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Abstract

We investigate magnetic diffusion on scales from molecular clouds over prestellar and

protostellar cores down to young stellar objects (YSOs) and their surrounding protoplan-

etary disk.

In Chapter 2, we present thin-sheet simulations that exhibit long-lived magnetic-tension-

driven oscillations, founded in the interaction of the cloud’s magnetic field with that

anchored in an external medium. In contrast with “local” simulations in a periodic box,

where turbulence decays away in approximately a sound crossing time, and needs to be

continually replenished by driving, our simulation has “global” aspects, and retains some

kinetic energy indefinitely. We provide an analytical explanation for these modes, that

occur in the flux-freezing limit, as may be applicable to photoionized molecular cloud

envelopes. The motions decay rapidly if ambipolar diffusion is introduced.

Chapter 3 introduces a new analytical three-parameter column density profile to fit

prestellar cores. It is a replacement for the Bonnor-Ebert sphere model which has severe

drawbacks, not the least of which is that fitting it often produces unrealistic tempera-

tures. Our model instead fits the size of the flat region of both collapsing cores and those

in equilibrium. It uses temperature as an input parameter. It can also be used to fit

flattened cores, as well as cores with rotation and magnetic fields. Finally, our model

provides a quantitative measure to judge whether a core is collapsing or in equilibrium.

We apply it to B68 and L1689B.

In Chapters 4 and 5, we present numerical simulations that show that catastrophic ma-

gnetic braking can be avoided in the collapse of a prestellar core. Non-ideal MHD effects

(ambipolar diffusion and Ohmic dissipation) weaken the magnetic field in the first core,

inactivate magnetic braking there, and allow a disk to form close to the protostar. The

formation of a small disk is consistent with observations that do not show evidence of a

large centrifugal disk around Class 0 and I protostars. We propose a scenario where over

time, a small but initially massive disk can expand to sizes of ≈ 100 AU, as commonly

observed around Class II protostars.

Keywords: diffusion – ISM: clouds – ISM: kinematics and dynamics – ISM: magnetic

fields – magnetohydrodynamics (MHD) – protoplanetary disks – stars: formation – stars:

low-mass – stars: magnetic field – stars: protostars – turbulence
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Chapter 1

Introduction

1.1 Preliminaries and overview

Star formation (SF) research is a young and very active field of study. There are still

many open questions of great importance, some of which will be briefly described in

the following sections. This Thesis starts with a discussion of molecular gas clouds

and structures therein. It will then focus on prestellar cores and their properties, and

subsequently turn to their evolution to the next stage, class 0 protostars, and conclude

with prospects of theoretical star formation research for the future.

All discussion will be about low-mass star formation (. 3 M¯). High-mass star

formation was thought to be conceptually different only two decades ago (Shu et al.,

1987; Lizano and Shu, 1989), after Herbig (1962) introduced the idea of bimodal star

formation. Today, it is essentially believed that high-mass SF is mostly based on the same

processes as its lower-mass counterpart, scaled up, with the help of geometrical factors

such as non-spherical accretion (e.g., Keto and Wood, 2006). In order to assemble much

greater masses in the same time frame, the accretion rate must be greater by a factor

of up to ≈ 103. All gravitational energy released during the accretion must escape as

radiation, and radiation pressure on dust and gas becomes significant. Additionally, the

high-energy photons emitted by high-mass protostars will create a compact HII region

opposing further accretion. Both effects necessitate a detailed treatment of radiative

transfer, which greatly complicates the study. From an observational point of view, the

general scarcity and short lifetimes of high-mass stars compared to their low-mass siblings

brings about the problem that high-mass star formation sites are generally located much

1The ghazal in the epigraph and its translations are taken from the book “Divan-e Hafiz”, Deluxe
Edition, 2nd edition, 2006, Kalhor Publishing House, Tehran, Iran. The German translation is by Johann
Christoph Bürgel; no author is given for the English translation.
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2 Chapter 1. Introduction

further away from our solar system. Furthermore, the rapid evolution of high-mass

protostars causes them to ignite the hydrogen fusion while still being obscured by a thick

envelope. It is thus very difficult to observe very young massive stars. To date, the

detection of high-mass analogues of prestellar cores remains controversial (Motte et al.,

2007, 2010).

In this Thesis, we study processes most likely occurring in all stars, but focus on the

formation of low-mass stars since there exists a great abundance of observations with

which to test our models.

1.2 From clouds to cores

1.2.1 Lifetimes of molecular clouds

It has been well established that the conversion rate of gas contained in the Galaxy’s

spiral arms into stars must be only a few percent per free-fall time. If the gas was to

collapse into stars in a free-fall time, the Galaxy would have been depleted of gas long

ago. However, we observe large amounts of gas in the interstellar medium (ISM). In fact,

the largest coherent structures in the Galaxy are dense clouds of molecular gas, called

Giant molecular gas clouds (GMCs), and each containing ≈ 106 M¯ of predominantly

H2.

In the “standard” picture of the onset of star formation, those clouds originally have

a subcritical mass-to-flux ratio (i.e., are magnetically dominated, see Section 1.3.2) and

evolve in ≈ 10 tdyn, the ambipolar diffusion timescale (ambipolar diffusion is explained in

Section 1.2.2 below) until enough flux has been dissipated so that they become supercrit-

ical and they can collapse under self-gravity in ≈ 1 tdyn (e.g., Mestel, 1965; Mouschovias,

1976; Shu et al., 1987). Here, tdyn ∝ (G%)−1/2 is the free-fall time at the density %. In

recent years, this picture has been challenged by various observations. Firstly, all known

GMCs harbor star formation. If the time to form cores really was 10 times longer than

the time for collapse of the cores, one would expect a number of clouds in a dormant state,

devoid of star formation. Furthermore, Tafalla et al. (e.g. 1998) and Walsh et al. (2006)

found evidence in cores for infall motions at large radii, consistent with supercritical core

collapse (e.g., Basu and Ciolek, 2004). Also, the ages of pre-main-sequence stars within

clouds (≈ 1 Myr) are presumed to be too small (Hartmann, 2001) to be explained by

the standard model, which proposes that GMCs live for at least several tdyn (≈ 10 Myr).

These points suggest the picture of cloud evolution through slow contraction moderated

by strong magnetic fields may need to be modified to fit most GMCs. However, there
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are notable exceptions. One is Taurus molecular cloud, which Elmegreen (2007) sug-

gests as a possible example where the “standard” picture indeed could apply. Goldsmith

et al. (2008) and Heyer et al. (2008) show striations in Taurus’ envelope that seem to

be aligned perfectly with optical polarization measurements of the magnetic field. This

could indicate that motions parallel to the field lines are in progress, consistent with a

magnetically-dominated envelope.

An alternative picture is that of short-lived molecular clouds, in which rapid star

formation takes place. This view is promoted by supporters of turbulence-regulated

star formation (Elmegreen, 2000; Palla and Stahler, 2000; Hartmann, 2001; Hartmann

et al., 2001; Padoan and Nordlund, 2002; Klessen et al., 2005). The ISM is pervaded by

supersonic motions, possibly on a large scale. As a collective, these motions are commonly

referred to as “turbulence”, even though they probably have not much in common with

the familiar “eddy-like” turbulence of incompressible fluids. If not replenished, those

motions decay in . 1 tdyn (Mac Low et al., 1998). Potential “small-scale” driving sources

could be supernovae, HII regions, stellar winds, or jets. Galactic sources could include

effects such as instance spiral density waves, and galactic shear. Cloud formation in this

paradigm is thought to be triggered by the collision of large-scale flows in the diffuse

(atomic) ISM (e.g., Hartmann, 2001), as opposed to assemblage by flows along magnetic

field lines (e.g., by the Parker instability, Parker, 1966; Mouschovias, 1974). Critics cite

the fact that GMCs do not show any large-scale expansion or dispersal motions, which

would be required to explain the destruction of clouds after stars have formed. Also,

quiescent regions such as the Taurus molecular cloud do not fit this picture. In the

following Sections the initial conditions of star formation are discussed in greater detail.

Magnetic field measurements help little in deciding between the long- and short-

lived GMC picture. Core envelopes, highly ionized by incident UV light, are found to

be subcritical (Cortes et al., 2005; Heyer et al., 2008), while cores themselves, shielded

by their high column density, are not (Crutcher and Troland, 2007). In fact, direct

measurements of the magnetic field strength in cores (e.g., Troland et al., 1996; Crutcher,

1999) and magnetic field morphology around cores (e.g., Cortes and Crutcher, 2006) seem

to indicate that they are supercritical. It is not well established what value the average

mass-to-flux ratio in a whole cloud takes (see, e.g., Mouschovias et al., 2006). Opponents

of the standard model cite the fact that no stable, subcritical core is known. Such

condensations should exist for a long time during which they slowly increase the mass-

to-magnetic-flux ratio. Proponents of the standard model on the other hand point out

that cores are always expected to be supercritical and need not exist in a subcritical state

for a long time (Mouschovias et al., 2006) since clouds as a whole are thought to have
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mass-to-flux-ratios fairly close to critical (e.g. Elmegreen, 2007).

In a more general argument, Elmegreen (2007) proposes that all processes from the

formation of GMCs down to core collapse work on close to a local dynamical time scale.

Processes further down the line, at greater local density, happen faster than the ones

preceding them, since tdyn ∝ (G%)−1/2. Galactic star formation takes place over times

set by the total mass in molecular form divided by the Galactic star formation rate

(≈ 108−109 yr for CO — Zuckerman and Evans, 1974). Core evolution and star formation

as the last step, in turn, proceeds very fast (several 105 yr — Onishi et al., 2002) because of

higher densities. In this picture, star formation (especially high-mass) is so disruptive to

its surroundings that the core envelope is dispersed (but not destroyed) in only a fraction

of the dynamical time appropriate for that envelope. Elmegreen (2007) posits that, after a

certain time lag, this dispersal triggers a second generation of star formation in a different

location. This embraces the paradigm of slow envelope evolution under the influence of

ambipolar diffusion (e.g., Mouschovias, 1991), but rejects the conclusion that molecular

clouds are old. Elmegreen (2007) and Huff and Stahler (2006) refute the interpretation

of observations to the contrary (see, e.g., Mouschovias et al., 2006) and claim for instance

that the presence of older stars in star forming regions does not indicate that clouds as

seen today are long-lived, but instead suggests that clouds have been contracting as a

whole after the decay of their turbulent support. This would have caused the density

to increase over time, and made the dynamical time for later generations of stars much

shorter than for the first. Accordingly, Palla and Stahler (2000) call this “accelerating

star formation” (but see Hartmann, 2001, for various caveats). The old stars observed

are then remnants from a previous star formation episode. This model would require

neither magnetic fields nor sustained turbulence, as all processes take place essentially

on the time scale set by self-gravity (Elmegreen, 2000).

The resolution to the question about the formation of cores will be found in a com-

bination of both ambipolar diffusion and turbulence (e.g., Smith and Mac Low, 1998;

Balsara et al., 2001). Their fusion leads to “turbulence-enhanced ambipolar diffusion”

(e.g., Heitsch et al., 2004; Li and Nakamura, 2004; Nakamura and Li, 2005; Kudoh and

Basu, 2008; Basu et al., 2009a,b). Here, turbulent motions compress the gas and, while

not able to overcome magnetic forces in a subcritical cloud unless they are super-Alfvénic

(Basu et al., 2009a), increase the local rate of ambipolar diffusion dramatically, and hence

decrease the time for the core to become supercritical and collapse due to self-gravity.

In that case, collapse is not delayed much beyond tdyn. This is also discussed in Section

1.3.2.

In any case, a reasonable theory for cloud life times and star formation must explain
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the observed low efficiency of star formation (e.g., Williams and McKee, 1997). The

“turbulence-dominated” scenario claims that cores form by turbulent compression, at

which point gravity takes over (see, e.g., Klessen et al., 2005). The remaining material is

moving about too quickly to be accreted, has too little self-gravity (Elmegreen, 2000), or

is dispersed by stellar feedback mechanisms. The “standard model” on the other hand

invokes magnetic forces to hold up the core envelope and keep it from accreting onto

the protostar (see, e.g., Basu and Mouschovias, 1994). Future observations and refined

models considering both contributions will have to settle this dispute.

Recently, observational and theoretical indications have been put forward that the

effect of ambipolar diffusion may soon come into reach of being observed directly (Li

and Houde, 2008; Tilley and Balsara, 2010). The authors link the ambipolar diffusion

length scale LAD = vAτin%n/%i with the scale of turbulent dissipation. Here, vA is the

Alfvén velocity, τin is the ion-neutral collision time, and %i and %n are the ion and neutral

density, respectively. Below this scale, Alfvén waves (and other magnetohydrodynamical

waves as well) suffer strong damping (see Balsara, 1996). Li and Houde (2008) find an

ambipolar diffusion scale of ≈ 360 AU. ALMA will make this scale observable, so one

can hope for new insights into the relative importance of magnetic fields and turbulence

in not too distant a future.

1.2.2 Constituents of the ISM

The four constituents matter and radiation, gravity and magnetic fields make up the ISM.

Each can play a bigger or smaller role in a given region, depending on various conditions.

The gravitational field depends on the amount of matter present, and there is a

consensus that it is the main driver of all star formation (Mestel, 1965; Larson, 2003;

Bonnell et al., 2007; McKee and Ostriker, 2007; André et al., 2009). There is some

argument that molecular gas clouds as a whole (e.g., Hartmann et al., 2001) and some

prestellar cores may be transient and not be gravitationally bound (e.g., André et al.,

2009), but even most advocates of the turbulent star formation paradigm concede that

gravity takes over once a dense core is formed (e.g., Ballesteros-Paredes et al., 2003;

Mac Low and Klessen, 2004, but see also for instance Padoan and Nordlund, 2002 for a

different view).

The matter making up the ISM can be split into three parts again, in particular gas,

dust, and electrons. The most abundant elements in the gas are, in descending order,

hydrogen (≈ 90% in number), helium (≈ 10%), and carbon and other “metals” (traces),

a term which encompasses all elements heavier than helium. These higher elements are
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of great importance. Not only do they provide the building material for what is called

“dust”, which accounts for ≈ 1% of the total mass in the ISM due to their high specific

mass, they also are the source of most of the free electrons in the ISM because they are

comparatively easy to ionize.

In regions where the density is high enough and the temperature is sufficiently low,

most of the gas is in molecular form. Over 160 molecules have been identified in the

ISM by their spectrum to date. The simplest and most abundant molecule is H2, even

though its emission lines are not found in molecular clouds. The temperature in those

very cold regions typically is not high enough to excite those transitions, as they lie in

the optical and UV range. Furthermore, H2 is a symmetric molecule and does not have

any rotational transitions observable at submmillimeter (submm) wavelengths for which

molecular clouds are transmissive. The second-most abundant molecule is CO, which is

important for instance for its strong dipole moment. However, observed molecules can

be made of more, even dozens, atoms (e.g., Methanol, CH3OH, or the Fullerenes C60

and C70, Cami et al., 2010). From their collective emission behavior, so-called polycyclic

aromatic hydrocarbon (PAH) molecules have been identified, which might have hundreds

of carbon atoms in dozens or even hundreds of benzene rings (see, e.g., the reviews by

Puget and Léger, 1989; Tielens, 2008).

The term “dust” includes all collections of molecules loosely bound to each other.

They form grains that can range in size from mere nanometers to millimeter sizes and

greater. Dust is of pivotal influence for the interstellar radiation field. As opposed to

individual molecules, dust is not destroyed by hard UV radiation (for instance from OB

associations) but instead absorbs these photons and re-radiates them in longer wave-

lengths. Even though there are comparatively few dust particles in the ISM, their emis-

sion provides effective cooling to the densest regions of molecular clouds, even more so

than atomic and molecular line emissions, which tend to be reabsorbed if the density is

sufficiently high. This cooling is so efficient that GMCs are the coldest objects known,

and temperatures reach as low as 6 K in the densest cores (Galli et al., 2002). The av-

erage temperature in molecular clouds where stars are forming range between 10− 20 K

(e.g., see the review by Larson, 2003).

Free electrons and ions play an important role for the magnetic field, as they (par-

ticularly the electrons) gyrate around the field lines and re-induce the field. A tiny drift

between electrons and the positively-charged ions suffices to set up large-scale magnetic

fields. Whether they are produced by the enhancement of a primordial magnetic field in

the protogalaxy or a large-scale Galactic dynamo, magnetic fields are omnipresent the

Galaxy. They are predominantly oriented along the Galactic spiral arms (see, e.g., Han



1.2. From clouds to cores 7

and Zhang, 2007) and can have a strong impact on molecular cloud dynamics. In re-

gions with a sufficiently high ionization fraction, frequent collisions between neutrals and

charged species couple the magnetic field effectively to the neutral matter, that drags the

field along. Vice-versa, the neutrals feel the influence of the field through collisions, even

though the Lorentz force does not affect them directly. If the magnetic force dominates

self-gravity, cores are supported against gravitational collapse. Evolution then happens

on a diffusive time scale, with neutrals slowly drifting past the ions held in place by the

magnetic field. This process is called ambipolar diffusion in an astrophysical context1

(Mestel and Spitzer, 1956; Mestel, 1965; Mouschovias, 1977). When sufficient magnetic

diffusion has taken place and the mass-to-flux ratio has surpassed the critical value (e.g.,

Nakano and Nakamura, 1978) collapse ensues, albeit slower than under free-fall condi-

tions. This retardation also occurs when the field is significant but does not suffice to

balance gravity. In regions with too few ions to couple to the neutrals effectively by colli-

sions, or with a very weak magnetic field, other phenomena such as turbulence dominate

the dynamics.

Finally, as the fourth constituent of the ISM, the interstellar radiation field comprises

of photons, their wavelengths ranging from Radio to hard X-rays, and charged particles

that constitute the so-called cosmic rays. Cosmic rays (CRs) are mainly electrons and

protons that are accelerated (the mechanisms of which are still controversial) to very high

energies, and pervade the ISM. They can penetrate into even the densest molecular cloud

cores, where they maintain a low background ionization fraction (≈ 10−8 at n ≈ 105 cm−3

— Hezareh et al., 2008). X-Rays are emitted by radioactive processes in the ISM, but

also by nearly all main-sequence stars (Güdel and Nazé, 2009), especially high-mass

stars. Additionally, T-Tauri stars produce X-rays in their surrounding disks. X-rays do

not have energies quite high enough, nor are they common enough, to play a major role

in ISM dynamics. More important are UV photons that young stars and high-mass stars

emit in large quantities. Hard UV radiation can ionize hydrogen, while less-energetic UV

photons still carry significant momentum. They exert pressure on the surrounding gas

and drive stellar winds, which in turn can influence the ISM dynamics, in particular close

to OB associations. UV and optical photons also get absorbed and reprocessed by dust

particles and large molecules such as PAHs, i.e., are re-emitted at longer wavelengths.

Vibrational and – at still lower energies and also for smaller molecules – rotational modes

are excited. This means that molecular clouds are opaque to optical radiation. They

appear as dark “holes in the sky” against a backdrop of stars. However, the extinction

1in plasma physics, the term refers to a situation where ions and electrons are tethered electrostati-
cally, rather than magnetically (Chen, 1984)
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decreases with increasing wavelength of radiation, and indeed, the clouds are transmissive

to submillimeter radiation (Stahler and Palla, 2005). In fact, the peak of blackbody

emission at the temperatures prevalent there (20 − 30 K) occurs at ≈ 100 − 150 µm.

Much of star formation research therefore relies on observations in the submillimeter and

millimeter regime. Finally, the radio regime contains one of astronomy’s most famous

spectral lines, the hyperfine transition of HI gas at 21 cm. With it, the temperature and

density distribution of neutral hydrogen gas can be traced in the Galaxy and beyond.

Lastly, the Cosmic Microwave Background (CMB) is remnant emission from the surface

of last scattering in the early universe.

1.2.3 Non-thermal motions in the ISM

Linewidths suggesting supersonic motions have been measured in the ISM and GMCs

early on (see the review by Zuckerman and Palmer, 1974). They can be described by

the famous “linewidth-size relation”. Larson (1981) showed that the velocity dispersion

increases as one studies larger and larger structures. His scaling law of σv ∝ L0.38,

reminiscent of Kolmogorov turbulence, was later updated to be closer to ∝ L0.5 (Myers,

1983; Solomon et al., 1987). This power-law relationship between the two quantities is

consistent with virial equilibrium, rather than with a turbulent cascade as in the eddy-like

incompressible Kolmogorov turbulence. Since the ISM instead is a strongly compressible

medium, the nature of the supersonic motions probably more closely resembles Burgers

turbulence (see the review by McKee and Ostriker, 2007), where energy is dissipated

in strong shocks and by excitation of waves. If a magnetic field is present, its capacity

to be the host of various waves is crucial to this process. The observable effect of this

“turbulence” is a broadening of spectral lines.

It was suggested that the observed supersonic motions could be long-lived magneto-

hydrodynamical (MHD) waves, in particular Alfvén waves, as those are non-compressive

and therefore not dissipated in shocks (e.g., Arons and Max, 1975). In contrast, Stone

et al. (1998) argue that interaction of Alfvén waves would still excite compressive MHD

motions and dissipate at least part of their energy. Another possible magnetic-field-

related explanation is explored in Chapter 2 of this Thesis, namely that of magnetic-

tension-driven modes induced by the interaction of the cloud’s magnetic field with that

anchored in an external low-density and environment. Some simulations include super-

Alfvénic turbulence (e.g., Padoan and Nordlund, 2002; Mac Low and Klessen, 2004, and

references therein) in which case, the magnetic field would not play a major role in the

dynamics no matter what its strength was until the turbulence had dissipated.
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Whatever their source, the turbulent motions need steady kinetic energy input on

both large scales and small scales, as they decay on time scales roughly comparable to

a sound crossing time of the system Stone et al. (1998); Mac Low et al. (1998); Mac

Low (1999); Ostriker et al. (2001). It is not clear what this input is precisely. Hartmann

(2001) suspects large-scale flows in the ISM, while Klessen et al. (2005) favor supernovae,

but there might also be other contributors such as Galactic shear and flows due to the

Parker instability on large scales, or stellar feedback on a smaller scale. Recent models,

such as Nakamura and Li (2008) include ad-hoc feedback effects from jets and outflows to

simulate small-scale driving, while other authors such as Heitsch and Hartmann (2008)

start with the assumption of large-scale colliding flows. Most of the turbulent energy is

contained in the largest modes (Heyer and Brunt, 2007), possibly hinting at a driving

mechanism on large rather than smaller scales.

In order to rule out or confirm the applicability of the magnetic theory or the tur-

bulent paradigm for the early phase of star formation, decisive tests need to be devised.

One possibility is to examine in detail column density profiles that the various models

produce. Unfortunately these are not very strong discriminators between models, be-

cause only column density is observable, and thus any density distribution a theoretical

model produces needs to be integrated along a line of sight in order to be compared with

observations. Observational smoothing and averaging additionally smears out details.

Many models produce approximately comparable column density profiles matching ob-

served features. In fact, Ballesteros-Paredes et al. (2003) even arrived at BE sphere-like

cores without any gravity, even though no a-priori physical reason explains this. In any

case, the radial core structure does not necessarily discriminate clearly between the two

extreme scenarios.

Chemistry is another way to select the most appropriate model. If one puts in a

sophisticated chemical model, and evolves the model of the cloud all the way from purely

atomic gas (e.g., Heitsch and Hartmann, 2008) all the way until core formation including

a detailed treatment of radiation, observationally testable predictions of the chemical

composition and the spatial distribution of molecules might be possible. This avenue

must be pursued in future simulations.

Another approach lies in the velocity structure the different theories predict. André

et al. (2009) review observational evidence that cores in Taurus and other regions that

predominantly form low-mass stars are essentially non-turbulent (they feature spectral

lines not broadened much beyond their thermal linewidths), and their immediate sur-

roundings exhibit small velocity dispersions. This goes to show that those cores form in

a quiescent environment, while “massive-star-forming regions” such as Orion and other
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cluster-forming clouds show larger velocity dispersions, i.e. more “turbulence”. It seems

that turbulent simulations (Padoan and Nordlund, 2002; Klessen et al., 2005, e.g.,) pro-

duce motions too fast to be reconcilable with quiescent modes of star formation. Purely

magnetic models in turn produce cores that take a long time to evolve and are too large

to explain observations in some star forming regions (Bacmann et al., 2000). On the

other hand, the hybrid simulations presented in Kirk et al. (2009), which include both

supersonic initial velocities and subcritical to transcritical magnetic fields, show that suf-

ficiently subsonic velocities within cores can be achieved with this approach. However,

the core-to-core velocities are still larger than observed. These recent advances make it

seem plausible that this major source of controversy around the detailed initial condi-

tions of star formation can be settled in the coming years with new observations and new

sophisticated simulations that include more of the relevant physics. As already stated in

Section 1.2.1, a successful model for low-mass star formation (and possibly for high-mass

star formation as well) will most likely involve both magnetic fields and turbulence.

1.2.4 Initial conditions of star formation

The general (and uncontroversial) initial conditions of star formation include a cold

(≈ 10 K) molecular cloud, made up of about 90% hydrogen and 10% helium in number.

This gas is assembled in a prestellar core, with clearly subsonic internal velocities. The

core is about 0.1 pc in size, and contains a few solar masses of gas. It will be centrally

condensed, with a central volume density of ≈ 106 cm−3, which has a profile resembling

that of a Bonnor-Ebert Sphere (see Appendix D). The mass-to-flux ratio, even if it was

subcritical (µ . 1) or transcritical (µ ≈ 1) in the envelope, is supercritical in the interior

of the core (µ ≈ 2 − 3). However, it is still far from the values found in main-sequence

stars (µ ≈ 106 − 108 — McKee and Ostriker, 2007). This mass-to-flux ratio will have

to be achieved in the collapse process (see Section 1.3.2). The cores most likely rotate

slightly (at ≈ 1 km/s/pc) and thus will have to shed some angular momentum also, to

collapse to stellar dimensions (see Section 1.3.1).

1.3 From cores to stars

This section is concerned with the formation of Class 0 protostars from prestellar cores

and their evolution towards YSOs of Class I and higher.

In principle, a “realistic” simulation of the protostellar collapse problem should be

radiation-magneto-hydrodynamical (RMHD) in nature and cover all three spatial di-
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mensions. It should include non-ideal MHD effects such as ambipolar diffusion, Ohmic

dissipation and the Hall effect, since without the first two, fragmentation and collapse

can be (possibly spuriously) inhibited altogether (e.g., Hennebelle and Fromang, 2008).

The simulation should also treat the thermodynamical effects of the collapse carefully,

ideally with full wavelength-dependent radiative transfer. However currently, these re-

quirement cannot yet all be fulfilled in one simulation, for computational reasons. The

main limiting factor is resolution. Starting from GMCs (with average number density

n ≈ 102 cm−3) and going all the way to stars (n > 1023 cm−3), over 20 orders of magnitude

in density are spanned. Similarly, linear scales extend from tens of pc to R¯ (9 orders

of magnitude), not accounting for possible effects of turbulence on even smaller scales.

Velocities range from subsonic speeds of a core contracting potentially quasi-statically

under the influence of ambipolar diffusion (. 0.1 km/s) up to the high-speed jets that

are launched with several hundreds of km/s. Finally, time resolution requirements also

change dramatically. At least 7 orders of magnitude are covered from the dynamical time

scale in GMCs (107 yr) down to mere months for the entire “second collapse” to happen

(e.g., Larson, 2003; Machida et al., 2006), and jets to be launched. In cluster-forming

environments, it is conceivable that extreme ends of the spectrum of these scales need

to be monitored simultaneously, and the history of rapidly-evolving objects needs to be

followed for a Myr or longer.

This makes reasonable approximations in various forms an inevitable necessity. One

possibility is to restrict the model to fewer than three dimensions. Indeed, early models

of cloud collapse were spherically symmetric. In the first half of the 20th century there

were no computers available to solve the hydrodynamic equations in more complicated

geometries. Hayashi (1966) hence relied on timescale arguments to make some statements

about the nature of the collapse, which he suggested to proceed homologously and in

free-fall. Early collapse computer models were presented by Bodenheimer and Sweigart

(1968), Larson (1969) and Penston (1969). The so-called Larson-Penston (LP) solution

started with a homogeneous initial state, which soon became quite non-uniform. They

included a simple radiation treatment and also self-similar solutions for the spherically

symmetric isothermal prestellar phase (t < 0). Hunter (1977) extended the LP solution

to t > 0, i.e., after the formation of a central protostellar object.

Shu (1977) presented the self-similar “standard” model of star formation, starting

with an analytical model called the Singular Isothermal Sphere model (SIS). He started

from a static setting with a density profile %SIS = c2s (2πGr2)
−1

at t = 0 (the formation of

the protostar) and calculated its collapse for t > 0. Terebey et al. (1984) extended the

self-similar SIS model, adding rotation, while Galli and Shu (1993) included magnetic
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fields (without rotation).

In spherical symmetry, as employed in the early computational models, rotation and

magnetic fields cannot be taken into consideration, since these effects require a preferred

direction (i.e., that of the rotation axis, and the mean field direction, respectively).

Fiedler and Mouschovias (1993) showed in an axisymmetric numerical model that an

initially spherical cloud quickly flattens under the influence of a magnetic field and as-

sumes a disk-like geometry. The reason is that magnetic tension and magnetic pressure

provide support against motions perpendicular to the field lines, but not parallel to them

(see Appendix B). Similarly, when a rotating sphere contracts, it flattens along the

axis of rotation, since the centrifugal force counteracts gravity perpendicular to it. This

flattening motivates the use of yet another simplified geometry, the thin disk (see, e.g.,

Mouschovias and Morton, 1991; Ciolek and Mouschovias, 1993, 1994; Li and Nakamura,

2004; Basu and Ciolek, 2004; Ciolek and Basu, 2006). Here, all equations of hydrodynam-

ics are integrated vertically over the z-direction. This approximation is valid as long as

all quantities do not vary much in the z-direction. Regarding its applicability, e.g. Tassis

and Mouschovias (2007) argue that thermal pressure smears out all density contrasts

over a thermal scale length, and that the thickness of the sheet is always comparable in

size to this scale length (see also Mouschovias, 1991).

Other models invoked axisymmetric cylindrical geometries; and some of those in-

cluded magnetic fields and ambipolar diffusion (see, e.g., Nakano, 1979; Lizano and Shu,

1989).

Recent advances in computational facilities have seen the advent of large three-

dimensional simulations. As recent examples, Bonnell et al. (2008) present hydrodynam-

ical simulations using the “Smoothed Particle Hydrodynamics” (SPH) technique with

4.5 × 107 Lagrangian particles. This approach is intrinsically three-dimensional, natu-

rally achieves high resolution in high-density regions, and can be integrated for a long

time since it does not suffer much from time-step restrictions. These advantages come at

the cost of being able to add the effect of magnetic fields with great difficulty only, as well

as reduced resolution in low-density regions. Additionally, SPH modelers have to take

care to capture shocks properly, while avoiding to introduce too much diffusivity into the

system. In contrast, Machida et al. (2006) and Hennebelle and Fromang (2008) show

MHD simulations on adaptive-mesh Eulerian grids with up to 21 levels of refinement

(each a factor of 2 higher resolution than the previous), the former including Ohmic dis-

sipation as a non-ideal MHD effect2. An Eulerian grid-based simulation technique buys

2It may be noted that the first fully three-dimensional simulation including ambipolar diffusion and
self-gravity (albeit not for the collapse problem but for studying the fragmentation of molecular clouds)
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the extremely high resolution at any point of interest at the cost of only being able to

integrate the solution for a severely limited time. It allows for an accurate treatment

of most relevant physics, but is difficult to implement. The fact that both schemes still

suffer from significant drawbacks make simulations with reduced dimensionality useful

to focus on special problems (e.g., Basu et al., 2009a,b).

At low densities, clouds achieve very low temperatures (≈ 6 K — Galli et al., 2002) by

atomic and molecular line cooling. A possibility for computational simplification came

with the realization that the gas couples very closely to the dust at higher densities, and

thus dust emission provides effective radiative cooling as long as the cloud stays optically

thin. This means that dense cores are very nearly isothermal over a large range of den-

sities (Hayashi, 1966; Larson, 1969; Narita et al., 1970; Winkler and Newman, 1980a,b).

Masunaga and Inutsuka (2000) performed detailed RHD simulations in spherical sym-

metry which confirmed the results calculated earlier using a gray-approximation (see the

review by André et al., 2009). In agreement with Tohline (1982) they found a density-

temperature relation well approximated by a barotropic pressure-density relation with

piecewise-constant ratios of specific heat γ instead of a sophisticated heat equation. This

result is now widely used in hydrodynamical and MHD calculations to simplify the cal-

culation of the temperature evolution of a collapsing core (e.g., Bate, 1998; Vorobyov and

Basu, 2005; Machida et al., 2006; Bonnell et al., 2008). More recently, Stamatellos et al.

(2007) and Krumholz et al. (2007) present fully three-dimensional RHD simulations, and

criticize the use of the simple barotropic pressure-density relation. In the future it would

be desirable to marry RHD calculations with non-ideal MHD calculations in one three-

dimensional simulation code. However, this goal seems still unattainable in the next few

years.

Regardless of which geometry was used and which physical effects were included (e.g.,

Larson, 1969; Narita et al., 1984; Ciolek and Mouschovias, 1993; Basu and Mouschovias,

1994), all models find a non-uniform dynamical collapse phase during which a r−2 density

profile (e.g., Bodenheimer and Sweigart, 1968) develops in the nearly scale-free collapse

for t < 0 (i.e., before protostar formation). This power law profile is also seen in equilib-

rium calculations such as the BE sphere (discussed in Section 3 and Appendix D).

In the following sections, two predominant problems of the theory of gravitational

collapse will be discussed, which have been the focus of much attention over the last

decades (see, e.g., the reviews by Hayashi, 1966; Shu et al., 1987; Larson, 2003). They

are called the angular momentum problem and the magnetic flux problem.

was presented by Kudoh and Basu (2008).
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1.3.1 Angular momentum problem

When a rotating sphere contracts, it flattens along the axis of rotation, since the centrifu-

gal force counteracts gravity only perpendicular to this axis. If there is sufficient angular

momentum present a centrifugally-supported, nearly Keplerian disk forms. Disks have

played a major role in astronomy ever since it was discovered that the rotation of the

planets in our Solar System takes place in co-planar orbits. Rotation was known to also

play a role in the formation of Saturn’s rings, as well as in the shape of spiral galax-

ies, and it was included in many simulations of star formation early-on (Larson, 1972;

Bodenheimer, 1981, and references therein).

Rotation introduces the problem of angular momentum transfer. An average mole-

cular gas cloud rotates at a rate of about 1 km/s/pc (see, e.g., Goldsmith and Arquilla,

1985; Goodman et al., 1993; Caselli et al., 2002). This rotation rate would increase signif-

icantly during collapse if angular momentum was conserved. The Sun as an example of a

typical main-sequence star rotates with an average rotation frequency of about one revo-

lution per month (at about 4.5×10−7 s−1), which is about 6 orders of magnitude smaller

than if a cloud collapsed under the assumption of strict angular momentum conservation

(as shown below). Note that even for large high-mass stars rotating close to break-up

speed (e.g, Be-stars) all but 5% of the initial angular momentum must be removed during

the star’s formation process. The question is why stars rotate comparatively slowly, and

therefore how angular momentum present in the parent clouds is dissipated.

The angular momentum per unit mass of a molecular cloud core can be calculated

with the expression jcore = Ωcorer
2
0. The average angular velocity of a core is Ωcore ≈

1 km/s/pc ≈ 3.3×10−14 s−1 (e.g., Caselli et al., 2002), while the average radius containing

about 1M¯ is r0 ≈ 0.1 pc. This yields

jcore ≈ 3.3× 10−14 s−1
(
3× 1017 cm

)2
= 3.0× 1021 cm2s−1, (1.1)

whereas

jstar ≈ Ω¯r2
¯ = 4.5× 10−7 s−1

(
7× 1010 cm

)2
= 2.2× 1015 cm2s−1. (1.2)

Thus

jcore ≈ 1.4× 106 j¯. (1.3)

Hence, only a fraction of less than 10−6 of the angular momentum originally present in

the core is retained in the star, while the rest has to be shed in some way.

After about all but 1% of the angular momentum of a cloud is dissipated, multiple
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star systems or even planetary systems can account for the rest of the excess to observed

typical stellar angular momenta. In fact, Lada (2006) showed that the probability for

stars to form in multiples increases with mass and therefore greater angular momenta

in the parent clouds (as they are larger). Planetary systems can also take up some of

the excess angular momentum. In our Solar System, the Sun contains 99% of the mass,

but 99% of the angular momentum is held in Jupiter and Saturn. Note that both of

their orbits are presumably within the centrifugal barrier of the Solar System’s parent

core, which can be estimated to be ≈ 15 AU (Basu, 1998). This means that the material

making up the planets could not have reached its present location unless it had lost most

of its angular momentum during the formation of the Solar System.

Many mechanisms have been proposed for angular momentum transfer in collapsing

cloud cores, as well as at later stages of the evolution, once protostars and surrounding

protoplanetary disks have been formed. One of the most generic descriptions for this effect

was proposed by Shakura and Sunyaev (1973) and Lynden-Bell and Pringle (1974). They

suggested viscous dissipation in a differentially-rotating disk to cause angular momentum

to be redistributed. However, the microphysical origin of this drag is unknown. The

classical mechanical viscosity is orders of magnitude too small to account for the observed

mass accretion rates. In absence of a physical model, an empirical quantity called α-

viscosity was introduced. Its value was chosen to explain the deduced accretion rates,

and it represents a generic source of viscous drag but it is not indisputably identified

with any specific physical phenomenon. One of the most promising candidates is the

so-called magnetorotational instability (MRI, Balbus and Hawley, 1991), an instability

in a differentially-rotating disk threaded by a weak magnetic field. However, any of the

other mechanisms described below can also be parametrized by an α-viscosity. The basic

mechanism of the MRI is as follows: a parcel of gas is displaced outwards and slowed

down from its equilibrium orbit. However, it is tethered magnetically to another parcel

which still rotates at the initial speed. This second parcel is slowed down by the link,

loses centrifugal support, and drops to a lower orbit. At the same time, the originally-

displaced parcel is pulled to accelerate, whereby it increases its angular velocity and

moves to an orbit further out. Since the disk rotates differentially, this exacerbates the

problem and leads to angular momentum transport from the inner parcel to the outer

one. This effectively constitutes a torque on the cloud.

Magnetic fields (which are omnipresent in the Galaxy and the ISM) are responsible

for some spin-down in collapsing cores and disks. Magnetic field lines twist if they are

dragged along with the matter rotating about a central object. This twisting causes

torsional waves to propagate along the magnetic field lines (e.g., Mestel and Spitzer,
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1956; Basu and Mouschovias, 1994), taking some angular momentum with them. The net

result of this effect, termed magnetic braking is that the disk spins down while envelope

material above the disk gains the excess angular momentum. This phenomenon requires

coupling between the ions and the neutral species both in the disk (in order to achieve

a significant twist and thus magnetic tension) as well as in the extended and tenuous

envelope (in order to provide a sink to absorb the angular momentum removed from the

disk). The latter is not a matter of great debate since the low-density regions of the ISM

are relatively well ionized due to their transparency to UV radiation. In addition, the

rarefied envelopes that can absorb excess angular momentum contain more matter than

the dense regions. The former requirement depends on the ionization fraction within the

dense parts of the disk, as well as on magnetic field strengths. Observations currently

do not constrain either stringently. Magnetic braking is discussed further in Chapters 4

and 5.

Pudritz and Norman (1983) proposed that excess angular momentum is shed through

outflows launched from the protostellar disk as another mechanism. As frozen-in magne-

tic field lines are tightly wound up around the rotation axis of a spinning protostar, an

outflow or jet is launched. Material might be flung out on spiraling trails and carry away

some angular momentum.

There is yet another idea of angular momentum transport which does not require

magnetic fields, but relies on gravity alone. Disks are not perfectly axisymmetric but

rather contain nonaxisymmetries such as spiral structure (e.g., Fukagawa et al., 2004;

Vorobyov and Basu, 2006) that gives rise to gravitational torques (Larson, 1984; Vorobyov

and Basu, 2006). The concept behind these torques is relatively simple, and resembles

that of the MRI discussed above: in a centrifugally-supported disk, material closer to the

axis of rotation moves faster than material further out. This differential rotation has the

effect that a clump of gas on a close orbit is slowed down by the gravitational pull of a

clump further out. The clump further out is accelerated slightly by the tug of the fast,

inner clump; it receives additional centrifugal support and expands its orbit. The inner

clump on the other hand is decelerated, cannot maintain its orbit due to the reduced

centrifugal support and has to move further in. Vorobyov and Basu (2006) demonstrated

that this phenomenon can be quite effective in transporting angular momentum and may

in fact give rise to FU Ori-like outbursts when clumps that form in the disk are sufficiently

decelerated to fall onto the protostar.

Over the last three decades, many authors have published simulations that included

rotation. One of the first was Larson (1972), who had already pioneered the spherical

collapse calculations. In his axisymmetric model he found the formation of rings, which
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he hypothesized to fragment into a binary or multiple system later on. Later, however,

Norman et al. (1980) attributed this ring formation to insufficient resolution and diffusive

numerical schemes and showed that no ring instability developed with their more accu-

rate and less diffusive algorithm for advecting the angular momentum. Toomre (1981)

showed that axisymmetric disks indeed are generally susceptible to ring formation if the

dimensionless parameter Q = csΩ/ (πGΣ), now called Toomre parameter, fell below a

certain value. In this definition, cs is the sound speed (representing the effect of thermal

pressure), Ω is the angular velocity (signifying rotational support), and Σ the column

density (gravity working to contract the disk). The exact number for the critical value of

Q depends on the exact conditions, geometry and equation of state among other things.

As a general guideline it can be stated that a disk is unstable if Q . 1 (Vorobyov and

Basu, 2006). Hayashi et al. (1982) and Toomre (1982) independently published a fam-

ily of analytical solutions for rotating disks, that both led to a column density profile

now called the singular isothermal disk (SID). This state with infinite density at the

center is expected to be reached for fast rotation, and results in a very thin disk. How-

ever, Narita et al. (1984) and Saigo and Hanawa (1998) presented numerical simulations

and self-similar solutions showing that rotation is unimportant for support of realistic

prestellar cores against collapse. Basu and Mouschovias (1995a,b) demonstrated that, in

fact, a centrifugally-supported disk (i.e., rotational acceleration balancing gravitational

acceleration) cannot form at all in a core unless there is a central object that effectively

provides a point-mass-like gravitational potential. This means that a gravitationally

unstable prestellar core will always collapse to form a star, even if it has some finite

rotation. After point-mass formation most of the mass ends up in a disk rather than the

central object, when matter hits its centrifugal radius rcf = j2/GMF. Here j = Ωr2 is

the specific angular momentum of the gas parcel, and MF is the central object’s mass.

Rotation is also responsible for the formation of binaries and systems of multiple

stars. For instance, Durisen et al. (1986) calculated the conditions for protostellar disks

to succumb to dynamic instabilities as a consequence of nonaxisymmetric perturbations.

This can cause fragmentation during the collapse, and fission into binary systems.

In fully three-dimensional simulations (e.g., Bate, 1998; Bonnell et al., 2008), and

particularly in turbulent ones (see, e.g., Klessen et al., 2005), rotation is usually not

introduced explicitly but occurs naturally because of random motions.

Shu et al. (1987) hypothesize that self-regulating mechanisms are at work in astro-

physics that ensure that certain phenomena function the way they do. Lack of such

self-consistent means of regulation would make significant fine-tuning seem necessary,

which is generally unsatisfactory. They give the example relating to the thermonuclear
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fusion processes in the center of stars. They suppose that a process exists that stops

accretion once the star has obtained sufficient mass to burn hydrogen in its core. This

problem is very important for the formation of massive stars, and may be connected with

radiation pressure. However, the concept of self-regulation is more general and can eas-

ily be extended to other phenomena. The evolution of angular momentum in prestellar

cores, protostars, and YSOs is certainly one of them. Lin and Pringle (1987) for instance

presented a self-similar solution for disk evolution in which Q is regulated to be always

close to the critical value of unity.

In recent years, a problem diametrically-opposing the angular momentum problem has

been pointed out. It was shown that, when flux freezing is assumed, magnetic braking

is so effective in removing angular momentum from the core that large-scale (≈ 102 AU)

centrifugally-supported protoplanetary disks — ubiquitously observed around YSOs —

can no longer form (Allen et al., 2003; Mellon and Li, 2008; Hennebelle and Fromang,

2008). This remained a problem even when ambipolar diffusion was included (Mellon

and Li, 2009), and the effect has been labelled “catastrophic magnetic braking”. Hen-

nebelle and Ciardi (2009) demonstrated that inclination effects can modify the efficiency

of magnetic braking, but a supercritical mass-to-flux ratio by a factor > 3 − 5 (i.e., a

weak magnetic field) was still required to form a large-scale disk. Dapp and Basu (2010)

(see Chapter 4, and also Chapter 5) show that Ohmic dissipation can annul magnetic

braking so that a disk can still form, albeit at small scales.

It is evident that the angular momentum problem is closely interconnected with the

issue of magnetic flux discussed in Section 1.3.2. The decisive resolution to the angular

momentum problem remains elusive even though a combination of all the above mecha-

nisms is likely.

1.3.2 Magnetic flux problem

Magnetic fields have direct effects only on charged species (electrons, and ionized grains,

molecules, and atoms) and make them gyrate around the field lines. However, if the

neutral and ionized portions of the gas are sufficiently well coupled through collisions,

magnetic forces are effectively exerted on all constituents of the gas. This is the case

for ionization fractions as low as 10−7 (nn/104 cm−3)
−1/2

(assuming ionization primarily

due to cosmic rays). The reason why such a low ionization fraction still makes for good

coupling lies in the fact that H2 is a highly-polarizable molecule. This raises its effective

collision cross section with ions by a factor of ≈ 102 over the geometric cross section

(Osterbrock, 1961; Mestel, 1999).
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If this coupling is very efficient, the magnetic field is said to be “frozen into the gas”,

because it is dragged along as the gas moves about. The magnetic flux per unit area stays

constant even though it is still possible to move matter parallel to the field lines. In the

case of poor coupling, neutral particles are only mildly impeded by collisions with ions

tied to the field and can drift past them. This phenomenon is referred to as ambipolar

diffusion (Mestel and Spitzer, 1956; Mouschovias, 1976; Shu et al., 1987, see also Section

1.2.2).

Similar to the angular momentum, there is a lot less magnetic flux observed in main

sequence stars than could be expected if a gas cloud collapsed under magnetic flux conser-

vation (“flux freezing”). A well-known relation exists between the line-of-sight magnetic

field strength and the column density. It holds over several orders of magnitude in both

quantities and is found in almost all clouds (see Basu, 2005). It is consistent with the

relation
Σ

B
= µ

(
2πG1/2

)−1
, (1.4)

where Σ is the column mass density and B is the magnitude of the magnetic field.

The gravitational constant has its usual symbol G, and µ is the dimensionless mass-

to-flux ratio in units of the critical value required for collapse
(
2πG1/2

)−1
(Nakano and

Nakamura, 1978). If µ < 1 the object is said to have a subcritical mass-to-flux ratio, and

the influence of the magnetic field is stronger than gravity. Such a cloud core is supported

against collapse by magnetic restoring forces (see, e.g., Kudoh and Basu, 2008; Basu et al.,

2009a). Conversely, conditions are said to be supercritical if µ > 1. In this case, gravity

will overwhelm magnetic pressure and tension, and a cloud core will collapse, even though

the non-vanishing influence of the magnetic field will still retard the collapse (e.g., Ciolek

and Mouschovias, 1993).

On average, µ is found to be close to unity (cf. Fig. 1.1) in molecular clouds, which

means that the magnetic field almost balances the gravitational field over significant

portions of the clouds and a large range of scales. Thus, for an average cloud core (which

needs to be at least critical to collapse), the following integrated relation approximately

holds for the mass M and the magnetic flux Φ (where the mass and magnetic flux are

obtained by integrating over a surface element):

M

Φ
≈ (

2πG1/2
)−1

. (1.5)

For a 1M¯ cloud core we find

Φcore ≈ 2πM¯G1/2. (1.6)
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Figure 1.1: Observed relation between line-of-sight magnetic field strength and column
number density (Basu, 2005, with data from Crutcher, 1999). The best fit to the data
(solid line) is consistent with µ ≈ 1.

For our Sun, the magnetic flux is given by

Φ¯ ≈ πB¯R2
¯, (1.7)

where B¯ is the mean solar magnetic field (≈ 1 Gauss), and R¯ is the solar radius. Then

the ratio between the two is

Φcore

Φ¯
≈ 2M¯G1/2

B¯R2¯
≈ 3× 108. (1.8)

This order-of-magnitude calculation shows that all but a very small fraction of the magne-

tic flux has to be dissipated during the collapse in order to arrive at conditions typical

for stars. Even for peculiar magnetic stars with mean fields of order 105 Gauss (e.g.,

Borra and Landstreet, 1978) only 0.1% of the flux is retained. The question why so little

magnetic flux is observed in main sequence stars remains unanswered in detail. The

following discussion will highlight some possible mechanisms of flux loss.

One mechanism for removing magnetic flux is Ohmic dissipation (e.g., Li and McKee,

1996; Mohanty et al., 2002). It has been shown to operate effectively in the density range

of n ≈ 1012 − 1016 cm−3 (e.g., Nakano et al., 2002). This process considers the decay of

the magnetic field by collisions between charged particles and neutrals which may knock
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the charged particles off their gyration path around the magnetic field lines (Mohanty

et al., 2002). Without further self-induction, the magnetic field is weakened. It effectively

introduces a finite effective electrical resistance, which is why the theory is called resistive

non-ideal magnetohydrodynamics. Machida et al. (2006) quote a reduction in magnetic

flux by a factor of 103 in a resistive collapse compared to flux-frozen collapse. This

process is independent of magnetic field strength and may be one of the contributing

factors to the solution of the magnetic flux problem. Chapter 4, published as Dapp and

Basu (2010) also studies this problem.

The most prominent mechanism of flux loss, ambipolar diffusion, was proposed by

Mestel and Spitzer (1956). It received much attention between the late 1970s and the late

1990s. Mouschovias (1977) demonstrated ambipolar diffusion to be important between

104 and 1011 cm−3. He proposed a long-lasting quasi-static phase of core contraction on

the ambipolar-diffusion time scale (Nakano, 1984; Shu et al., 1987; Mouschovias, 1991),

while magnetic forces support the core against gravity. After the core became critical

dynamical and rapid collapse would ensue. The idea of quasi-static contraction is some-

what controversial today, and probably more applicable to core formation rather than

core collapse. However, ambipolar diffusion is indeed credited for initiating collapse from

an initially magnetically-supported state (Mouschovias, 1979; Shu et al., 1987; Basu and

Mouschovias, 1994; Kunz and Mouschovias, 2009, 2010). If conditions in the parent

clump are initially subcritical, contraction can only occur as a consequence of ambipolar

diffusion, and collapse only begins once the core has reached supercriticality. Recent

simulations of fragmentation indeed find collapsing supercritical cores embedded in sub-

critical ambient clouds (e.g., Basu and Ciolek, 2004; Ciolek and Basu, 2006).

Later work showed that a substantial amount of flux loss occurs not only during

prestellar collapse (Nakano and Umebayashi, 1986; Fiedler and Mouschovias, 1993; Basu

and Mouschovias, 1994, 1995a,b), but also during the later phase of star formation and

close to an already-formed protostar (e.g., Ciolek and Königl, 1998). The preceding

collapse with densities beyond 105 cm−3 occurs on time scales close to free-fall and thus

can be well approximated by flux freezing, i.e., the neutrals effectively drag in the ions

that are coupled to the magnetic field lines. Prestellar cores remain mildly supercritical

(with a mass-to-flux ratio 1 . µ < 10) during most of their collapse. This causes a

massive build-up of magnetic field strength with increasing density. Magnetic braking

then operates at such a high efficiency so that it inhibits the formation of a protoplanetary

disk (e.g., Allen et al., 2003; Mellon and Li, 2008, 2009). Chapters 4 and 5 investigate

this “magnetic braking catastrophe.” In the dense and poorly-ionized accretion disk

and the remnant of the first core, non-ideal MHD effects regain importance (e.g., Ciolek
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and Königl, 1998; Contopoulos et al., 1998; Tassis and Mouschovias, 2005; Kunz and

Mouschovias, 2009, 2010; Dapp and Basu, 2010) and disable magnetic braking. This is

possible since, at that stage, the length scales involved are quite small so that even a

diffusive process can happen rapidly. Also, the diffusion constant is nonlinearly dependent

on the magnetic field strength (Mohanty et al., 2002), which speeds up the diffusion

additionally.

Note that very close to a YSO (< 1 AU — Li and McKee, 1996; Shu et al., 2006)

a recoupling between gas and the field is expected. The reason is that radiation from

the star increases the ionization fraction (see also Chapter 5), mainly by ionizing alkali

metals (Li and McKee, 1996). This recoupling is part of the reason why the magnetic

flux problem can still not be considered to be solved completely.

There might be a self-regulation mechanism at work that allows for a balance be-

tween magnetic flux loss that is required to form a disk and sufficient magnetic braking

to ensure ample angular momentum redistribution. Details have to be investigated using

simulations with high central resolution that are also capable of following the evolution

of a magnetized rotating prestellar core all the way to stellar densities, and after that

for a long duration of the accretion phase (see also Section 1.3.3). Currently, the com-

putational costs for such an endeavor are prohibitive in three dimensions. However, in a

dimensionally-reduced model, such as presented in Vorobyov and Basu (2006) and used

in Dapp and Basu (2010), it might be feasible to gain some insights into this fascinating

problem. Chapters 4 and 5 address this issue.

Kudoh and Basu (2008) and Nakamura and Li (2008) have recently presented three-

dimensional non-ideal MHD simulations which included turbulence and can shed light

onto the initial conditions with which to start such a collapse simulation. Under con-

sideration of simplified grain physics, Kunz and Mouschovias (2009, 2010) studied the

axisymmetric collapse problem in the (r, z) plane with two non-ideal MHD effects: am-

bipolar diffusion and Ohmic dissipation. They also included radiative transfer as a grey

flux-limited diffusion prescription, but did not include rotation, and terminated their

calculation shortly after the formation of the first core. Chapter 5 of this Thesis uses the

approach of Kunz and Mouschovias (2009) in a model similar to Tassis and Mouschovias

(2007), and carries the calculations all the way to protostellar densities in order to see

whether a centrifugal disk can form. This work is another step towards answering the

question regarding the interplay of the angular momentum and magnetic flux problems.

The coming years may finally see the simultaneous resolution to these long-standing

issues, as well as the problem of catastrophic magnetic braking.
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1.3.3 Accretion rates

A very important quantity in understanding the physics of star formation is the mass

accretion rate since it influences most of the evolution of a forming star. The termination

of accretion sets the star’s final mass, which, along with the chemical composition, fixes

the evolutionary track of a star after hydrogen burning begins. The initial mass function

(IMF) describes the distribution of stars as a function of their mass as they enter onto

the main sequence.

In order to understand star formation on a theoretical basis, astronomers in the

1950s looked for an explanation in terms of what they already understood fairly well. In

this case, this was stellar structure and so the first theoretical models assumed a quasi-

hydrostatic contraction of the parent clouds to form stars (e.g., Henyey et al., 1955).

Stars are quasi-hydrostatic objects, and so seemed interstellar clouds. In the 1960s it was

suggested that the early evolution of a molecular cloud towards a star involved dynamical

free-fall collapse (e.g., Hayashi and Nakano, 1965), which was only then followed by a

quasi-hydrostatic contraction of the already-formed star onto the main sequence. Hayashi

(1966) arrived at a maximum radius for protostars of ≈ 50 R¯ in homologous collapse,

and calculated that a star with a mass comparable to that of the Sun would be assembled

from its parent cloud in ≈ 1 yr (see the description in Shu, 1992). Soon, however, various

numerical simulations (e.g., Bodenheimer and Sweigart, 1968; Larson, 1969) showed that

the collapse of a molecular cloud really was not homologous at all but rather non-uniform

(this was also backed by some self-similar analytical solutions, Penston, 1969). In the

so-called Larson-Penston (LP) model, a central hydrostatic core forms quickly, but the

subsequent accretion process from the cloud onto that protostar is very slow. The time

it takes to assemble a star in this initially disputed model lies around 105 yr and at the

end of the evolution its radius is 2 R¯ rather than 50 R¯.

Indeed, if one solves the hydrodynamic equations in the highly simplified case of a

non-rotating, nonmagnetic SIS, starting out from equilibrium (Shu, 1977), one finds a

mass accretion rate of

Ṁ = 0.975 c3s
/
G

≈ 2× 10−6 M¯ yr−1

for an isothermal sound speed at the fiducial temperature of 10 K. According to Shu’s

so-called inside-out collapse model, it takes about 5× 105 yrs to build a 1 M¯ star.

The LP model assumes dynamical collapse from the onset, and thus is distinctly

different from Shu’s SIS collapse model. In fact, its material is not at rest at the time
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of the formation of the protostar, but falls inward at 3.28 times the sound speed. Its

density is 4.43 times higher than in the SIS model (cf. Larson, 2003) and so it is not

surprising that its mass accretion rate (as calculated by Hunter, 1977) is almost 50 times

higher than in the SIS model. Later, more detailed simulations showed that the collapse

initially tends to be more similar to the LP model than to the inside-out collapse solution

in the central region, with an initially very high mass accretion rate which subsequently

drops to values closer to Shu’s solution (see the review by Larson, 2003).

Accretion rates cannot be measured directly by observational means. They have to

be determined indirectly, for instance by measuring outflow masses and velocities. High

accretion rates are envisioned to be accompanied by strong outflows, blowing off about

1/3 of the accreted gaseous matter (e.g., Shu et al., 2000). The detailed effects of disk

winds, outflows, and jets onto the accretion rate (and vice versa) are still uncertain (see,

e.g., the review by Ray et al., 2007).

Over time, various refinements over the early simple star formation models have

been proposed, made necessary because it was realized that other physical phenomena

significantly impact the accretion history during the assemblage of a star. Rotation causes

the formation of centrifugally supported disks and effectively creates a barrier to mass

transport from the envelope to the star (e.g., Vorobyov and Basu, 2006). At this stage

of evolution, the central protostar has reached only a mass of typically around 0.007 M¯
(Shu et al., 1987). There must exist a mechanism that allows for efficient transport of

angular momentum outwards (see Section 1.3.1) and associated mass transport inwards.

Another issue is an increasing radiation pressure. Even a modest mass accretion rate of

Ṁ = 10−6 M¯ yr−1 onto a small YSO with mass 0.01 M¯ and a radius of R¯ produces a

luminosity of 0.3 L¯ by the approximate formula L ≈ GMFṀ/RF (where the subscript

F refers to quantities pertaining to the protostar). The larger the mass of the YSO, and

the higher the mass accretion rate, the greater the amount of radiation that has to escape.

Obviously, this is a significant problem for massive star formation where the accretion

luminosities are expected to reach 104 L¯ and more. It can be mitigated by channeling

the material through an accretion disk (see the review by Beuther et al., 2007) instead

of requiring spherical accretion (Bondi, 1952).

None of the models discussed so far helps to answer the question why accretion stops

at some point and so sets a star’s mass. This can only be achieved by limiting the total

mass available to the protostar. If the mass reservoir is finite, accretion will eventually

decline to very low values as the envelope runs out of matter (see Fig. 1.2). This problem

is closely related to another long-standing open question in star formation research, the

low star formation efficiency (SFE). Only a small percentage of the total gas available
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Figure 1.2: Time evolution of the accretion rate in the spherically-symmetric model from
Vorobyov and Basu (2005). The accretion rate is very high at first when material moving
at supersonic velocity falls onto the protostar, but then settles into a static accretion phase.
During this phase, the accretion rate behaves according to Ṁ ∝ c3

sG
−1, even though it is

still higher than the SIS model prediction. As a result of the finite reservoir of mass the
accretion rate drops terminally. The numbers in brackets indicate the percentage of mass
left in the envelope at the given time.

in molecular clouds is converted into stars during a free-fall time, both on the level of

individual clouds and on galactic scales (see, e.g., Basu et al., 2009a). It remains unclear

what keeps the rest of the gas from participating in star formation. Again, a currently-

unknown self-regulation mechanism may be at work.

Several physical mechanisms are being discussed in the literature for imposing a limit

on accretion on the core level. The simplest one is isolation. Bok globules (e.g., Alves

et al., 2001) are small isolated dark clouds surrounded by a hot tenuous medium. The

final mass of an star forming in one of these globules is constrained by the total mass

in the cloud. However, star formation typically occurs in deeply embedded cores within

GMCs rather than in isolated clouds.

Competitive accretion (see the review by Bonnell et al., 2007) is a more refined ap-

proach. It invokes the picture that stars forming simultaneously in a cluster-forming

region “compete” for the total amount of gas. In this paradigm more massive stars form

closer to the center of a clump as an effect of the deeper gravitational well. This funnels

more gas into the central regions, to the disadvantage of less-massive stars towards the

periphery of the clump (e.g., Bate and Bonnell, 2005), as this gas is no longer available

for accretion there. In addition, many-body interactions cause some YSOs to be ejected



26 Chapter 1. Introduction

from the cluster prematurely, before being able to accumulate a lot of mass. Finally, after

a few million years, the first massive star undergoes a supernova and disperses most of

the remaining gas, revealing a gas-free young open cluster with a certain IMF. Problems

with this picture lie in the velocity distribution of field stars (Brown Dwarfs are predicted

to move ballistically through the Galaxy) and the observed spatial mass and age distri-

butions in cluster-forming regions (for instance, the most massive stars are expected to

be near the center of the cluster). Also, Elmegreen (2000) notes that stars most likely

form close to the sites where their native cores became unstable, which would also rule

out an IMF significantly influenced by interactions. Finally, competitive accretion fails

to explain why some clouds are exclusively forming low-mass stars, and none of their

high-mass siblings. Other mechanisms must be at work in more quiescent regions such

as the Taurus molecular cloud.

Other authors propose high levels of ambient turbulence caused by feedback and

intrinsic large-scale velocities (e.g., Mac Low et al., 1998; Padoan and Nordlund, 2002;

Ballesteros-Paredes et al., 2003; Mac Low and Klessen, 2004, see also Section 1.2.1) as

a mechanism for controlling accretion. One possibility could be colliding gas flows that

disperse the gas remaining of the core envelope. This would effectively limit the mass

available to protostars forming in the center of the core.

Mouschovias (1976) proposed that strong magnetic fields could hold up the envelope

while the inner core collapses (see Sections 1.2.1 and 1.3.2). This idea is backed by ob-

servations that show the low-density regions of molecular clouds to have strong magnetic

fields and a low mass-to-flux ratio (Cortes et al., 2005; Heyer et al., 2008). Another

argument for magnetic domination of the low-density regions is their higher ionization

fraction due to the penetration of ionizing UV radiation (McKee, 1989). The very dense

regions can only be reached by cosmic rays.

Aside from the issue how accretion is terminated, another question arises. Once

sufficient material has fallen onto an accretion disk, it needs to get to the central protostar.

Assuming the disk is centrifugally-supported and near-Keplerian, it is stable, and gas will

remain in orbit unless there is a mechanism for angular momentum redistribution at this

stage as well (cf. Section 1.3.1). The literature suggests similar candidates as in the

previous discussion. The magneto-rotational instability (MRI) and its resulting effective

accretion rates are usually studied in shearing-box simulations (e.g., Gammie, 2001; Sano

and Stone, 2002; Balsara et al., 2009; see also the review by Balbus and Hawley, 1998)

where the MRI is often parametrized using α-viscosity (e.g., Hartmann, 1998). For a

significant α, this approach leads to a smooth disk without much azimuthal structure

(Vorobyov and Basu, 2007) and will also produce a smooth accretion rate. In fact, the
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concept of α-viscosity was originally introduced to mimic an accretion rate empirically

required to assemble stars in a reasonable amount of time. However, Vorobyov and

Basu (2006) showed in their global disk simulations that non-axisymmetries, specifically

the formation of clumps and “protoplanets” in disks, can lead to an effective transport

of angular momentum by gravitational torques and subsequent accretion of entire dense

clumps onto the central star. This will cause a vigorous burst in luminosity and accretion

rate, while they are much smaller rate in between bursts and in the absence of artificial

viscous effects. Vorobyov and Basu (2006) argue that these bursts resemble observed

FU Ori bursts in strength, frequency, and duration. They suggest that most of the

stellar mass may, in fact, accrete in this episodic non-continuous manner instead of in

the traditional, more smooth way.

This problem, as the ones previously discussed, will be solved using high-resolution,

long-term, physically-accurate and complete, self-consistent numerical simulations. This

should ideally happen as part of a larger three-dimensional collapse simulation including

all effects: rotation, “turbulence” in the core envelope, magnetic fields, and radiative

transfer in both envelope and centrifugal disk, as well as their feedback effects onto the

surroundings. However, in absence of these all-encompassing simulations, it seems pru-

dent to use simplified models and approaches, reduced in dimensionality and physics,

in order to gain some insights into which effects must be considered and which can be

neglected. These simulations, however, must allow for long-term integration. Great

progress has been made in the past on these problems already, but the future promises

many more achievements using the new technology of hardware and computational fa-

cilities to run these simulations. Maybe the next decade will finally see the resolution of

some of the great outstanding problems in star formation.
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Chapter 2

Long-lived Magnetic-Tension-Driven

Modes in a Molecular Cloud

2.1 Introduction

Nonthermal linewidths are ubiquitous in molecular clouds (Solomon et al., 1987) and

are interpreted to represent highly supersonic random internal motions (see McKee and

Ostriker, 2007, for a recent review). Principal component analysis (Heyer and Brunt,

2007) reveals that most of the energy is contained in modes that span the largest scale

of the cloud.

Numerical simulations of molecular cloud turbulence using a three-dimensional sim-

ulation cube with periodic boundary conditions have revealed that supersonic MHD

turbulence decays away rapidly, on about a sound crossing time of the driving scale

(Stone et al., 1998; Mac Low et al., 1998; Mac Low, 1999; Ostriker et al., 2001). Periodic

box simulations represent a “local” patch of uniform background density that is embed-

ded within a larger cloud, and are equivalent to studying an infinite uniform medium.

Furthermore, a 1.5-dimensional model that included vertical stratification (Kudoh and

Basu, 2003, 2006) found that turbulent decay could be delayed, but only mildly, by some

conversion of energy to large scale modes along the magnetic field direction. The rapid

turbulence dissipation in all of these models is due to the presence of shocks and takes

place under the assumption of magnetic flux freezing, without any contribution from

magnetic field dissipation, e.g., by ambipolar diffusion.

In a recent paper, Basu et al. (2009a) carried out an extensive parameter survey of

fragmentation initiated by nonlinear turbulent flows, employing the magnetic thin-sheet

1A version of this chapter has been published as Basu, Shantanu & Dapp, Wolf B. 2010, ApJ, 716,
427

36
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approximation and also including the effect of ambipolar diffusion (see also Basu and

Ciolek, 2004; Li and Nakamura, 2004; Nakamura and Li, 2005; Ciolek and Basu, 2006;

Basu et al., 2009b). In this approximation, the sheet interacts at its upper and lower

surfaces with an external magnetic field, and can be considered a “global” model in the

z-direction (parallel to the mean background magnetic field), although it is a periodic

(“local”) model in the x- and y-directions. Basu et al. (2009a) found that initial turbulent

fluctuations decayed away quite rapidly in all models with supercritical mass-to-flux ratio,

as well as for subcritical models that included the effect of ambipolar diffusion. However,

a surprising result was that subcritical clouds evolving under flux-freezing were able to

maintain a substantial portion of their initial kinetic energy to indefinitely large times.

In this paper, we analyze this unique instance of a turbulent MHD simulation that

yields long-lived nonlinear motions. We perform a suite of numerical simulations to test

its generality, and also establish the analytic explanation for this very interesting result.

2.2 Method

The thin-sheet equations, formulation of our model, and numerical methods are described

in several papers (Ciolek and Basu, 2006; Basu et al., 2009b,a). The background state

has a uniform (in the x- and y- directions) neutral surface density σn,0 and a uniform

vertical (z-direction) magnetic field Bref . We input nonlinear velocity fluctuations with

spectrum v2
k ∝ k−4 in Fourier space, where k = (k2

x + k2
y)

1/2, and modes are damped at a

fixed (small) scale that is independent of the box size or the number of grid zones used in

a simulation. The evolution equations for the magnetized thin sheet include the effects

of magnetic tension due to the external magnetic field B(x, y, z). It is calculated as a

potential field, with the vertical magnetic field in the equatorial plane, Bz,eq(x, y), acting

as a source for B(x, y, z)−Bref ẑ, much as σn(x, y) acts as a source for the gravitational

field (see details in Ciolek and Basu, 2006).

The gas is isothermal with sound speed cs, and partial ionization is mainly due to

cosmic rays. This introduces the dimensionless free parameter τ̃ni,0 ≡ τni,0/t0, where

τni,0 is the initial neutral-ion collision time, and t0 = cs/2πGσn,0 is a characteristic time

in the problem. The flux-freezing limit, used extensively in this paper, corresponds to

τ̃ni,0 = 0. Another important parameter is the initial dimensionless mass-to-flux ratio

µ0 ≡ 2πG1/2σn,0/Bref , i.e., µ0 > 1 yields a supercritical cloud in which fragmentation

occurs dynamically and µ0 < 1 yields a subcritical cloud in which fragmentation is driven

on a longer time scale by ambipolar diffusion (see Ciolek and Basu, 2006). Turbulent

initial conditions introduce the dimensionless parameter va/cs, where va is the root mean
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square (rms) amplitude of the initial velocity fluctuations in each direction. Finally,

we also vary the ratio L/L0 (where L is the box width in each direction, and L0 =

c2s/2πGσn,0 is a characteristic length scale of the system), and N , the number of grid

zones in each direction. An additional parameter, the dimensionless external pressure

P̃ext = 2Pext/πGσ
2
n,0, is kept fixed at 0.1 in all models, and does not play an important

role in the dynamics.

2.3 Results

2.3.1 Canonical models

Two models illustrate the key result for subcritical clouds with turbulent initial condi-

tions. Figure 2.1 shows the time evolution of total kinetic energy for a model which

allows for neutral-ion drift (τ̃ni,0 = 0.2), and another model which has flux freezing

(τ̃ni,0 = 0). The value τ̃ni,0 = 0.2 corresponds to the canonical ionization fraction im-

plied by primarily cosmic ray ionization: χi ' 10−7(nn/104 cm−3)−1/2 (see Basu et al.,

2009b,a), where nn is the number density of neutrals. Both models are characterized by

µ0 = 0.5, va = 2 cs, L = 32πL0. The flux-frozen run has N = 512 while the ambipolar

diffusion run has N = 1024. The evolution of the ambipolar diffusion model terminates

at time t = 45.4 t0, when the highest column density in the simulation reaches 100 σn,0 —

a useful proxy for runaway collapse of the first core. At this time, the kinetic energy has

decayed away substantially, and appears to still be declining. In contrast, the flux-frozen

model has, after an initial loss of some kinetic energy, stabilized to executing oscillations

about a mean value Ekin ≈ 0.7Ekin,0. We have run simulations with flux freezing up to

t ≈ 35, 000 t0 with no change in this behavior.

Figure 2.2 shows color images of the column density for models that are equivalent

to the ones described above, but with N = 256. The ambipolar diffusion model is

shown at its end time t = 43.5 t0, and the flux-frozen model is shown at the same

time, although it continues to evolve indefinitely. The ambipolar diffusion model shows

evidence of monolithic collapse towards one or more density peaks, while the flux-frozen

model shows a more wispy character and gives no indication of impending collapse in

any region, neither visually nor quantitatively. Figure 2.3 shows a model snapshot of

the flux-frozen model but viewed from a three-dimensional perspective, with the external

field lines illustrated in the region above the sheet. Since this is a subcritical model, the

field lines are not significantly deformed. The pitch angle of the magnetic field relative to

the vertical direction, measured at the sheet surface, maintains an average value that is
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Figure 2.1: Kinetic energy Ekin normalized to its initial value Ekin,0, for two models.
Each model has µ0 = 0.5, va = 2cs, and L/L0 = 32π. One model evolves with flux freezing,
τ̃ni,0 = 0, and is run with N = 512. The other model has partial coupling of neutrals and
ions characterized by τ̃ni,0 = 0.2, and is run with N = 1024.
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Figure 2.2: Images of gas column density σn(x, y)/σn,0 for models with ambipolar diffusion
(top) and flux freezing (bottom), shown in identical color schemes that are proportional to
the logarithm of the column density. Both models have µ0 = 0.5, initial turbulence with
va = 2 cs and spectrum v2

k ∝ k−4, and are run with N = 256. The ambipolar diffusion
model terminates at time t = 43.5 t0 in this realization due to the eventual runaway collapse
of a core (in the upper right of the image). The flux-frozen model is shown at the same
time, but continues to evolve to indefinitely large times without collapse. It shows a more
wispy column density structure, with no evidence of monolithic collapse toward any density
peaks. An animation of the evolution of each model is available online.

a little less than 10◦. For a comparison of field line curvature for models with a range of

µ0, see Basu et al. (2009b) and Basu et al. (2009a). Animations of both Figure 2.2 and

Figure 2.3, with the latter also showing external field line evolution, are available online.

2.3.2 Connection to Linear Analysis

To gain insight into the long-lived mode for the flux-freezing model, we revisit the modal

analysis of a partially ionized magnetized sheet. Equations (32a) -(32d) of Ciolek and

Basu (2006) can be combined to yield the dispersion relation

(ω + i θ) [ω2 − C2
effk

2 + 2πGσn,0|k| ]
= ω

[
V 2

A,0k
2 + 2πGσn,0 µ

−2
0 |k|

]
, (2.1)

where

θ = 2π τni,0

[
V 2

A,0k
2 + 2πGσn,0 µ

−2
0 |k|

]
(2.2)

contains the effect of ambipolar diffusion. In the above equations, we have introduced the

Alfvén speed VA,0 for physical clarity of the magnetic-pressure-driven terms proportional

to k2, while retaining µ0 for physical clarity of the magnetic-tension-driven terms propor-
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Figure 2.3: Surface map of gas column density σn(x, y)/σn,0 for the flux-frozen model
shown in Fig. 2.2. The elevation and color of the surface is proportional to the logarithm
of the local column density. The sheet is viewed from a non-face-on viewing angle. The
external magnetic field above the sheet is also represented by field lines, in a region near a
density peak. An animation of the evolution of the model, including field line evolution, is
available online.

tional to k. The two parameters are actually related: V 2
A,0 ≡ B2

ref/4πρn,0 = 2πGσn,0µ
−2
0 Z0,

where the sheet half-thickness Z0 = σn,0/2ρn,0 and ρn,0 is its mass volume density. The

quantity Ceff is a effective sound speed that takes into account the restoring force due to

an external pressure Pext (see Ciolek and Basu, 2006). In the flux-freezing limit, Equation

(2.1) becomes

ω2 = (V 2
A,0 + C2

eff) k2 + 2πGσn,0 (µ−2
0 − 1)|k|. (2.3)

In the case of subcritical clouds (µ0 < 1), the second term on the right hand side becomes

a stabilizing term rather than a destabilizing term associated with gravitational insta-

bility. However, the full dispersion relation (Equation (2.1)) does contain destabilizing

terms due to ambipolar diffusion; the effect on a subcritical cloud is a “slow” instability

leading to collapse on an ambipolar diffusion time scale rather than a dynamical time.

Equation (42) of Ciolek and Basu (2006) yields a good approximation to the ambipolar

diffusion growth time for significantly subcritical clouds.

Equation (2.3) shows that long-wavelength modes evolving under flux freezing have

a phase speed

VMT,0 ≡ ω

k
=

√
(µ−2

0 − 1)Gσn,0λ , (2.4)

where λ = 2π/k. These modes are driven by the restoring force of the magnetic tension

of inclined field lines that connect the sheet to the external medium. These magnetic-

tension-driven modes should not be confused with the traditional MHD wave modes.

Within the thin sheet, in the short-wavelength limit, magnetic pressure drives the mag-

netosound mode with phase speed VMS,0 = (V 2
A,0 + C2

eff)1/2.

Since VMT,0 ∝
√
λ, it achieves significant values (much larger than VMS,0), for µ0 = 0.5

and the wavelengths equal to the box sizes we consider: L = 16π L0 − 128π L0. The

values are in the range 4.9 cs − 13.9 cs and typical values of input parameters would
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correspond to dimensional box sizes ≈ 2 pc −16 pc (see Basu et al., 2009b,a, for scaling of

units). Since the restoring force is provided by the external potential field that can adjust

instantaneously as the sheet evolves, the modes found in this linear analysis cannot be

applied to arbitrarily large wavelengths. In reality, there must be time for readjustment of

the external field. The magnetic potential ΨM(x, y, z) above and below the sheet decays

as exp (−k|z|) (see Ciolek and Basu, 2006; Basu et al., 2009b), so that a characteristic

height of deformation of the field lines is k−1. The ratio ε of the Alfvén crossing time

across this distance divided by the wave period must be well below unity in order for the

potential field approximation to be valid. While the Alfvén crossing time grows more

rapidly (∝ λ) with increasing wavelength than does the wave period (∝
√
λ), we find that

ε ≤ 0.26 for modes of even our largest box size, if the external density ρext ≤ 0.1 ρn,0. The

nature of a low-density medium external to clouds or clumps is discussed in Section 2.4.

An interesting analogy can be made between the magnetic-tension-driven modes and

gravity-driven waves in deep water. There, the undulations of wavenumber k on a water

surface can be felt down to a characteristic depth k−1. Velocities below the surface

are determined from a velocity potential solution of Laplace’s equation. This is partly

due to the incompressible fluid approximation in which the water pressure can adjust

instantaneously. A clearer mathematical analogy also occurs in the following manner.

Since the vertical gravitational field above and below a uniform thin sheet has magnitude

|gz| = 2πGσn,0, Equation (2.4) may be rewritten as

VMT,0 =
√

(µ−2
0 − 1)|gz|/k , (2.5)

in analogy to the phase speed v =
√
g/k for deep water waves in a constant gravitational

field g.

2.3.3 Further modeling

The implication of the high values of VMT,0 for the magnetic-tension-driven modes is

that waves with nonlinear particle motions (in comparison to the sound speed cs or

magnetosound speed VMS,0) may still act as linear waves since their material motions

are much slower than VMT,0. They will then evolve (in the flux-freezing limit) without

any nonlinear distortion and dissipation. All models do lose significant kinetic energy

in an early phase, due to shocks and compression that leads to significant losses in an

isothermal gas. Small-scale modes are prone to such decay; for them the relevant signal

speed is VMS,0, which equals 2.9 cs for the models presented in Section 2.3.1. However, the

v2
k ∝ k−4 spectrum means that most of the energy is in the largest scale mode, which can
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survive indefinitely, as long as the velocity amplitude is significantly less than VMT,0, either

initially or after some nonlinear decay. In the magnetic-tension-driven mode, energy is

stored and released by the magnetic field, without losses due to ambipolar diffusion

(in the τ̃ni,0 = 0 models) or other forms of magnetic field dissipation. Furthermore,

the isothermal assumption does not rob any net energy at this stage. In symmetric

oscillations, energy is lost during wave compressions and an equal amount gained back

during wave expansions.

Figure 2.4 explores the effect of different initial conditions on the decay and residual

amount of turbulence in several flux-frozen (τ̃ni,0 = 0) models. The top panel shows

a comparison of models with v2
k proportional to k−4, k−2, and k0, respectively, but all

having the same initial rms speed. The spectrum with the greatest amount of energy

on the largest scale retains the most energy, as it is the largest scale mode that has the

greatest phase speed and is most likely to survive with significant amplitude. The bottom

panel shows that models with fixed spectrum v2
k ∝ k−4 but differing va will lose different

proportions of their initial turbulent energy. The phase speed of the largest mode in these

simulation boxes is VMT,0 = 4.9 cs, and increasing va leads to greater proportionate loss of

initial kinetic energy. However, there is a weak trend toward retaining a greater absolute

amount of energy, as a tabulation of vrms, the one-dimensional rms speed at t ≈ 100 t0

in each simulation, reveals. Table 2.1 lists vrms for many models that have flux-freezing,

µ0 = 0.5, and v2
k ∝ k−4 initially. Supersonic motions remain in all models, and the

residual amplitude rises with increasing box size as well as initial velocity amplitude va.

The values of vrms appear to saturate however, so that they remain a reasonably small

fraction (14%-56%) of VMT,0 for each model.

Oscillations of the kinetic energy are clearly visible in the models that retain a large

part of their initial energy, so that the values of vrms in Table 2.1 are varying by up to

10%. The dominance of the largest mode in the initial conditions and the preferential

nonlinear damping of smaller modes implies that the period of the largest mode is a

reasonable approximation to these observed periods P . We determine P by an average

over many peak-to-peak oscillations in each model. The kinetic energy should oscillate

with half the period of the velocity eigenfunction, so its expected period is

P =
1

2

L

VMT,0

=
1

2

[
L

(µ−2
0 − 1)Gσn,0

]1/2

, (2.6)

where we have used λ = L. In terms of the dimensionless box size L/L0 and t0, we can
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Figure 2.4: Effect of different power spectra and turbulent velocity amplitudes on kinetic
energy decay. All models evolve with flux freezing (τ̃ni,0 = 0). Top panel: three models with
fixed va and other parameters (as labeled) but differing power spectra of initial turbulence,
as labeled next to each curve. The model with the most energy on the largest scale retains
the greatest part of its energy. Bottom panel: three models with differing va but all other
parameters including the power spectrum kept fixed, as labeled. Models with greater va lose
a greater proportion of their initial kinetic energy, although they retain a slightly greater
absolute amount of kinetic energy (see Table 2.1).
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Table 2.1: Velocity amplitude results for selected models.

N L/L0 VMT,0/cs va/cs vrms/cs vrms/VMT,0

128 16π 4.9 2 1.7 0.35

128 16π 4.9 4 2.4 0.48

128 16π 4.9 6 2.6 0.53

256 32π 6.9 2 1.6 0.23

256 32π 6.9 4 3.4 0.49

256 32π 6.9 6 3.9 0.56

512 32π 6.9 2 1.7 0.25

512 64π 9.8 2 1.9 0.19

512 64π 9.8 3 2.7 0.28

512 64π 9.8 4 2.9 0.29

1024 128π 13.9 2 1.9 0.14

1024 128π 13.9 4 3.4 0.25

1024 128π 13.9 6 5.0 0.36

All models above have µ0 = 0.5, τ̃ni,0 = 0, and initial turbulent spectrum v2
k ∝ k−4. The

one-dimensional velocity dispersion vrms is measured at t ≈ 100 t0, and is present
indefinitely with variability of up to 10%.

write this as

P =
1

2

[
2π(L/L0)

µ−2
0 − 1

]1/2

t0 . (2.7)

Figure 2.5 shows the predicted dependence in solid lines, for µ0 = (0.25, 0.5, 0.7). Differ-

ent symbols as described in in the figure caption represent the empirical determinations of

P from various models. The agreement is remarkably good, and improves for the largest

box sizes, where the long-wavelength approximation made in Equation (2.4) holds par-

ticularly well.

2.4 Discussion

The study of the decay of MHD turbulence has generally been based on the modeling

of Alfvén, slow MHD, and fast MHD modes in media that have a uniform background.

The study of more complex global MHD (including magnetogravitational) modes for

molecular clouds remains to be explored. It has been suggested that nonthermal motions

in molecular clouds can be attributed to long-wavelength MHD waves (Mouschovias,

1987). In this paper, we have analyzed turbulent decay in a magnetically subcritical
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Figure 2.5: Comparison of analytically predicted periods of kinetic energy oscillation
with results of simulations. Solid lines are the predicted periods from the linear theory of
large-scale flux-frozen modes driven by magnetic tension, for three different values of the
dimensionless mass-to-flux ratio µ0 = (0.25, 0.5, 0.7). Open diamonds represent average
periods of oscillation for four models of differing box size L and fixed µ0 = 0.7. Asterisks
and plus signs represent the same but for fixed µ0 = 0.5 and µ0 = 0.25, respectively. The
agreement is between the solid lines and symbols is remarkably good, and best for the
largest box sizes, since the analytic prediction is made in the long-wavelength limit.
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sheet-like cloud. It is an idealized model of a molecular cloud that is tied to a magnetic

field anchored in the interstellar medium. A large fraction of the initial input kinetic

energy is retained by the deformed magnetic field, and then persists in the cloud as large

scale oscillations. These represent linear waves of large extent which are nevertheless

supersonic since the phase speed of the magnetic-tension-driven modes is up to ≈ 10

times the sound speed for typical cloud sizes.

Our model may approximate the realistic situation of molecular clouds that are em-

bedded in a low-density warm HI halo, or even the case of molecular cloud clumps that

may be embedded in a matrix of HI gas (see Hennebelle and Inutsuka, 2006). Flux

freezing is a good approximation for molecular cloud envelopes (as opposed to dense

cores), due to significant photoionization by background starlight (McKee, 1989; Ciolek

and Mouschovias, 1995). Observations also reveal that the low-column-density molecular

cloud envelopes actually contain most of the cloud mass (Kirk et al., 2006; Goldsmith

et al., 2008). These envelopes may have a subcritical mass-to-flux ratio, as implied by

their lack of star formation (Kirk et al., 2006), velocity data (e.g., in Taurus, Heyer et al.,

2008), and the subcritical state of the HI clouds (Heiles and Troland, 2005) from which

molecular clouds are presumably assembled.

Continuous driving of turbulent motions in molecular clouds is often invoked because

the canonical numerical result of decay in a crossing time (e.g., Stone et al., 1998; Mac

Low, 1999) is inconsistent with estimated cloud lifetimes that are at least a few crossing

times (Williams and McKee, 1997). Basu and Murali (2001) have argued that continuous

driving of turbulence is consistent with observational constraints only if the driving occurs

on the largest scale in the cloud, i.e., most of the energy is contained on that scale.

Furthermore, continuous driving may not even be required if the decay time of the large

scale modes is greater than or equal to the estimated cloud lifetimes. Our models suggest

that large-scale modes that are coupled to the external magnetic field can persist for very

long times, thus reducing the need for continuous driving in order to explain observations.

These modes preferentially span the largest scales in the model cloud, in agreement with

analysis of observed cloud turbulence (Heyer and Brunt, 2007). Future spectral line

modeling of the large-scale cloud oscillations in our model cloud may make for useful

comparison with observations, as has been done in a previous study of motions in the

vicinity of dense cores (Kirk et al., 2009).

A counter-effect to the maintenance of large-scale modes is the loss of energy to the

external medium by the propagation of MHD waves along the magnetic field. This is

a possible energy loss mechanism for all molecular clouds, although one may also argue

that a clump embedded in a larger complex may reach a steady state in which it gains
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as much energy from its exterior as it loses. In any case, the study of the propagation of

waves outside the cloud remains outside the scope of our model. Future three-dimensional

global MHD models of molecular clouds, which include the effect of an external medium,

can address this point.

2.5 Summary

We have demonstrated that MHD modes driven by the tension of inclined magnetic field

lines have a large phase speed for subcritical clouds, which increases in proportion to

the square root of the wavelength. Numerical simulations show that nonlinear motions

(in comparison to the sound speed) persist indefinitely for thin-sheet evolution in the

limit of magnetic flux-freezing. These are the first of any variety of MHD turbulence

simulations that show long-lived nonlinear motions. For the broad set of models that we

study, the residual one-dimensional rms material motions are in the range of ≈ 2 cs− 5 cs

for cloud sizes in the range of ≈ 2 pc − 16 pc. We find that runaway collapse toward

isolated density peaks occurs when partial ionization due to (primarily) cosmic rays

and ambipolar diffusion is included. However, the flux-freezing results can be relevant to

understanding the low-column-density molecular cloud envelopes, which are photoionized

to the level of effective flux-freezing, and contain most of the mass in a molecular cloud.

While our model of a magnetized sheet is an idealized representation of a molecular

cloud, the existence of wave modes driven by a magnetic field that threads the cloud

and is connected to an external medium must have some counterpart in real molecular

clouds. Long-wavelength modes such as the ones we study may provide at least part of

the explanation for widely observed supersonic motions in molecular clouds.
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Chapter 3

An analytic column density profile

to fit prestellar cores

3.1 Introduction

In recent years, observational advances have made it possible to measure column density

profiles in prestellar cores. Various methods are being used in the literature. Ward-

Thompson et al. (1999) measured mm continuum emission, while Bacmann et al. (2000)

utilized mid-IR absorption, and Alves et al. (2001) measured dust extinction and red-

dening of the light of background stars in the near-IR. A fourth method is to use flux

measurements in optically thin lines (Tafalla et al., 2002). Most of the column density

profiles measured in these ways show certain prominent common features: a central flat

region, followed by a power-law decline. Some cores additionally exhibit signatures of

steepening of the profile, while some show a more-or-less smooth merger to some back-

ground value of the column density (Bacmann et al., 2000).

One model often used to fit to such cores (e.g., Evans et al., 2001; Teixeira et al., 2005)

is the Bonnor-Ebert sphere (hereafter BE sphere). This model assumes an isothermal

sphere in equilibrium, acted upon only by gravity and thermal pressure, and bound by

some external pressure (Bonnor, 1956; Ebert, 1955). In the central region its density

profile is flat with density ≈ %c ≡ % (r = 0). The size of this region is proportional to

the Jeans length, RJ ∝ cs/
√
G%c. It transitions into a power-law decline that approaches

the Singular Isothermal Sphere (SIS) with %SIS = c2s (2πGr2)
−1

for large radii (Shu,

1977). The cloud is finally cut off at some finite radius, where external pressure forces

match the internal forces. The BE model invokes the dimensionless radius parameter

1A version of this chapter has been published as Dapp, Wolf B. & Basu, Shantanu 2009, MNRAS,
395, 1092
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ξ ≡ r
√

4πG%c/cs. The value ξcrit = 6.45 marks a dividing line such that clouds truncated

at dimensionless radius ξs > ξcrit are in an unstable equilibrium, and clouds with ξs < ξcrit

are stable.

The column density profile of the BE sphere, obtained by integrating the volume

density numerically along a line of sight, matches well with some observations (B68;

Alves et al., 2001). Depending on the parameters, the power-law decline ∝ r−1 in column

density can be more or less pronounced, or even almost completely absent. The profile

steepens at the edge because the line of sight through the sphere becomes shorter. This

is a geometric effect which is present in all truncated models, unless the density increases

sufficiently fast with radius.

While physically motivated and reproducing features of several observed column den-

sity profiles, the BE model has shortcomings. The most important is the key assumption

of equilibrium. In fact, most fits are found to be supercritical (Teixeira et al., 2005),

representing unstable equilibria. These states are not expected to exist in reality, as any

perturbation will send them to immediate collapse. On a more practical side, the proce-

dure of fitting the BE model to observations is quite involved. The volume density is only

available as a numerical solution, which then needs to be integrated (again numerically)

to calculate the column density. Sometimes the fit demands temperatures well above

those measured for the centres of prestellar cores (Bacmann et al., 2000; André et al.,

2003; Kirk et al., 2005), and predicted by detailed models of the thermodynamics within

the core (Galli et al., 2002). Finally, most of the observed cores are deeply embedded

within their parent clouds, and the source of a bounding external pressure is not obvious.

The often-cited example B68 (Alves et al., 2001) is an exception, as it is thought to lie

within a hot HII region.

We stress that the generic features of the BE density profile are not unique to equi-

librium situations (see Kandori et al., 2005). The flat region with adjacent r−2 density

profile appears also in solutions of the hydrodynamic equations for gravitationally col-

lapsing objects (Larson, 1969), as long as pressure is not completely negligible (Shu et al.,

1987). The pressure gradient then establishes a region where it nearly balances gravity.

Here, the density is nearly constant on the scale of the local Jeans length, shrinking in

size over time as the density increases. Inverted, this requires that % ∝ r−2 in the outer

profile that is left behind outside the central region (see Basu, 1997).

There is no reason why the above two features (flat region with size of Jeans length and

adjacent r−2 density profile) should be present in a non-self-gravitating cloud. However,

Ballesteros-Paredes et al. (2003) find that convergent turbulent flows, with and even

without self-gravity (which are expected to have very different volume density profiles),
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nevertheless yield column density profiles that resemble those of a BE sphere. There are

three reasons for this seemingly surprising result. The first one is the effect of smoothing

the data, by angle-averaging, and also by integration along the line of sight. Secondly,

the BE sphere leaves the modeller the freedom to fit the size of the central flat region

by varying the temperature. Indeed, Ballesteros-Paredes et al. (2003) fit their simulated

cores with BE temperatures in the range of 5− 60 K, despite their models being strictly

isothermal at T = 11.3 K. Finally, the position of the outer radius cutoff is somewhat

arbitrary. This often leaves large parts of profiles unfitted. In this paper, we argue that

fitting a prestellar core profile at a set temperature does still allow one to distinguish

between different models of internal structure.

We propose an analytic density profile reproducing the characteristics of not only

isothermal equilibria (Bonnor, 1956; Ebert, 1955), but also non-equilibrium collapse so-

lutions (e.g., Larson, 1969), and many observed profiles (Bacmann et al., 2000). Within

the margins of uncertainty it fits the observations as well as the BE model does. How-

ever, it possesses a closed-form expression for the column density, and is therefore very

easy to fit. Furthermore, the temperature can be an input parameter instead of a fitting

parameter, so that the model avoids some of the possible inconsistencies of fitting the

BE model to either observations or simulation results. We can use our model to make

some inference about the dynamical state of the core.

This paper is organized the following way: Section 3.2 describes the spherical model

and its parameters, while Section 3.3 presents a corresponding model for intrinsically

flattened objects. In Section 3.4, we apply our model to B68 and L1689B, and we

summarize our results in Section 3.5.

3.2 Spherical Geometry

3.2.1 Basic model

The characteristics found in observed column density profiles and theoretically both in

equilibrium and collapse solutions can be parametrized by a volume density more generic

than the BE sphere. We propose using the profile

% (r) =

{
%ca

2/ (r2 + a2) r ≤ R,

0 r > R,
(3.1)
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characterized by a central volume density %c and truncated at some radius R. The

parameter a fits the size of the flat region in terms of the Jeans length, and is given by

a = k
cs√
G%c

, (3.2)

where G is the gravitational constant and k is a constant of proportionality. This profile

is also mentioned in King (1962) and Tafalla et al. (2002). The temperature T , which can

be constrained observationally, is not used as a fitting parameter. It enters through the

value of the isothermal sound speed cs =
√
kBT/µ. The Boltzmann constant is denoted

by kB, and µ = 2.33 mH is the mean mass of a particle, where mH is the mass of a

hydrogen atom. We assume a 10% number fraction of helium.

The column density is derived by integrating the volume density along a line of sight

through the sphere:

Σ (x) = 2

∫ √
R2−x2

0

% (s) ds

= 2

∫ R

x

% (r) rdr√
r2 − x2

(3.3)

where we have used the transformation s =
√
r2 − x2 and hence ds = rdr/

√
r2 − x2. Fig.

3.1 defines the quantities appearing in this derivation.

Inserting equation (3.1) into equation (3.3), we find that the integral is analytically

tractable. The closed-form expression for the column density is then

Σ (x) =
2a2%c√
x2 + a2

arctan

(√
R2 − x2

√
x2 + a2

)
. (3.4)

This can be re-written in terms of the central column density by introducing the ratio

c ≡ R/a, called the concentration in King (1962). With Σ (x = 0) ≡ Σc = 2a%c arctan (c)

we find

Σ (x) =
Σc√

1 + (x/a)2

×
[

arctan

(√
c2 − (x/a)2

1 + (x/a)2

)/
arctan (c)

]
. (3.5)

Fig. 3.2 demonstrates that this profile possesses generic features that it shares with

observations, collapse solutions, and with the BE model: a flat central region, a power-
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Figure 3.1: Schematic illustration of a cut through a spherical cloud of radius R. The
observer is positioned along the direction of the coordinate s, and measures an integrated
column density Σ as a function of the offset x.

law decline, and steepening at the edge. We note that the effect of the boundary is

exclusively contained in the factor in square brackets.

The quantity c determines the size of the region described by the power-law. If it is

large, there is a pronounced power-law, whereas if c approaches unity, the cut-off already

dominates near the flat region and inhibits the power-law.

The three parameters to fit are (i) the outer radius R, (ii) the central column density

Σc, and (iii) the size of the flat region a. The latter contains the product of k and
√
T ,

as shown in equation (3.2). If the temperature is pre-determined, a only depends on the

value of k. This then allows for a stability assessment, as demonstrated in the following

section.

3.2.2 Model parameters

The pressure in an isothermal system is given by P = c2s%, and hence the pressure gradient

for the spherically symmetric volume density profile of equation (3.1) is

dP

dr
= c2s

d%

dr
=

−2c2s%cr

a2
[
1 + (r/a)2]2 . (3.6)
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Figure 3.2: Plots of equation (3.5) for varying c ≡ R/a. All cases have identical values
for a. The central column densities are chosen to be different in order for the plots not to
overlap. The solid line illustrates the three major characteristics of this function: the flat
region in the centre of size a, the adjacent power-law decline ∝ x−1, a steepening at the
edge for geometric reasons (see text), out to the cut-off radius R. In this case, c = 50. The
dashed-line shows a model dominated by the power-law regime, with c > 1000. R is chosen
so that the influence of the cut-off is negligible. The long-dashed line finally demonstrates
that the power-law can be suppressed entirely if R & a. In this case, c = 5.
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In the inner regions, where r ¿ a,

dP

dr
|r¿a =

−2c2s%cr

a2
. (3.7)

This demonstrates a simple point: the larger the flat region a, the smaller the pressure

gradient in that region. The minimal value for a is reached in an equilibrium situation. A

larger a would result in a smaller pressure gradient, gravity would win out, and collapse

would ensue. Conversely, for a smaller than its equilibrium value the pressure force

would dominate, causing expansion. However, that case is not probable since a profile

with % ∝ r−2 mandates a strong gravitational influence.

Another well-known model besides the SIS is the so-called Larson-Penston solution

(LP solution), a self-similar spherical collapse solution, assuming a homogeneous initial

density distribution (Larson, 1969; Penston, 1969). This highly dynamical model does

not assume equilibrium, and asymptotically reaches a density profile for which

%LP = 4.4 %SIS (3.8)

everywhere. We now want to find an expression for the parameter a in the SIS and the

LP models. In the outer regions, equation (3.1) becomes

% (r À a) ≈ %ca
2

r2
=

k̃c2s
2πGr2

, (3.9)

where k̃ ≡ 2πk2 = 1 for the SIS (equilibrium) and k̃ = 4.4 for the asymptotic LP collapse

solution. Therefore

k ≡
√

k̃

2π
=

{
0.399 for SIS,

0.837 for LP.
(3.10)

This has a direct application to observed prestellar cores. If an estimate for the core

temperature is available, equation (3.5) can be fit to the column density profile, with k

as a fitting parameter. If k ≈ 0.4, the system can be considered to be in equilibrium. If

k is significantly larger than 0.4, and closer to 1, the cloud under scrutiny is collapsing.

Fig. 3.3 shows our model with a chosen to converge to either the SIS or the asymptotic

LP solution. We also plot the equilibrium BE model. In order to avoid boundary effects,

the outer radius was moved to ≈ 102 cs/
√
G%c. The BE profile does not join onto the

SIS profile right away. It overshoots, then steepens and asymptotically approaches the

SIS profile at large radii.

We may ask which value of k is most appropriate to model a critical BE sphere. The
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Figure 3.3: Comparison between the BE sphere (dashed line) and our model (solid lines)
for identical central temperature and cut-off radius. The top line is our model with k =
0.837, for which the profile approaches the asymptotic LP solution. The lower line shows
k = 0.399, for which the SIS profile is reached. The dashed line represents the BE model,
which also asymptotically approaches the SIS.
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overshoot effectively produces a larger flat region if the solution is truncated at ξs = ξcrit.

The resultant a has to be larger than for the SIS. Having fixed the temperature this can

only be achieved by increasing k, as we show in Fig. 3.4. Profile (a) shows a subcritical

BE sphere, i.e. a stable equilibrium solution. In this case, there is no discernible power-

law region and the central flat region makes up a significant portion of the total radius.

The cut-off becomes dominant just outside the flat region, and the best-fit dimensionless

dynamics parameter is k = 0.63. Note that the density contrast is less than an e-folding,

which means a mean column density enhancement of < 40% over the background. Such

an object would not be observationally characterized as a prestellar core (André et al.,

2009).

Profile (c) in Fig. 3.4 shows the opposite situation, where the power-law portion of

the profile is fit, and k = 0.46 is closer to the equilibrium value. As shown in Fig. 3.3,

the BE model initially has a power-law index steeper than −2. This is the reason why

the profiles do not match up as well as for the other cases. Profile (b) finally shows a

critical BE sphere. A density contrast greater than %c/%s = 14.0 would characterize an

unstable equilibrium, initiating collapse upon the smallest of perturbations. The two

profiles are very similar, only minor deviations are discernible. In order to fit our model

to the overshoot of the BE profile over the SIS, a has to be larger, which can only be

achieved by k = 0.54. We demonstrate this effect on the examples of B68 and L1689B in

Sections 3.4.1 and 3.4.2: as a consistency check, we insert the derived BE temperatures

into our model, and indeed find k = 0.57 and k = 0.56 respectively. Note that the BE

model is a valid model in absence of any effects other than gravity and thermal pressure,

and thus we conclude that in this case, not the asymptotic value of k = 0.4 but rather

the critical BE value of k = 0.54 is relevant for the stability assessment. We stress that

if k is significantly larger than that, it is strongly indicative of collapse.

Since the BE model effectively has k ≈ 0.5 and collapsing clouds have k ≈ 1.0, trying

to force a BE model fit to such a cloud results in spurious higher temperatures. This can

be seen in Bacmann et al. (2000). A factor of 2 in the dimensionless dynamics parameter

k needs to be compensated by a factor of 4 in temperature when fitting a BE equilibrium

state.

3.2.3 Total mass

Both our model and the BE sphere have a well-defined outer radius, and the total mass

depends on it. For the profile of equation (3.1), the total mass has a closed-form expres-
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Figure 3.4: Fit of the integrated column density of various BE spheres (dashed lines)
with our model (solid lines). (a) is a subcritical (stable) model, while (b) shows a critical
BE sphere. In that case, k = 0.54 (see text for explanation). (c) presents a fit to a highly
supercritical (unstable) BE model.
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sion. Evaluating
∫ R

0
4πr2% (r) dr yields

M = 4π%ca
3

[
R

a
− arctan

(
R

a

)]
. (3.11)

There is evidence for some power-law behaviour in most observed profiles (e.g., Bacmann

et al., 2000). In such a situation, the value of R/a must be at least & 10 (cf. Fig. 3.2).

Then, the contribution of arctan (c) is quite close to its limiting value of π/2, and the

total mass is given by

M ≈ 4π%ca
2R = 4πk2Rc2s/G (3.12)

with < 15% error. The equivalent expression for the BE model is (derived assuming an

SIS profile at large radii)

MBE ≈ 2Rc2s/G. (3.13)

Both expressions for the masses are linearly dependent on the unknown radius R.

For a given (measured) temperature, our model additionally invokes the dimensionless

dynamics parameter k, which is well constrained by the size of the flat region. The BE

mass instead depends on the temperature of the fit, which we show in Sections 3.2.2 and

3.4.2 to potentially be a very poor value, and prone to overestimation by as much as a

factor of 4.

3.3 Disc geometry

3.3.1 Basic model

Most observed cores do not appear circular in projection. A corresponding analysis as in

Section 3.2.2 can be done for a disc-like geometry as well. Here, a generic face-on column

density profile is

σ (r) =





σc

/√
1 + (r/a)2 r ≤ R,

0 r > R.
(3.14)

This profile provides a good fit to the column density of collapsing flattened clouds (Basu,

1997), even though the models in that paper are not truncated.

Assuming vertical hydrostatic equilibrium and ignoring the effect of external pressure,

the volume density is proportional to the square of the column density

c2s% =
π

2
Gσ2, (3.15)



62 Chapter 3. Column density profile for prestellar cores

and the density accordingly is given by

% (r) =
πG

2c2s

σ2
c

1 + (r/a)2 . (3.16)

The assumption of vertical hydrostatic equilibrium is well justified by simulations when

some source of flattening is present, such as rotation (Narita et al., 1984), or magnetic

fields (Fiedler and Mouschovias, 1993). Abbreviating πGσ2
c/ (2c2s ) = %c, the volume

density profile has exactly the same form as for the spherical case (with a different

constant).

3.3.2 Model parameters

Integrating % (r) through the disc viewed edge-on, the column density versus the offset x

has the same functional form as derived above for the spherical case in equation (3.5). The

only difference is that the central column density is now given by Σc = πkσc arctan (c),

since for a thin disc, the relation between a and the Jeans length is

a = k
c2s
Gσc

. (3.17)

This similarity means that both a flattened and a spherical object (see Section 3.2)

can be fit with the same formula. Note that σ (r) is the face-on column density, whereas

Σ (x) is its edge-on counterpart.

We can compare the (face-on) generic column density profile to one of an equilibrium

solution, in order to get the minimal value for a, as done for the spherical case above.

Here, the appropriate profile is the singular isothermal disc, characterized by

σSID =
c2s

2πGr
. (3.18)

Following the same steps as in Section 3.2.2, the large-radius asymptote of equation (3.14)

is

σ (r À a) ≈ σca

r
, (3.19)

yielding a = c2s/(2πGσc). Comparing this expression to equation (3.17), we find k =

1/2π = 0.160 for equilibrium.

Saigo and Hanawa (1998) show that for an isothermal disc-like cloud during runaway

collapse, the self-similar column density profile is given by 3.61 σSID, analogous to how

the LP solution is over-dense compared to the SIS. This provides a good estimate for
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the value of the dimensionless dynamics parameter for a dynamically collapsing disc-like

cloud, k = 0.57. Flattened cloud cores best fit with values for the dimensionless dynamics

parameter k ≈ 0.2 are therefore close to equilibrium, while k ≈ 0.6 is strongly indicative

of dynamical collapse.

Effect of magnetic fields

Inclusion of magnetic fields into a spherical model poses a problem: the magnetic field

lines cannot be arranged in a spherically symmetric way. There has to be a preferred

direction. However, in disc-like geometry, the axis perpendicular to the disc is preferred

already, and can be chosen as the axis of orientation of a large-scale magnetic field.

Starting with initially straight field lines through a collapsing astrophysical gas sphere,

flattening ensues along this preferred direction. Matter can contract significantly along

the field lines, but the Lorentz force will impede motions perpendicular to the field

(Mouschovias, 1976).

In the limit of a magnetic field much stronger than the field of the ambient cloud,

Basu (1997), Nakamura and Hanawa (1997) and Shu and Li (1997) showed that the

contribution of the magnetic field can be folded into a force calculation of the collapse

of a magnetized disc by magnetic pressure modifying the effective sound speed, and

magnetic tension changing the effective gravitational constant. Then we can write (see

Basu, 1998)

a = k
c2s (1 + 2µ−2)

Gσc (1− µ−2)
. (3.20)

We use the standard definition of the mass-to-flux ratio in units of the critical value

(Nakano and Nakamura, 1978):

µ =
σ (r)

Bz (r)
2π
√
G. (3.21)

Collapse requires µ > 1, otherwise the magnetic forces will dominate over gravity and

stabilize the cloud, and evolution can only happen on long time scales by ambipolar

diffusion (see, e.g., Shu et al., 1987).

We can absorb the modification into an effective k, writing it as keff = k (1 + 2µ−2) (1− µ−2)
−1

.

The value k = 0.160 as derived for the non-magnetic case remains the minimal value,

while keff can exceed it by a factor of 1.1 to 2 for µ ≈ 2 − 5, which is a reasonable

estimate for supercritical cores (Ciolek and Mouschovias, 1994; Basu and Mouschovias,

1994). This means keff . 0.3, which leaves it still a factor of 2 smaller than the value for

the dimensionless dynamics parameter for dynamical collapse (k ≈ 0.6, as shown above),



64 Chapter 3. Column density profile for prestellar cores

and thus clearly distinguishable.

Effect of rotation

Similar to the problem for magnetic fields, rotation cannot be considered in strict spher-

ical symmetry. In fact, rotation can be the cause of disc-like geometry, as a collapsing

rotating spherical cloud will flatten along the rotation axis before contracting in the radial

direction.

There exist self-similar solutions for the collapse of a rotating thin disc (Narita et al.,

1984; Saigo and Hanawa, 1998). Following the discussion in Basu (1997), one can express

the additional effect of rotation as an effective acceleration aeff = aT (1 + aC/aT), where

aT is the thermal acceleration, while aC denotes the centrifugal acceleration. Assuming

the column density profile of equation (3.14) and proportionality between the specific

angular momentum and enclosed mass, this leads to

aC/aT ≈ 3× 10−3. (3.22)

This number is computed for a background rotation rate of the molecular cloud Ωc =

10−14 rad s−1, a central column number density Nc = 1021 cm−2, and a temperature T =

10 K. Hence, we find that the effective radial acceleration opposing gravity exceeds the

thermal acceleration by less than 1%. This shows that, unlike magnetic forces, rotation

does not significantly modify the size of the flat region and hence the dimensionless

dynamics parameter k.

3.4 Applications

We fit both the BE model and our model to observational data by determining the

best-fitting parameters using a standard Levenberg-Marquardt least-squares minimiza-

tion algorithm based on MINPACK.

3.4.1 B68

We fit our model to B68, the prime example in the literature for an extraordinarily good

fit of the BE model to a (angular-averaged) column density profile measured in near-IR

dust extinction (Alves et al., 2001). B68 is an isolated Bok globule, a small dark cloud

which has been studied extensively. Alves et al. (2001) assume a distance of 125 pc and

quote a BE mass of 2.1 M¯, a temperature of T = 16 K, an outer radius of 12, 500 au,
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and a dimensionless outer radius ξs = 6.9 ± 0.2. Hotzel et al. (2002) and Lai et al.

(2003) more recently updated some of these values by measuring the temperature to be

T = 10 ± 1.2 K and T = 11 ± 0.9 K, respectively, and estimated the cloud to be closer

by about 25 pc, placing it at the near side of the Ophiuchus complex. This reduces the

outer radius and decreases the BE mass to ≈ 1 M¯, but does not change the value for

ξs, as that is determined by the shape of the profile.

We perform a similar analysis as Alves et al. (2001). We calculate a BE sphere, vary

the temperature, the dimensionless and physical outer radii ξs and R, and fit the line-of-

sight integral to the observational data, assuming a distance of 100 pc. This procedure

yields a BE mass of M = 1.17 M¯, a BE model temperature of T = 11.1 K, and a central

number density of nc = 2.3× 105 cm−3. The outer radius of the best BE fit is 10, 680 au,

and the dimensionless outer radius ξs = 7.0. The best fit of our model to the same data

yields a total mass of M = 1.2 M¯, R = 10, 420 au, and nc = 2.7 × 105 cm−3. The

size of the flat region is a = 2, 830 au. Assuming a temperature of T = 11 K, as in the

observations mentioned above, this corresponds to k = 0.57. We showed in Section 3.2.2

that a critical BE sphere is fit with k = 0.54, and we conclude that the internal structure

of B68 may indeed very closely resemble a critical BE sphere. Fig. 3.5 shows that the

best fits to B68 of the BE sphere and our model differ by very little over the whole range

of data.

The BE analysis is much more involved and computationally expensive than our

model. It necessitates a numerical solution of the Lane-Emden equation. This ordinary

differential equation (ODE) underlies the BE model, and does not have a general ana-

lytical solution. The numerical solution is truncated at the dimensionless radius ξs and

converted into physical units. Only then can one integrate along lines of sight through

the solution numerically, yielding the column density to be compared with observational

data. In contrast, fitting our model to a dataset requires less than a dozen lines of code.

3.4.2 L1689B

Another prestellar core to which we apply our model is L1689B. Its central column

density is much greater and it is more extended than B68. Furthermore, it is not isolated,

but rather embedded within the larger complex of the Ophiuchus molecular cloud. Its

profile was measured by Bacmann et al. (2000) using mid-IR absorption observations and

updated by André et al. (2003). We use the East-West profile, which shows evidence of

steepening in the outer regions.

The BE fit to the data in Fig. 3.6 yields ξs = 11.2 (supercritical, unstable core) and
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Figure 3.5: Best fit of the BE model (dashed line) and our model (solid line) to the column
density of B68 (Alves et al., 2001). Both fits follow the data points extremely closely and
yield very similar results for the total mass (see text). Like the BE model, our model fit
is consistent with an equilibrium cloud. The symbols reflects the r.m.s. dispersion of the
extinction measurement in each averaging annulus.
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a mass of M = 9.3 M¯, similar to what André et al. (2003) found. Fitting our model

results in M = 9.1 M¯. However, in contrast to the case of B68, the temperatures of the

two fits are vastly different. The BE model requires a temperature T = 40 K, whereas

our model can achieve the same quality of fit with a temperature T = 10 K. We fit the

size of the flat region a = 3, 600 au which is a combination of the temperature and k. A

temperature of T = 10 K mandates k = 1.1, which is very far from the value required

for equilibrium, and even surpasses the value k = 0.837 achieved in the highly dynamical

asymptotic LP solution. As discussed in Section 3.2.2, this is a strong indication that

L1689B cannot be in equilibrium, but must instead be collapsing.

Again, our model fits this dynamically evolving object just as well as it fit the pre-

sumably almost static B68. It can do so without introducing inconsistent temperatures,

and with much less computational and coding effort.

3.5 Summary and conclusions

We have introduced an analytic profile for the integrated line-of-sight column density of

an isothermal spherical or flattened cloud. This cloud can either be in equilibrium or in

a state of dynamical collapse. Our model is very simple to calculate compared to the

BE model, and a few lines of code suffice to find a best-fit set of parameters. Another

advantage lies in its ability to also encompass non-equilibrium states. The dimensionless

dynamics parameter k allows one to assess whether a cloud is near equilibrium or vig-

orously collapsing. At the same time, our model does not produce inconsistencies like

the BE model regarding the object’s temperature (which can be treated as a constrained

quantity and not a free parameter).

Our model can be applied both to spherical and to flattened clouds, and in both cases

yields the same functional form for the column density Σ (x). It fits the size of the central

flat region and allows the modeller to adjust either k or the temperature to match it.

Results of fitting our model to B68 show that it is indeed a near-equilibrium cloud,

with parameters very similar to the best-fit BE model. For L1689B, our model avoids the

need for a high temperature (the BE model requires T = 40 K) since it can be interpreted

as having a temperature of T = 10 K but being in a state of dynamical collapse. This

finding is confirmed by the detection of infall motions for L1689B by means of the shape

of the line profiles in optically-thick molecular transitions (Bacmann et al., 2000; Lee

et al., 2004). In the future, our model can be applied to many other prestellar cores.
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Figure 3.6: Best fit of the BE model (dashed line) and our model (solid line) to the
column density of L1689B, as measured by Bacmann et al. (2000) and later updated by
André et al. (2003) (symbols). Here, the symbols do not indicate errors bars. Again, both
fits are very similar and yield observationally almost indistinguishable results. However,
the BE model requires a relatively high temperature of T = 40 K, while our model can fit
the data with T = 10 K. The dimensionless dynamics parameter k = 1.1, which means
that the cloud is collapsing.
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Hotzel, S., Harju, J., and Juvela, M.: 2002, A&A 395, L5



70 BIBLIOGRAPHY

Kandori, R., Nakajima, Y., Tamura, M., Tatematsu, K., Aikawa, Y., Naoi, T., Sugitani,

K., Nakaya, H., Nagayama, T., Nagata, T., Kurita, M., Kato, D., Nagashima, C., and

Sato, S.: 2005, AJ 130, 2166

King, I.: 1962, AJ 67, 471

Kirk, J. M., Ward-Thompson, D., and André, P.: 2005, MNRAS 360, 1506
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Chapter 4

Averting the magnetic braking

catastrophe on small scales: disk

formation due to Ohmic dissipation

4.1 Introduction

Understanding how protostellar and protoplanetary disks form is of fundamental impor-

tance to theories of star- and planet formation. Observations show their ubiquity around

Class II objects (e.g., Andrews and Williams, 2005). In recent years, doubt was cast

on their accepted formation mechanism, when it was shown that for flux freezing ma-

gnetic braking is so effective in removing angular momentum from the parent core that

large-scale (≈ 102 AU) disks are suppressed entirely (Allen et al., 2003; Mellon and Li,

2008; Hennebelle and Fromang, 2008). This scenario held true even when a simplified

version of ambipolar diffusion (Mellon and Li, 2009) was included in the model, and has

been referred to as the magnetic braking catastrophe. Recently, Hennebelle and Ciardi

(2009) demonstrated that inclination effects can modify the efficiency of magnetic brak-

ing, but a supercritical mass-to-flux ratio by a factor > 3 − 5 (i.e., a weak magnetic

field) was still required to form a large-scale disk. Duffin and Pudritz (2009) performed

three-dimensional simulations with ambipolar diffusion, but only resolved the first core,

and did not find Keplerian motion.

Runaway collapse of a prestellar core can effectively trap the magnetic flux in the

prestellar phase (e.g., Basu and Mouschovias, 1994). If the evolution continued to pro-

ceed under flux-freezing, a big magnetic flux problem would remain, since the emerging

1A version of this chapter has been published as Dapp, Wolf B. & Basu, Shantanu 2010, A&A, 521L,
56
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star would hold 103 − 105 times more magnetic flux than observed in T Tauri stars. At

densities . 1012 cm−3, ambipolar diffusion causes flux leakage, while at even higher den-

sities, matter decouples entirely from the magnetic field, and Ohmic dissipation becomes

dominant (e.g., Nakano et al., 2002). Both effects are revitalized after the formation of a

central star (Li and McKee, 1996; Contopoulos et al., 1998). Recently, Krasnopolsky et al.

(2010) have shown that for an isothermal core without self-gravity, only an ‘anomalous’

resistivity—a factor of 100 larger than the canonical level—allows disks of size 102 AU to

form during the Class 0 phase. However, their simulations are dominated by numerical

reconnection events that make precise statements about the efficacy of magnetic braking

difficult.

Currently, there is no evidence for the presence of centrifugal disks larger than ≈
50 AU around Class 0 or Class I objects (e.g., Maury et al., 2010). However, there are

outflows observed even at these early ages. It is therefore reasonable to assume that

disks form at a small scale and only subsequently grow to the larger sizes observed in

the Class II phase. We demonstrate the first part explicitly by using a canonical level of

Ohmic dissipation alone, and speculate that the combined effects of ambipolar diffusion

and Ohmic dissipation will allow for the second part. Additionally, an initially small

disk could expand significantly if angular momentum transport is regulated by internal

processes (e.g., Basu, 1998; Vorobyov and Basu, 2007).

Machida et al. (2007) performed three-dimensional simulations of resistive MHD on

a nested grid, following the evolution to stellar densities, but were only able to inte-

grate until a few days after stellar core formation. We extend their calculations in a

dimensionally-simplified model in order to simultaneously address the magnetic flux prob-

lem, integrate further in time, and study the formation of a centrifugal disk. We show

that catastrophic magnetic braking can be avoided, and that a small disk forms in a very

early phase of evolution.

4.2 Method

We solve the normalized MHD equations in axisymmetric thin-disk geometry (see Ciolek

and Mouschovias, 1993; Basu and Mouschovias, 1994), assuming vertical hydrostatic

equilibrium in a vertical one-zone approximation. An integral method for calculating the

self-gravity of an infinitesimally-thin disk is used (detailed in Ciolek and Mouschovias,

1993), with modifications for the finite extent and finite thickness of the flattened core.

In our model, the magnetic field points solely in the vertical direction inside the disk,

but also possesses radial and azimuthal components (Br and Bφ) at the disk surfaces and
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above. Br is determined from a potential field assuming force-free and current-free con-

ditions in the external medium. We calculate Bφ and implement magnetic braking using

a steady-state approximation to the transport of Alfvén waves in the external medium,

as in Basu and Mouschovias (1994). Owing to numerical complexity, a calibration of this

method with results of three-dimensional MHD wave propagation through a stratified

compressible medium has not been done to date. We modify the ideal-MHD induction

equation to include Ohmic dissipation:

∂Bz,eq

∂t
+

1

r

∂

∂r
(rBz,eqvr) =

1

r

∂

∂r

(
ηr
∂Bz,eq

∂r

)
. (4.1)

Here, Bz,eq denotes the z-component of the magnetic field at the midplane of the disk,

and vr is the radial component of the neutral velocity.

We use the parametrization of Machida et al. (2007) for the resistivity calculated by

Nakano et al. (2002), with a dimensionless scaling parameter η̃0 whose standard value is

unity. The resistivity is then

η = η̃0 1.3× 1018
( n

1012 cm−3

) (
T

10 K

)1/2 [
1− tanh

( n

1015 cm−3

)]
cm2 s−1, (4.2)

where n is the volume number density, and the term in square brackets is a cutoff rep-

resenting the restoration of flux freezing at high densities. The uncertainties in η̃0 hinge

largely on the grain properties (e.g., Machida et al., 2007). Different from Machida et al.

(2007), we do not (inconsistently) pull the resistivity outside all spatial derivatives.

For simplicity, we replace the detailed energy equation by a barotropic relation. The

temperature-density relation of Masunaga and Inutsuka (2000) is transformed into a

pressure-density relation using the ideal gas law P = nkBT , where P is the pressure, kB

is Boltzmann’s constant, and T is the temperature. We calculate the midplane pressure

self-consistently, including the effects of the weight of the gas column, constant external

pressure (Pext = 0.1 πGΣ2
0/2), magnetic pressure, and the extra squeezing added by a

central star (once present).

The MHD equations are solved with the method of lines (e.g., Schiesser, 1991) using

a finite volume approach on an adaptive grid with up to 1024 radial cells in logarithmic

spacing. The smallest cell is initially 10−2 AU and as small as 0.02 R¯ at the highest

refinement. We use the second-order van-Leer TVD advection scheme (van Leer, 1977),

and calculate all derivatives to second-order accuracy on the nonuniform grid. The code

will be described in detail in a forthcoming paper.
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4.3 Initial conditions and normalization

We assume that our initial state was reached by core contraction preferentially along

magnetic field lines (e.g., Fiedler and Mouschovias, 1993) and rotational flattening, and

start with initial profiles for the column density and angular velocity given by

Σ (r) =
Σ0√

1 + (r/R)2
, Ω (r) =

2Ωc√
1 + (r/R)2 + 1

. (4.3)

Here, R ≈ 1, 500 AU approximately equals the Jeans length at the core’s initial central

density (see below). The column density profile is representative of the early stage of

collapse (e.g., Basu, 1997; Dapp and Basu, 2009), and the angular velocity profile reflects

that the specific angular momentum of any parcel is proportional to the enclosed mass.

We assume an initial profile for Bz,eq in a way that the normalized mass-to-flux ratio

µ = Σ/Bz,eq 2π
√
G = 2 everywhere, which is the approximate starting point of runaway

collapse (e.g., Basu and Mouschovias, 1994). The radial velocity is initially zero. The

initial state is not far from equilibrium, because the pressure gradient and magnetic and

centrifugal forces add up to ≈ 82% of the gravitational force. Our results do not depend

strongly on the choice of initial state as long as gravity remains dominant.

The initial central column density and number density are Σ0 = 0.23 g cm−2 and

nc = 4.4× 106 cm−3, respectively. The total mass and radius of the core are 2.5 M¯ and

1.2× 104 AU, respectively. The initial central magnetic field strength is Bz,eq ≈ 200 µG.

We choose the external density in a way that nc/next = 500, (i.e., next ≈ 103 cm−3), and

the central angular velocity Ωc so that the cloud’s edge rotates at a rate of 1 km s−1 pc−1,

consistent with observations of molecular cloud cores (Goodman et al., 1993; Caselli et al.,

2002).

4.4 Results

4.4.1 Prestellar phase and formation of the second core

During the prestellar phase (for number densities n < 1011 cm−3) the collapse proceeds in

a nearly self-similar fashion. We find that—insensitive to initial conditions—the column

density is approximately ∝ r−1 for three orders of magnitude of central enhancement,

which corresponds to the volume density being ∝ r−2 for a central enhancement of

≈ 106. This profile is characteristic of a collapsing prestellar core (e.g., Larson, 1969).

The collapse proceeds dynamically, and to a good approximation under isothermality,
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flux-freezing, and without significant magnetic braking (Basu and Mouschovias, 1994).

Once the density reaches ≈ 1011 cm−3, the central region becomes opaque and traps

the energy released by the collapse, which previously could escape freely as radiation.

This region heats up (Larson, 1969; Masunaga and Inutsuka, 2000) and its thermal

pressure gradient temporarily stabilizes it against further collapse. This is the first core.

Its density and temperature increase with continued accretion, while its size stays almost

constant at ≈ a few AU, bounded by an accretion shock. The external gravitational

potential of this object closely resembles that of a point mass, and an expansion wave

develops and moves outward at nearly the sound speed (Shu, 1977). Material within this

region moves at near free-fall speed.

When the temperature in the first core reaches ≈ 2000 K, for n & 1015 cm−3, hydrogen

molecules are collisionally dissociated. This process provides an energy sink, so that the

temperature rise stagnates, and the collapse reinitiates. As the temperature rises yet

further, hydrogen is ionized sufficiently that flux freezing is re-established. Collapse is

then finally halted, and sufficiently high densities are reached that electron degeneracy

becomes important (Masunaga and Inutsuka, 2000). A protostellar core (the second core)

forms with a radius ≈ a few R¯ (e.g., Larson, 1969). This Class 0 object initially only

has a mass of a few ×10−3 M¯. The gravitational potential resembles that of a point

mass outside the second core, and an expansion wave once again moves outward from

the accretion shock, eventually consuming the entire region of the previous first core.

Figure 4.1 shows the profiles of column density, mass-to-flux ratio and angular ve-

locity shortly after the second core forms (≈ 4.8 × 104 yr into the simulation). For

n & 1012 cm−3, Ohmic dissipation becomes dynamically important (Nakano et al., 2002),

because all charge carriers decouple from the magnetic field, and flux is dissipated. While

the density in the first core increases, we find the magnetic field strength remains stag-

nant. A magnetic wall (Li and McKee, 1996; Contopoulos et al., 1998) forms at ≈ 10 AU,

visible as a sharp transition in column density in the resistive model (η̃0 = 1, top panel).

Here, infalling neutrals within the expansion wave are temporarily slowed down by the

relatively well-coupled magnetic field that is expelled from the first core with a radius

≈ 1 AU. Further inward, the neutrals resume near-free-fall motion, but with enhanced

magnetic support and at a greater column density than for flux-freezing (η̃0 = 0, dotted

line). Under angular momentum conservation (no magnetic braking), the additional ro-

tational support stabilizes the first core against further collapse (top panel, dash-dotted

line), consistent with previous findings (e.g., Saigo and Tomisaka, 2006).

Because of magnetic flux dissipation, the mass-to-flux ratio increases by two orders

of magnitude in the first core region for η̃0 = 1, but by a factor of 15 even for η̃0 as
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low as 0.01 (Fig. 4.1, middle panel). The torque on the cloud caused by magnetic

braking scales linearly with the amount of enclosed flux (Basu and Mouschovias, 1994).

Ohmic dissipation therefore allows spin-up to proceed, even though the rotation rate is

still reduced by a factor of a few outside the first core, compared with the case without

magnetic braking (Fig. 4.1, bottom panel, dash-dotted line). In the flux-freezing case,

the comparatively slow evolution of the first core allows enough time for magnetic braking

to spin down the first core region, and ‘catastrophically’ brake it (Fig. 4.1, bottom panel,

dotted line).

4.4.2 Evolution after second core formation

When the second core forms, the thin-disk formulation breaks down, because the object

is now truly hydrostatic and spherical. Presumably, dynamo processes within the fully

convective protostar will also take over, and the magnetic field will mostly decouple from

that of its parent core (Mestel and Landstreet, 2005). Therefore, we switch off magnetic

braking in the second core, and introduce a sink cell with a size of 3 R¯, slightly larger

than the second core. The processes within it are beyond the scope of our model, but

are not expected to significantly influence the surroundings. This is not necessarily the

case with a sink cell of size ≈ 10 AU, as is the more common approach (e.g., Vorobyov

and Basu, 2007; Mellon and Li, 2008, 2009).

Figure 4.2 shows the profiles of column density, infall velocity, and the ratio of cen-

trifugal to gravitational acceleration about a year after the introduction of the sink cell.

Centrifugal balance is achieved in a small region (≈ 10 R¯) close to the center (bottom

panel) in the resistive model. This is a necessary and sufficient condition for the forma-

tion of a centrifugally-supported disk. At the same time all infall is halted there and

the radial velocity plummets (middle panel). After a few years of evolution, a Toomre

instability develops, and the rotationally-supported structure breaks up into a ring (top

panel). At this point, we stop the simulation, because more physics would be required to

follow the further evolution of the disk. Our model allows a clear distinction between a

magnetic pseudo-disk, a flattened (disk-like) prestellar core, and a centrifugal (nearly Ke-

plerian) disk. This distinction is not clear in profiles from three-dimensional simulations

(Machida et al., 2007; Duffin and Pudritz, 2009).

Figure 4.3 shows the magnetic field line topology above and below the disk on two

scales (10 AU and 100 AU), for both flux-freezing and resistive models. They are cal-

culated immediately after the formation of the second core, assuming force-free and

current-free conditions above a thin disk (Mestel and Ray, 1985). The split monopole of
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Figure 4.1: Spatial profiles of various quantities after the second collapse (after ≈ 4.8 ×
104 yr). Top: The first and second core and their accretion shocks are at radii ≈ 1 AU and
≈ 5× 10−3 AU ≈ 1 R¯, respectively. Within the expansion wave outside the first core, the
column density profile assumes that of free-fall collapse in the flux-freezing case (η̃0 = 0),
and shows a magnetic wall in the resistive case. Beyond ≈ 20 AU, the prestellar infall profile
remains unchanged. Without magnetic braking (dash-dotted line), the first core is larger
and rotation prevents further collapse. Middle: The mass-to-flux ratio is increased by
(even weak) Ohmic dissipation by a factor between 15 and 100. The influence is significant
even well outside the boundary of the first core (at a few AU). Bottom: For flux-freezing,
catastrophic magnetic braking spins down the first core to nearly the background rotation
rate. In the resistive case (solid line), the rotation rate outside the first core is reduced only
slightly compared with the case without magnetic braking (dash-dotted line).
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the η̃0 = 0 model (dashed lines) is created as field lines are dragged in by the freely falling

material within the expansion wave front at ≈ 20 AU. This is replaced by a much more

relaxed field line structure in the resistive case (solid lines). The extreme flaring of field

lines in the η̃0 = 0 model is a fundamental cause of the magnetic braking catastrophe.

Galli et al. (2009) presented similar field configurations resulting from a simplified model

for resistive collapse.

4.5 Discussion and conclusions

We demonstrate the formation of a centrifugally-supported disk despite the presence

of magnetic braking. The magnetic braking catastrophe is averted by including the

canonical level of Ohmic dissipation, which removes large amounts of magnetic flux from

the high-density region of the first core. In the absence of Ohmic dissipation, this region

would be spun down tremendously prior to the second collapse. We emphasize that

disk formation happens very shortly after the second collapse in a region very close to

the central object, while it is still very small (< 10−2 M¯). This is consistent with the

observational evidence of outflows at a very young age.

Our simulations yield ≈ 0.1 − 1 kG magnetic fields, comparable to those observed

in T Tauri stars (e.g., Johns-Krull, 2007), in a central object of mass ≈ 10−2 M¯. This

is achieved by non-ideal MHD effects reducing the field strength by ≈ 102 compared to

a flux-freezing model. Our model does not have the capability of including outflows or

jets, even though those are launched very close to the stellar surface.

There is presently no evidence for centrifugal disks & 50 AU around Class 0 objects

(e.g., André et al., 2004; Maury et al., 2010). ALMA will allow observers to improve on

this, and to probe for disks down to ≈ 10 AU. We anticipate that the centrifugal disk

that forms in our simulations can grow over time into disks of size ≈ 100 AU observed

around Class II objects. Recent work (Machida et al., 2010) shows that magnetic braking

can be cut off at late times as the envelope is accreted, and the existing disk can also grow

by internal angular momentum redistribution processes (e.g., Vorobyov and Basu, 2007).

Furthermore, we speculate that ambipolar diffusion (e.g., Kunz and Mouschovias, 2010)

has the potential to dissipate enough flux outside the first core (an area not significantly

affected by Ohmic dissipation) to reduce braking and to allow the disk to form there as

well. We will present results of a study including both non-ideal MHD effects and grain

physics in an upcoming paper.
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Figure 4.2: Spatial profiles of various quantities ≈ 1 yr after the introduction of a sink
cell of size ≈ 3 R¯. Top: The Toomre-unstable centrifugally-supported disk breaks up
into a ring. Middle: Infall is halted after the formation of a centrifugal disk at ≈ 5 ×
10−2 AU ≈ 10 R¯ in the resistive case (η̃0 = 1), while for flux-freezing (η̃0 = 0), infall
continues. Bottom: Ratio between centrifugal and gravitational accelerations. The dashed
line indicates rotational balance, achieved within ≈ 10 R¯ with Ohmic dissipation. For
flux-freezing, rotational support is negligible in the first core region owing to the magnetic
braking catastrophe.
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Figure 4.3: Magnetic field lines. The box on the left has dimensions 10 AU on each
side, while the box on the right has dimensions 100 AU. The dashed lines represent the
flux-freezing model (η̃0 = 0), while the solid lines show the same field lines for the resistive
model (η̃0 = 1). The second core has just formed and is on the left axis midplane.
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Chapter 5

Bridging the gap: intermediate-scale

disk formation with ambipolar

diffusion and Ohmic dissipation

5.1 Introduction

At the beginning of the star formation process, prestellar cores are observed to be rotating

(e.g., Goldsmith and Arquilla, 1985; Goodman et al., 1993; Caselli et al., 2002). At the

end of the process, observations show nearly all Class II objects to be surrounded by

rotating disks of size & 100 AU (e.g., Andrews and Williams, 2005), likely in centrifugal

balance. The amount of observational data available about what happens in between

those two snapshots is not as abundant. Currently, there is no evidence for the presence

of centrifugal disks larger than ≈ 50 AU around Class 0 or Class I objects (e.g., Maury

et al., 2010). However, there are outflows observed around these young objects, commonly

linked to disk accretion. Disks must therefore form with a small size and grow over time.

The dearth of observational data at smaller scales will be remedied by ALMA. In the

meantime, the evolution of angular momentum and the formation of a centrifugal disk

have to be studied theoretically and numerically.

It was shown long ago that there is a so-called angular momentum problem, in that

the lion’s share of angular momentum has to be removed from the gas in order to arrive at

rotation rates observed in main sequence stars. This feat was credited to magnetic brak-

ing, which acts during the contraction and collapse by linking the core with its envelope

and transfers angular momentum from one to the other. Recently the converse problem

appeared (e.g., Allen et al., 2003; Mellon and Li, 2008; Hennebelle and Fromang, 2008),

83
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when it was shown that cores may experience catastrophic magnetic braking, in that so

much angular momentum might be removed as to leave insufficient angular momentum

for the observed large-scale disks to form in models. This remained the case when the as-

sumption of flux freezing was abandoned (Mellon and Li, 2009), and ambipolar diffusion

was introduced.

In a previous paper (Dapp and Basu, 2010), we followed the evolution of a collapsing

molecular cloud core in axisymmetric thin-disk geometry all the way to protostellar den-

sities. We found that Ohmic dissipation alone (in a simplified form, see Machida et al.

2006, 2007) reduces the magnetic field strength sufficiently to inactivate magnetic brak-

ing within the first core. It was shown that a centrifugal disk can indeed form around the

second core (the protostar). In this paper, we improve on the implementation of non-

ideal MHD (magnetohydrodynamical) effects. We use the method presented in Kunz and

Mouschovias (2009, 2010) to calculate both Ohmic dissipation and ambipolar diffusion

simultaneously (and the Hall effect, in principle, even though that is not applicable for

the geometry chosen in this paper). Both effects are revitalized after the formation of a

central star (e.g., Li and McKee, 1996; Contopoulos et al., 1998), and cannot be studied

with a sink cell of ≈ 10 AU, which is what some simulations use. We follow the evolu-

tion of the core to stellar sizes, in a 7-fluid model including inelastic collisions between

gas-phase species and grains, and we study the effect of different grain sizes.

We demonstrate that a more realistic calculation of Ohmic dissipation and the addi-

tion of ambipolar diffusion reduces the efficacy of magnetic braking in the inner regions

further. We show that catastrophic magnetic braking can be avoided, and that a small

disk forms in a very early phase of evolution. We propose a disk formation scenario in

which the disk forms at size ≈ 1 AU, and subsequently expands significantly (Basu, 1998)

due to internal angular momentum transport mechanisms such as MRI or gravitational

torques (e.g., Balbus and Hawley, 1991; Vorobyov and Basu, 2007).

This paper is structured the following way. In Section 5.2 we formulate the prob-

lem, and describe the method of solution and the numerical code. Section 5.3 discusses

the implementation of magnetic braking, while Section 5.4 outlines the derivation of the

induction equation. Section 5.5 details the chemical model used to calculate the abun-

dances of each species. Section 5.6 contains the description of our initial condition and

normalizations used, and we present our results in Section 5.7. Those are then discussed

in Section 5.8, and we summarize our findings in Section 5.9.
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5.2 Method

We solve the normalized equations of non-ideal MHD for a rotating, axisymmetric thin

disk (Basu and Mouschovias, 1994) made of partially-ionized gas. In the thin-disk ap-

proximation all quantities are assumed uniform over one scale height of the disk. It is

applicable as long as the half-thickness of the disk remains small compared to the radius

of the disk. Fiedler and Mouschovias (1993) showed that an initially cylindrical cloud

quickly flattens parallel to the magnetic field before any significant collapse in radial di-

rection occurs, and a disk is formed that can be described by the thin-disk approximation

(see also Basu and Mouschovias, 1994).

We solve the following system of equations

∂Σn

∂t
=− 1

r

∂

∂r
(rΣnvr) , (5.1a)

∂ (Σnvr)

∂t
=− 1

r

∂

∂r
(rΣnvrvr) + fp + fg + fm + fr, (5.1b)

∂L

∂t
=− 1

r

∂

∂r
(rLvr) +

1

2π
rBz,eqBϕ,Z , (5.1c)

∂Bz,eq

∂t
=− 1

r

∂

∂r
(rBz,eqvr)

+
1

r

∂

∂r

(
rηeff

∂Bz,eq

∂r

)
, (5.1d)

P =P (%n). (5.1e)

Here, Σn is the mass column density, vr is the radial velocity, while L ≡ ΣnΩr
2 is the

angular momentum per unit area. The mass volume density is denoted by %n, and the

forces f and the magnetic field components (Bz,eq, Br,Z, and Bϕ,Z) are discussed below.

We do not include a separate continuity equation for the grains since no significant

change of the dust-to-gas ratio occurs beyond a density of nc ≈ 106 cm−3 (Kunz and

Mouschovias, 2010).

We include the effect of both ambipolar diffusion (e.g., Mestel and Spitzer, 1956;

Mouschovias, 1991) and Ohmic dissipation (e.g., Nakano et al., 2002) in an effective

resistivity ηeff (Kunz and Mouschovias, 2009, 2010), as derived from microphysical con-

siderations in Section 5.4. Because of the chosen field geometry, there is no contribution

of the Hall effect (e.g., Wardle, 2007), even though it would be straightforward to add

it in the same formulation in a higher-dimensional study (e.g., Kunz and Mouschovias,

2010). Note that we do not assume the resistivity to be spatially constant by pulling it

outside all spatial derivatives, which is different from Machida et al. (2007).

For computational ease, we use the barotropic relation Eq.(5.1e) instead of a detailed
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energy equation. The resulting mid-plane temperatures are very similar to those arrived

at in an axisymmetric (r, z) simulation with explicit radiative transfer added (Kunz and

Mouschovias, 2010). We transform the temperature-density relation of Masunaga and

Inutsuka (2000) into a pressure-density relation using the ideal gas law P = nkBT .

Here, P is the thermal pressure, kB is Boltzmann’s constant, and T is the mid-plane

temperature, while n is the volume number density1. We calculate the thermal mid-

plane pressure of the neutrals in our thin disk self-consistently, including the effects

of the weight of the gas column, external pressure, magnetic pressure, and the extra

squeezing added by a central star (once present, with mass MF). The latter weight is

WF = 2 GMF%
∫ Z

0

zdz

(r2 + z2)3/2
, (5.2)

where Z is the disk’s half-thickness, and % is the mass density. This is solved iteratively,

as % ≡ % (Z) itself. The external pressure is fixed at Pext = 0.1 πGΣ2
0/2, where G

is Newton’s constant and Σ0 is the initial central column density. The mass density

corresponding to a given pressure is then interpolated from a table. This also fixes the

mid-plane temperature of our disk, as well as the scale height (i.e., the half-thickness of

the thin disk).

The forces per unit area appearing in the momentum equation Eq.(5.1b) are given by

fp = − ∂

∂r

[
ZπGΣ2

n

]
(5.3a)

fg = Σngr (5.3b)

fm =
Bz,eq

2π

(
Br,Z − Z∂Bz,eq

∂r

)

+
1

4π

dZ

dr

(
B2
r,Z +B2

ϕ,Z

)
(5.3c)

fr =
L2

Σnr3
(5.3d)

Note that the effects of external pressure, magnetic pressure, and the protostar’s squeez-

ing enter the pressure force through the half-thickness Z.

We calculate the gravitational potential Ψ and the radial gravitational accelera-

tion gr with the integral method for infinitesimally-thin disks employed in Ciolek and

1Note that during hydrogen dissociation the mass per particle is reduced from 2.3 mH (which is
calculated assuming 10% helium in number) to 1.3 mH, and then finally to 0.6 mH after the gas is fully
ionized. mH is the mass of a hydrogen atom. The effect of changing mass per particle was not considered
by Machida et al. (2006, 2007).
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Mouschovias (1993) and Morton et al. (1994), and correct for the fact that this produces

a diverging field at the disk edge. We also correct for the finite thickness of the flattened

core so as not to overestimate the field strength (see Basu and Mouschovias, 1994).

In our model, the magnetic field points solely in the vertical direction inside the disk,

but also possesses radial and azimuthal components (Br,Z and Bϕ,Z) at the disk surfaces

and beyond. Br,Z is determined from a potential field assuming force-free and current-

free conditions in the external medium, using the same integral kernel M (r, r′) as for

the gravitational field. We calculate Bϕ,Z and implement magnetic braking as in Basu

and Mouschovias (1994) (for details see Section 5.3).

Therefore, the remaining constituting equations are

Br,Z = −
∫ ∞

0

dr′r′ (Bz,eq −Bref)M (r, r′) (5.4a)

Bϕ,Z = −2

√
4π%ext

Bref

Φ

r
(Ω− Ωref) (5.4b)

Φ =

∫ r

0

dr′r′Bz,eq (5.4c)

gr (r) = 2πG

∫ ∞

0

dr′r′Σn (r′)M (r, r′) (5.4d)

M (r, r′) =
2

π

d

dr

1

r>
K

(
r<
r>

)
(5.4e)

Z =
Σn

2%n

. (5.4f)

Here, Φ is the magnetic flux, Bref is the assumed uniform background magnetic field

of the surrounding medium with density %ext, and Ωref is the background rotation rate

(for detailed parameter choice and initial conditions see Section 5.6). Lastly, K is the

Complete Elliptic Integral of the First Kind, and the symbols r< and r> denote the

smaller and larger of r and r′, respectively.

We use the method of lines (e.g., Schiesser, 1991) together with a finite volume ap-

proach on an adaptive grid with up to 1024 radial cells in logarithmic spacing to solve the

equations described above. Hereby, only the spatial part of the equations is discretized,

and the resultant set of ordinary differential equations (ODEs) is solved with LSODE

(Radhakrishnan and Hindmarsh, 1993). This implicit ODE solver uses the adaptive

backward-difference method due to Gear (1971) and is up to 12th order in time. The

smallest cell is initially 10−2 AU and as small as 0.02 R¯ at the highest refinement. The

advection step is done using a second-order van-Leer TVD advection scheme (van Leer,

1977), and we calculate all derivatives to second-order accuracy on our nonuniform grid
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(see Ciolek and Mouschovias, 1993). We employ the method of Norman et al. (1980)

to advect angular momentum, which avoids angular momentum diffusion and associated

spurious ring formation.

Our adaptive code refines to a higher resolution (each step by a factor of 3), whenever

the column density increases by a factor of 50. This allows us to satisfy the Truelove

criterion (Truelove et al., 1997), in that the Jeans length (Jeans, 1902, 1928) is resolved

at all times by a minimum of 10 cells, even with our minimum resolution of 256 radial

cells, highest refinement (smallest cell size 0.02 R¯), and our maximal central density

(nc ≈ 1022 cm−3). In higher-resolution runs (up to 1024 radial cells), and at lower

densities, the Jeans length is resolved even better.

Our boundary conditions are as follows. Besides the axial symmetry (independence

of ϕ), we have reflection symmetry at the mid-plane, as well as at the origin. Finally, at

the edge, we have constant-volume boundary conditions, with an external medium with

low density %ext, external pressure Pext, and high temperature, so that it is force-free. We

assume the column density to go to zero at the edge, and the magnetic field to go to its

constant external value Bref .

5.3 Magnetic braking

We calculate magnetic braking with the same technique as presented in Basu and Mouschovias

(1994), namely an analytical approximation to steady-state Alfvén wave transport from

the disk to an external medium above and below. Owing to numerical complexity, a cali-

bration of this method with results of three-dimensional MHD wave propagation through

a stratified compressible medium, and the associated transport of angular momentum has

not been done to date.

In order to derive the relevant equations for magnetic braking, we consider the trans-

port of angular momentum through the flux tubes from the disk to the surrounding

tenuous medium. The transport occurs at Alfvén speed, because it is driven by transver-

sal Alfvén waves of the magnetic field. The definitions of angular momentum and Alfvén

speed in the external medium are

J = mΩr2 and v2
A,ext =

B2
ref

4π%ext

. (5a,b)

If the timescale for the Alfvén waves to reach the background medium far away from

the disk is much smaller than the dynamical evolution timescale of the disk, then the

rate of angular momentum flux (a loss if (Ω− Ωref) > 0, hence the minus sign) per unit
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radian through an annulus at radius rref of thickness drref is

dJ

dt
= −%extr

2
ref (Ω− Ωref) vA,extrrefdrref . (5.6)

In this expression rref denotes the distance from the rotation axis of the disk, but far

above the disk, where the magnetic field has reached its homogeneous background state.

rref corresponds to radius r in the disk threaded by the same field line. Eq.(5.6) considers

the angular momentum that a volume of gas of mass far away from the disk can take on.

Angular momentum flux is given by multiplying the angular momentum density %Ωr2

with the transport velocity vA,ext (which is constant far from the disk). The external

medium has the mass density %ext and rotates at the angular frequency Ωref .

We perform transformations to express Eq.(5.6) in terms of quantities at the disk’s sur-

face instead of the external medium. First, we replace the external density by the Alfvén

speed in Eq.(5.5). Another assumption is that magnetic flux Φ, defined by Eq.(5.4c),

is conserved above the disk (flux freezing). Then, we can equate the flux in equatorial

plane of the disk Φ (r) with its value far above the disk, where the magnetic field Bref is

constant. The footpoint r in the disk maps to a radius rref above, since the two are con-

nected by a flux tube. We have rref > r because the field lines are extending (diverging)

above the disk (see Fig. 4.3). This means

Φ (r) =
1

2
Brefr

2
ref , (5.7a)

dΦ = Brefrrefdrref = Bz,eqrdr. (5.7b)

Using these relations, we can rewrite Eq.(5.6) to yield the angular momentum flux

dJ

dt
= − Φ

2πvA,ext

(Ω− Ωref)Bz,eqrdr. (5.8)

Finally, taking into account the flux in both directions, above and below the disk (yielding

a factor of 2), and change to specific angular momentum L ≡ ΣnΩr
2 = J /rdr , i.e.

angular momentum per cell, we arrive at an expression for Ncl, the torque acting on the

cloud
dL

dt
≡ Ncl = − Φ

πvA,ext

(Ω− Ωref)Bz,eq. (5.9)

At the same time, the stress-energy tensor yields the change in angular momentum to be

equal to rBz,eqBϕ,Z/2π, which allows us to calculate the ϕ-component of the magnetic
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field at the upper surface of the disk as

Bϕ,Z = − 2Φ

vA,ext

(Ω− Ωref)

r
,

= −2

√
4π%ext

Bref

Φ

r
(Ω− Ωref) . (5.10)

5.4 Non-ideal MHD treatment

We derive a version of the Induction equation that contains all non-ideal MHD effects,

ambipolar diffusion, Ohmic dissipation, and the Hall effect. For brevity and clarity,

we only present the instructional derivation of the resistivities in absence of inelastic

collisions. However, we include their effect in our code, and refer the interested reader

to the detailed exposition in Appendix B.1 in Kunz and Mouschovias (2009) where all

terms are included.

We start with Faraday’s law in cgs units

∂B

∂t
= −c∇× E, (5.11)

where B and E are the magnetic and electric fields in the lab frame, respectively. In the

frame of the neutrals the electric field is

En = E +
vn

c
×B, (5.12)

so that Eq.(5.11) becomes

∂B

∂t
= c∇×

(vn

c
×B− En

)
. (5.13)

In ideal MHD, En ≡ 0 by definition, as the conductivity is infinite, and all local electric

fields (in the neutral frame) are shorted by currents immediately. This is not the case in

non-ideal MHD, where En 6= 0. We therefore seek an expression for En in the general

case.

We take the force equations for all charged species (denoted by s, where in our dis-

cussion s = (i, e, g+, g−), but others would be possible), assuming force balance between

the Lorentz force and collisions with neutrals. Inertial forces and collisions with other

charged particles are neglected, as we are working under the assumption of a weakly-
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ionized plasma (with an ionization fraction χ ≈ 10−8). Then we have

0 = nsqs

(
E +

vs
c
×B

)
− %s
τsn

(vs − vn) . (5.14)

Subscript ‘s’ means pertaining to species s. The time scale for collisions between species

s and neutrals is given by τsn. The mass density of the charged species is %s, while qs is

their charge number. Note that the latter carries a minus sign if the charge is negative

(e.g. for electrons).

We can transform this to the reference frame of the neutrals, introducing the drift

velocity ws = (vs − vn), and the cyclotron frequency (in cgs units)

ωs ≡ qsB

msc
, (5.15)

where ms is the mass of the charged particle, and B ≡ |B| is the magnetic field strength.

Also using Eq.(5.12), and noting that %s ≡ msns where ns is the number density of the

charged species s, we find

0 = ωsτsn

( c

B
En + ws × b

)
−ws, (5.16)

where b ≡ B/B is the normalized magnetic field vector. Eq.(5.16) is an equation for the

drift velocity ws.

To make further progress, we write down the electric current density due to all charged

species

j =
∑
s

nsqsvs =
∑
s

nsqs

( ≡ws︷ ︸︸ ︷
vs − vn +vn

)
,

=
∑
s

nsqsws +
∑
s

nsqs

︸ ︷︷ ︸
≡0

vn.

In the last step, overall charge neutrality was used to eliminate the second term. We are

left with

j =
∑
s

nsqsws. (5.17)

Before we insert ws, we simplify our expressions further. Consider the cross product

(5.16)×b.

ws × b = ωsτsn

( c

B
En × b−ws,⊥

)
. (5.18)
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This can now be inserted back into Eq.(5.16), and yields

ws = ωsτsn

( c

B
En + ωsτsn

c

B
En × b− ωsτsnws,⊥

)
. (5.19)

First, we look at the component parallel to b:

ws,‖ = ωsτsn
c

B
En,‖ (5.20)

Using Eq.(5.17), we arrive at a generalized Ohm’s law for the parallel component

j‖ =
∑
s

nsqsωsτsn
c

B
En,‖

=
∑
s

nsq
2
sτsn
ms

En,‖

=
∑
s

σsEn,‖, (5.21)

where

σs ≡ nsq
2
sτsn /ms (5.22)

is the conductivity due to species s, and we have replaced ωs by Eq.(5.15). Lastly, we

define σ‖ =
∑

s σs as well as η‖ = 1/σ‖ and invert Eq.(5.21) to get

En,‖ =
1

σ‖
j‖ = η‖j‖. (5.23)

Similarly, we seek a relation between the perpendicular components of electric current

density and electric field. Again, we start from Eq.(5.19), and this time look at the other

component

ws,⊥ =

(
ωsτsn

1 + ω2
sτ

2
sn

c

B

)
En,⊥ +

(
ω2
sτ

2
sn

1 + ω2
sτ

2
sn

c

B

)
En × b. (5.24)

Again, we want to insert this into Eq.(5.17), so we multiply by nsqs, and once more use

ωs = qsB/msc. Lastly, we identify σs ≡ nsq
2
sτsn /ms , and sum the result over all s, to

get

j⊥ =
∑
s

(
σs

1 + ω2
sτ

2
sn

)
En,⊥

+
∑
s

(
σsωsτsn

1 + ω2
sτ

2
sn

)
En × b. (5.25)
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Defining

σ⊥ =
∑
s

(
σs

1 + ω2
sτ

2
sn

)
and σH = −

∑
s

(
σsωsτsn

1 + ω2
sτ

2
sn

)
,

Ohm’s law for the perpendicular component is

j⊥ = σ⊥En,⊥ − σHEn × b. (5.26)

Combining both parallel and perpendicular components, we can write the overall

generalized Ohm’s law in tensor form.

j =



σ⊥ −σH 0

σH σ⊥ 0

0 0 σ‖


En (5.27)

Note that the magnetic field introduces asymmetry, and thus off-diagonal components and

makes a tensor expression necessary. Finally, we invert the matrix to get an expression

for the electric field in the reference frame of the neutrals.

En =




η⊥ ηH 0

−ηH η⊥ 0

0 0 η‖


 j (5.28)

where

η⊥ ≡ σ⊥
σ2
⊥ + σ2

H

, ηH ≡ σH
σ2
⊥ + σ2

H

, and η‖ =
1

σ‖
.

In the thin disk in our application, the magnetic field is purely poloidal in nature,

and is generated by an azimuthal current. This means that there is no component of the

electric current density parallel to the field (and neither in radial direction). Hence we are

only interested in the perpendicular component of the electric field, and for convenience

quote its expression:

En,⊥ = η⊥j⊥ + ηHj× b,

= η‖j⊥︸︷︷︸
OD

+
(
η⊥ − η‖

)
j⊥︸ ︷︷ ︸

AD

+ ηHj× b︸ ︷︷ ︸
Hall

. (5.29)

Note that the quantity η⊥ contains the effects of both ambipolar diffusion and Ohmic

dissipation. In Eq.(5.29), the contributions of each of the three non-ideal MHD effects

Ohmic dissipation (‘OD’), ambipolar diffusion (‘AD’), and the Hall effect (‘Hall’) are

highlighted. We point out that due to the purely azimuthal current, the Hall term
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vanishes also. The reason lies in the fact that the curl operator that is applied to the

electric field in Faraday’s law given in Eq.(5.11) points in radial direction, but so does

the Hall term.

Summarizing the above derivation, we can write Eq.(5.13) as follows (all but the

radial component vanish)

∂Bz,eq

∂t
+

1

r

∂

∂r
(rBz,eqvr)

= −c1
r

∂

∂r
(rEn,ϕ) = −c1

r

∂

∂r
(rη⊥jϕ) ,

=
1

r

∂

∂r

(
rηeff

∂Bz,eq

∂r

)
, (5.30)

where the relation j = c/4π∇×B has been used, and ηeff ≡ c2/4πη⊥ was introduced.

5.5 Chemistry

In this section, we develop the chemical model used to calculate the ionization fraction,

fractional abundances, and resistivities for seven species. We consider neutral matter

(one helium atom per five H2 molecules), atomic and molecular ions (such as Mg+ or

HCO+), electrons, as well as grains (positively-charged, neutral, and negatively-charged).

Multiply-charged species are neglected, because the capture rate by a charged grain of a

particle with the same charge q is reduced by a factor exp (−q2/akBT ) (Spitzer, 1941),

where a is the particle’s radius. It is thus far more likely that the grain is neutralized by

capturing a particle of opposite charge than that it acquires a second (or even higher)

charge. For example, Nakano et al. (2002) show that the abundance of doubly-charged

grains is 5 orders of magnitude less than that of singly-charged ones.

5.5.1 Ionization rate

We consider four sources of ionization, and will describe them each in turn.

• UV ionization,

• cosmic ray ionization,

• ionization due to radiation liberated in radioactive decay,

• thermal ionization through collision.
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UV ionization is only important where AV . 10 (Ciolek and Mouschovias, 1995). This

is the case for a column density NH2 . 2× 1022 cm−2. The part of the cloud relevant to

this work is much denser (in fact, everything within 104 AU from the center is denser)

and, to good approximation, UV ionization would not need to be considered. How-

ever, for completeness, we still include its contribution in parametrized form, by adding

467.64 n−2
H2

cm−3 (see Fiedler and Mouschovias, 1992) to the electron and ion number

densities. This has the effect to maintain an ionization fraction of ≈ 3× 10−5 in the out-

ermost envelope of the core, and keep it flux-frozen, but does not affect the dynamical

evolution of higher-density regions.

In the higher-density regions (where 104 cm−3 . nH2 . 1012 cm−3), we assume the

ionization to be mainly due to cosmic rays. Their ionization rate is calculated by

ζCR = ζ0 exp [−ΣH2/ 96 g cm2 ], (5.31)

(Umebayashi and Nakano, 1980), where ζ0 = 5 × 10−17 s−1 is the canonical unshielded

cosmic-ray ionization rate (Spitzer, 1978).

Beyond nH2 & 1012 cm−3, even cosmic rays are shielded and cannot penetrate deep.

Here, radioactivity, mainly due to 40K, still provides a background level of ionization.

Their ionization rate is ζ40 = 2.43 × 10−23 s−1 (Kunz and Mouschovias, 2009). Other

radionuclides (such as 26Al) are not considered, due to their low abundance, their short

half-life time, their low ionization rate, or a combination thereof.

Finally, when the temperature reaches & 1000 K, collisions are energetic enough to

cause thermal ionization of some atoms with low ionization potential (predominantly

potassium). As the temperature rises further, collisions becomes the dominant source

of ionization. We parametrize this as an additional source term in the ion equilibrium

equation (see Section 5.5.2) with the value (see Pneuman and Mitchell, 1965)

dnA+

dt
= 2.9× 10−16 cm3 s−1 nH2nA0 (T/1000 K)1/2

× exp
(−5.03× 104 K/T

)
, (5.32)

where nA0 is the fractional abundance of the relevant neutral atomic particles (see Kunz

and Mouschovias, 2009). The fact that potassium only makes up ≈ 1/14 of all metals

has been considered in the numeric factor in front.

Beyond nH2 & 1018 cm−3, at a temperature of & 1500 K, we assume the grains to be

destroyed, and the stored charges to be released into the gas. The gas becomes highly

ionized, and we thus revert back to flux freezing (Pneuman and Mitchell, 1965). Note that
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the resistivity has already decreased significantly at this temperature as a consequence

of thermal ionization.

5.5.2 Fractional abundances

We calculate the fractional abundances of the species relevant for the determination of

the resistivity (see Section 5.4) using a chemical equilibrium network. This approach

assumes the time for the chemical and collisional reactions to occur to be shorter than

the local dynamical time.

The molecular ion equation describes the production of molecular ions (such as

HCO+) by radiative ionization, as well as their destruction through charge-exchange

reactions with neutral atoms and grains, as well as recombination reactions with elec-

trons.

ζnH2 = nm+nA0β + nm+neαdr

+ nm+ng−αm+g− + nm+ng0αm+g0 , (5.33)

where αdr is the dissociative recombination rate (collisions with electrons). Cosmic rays

will ionize molecular hydrogen, forming H+
3 almost instantaneously; this in turn is highly

reactive and will strip away an electron from any (non-H2) molecule A0 it encounters,

for instance CO, and form HCO+ and H2. This is why cosmic rays act on H2 in the first

term of this equation; it is very unlikely that a cosmic ray will hit any molecule other

than H2 due to their sheer abundance.

Atomic ions (e.g., Na+), on the other hand are produced by charge exchange reactions

with neutral atoms, as well as thermal ionization, while they are destroyed by radiative

recombinations with electrons, and by the collision with grains.

nm+nA0β + nA0nH2αA0H2
= nA+neαrr

+ nA+ng−αA+g− + nA+ng0αA+g0 , (5.34)

where αrr is the radiative recombination rate, and the second term on the right represents

thermal ionization (see Section 5.5.1).

The equation for positively-charged grains balances the deposition of charge from ato-

mic and molecular ions with the capture of electrons and neutralization with negatively-

charged grains. The charge exchange between positively-charged and neutral grains is in
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steady-state, and so their contribution appears on both sides of the equation and cancels.

nm+ng0αm+g0 + nA+ng0αA+g0

= neng+αeg+ + ng+ng−αg+g− , (5.35)

Similarly, negatively-charged grains form by capture of an electron by a neutral grain, and

are neutralized by charge exchange during collisions with molecular and atomic ions as

well as positively-charged grains. Again, the charge exchange between negatively-charged

and neutral grains is in steady-state, and so does not appear.

neng0αeg0 = nm+ng−αm+g− + nA+ng−αA+g−

+ ng+ng−αg+g− , (5.36)

Finally, to close the system, we add equations for the total number of atoms and grains

nA0 + nA+ = nA (5.37)

ng0 + ng+ + ng− = ng, (5.38)

as well as overall charge neutrality

nm+ + nA+ + ng+ − ng− − ne = 0. (5.39)

The various rate coefficients α and β depend on temperature and grain properties, and

are described in Appendix A (see also Kunz and Mouschovias, 2009).

Equations (5.33)-(5.39) form the non-linear system to be solved for the fractional

abundances; we do this iteratively in each time step for each grid point by solving the

matrix equation directly, using a LU-decomposition package. We assume a mean mass of

the molecular and atomic species to be mm+ = 29 mp and mA+ = 23.5 mp, respectively,

where mp is the proton mass. Those values are the masses of HCO+ and the average

of atomic magnesium and sodium, respectively, which are good representatives of the

broader range of species present.

5.6 Initial Conditions and Normalization

We assume that our initial state was reached by core contraction preferentially along

magnetic field lines (e.g., Fiedler and Mouschovias, 1993) and rotational flattening, and
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prescribe initial profiles for column density and angular velocity given by

Σ (r) =
Σ0√

1 + (r/R)2
, Ω (r) =

2Ωc√
1 + (r/R)2 + 1

. (5.40)

Here, R ≈ 1, 500 AU approximately equals the Jeans length at the core’s initial central

density (see below). The column density profile is representative of the early stage of

collapse (e.g., Basu, 1997; Dapp and Basu, 2009), and the angular velocity profile reflects

that the specific angular momentum of any parcel is proportional to the enclosed mass.

We assume an initial profile for Bz,eq such that the normalized mass-to-flux ratio

µ = 2π
√
G Σ/Bz,eq = 2 everywhere, which is the approximate starting point of runaway

collapse (e.g., Basu and Mouschovias, 1994; Kunz and Mouschovias, 2010). The radial

velocity is initially zero. The initial state is not far from equilibrium, as the pressure

gradient and magnetic and centrifugal forces add up to ≈ 82% of the gravitational force.

Our results do not depend strongly on the choice of initial state, as long as gravity

remains dominant.

The initial central column density, and the unit of column density for normalization

purposes, is set to Σ0 = 2 × 10−2 g cm−2. The isothermal sound speed at T = 10 K

is cs,0 = 1.88 × 104 cm s−1 and serves as the unit of velocity. Third, we choose 2πGΣ0

as the unit of acceleration. The total mass and radius of the core are 28.5 M¯ and

0.6 pc, respectively. The initial central number density and magnetic field strength are

nc = 3.3× 104 cm−3 and Bz,eq ≈ 200 µG, respectively. The magnetic field is normalized

using 2π
√
GΣ0 as a unit. This last unit is chosen purely out of convenience, and would not

strictly be necessary; the other three quantities already allow to uniquely form a complete

system of units. It allows, however, to drop some factors of 2π from the equations. We

choose the external density to be next = 100 cm−3, and the central angular velocity Ωc

such that the cloud’s edge rotates at a speed of 0.1 km s−1 pc−1.

Transient adjustments occur if the simulation is started from an initial non-equilibrium

state that is at rest. The chemistry calculations are quite sensitive to fluctuations in den-

sity, which can cause problems. We therefore let the system evolve from an initial state

with the above-mentioned profiles and characteristics, but initially without non-ideal

MHD effects. Once the cloud has settled into a steady infall (at a central density of

approximately nc ≈ 106 cm−3) the full MHD equations Eqs. (5.1a) to (5.1e) are solved.

The state at which we switch on the detailed treatment of chemistry corresponds very

closely to the initial state of the previous paper (Dapp and Basu, 2010, see also Chap-

ter 4), so that comparisons are possible. The rotation rate by then has increased to

1 km s−1 pc−1, consistent with observations of large molecular cloud cores (Goodman
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Table 5.1: Simulation model overview.

Model Number agr/µm

1 0.019 —

2 0.038 —

3 0.075 —

4 0.113 —

5 0.150 —

6 0.038 no resistivity

7 0.038 no magnetic braking

8 — OD alone (as in DB10)
a All models above start from the same initial conditions,

comparable to those described in Dapp and Basu (2010).
For details, see Section 5.6.

et al., 1993; Caselli et al., 2002). In the plots in this paper, we show only the region of the

core within 0.05 pc, again consistent with Dapp and Basu (2010). Note that the nature

of the collapse is very dynamical and happens under flux freezing to a very good approx-

imation between nc = 104−1010 cm−3 (see Kunz and Mouschovias, 2010). Therefore, we

assert that this initial state is justified.

We fix the dust-to-gas ratio at 1%, which is consistent with observations (Spitzer,

1978), and keep it constant everywhere and at all times. This means that a different

mean grain size will result in differing total numbers of grains available, by a factor of

a−3, with a total surface area ∝ a−1.

5.7 Results

5.7.1 Collapse phase

We ran multiple models with different (constant) grain sizes. The models are summarized

in Table 5.1.

Figure 5.1 shows the column number density profile versus radius at different times

for the resistive model with agr = 0.038 µm. Several features are identifiable via their

associated breaks in the profile. From the outside in, those are:

1. Prestellar infall profile with N ∝ r−1. This corresponds to a volume number density

profile of n ∝ r−2, typical for collapsing cores dominated by gravity (see, e.g.,
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Larson, 1969, and also Chapter 3). The vertical hydrostatic condition mandates

n ∝ N2.

2. At ≈ 10 AU, there is a hint of a magnetic wall (Li and McKee, 1996; Contopoulos

et al., 1998), where the relatively well-coupled, bunched-up magnetic field expelled

from the first core decelerates material temporarily. Behind it, the infall continues.

3. Expansion wave profile with N ∝ r−1/2 outside the first core. Once this reaches the

outer boundary of the natal cloud core, accretion terminates. The power law can be

motivated analytically (see Shu, 1992, for the spherical case). Energy conservation

requires the infall speed from large distances towards a point mass (i.e., the first

core) with mass M to scale as
√
GM/r ∝ r−1/2. At the same time it can be argued

that the infall onto the point mass is essentially a steady-state process, and thus

Ṁ ≡ 2πrΣvr = const, close to the border of the first core. Together, those two

relations imply Σ ∝ r−1/2.

4. First core at 1 AU. Here, the density is sufficiently high that the gravitational en-

ergy released in the collapse cannot escape as radiation anymore. The temperature

rises, and thermal pressure gradient stabilizes the object. The first core is nearly in

hydrostatic equilibrium, and its radial and vertical extent are approximately equal.

5. Infall profile onto the second core with N ∝ r−1. After the first core has reached

≈ 1, 000 K, hydrogen is being dissociated. This process provides a heat sink, and

the temperature does not increase sufficiently any longer for thermal pressure to

balance gravity. The core starts to collapse again.

6. Beginning expansion wave profile with N ∝ r−1/2 outside the second core, for the

same reasons as outside the first core. Once this rarefaction reaches the boundary

of the first core, the material comprising the first core will fall in to a region of

stellar dimensions, unless it forms a centrifugal disk.

7. Second core at ≈ 1 R¯. After hydrogen dissociation (and ionization) has concluded,

the temperature rises again, and a truly hydrostatic object, the YSO, is formed. It

is also partly supported by electron degeneracy pressure (Masunaga and Inutsuka,

2000).

Figure 5.3 shows the evolution of the effective diffusion coefficient versus the central

density for the various grain sizes, as well as the parametrized resistivity used in Machida

et al. (2006) and Dapp and Basu (2010). At low densities, electrons and ions are the
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Figure 5.1: Column number density profile versus radius. The thin lines (in ascending
order) are plots at the times listed in Table 5.2, for the fiducial grain radius of agr =
0.038 µm. Several features are identifiable via their associated breaks in the profile. From
the outside in: (1) Prestellar infall profile with N ∝ r−1. (2) At ≈ 10 AU, there is a hint
of a magnetic wall, where the bunched-up field lines decelerate material before it continues
the infall. (3) Expansion wave profile with N ∝ r−1/2 outside the first core. Once this
rarefaction wave reaches the outer boundary of the natal cloud core, accretion terminates.
(4) First core at 1 AU. (5) Infall profile onto the second core with N ∝ r−1. After the first
core has reached ≈ 1, 000 K, it starts to collapse, as H2 is dissociated. (6) Expansion wave
profile with N ∝ r−1/2 outside the second core. (7) Second core at ≈ 1 R¯.
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Table 5.2: Output timesa in the evolution plots.

Line numberb output time / 103 yr

1 0.0

2 14.338

3 19.303

4 21.063

5 21.692

6 21.944

7 22.045

8 22.085

9 22.105

10 22.116

11 22.139

12 22.1508

13 22.15137

14 22.15149

15 22.15153

16 22.15154

17 22.15156
a Time is counted from when chemistry and non-ideal MHD effects

are is switched on (see Section 5.6).
b Lines count from bottom up.
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Figure 5.2: Volume number density versus radius over time. The features identifiable in
Fig. 5.1 are visible here, too. Especially the magnetic wall is more pronounced. The thin
lines are plots at the times listed in Table 5.2, for the fiducial grain radius of agr = 0.038 µm.
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dominant but not exclusive contributors to the conductivity. Smaller grains are fairly

well coupled to the magnetic field because of their smaller gyro-radius and a smaller

collisional cross section, so their contribution to the effective resistivity is lower than that

of larger grains. However, there is a competing effect: smaller grains have an increased

capability to absorb gas-phase charge carriers because of their larger total surface area.

For grains with radius agr = 0.075 µm (dot-dashed line) and larger the trend reverses,

and the conductivity increases (and the resistivity conversely decreases) with larger grain

radius, as expected from an increased ionization fraction. At intermediate densities

the resistivity rises sharply, as a consequence of a combination of the grains soaking

up gas-phase charges and getting decoupled from the magnetic field. Additionally, the

conductivity drops because at high column density cosmic rays are shielded increasingly,

according to Eq.(5.31). At nc ≈ 1013 cm−3 the only remaining source of ionization is

radioactivity, which provides a floor ionization rate (see Section 5.5.1). At this stage,

clearly distinguished by a break in the profile, the resistivity is almost exclusively due

to grains, i.e., their collisions with neutrals. Inserting Eq.(A.10) of Appendix A.2 into

Eq.(5.22), we see that conductivity scales as a−2 in this phase. The resistivity is the

inverse of the conductivity, and hence it increases with larger grains as a consequence

of their lower gyro-frequency and greater collision cross section. This is despite the

smaller number and reduced total surface area of the grains as they increase in size.

As the temperature approaches 1, 000 K, collisions become violent enough that thermal

ionization occurs, described by Eq.(5.32). The conductivity recovers, and the resistivity

hence drops again. Finally, during the second collapse, as temperatures of 1500 K are

reached, grains are destroyed, and all locked-up charges released. Electrons and ions

flood the gas, the ionization fraction skyrockets, and flux-freezing is restored (see Section

5.5.1). We point out that the simple parametrization used in Machida et al. (2006,

2007); Dapp and Basu (2010, the dotted line in Fig. 5.3) yields values for the resistivity

consistently lower by at least a factor of 10.

In Figure 5.5 we present the evolution of the ionization fraction versus central density

for the various grain sizes. At low densities the plot reveals that the smaller the grains,

the lower the ionization fraction. The reason is that in that case, the grains are small

and highly abundant and thus have a large surface area to which electrons and ions

can stick. A mounting density causes the ionization fraction to diminish with a slope

slightly steeper than the canonical relation ∝ n
−1/2
n for cosmic-ray-dominated ionization.

At intermediate densities the ionization fractions levels off, starting with the smallest

grains and continuing to successively larger grain radius. This is caused by the electrons

adsorbing to the grains. Due to the electrons’ high thermal speed, their collision rate with
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Figure 5.3: Diffusion coefficient vs. central density for different grain sizes. The vertical
line indicates the density at which the detailed chemistry and non-ideal MHD treatment is
switched on. Beyond nc ≈ 1018 cm−3 the resistivity drops, after having declined steadily
for a bit due to thermal ionization. This is where we switch the chemistry calculations off
again. Due to grain destruction, flux-freezing is restored there.
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Figure 5.4: Contributions due to ambipolar diffusion (AD) and Ohmic dissipation (OD)
to the effective resistivity in the standard model (agr = 0.038 µm). Ohmic dissipation only
dominates ambipolar diffusion beyond nc & 1012 cm−3.

grains is much higher than the ions’. The separation of the electron abundance from the

ions abundance accompanied by a strong increase in neutral grains is evidence for that.

The ions also stick to the grains, and the abundance of positively-charged grains increases

greatly during this phase as well. This increase seems even more dramatic because of

the low initial abundance of positive grains, but their abundance remains lower than

that of the neutral grains by nearly two orders of magnitude. This phenomemon occurs

at later stages with increasing grain size, as Figs. 5.6 and 5.7 show, for the reason of

the lower overall grain abundance (scaling as a−3
gr ), which cannot be compensated by a

larger collision rate (see Eq.(A.7) in Appendix A). Beyond nc & 1012 cm−3, the ionization

fraction drops precipitously for all grain sizes, as cosmic rays become shielded due to high

column densities. The evolution at still higher densities is determined by radioactivity,

until finally thermal ionization kicks in at nc ≈ 1016 cm−3. Potassium is one of the first

species to be ionized, but as the temperature increases further, grain evaporation also

releases charges into the gas.

Figure 5.8 compares the mass-to-flux ratio normalized to the critical value for the

various models at the time thermal ionization reestablishes flux freezing, when nc &
1019 cm−3, shortly before the formation of a central protostar. For comparison, we also

show the mass-to-flux ratio for a model with flux-freezing throughout, and the model

with only the simple prescription for Ohmic dissipation used in Dapp and Basu (2010).
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Figure 5.5: Total ionization fraction versus central density for different grain sizes. The
vertical line indicates the density at which the detailed chemistry and non-ideal MHD
treatment is switched on, and at which is is switched off again, due to grain destruction,
and restoring of flux-freezing, respectively.



108 Chapter 5. Disk formation due to AD and OD

Figure 5.6: Fractional abundances of species (normalized to the neutral density) for the
three smaller grain sizes. Top: agr = 0.019 µm, Middle: agr = 0.038 µm, Bottom:
agr = 0.075 µm. The convergence of the abundances of positively- and negatively-charged
grains is pushed to higher densities with increasing grain radius. The decoupling of electron
and ion abundance also happens at higher densities with decreasing grain surface area. The
vertical lines indicate the density at which the chemistry and non-ideal MHD treatment is
switched on, and at which it is switched off again, respectively, due to grain destruction,
and restoring of flux-freezing.
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Figure 5.7: Fractional abundances of species (normalized to the neutral density) for the
two larger grain sizes. Top: agr = 0.113 µm, Bottom: agr = 0.150 µm. Since the grain
radius increases only by a factor of 4/3, the effect on the abundances is less pronounced
than it was for the smaller grains.
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It is evident that the inclusion of ambipolar diffusion, and the more realistic treatment

of the microphysics leads to a further weakening of the magnetic field, both in the first

core (by a factor of ≈ 102), and in the region outside (by a factor of ≈ 2). It also extends

out slightly further, also by a factor of ≈ 2. This is caused by the higher effective value

of the resistivity, and the earlier onset of its efficacy. The mass-to-flux ratio increases by

a factor of ≈ 104 over the course of the evolution, to a final value of ≈ 20, 000 times the

critical value.

We expect the centrifugal disk to be able to form at slightly greater sizes (a least a

few AU) than in the case with only Ohmic dissipation. We believe it will grow beyond

that size by internal processes of angular momentum redistribution, bridging the gap to

the extended disks of size ≈ 100 AU seen around Class II objects.

Figure 5.8: Mass-to-flux ratio µ versus radius for different grain sizes at the time of the
formation of the second core. For comparison, the thin solid line shows the case with only
the simplified version of Ohmic dissipation, as used in Dapp and Basu (2010). In the center,
the difference is a factor of ≈ 102, but further out it it still 2× higher, and also shows a
greater extent by about this factor. The reason is twofold: firstly, the effective resistivity is
important at lower densities, and secondly it is larger everywhere than the parametrization
used in Dapp and Basu (2010) (cf. Fig. 5.3).

Figures 5.9 and 5.10 show the evolution of the radial profiles of the vertical and radial

components of the magnetic field, with the latter at the top surface of the disk. At

low densities, they increase with near flux freezing. Ambipolar diffusion is present and

active, but too slow to be dynamically important. Dramatic flux loss occurs once grains
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become the dominant charge carriers at nc ≈ 1011 cm−3 and the field evolution slows.

This can be seen in the bunching-up of the thin lines that are snapshots at different

times (at constant increments of number density, at times given in Table 5.2). The

small fluctuations near the interface of the first core are due to the extreme gradient of

the density at the core boundary causing problems for the chemistry routine. To make

matters worse, the resistivity increases steeply in this density regime, exacerbating the

sensitivity of the magnetic field to perturbations. Higher resolution at the interface can

remedy this (the data shown is at a resolution of 256 radial cells).

Figure 5.9: Evolution of Bz versus radius over time. The thin lines are plots at the times
listed in Table 5.2, for the fiducial grain radius of agr = 0.038 µm.

In Figs. 5.11 and 5.12, the profiles at different times of the angular and radial (infall)

velocities are shown, respectively. The angular velocity Ω behaves the same way as the

column density profile (Ω ∝ r−1, cf. Fig. 5.1), because the evolution happens at near

angular momentum conservation. The specific angular momentum is then proportional to

the enclosed mass, and thus ∝ Σ in thin disk geometry. Inside the expansion wave, there

is a break in the angular velocity profile, as expected (e.g., Saigo and Hanawa, 1998).

The enclosed mass in that region is essentially that of the first core, and approximately

constant. Then j ≡ Ωr2 ∝Mencl ≈ const, and therefore Ω ∝ r−2.

The radial velocity shows the first and second cores very clearly. At their edges (at

≈ 1 AU, and ≈ 10−2 AU = 2 R¯, respectively), accretion shocks develop, and the velocity

drops precipitously. Outside the cores, in the expansion wave, the velocity follows a power
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Figure 5.10: Evolution of Br versus radius over time. The thin lines are plots at the
times listed in Table 5.2, for the fiducial grain radius of agr = 0.038 µm.

law ∝ r−1/2, as explained above. At ≈ 10 AU, a slight bump in the infall velocity hints at

the magnetic wall. The fluctuations within the first and second cores stem from the fact

that we plot absolute values in a log-log plot: in nearly-stable conditions as prevalent

there, the velocity can be positive or negative, but remains small.

5.7.2 Disk formation

In Fig. 5.13 we present evidence for the formation of a centrifugal disk. The figure shows

the profiles of column density, infall velocity, and the ratio of centrifugal to gravitational

acceleration shortly after the introduction of a sink cell. This is done for a model with

resistivity and a grain size agr = 0.038 µm, and for a model without resistivity. In the

resistive model, centrifugal balance is achieved in a small region (≈ 10 R¯) close to the

center (bottom panel), while the flux-freezing model is braked “catastrophically”, and

the support drops to minuscule values. Centrifugal balance is a necessary and sufficient

condition for the formation of a centrifugally-supported disk. At the same time all infall

is halted there and the radial velocity plummets (middle panel), while in the flux-freezing

model, infall continues unhampered. After a few more months of evolution, a Toomre

instability develops, and the rotationally-supported structure breaks up into a ring (top

panel, solid line). At this point, we stop the simulation, because more physics would be

required to follow the further evolution of the disk.
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Figure 5.11: Evolution of the angular velocity Ω versus radius over time. The thin lines
are plots at the times listed in Table 5.2, for the fiducial grain radius of agr = 0.038 µm.

Figure 5.12: Evolution of the infall velocity velocity |vr| versus radius over time. The thin
lines are plots at the times listed in Table 5.2, for the fiducial grain radius of agr = 0.038 µm.
In the first and second cores material is moving about inwards and outwards with small
speeds. This causes spikes when absolute values are plotted on double-logarithmic axes.
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Figure 5.13: Evidence for disk formation. Top panel: column density profile. The
system is Toomre-unstable, and breaks up into a ring in the resistive model (solid line), while
no such occurrence is visible in case of flux freezing (dotted line). Middle panel: infall
profile. As expected, infall is stopped where a centrifugal disk forms (see also, e.g., Vorobyov
and Basu, 2007). Bottom panel: ratio of centrifugal over gravitational acceleration. In the
resistive case, centrifugal balance is achieved. In contrast, catastrophic magnetic braking
happens for flux freezing, and the centrifugal support drops to negligible values as the first
core is spun down drastically.
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Figure 5.14: Magnetic field lines. The box on the left has dimensions 10 AU on each
side, while the box on the right has dimensions 100 AU. The dashed lines represent the
flux-freezing model, while the solid lines show the same field lines for the model including
non-ideal MHD effects for a grain size agr = 0.038 µm. In both cases, the second core has
just formed and is on the left axis mid-plane. The field lines straighten out significantly on
small scales in the non-ideal model compared to the flux-frozen model.

5.8 Discussion

Figure 5.14 shows the magnetic field line topology above and below the disk on two scales

(10 AU and 100 AU), for both flux-freezing and non-ideal MHD models. The field lines

are calculated immediately after the formation of the second core, assuming force-free

and current-free conditions above a finite thin disk (Mestel and Ray, 1985) (for details

on the field line calculation see Appendix C.6). The split monopole of the flux-frozen

model (dashed lines) is created as field lines are dragged in by the freely falling material

within the expansion wave front at ≈ 15 AU. This is replaced by a more relaxed field line

structure in the non-ideal case (solid lines), for which the field is almost straight in the

center. Galli et al. (2009) presented similar field configurations resulting from a simplified

model for Ohmic dissipation during the collapse. The extreme flaring of field lines in the

flux-freezing model is a fundamental cause of the magnetic braking catastrophe.

We can estimate how efficient magnetic braking is, by comparing its instantaneous

timescale with that of the dynamical evolution of the core. This yields

τMB

τdyn

≈ L/Ncl

cs/GΣ
, (5.41)
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where L = ΣΩr2 is the angular momentum per unit area, Ncl = 2πrBϕBz is the torque

per unit area acting on the cloud, and τdyn = cs/GΣ is the dynamical time for a thin

disk. Figure 5.15 shows the magnetic braking condition for our cloud after the first core

has formed. It is satisfied only for a small region outside the first core at ≈ 1 AU, namely

where the expansion wave is moving out. In the region of dynamical collapse further

out, and within the first core, where the magnetic field has been weakened by diffusive

effects, magnetic braking is ineffective, and the cloud evolves under approximate angular

momentum conservation.

Figure 5.15: Plot of the magnetic braking condition τMB/τdyn. In the region of the
expansion wave, the magnetic braking time is smaller than the dynamical evolution time,
and thus material experiences magnetic braking there. In the region of dynamical collapse
further out, and within the first core, where the magnetic field has been weakened by
magnetic diffusion, magnetic braking is ineffective.

The specific centrifugal radius of a mass shell can be estimated according to

rcf = j2/GM, (5.42)

where j = Ωr2 is the specific angular momentum, and M is the mass in the central

object. While no YSO is present, we take that to be the cumulative mass enclosed

within a location (i.e., assuming all enclosed mass will fall onto a protostar). The result

shown in Fig. 5.16. This estimation is flawed within the first core, but outside it gives a

fair approximation, to within factors of unity, since the first core’s gravitational potential
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looks like that of a point mass. Within the region of the expansion wave, the centrifugal

radius is constant at ≈ 0.1 AU, and then increases linearly with radius, to rcf ≈ 10 AU

at a distance of 100 AU from the center, and rcf ≈ 100 AU at 1, 000 AU.

Figure 5.16: Estimated specific centrifugal radius of each mass shell. Beyond ≈ 10 AU,
the centrifugal radius increases linearly.

Our results lead us to propose the following scenario of disk formation and evolution

in low-mass stars:

• A small disk forms, initially ¿ 1 AU, but eventually encompasses the entire first

core with ≈ 1 AU, since magnetic diffusion is very efficient there, and inactivates

magnetic braking. The disk will have a few tenths of M¯ for a typical low-mass

star.

• Figure 5.16 shows that the estimated centrifugal radius of a mass shell . 103 AU

out lies within ≈ 10 AU. That means that the matter can fall to this radius without

hitting a rotational barrier.

• At the same time, Fig. 5.15 shows that magnetic braking is active within the

expansion wave, while it is dormant in the region of dynamical infall further out.

Any material within the expansion wave (that slowly moves out) will lose part

of its angular momentum by magnetic braking, and have its centrifugal barrier

moved further in. This allows the material to accumulate onto the existing (small)

accretion disk at ≈ 1 AU.
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• The material in the disk will be subjected to internal mechanisms of angular mo-

mentum redistribution, e.g., the MRI (Balbus and Hawley, 1991), or gravitational

torques (e.g., Vorobyov and Basu, 2007). It is a fair assumption that the disk self-

regulates to Q ≈ 1 by such processes (e.g., Lin and Pringle, 1987; Vorobyov and

Basu, 2007). The parameter Q = csΩ/ (πGΣ) approximately determines whether

a rotating disk is unstable to fragmentation (Toomre, 1981). The exact critical

value depends on the geometry and the equation of state, but generally spirals and

clumps will form if Q . 1, while a situation with Q & 1 is stable.

• The redistribution allows material in the inner disk to lose its angular momentum,

and be funneled onto the star, while material further gains the excess angular

momentum, and expands it orbit. Basu (1998) showed that disk’s radius follows

rfinal ' rinitial

(
MF
Mdisk

)2

, (5.43)

where Mdisk and MF are the disk’s and star’s mass, respectively. This means that

the disk has expanded by a factor of 102 by the time 90% of its mass have accreted

onto the central object.

• By the time the central object has accreted a significant amount of the available

material, a tenuous disk of several hundred AU will be present, consistent with

observations (e.g., Andrews and Williams, 2005).

5.9 Summary and conclusions

We present a new axisymmetric code using the thin-disk approximation to calculate the

collapse of rotating magnetized prestellar cores. We follow the evolution all the way to

stellar sizes and near-stellar densities. We determine the abundances of seven different

species, and consider inelastic collisions. We calculate an effective resistivity that includes

the effect of ambipolar diffusion and Ohmic dissipation for five different grain sizes. In a

future paper, we will extend the model to use the standard “MRN” distribution for the

grain sizes (which is named after its authors, Mathis, Rumpl, and Nordsieck; see Mathis

et al., 1977).

We demonstrate the formation of a centrifugally-supported disk despite the presence

of magnetic braking. The so-called “magnetic braking catastrophe” is averted by ex-

tensive magnetic flux loss from the high-density region of the first core. This weakens

the magnetic field, and prevents it from spinning down the material in that region. The
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mass-to-flux ratio is reduced by a factor of 104. Shortly after the second collapse, disk for-

mation happens very close to the central object, while it is still very small (< 10−2 M¯).

This is consistent with the observational evidence of outflows at a very young age and

the simultaneous non-detection of disks & 50 AU around Class 0 objects. ALMA will

allow observers to improve on this, and to probe for disks down to ≈ 10 AU.

We propose a disk formation scenario in which centrifugal disks form on small scales

but are initially massive. We calculate the centrifugal radius and demonstrate that

material can reach the expansion wave, which is moving outward at the local sound

speed. Magnetic braking is still effective in that region and can presumably remove

enough angular momentum such that the gas can form a small disk of size ≈ 1 AU.

The small disk grows over time by continued accretion but more so by internal angular

momentum redistribution, and may reach the size ≈ 100 AU observed around Class II

objects.
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Chapter 6

Summary and outlook

In this Thesis we have highlighted the influence of magnetic diffusion (both ambipolar

diffusion and Ohmic dissipation) on the star formation process on various scales. In

Chapter 2 we studied and gave an analytical description of turbulence-induced waves

that are present in clouds on large scales and damped within a crossing time if ambipolar

diffusion is present. On a more general note, we demonstrated that noteworthy phe-

nomena (in our case persistent waves) can appear if clouds are investigated in at least

partly global models and not in local models that only consider a small patch in the deep

interior of a cloud and assume periodic boundary conditions.

In Chapter 3 we introduced an empirical analytic model for the description of the

internal structure of prestellar cores. It is intended to replace the venerable Bonnor-

Ebert model, which despite being a nice closed-form theory (derived in detail in Appendix

D), is severely limited in its applicability. Its equilibrium assumption restricts the fitting

temperature and sometimes produces fits that are unrealistic. Our empirically-motivated

model rejects this assumption and provides observers with a way to judge the dynamical

state of a core with observationally-constrained fitting parameters only. Many simulations

show that it approximates a numerical solution much better than the Bonnor-Ebert

model. The model has already been used successfully to fit observations (e.g., Kauffmann

et al., 2010a,b; Pineda et al., 2010).

In Chapters 4 and 5, we used the thin-disk approximation to follow the evolution of a

rotating magnetized prestellar core during its collapse all the way to a protostar and to

near-stellar densities. We showed that magnetic diffusion disables magnetic braking in

a crucial central region and allows a centrifugal disk to form. Other modelers had been

puzzled by the realization that magnetic braking might not allow the (direct) formation

of larger-scale disks as observed around many Class II objects. Our simulations extended

into regions much smaller than what is often modeled, and found a resolution to the

123



124 Chapter 6. Summary and outlook

problem there. In Chapter 5, we used a more realistic description of the magnetic diffusion

process, calculating the chemistry of a seven-species fluid including inelastic collisisions,

and all relevant sources of ionization. However, we still kept other simplifications, such

as the barotropic pressure-density relation instead of a detailed energy equation. We

showed that the region where magnetic braking is ineffective has an extent greater by

a factor of ≈ 2 compared with the parametrization of only Ohmic dissipation, with the

result that a forming disk can be larger. The so-called “magnetic braking catastrophe”

is averted by extensive magnetic flux loss from the high-density region of the first core.

We proposed a disk formation scenario in which centrifugal disks form small but initially

massive, and grow over time by internal angular momentum redistribution to reach the

size ≈ 100 AU observed around Class II objects.

Of course, the approximations used in this Thesis do not hold everywhere. For in-

stance, the thin disk model is not applicable anymore when the second core forms. Also,

after formation of the second core, and at the very latest time when deuterium burning

sets in, a detailed treatment of radiative effects is necessary and the simple barotropic

energy equation is no longer applicable. If one wants to explore the evolution of the cen-

trifugal disk in detail it is unavoidable to further give up the assumption of axisymmetry

in order to capture gravitational torques. In fact, one may even be forced to study the

system in all three dimensions, because the magnetic field is inherently three-dimensional

and so are phenomena such as the MRI in the disk, accretion flows from the disk to the

protostar, or the launching of a jet. We believe that instead of studying patches of the

accretion disk in shearing-box simulations, a “global” model is desirable here.

Three-dimensional MHD codes, such as RAMSES (Teyssier, 2002; Fromang et al.,

2006) can shed light on issues surrounding the fragmentation of molecular clouds into

filaments and cores, and their evolution. It is essential to approach this problem in global

models, for instance by embedding a slab of gas into a hot tenuous medium, in which an

external magnetic field is anchored. The interplay of gravity, magnetic fields, turbulence,

and feedback processes from star formation determines the lifetime of clouds, the initial

conditions of star formation, and holds the answer to why it is such an inefficient process.

Such simulations can also help to study in detail the propagation of MHD waves in a

three-dimensional stratified medium and investigate the associated energy and angular

momentum transport.

Furthermore, models may to help remedy a fundamental problem of the study of

astrophysical magnetic fields. As a consequence of their relative weakness it is hard to

ascertain their magnitude and thus their dynamical importance. After over three decades

of observations, only around two dozen confirmed measurements are available (e.g., those
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collected in Crutcher, 1999). We are far away from being able to map the field across

prestellar cores. This would be desirable in order to constrain models of their formation

and to judge whether the magnetic field could be responsible for a low star formation

efficiency. Despite auspicious new instruments such as ALMA and the Square Kilometer

Array (SKA), it seems prudent to find additional ways to determine the mass-to-flux

ratio. One possibility lies in the curvature of magnetic field lines. It is much easier to

find the local orientation of the magnetic field by following the linear polarization caused

by grain alignment with the local magnetic field, than to measure the field strength. It

may be possible to quantify the mass-to-flux ratio by fitting the mapped polarization

angles with predictions from magnetic simulations.

We live in exciting times for numerical astrophysical research. The computing power

will soon reach the level where large three-dimensional simulations become feasible that

resolve all physical scales of interest with AMR, while including most necessary physics.

GPGPU computing also promises a great improvement in efficiency. At the same time,

the tools of the trade get more and more sophisticated. There are high-level programming

languages such as IDL and Python available that combine programming ease, fantastic

visualization, and data-analysis capabilities with the fast execution speed of an underlying

low-level language, and facilitate the use of computer clusters.

Nevertheless, it is our strong belief that there will remain a place and even the neces-

sity for focused studies of one aspect or another – be it in dimensionally-reduced system

such as ours, or concentrating one single physical effect, such as disk formation. Hydro-

dynamics alone is not fully understood, and when one throws Maxwell’s equations into

the mix to create MHD, a plethora of new discoveries can be made, and effects are waiting

to be understood in detail, not the least of which is interstellar (magneto-gravitational)

turbulence.

As already indicated in the introduction to this Thesis, a “realistic” simulation of

the star formation process should solve the three-dimensional equations of RMHD, and

include non-ideal MHD effects. The simulation should include full wavelength-dependent

radiative transfer and incorporate a sophisticated chemical model as well as grain physics.

However, it will still be years until all these effects can be included in a single self-

consistent simulation. The main reason is the huge range of scales involved, and the

confluence of so many highly nonlinear effects. But we are already getting closer (at least

when it comes to physics) to answering the age-old fundamental question how Earth and

the Heavens come to exist, and where they are going.
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Appendix A

Rate Coefficients and Collision time

scales

A.1 Rate Coefficients

For convenience, we reproduce here the rate coefficients used in this work. They can also

be found in Appendix A of Kunz and Mouschovias (2009). For radiative recombination of

atomic ions and electrons, and for the dissociative recombination of electrons and HCO+

ions, we respectively adopt the values (Umebayashi and Nakano, 1990)

αrr = 2.8× 10−12 (300 K/T )0.86 cm3 s−1, (A.1)

αdr = 2.0× 10−7 (300 K/T )0.75 cm3 s−1. (A.2)

For charge-exchange reactions between atomic and molecular ions, we use the value from

Watson (1976)

β = 2.5× 10−9 cm3 s−1. (A.3)

The rate coefficients pertaining to ions (both molecular and atomic, both indicated with

subscript ‘i’) and electrons (subscript ‘e’) on the one hand and grains on the other are

are taken from Spitzer (1941, 1948), with refinements made by Draine and Sutin (1987)
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to account for the polarization of grains:

αeg0 = πa2

(
8kBT

πme

)1/2
[
1 +

(
πe2

2akBT

)1/2
]
Pe, (A.4)

αig0 = πa2

(
8kBT

πmi

)1/2
[
1 +

(
πe2

2akBT

)1/2
]
Pi, (A.5)

αeg+ = πa2

(
8kBT

πme

)1/2 [
1 +

(
e2

akBT

)] [
1 +

(
2e2

2e2 + akBT

)1/2
]
Pe, (A.6)

αig− = πa2

(
8kBT

πmi

)1/2 [
1 +

(
e2

akBT

)] [
1 +

(
2e2

2e2 + akBT

)1/2
]
Pi. (A.7)

For the sticking probabilities of electrons or ions onto grains, we take the values from

Umebayashi (1983), Pe = 0.6 and Pi = 1.0. In these equations, a is the adopted grain

radius, while other quantities have their usual meanings. Lastly, the rate coefficients for

charge transfer during collisions between grains are of the same form as the ones above,

just with modified masses.

αg+g− = 16πa2

(
kBT

πmg

)1/2 [
1 +

(
2e2

akBT

)] [
1 +

(
e2

e2 + akBT

)1/2
]
, (A.8)

αg±g0 = 16πa2

(
kBT

πmg

)1/2
[
1 +

(
πe2

akBT

)1/2
]
Pgg. (A.9)

Here, mg is the average grain mass (assumed constant), and Pgg ≡ 1/2 is the probability

of charge exchange between neutral and charged grains (both positive and negative). The

probability of neutralization in Eq. (A.8) is assumed unity.

A.2 Collision time scales

As in Kunz (2009), we compute the collision times between the different species s and

neutrals according to the formula

τsn = ks,He
ms +mH2

%n〈σw〉sH2

. (A.10)

The quantity ks,He is a correction factor entering the equation due to the fact that the

gas also contains helium. The above expression hence calculates the collision time for

charged species with all neutrals. Helium contributes only a small correction factor due
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to its low polarizability compared with H2 (see Spitzer, 1978). Mouschovias (1996) gives

these correction factors as

ks,He =





1.23, if s = i,

1.21, if s = e,

1.09, if s = g+, g0, or g−.

(A.11)

The values for the rate constant 〈σw〉sH2 are taken from McDaniel and Mason (1973),

Mott and Massey (1965), and Ciolek and Mouschovias (1993), respectively:

〈σw〉sH2 =





1.69× 10−9 cm3 s−1, if s = i,

1.3× 10−9 cm3 s−1, if s = e,

πa2 (8kBT/πmH2)
1/2 , if s = g+, g0, or g−.

(A.12)
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Appendix B

Derivation of the thin-disk equations

In this section, we shall derive the equations of hydrodynamics for a infinitely thin disk.

This assumption is relaxed for the gravitational field later.

B.1 Applicability

Fiedler and Mouschovias (1992, 1993) showed that a subcritical molecular cloud core

threaded by straight-parallel magnetic field lines initially contracts along the field lines,

and will form a thin disk. Only then, when approximate vertical force balance is achieved,

will collapse perpendicular to the field lines occur. The reason is that the parallel compo-

nent of the “magnetic pressure” – while being isotropic – is cancelled by terms of magnetic

tension. This can be shown when considering the direction of the general expression for

the magnetic force Fmag = 1/4π (∇×B) ×B, which has no components parallel to the

magnetic field.

1

4π
(∇×B)×B =

1

4π
(B · ∇)B−∇

(
B2

8π

)
,

=
1

4π
(B · ∇)B−∇⊥

(
B2

8π

)
−∇‖

(
B2

8π

)
. (B.1)

The first term (the “magnetic tension”) can be written as

1

4π
(B · ∇)B =

B

4π

∂

∂s
(ŝ B) , (B.2a)

=
B2

4π

∂ ŝ

∂s
+ ŝ

B

4π

∂B

∂s
(B.2b)
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where ŝ is the unit vector parallel to the magnetic field. The first term is related to the

change of direction of the instantaneous unit vector parallel to the field, i.e., the radius

of curvature, by

∂ ŝ/∂s = n̂ R−1
c , (B.3)

where n̂ is the unit vector normal to the field.

The second term in Eq.(B.2b) can be identified as the portion of the gradient parallel

to the magnetic field, and therefore cancels that part from the “magnetic pressure”.

We are left with only components perpendicular to the field

Fmag =
B2

4πRc

n̂−∇⊥
(
B2

8π

)
. (B.4)

Therefore, while there is support perpendicular to the field (that in the subcritical case

can only be overcome with the help of ambipolar diffusion), there is none in parallel

direction. Figure (B.1), reproduced from Fiedler and Mouschovias (1993), demonstrates

that indeed a flattened structure.

This flattening – possibly further aggravated by the effect of rotation if the rotation

axis is aligned with the direction of the mean magnetic field – justifies the use of the

thin disk approximation for the phase after this dynamical flattening has concluded. The

applicability condition is that radial variations in any quantity remain smaller than the

local vertical height of the disk (see Ciolek and Mouschovias, 1993):

f (r)

|∂f/∂r| ≥ Z (r) . (B.5)

While this conditions is violated in our simulations near extremely strong gradients, such

as the accretion discontinuity at the edge of the first core, it remains satisfied over the

vast majority of the simulation domain (see Figs. B.2 and B.3).

B.2 Continuity equation in the thin-disk approxima-

tion

The continuity equation for a single fluid of mass volume density % is given by

∂%

∂t
+∇· (%v) = 0 (B.6)
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Figure B.1: Flattening of a core along the field lines before radial collapse occurs. In this
figure from Fiedler and Mouschovias (1993), the x-axis is r/R, and the y-axis z/R, where
R is the total size of the core.

Figure B.2: Evolution of the half-thickness Z (r) /r versus radius over time. The thin
lines are plots at the times listed in Table 5.2, for a grain radius of agr = 0.038 µm.
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Figure B.3: Evolution of the thin-disk condition for the column density, Σ(r)
|∂Σ/∂r|Z

−1 (see
Eq.(B.5)) plotted versus radius over time. It is satisfied in the outer regions and (nearly)
within the first core, but is violated at the interfaces of first and second cores, as expected
from the dramatic gradients prevalent there. The thin lines are plots at the times listed in
Table 5.2, for a grain radius of agr = 0.038 µm.
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where v is the bulk fluid velocity. We now want to find a corresponding equation in the

thin-disk geometry. To achieve this, we integrate Eq.(B.6) over the (time-dependent, and

spatially-varying) thickness of the disk to find

∫ +Z

−Z

∂%

∂t
dz +

∫ +Z

−Z

∂

∂x
(%vx) dz +

∫ +Z

−Z

∂

∂y
(%vy) dz +

∫ +Z

−Z

∂

∂z
(%vz) dz = 0 (B.7)

where Z (x, y, t) is the half-thickness. For convenience, we have adapted a Cartesian

coordinate system, but any other would do, as well. Later, we will switch to a cylindrical

coordinate system.

Leibniz’ rule for differentiation under the integral sign states

∂

∂s

∫ Z2(s)

Z1(s)

Fdz =

∫ Z2(s)

Z1(s)

∂F

∂s
dz + F (Z2, s)

∂Z2

∂s
− F (Z1, s)

∂Z1

∂s
.

In our case, F ≡ %, s ≡ t, Z2 (s) ≡ Z (t), and Z1 (s) ≡ −Z (t). We want to transform the

first term on the RHS into the one on the LHS. We find

∫ +Z

−Z

∂%

∂t
dz =

∂

∂t

∫ +Z

−Z
%dz − % (x, y, z = +Z)

∂Z

∂t
− % (x, y, z = −Z)

∂Z

∂t
(B.8a)

=
∂Σ

∂t
− 2% (x, y)

∂Z

∂t
(B.8b)

where we have used the definition
∫ +Z

−Z %dz = Σ (x, y). Further, the one-zone approxi-

mation tells us that Σ (x, y) ≡ 2% (x, y)Z (x, y), i.e., % 6= % (z). In fact, we assume all

quantities to be constant in the zone with half-thickness Z (r). Therefore we can replace

the integration along z over any function f by

∫ +Z(r)

−Z(r)

f (r, z) dz ≈ 2f (r)Z (r)

and use this as the equatorial value of f in the disk.

Similarly assuming vx 6= vx (z) and vy 6= vy (z) we get for the next two terms

∫ +Z

−Z

∂

∂x
(%vx) dz =

∂

∂x
(Σvx)− 2% (x, y) vx (x, y)

∂Z

∂x
(B.8c)

∫ +Z

−Z

∂

∂y
(%vy) dz =

∂

∂y
(Σvy)− 2% (x, y) vy (x, y)

∂Z

∂y
(B.8d)
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The last term of Eq.(B.7) can be integrated directly:

∫ +Z

−Z

∂

∂z
(%vz) dz = 2%vz (B.8e)

since vz (z) = −vz (−z) by symmetry. Combining the above results, we find

∂Σ

∂t
+

∂

∂x
(Σvx) +

∂

∂y
(Σvy) + 2%

[
vz − ∂Z

∂t
− vx∂Z

∂x
− vy ∂Z

∂y

]
= 0

The last three terms comprise the two-dimensional hydrodynamic derivative

D

Dt
Z (x, y) =

∂Z

∂t
+ vx

∂Z

∂x
+ vy

∂Z

∂y

and since vz ≡ DZ
Dt

by definition, the term in square brackets vanishes. We arrive at

∂Σ

∂t
+

∂

∂x
(Σvx) +

∂

∂y
(Σvy) = 0 (B.9a)

∂Σ

∂t
+

1

r

∂

∂r
(rΣvr) +

1

r

∂

∂ϕ
(Σvϕ) = 0 (B.9b)

which is a continuity equation in two dimensions with the column density Σ (x, y) as the

dependent variable. Eq.(B.9b) casts this in cylindrical coordinates, assuming the disk to

be situated in the x− y plane.

B.3 Equations of motion

The three-dimensional equations of motion for an inviscid fluid of density %, acted upon

external forces F, and with interal pressure P are given by

∂ (%v)

∂t
+∇· [% (v ⊗ v)] =

%

m
F−∇P (B.10)

where v is the systematic fluid velocity and ⊗ denotes the outer (dyadic) product. We

now want to find the corresponding equations for the thin-disk geometry.

First, we split the equation into its three components. We note that the velocity

in cylindrical coordinates is v ≡ vrr̂ + vϕϕ̂ + vzẑ. Also, % (v ⊗ v) is a 2-tensor, whose
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divergence is given by Morse and Feshbach (1953)

(
∇·←→T

)
br

=
1

r

∂

∂r
(rTrr) +

1

r

∂

∂ϕ
(Tϕr) +

∂

∂z
(Tzr)− Tϕϕ

r
, (B.11a)

(
∇·←→T

)
bϕ

=
1

r

∂

∂r
(rTrϕ) +

1

r

∂

∂ϕ
(Tϕϕ) +

∂

∂z
(Tzϕ)− Tϕr

r
, (B.11b)

(
∇·←→T

)
bz

=
1

r

∂

∂r
(rTrz) +

1

r

∂

∂ϕ
(Tϕz) +

∂

∂z
(Tzz) . (B.11c)

The extra terms in the r̂ and ϕ̂-components stem from the Christoffel symbols appearing

when differentiating curvilinear coordinate systems. With

% (v ⊗ v) = %




vrvr vrvϕ vrvz

vϕvr vϕvϕ vϕvz

vzvr vzvϕ vzvz


 (B.12)

we find

[∇·% (v ⊗ v)]br =
1

r

∂

∂r
(r%vrvr) +

1

r

∂

∂ϕ
(%vrvϕ) +

∂

∂z
(%vrvz)− %

v2
ϕ

r
, (B.13a)

[∇·% (v ⊗ v)]bϕ =
1

r

∂

∂r
(r%vϕvr) +

1

r

∂

∂ϕ
(%vϕvϕ) +

∂

∂z
(%vϕvz) + %

vrvϕ
r
, (B.13b)

[∇·% (v ⊗ v)]bz =
1

r

∂

∂r
(r%vzvr) +

1

r

∂

∂ϕ
(%vzvϕ) +

∂

∂z
(%vzvz) . (B.13c)

The momentum equations then become

∂

∂t
(%vr) +

1

r

∂

∂r
(r%vrvr) +

1

r

∂

∂ϕ
(%vrvϕ) +

∂

∂z
(%vrvz)− %

v2
ϕ

r
=

%

m
Fr − ∂P

∂r
, (B.14a)

∂

∂t
(%vϕ) +

1

r

∂

∂r
(r%vϕvr) +

1

r

∂

∂ϕ
(%vϕvϕ) +

∂

∂z
(%vϕvz) + %

vrvϕ
r

=
%

m
Fϕ − 1

r

∂P

∂ϕ
,

(B.14b)

∂

∂t
(%vz) +

1

r

∂

∂r
(r%vzvr) +

1

r

∂

∂ϕ
(%vzvϕ) +

∂

∂z
(%vzvz) =

%

m
Fz − ∂P

∂z
. (B.14c)

We now integrate Eqns.(B.14) over z, component-by-component. The vertical com-

ponent of the momentum equation does not apply in our geometry, so we discard this

entirely.
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B.3.1 Radial momentum equation in the thin disk model

Next, we consider the radial component. For now, we ignore the RHS, as these terms are

treated separately.

∫ +Z

−Z

[
∂

∂t
(%vr) +

1

r

∂

∂r
(r%vrvr) +

1

r

∂

∂φ
(%vrvφ) dz +

∂

∂z
(%vrvz) dz − %v

2
φ

r

]
dz

=

∫ +Z

−Z

%

m
Frdz −

∫ +Z

−Z

∂P

∂r
dz (B.15)

We investigate each term in turn. As with the continuity equation (see Section B.2),

Leibniz’ rule is used

∫ +Z

−Z

∂

∂t
(%vr) dz =

∂

∂t

∫ +Z

−Z
(%vr) dz − %vr|z=+Z

∂Z

∂t
− %vr|z=−Z

∂Z

∂t

=
∂ (Σvr)

∂t
− 2%vr

∂Z

∂t
(B.16)

where we have used
∫ +Z

−Z %dz = Σ (x, y) and vr = vr (r, ϕ), i.e. independence of z. We

treat the other terms similarly, and find

∫ +Z

−Z

1

r

∂

∂r
(r%vrvr) dz =

1

r

∂

∂r
(rΣvrvr)− 2%vrvr

1

r

∂ (rZ)

∂r
, (B.17a)

∫ +Z

−Z

1

r

∂

∂ϕ
(%vrvϕ) dz =

1

r

∂

∂ϕ
(Σvrvϕ)− 2%vrvϕ

1

r

∂Z

∂ϕ
, (B.17b)

∫ +Z

−Z

∂

∂z
(%vrvz) dz = [%vrvz]

+Z
−Z = 2%vrvz, (B.17c)

−
∫ +Z

−Z
%
v2
ϕ

r
dz = −Σ

v2
ϕ

r
. (B.17d)

We have used the symmetry conditions vz (z) = −vz (−z) in the third term, and pulled

v2
ϕ/r from the integral in the last term, since it does not depend on z in the vertical

one-zone approximation. Equation (B.15) becomes

∂ (Σvr)

∂t
+

1

r

∂

∂r
(rΣvrvr) +

1

r

∂

∂ϕ
(Σvrvϕ)− Σ

v2
ϕ

r

+ 2%vr

[
vz − ∂Z

∂t
− vr 1

r

∂ (rZ)

∂r
− vϕ1

r

∂Z

∂ϕ

]

=

∫ +Z

−Z

%

m
Frdz −

∫ +Z

−Z

∂P

∂r
dz (B.18)
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As before in the derivation of the continuity equation, the last three terms are the two-

dimensional hydrodynamic derivative, just this time in planar polar coordinates.

D

Dt
Z (r, ϕ) =

∂Z

∂t
+ vr

1

r

∂ (rZ)

∂r
+ vϕ

1

r

∂Z

∂ϕ
(B.19)

and since vz ≡ DZ/Dt by definition, the term in square brackets vanishes. We end up

with

∂ (Σvr)

∂t
+

1

r

∂

∂r
(rΣvrvr) +

1

r

∂

∂ϕ
(Σvrvϕ)− Σ

v2
ϕ

r

=

∫ +Z

−Z

%

m
Frdz −

∫ +Z

−Z

∂P

∂r
dz (B.20)

In our axisymmetric thin disk there is no dependence on ϕ, and the term∝ ∂/∂ϕ vanishes,

leaving us with

∂ (Σvr)

∂t
+

1

r

∂

∂r
(rΣvrvr)− Σ

v2
ϕ

r
=

∫ +Z

−Z

%

m
Frdz −

∫ +Z

−Z

∂P

∂r
dz (B.21)

The last term on the LHS can readily be identified with the centrifugal force L2/ Σr3,

where L = Σvϕr, and we have arrived at the complete radial momentum equation for our

thin disk. The force due to the pressure gradient is derived in the next section, and the

external radial forces due to gravity and the magnetic field are discussed in subsequent

sections. Its implementation into the code is discussed in Section C.2.4.

B.3.2 Angular momentum equation in the thin disk model

This procedure is repeated with the ϕ component. There is no pressure gradient in ϕ̂-

direction, as the pressure is azimuthally uniform in an axisymmetric disk, and the only

term remaing on the RHS is any azimuthal force. We get

∫ +Z

−Z

[
∂

∂t
(%vϕ) +

1

r

∂

∂r
(r%vϕvr) +

1

r

∂

∂ϕ
(r%vϕvϕ) +

∂

∂z
(r%vϕvz) + %

vrvϕ
r

]
dz

=

∫ +Z

−Z

%

m
Fϕdz (B.22)

Carrying out the same steps as before yields

∂ (Σvϕ)

∂t
+

1

r

∂

∂r
(rΣvϕvr) + Σ

vrvϕ
r

=

∫ +Z

−Z

%

m
Fϕdz. (B.23)
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The latter two terms on the LHS can be combined into one, namely

1

r2

∂

∂r

(
r2Σvϕvr

)
=

1

r

∂

∂r
(rΣvϕvr) +

Σvϕvr
r

. (B.24)

We multiply the whole equation by r, and define L = ΣΩr2 ≡ Σvϕr, the angular mo-

mentum per unit area. This results in the angular momentum equation for our thin

disk
∂L

∂t
+

1

r

∂

∂r
(rLvr) = r

∫ +Z

−Z

%

m
Fϕdz, (B.25)

where we have used that ∂r/∂t ≡ 0. The RHS can be identified with the torque due to

magnetic braking

r

∫ +Z

−Z

%

m
Fϕdz = 2πrBz,eqBϕ, (B.26)

which is discussed in detail in Section 5.3. The implementation of the angular momentum

equation into the code is discussed in Appendix B.

B.4 Forces in the momentum equation

The total force F exerted on a fluid element is given by integrating its total stress tensor

T over its surface S.

dFi = TijdSj
F =

∫
T dS

The total stress tensor (in absense of effects other than thermal pressure and magnetic

forces) is given by combining the thermal pressure and the magnetic contributions

T = −
(
Pn +

B2

8π

)
I +

BB

4π

where I is the identity matrix, indicating that the magnetic pressure and the thermal

pressure of the neutrals Pn are both isotropic (but see Section B.1 for a caveat on this).

B.4.1 Normal vector

For the following discussion we need an expression for the normal vector to the surface

S. Fig. B.4 explains the terms used. The quantity dZ/ds ŝ can be identitied as the
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Z(s)

Z(s+ s)D

Ds

dZ/ds sD

n̂ ẑ
p̂

ŝ

Figure B.4: Definitions for the normal vector.

gradient of the function Z in ŝ direction, such that

dZ

ds
ŝ = ∇sZ.

The vectors p̂ and n̂, parallel and perpendicular to the surface S, respecitively, are given

by

p̂ = ŝ∆s+
dZ

ds
∆s ẑ,

n̂ =
∆s

N
[ẑ−∇sZ] .

Furthermore, the normalization constant N is

N = ∆s

√
1 + (dZ/ds)2.

Additionally, the surface element is (assuming a Cartesian coordinate system, for sim-

plicity)

dS = n̂dS = [ẑ−∇sZ] dxdy.

At the bottom of the disk, the expression for the normal vector is slightly different:

p̂bottom = ŝ∆s− dZ

ds
∆s ẑ,

n̂bottom = [−ẑ−∇sZ] .

We now have all expressions required to continue with the derivation of the pressure

forces.
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B.4.2 Thermal pressure

The integral over the contribution of the thermal pressure to the stress tensor is given by

FP =

∫
TPdS = −

∫
P IdS

This has to be carried out over the whole surface of the fluid element, consisting of top

and bottom surface, plus the circumfering area.

FP = FP,top + FP,bottom + FP,side

At top and bottom, the pressure is equal to the ambient external pressure Pext. This

yields

FP,top = −
∫

IPextn̂topdS

= −Pext

∫
[ẑ−∇sZ] dxdy.

FP,bottom = −Pext

∫
[−ẑ−∇sZ] dxdy.

The contribution of the circumfering area is given by

FP,side =

∮
dl

∫ +Z

−Z
TPn̂sidedz,

= −
∮

2ZPnn̂sidedl,

= −
∫
∇s (2ZPn) dxdy.

where the one-zone approximation was used in the middle step, and Stoke’s theorem in

the last. Collecting the three contributions and cancelling the terms proportional to Z,

we arrive at

FP =

∫
−∇s (2ZPn − 2ZPext) dxdy, (B.27a)

fpressure = −∇s (2ZPn − 2ZPext) . (B.27b)

The latter is the expression of the force per unit area due thermal and external pressure

gradients. It can be calculated once Z and Pn are known (see Section C.2.3).
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B.4.3 Magnetic Force

In order to derive the expression for the magnetic field in the thin-disk approximation,

we use the following assumptions (see Ciolek and Mouschovias, 1993):

B (x, y, z, t) =





ẑBz,eq (x, y, t) , |z| ≤ Z (x, y, t) ,

ẑBz,S (x, y, t) + ŝBs (x, y, z, t) , |z| > Z (x, y, t) ,

ẑBref , |z| À R.

(B.28)

This means that the field inside the disk only points in ẑ-direction. Above the disk, the

magnetic field also has components in other directions, while far away from the disk, the

deviation from the constant reference field is negligible. It points in ẑ-direction again,

i.e. perpendicular to the disk. Note that Bz,S (x, y, t) 6= Bz,eq (x, y, t) where the index S
means the value at the surface z = ±Z of the disk. It is not to be mistaken for the index

s which denotes components parallel to the surface. This could be the (x, y) direction in

Cartesian coordinates or (r, ϕ) in polar coordinates. In the following, x and y are used.

Furthermore, we apply the symmetry conditions that

Bz (x, y, z) = Bz (x, y,−z) (B.29a)

Bs (x, y, z) = −Bs (x, y,−z) (B.29b)

Using the fact that the normal component of the magnetic field at disk surface is contin-

uous (given by integral form of Gauss’ Law, Ampère’s Law ∇ · B = 0, see Landau and

Lifshitz, 1984), we find the conditions for both the upper and lower surface of the disk

B

(
x, y, lim

|z|→Z(r)+
z

)
n̂ = B

(
x, y, lim

|z|→Z(r)−
z

)
n̂ (B.30a)

Bz,S (x, y,±Z)∓Bs (x, y,±Z)
dZ

ds
= Bz,eq (x, y) (B.30b)

We can follow the same procedure as for the thermal pressure above,

FM =

∫
TMdS =

∫ (
BB

4π
− B2

8π
I

)
dS.
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Again, we treat top, bottom and circumfering area separately.

FM,top =

∫ (
BB

4π
− B2

8π
I

)
[ẑ−∇sZ] dxdy,

=
1

8π

∫ [
2B2

z,S ẑ + 2Bz,SBsŝ−B2ẑ− 2

(
Bs

dZ

ds

)
(Bz,S ẑ +Bsŝ) + B2∇sZ

]
dxdy,

FM,bottom =

∫ (
BB

4π
− B2

8π
I

)
[−ẑ−∇sZ] dxdy,

=
1

8π

∫ [
−2B2

z,S ẑ + 2Bz,SBsŝ +B2ẑ + 2

(
Bs

dZ

ds

)
(Bz,S ẑ−Bsŝ) +B2∇sZ

]
dxdy.

In both cases, B was written in terms of its components in ẑ and ŝ-direction.

The contribution of the circumfering area to the force again is a line integral, enclosing

an integral over z,

FM,side =

∮
dl

∫ +Z

−Z

(
BB

4π
− B2

8π
I

)
n̂sidedz,

= − 1

8π

∮
dl

∫ +Z

−Z
B2
z,eqn̂sidedz,

= − 1

8π

∫
∇s

(
2ZB2

z,eq

)
dxdy,

where we applied that B only points in ẑ-direction inside the disk. This leaves only one

component to the tensor, namely B2
z,eq. Furthermore, we used the one-zone approxima-

tion to integrate over z, and Stoke’s theorem to transform the line integral.

Summing all three parts, we see that a number of terms cancels from top and bottom

FM = FM,top + FM,bottom + FM,side

=
1

4π

∫ [
2Bz,SBsŝ− 2

(
Bs

dZ

ds

)
Bsŝ +B2∇sZ −∇sZB

2
z,eq

]
dxdy. (B.31)

All terms are expressed in terms of quantities at the top of the disk, but we want to

relate it back to the magnetic field in the disk. To this end, the continuity condition for

the magnetic field, Eq.(B.30b), yields

Bz,S = Bz,eq +Bs
dZ

ds
. (B.32)



B.4. Forces in the momentum equation 145

Using this to replace Bz,S in the first term of Eq.(B.31), it simplifies to

FM =
1

4π

∫ [
2Bz,eqBsŝ +B2∇sZ −∇sZB

2
z,eq

]
dxdy. (B.33)

Writing B in terms of its two components, perpendicular and parallel, we find for its

magnitude

B2 = B2
z,S +B2

s ,

=

(
Bz,eq +Bs

dZ

ds

)2

+B2
s ,

= B2
z,eq + 2Bz,eqBs

dZ

ds
+

(
Bs

dZ

ds

)2

+B2
s .

Also, the gradient ∇sZB
2
z,eq can be expanded so that Eq.(B.33) becomes

FM =
1

4π

∫ [
2Bz,eqBsŝ +B2∇sZ −∇sZB

2
z,eq

]
dxdy

=
1

4π

∫ [
2Bz,eqBsŝ− Z∇sB

2
z,eq +

{
2Bz,eqBs

dZ

ds
+

(
Bs

dZ

ds

)2

+B2
s

}
∇sZ

]
dxdy.

Finally, we drop all terms where derivatives of Z appear in higher than first order.

Those are but small corrections to the big picture, and we would have to do a higher-

order approach in Eq.(B.30b) if we wanted to self-consistently retain them. Further, we

switch to cylindrical coordinates, and replace dxdy = rdrdϕ. We subsequently drop all

dependences on ϕ, and take the vector ŝ and its associated gradient ∇s as pointing in

r̂-direction only. Then we arrive at the expression for the radial for per unit area

fM,r =
Bz,eq

2π

(
Br,Z − Z ∂

∂r
Bz,eq

)
+

1

4π

dZ

dr

(
B2
r,Z +B2

ϕ,Z

)
(B.34)

The last term represents the effect that vertical squeezing has on the disk’s top and

bottom surfaces, them being not perfectly flat but having radial variations. This adds a

force in radial direction.

B.4.4 Gravity

We use an integral solver with scaling O (n2) (where n is the number of grid cells) to

calculate the gravitational force. It is derived in considerable detail in Morton et al.

(1994). Here we only present the derivation in broad strokes.
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We start with Poisson’s equation for the gravitational potential Ψ:

∇2Ψ = 4πG%, (B.35a)

1

r

∂

∂r

(
r
∂

∂r
Ψ (r, z)

)
= 4πGΣ (r) δ (z) , (B.35b)

where % and Σ are the mass volume and column density, respectively. Equation (B.35b)

is Eq.(B.35a) expressed for an axisymmetric infinitely-thin disk. Toomre (1963) studied

this equation for flattened galactic disks, and gives its solution for an infinite disk as:

Ψ (r, z) = −2πG

∫ ∞

0

dk

∫ ∞

0

dr′r′Σ (r′) e−k|z|J0 (kr) J0 (kr′) . (B.36)

J0 is the Bessel functions of the first kind. The allows us to write for the radial gravita-

tional field

gr (r) = 2πG

∫ ∞

0

dr′r′Σn (r′)M (r, r′) , (B.37a)

M (r, r′) =
d

dr

∫ ∞

0

dkJ0 (kr) J0 (kr′) (B.37b)

=
2

π

d

dr

1

r>
K

(
r<
r>

)
. (B.37c)

Here, M (r, r′) is an integral kernel, and K is the Complete Elliptic Integral of the first

kind. The identity leading from Eq.(B.37b) to Eq.(B.37c) is found in Gradshteyn et al.

(2007, §6.512.1, p. 660). The symbols r< and r> denote the smaller and larger of r and

r′, respectively. The implementation of the gravitational acceleration into the code is

found in Section C.3.

B.5 Induction equation

Section 5.4 contains a complete discussion of the induction equation and the treatment

of non-ideal MHD within. The induction equation as such is not modified by the chosen

geometry, because the magnetic field is inherently three-dimensional. However, our choice

of magnetic field only pointing in ẑ-direction (see Section B.4.3) mandates that only the

z-component of the induction equation is non-zero. Here, we only quote the result

∂Bz,eq

∂t
+

1

r

∂

∂r
(rBz,eqvr) =

1

r

∂

∂r

(
rηeff

∂Bz,eq

∂r

)
(B.38)



B.6. Radial magnetic field component Br,Z 147

where ηeff is the effective resistivity coefficient, and contains the effects of both Ohmic

dissipation and ambipolar diffusion (see Section 5.4).

B.6 Radial magnetic field component Br,Z

In the previous section, we saw the evolution equation for the (purely vertical) magne-

tic field Bz,eq within the disk. Furthermore, Eq.(C.53l) details its calculation from the

evolution array. Similarly, Section 5.3 on magnetic braking contained the derivation of

the azimuthal field component Bϕ,Z from the magnetic flux Φ and the angular velocity

Ω. This section now completes the derivation of the magnetic field by presenting the

corresponding derivation for the radial magnetic field component at the top and bottom

surface of the disk, Br,Z . This discussion follows the ones in Ciolek and Mouschovias

(1993); Basu and Mouschovias (1994).

The magnetic field above and below the disk can be written as a linear combination

of the background field and a modification

B (r, z > Z) = B′ (r, z) +Bref ẑ. (B.39)

The boundary condition expressed in Eq.(B.28) for z À Z implies that the modification

has to vanish for z →∞.

We assume the absence of any large-scale electric field, and require that the matter

above (and below) the disk is force-free (by requiring an instantaneous adjustment to

the constant external pressure Pext, see, e.g., Mouschovias, 1976), and also current-free.

Then, Maxwell’s equations yield

∇×B = 0 (B.40)

(B.41)

The curl-free property implies the existence of a scalar potential Θ for the magnetic field

above the disk, with B′ (r, z) = −∇Θ. Together with the assumption of an infinitely-thin

axisymmetric disk, this allows to rewrite the continuity condition expressed in Eq.(B.30b)

at the top surface of the disk as

lim
Z→0

∂Θ (r, z)

∂z
= − [Bz,eq (r)−Bref ] . (B.42)
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This is equivalent to the Poisson equation

∇2Θ (r, z) = − [Bz,eq (r)−Bref ] δ (z) , (B.43)

which happens to be exactly the same form as the one for the gravitational field, and

whose solution we already know. It is

Br,Z (r) = −
∫ ∞

0

dr′r′ [Bz,eq (r)−Bref ] (r
′)M (r, r′) , (B.44a)

M (r, r′) =
2

π

d

dr

1

r>
K

(
r<
r>

)
. (B.44b)

As before, K is the Complete Elliptic Integral of the First Kind. The symbols r< and r>

denote the smaller and larger of r and r′, respectively.
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Appendix C

Implementation into the code

In order to implement our equations into our code, we have to recast them in terms of

the conserved quantities in each cell, i.e. mass, momentum, angular momentum, and

magnetic flux. This chapter details this.

C.1 Continuity equation and mass conservation

The continuity equation is given by

∂Σn

∂t
= −1

r

∂

∂r
(rΣnvr) . (C.1)

However, we want an expression for the mass in each cell, not the column density. There-

fore, we integrate over the cell (i.e., from ri−1 until ri), to find

∫ i

i−1

∂Σn

∂t
rdr =−

∫ i

i−1

1

r

∂

∂r
(rΣnvr) rdr. (C.2)

For clarity of presentation, we only kept the subscript i and i−1 of the expressions ri and

ri−1, respectively. Because the integral boundaries do not change, the LHS is nothing

but the time derivative of the mass in cell i. The RHS is an exact differential, and we

can use Stokes’ Law and integrate directly. We find for Mi, the mass in cell i

∂Mi

∂t
= − [rΣnvr]

i
i−1 . (C.3)

Obviously, the new RHS is now a flux across the cell interfaces at ri−1 until ri. This flux

is calculated using the TVD method due to van Leer (1977).
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C.2 Momentum equation

C.2.1 Barotropic energy equation

We adopt a piece-wise barotropic equation as our energy equation. The barotropic index

γ ≡ CP/CV is the ratio between the specific heats for constant pressure and that for

constant volume, describes how the pressure changes with density:

P = K%γ,

where K is a factor of proportionality. Together with an equation of state (the ideal gas

law, in our case), this also sets the temperature and the internal energy. In the barotropic

index γ, very complicated physical effects are hidden, involving radiative transfer, mo-

lecular and granular heating and cooling, and other phenomena. Using a barotropic

pressure-density relation instead of a sophisticated energy equation tremendously simpli-

fies the numerical complication by not having to follow the microphysics and radiative

processes explicitly. We use the data obtained by Masunaga and Inutsuka (2000) in a

detailed spherical radiation hydrodynamical simulation (solid line in Fig. C.1).

C.2.2 Stability

We seek to derive the barotropic index γ for which a cloud is stable against gravitational

collapse, i.e., we want to know for which γ pressure scales the same way as gravity does.

Several simplifying assumptions are used. First, the cloud is assumed to be spherical

and of uniform density, governed by a barotropic pressure-density relation. The pressure

gradient then becomes

∇rP ≈ P/r ∝ %γ/r.

For hydrostatic equilibrium, the force density due to this pressure gradient has to balance

gravity:

∇rP = %gr,

= %
GM

r2
.

We write r in terms of the enclosed mass M and the density, and obtain

%γ+1/3M−1/3 = %5/3GM1/3,
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Figure C.1: Change of temperature with density. Solid line: data from Masunaga and
Inutsuka (2000). Dashed line: our fit using γeff
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from which one can immediately deduce that pressure scales the same way as or stronger

than gravity if γ ≥ 4/3, thus providing stability.

For a disk, we replace the density with the column density with the usual relation

% = Σ/2Z. If we make the assumption that the scaleheight Z is approximately constant

in the region where the density behaves barotropically, the pressure force scales as

∇rP ≈ P/r ∝ %γ/r ∝ Σγ/r

Furthermore, we assume that gravity still scales inversely quadratic with radius, which

is not too bad an oversimplification as long as the density behaves as a power law. Now,

we have a different behaviour of the radius with the column density, namely

r ∝ Σ−1/2M1/2

and we arrive at

%γ+1/2M−1/2 = %2GM1/2

to find stability if γ ≥ 3/2. Of course this back-of-the-envelope calculation is extremely

crude, but provides a rough guideline.

C.2.3 Implementation of the pressure force

In order to implement the pressure force into the momentum equation, we have to cal-

culate the scale height for a given column density as discussed above. Scale height and

column density are related by the volume density, hence we have to get a handle on that

first. At any point in the simulation, we can calculate the neutral pressure according to

Pn =
π

2
GΣ2

n + Pext +
B2
r

8π
+
B2
ϕ

8π
, (C.4a)

P̃n =
1

4

[
Σ̃2

n + P̃ext + B̃2
s

]
, (C.4b)

where Eq.(C.4b) is the normalized version or Eq.(C.4a) (for details on the normalization

used, see Section C.7). We assume the equation of state to be that of an ideal gas. Then

P =
%kT

m
(C.5)

where T is the temperature, k is Boltzmann’s constant and m is the mean molecular

mass of the gas. As numerical value for the latter we choose initially m = 2.3 mH =
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3.84 × 10−24 g (assuming 90% hydrogen and 10% helium by number). However, this

parameter is not constant during the second collapse. During hydrogen dissociation,

it changes to 1.3 mH (two helium atoms per 18 hydrogen atoms instead of per 9 H2

molecules), and then finally to 0.6 mH after the gas is fully ionized. mH is the mass of

a hydrogen atom. We assume this change occurs exponentially (such that the change is

linear in logarithmic units) between ≈ 2000 K and ≈ 5000 K.

We use the ideal gas law to convert the temperature-density relation due to Masunaga

and Inutsuka (2000) (see Fig. C.1) into a pressure-density relation. For any pressure,

the corresponding density can then be simply looked up, fixing the temperature. Addi-

tionally, the scaleheight is given by

Z =
Σn

2%n

. (C.6)

This approach has the great advantage that it is independent of the detailed energy

equation adopted (i.e., what the exact value of γ is). It does not matter if conditions

are isothermal or barotopic, as long as a pressure-density relation is given. The mid-

plan pressure is a calculable quantity in our code, by Eq.(C.4a), and will then determine

%, T , and Z. However, this advantage comes at the price of computationally costly

interpolation at every timestep.

Knowing both Σn and Z, we can now calculate the pressure force Eq.(B.27b), repro-

duced here for convenience

fpressure = −∇s (2ZPn − 2ZPext) . (C.7)

We insert neutral pressure of Eq.(C.4b) into this expression and calculate the force due to

thermal and external pressure gradients. Note that this done sans the magnetic pressure

term, because its radial effect is already considered in the magnetic force term. Its effect

on the vertical hydrostatic equilibrium still enters through the scaleheight Z. This yields

fpressure = − ∂

∂r

(
Z

2
Σ2

n

)
. (C.8)

As we see, the external pressure also only enters through its effect on the scaleheight. As

a last step, the pressure force (per unit area) is integrated over each cell to be applied to

the momentum equation.
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C.2.4 Implemented momentum equation

The overall momentum evolution equation Eq.(B.21) integrated over cell i reads

∫ i

i−1

∂ (Σvr)

∂t
rdr =−

∫ i

i−1

1

r

∂

∂r
(Σvrvr) rdr −

∫ i

i−1

fpressrdr +

∫ i

i−1

Σgrrdr

+

∫ i

i−1

fcentrrdr +

∫ i

i−1

fmagrdr, (C.9)

∂Pi
∂t

=− [rΣvrvr]
i
i−1 −

∂

∂r

(
Z

2
Σn,i

)
Ai +Migr,i

+MiΩ
2
i ri + Φi

(
Br,i − Zi

Ai

∂Φi

∂r

)
+
Ai
2

∂Z

∂r

(
B2
r,i +B2

ϕ,i

)
. (C.10)

Here, P ≡Mvr is the radial momentum and Ai =
∫ i

i−1
rdr is the area of cell i; the other

symbols have their usual meanings (see List of Symbols).

C.3 Gravity

In Section B.4.4, we derived the gravitational field as calculated by Morton et al. (1994).

gr (r) = 4G

∫ r

0

dr′r′Σ (r′)
d

dr

[
1

r
K

(
r′

r

)]
+ 4G

∫ ∞

r

dr′Σ (t, r′)
d

dr
K

( r
r′

)
, (C.11a)

= −4G

∫ r

0

dr′r′

r2
Σ (r′)

[
E (k)

1− k2

]

k=r′/r

+ 4G

∫ ∞

r

dr′

r
Σ (r′)

[
E (k)

1− k2
−K (k)

]

k=r/r′
, (C.11b)

where E (k) is the Complete Elliptic Integral of the second kind. This equation is then

discretized, assuming the column density Σ to be constant in each cell. The remaining

integrals are analytical, and the resulting expressions depend solely on r and r′. Between

grid refinement steps, those are fixed. Thus, the gravitational field is a purely geomet-

ric factor calculated only once, and multiplied with Σ at every point, and summed to

calculate the force.

gr (rj) = 4G
∑

l

Σ (rl) I
0 (rj, rl,rl−1) , (C.12a)



C.3. Gravity 155

where

I0 (rj, rl,rl−1) =





K
(
rl−1

rj

)
− E

(
rl−1

rj

)
+ E

(
rl
rj

)
−K

(
rl
rj

)
for l < j,

K
(
rj−1

rj

)
− E

(
rj−1

rj

)
+

rj
rj

[
E

(
rj
rj

)
−K

(
rj
rj

)]
for l = j,

rl−1

rj

[
K

(
rj
rl−1

)
− E

(
rj
rl−1

)]
+ rl

rj

[
E

(
rj
rl

)
−K

(
rj
rl

)]
for l > j.

We can efficiently approximate the Elliptic Integrals with a logarithmic-polynomial ex-

pansion provided in Abramowitz and Stegun (1965)

K (k) =
N∑

h=0

(aK,h − bK,h ln q) qh,

E (k) =
N∑

h=0

(aE,h − bE,h ln q) qh,

where q = 1 − k2, and aK,h, bK,h, aE,h and bE,h are coefficients provided in Abramowitz

and Stegun (1965). N = 10 is sufficient to give an approximation accurate to double

precision.

In the implementation of the Elliptic Integrals Horner’s rule for polynomial notation

is employed. Instead of recomputing every power of a variable (for the nth power (n− 1)

multiplications are needed), only one additional multiplication suffices, if the previous

(n− 1) th power is just multiplied once more. If m is the order of the polynomial,

the näıve method’s complexity scales with O (m2), Horner’s method only with O (m).

Practically, this means

a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + · · ·

=a0 + x (a1 + x (a2 + x (a3 + x (a4 + · · · )))) .

In the first case, in order to compute the Elliptic integrals to the desired precision 142

operations (21 additions and 121 multiplications) are necessary, plus 11 times calculating

the logarithm. In the second case, only 42 operations (21 additions and 21 multiplica-

tions) plus 1 logarithm evaluation are required.

C.3.1 Gravity correction due to the disk’s finite thickness

Our considerations for gravity are technically only valid in for r > Z. The fact we

calculate gravity all the way to r = 0, the center of the cloud, we implicitly assume an

infintesimally-thin sheet. However, for a thin sheet of finite thickness, as we are modelling,



156 Chapter C. Implementation into the code

this overestimates the force due to gravity in the central regions. We therefore include a

correction term to the radial gravitational force that alleviates this problem.

The vertical Poisson equation reads

d2Ψ

dz2
= 4πG%n (r, z) , (C.13)

which – applying our one-zone approximation of constancy of any quantity over one

scale-height in ẑ-direction – is straightforward to integrate, and yields

Ψ = Ψ (r, 0) + 2πG%n (r) z2. (C.14)

There is no contribution linear in z since Ψ is symmetric about the equatorial plane.

The term Ψ (r, 0) yields the radial gravitational acceleration in the equatorial plane as it

occurs in an infinitesimally thin disk (see derivation in Section B.4.4). The total radial

acceleration then is

gr (r, z) ≡ −∂Ψ (r, z)

∂r
= gr (r, 0)− 2πG

∂%n (r)

∂r
z2 (C.15)

Since z is a coordinate, its derivative with respect to r vanishes. The mean quantity over

the thickness of the cloud is obtained by integrating over the thickness of the disk, hence

we get

〈gr〉 =
1

2Z

∫ +Z

−Z
gr (r, z) dz

= gr (r, 0)− 1

2Z

∫ +Z

−Z
2πG

∂%n (r)

∂r
z2dz

= gr (r, 0)− 2πG

3

∂%n (r)

∂r
Z2 (C.16)

where we again used the one-zone approximation.

For implementation purposes, we normalize Eq.(C.16) (see Section C.7 for details on

the normalization), and get

〈gr〉 = gr (r, 0)− 1

3

∂%n

∂r
Z2. (C.17)

We have already calculated the derivative of the mass per cell, but not of %, so we replace
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Figure C.2: Gravitational field vs. radius for the initial column density profile in Chapters
4 and 5. The solid line shows the field of an infinitesimally thin disk, the dashed line the
calculation adopted by Basu and Mouschovias (1994). The dotted line is the field as we
calculate it.

the latter using the definition of the half-thickness, %n = Σn/2Z.

〈gr〉 = gr (r, 0)− 1

6
Z2∂ (Σn/Z)

∂r

= gr (r, 0)− 1

6

(
Z
∂Σn

∂r
− Σn

∂Z

∂r

)
(C.18)

If we multiply the column density with the area of each cell, we recover the mass in that

cell, and find

〈gr,i〉 = gr,i − 1

6

∂Mi

∂r

Zi
Ai

+
1

6

Mi

Ai

∂Zi
∂r

. (C.19)

Figs. C.2 and C.3 show the correction in terms of the dimensionless radius. Gravity

would be overestimated by less than 10% everywhere without the correction. Basu and

Mouschovias (1994) quoted an overestimation of the field of up to 40%. Note also that

the term ∂Z/∂r term is of considerable importance, as without it, the field would actually

be too small in the center by a factor of almost 5 .
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Figure C.3: Relative difference between the gravitational field of an infinitesimally thin
disk and that of one with finite thickness. The field is overestimated by less than 10%
everywhere, not by almost 40% as noted in Basu and Mouschovias (1994). This also shows
the importance of the ∂Z/∂r term: without it, the field would be underestimated by a
factor of 5 in the center.
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C.3.2 Gravity correction due to the disk’s finite extent

We also have to take into consideration the fact that our computational domain (i.e. the

disk) is of finite size. This will cause the gravitational field to diverge at the egde of the

cloud. Obviously, this is not a physical effect, since there always is matter outside the

cloud that will exert some force there, and therefore will moderate the diverging field.

We solve this problem by adding a constant amount of gravitational acceleration that

represents the material outside the disk. In practice, we simply add the difference between

the field of the finite disk, and that which is analytically-known for an infinite disk.

This difference is very small even a short distance away from the edge, but it effectively

counteracts the divergence effect at the edge. Since we are not interested in what happens

at the outermost edge of the cloud, this does not deteriorate the solution. Furthermore,

the dynamical timescale of material near the core’s edge is very long compared with that

of gas further in. As long as we do not run the code until the entire core has accreted

(which is unrealistic for other reasons as well), the effect of the edge is negligible.

C.3.3 Gravity correction for a central point mass

If a central point mass (implemented for instance as a sink cell) is present, there appears

another contribution to the pressure force, namely the extra pull towards the center. The

radial gravitational pull at height z over the disk is given by

gr = − GMF
r2 + z2

. (C.20)

However, the component of gravity we are interested in points in ẑ-direction, since can

be expressed as an extra weight W . As illustrated in Fig. C.4, gz can be calculated by

the simple relation

gz = gr cos θ = gr
z√

r2 + z2

= − GMFz

(r2 + z2)3/2
. (C.21)

Then, the weight W due to the extra vertical gravity gz can be calculated by

W = 2

∫ Z

0

%n |gz| dz = 2GMF%n

∫ Z

0

z

(r2 + z2)3/2
dz

=
2GMF
r

%n

[
1− 1

/√
1 + (Z/r)2

]
, (C.22)
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point
mass

r

z

gr
gz

Figure C.4: Illustration of the correction to the pressure force due to consideration of a
point mass.

where we used the familiar one-zone approximation. We replace the volume density by

the column density, using Z = Σn/2%n. The last expression may suffer from cancellation

error, but it can be transformed to avoid that

W =
2GMF
r

%n

[
1− 1

/√
1 + (Σn/2%nr)

2

]

=
GMFΣ2

n

2r3%n

[
1 + (Σn/2%nr)

2 +

√
1 + (Σn/2%nr)

2

]−1

. (C.23)

The weight is then added to Eq.(C.4a), the neutral pressure of a magnetic barotropic

slab of ideal gas, to get

Pn =
π

2
GΣ2

n + Pext +
B2
r

8π
+
B2
ϕ

8π
+W. (C.24)

This, however, poses a problem: we precisely perform the exercise of calculating Pn the

way presented in Section C.2.3 in order to avoid having to deal with the density explicitly

and then solve a non-linear equation for it. However this is exactly was Eq.(C.24) would

require.

The way to get around this is to solve the equation iteratively. First, we assume

W ≡ 0, and calculate the density and the scale height according to the prescription

given in Section C.2.3. With this, we compute a first approximation to the weight W at

every point of the cloud, and use this to calculate the neutral pressure again. We repeat

the process until W does not change anymore significantly. Only a handful of iterations

are usually sufficient. Obviously, the squeezing effect will be much greater for smaller r

than for a point near the cloud edge.
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C.4 Angular momentum equation

Analogous to the continuity equation and the momentum equation, we integrate the

angular momentum equation of our thin disk,

∂L

∂t
+

1

r

∂

∂r
(rLvr) = 2πrBz,eqBϕ, (C.25)

over each cell. This yields
∂Ji
∂t

= − [rLvr]
i
i−1 + rBϕΦ, (C.26)

where J = MΩr2 is the angular momentum, L = ΣΩr2 is its counterpart per unit area,

Bϕ is the azimuthal component of the magnetic field, and Φ is the magnetic flux.

C.5 Induction Equation

The three-dimensional induction equation reads

∂

∂t
B +∇× (B× vn) = −∇× (ηeff∇×B) (C.27)

When integrated over the area of each cell dAi, we get

∫ i

i−1

∂

∂t
B · dAi +

∫ i

i−1

∇× (B× vn) · dAi = −
∫ i

i−1

∇× (ηeff∇×B) · dAi. (C.28)

The first term is simply the time derivative of the magnetic flux Φ. The other terms are

treated with Stoke’s law.

∂

∂t
Φ +

∫ i

i−1

(B× vn) · dli = −
∫ i

i−1

(ηeff∇×B) · dli, (C.29)

where dli is the line element. Since in our geometry both (B× vn) ≡ Bz,eqvrϕ̂ and

(ηeff∇×B) ≡ c2η/4πjϕ point in ϕ̂-direction, so must be the line element. The first of

the remaining integral terms (the flux advection term) can be written as (this was shown

the component notation above)

∫ i

i−1

(B× vn) · dli = [rBz,eqvr]
i
i−1 (C.30)
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so, by analogy, the diffusion term becomes

−
∫ i

i−1

(ηeff∇×B) · dli = − c
2

4π
[rηjϕ]

i
i−1 =

[
rηeff

∂Bz,eq

∂r

]i

i−1

(C.31)

since j = c/4π∇×B and the c2/4π has been absorbed in the ηeff . The same result can

also be gleaned from the component notation

−
[∫ i

i−1

∇× (ηeff∇×B) · dAi

]

z

=

∫ i

i−1

1

r

∂

∂r

(
rηeff

∂

∂r
Bz,eq

)
rdr (C.32)

=

[
rηeff

∂Bz,eq

∂r

]i

i−1

(C.33)

Here, we used the fact that the z-component of the curl is r−1∂ (rBz,eq) /∂r, while the

ϕ-component is −r∂Bz,eq/∂r.

The overall form of the diffusion equation implemented in the code is therefore

∂Φi

∂t
=− [rvrBz,eq]

i
i−1 +

[
rηeff

∂Bz,eq

∂r

]i

i−1

. (C.34)

C.6 Calculation of magnetic field lines

We seek to visualize magnetic field lines above the disk, and use the method described in

Mestel and Ray (1985). We follow their derivation closely in the subsequent discussion.

They use an expression for a finite thin disk (as opposed to Morton et al., 1994 who

calculate the field lines assuming an disk with infinite extent).

We want to know the flux function, a function constant on individual field lines.

Connecting points on which the flux function assumes the same value therefore trace

field lines. It is defined by

B · ∇P = 0. (C.35)

It can be shown to be closely related to the magnetic vector potential A, by

P (r, z) = rA (r, z) , (C.36)

in cylindrical coordinates with a poloidal magnetic field, such as in our case.

The magnetic vector potential A ≡ ∇×B can be expressed in terms of the electric

current density j, by realizing that it is the solution to a Poisson equation. For that, we
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take the curl of B

∇×B = ∇× (∇×A) ,

= ∇ (∇ ·A)−∇2A,

= −∇2A,

≡ 4π

c
j, (C.37)

where the Coulomb gauge condition that ∇ ·A ≡ 0 was used.

Now, we can write down the general solution for the vector potential

A (r) =
1

c

∫
j dV

|r− r′| . (C.38)

Considering a magnetic field in the (r, z)-plane, the vector potential (and the current)

only has a component in ϕ̂-direction, and its solution can be written as

A (r, z) =
1

c

∫ R

0

∫ 2π

0

Jϕ (r′) r′dr′ cos θdθ
[
(r − r′ cos θ)2 + (r′ sin θ)2 + z2

]1/2
, (C.39)

where Jϕ is the sheet’s current density. Finally, realizing that there is a contribution to

the flux from an external field with field strength Bref as well, the overall flux function is

P (r, z) =
1

2
Brefr

2 +
r

2π

∫ R

0

Br (r′) r′dr′
∫ 2π

0

cos θ dθ

[r2 + r′2 − 2rr′ cos θ + z2]1/2
, (C.40)

where we have inserted Jϕ = Brc/2π. This can be derived by using Stoke’s theorem

on Eq.(C.37) integrated over an area. Furthermore, we have simplified the denominator

slightly.

Using the normalizations x = r/R and x′ = r′/R, the second (angular) part of the

integral can be transformed (see Mestel and Ray, 1985) to contain the form

∫ u

0

t2dt√
(α2 − t2) (β2 − t2) = α [F (η, t)− E (η, t)] , (C.41)

η = arcsin
u

β
, t =

β

α
.

The symbols F and E represent the (incomplete) Elliptic integrals of First and Second

Kind, and the integral identity is from Gradshteyn et al. (2007, §3.153.5, p. 280).

In our case, u = β, and the expression becomes
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4

αβ

∫ β

0

t2dt√
(α2 − t2) (β2 − t2) = α [K (β/α)− E (β/α)] . (C.42)

Here, K and E are the Complete Elliptic integrals for first and second kind, respectively,

and α and β are defined as

αβ = xx′, and (C.43a)

α2 + β2 = x2 + x′2 + z2. (C.43b)

Solving for α and β, we get

α2 =
1

2

[(
x2 + x′2 + z2

)
+

√
(x2 + x′2 + z2)2 − 4x2x′2

]
, (C.44a)

β2 ≡ x2x′2/α2,

= 2x2x′2
/[(

x2 + x′2 + z2
)

+

√
(x2 + x′2 + z2)2 − 4x2x′2

]
. (C.44b)

Note that α and β are symmetric in x and x′, and Eq.(C.42) is symmetric to the exchange

of α and β. We choose α > β, in accordance with Mestel and Ray (1985).

We could compute β using Eq.(C.44a) with a minus sign before the square root, but

instead chose the equivalent formulation Eq.(C.43a). This is advantageous for numerical

reasons, as it avoids large cancellation errors that can occur if x and/or x′ are small and

thus the expression under the square root is very close to the expression it’s subtracted

from.

Finally, we arrive at the following form of the flux function (recall the normalization

x = r/R)

P (x, z) =
1

2
Brefx

2R2 +
Bref

2π
R2G (x, z) , (C.45)

where

G (x, z) = 4

∫ 1

0

Br (x)α (x, x′, z) [K (β/α)− E (β/α)] dx′. (C.46)

A contour plot of the integral that is the flux function (with Br an output of our simula-

tions) will then yield the field lines. Of course, since Br is not a closed-form expression,

but rather is given by discrete values at each grid point, the integral has to be solved

numerically. Two examples are given in Fig. 4.3.

In order to construct a test of the integrator, we identify the derivative dE (k) /dk =
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k−1 [E (k)−K (k)], and can transform the integral to read

G (x, z) = −4

∫ 1

0

Br (x) β (x, x′, z)
dE (β/α)

d (β/α)
dx′,

= −4

∫ 1

0

Br (x) β (x, x′, z)
(
d (β/α)

dx′

)−1
dE (β/α)

dx′
dx′. (C.47)

We can now simply choose

Br =
d (β/α)

dx′
1

β
,

=
x

βα2

(
1− 2x′

α

)
, (C.48)

where we used the fact that β/a = xx′/α2. Note that now Br ≡ Br (x, x′, z), but since

x and z are constants for each evaluation of the integral, that is not a real problem. In

this case, we simply get

G (x, z) = −4

∫ 1

0

dE (β/α)

dx′
dx′ (C.49)

= −4 [E (β/α)]x
′=1
x′=0 = 2π − 4E (β/α)|x′=1 , (C.50)

and can use this to test the numerical integrator.
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C.7 Normalization and full system of equations

We normalize the MHD equations, Eqs.(5.1a) to (5.1e) in Section 5.2, by the following

values

Σ0 = 0.02 g cm−2 as the unit of column density, (C.51a)

2πGΣ0 = 8.38× 10−9 cm s−2 as the unit of acceleration, (C.51b)

cs = 1.88× 104 cm s−1 as the unit of velocity, and (C.51c)

2π
√
GΣ0 = 32.5 µG as the unit of magnetic field. (C.51d)

Eq.(C.51a) is the initial central column density, and Eq.(C.51b) is the vertical gravita-

tional acceleration of an infinite thin sheet of column density Σ0. The speed of sound in

a gas comprised of hydrogen molecules and 10% helium in number at a temperature of

10 K is the third unit. The unit of magnetic field is chosen purely out of convenience,

and would not strictly be necessary, as the other three quantities allow to uniquely form

a complete system of units already. It allows, however, to drop some factors of 2π from

the equations.

With these normalizations, we can construct our system of units:

[t] =
cs

2πGΣ0

= 2.24× 1012 s as the unit of time, (C.52a)

[L] =
c2s

2πGΣ0

= 4.23× 1016 cm as the unit of length, (C.52b)

[m] =
c4s

(2πG)2 Σ0

= 2.25× 1032 g as the unit of mass, and (C.52c)

[Ω] =
2πGσ0

cs
= 4.45× 10−13 s−1 as the unit of angular velocity. (C.52d)

The normalization is done to eliminate scale dependence, and to work with numbers closer

to unity. The former is not really possible for the collapse problem beyond the isothermal

phase, as the density at which the molecular gas becomes opaque sets a physical scale.

Furthermore, the chemistry calculations work with physical values. However, the latter

goal of more manageable numbers is still desirable.
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The full system of equations in this unit system then reads

∂Σn

∂t
=− 1

r

∂

∂r
(rΣnvr) , (C.53a)

∂ (Σnvr)

∂t
=− 1

r

∂

∂r
(rΣnvrvr) + fp + fg + fm + fr, (C.53b)

∂L

∂t
=− 1

r

∂

∂r
(rLvr) + rBz,eqBϕ,Z , (C.53c)

∂Bz,eq

∂t
=− 1

r

∂

∂r
(rBz,eqvr) +

1

r

∂

∂r

(
rηeff

∂Bz,eq

∂r

)
, (C.53d)

P =P (%n), (C.53e)

fp =− ∂

∂r

[
Z

2
Σ2

n

]
, (C.53f)

fg =Σngr, (C.53g)

fm =Bz,eq

(
Br,Z − Z∂Bz,eq

∂r

)
+

1

4π

dZ

dr

(
B2
r,Z +B2

ϕ,Z

)
, (C.53h)

fr =
L2

Σnr3
, (C.53i)

Br,Z =−
∫ ∞

0

dr′r′ (Bz,eq −Bref)M (r, r′) , (C.53j)

Bϕ,Z =−
√

8%ext

Bref

Φ

r
(Ω− Ωref) , (C.53k)

Φ =

∫ r

0

dr′r′Bz,eq, (C.53l)

gr =

∫ ∞

0

dr′r′Σn (r′)M (r, r′) , (C.53m)

M (r, r′) =
2

π

d

dr

1

r>
K

(
r<
r>

)
, (C.53n)

Z =
Σn

2%n

. (C.53o)
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C.8 Numerical Code

C.8.1 Programming Language

The code exists in two versions; one is written in Fortran90, the other in IDL (ITTVIS

Interactive Data Language). While Fortran offers greater execution speed, we did not

need to rely on that. Since we only solve the axisymmetric thin-disk MHD equations,

instead of the full three-dimensional problem, each run is fast enough that we almost

exclusively use the IDL version, and take advantage of higher-level programming, included

debugging, and advanced analysis tools that IDL offers.

C.8.2 Code description

• The code uses the finite-volume approach. Differential forms of conservation laws

are evolved, instead of the direct hydrodynamics equations.

• This is being done on a staggered grid : one grid holds the dependent variables

(mass, momentum, angular momentum, magnetic flux), while the other contains

the cell faces where fluxes are calculated with the van-Leer method (van Leer, 1977).

This scheme is TVD (Total Variation Diminishing) in that it ensures monotonicity

in all quantities, thus avoiding spurious maxima and minima. It is second-order in

space away from discontinuities, and first-order close to shocks. Godunov (1959)

showed that it is impossible to solve a PDE with second-order accuracy and not

create new extrema.

• This procedure allows to fulfill conservation laws to machine precision, preserve the

correct advection speed and avoid dispersion, while also being shock-capturing and

and resolving discontinuities over only a few cells. The last property removes the

need for artificial viscosity which introduces a lot of diffusivity into the code.

• The grids are logarithmic; the cell sizes increase by a constant factor from the

center to the edge, and allows the computational domain to cover a large size while

simultaneously resolving the central region with very high resolution.

• Our system is axisymmetric; we assume two-dimensional cylindrical symmetry

(only r and z-dependence). Additionally, we assume vertical hydrostatic equi-

librium, and thus solve the equations for a thin disk. This reduces the problem

to being radial -only, with an additional equation for the hydrostatic equilibrium.
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The z-dependence is covered in a one-zone approximation, and our and the disk is

assumed reflective symmetric about the equatorial plane.

• The boundary conditions at the center of the core are reflective. At the edge, we im-

pose constant-volume boundary conditions, assuming a high-temperature external

medium with negligible density and constant external pressure.

• We use the method of lines (Schiesser, 1991): only the spatial part of the PDEs

is discretized, the temporal part is left as a differential. Every quantity at every

grid point is treated as a separate dependent variable. Hence we are not dealing

with PDEs anymore, but rather a large system of coupled ODEs, which is solved

using an implicit of-the-shelf ODE solver. We use LSODE (Radhakrishnan and

Hindmarsh, 1993), which integrates the equations with the Gear algorithm (Gear,

1971) up to 12th order in time and is geared towards stiff ODEs. This approach

has the advantage of being unconditionally stable and thus not imposing a time

step restriction.

C.8.3 Code structure

The structure of the code is illustrated in Figs. C.5, C.6, and C.7. When code execu-

tion is started, if it is not a restart run, the normalized staggered logarithmic grid is

created. The integral method we used for calculating the gravitational field translates

into a matrix multiplication problem, and the coefficient matrix is purely geometrically

determined. Therefore it is constant on each refinement level, and is calculated next.

Similar considerations hold for the differentiation on a non-uniform grid.

Next, the initial conditions are implemented, and the evolution array is initialized

with them. It consists of mass, momentum, angular momentum, and magnetic flux. At

this point, the initial state is written to a data file, or, if a previous run was restarted,

that run’s data file loaded into memory.

Thereafter, LSODE is executed on the discretized spatial part of the equations (see

Fig. C.7). All variables such as column density and radial velocity besides the primary

quantities mentioned above can be derived from the latter, and are calculated in a subse-

quent step. This includes the rotation rate and the magnetic field components, as well as

the mass-to-flux ratio. The latter are needed to calculate the total mid-plane pressure,

which in turn determines the density, temperature, and half-thickness of the disk. This

comprises the next step in execution.

The magnetic field components are also involved in the computation of the torque

on the core due to magnetic braking. After this, the chemistry module is called. An
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equilibrium calculation, independent for each cell, fixes the abundances of the various

species. Those are required for the the determination of the resistitivity. Next, the forces

are calculated, and in a final step, all is put together as the fluxes of mass, momentum,

angular momentum, and magnetic flux across the cell faces are evaluated in the van-Leer

advection step.

After returning from LSODE, a check is performed whether to refine the grid and

increase the central resolution. If this happens, the necessary interpolations are carried

out, and all grid-related parameters are computed for the new grid. After this, data is

written out and the cycle repeats, if the stop conditions are not met.
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Figure C.5: Flow-chart of code execution: initialization. At the start of a run the
staggered grid and associated parameters such as the geometrical factor associated with
the adopted integral method for calculating the gravitational field, are initialized. Subse-
quently, the initial conditions in the primary evolution quantities mass, momentum, angular
momentum and magnetic flux are implemented, and the initial state is written out after
derived quantities have been calculated.
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Figure C.6: Flow-chart of code execution: main loop. The ODE solver (LSODE) is
executed on the discretized spatial part of the equations. This numerical step is shown
seperately in Fig. C.7. After returning, a check is performed whether to increase the
central resolution, and the necessary interpolations and new initializations are carried out.
After this, data is written out and the cycle repeats if the stop conditions are not met.
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Figure C.7: Flow-chart of code execution: numerical step. The derived quantities are
calculated from the evolution array. Next, in the pressure step, the temperature, density
and half-thickness are determined, followed by the calculation of the torque on the core
due to magnetic braking. After this, the chemistry module computes the abundances of
the various species required for the the determination of the resistitivity. Finally, the forces
are calculated, and the fluxes across the cell faces of the various quantities are evaluated
in the advection step.



Appendix D

The Bonnor-Ebert Sphere

The Bonnor-Ebert model provides a theoretical approach to the structure of small, iso-

lated, star-forming molecular clouds or prestellar cores for t < 0 (i.e., before the forma-

tion of a central protostar) confined by some external pressure. Since it is being used

extensively in the literature for fitting prestellar cores, and is being compared with in

Chapter 3, we include its derivation here. A non-magnetic, non-rotating, hydrostatic,

self-gravitating, isothermal gas cloud is described by the following system of equations:

%g −∇P = 0 (D.1a)

∇ · g = −4πG% (D.1b)

P = c2s%, (D.1c)

where % is the volume mass density, g is the gravitational acceleration, cs is the isothermal

speed of sound, and G is the gravitational constant. The equation of state is that of an

ideal gas. Inserting Eq.(D.1c) into Eq.(D.1a) and taking the gradient yields

c2s∇2 ln % = −4πG%,

where we have used Eq.(D.1b) to replace ∇ · g. Assuming spherical symmetry, we use

the radial form of the Laplacian, and perform a change of variables to % = %ce
−ψ (i.e.,

174
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ψ = − ln [%/%c]) and ξ = r/r0, with r2
0 = c2s/ (4πG%c). Some algebra then results in

1

ξ2

d

dξ

(
ξ2 dψ

dξ

)
= e−ψ, (D.2a)

ξ =
r

r0
=

r

cs

√
4πG%c, (D.2b)

ψ (ξ) = − ln

(
%

%c

)
, (D.2c)

which is the Lane-Emden Equation together with its defining quantities. It describes a

system in isothermal hydrostatic equilibrium in spherical geometry.

In order to solve the Lane-Emden equation numerically, it is first transformed to a

system of two first-order differential equations by defining

ψ (ξ) = u and
dψ (ξ)

dξ
= v.

Then, Eq.(D.2a) becomes

du

dξ
= v and

dv

dξ
= e−u − 2v

ξ
. (2.3a,b)

This initial value problem (IVP) in ξ can be solved numerically for the density distribution

ψ with any ODE solver with the starting conditions

(u)ξ=0 = 0,

(
du

dξ

)

ξ=0

= 0,

(
dv

dξ

)

ξ=0

=
1

3
. (D.4)

The initial conditions are obtained by assuming a Taylor expansion for ψ (ξ) = a0 +a1ξ+

a2ξ
2 + a3ξ

3 + · · · , for small ξ. The factors an can be thought of as the derivatives 1
n!

dnψ
dξn .

We can re-insert this expansion into Eq.(D.2a) and solve for the coefficients. Since the

problem is spherically symmetric, the density must be an even function about the origin

at ξ = 0, and all odd derivatives vanish. Secondly, since ψ (ξ) = − ln (%/%c), it is obvious

that ψ (0) = 0, and thus a0 ≡ 0 also. Expanding the exponential on the right hand side

and keeping only terms up to fourth order, we find

1

ξ2

d

dξ

(
ξ2 dψ

dξ

)
= e−ψ

1

ξ2

d

dξ

(
ξ2

[
2a2ξ + 4a4ξ

3 + 6a6ξ
5 + · · · ]) = 1− ψ + ψ2 − ψ3 + · · ·

6a2 + 20a4ξ
2 + 42a6ξ

4 + · · · = 1− a2ξ
2 − a4ξ

4 + · · ·+ a2ξ
4 + · · · .
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Figure D.1: Exponent k in % ∝ r−k for the Lane-Emden equation (solid line). Clearly, %
approaches r−2.

By comparison of coefficients, we finally arrive at

ψ (ξ) =
1

6
ξ2 − 1

120
ξ4 + · · ·

for small ξ. From this, the initial conditions in Eq.(D.4) are then deduced.

The regular solutions of Eq.(D.2a) (which is a special form of Poisson’s equation)

on an infinite (unbounded) domain have been studied and tabulated by Chandrasekhar

(1939a,b). In the limit %c →∞, one can find that the Singular Isothermal Sphere (SIS,

see Section 1.3) with % = c2s (2πGr2)
−1

is an exact solution. However, the solution always

asymptotically approaches % ∝ r−2 for any value of %c (cf. Fig. D.1).

The preceding discussion did not consider boundary conditions, so the solution can

be followed to infinite ξ and thus r. However, one can conceptually bound this spherical

cloud by external pressure. Then, the cloud is cut off as soon as its internal pressure

is equal to the external pressure. This work is due to Bonnor (1956) and Ebert (1955)

independently. The cloud is truncated at r = R, i.e. ξs = R/r0, where the subscript s

denotes the value at the surface. Eqs.(D.1a)-(D.1c) then combine to

c2s
d

dr
ln % = gr (R) . (D.5)

Switching once more from r and % to ξ and ψ, respectively, and assuming a spherically-
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symmetric mass distribution to simplify the gravitational acceleration, we find

c2s
r0

(
dψ

dξ

)

ξ=ξs

=
GM

R2
. (D.6)

This can be solved to yield for the mass M

M =
c3s

G3/2
√

4π%c

ξ2
s

(
dψ

dξ

)

ξ=ξs

. (D.7)

Furthermore, we have a condition for the external pressure Pext from Eq.(D.1c):

Pext = c2s% (R) = c2s
%s

%c

%c = c2se
−ψs%c. (D.8)

Solving this for the central density yields

%c =
Pext

c2se
−ψs

, (D.9)

which can be inserted into Eq.(D.7) and, in turn, solved for the external pressure

Pext =
c8s

4πG3M2
ξ4
s

(
dψ

dξ

)2

ξ=ξs

e−ψs . (D.10)

Virtually any combination of three parameters from physical radius R, external pres-

sure Pext, dimensionless cut-off radius ξs, central volume density %c, temperature T (and

thus sound speed cs), mass M , and density contrast eψ between center and surface will

allow to convert the dimensionless solution derived above into its dimensional form, yield-

ing the full internal structure of the Bonnor-Ebert sphere. Usually, the radius and the

temperature are observationally accessible, and thus fitting a third parameter, such as the

dimensionless radius ξs (related to the shape of the profile) will allow to make statements

about the cloud in question.

We plot the mass vs. the density contrast between center and edge eψs , and the

external pressure vs. the normalized cutoff radius ξs (Figure D.2). Each point on the

graph is now an equilibrium state corresponding to a certain outer radius ξs of the

sphere. The internal structure and the density contrast eψs of these states is known

from the numerical solution of the Lane-Emden Equation. As can be seen from the

Figure D.2, there are critical states of the system which form a dividing line between

stable and unstable equilibria. The critical relative radius is R = 6.451 r0. This is the

critical radius for stable equilibrium, and it corresponds to a critical ratio of densities
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Figure D.2: Left panel: Mass vs. eψ = %c/%s (central density over surface density) for
a Bonnor-Ebert Sphere. The peak marks the dividing line between stable and unstable
equilibria. Right panel: external pressure vs. dimensionless radius ξs. Here (different
from the mass graph) the unstable equilibria are located on the left of the maximum, and
the stable ones on the right.

of eψs = 14.043. Any larger density contrast would be unstable. Critical values for

external pressure and mass are easily computed to be Pext,crit = 17.564 M2 4πG3 c−3
s and

Mcrit = 4.191
√

4πG3%c c
−3
s , respectively.

The column density profile of the BE sphere, obtained by integrating the volume

density numerically along a line of sight, matches well with some observations (Alves

et al., 2001). Depending on the parameters, the power-law decline ∝ r−1 in column

density can be more or less pronounced, or even almost completely absent. The profile

steepens at the edge because the line of sight through the sphere becomes shorter. This

is a geometric effect which is present in all truncated models, unless the density increases

sufficiently fast with radius.

The BE model reproduces features of several observed column density profiles of

prestellar cores (such as the flat region and decrease in density described approximately

by a powerlaw), and is thus used extensively in the literature to fit those. However, it

has several shortcomings, including the key assumption of equilibrium and imposing a

temperature, instead of using it as an input parameter. Chapter 3 (published in Dapp

and Basu, 2009) details an analytic formula to be used instead of the BE model that is

not only easier to fit to observed cores, but also does not impose as many assumptions.

Furthermore it allows to fit flattened cores as well as cores where magnetic fields and
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rotation are important. The effect of rotation and magnetic fields on core collapse are

described in Sections 1.3.1 and 1.3.2.

Note that the derivation for a Lane-Emden equation can also be carried out assuming

a barotropic pressure-density relation instead of isothermal conditions. This is applicable

for conditions in stellar interiors (see, e.g., Kippenhahn and Weigert, 1994), but is beyond

the discussion here.
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