.3.14. Let X be a smooth manifold of dimension l, A denote an arrange-
ment of submanifolds. The (dual) cell complex X∗ = (X,F∗) is a MH-complex.

Proof. First, we need to define the two maps ω, ω and then show that they are well
defined. Let F i be an i-cell and C be a vertex of X∗ then,

ω(C,F i) := F i ◦ C.

Using the same strategy as in the proof of Lemma 3.2.6 we can identify a unique
chamber (of A) whose closure contains (dual of) F i and is farthest from C, denote
this chamber by F i ∗ C and

ω(C,F i) := F i ∗ C.
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This shows that the maps ω, ω are well defined. Second, note that a path between
two vertices C,C ′ has minimal length (among all paths from C to C ′) if and only if it
crosses the faces that separate C from C ′ exactly once and does not cross any other
face. The distance between any two vertices of X∗ is thus

d(C,C ′) := |R(C,C ′)|.

Observe that if F i = N1 ∩ · · · ∩ Nr then R(F i ◦ C,F i ∗ C) = {N1, . . . , Nr} and if
D ∈ V (F i) then

R(F i ◦C,D)
⋃
R(F i ∗C,D) = R(F i ◦C,F i ∗C) and R(F i ∗C,D)∩R(F i ◦C,D) = ∅

(by Lemma 3.2.4). Moreover,

R(C,D) = R(C,F i ◦ C)
⋃
R(F i ◦ C,D), R(C,F i ◦ C) ∩R(F ◦ C,D) = ∅

and

R(C,D) = R(C,F ∗ C)
⋃
R(F ∗ C,D), R(C,F ∗ C) ∩R(F ∗ C,D) = ∅.

Using the last equality we see that X∗ is a QMH-complex. The other compatibility
conditions also follow easily.

Similar combinatorial properties are enjoyed by the cell structure of a tangent bun-
dle complement that was described at the beginning of the previous section. In case
of hyperplane arrangements, each cell of the associated Salvetti complex is zonotopal
(see [7, Proposition 5.7]). We generalize this claim and also show that in general the
Salvetti complex is a MH-complex.

Theorem 3.3.15. Let A be an arrangement of submanifolds in a manifold X and
Sal(A) denote the associated Salvetti complex. Then Sal(A), with the CW structure
described above, is a MH-complex.

Proof. The 1-skeleton of Sal(A) is obtained by ‘doubling’ the edges in the 1-skeleton
of X∗. Hence the distance between any two vertices of Sal(A) is same as the distance
between the corresponding vertices of X∗. Also, by construction, there is a one-to-one
correspondence between vertices of [F i, C] and the vertices of F i for all F i ∈ X∗.

Remark 3.3.16. Note that in the construction of the Salvetti complex at the beginning
of this section we used the ω(F,C) = F ◦ C map. It is possible to repeat the same
construction using the ω map. However one can show that the two complexes are
isomorphic.
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Remark 3.3.17. The oriented 1-skeleton of the Salvetti complex along with the cir-
cuits satisfies the circuit axioms [6, Definition 3.2.1] to become an oriented matroid.
However, we will not prove it here.

As a consequence of the Corollary 3.3.10, every 2-cell of the Salvetti complex (of
an arrangement) is combinatorially equivalent to an oriented polygon with an even
number of edges. This observation together with the condition (3) in Definition 3.3.8
(QMH-complex) proves the following.

Corollary 3.3.18. In the Salvetti complex Sal(A), the (oriented) 1-skeleton of a k-
cell [F k, C] is composed of edge-paths going from [C,C] to [F k ∗ C,F k ∗ C]. All these
paths have same lengths and are directed away from [C,C].

In particular, the boundary of each 2-cell [F 2, C] is composed of two minimal pos-
itive paths of the same length from [C,C] to [F 2 ∗ C,F 2 ∗ C].

Proof. Assume that there is an edge [F 1, C ′] contained in the boundary of [F k, C].
Therefore, C ′ = F 1 ◦ C and the result follows because of the condition (3) defining
QMH-complex.

Remark 3.3.19. The reason we have defined the Salvetti complex is because it has
the homotopy type of the tangent bundle complement associated to a submanifold
arrangement. In light of the results proved in this section it is now clear that one
can associate the Salvetti complex construction to any regular cell complex which is
a MH-complex (either LMH or QMH-complex). This generalization was first studied
in [74]. Although the dual cell complex induced by a submanifold arrangement has the
structure of a MH-complex it is not true that an arbitrary MH-complexes corresponds
to some submanifold arrangement. In fact, by a theorem of Salvetti [74, Proposition
6] it follows that even the dual of a pseudosphere arrangement is a MH-complex.
Hence it is natural to ask whether there is a topological representation theorem for
MH-complexes. By that we mean, is there a generalization of submanifold and pseu-
dosphere arrangements so that the induced dual cell complex is a MH-complex?

We would like to state a conjecture that might prove one direction of such a
topological representation theorem.

Conjecture 3.3.20. Let X be a finite dimensional manifold and A = {N1, . . . , Nk}
be a collection of finitely many submanifolds such that:

1. each Ni is an embedded, locally flat, closed submanifold of codimension 1,

2. the intersections of these submanifolds give a stratification of X into a regular
cell complex.

Then the cell complex obtained by considering the dual cells is a MH-complex.
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Remark 3.3.21. Since the Salvetti complex Sal(A) is a MH-complex we can repeat its
construction to obtain a new complex. We denote it by Sal(A)(2) and call it the second
associated Salvetti complex. In fact in light of Theorem 3.3.15 one can define Sal(A)(n)

for every n ≥ 1. A k-cell of such a complex can be written as [F k;C1, . . . , Cn] for
every Ci ≺ F k. As in Theorem 3.3.1 there is a sequence of maps ψn : Sal(A)(n) → X.
Setting Sal(A)(0) = X we have

χ(Sal(A)(n)) =
∑

F i∈X∗
(−1)iψ−1

n (F i)

By induction on n we also have an embedding ιC1,...,Cn : X∗ → Sal(A)(n) given by
F i 7→ [F i;F i ◦ C1, . . . , F

i ◦ Cn].

We end this section with homotopy colimits. The next result follows from the
observation that the barycentric subdivision of any regular cell complex is a poset
limit (Definition 2.1.7).

Theorem 3.3.22. Given a l-manifold X and a submanifold arrangement A, let F∗

denote the dual face poset. Define a diagram of spaces

D : F∗ → Top

with discrete spaces
D(F i) := {C ∈ X∗0 |C ≺ F i}

and maps being inclusions

D(F i → F j) : D(F i) → D(F j) (i > j)

C 7→ F j ◦ C
Then

hocolimF∗D ∼= Sal(A)

Proof. Since all the space in the above diagram are in fact finite sets of points, we
can consider these sets as posets with trivial order relation (C ≤ C ′ ⇔ C = C ′). In
this situation we can apply the simplicial model Lemma 2.1.8. Hence the homotopy
colimit of D has the homotopy type of ∆(PlimD).

The vertex set of ∆(PlimD) is clearly

{(F,C) ∈ F(A)× C(A)|F ⊂ C}.
In order to determine higher dimensional simplices we look at the chains in PlimD.
According to the Definition 2.1.7, the order relation on PlimD is the following

(F,C) ≤ (F ′, C ′)⇔ F ≺ F ′ in F∗ and F ◦ C ′ = C.

Then it follows that the poset PlimD is isomorphic to the Salvetti poset, which
establishes the claim.
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3.4 Covers of the Tangent Bundle Complement

We now look at the covering spaces of the tangent bundle complement. Our aim is to
show that the covering spaces of the tangent bundle complement are determined by the
arrangement graph. Recall that in case of a hyperplane arrangement the associated
arrangement graph is the oriented 1-skeleton of the Salvetti complex. Our plan is to
generalize the theory of Salvetti-type diagram models introduced by Delucchi in [23]
(building on the work of Paris [66]) to submanifold arrangements. In this section
we start with a short discussion of arrangement groupoids. Then corresponding to
a cover of the arrangement groupoid we construct covering spaces of the Salvetti
complex. Constructing a covering a space of the tangent bundle complement itself is
fairly technical and does not provide any new insight. For this reason we have decided
to work with the Salvetti complex instead. We discuss this point at length towards
the end of this section. The classification of the covering spaces will be proved in the
next section (after a discussion of fundamental groups).

Recall the definition of arrangement graph associated to a hyperplane arrangement
(Section 2.3.1). Note that this notion is also valid for the arrangement of submanifolds
and it is isomorphic to the oriented 1-skeleton of the associated Salvetti complex. For
the sake of completeness we define it here again.

Definition 3.4.1. Given an arrangement of submanifolds A in a manifold X, the
arrangement graph, denoted by G(A), is the directed graph whose vertex set cor-
responds to the set of chambers of A. Add is a pair of oppositely oriented edges
between two vertices whenever there is a codimension 1 face common to the corre-
sponding chambers.

Once we have the arrangement graph we can also define the arrangement groupoid
and the category of positive paths for an arrangement of submanifolds. Before intro-
ducing these notions we would like to recall a relevant terminology.

A path in the arrangement graph is a sequence of edges traversed not necessarily
according to their orientations. The length of a path is equal to the number of edges
traversed. An edge is a path of length 1 and vertex is path of length 0. Initial vertex of
a path α is denoted by s(α) and the terminal vertex by t(α). Such directed paths can
be represented by words whose letters correspond to edges. If α is an undirected path
then α = (ε1a1, . . . , εnan) where εi = ±1 depending on whether ai is traversed along
or opposite to its orientation, the length of α is equal to 1 and s(εi+1ai+1) = t(εiai)
for every i. If α and β are two paths such that s(β) = t(α) then their concatenation
gives a new path denoted by αβ. Inverse of a path α = (ε1a1, . . . , εnan) is the path
α−1 = (−εnan, . . . ,−ε1a1).

A directed path is a sequence of consecutive edges traversed according to their
orientations. For example, α = (+a1, . . . ,+an) is directed path of length n. A
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minimal positive path is a path having shortest length among all the positive paths
that join its endpoints. Unless otherwise stated by a path we mean an undirected path
and by a positive path we mean a directed path.

Recall that every 2-cell in the Salvetti complex is a polygon with an even number
of (oriented) edges and that the boundary of such a 2-cell is composed of two minimal
positive paths of same length (Corollary 3.3.18).

We define two types of ‘moves ’ on the paths in the arrangement graph:

1. If α is a path such that α = α1γα2 and if γ, γ′ are two minimal positive paths
joining the opposite vertices of a 2-cell, then substitute γ′ for γ in α.

2. If α is a path such that α = α1γα2, where γ is a sub-path of a boundary path
of a 2-cell of Sal(A), substitute for γ the path γ′ having same endpoints (i.e.
s(γ′) = s(γ), t(γ′) = t(γ)) and containing all the remaining edges of that 2-cell.

Definition 3.4.2. Given a submanifold arrangement A, the associated category of
positive paths, denoted by G+(A), is defined as follows. The objects of this category are
the vertices of the arrangement graph. The morphisms in this category are equivalence
classes of positive paths. Two positive paths α and β from a vertex C to a vertex D are
equivalent if and only if α is obtained from β by a finite sequence of moves of type (1).
It means that the two paths are connected by a sequence of substitutions of minimal
positive paths. This equivalence relation will be called the positive equivalence, the
equivalence class of a path α will be denoted by [α]+ and if need the relation will be

denoted by
+∼.

The main difference between the positive category associated to a hyperplane ar-
rangement and the above definition is the equivalence relation. In case of hyperplane
arrangements the equivalence relation is generated by declaring two minimal positive
paths to be equivalent. Since two such paths are homotopic in the associated Sal-
vetti complex. However this is not true for submanifold arrangements. For example,
consider the Salvetti complex (Figure 3.7) associated to the arrangement of 2 points
in S1 (Example 3.1.10). The two edges labeled [p,A] and [q, A] are minimal positive
paths with the same end points however they are positive equivalent.

Lemma 3.4.3. Let F be a face of a submanifold arrangement and C be a chamber
such that C ≺ F . Then any two minimal positive paths from C to F ∗ C are positive
equivalent.

Proof. The statement follows from the application of Corollary 3.3.18. Any two min-
imal positive paths from C to F ∗C are in fact contained in the boundary of the cell
[F,C].
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Hence we can rephrase the positive equivalence as follows. Let α, α′ be two positive

paths from C to C ′. Set α
+∼ α′ if and only if α = α1βα2, α′ = α1β

′α2 such that

1. α1 is a positive path from C to C ′′,

2. β and β′ are minimal positive paths from C ′′ to F ∗ C ′′ (for some C ′′ ≺ C),

3. α2 is a positive path from F ∗ C ′′ to C ′.

More generally, set α
+∼ α′ if and only if α is obtained from α′ by a finite sequence of

positive paths related as above. We now define the arrangement groupoid.

Definition 3.4.4. The arrangement groupoid of a submanifold arrangement is a cat-
egory whose objects are the vertices of the arrangement graph. The morphisms in
this category are equivalence classes of paths. Two paths are equivalent if and only if
one is obtained from the other by a finite sequence of moves of type (2). The category
will be denoted by G(A) and the morphisms will be denoted by [α], where α is a
representative path.

Before moving on we would like to explicitly state the relationship between the
above defined categories.

Lemma 3.4.5. Moves of type (2) are composed of moves of type (1).

Proof. Follows from the description of a 2-cell.

As a result, if [α]+ = [β]+ then [α] = [β]. So there is a functor

J : G+ → G

given by sending [α]+ to [α].

Theorem 3.4.6. For a submanifold arrangement A the category G(A) can be iden-
tified with the category of fractions of G+(A) and J with the associated canonical
functor.

Proof. Recall from [36, Chapter 1] that to each category C and to each subset Σ ⊂
Mor(C), of morphisms in C, there is an associated category of fractions C[Σ−1] and a
functor PΣ : C→ C[Σ−1]. The functor PΣ makes all morphisms in Σ invertible and it
is universal in this sense.

Given (+a1, . . . ,+an) a representative of a morphism in G+, its inverse is the mor-
phism given by the equivalence class of (−an, . . . ,−a1). Hence J makes all morphisms
of G+ invertible.
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The universality of this functor is easy to check. Note that given a morphism [α]
in G(A) it can be written as [

∏n
i=1(αi)

εi ] where each αi is a positive path, εi = ±1 and
the product means the concatenation. Let J ′ : G+ → E be another functor making all
morphisms of G+ invertible. Then define K : G→ E as

K([
n∏

i=1

(αi)
εi ]) :=

n∏

i=1

J ′([αi]+)εi

If the path
∏n

i=1(αi)
εi is equivalent to another path

∏m
j=1(βj)

νj via moves of type (1)
or (2) then

n∏

i=1

J ′([αi]+)εi =
m∏

j=1

J ′([βj]+)νj

Since the functor K is well defined we have J ′ = K ◦J which completes the proof.

The category of fractions is a categorical analogue of the ring of fractions. The
connection between the arrangement groupoid and the Salvetti complex is the follow-
ing:

Lemma 3.4.7. Let A be an arrangement of submanifolds in a manifold X. The
arrangement groupoid G(A) is equivalent to the fundamental groupoid π̃1(Sal(A)) of
the associated Salvetti complex.

Proof. The cell structure we have for the Salvetti complex is special in the sense
that its 0-cells correspond to chambers of A, which happen to be the objects of the
arrangement groupoid. Let α, β be two paths with same end points. If they are
equivalent in G(A) then the moves of type (2) determine a homotopy between the
two. Conversely if α, β are homotopic then type (2) moves provide a homotopy that
connects them.

Consequently, the fundamental group of the Salvetti complex is isomorphic to the
object group π(G). Hence the connected topological covers of the Salvetti complex
are indexed by the subgroups of π(G). According to Theorem 2.3.6, connected covers
of the arrangement groupoid G(A) are also indexed by the subgroups of π(G). This
correspondence was first exploited by Paris in the context of hyperplane arrangements
(see [66]). He showed that the covers of the complexified complement are indexed by
the covers of the oriented systems. Our treatment is based on Delucchi’s reformu-
lation [23, 24] of this idea in terms of diagram of spaces. We show that a cover of
the arrangement groupoid can be used to construct a simplicial complex which is a
covering space of the Salvetti complex.
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3.4.1 Salvetti-type diagram models

In his thesis [23], Delucchi characterized all the connected covers of an arrangement
complement1 using diagrams of spaces and homotopy colimits. To be precise, using
covers of the arrangement groupoid he defined a family of diagrams of spaces such
that their homotopy colimits have the homotopy type of covers of arrangement com-
plement. One of the benefits of his elegant treatment is that it is easy to generalize
to the tangent bundle complement. This is what we plan to do now. We will de-
fine the Salvetti-type diagrams and show that their homotopy colimits are covers of
the associated Salvetti complex. We closely follow Delucchi’s arguments as well as
the notation. Let A denote a submanifold arrangement in some manifold X. Let
Sal(A) be the associated Salvetti complex, the context will decide whether we view
it as a CW-complex or as simplicial complex. Finally, let G denote the arrangement
groupoid. When dealing with morphisms in G we will use the path-terminology. For
example, domain of a morphism [α] will be denoted by s(α). Hence whenever we
make statement about a path it is actually about its equivalence class in G.

For the convenience of the reader we quickly recall relevant facts about the covers of
the arrangement groupoid. Given z ∈ Ob(G) its star is the following set of morphisms-

St(z) = {[α] ∈Mor(G) | s(α) = z}.

A covering of G is a functor ρ : Gρ → G such that for every z ∈ Ob(Gρ), the induced
map

ρz : St(z)→ St(ρ(z))

is bijective. Given [α], a morphism in G and any z ∈ ρ−1(s(α)), the lift of α at z is
the morphism ρ−1

z (α), denoted by α<z> when the covering ρ is understood. Recall
that according to Theorem 2.3.6 each object of Gρ is a right coset of homotopy class
of paths in the arrangement graph. Let µ(C → D,F ) denote a minimal positive path
starting at a vertex [C,C] ending at another vertex [D,D] and it traverses an edge
contained in the boundary of [F,C]. It is assumed that C ≺ F .

Lemma 3.4.8. With the same notation as above, µ(C → D,F )
+∼ µ(C → D,F ′) if

there exists G ∈ X∗ such that on of the following is satisfied:

1. F, F ′ ≺ G and µ(C → D,F ), µ(C → D,G) are in the boundary of [G,C];

2. D = G ∗ C.

Proof. Follows from Corollary 3.3.18.

1‘Arrangement complement’ is an often used abbreviation for complexified complement of a real
hyperplane arrangement.
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Definition 3.4.9. Given a cover of the arrangement groupoid ρ : Gρ → G(A), we
define a diagram of posets Dρ on the dual face poset F∗ as

Dρ(F
i) := {v ∈ Ob(Gρ) | ρ(v) ≺ F i}.

Each poset is endowed with the trivial order relation. The maps between these spaces
are the following inclusions

Dρ(F
i → F j) : D(F i) → D(F j) (i > j)

v 7→ t(µ(ρ(v)→ F j ◦ ρ(v), F i)<v>)

where µ(ρ(v) → F j ◦ ρ(v), F i)<v> is the lift of the minimal positive path in G that
starts at [ρ(v), ρ(v)] and traverses an edge contained in [F i, ρ(v)].

According to the simplicial model lemma (Lemma 2.1.8), the above homotopy
colimit is in fact an order complex. We will denote this order complex by Sρ, its
vertex set is

{(F, v) ∈ F∗ ×Ob(Gρ) | ρ(v) ≺ F}
the simplices of Sρ are chains with respect to the following partial order

(F2, v2) ≺ρ (F1, v1)⇔
{
F2 ≺ F1 and

v2 = t(µ(ρ(v1)→ F2 ◦ ρ(v1), F 1)<v1>)

Remark 3.4.10. If ρ is the identity map then Sid is precisely the Salvetti complex, for
the proof see Theorem 3.3.22.

Remark 3.4.11. Using the same arguments as in the proof of Lemma 3.2.11 it follows
that there is a one-to-one correspondence between the chains in Sρ and the chains in
F∗. If φ denotes a chain in F∗ and v ∈ Ob(Gρ) such that ρ(v) ≺ max(φ), then the
pair (φ, v) corresponds to a simplex of Sρ and every simplex is of this form. Moreover,
the simplicial complex Sρ is the barycentric subdivision of a CW-complex SCWρ ; the
barycentric subdivision of a (closed) k-cell of this CW-complex, which we denote by
a pair [F k, v], is given by

[F k, v] :=
⋃

max(φ)=Fk

(φ, v).

Vertices of SCWρ are of the form [ρ(v), v], hence are in bijection with the objects of Gρ.
For a k-cell [F k, v] a 0-cell [ρ(v′), v′] is its vertex if and only if

v′ = t(µ(ρ(v)→ F ′ ◦ ρ(v′), F k)<v>)

for some F ′ ≺ F k.
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Our aim is to show that the simplicial complex Sρ is a covering space of the
(simplicial) Salvetti complex. The strategy we employ here is motivated by the proof
of a well known fact in elementary algebraic topology. A simplicial and fixed point
free action of a discrete group on a simplicial complex is a covering space action (see
for example [44, Section 1.B]). First, we prove that there is a natural, simplicial map
between these two complexes and them proceed on to prove that it is indeed a covering
map.

The functor ρ : Gρ → G naturally induces a morphism of diagrams λ : Dρ → Did.
On the level of spaces it is given by -

λF : Dρ(F ) → Did(F ) ∀F ∈ F∗

v 7→ ρ(v)

In order to check the compatibility of this morphism with the maps between the
spaces, consider F2 ≺ F1 and v ∈ Dρ(F2). Then,

λF2(Dρ(F1 → F2)(v)) = ρ(t(µ(ρ(v)→ F2 ◦ ρ(v), F1)<v>))

= F2 ◦ ρ(v)

= Did(F1 → F2)(ρ(v))

= Did(F1 → F2)(λF1(v))

The morphism λ induces a map between homotopy colimits by functoriality, hence a
map of simplicial complexes

Λρ : Sρ → Sal(A).

Λρ maps the simplex (φ, v) of Sρ to the simplex (φ, ρ(v)) of Sal(A). Moreover, a
morphism η : Gρ1 → Gρ2 between two covers of the arrangement groupoids induces a
map Λη : Sρ1 → Sρ2 .

Theorem 3.4.12. The map Λρ : Sρ → Sal(A), induced by a cover ρ : Gρ → G of the
arrangement groupoid, is a covering map.

Proof. First note that Sal(A) is a finite dimensional and locally finite simplicial com-
plex implying that it is connected and locally path connected. Hence all its connected
covering spaces exist.

Let p ∈ Sal(A) be some point, σ be the smallest dimensional simplex containing
p, let U denote the star of σ (set of all simplices of Sal(A) that contain σ). In order to
show that Λρ is a covering map it is enough to show that Λ−1

ρ (U) is an even covering
of U .

Let us first characterize U and its inverse image in terms of chains and chambers.
As σ is a simplex of Sal(A) there exists a chain φ̃ in F∗ and (a chamber) C̃ ≺
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max(φ̃) =: F̃ such that σ = (φ̃, C̃). Thus star of σ takes the following form:

U =
⋃

φ⊇φ̃
C∈R(φ,C̃)

(φ,C)

where R(φ, C̃) := {C ≺ max(φ) | F̃ ◦ C = C̃}. As a set, the pre-image of U is:

Λ−1
ρ (U) =

⋃

φ⊇φ̃
{v | ρ(v)∈R(φ,C̃)}

(φ, v).

For a fixed object w ∈ ρ−1(C̃) define

Ww :=
⋃

φ⊇φ̃
C∈R(φ,C̃)

(φ, v(C,w))

where v(C,w) is the (unique) object, of Gρ, in ρ−1(C) from which w can be reached
by the lift of a minimal positive path.

We now show that these sets Ww are disjoint, their union is Λ−1
ρ (U) and each of

them is homeomorphic to U .
Claim 1: For any w1 6= w2 ∈ ρ−1(C̃), Ww1 ∩Ww2 = ∅.
Assume that the intersection is non-empty and there is a simplex

(F, u) ⊂ Ww1 ∩Ww2 .

By definition of Ww,

u = v(C,w1) = v(C,w2)

and ρ(u) = C. This is same as

w1 = t(µ(C → ρ(w1), F )<u>)

w2 = t(µ(C → ρ(w2), F )<u>)

which implies w1 = w2 (since ρ(w1) = ρ(w2) = C̃), a contradiction.
Claim 2: ∐

w∈ρ−1(C̃)

Ww = Λ−1
ρ (U).

To see that the left hand side is contained in the right hand side, consider a simplex
(φ, v(C,w)). Its image Λρ(φ, v(C,w)) = (φ,C) is a simplex of the right hand side.
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For the converse, consider (φ, v) a simplex of the left hand side (such that φ̃ ⊆ φ
and ρ(v) ∈ R(φ, C̃)). Define w := t(µ(ρ(c) → C̃,max(φ))<v>). By construction,
ρ(w) = C̃, hence (φ, v) is a simplex of Ww.

Claim 3: Fix w ∈ ρ−1(C̃), then Λρ : Ww → U is a homeomorphism.

Clearly Λρ is a simplicial map and also it is surjective, since given (φ,C) a simplex
of U , (φ, v(C,w)) is a simplex of Ww which lies in its pre-image. The injectivity of
this map follows from [23, Lemma 4.3.3] and [73, Lemma 3].

Example 3.4.13. Consider the arrangement A1 of 2 points in S1 (Example 3.1.10),
its associated Salvetti complex Sal(A1) was described in Figure 3.7. Figure 3.12
depicts a portion of its universal cover. The objects of the covering groupoid are
denoted by Ã, B̃ (indices are suppressed for notational simplicity). Note that there

[B, B̃]

[A, Ã]

[q, B̃]

[p, B̃]

[p, Ã] [q, Ã]

[B, B̃][B, B̃]

[B, B̃]

Figure 3.12: The Universal cover of Sal(A1)

are two minimal positive paths, in Sal(A), from [B,B] to [A,A]. One of them is
the (oriented) edge [p,B] and the other is the edge [q, B]. Both of these paths are
represent distinct equivalence classes in G+(A) as well as G(A). In the covering space,
end points of the lifts of these two paths are distinct and are contained in ρ−1([A,A]).
Also note that the functor J : G+(A)→ G(A) is faithful in this example.

Example 3.4.14. Consider the arrangement A2 of 2 circles in S2 (Example 3.1.11),
its associated Salvetti complex Sal(A2) was described in Figure 3.8. Figure 3.13 shows
a portion of the 1-skeleton of its universal cover. The objects of the covering groupoid
are denoted by C̃i, 1 ≤ i ≤ 4 (indices are suppressed for notational simplicity). Note
that each square is a boundary of a 2-sphere, whose two 2-cells are indexed by [p1, C̃i]
and [p2, C̃i].
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[C1, C̃1] [C2, C̃2] [C1, C̃1]

[C4, C̃4] [C3, C̃3] [C4, C̃4]

[C1, C̃1] [C2, C̃2] [C1, C̃1]

Figure 3.13: 1-skeleton of the Universal cover of Sal(A2)

3.5 The Fundamental Group

Since the Salvetti complex carries the homotopy type of the tangent bundle comple-
ment both have isomorphic fundamental groups. By studying the 2-skeleton of Sal(A)
we can deduce a presentation for the fundamental group. The aim of this section is
to understand π1(Sal(A)) (as much as possible) using the arrangement groupoid. We
will also identify a class of arrangements for which the word problem for the fun-
damental group is solvable. Finally, we will prove a result regarding fundamental
groups of covering spaces constructed in the previous section. This result will lead to
the classification of the covering spaces of Sal(A).

In the previous section we proved that the arrangement groupoid G(A) is the
category of fractions of G+(A). The study of the fundamental group requires more
information regarding the relationship between these two categories. Existence of
calculus of fractions is one such property that is useful. We proceed by recalling
definitions and some results.

Definition 3.5.1. The category G+ admits a (strong) calculus of left fractions if and
only if the following conditions are satisfied ( [36, Section 2.2]):

1. If [α1], [α2] are such that s(α1) = s(α2) then there exist [β1], [β2], with s(βi) =
t(αi)(i = 1, 2), such that [α1β1]+ = [α2β2]+.

2. (left cancellation law) If [α], [α1], [α2] are such that t(α) = s(αi)(i = 1, 2), and
[αα1]+ = [αα2]+ then [α1]+ = [α2]+.
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Remark 3.5.2. Usually there are two more conditions mentioned in the definition of
calculus of fractions. Since we are inverting all the morphisms in G+ those conditions
are always satisfied, hence skipped in the above definition.

Remark 3.5.3. The conditions for a calculus of right fractions are dual to the ones
specified above. If a morphism [α] in G+ is represented by a sequence of edges
as (+a1, . . . ,+an), then define the opposite of [α] as the morphism represented by
(+a′n, . . . ,+a

′
1) where a′i is the edge opposite to ai. By passing to the opposite paths

it is clear that G+ admits a calculus of left fractions if and only if it admits a calculus
of right fractions. Hence when it is the case, we will just say that G+ admits a calculus
of fractions.

Recall that the elements of a ring of fractions can be written as s−1r. The same is
true when a category admits a calculus of fractions. Assume that G+ admits a calculus
of fraction, then every morphism [α] ∈ Mor(G) (i.e. a homotopy class of paths) can
be written in the form

[α] = [α1][α2]−1,

where α1, α2 are positive paths.

Theorem 3.5.4. The category G+ admits a calculus of fractions if and only if the
canonical functor J : G+ → G is faithful.

Proof. It is clear that if J is faithful then G+ admits a calculus of fractions.
Conversely, assume that there two positive paths α, β such that they have same end
points and they are homotopic. Then [α][1]−1 = [β][1]−1. So there exist two more
positive paths γ1, γ2 such that

[αγ1]+ = [βγ2]+, [γ1]+ = [γ2]+.

By the cancellation law [α]+ = [β]+.

We start by characterizing arrangements for which the restriction of J to the class
of minimal positive paths is always faithful.

Theorem 3.5.5. Let X be a l-manifold and A be an arrangement of submanifolds
with Sal(A) being the associated Salvetti complex. If X is simply connected then two
minimal positive paths in the 1-skeleton of Sal(A) that have same initial as well as
terminal vertex are homotopic relative to (0, 1).

Proof. Let α, β be two positive paths such that s(α) = s(β) = [C,C], t(α) = t(β) =
[D,D] and both of them have same lengths (= d(C,D)). Clearly, ψ(α), ψ(β) ⊂ X∗1
(recall that ψ : Sal(A) → X∗ was defined in Theorem 3.3.6) are minimal paths of
length d(C,D), so no two edges of these two paths are sent (by ψ) to the same edge
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of X∗. Without loss of generality, let a = [F 1, C ′] be an edge of the path α, consider
(a) as a sub-path of α. Let s(a) = [C ′, C ′] then, F 1 ◦ C = C ′ since α is minimal.
Repeating same argument for every edge of β we get that the paths α and β are
contained in ιC(X∗). Hence by Theorem 3.3.6 and the fact that π1(X∗) = {1}, it
follows that α and β are homotopic.

An immediate consequence of this theorem is the following:

Corollary 3.5.6. If X is a l-manifold, A is an arrangement of submanifolds and
M(A) is the tangent bundle complement then,

π1(M(A)) ∼= π1(G(A))/{αβ−1 | α, β are minimal positive paths with same end points}.

Proof. A loop in the arrangement graph G(A) is contractible if and only if it is the
boundary of a 2-cell (of Sal(A)). According to Corollary 3.3.18 the boundary of every
2-cell is composed of two minimal positive paths with same ends.

In particular Theorem 3.5.5 applies to hyperplane arrangements and arrangements
in a sphere (dimension ≥ 2). Minimal positive paths with same end points are homo-
topic in the Salvetti complex associated to such an arrangement. Hence such paths
represent the same morphism in the corresponding arrangement groupoid. More is
true for (central) hyperplane arrangements; minimal positive paths with same end
points represent same morphism in the positive category (see [22, 1.12] for the origi-
nal proof). This means that the restriction of functor J to the class of minimal positive
paths is faithful (this holds true even for arrangements of pseudospheres [74, Theorem
20]).

Definition 3.5.7. A submanifold arrangement A in a l-manifold X will be called flat
if and only if it satisfies the following conditions:

1. X is a simply connected manifold,

2. restriction of J : G+(A)→ G(A) to the class of minimal positive paths is faithful.

The dual complex (X,F∗) in this case will be called flat MH-complex.

For a flat arrangement A, we indicate by [µ(C → D)] the unique equivalence class
(in G+(A) or G(A)) determined by a minimal positive path from a chamber C to
another chamber D.

For every chamber C of a central hyperplane arrangement A, there exists a unique
chamber −C such that R(C,−C) = A (in our notation −C = {0}∗C). This property
induces an involution on the associated arrangement graph. Also in case of pseudo-
sphere arrangements the antipodal action on the sphere induces an involution on the
associated arrangement graph. We formalize this property in the following definition:
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Definition 3.5.8. An arrangement of submanifolds A in a l-manifoldX is said to have
the involution property if and only if there exists a graph automorphism φ : X∗1 → X∗1
of the dual 1-skeleton (considered as a graph) satisfying:

1. φ is an involution (which induces involution on the vertices as well as the edges);

2. for every vertex C, d(C, φ(C)) = maxD∈X∗0d(C,D);

3. d(C, φ(C)) = d(C,D) + d(D,φ(C)) for every vertex C and D.

The dual complex X∗ of such an arrangement will be called as the MH*-complex.

The image of either a vertex or an edge under φ will be denoted by writing # on
its top, for example, C# := φ(C).

Lemma 3.5.9. If A is a submanifold arrangement in X with the involution property
then:

1. d(C,C#) = |A| (number of submanifolds in A) for all C.

2. d(C,D) = d(C#, D#) for all C,D.

Proof. Using the property (3) in Definition 3.5.8 we have:

d(C,C#) = d(C,D) + d(D,C#) (3.5.1)

also d(C,C#) = d(C,D#) + d(D#, C#) (3.5.2)

Adding equations (3.5.1) and (3.5.2) we get

2d(C,C#) = 2d(D,D#)

Without loss of generality assume that d(C,C#) = |A| − 1. Hence there is N ∈ A

such that N /∈ R(C,C#). Choose C ′ such that N ∈ R(C,C ′). Using the condition (3)
defining QMH-complexes we get that d(C,C ′) > d(C,C#), a contradiction. Therefore
no such N exists, which proves (1). We call the number d(C,C#) = |A|, the diameter
of X (with respect to A).

Now subtracting d(D,D#) = d(D,C#) + d(C#, D#) from (3.5.1) we get

0 = d(C,D)− d(C#, D#)

which proves (2).

Now we show that [C,C] and [C#, C#] are vertices of a cell in Sal(A).

Lemma 3.5.10. For a chamber C there exists a face F such that C# = F ∗ C.
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Proof. Choose F such that C ≺ F . Again using Definition 3.3.8,

d(C,F ∗ C) = d(C,C#) + d(C#, F ∗ C)

Since d(C#, F ∗ C) = 0, the statement follows.

Remark 3.5.11. Given a chamber C, let Opp(C, 0) denote the set of all codimension
l faces that are contained in the closure of C#. For F ∈ Opp(C, 0) the cell [F, F ◦ C]
in Sal(A) is of dimension l. Moreover, [F ◦ C,F ◦ C] and [C#, C#] are its (opposite)
vertices. Therefore any minimal positive path from [C,C] to [C#, C#] is composed
of a minimal positive path from [C,C] to [F ◦ C,F ◦ C] and a minimal positive path
from [F ◦C,F ◦C] to [F ∗C,F ∗C]. The latter path is contained in the boundary of
of the l-cell [F, F ◦ C]. As an application of Corollary 3.3.18 it follows that any two
such paths are not only homotopic but they are also positive equivalent. However two
minimal positive paths from [C,C] to [F ◦ C,F ◦ C] need not be positive equivalent
in general.

Before we move on to explore more properties of the positive category let us
mention one more combinatorial structure on chambers. Using the combinatorial
distance (Lemma 3.2.4) we can equip the chambers with an ordering relation. This
was first done for hyperplane arrangements by Edelman in [29].

Fix a chamber C now define a partial order ≺C on the set of all chambers as
follows:

D ≺C D′ ⇐⇒ R(C,D) ⊆ R(C,D′)

Let us denote by PC(A) the set of all chambers together with the above ordering then
we have the following.

Lemma 3.5.12. For an arrangement A with the involution property, PC(A) is a
graded and self-dual poset for every chamber C. The rank of D ∈ PC(A) is equal to
|R(C,D)| and the self-duality is given by D 7→ D#. Moreover for C,D ∈ C(A) there

is a natural isomorphism PC(A)
∼=→ PD(A).

We refer to PC(A) as the poset of chambers with a base chamber C. The natural
question now is to find a criterion when this poset becomes a lattice. For hyperplane
arrangements this was done in [5]. The authors showed that poset of chambers is a
lattice for every choice of base chamber if and only if each chamber is a cone over a
simplex.

Now we come back to the positive category. Note that if the involution exists then
it also induces an involution (which we again denote by φ) on the arrangement graph.
Moreover this involution preserves the positive equivalence on paths as proved in the
next lemma.
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Lemma 3.5.13. If A is an arrangement of submanifolds with the involution property
then the involution φ induces a functor on G+ which is also an involution.

Proof. We start by showing that there is a bijection between the set of edge-paths
of X∗1 and the set of all positive paths in Sal(A)1. In particular this bijection is
given by [F 1, C] 7→ F 1. Extend the given involution to Sal(A)1 by sending [F 1, C] to
[(F 1)#, C#]. Under this involution a positive path α = (a1, . . . , an) goes to a positive
path

α# := (a#
1 , . . . , a

#
n )

If γ1, γ2 are two minimal positive boundary paths of a 2-cell in Sal(A) then so are
γ#

1 , γ
#
2 . Therefore [γ1]+ = [γ2]+ ⇒ [γ#

1 ]+ = [γ#
2 ]+.

For the next few results we consider only the flat arrangements with the involution
property. One of the important examples of these arrangements is the simplicial
arrangement of hyperplanes. Recall that an arrangement of hyperplanes is said to
be simplicial when its chambers are cones over simplices. All of the following results
were proved in this context by Deligne in [22]. Our proofs are along the same lines.

As the functor J is faithful on the class of minimal positive paths there is only one
positive equivalence class of such paths. We denote this unique equivalence class by
the symbol [µ(C → C#)]. Further define a ‘positive’ loop, in G(A), based at [C,C]
as

δ(C) := µ(C → C#)µ(C# → C)

By δk(C) we mean that the loop is traversed k times in the same direction if k > 0
and in the reverse direction if k < 0. We will say that a positive path α begins (or
ends) with a positive path α′ if and only if α = α′β(= βα′) for some positive path β.

Lemma 3.5.14. Let A be a flat arrangement with the involution property and α be
a positive path from C to D. Then:

1. [α][µ(D → D#)] = [µ(C → C#)][α#];

2. if for a chamber D′, β is some positive path from C to D′ then αδn(D) begins
with β;

3. if [γ] ∈ G(C,D) then there exists n ∈ N and a positive path γ′ such that

[γ] = [δ−n(C)][γ′].
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Proof. For (1) we use induction on the length of α. In fact, it is enough to assume
that α = µ(C → C1) such that d(C,C1) = 1. Thus:

αµ(C1 → C#
1 ) = µ(C → C1)µ(C1 → C#

1 )
+∼ µ(C → C1)µ(C1 → C#)µ(C# → C#

1 )
+∼ µ(C → C#)µ(C# → C#

1 )
+∼ µ(C → C#)α#

By the same arguments, the following stronger statement is true:

[α][δk(D)] = [δk(C)][α], k ≥ 1 (3.5.3)

For (2), let β = (b1, . . . , bn) where bi is an edge from Bi−1 to Bi (B0 = C,Bn = D′).
Observe that βµ(Bn → B#

n−1) = (b1, . . . , bn−1)µ(Bn−1 → B#
n−1). By induction on n

assume that there exists a positive path η from Bn−1 to D such that -

(b1, . . . , bn−1)η = αδn−1(D).

Using (1), we get

βµ(Bn → B#
n−1)η# = (b1, . . . , bn−1)ηδ(D) = αδn(D)

which proves (2).
For γ an arbitrary path from C to D assume γ = (ε1a1, . . . , εnan), εi ∈ {±1}.

Let Ai = t(ε1a1, . . . , εiai). Set k = |{1 ≤ i ≤ n|εi = −1}|, we prove (3) by induction
on k. The case k = 0 is clear since it means that γ is a positive path. Assume that
the statement is true for k − 1. Now the general case; there exists an index j such
that ε1 = · · · = εj−1 = 1 and εj = −1. We have

δ(C)γ = µ(C → C#)µ(C# → C)(a1, . . . , aj−1,−aj, εj+1aj+1, . . . , εnan)
+∼ µ(C → C#)a#

1 µ(A#
1 → A1)(a2, . . . , aj−1,−aj, εj+1aj+1, . . . , εnan)( from1)

+∼ µ(C → C#)a#
1 · · · a#

j−1µ(A#
j−1 → Aj−1)(−aj, εj+1aj+1, . . . , εnan)

+∼ µ(C → C#)a#
1 · · · a#

j−1µ(A#
j−1 → Aj)(εj+1aj+1, . . . , εnan)

+∼ δ1−n(C)γ′ (by induction hypothesis,)

where γ′ is a positive path. Hence [γ] = [δ−n(C)]γ′.

One of the immediate consequence of the above result is the following:
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Corollary 3.5.15. Let A be a flat arrangement with the involution property. The
axiom (1) and its dual which define a calculus of fractions (Definition 3.5.1) are
satisfied. So J : G+ → G is faithful if and only if the cancellation laws hold in G+.

Proof. Use the equality (2) proved above in the Lemma 3.5.14.

Recall that [82, Section 0.5.7] the word problem for a group G is the problem
of deciding whether or not an arbitrary word w in G is the identity of G. The word
problem for G is solvable if and only if there exists an algorithm to determine whether
w = 1G or equivalently, if there exists an algorithm to determine when two arbitrary
words represent the same element of G.

Theorem 3.5.16. Let X be a simply connected l-manifold and A be a submanifold
arrangement with the involution property. Then if J : G+(A) → G(A) is faithful the
word problem for π1(M(A)) is solvable.

Proof. Let [α], [β] be two loops in π1(Sal(A)) based at a vertex [C,C]. Then according
to Lemma 3.5.14 there is a finite algorithm to write -

[β] = [δ−k(C)][β′], [α] = [δ−k(C)][α′]

where β′, α′ are positive loops based at [C,C]. Hence, [α] = [β] if and only if [α′]+ =
[β′]+. The theorem follows because there are only finitely many positive paths of given
length to choose from.

Remark 3.5.17. It follows from the work of Deligne [22], Paris [66], Salvetti [74] and
recently Delucchi [23] that the functor J is faithful for simplicial arrangements of hy-
perplanes. Since these arrangements also have the involution property it follows that
the fundamental group of the complexified complement has solvable word problem
(pure Artin groups also occur as these fundamental groups). In fact, more is known
about these groups. It has been shown by Charney [12] that these groups are biau-
tomatic. One more class of examples that satisfy the above property is the simplicial
arrangements of pseudospheres (see [74]). In the next chapter we will present a new
class of arrangements that satisfy above property.

Finally, we mention the diagram of spaces introduced in the Theorem 3.2.16.
Using the theory fundamental groupoid of a homotopy colimit discussed in Section
2.3.2 we get one more tool to compute the fundamental group of the tangent bundle
complement. The spaces in that diagram are connected and also the homotopy colimit
of the diagram is connected. Hence the Seifert-van Kampen-Brown Theorem (see
Theorem 2.3.13) can be restated as -
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Corollary 3.5.18. Let A be an arrangement of submanifolds in X and let D : F(A)→
Top be the diagram of spaces whose homotopy colimit has the homotopy type of M(A).
For the diagram π1(D) : F(A) → Grps of fundamental groups, there is a pushout
diagram of groups

π1(X) −−−→ π1(M(A))y
y

1 −−−→ colim π1(D)

Example 3.5.19. For the arrangement of 2 points in a circle we get that π1(M(A)) ∼=
Z ∗ Z ∗ Z.

Example 3.5.20. For the arrangement of 2 circles on S2 as π1(S2) = 1, using the
previous corollary we have

π1(M(A)) ∼= colim π1(D) ∼= Z2

3.5.1 Classification of Covering Spaces

In this section we return to the covering spaces of the Salvetti complex. The aim is
to classify these covering spaces according to subgroups of the fundamental group. In
Section 3.4.1, using the Salvetti-type diagram models, we constructed covering spaces
of the Salvetti complex. Now we prove that any connected topological covering space
of the Salvetti complex corresponds to a Salvetti-type diagram model. The strategy we
employ is a standard result in algebraic topology establishing correspondence between
isomorphism classes of covering spaces and conjugacy classes of subgroups (see for
example, [44, Theorem 1.38]).

Recall that in previous section we saw that given a cover ρ : Gρ → G of the ar-
rangement groupoid G, one can construct a simplicial complex Sρ which is a covering
space of the associated Salvetti complex Sal(A). In Remark 3.4.11 it was mentioned
that the simplicial complex Sρ is indeed the barycentric subdivision of a CW-complex.
For notational simplicity we denote the CW-complex by Sρ and start by analyzing its
2-skeleton. The plan is to show that the fundamental group of Sρ is isomorphic to the
object group of Gρ.

0-skeleton: The 0-cells of Sρ correspond bijectively to the objects of Gρ and can be
written as [ρ(v), v] where v ∈ Ob(Gρ) and ρ(v) ∈ C(A).

1-skeleton: There is a 1-cell between two vertices [ρ(v1), v1], [ρ(v2), v2] if and only if
the corresponding chambers ρ(v1), ρ(v2) share a codimension 1 face F 1. In fact, there
is one 1-cell [F 1, v1] directed from [ρ(v1), v1] to [ρ(v2), v2] and another 1-cell [F 1, v2]
directed from [ρ(v2), v2] to [ρ(v1), v1].
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2-skeleton: For a codimension 2 face F 2 and an object v ∈ Ob(Gρ) (such that
ρ(v) ≺ F 2) there is one 2-cell [F 2, v] in Sρ. The vertices of [F 2, v] are indexed by
the chambers whose closures contain F 2. To such a chamber C, there corresponds an
object in the covering groupoid given by t(ρ(v) → C,F 2)<v>. Hence the vertex set
of [F 2, v] is given by {[ρ(vi), vi] | ρ(vi) ≺ F 2, i = 1, . . . , 2k}. A 1-cell [F 1, vi] in the
boundary of [F 2, v] corresponds to codimension 1 face F 1 such that F 1 ≺ F 2. The
vertex v1 is such that the chamber ρ(vi) is on the same side as ρ(v) with respect to
F 1. Moreover, the cell is oriented to have vi as its start vertex.

Remark 3.5.21. Attachment of higher dimensional cells is analogous to the construc-
tion of Salvetti complex. Hence it can be shown that these covering complexes Sρ
have the structure of a MH-complex. However we will not prove it here.

The next step in the classification is to show that the fundamental group of Sρ is
isomorphic to the object group of Gρ. We compare the relations given by 2-cells of Sρ
and the relations that define Gρ.

Recall that the equivalence relation in the arrangement groupoid G is generated
by identifying two paths (in the arrangement graph) with same end points and form
the boundary of a 2-cell (of Sal(A)). As a result, the identity in an object group is
an equivalence class of loops based at that object that can be written as γγ′−1, where
γ, γ′ are paths bounding a 2-cell. For a given groupoid cover ρ : Gρ → G let Gρ denote
the graph underlying Gρ. The morphisms of Gρ are equivalence classes of paths in the
graph Gρ. This equivalence relation is the one induced by ρ. To be precise, two paths
α̃, β̃ in Gρ are identified if and only if they have same end points and ρ(α̃) ∼ ρ(β̃)
(where α̃, β̃ are lifts of α, β respectively). Hence the relations in Gρ are generated by
the loops of the form γ̃1γ̃2

−1 such that [γ1] = [γ2] (in Gρ), denote this set by Σρ. In a
nutshell we have the following:

π(Gρ) ∼= π1(Gρ)/Σρ

On the other hand let σρ denote the smallest normal subgroup of π1((Sρ)1) (1-
skeleton) generated by the relations imposed by the boundary of every 2-cell. Then:

π1(Sρ) ∼= π1((Sρ)1)/σρ

Theorem 3.5.22. With the notation as above we have following isomorphism

π(Gρ) ∼= π1(Sρ)

Proof. The proof is clear once we use the above discussion, the ‘moves’ defining the
arrangement groupoid and the Corollary 3.5.6.
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Remark 3.5.23. We note that the above theorem was first proved in the context of cov-
ers of the hyperplane complement, in Delucchi’s thesis [23, Lemma 4.2.2, Proposition
4.2.3], the proof is more direct and transparent.

Now we are in the position to state the classification of covering spaces of the Sal-
vetti complex. The proofs of following statements essentially involve diagram chasing
and are fairly straightforward (see [23, Section 4.5] for the original arguments). Fi-
nally, we recall that the covering spaces Sρ are homotopy colimits of diagrams Dρ

(defined over F∗) of posets, see Definition 3.4.9.

Theorem 3.5.24. Let A be a submanifold arrangement in a l-manifold X, let Sal(A)
denote the associated Salvetti complex and G denote the arrangement groupoid. For
any topological cover p : S → Sal(A), there exists a cover of the arrangement groupoid
ρ : Gρ → G such that the homotopy colimit of the associated diagram of spaces Dρ is
isomorphic to S as a covering space of Sal(A)

Proof. Let H denote the isomorphic image of p∗(π1(S)) inside π(G(A)) (under the
isomorphism in Theorem 3.5.22). Applying Theorem 2.3.6 we see that there is a
covering groupoid ρ : Gρ → G(A) such that π(Gρ) ∼= H. Let Sρ denote the homotopy
colimit of the diagram of spaces defined using Gρ. Again appealing to Theorem 3.5.22
it implies that π1(Sρ) ∼= H. Let ιρ denote the inclusion of Gρ (the graph underlying
Gρ) into Sρ as its 1-skeleton. Since Gρ is equivalent to the fundamental groupoid of
Sρ the following diagram commutes.

π(Gρ)
∼=−−−→ π1(Sρ)

ρ∗

y
y(Λρ)∗

π(G)
∼=−−−→ π1(Sal(A))

Since (Λρ)∗(Sρ) ∼= H we have that S and Sρ are isomorphic as covering spaces.

Following corollaries are immediate.

Corollary 3.5.25. Any cover p : S → Sal(A) of the Salvetti complex can be written
as the order complex of a poset.

Corollary 3.5.26. Let ρ̂ : Gρ̂ → G denote the universal cover of the arrangement
groupoid. Then Sρ̂, the homotopy colimit of the associated diagram of spaces (posets)
is the universal cover of Sal(A).
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3.6 Higher Homotopy Groups

As mentioned before Deligne’s work on simplicial arrangements [22] brought the sub-
ject of hyperplane arrangements to the forefront. Using combinatorics of positive
paths he showed that the universal cover of the complexified complement is con-
tractible. As a result simplicial arrangements are called K(π, 1). Since Deligne’s
work one of the main open problems in the theory of arrangements is to find out
whether being K(π, 1) is a combinatorial property. Deligne’s work also had profound
effect on the field of geometric group theory. For example, Deligne’s use of Garside’s
work (on the word problem for braid groups) [37] gave rise to study of Garside groups
(a generalization of finite-type Artin groups), see [21]. Also see [12] for new examples
of automatic groups.

We end this section by taking a closer look at the universal cover of the tangent
bundle complement. Two essential ingredients in Deligne’s proof were faithfulness
of the functor J and the existence of a canonical form for morphisms in G(A) (also
known as the Deligne normal form [12], property D [66]). We generalize Deligne’s
original arguments in order to derive conditions for an arrangement A such that the
functor J is faithful. We will also show that for a certain class of flat arrangements the
universal cover of its associated tangent bundle complement is contractible. Before
that let us identify a class of arrangements that are not K(π, 1).

Lemma 3.6.1. Let A be an arrangement of submanifolds in a l-manifold X.
If πn(X) 6= 0 for some n ≥ 2 then πn(M(A)) 6= 0.

Proof. Recall that in Theorem 3.2.14 we showed that there is a retraction

r : Sal(A)→ X

Hence r∗ : πn(M(A))→ πn(X) is surjective.

Hence the only hope to find K(π, 1) arrangements is to consider arrangements
in K(π, 1) manifolds. We now generalize Deligne’s arguments. Let Λ: S̃ → Sal(A)
denote the universal cover complex of the Salvetti complex. Recall that the cells of
this complex correspond to pairs [F, v], F being a face of the arrangement and v an
object in the universal cover groupoid G̃. Let G and G̃ denote the 1-skeletons of
Sal(A) and S̃ respectively.

Lemma 3.6.2. If α is a positive path in G(A) then the pull-back Λ−1(α) is a minimal
positive path in G̃. The canonical functor J : G+(A)→ G(A) is faithful if and only if
S̃ is a flat MH-complex.
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Proof. Recall that every point in the universal cover corresponds to a relative homo-
topy class of a path in the base space [44, Page 64]. Let [C,C] be a fixed base point of
Sal(A). Therefore each vertex of G̃ is given by a relative homotopy class of a path in
G(A) that starts at [C,C]. Let u0 ∈ Λ−1([C,C]) be a fixed base point of S̃. Let α be a
positive path in G(A) from [C,C] to [D,D] and α̃ be its lift in G̃ that starts at u1 and
ends at v. The end points u1 and v correspond to homotopy classes of paths starting
at u0. Let β̃ denote the path that represents the homotopy class corresponding to u1

and γ̃ be the path representing v. Note that β̃ projects to a loop based at [C,C] and
γ̃ projects to another path from [C,C] to [D,D]. If l(β) denotes the edge length of a
path then the distance between u1 and v is given by

min{l(η) | [η] = [β−1γ]}
Since the length of the path α attains the above minimum the first statement follows.

Two positive paths α, β are relative homotopic if and only if their lifts have the
same end points. By the above arguments their lifts α̃, β̃ are minimal positive paths in
G̃. According to the Definition 3.5.7, a MH-complex is flat if and only if the complex
is simply connected and any two minimal positive paths are relative homotopic.

Rest of the results concerning contractiblity of the universal cover require that
there is only one equivalence class of minimal positive paths between any two cham-
bers. A property that is satisfied by central hyperplane arrangements. For this reason
we restrict ourselves to flat arrangements. As this proves to be a mild generalization
all of the arguments made by Deligne carry through. Consequently we have omitted
the proofs.

Let S̃+ denote the sub-complex of S̃ generated by the cells of the form [F, v] where
v corresponds to a homotopy class of a positive path starting at [C,C].

Lemma 3.6.3. Let A be a flat arrangement of submanifolds with the involution prop-
erty in a l-manifold X. If the canonical functor J : G+ → G is faithful then there
exists a sequence of embeddings

jn : S̃+ → S̃, n ≥ 0

such that
j0(S̃+) ⊂ j1(S̃+) ⊂ · · · ⊂

⋃

n

jn(S̃+) = S̃.

Proof. Since J is faithful, the positive category G+ admits a calculus of fractions.
Consequently, for every homotopy class [α] ∈ G that starts from the base point [C,C]
we have an expression

[α] = [δ−n(C)α′], α′ a positive path
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(due to Lemma 3.5.14). For a fixed n, [δ−n(C)α′] = [δ−n(C)β′] if and only if [α]+ =
[β]+. Hence the functor Jn : G+ → G defined by Jn([α]+) := [δ−n(C)α] is faithful.
This functor induces a map jn : S̃+ → S as follows

jn([F, v]) = [F, Jn(v)]

It is clear that jn(S̃+) ⊂ jn+1(S̃+) and the fact that lim Jn(G+) = G establishes the
claim.

All of the above arguments can be put together in a theorem that gives a criterion
for the tangent bundle complement to be a K(π, 1) space.

Theorem 3.6.4. Let X be a K(π, 1) l-manifold and A be an arrangement of sub-
manifolds with the involution property. If:

1. A is a flat arrangement;

2. the canonical functor J : G+ → G is faithful;

3. the complex S̃+ is contractible;

then the universal cover of the tangent bundle complement is contractible.

Proof. If J is faithful then the universal cover S̃ is a colimit of its sub-complexes as
proved in Lemma 3.6.3.

Now for a fixed base point v ∈ S̃, jn(S̃+) is the sub-complex whose cells are
indexed by the positive paths starting from Jn(v). Since the action of π1 induces an
isomorphism of the universal cover, the covers S̃+ and jn(S̃+) are isomorphic.

We now identify the combinatorial conditions for flat arrangements so that the
above theorem holds true. We start with the faithfulness of J and the Deligne normal
form. Recall that an arrangement is simplicial if and only if each chamber is a simplex
(or cone over an open simplex). Set a partial order on the morphisms of G+(A) as
follows

[α]+ v [β]+ ⇐⇒ [β]+ = [γ]+[α]+ for some [γ]+ ∈ G+(s(β), s(α))

Definition 3.6.5. Let A be a flat arrangement of submanifolds. The associated
positive category G+(A) admits the Deligne normal form if and only if for every
morphism [β]+ ∈ G+(C,D) there exists A ∈ C(A) such that

[µ(B → D)]+ v [β]+ ⇐⇒ B ≺A D.
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Note that the above condition is equivalent to the existence of a minimal positive
path µ(A→ D) such that

[µ(B → D)]+ v [β]+ ⇐⇒ [µ(B → D)]+ v [µ(A→ D)]+

All the (classes of) minimal paths that are smaller, with respect to v, than a given
morphism [β]+ form a poset. Then the above definition states that this poset has
a unique maximal element. Let [µ0]+ denote this maximal element, hence [β]+ =
[β1]+[µ0]+. Since G+ admits the Deligne normal form we can write [β]+ = [β2]+[µ1]+[µ0]+.
We can repeat this process for only a finitely many times since these minimal paths
have strictly decreasing lengths. The result is that the morphism [β]+ can be written
as a unique product of classes of minimal paths as follows:

[β]+ = [µk]+ · · · [µ0]+.

Such an expression is in fact the Deligne normal form of a positive morphism (some
times the terms canonical minimal decomposition or right greedy canonical form are
also used).

Lemma 3.6.6. If A is a flat and simplicial arrangement in X then

1. the functor J : G+(A)→ G(A) is faithful;

2. G+(A) admits the Deligne normal form.

Proof. We have already shown that the condition (1) defining the strong calculus of
fractions is satisfied (lemma ). the cancellation laws (Definition 3.5.1, condition (2))
hold true in G+(A). In light of Remark 3.5.3 it is enough to prove that right cancel-
lation laws hold. The proof that the cancellation laws hold and that the normal form
exists is the same as Deligne’s original proof for simplicial hyperplane arrangements.
We refer the reader to following [22, Theorem 1.19], [23, Theorem 6.4.6], [66, Theorem
4.1], [74, Theorem 31].

The final piece of the puzzle is to show that the positive complex S̃+ is contractible.
This depends on one more property of simplicial hyperplane arrangements which we
now state. But before that some notations. For A,B ∈ C(A), set -

E(A,B) := {F ∈ F∗(A) | if C ≺ F then A ≺A C ≺A B}

E1(A,B) := {F ∈ E(A,B) | B ⊀ F}
Definition 3.6.7. The faces of a flat arrangement A have the strong contraction
property if and only if for every A,B ∈ C(A), A 6= B the set E(A,B) is simply
connected and contracts over E1(A,B) by leaving it point wise fixed.
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We can now the state necessity of above condition.

Lemma 3.6.8. Let A be a simplicial and flat arrangement with the involution. Then
if the faces of A have the strong contraction property then the positive complex S̃+ is
contractible. Consequently the arrangement is K(π, 1)

Proof. The proof is same as that of [74, Theorem 33] or [66, Lemma 4.11].

Remark 3.6.9. The reason we have explicitly mentioned this contraction property is
the following. In the next chapter we will show that there are examples of simplicial
and flat arrangements that do not satisfy the contraction property. Hence the uni-
versal cover is not contractible even though the associated positive category admits
the Deligne normal form. For arrangements of hyperplanes the contraction prop-
erty is always satisfied (see [66, Lemma 4.8]). In Chapter 5 we will show that the
simplicial arrangements of pseudo-hyperplanes also satisfy all these properties, hence
are K(π, 1). It would be interesting to find new examples of manifolds such that
the simplicial arrangements in that manifold are K(π, 1). We leave this as an open
question.

Remark 3.6.10. An important aspect that we did not discuss in detail is regarding
the strong lattice property. For simplicial arrangements of hyperplanes the poset
of chambers is a lattice for every choice of base chamber. Delucchi proves that the
existence of the Deligne normal form for hyperplane arrangements is equivalent to
strong the lattice property [23, Theorem 6.5.3] (see also [65]).

Remark 3.6.11. There are examples of submanifold arrangements in torus that are
neither flat nor simplicial but their associated Salvetti complex is aspherical. Our
future plan is to generalize the results proved in this section to these new settings.

3.7 Cohomology Calculations

The final section is devoted to the cohomology calculations. The aim is to find a
connection between the cohomology algebra of the tangent bundle complement and
the intersections of the submanifolds. We will make use of the fact that the tangent
bundle complement is a homotopy colimit as proved in Theorem 3.2.16. We will apply
the Bousfield-Kan spectral sequence to this data (refer Theorem 2.2.4). Before that
a result about the ring structure.

Let A be an arrangement of submanifolds in X and let L(A) be its intersection
poset (Definition 3.1.8). For every Y ∈ L(A) define

FY := {F ∈ F(A) | F ⊂ Y }
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Since Y is a closed subset of X, (Y,FY ) is a regular cell structure for Y . Let Y ∗

denote Y with the ‘dual’ cell structure given by F∗Y
⋃{C ∈ X∗0 | C ≺ F, ∀F ∈ F∗Y }.

Then Y ∗ is a regular cell complex homeomorphic to Y .

Lemma 3.7.1. For every Y ∈ L(A), the cell complex Y ∗ is a retract of Sal(A).

Proof. The map ιC defined in Theorem 3.3.6, by sending F 7→ [F, F ◦C], restricted to
Y ∗ is still an embedding. Also for the same reasons the map ψ : Sal(A)→ Y ∗ defined
by [F,C] 7→ F is a retraction.

In the context of cohomology the above result takes the following form.

Theorem 3.7.2. Let A be an arrangement of submanifolds in an l-manifold X. If
M(A) is the associated tangent bundle complement then H∗(M(A),Z) is a finitely
generated H∗(Y,Z) module for every Y ∈ L(A).

Proof. Since each Y is a retract of M(A) the claim follows from the fact that the
map induced in cohomology by the retraction is a injective ring homomorphism. In
particular it means that H∗(X,Z) is a subring of H∗(M(A),A) and that it need not
be generated in degree 1.

We would like to mention that we do not yet have an analogue of the Brieskorn-
Orlik-Solomon theorem (see Theorem 1.3.2) in this general context, it is work in
progress. However, in all our examples we observe that there is a finer grading of
the cohomology groups indexed by the Whitney numbers of the intersection poset.
This observation, which might serve as a generalization of Theorem 1.3.3, is stated
as a conjecture at the end of this section. In all our examples the spectral sequence
collapses (for dimension reasons) on E2 page (we do not have a proof yet). Also the 0-
th row of this page contains cohomology groups of the ambient manifold as suggested
by above Theorem 3.7.2.

Recall that in Theorem 3.2.16 it was proved that the Salvetti complex associated
to a tangent bundle complement is made up by gluing Salvetti complexes of local
(hyperplane) arrangements. Since the cohomology groups of a complexified real ar-
rangement are well known they will serve as an input to the Bousfield-Kan spectral
sequence. As we still lack a general theorem, in the rest of this section we explicitly
describe the spectral sequence calculations with the help of some examples. Finally
recall that for a poset P , its characteristic polynomial is defined as the finite sum∑

x∈P µ(0̂, x) · tr(x) and the absolute value of the coefficient of tk is called the k-th
Whitney number (of the second kind).

We start our examples with an arrangement in S1.



85 Cohomology Calculations

Example 3.7.3. Consider the arrangement of two points in a circle (Example 3.1.10).
At each point of the arrangement the local picture is like an arrangement of a point in a
line. Therefore the local Salvetti complex is homeomorphic to S1. The corresponding
diagram of spaces takes the following form

S1 S1

∗ ∗

p q

A B
diagram

The face poset above realizes a regular CW complex. We apply Theorem 2.2.4 to set
up the first page of the spectral sequence. The 0th column on the E1 page contains the
cohomology of 2 disjoint copies of S1 and the next column contains the cohomology of
2 disjoint points, with possibly only one non zero differential d0,0

1 : E0,0
1 → E1,0

1 . The
page is shown below

r

s

0 1

Z2 Z2

Z2 0

0

1

Let αp be the generator of H0(S1,Z) (the circle assigned to p). Note that the inclusion
∗ ↪→ S1 induces isomorphism on H0. Then using the formula for the differential we
see that

αp 7→ [p : A]f ∗Ap(αp) + [p : B]f ∗Bp(αp)

and there is a similar expression for d1(αq). Hence kernel and the image of d0,0
1 are

isomorphic to Z. Consequently, E0,0
2
∼= Z and E1,0

2
∼= Z and all of the differentials

are zero. The spectral sequence collapses at E2 and the cohomology ring of the
complement is

H∗(M(A),Z) ∼= Z[x1, x2, x3]

< x2
i = 0 >

, |xi| = 1 for i = 1, 2, 3

Also observe that the ranks of the cohomology groups in the first column (and on the
diagonal) of E2 are the Whitney numbers {1, 2} of the intersection poset.

We now move on to arrangements in S2.
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Example 3.7.4. Consider the arrangement of two circles in a sphere as in Example
3.1.11. At each of the two intersection points the local picture is of two lines in a
plane. Hence the local Salvetti complex is homeomorphic to S1 × S1. Similarly the
local Salvetti complex at each of the 4 arcs is homeomorphic to S1. The diagram of
spaces is

p1 p2

a1 a2 a3 a4

C1 C2 C3
C4

S1 × S1 S1 × S1

S1 S1 S1 S1

∗ ∗ ∗ ∗

Diagram

Now the first page of the spectral sequence is easy to setup, without going into details
we can see that it looks like

r

s

0 1

Z2
Z4

Z4 Z4

0

1

Z4

0

00Z2

2

2

We will leave it to the reader to workout the differentials of the 0th row. We will
calculate d0,1

1 . Let α13, α24 generate H1(D(p1)) and β13, β24 generate H1(D(p2)). Let
ψj generate H1(D(aj)) for 1 ≤ j ≤ 4. Recall that the inclusion S1 ↪→ S1×S1 induces
projection H1(S1 × S1)→ S1. Using this we have

d0,1
1 (α13) =

4∑

j=1

[p1 : aj]f
∗
ajp1

(α13)

= f ∗a1p1(α13) + f ∗a3p1(α13)

= ψ1 + ψ3

d0,1
1 (α24) = ψ2 + ψ4

There will be similar expressions for the other two generators, consequently we have

E0,1
2 = kerd0,1

1 =< α13 − β13, α24 − β24 >∼= Z2

The second page of the spectral sequence is shown below and it is not very difficult
to verify that the differential d0,1

2 is zero. Hence the spectral sequence collapses at E2.
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r

s

0 1

Z 0

Z2 Z2

0

1

Z

0

00Z2

2

2

Recall that in Example 3.3.5 we have seen that the tangent bundle complement has
the homotopy type of T 2∨S2∨S2∨S2∨S2. The Whitney numbers of the intersection
poset (Figure 3.2) are {1, 2, 2}. As observed in the previous example these numbers
can be seen as the ranks of the cohomology groups in the first column as well as the
groups on the diagonal. The 0th row of E2 contains the cohomology of S2 which is
consistent with Theorem 3.7.2.

Example 3.7.5. As a next example consider 3 circles arranged on S2 in general
position. The intersection poset and E2 page of the cohomology spectral sequence are
shown below.

Intersection poset

H i(M(A)) = {Z,Z3, Z10}

1

−1 −1

1 1

E2 page

r

s

0 1

Z 0

Z3 Z3

0

1

Z

0

00Z3 ⊕ Z3

2

2

11

-1

11

Even in this case the Whitney numbers {1, 3, 6} can be seen in the first column and
the diagonal of the E2 page.

Example 3.7.6. In this example we will look at the 3-sphere. Consider the arrange-
ment of 3 S2’s that intersect twice like coordinate hyperplanes in R3. The intersection
poset and the E2 page of the cohomology spectral sequence are shown below.
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Intersection poset

H∗(M(A)) ∼= H∗(T 3 ∨
(∨8S3))}

1

−1 −1

1

−1

E2 page

r

s

0 1

Z 0

Z3

Z3

0

1

Z

0

00Z ⊕ Z

2

2

−1

1

-1

1

Z3

Z30

0

0

0

0

3

3

Here M(A) ∼= T 3
∨

(∨8S
3) and the Whitney numbers appear on the E2 page.

Example 3.7.7. Finally let us look at the arrangement of circles on a 2-torus intro-
duced in Example 3.1.12. The E2 page of the cohomology spectral sequence is shown
below with the intersection poset.

E2 page

r

s

0 1

Z Z2

Z4 Z4

0

1

Z

0

00Z4

2

2

intersection poset1

−1 −1

1 1

−1 −1

1 1

Without going into of details we mention that the homotopy type of the tangent
bundle complement is (S1∨S1∨S1)× (S1∨S1∨S1). In fact, this is not very hard to
see. Observe that this arrangement is a product of two arrangements in S1. Both are
the arrangements of 2 points in S1 (Example 3.1.10). As the tangent bundle of a torus
is the product of two infinite cylinders (∼= TS1) the conclusion follows. Finally, the
ranks of the groups in the first column and on the diagonal are the Whitney numbers
{1, 4, 4}. The groups in the 0th row are the cohomology groups of the torus.

Based on the calculations presented in this section, a theorem proved in the next
section and a result in [19, Theorem 4.2] we propose the following conjecture.

Conjecture 3.7.8. Let A be a submanifold arrangement in an orientable l-manifold
X and let M(A) be the associated tangent bundle complement. If L(A) is the inter-
section poset then

rank(H i(M(A),Z)) =
∑

Y ∈L(A)
0≤rk(Y )≤i

rank(H i−rk(Y )(
∐

|µ(X,Y )|

Y,Z)) 0 ≤ i ≤ l
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where µ is the Möbius function of L(A) and rk(Y ) is the codimension of the corre-
sponding intersection.

Lemma 3.7.9. Let A be an arrangement of real hyperplanes in Rl and M(A) be
the associated complexified complement. Then the Conjecture 3.7.8 is satisfied for
H∗(M(A),Z).

Proof. Follows from Theorem 3.72 and Proposition 3.75 of [62].



Chapter 4

Arrangements of Spheres and Tori

In this chapter we consider some specific examples of submanifold arrangements. We
examine arrangements in spheres, projective spaces and tori. Our aim, as before, is
to study the relationship between the combinatorics of the arrangement, geometry of
the ambient manifold and the topology of the tangent bundle complement. We will
apply the theory developed in Chapter 3 to arrangements in these manifolds. We
obtain some specific information about the tangent bundle complement.

The chapter is divided into two sections. In Section 4.1 we look at arrangements of
spheres. We start by defining a codimension 1 sub-sphere. It is well known that there
are infinitely many embeddings of a codimension 1 sphere in a sphere [72, Section 2.6].
In order to avoid pathologies and subtleties we restrict our attention to so-called tame
sub-spheres [72, Section 1.8]. Our first theorem is to characterize flat arrangements
(Definition 3.5.7). The main theorem of this section is about the homotopy type of
the tangent bundle complement. We prove that the complement contains a wedge of
equi-dimensional spheres and obtain a closed form formula for its homotopy type. We
then move on to arrangements in projective spaces. Using the fact that a sphere is
the universal covering space of a projective space we analyze the homotopy type of
the tangent bundle complement.

In Section 4.2 we study arrangements in tori. Recently these arrangements have
received a lot of attention. Usually these arrangements are defined in a complex (or
an algebraic) torus. The members of such an arrangement are the kernels of some
homomorphisms, which are of real codimension 2 in the given complex torus. We
start by defining arrangements in a real (or compact) torus. Then we show that
the tangent bundle complement is homeomorphic to the complement of a complex
toric arrangement. This situation is analogous to hyperplane arrangements in the
sense that the complexified complement and the tangent bundle complement coincide.
Consequently, we have the Salvetti complex construction for toric arrangements (see
also [61] and [17] for an alternate treatment).

90
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4.1 Arrangements of Spheres

As stated in the introduction, the codimension 1 sub-spheres in a sphere could be
very difficult to deal with. Hence we restrict our selves to a nice class of spheres.

Definition 4.1.1. Let Sl denote the unit sphere in Rl+1, a subset S of the unit sphere
is called a hypersphere if and only if it is neither empty nor singleton and S = H ∩Sl
for some (affine) hyperplane H in Rl+1.

An important property, that will be relevant to us, is that for Sl(l ≥ 2) the com-
plement of a hypersphere contains exactly two connected components homeomorphic
to an open ball (this follows from Lemma 3.1.1).

Definition 4.1.2. An arrangement of spheres in the unit sphere Sl is a finite collection
A = {S1, . . . , Sk} of hyperspheres satisfying the following conditions:

1. AI := ∩i∈ISi is a sphere of some dimension, for all I ⊆ {1, . . . , k}.

2. If AI * Si, for some I and i ∈ {1, . . . , k}, then AI ∩ Si is a hypersphere in AI .

3. The hyperspheres in A decompose Sl into a regular cell complex.

If all the hyperspheres are obtained by intersecting with the linear hyperplanes then
we call such an arrangement a centrally symmetric arrangement of spheres.

We assume that the empty set is the unit sphere of dimension −1 and that S0

consists of two points. For S ∈ A let HS denote the hyperplane in Rl+1 such that
S = HS ∩ Sl. Also because of the above definition all the sphere arrangements we
consider satisfy the following non-degeneracy condition

dim(AI) < dim(∩S∈AIHS) for every non-empty subset I.

Lemma 4.1.3. An arrangement spheres is an arrangement of submanifolds, i.e., it
satisfies the 3 conditions of Definition 3.1.7.

Proof. Observe that whenever these hyperspheres intersect they intersect like hyper-
planes. This is because each intersection is an intersection of some hyperplanes with
the unit sphere. In dimension 1 the hypersphere S0 contains 2 points and its comple-
ment has exactly 2 connected complements. In higher dimensions every hypersphere
is separating. Finally the regular cell complex condition is part of the definition.

First we look at arrangements in S1. An arrangement in S1 consists of n copies
of S0, i.e. 2n points. The tangent bundle complement of such an arrangement is
homeomorphic to the infinite cylinder with 2n punctures. Thus we have the following
theorem.
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Theorem 4.1.4. Let A be an arrangement of 0-spheres in S1. If |A| = n then

M(A) '
∨

2n+1

S1.

From now on we assume that all our spheres are simply connected. Let A denote
an arrangement of spheres in Sl. Then Sl is not a K(π, 1) space and consequently the
associated tangent bundle complement M(A) is also not K(π, 1) (by Lemma 3.6.1).
However our aim is to understand more about the topology of M(A) by studying
the associated Salvetti complex Sal(A). Since Sl is simply connected it follows from
Theorem 3.5.5 that the minimal positive paths with same end points in the associated
arrangement graph G(A) are relative homotopic in Sal(A). If we can show that two
such paths are the same under the positive equivalence (given by Definition 3.4.2).
It follows that the hypersphere arrangements are flat. Recall that by Definition 3.5.7
for flat arrangements the restriction of the canonical functor J : G+(A)→ G(A) to the
class of minimal positive paths is faithful.

Theorem 4.1.5. Let A be a centrally symmetric arrangement of spheres in Sl(l ≥ 2)
then it is a flat arrangement.

Proof. We already know that if α, β are two minimal positive paths with the same end
points then [α] = [β] in G(A). Hence it is enough to show that [α]+ = [β]+. We argue
on the lines of the proof of [74, Theorem 20]. Since each S ∈ A is centrally symmetric
around the origin the antipodal map induces a fixed point free cellular action on the
faces of A.

Suppose α = (a1, . . . , an) and β = (b1, . . . , bn) are two minimal positive paths in
G(A) that start at C and end at D. We proceed by induction on n, cases n = 0, 1
being trivial. Assume that the statement is true for all minimal positive paths with
same end points and of length strictly less than n. If a1 = b1 then we are done by
induction. Hence assume that a1, b1 are distinct and are dual to the hyperspheres
Sa, Sb respectively.

We have that Sa, Sb ∈ R(C,D) (the set of hyperspheres separating C and D) and
Sa ∩ Sb ∼= Sl−2, since both these hyperspheres are equatorial. For every S ∈ A let
XS(C,D) denote the closures of the connected components of Sl \ S that contain
either C or D (or both) and let H(C,D) = ∩S∈AXS(C,D). Note that if S ∈ R(C,D)
then XS(C,D) contains closures of both the components of Sl \S. On the other hand
if S /∈ R(C,D) then XS(C,D) is homeomorphic to the l-disk Dl.

Claim 1: The set H(C,D) is either connected or empty.
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H(C,D) = ∩S∈AXS(C,D)

= (∩S∈R(C,D)XS(C,D)) ∩ (∩S/∈R(C,D)XS(C,D))

= (∩S∈R(C,D)S) ∩ (∩S/∈R(C,D)Dl)

The definition of sphere arrangements implies that the first intersection is either
a sphere of some finite dimension or it is empty. Hence the set H(C,D) is either
homeomorphic to some closed disk (of possibly lower dimension) or it is empty.

Claim 2: If H(C,D) 6= ∅ then H(C,D) ∩ Sa ∩ Sb 6= ∅.
Let S+

a , S
−
a (respectively S+

b , S
−
b ) denote the (closures of the) connected components

of Sa \ (Sa ∩ Sb) (respectively Sb \ (Sa ∩ Sb)). Without loss of generality assume that
S+
a and S+

b intersect C. This implies

H(C,D) ∩ S+
a 6= ∅ 6= H(C,D) ∩ S+

b .

A similar argument using D establishes the claim.

Hence the set H(C,D)∩Sa∩Sb contains a codimension 2 face say F 2. Let C ′ denote
F 2 ∗ C. Since A is an arrangement of submanifolds there exists a minimal positive
path γ0 from C ′ to D. Also, there exist two minimal positive paths γ1, γ2 such that
γ1 starts at a1 ◦ C and γ2 starts at b1 ◦ C such that both of them end at C ′. Using
this we can construct two new minimal positive paths η = a1γ1γ0 and η′ = b1γ2γ0.
The paths α, η are minimal positive with the same end points and share the same
first edge. Hence by induction, [α]+ = [η]+. For the same reasons [β]+ = [η′]+. If
C ′ 6= D then the path γ0 is of nonzero length and again by induction [a1γ1]+ = [b1γ2]+
implying [η]+ = [η′]+. Now the transitivity of the equivalence relation establishes the
claim.

The cases in which either C ′ = D or H(C,D) = ∅ can be treated similarly.

One more obvious property of a centrally symmetric sphere arrangement is the
following.

Lemma 4.1.6. Let A be a centrally symmetric sphere arrangement in Sl then A has
the involution property.

Proof. The antipodal action on Sl provides the required graph automorphism on the
1-skeleton of the associated Salvetti complex.

Now onwards we focus only on centrally symmetric arrangements in spheres of
dimension ≥ 2.
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Theorem 4.1.7. If A is a centrally symmetric, simplicial arrangement of spheres
in Sl then the associated canonical functor J is faithful and the positive category G+

admits the Deligne normal form. Also, the word problem for π1(M(A)) is solvable.

Proof. All these claims follow from the results proved in previous chapter. In partic-
ular Corollary 3.5.15 and Lemma 3.6.6 imply that the functor J is faithful and the
positive category admits the Deligne normal form. The word problem for the funda-
mental group is solvable because the hypothesis of Theorem 3.5.16 is satisfied.

Remark 4.1.8. We have already noted that arrangements in a sphere are never K(π, 1).
This can also be seen by observing that the strong contraction property (Definition
3.5.16) is not satisfied by such arrangements.

We now proceed to analyze the homotopy type of the tangent bundle comple-
ment associated with a centrally symmetric arrangement of spheres. We say that two
arrangements are combinatorially isomorphic if their corresponding face posets and
intersection posets are isomorphic.

Lemma 4.1.9. Given a centrally symmetric sphere arrangement A in Sl there exists a
generic hypersphere S0 such that S0 intersects every member of A in general position.
Let S+

0 , S
−
0 denote the connected components of Sl \S0 and A+ := A|S+

0 , A− := A|S−0
be the restricted arrangements. Then A+ and A− are combinatorially isomorphic
arrangements of hyperplanes in S+

0 and S−0 (both ∼= Rl) respectively.

Proof. Since the arrangement is centrally symmetric each individual hypersphere in A

is invariant under the antipodal mapping x 7→ −x of Sl. For every S ∈ A let a(S) :=
S/(x ∼ −x) ∼= Pl−1, let S0 be the equator with respect to this action and let S+

0 , S
−
0

denote the hemispheres whose boundary is S0. This equator S0 generically intersects
with every S and a(S) \ (S0 ∩ a(S)) is a hyperplane contained in S+

0
∼= Rl. Under

this correspondence an intersection of hyperspheres is mapped to the intersection of
hyperplanes. The restrictions of the arrangement to the hemispheres S+

0 and S−0 gives
us two hyperplane arrangements in Rl which are combinatorially isomorphic.

Here are two well known facts that we will use later.

Lemma 4.1.10. If (Y,A) is a CW pair such that the inclusion A ↪→ Y is null
homotopic then Y/A ' Y ∨ SA, where SA is the suspension of A.

Proof. See [44, Chapter 0].

Lemma 4.1.11. Let B be an essential and affine arrangement of hyperplanes in
Rl. Then the cell complex which is dual to the induced stratification is regular and
homeomorphic to a closed ball of dimension l.
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Proof. See [73, Lemma 9]. In particular this ball is a MH-complex.

Now the main theorem of this section.

Theorem 4.1.12. Let A be a centrally symmetric arrangement of spheres in Sl. Let
A+ and A− be the hyperplane arrangements as in Lemma 4.1.9 and C(A+) be the set
of its chambers. Then the tangent bundle complement

M(A) ' Sal(A−) ∨
∨

|C(A+)|

Sl.

Proof. Let C ∈ C(A+) and let Q denote the dual cell complex (S+
0 ,F

∗(A+)). Define
the map ι+C as follows:

ι+C : Q ↪→ Sal(A)

F 7→ [F, F ◦ C]

Claim 1: The image of ι+C , in Sal(A), is homeomorphic to Q (which is a closed
ball of dimension l).

Observe that ι+C is just the restriction of the map ιC , defined in Theorem 3.3.6,
which is an embedding of Sl into M(A). Hence ι+C maps Q homeomorphically onto
its image.

Hence ι+C is the characteristic map which attaches the boundary ∂Q to the (l−1)-
skeleton of Sal(A−). For notational simplicity let jC denote the restriction of ι+C to ∂Q.

Claim 2: The image of jC is also the boundary of an l-cell in Sal(A−).
Consider the subcomplex of Sal(A−) given by the cells {[F, F ◦ C] | F ∈ F∗(A−)}.
By Lemma 4.1.10 above this subcomplex is homeomorphic to the closed l-ball. The
boundary of this closed ball is precisely the image of jC .

Therefore the characteristic map ι+C is the extension of jC to the cone over ∂Q
(which is Q). Hence jC is null homotopic. Applying the above arguments to every
chamber of A+ establishes the theorem.

We state the following obvious corollary for the sake of completeness.

Corollary 4.1.13. Let A be a centrally symmetric arrangement of spheres in Sl.
With the notation as in Lemma 4.1.9 we have:

π1(M(A)) ∼= π1(M(A−)).
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Example 4.1.14. Consider the arrangement of 2 circles in S2 introduced in Example
3.1.11. It is clear that the arrangement A− in this case is the arrangement of two
lines in R2 that intersect in a single point. Hence

M(A) ' T 2 ∨ S2 ∨ S2 ∨ S2 ∨ S2.

The Salvetti complex consists of four 0-cells, eight 1-cells and eight 2-cells, see Figure
3.8. The T 2 component in the above formula corresponds to M(A−) and the spheres
correspond to chambers of this arrangement.

Example 4.1.15. Consider the arrangement of three circles in S2 that intersect in
general position. This arrangement arises as the intersection of S2 with the coordinate
hyperplanes in R3. In this case A− is the arrangement of three lines in general position.
Thus

M(A) ' Sal(A+)
∨
∨7S

2.

Let us compare this with the cohomology calculations done in Example 3.7.5. The first
column of the E2 page contains the cohomology (ring) of of M(A−). To be precise,
the cohomology groups of Sal(A−) are {Z,Z3,Z3} the seven extra cohomology classes
in degree 2 correspond to seven copies of S2.

Example 4.1.16. Finally, consider the arrangement of three S2s in S3 that intersect
like co-ordinate hyperplanes in R3 (Example 3.7.6). The A− in this case is the arrange-
ment of co-ordinate hyperplanes hence Sal(A−) ' T 3, the 3-torus. This arrangement
has 8 chambers. So we have the following

M(A) ' T 3
∨
∨8S

2.

We now establish a relationship between the cohomology of the tangent bundle
complement and the intersection poset. Let A be a centrally symmetric arrangement
of spheres in Sl, let A+ be the affine hyperplane arrangement in the positive hemi-
sphere. Let L and L+ denote the corresponding intersection posets. Observe that the
map from L to L+ that sends Y ∈ L to Y |S+

0 =: Y + is one-to-one up to rank l− 1. If
Ll−1 and L+

l−1 denote the sub-posets consisting of elements of rank less than or equal
to l − 1 then the previous map is a poset isomorphism. For notational simplicity we
use M− for M(A−).

Theorem 4.1.17. With the notation above, we have the following

rank(H i(M,Z)) =





∑
Y ∈L

rk(Y )=i
|µ(Sl, Y )| for 0 ≤ i < l

∑
Y ∈L |µ(Sl, Y )| for i = l

Where µ is the Möbius function of the intersection poset.
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Proof. We use Theorem 4.1.12 above and Lemma 3.7.9 in order to prove the assertion
by considering two cases.
Case 1: i < l

rank(H i(M)) = rank(H i(M−)) +
∑

|C(A+)|

rank(H i(Sl))

= rank(H i(M+)) + 0

=
∑

rk(Y −)=i

rank(H0(
∐

|µ(Y −)|

Y −))

=
∑

rk(Y )=i

rank(H0(
∐

|µ(Y )|

Y ))

=
∑

rk(Y )=i

|µ(Sl, Y )|

The last equality follows from the fact that each Y is a sphere of dimension l − i.
Case 2: i = l

rank(H l(M)) = rank(H l(M−)) +
∑

|C(A+)|

rank(H l(Sl))

=
∑

rk(Y −)=l

|µ(Y −)|+ |C(A+)|

=
∑

rk(Y −)=l

|µ(Y −)|+
∑

Y +∈L+

|µ(Y +)|

=
∑

Y ∈L

|µ(Y )|

The third equality follows from the expression for the number of chambers of an
affine hyperplane arrangement. The last equality is true because the number of rank
l elements in L are twice the corresponding number in L−.

In particular the above theorem verifies the Conjecture 3.7.8 for sphere arrange-
ments. The coholomogy ring of the tangent bundle complement in this case can be
expressed as a direct sum of an Orlik-Solomon algebra and some top dimensional
classes. The number of these top dimensional classes is equal to the number of graded
pieces in the Orlik-Solomon algebra. If A is a centrally symmetric arrangement of
spheres then one might call the cohomology algebra H∗(M(A),Z) the spherical Orlik-
Solomon algebra.
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Next we consider the arrangements in projective spaces. Given a finite dimen-
sional real projective space Pl we consider a finite collection of subspaces that are
homeomorphic to Pl−1. We define the projective arrangements as follows.

Definition 4.1.18. Let Pl denote the l-dimensional projective space and a : Sl → Pl
be the antipodal map. A finite collection A = {H1, . . . , Hn} of codimension 1 projec-
tive spaces is called an arrangement of projective spaces (or a projective arrangement)
if and only if Ã = {a−1(H) | H ∈ A} is a centrally symmetric arrangement of spheres
in Sl.

It is not hard to see that the above defined arrangements are indeed arrangements
of submanifolds. The homotopy type of the tangent bundle complement associated
to a projective arrangement is easier to understand because of the antipodal action.

Theorem 4.1.19. Let A be a projective arrangement in Pl and Ã be the corresponding
centrally symmetric sphere arrangement in Sl. Then the antipodal map on the sphere
extends to its tangent bundle and

M(A) ∼= M(Ã)/((x, v) ∼ a(x, v)).

Proof. If (x, v) is a point in the tangent bundle of Sl extend the antipodal map in
the obvious way, a(x, v) = (−x, v). We now prove that the space M(Ã) is a covering
space of M(A). This follows from the fact that a : TSl → TPl is a covering map for
every l. Note that the antipodal map is also cellular on the faces of the arrangement.

Consequently it induces a cellular map on Sal(Ã) by sending a cell [F,C] to
[a(F ), a(C)]. Hence we get a cell structure for Sal(A). In particular the tangent bun-
dle complement associated to a projective arrangement contains a wedge of projective
spaces. Hence there is a torsion in the homology as well as the fundamental group
of the tangent bundle complement. Moreover π1(M(Ã)) is an index 2 subgroup of
π1(M(A)).

Example 4.1.20. Consider a projective arrangement A in P2 corresponding to the
arrangement of 2 circles in S2 (Example 3.1.11). In this projective arrangement we
have two P1’s intersecting in a point and there are two chambers. Taking the quotient
as above of the space obtained in Example 4.1.14 we get the following

M(A) ' K ∨ P2 ∨ P2

where K denotes the Klein bottle. Recall that the 2-torus is a two-fold cover of the
Klein bottle.
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Given a projective arrangement A let J : G+ → G denote the canonical functor
between the positive category and the arrangement groupoid. For the correspond-
ing (centrally symmetric) sphere arrangement Ã let J̃ : G̃+ → G̃ be the associated
canonical functor. Because of the antipodal action on Sn the arrangement Ã has the
involution property (Definition 3.5.8). It follows from Lemma 3.5.13 that this action
induces an ‘antipodal’ functor on G+. Recall that under this functor an object C
(which is a chamber) is mapped to its antipodal (chamber) C# and a morphism [α]
is mapped to [α#].

Lemma 4.1.21. With the notation as above the following diagram commutes:

G̃+ J̃−−−→ G̃

Φ+

y
yΦ

G+ J−−−→ G

where the functor Φ+ identifies antipodal objects and morphisms and Φ is the covering
functor.

Proof. Follows from a simple diagram chase and the fact that Sl is the universal cover
of RP l.

An immediate consequence of the lemma is -

Corollary 4.1.22. The restriction of J to the class of minimal positive paths is
faithful and the word problem for π1(M(A)) is solvable. Moreover if A is a simplicial
arrangement then J is faithful.

Proof. The first statement follows from the commutativity of the diagram in the
previous lemma. If [α]+ is a class of minimal positive path in G+ then the class
representing either of α’s lift is also minimal positive in G̃+. If there are two distinct
classes of minimal positive paths then first applying J̃ to their lifts in G̃+ and then
applying applying Φ results in producing two distinct classes of minimal positive paths
in G. By the same argument if J̃ is faithful then J is also faithful.

Let us see why the word problem is solvable. Let [α] be a loop based at a vertex
C in G. Let [α̃] be the class representing a loop based at C̃ (a vertex in the fiber over
C). Then by statement 3 in Lemma 3.5.14 we have the following

[α̃] = [δ−n(C̃)][α̃′]

where δ−n(C̃) = µ(C̃ → C̃#)µ(C̃# → C̃) and α̃′ is a positive loop based at C̃. Since
Φ is the covering functor, Φ([δ−n(C̃)]) = [δ−2n(C)] here δ(C) is a positive loop based
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at C which traverses every vertex twice. Let [α′] be the image Φ([α̃′]), it represents a
class positive loop based at C. Note that choosing another lift of α that is based at the
antipodal point C̃# does not make any difference. Hence we have proved that any loop
in Sal(A) can be expressed as a composition of a ‘special loop’ (which traverses each
vertex a fixed number of times) and a positive loop. Now the same argument as in the
proof of Theorem 3.5.16 shows that the word problem for π1(M(A)) is solvable.

Remark 4.1.23. From the commutativity of the above diagram it follows that G+ ad-
mits the Deligne normal form whenever G̃+ does. It also suggests that the ‘simple
connectedness’ requirement in the definition of a flat arrangement might be unneces-
sary.

4.2 Toric Arrangements

In this section we study the arrangements in a torus. These type of arrangements
are of interest because of their deep connections to diverse fields like algebraic groups,
integral polytopes, approximation theory etc. To the best of our knowledge the idea of
toric arrangements can be traced back to a paper of Lehrer [51]. However an explicit
study of toric arrangements started with the work of Douglas in [26]. Analogous to
hyperplane arrangements he defined arrangements in an algebraic torus. His main aim
was to study the associated derivations of the co-ordinate ring. He characterized the
arrangements for which the derivations localized at the identity form a free module
over the (localized) co-ordinate ring. His student Sawyer [75] extended Brieskorn’s
theorem using the earlier work of Jozsa and Rice [47]. In particular she showed that the
(complex) cohomology algebra of the complement of a toric arrangement is generated
by certain degree 1 logarithmic forms (see [75, Theorem 5.2]). Extending the work
of Douglas, Macmeiken derived conditions under which the module of derivations
associated to a toric arrangement is a free module over the co-ordinate ring [54].

Probably the most influential work on this subject has appeared in the paper [19]
of De Concini and Procesi. They computed cohomology groups of (the complement
of) toric arrangements using the theory of D-modules and no-broken circuits. They
used these results to derive counting formulas for the number of integer points in a
parametrized polytope. An extensive account of their work and its applications to
approximation theory and box splines can be found in their book [20]. Moci has gen-
eralized the wonderful compactification for complements of toric arrangements in [60].
In [59] Moci describes a new polynomial, called the multiplicity Tutte polynomial, for
toric arrangements. Similar to the case of hyperplane arrangements, this polynomial
counts the number of chambers, gives Poincaré polynomial of the complex complement
and the characteristic polynomial of the intersection poset. Some other applications
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to approximation theory and zonotopes are also discussed. He also studies the toric
arrangements defined by root systems in [58]. Recently Moci and Settepanella have
generalized the construction of Salvetti complex for toric arrangements in [61]. Build-
ing up on their work in [80], Settepanella proves that the integral cohomology groups
of the complement of the toric arrangement defined by an affine Weyl group are torsion
free.

However arrangements in a real (or compact) torus have received very little at-
tention. The paper [30], by Ehrenborg, Readdy and Slone does an extensive study
of real toric arrangements from a combinatorial point of view. For example, they
generalize Zaslavsky’s theorem (see [30, Theorem 3.6]) and obtain a toric version of
Bayer-Sturmfels result for hyperplane arrangements. They also compute the ab-index
of the associated face poset. We now end the literature survey and move on to our
work. We start by defining arrangements in a real torus. Then we find an obvious
relation between the tangent bundle complement of a real toric arrangement and the
complement of a complex toric arrangements. Using this relationship we construct
the Salvetti complex for toric arrangements.

Let S1 ↪→ C∗ denote the circle group whose every element is given by the expression
e2πiθ, θ ∈ R. The l-dimensional torus denoted by T l is the l-fold product of S1

with itself. An element of the jth component of S1 ↪→ T l will be denoted by rj.
There is a natural projection map (in fact a covering map) p : Rl → T l given by
(x1, . . . , xl) 7→ (e2πix1 , . . . , e2πixl). This map is equivalent to the covering space action
of Zl on Rl by translation. The fundamental domain with respect to this action is
the (open) l-cube [0, 1)l. Under this covering map every codimension 1 (rational)
subspace of Rl is mapped to a codimension 1 subtorus (which we sometimes refer
to as a toric hyperplane) of T l. The inverse image of a toric hyperplane consists of
(rational) translates of a codimension 1 subspaces of Rl. As a matter of fact the image
of a (rational) k-subspace of Rl under the covering map is homeomorphic to a k-torus
in T l. Now we define what we mean by a toric arrangement.

Definition 4.2.1. Let T l be the l-torus, a toric arrangement is a collection A =
{N1, . . . , Nn} of finitely many codimension 1 subtori (toric hyperplanes). Moreover
the collection A satisfies the axioms of a submanifold arrangement.

A toric hyperplane also corresponds to the kernel of a group homomorphism
φ : T l → S1. For example, given a 2-dimensional torus T 2 the kernel of the homo-
morphism r2

1 = 1 is a toric hyperplane having 2 connected components. Also, when
two toric hyperplanes intersect the intersection need not be connected. In general for
two subspaces V,W ⊂ Rl, we have that p(V ∩W ) ⊆ p(V ) ∩ p(W ) and this contain-
ment could be strict. Without loss of generality assume that dim(V ) = dim(W ) = k.
The inverse image p−1(p(V )) consists of V and its (rational) translates. The inter-
section of p−1(p(V )) ∩ p−1(p(W )) with the fundamental region [0, 1)l is disconnected
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and consists of finitely many translates of V ∩W , say n. As the subspace V ∩W is
(k − 1)-dimensional the image p(V ∩W ) is homeomorphic to disjoint copies of T k−1.
Moreover we have the following:

p(V ) ∩ p(W ) =
n⋃

i=1

p(ai + (V ∩W ))

where each ai ∈ [0, 1)l (we may assume that a1 = (0, . . . , 0)) and each connected
component is homeomorphic to T k−1. In group theoretic terms the intersection can
be expressed as Zn × T k−1.

Now we define the toric arrangements from a complex perspective. Let (C∗)l
denote the complex l-torus, which is an algebraic group under multiplication. A
rational character is an algebraic group homomorphism χ : (C∗)l → C∗. The kernel of
such a character is a hypersurface in (C∗)l. A complex toric arrangement in (C∗)l is
a finite collection AC = {ker(χ1), . . . , ker(χn)} of kernels of rational characters. The
complement of such an arrangement is defined as

R(AC) := (C∗)l \
n⋃

i=1

ker(χi).

The co-ordinate ring of the complex torus is given by C[z±1
1 , . . . , z±1

l ] (which is a
unique factorization domain). Then it is well known that a character χ is of the form
χ = zn1

1 · · · znll where each ni ∈ Z. As before let p : Cl → (C∗)l be the universal cover.
The inverse image of the kernel of a rational character is a family of infinite, parallel
hyperplanes in Cl. The defining equations of these hyperplanes are:

{n1z1 + · · ·+ nlzl = m | m ∈ Z}

Since the ring of (complex) Laurent polynomials is a UFD each character can be
uniquely expressed as a product of irreducible factors. For example, the irreducible
factors of a character χ − 1 are of the form (χ′i − µi) where χ′i is again a character
with a connected kernel and µi is an n-th root of unity for some n. Hence given
a complex toric arrangement AC consider a new arrangement A′C which consists of
distinct irreducible characters that come from factors of the characters in AC. From
the combinatorial and topological viewpoint nothing has changed.

From now on, without loss of generality, we assume that all our complex toric
arrangements consist of irreducible characters. Let AC = {ker(χ′1), . . . , ker(χ′n)} be
such a complex toric arrangement in (C∗)l (here ker(χ′i) = {z ∈ (C∗)l | χ′i(z) = µi}).
Since there is a natural (topological) embedding T l ↪→ (C∗)l for every complex toric
arrangement there is a unique real toric arrangement in T l. This arrangement is given
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by A = {ker(χ′1) ∩ T l, . . . , ker(χ′n) ∩ T l}. Moreover if we denote ker(χ′j) ∩ T l by Nj

then

p−1(Nj) = {n1x1 + · · ·+ n1xl = θj +m | m ∈ Z}
where θj ∈ [0, 1) and eiθj = µj. We refer to A as the associated real (toric)

arrangement. Conversely given a real toric arrangement in T l we can define the
associated complex (toric) arrangement in (C∗)l by extension of scalers.

Lemma 4.2.2. Let AC be a complex toric arrangement in (C∗)l and let A be the
associated real arrangement in T l. If M(A) denotes the tangent bundle complement
then

R(AC) ∼= M(A)

Proof. We start by analyzing the tangent bundle of a real torus. In dimension 1, the
tangent bundle of S1 (is trivial) is the infinite cylinder S1×R. The infinite cylinder is
homeomorphic (biholomorphic, to be precise) to C∗. If every element of the tangent
bundle is given by (e2πiθ, v) then the homeomorphism can be given by

(e2πiθ, v) 7→ ev(cos(2πθ) + i sin(2πθ)).

Extending this homeomorphism to the tangent bundle of T l we get that it is homeo-
morphic to (C∗)l, the complex l-torus. We denote this homeomorphism by

hl : T
l × Rl ∼=→ (C∗)l.

Since hl(
⋃n
i=1 TNi) ∼=

⋃n
i=1 ker(χi) the desired homeomorphism between M(A)

and R(AC) is given by (x, v) 7→ hl(x, v).

Remark 4.2.3. Given a real toric arrangement A in T l there corresponds an arrange-
ment of periodic hyperplanes Ã in Rl. The hyperplanes in Ã can be grouped in to a
finite family of parallel hyperplanes. The complexification of these hyperplanes gives
us an arrangement of periodic hyperplanes in Cl. Under the covering map these hy-
perplanes are mapped to finitely many codimension 1 subtori in (C∗)l. Intersection
of each of these subtori with the compact torus gives the arrangement in T l that we
started with.

As a consequence of the above Lemma 4.2.2 we have the following theorem.

Theorem 4.2.4. Let AC be a complex tori arrangement in (C∗)l and let A denote
the corresponding real arrangement in T l. Also assume that (T l,F(A)) is a regular
CW-complex. If Sal(A) is the associated Salvetti complex then

M(AC) ' Sal(A).



4. Arrangements of Spheres and Tori 104

Remark 4.2.5. The requirement that (T l,F(A)) is a regular CW-complex is not very
restrictive. In fact the quotient map p : (Rl,F(Ã)) → (T l,F(A)) is injective on the
faces if and only if (T l,F(A)) is a regular CW-complex. Recently d’Antonio and
Delucchi have dealt the ‘non-regular’ case using nerves of acyclic categories in [17].

Remark 4.2.6. By Theorem 3.7.2 we know that the cohomology ring of the tangent
bundle complement contains H∗(T k,Z) as a subring for every 0 ≤ k ≤ l. Also by
Corollary 3.5.18 it is clear that π1(M(A)) is isomorphic to the free product of Zl with
another subgroup.



Chapter 5

Arrangements of
Pseudohyperplanes

In this chapter we study arrangements of pseudohyperplanes (hyperplanes that are
topologically deformed in some mild way). As explained in Section 1.5 oriented ma-
troids are intimately connected to hyperplane arrangements. The faces of a hyperplane
arrangement satisfy covector axioms of an oriented matroid. The oriented matroids
which correspond to faces of a hyperplane arrangement are known as the realizable
oriented matroids. There are oriented matroids that do not correspond to hyperplane
arrangements (e.g. non-Pappus configuration). Hence for a long time an important
question in this field was to come up with the right topological model for oriented
matroids. This was settled by Folkman and Lawrence in [34]. The Folkman-Lawrence
Topological Representation Theorem states that oriented matroids are completely re-
alizable in terms of geometric topology: they may not correspond to real hyperplane
arrangements, but they correspond to certain collections of topological spheres and
balls (i.e. arrangements of pseudo-hemispheres). These pseudo arrangements not only
create oriented matroids in the same way that Rl and collections of half spaces create
an obvious combinatorial structure but there is a one-to-one correspondence between
such arrangements and the oriented matroids. In his thesis Mandel [55] introduced
“sphere systems” that simplified some aspects of the pseudo-hemisphere arrangements
and also proved the stronger piecewise linear version of the representation theorem.

In his thesis Ziegler [94, Section 5.5] extended the definition of the Salvetti com-
plex in the context of arbitrary oriented matroids. To every oriented matroid one
can associate a simplicial complex and in case of a realizable oriented matroid this
complex has the homotopy type of the complexified complement of the corresponding
hyperplane arrangement. In their paper Gel’fand and Rybnikov [39] studied the Sal-
vetti complex for arbitrary oriented matroids and showed that the cohomology ring
of this complex is isomorphic to the Orlik-Solomon algebra of the associated lattice

105
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of flats (see also [7]). This result not only extends the classical theorem of Brieskorn
and Orlik-Solomon but also gives a completely combinatorial proof. For a more direct
approach via discrete Morse theory see [25, Prop. 2, Lemma 5.10], but this result
only proves additive isomorphism.

An important thing missing in this study is a 2l-dimensional space naturally as-
sociated with the pseudo arrangements that has the homotopy type of the associated
Salvetti complex, i.e. a generalization of the complexified complement. The aim of
this chapter is to introduce such a space.

In Section 5.1 we quickly review the oriented matroids and the topological rep-
resentation theorem. In order to avoid undue topological subtleties we restrict our
attention to pseudosphere arrangements in the standard unit sphere. We prove that
to every such pseudosphere arrangement there corresponds an arrangement of topo-
logically deformed hyperplanes (pseudohyperplanes) in the ambient Euclidean space.

In Section 5.2 we first associate a connected subset of R2l to an arrangement of
pseudohyperplanes. We then proceed to prove that the spine of this space is the
Salvetti complex of the corresponding oriented matroid. Finally we apply some of the
theorems proved in Chapter 3 to this setting.

5.1 Topological Representation Theorem

Let E = {1, . . . , n} be the finite ground set for some n > 0. A sign vector is a function
X : E → {+, 0,−}, i.e., an assignment of signs to each element of E. The set of all
possible possible sign vectors is denoted by {+, 0,−}E and Xe stands for X(e) for all
e ∈ E.

Definition 5.1.1. A set L ⊂ {−, 0,+}E is the set of covectors of an oriented matroid
if and only if it satisfies:

(V0) 0 ∈ L,

(V1) X ∈ L⇒ −X ∈ L,

(V2) X, Y ∈ L⇒ X ◦ Y ∈ L,

(V3) if X, Y ∈ L and e ∈ S(X, Y ) then there exists Z ∈ L such that Ze = 0 and
Zf = (X ◦ Y )f = (Y ◦X)f for all f /∈ S(X, Y ).

Here 0 = (0, . . . , 0), −X is the opposite sign vector defined by (−X)e = −(Xe)
and S(X, Y ) = {e ∈ E | Xe = −Ye 6= 0} is called as the separation set of X and Y .
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The support of a vector X is X = {e ∈ E|Xe 6= 0}; its zero set is z(X) = E \ X.
Finally, the composition of two sign vectors X and Y is X ◦ Y defined by

(X ◦ Y )e :=

{
Xe if Xe 6= 0

Ye otherwise

There is a partial order on the sign vectors defined as follows:

Y ≤ X ⇐⇒ Ye ∈ {0, Xe} ∀ e ∈ E

If L ⊂ {+, 0,−}E is a set of covectors of an oriented matroid then it inherits the
above defined partial ordering to become a poset with the bottom element 0. The
poset L̂ := (L

⋃{1̂},≤) is a lattice. The join in L̂ of X and Y is X ◦ Y = Y ◦X if
S(X, Y ) = ∅, and equals 1̂ otherwise.

Definition 5.1.2. The lattice F(L) = (L̂,≤) is called the face lattice of the oriented
matroid L. The maximal elements of L are called topes (or regions). Let T(L) denote
the set of topes. The rank of L is the length of a maximal chain in (L,≤).

Remark 5.1.3. If L is a (linear) oriented matroid coming from a central hyperplane
arrangement A in Rl (see Section 1.5 for details), then F(L) is isomorphic to the face
poset F(A). In particular the topes of L correspond to the chambers of A.

We now turn to the topological side of the representation theorem. We first recall
standard terminologies from PL topology. Let K and L denote two geometric sim-
plicial complexes. A map (between the underlying spaces) f : ||K|| → ||L|| is said to
be piecewise linear (PL) if it is linear with respect to some simplicial subdivision of
K. A PL homeomorphism is a PL map which is also a homeomorphism of underly-
ing spaces, a PL embedding is defined analogously. A PL n-sphere is a (geometric)
simplicial complex which is PL homeomorphic to the boundary of a (n+ 1)-simplex,
analogously a PL n-ball is PL homeomorphic to standard topological n-simplex. Fol-
lowing are some (relevant) well known facts in this field (we refer the reader to [72]).
Recall that an embedding of a submanifold is locally flat if every point in the im-
age has a neighborhood in which the submanifold is homeomorphic to a Euclidean
subspace.

Theorem 5.1.4. If f : M → N is a PL embedding of the PL m-manifold M into the
PL n-manifold N and m− n 6= 2, then f is locally flat.

Theorem 5.1.5. Let Sl denote the standard unit sphere in Rl+1. If f : Sl → Rn,
n− l 6= 2 is a locally flat embedding, then there exists a homeomorphism h : Rn → Rn
such that h ◦ f is the inclusion map. The same conclusion holds for an embedding of
Rl into Rn.
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A subset of the standard unit sphere is called a subsphere if it is homeomorphic
to some lower dimensional sphere. We single out a class of subspheres that play an
important role in defining more general types of arrangements.

Lemma 5.1.6. For a (l−1)-subsphere S of Sl the following conditions are equivalent:

1. embedding of S is equivalent to the inclusion map,

2. embedding of S is equivalent to some PL (l − 1)-subsphere of Sl,

3. the closure of each connected component of Sl \S is homeomorphic to the l-ball.

The equivalence class of these subspheres is known as tame, all other embeddings
are called wild. It is known that all embeddings of S1 into S2 are tame (the Schönflies
theorem). However, there are wild 2-spheres in S3, for example, the Alexander horned
sphere.

Definition 5.1.7. A (l− 1)-subsphere S in Sl satisfying any of the equivalent condi-
tions in Lemma 5.1.6 is called a pseudosphere in Sl. The two connected components
of Sl \S are its sides, denoted by S+ and S−. The closures of the sides are called the
closed sides (or pseudohemispheres)

We can now present the generalization of hyperplane arrangements that was used
to prove the representation theorem.

Definition 5.1.8. A signed arrangement of pseudospheres in the standard unit sphere
Sl ⊆ Rl+1 is a finite collection A = {(S+

i , S
0
i , S

−
i ) | i ∈ E} where E = {1, . . . , n} such

that

1. Each S0
i is a pseudosphere in Sl with sides S+

i and S−i .

2. SI := ∩i∈IS0
i is a sphere, for all I ⊆ E (∅ is the (−1)-sphere).

3. If SI * Sj, for some subset I, an index j, then SI ∩ Sj is a pseudosphere in SI
with sides SI ∩ S+

j and SI ∩ S−j .

For the sake of notational simplicity we assume that both the sides of each pseu-
dosphere are equipped with a sign and we will not explicitly mention it every time.
Since each side has a sign attached to it one can define a sign function similar to
that for hyperplane arrangements. Equivalently the position of each point x ∈ Sl

with respect to each pseudosphere in the arrangement A is given by a sign vector
σ(x) ∈ {+, 0,−}E, defined by
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σ(x)i =





+ if x ∈ S+
i

0 if x ∈ S0
i

− if x ∈ S−i
The arrangement defines a stratification of the ambient sphere, and each strata is

indexed by the sign vectors in σ(Sl). One of the reasons why this type of generalization
is necessary is the following:

Theorem 5.1.9. Let A be a signed, essential arrangement of pseudospheres in Sl.
Then

L(A) := {σ(x) | x ∈ Sl}
⋃
{0} ⊆ {+, 0,−}E

is the set of covectors of an oriented matroid and the rank of L(A) = l + 1.

Some of the topological properties of hyperplane arrangements also hold.

Lemma 5.1.10 ( [55] Lemma 3, page 201). Let A be a signed and essential arrange-
ment of pseudospheres in Sl. For every X ∈ L(A) \ {0} the strata σ−1(X) is an open
cell of a regular cell decomposition ∆(A) of Sl. The boundary of σ−1(X) is the union
of all those σ−1(Y ) such that Y is properly covered by X. Furthermore, the mapping
X 7→ {y ∈ Sl | σ(y) ≤ X} gives an isomorphism

L̂(A) ∼= F̂(∆(A))

of the face lattice of L(A) and face lattice of the regular cell complex ∆(A).

Two signed arrangements A = {S1, . . . , Sn} and A′ = {S ′1, . . . , S ′n} of pseudo-
spheres in Sl are topologically equivalent (A ∼ A′) if there exists some homeomor-
phism h : Sl → Sl such that h(Si) = S ′i and h(S+

i ) = (S ′i)
+ for all 1 ≤ i ≤ n. This

topological equivalence is combinatorially determined.

Theorem 5.1.11. Two signed arrangements A and A′ in Sl are topologically equiv-
alent if and only if L(A) ∼= L(A′).

If the oriented matroid obtained from such an arrangement is realizable then we
can retrieve hyperplane arrangements.

Corollary 5.1.12. Let A = {S1, . . . , Sn} be a signed arrangement of pseudospheres
in Sl. The oriented matroid L(A) is realizable if and only if there exists a homeomor-
phism h : Sl → Sl such that h(Si) = Sl ∩Hi, where Hi is a codimension 1 subspace of
Rl+1, for every i.
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The topological representation theorem [34, Theorem 20], [55] and [6, Theorem
5.2.1], however, includes a converse to all of the above.

Theorem 5.1.13 (Topological Representation Theorem). Let L ⊆ {+, 0,−}E.
Then following conditions are equivalent:

1. L is the set of covectors of a (simple) oriented matroid of rank l.

2. L = L(A) for some signed arrangement A = {S1, . . . , Sn} of pseudospheres in
Sl−1, which is essential and centrally symmetric and whose induced cell complex
∆(A) is regular.

An arrangement is said to be centrally symmetric if each pseudosphere S ∈ A is
invariant under the antipodal mapping of Sl (and so are the sides, i.e. S+

i 7→ S−i for
every i).

Let L be the set of covectors of a rank l oriented matroid. According to Theorem
5.1.13 there corresponds a signed arrangement A = {S1, . . . , Sn} of pseudospheres in
Sl−1, the unit sphere in Rl. Since each pseudosphere S is centrally symmetric any pair
of antipodal points x,−x ∈ S generates a line through the origin in Rl. For S ∈ A

let HS be the set of all rays from the origin passing through S. Specifically this set
can be expressed as the cone over S as follows:

HS = S × [0,∞)/{S × 0}

The next result is now immediate and follows from Lemma 5.1.6.

Lemma 5.1.14. Let S be a pseudosphere in the unit sphere Sl−1 and HS be the
cone. Then there exists a homeomorphism of Rl such that it maps HS to a hyperplane
passing through the origin.

Definition 5.1.15. A pseudohyperplane in Rl is defined as the cone over some pseu-
dosphere in Sl−1. An arrangement of pseudohyperplanes is a finite collection A of
pseudohyperplanes in Rl such that {H ∩ Sl−1 | H ∈ A} is an arrangement of pseudo-
spheres in Sl−1.

Given an arrangement A of pseudospheres in Sl−1 we denote by cA the corre-
sponding arrangement of pseudohyperplanes. A face of cA is the cone over some face
of A and hence homeomorphic to an open polyhedral cone of 1 dimension higher.

Example 5.1.16. Consider the arrangement of circles in S2 as shown in Figure 5.1.
It corresponds to the non-Pappus oriented matroid of rank 3. We first construct an
arrangement of 8 circles in S2 such that points a, b, c are collinear and other three
points a′, b′, c′ are also collinear. According Pappus theorem the points d, e, f are also



111 Complexification of Pseudohyperplanes

a
b

c

a′

b′

c′

d e f

Figure 5.1: Non-Pappus arrangement

collinear. However we add the 9th circle which passes through the points d and f but
not e. The resulting pseudosphere arrangement represents a non-oriented matroid.
The corresponding pseudo-plane arrangement in R3 is obtained by letting rays from
the origin pass through each of these 9 circles.

We state the following corollary for the sake of completeness.

Corollary 5.1.17. Let L ⊆ {+, 0,−}E be the set of covectors of a oriented matroid
of rank l. Then there exists an arrangement of pseudohyperplanes cA such that

F(cA) ∼= (L,≤).

Remark 5.1.18. In the literature related to topological representation theorem the
word pseudohyperplane is used for the (codimension 1) projective space obtained
by applying the antipodal map. However here we have used this term for a tame
embedding of a hyperplane. Miller has also used this word for topologically deformed
hyperplanes in [57] where he describes a slightly different topological representation
for a certain class of oriented matroids.

5.2 Complexification of Pseudohyperplanes

Throughout this section we fix an arbitrary simple oriented matroid L of rank l − 1,
let A and cA denote the corresponding arrangements of pseudospheres (in Sl−1) and
pseudohyperplanes (in Rl) respectively. Our aim is to construct a connected subspace
of R2l and then show that it has the homotopy type of a simplicial complex that is
determined by the oriented matroid.
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Lemma 5.2.1. If cA is the pseudohyperplane arrangement corresponding to an ori-
ented matroid then it is an arrangement with the involution property. Let F(cA) de-
note the associated face poset and F∗ be the dual face poset then the dual cell complex
(Rl,F∗) is a MH*-complex.

Proof. The involution on the dual 1-skeleton is induced by the antipodal map. Ob-
serve that the distance between two dual vertices is equal to the number of pseudo-
hyperplanes that separate corresponding chambers. The action of faces on chambers
is given by composition of corresponding covectors. The proof that (Rl,F∗) is a MH-
complex is exactly same as that of Theorem 3.3.14.

Let cA = {H1, . . . , Hn} be an arrangement of pseudohyperplanes in Rl. For every
x ∈ Rl the arrangement restricted at x is

cAx := {H ∈ cA | x ∈ H}.

Define the local complement at x as:

M(cAx) := Rl \ cAx.

Finally, define the complexified complement of cA as:

M(cA) :=
∐

x∈Rl
Rl \ cAx = {(x, v) | x ∈ Rl, v ∈M(cAx)} ⊆ R2l

Lemma 5.2.2. The space M(cA) is connected.

Proof. For any two points (x1, v1) and (x2, v2) we show that there is path in M(cA)
connecting these two points. Let {α(t) | t ∈ [0, 1]} be a continuous path starting from
x1 and ending at x2 in Rl. Let F be the face containing x1. The local complement
M(cAx1) is disconnected and its components correspond to chambers of the arrange-
ment cAx. Let C be the chamber of cA containing v1 and and Cx1 be the chamber
of cAx1 containing C. Now for every y ∈ F the local complement M(cAy) contains
connected component Cy such that C ⊆ Cy. Therefore v1 ∈ Cy for every y ∈ F and
{(α(t) ∩ F, v1) | t ∈ [0, 1]} is a continuous path in M(cA), call it βF . Now we have
two cases to deal with.

Case 1: Let G be a face such that F covers G and Im(α) ∩ G 6= ∅. As G ≤ C
in the face poset we have that for every y ∈ G there is a connected component Cy of
M(cAy) that contains C. Hence {(α(t)∩G, v1) | t ∈ [0, 1]} is also a continuous path,
denote it by βG.
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Case 2: Let G be a face such that F is covered by G and Im(α) ∩G 6= ∅. Hence
for every y ∈ G the local complement M(cAy) has a component Cy that contains C
and G ◦C. Let z ∈ G ◦C and γG be a continuous path in Cy joining z and v1. Let βG
denote the path which is made up of concatenating γG with {(α(t)∩G, z) | t ∈ [0, 1]}
(appropriately).

Continuing this process one can construct a path β, by concatenating the paths βG
(for every face G that intersects with the path α) which joins any two points. Hence
M(cA) is path connected.

We now want to construct an open covering of the space M(cA). First we state
some more terminology and results from topological embeddings that we need. A
connected codimension 1 submanifold N of a manifold M is two-sided if there is
a connected open neighborhood of U of N in M such that U \ N has exactly two
components each of which is open in M . Further, N is said to be bicollared in M if it
has an open neighborhood homeomorphic to N × (−1, 1) with N itself corresponding
to N × {0}. We will use the following theorem originally due to M. Brown in 1964.

Theorem 5.2.3. Let N be a locally flat, connected, two-sided, codimension 1 sub-
manifold of M . Then N is bicollared in M .

For every F ∈ F(cA) \ {0} let F̃ be the face of A such that F̃ = F ∩ Sl−1. If σ is
the function assigning signs to every face then

σ(F ) = σ(F̃ ) ∀F ∈ F(cA) \ {0}
σ(0) = (0, . . . , 0)

As stated before, such a face F is just the cone over F̃ , hence homeomorphic to an
open polyhedral cone in Rl. For a tope T let VT denote the corresponding chamber
in Rl. For the sign vector 0 let V0 be the open unit ball. Let F be a face which
is neither a chamber nor 0. Let HF be the support of F and B(HF ) be its bicollar
(pseudohyperplanes satisfy the hypothesis of Theorem 5.2.3). Let VF be the portion
of B(HF ) that contains F and intersects only those faces whose closures contain F .

From the above construction it is easy to prove the following lemma which explains
properties of these open sets.

Lemma 5.2.4. With the notation as above, the following statements are true:

1. For every F ∈ F(cA) the open set VF contains F and is homeomorphic to Rl.

2. If F ≤ F ′ in F(A) then VF ∩ VF ′ 6= ∅ and F * VF ′.
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3. If F and F ′ are not comparable in F(cA) then VF ∩ VF ′ = ∅.

For every pair (F, T ), where F is a face and T is a tope covering it, define a subset
of M(cA) as follows:

W (F, T ) := VF × VT
Theorem 5.2.5. The collection {W (F, T ) | (F, T ) ∈ F × T, F ≤ T} forms an open
covering of M(cA) and whenever these open sets intersect the intersection is con-
tractible.

Proof. Let (x, v) ∈ M(cA) be any point. Therefore there is some face F such that
x ∈ F ⊆ VF and some chamber C such that v ∈ C ⊂ M(cAx). These sets are open
and contractible because they are products of open and contractible subsets. The
intersections are contractible for the same reasons.

As the hypothesis for the Nerve Lemma 1.1.6 is satisfied, the nerve of this open
covering has the homotopy type of M(cA). We can also deduce the criterion for their
intersections to be non-empty as it is needed to identify the simplices.

Lemma 5.2.6.

W (F1, T1) ∩W (F2, T2) 6= ∅ ⇐⇒ F1 ≤ F2 and T2 = F2 ◦ T1

Proof. By construction of these open sets we have,

W (F1, T1) ∩W (F2, T2) = (VF1 ∩ VF2)× (VT1 ∩ VT2)

Clearly VF1 ∩ VF2 6= ∅ if and only if F1 ≤ F2. We also need the other intersection to
be nonempty,

VT1 ∩ VT2 6= ∅ ⇐⇒ T1 ∩ T2 6= ∅
⇐⇒ T2 = F2 ◦ T1 or T2 = T1.

Let us first construct the nerve as an abstract simplicial complex.

Definition 5.2.7. Let L be the set of covectors of an oriented matroid and let T be
the set of all topes. Define a partial order on the set of all pairs (X,T ) for which
X ∈ L, and T ∈ T, by the following rule:

(X2, T2) ≤S (X1, T1) ⇐⇒ X1 ≤ X2 and X2 ◦ T1 = T2

The Salvetti complex Sal(L) is the regular cell complex having this poset as its
face poset.
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The next result is now immediate.

Theorem 5.2.8. Let L denote the set of covectors of an oriented matroid and cA be
the associated arrangement of pseudohyperplanes. If M(cA) is the associated space
then

M(cA) ' Sal(L)

Here are some obvious properties of the Salvetti complex.

Corollary 5.2.9. With the notation as above we have the following:

1. The complex Sal(L) is a MH-complex.

2. The number of 0-cells of Sal(L) is equal to the number of its l-cells which is
also equal to the number of topes of L.

3. Every chain in ({(X,T ) ∈ L×T},≤S) corresponds to pair consisting of a chain
in (L,≤) and a tope.

4. The geometric realization of (L,≤) is a retract of Sal(L).

5. χ(M(cA)) = 0.

6. The homeomorphism type of M(cA) is completely determined by the oriented
matroid L.

Proof. The first statement follows from the Theorem 3.3.15. Second statement follows
from the construction of the Salvetti complex as described in Section 3.3. The proof
of the third statement is same as that of the Lemma 3.2.11. For statements 4 and 5
see Theorem 3.3.6. The last statement is proved in [7].

As before we can now define the positive category and the arrangement groupoid.
We have already seen that for hyperplane arrangements any two minimal positive
paths with same end points are positive equivalent. This is also true for pseudohy-
perplane arrangements.

Lemma 5.2.10. An arrangement of pseudohyperplanes is flat.

Proof. Recall that according to Definition 3.5.7 we need to show that if two minimal
positive paths are relative homotopic then they are positive equivalent. Since the
ambient space is simply connected we can apply Theorem 3.5.5 to conclude that any
two minimal positive paths with same end points are relative homotopic.

For a chamber C let C# = {0} ∗ C, the chamber opposite to C. Let α, β be two
minimal positive paths from C to another chamber D. Since [C,C] and [D,D] are
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vertices of the l-cell [0, C] the paths α and β are contained in its boundary. By the
definition of MH-complex these two paths can be extended to two minimal positive
paths from [C,C] to [C#, C#] which are certainly positve equivalent. For a proof that
only uses oriented matroid arguments, see [16, Theorem 2.4].

Let G+ denote the positive category associated with a pseudohyperplane arrange-
ment. The objects in this category are the chambers and morphisms are equivalence
classes of positive paths (the equivalence is generated by declaring two minimal pos-
itive paths with same end points to be same). Let G denote the arrangement (fun-
damental) groupoid of the associated Salvetti complex. The theory of Salvetti-type
diagram models also works in case of oriented matroids (see [23]).

Definition 5.2.11. Given a cover ρ : Gρ → G, define a diagram of posets Dρ indexed
over the dual face poset (F∗,≺) such that

Dρ(F
∗) := {v ∈ Ob(Gρ)|ρ(v) ≺ F ∗}

endowed with the trivial order relation defined by setting v1 ≤ v2 if and only if v1 = v2,
and maps being inclusions

D(F ∗1 → F ∗2 ) : D(F ∗1 ) −→ D(F ∗2 )

v 7→ t(ρ(v)→ F2 ◦ ρ(v))<v>

where (ρ(v)→ F2 ◦ρ(v))<v> is the lift of the minimal positive path (ρ(v)→ F2 ◦ρ(v))
in G that starts at v.

Following theorem classifies the covering spaces of the Salvetti complex.

Theorem 5.2.12. (Delucchi) For any topological cover p : S → Sal(L) of the Salvetti
complex of a locally finite pseudohyperplane arrangement cA, there exists a cover of
the arrangement groupoid ρ : Gρ → G such that the homotopy colimit of the associated
diagram of spaces hocolimDρ is isomorphic to S as a covering space of Sal(L).

As a corollary to the above theorem we have

Corollary 5.2.13. Let ρ̂ : Ĝ→ G be the universal cover of G. Then hocolimDρ̂ is the
universal cover of Sal(L).

We now turn to simplicial arrangements, that is, arrangements in which every
chamber is a cone over an open simplex. Alternately, an oriented matroid is simplicial
if L \ 0 is isomorphic to the face poset of a simplicial decomposition of the sphere (or
for every tope T the interval [0, T ] is Boolean). Such an arrangement is an example of
a flat, simplicial arrangement with the involution property. Hence we can apply the
results proved in Section 3.6 (those are Deligne’s original arguments). In this setting
Lemma 3.6.6, Lemma 3.6.8 and Theorem 3.6.4 imply the following.
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Theorem 5.2.14. Let L be an oriented matroid and cA be the associated pseudohy-
perplane arrangement. Then the following are equivalent

1. L is simplicial.

2. The positive category admits the Deligne normal form.

3. The tope poset PT (L) is a lattice for every tope T .

All of the above conditions imply that the space M(cA) is K(π, 1).

Proof. Here the tope poset is defined similarly as the poset of chambers was defined
before Lemma 3.5.12. 1 ⇒ 2 is originally due to Deligne [22] (and a reproof by
Paris [66]); both these proofs are for realizable oriented matroids. For non-realizable
oriented matroids the proof was given by Cordovil [15, Theorem 4.1] and by Salvetti
[74, Theorem 33]. 2 ⇒ 1 is due to Paris [67]. For 1 ⇐⇒ 3 see [5] and the proof of 3
⇐⇒ 1 is in Delucchi’s thesis [23, Theorem 6.4.6, Lemma 6.5.2].

Obvious examples of arrangements that were not covered by Deligne’s theorem are
the simplicial arrangements of pseudolines. A simplicial arrangement of pseudolines
in RP 2 consists of a finite family of simple closed curves such that every two curves
have precisely one point in common and every 2-face is isomorphic to a triangle. By
applying the coning process we get an arrangement of (non-stretchable) pseudoplanes
in R3 whose face poset correspond to a rank 3 non-realizable oriented matroid. The
Salvetti complex associated to such oriented matroids is a K(π, 1) space. In fact there
are at least seven infinite families of non-stretchable simplicial arrangement of pseu-
dolines are known, see [40, Chapter 3] for details and examples of such arrangements.



Chapter 6

The Topological Dissection
Problem

The aim of this chapter is to study the classical problem of determining the number
of pieces into which a certain geometric set is divided by a given collection of subsets.
In our context this problem boils down to counting the number of faces of a subman-
ifold arrangement. This problem has a long history in combinatorial geometry. In
1826, Steiner considered the problem of counting the pieces of a plane cut by a finite
collection of lines, circle etc. In 1901, Schläfli obtained a formula for counting the
number of regions in a Euclidean space when it is cut by hyperplanes in general posi-
tion. Subsequently many mathematicians studied various aspects and generalizations
of this problem. We refer to [40, Chapter 18] and [41] for more history related to this
problem.

As pointed out in Chapter 1, for real hyperplane arrangements Zaslavsky [92]
discovered a face counting formula involving the Möbius function of the intersection
lattice. Our aim is to generalize his formula to the case of submanifold arrangements.
Our result is motivated by the techniques used in [31], where the authors generalize
Zaslavsky’s formula for toric arrangements. During a discussion with Thomas Za-
slavsky about this generalization, he directed us to his paper [93] in which he proves
a much more general result. The name of this chapter is borrowed from the title of
that paper. We would like to point out that though we have proved similar results,
the techniques used are different.

In Section 6.1 we revise the theory of valuations on a poset and the Euler char-
acteristic, since they are the main ingredients of our proof. Then, in Section 6.2
after introducing a generalization of the characteristic polynomial, we will establish a
formula that combines the geometry and combinatorics of the intersections in order
to count the number of chambers. We compare Zaslavsky’s proof in [93] with ours.
Finally in Section 6.3 we look at some particular cases of manifolds and comment
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about the f -vectors arising due to submanifold arrangements.

6.1 Valuations on a Lattice

In his attempt to classify the convex polyhedra in 3-space, Leonhard Euler discovered
that the number of vertices of a polyhedron minus the number of its edges plus the
number of its faces is an invariant. He published a proof of this result in 1758 and also
conjectured that the result is true for higher dimensional polytopes. The invariant
popularly known as the Euler characteristic not only appears in many branches of
mathematics but plays an important role in those areas. A century later Schläfli
proved the Euler relation for polytopes of higher dimensions and Poincaré, using
homology theory, extended the result to manifolds. For more on the history of the
Euler characteristic see [40, Chapter 8] and [28].

Our focus here is the combinatorial nature of this invariant. In 1955 Hadwiger [43]
characterized the Euler characteristic as the unique translation-invariant, finitely addi-
tive set function defined on finite unions of compact convex subsets of Rn. Inspired by
Hadwiger’s work, Victor Klee gave a relatively elementary proof of the Euler formula
for polytopes in [49]. Motivated by these results Rota [71] established a combinatorial
connection between the Euler characteristic and underlying order-theoretic structure.
His work revealed that the Euler characteristic can be thought of as a fundamental
dimension-less invariant, associated with any mathematical structure, that can be
defined in much more general context. For example, in case of a finite set the Euler
characteristic is its cardinality. Generalizing this basic idea, Schanuel [76] showed
that the Euler characteristic of certain polyhedra is determined by a simple universal
property. A further generalization is achieved by Leinster in [52] by defining the Euler
characteristic for finite categories.

The unique universal property of the Euler characteristic will be used to generalize
Zaslavsky’s result. We will devote this section to the introduction of the theory of
valuations on lattices and will also explain how the Euler characteristic is defined
combinatorially. The main references for this introductory material are [38], [71]
and [48, Chapter 2]. We will assume that the reader is familiar with the basic facts
about posets and lattices ( [81, Chapter 3] is a good reference).

Let D be a family of subsets of a set S such that D is closed under finite unions
and finite intersections. Such a family is a distributive lattice in which the partial
ordering is given by the inclusion of subsets while the meet and join are defined by
intersection and union of subsets, respectively. All of the following theory holds true
for arbitrary distributive lattices but we will state it in the context that best suits our
purpose. Let R be a commutative ring with 1.
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Definition 6.1.1. An R-valuation on D is a function ν : D → R, satisfying

ν(A
⋃
B) = ν(A) + ν(B)− ν(A ∩B) (6.1.1)

ν(∅) = 0 (6.1.2)

By iterating the identity (6.1.1) we get the inclusion-exclusion principle for ν, namely

ν(A1

⋃ · · ·⋃An) =
∑

i ν(Ai)−
∑

i<j ν(Ai∩Aj)+
∑

i<j<k ν(Ai∩Aj∩Ak)+ · · · (6.1.3)

The above definition is clearly similar to that of a measure on a Boolean algebra.
But the theory of valuations is in some sense richer, for example, the Euler charac-
teristic (which we will show is a valuation) has no counterpart in measure theory.
In functional analysis a measure is regarded either as a linear functional or as an
abstract integral on a function space. Drawing parallels with this aspect, Rota [71]
defined a ring for distributive lattices called the valuation ring (see Definition 6.2.9
below), denoted by V (D,R) and identified R-valuations on D with R-valued func-
tionals on V (D,R). Moreover when the distributive lattice is finite any valuation can
be uniquely determined by the following theorem.

Theorem 6.1.2 (Rota [71]). A valuation on a finite distributive lattice D is uniquely
determined by the values it takes on the set of join-irreducible elements of D, and
these values can be arbitrarily assigned.

With this theorem we are now in a position to define the Euler characteristic.

Definition 6.1.3. The Euler characteristic of a finite distributive lattice D is the
unique valuation χ such that χ(x) = 1 for all join-irreducible elements x and χ(0̂) = 0.

Before moving on let us look at some examples.

Example 6.1.4. Let S be a finite set and D be the lattice consisting of all abstract
simplicial complexes defined on the power set of S. In this case the the Euler char-
acteristic defined above coincides with the classical definition. Also note that the
join-irreducible elements of D are the simplices (simplicial complex with exactly one
maximal element) and their Euler characteristic is exactly 1. Moreover, for A ∈ D if
fi denotes the number of cardinality i subsets, then

χ(A) =
∑

i≥0

(−1)ifi.

The above example justifies the name Euler characteristic and the next examples
show how it is defined in a different context and for infinite lattices.
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Example 6.1.5. Let D denote the lattice of positive integers, ordered by divisibility.
Then, using elementary facts about the Möbius function, one can show that for a
positive integer n its Euler characteristic χ(n) is equal to the number of distinct
prime divisors of n.

Example 6.1.6. Let D be the lattice generated by n-dimensional polytopes in Rn.
In this lattice the join-irreducible elements are the compact convex polytopes and the
unique R-valuation that takes value 1 on them is the (classical) Euler characteristic.
Moreover if we consider the lattice generated by all relative interiors of convex n-
polytopes then the definition extends to polytopal complexes and non-closed convex
sets. For the proof and other details see [48, Chapter 5] and [77, Chapter 3].

Just like measure, a valuation on a lattice can be used to construct abstract in-
tegrals. Since integrals with respect to a valuation will be used to generalize the
characteristic polynomial we will briefly sketch some important facts. From now on
let D be a finite distributive lattice consisting of subsets of a finite set S.

A D-simple function f is a finite linear combination

f =
k∑

i=1

riIAi (6.1.4)

where ri ∈ R and IAi : S → {0, 1} are the indicator (or characteristic) functions with
Ai ∈ D for 1 ≤ i ≤ k. The set of all D-simple functions forms a ring under point wise
addition and multiplication. Note that unlike the valuations, these simple functions
are defined on S.

A subset L of D is called a generating set if it is closed under finite intersections
and if every element of D can be expressed as a finite union of members of L. Using
the inclusion-exclusion formula for the indicator functions it can be shown that every
D-simple function can be rewritten as a linear combination

f =
m∑

i=1

siIBi (6.1.5)

where each Bi ∈ L. An R-valued function ν on L is called a valuation on L provided
that ν satisfies the identities (6.1.1) and (6.1.2) for all sets A,B ∈ L such that A∪B ∈
L. For a D-simple function f , define the integral of f with respect to ν as

∫
fdν =

m∑

i=1

siν(Bi) (6.1.6)

The existence of the extension of ν to D and also the existence of the integral are
equivalent properties of ν. This nontrivial fact is stated as the following -
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Theorem 6.1.7. (Groemer’s Integral Theorem) Let L be a generating set for a
lattice D, and let ν be a valuation on L. Then the following are equivalent :

1. ν extends uniquely to a valuation on D.

2. ν satisfies the inclusion-exclusion identities

ν(B1

⋃ · · ·⋃Bn) =
∑

i ν(Bi)−
∑

i<j ν(Bi ∩Bj) +
∑

i<j<k ν(Bi ∩Bj ∩Bk) + · · ·
(6.1.7)

whenever Bi ∈ L∀i and B1

⋃ · · ·⋃Bn ∈ L, for all n ≥ 2.

3. ν defines an integral on the R-algebra of D-simple functions.

Proof. See [48, Theorem 2.2.7]

6.2 The Chamber Counting Formula

Let A be an arrangement of submanifolds of a smooth l- manifold X. The problem
at hand is to count the number of connected components of the complement X \⋃
N∈AN , which will be denoted by |C(A)|. Let D be the lattice of sets generated

by the intersection poset L(A) and the members of C(A) through finite unions and
finite intersections. Recall that to count the number of chambers of a hyperplane
arrangement, we use the characteristic polynomial of the intersection lattice (Theorem
1.2.5). We will start by generalizing this polynomial.

Define the Poincaré polynomial with compact support of a topological space A as

Poinc(A, t) :=
∑

i≥0

rank(H i
c(A,Z))ti

where H i
c is the cohomology with compact supports.

Lemma 6.2.1. The function ν : D → Z[t] defined by ν(A) = Poinc(A, t), ∀A ∈ D is
a valuation on D.

Proof. The first step is to find a generating set for D. Let G denote the union of all
faces of A and the empty set ∅. Clearly the collection G is closed under intersections.
Each member of L(A) is a union of finitely many faces and as all the chambers are
faces any finite union (or intersection) of members of L(A) and C(A) can be expressed
as a finite union of faces. This observation proves that G is a generating set for D.

Now we have to show that ν defines a valuation on G. This is clear because
ν(∅) = 0 and all the non-empty faces are disjoint, open topological cells. For the
same reasons the inclusion-exclusion identities (6.1.7) are satisfied by ν. Hence as a
consequence of Groemer’s integral theorem 6.1.7, ν extends to whole of D.
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For each Y ∈ L (= L(A)), define

f(Y ) = Y \
⋃

Y <Z
Z∈L

Z

Then {f(Y ) | Y ∈ L} is the set of all faces of the arrangement, in particular it is a
disjoint collection. Hence

X =
∐

X≤Y
Y ∈L

f(Y )

so IX =
∑

X≤Y

If(Y )

and If(X) =
∑

X≤Y

µ(X, Y )IY (by Möbius inversion) (6.2.1)

Note that f(X) is in fact the union of all the chambers, therefore If(X) is a D-simple
function. As ν extends uniquely to a valuation on D, it defines an integral on the
algebra of D-simple functions. Integrating IC(A) with respect to ν, we get

∫
IC(A)dν =

∑

Y ∈L

µ(X, Y )ν(Y )

=
∑

Y ∈L

µ(X, Y )Poinc(Y, t) (6.2.2)

Definition 6.2.2. Let A be an arrangement of submanifolds of a l-manifold X and
L be the associated intersection poset. The generalized characteristic polynomial of
A is

χ(A, t) :=
∑

Y ∈L

µ(X, Y )Poinc(Y, t)

Note the unfortunate clash of notations.

Definition 6.2.3. The combinatorial Euler characteristic κ of a finite CW complex
P is defined as

κ(P ) =

{
χ(P̂ )− 1 if P is not compact

χ(P ) if P is compact

where χ(P̂ ) is the Euler characteristic of the one-point compactification of P .

Note that this is not a new notion, this is just a topological description of Def-
inition 6.1.3. To give an intrinsic topological description of the combinatorial Euler
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characteristic for arbitrary spaces is not an easy job. The theory of o-minimal struc-
tures has to be used in order to define valuations and integrals on arbitrary spaces,
which is beyond the scope of this chapter. However, the above notion is a topological
invariant and it satisfies the Euler relation, that is the number of even dimensional
cells minus the number of odd dimensional cells is equal to the κ value. The following
lemma is now clear.

Lemma 6.2.4. The combinatorial Euler characteristic κ defines a R-valuation on D.

Using all of the theory developed so far we can now generalize Zaslavsky’s theorem.

Theorem 6.2.5. Let A be an arrangement of submanifolds in an l-manifold X (that is
A subdivides the manifold into chambers homeomorphic to open l-dimensional balls).
Then the number of chambers is given by (−1)l

∑
Y ∈L µ(X, Y )κ(Y ), where µ is the

Möbius function on L× L and κ is the combinatorial Euler characteristic.

Proof. First note that κ and ν|t=−1 agree on every element of G. Consequently, they
also agree on every member of D. Hence, we have that

κ(C(A)) =

∫
IC(A)dκ =

∫
IC(A)dν|t=−1 (6.2.3)

The set C(A) is a disjoint union of chambers, each of which is homeomorphic to an
open ball of dimension l. Consequently, the combinatorial Euler characteristic of a
chamber is (−1)l, substituting this in the equation 6.2.3, we get

|C(A)| = (−1)lκ(C(A))

= (−1)l
∫
IC(A)dν|t=−1

= (−1)l
∑

Y ∈L

µ(X, Y )Poinc(Y,−1)

= (−1)l
∑

Y ∈L

µ(X, Y )κ(Y ) (6.2.4)

Corollary 6.2.6. (Zaslavsky [92]) Let A be a hyperplane arrangement in Rn. The
number of chambers of this arrangement is equal to (−1)nχ(A,−1).

Proof. Every member of the intersection poset in this case is homeomorphic to an

open ball, hence Poinc(Y, t) = tdimY for every Y ∈ L(A). The result follows from
the observation that

∫
IC(A)dν = χ(A, t).
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Corollary 6.2.7. (Ehrenborg et al. [30]) For a toric hyperplane arrangement A

in a torus T n that subdivides the torus into open n-dimensional balls, the number of
chambers is given by

(−1)n
∑

dim Y=0

µ(T n, Y )

Proof. Note that toric hyperplanes are homeomorphic to T n−1 and they intersect
into lower dimensional subtori. Hence the elements of the intersection poset L are
tori of some finite dimension, except for the coatoms that are points. If Y ∈ L is
k-dimensional torus then Poinc(Y, t) = (1 + t)k.

∫
IC(A)dν =

∑

1≤ dim Y≤n

µ(T n, Y )(1 + t)dim Y +
∑

dim Y=0

µ(T n, Y )

⇒ |C(A)| = (−1)n
∑

dim Y=0

µ(T n, Y )

Though the Theorem 6.2.5 is stated for submanifold arrangements it is valid in a
more general context. The only thing we have used in the proof is that the combina-
torial Euler characteristic is a valuation. Now consider a more general situation where
X is a topological space and A is a finite collection of subspaces that are removed from
X. Let L denote the poset consisting of X and connected components of the all possi-
ble finite intersections of members of A ordered by reverse inclusion. The topological
dissection problem asks whether it is possible to express the number of connected
components of the complement in terms of L (dissection of X intuitively means that
X is expressed as a union of pairwise disjoint subspaces). Let {C1, . . . , Cm} denote the
connected components of the complement of union of members of A, in this context
Theorem 6.2.5 takes the following form

Theorem 6.2.8. If the combinatorial Euler characteristic κ is a valuation on the
lattice of sets generated by L

⋃{C1, . . . , Cm} then,

m∑

j=1

κ(Cj) =
∑

Y ∈L

µ(X, Y )κ(Y )

The above statement is referred to as the fundamental theorem of dissection theory
in [93, Theorem 1.2]. In a nutshell, the number of connected components of the
complement (combinatorial Euler characteristic of the complement, to be precise)
depend on a condition on the intersections and that condition turns out to be just
the Euler relation. Moreover the combinatorial Euler characteristic is a valuation if
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and only if each face of the dissection is a finite, disjoint union of open topological
cells (see [93, Lemma 1.1]). Some authors have also considered more general types
of arrangements. For example, see [63,64] where arrangements of topological spheres
having homologically trivial chambers are studied.

The approach we took to prove Theorem 6.2.5 can be traced back to a paper of
Blass and Sagan [8, Theorem 2.1] where they show how to evaluate the characteris-
tic polynomial of subarrangements of the type B braid arrangement. Ehrenborg and
Readdy [31] generalized this work and used it to determine the characteristic poly-
nomial of any subspace arrangement defined over an infinite field. They explicitly
used the Gromer’s integral theorem to prove that the characteristic polynomial is a
valuation. While studying toric arrangements with M. Slone [30] they generalized the
previous result and proved the above mentioned Corollary 6.2.7. The idea of looking
at the Euler characteristic as an integral of indicator functions is due to Chen [13],
see also [14].

Finally we compare our strategy with that of Zaslavsky’s, used to prove the funda-
mental theorem of dissection theory in [93]. In order to do this we will briefly sketch
the outline of his proof. At the very foundation of both strategies lies the idea of using
the combinatorial Euler characteristic as a valuation. In order to implement this idea
we have used Möbius inversion whereas Zaslavsky has used a technical property of
valuations. But before that a few definitions.

Definition 6.2.9. Let D be a distributive lattice and R be a unitary ring. Let
M(D,R) denote the free R-algebra whose basis is the elements of D and the multi-
plication on the basis elements is defined by setting xy = x∧ y and then extended by
linearity. In this algebra the set N(D,R) of all linear combinations of elements of the
form x ∨ y + x ∧ y − x − y is an ideal. The valuation ring of D over R is defined to
be the quotient M(D,R)/N(D,R) and denoted by V (D,R).

Definition 6.2.10. Let P be a finite poset and R be a unitary ring. The Möbius
algebra M(P,R) of P is the free R-module whose basis is the elements of P , with a
product defined by

xy :=
∑

t| t≤x,y

et(P ), ∀x, y ∈ P

and extended to M(P,R) by linearity, where we define

et(P ) :=
∑

s∈P

µP (s, t)s, ∀t ∈ P.

Note that the elements of the type et(P ) are orthogonal idempotents in M(P,R)
and they also form a basis of this algebra. Moreover for a distributive lattice the
two definitions of M(D,R) agree. Zaslavsky proves a theorem that establishes a
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relationship between the valuation ring of D and the canonical idempotents et(P ) of
a subset of D. Instead of stating this theorem we will state an important and relevant
consequence.

Theorem 6.2.11. Let φ be a valuation of the finite distributive lattice D, and let P
be a subset of D containing 0̂ and every join-irreducible element. Then, for any t ∈ P
which is not 0̂ or a join-irreducible element of D,

∑

s∈P ;s≤t

µP (s, t)φ(s) = 0.

In order to apply this theorem to dissection theory note that D is the lattice of
sets generated by the intersection poset and all the chambers. Theorem 6.2.8 then
follows once we use the valuation κ.

6.3 Faces of an Arrangement

In this section we will use formula (6.2.4) to find the number of various dimensional
faces of an arrangement. We start with a definition.

Definition 6.3.1. The f -vector of an arrangement of submanifolds in a l-dimensional
manifold is the vector

f = (f0, f1, . . . , fl) ∈ Nl+1

where fk denotes the number of k-dimensional faces of the arrangement.

Theorem 6.2.5 can be used to count the number of faces (of all dimensions) of an
arrangement. Note that these faces are the chambers of the restricted arrangements
defined as follows. For Y ∈ L(A), the arrangement restricted to Y is

AY := {N ∩ Y |N ∈ A and ∅ 6= N ∩ Y 6= Y }

Theorem 6.3.2. Let X be a smooth, real manifold of dimension l and A be an
arrangement of submanifolds. Then the numbers fk, are given by

fk =
∑

dim Y=k

(−1)k(
∑

Z∈L
Y≤Z

µ(Y, Z)κ(Z)) (6.3.1)

Proof. As F(A) = {C(AY ) | Y ∈ L} the number of k-faces of A is given by

fk =
∑

Y ∈L(A)

dim Y=k

|C(AY )|
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Use (6.2.4) to substitute for |C(AY )| in the above formula and note that

L(AY ) = {Z ∈ L(A) | Y ≤ Z}

By convention, these fk’s are also expressed as the coefficients of the following gener-
ating polynomial

l∑

k=0

fkx
l−k = (−1)l

∑

Z∈L(A)

κ(Z)
∑

Y≤Z

µ(Y, Z)(−x)l−dim(Y )

We have already seen in the Lemma 3.1.14 that the local picture at each face of
the arrangement of submanifolds is that of a hyperplane arrangement. The following
lemma is a detailed proof of this fact from a combinatorial viewpoint.

Lemma 6.3.3. Let A be an arrangement of submanifolds in a l-manifold X. Then
every interval of the intersection poset L(A) is a geometric lattice.

Proof. Consider an interval [Y, Z] in L(A), such that dim Y = i and dim Z = j.
There exists an open set V in X and a coordinate chart φ such that φ(V ∩ Y ) is
homeomorphic to an i-dimensional subspace of Rl. Moreover, {φ(N ∩ V )|N ∈ AY } is
a central arrangement of hyperplanes in Ri. For any W ∈ [Y, Z] the subspace φ(W∩V )
is homeomorphic to a subspace of Ri that contains φ(Z∩V ). In particular, the (i−1)-
dimensional subspaces in [Y, Z] map to hyperplanes in Ri that contain φ(Z∩V ). This
correspondence gives us an essential central arrangement of hyperplanes in Ri−j when
we quotient out φ(Z∩V ). This correspondence is also a poset isomorphism and hence
[Y, Z] is a geometric lattice. Moreover for geometric lattices the the Möbius function
alternates in sign and consequently (−1)dim Y−dim Zµ(Y, Z) > 0 (see [81, Proposition
3.10.1]).

We will say that the submanifolds X are in general position if intersection of
any i of the submanifolds, i ≥ 1, is either empty or (l − i)-dimensional. In the
case of general position arrangements, every interval of L(A) is a Boolean algebra
hence the rank generating function for an interval [Y, Z] is (x + 1)l−dimZ and also
µ(Y, Z) = (−1)dimY−dimZ (see [81, Example 3.8.3]). Now we will compute f -vectors
for some particular examples of arrangements. In each of the following examples we
substitute the appropriate values of κ in the equation 6.3.1 and also use the above
stated facts regarding the Möbius function. For similar calculations also see [30,93].

Example 6.3.4. Let A be an arrangement of submanifolds in l-manifold X. Let
L(A) denote the intersection poset of this arrangement let ak denote the number of
k-dimensional members of this poset.
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1. If X ∼= Rl and A is an arrangement of hyperplanes then

fk =
∑

dim Y=k

∑

Y≤Z

|µ(Y, Z)|

If the hyperplanes are in general position then

fk =
k∑

j=0

aj

(
l − j
l − k

)
.

2. For an arrangement of codimension 1 subtori on a torus of dimension l,

fk =
∑

dim Y=k
dim Z=0
Y≤Z

|µ(Y, Z)|

If the subtori are in general position then the number fl takes the following
simpler form

fk = a0

(
l

l − k

)
.

3. If X ∼= Sl an l-dimensional sphere and all the intersections are lower dimensional
spheres then

fk = 2
∑

dim Y=k

∑

Y≤Z
dim Z≥2
even

|µ(Y, Z)|+
∑

dim Y=k

∑

Y≤Z
dimZ=0

|µ(Y, Z)|

If all of the hyperspheres are in general position

fk = 2
k∑

j=2,even

aj

(
l − j
l − k

)
+ a0

(
l

k

)
.

4. Let X be the l-dimensional projective space and A be an arrangement of l− 1-
dimensional projective space

fk =
∑

dimY=k

∑

Y≤Z
dimZ≥0
dimZeven

|µ(Y, Z)|

If all the l − 1 projective spaces are in general position

fk =
k∑

j=0,even

aj

(
l − j
l − k

)
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We end this section by describing a relationship between the intersection poset and
the face poset, which extends a result due to Bayer and Sturmfels [3] for hyperplane
arrangements. Let F∗ be the dual of the face poset, define the map ψ : F∗ → L(A)
by sending each face to the smallest dimensional subspace in the intersection poset
that contains the face. For oriented matroids this is the support map going to its
underlying matroid. The map ψ is order and rank preserving, as well as surjective
hence we will look at it as a map from the set of chains of F∗ to the set of chains of
L(A).

Theorem 6.3.5. Let c = {Y1 ≤ Y2 ≤ · · · ≤ Yk}, k ≥ 2, be a chain in the intersection
poset L(A) of an arrangement of submanifolds A. Then the cardinality of the inverse
image of the chain c under the map ψ is given by the following formula

|ψ−1(c)| =
k−1∏

i=1

(
∑

Yi≤Z≤Yi+1

(−1)l−dimZµ(Yi, Z)) · |C(AYk)|

Proof. The arguments are similar to the proof of [30, Theorem 3.13]. The number of
ways of selecting a face Fk such that ψ(Fk) = Yk is equal to the number of chambers of
AYk . A face Fk−1 is in ψ−1(Yk−1) if it is a chamber in the arrangement AYk−1 and also
contains the face Fk. The number of such faces is equal to the number of chambers
in the central hyperplane arrangement whose intersection lattice is isomorphic to
[Yk−1, Yk]. By repeating this process for all the subspaces up to Y1 we get the desired
formula.



Chapter 7

Conclusions and Future Work

In the final chapter we summarize our work and also mention some open questions
that outline future directions.

7.1 Conclusions and Summary

The main motivation behind this research work is to generalize some aspects of the
theory of hyperplane arrangements. In particular we study arrangements of codimen-
sion 1 submanifolds. The aim is to obtain a better understanding of the interaction
between combinatorics and topology in this new context. We show that, under these
new conditions, most of the well known constructions (and results) in Hyperplane
Arrangements can be generalized to submanifold arrangements.

The most general case in which one considers arbitrary submanifolds and allows
all possible intersections is indeed very difficult to deal with. Hence we introduce some
restrictions that are described in the definition below (see Section 3.1 for details).

Definition 7.1.1. Let X be a smooth, real manifold of dimension l. An arrangement
of submanifolds is a finite collection A = {N1, . . . , Nk} of codimension 1 submanifolds
of X such that

1. The Ni’s intersect transversally.

2. X \Ni has exactly two connected components for every i.

3. The intersections of Ni’s define a regular CW decomposition of X.

Intuitively it means that for every point on the manifold there is a coordinate
neighborhood homeomorphic to a hyperplane arrangement. Moreover, the arrange-
ment stratifies the manifold into open, contractible pieces. The complement of this

131
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arrangement inside the manifold is disconnected. For examples other than hyperplane
arrangements, consider arrangement of points on a circle or arrangement of circles on
a 2-sphere.

In order to generalize the notion of the complexified complement, let us first forget
the complex structure on Cl, then as a topological space it is homeomorphic to R2l

which also happens to be the tangent bundle of Rl. Hence the complexified com-
plement is also a complement inside the tangent bundle. This point of view has a
potential to generalize, as the following definition suggests.

Definition 7.1.2. Let X be a l-dimensional manifold and A = {N1, . . . , Nk} be an
arrangement of submanifolds. Let TX denote the tangent bundle of X and TA :=⋃k
i=1 TNi. The tangent bundle complement of the arrangement A is defined as

M(A) := TX \ TA.
Similar to hyperplane arrangements one can define the face poset (denoted by

F(A)) and the intersection poset (denoted by L(A)) in this new setting (see Definitions
3.1.9 and 3.1.8 respectively). Elements of the face poset are called faces, codimension
0 faces are called chambers. The main theme of investigation is:

To what extent do the face poset and intersection poset determine the topology of the
tangent bundle complement?

Here is a summary of results obtained while investigating this question.

Generalization of the Salvetti complex

Let us first look at the tangent bundle complement. We prove that it has the homo-
topy type of a finite dimensional simplicial complex (see Theorem 3.2.7). This can be
considered as the main theorem of this thesis. The key is to identify an open covering
of this space such that it is finite, each open set is contractible and also their inter-
sections are contractible. Moreover, construction of each of these open sets depends
only on the incidence relations in the face poset. As a result, using Nerve lemma
(Theorem 1.1.6) we can identify a simplicial complex whose simplices are indexed by
face-chamber pairs and that has the homotopy type of the tangent bundle comple-
ment. The scheme of this proof is analogous to the work of Paris in [68], where he gives
a different proof of Salvetti’s seminal result and this is the reason the simplicial com-
plex is called the Salvetti complex. Following Salvetti [73], we also describe a regular
cell structure of the tangent bundle complement whose barycentric subdivision is the
above stated simplicial complex. This is done using metrical-hemisphere complexes
(see Section 3.3 and Subsection 3.3.1 in particular). The combinatorial structure of
the Salvetti complex is also studied in detail. We also show that the Salvetti complex
is a homotopy colimit of certain diagrams of spaces (Theorems 3.2.16 and 3.3.22).
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Covering spaces of the tangent bundle complement

Building on the work of Salvetti and Paris, Delucchi studied the Salvetti complex (in
the context of real hyperplane arrangements) and its connected covers using methods
from homotopy theory in his thesis, see [23, Chapter 4] and [24]. To be precise Delucchi
described diagrams of spaces indexed over the face poset of an arrangement such that
the homotopy colimit of a diagram is some connected cover of the Salvetti complex.
This result is generalized for the tangent bundle complements (Theorem 3.4.12). The
homotopy-theoretic tools for combinatorial applications developed in the remarkable
paper of Welker, Ziegler and Živaljević [89] are extensively used to prove these results
(see Chapter 2 for details).

Homotopy Groups

A presentation for the fundamental group of the tangent bundle complement is ob-
tained in Corollary 3.5.6. A class of submanifold arrangements for which the word
problem (for the fundamental group) is solvable is identified in Theorem 3.5.16. These
results are proved using the path category and the fundamental groupoid of the Sal-
vetti complex. Inspired by the seminal work of Deligne we also obtain a mild gener-
alization of his main result in Theorem 3.6.4.

Cohomology groups of the tangent bundle complement

One of the benefits of using the language of homotopy colimits is that some machinery
from homotopy theory can be applied. For example, if a topological space is expressed
as a homotopy colimit then (in principle) its cohomology can be computed using
the Bousfield-Kan spectral sequence. Since the Salvetti complex is expressed as a
homotopy colimit, we can apply the Bousfield-Kan spectral sequence. An explicit
description of the differentials on the E1 page is obtained, with the help of which
terms on the E2 page are calculated. It is observed that in most of the examples the
spectral sequence collapses on the second page (see Section 3.7).

Arrangements of spheres

As a particular example of the theory developed so far, we study the arrangements of
hyperspheres and obtain an explicit description for the homotopy type of the tangent
bundle complement. These arrangements are defined as follows.

Definition 7.1.3. Let Sl denote the unit sphere in Rl+1. An arrangement of spheres
in Sl is a finite collection A of codimension 1 sub-spheres obtained by intersecting
with a central and essential hyperplane arrangement in Rl+1.
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The result that describes the homotopy type of the tangent bundle complement
for these types of arrangements is (see Lemma 4.1.9 and Theorem 4.1.12):

Theorem 7.1.4. Let A be an arrangement of hyperspheres in Sl. Then there exists a
generic equator which cuts the sphere into two open disks Dl

+ and Dl
− such that A+ :=

A|Dl
+ and A− := A|Dl

− are (combinatorially isomorphic) hyperplane arrangements
in Rl. Without loss of generality, let m = |C(A−)|. Then,

M(A) ' (
∨

m

Sl)
∨

Sal(A+)

where |C(A)| denotes the number of chambers of an arrangement.

All the above results are also extended to arrangements of projective spaces that
arise due to antipodal action.

Arrangements of pseudohyperplanes

Finally we also study arrangements of pseudohyperplanes (topologically tame hyper-
planes). Oriented matroids are intimately connected to hyperplane arrangements.
The faces of a hyperplane arrangement satisfy covector axioms of an oriented ma-
troid. An important landmark in the theory of oriented matroids is the Folkman-
Lawrence Topological Representation Theorem [34]. The theorem states that there is
a one-to-one correspondence between oriented matroids of rank l and arrangements of
pseudospheres in Sl+1. An arrangement of pseudospheres is obtained by intersecting
an arrangement of (central) pseudohyperplanes with the unit sphere (see Corollary
5.1.17). Under this correspondence realizable oriented matroids correspond to ar-
rangements of central hyperplanes.

A generalization of the complexification of a (non-stretchable) pseudohyperplane
arrangement was missing, as it is not always possible to put a smooth structure on
these pseudohyperplanes. In Section 5.2 we introduce a (connected, 2l-dimensional)
topological space naturally associated with a pseudohyperplane arrangement that has
the homotopy type of the corresponding Salvetti complex (Theorem 5.2.8). When the
arrangement is stretchable this space is homeomorphic to the complexified comple-
ment.

Generalization of Zaslavsky’s theorem

Let us now consider the complement of the arrangement inside the manifold. This
is a disconnected topological space and we are interested in counting the number of
connected components (chambers). This counting is done using the Möbius function
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of the intersection poset and the compactly supported cohomology of the intersections.
This result generalizes the classical theorem of Zaslavsky. The theorem we prove is
the following (Lemma 6.2.1 and Theorem 6.2.5).

Theorem 7.1.5. Let A be an arrangement of submanifolds with the intersection poset
L(A) and let Poinc(Y, t) denote the Poincaré polynomial with compact supports of a
topological space Y .The function ν : L→ Z[t] defined by ν(A) = Poinc(A, t), ∀A ∈ L
extends uniquely to a measure on the distributive lattice generated by L. Moreover if
IC(A) denotes the characteristic function on the set chambers then

∫
IC(A)dν =

∑

Y ∈L

µ(X, Y )Poinc(Y, t)

and the number of chambers is given by evaluating the above integral at t = −1 i.e.

|C(A)| = (−1)l
∑

Y ∈L

µ(X, Y )Poinc(Y,−1)

The main tool used in the proof is the Groemer’s integral theorem and the fact
that the Euler characteristic serves as a measure on certain posets. The idea of using
this theory in the context of arrangements goes back to Blass and Sagan [8] (see also
[14,30,31]). We would like to mention here that this generalization is not completely
new. In fact it appears in the work of Zaslavsky [93] but our proof is different from his
and makes it possible to introduce a generalization of the characteristic polynomial
(suggested in the work of Chen [14]).

7.2 Future Work

Cohomology algebra of the tangent bundle complement

Though we have established some information about the cohomology groups of the
tangent bundle complement in Section 3.7, understanding of the cup product is far
from complete. Based on these calculations, the result about sphere arrangements
(Theorem 4.1.17) and ongoing work on toric arrangements we propose the following
conjecture. This conjecture states that there is a finer grading of cohomology groups
indexed by the intersection data.

Conjecture 7.2.1. Let A be a submanifold arrangement in an orientable l-manifold
X and let M(A) be the associated tangent bundle complement. If L(A) is the inter-
section poset then

rank(H i(M(A),Z)) =
∑

Y ∈L(A)
0≤rk(Y )≤i

rank(H i−rk(Y )(
∐

|µ(X,Y )|

Y,Z)) 0 ≤ i ≤ l



7. Conclusions and Future Work 136

where µ is the Möbius function of L(A) and rk(Y ) is the codimension of the corre-
sponding intersection.

Note that the above conjecture is true for hyperplane arrangements (known as the
Brieskorn lemma [62, Proposition 3.75]) and sphere arrangements (Theorem 4.1.17).
One more relevant step in this direction would be to see if it is possible to obtain a
combinatorial description of homology cells of the Salvetti complex. That is to figure
out whether the cells of the minimal complex for the tangent bundle complement
are determined combinatorially. For hyperplane arrangements, this kind of explicit
description is obtained in [25] using discrete Morse theory.

Toric arrangements

These types of arrangements are studied extensively and in various contexts (see
Section 4.2). Let us start by defining complex toric arrangements.

Definition 7.2.2. Let (C∗)l be the complex l-torus, a (complex) toric arrangement
is a collection A = {H1, . . . , Hn} of finitely many codimension 1 complex subtori.

Since C∗ is biholomorphic to an infinite cylinder, a complex torus is homeomorphic
to the tangent bundle of its underlying compact (or the real) torus. If A is a (complex)
toric arrangement in (C∗)l then (C∗)l ∼= (S1)l × Rl and each of the subtori in A are
homeomorphic to (S1)l−1 × Rl−1. So given a real toric arrangement (in the sense of
submanifold arrangement) the tangent bundle complement is homeomorphic to the
complement of a complex toric arrangement. Hence for a complex toric arrangement
its associated real toric arrangement can also tell us a lot about the complement
M(A), similar to the hyperplane arrangement case. Though a lot of results developed
so far for the submanifold arrangements apply in this context. Here is a list of some
immediate questions that shape our future work.

1. To remove the regular cell division condition from the definition of the subman-
ifold arrangements.

2. To find a relationship between the generalized characteristic polynomial and the
multiplicity Tutte polynomial.

3. To show that the integral cohomology algebra of the complement of a (complex)
toric arrangement is an Orlik-Solomon algebra.

4. To show that the toric arrangements that correspond to affine Coxeter groups
are K(π, 1).
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Reflections on Manifolds

The most important work that initiated the study of the complexified complement
of a real hyperplane arrangement is due to Deligne [22]. He proved a conjecture due
to Brieskorn [10] that the complexified complement of a reflection arrangement is
aspherical. Deligne proved this conjecture for a larger class of arrangements called
as simplicial arrangements. An arrangement is called simplicial if its chambers are
cones over simplices. Deligne proved that the complexified complement of such an
arrangement is K(π, 1) (i.e. the complement is an aspherical space). His proof has
the following main ideas -

1. If A is a simplicial arrangement, then A has property D ( [22, Prop. 1.9], [68,
Theorem 3.1]).

2. If a real arrangement A of hyperplanes has property D, then the complexified
complement M(A) is a K(π, 1) space ( [22], [68, Theorem 3.6]).

Property D is another name, in the literature, for the Deligne normal form of the
associated positive category (see Definition 3.6.5). Deligne uses this property to show
that the universal cover of M(A) is contractible (see Section 3.6 for a sketch of the
proof). The arrangements that arise due to (faithful linear) representations of finite
reflection groups (called Coxeter arrangements) are examples of simplicial arrange-
ments (see [6, 62]), hence are K(π, 1). Our interest is to generalize the theory of
Coxeter arrangements in the context of real, smooth manifolds.

Now, with this canvas in mind let us look at the problem we want to investigate.
First a definition -

Definition 7.2.3. Let X be a real, connected, smooth manifold of finite dimension
l. A reflection of X is a self-diffeomorphism s such that

1. s2 = 1,

2. the set Xs of fixed points of s is a smooth, codimension 1 submanifold,

3. X \Xs has 2 different components.

Let W (X,n) denote the group generated by n distinct reflections of X and let Ni

denote the submanifold fixed by the i-th reflection. Then it is not hard to see that Ni’s
intersect like hyperplanes (however it is not guaranteed that their intersections will
always describe a regular CW structure of X). If we assume that the intersections of
these submanifolds give us a regular CW decomposition then these fixed submanifolds
form a submanifold arrangement A.
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We refer to [18, Chapter 10] and [42] for more information on these reflections
and a presentation of the corresponding finite reflection group. According to [18,
Theorem 10.1.5] the group W (X,n) is actually a Coxeter group and the chambers of
the corresponding arrangement are labeled by the elements of W (X,n). Since each
isotropy subgroup acts linearly on the tangent space the whole group has a proper
action on the tangent bundle. The tangent bundles of these fixed submanifolds are
also fixed under this action. As a result the reflection group W (X,n) has a fixed point
free, proper action on the tangent bundle complement M(A). Let Y (A) denote the
qoutient of M(A) under this action and let PA(X,A) (respectively A(X,A)) denote
the fundamental group of M(A) (respectively of Y (A)). Note that if X ∼= Rl then
PA(X,A) is the pure Artin group and A(X,A) is the Artin group. Hence this setting
generalizes not only Coxeter arrangements but also Artin groups. Now, the following
ideas form natural problems in this context-

1. To find a labeling of the cells of the associated Salvetti complex that is based
on the reflection group data.

2. To naturally extend the action of G(X,n) to the tangent bundle complement.

3. To generalize the theory of Garside type models [23, Chapter 6] in this context.

4. To characterize the cases in which the tangent bundle complement is a K(π, 1)
space.

5. To understand the geometric group theoretic properties of the groups PA(X,A)
and A(X,A).

We hope that this project will generalize the study initiated by Deligne and hopefully
add an interesting aspect to the K(π, 1) problem.
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complexes. PhD thesis, ETH Zürich, 2006. iii, xi, 19, 22, 27, 30, 59, 62, 63, 67,
75, 78, 82, 83, 116, 117, 133, 138

[24] E. Delucchi. Combinatorics of covers of complexified hyperplane arrangements.
Progress in Mathematics, 283:138, 2007. 19, 27, 29, 62, 133



141 REFERENCES

[25] E. Delucchi. Shelling-type orderings of regular CW-complexes and acyclic match-
ings of the Salvetti complex. Int. Math. Res. Not. IMRN, 2008(6):Art. ID rnm167,
39, 2008. 13, 106, 136

[26] J. M. Douglass. Toral arrangements and hyperplane arrangements. Rocky Moun-
tain J. Math., 28(3):939–956, 1998. 100

[27] W. G. Dwyer and H. Henn. Homotopy theoretic methods in group cohomology.
Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel,
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