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Abstract

The Expectation-Maximization (EM) algorithm is an iterative algorithm for finding the max-
imum likelihood estimates in problems involving missing data or latent variables. The EM
algorithm can be applied to problems consisting of evidently incomplete data or missingness
situations, such as truncated distributions, censored or grouped observations, and also to prob-
lems in which the missingness of the data is not natural or evident, such as mixed-e↵ects
models, mixture models, log-linear models, and latent variables.

In Chapter 2 of this thesis, we apply the EM algorithm to grouped data, a problem in which
incomplete data are evident. Nowadays, data confidentiality is of great importance for many
companies and organizations. For this reason, they may prefer not to release exact data but
instead to grant researchers access to approximate data. For example, rather than providing the
exact measurements of their clients, they may only provide researchers with grouped data, that
is, the number of clients falling in each of a set of non-overlapping measurement intervals. The
challenge is to estimate the mean and variance structure of the hidden ungrouped data based
on the observed grouped data. To tackle this problem, this work considers the exact observed
data likelihood and applies the EM and Monte-Carlo EM (MCEM) algorithms for the cases
where the hidden data follow a univariate, bivariate, or multivariate normal distribution. The
well-known Galton data and simulated datasets are used to evaluate the statistical properties of
the proposed EM and MCEM algorithms.

In Chapters 3, 4 and 5, we apply the EM algorithm to a case in which the missingness
of the data is not evident by considering mixture models and latent variables to propose a
novel model-based clustering approach for single-cell RNA sequencing data. In biology, cells
can be distinguished by their phenotype, such as size and shape, or at the molecular level,
based on their genome, epigenome, and transcriptome. In this thesis, we focus on the tran-
scriptome, which includes all RNA transcripts in a given cell population, indicating the genes
being expressed at a certain time. We consider single-cell RNA sequencing data and develop a
novel model-based clustering method to group cells based on their transcriptome profiles. The
proposed clustering approach takes into account the large proportion of zeros present in the
data, which can be either true biological zeros or technological noise. The assumed model for
clustering is a mixture of either zero-inflated Poisson or zero-inflated negative binomial distri-
butions, and inference is conducted via the EM algorithm. The performance of the proposed
methodology is evaluated via simulation studies and analyses of published real datasets.
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Lay Summary

The Expectation-Maximization (EM) algorithm has many applications in Statistics for es-
timation purposes. In this thesis, we study the application of the EM algorithm from two
perspectives. One, for the situations in which the incomplete data are evident, and the other for
the cases that missingness of data is not evident.

In Chapter 2, we consider the application of the EM algorithm when the missingness in
the data is evident such as grouped data, in which we know the intervals of the data and the
frequencies over each interval. However, the exact raw data are not available. Assuming that
the data follow a normal distribution, we find the mean and variance estimates of the normal
distribution by applying the EM algorithm framework. We consider the cases of univariate,
bivariate, and multivariate normal grouped data. We evaluate the performance of the proposed
EM framework with simulated data and a publicly available dataset.

In the Chapters 3, 4, and 5, we study another application of the EM algorithm in which
the incomplete data is not evident such as mixture models. We consider the finite mixtures of
zero-inflated models to cluster cells based on their gene expression profiles by applying the EM
algorithm to estimate the model parameters. Our proposed clustering approach considers the
large proportion of zeros in the data, which can be either true biological zeros or technological
noise. Simulation studies are implemented to evaluate the performance of our proposed method
under di↵erent controlled scenarios. We also analyze publicly available biological datasets as
examples of applications.
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Chapter 1

Introduction

1.1 Thesis Overview

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977, McLachlan and Kr-
ishnan, 2008) is an iterative optimization algorithm for solving maximum likelihood (ML)
estimation problems in the presence of missing data or latent variables. The EM algorithm is
an alternative to numerical optimization algorithms such as Newton-Raphson. Each iteration
of the EM algorithm comprises two steps, the Expectation step (E-step) and the Maximization
step (M-step), demonstrating the reason for calling the algorithm the EM algorithm. The idea
of the EM algorithm is reformulating and associating the given incomplete-data problem with
a more straightforward complete-data problem for which the computation of ML estimates is
more amendable; i.e. the ML estimates of the complete-data problem have closed-form or can
be computed by using the standard computer optimization packages. The E-step of the EM
algorithm includes taking expectations of the complete-data log-likelihood given the observed
data and current parameter values. Then, by replacing the unobserved data with its conditional
expectations given the observed data and the current state of the parameters, the ML estimates
of the complete data in the M-step can be easily computed. Starting from appropriate initial
values, the E-step and M-step are repeated in each iteration of the EM algorithm until conver-
gence. The parameter estimates obtained at the convergence of the EM algorithm are the ones
that maximize the observed data log-likelihood. More details about the EM algorithm and its
convergence property are presented in Section 1.3.

The EM algorithm can be applied to problems consisting of evidently incomplete data
or missingness situations, such as truncated distributions, censored or grouped observations,
and also to problems in which the missingness of the data is not natural or evident, such as
mixed-e↵ects models, mixture models, log-linear models, and latent class and latent variable
structures (Dempster et al., 1977, Givens and Hoeting, 2013, McLachlan and Krishnan, 2008).

1



2 Chapter 1. Introduction

In this thesis, we consider applications of the EM algorithm framework to both cases: when the
incomplete data situation is evident (grouped data studied in Chapter 2), and it is not evident
(zero-inflated mixture models studied in Chapters 3, 4 and 5).

As mentioned above, one application of the EM algorithm is for situations in which in-
complete data are evident, such as grouped observations or grouped data (also referred to as
interval-based data). Some authors have used the EM algorithm to deal with the problem of
parameter estimation for grouped data from di↵erent contexts (Cadez et al., 2002, Heitjan,
1991, McLachlan and Jones, 1988, Teimouri, 2020). However, none of these authors has pre-
sented the exact formulae of EM parameter estimates for the bivariate and multivariate normal
grouped data. In addition, no previous study has considered the Monte-Carlo EM algorithm,
which is an extension of the traditional EM, for estimating the parameters of normally grouped
data for univariate, bivariate, and multivariate cases. Therefore, in Chapter 2 of this thesis,
we develop a comprehensive approach to the parameter estimation of the normally distributed
grouped data (univariate, bivariate, and multivariate grouped data) by applying the exact form
of the likelihood and then finding the parameter estimates via 1) numerical optimization using
the Newton-Raphson’s algorithm (we call this approach exact MLE), 2) EM algorithm and the
3) Monte-Carlo EM (MCEM) algorithm. We also compute the standard errors of the EM and
MCEM estimates within the EM framework for the mean parameters. We then apply and com-
pare the performance of the proposed EM and MCEM algorithms with that of the exact MLE
approach on both real and simulated data. For the real data application, we use the well-known
Galton data (Galton, 1889) and calculate the estimated parameters using each of the three ap-
proaches, including exact MLE, EM and MCEM, when the data are considered as normally
distributed grouped data for both univariate and bivariate cases. Simulation studies under vari-
ous scenarios, including varying sample sizes and number of bins (intervals), are implemented
to evaluate the statistical properties (bias and variance) of the proposed parameter estimates
obtained by the EM and MCEM algorithms and compare them with the ones obtained from the
exact MLE approach.

Another application of the EM algorithm is for cases in which the missingness of the data
is not natural or evident, such as mixture models, which is the focus of Chapters 3, 4, and 5
of this thesis. In these chapters, we propose and present the results of a novel model-based
clustering algorithm for zero-inflated count data motivated by the problem of clustering single-
cell RNA-sequencing (scRNA-seq) data based on their transcriptome profiles. scRNA-seq data
consist of a matrix where rows correspond to cells and columns to genes (or vice-versa) so that
the (i, j) entry of the matrix contains the number of sequencing reads (read counts) aligned to
the genomic coordinates of gene j in cell i. One important characteristic of scRNA-seq data
is the excess of zeros (zero inflation), mainly due to biological zeros (non-expressed genes)



1.2. Thesis Organization 3

or technological noises (e.g., sequencing errors). Some studies have proposed model-based
approaches to cluster or classify scRNA-seq data (Ji and Ji, 2016, Liu et al., 2019, Prabhakaran
et al., 2016, Sun et al., 2018, Zhang et al., 2019). However, none of these studies has dealt
with the zero-inflation feature of these data. Therefore, to cluster the cells of the scRNA-seq
data, we consider mixtures of either zero-inflated Poisson (ZIP) or zero-inflated Negative Bi-
nomial (ZINB) distributions, which take into account the excess of zeros for this type of data.
First, in Chapter 3, we describe the proposed EM algorithm to infer the cell-specific cluster
assignments and model parameters for the zero-inflated Poisson and the zero-inflated nega-
tive binomial mixture models, considering the cases without covariates and with covariates.
Then, in Chapter 4, we present the results of investigating the performance of our proposed
model-based clustering approaches under a variety of simulation scenarios, including varying
the number of cells (N), the number of genes (G), and the number of clusters (K), and also
varying some other model parameters. Finally, in Chapter 5, we apply the proposed models to
two publicly available data sets and compare the fitted models using the Aikaike Information
Criterion (AIC).

1.2 Thesis Organization

This thesis consists of six chapters. Maximum likelihood estimation, the Newton-Raphson
method and the Expectation-Maximization (EM) algorithm are briefly introduced in Sections
1.3, 1.4, and 1.5 in Chapter 1 since these inference techniques are used in Chapters 2 and
3. In Chapter 2, we address the problem of estimating the parameters of grouped data when
they are normally distributed (both univariate and multivariate cases) using the EM and Monte
Carlo EM (MCEM) algorithms (McLachlan and Krishnan, 2008). Chapter 2 corresponds to the
accepted version of a published manuscript, for which the full citation is: Aghahosseinalishi-
razi, Z., da Silva, J. P., de Souza, C. P. E., Parameter Estimation for Grouped Data Using EM
and MCEM Algorithms. (Aug 2022) Journal of Communication in Statistics-Simulation and
Computation, hppt://doi.org/10.1080/03610918.2022.2108843. Chapter 3 describes
our proposed model-based approach to cluster single-cell RNA sequencing data. Our model
is based on a mixture of zero-inflated distributions (Poisson or negative binomial), and param-
eter inference is done via EM. In Chapter 4, simulation studies are conducted under various
scenarios to evaluate the performance of the proposed zero-inflated Poisson and negative bi-
nomial (ZIP and ZINB) mixture models. In Chapter 5, the proposed model-based clustering
algorithms introduced in Chapter 3 are applied to published data sets. Chapter 6 presents the
conclusion and possible directions for future research work.

hppt://doi.org/10.1080/03610918.2022.2108843
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1.3 Maximum Likelihood Estimation

Let Y be a p-dimensional random vector with probability density function (or probability mass
function) f (y�✓), where ✓ = (✓1, . . . , ✓d)T is a vector of d unknown parameters. To find the max-
imum likelihood estimate (MLE) of ✓, ✓̂, we consider the likelihood function of an observed
random sample y = (yT

1 , . . . , yT
n )T of size n on the random vector Y , L(✓) =∏n

i=1 f (yi�✓), which
is a function of ✓ with each yi fixed. Thus, we find ✓̂ as a solution of:

@L(✓)
@✓

= 0

or equivalently, the solution of:
@ log L(✓)

@✓
= 0.

Let S (✓; y) = @ log L(✓)
@✓ be the gradient vector (the score statistic) with the first-order derivatives

of the log-likelihood function with respect to the parameter ✓, and the Hessian matrix with
second-order derivatives be denoted as:

H(✓; y) = @2 log L(✓)
@✓@✓T .

Under certain regularity conditions (Casella and Berger, 2002, McLachlan and Krishnan, 2008),
the Fisher information matrix I(✓) is given by:

I(✓) = E✓�S (✓; y) × S T(✓; y)� = −E✓�H(✓; y)�. (1.1)

By the asymptotic properties of maximum likelihood estimation (Casella and Berger, 2002,
McLachlan and Krishnan, 2008), the standard error of ✓i can be approximated by:

SE[(✓̂i)] ≈ (I−1(✓̂)) 1
2
ii

for i = 1, . . . ,d, where the notation (A)i j is denoting the element in the i-th row and j-th column
of matrix A. It is common to further approximate SE(✓̂i) using the observed information matrix
I(✓̂; y) = −H(✓̂; y) instead of the information matrix I(✓) evaluated at ✓ = ✓̂ (McLachlan and
Krishnan, 2008).

Often, in practice, the MLE of the log-likelihood function cannot be found analytically
and we have to compute ✓̂ as the MLE of ✓ iteratively by using Newton-Raphson maxi-
mization algorithm or alternatively Expectation-Maximization (EM) algorithm. Both Newton-
Raphson (NR) and EM algorithms are considered algorithms for finding the zeros of a function
(McLachlan and Krishnan, 2008).
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1.4 Newton-Raphson Method

The Newton-Raphson iterative method can be used for solving the likelihood equation (or
alternatively the log-likelihood equation) S (y; ✓) = 0. Using the linear Taylor series expansion
about the current estimate ✓(k) for ✓, we can approximate the gradient vector as follows:

S (✓; y) ≈ S (✓(k); y) +H(✓(k); y)(✓ − ✓(k)) (1.2)

Taking the right-hand side of (1.2) to be equal to zero leads to the new (updated) fit of ✓(k+1)
as:

✓(k+1) = ✓(k) −H−1(✓(k); y)S (✓(k); y). (1.3)

In practice,−H(✓(k); y) in (1.3) can be replaced by I−1(✓(k)) in (1.1), thus resulting in the Fisher
scoring update:

✓(k+1) = ✓(k) + I−1(✓(k); y)S (✓(k); y).
When the log-likelihood function is a concave, unimodal, and quadrative function of ✓,

then the sequence of iterates (✓(k)) converge to the MLE of ✓ in one step; however, if the log-
likelihood function is not concave, then the convergence of the Newton-Raphson algorithm
from an arbitrary starting value cannot be guaranteed. In this case, under reasonable assump-
tions of L(✓) and choosing an appropriately accurate starting value, then the Newton-Raphson
sequence of iterates (✓(k)) has local quadratic convergence to a solution ✓∗ of the equation
S (y; ✓) = 0. That means, given a norm ��.�� on the parameter space, for a ✓(0) su�ciently close
to ✓∗, there exists a constant ⇠ such that:

��✓(k+1) − ✓∗�� ≤ ⇠��✓(k) − ✓∗��2
for all k = 0,1,2, . . .. See McLachlan and Krishnan (2008) for more details.

1.5 Expectation-Maximization (EM) algorithm

Expectation-Maximization (EM) is an iterative method based on the maximum likelihood es-
timation framework when the observations are considered as incomplete data (Dempster et al.,
1977). Indeed, it is assumed that the complete data are generated from a random variable
Y = (X,Z), where X is used for generating the observed (incomplete) data and Z for the miss-
ing or latent data. EM can be applied in the presence of both continuous or discrete random
variables. In what follows, we describe the EM algorithm considering continuous variables and
their density functions; however, the same results can be obtained for discrete variables with
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their probability mass functions and integrals replaced by sums. The density of the missing
data given the observed data can be written as follows:

fZ�X(z�x, ✓) = fY(y�✓)
fX(x�✓) ,

where the observed data density is

fX(x�✓) = �
y

fY(y�✓)dy.

Let L(✓�x) be the observed data likelihood, that is, fX(x�✓) when x is fixed and we vary
⇥. The goal is maximizing L(✓�x) (or equivalently log L(✓�x)) with respect to ✓ using the EM
algorithm to find ✓̂. We define Q(✓; ✓(t)) as the conditional expectation of the complete-data
log-likelihood, log L(✓�y), given the observed data x and the current set of parameter estimates
✓(t), that is:

Q(✓; ✓(t)) = E� log L(✓�y)�x, ✓(t)�
= E� log fY(y�✓)�x, ✓(t)�
= � � log fY(y�✓)� fZ�X(z�x, ✓(t))dz. (1.4)

Starting from a initial value ✓(0), the EM algorithm iterates between the Expectation (E) and
Maximization (M) steps until convergence as follows:

1) E-Step: Compute Q(✓; ✓(t));
2) M-Step: Obtain the updated estimate ✓(t+1) by maximizing Q(✓; ✓(t)) w.r.t. ✓;

3) Return to Step 1 until convergence.

The convergence criterion can be built upon � log L(✓(t+1)�x) − log L(✓(t)�x))�.
At each step of the EM algorithm, the likelihood increases. Therefore, the parameter esti-

mates ✓̂ obtained at the convergence of the EM algorithm are the ones that maximize log L(✓�x).
In fact, using the EM algorithm for the problem of finding MLEs is so popular because of the
simplicity in implementing the algorithm and being able to reach the global optimum after
some uphill steps. To show this convergence property of the EM algorithm, we first express
the observed data log-likelihood as:

log L(✓�x) = log fY(y�✓) − log fZ�X(z�x, ✓). (1.5)



1.5. Expectation-Maximization (EM) algorithm 7

Then by taking expectation from both sides of (1.5) with respect to the distribution of Z�x, ✓(t),
we have:

E� log L(✓�x)�x, ✓(t)� = E� log fY(y�✓)�x, ✓(t)� − E� log fZ�X(z�x, ✓)�x, ✓(t)�
which leads to

log L(✓�x) = Q(✓; ✓(t)) −G(✓; ✓(t)),
where G(✓; ✓(t)) = E� log fZ�X(z�x, ✓)�x, ✓(t)�.

Now, to show that the observed data log-likelihood increases as Q(✓; ✓(t)) increases in each
EM iteration, we need to show that the G function decreases (or stays at the same value) for
any ✓ ≠ ✓(t). By applying Jensen’s inequality, we obtain:

G(✓(t); ✓(t)) −G(✓; ✓(t)) = E
������� log fZ�X(z�x, ✓(t)) − log fZ�X(z�x, ✓)�x, ✓(t)

�������
= � − log

fZ�X(z�x, ✓)
fZ�X(z�x, ✓(t)) fZ�X(z�x, ✓(t))dz

≥ − log� fZ�X(z�x, ✓)dz = − log 1

= 0.

Then, choosing ✓(t+1) as the maximizer of Q(✓; ✓(t)) with respect to ✓, we have that:

log L(✓(t+1)�x) ≥ log L(✓(t)�x)
as Q increases and G decreases (Dempster et al., 1977, Givens and Hoeting, 2013, McLachlan
and Krishnan, 2008).

Sometimes the M-step of the EM algorithm is complicated and, therefore, Meng and Rubin
(1993) propose an extension of the EM algorithm, which they call the Expectation-Conditional
Maximization (ECM) algorithm. The idea of this extension is to simplify the M-step by under-
taking the maximization conditionally on some of the parameters (or functions of the parame-
ters). For example, suppose a parameter set ✓ = (✓1, ✓2); one can apply the ECM algorithm by
replacing the M-step with two CM steps. In the first CM step, fixing ✓(t)2 at its current value,
we find the new ✓(t+1)

1 , then, in the second CM step, the new/updated estimate of ✓(t+1)
2 is found

by fixing ✓1 at its new estimate ✓(t+1)
1 . More details about the ECM algorithm can be found in

McLachlan and Krishnan (2008).

Moreover, sometimes, it might be challenging to compute Q(✓; ✓(t)) in the E-step of the
EM algorithm. In that situation, we can simulate a sample of size m of the missing data (or
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latent variables) z(t)1 , . . . , z
(t)
m from its conditional distribution f (z�x; ✓(t)) and replace Q(✓; ✓(t))

by its Monte-Carlo approximation given by:

Q̂(✓; ✓(t)) = 1
m

m�
j=1

log Lc(✓; x, z(t)j ).
Thus, the M-step at iteration (t + 1) can be computed by maximizing Q̂(✓; ✓(t)) with respect to
✓. This alternative version of the EM algorithm is called Monte Carlo EM (MCEM) algorithm
(Givens and Hoeting, 2013, McLachlan and Krishnan, 2008, Wei and Tanner, 1990a,b).



Chapter 2

Parameter Estimation for Grouped Data
Using EM and MCEM Algorithms

2.1 Introduction

Nowadays, protecting data confidentiality, security, and integrity is of great importance for
governments, organizations, and companies (Chen and Miljkovic, 2018, Huang et al., 2016,
Minoiu and Reddy, 2009, Wu and Perlo↵, 2007). For these reasons, these institutions might
not release exact raw data to researchers, analysts, or even the public. Rather, they prefer
to release data such as household income, house prices, insurance losses, profits, and age in
an interval format. The interval format can contain either grouped data (Velez and Correa,
2015) or symbolic data (Bock and Diday, 2000). This work focuses on grouped data, where
for a particular variable, only the intervals and the frequency of observations falling into each
interval are known. Table 2.1 shows how univariate grouped data can be represented.

Table 2.1: Univariate grouped data representation.

Interval Frequencies[a0,a1) n1[a1,a2) n2⋮ ⋮[ak−1,ak) nk

Total n

As can be seen from the grouped data representation in Table 2.1, these data are histogram-
based and, therefore, continuous. Continuous data can follow di↵erent distributions, including
normal, log-normal, and Weibull.

9
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Many studies have been conducted on grouped data from di↵erent perspectives. Tallis
(1967) has obtained approximate maximum likelihood estimates of the parameters for univari-
ate and multivariate grouped data. Stewart (1983) has dealt with the problem of estimating
the parameters of a linear model using data in which the dependent variable is only observed
to fall in certain intervals on a continuous scale, with its actual values remaining unobserved.
McLachlan and Jones (1988) have considered the fitting of finite mixture models to univari-
ate grouped and truncated data using the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977, McLachlan and Krishnan, 2008). Heitjan (1989) has considered Bayesian methods
to analyze this type of data. In another study, Heitjan (1991) has applied Newton-Raphson’s
method and the EM algorithm to find parameter estimates of bivariate regression analysis for
grouped data. Cadez et al. (2002) have extended the work in McLachlan and Jones (1988)
to multivariate grouped data by using numerical techniques to evaluate the multidimensional
integrals at each iteration of the EM algorithm. Wengrzik and Timm (2011) have studied
the performance of di↵erent methods for fitting a two-component Gaussian mixture model to
univariate grouped data. Velez and Correa (2015) have estimated the mean, variance, and co-
e�cient of variation for univariate grouped data using their proposed bootstrap method. More
recently, Teimouri (2020) has applied the EM algorithm on univariate grouped data arising
from a mixture of skew-normal distributions.

The aim of this study is to find the parameter estimates for grouped data when they are
normally distributed for the univariate, bivariate, and multivariate cases using the exact form
of the likelihood. Therefore, the estimation approach of McLachlan and Jones (1988) and
McLachlan and Krishnan (2008) for univariate grouped data with missing counts is considered
and extended to the univariate, bivariate, and multivariate cases without missing counts using
both the EM and Monte Carlo EM (Wei and Tanner, 1990a,b) algorithms. To the authors’
knowledge, no other study has yet presented the exact formulae of EM parameter estimates for
the bivariate and multivariate normal grouped data, as is done in this work. This work also
contains the formulae to obtain standard errors for the EM and Monte Carlo EM (MCEM)
mean estimates. In summary, three possible approaches for parameter estimation of grouped
data are presented: 1) maximum likelihood estimation (MLE) by numerical optimization of
the exact grouped data likelihood (Exact MLE), 2) maximizing the exact likelihood using the
EM algorithm, and 3) same as (2), but using the MCEM algorithm. All three methods are
implemented in R and available at https://github.com/desouzalab/infgrouped.

This study is organised as follows. In Section 2.2, the estimation methods for grouped data
are presented. In Section 2.2.1, univariate normal grouped data are considered, and parameter
estimates are provided for the three methods described in the previous paragraph. In Section
2.2.2, the proposed methods are applied to bivariate grouped data and extended to multivariate

https://github.com/desouzalab/infgrouped
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normal grouped data. Standard errors for the EM and MCEM mean estimates are presented in
Section 2.2.3. Section 2.3 deals with numerical applications. In Section 2.3.1, the proposed
methods are applied to the well-known Galton data (Galton, 1889). Simulation studies for
univariate and bivariate normal grouped data are described in Section 2.3.2. Finally, in Section
2.4, results and conclusions are discussed.

2.2 Methods

2.2.1 Univariate Normal Grouped Data

Exact MLE

It is assumed that the unobserved data come from a normal distribution with parameters ✓ =
(µ,�) and denoted by N(µ,�). Let f (x; ✓) be the density function of N(µ,�). According
to k + 1 pre-established partitioned points a0 < a1 < ⋅ ⋅ ⋅ < ak−1 < ak, let ni be the number
of observations that fall into the interval Xi = [ai−1,ai) for 1 ≤ i ≤ k, a0 = −∞ and ak =+∞. Furthermore, it is assumed that the observed data y = {n1, . . . ,nk} follow a multinomial
distribution with n = ∑k

i=1 ni draws over k categories (intervals), with the probability of being
in category i equal to Pi(✓)�P(✓), where

Pi(✓) =
ai

�
ai−1

f (x; ✓)dx,

with P(✓) = ∑K
i=1 Pi(✓) = 1. Therefore, the log-likelihood function for the observed data y (also

called the incomplete-data log-likelihood) can be written as:

log L(✓) = k�
i=1

ni log Pi(✓) +C. (2.1)

Let �(⋅) and �(⋅) be the density and the cumulative distribution function (CDF), respec-
tively, of a standard normal distribution. Therefore, the density of N(µ,�) can be written as:

f (x;µ,�) = 1
�
�( x − µ

�
),

where −∞ < µ < ∞ and � > 0. By applying the reparametrization ✓1 = µ�� and ✓2 = 1��,
the parameters are changed from ✓ = (µ,�) to ✓ = (✓1, ✓2). Now let the CDF of N(µ,�) be
�(✓2t−✓1). Then the log-likelihood in (2.1) can be written as a function of ✓1 and ✓2 as follows
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(see also Xia et al. (2009)):

log L(✓) = n1 ln ��(✓2a1 − ✓1)� + nk ln �1 −�(✓2ak−1 − ✓1)� +
k−1�
i=2

ni ln ��(✓2ai − ✓1) −�(✓2ai−1 − ✓1)� +C, (2.2)

where C is a constant term that does not depend on ✓. This reparametrization does not a↵ect
the results because of the invariance property of maximum likelihood estimators (Casella and
Berger, 2002).

The parameter estimates ✓̂1 and ✓̂2 can be obtained by maximizing (2.2) with respect to ✓ =
{✓1, ✓2} using Newton-Raphson numerical methods such as those implemented in the optim()
function in R.

Parameter Estimation via the EM Algorithm

In a similar manner to McLachlan and Jones (1988), McLachlan and Krishnan (2008), Park
(2006), to find ✓̂ that maximizes log L(✓) in (2.1) within the EM framework, the vector of xi =(xi1, xi2, . . . , xini)T , for i = 1, . . . , k, should be introduced as missing (unobservable) data. In fact,
for each interval Xi = [ai−1,ai), xi consists of ni independent unobservable data points falling
into that interval. Hence, the complete-data vector can be written as w = (yT , xT

1 , . . . , xT
k )T .

Furthermore, given y, each xil has a density function f (xil�y) = f (xil; ✓)�Pi(✓) for l = 1, . . . ,ni

and i = 1, . . . , k, where Pi(✓) is introduced above. Therefore, the complete-data likelihood can
be written as

Lc(✓) ≡ f (w; ✓)
= f (x�y; ✓)p(y; ✓)
= k�

i=1

ni�
l=1

f (xil; ✓)
Pi(✓) ×

k�
i=1
(Pi(✓))ni ×C

∝ �
i
�

l
f (xil; ✓),

and its corresponding log-likelihood as

log Lc(✓) = k�
i=1

ni�
l=1

log f (xil; ✓) +C. (2.3)

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is a common it-
erative approach for computing the ML estimates in the case of incomplete or missing data
problems. Implementing the EM algorithm needs starting values and alternatively iterates be-



2.2. Methods 13

tween two steps, the Expectation (E)- and Maximization (M)-steps, until convergence occurs.
The following describes the E and M steps of the proposed EM approach.

E-Step:
The E-step calculates the expectation of the complete-data log-likelihood in (2.3) conditional
on y and the current parameter estimates (✓(p)). Disregarding the constant term, the expectation
of the log Lc(✓) conditional on y and ✓(p) is given by:

Q(✓, ✓(p)) ≡ E✓(p)� log Lc(✓)�y� = k�
i=1

niE✓(p)� log f (X; ✓)�X ∈ Xi�,
where the expectation is taken with respect to the density f (x; ✓(p))�Pi(✓(p)).

Therefore, for the normally distributed grouped data, we can write:

Q(✓, ✓(p)) = −1
2

n{log(2⇡) + log�2} − 1
2
�2

k�
i=1

niE✓(p)
�������(X − µ)

2�X ∈ Xi

�������.

M-Step:
The M-step of the EM algorithm maximizes Q(✓, ✓(p)) with respect to ✓ at iteration p + 1

to produce new estimates ✓(p+1) = (µ(p+1),�(p+1))T . By using the idea of interchanging the
di↵erentiation and the expectation (the Leibniz integral rule), Q(✓, ✓(p)) can be di↵erentiated
with respect to ✓ = (µ,�) to obtain the following updated estimates:

µ(p+1) = ∑k
i=1 niE✓(p)(X�X ∈ Xi)

n
(2.4)

and

�2(p+1) = ∑
k
i=1 niE✓(p)�(X − µ(p+1))2�X ∈ Xi�

n
, (2.5)

where n = ∑k
i=1 ni. The derivation of the expectations in (2.4) and (2.5) can be found in Ap-

pendix A.1.

Parameter Estimation via the MCEM Algorithm

Instead of calculating the exact form of the expectations in (2.4) and (2.5), one can apply
the Monte Carlo EM (MCEM) algorithm (McLachlan and Krishnan, 2008, Wei and Tanner,
1990a,b), in which the required expectations are replaced with an average over simulations.
The unobserved data xi, for i = 1, . . . , k, can be simulated (sampled) from the truncated univari-
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Table 2.2: Bivariate grouped data representation.

x1�x2 [b0,b1) [b1,b2) � [bs−1,bs) Total[a0,a1) n11 n12 � n1s n1.[a1,a2) n21 n22 � n2s n2.⋮ ⋮ ⋮ ⋮ ⋮ ⋮[ar−1,ar) nr1 nr2 � nrs nr.

Total n.1 n.2 � n.s n

ate normal distribution f (x; ✓(p))�Pi(✓(p)) over each specific i-th interval. Now, considering M
as the number of observations generated for each interval in the Monte Carlo simulation, the
simulated sample for the i-th interval can be written as (xi1, . . . , xiM), and the MCEM updates
are:

µ(p+1) = 1
n

k�
i=1

ni
1
M

M�
h=1

xih

and

�2(p+1) = 1
n

k�
i=1

ni
1
M

M�
h=1
(xih − µ(p+1))2.

2.2.2 Bivariate and Multivariate Normal Grouped Data

Exact MLE for Bivariate Normal

The derivation of the exact MLE for bivariate normal grouped data is much like that for the
univariate case, except that the multinomial probabilities depend on the bivariate normal CDF
calculated over rectangles instead of intervals. The probability of a bivariate random variable
X = (X1,X2) belonging to a rectangle X1 ×X2 of the form [ai−1,ai) × [bj−1,bj); for i = 1, . . . , r
and j = 1, . . . , s, is

Pi j(✓) ≡ P(ai−1 ≤ X1 < ai,bj−1 ≤ X2 < bj)
=

ai

�
ai−1

b j

�
b j−1

f (x1, x2; ✓)dx1dx2

= F✓(ai,bj) − F✓(ai−1,bj) − F✓(ai,bj−1) + F✓(ai−1,bj−1),
where f (.; ✓) and F✓(.) are the bivariate normal density function and cumulative distribution
function, respectively; with parameters ✓ = (µx1 , µx2 ,�x1 ,�x2 ,⇢).

For each rectangle (or cell in Table 2.2), the frequencies ni j, for i = 1, . . . , r and j = 1, . . . , s,
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are known, and therefore the following multinomial likelihood can be assumed for them:

L(✓) = n!
∏r

i=1∏s
j=1 ni j

r�
i=1

s�
j=1
�Pi j(✓)

P(✓) �
ni j

,

where n = ∑r
i=1∑s

j=1 ni j and P(✓) = ∑r
i=1∑s

j=1 Pi j(✓) = 1. Hence, the exact log-likelihood
function is:

log L(✓) = r�
i=1

s�
j=1

ni j log Pi j(✓) +C

= r�
i=1

s�
j=1

ni j log �F✓(ai,bj) − F✓(ai−1,bj) − F✓(ai,bj−1) + F✓(ai−1,bj−1)� +C (2.6)

To find the MLEs of the parameters in ✓, the log-likelihood function in (2.6) is maximized
using numerical methods implemented by the nlm() function in R.

Parameter Estimation via the EM Algorithm

Extending the ideas of the univariate case, the goal is to maximize the exact log-likelihood for
bivariate grouped data (see Equation (2.6)); using the EM approach. Therefore, the first step is
to introduce x as missing observations in array form as:

x = �(x1ik, x2 jk) for i = 1, . . . , r; j = 1, . . . , s; k = 1, . . . ,ni j�.
Then the complete-data w = �y, x� can be defined over the rectangles, and their log-likelihood
can be written as:

log Lc(✓) = log L(✓) + r�
i=1

s�
j=1

ni j�
k=1

log
f (x1ik, x2 jk; ✓)

Pi j(✓)
= r�

i=1

s�
j=1

ni j log Pi j(✓) +C + r�
i=1

s�
j=1

ni j�
k=1

log
f (x1ik, x2 jk; ✓)

Pi j(✓)
= r�

i=1

s�
j=1

ni j�
k=1

log f (x1ik, x2 jk; ✓) +C (2.7)

The following presents the proposed E and M steps of the EM algorithm.

E-Step:
The E-step calculates the expected value of (2.7) given y and the current ✓(p), that is,

Q(✓, ✓(p)) ≡ r�
i=1

s�
j=1

ni jQi j(✓, ✓(p)), (2.8)
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where

Qi j(✓, ✓(p)) = E✓(p)
������� log f �(X1,X2); ✓��(X1,X2) ∈ (Xi1 ×X2 j)

�������,

with the expectation taken with respect to the density f ((x1, x2); ✓(p))�Pi j(✓(p)).
M-Step:

The M-step aims to find the parameter updates that maximize (2.8). Using a similar frame-
work as in Section 2.1.2, the results are:

µ(p+1)
x1 = ∑

r
i=1∑s

j=1 ni jE✓(p)�X1�(X1,X2) ∈ (Xi1 ×X2 j)�
n

(2.9)

µ(p+1)
x2 = ∑

r
i=1∑s

j=1 ni jE✓(p)�X2�(X1,X2) ∈ (Xi1 ×X2 j)�
n

(2.10)

�2(p+1)
x1 = ∑

r
i=1∑s

j=1 ni jE✓(p)�(X1 − µ(p+1)
x1 )2�(X1,X2) ∈ (Xi1 ×X2 j)�

n
(2.11)

�2(p+1)
x2 = ∑

r
i=1∑s

j=1 ni jE✓(p)�(X2 − µ(p+1)
x2 )2�(X1,X2) ∈ (Xi1 ×X2 j)�

n
(2.12)

⇢(p+1) = ∑
r
i=1∑s

j=1 ni jE✓(p)�(X1 − µ(p+1)
x1 )(X2 − µ(p+1)

x2 )�(X1,X2) ∈ (Xi1 ×X2 j)�
n

(2.13)

The expectations in (2.9) to (2.13) are the moments of a truncated bivariate normal distribu-
tion ( f (x1, x2; ✓(p))�Pi j(✓(p))) and, therefore, can be calculated using the results of Manjunath
and Wilhelm (2021) (for details, see Appendix A.2). To compute these expectations in R, we
use the package tmvtnorm available at https://cran.r-project.org/.

MCEM for Bivariate Grouped Data

The MCEM algorithm can be used to replace the expectations in (2.9) to (2.13) by the average
of simulated values. That means that M random samples of (X1,X2) are simulated (sampled)
from the truncated bivariate normal distribution f ((x1, x2); ✓(p))�Pi j(✓(p)) over the rectangles,
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and then their averages are used to replace the expectations in the EM parameter updates,
obtaining the following MCEM-based parameter estimates:

µ(p+1)
x1 = ∑i∑ j ni j

1
M ∑M

h=1 x1ih

n
,

µ(p+1)
x2 = ∑i∑ j ni j

1
M ∑M

h=1 x2 jh

n
,

�2(p+1)
x1 = ∑i∑ j ni j

1
M ∑M

h=1(x1ih − µ(p+1)
x1 )2

n
,

�2(p+1)
x2 = ∑i∑ j ni j

1
M ∑M

h=1(x2 jh − µ(p+1)
x2 )2

n
, and

⇢(p+1) = ∑i∑ j ni j
1
M ∑M

h=1(x1ih − µ(p+1)
x1 )(x2 jh − µ(p+1)

x2 )
n

.

Extension of EM and MCEM to Multivariate Normal Grouped Data

By extending the ideas of univariate and bivariate normal grouped data, it is possible to find
the parameter estimates (mean vector and covariance matrix) for multivariate normal grouped
data using a matrix notation. Let (x1, . . . , xd) be an unobservable vector arising from a d-
dimensional multivariate normal distribution with parameters of (µ,⌃). Consider r1r2�rd

as the number of d-dimensional surfaces of the form X1i1 × X2i2 × ⋅ ⋅ ⋅ × Xdid = [a1i1−1,a1i1] ×[a2i2−1,a2i2] × ⋅ ⋅ ⋅ × [adid−1,adid] for i1 = 1, . . . , r1; i2 = 1, . . . , r2; . . . , id = 1, . . . , rd. Let ni1,...,id

be the observed number (count) of data points falling in each surface. These observed counts
form a multinomial likelihood as follows:

L(µ,⌃) ≡ n!
∏r1

i1=1 ⋅ ⋅ ⋅∏rd
id=1(ni1,i2,...,id)!

r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1
�Pi1,i2,...,id(µ,⌃)

P(µ,⌃) �ni1 ,...,id

where n = ∑i1 ⋅ ⋅ ⋅∑id ni1,...,id ,

Pi1,i2,...,id(µ,⌃) ≡
a1i1

�
a1i1−1

�
adid

�
adid−1

f (x1, . . . , xd)dxd . . .dx1,

and
P(µ,⌃) ≡ r1�

i1=1
⋅ ⋅ ⋅ rd�

id=1
Pi1,i2,...,id(µ,⌃) = 1,

with f (x1, . . . , xd) being the probability density function of a multivariate normal distribution
with parameters (µ,⌃). Representing the observed data as y = �ni1,...,id for i1 = 1, . . . , r1; . . . ; id =
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1, . . . , rd�, the goal is to maximize

log L(µ,⌃) =�
i1
⋅ ⋅ ⋅�

id
ni1,...,id Pi1,...,id(µ,⌃) +C,

with respect to (µ,⌃) using the EM framework.

Let x = �(x1i1k, x2i2k, . . . , xdidk) for i1 = 1, . . . , r1; . . . ; id = 1, . . . , rd; k = 1,2, . . . ,ni1,...,id� be
the missing vectors of observations. Thus, considering the complete data as w = �y, x�, the
complete-data log-likelihood function can be written as:

log Lc(µ,⌃) = log L(µ,⌃) + r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1

ni1 ,...,id�
k=1

log
f �(x1i1k, x2i2k, . . . , xdidk); (µ,⌃)�

Pi1,...,id(µ,⌃)
= r1�

i1=1
⋅ ⋅ ⋅ rd�

id=1
ni1,...,id log Pi1,...,id(µ,⌃) +C

+ r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1

ni1 ,...,id�
k=1

log
f �(x1i1k, x2i2k, . . . , xdidk); (µ,⌃)�

Pi1,...,id(µ,⌃)
= r1�

i1=1
⋅ ⋅ ⋅ rd�

id=1

ni1 ,...,id�
k=1

log f �(x1i1k, x2i2k, . . . , xdidk); (µ,⌃)� +C

The E-step and M-step of the EM algorithm are described as follows.

E-Step:

The E-step calculates:

Q�(µ,⌃); (µ,⌃)(p)� = r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1
ni1,...,id Qi1,...,id�(µ,⌃); (µ,⌃)(p)�,

where

Qi1,...,id�(µ,⌃); (µ,⌃)(p)� =
E(µ,⌃)(p)

������� log f �(X1, . . . ,Xd); (µ,⌃)��(X1, . . . ,Xd) ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)
�������.
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Hence,

Q�(µ,⌃); (µ,⌃)(p)� =�
i1
⋅ ⋅ ⋅�

id
ni1,...,id

E(µ,⌃)(p)�� − d
2

log(2⇡) + 1
2

log(�⌃�−1) − 1
2
(X − µ)T⌃−1(X − µ)��(X1, . . . ,Xd) ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)�

=�
i1
⋅ ⋅ ⋅�

id
ni1,...,id

������� −
d
2

log(2⇡) + 1
2

log(�⌃�−1)
−1

2
tr
������⌃
−1E(µ,⌃)(p)�(X − µ)(X − µ)T �(X1, . . . ,Xd) ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)�

������
�������.

M-Step:
The M-step maximizes Q�(µ,⌃); (µ,⌃)(p)� w.r.t (µ,⌃), obtaining:

µ(p+1) = 1
n

r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1
ni1,...,id E(µ,⌃)(p)

�������X�(X1, . . . ,Xd) ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)
������� (2.14)

⌃(p+1) = 1
n

r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1
ni1,...,id×

E(µ,⌃)(p)
��������(X − µ

(p+1))(X − µ(p+1))T��(X1, . . . ,Xd) ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)
�������. (2.15)

The expectations in (2.14) and (2.15) are the moments of a truncated multivariate normal
f (x1,...,xd;(µ,⌃))

Pi1 ,...,id (µ,⌃) and as in the bivariate case, the results in Manjunath and Wilhelm (2021) can be
used to calculate these moments, as shown in Appendix A.2. In our R code, these expectations
are computed using the package tmvtnorm.

An alternative approach to calculating these expectations is to use the MCEM algorithm.
The MCEM approach first simulates (samples) M multivariate random samples of X = (X1, . . . ,Xd)
from the truncated multivariate normal distribution f (x1,...,xd;(µ,⌃))

Pi1 ,...,id (µ,⌃) over all surfaces and then re-
places the expectations in (2.14) and (2.15) with the averages of the simulated sample vectors
obtaining the following parameter updates:

µ(p+1) = 1
n

�������i1 ⋅ ⋅ ⋅�id ni1,...,id
1
M

M�
h=1

xih

������
and

⌃(p+1) = 1
n

�������i1 ⋅ ⋅ ⋅�id ni1,...,id
1
M

M�
h=1
(xih − µ(p+1))(xih − µ(p+1))T������.
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2.2.3 Standard Errors for the EM and MCEM mean Estimates

Following the ideas in Chapter 4 of McLachlan and Krishnan (2008), standard errors for the
EM estimates for grouped data can be obtained using an approximation of the observed in-
formation matrix, which is called the empirical observed information matrix, Ie,g. For the
univariate grouped data, Ie,g can be calculated as:

Ie,g(✓̂; y) = r�
i=1

nisi(✓̂)sT
i (✓̂) − ns̄(✓̂)s̄T(✓̂), (2.16)

where s̄(✓̂) = 1
n ∑r

i=1 nisi(✓̂), si(✓̂) = @Qi(✓,✓̂)
@✓ �✓=✓̂, and ✓̂ contains the EM estimates.

Similarly, the empirical observed information matrix for multivariate grouped data is as
follows:

Ie,g(µ̂, ⌃̂; y) = r1�
i1=1
⋅ ⋅ ⋅ rd�

id=1
ni1,...,id si1,...,id(µ̂, ⌃̂)sT

i1,...,id(µ̂, ⌃̂) − ns̄(µ̂, ⌃̂)s̄T(µ̂, ⌃̂) (2.17)

where si1,...,id(µ̂, ⌃̂) = @Qi1,...,id�(µ,⌃); (µ̂, ⌃̂)�
@(µ,⌃) �(µ,⌃)=(µ̂,⌃̂).

The inverse of Ie,g demonstrates an approximation of the covariance matrix of the EM
estimates, with the diagonal containing the standard errors.

For our study, we calculate the standard error for the EM estimates of µ and µ using equa-
tions (2.16) and (2.17), respectively, and fixing the variance-covariance parameter values to the
ones obtained by the EM algorithm. Using the notation from the previous sections, we can
show that the score function for µ for univariate grouped data is:

si(µ̂, �̂2) = 1
�̂2 E�(X − µ̂)�X ∈ Xi�,

and for the multivariate case, it is:

si1,...,id(µ̂, ⌃̂2) = E�(X − µ̂)�X ∈ (X1i1 × ⋅ ⋅ ⋅ ×Xdid)�T
⌃̂−1.

Using these score functions, we also obtain standard errors for the mean MCEM estimates
using the Louis’ approach (Louis, 1982) as described in Chapter 6 of McLachlan and Krishnan
(2008) with all expectations replaced by the averages of observations simulated using the final
MCEM estimates.

We use the standard errors (se) proposed above to construct 95% confidence intervals of
the form: µ̂ ± 1.96se(µ̂).
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2.3 Results

2.3.1 Galton Data

The Galton dataset was first introduced by Francis Galton in 1886 (Galton, 1889, Hanley,
2004) and consists of a two-way frequency table containing the number of parents and chil-
dren falling into di↵erent possible height intervals. The individual height observations are not
available; only the frequencies (grouped data) are available. Moreover, for each interval, the
midpoints (as the averages of the lower and upper limits of the intervals) are also available.
This data set is a well-known example of normally distributed grouped data. The Galton data
are electronically and publicly available in the R package HistData. In this study, each of the
variables (parent’s height and child’s height) was first analyzed separately as univariate normal
grouped data before considering the bivariate case. The results are provided in the following.

Univariate Case

First, the exact MLE of the parameters with the assumption of normal distribution of both
parent height and child height data were obtained using the approach described in Section 2.2.1.
As described, for the grouped data, the exact likelihood estimation was conducted numerically
using the R functions optim() and nlm (L-BFGS-B method); the results are shown in Table
2.3 under Exact MLE. Note that the numerical maximization of the exact likelihood is highly
sensitive to initial values. The parameter estimates using the EM algorithm to maximize the
exact likelihood were then found, along with those using the MCEM algorithm. The results
for both EM and MCEM algorithms are also presented in Table 2.3. As can be expected by the
convergence properties of the EM algorithm (McLachlan and Krishnan, 2008), its estimates
were close to those obtained by direct maximization of the exact likelihood (mean absolute
relative di↵erence (MARD) across parameters = 0.005672%). The MCEM estimates were
also close to the Exact MLE results (MARD = 0.020222%), but not as close as the EM results,
which was also expected from the properties of the MCEM (McLachlan and Krishnan, 2008).

Table 2.3: Estimates of the mean and variance (Var) of parent and child height variables (con-
sidering the univariate case) from the Galton data using the three proposed methods. The
standard error (se) for each mean estimate is also provided. For EM and MCEM, standard er-
rors are obtained using the methods in Section 2.2.3. For exact MLE, standard errors are found
using the observed information matrix and the delta method.

Method Mean parent (se) Mean child (se) Var parent Var child
Exact MLE 68.30030 (0.05967) 68.09834 (0.084364) 3.24432 6.50945

EM 68.30026 (0.03818) 68.09834 (0.05232) 3.24482 6.50971
MCEM 68.30070 (0.05992) 68.09600 (0.08435) 3.24312 6.50763
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Bivariate Case

In this case, the Galton data were considered as bivariate grouped data and the methods pro-
posed in Section 2.2.2 were used to find the parameter estimates. The results for all five param-
eters (including mean of parents, mean of children, variance of parents, variance of children,
and correlation of heights between parents and children) are shown in Table 2.4. Note that as
mentioned in Section 2.2.2, for parameter estimates using the exact MLE method for bivariate
data, the nlm() and optim() functions in R were used. The EM estimates were closest to those
from the exact MLE method, with mean absolute relative di↵erence over the five parameters
of 0.0012%.

Table 2.4: Estimates of mean, variance (Var) and correlation (Corr) parameters for bivariate
Galton data using the three proposed methods. Standard errors (se) for the mean estimates are
also provided. For EM and MCEM, standard errors are obtained using the methods in Section
2.2.3. For exact MLE, standard errors are found using the observed information matrix.

Method Mean parent Mean child Var parent Var child Corr
Exact MLE 68.300475(0.059918) 68.098651(0.084394) 3.243895 6.513746 0.470162

EM 68.300495(0.059656) 68.098736(0.084259) 3.243960 6.513621 0.470171
MCEM 68.302157(0.058073) 68.098961(0.070917) 3.248326 6.514850 0.469763

2.3.2 Simulation Studies

In this section, the parameter estimation methods for normally distributed grouped data are
applied to simulated data for both the univariate and bivariate cases.

Univariate Simulation

In this study, we conducted simulations on 15 di↵erent scenarios obtained by varying the sam-
ple size n (50, 100, 300, 600 and 1000) and the number of equal-sized intervals (or bins,
k = 8,15, and 30). For each scenario, 500 univariate datasets (in total 7500 datasets) are sim-
ulated. All simulated data are from a univariate normal distribution with parameters µ = 68
and � = 2.5 (�2 = 6.25). Moreover, according to Booth and Hobert (1999) and McCulloch
(1997), as the number of MCEM iterations for the univariate data was between 10 to 30, we fix
the number of Monte Carlo simulations for MCEM estimates to M = 1000. We use the mean
absolute di↵erence between current and updated estimates as a stop criterion for both EM and
MCEM algorithms.

The parameters (µ and �) are estimated using the three methods described in Section 2.2.1:
Exact MLE, EM algorithm and MCEM algorithm. For all the methods, we set the initial
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values of the parameters as µ = 67,� = 2. The root mean squared error (RMSE) of µ and �
over 500 samples are presented in Tables 2.5 and 2.7. Box plots of the parameter estimates
obtained across all di↵erent scenarios are shown in Figures 2.1 and 2.2. We can observe that
for all parameters and all bin sizes the RMSE of the estimates of Exact MLE, EM, and MCEM
decrease as the sample size n increases.

To evaluate the performance of our proposed standard errors for the mean estimates, we
calculate the empirical coverage (EC) of 95% confidence intervals of the form µ̂ ± 1.96se(µ̂).
We observe in Table 2.6 that most of the ECs are close to the established confidence level of
95%. In addition, we can observe that the standard deviations of the mean estimates are close
to the mean of the proposed standard errors as expected.

Bivariate Simulation

For bivariate data we simulated 500 datasets for each sample size n of 50, 100, 300, 600, and
1000 with 10 equal intervals for each variable (X1 and X2) resulting in 100 rectangles and 2500
datasets. Datasets are simulated from a bivariate normal with parameters µx1 = 68, µx2 = 68,
�2

x1
= 3, �2

x2
= 6, cov(X1,X2) = 2. The initial values selected for exact MLE, EM and MCEM

methods are µx1 = 67, µx2 = 67, �2
x1
= 3.2, �2

x2
= 6.2, cov(X1,X2) = 2.227106. According to

Booth and Hobert (1999) and McCulloch (1997), the number of Monte Carlo simulations to
obtain the MCEM estimates was fixed to M = 5000 as the number of MCEM iterations for
bivariate data was more than 40. As in the univariate case, we use the mean absolute di↵erence
between current and updated estimates as a stop criterion for both EM and MCEM algorithms.

Figures 2.3 to 2.7 present the box plots of the parameter estimates for each method and
di↵erent sample sizes. Our results also show that the Exact MLE, EM and MCEM yielded
very similar estimates as expected even for the smaller n of 50. In addition, we can observe
in Table 2.8 that the root mean squared error (RMSE) of the estimates decreases as the sample
size n increases for all parameters and methods. Table 2.9 shows the ECs for 95% confidence
intervals of the form µ̂±1.96se(µ̂) for both µx1 and µx2 . We observe that in most cases the ECs
are close to the established 95% level of confidence for both EM and MCEM methods.

2.4 Discussion and Conclusion

We have proposed three approaches, namely, Exact MLE, EM and MCEM algorithms, to
estimate the parameters of normally distributed grouped data. The univariate, bivariate and
multivariate normal cases were considered, and parameter estimates using each method were
presented. For the exact MLE approach, by considering the counts’ distribution to be multi-
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nomial, with probabilities based on the normal CDFs, the exact data log-likelihood could be
formulated, and the MLE values could be found using numerical methods. For EM and MCEM
algorithms, using the exact observed-data log-likelihood, the complete-data log-likelihood was
computed, and the parameter estimates were obtained in closed forms using the formulas pre-
sented in Sections 2.2.1 and 2.2.2.

To compare the methods, first, we considered the well-known Galton data, and parameter
estimates were found for the cases of univariate and bivariate grouped data. Next, the mean ab-
solute relative di↵erences between the estimates obtained by Exact MLE and the other methods
(EM and MCEM) were calculated. They showed that EM led to the closest results to the exact
MLE. Then, simulation studies were implemented for the univariate and bivariate cases for
di↵erent scenarios. For most parameters, the results from the EM and MCEM algorithms were
similar to the ones from the exact MLE, as expected by their convergence properties shown in
Chapters 1 and 3 of McLachlan and Krishnan (2008).

Based on our results, we conclude that there are some advantages and drawbacks regarding
the three methods. The exact MLE method leads to e�cient and unbiased estimates; however,
there is no closed-form for the parameter estimates, and they are found using numerical opti-
mization methods. Moreover, this method is susceptible to the optimization method and initial
values. In comparison, in our analyses, the EM and MCEM methods were not as sensitive
to initial values as the Exact MLE method. In addition, for both EM and MCEM algorithms,
there are specific and closed formulae for the parameter estimates. We have not extensively
studied the behaviour of the methods when changing the ratio of n over k by fixing n and vary-
ing k; however, based on the available simulation results, we noticed that when k (number of
bins/intervals) becomes larger, while n (sample size) is small, the exact MLE method does not
perform as well as the EM and MCEM approaches. That is because we might have some empty
intervals or intervals with a very small number of observations in those situations, and that af-
fects the performance of the exact MLE; however, as the EM and MCEM use the expectations
(or simulated averages) over the intervals, we can see better behaviour of these approaches.
This could be further investigated in future work on this topic.
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Table 2.5: Simulation results: univariate case. RMSE of mean estimates of 500 simulated samples for
n = 50,100,300,600, and 1000 and number of intervals (bins) k = 8,15, and 30 over three estimation
methods.

RMSE for Means
Method n k = 8 k = 15 k = 30
Exact MLE 50 0.34368 0.34848 0.80577

100 0.25917 0.25484 0.73227
300 0.13859 0.15677 0.62772
600 0.10698 0.10678 0.33962
1000 0.07972 0.08207 0.22194

EM 50 0.34369 0.34849 0.37453
100 0.25917 0.25485 0.25459
300 0.13859 0.15678 0.14536
600 0.10697 0.10678 0.10202
1000 0.07972 0.08207 0.07917

MCEM 50 0.34369 0.34845 0.37479
100 0.25922 0.25501 0.25457
300 0.13893 0.15668 0.14526
600 0.10705 0.10687 0.1022
1000 0.07976 0.08243 0.07925
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Table 2.6: Simulation results: univariate case. Average standard error (SE) and empirical coverage
(EC) (over 500 simulated datasets) for the EM and MCEM estimates of µ for n = 50,100,300,600,1000,
and k = 15 number of intervals (bins).

Standard Errors for Mean Estimates
n Method Ave. µ̂ (std µ̂) Ave. SE for µ̂ EC
50 EM 68.00287872 (0.34882416) 0.36509683 94.8

MCEM 68.00295812 (0.34879046) 0.35490471 94.6
100 EM 67.99932895 (0.25510392) 0.25597085 94.4

MCEM 67.99935779 (0.25526480) 0.25237501 93.8
300 EM 68.00202742 (0.15692531) 0.14679516 92.8

MCEM 68.00153299 (0.15683075) 0.14610848 92.4
600 EM 67.99406868 (0.10672629) 0.10381674 94.2

MCEM 67.99370576 (0.10679113) 0.10354026 94.0
1000 EM 67.99913644 (0.08215109) 0.080350265 93.8

MCEM 67.99914431 (0.08250915) 0.080233290 93.8
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Table 2.7: Simulation results: univariate case. RMSE of variance estimates of 500 simulated samples
for n = 50,100,300,600, and 1000 and number of intervals (bins) k = 8,15, and 30 over three estimation
methods.

RMSE for Variances
Method n k = 8 k = 15 k = 30
Exact MLE 50 1.40998 1.26072 1.90078

100 0.93567 0.89101 1.2376
300 0.54813 0.50938 1.00808
600 0.39345 0.35808 0.49013
1000 0.30994 0.29212 0.45055

EM 50 1.40998 1.2607 1.28548
100 0.93576 0.89092 0.86004
300 0.54812 0.50927 0.5132
600 0.39336 0.35814 0.35481
1000 0.31006 0.29215 0.29758

MCEM 50 1.40989 1.26103 1.2848
100 0.93697 0.89189 0.86105
300 0.55068 0.50973 0.51382
600 0.39327 0.35742 0.3557
1000 0.31167 0.29247 0.29938
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Table 2.8: Root mean squared errors (RMSE) of bivariate parameters (µx1 , µx2 , �2
x1

, �2
x2

, ⇢) across
500 data sets for each sample size n = 50,100,300,600,1000 with 10 intervals for each variable (100
rectangles) and three methods used.

Parameter Sample size Exact MLE EM MCEM
µx1 50 0.252397 0.252381 0.252402

100 0.17686 0.176857 0.176825
300 0.099135 0.099115 0.099109
600 0.06756 0.067556 0.067578
1000 0.054078 0.054073 0.054092

µx2 50 0.337363 0.337353 0.337348
100 0.250034 0.250038 0.250025
300 0.140965 0.140715 0.140641
600 0.101405 0.101408 0.101358
1000 0.075395 0.075394 0.075369

�2
x1

50 0.636113 0.635723 0.63575
100 0.438604 0.438275 0.438731
300 0.244176 0.244165 0.244096
600 0.187619 0.187514 0.187396
1000 0.138219 0.13813 0.138106

�2
x2

50 1.306861 1.305404 1.30616
100 0.953621 0.952149 0.953117
300 0.519407 0.519655 0.520149
600 0.378151 0.376675 0.376777
1000 0.287702 0.286377 0.287136

⇢ 50 0.115697 0.115659 0.115676
100 0.081728 0.081703 0.081697
300 0.044546 0.044568 0.044561
600 0.033404 0.033389 0.033383
1000 0.026724 0.026709 0.026731
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Table 2.9: Simulation results: bivariate case. Average standard error (SE) and empirical cover-
age (EC) (over 500 simulated datasets) for the EM and MCEM estimates of µx1 and µx2 for n =
50,100,300,600,1000, and 100 rectangles.

Parameter n Method Ave. µ̂ (sd µ̂) Ave. SE for µ̂ EC
µx1 50 EM 67.99029176 (0.25244727) 0.24601741 0.942

MCEM 67.99024615 (0.25246634) 0.23884756 0.934
100 EM 68.01838946 (0.17607445) 0.17393201 0.936

MCEM 68.01840550 (0.17604050) 0.16872550 0.934
300 EM 67.99715989 (0.09917395) 0.10089726 0.966

MCEM 67.99715451 (0.09916721) 0.09782386 0.958
600 EM 67.99817344 (0.06759916) 0.07171556 0.966

MCEM 67.99813458 (0.06762007) 0.06942490 0.960
1000 EM 67.99940268 (0.05412395) 0.05552854 0.946

MCEM 67.99927880 (0.05414088) 0.05376547 0.942
µx2 50 EM 67.98844687 (0.33749244) 0.34712279 0.934

MCEM 67.98851100 (0.33749043) 0.28934334 0.892
100 EM 68.01415707 (0.24988641) 0.24504268 0.950

MCEM 68.01411880 (0.24987648) 0.20503459 0.898
300 EM 67.99908176 (0.14085275) 0.14285627 0.958

MCEM 67.99912894 (0.14077926) 0.11950836 0.900
600 EM 67.99156129 (0.10115777) 0.10078140 0.948

MCEM 67.99151371 (0.10110339) 0.08452820 0.892
1000 EM 67.99395405 (0.07522677) 0.07822683 0.954

MCEM 67.99405000 (0.07520861) 0.06556686 0.918
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Figure 2.1: Simulation results: univariate case. Mean estimates for k = 8, 15 and 30 intervals
(bins) for sample sizes n = 50,100,300,600,1000. True mean value µ = 68.
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Figure 2.2: Simulation results: univariate case. Variance estimates for k = 8, 15 and 30
intervals (bins) for sample sizes n = 50,100,300,600,1000. True variance value �2 = 6.25.
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Figure 2.3: Simulation results: bivariate case. Estimates of µx1 for sample sizes of n =
50,100,300,600,1000, and k = 10 intervals for each variable. The horizontal solid line corre-
sponds to the true value µx1 = 68.
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Figure 2.4: Simulation results: bivariate case. Estimates of µx2 for sample sizes of n =
50,100,300,600,1000, and k = 10 intervals for each variable. The horizontal solid line corre-
sponds to the true value µx2 = 68.
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Figure 2.5: Simulation results: bivariate case. Estimates of �2
x1
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Figure 2.7: Simulation results: bivariate case. Estimates of ⇢ for sample sizes of n =
50,100,300,600,1000, and k = 10 intervals for each variable. The horizontal solid line corre-
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Chapter 3

Model-based Clustering of Single-Cell
RNA Sequencing Data

3.1 Introduction to single-cell sequencing

Cells are the essential units in biology. For many years, biologists have been interested in
discovering more about the distinct cell types in multi-cellular organisms. Cells can be dis-
tinguished by their phenotype such as size and shape or at the molecular level, based on their
genome, epigenome, and transcriptome. In this thesis, we focus on the transcriptome, which
includes all ribonucleic acid (RNA) transcripts present in a given cell population indicating the
genes that are being expressed at any given time. So far, most of the technologies and analyses
have studied the expression of RNA at the population (bulk) level, in which the transcriptome
of thousands or millions of cell are measured and averaged simultaneously. Although studies
at the bulk level of gene expression (via bulk RNA sequencing, (Cloonan et al., 2008, Mor-
tazavi et al., 2008)) are informative, any heterogeneity within a population of cells is largely
concealed in these types of studies (Trapnell, 2015). Thanks to advances in sequencing tech-
nologies and the need for dissecting the cells of more complex tissues such as the brain, gene
expression profiling at the individual-cell (single-cell) level can be carried out, as a power-
ful, high resolution tool for biological and disease discoveries (Saliba et al., 2014, Tanay and
Regev, 2017). Statistical and computational methods to analyze single-cell RNA sequencing
(scRNA-seq) data provide an opportunity for researchers to study the heterogeneity between
individual cells and identify cell types based on their transcriptome (Andrews and Hemberg,
2018, Macaulay and Voet, 2014).

37
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Table 3.1: Example of a raw count table from scRNA-Seq data.

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 � Gene 24,175
Cell 1 0 1 0 1 4 0 � 0
Cell 2 3 3 3 0 1 0 � 0
Cell 3 1 2 0 1 3 1 � 0
Cell 4 0 1 0 1 1 0 � 0
Cell 5 0 0 0 0 0 0 � 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Cell 1616 0 0 0 0 0 0 � 0

Indeed, single-cell genomics is bringing many new insights into the discoveries of complex
and rare cell types including cancer stem cell and progenitor cells as well as many unrecog-
nized cell types in various tissues such as neural immune and digestion systems, and studying
diseases and cell development/lineage processes.

The process of single-cell RNA sequencing (scRNA-seq) includes four main steps.

A) Creating single-cell suspension using an isolation method.

B) Cell lysis and whole genome amplification.

C) Library preparation and sequencing.

D) Mapping the reads to the reference genome. Thus the expression of a gene can be mea-
sured by the number of reads aligned within its genomic coordinates (the so-called read
counts or counts).

Because the amount of RNA material per cell is limited, some transcripts are not detected
during sequencing leading to a high number of dropouts (zero counts) in the generated scRNA-
seq data (Kharchenko et al., 2014). In addition, some of the observed zero counts correspond
to true biological zeros (no expression). Therefore, it is not surprising to have a count matrix
with more than 50% of its entries equal to zero. This leads to an excess of zeros (zero-inflation)
in the count matrix of scRNA-seq data which is an important characteristic of these data. Table
3.1 demonstrates an example of raw read counts from single-cell RNA sequencing data (mouse
embryonic stem cell data in Klein et al. (2015) before gene filtering analysed in Chapter 5) in
which we can observe the feature of excess of zeros. This feature of zero-inflation creates some
challenges for the statistical analysis of scRNA-seq data, where most methods that have been
used for bulk RNA-seq data should be modified for scRNA-seq data or novel methods should
be developed (Lähnemann et al., 2020).

Methods to analyse scRNA-seq data generally include the following steps:
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1) Pre-processing: Pre-filtering, sometimes normalization of raw counts, quality control.

2) Confounding factors: Feature extraction, dimensionality reduction.

3) Cell type identification: Cell clusters.

4) Cell type characterization: Di↵erentially expressed genes.

5) Signature and driving force analysis: Cell type specific gene signature, cell type spe-
cific driving forces.

In this thesis, the focus is on the clustering step (step 3 above). Cell type identification
by clustering scRNA-seq data is challenging due to the excess of zero counts (zero-inflation).
Therefore, our goal is to find a proper model-based clustering approach to deal with this type of
zero-inflated data. Before describing my thesis contributions along with the proposed method-
ology (Sections 3.3 and 3.4 respectively), in Section 3.2 we review some of the published work
on clustering scRNA-seq data.

3.2 Literature review on clustering scRNA-seq data

The process of clustering refers to partitioning data into subgroups or clusters where the obser-
vations falling into each group have more similarity to each other compared with points from
the other clusters. In what follows, we introduce six di↵erent types of clustering methods that
are commonly applied to scRNA-seq data.

• Partitioning-based clustering: This approach classifies data iteratively into K disjoint
clusters based on using an optimization function that should be minimized, and the
most common feasible methods to solve the optimization problem are K-means and K-
medoids. In this method, we need to set the number of clusters K in advance (Ayramo
and Karkkainen, 2006, Gan et al., 2007).

• Hierarchical clustering: For this type of clustering method, unlike the partitioning-
based algorithm, there is no need to select the number of clusters initially. The results
form a dendrogram, which is a tree-based representation. The most common hierarchical
clustering is agglomerative clustering in which each data point is considered as a cluster
in the first step, and the most similar clusters are merged iteratively (by using a proximity
matrix) to reach either K clusters or one cluster (James et al., 2017).

• Model-based clustering: In this type of clustering, we assume that data arise from a
probabilistic model, usually a finite mixture distribution. Model parameters and cluster
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assignments are estimated using maximum likelihood estimation approaches such as the
EM algorithm or Bayesian techniques such as the Gibbs sampler algorithm (Fraley and
Raftery, 2002).

• Graph-based clustering: First, considering a similarity matrix of data, a graph repre-
sentation of the data is constructed based on the k-nearest neighbour graph approach.
Then, through applying the hierarchical clustering algorithm, the most similar subclus-
ters are merged based on closeness and the relative interconnectivity of the clusters (Gan
et al., 2007).

• Density-based clustering: In this kind of clustering, points concentrated in dense re-
gions are considered cluster dense, and points are called noise if they do not belong to
clusters (Gan et al., 2007). An example of a clustering method of this type is DBSCAN
(Ester et al., 1996).

• Deep-learning-based clustering: This type of clustering applies a deep clustering net-
work using first a deep autoencoder as an artificial neural network for unsupervised learn-
ing to represent high dimensional data in lower dimensions (Cheng and Ma, 2022, Lopez
et al., 2018). Then, running K-means or other clustering algorithms on the representa-
tion vector learned by deep auto-encoder tends to give better results compared with the
simple K-means for example.

Table 3.2 presents some of the existing tools for clustering scRNA-seq data based on each
type of clustering approach described above. Each of these tools is briefly described as follows.

Partitioning-based tools include SC3 (Kiselev et al., 2017), SIMLR (Wang et al., 2017),
RaceID (Grun et al., 2015), and RaceID2 (Grun et al., 2016). SC3 applies K-means to data
after dimensionality reduction (conducted via principal component analysis - PCA) consider-
ing di↵erent types of dissimilarities. SIMLR is a dimensionality reduction technique and its
framework can be used to perform K-means clustering after dimensionality reduction. RaceID
is a tool developed to deal with rare cell type identification in a complex population of scRNA-
seq data. After some preprocessing steps such as normalizing and removing counts with low
gene expression levels, the K-means clustering method is used for the purpose of cell type
identification. In RaceID2, K-means is replaced by K-medoids.

Several authors have considered hierarchical clustering. In CIDR (P. Lin and Ho, 2017),
a PCA-based algorithm is used as an imputation method to reduce the impact of dropouts in
scRNA-seq data. Then, hierarchical clustering is performed on the first few principal com-
ponents, and the optimal number of clusters is determined using the Calinski-Harabasz index
(Caliński and Harabasz, 1974). PcaReduce (žurauskienė and Yau, 2016) applies hierarchical
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Type of clustering Methods
Partitioning SC3 (Kiselev et al., 2017)

SIMLR (Wang et al., 2017)
RaceID, RaceID2 (Grun et al., 2015, 2016)

Hierarchical CellBIC (Kim et al., 2018)
Corr (Jiang et al., 2018)

CIDR (P. Lin and Ho, 2017)
PcaReduce (žurauskienė and Yau, 2016)

Tasic et al. (Tasic et al., 2016)
MPath (Chen et al., 2016a)

BACKSPIN (Zeisel et al., 2015)
SINCERA (Guo et al., 2015)

Model-based BasClu (Liu et al., 2019)
DIMM-SC (Sun et al., 2018)

TSCAN (Ji and Ji, 2016)
BISCUIT (Prabhakaran et al., 2016)

Graph-based Secuer (Wei et al., 2022)
RGGC (Liu, 2021)

Scanpy (Wolf et al., 2018)
Park and Zhao (Park and Zhao, 2018)

BiSNN-walk (SHI and HUANG, 2017)
Seurat (Satija et al., 2015, Satija, 2015)

Phenograph (Levine et al., 2015)
SNN-Cliq (Xu and Su, 2015)

SPARC (Li et al., 2015)
Density-based PanoView (Hu et al., 2019)

GiniClust (Lan Jiang and Yuan, 2016)
Deep-learning based scGAC (Cheng and Ma, 2022)

scGMAI (Yu et al., 2021)
ScDCC (Tian et al., 2021)
DCA (Eraslan et al., 2019)

ScDeepCluster (Tian et al., 2019)
scVI (Lopez et al., 2018)

Table 3.2: Some of the existing methods for clustering scRNA-seq data per type of clustering
approach.
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clustering to a reduced representation of the data obtained also via PCA. Zeisel et al. (2015)
proposes BackSpin, an unsupervised biclustering method that sorts the expression matrix by
cell-to-cell and gene-to-gene similarity without using dimensionality reduction. MPath (Chen
et al., 2016a) performs hierarchical clustering by deriving multi-branching development us-
ing neighbourhood-based cell state transitions. Tasic et al. (2016) iteratively clusters cells in
the principal component space and then splits cells into groups until they reach a termination
criterion. SINCERA (Guo et al., 2015) is a computational pipeline for scRNA-seq data that
includes hierarchical clustering to group cells according to their gene expression profiles. Kim
et al. (2018) developed CellBIC, which implements a top-down approach of hierarchical clus-
tering to cluster scRNA-seq data based on their modality in the gene expression distribution.
Jiang et al. (2018) proposes Corr, which uses a similarity metric based on cell-to-cell di↵eren-
tiability correlations in the hierarchical clustering framework.

Model-based clustering methods are studied in TSCAN (Ji and Ji, 2016), BISCUIT (Prab-
hakaran et al., 2016), DIMM-SC (Sun et al., 2018), and BasClu (Liu et al., 2019). After
dimensionality reduction via PCA, TSCAN considers a mixture of multivariate Gaussian dis-
tributions to cluster cells based on their gene expression. BISCUIT is a hierarchical Bayesian
Dirichlet process mixture model for clustering scRNA-seq data assuming that gene log counts
follow a Gaussian distribution. BasClu extends the Dirichlet process mixture model of BIS-
CUIT by introducing a sequence of latent binary indicators to represent whether genes are
expressed or not to address the excess of zero counts. In addition, BasClu accounts for dropout
events by also modelling the probability of missing data across genes. DIMM-SC proposes a
Dirichlet mixture model for clustering droplet-based scRNA-seq data assuming that gene read
counts follow a multinomial distribution.

PhenoGraph (Levine et al., 2015), Seurat (Satija et al., 2015, Satija, 2015), and SCANPY
(Wolf et al., 2018) are graph-based algorithms that are applied to scRNA-seq data after PCA
for dimensionality reduction. In PhenoGraph, the cells are partitioned into groups by clus-
tering a graph based on their phenotypic similarity; that is, first, for each cell, the k nearest
neighbours are found, which results in N sets with K neighbourhoods, and then a weighted
graph is built on these sets. Seurat is an R package that spatially maps single cells yielding
a transcriptome-wide map of spatial patterning. SCANPY is a toolkit python-based package
for analyzing scRNA-seq data, including pre-processing (comparable to Seurat), visualization,
clustering (similar to PhenoGraph), pseudo time and trajectory inference, di↵erential expres-
sion testing, and simulation of gene regulatory networks. SNN-Cliq (Xu and Su, 2015) is a
graph-based algorithm obtained by combining the quasi-clique-based algorithm (which is a
graph-theory-based algorithm introduced earlier by the same authors) with the shared nearest
neighbour (SNN) similarity measures (Houle et al., 2010). SHI and HUANG (2017) proposed
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an iterative biclustering approach (BiSNN-Walk) based on the SNN-cliq algorithm. BiSNN-
walk returns a ranked list of clusters, which indicate the cluster’s reliability, and ranks the genes
in a gene cluster based on their a�liation levels to the associated cell cluster. Park and Zhao
(2018) proposes a spectral clustering method based on imposing the sparse structure of scRNA-
seq data on a similarity matrix and then shrinking the pairwise di↵erences on the rows of the
target matrix. Li et al. (2015) proposed SPARC as a method that uses a similarity metric based
on the relationship among cells and includes an outlier detection method. Liu (2021) intro-
duces a regularization graphical clustering method (RGGC) based on higher-order correlations
and subspace learning. Wei et al. (2022) presents a spectral clustering algorithm (Secuer) for
scRNA-seq data that is an anchor-based bipartite graph representation.

GiniClust (Lan Jiang and Yuan, 2016) is a density-based algorithm that borrows the idea
of the Gini index from social sciences to detect rare cell types. In this algorithm, first, a
bidirectional Gini index is defined to identify genes that are specifically unexpressed in a rare
cell type. Then after normalizing these Gini index values, the high Gini genes are selected.
Based on the gene expression of these high Gini genes, cell clusters are identified by applying
DBSCAN (Ester et al., 1996). Another density-based method is PanoView (Hu et al., 2019).
PanoView uses a density-based method called ordering local maximum by a convex hull to
iteratively search cell types in a principal component space.

Some clustering algorithms based on deep learning are also applied to scRNA-seq data.
Yu et al. (2021) proposes a Gaussian mixture method called scGMAI based on deep autoen-
coder networks and independent component analysis to cluster cell types from scRNA-seq
data. Cheng and Ma (2022) presents a single-cell graph attentional clustering called scGAC
for clustering scRNA-seq data using a four-step approach: 1) constructing a cell graph, 2) re-
fining the cell graph by using network denoising, 3) learning the clustering representation of
cells by a graph attentional autoencoder, and 4) finding the cell types clusters. Eraslan et al.
(2019) introduces a deep count autoencoder network for denoising scRNA-seq data followed
by K-means clustering. DCA considers the overdispersion and sparsity of the count data by us-
ing a zero-inflated negative binomial noise model and nonlinear gene-gene or gene-dispersion
interactions. Lopez et al. (2018) proposes scVI as a Bayesian hierarchical model in which deep
neural networks are used to specify the conditional distributions under a variational inference
approach. Tian et al. (2019) developed ScDeepCluster, which integrates a zero-inflated neg-
ative binomial model-based autoencoder with clustering loss and deep embedding clustering.
Tian et al. (2021) introduces a model-based deep embedding clustering method for scRNA-seq
data called scDCC, which integrates prior knowledge into constrained information via a loss
function.
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3.3 Thesis Contribution

As mentioned in Section 3.1, the excess of zero counts (zero-inflation) in single-cell RNA-
seq data causes some challenges in analyzing these data compared to bulk RNA-seq data. As
seen in Section 3.2, most available clustering tools do not directly tackle the zero-inflation
of scRNA-seq data. Instead, in most studies, this issue of the zero-inflation is tackled in the
dimensionality reduction or feature selection step of the analysis, which is carried out before
clustering. For example, Pierson and Yau (2015) developed a dimensionality reduction tech-
nique (Zero Inflated Factor Analysis, ZIFA), which takes into account the zero inflation of
scRNA-seq data, and they demonstrated that in comparison with other dimensionality reduc-
tion methods, ZIFA performs better in both simulated and biological data sets. Also, Tian et al.
(2019, 2021) consider a zero-inflated negative binomial (ZINB) model-based loss function au-
toencoder for dimensionality reduction followed by a deep-embedded clustering algorithm.
Qiu (2020) tackles the zero-inflation problem by first binarizing the scRNA-seq data, turn-
ing all the non-zero observations into one, and then proposing a non-probabilistic multi-step
clustering method to cluster the binarized data.

Thus, in this thesis, the goal is to cluster scRNA-seq data based on their gene expression
profiles through a model-based approach which takes into account the zero-inflated distribution
of the raw counts (number of reads aligned to each gene). We assume a probabilistic model in
which scRNA-seq data follows a mixture of either zero-inflated Poisson or zero-inflated nega-
tive binomial distributions. We then allow the logarithm of the rate parameter of the Poisson or
negative binomial component to be a linear combination of some fixed and known covariates
such as batch e↵ects and cell size factor. Estimation of cluster assignments and model param-
eters is conducted via the EM algorithm. We implement our proposed methodology using R,
and the code is available online at https://github.com/desouzalab/em-mzip.

3.4 Proposed methodology

Since in our model-based clustering approach, the assumed model for the scRNA-seq data is a
mixture of zero-inflated Poisson (ZIP) or zero-inflated negative binomial (ZINB) distributions,
we first introduce these distributions in Section 3.4.1. Section 3.4.2 presents a literature review
in Statistics on this framework. The proposed mixture model for zero-inflated Poisson counts
is presented in Section 3.5. Sections 3.5.1 and 3.5.2 describe the parameter inference via the
EM algorithm without and with covariates, respectively. In Section 3.6 we present the case of
a mixture of ZINB distributions.

https://github.com/desouzalab/em-mzip


3.4. Proposed methodology 45

3.4.1 Poisson and negative binomial zero-inflated models

A ZIP model is in the form of a mixture distribution with two components. The first component
corresponds to the zero counts and the second one to the non-zero counts. Let y1, . . . yn be a set
of independent observations arising from a ZIP model. We can write for i = 1, . . . ,n:

P(Yi = yi) =
�������
� + (1 − �)e−�i for yi = 0

(1 − �) e−�i�
yi
i

yi!
for yi = 1,2,3, . . . ,

(3.1)

where �i is the Poisson rate and 0 < � < 1 is the probability of always (perfect) zero.
Similarly, a ZINB model has the same form except for the non-zero component in which

the Poisson distribution is replaced by the negative binomial distribution and, therefore, we can
write:

P(Yi = yi) =
�������

� + (1 − �)( 1
1+↵µi
) 1
↵ for yi = 0

(1 − �) �(yi+↵)
�(yi+1)�(↵)( 1

1+↵µi
) 1
↵ (1 − 1

1+↵µi
)yi for yi = 1,2,3, . . . ,

(3.2)

where ↵, 1
↵ and µi are the dispersion, size, and mean (rate) parameters of the negative-binomial

distribution, respectively. The function �(⋅) is the gamma function.
One can consider covariates (ZIP or ZINB regression) and model the rate parameter �i (for

ZIP) or µi (for ZINB) via a log link as follows:

log(�i) = xT
i �, or

log(µi) = xT
i �,

where � is the unknown vector of coe�cients and xi is the vector of known covariates for
observation i, for i = 1, . . . ,n (Faraway, 2016, Workie and Azene, 2021). The probability of
always zero can also be modeled as a linear combination of covariates via a logit link.

3.4.2 Literature review in Statistics

Some papers in Statistics have considered ZIP or ZINB regression models (no mixture) to
analyze di↵erent types of data. For instance, Lyashevska et al. (2016) and Pilosof et al. (2012)
used ZIP and ZINB regression models, respectively, to model abundance of species. Xue et al.
(2020) introduced a zero-inflated Poisson regression model with random intercepts to analyze
the amount of daily and weekly physical activity of Hispanic/Latino adults. Xue et al. (2020)
conducted maximum likelihood parameter estimation via the Gaussian quadrature technique,
which is implemented in the R package GLMMadaptive.
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Other authors have studied mixtures of ZIP regression models. Lim et al. (2014) proposed
a ZIP regression model where the Poisson component is assumed to be a mixture of Poisson
distributions. Parameters are estimated via the EM algorithm with an embedded iteratively
re-weighted least squares method. As an application, Lim et al. (2014) considers a dataset on
dental caries in adolescents. Chen et al. (2016b) presented a mixture of zero-inflated Poisson
regression models with random e↵ects to analyze correlated multilevel data. For obtaining
the maximum-likelihood estimates of the parameters, the authors developed a stochastic EM
algorithm. The Bayesian Information Criterion (BIC) was used for comparing models with
di↵erent latent classes. The proposed methodology was used to analyze data from a survey on
adolescent fitness.

In the R programming language, some packages include functions for parameter estima-
tion of zero-inflated models for counts. The function zeroinfl in the pscl package (Jackman
et al., 2020) can be used to fit zero-inflated regression models for counts (Poisson or negative
binomial) via the maximum likelihood method. The functions zipoisson and zinegbinomial,
available in the VGAM package (Yee and Moler, 2022), can be applied to fit a zero-inflated
Poisson or zero-inflated negative binomial distribution via maximum likelihood. The function
ZIP in the ZIPBayes package (Zhang and Yi, 2021) can be used to estimate parameters of a
zero-inflated Poisson model via the Markov Chain Monte Carlo (MCMC) algorithm. In the
mpath package (Wang et al., 2022), the function zipath fits a zero-inflated regression model for
counts by using regularization methods such as a LASSO or elastic net.

The function bzinb (in the package bzinb Cho et al. (2019)) can be used to find the max-
imum likelihood parameter estimates for a bivariate zero-inflated negative binomial (ZINB)
model. In order to fit zero-inflated count models via MCMC, the function zic in the package
under the same name (zic) can be applied (Jochmann, 2017). And, finally, in the package
poisson.glm.mix (Papastamoulis, 2022) di↵erent functions are available for fitting a mixture
of Poisson generalized linear models via the EM algorithm. However, this package does not
consider zero inflation.

So far, none of these existing tools deals with a mixture of zero-inflated counts when the
data are in a matrix structure as in our proposed methodology; see matrix (3.3) below.

3.5 The proposed mixture model for ZIP counts

Let Yng be a random variable for the number of read counts aligned to gene g in cell n, for
g = 1, . . . ,G and n = 1, . . . ,N, where Yng takes a value in {0,1,2,3, . . .}. So, the observed data
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can be written in the following matrix format:

y =
��������

y11 y12 � y1G

y21 y22 � y2G⋮ ⋮ � ⋮
yN1 yN2 � yNG

��������
. (3.3)

Suppose that there are K << N clusters of cells and let Z = {Z11, . . . ,ZNK} be the set of
latent random variables indicating the true cell cluster assignments, that is:

Znk =
�������

1 if cell n belongs to cluster k,
0 otherwise.

(3.4)

We can also write Z as the following matrix:

Z =
��������

Z11 Z12 � Z1K

Z21 Z22 � Z2K⋮ ⋮ � ⋮
ZN1 ZN2 � ZNK

��������
,

with ∑K
k=1 Znk = 1, P(Znk = 1) = ⇡k for n = 1, . . . ,N, k = 1, . . . ,K, and ∑K

k=1 ⇡k = 1. We assume
that given Znk, that is, given that cell n belongs to cluster k, genes in cell n are independent
and follow a ZIP distribution with parameters that depend on cluster k. Let ✓ = {✓1, . . . , ✓k} be
the set of all models parameters with ✓k = {⇡k,�k,�k}, and �k = {�1k, . . . ,�gk}. Thus, we can
write the probability mass function (pmf) for each cell as the following mixture of zero-inflated
Poisson (ZIP) distributions:

p(yn � ✓) = K�
k=1
⇡k p(yn � ✓k) = K�

k=1
⇡k

G�
g=1

p(yng ��gk,�k),
where

p(yng ��gk,�k) =
�������
�k + (1 − �k)e−�gk if yng = 0

(1 − �k) e−�gk�
yng
gk

yng! if yng = 1,2,3, . . . ,
(3.5)

in which �gk is the Poisson rate parameter and �k is the probability of always zero. We can also
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write (3.5) as:

p(yng ��gk,�k) =
�������

�k if yng belongs to the zero state;

(1 − �k) e−�gk�
yng
gk

yng! if yng belongs to the Poisson state.
(3.6)

By assuming independence across cells, the observed-data likelihood based on all cells is
given by:

L(✓ � y) = N�
n=1

p(yn � ✓) = N�
n=1

K�
k=1
⇡k

G�
g=1

p(yng ��gk,�k)
Thus, the observed data log-likelihood can be written as:

`(✓ � y) = N�
n=1

log � K�
k=1
⇡k

G�
g=1

p(yng ��gk,�k)�. (3.7)

The goal is to find the parameter estimates that maximize (3.7). To tackle this problem, we
develop an EM algorithm to iteratively find the parameter estimates. To obtain the parameter
estimates using the EM framework, we consider the true latent cluster assignments Znk for
n = 1, . . . ,N and k = 1, . . . ,K as in (3.4) and we also introduce another set of hidden variables
U defined as follows:

U =
��������

U11 U12 � U1G

U21 U22 � U2G⋮ ⋮ � ⋮
UN1 UN2 � UNG

��������
where

Ung =
�������

1 if yng is from perfect zero state,
0 if yng is from Poisson state.

This latent indicator variable is drawn from a Bernoulli distribution, Ung ∼ Bernoulli(�k), with
probability of success (i.e., probability of always zero) �k defined as �k = P(Ung = 1�Znk = 1),
which depends on the cluster k.

In the E-step of the EM algorithm, the conditional expectation of the complete-data log-
likelihood given the observed data and current parameter estimates is obtained. Then, in the M-
step, the expectation from the E-step is maximized with respect to each parameter of interest.
These two steps are implemented iteratively until convergence. Now, considering the observed
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counts and the introduced latent variables, the complete-data likelihood can be written as:

L(✓ � y,u, z) =
= N�

n=1
p(yn,un, zn � ✓)

= N�
n=1
�p(yn �un, zn, ✓) × p(un � zn, ✓) × p(zn � ✓)�

= N�
n=1

K�
k=1
�p(yn �un, ✓k) × p(un � ✓k) × p(znk � ✓k)�znk

= N�
n=1

K�
k=1

G�
g=1

p(yng �ung,�gk)znk × N�
n=1

K�
k=1

G�
g=1

p(ung ��k)znk × N�
n=1

K�
k=1

p(znk �⇡k)znk

= N�
n=1

K�
k=1

G�
g=1

�
�

e−�gk�
yng
gk

yng!
�
�
(1−ung)znk

× N�
n=1

K�
k=1

G�
g=1
��ung

k (1 − �k)(1−ung)�znk × N�
n=1

K�
k=1
⇡znk

k .

By applying the logarithm, the complete-data log-likelihood function is:

`(✓ � y,u, z) = logL(✓ � y,u, z)
= N�

n=1

K�
k=1

G�
g=1

znk(1 − ung) log�e−�gk�
yng
gk

yng!
�

+ N�
n=1

K�
k=1

G�
g=1
�znkung log�k + znk(1 − ung) log(1 − �k)�

+ N�
n=1

K�
k=1

znk log⇡k.

In what follows, we present the E and M steps of our proposed EM algorithm for the cases
without covariates (Section 3.5.1) and with covariates (Section 3.5.2).

3.5.1 EM for the ZIP mixture model without covariates

E-Step: We first write the conditional expectation of the complete-data log-likelihood given
the current estimates of the parameters, ✓(t) = {�(t), �(t), ⇡(t)}, and the observed data y:
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Q(✓; ✓(t)) = E�`(✓ � y,u, z) � y, ✓(t)�
= N�

n=1

K�
k=1

G�
g=1

E�Znk(1 −Ung) � y, ✓(t)� log
�
�

e−�gk�
yng
gk

yng!

�
�

+ N�
n=1

K�
k=1

G�
g=1

�
�E�ZnkUng � y, ✓(t)� log�k + E�Znk(1 −Ung) � y, ✓(t)� log(1 − �k)��

+ N�
n=1

K�
k=1

E�Znk � y, ✓(t)� log⇡k. (3.8)

Then, the expectations in (3.8) are calculated as follows:

Ẑ(t)nk = E�Znk � y , ✓(t)� = E�Znk � yn , ✓
(t)�

= p�Znk = 1 � yn , ✓
(t)�

= p�yn,Znk = 1 � ✓(t)�
p�yn � ✓(t)�

= p�yn �Znk = 1, ✓(t)� p�Znk = 1 � ✓(t)�
∑K

j=1 p�yn �Zn j = 1, ✓(t)� p�Zn j = 1 � ✓(t)�
= p�Znk = 1 � ✓(t)�∏G

g=1 p�yng �Znk = 1, ✓(t)�
∑K

j=1 p�Zn j = 1 � ✓(t)�∏G
g=1 p�yng �Zn j = 1, ✓(t)�

= ⇡(t)k ∏G
g=1 p�yng ��(t)kg ,�

(t)
k �

∑K
j=1 ⇡

(t)
j ∏G

g=1 p�yng ��(t)jg ,�
(t)
j � , (3.9)

and

E�ZnkUng � y, ✓(t)� = p(Znk = 1,Ung = 1 � y, ✓(t))
= p(Ung = 1 �Znk = 1, yng, ✓

(t)) × p(Znk = 1 � yn, ✓
(t))

= Û(t)ngkẐ
(t)
nk ,

where Ẑ(t)nk is as in (3.9) and Û(t)ngk is given by:
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Û(t)ngk = p(Ung = 1 �Znk = 1, yng, ✓
(t))

= p(yng,Ung = 1,Znk = 1 � ✓(t))
p(yng,Znk = 1 � ✓(t))

= p(yng �Ung = 1,Znk = 1, ✓(t)) × p(Ung = 1 �Znk = 1, ✓(t)) × p(Znk = 1 � ✓(t))
p(yng �Znk = 1, ✓(t)) × p(Znk = 1 � ✓(t))

= �
�⇡(t)k �(t)k p(yng �Ung = 1,Znk = 1, ✓(t))

�
�⇡(t)k p(yng ��(t)gk ,�

(t)
k )

= �(t)k p(yng �Ung = 1,Znk = 1, ✓(t))
p(yng ��(t)gk ,�

(t)
k ) . (3.10)

So, from (3.10), we can write:

Û(t)ngk =
�����������

�
(t)
k��(t)k +(1−�(t)k )e−�

(t)
gk � if yng = 0,

0 if yng = 1,2, . . . .
(3.11)

Note that Û(t)ngk in (3.11) is separated into two cases because if Ung = 1, yng can only be equal to
zero, otherwise, if yng takes a non-zero count value, it definitely arises from the Poisson state.

Using the calculated values Ẑ(t)nk and Û(t)ngk from Equations (3.9) and (3.11), we can rewrite
Q(✓; ✓(t)) in (3.8) as:

Q(✓; ✓(t)) = Q1(⇡;⇡(t)) +Q2(�;�(t)) +Q3(�;�(t)), (3.12)

where

Q1(⇡;⇡(t)) = N�
n=1

K�
k=1

Ẑ(t)nk log(⇡k),
Q2(�;�(t)) = N�

n=1

K�
k=1

G�
g=1
�Ẑ(t)nk Û(t)ngk log(�k) + Ẑ(t)nk (1 − Û(t)ngk) log(1 − �k)�, and

Q3(�;�(t)) = N�
n=1

K�
k=1

G�
g=1
�Ẑ(t)nk (1 − Û(t)ngk)� − �gk + yng log(�gk) − log(yng!)��.

M-step: Using Ẑ(t)nk and Û(t)ngk calculated in the E-step, in this step we find the updated parame-
ters ✓(t+1) = (�(t+1),�(t+1),⇡(t+1)) that maximize Q(✓; ✓(t)) given in Equation (3.12).

First, we find each ⇡(t+1)
k , through considering the restriction that∑K

k=1 ⇡k = 1, and using the
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augmented function and Lagrange multiplier as follows.

g(⇡,�) = Q1(⇡;⇡(t)) − � × � K�
k=1
⇡k − 1� = N�

n=1

K�
k=1

Ẑ(t)nk log(⇡k) − � × � K�
k=1
⇡k − 1�. (3.13)

Taking the derivative of the (3.13) w.r.t. ⇡k and setting it to zero, leads to:

@g(⇡,�)
@⇡k

= N�
n=1

Ẑ(t)nk

⇡k
− � = 0

⇒ ∑N
n=1 Ẑ(t)nk

⇡k
= �⇒ ⇡k = 1

�

N�
n=1

Ẑ(t)nk (3.14)

Moreover, di↵erentiating (3.13) w.r.t. � leads to:

@g(⇡,�)
@�

= −��
k
⇡k − 1� = 0⇒ K�

k=1
⇡k = 1. (3.15)

Now summing both sides of (3.13) over k we obtain:

K�
k=1
⇡k =1

�

N�
n=1

K�
k=1

Ẑ(t)nk

⇒ 1 =1
�

N ⇒ � = N (3.16)

From (3.14) and (3.16), the updated estimate for ⇡k is:

⇡(t+1)
k = ∑N

n=1 Ẑ(t)nk

N
. (3.17)
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The updated �(t+1)
k is obtained as follows:

@Q2(� ; �(t))
@�k

= N�
n=1

G�
g=1

�
�ẐnkÛngk

1
�k
− Ẑ(t)nk �1 − Û(t)ngk� 1

1 − �k

�
� = 0

⇒ N�
n=1

G�
g=1

�
�Ẑ(t)nk Û(t)ngk

1
�k
− Ẑnk

1
1 − �k

+ Ẑ(t)nk Û(t)ngk
1

1 − �k

�
� = 0

⇒ N�
n=1

G�
g=1

�
�Ẑ(t)nk Û(t)ngk� 1

�k
+ 1

1 − �k
� − Ẑ(t)nk

1
1 − �k

�
� = 0

⇒ N�
n=1

G�
g=1

�
�Ẑ(t)nk Û(t)ngk�1 − �k

�k
+ 1� − Ẑ(t)nk

�
� = 0

⇒ N�
n=1

G�
g=1
�Ẑ(t)nk Û(t)ngk

1
�k
− Ẑ(t)nk � = 0

⇒ 1
�k

N�
n=1

G�
g=1

Ẑ(t)nk Û(t)ngk = N�
n=1

G�
g=1

Ẑ(t)nk

Therefore,

�(t+1)
k = ∑N

n=1∑G
g=1 Ẑ(t)nk Û(t)ngk

G∑N
n=1 Ẑ(t)nk

. (3.18)

And, finally, we obtain the updated �(t+1)
gk as follows:

@Q3(�;�(t))
@�gk

= N�
n=1

Ẑ(t)nk (1 − Û(t)ngk)�yng

�gk
− 1� = 0,

so that

�(t+1)
gk = ∑N

n=1 Ẑ(t)nk (1 − Û(t)ngk)yng

∑N
n=1 Ẑ(t)nk (1 − Û(t)ngk) . (3.19)

Note that the conditional expected value of each Znk in Equation (3.9), obtained at the last
iteration t∗, is used to infer the cluster assignment of each cell. Thus, we obtain the decision
that cell n belongs to cluster k if that cluster is the one with the highest expected value (highest
probability); that is:

Ẑnk =
���������

1 if Ẑ(t∗)nk = max
j∈{1,...,K}Ẑ

(t∗)
n j ,

0 otherwise.
(3.20)

Algorithm 1 summarizes the EM algorithm for the ZIP mixture model without covariates.
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Algorithm 1 EM algorithm for the ZIP mixture model without covariates

Input: y: matrix of data; ✓(0) = (⇡(0),�(0),�(0)): initial parameters; tol: tolerance; m: maxi-
mum number of iterations.

Output: optimal set of parameters ✓̂ = (⇡̂, �̂, �̂) and Ẑnk and Ûngk for all n,g and k.
1: initial t = 0 (iteration number);
2: repeat
3: Start E-step:
4: Calculate Ẑ(t)nk , for all n and k, as in (3.9);
5: Calculate Û(t)ngk, for all n, g, and k, as in (3.11).
6: Start M-Step using the Ẑ(t)nk ’s and Û(t)ngk’s:
7: Compute ⇡(t+1)

k , for k = 1, . . . ,K, as in (3.17);
8: Compute �(t+1)

k , for k = 1, . . . ,K, as in (3.18);
9: Compute �(t+1)

gk , for k = 1, . . . ,K,g = 1, . . . ,G, as in (3.19).
10: until [`(✓(t+1) � y) − `(✓(t) � y)] ≤ tol or maximum number of iterations is achieved.

3.5.2 EM for the ZIP mixture model with covariates

In this case, similarly to Zhang et al. (2019), we assume that the Poisson rate parameters depend
on a linear combination of covariates via a log link function as follows:

log(�ngk) = log(Tn) + ⇢gk + �0g + P�
p=1
�pgxnp, (3.21)

for n = 1, . . . ,N, g = 1, . . . ,G, k = 1, . . . ,K, and p = 1, . . . ,P, where Tn is a fixed size factor (also
known as a Poisson o↵set variable) for cell n (e.g., sequencing library size), �0g is a baseline
expression for gene g, ⇢gk is the fixed e↵ect of cluster k on gene g, xn1, . . . , xnp are P known
covariates for cell n (e.g., batch and treatment e↵ects), and �1g, . . . , . . . ,�Pg their corresponding
unknown coe�cients. We note that the authors of Zhang et al. (2019) do not consider zero
inflation in their proposed cell classification tool.

This model with covariates can also be called a mixture of generalized ZIP regression mod-
els. We use the EM algorithm to find the estimated parameters and inferred cluster assignments.
Therefore, considering the complete-data log-likelihood as:

`(✓ � y, x, z,u) = N�
n=1

G�
g=1

K�
k=1
�znk log(⇡k) + znkung log(�k) + znk(1 − ung) log(1 − �k)+

znk(1 − ung) log(p(yng �⇢gk,�0g,�pg))�,
where ✓ = (⇡,�,⇢,�0,�), with

⇡ = (⇡1, . . . ,⇡k)T ,
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� = (�1, . . . ,�k),T
⇢ = (⇢11, . . . ,⇢G1, . . . ,⇢1K , . . . ,⇢GK)T ,

�0 = (�01, . . . ,�0G)T , and

� = (�11, . . . ,�p1, . . . ,�1G, . . . ,�PG)T .
E-Step: Similarly to Section 3.5.1, first in the E-step, we compute the conditional expectation
of the complete-data log-likelihood given the observed data and the current parameter estimates
as follows:

Q(✓; ✓(t)) = E�`(✓ � y, x, z, u ) � y, x, ✓(t) �
= N�

n=1

K�
k=1

E�Znk � y, x, ✓(t)� log(⇡k)
+ N�

n=1

G�
g=1

K�
k=1
�E�ZnkUng � y, x, ✓(t)� log(�k) + E�Znk(1 −Ung) � y, x, ✓(t)� log(1 − �k)�

+ N�
n=1

G�
g=1

K�
k=1

E�Znk(1 −Ung) � y, x, ✓(t)�×
� − exp{log(Tn) + �0g + ⇢gk + P�

p=1
xnp�pg} + yng {log(Tn) + �0g + ⇢gk + P�

p=1
�pgxnp} − log yng!�

(3.22)

Similarly to Equations (3.9) and (3.11) in Section 3.5.1, we calculate Ẑ(t)nk and Û(t)ngk as follows:

Ẑ(t)nk = E�Znk � y, x, ✓(t)� = ⇡(t)k ∏G
g=1 p(yng ��(t)k ,⇢

(t)
gk ,�

(t)
0g ,�

(t)
pg )

∑K
k=1 ⇡

(t)
k ∏G

g=1 p(yng ��(t)k ,⇢
(t)
gk ,�

(t)
0g ,�

(t)
pg ) (3.23)

Û(t)ngk = p�Ung = 1�Znk = 1, x, yng, ✓
(t)� =

�����������

�
(t)
k��(t)k +(1−�(t)k )e−�

(t)
ngk� if yng = 0,

0 if yng = 1,2, . . . ,
(3.24)

where �(t)ngk = exp� log(Tn) + ⇢(t)gk + �(t)0g +∑P
p=1 �

(t)
pg xnp�.

By using the expected values Ẑ(t)nk and Û(t)ngk from Equations (3.23) and (3.24), we can rewrite
Q(✓; ✓(t)) as follows:

Q(✓ ; ✓(t)) = Q1(⇡ ; ⇡(t)) +Q2(� ; �(t)) +Q3�(�0, ⇢, �) ; (�(t)0 , ⇢
(t), �(t) )�



56 Chapter 3. Model-based Clustering of Single-Cell RNA Sequencing Data

where

Q1(⇡ ; ⇡(t)) = N�
n=1

K�
k=1

Ẑ(t)nk log(⇡k), (3.25)

Q2(� ; �(t)) = N�
n=1

G�
g=1

K�
k=1

������Ẑ
(t)
nk Û(t)ngk log(�k) + Ẑnk(1 − Û(t)ngk) log(1 − �k)

������ , and (3.26)

Q3�(�0, ⇢, � ); (�(t)0 ,⇢
(t), �(t))� = N�

n=1

G�
g=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk) × (3.27)

� − exp{log(Tn) + �0g + ⇢gk + P�
p=1

xnp�pg} + yng {log(Tn) + �0g + ⇢gk + P�
p=1

�pgxnp} − log yng!�

M-Step: In the M-Step, through di↵erentiating Q(✓ ; ✓(t)) with respect to each parameter, we
can find the updated estimates. For the updated parameters ⇡(t+1)

k and �(t+1)
k , we can easily

calculate them in a closed form similar to the scenario presented in Section 3.5.1. However, for
�(t+1)

0g , ⇢(t+1)
gk , and �(t+1)

pg there is no closed-form solution and a numerical optimization method
within the M-step has to be used. Hence, the updated estimates for ⇡(t+1)

k and �(t+1)
k are as

follows:

⇡(t+1)
k = ∑N

n=1 Ẑ(t)nk

N
, and (3.28)

�(t+1)
k = ∑N

n=1∑G
g=1 Ẑ(t)nk Û(t)ngk

G∑N
n=1 Ẑ(t)nk

. (3.29)

Next, we find the updated estimates �(t+1)
0g , ⇢(t+1)

gk , and �(t+1)
pg as the values that maximize Q3

in (3.27). As mentioned earlier, we cannot calculate a closed-form solution for these parame-
ters. Thus, to find their new (updated) estimates we use the Fisher scoring algorithm (a form
of Newton-Raphson method) as described in Section 1.4 of Chapter 1. Therefore, in what fol-
lows, we present the first derivatives of Q3, and the negative of the second derivative expected
values.

First Derivatives:

@Q3

@�pg
= N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)(yng − �ngk)xnp

@Q3

@⇢gk
= N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)(yng − �ngk)
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@Q3

@�0g
= N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)(yng − �ngk)
where �ngk = exp� log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp�.
Negative of the second derivative expected values:

−E�@2Q3

@�2
0g
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)�ngk

−E�@2Q3

@�2
pg
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)x2
np�ngk

−E�@2Q3

@⇢2
gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)�ngk

−E� @2Q3

@�0g@⇢gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)�ngk

−E� @2Q3

@�pg@�rg
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)xnpxnr�ngk

−E� @2Q3

@�pg@�0g
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)�ngk.xnp

−E� @2Q3

@�pg@⇢gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)�ngkxnp

−E� @2Q3

@�0g@�0g′
� = 0

−E� @2Q3

@⇢gk@⇢g′k
� = 0

−E� @2Q3

@⇢gk@⇢gk′
� = 0

−E� @2Q3

@�0g@⇢g′k
� = 0

−E� @2Q3

@�0g@�pg′
� = 0
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−E� @2Q3

@�pg@�pg′
� = 0

−E� @2Q3

@�pg@⇢g′k
� = 0

−E� @2Q3

@⇢gk@�pg′
� = 0

Algorithm 2 presents a summary of the EM algorithm steps for the ZIP mixture model with
covariates.

Algorithm 2 EM algorithm for the ZIP mixture model with covariates

Input: y: matrix of data; ✓(0) = (⇡(0),�(0),⇢(0),�(0)0 ,�
(0)): initial parameters; tol: tolerance;

m: maximum number of iterations; x: matrix of covariates.
Output: optimal set of parameters ✓̂ = (⇡̂, �̂, �̂0, ⇢̂, �̂), and Ẑnk, Ûngk for all n, g, and k.

1: initial t = 0 (iteration number);
2: repeat
3: Start E-step:
4: Calculate Ẑ(t)nk , for all n and k, as in (3.23);
5: Calculate Û(t)ngk, for all n, g, and k, as in (3.24).
6: Start M-Step using the Ẑ(t)nk ’s and Û(t)ngk’s:
7: Compute ⇡(t+1)

k , for k = 1, . . . ,K, as in (3.28);
8: Compute �(t+1)

k , for k = 1, . . . ,K, as in (3.29);
9: Compute ⇢(t+1)

gk ,�
(t+1)
0g ,�

(t+1)
pg , for all g, k, and p, using the Fisher scoring algorithm.

10: until [`(✓(t+1) � y) − `(✓(t) � y)] ≤ tol or maximum number of iterations is achieved.

A simpler model than in (3.21) can be considered when there are no covariates but one
wants to include a size factor Tn. Thus, we can model �ngk as

log(�ngk) = log(Tn) + ⇢gk + �0g. (3.30)

In this case, only a few modifications are required in the EM algorithm. In the E-step,
Q1(⇡ ; ⇡(t)) and Q2(� ; �(t)) in equations (3.25) and (3.26) remain the same, but Q3 now be-
comes:

Q3�(�0, ⇢) ; (�(t)0 , ⇢
(t))� = N�

n=1

G�
g=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk) ×
� − exp{log(Tn) + �0g + ⇢gk} + yng {log(Tn) + �0g + ⇢gk} − log yng!�.
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Therefore, the updates of ⇡k and �k are as in (3.28) and (3.29), respectively, and the updates of
⇢gk and �0g can also be obtained via the Fisher scoring algorithm.

In our code implementation of the EM algorithm, to avoid identifiability issues when es-
timating the parameters, we assume that �gk = �0g + ⇢gk with the restriction that ∑K

k=1 ⇢gk = 0.
This assumption and restriction imply that �0g = ∑K

k=1 �gk�K. So, we fit our model considering
log�ngk = log(Tn) + �gk (or log�ngk = log(Tn) + �gk +∑P

p=1 �pgxnp), and after we obtain �(t+1)
gk at

each EM iteration, we find the updates for �0g and ⇢gk as follows:

�(t+1)
0g = ∑K

k=1 �
(t+1)
gk

K
,

and
⇢(t+1)

gk = �(t+1)
gk − �(t+1)

0g .

3.6 The proposed mixture model for ZINB counts

In this section, our proposed clustering approach will be based on a mixture model of zero-
inflated negative binomial distributions, which pools information from observed data across all
cells and neighboring genes to infer cell-specific cluster assignments and their corresponding
gene expression profiles.

Similar to the cases of ZIP mixture models presented in Section 3.5, we again let Yng be
a random variable for the number of read counts aligned to gene g in cell n, for g = 1, . . . ,G
and n = 1, . . . ,N, where Yng takes a value in 0,1,2,3, . . . . Suppose that there are K << N
clusters of cells and let Znk be the latent Bernoulli random variable indicating the true cluster
assignment of cell n as in (3.4). Therefore, given Znk, that is, given that cell n belongs to
cluster k, we assume that genes are independent and follow a zero-inflated negative binomial
(ZINB) distribution with parameters that depend on cluster k. Let µk = (µ11, . . . , µGK)T and
✓k = {⇡k,�k,↵k,µk}, where ⇡k is the cluster assignment probability (i.e., P(Znk = 1) = ⇡k), �k is
the zero-inflation proportion (or probability of always zero), µgk is the rate parameter and ↵k is
the dispersion parameter which is the inverse of size (⌫k) parameter (↵k = 1

⌫k
). Thus, we define

✓ = (✓1, . . . , ✓K) as the set containing all model parameters and write the pmf for each cell as a
mixture of ZINB distributions as follows:

p(n � ✓) = K�
k=1
⇡k p(n � ✓k) = K�

k=1
⇡k

G�
g=1

p(yng ��k,↵k, µgk),
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where

p(yng ��k,↵k, µgk) =
�����������

�k + (1 − �k)( 1
1+↵kµgk

)( 1
↵k
) if yng = 0

(1 − �k) �(yng+ 1
↵k
)

�(yng+1)�( 1
↵k
)( 1

1+↵kµgk
)( 1

↵k
)(1 − 1

1+↵kµgk
)(yng) if yng = 1,2,3, . . . ,

(3.31)

which can also be written as

p(yng ��k,↵k, µgk) =���������
�k if yng belongs to always zero state

(1 − �k) �(yng+ 1
↵k
)

�(yng+1)�( 1
↵k
)( 1

1+↵kµgk
)( 1

↵k
)(1 − 1

1+↵kµgk
)(yng) if yng belongs to the NB state,

(3.32)

for n = 1, . . . ,N, g = 1, . . . ,G, and k = 1, . . . ,K.

The observed-data likelihood based on all cells is given by:

L(✓ � y) = N�
n=1

p(yn � ✓) = N�
n=1

K�
k=1
⇡k

G�
g=1

p(yng ��k,↵k, µgk)
and therefore, the observed-data log-likelihood is:

`(✓ � y) = N�
n=1

log � K�
k=1
⇡k

G�
g=1

p(yng ��k,↵k, µgk)�. (3.33)

Similarly to Section 3.5, the goal is to find the parameter estimates that maximize (3.33) iter-
atively via the EM algorithm. To find the parameter estimates using the EM framework, we
consider the latent cluster assignments Z = (Z11, . . . ,ZNK)T and the hidden Bernoulli variable
Ung defined as follows:

Ung =
�������

1 if yng is from the perfect zero state,
0 if yng is from the Negative Binomial (NB) state,

with P(Ung = 1�Znk = 1) = �k, for n = 1, . . . ,N and g = 1, . . . ,G. In the E-step, we calculate
the conditional expectation of the complete-data log-likelihood given the observed data and the
current parameter estimates. In the M-step, we maximize the expectation from the E-step with
respect to each parameter to obtain the updated parameter estimates. Considering the observed
counts and the latent random variables, we can write the completed-data log-likelihood as
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follows:

`(✓ � y,u, z) = N�
n=1

K�
k=1

G�
g=1

znk(1 − ung) log
�
�
�(yng + 1

↵k
)

�(yng + 1)�( 1
↵k
)(

1
1 + ↵kµgk

)( 1
↵k
)(1 − 1

1 + ↵kµgk
)(yng)��

+ N�
n=1

K�
k=1

G�
g=1
�znkung log(�k) + znk(1 − ung) log(1 − �k)�

+ N�
n=1

K�
k=1

znk log⇡k.

In what follows, the E and M steps of our proposed EM algorithm for the ZINB mixture
model without covariates (Section 3.6.1) and with covariates (Section 3.6.2) are presented.

3.6.1 EM for the ZINB mixture model without covariates

E-Step: Given the current estimates of the parameters ✓(t) = (↵(t),µ(t),�(t),⇡(t)) and the ob-
served data y, we compute the conditional expectation of the complete-data log-likelihood as:

Q(✓; ✓(t)) = E�`(✓ � y,u, z) � y, ✓(t)�
= N�

n=1

K�
k=1

G�
g=1

E�Znk(1 −Ung) � y, ✓(t)� log
�
�
�(yng + 1

↵k
)

�(yng + 1)�( 1
↵k
)(

1
1 + ↵kµgk

)( 1
↵k
)(1 − 1

1 + ↵kµgk
)(yng)��

+ N�
n=1

K�
k=1

G�
g=1

�
�E�ZnkUng � y, ✓(t)� log(�k) + E�Znk(1 −Ung) � y, ✓(t)� log(1 − �k)��

+ N�
n=1

K�
k=1

E�Znk � y, ✓(t)� log(⇡k). (3.34)

Using the approach described in Section 3.5.1, the expected values in (3.34) can be com-
puted via Ẑ(t)nk and Û(t)ng given by:

Ẑ(t)nk = E�Znk � y , ✓(t)�
= E�Znk � yn , ✓

(t)�
= p�Znk = 1 � yn , ✓

(t)�
= ⇡(t)k ∏G

g=1 p�yng �↵(t)k , µ
(t)
gk ,�

(t)
k �

∑K
j=1 ⇡

(t)
j ∏G

g=1 p�yng �↵(t)j , µ
(t)
g j ,�

(t)
j � , (3.35)



62 Chapter 3. Model-based Clustering of Single-Cell RNA Sequencing Data

and

Û(t)ngk = p(Ung = 1 �Znk = 1, yng, ✓
(t))

=
�����������������

�
(t)
k�

��(t)k +(1−�(t)k )� 1

1+↵(t)k µ
(t)
gk

� 1
↵
(t)
k
�
�

if yng = 0

0 if yng = 1,2, . . . .

(3.36)

From (3.36) we note again that Û(t)ngk is separated into two cases, if Ung = 1, yng can only be
equal to zero, and Ung = 0, if yng takes a non-zero count value, it definitely arises from the
negative binomial state. Thus, using Ẑ(t)nk and Û(t)ngk from Equations (3.35) and (3.36), we can
rewrite (3.34) as:

Q(✓; ✓(t)) = Q1(⇡;⇡(t)) +Q2(�;�(t)) +Q3((µ,↵); (µ(t),↵(t))), (3.37)

where

Q1(⇡ ; ⇡(t)) = N�
n=1

K�
k=1

Ẑ(t)nk log(⇡k),
Q2(� ; �(t)) = N�

n=1

K�
k=1

G�
g=1
�Ẑ(t)nk Û(t)ngk log(�k) + Ẑ(t)nk (1 − Û(t)ngk) log(1 − �k)�, and

Q3�(µ , ↵); (µ(t),↵(t))� = N�
n=1

K�
k=1

G�
g=1

������Ẑ
(t)
nk (1 − Û(t)ngk)

�������yng log� ↵kµgk

1 + ↵kµgk
� − 1

↵k
log(1 + ↵kµgk)

+ log�(yng + 1
↵k
) − log�(yng + 1) − log�( 1

↵k
)�������
������.

M-step: In this step, we find the updated parameters ✓(t+1) = (↵(t+1),µ(t+1),�(t+1),⇡(t+1)) that
maximize Q(✓; ✓(t)) given in Equation (3.37).

For calculating the updated estimate of ⇡k, similar to Section (3.5.1), we use the Lagrange
multiplier (see Equations 3.13 to 3.16) and obtain:

⇡(t+1)
k = ∑N

n=1 Ẑ(t)nk

N
. (3.38)

The updated �(t+1)
k is as in (3.18); that is:

�(t+1)
k = ∑N

n=1∑G
g=1 Ẑ(t)nk Û(t)ngk

G∑N
n=1 Ẑ(t)nk

. (3.39)
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We obtain the updated µ(t+1)
gk as follows:

@Q3�(µ ,↵) ; (µ(t), ↵(t))�
@µgk

= N�
n=1

Ẑ(t)nk (1 − Û(t)ngk) yng − µgk

µgk(1 + ↵kµgk) = 0,

�⇒ µ(t+1)
gk = ∑N

n=1 Ẑ(t)nk (1 − Û(t)ngk)yng

∑N
n=1 Ẑ(t)nk (1 − Û(t)ngk) . (3.40)

Finally, to reach the updated ↵(t+1)
k , we consider the expectation-conditional maximization

(ECM) algorithm by fixing µgk at µ(t+1)
gk and obtaining ↵(t+1)

k as the solution of the following
equation:

@Q3�(µ,↵); (µ(t),↵(t))�
@↵k

= N�
n=1

G�
g=1

Ẑ(t)nk (1 − Û(t)ngk)
������

1
↵2

k

�
�ln(1 + ↵kµ

(t+1)
gk )+

↵k(yng − µ(t+1)
gk )

(1 + ↵kµ
(t+1)
gk ) +  (yng + 1

↵k
) −  ( 1

↵k
)��
������ = 0, (3.41)

where  (⋅) is the so-called digamma function, which is defined as the derivative of the natural

logarithm of �; that is,  (x) = d
dx

log�(x) (Hilbe, 2011). However, there is no closed-form
solution for (3.41); therefore, a numerical optimization algorithm, such as Newton-Raphson
or Fisher scoring, must be applied. To facilitate computation, as the dispersion parameter (↵)
is the inverse of the size parameter (⌫) in the negative binomial distribution, we consider this
alternate form of the negative binomial using ⌫ and rewrite Q3 as follows:

Q3�(µ , ↵); (µ(t),↵(t))� = ∑N
n=1∑K

k=1∑G
g=1

������Ẑ
(t)
nk (1 − Û(t)ngk)

�������yng log� µgk
⌫k

1+ µgk
⌫k

� − ⌫k log(1 + µng
⌫k
)

+ log�(yng + ⌫k) − log�(yng + 1) − log�(⌫k)
�������
������. (3.42)

Now, fixing µgk at µ(t+1)
gk , the first derivative and the negative of the second derivative of Q3

w.r.t. ⌫k are:

@Q3

@⌫k
= N�

n=1

G�
g=1

Ẑ(t)nk (Û(t)ngk)×
������ (yng + ⌫k) −  (⌫k) + log ⌫k + 1 − log(⌫k + µ(t+1)

gk ) − yng + ⌫k

⌫k + µ(t+1)
gk

������, (3.43)
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and

− @2Q3

@⌫2
k
= N�

n=1

G�
g=1

Ẑ(t)nk (1 − Û(t)ngk)×
������ −  

′(yng + ⌫k) +  ′(⌫k) − 1
⌫k
+ 2
⌫k + µ(t+1)

gk

− yng + ⌫k

(⌫k + µ(t+1)
gk )2

������, (3.44)

where  ′(⋅) is the trigamma function defined as the second derivative of the natural logarithm
of the gamma function (Hilbe, 2011). Thus, we find the updated ⌫(t+1)

k (and, subsequently,
↵(t+1)

k = 1�⌫(t+1)
k ) using the first and second derivatives of Q3 as in (3.43) and (3.44) and the

Newton-Raphson algorithm implemented in the function theta.ml from the R package MASS.
Note that, when using theta.ml in R, we enter the data in a vector format rather than a matrix,
and we use the Ẑ(t)nk (1 − Û(t)ngk)’s as weights also in a vector format and the µ(t+1)

gk ’s as the rate
parameters.

Algorithm 3 shows the ECM algorithm to obtain the updated parameter estimates for the
ZINB mixture model without covariates.

Algorithm 3 ECM algorithm for the ZINB mixture model without covariates

Input: y: Matrix of Data; ✓(0) = (⇡(0),�(0),µ(0), ⌫(0)): initial parameters; tol: tolerance; m:
maximum number of iterations;

Output: optimal set of parameters ✓̂ = (⇡̂, �̂, µ̂, ⌫̂), and Ẑnk, Ûngk, for all n, g and k.
1: initial t = 0 (iteration number);
2: repeat
3: Start E-step;
4: Calculate Ẑ(t)nk , for all n and k, as in (3.35);
5: Calculate Û(t)ngk, for all n, g, and k, as in (3.36);
6: Start M-Step using the Ẑ(t)nk ’s and Û(t)ngk’s;
7: Compute ⇡(t+1)

k , for k = 1, . . . ,K, as in (3.38);
8: Compute �(t+1)

k , for k = 1, . . . ,K, as in (3.39);
9: Compute µ(t+1)

gk , for k = 1, . . . ,K and g = 1, . . . ,G as in (3.40);
10: Fix µgk at µ(t+1)

gk , compute ⌫(t+1)
k , for k = 1, . . . ,K, using the Newton-Raphson algorithm

via the theta.ml function in R;
11: until [`(✓(t+1) � y) − `(✓(t) � y)] ≤ tol or maximum number of iterations is achieved.
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3.6.2 EM for the ZINB mixture model with covariates

In the case of a ZINB mixture model with covariates, we assume that the log-link function for
the rate parameters is as in Eq. (3.21) in Section 3.5.2; that is:

log(µngk) = log(Tn) + ⇢gk + �0g + P�
p=1
�pgxnp, (3.45)

for n = 1, . . . ,N, g = 1, . . . ,G, k = 1, . . . ,K, and p = 1, . . . ,P, where Tn is a fixed size factor
for cell n, �0g is a baseline expression for gene g, ⇢gk is the fixed e↵ect of cluster k on gene
g, xn1, . . . , xnp are P known covariates for cell n, and �1g, . . . ,�Pg their corresponding unknown
coe�cients.

Let ✓ = (⇡,�,↵,⇢,�0,�), where ⇡ = (⇡1, . . . ,⇡k)T , � = (�1, . . . ,�k)T , ↵ = (↵1, . . . ,↵k)T , ⇢ =
(⇢11, . . . ,⇢G1, . . . ,⇢1K , . . . ,⇢GK)T , �0 = (�01, . . . ,�0G)T , and � = (�11, . . . ,�p1, . . . ,�1G, . . . ,�PG)T .
In what follows, we describe how we can find the estimates of the parameters in ✓ using the
EM algorithm. In this case, the complete-data log-likelihood can be written as:

`(✓ � y, x, z,u) = N�
n=1

G�
g=1

K�
k=1

������znk log(⇡k) + znkung log(�k) + znk(1 − ung) log(1 − �k)+
znk(1 − ung) log( p(yng �⇢gk,�0g,�pg,↵k))

������.

E-Step: The conditional expectation of the complete-data log-likelihood given the observed
data and current parameter estimates is as follows:

Q(✓; ✓(t)) = E�`(✓ � y, x, z,u) � y, x, ✓(t)� =
N�

n=1

K�
k=1

E�Znk � y, x, ✓(t)� log(⇡k)
+ N�

n=1

G�
g=1

K�
k=1
�E�ZnkUng � y, x, ✓(t)� log(�k) + E�Znk(1 −Ung) � y, x, ✓(t)� log(1 − �k)�

+ N�
n=1

G�
g=1

K�
k=1

E�Znk(1 −Ung) � y, x, ✓(t)�×
log
�������
�(yng + 1

↵k
)

�(yng + 1)�( 1
↵k
) × �

1
1 + ↵k exp(log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp)�
1
↵k

× �1 − 1
1 + ↵k exp(log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp)�
yng
������� (3.46)
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As described in previous sections, we can calculate the expectations in (3.46) using Ẑnk and
Ûngk given by:

Ẑ(t)nk = E�Znk � y, x, ✓(t)� = ⇡(t)k ∏G
g=1 p(yng ��(t)k ,↵

(t)
k ,⇢

(t)
gk ,�

(t)
0g ,�

(t)
pg )

∑K
k=1 ⇡

(t)
k ∏G

g=1 p(yng ��(t)k ,↵
(t)
k ,⇢

(t)
gk ,�

(t)
0g ,�

(t)
pg ) , (3.47)

and

Û(t)ngk = p(Ung = 1�Znk = 1, x, yng, ✓
(t))

=
�����������������

�
(t)
k�

��(t)k +(1−�(t)k )� 1

1+↵(t)k µ
(t)
ngk

� 1
↵
(t)
k
�
�

if yng = 0,

0 if yng = 1,2, . . . ,

(3.48)

where µ(t)ngk = exp� log(Tn) + ⇢(t)gk + �(t)0g +∑P
p=1 �

(t)
pg xnp�.

Using Ẑnk and Ûngk as in (3.47) and (3.48), respectively, we can rewrite Q(✓; ✓(t)) as follows:

Q(✓ ; ✓(t)) = Q1(⇡ ; ⇡(t)) +Q2(� ; �(t)) +Q3((�0,⇢,�,↵) ; (�(t)0 ,⇢
(t),�(t),↵(t))), (3.49)

where

Q1(⇡ ; ⇡(t)) = N�
n=1

K�
k=1

Ẑ(t)nk log(⇡k), (3.50)

Q2(� ; �(t)) = N�
n=1

G�
g=1

K�
k=1

������Ẑ
(t)
nk Û(t)ngk log(�k) + Ẑnk(1 − Û(t)ngk) log(1 − �k)

������, (3.51)

and

Q3�(↵,⇢,�0,�); (↵(t),⇢(t),�(t)0 ,�
(t)� =

N�
n=1

G�
g=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)×
log
�������
�(yng + 1

↵k
)

�(yng + 1)�( 1
↵k
) × �

1
1 + ↵k exp(log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp)�
1
↵k

× �1 − 1
1 + ↵k exp(log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp)�
yng
�������. (3.52)

M-Step: In this step, we maximize Q(✓ ; ✓(t)) in (3.49) with respect to each parameter in ✓
to find the updated parameter estimates. The updated estimates of ⇡k and �k can be obtained
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in closed form, as shown in Equations (3.38) and (3.39). However, no closed-form solution
exists for ↵k, �0g, ⇢gk, and �gp; therefore, we apply the ECM algorithm along with the Newton-
Raphson optimization method to find ↵(t+1)

k , �(t+1)
0g , ⇢(t+1)

gk , and �(t+1)
gp . Details are presented as

follows.
To find the updated �(t+1)

0g , ⇢(t+1)
gk , and �(t+1)

gp we apply the ECM algorithm by fixing ↵k at its
current value ↵(t)k and maximize Q3 in (3.52) w.r.t. �0g, ⇢gk, and �gp using the Newton-Raphson
algorithm. Thus, with µngk = exp � log(Tn) + ⇢gk + �0g +∑P

p=1 �pgxnp�, the first derivatives and
negative second derivatives of Q3 w.r.t. these parameters are as the following:
First derivatives:

@Q3

@�0g
= N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)� yng − µngk

1 + ↵(t)k µngk

�
@Q3

@�pg
= N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)� xnp(yng − µngk)
1 + ↵(t)k µngk

�
@Q3

@⇢gk
= N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)� yng − µngk

1 + ↵(t)k µngk

�
Negative of the second derivatives:

−�@2Q3

@�2
0g
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)µngk(1 + ↵(t)k yng)
(1 + ↵(t)k µngk)2

−�@2Q3

@�2
pg
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk) x2
npµngk(1 + ↵(t)k yng)
(1 + ↵(t)k µngk)2

−�@2Q3

@⇢2
gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)µngk(1 + ↵(t)k yng)

(1 + ↵(t)k µngk)2

−� @2Q3

@�0g@⇢gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk)µngk(1 + ↵(t)k yng)

(1 + ↵(t)k µngk)2

−� @2Q3

@�pg@�rg
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk) xnpxnrµngk(1 + ↵(t)k yng)
(1 + ↵(t)k µngk)2

−� @2Q3

@�pg@�0g
� = N�

n=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk) xnpµngk(1 + ↵(t)k yng)
(1 + ↵(t)k µngk)2

−� @2Q3

@�pg@⇢gk
� = N�

n=1
Ẑ(t)nk (1 − Û(t)ngk) xnpµngk(1 + ↵(t)k yng)

(1 + ↵(t)k µngk)2
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−� @2Q3

@�0g@�0g′
� = 0

−� @2Q3

@⇢gk@⇢g′k
� = 0

−� @2Q3

@⇢gk@⇢gk′
� = 0

−� @2Q3

@�0g@⇢g′k
� = 0

−� @2Q3

@�0g@�pg′
� = 0

−� @2Q3

@�pg@�pg′
� = 0

−� @2Q3

@�pg@⇢g′k
� = 0

−� @2Q3

@⇢gk@�pg′
� = 0

Now, similarly to Section 3.6.1, to find the updated estimate of ↵k, we consider Q3 based
on the alternate form of the negative binomial with size parameter ⌫k (as ↵k = 1�⌫k). Moreover,
we use the ECM algorithm by fixing �0g, ⇢gk, and �gp at their updated values �(t+1)

0g , ⇢(t+1)
gk ,

and �(t+1)
gp and obtain ⌫(t+1)

k (and, subsequently, ↵(t+1)
k ) using the Newton-Raphson algorithm

implemented by the function theta.ml from the library MASS in R. Analogously to Equations
(3.43) and (3.44), the first derivative and negative second derivative of Q3 are as follows:

@Q3

@⌫k
= N�

n=1

G�
g=1

Ẑ(t)nk (Û(t)ngk)
������ (yng + ⌫k) −  (⌫k) + log ⌫k + 1 − log(⌫k + µngk) − yng + ⌫k

⌫k + µ(t+1)
ngk

������, (3.53)
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and

−@2Q3

@⌫2
k
= N�

n=1

G�
g=1

Ẑ(t)nk (1 − Û(t)ngk)×
������ −  

′(yng + ⌫k) +  ′(⌫k) − 1
⌫k
+ 2
µ(t+1)

ngk + ⌫k

− yng + ⌫k

(⌫k + µ(t+1)
ngk )2

������, (3.54)

where µ(t+1)
ngk = exp� log(Tn) + ⇢(t+1)

gk + �(t+1)
0g +∑P

p=1 �
(t+1)
pg xnp�, and  (⋅) and  ′(⋅) are the digamma

and trigamma functions, respectively, defined previously in Section 3.6.1.

We summarize the ECM algorithm to obtain the updated parameter estimates for the ZINB
mixture model with covariates in Algorithm 4.

Algorithm 4 ECM algorithm for the ZINB mixture model with covariates

Input: y: matrix of data; ✓(0) = (⇡(0),�(0), ⌫(0),�(0)0 ,⇢
(0),�(0)): initial parameters; xnp: ma-

trix of covariates; tol: tolerance; m: maximum number of iterations;
Output: optimal set of parameters ✓̂ = (⇡̂, �̂, �̂0, ⇢̂, �̂, ⌫̂), and Ẑnk, Ûngk, for all n, g and k.

1: initial t = 0 (iteration number);
2: repeat
3: Start E-step;
4: Calculate Ẑ(t)nk , for all n and k, as in (3.47);
5: Calculate Û(t)ngk, for all n, g, and k, as in (3.48);
6: Start M-Step using the Ẑ(t)nk ’s and Û(t)ngk’s;
7: Compute ⇡(t+1)

k , for k = 1, . . . ,K, as in (3.38);
8: Compute �(t+1)

k , for k = 1, . . . ,K, as in (3.39);
9: Fix ↵k at ↵(t)k , compute �(t+1)

0g , ⇢(t+1)
gk , and �(t+1)

pg , for all g, k and p using the Newton-
Raphson algorithm;

10: Fix �0g, ⇢gk, and �pg at �(t+1)
0g , ⇢(t+1)

gk , and �(t+1)
pg , compute ⌫(t+1) using the Newton-

Raphson algorithm via the theta.ml function in R. Let ↵(t+1)
k = 1�⌫(t+1)

k .

11: until [`(✓(t+1) � y) − `(✓(t) � y)] ≤ tol or maximum number of iterations is achieved.

A simpler model than in (3.45) can be considered when there are no covariates, that is, we
can model µngk as:

log(µngk) = log(Tn) + ⇢gk + �0g. (3.55)
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In this case, in the E-step, Q1 and Q2 in (3.50) and (3.51) remain the same, but Q3 now becomes:

Q3�(↵,�0,⇢) ; (↵(t),�(t)0 ,⇢
(t)� = N�

n=1

G�
g=1

K�
k=1

Ẑ(t)nk (1 − Û(t)ngk)
log
�������
�(yng + 1

↵k
)

�(yng + 1)�( 1
↵k
) × �

1
1 + ↵k × exp(log(Tn) + ⇢gk + �0g)�

1
↵k

× �1 − 1
1 + ↵k × exp(log(Tn) + ⇢gk + �0g)�

yng
�������. (3.56)

The updated estimates of ⇡k and �k are as in (3.38) and (3.39), respectively, and the updated
estimates of �0g, ⇢gk, and ↵k (or ⌫k) can also be obtained via Newton-Raphson within the ECM
algorithm.

Similarly to the ZIP case, in the code implementation, to also avoid identifiability issues
when estimating the parameters of the ZINB mixture model with covariates, one can consider
�gk = �0g + ⇢gk with the restriction that ∑K

k=1 ⇢gk = 0. For more details, see the end of Section
3.5.2.



Chapter 4

Simulation Results for the Mixture of
Zero-Inflated Poisson and
Negative-Binomial Models

In this chapter, for each model introduced in Chapter 3, we conduct simulation studies to assess
the performance of our proposed EM algorithm under various scenarios by varying di↵erent
parameters and hyperparameters. For the hyperparameters, we vary the number of cells (N)
(the number of rows in the matrix in Eq. 3.3), the number of genes (G) (the number of
columns in the matrix), and the number of clusters (K). We note that the number of clusters
is fixed in the EM algorithm. However, the optimal K can be found using a criterion such
as the Aikaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), or the
Integrated Complete Likelihood (ICL) (McLachlan and Krishnan, 2008). For the parameters,
we consider di↵erent values of ⇡1, . . . ,⇡K , the cluster assignment probabilities, �1, . . . ,�K , the
probabilities of always zero, and ⌫1, . . . , ⌫K , the size parameters for the case of a mixture of
ZINB distributions. We also examine di↵erent values for the rate parameters for the cases with
and without covariates for the mixture of ZIP and ZINB distributions.

The simulations for the ZIP mixture model without covariates and the ZIP mixture model
with a size factor (i.e., with only �0g and ⇢gk) were performed using Sharcnet’s Graham com-
puter cluster via the Digital Research Alliance of Canada, with a single node consisting of two
Intel E5-2683 V4 (Broadwell) with 2.1 GHZ, for an overall of 32 computing cores. The num-
ber of available cores informs the decision to choose S = 256 simulated datasets, a multiple
of the number of cores. The computations were performed on redCent OS 7, with R version
4.1.2 (R core Team, 2021), using the packages Parallel to simulate and to compute the EM
algorithm of independent datasets simultaneously, the FDRSEG (Hi et al. (2017)) package to
calculate the V-measure. Simulations for the ZINB case were performed on ASUSTEK Zen-
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Book UX535LI, Intel Core i7-10750H @2.60 GHZ with R version 4.2.2, for the case without
covariates. We simulated S = 100 datasets for each scenario and similar to the mixture of ZIP
cases, the library FDRSEG was used for calculating V-measures.

4.1 Performance Metrics

In what follows, the di↵erent metrics and plots used to assess the performance of the pro-
posed EM algorithm are introduced. For evaluating the performance regarding the parameters
⇡1, . . . ,⇡k and �1, . . . ,�k, the means and standard deviations of the obtained EM estimates along
with boxplots are computed across the di↵erent simulation scenarios. To evaluate the perfor-
mance regarding the estimation of the rate parameters �gk’s or µgk’s (case without covariates)
and �0g’s, �pg’s, and ⇢gk’s (case with covariates), the mean squared error (MSE) or the median
absolute deviation (MAD) are applied. For the size parameters in the ZINB case, we present
boxplots, means, and standard deviations of the EM estimates. The V-measure is used to eval-
uate the clustering performance, i.e., how well the clustering performs compared to the true
assigned clusters of each data set.

Mean Squared error (MSE): The number of rate parameters (�gk’s or µgk’s in the case without
covariates, and �0g’s, �pg’s, and ⇢gk’s for the cases with covariates) vary and can increase to a
high number according to some settings such as the number of genes (G) in a simulated dataset.
Therefore, we calculate the overall or cluster-specific mean squared error as follows:

MSE for the rate parameters for a mixture of ZIP without covariates:

MSEk = 1
S G

S�
s=1

G�
g=1
(�kg − �̂(s)kg )2

MSE for the rate parameters for a mixture of ZINB without covariates:

MSEk = 1
S G

S�
s=1

G�
g=1
(µkg − µ̂(s)kg )2

MSE for the rate parameters for a mixture of ZIP or ZINB with covariates:

MSEk = 1
S G

S�
s=1

G�
g=1
(⇢kg − ⇢̂(s)kg )2

MSE = 1
S G

S�
s=1

G�
g=1
(�0g − �̂(s)0g )2
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MSEp = 1
S G

S�
s=1

G�
g=1
(�pg − �̂(s)pg )2

Median Absolute Deviation (MAD): This is another metric to measure the estimation error
related to the rate parameters that we use in the presence of outliers. We first calculate the
median absolute error (deviation) over the genes (G) in each simulated dataset s. Then, we
obtain the median of those errors over all the simulated sets (S ).

V-measure: The V-measure (Rosenberg and Hirschberg, 2007) is a metric to assess how well a
set of clusters K = k1, . . . , km partition a set of N observations knowing the fact that they belong
to a set of classes C = c1, . . . , cn. This is an entropy-based metric to evaluate the performance
of the clustering using the criteria of homogeneity and completeness. The homogeneity repre-
sents how similar the elements of the clusters are to the other elements of the same cluster, as
measured by:

h = �������
1 if H(C,K) = 0

1 − H(C�K)
H(C) otherwise,

where

H(C�K) = − �K��
k=1

�C��
c=1

ack

N
log� ack

∑�C�c=1 ack

�, and

H(C) = − �C��
c=1

∑�K�k=1 ack

n
log�∑�K�k=1 ack

n
�,

with ack as the number of observations from class c assigned to cluster k. The completeness
represents how close the elements of the same class are clustered together, and is measured by:

c = �������
1 if H(K,C) = 0

1 − H(K�C)
H(K) otherwise,

where

H(K�C) = − �C��
c=1

�K��
k=1

ack

N
log� ack

∑�K�k=1 ack

�, and

H(K) = − �K��
k=1

∑�C�c=1 ack

n
log�∑�C�c=1 ack

n
�.

With these two measures, h and c, the overall V-measure is obtained as follows:

V� = (1 + �) × h × c(� × h) + c
,
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where we use the default � = 1 in our calculations.

4.2 Simulation results for the ZIP mixture model without co-
variates

We study six di↵erent simulation scenarios for the case of ZIP without covariates presented in
Section 3.5.1. In each scenario, we vary one of the model parameters or hyperparameters while
holding the others fixed. In Scenarios 1 and 2, we vary the number of cells (N) and the number
of genes (G), respectively. In Scenario 3, we vary the number of clusters (K). In Scenario
4, we study the e↵ect of changing the cluster assignment probabilities (⇡k’s) from balanced to
unbalanced cases. In Scenario 5, we vary the similarities among clusters by changing the �gk’s.
Finally, the e↵ect of changes in the probabilities of always zero, �k’s, is studied in Scenario 6.

Table 4.1 summarizes each of the proposed simulation scenarios for the case of a zero-
inflated Poisson mixture model without covariates, and it shows which parameters and hyper-
parameters vary in each scenario (see the � symbol) along with the ones that we keep fixed.
The number of simulated datasets in each scenario is S = 256. We apply the proposed EM
algorithm for a ZIP mixture model without covariates (Algorithm 1 in Section 3.5.1) to each
simulated dataset in each scenario and present the results in Sections 4.2.1 to 4.2.6. For all
scenarios we set the initial parameter values in the EM algorithm to the true parameter values
to speed up computation. In Section 4.3.4 (Scenario 4 of Section 4.3) we considered initial val-
ues that di↵ered from the true parameter values based on the K-means clustering method and
the EM algorithm also converged; however, it took longer than when starting from the truth,
as expected. As shown in the steps of the algorithms on Chapter 3, we repeat the E-step and
M-step of the EM algorithm until [`(✓(t+1) � y) − `(✓(t) � y)] ≤ tolerance or the maximum num-
ber of iteration reached. For almost all of our simulation scenarios, the first stopping rule of
the algorithm ([`(✓(t+1) � y) − `(✓(t) � y)] ≤ tol) reached before continuation until the maximum
number of iterations.

4.2.1 Scenario 1

In this scenario, we vary N according to six di↵erent values (cases), while all other parameters
are kept fixed as shown in Table 4.2 below. Three distinct values are chosen for the rate pa-
rameters (�kg’s) and we repeat the same value for a third of the number of genes in each cluster
(i.e., G

3 = 40 times), in a way that the rate parameters are distinct for each gene and across
clusters. For this scenario, we choose �1 = 5, �2 = 10, and �3 = 15 and we use the following
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Table 4.1: Settings used for each simulation study scenario. The � indicates the parameter or
hyperparameter that varies in each scenario.

Scenario N G K �k ⇡k

1 � 120 3 0.1 1
K

2 1200 � 3 0.1 1
K

3 1200 120 � 0.1 1
K

4 1200 120 2 0.1 �
5‡ 1200 120 2 0.1 1

K
6 1200 120 3 � 1

K
‡ The settings are kept the same but we vary

the similarities among clusters by changing the �gk’s.

matrix for generating the simulated data sets:

� =
�����
�1, . . . , �1, �2, . . . , �2, �3, . . . , �3

�2, . . . , �2, �3, . . . , �3, �1, . . . , �1

�3, . . . , �3, �1, . . . , �1, �2, . . . , �2

�����
.

Figure 4.1 shows an example of simulated data for Case 3 (N = 120) in Table 4.2.

Table 4.2: ZIP mixture model without covariates. Scenario 1: Values chosen for the number
of observations N in each of five cases along with the fixed parameters used to simulate the
datasets under a ZIP mixture model without covariates.

Case N G K �k ⇡k

1 12
2 60
3 120 120 3 0.1 1�K
4 600
5 1200

For this scenario, Figures 4.2 and 4.3, and Tables 4.3 and 4.4 show that the EM estimates
for ⇡k and �k, for k = 1,2, and 3, are centered around the true values across all the di↵erent
choices of N, except for �1,�2 and �3 when N = 12. Furthermore, according to Tables 4.3 and
4.4, as N increases, the standard deviations of these estimates decrease as desired. Table 4.5
demonstrates that the MSE for estimating the �gk’s decreases while N increases. Moreover,
according to Figure 4.4, the clustering performance measured by the V-measures is deemed
satisfactory except for the lowest value of N = 12, which results in some misclassifications.
Finally, we can see from Figures B.1 and B.2 and Tables B.1 and B.2 that although the compu-
tation time increases, as N increases, the number of iterations until convergence decreases for
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Figure 4.1: Scenario 1: Heatmap of a simulated data set generated according to the settings
in Case 3 of Table 4.2. Darker colors represent higher counts. The assigned true clusters at the
simulation stage are represented by the colored column on the left side of the plot.
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the first three cases and then stabilizes for the larger N cases.

Table 4.3: Scenario 1: Mean and standard deviation (SD) for the estimates of �k obtained
for each k and each N using the EM algorithm across the datasets simulated from the settings
described in Table 4.2.

k N Mean SD

12 0.09052 0.02572
60 0.10002 0.00581

1 120 0.09998 0.00414
600 0.09990 0.00190

1200 0.09994 0.00136

12 0.08971 0.02448
60 0.09949 0.00608

2 120 0.09966 0.00432
600 0.10004 0.00188

1200 0.10003 0.00132

12 0.09242 0.02372
60 0.10024 0.00616

3 120 0.09989 0.00464
600 0.10015 0.00194

1200 0.10012 0.00155



78Chapter 4. SimulationResults for theMixture of Zero-Inflated Poisson andNegative-BinomialModels

12 60 120 600 1200

0.
00

0.
05

0.
10

0.
15

φ1

N

12 60 120 600 1200

0.
00

0.
05

0.
10

0.
15

φ2

N

12 60 120 600 1200

0.
00

0.
05

0.
10

0.
15

φ3

N

Figure 4.2: Scenario 1: Boxplots for the estimates of �k using the EM algorithm across the
datasets simulated from the settings described in Table 4.2. Red lines correspond to true values.
See also Table 4.3.
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Figure 4.3: Scenario 1: Boxplots for the estimates of ⇡k using the EM algorithm across the
datasets simulated from the settings described in Table 4.2. Red lines correspond to true values.
See also Table 4.4.
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Table 4.4: Scenario 1: Mean and standard deviation (SD) for the estimates of ⇡k obtained
for each k and each N using the EM algorithm across the datasets simulated from the settings
described in Table 4.2.

k N Mean SD

12 0.33431 0.13777
60 0.32689 0.05793

1 120 0.33385 0.04303
600 0.33447 0.01805

1200 0.33274 0.01361

12 0.34017 0.13359
60 0.33906 0.06123

2 120 0.33815 0.04353
600 0.33371 0.01862

1200 0.33420 0.01334

12 0.32552 0.13445
60 0.33405 0.06115

3 120 0.32799 0.04730
600 0.33182 0.01967

1200 0.33306 0.01287

Table 4.5: Scenario 1: Mean squared error across genes and simulated datasets for the EM
estimates of the �gk’s for each cluster k and each N according to the settings described in
Table 4.2.

N

k 12 60 120 600 1200

1 4.66910 0.58775 0.28343 0.05595 0.02819
2 4.18363 0.57776 0.28229 0.05559 0.02740
3 4.48772 0.57781 0.29115 0.05579 0.02800
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Figure 4.4: Scenario 1: Boxplots of the V-measures comparing the EM clustering assignments
with true cluster labels, across the datasets simulated from the settings described in Table 4.2.
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4.2.2 Scenario 2

In this scenario, the number of genes G varies while the other parameters are kept fixed, as
shown in Table 4.6. The number of clusters, the cluster assignment probabilities, the proba-
bilities of always zero, and the �gk’s are fixed to values similar to those in Scenario 1. We fix
N = 1200 for this scenario, as seen in Table 4.6.

Table 4.6: ZIP mixture model without covariates. Scenario 2: Values chosen for the number
of genes G in each of five cases along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 12
2 60
3 1200 120 3 0.1 1�K
4 600
5 1500

Figure 4.5 and Table 4.7 show that as G increases, the standard deviation of the estimates
of each �k decreases, while the estimates remain centred around the true value of 0.1. For
the estimates of ⇡k, according to Figure (4.6) and Table (4.8), their standard deviations remain
somewhat the same when varying G across clusters. In addition, estimates of ⇡k are unbiased,
as in Scenario 1. Table 4.9 shows that the MSE of the estimates of the �gk’s for each cluster
remains almost the same while varying G. Furthermore, the resulting V-measure values (Figure
4.7) are equal to one for G = 60,120,600,1500. However, for G = 12, a few misclassifications
lead to V-measure values slightly less than one. The number of iterations remains constant
(Table B.3 and Figure B.3), and the total computing time increases (Table B.4 and Figure B.4)
as G increases.
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Figure 4.5: Scenario 2: Boxplots for the estimates of �k using the EM algorithm across the
datasets simulated from the settings described in Table 4.6. Red lines correspond to true values.
See also Table 4.7.

12 60 120 600 1500

0.
30

0.
32

0.
34

0.
36

0.
38

π1

G

12 60 120 600 1500

0.
30

0.
32

0.
34

0.
36

0.
38

π2

G

12 60 120 600 1500

0.
30

0.
32

0.
34

0.
36

0.
38

π3

G

Figure 4.6: Scenario 2: Boxplots for the estimates of ⇡k using the EM algorithm across the
datasets simulated from the settings described in Table 4.6. Red lines correspond to true values.
See also Table 4.8.



4.2. Simulation results for the ZIP mixture model without covariates 83

Table 4.7: Scenario 2: Mean and standard deviation (SD) for the estimates of �k obtained
for each k and each G using the EM algorithm across the datasets simulated from the settings
described in Table 4.6.

k G Mean SD

12 0.09992 0.00450
60 0.09966 0.00195

1 120 0.09998 0.00133
600 0.10007 0.00063

1500 0.09993 0.00036

12 0.09997 0.00437
60 0.10018 0.00206

2 120 0.09985 0.00142
600 0.10000 0.00056

1500 0.09999 0.00038

12 0.10050 0.00459
60 0.09977 0.00198

3 120 0.09995 0.00133
600 0.09998 0.00066

1500 0.09998 0.00042

Table 4.8: Scenario 2: Mean and standard deviation (SD) for the estimates of ⇡k obtained
for each k and each G using the EM algorithm across the datasets simulated from the settings
described in Table 4.6.

k G Mean SD

12 0.33396 0.01266
60 0.33258 0.01346

1 120 0.33403 0.01329
600 0.33247 0.01318

1500 0.33383 0.01323

12 0.33200 0.01446
60 0.33375 0.01365

2 120 0.33238 0.01350
600 0.33339 0.01319

1500 0.33291 0.01353

12 0.33404 0.01374
60 0.33367 0.01395

3 120 0.33359 0.01362
600 0.33414 0.01320

1500 0.33325 0.01389
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Table 4.9: Scenario 2: Mean squared error across genes and simulated datasets for the EM
estimates of the �gk’s for each cluster k and each G according to the settings described in
Table 4.6.

G

k 12 60 120 600 1500

1 0.02826 0.02804 0.02796 0.02823 0.02792
2 0.02823 0.02838 0.02794 0.02799 0.02810
3 0.02804 0.02879 0.02777 0.02791 0.02792
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Figure 4.7: Scenario 2: Boxplots for the V-measures comparing the EM clustering assign-
ments with true cluster labels, across the datasets simulated from the settings described in
Table 4.6.
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4.2.3 Scenario 3

For this scenario, the number of clusters K changes, and, therefore, the corresponding proba-
bilities of cluster assignments also change to maintain the balanced format of the clusters. We
keep the values of the other parameters fixed, and their choice is shown in Table 4.10. Note
that when the number of clusters varies, the number of �k parameters changes, but their values
are the same. For example, we have �1 and �2 for the case of K = 2 and �1, �2, �3, �4, �5 for
K = 5, but their values are all equal to 0.1. For Scenario 3, the true values of the �gk’s used to
simulate the data are as follows:

K = 1→ �gk’s = 10

K = 2→ �gk’s = (10,15)
K = 3→ �gk’s = (5,10,15)

K = 5→ �gk’s = (5,10,15,20,25)
So that, for example, for K = 5 in the above setting, the first 120

5 = 24 genes in cluster k = 1 are
assigned �gk values equal to 5, then the following 24 genes are assigned values of 10, etc. We
repeat this process for the remaining clusters so that each gene’s rate parameters are distinct
across clusters.

Table 4.10: ZIP mixture model without covariates. Scenario 3: Values chosen for the
number of clusters K in each of four di↵erent cases along with the fixed parameters used to
simulate the datasets.

Case N G K �k ⇡k

1 1
2 1200 120 2 0.1 1�K
3 3
4 5

We can observe from Table (4.11) and Figure (4.8) that as the number of clusters increases,
the standard deviation of the estimates of �k increases due to the reduction in the number of
observations per cluster since N is fixed. In addition, the estimates of �k’s are centered around
the true values used to simulate the data. Figure 4.9 and Table 4.12 show that the estimates of
⇡k are also centered around the true values. Note that in Figure 4.9, we merge the vectors of ⇡k

estimates for di↵erent K into one vector in order to show their behaviour better. The standard
deviations of the estimates of ⇡k remain somewhat the same across the di↵erent K choices
(Table 4.12). From Table 4.13, we can see that for the �gk’s, the MSE increases as the number
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of clusters increases. In this simulation scenario, all V-measure values remain constant and
equal to one, demonstrating no misclassification. The number of iterations until convergence
remains the same in all cases (Table B.5 and Figure B.5); however, we observe an increase in
computing time when the number of clusters increases (Table B.6 and Figure B.6).

Table 4.11: Scenario 3: Mean and standard deviation (SD) for the estimates of �k obtained
for each k in each choice of K using the EM algorithm across the datasets simulated from the
settings described in Table 4.10. Regarding the table structure, note that �1 exists for K = 1,2,3,
and 5 clusters (all cases), while �2 only exists for K = 2,3,5, �3 exists for only K = 3,5, and
finally, �4 and �5 exist only for K = 5.

k K Mean SD

1 0.10001 0.00077
1 2 0.10008 0.00111

3 0.10004 0.00133
5 0.10001 0.00174

2 0.10000 0.00109
2 3 0.09991 0.00140

5 0.10012 0.00174

3 3 0.10008 0.00135
5 0.10007 0.00169

4 5 0.10011 0.00178

5 5 0.09977 0.00186
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Figure 4.8: Scenario 3: Boxplots for the estimates of �k using the EM algorithm across the
datasets simulated from the settings described in Table 4.10. Red lines correspond to true
values. See also Table 4.11. Note that �1 exists for K = 1,2,3, and 5 clusters (all cases), while
�2 only exists for K = 2,3,5, �3 exists for only K = 3,5, and finally, �4 and �5 exist only for
K = 5.
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Figure 4.9: Scenario 3: Boxplots for the estimates of ⇡k using the EM algorithm across the
datasets simulated from the settings described in Table 4.10. Red lines correspond to true
values. See also Table 4.12. Note that the estimates of ⇡k over di↵erent K are all merged into
one vector.
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Table 4.12: Scenario 3: Mean and standard deviation (SD) for the estimates of ⇡k obtained
for each k in each choice of K using the EM algorithm across the datasets simulated from the
settings described in Table 4.10. Regarding the table structure, note that ⇡1 exists for K = 1,2,3,
and 5 clusters (all cases), while ⇡2 only exists for K = 2,3,5, ⇡3 exists for only K = 3,5, and
finally, ⇡4 and ⇡5 exist only for K = 5. In addition, ⇡1 is always equal to 1 when K = 1.

k K Mean SD

1 - -
1 2 0.49974 0.01406

3 0.33266 0.01289
5 0.20015 0.01160

2 0.50026 0.01406
2 3 0.33458 0.01281

5 0.19951 0.01182

3 3 0.33276 0.01288
5 0.20049 0.01176

4 5 0.19993 0.01149

5 5 0.19992 0.01179

Table 4.13: Scenario 3: Mean squared error for the EM estimates of the �gk’s for each k and
each K across genes and simulated datasets according to the settings described in Table 4.10.

K

k 1 2 3 5

1 0.00921 0.02316 0.02767 0.06997
2 0.02309 0.02766 0.06998
3 0.02817 0.06918
4 0.07115
5 0.06950
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4.2.4 Scenario 4

In this scenario, we consider two clusters and study the e↵ect of changing the probabilities of
the clusters from a balanced case to a very unbalanced case. Changes in cluster probabilities
can be seen in the columns ⇡1 and ⇡2 of Table 4.14. All other parameters and hyperparameters
are kept fixed according to the settings shown in Table 4.14.

Table 4.14: ZIP mixture model without covariates. Scenario 4: Values chosen for the
proportion ⇡k assigned to each cluster k in each of four di↵erent cases along with the fixed
parameters used to simulate the datasets. Note that ⇡2 = 1 − ⇡1.

Case N G K �k ⇡1 ⇡2

1 0.50 0.50
2 1200 120 2 0.1 0.25 0.75
3 0.10 0.90
4 0.05 0.95

We can see in Figure 4.10 and Table 4.15 that as the cluster proportions change from balanced
to unbalanced, the standard deviations of estimated values of �1 increase. At the same time,
no significant changes are observed in the standard deviations of the estimates of �2 as ⇡2 ≥ ⇡1

across all cases. Moreover, the estimates of �1 and �2 are centered around their true values.
Figure 4.11 and Table 4.16 show that the estimated values of ⇡k are centered around their true
values, and the standard deviations are small for all cases. For the �gk’s, from Table 4.17, we
can observe that the MSEs increase for the first cluster while slightly decreasing for the second
cluster as ⇡1 and ⇡2 change from balanced to unbalanced. The V-measures for this scenario are
equal to one for all cases. For the number of iterations and computing times, no considerable
di↵erences are observed in the balanced and unbalanced scenarios (Tables B.7, B.8 and Figures
B.7, B.8 ).
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Figure 4.10: Scenario 4: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.14. Red lines correspond to true
values. See also Table 4.15.
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Figure 4.11: Scenario 4: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.14. Red lines correspond to true
values. See also Table 4.16.
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Table 4.15: Scenario 4: Mean and standard deviation (SD) for the estimates of �k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.14.

k Case Mean SD

1 0.09993 0.00113
1 2 0.10008 0.00167

3 0.09995 0.00251
4 0.09984 0.00362

1 0.09989 0.00106
2 2 0.10005 0.00090

3 0.10003 0.00084
4 0.09998 0.00076

Table 4.16: Scenario 4: Mean and standard Deviation for the estimates of ⇡k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.14.

k Case Mean SD

1 0.49846 0.01470
1 2 0.25039 0.01319

3 0.09937 0.00912
4 0.05069 0.00653

1 0.50154 0.01470
2 2 0.74961 0.01319

3 0.90063 0.00912
4 0.94931 0.00653

Table 4.17: Scenario 4: Mean squared error for the EM estimates of the �gk’s for each k and
each case across genes and simulated datasets according to the settings described in Table 4.14.

Case

k 1 2 3 4

1 0.02306 0.04653 0.11769 0.23423
2 0.02327 0.01544 0.01303 0.01208
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4.2.5 Scenario 5

In this scenario, we vary the choice of the rate parameters, the �gk’s. In all other previous
scenarios, their values are selected to avoid any overlap between the clusters. Now, in Scenario
5, considering p� as the proportion of overlap of the �gk values across clusters, we start from
no overlap (Case 1) and go until the case of having two-thirds of the genes with the same �gk

values across clusters (Case 5). We consider the true values of 4 and 5 for the �gk’s. All other
parameters are kept fixed in this scenario. The settings used to simulate data under this scenario
are shown in Table 4.18.

Table 4.18: ZIP mixture model without covariates. Scenario 5: Values chosen for the
proportion of �gk parameters in common between the two clusters, p�, in each of six possible
cases along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k p�
1 0
2 1�6
3 1200 120 2 0.1 1�K 1�3
4 1�2
5 2�3

Figure 4.12 and Table 4.19 show that the EM estimates of �1 and �2 remain somewhat
unbiased and with small standard deviations across all cases in Scenario 5. For the estimates
of ⇡1 and ⇡2, we can see from Figure 4.13 and Table 4.20 that they are all unbiased, while
their standard deviations slightly increase in cases 4 and 5. The MSEs of the estimated values
of �gk are slightly similar across the cases according to Table 4.21. Moreover, as expected,
according to the V-measures, clustering performance decreases as the overlap between the
clusters increases (see Figure 4.14). Also, computing time increases for the most complicated
case with more cluster overlap (Table B.9 and Figure B.9). Finally, the number of iterations
also increases for the more complicated cases, as expected (see Table B.10 and Figure B.10).
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Figure 4.12: Scenario 5: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.18. Red lines correspond to true
values. See also Table 4.19.
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Figure 4.13: Scenario 5: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.18. Red lines correspond to true
values. See also Table 4.20.
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Table 4.19: Scenario 5: Mean and standard deviation (SD) for the estimates of �k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.18.

k Case Mean SD

1 0.09989 0.00123
2 0.09978 0.00122

1 3 0.09991 0.00132
4 0.09985 0.00130
5 0.09975 0.00134

1 0.09998 0.00116
2 0.09991 0.00115

2 3 0.09994 0.00111
4 0.10000 0.00113
5 0.09989 0.00145

Table 4.20: Scenario 5: Mean and standard deviation (SD) for the estimates of ⇡k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.18.

k Case Mean SD

1 0.50024 0.01459
2 0.49967 0.01485

1 3 0.50013 0.01443
4 0.49850 0.01666
5 0.49791 0.02190

1 0.49976 0.01459
2 0.50033 0.01485

2 3 0.49987 0.01443
4 0.50150 0.01666
5 0.50209 0.02190

Table 4.21: Scenario 5: Mean squared error for the EM estimates of the �gk’s for each k and
each case across genes and simulated datasets according to the settings described in Table 4.18.

Case

k 1 2 3 4 5

1 0.00804 0.00813 0.00827 0.00874 0.00945
2 0.00965 0.00967 0.00947 0.00952 0.00996
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Figure 4.14: Scenario 5: Boxplots of the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.18.
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4.2.6 Scenario 6

The e↵ect of changes in the probability of always zero (�k) is studied in this scenario. Consid-
ering three clusters, we first consider the same probability of always zero across all clusters,
while these probabilities change from small to large (cases 1 to 5). For the last case, case 6, we
consider di↵erent probabilities across clusters (see Table 4.22).

Table 4.22: ZIP mixture model without covariates. Scenario 6: Values chosen for the
probability of always zero �k in each of six di↵erent cases along with the fixed parameters
used to simulate the datasets.

Case N G K �k ⇡k

1 0.05
2 0.10
3 1200 120 3 0.25 1�K
4 0.50
5 0.90
6 (0.05, 0.25, 0.50)

Both Figure 4.15 and Table 4.23 demonstrate small values of the standard deviation of the
estimates of �k’s and no remarkable changes across the di↵erent cases. Also, the estimates are
all centered around their true values. It should be mentioned that in Figure 4.15, for cases 1 to
5, we merge the estimates of �1, �2, and �3 into one vector to show their behaviour better. No
significant di↵erences are also observed in the means and standard deviations of the estimate
of ⇡k’s (Table 4.24 and Figure 4.16). Table 4.25 shows that, for any cluster k, the MSE of the
estimates of the �gk’s increases as the probability of always zero increases. We can also observe
in Table 4.25 that for each cluster k, the MSEs are similar, except for the last case (case 6),
where there are di↵erent probabilities of always zero in each cluster. The V-measures show a
slightly worse clustering performance in case 5, where there are more zeros (�1 = �2 = �3 = 0.9)
than in the other cases (Figure 4.17). Moreover, for case 5, standard deviations of the number
of iterations are slightly larger than for the other cases (Table B.11 and Figure B.11). Also,
computing times increase for cases 4 and 5, where the probabilities of always zero are large,
and for case 6, where they vary across the clusters (Table B.12 and Figure B.12 ).
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Figure 4.15: Scenario 6: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.22. Red lines correspond to true
values. See also Table 4.23. Note that the estimates of �1, �2, and �3 are all merged into one
vector for cases 1-5.
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Figure 4.16: Scenario 6: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.22. Red lines correspond to true
values. See also Table 4.24.
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Table 4.23: Scenario 6: Mean and standard deviation for the estimates of �k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.22.

�k Case Mean SD

1 0.05006 0.00093
2 0.10003 0.00140

�1 3 0.24992 0.00188
4 0.50034 0.00234
5 0.90006 0.00144
6 0.05007 0.00099

1 0.04989 0.00106
2 0.09994 0.00134

�2 3 0.25001 0.00195
4 0.49992 0.00214
5 0.89987 0.00139
6 0.24996 0.00201

1 0.05006 0.00104
2 0.10010 0.00145

�3 3 0.24981 0.00195
4 0.49990 0.00239
5 0.90006 0.00137
6 0.50007 0.00240
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Figure 4.17: Scenario 6: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.22.
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Table 4.24: Scenario 6: Mean and standard deviation for the estimates of ⇡k obtained for
each k and each case using the EM algorithm across the datasets simulated from the settings
described in Table 4.22.

⇡k Case Mean SD

1 0.33378 0.01395
2 0.33344 0.01388

⇡1 3 0.33390 0.01424
4 0.33157 0.01438
5 0.33285 0.01484
6 0.33345 0.01359

1 0.33214 0.01418
2 0.33278 0.01467

⇡2 3 0.33251 0.01354
4 0.33445 0.01347
5 0.33357 0.01382
6 0.33315 0.01287

1 0.33408 0.01424
2 0.33379 0.01367

⇡3 3 0.33359 0.01403
4 0.33398 0.01428
5 0.33358 0.01323
6 0.33340 0.01387

Table 4.25: Scenario 6: Mean squared error for the EM estimates of the �gk’s for each k and
each N across genes and simulated datasets according to the settings described in Table 4.22.

Case

k 1 2 3 4 5 6

1 0.02645 0.02775 0.03323 0.05075 0.25699 0.02649
2 0.02629 0.02795 0.03420 0.05042 0.25946 0.03409
3 0.02626 0.02808 0.03321 0.05096 0.25699 0.05017
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4.3 Simulation scenarios for the ZIP mixture model with a
size factor

In the simulation scenarios of this section, we model the rate parameter (expected read count)
via a log link function as log(�ngk) = log(Tn) + �0g + ⇢gk, which was introduced earlier in
Section 3.5.2 of Chapter 3. So, to simulate data for the scenarios described in the following
subsections, we construct the rate parameter by simulating the size factors, Tn, for n = 1 . . . ,N,
from a normal distribution with parameters µ = 1000, � = 100, and we fix �0g at a value of
one for all genes. For most of the cases, we choose three distinct values (−0.6, 0 and 0.6) for
the cluster e↵ects (⇢gk’s), and we repeat the same value for a third of the number of genes in
each cluster (i.e., G

3 times), in a way that the rate parameters for each gene are distinct across
clusters. Note that, to avoid identifiability issues, we consider the restriction of ∑K

k=1 ⇢gk = 0 to
select the values of ⇢gk.

We study a total of six scenarios in this section. The number of simulated datasets in each
scenario is S = 256. In scenarios 1, 2, and 3, we vary N, G, and K, respectively. In scenario
4, we consider two cases. In case 1, the initial parameter values for the EM algorithm are
equal to the true values used to generate the data. For case 2, we obtain the initial parameter
values based on the results of K-means clustering. In scenario 5, we consider di↵erent values
for the probabilities of cluster assignments. Finally, in scenario 6, we vary the probabilities of
always zero and compare the results for this scenario. Note that, as in Section 4.2, for all cases,
except case 2 of Scenario 4, we set the initial parameter values in the EM algorithm to the true
parameter values to speed up computation.

4.3.1 Scenario 1

In this scenario, similar to the case without covariates in Section 4.2.1, we vary N while all
other parameters and hyperparameters are kept fixed. See Table 4.26 for the parameter setting
used to generate data under this scenario.

As can be seen from the boxplots and tables (Tables 4.27, 4.28 and Figures 4.18, 4.19),
the estimated values of probability of always zero (�̂k) and the estimated values of the clus-
ter assignment’s probabilities (⇡̂k), are both approximately around their true values and as N
increases, their standard deviations decrease. For the estimated values of the parameters ⇢gk

and �0g, we consider the median absolute deviation (MAD) and we can observe from Tables
4.29 and 4.30 that as N increases, the MADs for both ⇢gk and �0g decrease. For most cases,
the V-measures are one (see Figure 4.20), except for the case with N = 12 where there is some
misclassification. As expected, the computing times increases while N increases (Table B.13
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Table 4.26: ZIP mixture model with a size factor. Scenario 1: Values chosen for the number
of observations N in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 12
2 60
3 120 120 3 0.1 1�K
4 600
5 1200

and Figure B.13). Finally, the required number of iterations to achieve convergence decreases
as N grows (Table B.14 and Figure B.14).

Table 4.27: Scenario 1: Mean and standard deviation (SD) for the estimates of �k for each k
and each N, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.26.

�k N Mean SD

12 0.09738 0.01496
60 0.10003 0.00655

�1 120 0.09983 0.00416
600 0.09999 0.00195

1200 0.10027 0.00125

12 0.09748 0.01473
60 0.10020 0.00628

�2 120 0.09978 0.00448
600 0.10001 0.00199

1200 0.10020 0.00139

12 0.09714 0.01625
60 0.09961 0.00642

�3 120 0.09987 0.00427
600 0.10003 0.00205

1200 0.09994 0.00139
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Table 4.28: Scenario 1: Mean and standard deviation for the estimates of ⇡k for each k and
each N, obtained using the EM algorithm across the datasets simulated from the settings de-
scribed in Table 4.26.

⇡k N Mean SD

12 0.35156 0.12500
60 0.33841 0.06177

⇡1 120 0.33490 0.04423
600 0.33444 0.01958

1200 0.33292 0.01328

12 0.33952 0.13218
60 0.33333 0.06444

⇡2 120 0.33402 0.04170
600 0.33236 0.01870

1200 0.33380 0.01333

12 0.30892 0.12448
60 0.32826 0.05925

⇡3 120 0.33109 0.04288
600 0.33320 0.01748

1200 0.33328 0.01330

Table 4.29: Scenario 1: Median absolute deviation for the estimates of ⇢gk for each k and
each N, using the EM algorithm across the datasets simulated from the settings described in
Table 4.26.

N

k 12 60 120 600 1200

1 0.112408550 0.045393355 0.031839327 0.014172495 0.009948854
2 0.112812275 0.044446965 0.031538945 0.014278217 0.010051250
3 0.115637525 0.045467278 0.031932817 0.014086308 0.010112260

Table 4.30: Scenario 1: Median absolute deviation for the estimates of �0g for each N, using
the EM algorithm across the datasets simulated from the settings described in Table 4.26.

N

12 60 120 600 1200

0.08286 0.03281 0.02255 0.01017 0.00729
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Figure 4.18: Scenario 1: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.26. Red lines correspond to true
values. See also Table 4.27.
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Figure 4.19: Scenario 1: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.26. Red lines correspond to true
values. See also Table 4.28.



104Chapter 4. SimulationResults for theMixture of Zero-Inflated Poisson andNegative-BinomialModels

12 60 120 600 1200

0.
92

0.
94

0.
96

0.
98

1.
00

N

Figure 4.20: Scenario 1: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.26.
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4.3.2 Scenario 2

For this scenario, the number of genes G varies as G = 12, 60, 120, 600, 1200, 6000 while all
other parameters and hyperparameters are kept fixed according to the setting in Table 4.31.

In this scenario, as can be seen in Tables 4.32 and 4.33 and Figures 4.21 and 4.22, all es-
timates of ⇡k and �k are approximately around their true values. Standard deviations decrease
as G increases for the probability of always zero (�k). However, the standard deviations re-
main almost the same for the cluster assignment probabilities (⇡k) as G increases. Again, as
expected, the MSEs for ⇢gk and �0g remain somewhat the same in all cases (Tables 4.34 and
4.35). According to Table B.15 and Figure B.15, for all cases, the number of iterations is be-
tween 7 to 9. The computation times for cases 5 and 6 which have more genes, increase (Table
B.16 and Figure B.16). Except for the first case with G = 12, which has some misclassification
leading to V-measures slightly less than one, for all other cases, the V-measures are equal to
one (Figure 4.23).

Table 4.31: ZIP mixture model with a size factor. Scenario 2: Values chosen for the number
of genes G in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 12
2 60
3 1200 120 3 0.1 1�K
4 600
5 1200
6 6000
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Figure 4.21: Scenario 2: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.31. Red lines correspond to true
values. See also Table 4.32.
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Figure 4.22: Scenario 2: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.31. Red lines correspond to true
values. See also Table 4.33.
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Table 4.32: Scenario 2: Mean and standard deviation (SD) for the estimates of �k for each k
and each G, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.31.

�k G Mean SD

12 0.10021 0.00457
60 0.10027 0.00214

�1 120 0.10021 0.00141
600 0.10015 0.00060

1200 0.10013 0.00047
6000 0.10016 0.00023

12 0.10021 0.00422
60 0.10015 0.00199

�2 120 0.10005 0.00133
600 0.10017 0.00061

1200 0.10022 0.00049
6000 0.10017 0.00024

12 0.09993 0.00419
60 0.10008 0.00187

�3 120 0.10016 0.00126
600 0.10014 0.00061

1200 0.10019 0.00047
6000 0.10017 0.00024
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Figure 4.23: Scenario 2: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.31.
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Table 4.33: Scenario 2: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each G, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.31.

⇡k G Mean SD

12 0.33115 0.01282
60 0.33486 0.01351

⇡1 120 0.33135 0.01334
600 0.33437 0.01373

1200 0.33301 0.01280
6000 0.33365 0.01426

12 0.33442 0.01320
60 0.33349 0.01266

⇡2 120 0.33472 0.01439
600 0.33385 0.01349

1200 0.33363 0.01346
6000 0.33223 0.01306

12 0.33443 0.01311
60 0.33165 0.01382

⇡3 120 0.33393 0.01312
600 0.33178 0.01462

1200 0.33336 0.01371
6000 0.33412 0.01397

Table 4.34: Scenario 2: Mean squared error for the estimates of ⇢gk for each k and each G,
using the EM algorithm across the datasets simulated from the settings described in Table 4.31.

G

k 12 60 120 600 1200 6000

1 0.000242605 0.000238823 0.000236353 0.000234922 0.000235966 0.000236160
2 0.000233509 0.000239676 0.000238435 0.000236828 0.000234413 0.000235708
3 0.000238199 0.000237094 0.000236564 0.000235157 0.000235041 0.000235893

Table 4.35: Scenario 2: Mean squared error for the estimates of �0g for each G, using the EM
algorithm across the datasets simulated from the settings described in Table 4.31.

G

12 60 120 600 1200 6000

0.000115021 0.000114548 0.000112108 0.000113132 0.000113452 0.000114123
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4.3.3 Scenario 3

For this scenario, after fixing N and G, we vary K as the number of clusters to evaluate how
that a↵ect the EM parameter estimation. For this scenario, the true values of the ⇢gk’s used to
simulate the data are as follows:

K = 1→ ⇢gk’s = 0

K = 2→ ⇢gk’s = (−0.6,0.6)
K = 3→ ⇢gk’s = (−0.6,0,0.6)

K = 5→ ⇢gk’s = (−0.8,−0.6,0,0.6,0.8)
So that, for example, for K = 5 in the above setting, the first 120

5 = 24 genes in cluster k = 1
are assigned ⇢gk values equal to −0.8, then the following 24 genes are assigned values of −0.6,
etc. We repeat this process for the remaining clusters so that each gene’s rate parameters are
distinct across clusters. Table 4.36 shows the parameter setting for this scenario.

As can be seen in both Tables 4.37, 4.38 and Figures 4.24, 4.25 the estimates of �k and ⇡k

are very close to their true values. For the estimates of �k, the standard deviations are lower for
small K and become larger when K increases. The standard deviations of the estimates of ⇡k

are almost the same and small as we change K. Note that, in Figure 4.25, the resulted estimates
of ⇡k for di↵erent K are all merged into one vector to show their behavior more exactly, which
shows the closeness of the estimates to their true values and their stable standard deviations in
all cases. Tables 4.39 and 4.40 show that for most cases, the MSEs for the estimates of ⇢gk and
�0g are small, showing their closeness to their true corresponding values. The average number
of iterations for most cases is around 9, with fewer iterations needed when there is no cluster
(i.e., K = 1, see Table B.17 and Figure B.17). Furthermore, computation time increases as the
number of clusters increases (Table B.18 and Figure B.18), which is expected. And finally, all
V-measures demonstrate true clustering assignments and are equal to one.

Table 4.36: ZIP mixture model with a size factor. Scenario 3: Values chosen for the number
of clusters K in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 1
2 1200 120 2 0.1 1�K
3 3
4 5
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Figure 4.24: Scenario 3: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.36. Red lines correspond to true
values. See also Table 4.37.
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Figure 4.25: Scenario 3: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.36. Red lines correspond to true
values. See also Table 4.38. Note that the estimates of ⇡k over di↵erent K are all merged into
one vector.
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Table 4.37: Scenario 3: Mean and standard deviations for the estimates of �k for each k
and each K, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.36.

�k K Mean SD

1 0.09998 0.00074
�1 2 0.10008 0.00114

3 0.10016 0.00139
5 0.10065 0.00178

2 0.10017 0.00109
�2 3 0.10024 0.00142

5 0.10068 0.00191

�3 3 0.10030 0.00148
5 0.10072 0.00182

�4 5 0.10040 0.00192

�5 5 0.10073 0.00177

Table 4.38: Scenario 3: Mean and standard deviation for the estimates of ⇡k for each k and
each K, obtained using the EM algorithm across the datasets simulated from the settings de-
scribed in Table 4.36.

⇡k K Mean SD

1 1.00000 0.00000
⇡1 2 0.50001 0.01348

3 0.33347 0.01482
5 0.20009 0.01170

2 0.49999 0.01348
⇡2 3 0.33316 0.01414

5 0.19911 0.01142

⇡3 3 0.33337 0.01443
5 0.19873 0.01164

⇡4 5 0.20121 0.01079

⇡5 5 0.20086 0.01070
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Table 4.39: Scenario 3: Mean squared error for the estimates of ⇢gk for each k and each K,
using the EM algorithm across the datasets simulated from the settings described in Table 4.36.

K

k 1 2 3 5

1 0 0.000129537 0.000235247 0.000525599
2 0.000129537 0.000238153 0.000529169
3 0.000236647 0.000515542
4 0.000515218
5 0.000519752

Table 4.40: Scenario 3: Mean squared error for the estimates of �0g for each K, using the EM
algorithm across the datasets simulated from the settings described in Table 4.36.

K

1 2 3 5

0.000101369 0.000117110 0.000112684 0.000121417
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4.3.4 Scenario 4

In this scenario, we investigate the sensitivity of our proposed EM algorithm to the choice of
initial parameter values. We consider two cases and for both of them, we simulate data from
the setting in Table 4.41, and the method described in detail in Section 4.3 for the cluster e↵ect
parameters. For case 1, we consider the true values as the initial parameter values as in all other
simulation scenarios. In case 2, we use the K-means initialization approach to obtain initial
clusters. Then, we find the initial parameter values for the obtained clusters as described in the
following paragraph.

We find the initial values of the cluster assignment probabilities (⇡(0)k ) by calculating the
number of cells in each obtained cluster divided by the total number of cells (N = 1200).
Then, we calculate the proportions of zero in each cluster as initial values for �(0)k . Finally,
we compute the means over the genes for each inferred cluster as the initial values of the rate
parameters (�(0)gk ).

As can be seen in Tables 4.42 and 4.43 and Figures 4.26 and 4.27 the estimates of �k’s
and ⇡k’s are centered at their true values in both cases. However, there are some outliers in
case 2 with larger standard deviations. According to Tables 4.44 and 4.45, the estimates for
the parameters �0g and ⇢gk all have reasonably small MADs in both cases, although higher
values for case 2. Furthermore, most of the time the V-measures are approximately one (all
greater than 0.95), except for some misclassification that occurred in case 2 (Figure 4.28). In
most simulations, the number of iterations is almost the same, and not too many iterations are
needed for convergence, but there were some cases with more iterations for case 2 (Table B.19
and Figure B.19). Finally, the computation time was considerably longer for case 2 (Table B.20
and Figure B.20)

Table 4.41: ZIP mixture model with a size factor. Scenario 4: Values chosen for the fixed
parameters used to simulate the datasets.

N G K �k ⇡k

1200 120 3 0.1 1�K
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Figure 4.26: Scenario 4: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.41. Red lines correspond to true
values. See also Table 4.42.
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Figure 4.27: Scenario 4: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.41. Red lines correspond to true
values. See also Table 4.43.



4.3. Simulation scenarios for the ZIP mixture model with a size factor 115

Table 4.42: Scenario 4: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.41.

�k Case Mean SD

�1 1 0.10023 0.00142
2 0.09962 0.00956

�2 1 0.10003 0.00140
2 0.09946 0.00825

�3 1 0.10017 0.00140
2 0.09899 0.01376

Table 4.43: Scenario 4: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.41.

⇡k Case Mean SD

⇡1 1 0.33444 0.01317
2 0.33124 0.11683

⇡2 1 0.33255 0.01399
2 0.33474 0.12418

⇡3 1 0.33301 0.01327
2 0.33403 0.14037

Table 4.44: Scenario 4: Median absolute deviation for the estimates of ⇢gk for each k and
each case, using the EM algorithm across the datasets simulated from the settings described in
Table 4.41.

Case

k 1 2

1 0.01026 0.59934
2 0.01005 0.59589
3 0.01009 0.60201

Table 4.45: Scenario 4: Median absolute deviation for the estimates of �0g for each case, using
the EM algorithm across the datasets simulated from the settings described in Table 4.41.

Case

1 2

0.00707 0.00949
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Figure 4.28: Scenario 4: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.41.
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4.3.5 Scenario 5

For this scenario, we use K = 2 clusters, and rather than using the equal cluster assignment
probabilities, we use di↵erent values for these probabilities. The setting for this scenario is
shown in Table 4.46.

As demonstrated in Tables 4.47 and 4.48 and Figures 4.29 and 4.30 the estimated proba-
bilities of �k and ⇡k are close to their true values. From Table 4.47 and Figure 4.29, for the
probabilities of always zero estimates (�k), we can see that the standard deviations for the first
cluster increase in each case, but remain almost the same for the second cluster. For the esti-
mates of ⇡k, the standard deviations are almost the same and small enough in all cases (Table
4.48 and Figure 4.30). According to the MSE results (see Tables 4.49 and 4.50), the estimates
of ⇢gk and �0g are close to their true values, and when the clusters are more unbalanced, the
MSEs become a bit larger for both estimates. Also, the V-measures in all the cases are one or
very close to one. The number of iterations is equal to 9 for all cases (Table B.21 and Figure
B.21), and the computation time is the same for all cases (Table B.22 and Figure B.22)

Table 4.46: ZIP mixture model with a size factor. Scenario 5: Values chosen for the propor-
tion assigned to each cluster ⇡k in each case along with the fixed parameters used to simulate
the datasets.
Note that ⇡2 = 1 − ⇡1.

Case N G K �k ⇡1 ⇡2

1 0.50 0.50
2 1200 120 2 0.1 0.25 0.75
3 0.10 0.90
4 0.05 0.95
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Figure 4.29: Scenario 5: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.46. Red lines correspond to true
values. See also Table 4.47.
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Figure 4.30: Scenario 5: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.46. Red lines correspond to true
values. See also Table 4.48.



4.3. Simulation scenarios for the ZIP mixture model with a size factor 119

Table 4.47: Scenario 5: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.46.

�k Case Mean SD

1 0.10027 0.00116
�1 2 0.10024 0.00158

3 0.10029 0.00271
4 0.10041 0.00342

1 0.10015 0.00110
�2 2 0.10019 0.00094

3 0.10023 0.00085
4 0.10031 0.00082

Table 4.48: Scenario 5: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.46.

⇡k Case Mean SD

1 0.50042 0.01393
⇡1 2 0.25139 0.01278

3 0.09914 0.00900
4 0.05029 0.00618

1 0.49958 0.01393
⇡2 2 0.74861 0.01278

3 0.90086 0.00900
4 0.94971 0.00618

Table 4.49: Scenario 5: Mean squared error for the estimates of ⇢gk for each k and each case,
using the EM algorithm across the datasets simulated from the settings described in Table 4.46.

Case

k 1 2 3 4

1 0.000128601 0.000168903 0.000335283 0.000650272
2 0.000128601 0.000168903 0.000335283 0.000650272



120Chapter 4. SimulationResults for theMixture of Zero-Inflated Poisson andNegative-BinomialModels

Table 4.50: Scenario 5: Mean squared error for the estimates of �0g for each case, using the
EM algorithm across the datasets simulated from the settings described in Table 4.46.

Case

1 2 3 4

0.00012 0.00016 0.00032 0.00063
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4.3.6 Scenario 6

For this scenario, the probability of always zero varies between di↵erent cases to see their
e↵ects on parameter estimation. We start from a very small probability of always zero (5%) to
a large one (90%) across K = 3 clusters. All other parameters and hyperparameters are kept
fixed and the setting for this scenario can be seen in Table 4.51.

According to Tables 4.52 and 4.53 and Figures 4.31 and 4.32, the estimates of ⇡k and �k

are all close to their true values and have almost the same standard deviations for all cases.
The only thing is that the standard deviations have a little increase in some cases when there
is a larger probability of always zero. We should note that in Figure 4.31 for cases 1 to 5, the
estimates of �1, �2, and �3 are all merged into one vector to demonstrate their behaviour better.
Again, the V-measures are mostly close to one except for some misclassifications in case 5
(Figure 4.33). Also, the estimates of the parameters �0g and ⇢gk have small MSEs that show
their proximity to the true values (Tables 4.54 and 4.55). The number of iterations is almost
the same, except for case 5, which has always zero proportions of 90% (Table B.23 and Figure
B.23). The computational time is almost the same across the cases except for case 4, which is
faster compared to the other cases (Table B.24 and Figure B.24).

Table 4.51: ZIP mixture model with a size factor. Scenario 6: Values chosen for the prob-
ability of always-zero in the ZIP distribution �k in each case along with the fixed parameters
used to simulate the datasets.

Case N G K �k ⇡k

1 0.05
2 0.10
3 1200 120 3 0.25 1�K
4 0.50
5 0.90
6 (0.05, 0.25, 0.50)
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Figure 4.31: Scenario 6: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.51. Red lines correspond to true
values. See also Table 4.52. Note that the estimates of �1, �2, and �3 are all merged into one
vector for cases 1-5.
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Figure 4.32: Scenario 6: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.51. Red lines correspond to true
values. See also Table 4.53.
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Table 4.52: Scenario 6: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.51.

�k Case Mean SD

1 0.05023 0.00098
2 0.10026 0.00140

�1 3 0.25009 0.00189
4 0.49992 0.00229
5 0.89997 0.00148
6 0.05027 0.00107

1 0.05030 0.00100
2 0.10006 0.00139

�2 3 0.25006 0.00190
4 0.49978 0.00225
5 0.90002 0.00145
6 0.25001 0.00213

1 0.05024 0.00092
2 0.10024 0.00138

�3 3 0.24992 0.00189
4 0.49989 0.00218
5 0.89991 0.00131
6 0.50008 0.00220
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Figure 4.33: Scenario 6: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.51.
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Table 4.53: Scenario 6: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.51.

⇡k Case Mean SD

1 0.33265 0.01449
2 0.33349 0.01426

⇡1 3 0.33261 0.01366
4 0.33217 0.01318
5 0.33227 0.01349
6 0.33193 0.01300

1 0.33333 0.01331
2 0.33320 0.01513

⇡2 3 0.33305 0.01295
4 0.33402 0.01395
5 0.33364 0.01422
6 0.33457 0.01296

1 0.33401 0.01417
2 0.33331 0.01346

⇡3 3 0.33434 0.01354
4 0.33381 0.01388
5 0.33409 0.01511
6 0.33351 0.01314

Table 4.54: Scenario 6: Mean squared error for the estimates of ⇢gk for each k and each case,
using the EM algorithm across the datasets simulated from the settings described in Table 4.51.

Case

k 1 2 3 4 5 6

1 0.000226465 0.000237206 0.000281781 0.000417185 0.002150195 0.000264188
2 0.000228237 0.000235153 0.000278374 0.000419742 0.002098454 0.000294226
3 0.000221568 0.000234383 0.000277740 0.000411982 0.002113181 0.000357756

Table 4.55: Scenario 6: Mean squared error for the estimates of �0g for each case, using the
EM algorithm across the datasets simulated from the settings described in Table 4.51.

Case

1 2 3 4 5 6

0.00011 0.00011 0.00013 0.00020 0.00106 0.00015
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4.4 Simulation scenarios for the ZIP mixture model with a
covariate

In this section, we simulate data from the zero-inflated Poisson mixture model (as described
in Section 3.5.2) when we have a cell-specific size factor (Tn), the cluster e↵ects (⇢gk), the
baseline expression (�0g), and include a covariate xn1, for n = 1, . . . ,N. For this model, we
simulate xn1 from a Bernoulli distribution with a 0.5 probability of success. We consider two
scenarios. In scenario 1, we vary N (the number of cells) while fixing G (the number of genes)
and all other parameters and hyperparameters. For scenario 2, we vary G, while N and all other
parameters and hyperparametes are kept fixed. We simulate S = 100 datasets for all cases in
each scenario. The parameters that we use to simulate data include:

• Number of clusters: K = 2.

• Probability of cluster assignments: ⇡1 = ⇡2 = 0.5.

• Probability of always zero in each cluster: �1 = �2 = 0.1.

• Baseline expression: �0g = 0.85 for all g.

• Cluster e↵ects: ⇢g1’s = (2,−2) and ⇢g2’s = (−2,2), in which, for cluster one, the cluster
e↵ects on the first half of the genes are 2 and for the remaining half of the genes they are
−2 and vice versa for the second cluster.

• Covariate coe�cients: �1g = 1 for the first half of the genes, and for the remaining half
of the genes, �1g = 0.5.

• Size factors: Tn’s are simulated from a normal distribution with µ = 10 and � = 0.5.

4.4.1 Scenario 1

As mentioned in the previous paragraph, for this scenario, we consider di↵erent N values while
fixing all other parameters and hyperparameters. Table 4.56 demonstrates the setting for this
scenario.

For the probabilities of cluster assignments (⇡k) and the probabilities of always zero (�k),
respectively, as can be seen from Tables 4.57 and 4.58 and Figures 4.34 and 4.35, the resulting
estimates get closer to their true values and as N increases and the standard deviation of these
estimates decreases as N increases, as expected. We also calculate the MADs of the other
parameters, including �0g, �1g, and ⇢gk across all genes and all the simulated datasets. As shown
in Tables 4.59 and 4.60, the MADs are small, which shows the closeness of these estimates to
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Table 4.56: ZIP mixture model with a covariate. Scenario 1: Values chosen for the number
of observations N in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 60
2 120
3 300 120 2 0.1 1�K
4 600
5 1200

their true values. In addition, as N increases, the MAD values decrease, as expected by the
convergence properties of the EM algorithm. The computing time increases when N increases
(Table B.25 and Figure B.25) and V-measures are all one, which shows a perfect match between
inferred and true cluster assignments.

Table 4.57: Scenario 1: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.56.

k N Mean SD

1 60 0.491500000 0.065798002
120 0.498166667 0.049585544
300 0.499666667 0.029188424
600 0.501066667 0.019969843

1200 0.497058333 0.013312513

2 60 0.508500000 0.065798002
120 0.501833333 0.049585544
300 0.500333333 0.029188424
600 0.498933333 0.019969843

1200 0.502941667 0.013312513
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Figure 4.34: Scenario 1: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.56. Red lines correspond to true
values. See also Table 4.57.

Table 4.58: Scenario 1: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.56.

k N Mean SD

1 60 0.098992456 0.005007809
120 0.099832251 0.003744747
300 0.099809984 0.002182312
600 0.099899911 0.001649528

1200 0.099991528 0.001203047

2 60 0.100149594 0.005226926
120 0.099848961 0.003716596
300 0.100306134 0.002214400
600 0.100145810 0.001825143

1200 0.100001481 0.001173997
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Figure 4.35: Scenario 1: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.56. Red lines correspond to true
values. See also Table 4.58.

Table 4.59: Scenario 1: MAD for the estimates of ⇢gk for each k and each N, using the EM
algorithm across the datasets simulated from the settings described in Table 4.56.

N

k 60 120 300 600 1200

1 0.038813812 0.026580682 0.016910423 0.011647520 0.008494867
2 0.035358002 0.024422462 0.015716372 0.010928285 0.007832469

Table 4.60: Scenario 1: MAD for the estimates of �0g and �1g for each N, using the EM
algorithm across the datasets simulated from the settings described in Table 4.56.

N

60 120 300 600 1200

�0g 0.014636945 0.010251386 0.006453585 0.004745225 0.003249015
�1g 0.016953099 0.011994497 0.007652635 0.005360614 0.003791324
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4.4.2 Scenario 2

For this scenario, by fixing N = 1200 and all other parameters and hyperparameters, the number
of genes varies according to the settings in Table 4.61.

Table 4.61: ZIP mixture model with a covariate. Scenario 2: Values chosen for the number
of genes G in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 12
2 60
3 1200 120 2 0.1 1�K
4 600
5 1500

In this scenario, the estimates of ⇡k’s (probability of cluster assignments), are close to their
true values, but their standard deviations remain somewhat the same while G increases (Table
4.62 and Figure 4.36). For the probability of always zero, we can observe from Table 4.63 and
Figure 4.37 that the resulting estimates are close to their true values and the standard deviations
decrease as G increases. For other parameter estimates, including �0g, �1g, and ⇢gk from Tables
4.64 and 4.65, the MADs remain almost the same when the number of genes increases as N
remains fixed. The V-measures are equal to one in all cases. As expected, the computing time
increases when G increases, particularly for the largest one when G = 1500 (Table B.26 and
Figure B.26).

Table 4.62: Scenario 2: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each G, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.61.

k G Mean SD

1 12 0.499675000 0.014990127
60 0.499125000 0.012900908

120 0.499216667 0.014080407
600 0.503308333 0.014740771

1500 0.499600000 0.014515405

2 12 0.500325000 0.014990127
60 0.500875000 0.012900908

120 0.500783333 0.014080407
600 0.496691667 0.014740771

1500 0.500400000 0.014515405
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Figure 4.36: Scenario 2: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.61. Red lines correspond to true
values. See also Table 4.62.

Table 4.63: Scenario 2: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.61.

k G Mean SD

1 12 0.100470497 0.003632417
60 0.099988024 0.001694311

120 0.099896435 0.001094482
600 0.100007377 0.000554468

1500 0.099973886 0.000331099

2 12 0.099665322 0.004176079
60 0.099985994 0.001601331

120 0.100113810 0.001070322
600 0.100034844 0.000530891

1500 0.099958600 0.000329253
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Figure 4.37: Scenario 2: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.61. Red lines correspond to true
values. See also Table 4.63.

Table 4.64: Scenario 2: MAD for the estimates of ⇢gk for each k and each case, using the EM
algorithm across the datasets simulated from the settings described in Table 4.61.

G

k 12 60 120 600 1500

1 0.008111007 0.008324391 0.008290203 0.008281629 0.008424692
2 0.008118105 0.007922273 0.007625036 0.007775817 0.007789265

Table 4.65: Scenario 2: MAD for the estimates of �0g and �1g for each G, using the EM
algorithm across the datasets simulated from the settings described in Table 4.61.

G

12 60 120 600 1500

�0g 0.003424299 0.003184400 0.003212991 0.003321381 0.003312820
�1g 0.003699243 0.003602925 0.003818405 0.003781053 0.003764123
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4.5 Simulation scenarios for the ZINB mixture model with-
out covariates

In this section, we simulate data from the zero-inflated negative binomial mixture model with-
out covariates (Section 3.6.1). We consider two scenarios, where the number of cells (N) varies
in scenario one, and in the other scenario, the number of genes (G) varies, while holding all
other parameters and hyperparameters fixed. For both scenarios, we simulate data from K = 2
clusters with equal probability of cluster assignments (⇡1 = ⇡2 = 0.5). The probabilities of
always zero are equal to 0.1 for both clusters (�1 = �2 = 0.1). The size parameters for the neg-
ative binomial components are ⌫1 = 5 and ⌫2 = 20. For the negative binomial rate parameters,
we considered µg1 = µ1 = 5 and µg2 = µ2 = 10 for all g.

4.5.1 Scenario 1

As mentioned above, for this scenario, the number of cells (N) varies while we fix G = 120 and
all other parameters and hyperparameters according to the setting in Table 4.66.

Table 4.66: ZINB mixture model without covariates. Scenario 1: Values chosen for the
number of observations N in each case along with the fixed parameters used to simulate the
datasets.

Case N G K �k ⇡k

1 60
2 120
3 300 120 2 0.1 1�K
4 600
5 1200

We can observe from Tables 4.67 and 4.68 and Figures 4.38 and 4.39 that the estimates of
⇡k and �k are close to their true values, and as N increases, the standard deviations decrease.
The MSEs for the estimates of the rate parameters decrease as N increases (see Table 4.69).
Furthermore, as shown in Tables 4.70 and Figure 4.40, for both clusters, the bias and the
variance in the estimation of the size parameter decrease as N increases. Finally, computing
time increases when N increases (Table B.27 and Figure B.27), and V-measures for all data
sets are equal to one.
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Table 4.67: Scenario 1: Mean and standard deviation (SD) for the estimates of ⇡k for each
cluster k and each N, obtained using the EM algorithm across the datasets simulated from the
settings described in Table 4.66.

k N Mean SD

1 60 0.502500000 0.063712977
120 0.499833333 0.045643239
300 0.499433333 0.027784060
600 0.499966667 0.020996472

1200 0.503100000 0.014755813

2 60 0.497500000 0.063712977
120 0.500166667 0.045643239
300 0.500566667 0.027784060
600 0.500033333 0.020996472

1200 0.496900000 0.014755813
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Figure 4.38: Scenario 1: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.66. Red lines correspond to true
values. See also Table 4.67.
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Table 4.68: Scenario 1: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.66.

k N Mean SD

1 60 0.101422431 0.006166323
120 0.100564181 0.004162313
300 0.100183877 0.002496634
600 0.099694053 0.002046551

1200 0.100138043 0.001312946

2 60 0.099817364 0.005766071
120 0.100215019 0.003390551
300 0.099439385 0.002471910
600 0.100079498 0.001403623

1200 0.099994556 0.001015787
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Figure 4.39: Scenario 1: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.66. Red lines correspond to true
values. See also Table 4.68.
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Table 4.69: Scenario 1: Mean squared error for the estimates of µgk for each k and each case,
using the EM algorithm across the datasets simulated from the settings described in Table 4.66.

N

k 60 120 300 600 1200

1 0.40832 0.19947 0.08136 0.03927 0.01948
2 0.57480 0.27671 0.11284 0.05625 0.02844

Table 4.70: Scenario 1: Mean and standard deviation (SD) for the estimates of ⌫k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.66.

k N Mean SD

1 60 5.48 0.38
120 5.26 0.23
300 5.10 0.12
600 5.04 0.11

1200 5.01 0.07

2 60 23.07 2.04
120 21.29 1.20
300 20.36 0.74
600 20.21 0.52

1200 20.11 0.33
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Figure 4.40: Scenario 1: Boxplots for the estimates of ⌫k using the EM algorithm across
the datasets simulated from the settings described in Table 4.66. Red lines correspond to true
values. See also Table 4.70.



4.5. Simulation scenarios for the ZINB mixture model without covariates 137

4.5.2 Scenario 2

For this scenario, by fixing N = 1200 and all other parameters and hyperparameters, the number
of genes (G) varies between the simulated data according to the setting in Table 4.71.

Table 4.71: ZINB mixture model without covariates. Scenario 2: Values chosen for the
number of genes G in each case along with the fixed parameters used to simulate the datasets.

Case N G K �k ⇡k

1 12
2 60
3 1200 120 2 0.1 1�K
4 600
5 1500

We can observe from Tables 4.72 and 4.73 and Figures 4.41 and 4.42 that for both pa-
rameters ⇡k and �k, their estimates are close to their true values. The standard deviation of
the parameters estimates �k decreases as G increases; however, the standard deviations for the
estimates of ⇡k remain almost the same with varying G. As Table 4.74 shows, no significant
changes are observed on the MSEs of the parameter estimates of µgk for each cluster when G
varies. Furthermore, from Table 4.75 and Figure 4.43, we can see that the size parameters are
estimated close to their true values with a decrease in their standard deviations as G increases.
According to Table B.28 and Figure B.28 the computing time increases as G increases. Finally,
except for the simulated data sets when G = 12 with some misclassifications, the V-measures
are very close to one for all the other cases (see Figure 4.44).
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Table 4.72: Scenario 2: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.71.

k G Mean SD

1 12 0.499719868 0.017829928
60 0.501075000 0.014799110

120 0.501675000 0.016050257
600 0.497741667 0.014496940

1500 0.500300000 0.012287772

2 12 0.500280132 0.017829928
60 0.498925000 0.014799110

120 0.498325000 0.016050257
600 0.502258333 0.014496940

1500 0.499700000 0.012287772
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Figure 4.41: Scenario 2: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.71. Red lines correspond to true
values. See also Table 4.72.
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Table 4.73: Scenario 2: Mean and standard deviation (SD) for the estimates of �k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.71.

k G Mean SD

1 12 0.099852809 0.004301919
60 0.100302132 0.002016654

120 0.099789100 0.001318137
600 0.100000309 0.000585295

1500 0.100004958 0.000351525

2 12 0.100203671 0.003345701
60 0.099927764 0.001476867

120 0.100218634 0.001022206
600 0.100067091 0.000544676

1500 0.099958123 0.000300695
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Figure 4.42: Scenario 2: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.71. Red lines correspond to true
values. See also Table 4.73.
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Table 4.74: Scenario 2: Mean squared error for the estimates of µgk for each k and each G,
using the EM algorithm across the datasets simulated from the settings described in Table 4.71.

G

k 12 60 120 600 1500

1 0.02049 0.01917 0.01959 0.01990 0.01976
2 0.02816 0.02798 0.02851 0.02761 0.02783

Table 4.75: Scenario 2: Mean and standard deviation (SD) for the estimates of ⌫k for each k
and each case, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.71.

k G Mean SD

1 12 4.9981 0.1790
60 5.0416 0.0816

120 5.0122 0.0732
600 5.0186 0.0281

1500 5.0218 0.0222

2 12 19.9360 1.0668
60 20.0507 0.4643

120 20.1685 0.3419
600 20.1155 0.1467

1500 20.1211 0.0917
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Figure 4.43: Scenario 2: Boxplots for the estimates of ⌫k using the EM algorithm across
the datasets simulated from the settings described in Table 4.71. Red lines correspond to true
values. See also Table 4.75.
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Figure 4.44: Scenario 2: Boxplots for the V-measures of the clustering obtained by the EM
algorithm across the datasets simulated from the settings described in Table 4.71.
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4.6 Simulation scenarios for the ZINB mixture model with a
size factor

In this section, we simulate only one scenario for the case of ZINB mixture model with a size
factor when the number of cells varies as N = 60,120,300,600, and 1200. We choose G = 120
as the number of genes and K = 2 as the number of clusters. We simulate S = 100 datasets, and
the true values of the parameters and hyperparameters are set as follows:

• ⇡ = (0.5,0.5);
• � = (0.1,0.2);
• Tn’s are generated from a normal distribution with µ = 10 and � = 0.5;

• �0g = 0.85 for all g;

• ⇢1g = (2, . . . ,2,−2, . . . ,−2), and

• ⇢2g = (−2, . . . ,−2,2, . . . ,2).
It should be mentioned that, for the cluster e↵ect parameters (⇢gk’s), over each cluster, the first
half of the genes, are assigned one value (either 2 or −2) and the remaining half are assigned
another value (either 2 or −2) in such a way that their sums are equal to zero. The setting for
this simulation scenario is shown in Table 4.76

Table 4.76: ZINB mixture model with a size factor. Scenario 1: Values chosen for the
number of observations N in each case along with the fixed parameters used to simulate the
datasets.

Case N G K �k ⇡k

1 60
2 120
3 300 120 2 (�1 = 0.1,�2 = 0.2) 1�K
4 600
5 1200

For this scenario, we can see from Table 4.77 and Figure 4.45 that the estimated values of
the probabilities of cluster assignment (⇡̂k) are approximately close to their true values and their
standard deviations decrease as N increases. Furthermore, from Table 4.78 and Figure 4.46,
we can observe similar behaviour for the estimated values of the probability of always zero
(�̂k); that is, as N increases, their standard deviations decrease, and their estimated values are
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close to their true values. Tables 4.79 and 4.80 demonstrate the MSEs of the estimated values
of ⇢̂gk and �̂0g. As can be seen from these tables, the MSEs reduce as N becomes larger for both
parameters. The behaviour of the estimated values of the size parameters (⌫1 and ⌫2) are shown
in Table 4.81 and Figure 4.47. As expected, the estimated values of ⌫1 and ⌫2 get closer to their
true values, and their standard deviations decrease as N increases. For all cases, V-measures are
equal to one, which shows the perfect performance of the inferred cluster assignments. Finally,
Table B.29 and Figure B.29 show that the computing time increases when N increases.

Table 4.77: Scenario 1: Mean and standard deviation (SD) for the estimates of ⇡k for each k
and each N, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.76.

k N Mean SD

1 60 0.499000000 0.059403129
120 0.499416667 0.044274533
300 0.499700000 0.024989762
600 0.496466667 0.018173129

1200 0.497150000 0.012803652

2 60 0.501000000 0.059403129
120 0.500583333 0.044274533
300 0.500300000 0.024989762
600 0.503533333 0.018173129

1200 0.502850000 0.012803652

Table 4.78: Scenario 1: Mean and standard deviation (SD) for the estimates of �k for each k
and each N, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.76.

k N Mean SD

1 60 0.098709502 0.005962128
120 0.099481329 0.003898979
300 0.099814282 0.002657849
600 0.099822926 0.001770076

1200 0.100074985 0.001325751

2 60 0.198481193 0.006203301
120 0.199096122 0.005127590
300 0.200084764 0.003133217
600 0.200102372 0.002030886

1200 0.199840261 0.001712608
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Figure 4.45: Scenario 1: Boxplots for the estimates of ⇡k using the EM algorithm across
the datasets simulated from the settings described in Table 4.76. Red lines correspond to true
values. See also Table 4.77.

Table 4.79: Scenario 1: Mean Squared error (MSE) for the estimates of ⇢gk for each k and
each N, using the EM algorithm across the datasets simulated from the settings described in
Table 4.76.

N

k 60 120 300 600 1200

1 0.08710 0.06189 0.04038 0.02848 0.01996
2 0.04873 0.03532 0.02200 0.01585 0.01127

Table 4.80: Scenario 1: Mean squared error (MSE) for the estimates of �0g for each N, using
the EM algorithm across the datasets simulated from the settings described in Table 4.76.

N

60 120 300 600 1200

�0g 0.04207 0.02902 0.01791 0.01278 0.00935
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Figure 4.46: Scenario 1: Boxplots for the estimates of �k using the EM algorithm across
the datasets simulated from the settings described in Table 4.76. Red lines correspond to true
values. See also Table 4.78.
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Table 4.81: Scenario 1: Mean and standard deviation (SD) for the estimates of ⌫k for each k
and each N, obtained using the EM algorithm across the datasets simulated from the settings
described in Table 4.76.

k N Mean SD

1 60 5.2327 0.1597
120 5.1426 0.1225
300 5.0433 0.0672
600 5.0199 0.0461

1200 5.0104 0.0368

2 60 21.1015 0.8673
120 20.5514 0.6456
300 20.2056 0.3604
600 20.0906 0.2556

1200 20.0455 0.1791
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Figure 4.47: Scenario 1: Boxplots for the estimates of ⌫k using the EM algorithm across
the datasets simulated from the settings described in Table 4.76. Red lines correspond to true
values. See also Table 4.81.



Chapter 5

Data Analysis

In this chapter, we apply some of the proposed ZIP and ZINB mixture models introduced in
Chapter 3 to two publicly available datasets. In Section 5.1, we consider scRNA-seq data from
mouse embryonic stem cells collected by Klein et al. (2015) and fit the ZIP mixture model
without covariates as well as the ZIP mixture model with a size factor. In Section 5.2, we
analyze scRNA-seq data from mouse liver tissue cells profiled by Han et al. (2018) using the
ZIP mixture model without covariates and the ZINB mixture without covariates.

5.1 Mouse Embryonic Stem Cell (MESC) data

Klein et al. (2015) developed a laboratory platform (called inDrop from indexing Droplets) for
indexing thousands of individual cells for RNA sequencing. Klein et al. then used inDrop to
obtain single-cell RNA sequencing data from mouse embryonic stem cells before (day 0) and
after leukemia inhibitory factor (LIF) withdrawal (days 2, 4, and 7). Read counts across all
cells and genes for the di↵erent experiment days in Klein et al. (2015) are publicly available
through the Gene Expression Omnibus online repository under the accession code GSE65525.

For our analysis, we consider the pooled data for day 0 (933 cells) and day 4 (683 cells) for
a total of N = 1,616 cells and G = 24,175 genes. Then, we perform a filtering (selection) step
by filtering out genes with very little variation across all cells. This is a common step in the
analysis of scRNA-seq data (Klein et al., 2015, Zeisel et al., 2015). In this case, we filter out
genes with a read count interquartile range across cells smaller than one (IQR = Q3 − Q1 ≤ 1),
resulting in 4,514 genes initially selected. From these 4,514 genes, we select 100 of them
with the highest read count standard deviations across cells. Therefore, we continue the data
analysis in this section using the read count data for N = 1,616 cells and the selected G =
100 most variable genes. Note that our choice to select 100 genes was based on reducing
the computation complexity of running di↵erent models for di↵erent number of clusters with
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di↵erent initializations. However, one can consider a larger number of genes and compare the
results.

We fit the mouse embryonic stem cell data (MESC) data considering the ZIP mixture model
without covariates (Section 3.5.1) and with a size factor (as the total number of read counts for
each cell before performing any gene filtering) as shown in Equation (3.30) of Section 3.5.2.
For each model, we apply the proposed EM algorithm considering di↵erent choices of K (total
number of clusters) and two clustering initialization methods: K-means and random clustering.
After obtaining initial cluster assignments for the cells by K-means or random clustering, we
can find the initial parameter values required to start the EM algorithm as follows. For the
cluster probabilities, the ⇡k’s, we set their initial values to the proportion of cells assigned
to each initial cluster. For the probabilities of always zero, the �k’s, we set each �(0)k to the
proportion of zero entries in each cluster. For the case of the ZIP mixture model without
covariates (simple ZIP model), for each initial cluster, we take the mean read count for each
gene as the initial values of the �gk’s. For the ZIP mixture model with a size factor, we initialize
the �0g’s at zero, and the cluster e↵ects, the ⇢gk’s, as the mean read count for each gene for each
initial cluster.

For each choice of K and each initialization method (random or K-means), we run the
EM algorithm 32 times corresponding to 32 di↵erent initialization runs from di↵erent seeds.
Next, for each initialization method, we choose the run with the smallest Aikaike Information
Criterion (AIC) for each possible total number of clusters K. For each initialization method,
after choosing the best run over each K, we use the elbow method to select the optimum number
of clusters. The elbow takes the point with the highest AIC (on the y-axis) and the point with
the highest K (in the x-axis) and defines a line, usually going from the top-left to the bottom-
right on the plot. The optimum point is then determined to be the one that is the farthest away
below this line.

In what follows, we present the results of fitting the ZIP mixture model without covariates
(simple ZIP) and with a size factor to the MESC data.

5.1.1 Results of fitting the ZIP mixture model without covariates to the
MESC data

This section presents the results of fitting the ZIP mixture model without covariates (simple
ZIP) to the MESC dataset. As mentioned above, for our analysis, we use the pooled data of
day 0 and day 4 over the 100 most variable selected genes and 1,616 cells.

Figures 5.1 and 5.3 show the boxplots of AIC values over the 32 EM runs for di↵erent
values of K for the random and K-means cluster initialization approaches, respectively. Figures
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5.2 and 5.4 show the corresponding smallest AIC for each K for the random and K-means
initialization methods, respectively. Based on the elbow method, both initialization methods
lead to K = 4 as the best number of clusters for the simple ZIP model (see the red point in
Figures 5.2 and 5.4). Next, as a final choice between these two results with K = 4, one using
random clustering initialization and the other K-means, we select the one with the lowest AIC.
In this case, the AIC from the K-means initialization approach reaches a lower value than that
of the random initialization. Therefore, we select the EM run with the best AIC for K = 4 from
the K-means initialization approach and present its results in what follows.

Figure 5.5 and Table 5.1 present the co-clustering plot and confusion matrix, respectively,
between cell experiment days (day 0 and day 4) and the inferred cell clusters (1, 2, 3, and
4) for the best EM algorithm run with K = 4. The co-clustering plot allows us to observe
the percentage of cells from each experiment day present in each inferred cluster. From both
Figure 5.5 and Table 5.1, we can see that most cells (approximately 99%) of day 4 are present
in the inferred cluster 2 and cells from day 0 fall mainly into the inferred clusters 1, 3, and 4.
Interestingly, Klein et al. (2015) found in their analyses that cells from day 0 belong to three
main subpopulations plus two other rare subpopulations when clustering only day 0 cells via
hierarchical clustering.

Figure 5.6 shows the heatmap of the data (read counts across all 1,616 cells and all 100 se-
lected genes) with cells (rows) ordered by their inferred cluster assignments. The heatmap also
contains annotation for each cell’s experiment day (0 or 4). Figure 5.7 presents a dimensional-
ity reduction visualization of the data using t-SNE (Van der Maaten and Hinton, 2008). In the
t-SNE plot, circle and triangle points correspond to cells from day 0 and day 4, respectively,
and the colours to the inferred four clusters. Moreover, Figure 5.8 shows the cluster assignment
expected values (or probabilities), i.e., the Ẑnk’s, which we used to determine the final inferred
cluster assignment of each cell as shown in Equation (3.20). We can observe that overall the
proposed EM algorithm assigned cells to their clusters with high (close to 1) probabilities.

Table 5.2 shows the estimated cluster proportion, ⇡̂k, for each of the inferred clusters. Clus-
ter 2 has the highest proportion of cell assignments (⇡̂2 = 45.91%) compared to the other three
clusters. The estimated probability of always zero for each cluster is shown in Table 5.3 in
which cluster 2 shows the highest probability with �̂2 = 1.191%. Finally, Figure 5.9 shows
the heatmap of the estimates of the rate parameters (�̂gk’s) for each cluster (rows) over the 100
selected genes (columns) when fitting the ZIP simple model to the MESC data.
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Figure 5.1: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZIP model to the MESC dataset with random clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.
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Table 5.1: Confusion matrix between the EM clustering result when fitting the simple ZIP
model to the MESC data and the experiment day labels. Inferred clusters are from the best EM
algorithm run (K-means initialization and K = 4) under the simple ZIP model (see Figure 5.4).

Inferred cluster

Day 1 2 3 4

0 218 64 396 255
4 0 676 0 7

Table 5.2: Estimates of ⇡k for the MESC dataset obtained from the best EM algorithm run
(K-means initialization and K = 4) under the simple ZIP model.

k ⇡̂k

1 0.13599
2 0.45910
3 0.24507
4 0.15984

Table 5.3: Estimates of �k for the MESC dataset obtained from the best EM algorithm run
(K-means initialization and K = 4) under the simple ZIP model.

k �̂k

1 0.00077
2 0.01191
3 0.00077
4 0.00127
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Figure 5.2: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZIP model to the MESC dataset with random clustering initialization. Based on the
elbow method, the optimal EM run corresponds to the point in red when K = 4.
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Figure 5.3: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZIP model to the MESC data set with K-means clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.
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Figure 5.4: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZIP model to the MESC dataset with K-means clustering initialization. Based on
the elbow method, the optimal EM run corresponds to the point in red when K = 4.

Figure 5.5: MESC dataset. Co-clustering between experiment days (0 and 4; rows) and in-
ferred clusters by the proposed EM algorithm (1, 2, 3, and 4; columns). Each entry ai j repre-
sents the % of cells from day i that are present in the inferred cluster j. Rows sum up to 100%.
Inferred clusters are from the best EM algorithm run (K-means initialization and K = 4) under
the simple ZIP model (see Figure 5.4).



5.1. Mouse Embryonic Stem Cell (MESC) data 157

Figure 5.6: Heatmap of MESC data displaying read counts across all 1,616 cells (rows) and
all 100 selected genes (columns). Cells (rows) are ordered by their inferred cluster assignments
obtained from the best EM algorithm run (K-means initialization and K = 4) under the simple
ZIP model. The first column on the left shows the annotation for each cell’s experiment day (0
or 4). Dark blue colours represent low read count values, and dark red colours represent high
read count values. Note that to facilitate visualization under this colour scheme, read counts
with values higher than the 95th percentile were truncated at the value of the 95th percentile.
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Figure 5.7: t-SNE plot for the MESC dataset and the clustering obtained from the best EM
algorithm run (K-means initialization and K = 4) under the simple ZIP model. Each point
represents a cell with the shape symbol indicating the experiment day label (day 0 or day 4),
and the colour the corresponding inferred cluster (1, 2, 3, or 4).
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Figure 5.8: Heatmap of the Ẑnk’s for MESC dataset obtained from the best EM algorithm
run (K-means initialization and K = 4) under the simple ZIP model. Each row shows the
estimated probability of a cell n belonging to each cluster k (columns). Rows are ordered by
the final inferred cluster assignments determined by Eq. (3.20). The labels on the left show the
assigned clusters and the day labels. Dark colours represent high probabilities.

Figure 5.9: Heatmap of the �̂gk’s for MESC data set obtained from the best EM algorithm
run (K-means initialization and K = 4) under the simple ZIP model. Each row corresponds
to a cluster, and each column to a gene. Dark blue colours represent low values, and dark red
colours represent high values of �̂gk.
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5.1.2 Results of fitting the ZIP mixture models with size factor to the
MESC data

In this section, we present the results of fitting the ZIP mixture model with size factor (as shown
in Equation (3.30) of Section 3.5.2) to the same MESC dataset analyzed in Section 5.1.1; that
is, the pooled data of day 0 and day 4 over the 100 most variable selected genes and 1,616 cells.

Figures 5.10 and 5.12 show the boxplots of AIC values over the 32 runs of the EM algo-
rithm for each K using the random and K-means clustering initialization approaches, respec-
tively. Figures 5.11 and 5.13 show the corresponding smallest AIC for each K for random
and K-means initialization methods, respectively. Based on the elbow method, the random
initialization approach leads to K = 6 clusters as the best number of clusters for the ZIP mix-
ture model with size factor; however, the K-means initialization method leads to K = 4 as the
optimum number for clusters (see the red point in Figures 5.11 and 5.13). As a final choice,
we choose the best number of clusters between these two initialization methods based on the
lowest AIC. Thus, as K-means initialization leads to the smallest AIC value, we choose the
EM run with the best AIC from the K-means method when K = 4 and present its results in the
following.

Figure 5.14 and Table 5.4 show the co-clustering plot and confusion matrix, respectively,
between cell experiment days (0 and 4) and the inferred four clusters for the best EM algorithm
run (K = 4 clusters and K-means clustering initialization method) for the ZIP mixture model
with size factor. From both Figure 5.14 and Table 5.4, we can see that all cells (100%) of day
4 are present in the inferred cluster 1 and, interestingly, most cells (approximately 98.5%) of
day 0 are in the inferred cluster 4 and only a few of cells from day 0 are in the other clusters;
that is, 0.21% in cluster 1, 0.11% in cluster 2, and 1.18% in cluster 3. These clustering results
are similar to the ones presented by Qi et al. (2020).

Similarly to the previous section, Figure 5.15 shows the heatmap of the read counts across
all 1,616 cells and all 100 selected genes with cells (rows) ordered by their inferred cluster
assignments from the ZIP mixture model with size factor. The heatmap also shows each cell’s
experiment day (0 or 4). Figure 5.16 shows the t-SNE representation of the data in two dimen-
sions, where circle and triangle points correspond to cells from day 0 and day 4, respectively,
and the colours to the inferred four clusters. As in Section 5.1.1, we can observe in Figure 5.17
that overall the proposed EM algorithm assigned cells to their clusters with high (close to 1)
probabilities.

The estimated cluster proportions (⇡̂k’s) are presented in Table 5.5. We can see from the
table that more than 50% of the cells belong to cluster 4 (56.83%), and 42.4% of the cells fall
into cluster 1 and only a few of them are assigned to the other two clusters. Table 5.6 shows
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Figure 5.10: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the ZIP mixture model with size factor to the MESC dataset with
random clustering initialization. Each boxplot contains 32 AIC values corresponding to 32
initialization runs from di↵erent seeds.

the estimated probability of always zero for each cluster k, and we can see that �̂1 = 0.01415
has the highest probability of always zero compared with the other clusters. Figure 5.18 shows
the heatmap of the estimates of �0g (baseline expression) and ⇢gk (cluster e↵ect) over the 100
selected genes (columns) when fitting the ZIP mixture model with size factor. The �̂0g’s are
shown in the first row, and the ⇢̂gk’s for each cluster k are presented in rows 2 to 5.

Table 5.4: Confusion matrix between the EM clustering result when fitting the ZIP mixture
model with size factor to the MESC data and the experiment day labels. Inferred clusters are
from the best EM algorithm run (K-means initialization and K = 4) under the ZIP mixture
model with size factor (see Figure 5.13).

Inferred cluster

Day 1 2 3 4

0 2 1 11 919
4 683 0 0 0
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Figure 5.11: Plot of the best AIC for each K obtained from applying the EM algorithm under
the ZIP mixture model with size factor to the MESC dataset with random clustering initializa-
tion. Based on the elbow method, the optimal EM run corresponds to the point in red when
K = 6.
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Figure 5.12: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the ZIP mixture model with size factor to the MESC data set with
K-means clustering initialization. Each boxplot contains 32 AIC values corresponding to 32
initialization runs from di↵erent seeds.
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Figure 5.13: Plot of the best AIC for each K obtained from applying the EM algorithm under
the ZIP mixture model with size factor to the MESC dataset with K-means clustering initial-
ization. Based on the elbow method, the optimal EM run corresponds to the point in red when
K = 4.

Figure 5.14: MESC dataset. Co-clustering between experiment days (0 and 4; rows) and
inferred clusters by the proposed EM algorithm (1, 2, 3, and 4; columns). Each entry ai j

represents the % of cells from day i that are present in the inferred cluster j. Rows sum up to
100%. Inferred clusters are from the best EM algorithm run (K-means initialization and K = 4)
under the ZIP mixture model with size factor (see Figure 5.13).
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Figure 5.15: Heatmap of MESC data displaying read counts across all 1,616 cells (rows) and
all 100 selected genes (columns). Cells (rows) are ordered by their inferred cluster assignments
obtained from the best EM algorithm run (K-means initialization and K = 4) under the ZIP
mixture model with size factor. The first column on the left shows the annotation for each
cell’s experiment day (0 or 4). Dark blue colours represent low read count values, and dark red
colours represent high read count values. Note that to facilitate visualization under this colour
scheme, read counts with values higher than the 95th percentile were truncated at the value of
the 95th percentile.
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Figure 5.16: t-SNE plot for the MESC dataset and the clustering obtained from the best EM
algorithm run (K-means initialization and K = 4) under the ZIP mixture model with size factor.
Each point represents a cell with the shape symbol indicating the experiment day label (day 0
or day 4), and the colour the corresponding inferred cluster (1, 2, 3, or 4).
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Figure 5.17: Heatmap of the Ẑnk’s for MESC dataset obtained from the best EM algorithm run
(K-means initialization and K = 4) under the ZIP mixture model with size factor. Each row
shows the estimated probability of a cell n belonging to each cluster k (columns). Rows are
ordered by the final inferred cluster assignments determined by Eq. (3.20). The labels on the
left show the assigned clusters and the day labels. Dark colours represent high probabilities.



168 Chapter 5. Data Analysis

Figure 5.18: Heatmap of the �̂0g’s and �̂gk’s for the MESC dataset obtained from the best EM
algorithm run (K-means initialization and K = 4) under the ZIP mixture model with size factor.
�̂0g’s are shown in the first row, and the ⇢̂gk’s for each cluster k are presented in rows 2 to 5.
The columns correspond to the 100 selected genes. Dark blue colours represent low values,
and dark red colours represent high values of �̂0g and ⇢̂gk.

Table 5.5: Estimates of ⇡k for the MESC dataset obtained from the best EM algorithm run
(K-means initialization and K = 4) under the ZIP mixture model with size factor.

k ⇡̂k

1 0.42384
2 0.00062
3 0.00727
4 0.56828

Table 5.6: Estimates of �k for the MESC dataset obtained from the best EM algorithm run
(K-means initialization and K = 4) under the ZIP mixture model with size factor.

k �̂k

1 0.01415
2 0.00000
3 0.00086
4 0.00072
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5.1.3 Model selection for the MESC dataset

Table 5.7 shows the AIC values obtained from the best EM algorithm runs when fitting the
simple ZIP model (ZIP mixture model without covariates) and the ZIP mixture model with
size factor. These values correspond to the red points in Figures 5.4 and 5.13. Table 5.7 shows
that the ZIP mixture model with a size factor leads to a smaller AIC value than the simple ZIP
model. Therefore, the ZIP mixture model with a size factor fits the MESC data better than the
ZIP simple model. As shown in Section 5.1.2, the selected ZIP mixture model with size factor
resulted in two main clusters, one with cells from day 0 and the other with cells from day 4.

Table 5.7: AIC values corresponding to the best EM runs when fitting the simple ZIP model
and the ZIP mixture model with size factor to the MESC dataset (see Figures 5.4 and 5.13).

Model AIC

Simple ZIP 80274.22
ZIP mixture model with size factor 72544.74

5.2 Liver Data

Han et al. (2018) collected thousands of single-cell transcriptome profiles from several mouse
tissues, organs, and cell cultures using Microwell-seq as a high-throughput and low-cost scRNA-
seq platform. These data are publicly accessible through the Gene Expression Omnibus online
repository under the accession code GSE108097. Han et al. also made their data available at
https://figshare.com/s/865e694ad06d5857db4b. For the data analysis in this thesis,
we consider a subset of the scRNA-seq data from mouse liver tissue provided by Han et al.
(2018). The liver data’s total number of cells and genes are N = 4,685 and G = 15,491, re-
spectively. We first select N = 1,000 cells using random sampling, and then for these randomly
selected cells, we filter out genes with the highest variation as the most remarkable genes. As
mentioned earlier, the process of gene filtering and selecting the most remarkable (highly vari-
able) genes is a common step in analyzing scRNA-seq data Klein et al. (2015), Zeisel et al.
(2015). For this data, we choose 100 of the genes with the highest standard deviations of read
count across cells. Therefore, the data analysis results presented in this section are based on
the randomly selected 1,000 cells and 100 selected highly variable genes of the liver tissue data
in Han et al. (2018), which we refer to simply as liver data from now on.

We fit the liver data considering the ZIP mixture model without covariates (simple ZIP,
Section 3.5.1) and the ZINB mixture model without covariates (simple ZINB, Section 3.6.1)
via the EM algorithm. Similarly to Section 5.1, we apply the proposed EM algorithm to the

https://figshare.com/s/865e694ad06d5857db4b
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liver data considering di↵erent choices of K (total number of clusters) and two clustering ini-
tialization approaches: K-means and random clustering. After obtaining the initial cluster
assignments for the cells using the two initialization methods, we can find the initial starting
points of the EM algorithm for each model fitting. We can find the starting points for the cluster
probabilities (⇡k’s), proportions of always zero in each cluster (�k’s) for both the simple ZIP
and ZINB mixture models and the rate parameters of simple ZIP model as described earlier in
Section 5.1. The initial rate parameters for the simple ZINB mixture model for each cluster
are the mean read counts for each gene (similar to the initial rates for the simple ZIP mixture
model). Finally, we calculate the initial values for the size parameters (⌫k’s) for the simple
ZINB mixture model as follows. For each k, first, we calculate µ and � be the mean and stan-
dard deviation of read counts over all genes and cells in the initial cluster k. Then, we calculate
the initial value for ⌫k as:

⌫(0)k = ���µ �
2 − 1
µ
�−1
.

Again, similar to section 5.1, for each choice of K and the initialization method, we run
the proposed EM algorithm 32 times as the 32 di↵erent initialization run from di↵erent seeds,
and choose the run with smallest AIC for each possible K for each initialization method. Then,
after selecting the best run for each K, we use the elbow method to find the optimum number
of clusters K.

We present the results of fitting the ZIP and ZINB mixture models without covariates to the
liver data in the following sections.

5.2.1 Result of fitting the ZIP mixture model without covariates to the
liver data

This section presents the results of fitting the ZIP mixture model (simple ZIP) to the liver data
set. The data correspond to the 1,000 randomly selected cells and the 100 selected highly
variable genes for our analysis.

Figures 5.19 and 5.21 show the boxplots of the AIC values over the 32 runs of the EM
algorithm for each possible K for the random and K-means initialization methods, respectively.
Figures 5.20 and 5.22 show the smallest AIC for each K for random and K-means initialization
methods, respectively. Based on the elbow method, the random initialization approach leads
to K = 6 clusters as the best number of clusters. The K-means approach yields K = 4 as the
optimum number of clusters. As the best EM run from K-means initialization has the lowest
value of AIC, in what follows, we present the results of the EM run with K = 4 from the
K-means initialization method.

Figure 5.23 and Table 5.8 show the co-clustering and confusion matrix, respectively, be-
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tween the cell type labels provided in the dataset by Han et al. (2018) and the inferred four
clusters for the best EM run (K = 4 clusters and K-means initialization approach) for the ZIP
mixture model without covariates. From both Figure 5.23 and Table 5.8, we can see that B
cells (62.16%) are mostly assigned to the inferred cluster 3, dendritic cells are present equally
in clusters 1 (50%) and 3 (50%), endothelial cells (91.76%) are mainly assigned to cluster 3,
all epithelial cells are part of the inferred cluster 2, 77.59% of erythroblast cells and 84.62%
of granulocyte cells are assigned to cluster 3, 90.14% of hepatocyte cells are in the inferred
cluster 2, 67.14% and 32.86% of Kuppfer cells are assigned to clusters 1 and 3, respectively.
58% of the macrophage cells are present in cluster 3, and 42% of them are in cluster 1. All
(100%) of the neutrophil cells and 92.65% of the T cells are assigned to the inferred cluster 3.

Similarly to previous sections, Figure 5.24 shows the heatmap of the read counts across
the randomly selected 1000 cells and all 100 selected genes with cells (rows) ordered by their
inferred cluster assignment from the simple ZIP mixture model. The heatmap also shows each
cell’s type. Figure 5.25 shows the t-SNE representation of the data in two dimensions, where
di↵erent point shapes correspond to the cell type and point colours to the inferred four clusters.
As in Sections 5.1.1 and 5.1.2, we can observe in Figure 5.26 that overall the proposed EM
algorithm assigned cells to their clusters with high (close to 1) probabilities.

The estimated cluster proportions (⇡̂k’s) are presented in Table 5.9. We can see from the
table that (60.929%) of the cells are assigned in the inferred cluster 3, 26.114% are assigned
to cluster 1, 11.957% fall into cluster 2, and only 1% of them fall into cluster 4. Table 5.10
shows the estimated probability of always zero for each cluster k. We can see that the higher
probability estimates are for the inferred clusters 2 and 4 (�̂2 = 0.26895 and �̂4 = 0.13620),
respectively, followed by clusters 1 and 3 (�̂1 = 0.09183 and �̂3 = 0.08780). Finally, Figure
5.27 shows the heatmap of the estimates of the rate parameters (�̂gk’s) for each cluster (rows)
over the 100 selected genes (columns) when fitting the ZIP simple model to the liver data.
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Figure 5.19: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZIP model to the liver dataset with random clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.
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Figure 5.20: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZIP model to the liver dataset with random clustering initialization. Based on the
elbow method, the optimal EM run corresponds to the point in red when K = 6.

Table 5.8: Confusion matrix between the EM clustering result when fitting the simple ZIP
model to the liver data and the cell types. Inferred clusters are from the best EM algorithm run
(K-means initialization and K = 4) under the simple ZIP model (see Figure 5.23).

Inferred cluster

Cell type 1 2 3 4

B cell 3 1 23 10
Dendritic cell 54 0 54 0
Endothelial cell 17 5 245 0
Epithelial cell 0 32 0 0
Erythroblast 9 17 90 0
Granulocyte 5 1 33 0
Hepatocyte 2 64 5 0
Kuppfer cell 141 0 69 0
Macrophage 21 0 29 0
Neutrophil 0 0 2 0
T cell 5 0 63 0
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Figure 5.21: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZIP model to the liver data set with K-means clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.

Table 5.9: Estimates of ⇡k for the liver dataset obtained from the best EM algorithm run (K-
means initialization and K = 4) under the simple ZIP model.

k ⇡̂k

1 0.26114
2 0.11957
3 0.60929
4 0.01000

Table 5.10: Estimates of �k for the liver dataset obtained from the best EM algorithm run (K-
means initialization and K = 4) under the simple ZIP model.

k �̂k

1 0.09183
2 0.26895
3 0.08780
4 0.13620
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Figure 5.22: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZIP model to the liver dataset with K-means clustering initialization. Based on the
elbow method, the optimal EM run corresponds to the point in red when K = 4.
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Figure 5.23: Liver dataset. Co-clustering between cell types (rows) and inferred clusters by
the proposed EM algorithm (columns). Each entry ai j represents the % of cells from type i that
are present in the inferred cluster j. Rows sum up to 100%. Inferred clusters are from the best
EM algorithm run (K-means initialization and K = 4) under the simple ZIP model (see Figure
5.22).
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Figure 5.24: Heatmap of the liver data displaying read counts across all 1,000 randomly se-
lected cells (rows) and all 100 selected genes (columns). Cells (rows) are ordered by their
inferred cluster assignments obtained from the best EM algorithm run (K-means initialization
and K = 4) under the simple ZIP model. The first column on the left shows the annotation
for each cell type. Dark blue colours represent low read count values, and dark red colours
represent high read count values. Note that to facilitate visualization under this colour scheme,
read counts with values higher than the 95th percentile were truncated at the value of the 95th
percentile.
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Figure 5.25: t-SNE plot for the liver dataset and the clustering obtained from the best EM
algorithm run (K-means initialization and K = 4) under the simple ZIP model. Each point
represents a cell with the shape symbol indicating the cell type label, and the colour the corre-
sponding inferred cluster (1, 2, 3, or 4).
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Figure 5.26: Heatmap of the Ẑnk’s for the liver dataset obtained from the best EM algorithm
run (K-means initialization and K = 4) under the simple ZIP model. Each row shows the
estimated probability of a cell n belonging to each cluster k (columns). Rows are ordered by
the final inferred cluster assignments determined by Eq. (3.20). The labels on the left show the
assigned clusters and the cell type labels. Dark colours represent high probabilities.

Figure 5.27: Heatmap of the �̂gk’s for the liver dataset obtained from the best EM algorithm
run (K-means initialization and K = 4) under the simple ZIP model. Each row corresponds
to a cluster, and each column to a gene. Dark blue colours represent low values, and dark red
colours represent high values of �̂gk.
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5.2.2 Result of fitting the ZINB mixture model without covariates to the
liver data

In this section, the results of fitting the ZINB mixture model without covariates (simple ZINB)
for the liver data (over the selected 1000 cells and 100 selected mostly variable genes, same
data as in Section 5.2.1) are presented.

Similarly to the previous sections, Figures 5.28 and 5.30 present the boxplots of the 32
runs of the EM algorithm for di↵erent values of K and the random and K-means initialization
approaches, respectively. Figures 5.29 and 5.31 present the corresponding smallest AIC for
each K for the random and K-means initialization methods, respectively. Based on the elbow
method, random initialization results in K = 4 as the optimum number of clusters, while K-
means leads to K = 5 as the best number of clusters. As the one from K-means clustering
initialization has the smallest AIC, we choose that EM run for further analysis in this section.
Therefore, for the simple ZINB mixture model, we choose the EM run with K = 5 from the
K-means initialization method, and we present its results in what follows.

Figure 5.32 and Table 5.11 show the co-clustering and confusion matrix, respectively, be-
tween the cell types and the inferred five clusters for the best EM run (K = 5 clusters and
K-means initialization approach) for the ZINB mixture model without covariates. From both
Figure 5.32 and Table 5.11, we can see that B cells are assigned primarily to 3 clusters, with
43.24% of them in cluster 3, 35.14% in cluster 5, and 13.51% in cluster 2. Dendritic cells
are primarily present in clusters 2 (85.19%), endothelial cells (91.39%) are dense in cluster 3,
epithelial (90.62%) cells are mainly in the inferred cluster 1. 75% of erythroblast cells and
69.23% of Granulocyte cells fall into cluster 3. 84.51% of Hepatocyte cells are in the inferred
cluster 1, Kuppfer cells are mostly assigned to clusters 3 and 4, with 19.05% and 80%, respec-
tively. 70% of macrophage cells fall into cluster 2 and 22% of them are in cluster 3, and the
remaining 8% in cluster 4. Neutrophil cells are assigned equally (50%) to the inferred clusters
3 and 5. Finally, 77.94% of T cells fall into the inferred cluster 3.

Figure 5.33 shows the heatmap of the read counts across the randomly selected 1000 cells
and all 100 most variable selected genes with cells (rows) ordered by their inferred cluster
assignment from the simple ZINB mixture model. The heatmap also shows the annotation for
each cell’s type. Figure 5.34 shows the t-SNE representation of the data in two dimensions,
where di↵erent point shapes correspond to the cell type and the colors to the inferred five
clusters. As in the previous sections, we can observe in Figure 5.35 that overall the proposed
EM algorithm assigned cells to their clusters with high (close to 1) probabilities.

The estimated cluster proportions (⇡̂k’s) are presented in Table 5.12. We can see from the
table that 49.157% of the cells are assigned to the inferred cluster 3, 20.986% are assigned
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Figure 5.28: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZINB model to the liver dataset with random clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.

to cluster 4, 15.235% fall into cluster 2, 9.163% are in cluster 1, and only 5.54% of them are
assigned to cluster 5. Table 5.13 shows the estimated probability of always zero for each cluster
k, and we can see that �̂1 = 0.07266 is the highest probability of always zero compared with the
other clusters. The estimates of the size parameters for each cluster (⌫k’s) are shown in Table
5.14. We can see that clusters 3, 4, and 2 have the higher estimated values (⌫̂3 = 4.11696, ⌫̂4 =
3.75589, ⌫̂2 = 2.12675), followed by the smaller estimated values for the other two clusters
(⌫̂1 = 1.93291, ⌫̂5 = 0.66367), demonstrating the presence of overdispersion in the liver data.
Finally, Figure 5.36 shows the heatmap of the estimates of the rate parameters (µ̂gk’s) for each
cluster (rows) over the 100 selected genes (columns) when fitting the ZINB simple model to
the liver data.
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Figure 5.29: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZINB model to the liver dataset with random clustering initialization. Based on the
elbow method, the optimal EM run corresponds to the point in red when K = 4.

Table 5.11: Confusion matrix between the EM clustering result when fitting the simple ZINB
model to the liver data and the cell type labels. Inferred clusters are from the best EM algorithm
run (K-means initialization and K = 5) under the simple ZINB model (see Figure 5.32).

Inferred cluster

Cell type 1 2 3 4 5

B cell 0 5 16 3 13
Dendritic cell 0 92 12 3 1
Endothelial cell 0 3 244 17 3
Epithelial cell 29 0 0 0 3
Erythroblast 1 3 87 9 16
Granulocyte 0 3 27 3 6
Hepatocyte 60 1 1 0 9
Kuppfer cell 0 2 40 168 0
Macrophage 0 35 11 4 0
Neutrophil 0 0 1 0 1
T cell 2 9 53 2 2
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Figure 5.30: Boxplots of AIC values for di↵erent K number of clusters obtained from applying
the EM algorithm under the simple ZINB model to the liver data set with K-means clustering
initialization. Each boxplot contains 32 AIC values corresponding to 32 initialization runs
from di↵erent seeds.

Table 5.12: Estimates of ⇡k for the liver dataset obtained from the best EM algorithm run (K-
means initialization and K = 5) under the simple ZINB model.

k ⇡̂k

1 0.09163
2 0.15235
3 0.49157
4 0.20986
5 0.05458
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Figure 5.31: Plot of the best AIC for each K obtained from applying the EM algorithm under
the simple ZINB model to the liver dataset with K-means clustering initialization. Based on
the elbow method, the optimal EM run corresponds to the point in red when K = 5.

Table 5.13: Estimates of �k for the liver dataset obtained from the best EM algorithm run (K-
means initialization and K = 5) under the simple ZINB model.

k �̂k

1 0.07266
2 0.00000
3 0.00005
4 0.00000
5 0.00007

Table 5.14: Estimates of ⌫k for the liver dataset obtained from the best EM algorithm run (K-
means initialization and K = 5) under the simple ZINB model.

k ⌫̂k

1 1.93291
2 2.12675
3 4.11696
4 3.75589
5 0.66367
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Figure 5.32: Liver dataset. Co-clustering between cell types (rows) and inferred clusters by
the proposed EM algorithm (1, 2, 3, 4, and 5; columns). Each entry ai j represents the % of cells
from type i that are present in the inferred cluster j. Rows sum up to 100%. Inferred clusters
are from the best EM algorithm run (K-means initialization and K = 5) under the simple ZINB
model (see Figure 5.31).
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Figure 5.33: Heatmap of the liver data displaying read counts across all 1,000 randomly se-
lected cells (rows) and all 100 selected genes (columns). Cells (rows) are ordered by their
inferred cluster assignments obtained from the best EM algorithm run (K-means initialization
and K = 5) under the simple ZINB model. The first column on the left shows the annotation
for each cell type. Dark blue colours represent low read count values, and dark red colours
represent high read count values. Note that to facilitate visualization under this colour scheme,
read counts with values higher than the 95th percentile were truncated at the value of the 95th
percentile.
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Figure 5.34: t-SNE plot for the liver dataset and the clustering obtained from the best EM
algorithm run (K-means initialization and K = 5) under the simple ZINB model. Each point
represents a cell with the shape symbol indicating the cell type label, and the colour the corre-
sponding inferred cluster (1, 2, 3, 4, or 5).
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Figure 5.35: Heatmap of the Ẑnk’s for the liver dataset obtained from the best EM algorithm
run (K-means initialization and K = 5) under the simple ZINB model. Each row shows the
estimated probability of a cell n belonging to each cluster k (columns). Rows are ordered by
the final inferred cluster assignments determined by Eq. (3.20). The labels on the left show the
assigned clusters and the cell type labels. Dark colours represent high probabilities.

Figure 5.36: Heatmap of the µ̂gk’s for the liver dataset obtained from the best EM algorithm
run (K-means initialization and K = 5) under the simple ZINB model. Each row corresponds
to a cluster, and each column to a gene. Dark blue colours represent low values, and dark red
colours represent high values of µ̂gk.
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5.2.3 Model selection for the liver data

Table 5.15 shows the AIC values obtained from the best EM algorithm runs when fitting the
simple ZIP model (ZIP mixture model without covariates) and the simple ZINB model (ZINB
mixture model without covariates) to the liver data. These values correspond to the red points
in Figures 5.22 and 5.31. Thus, based on the AIC values shown in Table 5.15, the simple ZINB
model leads to a smaller AIC value than the simple ZIP model and, therefore, we can conclude
that the simple ZINB fits the liver data better than the ZIP simple model. As shown in Section
5.2.2, the selected simple ZINB model resulted in five clusters comprising di↵erent cell types
in the liver tissue.

Table 5.15: AIC values corresponding to the best EM runs when fitting the simple ZIP model
and simpe ZINB model to the Liver dataset (see Figures 5.22 and 5.31).

Model AIC

Simple ZIP 115744.1
Simple ZINB 360931



Chapter 6

Conclusion and Future Work

In this thesis, we focus on the application of the EM algorithm framework from di↵erent per-
spectives for the cases when the missingness in the data is evident, such as grouped data, which
was the focus of Chapter 2, and for the situations when the incomplete data problem is not evi-
dent such as the finite mixture models for zero-inflated counts that were considered in Chapters
3, 4 and 5.

In Chapter 2, we considered normally distributed grouped data for univariate, bivariate,
and multivariate cases. For this type of data, individual observation values are not available;
instead, we only have access to non-overlapping intervals with the frequencies of observations
falling into each of those intervals. Estimating the parameters of normally grouped data via
the exact maximum likelihood estimation (exact MLE) method does not lead to a closed-form
solution. Thus, as an alternative to numerical optimization tools such as the Newton-Raphson
algorithm, we proposed estimating the mean and variance parameters of the normally dis-
tributed grouped data using the EM and MCEM algorithms, which lead to closed-form updates
of the parameter along each algorithm iteration. Also, in this thesis, we provided a comprehen-
sive approach including the exact maximum likelihood, the EM and the MCEM algorithms for
parameter estimation for univariate, bivariate, and multivariate normally distributed grouped
data and compared the estimated results on both real and simulated data for all the approaches.

To the author’s knowledge, no other previous studies on this topic considered the problem
of parameter estimation on the normally distributed grouped data from all three approaches,
particularly for the bivariate and multivariate grouped data, as we did in this thesis. There-
fore, the proposed statistical framework in this work can be applied to the univariate, bivariate,
and multivariate grouped data following other distributions for comparing MLE parameter es-
timates with those obtained from EM and MCEM algorithms.

We performed simulations considering various scenarios (di↵erent sample sizes and di↵er-
ent numbers of intervals) to study the performance of the proposed EM and MCEM estimates.

190
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Our simulation results showed that both bias and variance of the parameter estimates decrease
as the sample size increases. Moreover, based on the boxplots, for the scenarios in which
n (sample size) was small compared with the number of bins/intervals (k), the exact MLE
method did not work as well as the EM and MCEM approaches. That might be due to some
intervals with no observations or very few observations, where, in these cases, the EM and
MCEM use the expectations or average over the simulated samples. However, this needs fur-
ther investigation and could be part of the potential for future work on this topic to study the
changes in the parameter estimates while the ratio of n over k changes.

Furthermore, for most parameters, the results from the EM and MCEM algorithms were
similar to the ones from the exact MLE, as expected by the EM convergence properties shown,
for example, in Chapters 1 and 3 of McLachlan and Krishnan (2008)). Lastly, we applied the
proposed EM and MCEM algorithms to the well-known Galton data, and, as expected, the
estimated parameters using the EM and MCEM algorithms were very close to the ones ob-
tained using the exact MLE method. We also found the standard errors of the mean parameter
estimates for both EM and MCEM approaches to assess their accuracy.

As mentioned earlier, the exact MLE method for the parameter estimation does not have
closed formulae. Moreover, this method is susceptible to the selection of initial values and the
optimization method, which could be the drawback of the exact MLE method. Instead, the pa-
rameter estimation resulting from EM and MCEM approaches has closed-form formulae, and
their results are close to the ones from exact MLE. Moreover, the EM and MCEM approaches
are less sensitive to the initial values. However, a challenge regarding parameter estimation
using the EM framework is dealing with complicated integrations, particularly for bivariate
and multivariate situations. Fortunately, this thesis appropriately tackled this issue for the nor-
mally distributed grouped data by using the proper computer packages (such as tmvtnorm in
R for truncated multivariate normal functions). Another solution, instead of using EM, is to
find the parameter estimates through the MCEM approach to avoid dealing with complicated
integrations; however, this approach is more computationally expensive than regular EM. The
calculation of the complex integrations might be a challenging issue when the distribution of
grouped data is not normal and no computer package is available to assist with them.

In future work on this topic, we can apply the comprehensive parameter estimation meth-
ods using all three approaches, including exact MLE, EM, and MCEM framework for grouped
data arising from other distributions, or we can consider grouped data on the variables of a
regression model and find the estimated coe�cients of the regression model using the EM or
MCEM algorithm. More discoveries regarding varying the ratio n�k for the parameter esti-
mation performance using the proposed methods can also be considered as future work for
normally distributed grouped data and grouped data arising from other distributions.
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Chapters 3, 4, and 5, we studied another application of the EM algorithm for cases where
the missingness of data was not evident by proposing a novel mixture-model-based clustering
approach for Single-cell RNA sequencing data (scRNA-seq) and its application on both real
data and simulation studies.

One important characteristic of scRNA-seq data is the excess of zeros (zero inflation),
mostly due to technological noise or true biological zero. Therefore, in Chapter 3 of this the-
sis, we proposed a novel model-based clustering approach that takes into account the feature of
zero inflation for the scRNA-seq data. Our proposed clustering algorithm is based on a mixture
of zero-inflated Poisson (ZIP) or zero-inflated negative binomial distributions to cluster single-
cell RNA sequencing data based on their transcriptome profiles. We derived an EM algorithm
to obtain cluster assignments and estimate the parameters for each proposed ZIP and ZINB
mixture model with and without covariates. According to Table 3.2 in Chapter 3, there are
some model-based clustering algorithms proposed for this data; however, to our knowledge,
these studies did not directly consider the feature of excess of zeros through their proposed
probabilistic mixture models as we did in this study.

In Chapter 4, we studied the performance of the proposed clustering algorithm on sim-
ulated data under various scenarios for each proposed mixture model. For the ZIP mixture
model without covariates, we examined the estimation of the model parameters for six di↵er-
ent scenarios, including varying the number of cells (N), the number of genes (G), the number
of clusters (K), the probabilities of cluster assignments, the probabilities of always zero, and
the rate parameters across clusters. We also studied parameter estimation under six scenarios
for the ZIP mixture model with only a size factor. Changes in the number of cells, genes,
and clusters were studied in Scenarios 1, 2, and 3. In Scenario 4, we studied the parameter
estimation when we use true values as the initialization points compared to when we initialize
the EM based on K-means clustering. Changes in the probabilities of cluster assignments were
studied in Scenario 5, and Scenario 6 investigated changes in the probabilities of always zero.
We also investigated parameter estimation for the ZIP mixture model with one covariate con-
sidering two scenarios, one varying the number of cells and another the number of genes. We
also performed simulation studies for two scenarios varying the number of cells and the num-
ber of genes under the ZINB mixture model without covariates. Finally, we studied parameter
estimation under the ZINB mixture model with a size factor when the number of cells varies.

Results from the simulation studies in Chapter 4 showed that for all of the estimated pa-
rameters, the bias, standard deviation, and MSE (or MAD) decreased as N (the number of
cells) increased, as expected from the convergence properties of the EM algorithm. When the
number of genes (G) increased, in terms of bias, our proposed EM framework performed well,
as almost all the estimated parameters were close to their true value of the parameters. The
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standard deviations and MSEs (or MADs) for the estimated values of the cluster assignment
probabilities and the rate parameters (for all models, including without covariates, with a size
factor, and with covariates) remained almost the same when G increased. However, when es-
timating the probability of always zero, we observed a decrease in standard deviation when
increasing G. Furthermore, for the case that the number of clusters (K) increased, almost for
all cases, the standard deviations, MSE, or MAD increased while all the estimates remained
close to their true values.

In Chapter 5, we applied the proposed models and EM algorithms presented in Chapter 3 to
the MESC and liver datasets. For the MESC data, we considered and compared the results from
the ZIP mixture models without covariates and with a size factor. Using the AIC criterion for
comparing the models, we selected the ZIP mixture model with a size factor as the final choice,
resulting in K = 4 clusters, which clustered cells mainly in 2 clusters (all cells from experiment
day 4 were assigned to cluster 1 and 98.5% of the cells from experiment day 0 were assigned
to cluster 4). Next, we fitted the simple ZIP and ZINB models (i.e., without covariates or size
factors) to the liver tissue data. Comparing the AIC from the final fits between the simple
ZIP and ZINB models led to the simple ZINB model with K = 5 clusters as the model that
best fitted the liver data. One of the challenges in analyzing real data is the selection/filtering
of genes before model fitting. Di↵erent gene filtering methods are available in the literature,
and we have applied one of them in our analyses. A sensitivity analysis considering di↵erent
filtering methods could be further investigated in future work.

All in all, in Chapters 3, 4, and 5 of this thesis, a novel model-based clustering algorithm
was proposed for single-cell RNA sequencing data that takes into account the feature of zero-
inflation for this data. The proposed model was either a mixture of zero-inflated Poisson or a
mixture of zero-inflated negative binomial distributions. Parameter estimation for all proposed
models was conducted through the EM framework (as one of the applications of EM when the
missingness in data is not evident). Moreover, we considered and studied the proposed cluster-
ing algorithm for mixture models without and with covariates describing the rate parameter of
the Poisson or negative binomial distributions. The performance of the proposed models was
studied and evaluated by using di↵erent metrics (standard deviation, MSE, MAD) for a variety
of scenarios, including the cases in which we varied the number of cells (N), the number of
genes (G), or the number of clusters (K). Finally, comparing the performance of some of our
proposed clustering algorithms based on AIC values was implemented on two real data sets
that are publicly available.

Future work regarding the proposed clustering methodology includes obtaining standard er-
rors for some parameters (for example, rate parameters and probabilities of always zero) within
the EM framework, as we did in Section 2.2.3 of Chapter 2. In addition, as future work, we can
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take a Bayesian approach and derive a variational Bayes algorithm to find an approximation
to the posterior distribution of the parameters for the ZIP and ZINB mixture models, resulting
in uncertainty measures for all parameters via credible intervals. As mentioned earlier, a sen-
sitivity analysis on the choice of gene filtering methods prior to model fitting could be further
assessed in future studies. Finally, we could consider scRNA-seq data from tumours (cancer
cells), which usually undergo several copy number changes in their genome, and extend our
proposed ZIP and ZINB mixture models to account for those copy number changes since these
changes may a↵ect gene expression and, therefore, cell clustering.

In summary, in this thesis, we studied the application of the EM algorithm for both cases
when the incomplete data problem is evident and when it is not evident. Chapter 2 of this thesis
considered the situations in which missingness is evident for the normally distributed grouped
data (univariate, bivariate, and multivariate cases). A comprehensive parameter estimation ap-
proach for these data using exact MLE, EM, and MCEM was proposed in Chapter 2, followed
by studying and comparing the methods on simulated and real data sets. Chapters 3, 4, and 5
of the thesis explored the application of the EM algorithm for the situations in which the miss-
ingness in data is not evident by considering and proposing a novel model-based clustering of
mixtures of either zero-inflated Poisson or zero-inflated negative binomial models for scRNA-
seq data. We studied the performance of all the proposed models under di↵erent simulation
scenarios. Finally, some of the proposed models were applied to real data, and their results
were compared with each other based on their AIC values to select the best fit.
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Appendix A

Appendix of Ch 2

A.1 Expectations for the E-step of the EM algorithm for uni-
variate normal grouped data

In Section 2.2.1, to find the updated estimates of the parameters, we have to calculate the
following expectations:

E✓(p)�X�X ∈ Xi�
and

E✓(p)�(X − µ(p+1))2�X ∈ Xi�,
with respect to the density f (x; ✓)�Pi(✓), where f (x; ✓) is the univariate normal distribution.
Let Xi = (a,b), these expectations can be obtained as follows:

E✓(p)�X�X ∈ Xi� = [F(b) − F(a)]E(X) = b

�
a

x
1√
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− 1
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2 t2dt
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= µ(p)�F(b∗) − F(a∗)� −�(p)� f (b∗) − f (a∗)�,
where t = x−µ(p)

�(p) , a∗ = a−µ(p)
�(p) , and b∗ = b−µ(p)

�(p) . See also Jones and G.J.McLachlan (1990).

205



206 Chapter A. Appendix of Ch 2

[F(b) − F(a)]E(X − µ(p+1))2 = b

�
a

(x − µ(p+1))2 1√
2⇡�(p) e

− 1
2�2(p) (x−µ(p))2dx =

b

�
a

x2 1√
2⇡�(p) e

− 1
2�2(p) (x−µ(p))2dx −

2µ(p+1)
b

�
a

x
1√

2⇡�(p) e
− 1

2�2(p) (x−µ(p))2dx.

µ2(p+1)
b

�
a

1√
2⇡�(p) e

− 1
2�2(p) (x−µ(p))2dx.

Now let a∗ = a−µ(p)
�(p) , b∗ = b−µ(p)

�(p) , t = x−µ(p)
�(p) , and using

b

�
a

x2 1√
2⇡�(p) e

− 1
2�2(p) (x−µ(p))2dx =

b∗

�
a∗
(�(p)t + µ(p))2 1√

2⇡
e− 1

2 t2dt =

�2(p)
b∗

�
a∗

t2 1√
2⇡

e− 1
2 t2dt + µ2(p)

b∗

�
a∗

1√
2⇡

e− 1
2 t2dt +

2�(p)µ(p)
b∗

�
a∗

t
1√
2⇡

e− 1
2 t2dt

�2(p)������[F(b
∗) − F(a∗)] − [b∗ f (b∗) − a∗ f (a∗)]������ +

µ2(p)[F(b∗) − F(a∗)] − 2�(p)µ(p)[ f (b∗) − f (a∗)],
we obtain

E(X − µ(p+1))2 = 1
F(b∗) − F(a∗) ×

�2(p)�������F(b
∗) − F(a∗)� − �b∗ f (b∗) − a∗ f (a∗)������� +

�µ(p+1) − µ(p)�2�F(b∗) − F(a∗)� +
2�(p)

�������µ
(p+1) − µ(p)�� f (b∗) − f (a∗)�������.
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A.2 Expectations for the E-step of the EM algorithm for mul-
tivariate normal grouped data

In Section 2.2.2, to find the estimates of the parameters using the EM approach, the expecta-
tions in the general form of

E⇥(p)�Xi�(X1, . . . ,Xd) ∈ (X1, . . .Xd)�
and

E⇥(p)�(Xi − µ(p+1))(Xj − µ(p+1))T �(X1, . . . ,Xd) ∈ (X1, . . .Xd)�
should be found. In what follows we present the main steps of the calculations. For further
details see Manjunath and Wilhelm (2021).

Using the moment generation function for the multivariate normal, the expectations can be
obtained as follows:

E(Xi) = @m(t)
@ti
�t=0 = d�

k=1
�i,k(Fk(ak) − Fk(bk)), (A.1)

where

Fi(x) =
b∗1
�
a∗1
�

b∗i−1

�
a∗i−1

b∗i+1

�
a∗i+1

�
b∗d
�
a∗d

�↵⌃(x1, . . . , xi−1, x, xi+1, . . . , xd)dxd . . .dxi+1dxi−1 . . .dx1

a∗i = ai − d�
k=1
�i,ktk,

b∗i = bi − d�
k=1
�i,ktk,

and at tk = 0, for all k = 1,2, . . . ,d, a∗i = ai and b∗i = bi. It should be noted that in Fi(x), �↵,⌃(x)
arises from:

�↵,µ,⌃(x) =
�������

�µ,⌃(x)
P(a≤X≤b) for a ≤ x ≤ b,
0 otherwise.

m(t) = exp�1
2

tT⌃t��↵⌃,
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where for ⇣ = ⌃t we have:

�↵⌃ = 1
↵(2⇡)( d

2 )�⌃� 12
b−⇣
�

a−⇣
exp� − 1

2
xT⌃−1x�dx

for the case of µ = 0 and ↵ = P(a < X < b). Considering Y ∼ N(µ,⌃) with a∗ < y < b∗, then
using the transformation, X = Y − µ ∼ N(0,⌃), which changes within the range of a = a∗ − µ <
x < b∗ − µ = b. So, for the general case µ (not the case of µ = 0), using the transformation idea
for the expectation, we will have E(Y) = E(X)+µ, then for the multivariate normal expectation
we obtain:

E(Yi) = d�
k=1
�i,k(Fk(ak) − Fk(bk)) + µi

Similarly, we can show that for all tk = 0, k = 0, . . . ,d (see Manjunath and Wilhelm (2021)) we
obtain:

E(XiXj) = @2m(t)
@t j@ti

�t=0 = �i, j + d�
k=1
�i,k

� j,k(akFk(ak) − bkFk(bk))
�k,k

+ d�
k=1
�i,k�

q≠k
(� j,q − �k,q� j,k

�k,k
)�������Fk,q(ak,aq) − Fk,q(ak,bq)�

−�Fk,q(bk,aq) − Fk,q(bk,bq)�
������

where

Fk,q(x, y) =
b∗1
�
a∗1
�

b∗k−1

�
a∗k−1

b∗k+1

�
a∗k+1

�
b∗q−1

�
a∗q−1

b∗q+1

�
a∗q+1

�
b∗d
�
a∗d

�↵⌃(x, y, x−k,−q)dx−k,−q,

and
x−k,−q = (x1, . . . , xk−1, xk+1, . . . , xq−1, xq+1, . . . , xd)T

for k ≠ q. As the covariance matrix is invariant to the shift of the variables we will have

cov(Yi,Yj) = cov(Xi,Xj) = E(XiXj) − E(Xi)E(Xj)
All of these expectations are calculated at the current state of the parameters µ(p) and ⌃(p).



Appendix B

Appendix of Ch 4

B.1 Simulation scenarios for the ZIP mixture model without
covariates

B.1.1 Scenario 1

Table B.1: Scenario 1: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by N, across the datasets simulated from the settings described
in Table 4.2.

N Mean SD

12 16.78125 8.02588
60 6.84766 0.91407

120 5.96094 0.41354
600 5.00000 0.00000

1200 5.00000 0.00000

Table B.2: Scenario 1: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by N, across the datasets simulated from the settings described in Table 4.2.

N Mean SD

12 0.03111 0.01597
60 0.05055 0.01114

120 0.08514 0.01712
600 0.32546 0.03525

1200 0.62588 0.03852
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Figure B.1: Scenario 1: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.2. See also Ta-
ble B.1.
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Figure B.2: Scenario 1: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.2.
See also Table B.2.
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B.1.2 Scenario 2

Table B.3: Scenario 2: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by G, across the datasets simulated from the settings described
in Table 4.6.

G Mean SD

12 4.95703 0.20318
60 5.00000 0.00000

120 5.00000 0.00000
600 5.28906 0.98739

1500 5.01562 0.19741

Table B.4: Scenario 2: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by G, across the datasets simulated from the settings described in Table 4.6.

G Mean SD

12 0.07286 0.01496
60 0.33071 0.03244

120 0.62677 0.03691
600 3.87268 0.55939

1500 9.12037 0.58807
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Figure B.3: Scenario 2: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.6. See also Ta-
ble B.3.
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Figure B.4: Scenario 2: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.6.
See also Table B.4.
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B.1.3 Scenario 3

Table B.5: Scenario 3: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by K, across the datasets simulated from the settings described
in Table 4.10.

K Mean SD

1 3 0
2 3 0
3 5 0
5 5 0

Table B.6: Scenario 3: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.10.

K Mean SD

1 0.15568 0.01381
2 0.28696 0.02467
3 0.62479 0.03260
5 1.07090 0.06759
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Figure B.5: Scenario 3: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.10. See also Ta-
ble B.5.
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Figure B.6: Scenario 3: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.10.
See also Table B.6.
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B.1.4 Scenario 4

Table B.7: Scenario 4: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.14.

Case Mean SD

1 3 0
2 3 0
3 3 0
4 3 0

Table B.8: Scenario 4: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.14.

Case Mean SD

1 0.28701 0.02457
2 0.28668 0.02583
3 0.28782 0.02587
4 0.28946 0.02601
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Figure B.7: Scenario 4: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.14. See also Ta-
ble B.7.
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Figure B.8: Scenario 4: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.14.
See also Table B.8.
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B.1.5 Scenario 5

Table B.9: Scenario 5: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.18.

Case Mean SD

1 0.66502 0.06492
2 0.75189 0.07942
3 0.90994 0.11186
4 1.30957 0.18450
5 2.21893 0.38235

Table B.10: Scenario 5: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.18.

Case Mean SD

1 8.55078 0.71219
2 9.72266 1.00060
3 11.87500 1.42526
4 16.98828 2.30172
5 30.19922 5.38074
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Figure B.9: Scenario 5: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.18.
See also Table B.9.

1 2 3 4 5

10
20

30
40

Case

Figure B.10: Scenario 5: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.18. See also Ta-
ble B.10.
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B.1.6 Scenario 6

Table B.11: Scenario 6: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.22.

Case Mean SD

1 5.01172 0.10783
2 5.00000 0.00000
3 5.00000 0.00000
4 5.00000 0.00000
5 6.86719 1.24850
6 5.00000 0.00000

Table B.12: Scenario 6: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.22.

Case Mean SD

1 0.63283 0.04231
2 0.62440 0.03581
3 0.60219 0.03868
4 0.56450 0.04575
5 0.55288 0.10138
6 0.60067 0.03832
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Figure B.11: Scenario 6: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.22. See also Ta-
ble B.11.
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Figure B.12: Scenario 6: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.22.
See also Table B.12.
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B.2 Simulation Scenarios for the Mixture of ZIP with �0g

and ⇢gk

B.2.1 Scenario 1

Table B.13: Scenario 1: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by N, across the datasets simulated from the settings described in Table 4.26.

N Mean SD

12 0.12676 0.11630
60 0.08136 0.01778

120 0.15825 0.02253
600 0.60486 0.05189

1200 1.26211 0.11048

Table B.14: Scenario 1: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by N, across the datasets simulated from the settings described
in Table 4.26.

N Mean SD

12 11.19531 3.35964
60 8.64844 0.78305

120 8.27734 0.63031
600 7.88281 0.39845

1200 7.96094 0.21337
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Figure B.13: Scenario 1: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.26.
See also Table B.13.
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Figure B.14: Scenario 1: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.26. See also Ta-
ble B.14.
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B.2.2 Scenario 2

Table B.15: Scenario 2: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by G, across the datasets simulated from the settings described
in Table 4.31.

G Mean SD

12 7.63672 0.53583
60 7.89844 0.30266

120 7.94141 0.23532
600 8.69141 0.47946

1200 8.76953 0.44015
6000 8.52734 0.50023

Table B.16: Scenario 2: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by G, across the datasets simulated from the settings described in Table 4.31.

G Mean SD

12 0.14569 0.01856
60 0.60723 0.04875

120 1.25957 0.11428
600 7.35106 0.71482

1200 15.25344 1.32889
6000 80.20718 5.61694
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Figure B.15: Scenario 2: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.31. See also Ta-
ble B.15.
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Figure B.16: Scenario 2: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.31.
See also Table B.16.
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B.2.3 Scenario 3

Table B.17: Scenario 3: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by K, across the datasets simulated from the settings described
in Table 4.36.

K Mean SD

1 4.95312 0.21179
2 8.87500 0.35425
3 7.99609 0.30030
5 9.79297 0.42485

Table B.18: Scenario 3: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.36.

K Mean SD

1 0.25657 0.02467
2 0.90463 0.06559
3 1.27514 0.09175
5 2.68266 0.19326
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Figure B.17: Scenario 3: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.36. See also Ta-
ble B.17.
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Figure B.18: Scenario 3: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.36.
See also Table B.18.
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Figure B.19: Scenario 4: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.41. See also Ta-
ble B.19.

B.2.4 Scenario 4

Table B.19: Scenario 4: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.41.

Case Mean SD

1 7.96875 0.21466
2 17.14844 53.90989

Table B.20: Scenario 4: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.41.

Case Mean SD

1 1.31225 0.07914
2 3.86476 8.52394
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Figure B.20: Scenario 4: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.41.
See also Table B.20.
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B.2.5 Scenario 5

Table B.21: Scenario 5: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.46.

Case Mean SD

1 8.89062 0.32502
2 8.89844 0.31535
3 8.86328 0.37685
4 8.95703 0.38870

Table B.22: Scenario 5: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.46.

Case Mean SD

1 0.90346 0.06764
2 0.89992 0.06433
3 0.89883 0.06407
4 0.92589 0.06959
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Figure B.21: Scenario 5: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.46. See also Ta-
ble B.21.
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Figure B.22: Scenario 5: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.46.
See also Table B.22.
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B.2.6 Scenario 6

Table B.23: Scenario 6: Mean and standard deviation (SD) for the number of iterations until
the EM algorithm converged, by case, across the datasets simulated from the settings described
in Table 4.51.

Case Mean SD

1 8.51172 0.55999
2 7.96875 0.27830
3 7.60547 0.50547
4 7.01562 0.27962
5 9.84375 2.05393
6 8.10547 0.55361

Table B.24: Scenario 6: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by case, across the datasets simulated from the settings described in Ta-
ble 4.51.

Case Mean SD

1 1.32499 0.11500
2 1.26188 0.09447
3 1.17087 0.10087
4 1.02929 0.08939
5 1.27236 0.30302
6 1.24007 0.12507
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Figure B.23: Scenario 6: Boxplots for the number of iterations until the EM algorithm con-
verged across the datasets simulated from the settings described in Table 4.51. See also Ta-
ble B.23.
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Figure B.24: Scenario 6: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.51.
See also Table B.24.
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Figure B.25: Scenario 1: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.56.
See also Table B.25.

B.3 Simulation Scenarios for the Mixture of ZIP with �0g,
⇢gk, and �pg

B.3.1 Scenario 1

Table B.25: Scenario 1: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.56.

N Mean SD

60 1.84 0.21
120 2.80 0.27
300 7.72 1.15
600 15.80 1.64
1200 29.46 3.03
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Figure B.26: Scenario 2: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.61.
See also Table B.26.

B.3.2 Scenario 2

Table B.26: Scenario 2: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.61.

G Mean SD

12 2.43 0.23
60 12.78 1.14
120 26.62 2.33
600 198.17 16.87
1500 1241.09 150.62
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Figure B.27: Scenario 1: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.66.
See also Table B.27.

B.4 Simulation Scenarios for the Mixture of ZINB without
covariates

B.4.1 Scenario 1

Table B.27: Scenario 1: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.66.

N Mean SD

60 1.15 0.19
120 2.29 0.31
300 5.52 0.95
600 11.05 1.89
1200 22.61 3.57
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Figure B.28: Scenario 2: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.71.
See also Table B.28.

B.4.2 Scenario 2

Table B.28: Scenario 2: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.71.

G Mean SD

12 6.96 1.26
60 33.52 6.32
120 54.62 9.28
600 256.19 46.64
1500 1099.00 302.13
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Figure B.29: Scenario 1: Bar plot for the total computing times, in seconds, taken for the EM
algorithm to converge across the datasets simulated from the settings described in Table 4.76.
See also Table B.29.

B.5 Simulation Scenarios for the Mixture of ZINB with co-
variates

B.5.1 Scenario 1

Table B.29: Scenario 1: Mean and standard deviation (SD) for the EM algorithm computing
times, in seconds, by K, across the datasets simulated from the settings described in Table 4.76.

N Mean SD

60 2.58 0.29
120 4.72 0.52
300 10.95 1.37
600 22.14 2.38
1200 44.42 4.34
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