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Abstract 

Falls are the leading cause of injury-related hospitalizations among older adults in Canada. This 

study aimed to identify the most informative diagnostic categories associated with fall-related 

injuries (FRIs) using three machine learning algorithms: decision tree, random forest, and 

extreme gradient boosting tree (XGBoost). Secondary data from two Ontario health 

administrative databases (NACRS, DAD) covering the period 2006-2015 were analyzed. Older 

adults (aged ≥ 65 years) who sought treatment for FRIs in emergency departments (ED) or 

hospitals, as indicated by Canadian version of the 10th revision of the International Statistical 

Classification of Diseases and Related Health Problems (ICD-10-CA) codes for falls and 

injuries, were included in the study. Accuracy, sensitivity, specificity, precision, and F1 score 

measures were calculated for each model. A total of 631,339 ED admissions and 304,495 

hospitalizations were recorded due to FRIs. The random forest model demonstrated the highest 

sensitivity and accuracy in both datasets. Dyspnea and secondary malignant neoplasm of liver 

and intrahepatic bile duct were the most informative ICD-10-CA code and disease for FRIs 

among older adults admitted to ED and hospitals. These findings indicate that machine learning 

models can also be used to study FRIs as they are capable of handling large datasets and 

providing a better than 60% accuracy. Also, diagnostic categories linked to FRIs have a potential 

to enhance healthcare providers ‘ability to prevent FRIs in the future. 

Keywords 

older adults, falls, injury, machine learning, artificial intelligence, prediction, diagnosis, ICD-10-

CA 
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Summary for Lay Audience 

In Canada, falls are responsible for many emergency room visits and hospitalizations 

among older adults. This study explored a connection between injuries older adults experienced 

after a fall and other diagnoses they got while in an emergency room or a hospital. We used 

advanced computer calculations, also called machine learning, to determine which diagnostic 

categories are closely related with fall related injuries and provide the most useful information. 

Data from two large health databases (NACRS, DAD) covering the years 2006 to 2015 in 

Canadian province of Ontario were analyzed. Three machine learning algorithms were compared 

for accuracy and sensitivity. The results revealed that the random forest model was the most 

accurate and sensitive. Two diagnostic categories were identified as informative: in the 

emergency department, the presence of dyspnea or shortness of breath was found to be a notable 

factor, and in hospitals the presence of an abnormal tumor in the bile duct and liver, also known 

as the secondary malignant neoplasm of liver and intrahepatic bile duct, were identified as highly 

relevant. These findings show that machine learning models can be used in studies about fall-

related injuries (FRIs). These models can handle big amounts of data and have accuracy higher 

than 60%. The most informative diagnostic categories associated with FRIs can help healthcare 

providers better understand the risks of falls in older adults and improve their ability to prevent 

FRIs in the future.
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Chapter 1 

1. Introduction and Literature Review 

This thesis describes a population-based study that examined FRIs in older adults, 

defined as people who are 65 years or older. The first section of this thesis is a brief introduction 

to population aging in Canada and globally. This introduction provides the context on the impact 

of falls and injuries they cause at a population level. The research on falls and FRIs is vast, 

therefore a literature review included here focused on population-based studies. Methodology of 

choice for the study are machine learning algorithms applied to administrative health databases 

that contain diagnostic codes according to ICD-10-CA. Hence, the literature review also includes 

a synthesis of knowledge from the key studies on using machine learning and diagnostic codes in 

prediction of injuries, falls, and FRIs in older adult population. The review highlights trends, 

identifies gaps, critiques methodologies, and builds compelling rationale for a new research 

study that challenges the unresolved problems in the application of machine learning in research 

of FRIs. The second chapter outlines research methods and the third describes findings from this 

study. The final chapters, discussion and conclusions, tie in findings from the previous literature, 

identify strengths and limitations, and provide guidance for future research. 

1.1 Population Aging 

Increased longevity is considered an accomplishment of the 20th and 21st 

centuries, however the continuously rising average age of the human population poses a 

significant challenge to supporting older adults in communities around the world (Sander 

et al., 2015). By the middle of 21st century, the global population of older adults is 

projected to reach 1.5 billion (Colombo et al., 2012). Population aging is also evident in 

Canada, where the population of older adults is currently higher than that of youth aged 

15 or below (Statistics Canada, 2017). At the provincial level, Ontario has one of the 

fastest-growing older adult populations. In 2016, older adults accounted for 16.4% of 

Ontario’s population and this number is projected to increase to 25% by 2041. This is an 

increase from 3 million in 2016 to 4.6 million in 2041 (Government of Ontario Ministry 

for Seniors and Accessibility, 2017). The demand to enhance the health conditions, 

reduce preventable injuries and improve the quality of life of older adults is increasing 
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both globally and provincially (Colombo et al., 2012; Geithner & McKenney, 2010; Lagiewka, 

2012). 

1.2 Falls and Fall-Related Injuries  

Falling is a common issue among older adults, which may lead to injuries (Peel, 2011). 

There are different definitions for falls. According to the World Health Organization (WHO), a 

fall is defined as an event that leads an individual to come to rest on the ground, floor, or lower 

level accidentally (WHO, 2008). Factors causing falls are categorized into intrinsic and extrinsic. 

Intrinsic factors originate from individuals’ conditions, such as, decreased balance, vision loss, 

and polypharmacy (Källstrand-Ericson & Hildingh, 2009). Extrinsic factors are related to the 

environment and context such as poor lighting and slippery surfaces (Lord et al., 2006). A fall 

can be the direct or indirect result of the individuals’ conditions, the tasks they perform, their 

environment, or a combination of the three (Erkal, 2010).  

According to Centers for Disease Control and Prevention (CDC) in the United States, 

falls are not considered a normal part of aging (CDC, 2022). However, they happen frequently 

among people aged 65 years or older. Moreland et al. (2020) reported that about 36 million falls 

happen annually among older adults in the United States. As a result, prevention of falls has been 

of interest among researchers around the world, and many countries consider fall prevention a 

health priority (Lamb et al., 2005). 

Because of their elevated risk of injury, older adults are more likely to suffer significant 

consequences from falls. For adults over the age of 65, falling is the most common cause of fatal 

and nonfatal injuries (Stevens et al., 2008), and an important challenge for healthcare 

professionals (Gimigliano, 2020). Falls can lead to serious personal, societal, and economic 

issues. Peel (2011) found that 20-23% of community-dwelling older adults living independently 

have reported a fall at least once a year. These increases to 60% among the oldest-old group, or 

individuals 85 years of age and older (Peel, 2011).  Bergland and Wyller (2004) defined serious 

FRIs as “fractures, dislocations, head injuries resulting in loss of consciousness, and other 

injuries resulting in medical care”. In this study, FRIs were operationally defined as any injury 

diagnosis caused by a fall resulting in a visit to the ED, hospital or death after admission to the 

ED or hospital. To the author’s knowledge, there is no consensus on the number of minor, 
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moderate and serious injuries caused by falls in older adults. For instance, Ambrose et al. 

(2013) suggested that 30-50% of falls in community-dwelling older adults may cause 

minor injuries such as lacerations or bruises and 5-10% of falls can cause serious injuries 

(e.g., hip fractures or traumatic brain injuries). However, Peel (2011) has estimated that, 

on average, 10-15% of falls may result in serious injuries. Additionally, between 30% 

and 40% of older adults who experienced an injury due to fall (Stevens et al., 2008) while 

up to 6% of these falls resulted in severe injuries, including fractures, concussions, and 

head injuries that required hospitalization (Nachreiner et al., 2007). In Canada, Scott et al. 

(2004) reported that about 50% of older adults who fall sustain minor injuries, while 5-

25% experience severe injuries, such as sprains or fractures. Requiring ED or hospital 

level of care. This indicates that falls cause a higher risk of hospitalization (Gillespie et 

al., 2012; Rubenstein, 2006).  

The most common types of FRIs among older adults include cuts, bruises, 

fractures, sprains, and head injuries (Milat et al., 2011). The impact of FRIs on older 

adults, healthcare systems, and society is substantial (Rubenstein, 2006). The treatment of 

FRIs can be costly. In the United States, approximately $50 billion is expended annually 

on medical expenses associated with non-fatal fall injuries, and also $754 million is 

allocated for medical costs linked to fatal falls (Florence et al., 2018). A recent report by 

Parachute (2021) revealed that in Canada, injurious falls among older adults incurred a 

financial burden of $5.6 billion Canadian Dollar for the health care system. In Ontario, 

the direct healthcare costs attributed to "falls from the same level" were $458 million, 

with the total cost reaching $610 million (SMARTRISK, 2009). These figures illustrate 

the significant economic impact of falls on older adults and the healthcare system in 

Canada. Research on FRIs illustrate that relatively small portion of incidents, namely 

falls, leads to extreme consequences such as serious injuries and related healthcare cost 

(Zecevic et al., 2012). Further research that can support the development of reliable 

solutions for reduction of high-risk incidents that cause injuries is needed. 

1.3 Risk Factors for Falls and Injuries 

The risk factors for falls are very well researched. A study summarized 16 articles 
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in a literature review and reported the following risk factors for falls in older individuals: vision 

deficits or impairment, mobility limitations, balance deficits, gait deficits, and weakness 

(Rubenstein, 2006).  Similarly, findings from Jehu et al. (2021), underscore the significance of 

four domains of falls-risk factors: balance and mobility, medications, psychological factors, and 

sensory and neuromuscular risk factors. Each of these domains was found to be linked to a 

higher likelihood of experiencing repeated falls.  

Gait and balance problems emerged as prominent risk factors associated with falls. For 

instance, Deandrea et al. (2010) reported that gait and balance problems, vertigo, and use of 

walking aids were associated with falling among recurrent fallers. As individuals grow older, 

their ability to maintain balance while controlling their walking tends to diminish, leading to an 

increase in gait variability. This age-related decline in balance and gait poses a higher risk of 

falls among older adults (Osoba et al., 2019). 

Polypharmacy and medication use, increasingly prevalent in older adults, were reported 

as strong risk factors. For example, Zaninotto et al. (2020) found that the likelihood of being 

hospitalized after experiencing a fall raised with the number of medications taken. The frequency 

of hospital admissions due to falls started at 1.5% for individuals not taking any medications, 

increased to 4.7% for those on 1-4 medications, further increased to 7.9% for individuals with 

polypharmacy (5 to 9 medications), and peaking at 14.8% for those with heightened 

polypharmacy (10+ medications).  Shuto et al. (2010) reported that the first-time use of 

medications like antihypertensives, antiparkinsonians, anti-anxiety drugs, and hypnotics was 

closely linked to a higher likelihood of experiencing falls. 

 The research on risk factors for FRIs in older adults is rich but leaves space for 

improvement for the following reasons. Some studies are either subsidiary to fall prediction 

studies or conducted on a specific subsection of population that cannot be generalized. Examples 

of such subgroups of older adults are people with vestibular dysfunction (Marchetti, 1994), 

kidney problems (Kistler et al., 2018) or lower limb amputations (Wong et al., 2016). Other 

studies are focused on particular cultural group such as Chinese (Pi et al., 2016) Taiwanese (Li et 

al., 2016), Korean (Kim et al., 2018), and Indonesian (Pengpid & Peltzer, 2018). Frequently, 

research on risk factors for injuries due to falls is combined with risk factors for falls. Therefore, 
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it is important to investigate FRIs separately, to gather evidence and develop strategies 

for injury prevention, given their significant impact on morbidity and mortality (McClure 

et al., 2005). Although fall prevention is not within the scope of this research, some 

findings of this research have the potential to enrich fall prevention.  

Association between some diseases and FRIs or falls were reported in previous 

research. They include osteoarthritis (Barbour et al., 2019), multiple sclerosis (Peterson et 

al., 2008), musculoskeletal disorders (Aoyagi et al., 1998), Parkinson’s disease (Balash et 

al., 2005; Bloem et al., 2001), and dementia (Borges et al., 2015; Li, 2016; Pedroso et al., 

2012; Van Doorn et al., 2003). Barbour et al. (2019) found out that the presence of knee 

osteoarthritis was linked to a higher likelihood of experiencing injurious falls in older 

men living in the community. However, there was no evidence to suggest that knee 

osteoarthritis predicted injurious falls among women. Aoyagi et al. (1998) reported that 

musculoskeletal disorders can increase the prevalence of falls and fractures among older 

adults. Frequent falls are prevalent in individuals diagnosed with Parkinson’s disease 

(Balash et al., 2005; Bloem et al., 2001). A study conducted by Peterson et al. (2008) 

surveyed middle aged and older adult participants with multiple sclerosis about their 

medical care for injuries resulting from falls, revealing a significant number of 

respondents who reported injurious falls. The results indicate that addressing the fear of 

falling and osteoporosis management were crucial elements in a comprehensive program 

aimed at preventing FRIs among individuals with multiple sclerosis. Van Doorn et al. 

(2003) reported that dementia is an independent risk factor for falling, and the increased 

frequency of falls among individuals with dementia, compared to those without the 

condition, exposes them to a greater likelihood of experiencing injurious falls over time. 

Alzheimer’s disease was also identified as a risk factor for falling (Borges et al., 2015; 

Pedroso et al., 2012) and hospitalization due to fall-related bone fractures (Li, 2016) . 

According to recently published "World guidelines for falls prevention and 

management for older adults: A global initiative" by Montero-Odasso and colleagues 

(2022), older adults should be categorized into low, intermediate, or high-risk groups for 

falls. This categorization can be determined through opportunistic case-finding, where 

physicians ask about recent experiences of falls during visits, or when older adults 
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present with a fall or an FRI. For those at high risk, a comprehensive multifactorial fall risk 

assessment should be offered, encompassing mobility, sensory function, activities of daily living, 

cognitive function, autonomic function, nutrition history, medication history, environmental risk, 

and disease history. The guideline specifies several diseases associated with falls, including 

osteoarthritis, diabetes mellitus, neurological disorders (such as Parkinson’s disease, 

polyneuropathy, and stroke), cardiovascular diseases, depressive disorders, cognition, delirium, 

anemia, thyroid disease, electrolyte disorders, frailty, sarcopenia, fracture risk (osteoporosis), and 

acute pneumonia (Montero-Odasso et al., 2022). The guideline provides some evidence about the 

associations between falls, injurious falls, and various diseases. However, it is still unclear how 

other diseases (identified by medical diagnoses in an emergency room or a hospital) relate to 

FRIs. The specific focus on studying the connection between diagnoses and their combinations 

would help fill the gap in understanding how other diseases relate to FRIs. 

1.4 Machine Learning 

The term data science has been frequently used over the past decade to describe the new 

‘science’ created to tease out the hidden knowledge and value in the data collected from different 

businesses such as social media or retail (Hastie et al., 2009; Provost & Fawcett, 2013). While 

terms data science and machine learning sometimes may be used interchangeably, they are not 

the same thing. Data science is a collection of specialties that are deployed to use data for 

decision making, while machine learning is focused on the tools or algorithms used in data 

science (Provost & Fawcett, 2013). Machine learning is a field of artificial intelligence where 

algorithms learn from data to improve their performance on specific tasks or predictions (Hastie 

et al., 2009; Provost & Fawcett, 2013). 

Machine learning is a subset of artificial intelligence that uses computer science 

algorithms that can improve automatically by learning from data. Machine learning algorithms 

are broadly divided into two classes: supervised and unsupervised learning (Hastie et al., 2009). 

In unsupervised learning, a model is trained to find patterns or structures in a dataset without 

being provided with explicit labels or targets. It involves learning from unlabeled data to 

discover underlying relationships, groupings, or representations within the data (Hastie et al., 

2009). Unlike supervised learning, unsupervised learning algorithms do not have a previously 
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known outcome and are focused on pattern detection, such as naturally formed 

communities. Clustering algorithms, such as k-means, belong to unsupervised learning 

family (Hastie et al., 2009). An example of using unsupervised learning to predict falls 

could involve sensor data collected from individuals, such as accelerometers or 

gyroscopes. The data could include measurements related to body movement, orientation, 

or other relevant features. Supervised learning describes a type of algorithm in which the 

format of the outcome is known (Provost & Fawcett, 2013). For example, a supervised 

learning algorithm can be developed to predict whether an older adult that fell will 

sustain a certain type of injury. In this case the algorithm predicts a label or class, which, 

in this example is a binary variable (i.e., 0 or 1 or yes or no) for injury. Since it predicts a 

class, this algorithm is also called a classifier (Provost & Fawcett, 2013). Common 

examples of classification algorithms are logistic regression, naïve Bayes classifier, 

support vector machines, and decision tree, which is probably the most popular algorithm 

(X. Wu et al., 2008). The second category of supervised learning models is trained to 

predict a numeric value (e.g., the time between two consecutive falls for an older adult) 

rather than a class. These algorithms are known as regression algorithms (Provost & 

Fawcett, 2013). The well-known example of these algorithms is linear regression. 

Another example is neural network, when trained to predict a value (Hastie et al., 2009).  

Nowadays, using machine learning is feasible because of advances in computer 

science theory, on one side, and the unprecedented availability of large datasets. Many 

new technologies such as wearable sensors, social media, relational databases, and 

smartphones allow automatic and continuous data collection. More importantly, the 

culture of data collection and management have allowed researchers in many disciplines, 

including gerontology and risk predictions, to collect large datasets at a rapidly growing 

rate (Provost & Fawcett, 2013; Speiser et al., 2021). Complex data requires a type of 

analysis that is sophisticated enough to capture the nuances of data and its internal 

patterns. That is one of the reasons behind the popularity of machine learning as it can 

mine multidimensional large datasets (Provost & Fawcett, 2013). Machine learning offers 

several distinct advantages over much simpler classification algorithms such as logistic 

regression. First and foremost, machine learning models are capable of automatically 
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learning and adapting to complex patterns and features within data. This adaptability enables 

them to handle high-dimensional data sets, where simpler algorithms may struggle to reach an 

acceptable accuracy (Hastie et al., 2009). Additionally, machine learning algorithms excel at 

variable extraction, reducing the need for manual variable engineering, which can be time-

consuming and error-prone in traditional approaches (Hastie et al., 2009; Provost & Fawcett, 

2013). Furthermore, they can continually improve their performance through iterative training 

and fine-tuning, making them well-suited for dynamic and evolving data environments (Hastie et 

al., 2009; Provost & Fawcett, 2013). Lastly, machine learning algorithms often outperform 

simpler classification algorithms in terms of predictive accuracy, as they can capture subtle 

relationships and dependencies within data that might be overlooked by less sophisticated 

methods, leading to more precise and robust classification results (Hastie et al., 2009). 

1.5 Machine Learning in Gerontology 

Researchers in gerontology have embarked on adopting data science and machine 

learning to address problems in their field. To identify what is already known in the literature in 

recent years, a review was completed in 2021 to map the application of machine learning to the 

problems of gerontology, with emphasis on falls in older adults. Additionally, the review aided 

in determining the appropriate machine learning models to employ. Moreover, it helped to 

identify the prevalent performance metrics suitable for the present study. The review uncovered 

that although the application of machine learning is not prevalent in gerontology, it is rapidly 

gaining popularity, due to its high performance and predictive power. A summary of studies 

included in the literature review is presented in Table 1-1. 
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 Table 1-1 
Summary of the Studies Identified in the Literature Review on the Use of Machine Learning in Gerontology 

Author Year Target variable(s) and 

problem(s) addressed 

Target population Variables Machine learning 

algorithm(s) 

Performance metric(s) of 

machine learning 

model(s) 

Ateeq  2018 Prediction of FRIs Canadians aged 12 years or 

above 

Income, alcohol use, physical 

activities, dwelling and household 

variables, consultation with health 

professional, fruit and vegetable 

consumption, height, and weight 

LR, RF, and PCA 

 

Accuracy, and sensitivity 

Heo et al.  

 

2019 Favorable and poor 

outcomes of stroke in 

people with acute stroke 

Individuals with acute 

stroke 

Patient demographics (age, and sex), 

NIHSS, time from onset to admission, 

stroke subtypes, previous diseases, 

blood test values, medication history, 

smoking status 

DNN, RF, and LR 

 

One-number accuracy 

 

Badgujar et al.  

 

2020 Falls prediction 

 

Older adults  Fall and gait patterns 

 

SVM, and DT 

 

Confusion matrix, and 

related measures 

(accuracy, and 

sensitivity) 

 

Kalatzis et al.  

 

2020 Prediction of stress (yes 

or no)  

 

Older adults Heart rate variables 

 

ANN 

 

One-number accuracy 

 

Park  2020 Early detection of mild 

cognitive impairment 

Older adults aged 65 or 

older with mild cognitive 

impairment 

Results of MoCA-K and mSTS-MCI 

tests for dementia 

LR  Accuracy, sensitivity, and 

specificity 

Spooner et al.  2020 Prediction of survival in 

dementia 

Older adults Demographic, medical and family 

history, psychological scores, quality 

of life ratings, etc. 

FS, RF, BCR, and 

PCR  

One-number accuracy 
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Table 1-2 
Summary of the Studies Identified in the Literature Review on the Use of Machine Learning in Gerontology 
Author Year Target variable(s) and 

problem(s) addressed 

Target population Variables Machine learning 

algorithms 

Performance metric(s) of 

machine learning 

model(s) 

Tarekegn et al.  2020 Predicting frailty 

conditions (e.g., mortality 

and fracture) 

Older adults with fracture Clinical characteristics (number of 

hospitalizations, number of ED visits, 

disease history, disability history), 

and socioeconomic factors (age, 

citizenship, housing and work status, 

marital status, level of education, type 

of family) 

ANN, GP, SVM, 

RF, LR, and DT 

Accuracy, and k-fold 

cross validation 

Wu et al.  2020 Major osteoporotic 

fracture risk 

Male older adults 

diagnosed with 

osteoporosis 

Demographic and clinical 

characteristics related to genetics 

GBA, RF, ANN, 

and LR 

One-number accuracy 

 

Wu et al. 2020 Falls Not specific age range 

provided 

Data from wearable sensors such as 

acceleration, angular velocity, and 

attitude angle 

RF, and DT One-number accuracy 

 

Ali et al.  2021 Early detection of 

Parkinson’s disease 

Older adults  Demographics, facial expressions 

(smiling face, disgusted face, 

surprising face) 

SVM, KMC, and 

LR 

Confusion matrix, 

accuracy, precision, 

recall, AUC, and F-1 

score 

Awais et al.  2021 Classification of most 

common activities of daily 

living: walking, sitting, 

standing, and lying 

Community-dwelling older 

adults aged 65 or older 

Body posture while using a wearable 

sensor 

 LSTM, SVM, 

and FS 

F-score, and confusion 

matrix 

Cuaya-Simbro 

et al.  

2021 Fall Risk Prediction Older adults with 

osteoporosis 

Balance parameters with open or 

closed eyes 

NB, SVM, 

AdaBoost, and 

RF 

Accuracy, sensitivity, and 

specificity 
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Table 1-3 
Summary of the Studies Identified in the Literature Review on the Use of Machine Learning in Gerontology 
Author Year Target variable(s) and 

problem(s) addressed 

Target population Variables Machine learning 

algorithms 

Performance metric(s) of 

machine learning 

model(s) 

Fricke et al.  2021 Automatic classification 

of EMG patterns in gait 

disorders 

Patients aged 18 or older 

with different neurological 

diseases 

Gait patterns CNN, SVM, and 

KNN 

One-number accuracy 

Greene et al. 2021 Fall risk prediction and its 

association with balance 

People aged 60 or older Height, weight, and balance LR Accuracy, and sensitivity 

Jang et al.  2021 Classification of stages of 

Alzheimer's disease 

Individuals aged 50 years 

or older with Alzheimer's 

disease 

68 variables extracted from four tasks 

related to language and eye 

movement 

LR, RF, and GNB 
 

Cross-validation, and 

AUC 

Makino et al. (2021) Fall prediction Community-dwelling older 

adults aged 65 years or 

older 

Fall history, age, sex, fear of falling, 

prescribed medication, knee 

osteoarthritis, lower limb pain, gait 

speed, and timed up and go test 

DT Accuracy, sensitivity, 

PPV, and NPV 

Martino et al.  2021 Malnutrition risk 

prediction 

Frail older adults Nutritional intake, dietary habits, and 

body composition 

LASSO, SVM, 

KNN, RF, 

AdaBoost, and 

RUSB 

Accuracy, precision, 

recall, and specificity 

Rodríguez et al.  2021 Audio-based activity 

recognition system for 

reminders to take 

medications 

Community-dwelling older 

adults aged 65 or older 

Variables extracted from speech 

recognition 

  HMM Three-fold cross 

validation, and confusion 

matrix 

 Saeed et al. 2021 Fall patterns Community-dwelling older 

adults 

Position of participants while falling RF, DT, SVM, 

ANN, and NB 

One-number accuracy 

Speiser et al. 2021 Prediction of serious fall-

related injuries 

Older adults Race, education, body mass index, 

marital status, health behaviors 

RF, and DT One-number accuracy, 

and AUC 

Note. CHAID= Chi-square Automatic Interaction Detector. LR = Logistic Regression. RF = Random Forest. PCA = Principal Component Analysis. DNN = Deep Neural Network. 

SVM = Support Vector Machine. DT = Decision Tree.  ANN = Artificial Neural Network. LR = Logistic Regression. FS = Feature Selection. BCR = Boosted Cox Regression. 
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PCR = Penalized Cox Regression. GP = Genetic Programming. GBA= Gradient Boosted Algorithm. KMC= K-Means Clustering. LSTM= Long Short-Term Memory. NB= 
Naïve Bayes. AdaBoost=Adaptive Boosting.  CNN = Convolutional Neural Network. KNN = K Nearest Neighbour. GNB = Gaussian Naïve Bayes. PPV= Positive Predictive 

Value. NPV=Negative Predictive Value.  LASSO = Logistic Regression Shrinkage and Selection Operator. RUSB = Random Under Sampling Boosting. HMM = Hidden Markov 

Models.  AUC = Area Under the Curve. NIHSS = National Institutes of Health Stroke Scale (It is a standardized neurological examination tool used to assess the severity of stroke 

symptoms). MoCA-K = Montreal Cognitive Assessment - Korean version (a cognitive screening tool that is used to assess cognitive impairment and detect early signs of dementia. 

It is based on the original Montreal Cognitive Assessment but has been adapted for the Korean population). mSTS-MCI = mobile Screening Test System for Mild Cognitive 

Impairment. 
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Six studies related to falls in older adults investigated fall prediction (Cuaya-Simbro et 

al., 2021; Greene et al., 2021; Makino et al., 2021; Saeed et al., 2021; Y. Wu et al., 2020), and 

two studies addressed the application of machine learning in FRIs (Ateeq., 2018; Speiser et al., 

2021). Ateeq (2018) used logistic regression and random forest to predict the FRIs in all age 

groups of community dwelling adults and children. They reported that random forest 

outperformed the logistic regression, but the accuracy of their models did not exceed 61%. 

Model evaluation was limited to accuracy and sensitivity and authors did not provide either a 

confusion matrix or the area under the curve. The other study on predicting FRIs in older adults 

was done by Speiser et al. (2021). The authors used random forest and decision tree on data of 

1,635 community-dwelling older adults with different characteristics such as age, grip strength 

trial, race, body mass index, and education. They reported that decision tree could predict FRIs 

with an accuracy of 85 %, while the accuracy of random forest reached only 73%. Both training 

and testing accuracy of the decision tree was higher. The fact that the decision tree outperformed 

random forest in predicting injury is counterintuitive. Typically, it is anticipated that an ensemble 

learning algorithm will outperform a base learner (Hastie et al., 2009). If the opposite outcome 

arises, it is customary for authors to elucidate potential data characteristics or model tuning 

methods that contributed to the unexpected result. Regrettably, such explanations were absent in 

this study. 

This literature review identified only two studies on the application of machine learning 

to FRIs. This limited amount of research on the topic and the abovementioned study limitations 

further encouraged conducting a new study on machine learning application to FRIs. 

1.6 International Classification of Diseases 

According to the Centers for Medicare and Medicaid Services (2023) International 

Classification of Diseases Tenth Revision, also known as ICD-10, codes are defined as a 

standardized system of alphanumeric codes used to report and categorize medical diagnoses and 

procedures. More than 68,000 codes make up the ICD-10 coding system, which corresponds to 

medical diagnoses or treatments (Centers for Medicare & Medicaid Services, 2023). These codes 

offer a standardized method of reporting medical data, enabling precise and consistent 

documentation between various healthcare practitioners and systems. ICD-10 codes are 
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consistently gathered in EDs and hospitals. They provide a standardized approach to reporting 

various diagnoses. Moreover, ICD-10 codes are globally utilized, ensuring comparability across 

diverse countries, cultures, and contexts (CIHI, 2022). 

1.6.1  ICD-10 Codes and Injuries 

A literature review was conducted at the end of 2022 to assess the current understanding 

of ICD-10 codes and their relationship with medical outcomes. The objective was to identify 

common areas of ICD-10 code utilization and whether these codes have been used in studies on 

injuries, or more importantly studies on FRIs.  Examining utilization of ICD codes in prior 

literature, helped ascertain whether different diagnoses and their association with FRIs had been 

previously documented or not. Table 1-2 summarizes 16 most relevant research articles that 

utilized machine learning to investigate associations between the ICD-10 codes and clinical 

outcomes or injuries.
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Table 1-2  
Summary of the Studies Identified in the Literature Review on the Use of ICD-10 Codes and Injuries Using Machine Learning 
Algorithms 
Author Year Target variable(s) and problem(s) 

addressed 

Target population Variables Machine learning 

algorithms 

Choi et al.  2018 Probability of suicide death South Korean adults Sex, age, type of insurance, household 

income, disability, and eight ICD-10 codes 

related to mental and behavioural disorders 

Cox regression, 

SVM, DNN 

Betts et al.  2019 Common maternal postpartum 

complications requiring an inpatient 

episode of care 

Women giving birth Maternal health data GBT 

Deschepper et al.  2019 Unplanned readmission to the hospital Hospital patients Age, length of stay, and pathology data GBM, RF, PLR 

McMaster et al.  2019 Adverse drug reactions Hospital patients Adverse drug reaction codes, primary 

diagnosis, primary diagnosis of adverse drug 

event probability grouping, and length of 

stay 

RF. LR, SVM 

Olsavszky et al.  2020 Forecasting the number of monthly 

hospital admissions for diagnoses of ten 

deadliest diseases* 

All hospitalized patients 

in Romania from 2008 

to 2018 

ICD-10 codes  AutoTS 

Su et al.  2020 Suicide risk Children and 

adolescents  

Demographic, clinical, and mental health 

data 

LR 

Weegar and Sundström  2020 Cervical cancer diagnosis Swedish women with 

cervical cancer 

Clinical, diagnostic, and treatment data RF, NB, SVM 

Bolourani et al.  2021 Lower extremity amputation Trauma patients with 

arterial injury 

Demographic, injury, laboratory, and 

imaging data 

RF, XGBoost, LR 

Cowling et al.  2021 Patient mortality Hospital patients Age, sex, socioeconomic status, and ICD-10 

codes 

LR, GBT 

Edgcomb et al.  2021 Suicide attempt and self-harm Women with mental 

illness hospitalized for 

general medical 

conditions 

Demographics, clinical, and mental health 

data 

RF 
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Table 1-2  
Summary of the Studies Identified in the Literature Review on the Use of ICD-10 Codes and Injuries Using Machine Learning 
Algorithms 

Author Year Target variable(s) and problem(s) 

addressed 

Target population Variables Machine learning 

algorithms 

Huda et al.  2021 Risk of developing wild-type 

transthyretin amyloid cardiomyopathy 

Patients at risk for wild-type 

transthyretin amyloid 

cardiomyopathy 

Demographics, clinical, echocardiographic, 

electrocardiographic, and laboratory data 

LR, XGBoost 

McCann-Pineo et al.  2021 Predictors of opioid administration 

and prescribing 

ED patients receiving 

opioids age 18 or older 

Sociodemographic variables, and ED 

clinical variables (chief complaint, 

discharge diagnosis) 

RF, GBM, NB 

Shah et al.  2021 Major complications and readmission Patients undergoing lumbar 

spinal fusion 

Demographic, clinical, and surgical data XGBoost, 

AdaBoost, GBM, 

RF 

Tran et al.  2021 In-hospital mortality following a 

trauma 

Trauma patients Demographic, injury codes, and 

physiological variables 

XGBoost 

Lee et al.  2022 In-hospital mortality Physical trauma patients in 

Korea, no age limitation 

ICD-10 codes, patient age, gender, 

intentionality, injury mechanism and 

emergent symptom, AVPU scale, KTAS, 

and procedure codes 

DL, AdaBoost, 

XGBoost, 

LightGBM 

Tran et al.  2022 In-hospital mortality following a 

traumatic injury 

Trauma patients Demographic, injury-related codes, and 

physiological variables 

XGBoost 

Note. SVM = Support Vector Machine. DNN = Deep Neural Network. GBT = Gradient Boosting Trees. GBM = Gradient Boosting Model. RF = Random Forest. PLR = Penalized 

Logistic Regression. AutoTS = Automated Time Series. NB = Naïve Bayes. XGBoost = Extreme Gradient Boosting. LR = Logistic Regression. AdaBoost = Adaptive Boosting.  

DL = Deep Leaning. LightGBM = Light Gradient Boosting Model.  COPD = Chronic Obstructive Pulmonary Disease. AVPU = Alert/Verbal/Painful/Unresponsive (simple 

method used in medical settings to assess a person's level of consciousness and responsiveness). KTAS = Korean Triage and Acuity Scale (a system used in South Korea to 

prioritize patients in emergency departments based on the severity of their condition). *Ten deadliest diseases included: ischemic heart diseases, stroke, COPD, lower respiratory 

infections, Alzheimer’s disease, lung cancer, diabetes mellitus, road injuries, diarrheal diseases, and tuberculosis. 
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None of the studies focused on predicting FRIs using ICD-10 codes in older adults. Only 

two studies, by the same research team (Tran et al., 2021, 2022), investigated post-injury 

occurrences, such as in-hospital mortality following trauma or traumatic injuries that were a 

result of a fall, gunshot wound, stabbing, blunt injury, motor vehicle collision, or motorcycle 

collision. Articles by Huda et al. (2021), Bolourani et al. (2021), Shah et al. (2021), and Weegar 

and Sundström (2020) predicted clinical outcomes (i.e., the risk of developing wild-type 

transthyretin amyloid cardiomyopathy, lower extremity amputation, major complications, and 

readmission after lumbar spinal fusion), while studies by Edgcomb et al. (2021), and Su et al. 

(2020), predicted suicide attempts, self-harm, and suicide risk. The age distribution of the 

population varied significantly between studies. Huda et al. (2021), Shah et al. (2021), and Betts 

et al. (2019) did not specify age ranges, while McCann-Pineo et al. (2021) and Choi et al. (2018) 

targeted patients over the age of 18 years. 

Most previous studies that used ICD-10 codes as variables combined them with other 

factors such as socioeconomic (Cowling et al., 2021) or demographic data (Bolourani et al., 

2021; Choi et al., 2018; Shah et al., 2021). Only one study solely focused on diagnostic 

categories, but it only examined ischemic heart diseases, stroke, chronic obstructive pulmonary 

disease, lower respiratory infections, Alzheimer’s disease, lung cancer, diabetes mellitus, road 

injuries, diarrheal diseases, and tuberculosis (Olsavszky et al., 2020). Furthermore, these studies 

primarily focused on predicting limited outcomes such as suicide (Choi et al., 2018), cancer 

(Weegar & Sundström, 2020), mortality (Cowling et al., 2021; Kim et al., 2018; Tran et al., 

2021), and drug reactions (McMaster et al., 2019) rather than FRIs. Therefore, examination of all 

diagnostic categories related to ED or hospital admission in association with FRIs is an 

unexplored field of research.  

Based on the literature review, the machine learning models that emerged most 

frequently are random forest, logistic regression, and XGBoost. These models were used in 

multiple studies in different research contexts. Random forest was used in three studies 

(Deschepper et al., 2019; Edgcomb, Shaddox, et al., 2021; McMaster et al., 2019), logistic 

regression was used in two studies (Cowling et al., 2021; Su et al., 2020), and XGBoost was used 

in two studies (Bolourani et al., 2021; Huda et al., 2021). These machine learning models have 
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demonstrated effectiveness and popularity in various research domains, leading to their frequent 

utilization in the forementioned studies. 

In summary, the studies included in this literature review demonstrate the use of machine 

learning algorithms to analyze medical data across diverse contexts is increasing rapidly in 

recent years. Predictions mainly focus on the risk of developing different medical conditions and 

forecasting the number of hospital admissions for specific diagnoses. These studies emphasize 

assessing performance metrics to achieve their targeted outcomes. However, our literature search 

did not yield specific studies on the application of machine learning algorithms for analyzing the 

association between FRIs and other diseases using ICD-10 codes in older adults. 

1.7 Research Gap 

The literature review helped identify several gaps and the need for further research. First, 

there is insufficient research examining the association between diagnostic codes and FRIs. 

Second, many studies have been conducted on falls prediction, but very few have focused on 

FRIs prediction using machine learning algorithms. These studies mostly used logistic regression 

which is a linear classifier. Some compared logistic regression with random forest. This 

comparison is not the most useful knowing that logistic regression is not the base learner for 

random forest of analysis and not more robust algorithms. They often lacked clear explanations 

of the data cleaning and preparation process, resulting in models that can be improved. 

Additionally, most studies used accuracy as the only performance metric while other 

performance metrics such as sensitivity, precision and F1 score are available and could offer a 

better understanding of the model performance. Finally, to the author’s knowledge, at the present 

time there are no studies that have used ICD-10-CA diagnostic codes for FRIs in older adults 

using robust machine learning algorithms. Therefore, additional research is warranted.  

Based on the research gap, this study intends to demonstrate how three different machine 

learning algorithms can be used to study the association between FRIs and ICD-10-CA using ED 

and hospital data. This study will cast light on strengths and limitations of machine learning 

algorithms in the study of FRIs. This approach improves interpretability and reproducibility of 

the study in other jurisdictions or settings. Unlike ICD-10 codes, variables like race, income and 

education level can have different meanings in different contexts or over time, therefore, training 
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a model based on such variables makes it difficult to replicate the result by other researchers. To 

mind the gap in previous studies, where data cleaning was not clearly described, this study will 

clearly document steps required for data preparation, the most time and resources demanding 

step in a machine learning-based project (Hastie et al., 2009; Provost & Fawcett, 2013). Having 

detailed documentation will enhance transparency and reproducibility of the study. 

1.8 Research Questions 

Based on the literature review and identified gaps, three research questions were 

identified for this project: 

1) Which categories of ICD-10-CA diagnostic codes are most informative when associated 

with FRIs? 

2) What is the difference between ICD-10-CA diagnostic code categories associated with 

FRIs reported in EDs (NACRS database) and hospitals (DAD database)? 

3) Which machine learning model is the most accurate and sensitive for determining 

associations between ICD-10-CA diagnostic codes and FRIs?
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Chapter 2 

2. Methods 

In this chapter, the main methodological steps of the study are described. These steps 

follow the methodology proposed schematically in Figure 2-1. This methodology is inspired by 

the Cross-Industry Standard Process for Data Mining framework, which is a well-known 

approach in data mining (Provost & Fawcett, 2013).  

Figure 2-1 
Study Framework for Providing Main Methodological Steps of the Study 

 

Secondary data was extracted from two databases, the National Ambulatory Care 

Reporting System (NACRS) and the Discharge Abstract Database (DAD). NACRS 

encompasses closed cases from community and hospital-based ambulatory care, such as 

day surgery, outpatient and community clinics, and ED data. Only ED data was included 

in this study. DAD contains hospital inpatient records that include administrative, 

demographic, and clinical patient information at the time of patient discharge, death, or 

transfer (Ontario Ministry of Health and Long-Term Care, 2012). Together, these 

databases provided the data for an overview of two levels of healthcare that an individual 
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may require in the event of an FRI. 

 

2.1 Dataset Creation and Extraction 

The origin and components of the databases used to build a dataset for this study are 

described in this section. The databases NACRS and DAD are managed by the Canadian 

Institute for Health Information (CIHI), which obtains healthcare information from regional 

health ministries or authorities, as well as community and hospital facilities (Chan et al., 2013; 

CIHI, 2011). After collecting the data, CIHI cleans and validates the data and subsequently 

provides IC/ES with access to the data. 

The dataset creation plan (Appendix A) was submitted to IC/ES in 2019, and a data 

analyst extracted the data from NACRS and DAD databases. The period covered in the present 

study was nine years, from 2006 to 2015. Although this observation window may seem outdated, 

the study provides a valuable baseline data for the baby boomer generation’s entry into the 

retirement age (Hogan et al., 2008). In addition, data from the Ontario Registered Persons 

Database (RPDB), which includes sociodemographic data on residents of Ontario, was added.  

The research team received a "Master" dataset and a "Full" dataset. The "Master" dataset 

included sociodemographic data from RPDB, with data on age, sex, the nearest neighborhood 

income quintile, and five chronic condition codes (i.e., diabetes, hypertension, dementia, asthma, 

and chronic obstructive pulmonary disease). The "Full" dataset encompassed ICD-10-CA codes 

and contained combined codes for at least one injury (S00-S99 or T00-T14) and one fall (W00-

W19) code per observation. Every Ontario resident eligible to receive healthcare is assigned a 

unique encoded identifier called an IC/ES key number (IKN), which enables linking between all 

IC/ES databases (Iron & Sykora, 2015). It is important to mention that since data was extracted 

for this study, the 11th revision of the International Classification of Diseases (ICD-11) codes 

came into effect in January 2022 as the result of a comprehensive and collaborative process led 

by the WHO (Harrison et al., 2021). Ethics approval for this study was obtained from the 

Research Ethics Board at Western University (HSREB #211336, Appendix B). This study is a 

continuation of a research program exploring FRIs on the population level using the same ICD-
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10-CA codes and comparable timeframe done by Ming (2020) and Lappan (2021). 

2.2 Population Inclusion and Exclusion Criteria 

All older adult residents of Ontario who were admitted to an Ontario ED or hospital for 

an FRI comprised the population of interest. The inclusion criteria for this population were: (1) 

older adults diagnosed with FRI or who passed away as a result of FRI between January 1, 2006, 

and December 31, 2015; (2) older adults admitted to an ED or hospital who were 65 years of age 

or older at the time of admission; (3) a diagnosis of an injury, as described by ICD-10-CA codes 

S00-S99 or T00-T14 codes, combined with a diagnosis of a fall, as defined by ICD-10-CA codes 

W00-W19, to assure an FRI. Older adult residents of Ontario who were admitted to ED or 

hospital between January 1, 2006, and December 31, 2015, and were matched to the case group 

by sex and age but did not experience FRIs were included as instances without target variableto 

help train the machine learning models, so the models could discriminate between patients who 

had FRIs and those who did not. This group was matched to the FRI group by sex, age, 

Charlston Comorbidity Index score and LHIN, with a ratio of 1.5 to 1. The date of visiting ED 

due to FRI was defined as the index event date. Participants were deemed ineligible for the study 

if they met any of the following criteria: (1) lacked a valid IC/ES Key Number (IKN); (2) a 

person passed away prior to ED or hospital admission; (3) a person did not reside in Ontario; (4) 

a person was younger than 65 at the index date; or (5) a person had an FRI while in a hospital. 

2.3 Data Cleaning and Preparation 

The data cleaning and preparation process was completed using SAS 9.4 M7 (2020) and 

R version 3.6.3 (R Core Team, 2020). DAD and NACRS datasets underwent the same steps 

described below. The SAS and R codes used for the preparation of these databases can be found 

in Appendix C and Appendix D, respectively. 

In the first step, unwanted variables were removed. For example, the dataset from 

NACRS originally had 81 columns, and the dataset from DAD had 87 columns. Not all variables 

were relevant. The relevant variables were chosen after considering the literature review 

findings, the study goals, and the gaps that needed to be addressed. Ten diagnostic codes 

(dx10code1 to dx10code10), sex, age at the time of admission, and study IDs (study_ID) were 
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chosen as variables from NACRS, while 25 diagnostic codes (dx10code1 to dx10code25), sex, 

age at the time of admission, and study IDs of observations (study_ID) were chosen from DAD 

(Table 2-1). The drop function in SAS was used to remove unnecessary variables. Ultimately, 13 

columns from NACRS dataset and 28 columns from DAD dataset remained. 

Table 2-1 

List of Variables Selected from Databases 

Databases Variables Extracted 

NACRS Sex, age at the time of admission, main 

diagnosis, other diagnosis, index date, 

unique study ID 

DAD Sex, age at the time of admission, diagnosis, 

unique study ID 

The original datasets included both the observations of individuals who experienced FRIs 

and controls who did not have FRIs. The next step in data preparation was to identify FRI 

records, which was done as follows. The data cleaning process began by merging the Full and 

Master datasets using the variable Study_ID as the identifier for individual patient records. This 

merging was performed using the merge () function in R version 3.6.3 (R Core Team, 2020). The 

resulting merged dataset was referred to as the Master-Full dataset. To refine the dataset, 

observations that did not include FRI diagnoses were filtered out. This was accomplished by 

using the filter () function to remove the control group data, retaining only FRI cases. 

Additionally, the variable Days from index date to registration date had to have a value of zero, 

indicating that a patient was registered at the ED on the same day as the index date (the date of 

injury). This step confirmed that the treatment was provided specifically for FRIs. Next, the 

NACRS and DAD datasets were separately merged with the Master-Full dataset to collate FRI 

records with predictive variables for both ED and hospital patients. Finally, to ensure that there 

was only one observation per person or IKN, any duplicate observations with the same Study_ID 

were removed. The distinct () function was used to retain only the first observation per Study_ID 

in each dataset. The new FRI tables were assigned a new column called FRI with Y (Yes) values 

and merged with the original NACRS and DAD tables separately using SAS merge function. 

Next, the empty cells were assigned N (No) meaning that no FRI occurred. The full list of 
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commands used for finding FRIs can be found in Appendix C and Appendix D. Additionally, the 

full list of ICD-10-CA diagnostic categories for FRIs can be found in Appendix E. 

After the number of FRIs was obtained, an initial descriptive analysis was performed on 

sex and age using Structured Query Language (SQL) codes in SAS. The objective of this 

analysis was to gain a better understanding of relative frequency of different values of these 

variables in the developed dataset. The specific SQL queries used for this analysis can be found 

in Appendix C. 

Further work was conducted to categorize the diagnostic codes into 21 categories, which 

were used as input variables. The reason for this step was that ICD-10-CA codes were stored as 

alphanumeric codes in the raw datasets rather than categories, but these diagnoses are presented 

in 21 main chapters or categories in ICD-10-CA manual (Centers for Medicare & Medicaid 

Services, 2023) . In this study, the term category is used instead of chapter to emphasize that 

each category represents a group of interrelated diagnoses. The full list of 21 categories used in 

the current study can be found in Appendix F. In the raw datasets, the diagnostic codes were 

stored in different columns without specifying their respective category (Figure 2-2). To be able 

to utilize the diagnostic codes as input variables, they had to be placed in their respective 

category. For example, codes A00 to B99 were placed in Category 1 that describes certain 

infectious and parasitic diseases, and codes G00 to G99 were assigned to Category 6 that relates 

to diseases of the nervous system. The codes for injury and falls that defined FRI were part of 

categories 19 and 20 and were excluded to avoid having variables related to FRI among the 

inputs. This was done as follows. In Category 19 (injury, poisoning and certain other 

consequences of external causes from S00 to T98) codes T00 to T14 were removed. Similarly, 

codes W00 to W19 and S00 to S99 were removed from Category 20 (external causes of morbidity 

and mortality from V01 to Y98). Each category branches into numerous subcategories. However, 

due to the scope of this study, it was not feasible to identify subcategories for all 21 categories. 

Instead, the focus was placed only on select subcategories that emerged through the analysis as 

the most informative when associated with FRIs in EDs and in hospitals. 

Figure 2-2 
Raw DAD Dataset 
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To illustrate how each category was derived from the original datasets, Category 1 will 

be explained here as an example. To identify observations with certain infectious and parasitic 

diseases (Category 1), SQL queries were used to extract all records for codes A00 to A999 and 

B00 to B99 separately. These two sets of records were then merged using the merge function and 

duplicate records were removed with the nodup function. The resulting records represented 

observations with certain infectious and parasitic diseases and were assigned a new column or 

variable named Category1 that was populated with Y using the set function. Next, the Category1 

records were merged with the original table and any empty cells were assigned N to indicate that 

these observations did not have the diseases in this category. Using the keep function, only the 

columns for Category1 and study_IDs were retained to create the Subfinal_Category1 table. The 

same process was followed to create Subfinal tables for the remaining 20 categories. The final 

NACRS observations for FRIs and final tables of all 21 categories were merged using the merge 

function. The resulting final tables of NACRS contained all binary values of Y (yes) or N (no) 

and was used to train machine learning models. 

Before determining which categories required further investigation, it was necessary to 

first identify the two most informative ones associated with FRIs in ED and hospital. These two 
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categories of ICD-10-CA codes were then further divided into subcategories. To explain this 

process, an example is provided here. For instance, Category 2, neoplasms, included diagnostic 

codes from C00 to D48 and encompassed 20 subcategories associated with neoplasms. One such 

subcategory was benign neoplasms, denoted by codes D10 to D36. The process of categorizing 

subcategories within the first two informative categories followed the same Y or N procedure 

described above for the diagnostic categories. For a comprehensive list of subcategories within 

the first two informative categories see Appendix G. 

2.4 Data Analysis 

After the data was prepared, it was split into training and testing data. The models were 

trained using the training data. An in-depth discussion about theories behind all algorithms is 

beyond the scope of this study. Given the popularity of decision trees and tree-based ensemble 

learning algorithms, their theory overview is briefly discussed here as an example.  

A decision tree algorithm segments the data into subsets to minimize disorder in each 

subset. The process of segmentation continues until the algorithms reach ‘pure’ leaves. In the 

context of a decision tree algorithm, pure leaves refer to the final subsets or nodes in the tree 

where the data is homogeneous or consists entirely of one class or category. These leaves 

represent the ultimate outcome or prediction of the decision tree for a given set of input variables 

(Hastie et al., 2009). A common way to define disorder is by using entropy formula as presented 

in Equation (1). 

Entropy = IE (p1, p2, …, pc) =−∑ 𝑝𝑖𝑙𝑜𝑔(𝑝𝑖)
𝑐
𝑖=1 ,     (1) 

where, pi is the probability of belonging to class i (thus the sum of pis is equal to 1) and c 

is the number of classes. 

Ensemble learning algorithms (i.e., random forest and XGBoost trees) are trained based 

on an ensemble of trees rather than a single predictor. These algorithms split the data into several 

subsets and train a tree (or a single base learner) based on each subset as shown in Figure 2-3. 

The final prediction is an aggregation (e.g., via majority vote) of the individual predictions. 
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Figure 2-3 
Illustration of the Theory Behind Ensemble Learning Algorithms 

Note. The green and brown circles represent the leaves, and the blue squares represent the nodes (where the three divides). 

Although ensemble learning algorithms are more accurate, they do not result in an 

explicit model like a decision tree. However, they could be interpreted using their importance 

factor output. These algorithms calculate variable importance based on the same formula of a 

decision tree (e.g., entropy). The key difference is that ensemble learning algorithms average out 

the importance (Piryonesi & El-Diraby, 2020a). Thus, the equation for determining the 

importance of attribute xl can be formulated as follows (Hastie et al., 2009). 

𝐼𝑙
2 =

1

𝑀
∑ 𝐼2(𝑇𝑚)
𝑀
𝑚=1     (2) 

where 𝐼𝑙
2 is the importance of variable xl, 𝐼2(𝑇𝑚) is the importance of that variable in 

decision tree m, and M is the number of base learners (i.e., decision trees). 

2.5 Model Training 

Data analysis was performed using R version 3.6.3 (R Core Team, 2020). Based on the 

literature review, consideration of the selected variables' nature, the availability of software and 

resources, and the advantages of different models in this context, three machine learning models 
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were chosen: the decision tree (Badgujar & Pillai, 2020; Speiser et al., 2021; Y. Wu et al., 2020) 

random forest (Ateeq, 2018; Cuaya-Simbro et al., 2021; Speiser et al., 2021; Y. Wu et al., 2020), 

and gradient boosting models (Cuaya-Simbro et al., 2021; Di Martino et al., 2021; Q. Wu et al., 

2020). They were previously employed by researchers for predicting and investigating the 

association between selected variables and falls or injurious falls. However, earlier studies have 

limitations (e.g., lack of sufficient explanation of results and low accuracy) that will be addressed 

in the current study. 

Decision tree has been one of the most popular machine learning algorithms (Wu et al., 

2008) because of the “open box” approach it utilizes and its ease of interpretation and 

visualization (Hastie et al., 2009). This contrasts with the “black-box” nature of some machine 

learning algorithms, such as neural networks, that makes their interpretation difficult (Piryonesi 

& El-Diraby, 2020a; Provost & Fawcett, 2013). Unlike models such as K- nearest neighbor, 

decision tree results in an explicit model that can be implemented and used to classify new data 

independent of the training set, and its training requires no initial assumption such as normality 

of residual errors or independence of input variables (e.g., as required by naïve Bayes classifier) 

(Hastie et al., 2009; Provost & Fawcett, 2013). In addition to these features, decision trees are 

known to have a superior accuracy compared to linear models such as logistic regression or 

naïve Bayes classifier (Hastie et al., 2009).  

The two ensemble learning algorithms, i.e., random forest and XGBoost trees, were 

adopted to check if they can enhance the accuracy of the decision tree’s classification. The 

ensemble form of a decision tree would be a random forest or an XGBoost tree (Hastie et al., 

2009). The selection of multiple models was motivated by the desire to compare their 

performance and attain greater confidence in the obtained results, addressing the third research 

question of the study: “Which machine learning model is the most accurate and sensitive for 

determining associations between ICD-10-CA diagnostic codes and FRIs?”. Furthermore, having 

these three models can help make an apple-to-apple comparison in addressing some of the 

limitations discussed in Sections 1.5 and 1.7. Finally, the limited availability of machine learning 

software within the IC/ES environment also led to selection of these three machine learning 

algorithms. First, the absence of Python software led to restricted options for choosing more 

models and packages. Second, all analysis had to be performed on secure IC/ES servers and only 
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the results could be exported. Consequently, the three models chosen for this study are decision 

tree, random forest, and XGBoost. The codes used for each model are available in Appendix D.  

In all three machine learning models used in this study, the first step was that the 

prepared data was initially split into two parts with a ratio of 70% for the training set and 30% 

for the testing set. This ratio of is a common best practice in the literature for machine learning 

across different disciplines (Awais et al., 2021; Hastie et al., 2009; Speiser et al., 2021). The 

training sets were used to develop the models, by teaching the algorithms how to classify 

individuals as either having FRI or not (Y or N). Meanwhile, the test sets that contain the data 

that was not used in the model’s training, were used to assess the performance of each model. 

This helped to estimate the performance metrics of each model and identify the most informative 

variables. Machine learning libraries used in this research do the splitting randomly and therefore 

the training set and test set have similar distributions. 

The first algorithm utilized was the decision tree. Decision trees have few weaknesses 

that could be addressed by their ensembles. Examples of such weaknesses are a lack of 

robustness and relatively low accuracy (Hastie et al., 2009; X. Wu et al., 2008). Random forests 

and XGBoost trees are examples of ensembles of trees that do considerably better than a single 

learner. Ensemble learning algorithms usually have a higher robustness given the fact the result 

is averaged over an ensemble of trees (Hastie et al., 2009; Wu et al., 2008). Robustness is the 

idea of having a more stable and reliable model (Piryonesi & El-Diraby, 2020b). In ensemble 

learning, the data is randomly split into multiple subsets that could be both horizontal and 

vertical. The number of subsets is equal to the number of base learners or weak learners. Next, a 

tree (base learner) is trained based on each subset. For every new incoming example, each tree 

will make its own prediction (in this case a Yes/Y or a No/N). The final prediction of the 

ensemble model is an aggregate of the predictions of base learners. While in a random forest the 

final prediction is the result of a majority vote, the voting is weighted in an XGBoost algorithm. 

It means that a larger weight is assigned to more accurate trees to amplify their prediction and 

diminish the less accurate base learners (Piryonesi et al., 2021). Random forest was used as the 

second algorithm in the study and an XGBoost tree was the final algorithm employed. How 

many trees are used to construct the model depends on the number of iterations. (Hastie et al., 

2009). Improved performance may result from more iterations, but it can also result in overfitting 
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(Hastie et al., 2009). Several methods can be used to determine the ideal number of iterations for 

an XGBoost model. Grid search and random search are most common. Grid search is a technique 

for determining a model's ideal hyperparameters by examining how the model performs with 

various combinations of hyperparameters. The validation set is used to evaluate the model's 

performance after training it over several iterations. Choosing the number of iterations that 

produces the best performance allows one to determine the optimal number. (Hastie et al., 

2009).Grid search and random search both use methods that search over sets of hyperparameters, 

but random search does so over a set of hyperparameters rather than a predefined grid (Hastie et 

al., 2009). Using a random set of iterations, the model was trained, and its effectiveness was 

evaluated using a validation set. At the end, 100 iterations were used as the ideal number because 

they produced the best results. 

2.6 Model Evaluation 

All three machine learning models were evaluated for accuracy, sensitivity, specificity, 

precision, and F1 score to assess each model's performance and to compare the models against 

each other. Variable informativeness was assessed in all three models. The model's predictions 

are summarized in the confusion matrix, which is useful for calculating performance metrics like 

sensitivity and accuracy (Boehmke & Greenwell, 2019; Kuhn & Johnson, 2013; Nolan & Lang, 

2015). 

A table that lists the conclusions drawn by a binary classification model is known as a 

confusion matrix. It displays how many predictions the model made were true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) (Boehmke & Greenwell, 2019; Kuhn 

& Johnson, 2013; Nolan & Lang, 2015). In the context of FRIs, a true positive occurs when the 

model accurately predicts an injury, and a true negative occurs when the model accurately 

predicts no FRIs. False positive prediction happens when the model predicts an injury when 

there is not one, and a false negative prediction happens when the model predicts no injury when 

an injury really did happen. Accuracy, sensitivity, specificity, precision, and F1 score are 

commonly used performance metrics that can be calculated using a confusion matrix (Kuhn & 

Johnson, 2013).  

Accuracy is defined as the ratio of the number of correct predictions to the total number 
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of predictions. It measures how accurately the model foresees both favorable and unfavorable 

events (Boehmke & Greenwell, 2019; Kuhn & Johnson, 2013; Nolan & Lang, 2015). Accuracy 

can be calculated using the following formula: 

Accuracy = (TP + TN) / (TP + TN + FP + FN)    (3) 

Sensitivity measures the proportion of true positives that are correctly identified by the 

model. It is defined as the ratio of the number of true positives to the total number of actual 

positive instances (Kuhn & Johnson, 2013). Sensitivity can be calculated using the following 

formula: 

Sensitivity = TP / (TP + FN)       (4) 

Specificity, also known as the true negative rate, is a metric used to evaluate the 

performance of a model in correctly identifying negative instances (Boehmke & Greenwell, 

2019; Kuhn & Johnson, 2013; Nolan & Lang, 2015). Specificity can be calculated using the 

following formula: 

Specificity = TN / (TN + FP)       (5) 

Precision, also referred to as positive predictive value, is a metric that assesses the 

accuracy of a model in correctly identifying positive instances (Boehmke & Greenwell, 2019; 

Kuhn & Johnson, 2013; Nolan & Lang, 2015). Precision focuses on the proportion of correctly 

predicted positive instances out of all instances classified as positive. It provides insight into the 

model's ability to avoid false positives and is particularly useful in scenarios where the cost of 

false alarms is high, such as in medical diagnosis or fraud detection (Boehmke & Greenwell, 

2019; Kuhn & Johnson, 2013; Nolan & Lang, 2015).Precision can be computed using the 

formula: 

Precision = TP / (TP + FP)       (6)  

The F1 score is a measure that combines precision and sensitivity into a single metric, 

providing a balanced evaluation of a model's performance. (Boehmke & Greenwell, 2019; Kuhn 

& Johnson, 2013; Nolan & Lang, 2015). The F1 score considers both false positives and false 
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negatives, making it a useful metric when there is an uneven class distribution or when both 

types of errors are equally important. It provides a comprehensive assessment of a model's 

effectiveness in identifying positive instances while minimizing misclassifications. In the context 

of FRIs, F1 score can be calculated as follows: 

F1 Score = 2 * (Precision * Sensitivity) / (Precision + Sensitivity)   (7)  

Variable importance is a useful output of machine learning algorithms. It is a metric that 

measures the impact of input variables on the output of a machine learning model. Thus, it is a 

useful tool to understand the behavior of the model and identify the most important or 

informative variables. There are several methods for calculating variable importance, and they 

differ depending on the type of model being used (Hastie et al., 2009; Provost & Fawcett, 2013). 

Decision trees create segmentations in the dataset. They start with the most informative 

variable and split the data based on a test. Therefore, at least two branches grow out of each 

node. Then, the nodes in each branch will split based on their informativeness. The terminal node 

of a tree is called a leaf, which is ideally pure and belongs to a particular class (Hastie et al., 

2009; Opher & Ostfeld, 2011). Different trees may use different measures for defining 

informativeness. Most trees rely on entropy or the Gini index (Hastie et al., 2009; Provost & 

Fawcett, 2013; Wu et al., 2008). The information gain and the homogeneity of each leaf will be 

determined by the parameters of the tree (Ergen et al., 2015; Wu et al., 2008). The Gini index 

measures the degree of heterogeneity of a set of samples based on the target variable, and 

information gain measures the reduction in entropy achieved by splitting the data on a given 

variable. The variables that lead to the greatest reduction in impurity or entropy are considered 

the most important (Hastie et al., 2009; Provost & Fawcett, 2013; Wu et al., 2008). The trees 

developed in this study are based on entropy the most well-known implementation of decision 

trees (Hastie et al., 2009; Provost & Fawcett, 2013). 

In random forests, variable importance is usually calculated by aggregating the 

importance scores of individual decision trees in the forest. The importance of a variable is 

calculated by measuring the reduction in classification accuracy that occurs when that variable is 

randomly permuted. The variables that cause the greatest decrease in accuracy are considered the 

most important (Hastie et al., 2009; Provost & Fawcett, 2013; Wu et al., 2008). 
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In XGBoost, variable importance can be calculated using the gain or cover metrics. Gain 

measures the reduction in loss achieved by splitting the data on a given variable and covers the 

number of observations that are associated with a given variable. The variables that lead to the 

greatest reduction in loss or have the most observations associated with them are considered the 

most important (Kuhn & Johnson, 2013; Lantz, 2019). 

In R, the varImp function from the caret library was used to calculate variable 

importance for decision trees and random forests. For XGBoost, the xgb.importance function 

from the XGBoost package was used. These functions return a data frame containing the 

importance scores for each variable, which was visualized using a bar plot or other visualization 

tool (Boehmke & Greenwell, 2019; Lantz, 2019; Zaki & Meira Jr, 2020). 
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Chapter 3 

3. Results 

The Results chapter is divided into three sections. The first presents findings on the most 

informative diagnostic categories associated with FRIs at the emergency department level of 

care. The second section presents findings on the most informative diagnostic categories 

associated with FRIs for individuals who were admitted into the hospital level of care. Both 

sections are divided into four parts, starting with results from different machine learning models 

that answer the first research question: “Which categories of ICD-10-CA diagnostic codes are 

most informative when associated with FRIs?”, followed by findings from the analysis of 

subcategories of diagnostic codes to answer the second research question: “What is the 

difference between ICD-10-CA diagnostic code categories associated with FRIs reported in EDs 

(NACRS database) and hospitals (DAD database)?”, and ending with a summary of findings on 

accuracy, sensitivity, specificity, precision, and F1 score of the three machine learning models to 

answer the third research question: “Which machine learning model is the most accurate and 

sensitive for determining associations between ICD-10-CA diagnostic codes and FRIs?” 

3.1 Emergency Level of Care 

3.1.1  Demographics 

The current study analyzed a total of 1,248,029 observations in the NACRS dataset (EDs) 

out of which 631,339 observations were identified as FRIs. Table 3-1 provides age and Table 3-2 

provides sex information for the identified FRI observations in the NACRS dataset. The age 

group of 75 to 79 years had the highest incidence of FRIs, while the age group over 90 

experienced the lowest number of FRIs. The overall mean age of patients was 77.8 years. 

Females experienced nearly twice as many FRIs as males.
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Table 3-1  
Age Distribution of FRI Observations in EDs of Ontario (NACRS Dataset) 

Age group Number of observations  Percentage of total frequency (%) 

65-69 116,645 18.5 

70-74 97,320 15.4 

75-79 165,688 26.3 

80-84 108,645 17.2 

85-89 87,385 13.8 

Over 90 55,656 8.8 

Total 631,339 100.0 

 
Table 3-2  
Sex Distribution of FRI Observations in EDs of Ontario (NACRS Dataset) 

Sex Number of observations Percentage of total frequency (%) 

Females 420,077 66.5 

Males 211,262 33.5 

Total 631,339 100 

   

3.1.2  Decision Tree 

The target variable of the decision tree model was the occurrence or non-occurrence of 

FRIs over a 9-year period. Figure 3-1 shows the final decision tree model for input variables. 
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Figure 3-1 
Visualization of the Decision Tree for FRIs Using Diagnostic Categories of ICD-10 Codes (Cat1 to Cat21) in NACRS Dataset 
 

 

Note. The tree consists of various components: starting from the root node, each internal node represents a decision based on specific input variables and their conditions 
(Y=Yes or N=No). The branches emanating from each internal node depict the possible outcomes based on the input variables' conditions. The leaf nodes, or terminal 

nodes, signify the final predictions, representing specific combinations of input variables. Within each leaf node, the percentages indicate the proportion of observations 

falling into that category (Y=Yes or N=No). By examining the tree's structure, splitting criteria, branches, leaf nodes, and the percentages in each leaf, we can gain a 

comprehensive understanding of the relationship between the input variables and the predicted outcomes of FRIs based on the ICD-10-CA diagnostic categories. The 

lighter and darker shades of blue and green convey information about the certainty or probability associated with the predicted outcomes. Darker shades of blue or green 

indicate a higher probability or a stronger association with a particular outcome, representing a higher confidence in the prediction being made. On the other hand, lighter 
shades of blue or green suggest lower probabilities or weaker associations with the predicted outcomes, indicating a lower confidence in the corresponding predictions. 

This color scheme helps to distinguish between more reliable or significant associations depicted by darker colors and less robust relationships represented by lighter 

colors, allowing for a visual assessment of the model's confidence in specific conditions or categories within the decision tree; Cat18=symptoms, signs and abnormal 

clinical and laboratory findings, not elsewhere classified;Cat9= diseases of the circulatory system; Cat10=diseases of the respiratory system; Cat11= diseases of the 

digestive system; Cat14= diseases of the genitourinary system; Cat13= diseases of the musculoskeletal system and connective tissue. 
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The performance of the model was evaluated by generating a confusion matrix. Table 3-3 

shows a confusion matrix that resulted from testing the results of the decision tree, and Table 3-4 

shows the performance metric of the model. 

 
Table 3-3  
Confusion Matrix of the Decision Tree Model in NACRS Dataset 

N=374,628 Actual yes Actual no Totals 

Predicted yes 131,559 57,875 189,434 

Predicted no 21,544 163,650 185,194 

Totals 153,103 221,525 374,628 

 
 
Table 3-4  
Performance Metric of the Decision Tree Model in NACRS Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

78.8 86.0 73.9 69.5 76.8 

Out of the total 374,628 instances, the model correctly predicted 131,559 true positive 

cases and 163,650 true negative cases (Table 3-3). However, it also made 21,544 false positive 

predictions and 57,875 false negative predictions. The overall accuracy of the model was 78.8%, 

reflecting the proportion of correct predictions out of all instances., The sensitivity was notable 

86.0%, indicating the model's ability to correctly identify positive cases (Table 3-4). The 

specificity was 73.9%, representing its proficiency in identifying negative cases. The precision 

stood at 69.5%, showcasing the accuracy of positive predictions among all instances labeled as 

positive. Lastly, the F1-Score was 76.8%, which considered both precision and sensitivity, 

providing a balanced assessment of the model's overall performance. 

The three most informative variables were identified in the following order: Category 18, 

which represents symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere 

classified; Category 9, denoting diseases of the circulatory system; and Category 11, 
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corresponding to diseases of the digestive system.  Figure 3-2 displays the most prominent 

diagnostic categories, ranked according to their degree of informativeness.



39 

 

 

Figure 3-2 
The Importance of Diagnostic Categories of the Decision Tree Model in NACRS Dataset 
 

 

 

Note. The x-axis represents ICD-10-CA categories and the y-axis represents the entropy values associated with each variable. Cat18=symptoms, signs and abnormal clinical and 

laboratory findings, not elsewhere classified; Cat9=diseases of the circulatory system; Cat11=diseases of the digestive system; Cat10=diseases of the respiratory system; 

Cat14=diseases of the genitourinary system; Cat13=diseases of the musculoskeletal system and connective tissue; Cat21=factors influencing health status and contact with health 

services; Cat4=Endocrine, nutritional and metabolic diseases.
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3.1.3  Random Forest 

The target variable of the random forest model was the occurrence or non-occurrence of 

FRIs over a 9-year period. As discussed above, random forest is as an ensemble of multiple 

trees, and visualizing it is not an option. However, the variable importance can provide some 

information about the nature of the model and its relation to the input data. To evaluate the 

performance of the model, accuracy, sensitivity, specificity, precision, and F1 score were 

chosen among the results of the confusion matrix (Table 3-5). Table 3-6 also shows the 

performance metric of the random forest model. 

 
Table 3-5  
Confusion Matrix of the Random Forest Model in NACRS Dataset 

N=374,455 Actual yes Actual no Totals 

Predicted yes 131,902 57,571 189,473 

Predicted no 20,876 164,106 184,982 

Totals 152,778 221,677 374,455 

 
 
Table 3-6  
Performance Metrics of the Random Forest Model in NACRS Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

78.8 86.3 73.8 69.3 76.9 

 Out of the total 374,455 instances, the model correctly predicted 131,902 cases as 'yes' 

and 164,106 cases as 'no,' while misclassifying 57,571 and 20,876 instances, respectively (Table 

3-5). The model's overall accuracy was78.8%, indicating that it correctly classified 

approximately 79% of the cases. The model's sensitivity was 86.3%, indicating its ability to 

correctly identify positive cases (Table 3-6). On the other hand, the specificity, or true negative 

rate, stood at 73.8%, representing the model's capacity to correctly identify negative cases. The 

precision of the model was 69.3%, reflecting the proportion of true positive predictions among 
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all positive predictions. Lastly, the F1-score was 76.9%, providing an overall assessment of the 

model's predictive ability.   

Next, the three most informative variables were identified in the following order: 

Category 18, which represents symptoms, signs, and abnormal clinical and laboratory findings, 

not elsewhere classified; Category 9, denoting diseases of the circulatory system; and Category 

10, corresponding to diseases of the respiratory system. The list of diagnostic categories in terms 

of their informativeness is presented in Figure 3-3. 
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Figure 3-3 
The Informativeness of Diagnostic Categories of the Random Forest Model in NACRS Dataset 

 

Note. The y-axis represents the category and the x-axis represents the Gini index values associated with each variable. Cat18=symptoms, signs and abnormal clinical and 

laboratory findings, not elsewhere classified; Cat9=diseases of the circulatory system; Cat10= diseases of the respiratory system; Cat11=diseases of the digestive system; 

Cat13=diseases of the musculoskeletal system and connective tissue; Cat14=diseases of the genitourinary system; Cat2= neoplasms; Cat12=diseases of the skin and subcutaneous 

tissue; Cat21=factors influencing health status and contact with health services; Cat7=diseases of the skin and subcutaneous tissue;  Cat1=certain infectious and parasitic diseases; 

Cat5= mental and behavioural disorders; Cat8=diseases of the ear and mastoid process; Cat6=diseases of the nervous system; Cat4=endocrine, nutritional and metabolic diseases  
Cat3=diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism; Cat17= congenital malformations, deformations, and chromosomal 

abnormalities; Cat16= certain conditions originating in the perinatal period; Cat15= pregnancy, childbirth and the puerperium.
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3.1.4  Extreme Gradient Boosting Tree (XGBoost Tree) 

A parameter search was conducted to determine the optimal number of iterations, and it 

was determined that 100 iterations yielded the highest level of model performance, as shown in 

Figure 3-4. To evaluate the performance of the model, a confusion matrix was generated. The 

results of the confusion matrix are presented in Table 3-7 and the performance metrics are also 

provided in Table 3-8. 

 
Table 3-7  
Confusion Matrix of the XGBoost Model in NACRS Dataset 

N=374,628 Actual yes Actual no Totals 

Predicted yes 133,762 24,401 158,163 

Predicted no 55,672 160,793 216,465 

Totals 189,434 185,194 374,628 

 
 
Table 3-8  
Performance Metrics of the XGBoost Model in NACRS Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

78.6 70.6 86.8 84.6 77.0 

 The confusion matrix (Table 3-7) shows that out of the total 374,628 instances, the 

model correctly predicted 133,762 instances as positive and 160,793 instances as negative. 

However, there were 24,401 false positives and 55,672 false negatives. Overall, the model 

achieved an accuracy of 78.6%, indicating that approximately 79% of the predictions were 

correct. 
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Figure 3-4 
Parameter Search for XGBoost Model in NACRS: Number of Trees 

 

Note. The graph displays the performance of a trained XGBoost tree model during the training process. The y-axis represents the train-mlogloss, which is a measure of 

the model's multiclass log loss on the training data. The x-axis represents the number of iterations (in this case number of trees) or rounds during the training process.
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Further  analysis of the performance metrics (Table 3-8), shown that the model 

demonstrated a sensitivity at 70.6%, indicating its ability to correctly identify true positives 

relative to the actual positive cases. The model showed high specificity at 86.8%, indicating its 

proficiency in correctly identifying true negatives relative to the actual negative cases. The 

precision of 84.6% indicated the proportion of true positive predictions among all positive 

predictions, signifying the model's ability to avoid false positives. The F1-score was at 77.0%, 

reflecting a balanced trade-off between precision and sensitivity.  

The three most informative variables were subsequently identified, in order, as Category 

18, which pertains to symptoms, signs, and abnormal clinical and laboratory findings, not 

elsewhere classified, Category 13, which relates to diseases of the musculoskeletal system and 

connective tissue, and Category 9, which relates to diseases of the circulatory system. The list of 

diagnostic categories in terms of their informativeness is presented in Figure 3-5.
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Figure 3-5 
The Informativeness of Diagnostic Categories of the XGBoost in NACRS Dataset 

 

Note. The numbers on the x-axis correspond to the variable importance scores. These scores quantify the relative importance of each variable in influencing the model's 
predictions. Higher values indicate greater importance, while lower values indicate lesser importance. Cat18= symptoms, signs and abnormal clinical and laboratory findings, not 

elsewhere classified; Cat13= diseases of the musculoskeletal system and connective tissue; Cat9= diseases of the circulatory system; Cat10= diseases of the respiratory system; 

Cat11= diseases of the digestive system; Cat14= diseases of the genitourinary system; C12= diseases of the skin and subcutaneous tissue; Cat21= factors influencing health status 

and contact with health services; Cat2= neoplasms;  Cat1=certain infectious and parasitic diseases; Cat7=diseases of the eye and adnexa, Cat5= mental and behavioral disorders; 

Cat8= diseases of the ear and mastoid process; Cat6= diseases of the nervous system; Cat4= endocrine, nutritional and metabolic diseases; Cat3= diseases of the blood and blood-

forming organs and certain disorders involving the immune mechanism; Cat17= congenital malformations, deformations, and chromosomal abnormalities; Cat16= certain 
conditions originating in the perinatal period.
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3.1.5  Summary of Outcomes for the Emergency Department 

Table 3-9 shows the first three most informative variables in three different models 

identifying the categories of ICD-10-CA diagnostic codes that were the most informative in 

association with FRIs. In all three models Category 18 emerged as the most informative. To 

further identify the most informative diagnostic subcategories within Category 18, an in-depth 

exploration was conducted using the XGBoost model, known for its robustness and stable results 

(Hastie et al., 2009).  

 
Table 3-9  
Summary of Variable Informativeness in Three Machine Learning Models in NACRS Dataset 

 Decision tree Random forest XGBoost tree 

1st category Category 18: 

symptoms, signs and 

abnormal clinical and 

laboratory findings, 

not elsewhere 

classified 

Category 18: 

symptoms, signs and 

abnormal clinical and 

laboratory findings, 

not elsewhere 

classified 

Category18: 

symptoms, signs and 

abnormal clinical and 

laboratory findings, 

not elsewhere 

classified 

2nd category Category 9: diseases 

of the circulatory 

system 

Category 9: diseases 

of the circulatory 

system 

Category13: diseases 

of the 

musculoskeletal 

system and 

connective tissue 

3rd category Category 11: diseases 

of the digestive 

system 

Category 11: diseases 

of the digestive 

system 

Category 9: diseases 

of the circulatory 

system 

Interestingly, all three models consistently ranked Category 18: symptoms, signs and 

abnormal clinical and laboratory findings, not elsewhere classified as the most informative 

category. This suggests that this category plays a crucial role in predicting the outcome variable 

across all three models. As the second most informative category, the decision tree and random 

forest models identified Category 9: diseases of the circulatory system, while the XGBoost tree 

model identified Category 13: diseases of the musculoskeletal system and connective tissue. 

Similarly, in the third most informative category, the decision tree and random forest models 

once again agreed on Category 11: diseases of the digestive system as the most informative 

category, while the XGBoost tree model highlighted Category 9: diseases of the circulatory 
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system instead.  

3.1.6  Diagnostic Subcategories 

 To identify the most informative diagnostic subcategories within Category 18, an in-

depth exploration was conducted. The XGBoost model was utilized for this purpose, as it is 

known for its robustness and stable results (Hastie et al., 2009). Category 18 was comprised of 

13 subcategories of codes from R00 to R99. The results show that dyspnea or shortness of breath 

was the most informative ICD-10-CA code (Figure 3-6). The complete list of subcategories of 

Category 18 can be found in Appendix G and the graph of informativeness of each subcategory 

can be found in Appendix H.  
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Figure 3-6 
The Most Informative Subcategories in Category 18: symptoms, signs and abnormal clinical 
and laboratory findings, not elsewhere classified 
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3.2 Hospital Level of Care 

3.2.1  Demographics 

The current study analyzed a total of 688,868 observations in the DAD dataset (hospitals) 

out of which 304,495 observations were identified as FRIs. Table 3-10 provides age and Table 3-

11 provides sex information for the identified FRI observations in the DAD dataset. The age 

group of 75 to 79 years had the highest incidence of FRIs, while the age group over 90 

experienced the lowest number of FRIs. The overall mean age of patients was 79.8 years. 

Moreover, females experienced more FRIs compared to males.
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Table 3-10  
Age Distribution of FRI Observations in Hospitals of Ontario (DAD Dataset) 

Age group Number of observations  Percentage of total frequency (%) 

65-69 37,819 12.4 

70-74 37,948 12.5 

75-79 78,688 25.9 

80-84 59,629 19.6 

85-89 53,426 17.5 

Over 90 36,985 12.1 

Total 304,495 100.0 

 
 
Table 3-11 
 Sex Distribution of FRI Observations in Hospitals of Ontario (DAD Dataset) 

Sex Number of observations Percentage of total frequency (%) 

Females 187,387 61.5 

Males 117,108 38.5 

Total 304,495 100.0 

3.2.2  Decision Tree 

The target variable of the tree was the occurrence or non-occurrence of FRIs over a 9-

year period. Input variables were composed of 21 categories of diagnostic codes listed in 

Appendix F. The final decision tree model is presented in Figure 3-7.  



52 

 

Figure 3-7 
Visualization of the Decision Tree to Predict FRIs Using Diagnostic Categories of ICD-10-CA Codes in DAD Dataset 

 

Note. The tree consists of various components: starting from the root node, each internal node represents a decision based on specific input variables and their conditions 

(Y=Yes or N=No). The branches emanating from each internal node depict the possible outcomes based on the input variables' conditions. The leaf nodes, or terminal 

nodes, signify the final predictions, representing specific combinations of input variables. Within each leaf node, the percentages indicate the proportion of observations 

falling into that category (Y=Yes or N=No). By examining the tree's structure, splitting criteria, branches, leaf nodes, and the percentages in each leaf, we can gain a 

comprehensive understanding of the relationship between the input variables and the predicted outcomes of FRIs based on the ICD-10-CA diagnostic categories. The use 

of lighter and darker shades of blue and green conveys information about the certainty or probability associated with the predicted outcomes. Darker shades of blue or 

green indicate a higher probability or a stronger association with a particular outcome, representing a higher confidence in the prediction being made. On the other hand, 

lighter shades of blue or green suggest lower probabilities or weaker associations with the predicted outcomes, indicating a lower confidence in the corresponding 

predictions. This color scheme helps to distinguish between more reliable or significant associations depicted by darker colors and less robust relationships represented 
by lighter colors, allowing for a visual assessment of the model's confidence in specific conditions or categories within the decision tree; Cat2= neoplasms; Cat9= 
diseases of the circulatory system; Cat5= mental and behavioural disorders; Cat11=; diseases of the digestive system Cat13= diseases of the musculoskeletal system and 

connective tissue; Cat14= diseases of the genitourinary system; Cat10= diseases of the respiratory system. 
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The performance of the model was evaluated by generating a confusion matrix. Table 3-

12 shows a confusion matrix that resulted from testing the results of the decision tree, and Table 

3-13 also shows the performance metric of the model. 

 
 
Table 3-12  
Confusion Matrix of the Decision Tree Model in DAD Dataset 

N=206,817 Actual yes Actual no Totals 

Predicted yes 57,292 34,179 91,471 

Predicted no 21,711 93,635 115,346 

Totals 79,003 127,814 206,817 

 
 
Table 3-13  
Performance Metric of the Decision Tree Model in DAD Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

73.0 72.5 73.2 62.6 67.2 

The confusion matrix (Table 3-12) reveals that out of the total 206,817 instances, the 

model correctly predicted 57,292 true positive cases and 93,635 true negative cases. However, it 

also made 21,711 false positive predictions and 34,179 false negative predictions. The overall 

accuracy of the model is reported at 73.0%, indicating that approximately three-fourths of the 

predictions were correct. Moving on to the performance metrics (Table 3-13), the model 

exhibited a sensitivity  of 72.5%, indicating its performance in correctly identifying positive 

cases. The specificity  stands at 73.2%, suggesting the model's ability to accurately identify 

negative cases. The precision (positive predictive value) achieved by the model was 62.6%, 

demonstrating the accuracy of positive predictions among all instances labeled as positive. 

Moreover, the F1-Score, which considers both precision and sensitivity, stood at 67.2%, 

providing a balanced evaluation of the model's overall performance.  

The three most informative variables were identified in the following order: Category 2, 

which represents neoplasms; Category 10, denoting diseases of the respiratory system; and 
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Category 14, corresponding to diseases of the genitourinary system.  Figure 3-8 displays the 

most prominent diagnostic categories, ranked according to their degree of informativeness.



55 

 

Figure 3-8 
The Importance of Diagnostic Categories of the Decision Tree Model in DAD Dataset 

 

Note. The x-axis represents the name of each category and the y-axis represents the entropy values associated with each variable. Cat2=neoplasms; Cat10=diseases of the 
respiratory system; Cat14= diseases of the genitourinary system; Cat9= diseases of the circulatory system; Cat11=diseases of the digestive system; Cat13=diseases of the 

musculoskeletal system and connective tissue; Cat5= mental and behavioural disorders; Cat1= certain infectious and parasitic diseases; Cat4= endocrine, nutritional and metabolic 

diseases; Cat21= factors influencing health status and contact with health services; Cat18= symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified.
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3.2.3  Random Forest 

The random forest is an ensemble of multiple trees, and visualizing it is not an option. 

However, the variable importance can provide some information about the nature of the model 

and its relation to the input data. To evaluate the performance of the model, accuracy, sensitivity, 

specificity, precision, and F1 score were chosen among the results of the confusion matrix (Table 

3-14). Table 3-15 shows the performance metric of the random forest model. 

 
Table 3-14  
Confusion Matrix of the Random Forest Model in DAD Dataset 

N=206,676 Actual yes Actual no Totals 

Predicted yes 52,659 38,956 91,615 

Predicted no 13,228 101,833 115,061 

Totals 65,887 140,789 206,676 

 
 
Table 3-15  
Performance Metrics of the Random Forest Model in DAD Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

74.8 79.9 72.3 57.5 66.9 

With a total of 206,676 instances, the model correctly predicted 52,659 cases as yes and 

101,833 cases as no, while misclassifying 13,228 and 38,956 instances, respectively (Table 3-

14). This demonstrates the model's ability to capture a substantial number of true positives and 

true negatives. However, there were instances where the model made false positive and false 

negative predictions. The total accuracy of the model stood at 74.8%, indicating that it classified 

around 75% of the cases correctly. According to Table 3-15 the sensitivity was 79.9%, indicating 

the model's effectiveness in correctly identifying positive cases. The specificity  was 72.3%, 

representing the model's proficiency in correctly identifying negative cases. The precision of the 

model was 57.5%, reflecting the proportion of true positive predictions among all positive 
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predictions. The F1-score, which takes both precision and sensitivity into account, stood at 

66.9%, providing an overall evaluation of the model's predictive ability.  

Next, the three most informative variables were identified in the following order: 

Category 2, which represents neoplasms; Category 13, denoting diseases of the musculoskeletal 

system and connective tissue; and Category 9, corresponding to diseases of the circulatory 

system. The list of diagnostic categories in terms of their informativeness is presented in Figure 

3-9.
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Figure 3-9 
The Informativeness of Diagnostic Categories of the Random Forest Model in DAD Dataset 

 

Note. The y-axis represents the name of each category and the x-axis represents the Gini index values associated with each variable. Cat2= neoplasms; Cat13=diseases of the 
musculoskeletal system and connective tissue; Cat9=diseases of the circulatory system; Cat11=diseases of the digestive system; Cat14=diseases of the genitourinary system; Cat5= 
mental and behavioural disorders; Cat10= diseases of the respiratory system; Cat21=factors influencing health status and contact with health services; Cat18=symptoms, signs and 

abnormal clinical and laboratory findings, not elsewhere classified; Cat1=certain infectious and parasitic diseases; Cat6=diseases of the nervous system; Cat3=diseases of the blood 

and blood-forming organs and certain disorders involving the immune mechanism; Cat12=diseases of the skin and subcutaneous tissue; Cat7=diseases of the skin and 

subcutaneous tissue; Cat8=diseases of the ear and mastoid process; Cat17= congenital malformations, deformations, and chromosomal abnormalities; Cat16= certain conditions 

originating in the perinatal period; Cat15= pregnancy, childbirth and the puerperium.
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3.2.4  Extreme Gradient Boosting Tree (XGBoost Tree) 

A parameter search was conducted to determine the optimal number of iterations, and it 

was determined that 100 iterations yielded the highest level of model performance, as shown in 

Figure 3-10. To evaluate the performance of the model, a confusion matrix was generated. The 

results of the confusion matrix are presented in Table 3-16 and the performance metrics is also 

provided in Table 3-17.
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Figure 3-10 
Parameter Search for XGBoost Model in DAD: Number of Trees 

 

Note. The graph displays the performance of a trained XGBoost tree model during the training process. The y-axis represents the train-mlogloss, which is a measure of the model's 
multiclass log loss on the training data. The x-axis represents the number of iterations (in this case number of trees) or rounds during the training process.
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 Table 3-16  
Confusion Matrix of the XGBoost Model in DAD Dataset 

N=206,817 Actual yes Actual no Totals 

Predicted yes 52,837 14,174 67,011 

Predicted no 38,634 101,172 139,806 

Totals 91,471 115,346 206,817 

 
 
Table 3-17  
Performance Metrics of the XGBoost Model in DAD Dataset 

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-Score (%) 

74.5 57.8 87.7 78.9 66.7 

The model achieved 74.5% accuracy, correctly predicting 52,837 instances as positive 

and 101,172 instances as negative. However, it misclassified 14,174 instances as false positives 

and 38,634 instances as false negatives. The sensitivity of 57.8% indicates the model's ability to 

accurately identify true positives in relation to the actual positive cases, while the high specificity 

of 87.7% signifies its proficiency in correctly identifying true negatives among the actual 

negative cases. Moreover, the precision of 78.9% highlights the proportion of true positive 

predictions relative to all positive predictions, indicating the model's ability to minimize false 

positives. The F1-Score of 66.7% reflected a balanced trade-off between precision and 

sensitivity.  

Further analysis was conducted to determine the informativeness of the variables. The 

first three most informative variables were identified, in order, as Category 2, which pertains to 

neoplasms, Category 13, which relates to diseases of the musculoskeletal system and connective 

tissue, and Category 14 which is for diseases of the genitourinary system. A visual representation 

of the full list of diagnostic categories in terms of informativeness is shown in Figure 3-11.
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Figure 3-11 
The Informativeness of Diagnostic Categories of the XGBoost Model in DAD Dataset 

 

Note. The numbers on the x-axis correspond to the variable importance scores. These scores quantify the relative importance of each variable in influencing the model's 
predictions. Higher values indicate greater importance, while lower values indicate lesser importance. Cat2= neoplasms; Cat13= diseases of the musculoskeletal system and 

connective tissue; Cat14= diseases of the genitourinary system; Cat10= diseases of the respiratory system; Cat9= diseases of the circulatory system; Cat5= mental and behavioral 

disorders; C11= diseases of the digestive system; C21= factors influencing health status and contact with health services; C18= symptoms, signs and abnormal clinical and 

laboratory findings, not elsewhere classified; C1=certain infectious and parasitic diseases; C4= endocrine, nutritional and metabolic diseases; Cat6= diseases of the nervous 

system; C12= diseases of the skin and subcutaneous tissue; C8= diseases of the ear and mastoid process; C7=diseases of the eye and adnexa; ; Cat17= congenital malformations, 

deformations, and chromosomal abnormalities; Cat16= certain conditions originating in the perinatal period; Cat15= pregnancy, childbirth and the puerperium.
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3.2.5  Summary of Outcomes at the Hospital Level of Care 

Table 3-18 shows the results of the first three most informative variables in different 

models to determine which categories of ICD-10-CA diagnostic codes were deemed more 

informative in FRIs. The variable identified as the most informative among all three models was 

Category 2. To identify the most informative diagnostic subcategories within Category 2, an in-

depth exploration was conducted. The XGBoost model was utilized for this purpose, as it is 

known for its robustness (Hastie et al., 2009).  

 
Table 3-18  
Summary of Variable Informativeness in Three Machine Learning Models in DAD Dataset 

 Decision tree Random forest XGBoost tree 

1st category Category 2: 

neoplasms 

Category 2: 

neoplasms 

Category 2: 

neoplasms 

2nd category Category 10: diseases 

of the respiratory 

system 

Category 13: diseases 

of the 

musculoskeletal 

system and 

connective tissue 

Category 13: diseases 

of the 

musculoskeletal 

system and 

connective tissue 

3rd category Category 14: diseases 

of the genitourinary 

system 

Category 9: diseases 

of the circulatory 

system 

Category 14: diseases 

of the genitourinary 

system 

Across the three models, Category 2: neoplasms consistently emerged as the most 

informative variable, indicating its significant impact on the model's predictions in all three 

cases. For the decision tree model, the second most informative category was Category 10: 

diseases of the respiratory system. In contrast, for the random forest model, the second most 

informative category was Category 13: diseases of the musculoskeletal system and connective 

tissue. The XGBoost tree model shared this second spot with Category 13, showcasing its 

importance in both random forest and XGBoost models. The third most informative category 

varied among the models. For the decision tree model, it was Category 14: diseases of the 

genitourinary system, and for the random forest model it was Category 9: diseases of the 

circulatory system.  Finally, the XGBoost tree model, much like the decision tree model, 

identified Category 14: diseases of the genitourinary system as the third most informative 
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category. This summary provides valuable insights into the variable importance across different 

machine learning models applied to the DAD dataset. The consistent presence of Category 2: 

neoplasms as the most informative variable underlined its significance in predicting the target 

variable. 

3.2.6  Diagnostic Subcategories 

 Category 2 was comprised of 20 subcategories of codes from C00 to D48. The results 

show that secondary malignant neoplasm of liver and intrahepatic bile duct was the most 

informative disease (Figure 3-12). The complete list of subcategories of Category 2 can be found 

in Appendix G and the graph of informativeness of each subcategory can be found in Appendix 

H.  
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Figure 3-12 
The Most Informative Subcategories in Category 2 (neoplasms) 
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3.3 Summary of Model Performances 

To answer the third research question, a comparison was carried out to identify 

similarities and differences in performance of the three machine learning models (Table 3-19). 

First informative variable In NACRS was Category 18 while in DAD it was Category 2. DAD 

has a more comprehensive data collection for diagnostic codes (25) and thus a larger suite of 

options. NACRS data was collected in the EDs and therefore has fewer diagnostic codes (10). 

Table 3-19 also shows the performance metrics of machine learning models in NACRS and 

DAD datasets. The first informative variable used in all the models is Category 18 for the 

NACRS dataset and Category 2 for the DAD dataset. 

 
Table 3-19  
Comparing the Performance Metrics of Machine Learning Models in NACRS and DAD 
Datasets 

 

Accuracy Sensitivity Specificity Precision F1 Score 

First 

informative 

variable 

NACRS 

Decision tree 78.8 86.0 73.9 69.5 76.8 Cat18 

Random forest 78.8 86.3 73.8 69.3 76.9 Cat18 

XGBoost 78.6 70.6 86.8 84.6 77.0 Cat18 

DAD 

Decision tree 73.0 72.5 73.2 62.6 67.2 Cat2 

Random forest 74.8 79.9 72.3 57.5 66.9 Cat2 

XGBoost 74.5 57.8 87.7 78.9 66.7 Cat2 

Looking at the results for the NACRS dataset, both decision tree and random forest 

achieved the same accuracy of 78.8%. The improvement in accuracy was not substantial after 

deploying ensemble learning algorithms. This is because of the categorical nature of predictive 

variables, as discussed further in the discussion chapter. They exhibited similar sensitivity and 

specificity  values, with XGBoost showing slightly lower sensitivity but higher specificity. 

Precision and F1 score, which measure the model's ability to correctly classify positive instances, 

are quite close for all three models, with XGBoost slightly outperforming the other two. 

In DAD dataset, random forest achieved the highest accuracy at 74.8%, followed closely 
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by XGBoost at 74.5%, and decision tree at 73.0%. Sensitivity for random forest was the highest 

at 79.9%, indicating its ability to detect true positive instances. However, XGBoost achieved the 

highest specificity at 87.7%, suggesting its capability to identify true negative instances 

effectively. Precision and F1 Score for random forest and XGBoost were comparable, with 

decision tree lagging in these metrics. In summary, random forest was the most accurate and 

sensitive model in both NACRS and DAD datasets.  
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Chapter 4 

4. Discussion 

This study utilized healthcare administrative data and ICD-10-CA diagnostic codes to 

explore the power of three machine learning algorithms to determine the informative variables 

associated with FRIs in older adults. The findings revealed that one diagnostic category emerged 

as the most informative when associated with FRIs in ED level of care which was Category 18 

or symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified with 

it’s the most informative ICD-10-CA code dyspnea. At hospital level of care, Category 2 or 

neoplasms was the most informative category with secondary malignant neoplasm of liver and 

intrahepatic bile duct being its most informative disease. There is a notable difference in ICD-10-

CA diagnostic categories associated with FRIs reported in EDs and hospitals with minimal 

overlap in informativeness of the top three code categories. The most accurate and sensitive 

machine learning model for determining associations between ICD-10-CA diagnostic codes and 

FRIs in both ED level of care and hospitals was the random forest model. 

At the ED level of care, dyspnea, which refers to shortness of breath and is a key 

symptom of chronic obstructive pulmonary disease (Marciniuk et al., 2011), was the most 

informative ICD-10-CA code associated with FRIs. Dyspnea has been considered a risk factor 

for falls and FRIs in previous studies. The association between dyspnea and chronic obstructive 

pulmonary disease with falls and injuries due to falls has been explored previously. For example, 

a study by Ozalevli and colleagues examined the connection between disease-related factors and 

balance, as well as a history of falls in patients with chronic obstructive pulmonary disease. The 

findings revealed that hypoxemia, dyspnea, and fatigue were correlated with balance impairment 

and falls. Authors recommended that assessing and enhancing balance should be incorporated 

into pulmonary rehabilitation programs for older adult patients with chronic obstructive 

pulmonary disease (Ozalevli et al., 2011). Roig et al. (2011) also found that people with chronic 

obstructive pulmonary disease have a high susceptibility to falls related to worsening of dyspnea. 

Lawlor et al. (2003) discovered that older adult women aged 60 to 79 living with circulatory 

diseases (6.2%), chronic obstructive pulmonary disease (8%), arthritis (17.4%), and depression 

(9.4%) have an elevated susceptibility to falling, with chronic illnesses potentially contributing to 

as much as 30% of falls within this demographic.  Furthermore, earlier cross-sectional studies 
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conducted in individuals with chronic obstructive pulmonary disease have shown a heightened 

prevalence of falls in this group, ranging from 44% to 51% (Beauchamp et al., 2009, 2012; Roig 

et al., 2011), when contrasted with community-dwelling older adults, where the prevalence of 

falls typically falls within the range of 29% to 33% (Bongue et al., 2011; O’loughlin et al., 1993; 

Tromp et al., 2001). Prabhakaran et al. (2020) indicated that chronic obstructive pulmonary 

disease increased the risk of fall-related readmissions in older adults. Roo et al.,(2015) indicated 

that pulmonary disease was a leading cause of readmission for people aged 50 years or older who 

had been hospitalized for a fall-related fracture. Additionally, Choi et al. (2019) revealed that 

among older adults who received medical attention for fall injuries, lung disease was associated 

with a higher risk of ED visits and hospital stay.The connection between falls and injurious falls 

can also warrant investigation in the context of medications commonly used by individuals with 

chronic obstructive pulmonary disease. Notable examples of such medications include albuterol 

(Bone et al., 1994), which has been associated with tremors (Vogelmeier, 2014), ipratropium 

(Bone et al., 1994) , known for its potential to cause blurred vision (Sharafkhaneh et al., 2013) , 

and fluticasone (Wedzicha et al., 2016), which may lead to long-term effects on bone density 

(Caramori et al., 2019), potentially increasing the risk of falling among affected individuals. It is 

worth noting that further research is essential to delve deeper into this relationship and better 

understand its nuances. All this evidence confirms that the results of this study are in agreement 

with the existing literature. However, more research is needed to investigate the relationship 

between pulmonary diseases and their related symptom, dyspnea with falls and FRIs. 

At the hospital level, the most informative disease associated with FRIs was secondary 

malignant neoplasm of the liver and intrahepatic bile duct. Intrahepatic bile duct cancer 

specifically refers to cancer that develops within the bile ducts located inside the liver (National 

Cancer Institute, 2022). The literature provides some evidence on the association between cancer 

and falls where individuals diagnosed with advanced cancer face a higher risk of falling and a 

potential for sustaining injuries due to falls (Goodridge & Marr, 2002; Healy & Scobie, 2007; 

Pautex et al., 2008; Pearse et al., 2004). Frith et al. (2012) revealed a high prevalence of falls 

(47%) among older individuals diagnosed with chronic liver disease, and Frith et al. (2010) 

discovered that falls and associated injuries were widespread in individuals with primary biliary 

cirrhosis, an autoimmune liver disease. Perhaps, it is worthwhile to investigate the relationship 
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between falls and injurious falls in individuals with cirrhosis as well. Cirrhosis is a condition 

characterized by liver scarring and dysfunction as the disease progresses (Slivinski, 2022). 

Murphy et al. (2019) delved into the underlying factors contributing to falls within this specific 

population. Their study emphasized the necessity of comprehensively understanding why 

individuals with cirrhosis face an elevated risk of falling and introduces a mechanistic model for 

assessing, treating, and researching falls in this context. The authors' research unveiled several 

critical insights. They underscored the multifaceted nature of falls in cirrhotic patients, 

attributing these incidents to a range of factors. IMPORTANT These include muscle weakness, 

which can stem from complications related to liver disease and a lack of physical conditioning; 

impaired balance, which may be influenced by changes in proprioception and neuromuscular 

function; and altered mental status, potentially arising from conditions like hepatic 

encephalopathy or side effects of medications. IMPORTANT The article also highlighted the 

prevalence of orthostatic hypotension among cirrhotic patients, which further contributes to fall 

risk during position changes, such as moving from a seated or lying position to standing. This 

article underscores the critical importance of promptly identifying and evaluating fall risk in 

individuals with cirrhosis and offers potential strategies for mitigating the occurrence of falls in 

this vulnerable population. Further research is required to improve our understanding of the link 

between FRIs and cancers of the digestive system, liver, and bile duct.  

Investigating the symptoms of liver and bile duct diseases can provide insights into the 

potential reasons for their association with FRIs. The frequent symptoms of this diseases are 

peripheral neuropathy (Knill-Jones et al., 1972), jaundice (Wittig et al., 1978), and malnutrition 

(Purnak & Yilmaz, 2013). Certain liver diseases can cause peripheral neuropathy, resulting in 

numbness and decreased sensation in the feet, which might increase the risk of tripping. Jaundice 

can affect vision, leading to decreased visual acuity and depth perception, which also might 

contribute to falls. Malnutrition and vitamin deficiencies associated with liver diseases can 

weaken bones and muscles, making individuals more susceptible to falls and injuries. What is 

more, medications, such as interferon, used to manage liver diseases can have side effects such 

as dizziness and impaired coordination (Dusheiko, 1997). Acknowledging the current state of 

knowledge about the association between advanced stages of liver disease and FRIs, additional 

research is required. 
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The four diagnostic categories that were mutual among the findings of EDs and hospitals 

were Category 9, diseases of the circulatory system, Category 13, diseases of the 

musculoskeletal system and connective tissue, Category 14, diseases of the genitourinary system, 

and Category10, diseases of the respiratory system. The following is an overview of what is 

known about this association from previous research. Hypertension, low bone density due to 

osteoporosis, and urinary incontinence which fall into these disease categories are prevalent 

conditions in older adults (Buford, 2016; Jackson et al., 2004; Shaw & Wagg, 2017; Silver & 

Einhorn, 1995). Impaired physical and mental function in older adults with hypertension is 

linked to a higher risk of falls (Chu et al., 2015). Mitchell et al. (2013) found that 25% of the 

participants who reported falling within the last year, had several common factors that included 

being 85 years or older, having cataracts, having musculoskeletal and connective tissue 

disorders, having major circulatory, respiratory, and nervous system diseases, using four or more 

medications, relying on mobility aids, and being overweight. Furthermore, the study revealed 

that individuals aged 85 years or older, those with circulatory diseases, individuals using four or 

more medications, and those dependent on mobility aids were particularly prone to experiencing 

multiple falls.  

The association between diseases of musculoskeletal systems, such as osteoporosis and 

fall, is well documented in the literature. Quigley et al. (2007) found that one of the most 

effective interventions for reducing FRIs is the reduction of fracture risks. This risk reduction 

can be achieved through primary prevention of osteoporosis. Berk et al. (2019) found that as 

individuals age, osteoporosis can increase the likelihood of balance problems and falls, which 

significantly diminishes their quality of life. They also discovered a correlation between the 

reduction in bone mineral density and balance issues. Osteoporosis not only decreases bone 

mineral density but also heightens the risk of fractures by increasing the likelihood of falling. 

Women aged 60 or older with postmenopausal osteoporosis have a higher likelihood of 

experiencing one or more falls within the year compared to women without osteoporosis, and 

they face an increased risk of recurrent falls (Beserra Da Silva et al., 2010). 

Urinary incontinence emerged as one of the most significant predictors for fall-related 

risk factors in a study aimed at developing a fall-risk model for older adults (Tromp et al., 2001). 

Another study confirmed that urge urinary incontinence was linked to a rise in falls in older 
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adults, prompting researchers to recommend that this association needs to be considered when 

developing fall prevention programs (Chiarelli et al., 2009). 

Chronic obstructive pulmonary disease and asthma were identified as important risk 

factors for falls and FRIs among middle-aged adults with kidney disease (Kistler et al., 2019). A 

study in India found that a majority of older adult patients who had experienced falls also had 

asthma (Mane et al., 2014), while a study on the frequency of dizziness in general population 

reported that individuals with chronic bronchitis were considerably more likely to experience 

feelings of dizziness (Tamber & Bruusgaard, 2009). Another explanation for why people with 

respiratory diseases are more prone to falling and injurious falls could be reduced lung function 

(Martinez-Pitre et al., 2022), shortness of breath (Mayo Clinic, 2020), medication side effects 

such as antihistamines (Harvard health publishing, 2021; Meltzer et al., 2010), muscle weakness 

(Wüst & Degens, 2007), and increased vulnerability to infections (American lung association, 

2022). These conditions might lead to fatigue, weakness, impaired balance, and reduced physical 

stamina, all of which might be risks for falling.  

The overlaps in diagnostic categories associated with FRIs in ED and hospital level of 

care, reported in this study, could potentially be attributed to common mechanisms of falls, the 

higher prevalence of certain health conditions in older adults, and the organizational structure of 

the ICD-10-CA coding system. Falls can lead to injuries affecting the circulatory system, 

musculoskeletal system, genitourinary system, and respiratory system, which are relevant across 

both levels of care. Older adults' increased susceptibility to certain health conditions and 

comorbidities further contributes to these similarities. The broad categorization of diagnoses in 

the coding system allows for overlap in diagnostic categories based on clinical presentation or 

anatomical location. This emphasizes the importance of considering specific diagnostic 

categories when managing FRIs in older adults across different healthcare settings. 

The differences in findings between EDs and hospitals could be attributed to several 

factors. One possible explanation is that the severity and complexity of FRIs treated in hospitals 

may be higher than those in EDs. Hospitalized patients are likely to have more advanced or pre-

existing health conditions, such as cancer, which can contribute to FRIs in different ways. 

Another factor could be the differences in the patient population served by EDs and hospitals. 
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EDs often see a broader range of patients, including those who may not require hospitalization, 

while hospitals treat patients with more severe conditions requiring specialized care. These 

different patient populations could lead to variations in the types of FRIs and their underlying 

causes. It is important to highlight the distinct patterns observed in the two settings and 

emphasize the significance of understanding these differences. This difference in findings 

suggests that interventions and preventive strategies targeting FRIs should be tailored to the 

specific care setting. Additionally, the identification of different informative diagnostic code 

categories can help healthcare providers prioritize interventions and allocate resources more 

effectively. For example, in the ED, focusing on symptoms and abnormal clinical findings not 

classified elsewhere might be crucial for early detection and prompt management of FRIs. In 

hospitals, considering the association with neoplasms, especially secondary malignant neoplasms 

of the liver and intrahepatic bile duct, can aid in identifying high-risk patients and implementing 

appropriate preventive measures. 

The findings of this study can significantly contribute to researchers' understanding of 

future falls and FRIs and improve preventive guidelines for falls. For instance, the latest "World 

Guidelines for Falls Prevention and Management for Older Adults: A Global Initiative" by 

Montero-Odasso and colleagues (2022) recommends important steps for clinicians and 

physicians when dealing with older adults who experience falls or related injuries. Firstly, the 

guidelines suggest that clinicians inquire about the details of the event and its consequences, 

previous falls, any episodes of transient loss of consciousness or dizziness, and any existing 

impairments of mobility or concerns about falling that might limit their usual activities. 

Furthermore, the fall-prevention model proposed in the guidelines emphasizes the importance of 

opportunistic case findings. It advises clinicians and physicians to assess the individual's gait and 

balance. If gait and balance impairments are identified, they should recommend exercises aimed 

at improving balance and gait to prevent future falls and related injuries. Additionally, for older 

adults who have sustained a hip fracture, the guidelines recommend offering an individualized 

and progressive exercise program focused on enhancing mobility (such as standing up, balance, 

walking, and climbing stairs) as a fall prevention strategy. While these methods and exercise 

interventions for falls and related injuries are crucial, they may not address all aspects of the 

issue. Therefore, combining these interventions with extending the knowledge on the association 
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between different diagnoses, disease control, and symptom management through collaborative 

efforts among healthcare professionals could yield more comprehensive and effective results. To 

create a higher-quality and holistic guideline for fall and injury prevention, researchers should 

focus more on injury investigation and explore the importance and relationships of ICD-10 

diagnostic categories. This approach will lead to a better understanding of the mechanisms 

behind falls and related injuries, ultimately facilitating the development of stronger and more 

efficient guidelines. 

This study provided new insights and contributed to the body of knowledge on the use of 

machine learning in gerontology, reviewed in chapter 1, specifically by deploying ICD-10-CA 

codes. Previous research mainly focused on demographic features, such as age and sex (Ateeq, 

2018) or socio-economic variables, such as income and marital status (Speiser et al., 2021). This 

study explored ICD-10-CA codes, making the results more reproducible. The use of different 

factors or predictive variables by different studies makes it difficult to compare the most 

important variables across different studies. For example, variables such as race and income 

level could have different meanings in different contexts while ICD-10-CA diagnostic codes are 

standardized variables that have an objective meaning regardless of the context of the study. 

Regarding algorithms, while Ateeq (2018) decided to use and compare logistic regression 

and random forest, the current study relied on decision tree and its ensemble counterparts (i.e., 

random forest and XGBoost) to make the comparison more objective. This is because the base 

learner for XGBoost and random forest is the decision tree. Speiser et al.(2021) utilized decision 

tree and random forest without offering an explanation for the reason behind superior 

performance of decision tree over random forest. Furthermore, their study lacked sufficient 

details on data cleaning and data characteristics, both of which have been comprehensively 

addressed in this research.  

When comparing the performance of different algorithms in Tables 3-19, it is observed 

that the XGBoost, which is known as one of the ensemble learning models with the best 

performance (Hastie et al., 2009), did not show highest accuracy and sensitivity in this study. 

This has been observed in previous literature, where in some cases even the base learner 

outperformed the ensemble algorithm (Smith et al., 2013; Speiser et al., 2021).This is usually 
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observed when predictive variables are categorical rather than numeric, which results in 

developing trees that are skewed (e.g., not symmetric) and thus less accurate (Kumar, 2020). 

This is because discrete variables provide fewer number of options for splitting (two in the case 

of a binary variable) which leads to having skewed and sparse decision trees (Ravi, 2019). More 

specifically, when comparing the sensitivity of XGBoost and random forest, it is observed that 

the XGBoost has a considerably lower sensitivity in DAD dataset compared to its other 

counterparts. This can be attributed to the characteristics of the data, with DAD having a larger 

ratio of variable to observation when compared to NACRS (with DAD having 25 diagnostic 

variables and 688,868 observations while NACRS having only 10 diagnostic variables against 

1,248,029 observations). It is reported that XGBoost can have difficulty finding patterns in high-

dimensional datasets (Hastie et al., 2009), a phenomenon known as curse of dimensionality (Das 

et al., 2023), as it may struggle to generalize effectively, leading to lower sensitivity. On the 

other hand, its simpler counterparts (i.e., decision trees and random forest) can behave more 

robustly when mining high-dimensional data since they do not rely heavily on variable 

interactions (e.g., decision tree simply splits data based on single variables (Provost & Fawcett, 

2013)). Furthermore, the relatively higher precision of the XGBoost can be associated to its more 

nonlinear nature and capability in effectively identifying important features and assigning higher 

weights to them during the boosting process. This ability can lead to a more precise model, as it 

concentrates on the most discriminative variables for positive label predictions (Hastie et al., 

2009). 

This study contributes new knowledge to the application of machine learning to 

exploration of FRIs in older adults. This is important because machine learning is becoming 

more popular in all disciplines, and application of machine learning in rehabilitation sciences 

field is expected to increase (Frontiers, 2023). The current study explained the data structure of 

the training and test set, data preparation procedure and the model training steps. The framework 

used in this study could be applied to comparable research questions or datasets in the field of 

gerontology. 

4.1 Strengths and Limitations 

This study has several strengths worth highlighting. First, the study utilized a large 
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population-based dataset with 1,248,029 observations in NACRS and 688,868 observations in 

DAD datasets, representative of the entire population of older adults who experienced FRIs and 

were admitted to EDs and hospitals and their controls over a period of nine years. The use of 

administrative databases eliminated recall bias and self-reporting bias frequent in prospective 

studies. Moreover, the use of both ED and hospital-level data provided a more comprehensive 

estimate over the two levels of care from the entry point into the healthcare system at ED to 

hospital discharge. Previous studies that have only examined FRIs hospitalizations have 

contributed limited evidence about the impact of FRIs on the healthcare systems (Alexander et 

al., 1992; Hartholt et al., 2011; Rau et al., 2014). Therefore, the use of ED data in conjunction 

with hospital-level data was needed to obtain a more accurate estimate of the total number of 

FRIs and their impact on a larger setting of healthcare systems.  

Another strength of this study is inclusion of only a single observation per person to 

eliminate the possibility of double registration. Because including multiple observations from the 

same person can lead to biased estimates of model performance. For example, if one individual 

has experienced multiple FRIs, their repeated observations would disproportionately influence 

the model's learning and evaluation process, potentially leading to an overestimation of the 

model's performance. Furthermore, each observation in the dataset could have up to 10 (ED 

level) and up to 25 (hospital level) ICD-10-CA diagnosis codes. This enabled an evaluation of all 

recorded diagnoses at the same time, instead of focusing on a singular, initial, primary, or most 

responsible diagnosis. The method of utilizing multiple diagnosis codes as an approach to study 

of FRIs caries a potential to identify more effective treatments and injury prevention methods 

(Nilson et al., 2016; Watson & Mitchell, 2011)  

Several study limitations also require acknowledgement. First, the analysis was 

conducted on secondary data obtained from administrative healthcare databases for the 

population of Canadian province of Ontario. The ICD-10-CA coding is routinely carried out by 

trained coders based on a manual that accompanies ICD-10-CA (CIHI, 2022). Hence, data 

collection was out of the author's control, precluding the exclusion of errors in the data collection 

and coding processes. This is a limitation acknowledged in many studies using machine learning 

(Intellspot, 2022). Second, the dataset was derived from two extensive healthcare databases, 

NACRS and DAD, by a trained IC/ES analyst following the specific dataset creation plan which 
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allowed for the data analyst's discretion in interpreting the request. Third, IC/ES implemented an 

age limit of 91 years, categorizing all individuals above this threshold as 91 years old. Fourth, 

included data does not fully reflect the extent of FRIs' impact on Ontario's healthcare system 

since the dataset did not encompass observations from individuals who: (1) received treatment 

for an FRI from their primary care physician or at a walk-in clinic, (2) received treatment outside 

the province, (3) failed to identify a fall as the cause of injury during ED admission, (4) passed 

away before admission to the ED, or (5) were directly admitted to a hospital without undergoing 

registration at the ED. It is recommended that future FRIs research incorporate these medical 

services. The dataset used in this study consisted only of population records for older adults from 

one Canadian province. This limits generalizability of the findings due to potential differences in 

demographic characteristics and healthcare protocols. Five, the nine-year observation window 

(2006-2015) is somewhat outdated, but it offers an advantageous alignment with the retirement 

age entry of the baby boomer generation, in North America, providing a baseline for future 

comparisons and trend analysis.  

A brief reflection on the limitations of machine learning is also warranted. Machine 

learning is an effective tool in prediction, but its results should be interpreted with care as they 

do not always imply causality. Machine learning algorithms require a lot of data for training. 

While the culture of open-source software3 and code has eliminated the issue of software 

requirement, in health research protection of personal health information (even when de-

identified) and data security restrictions have created a less open-data culture, which remains a 

barrier to the implementation of machine learning. 

This study offered limited socio-demographic information regarding FRI observations, as 

deeper analysis was beyond the study's scope. Future research could delve deeper into this aspect 

to gain a more comprehensive understanding of older adults experiencing FRIs. Exploring the 

socio-demographic characteristics in context of different diagnoses could provide a broader 

perspective on risk factors for injury. 

Finally, the IC/ES platform has some limitations, especially for researchers working with 

 

3 SAS is not open-source or free. It is a proprietary software. 
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machine learning powered solutions. The secure environment did not allow the use of more 

sophisticated and newer machine learning algorithms and programing languages. Open-source 

and more versatile software options, such as Python, were not available, which limited inclusion 

of some algorithms and visualization of results and graphs. Software use was restricted to a basic 

version of R. 

4.2 Implications for Future Research  

It is recommended that future studies incorporate machine learning algorithms to 

effectively identify the most informative risk factors for FRIs in older adults. Machine learning 

and artificial intelligence are new and developing fields. During completion of this study many 

breakthroughs were made in the field such as text to video artificial intelligence platform or 

artificial intelligence based automated employment decision tool (Press, 2022). Perhaps the most 

famous example is the introduction of more powerful language models, such as ChatGPT based 

on GPT (Biswas, 2023; Hill-Yardin et al., 2023). This study was limited to SQL binary data and 

several algorithms. Emerging advanced algorithms and data structures should be investigated in 

future FRIs research. Given that the investigation of ICD-10-CA codes in association with FRIs 

is a relatively new area of inquiry, there is a need for continuing exploration. For example, 

additional research is necessary to examine the subcategories of all 21 categories, to obtain a 

more comprehensive understanding of the role of different diagnoses might play in occurrences 

of FRIs. 
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Chapter 5 

5. Conclusion 

FRIs represent a significant challenge for older adults and impose a substantial burden on 

the healthcare systems. To address this issue, a population-based retrospective study was 

conducted, analyzing medical data from 631,339 older adults who were admitted to the EDs and 

304,495 older adults who were hospitalized after FRIs. Although a considerable body of research 

has focused on the prediction of falls and FRIs, no peer-reviewed literature could be found on the 

use of machine learning algorithms for associating FRIs with ICD-10-CA diagnostic codes. The 

objective of this thesis was to investigate the most informative categories of ICD-10-CA 

diagnostic codes associated with FRIs, compare the differences in the most informative 

categories between EDs and hospitals, and determine the most accurate and sensitive machine 

learning model for establishing associations between ICD-10-CA codes and FRIs. 

The present study demonstrated that dyspnea and secondary malignant neoplasm of liver 

and intrahepatic bile duct are the most informative ICD-10-CA code and disease associated with 

FRIs on ED and hospital level of care. There was a notable difference between the primary 

informative diagnostic categories for FRIs in these two settings. Methodologically, the random 

forest models exhibited the highest accuracy and sensitivity, outperforming the decision trees 

and the XGBoost models in both datasets . Further research is necessary to examine the 

subcategories of all 21 diagnostic categories and to include numerical and other informative 

variables, such as the prescribed medications or different age groups, for a more comprehensive 

understanding of the topic. In conclusion, this study provided evidence that machine learning 

models are capable of handling larger datasets, generating visualizations, and delivering a 

convincing performance with accuracy and sensitivity higher than 60%.
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Appendix C. Codes Used in SAS 

Table C1 

Finding Diagnostic Categories (Category 2 is Provided as an Example) 

Step SAS code 

Create table Cat2_C with 
observations starting with 
C00 to C99 

CREATE TABLE Cat2_C AS SELECT Study_id, 'Y' AS 
Cat2 FROM nacrs_recs WHERE (dx10code1 LIKE 'C00%' 
OR dx10code1 LIKE 'C01%' OR dx10code1 BETWEEN 
'C02' AND 'C99') OR (dx10code2 LIKE 'C00%' OR 
dx10code2 LIKE 'C01%' OR dx10code2 BETWEEN 'C02' 
AND 'C99')  
#Add similar conditions for dx10code3 to 
dx10code10 if necessary# 

Create table Cat2_D with 
observations starting with 
D00 to D48 

CREATE TABLE Cat2_D AS SELECT Study_id, 'Y' AS 
Cat2 FROM nacrs_recs WHERE (dx10code1 LIKE 'D00%' 
OR dx10code1 LIKE 'D01%' OR dx10code1 BETWEEN 
'D02' AND 'D48') OR (dx10code2 LIKE 'D00%' OR 
dx10code2 LIKE 'D01%' OR dx10code2 BETWEEN 'D02' 
AND 'D48') 
 # Add similar conditions for dx10code3 to 
dx10code10 if necessary# 

Merge Cat2_C and 
Cat2_D with nacrs_recs 
using Study_id 

proc sort data=Cat2_C; 
  by Study_id; 
run; 
 
proc sort data=Cat2_D; 
  by Study_id; 
run; 
 
proc sort data=nacrs_recs; 
  by Study_id; 
run; 
proc sql; 
  data cat2_merged; 
  merge Cat2_C Cat2_D nacrs_recs ; 
  by key_variable; 
run;  

Remove duplicate rows by 
Study_id 

CREATE TABLE cat2_final AS SELECT DISTINCT 
Study_id, <other columns> FROM cat2_merged; 
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Table C2 

Codes Used for Descriptive Analysis of FRI Observations 

Step SAS code 

Divide the variable "age" into 6 
groups 

proc sql; 
    create table nacrs_fri_with_groups as 
    select *, 
        case 
            when age between 65 and 69 then 
'65-69' 
            when age between 70 and 74 then 
'70-74' 
            when age between 75 and 79 then 
'75-79' 
            when age between 80 and 84 then 
'80-84' 
            when age between 85 and 89 then 
'85-89' 
            when age >= 90 then 'Over 90' 
            else 'Unknown' 
        end as age_group    from nacrs_fri; 
quit; 

Calculate the frequency of each age 
group 

proc sql; 
    create table age_group_frequency as 
    select age_group, count(*) as frequency 
    from nacrs_fri_with_groups 
    group by age_group; 
quit; 

Calculate the percentage of total 
frequency for each age group 

proc sql; 
    create table age_group_percentage as 
    select age_group, frequency, 
frequency*100/sum(frequency) as percentage 
    from age_group_frequency 
    group by age_group; 
quit; 

Find the number of values in the 
"sex" column where the value is 'm' 
(males) and 'f' (females) 

proc sql; 
    select sex, count(*) as count 
    from nacrs_fri 
    where sex in ('m', 'f') 
    group by sex; 
quit; 

Calculate the percentage of total 
frequency for each female and male 

proc sql; 
    create table sex_percentage as 
    select sex, count(*) as frequency, 
count(*)*100/sum(count(*)) as percentage 
    from nacrs_fri 
    where sex in ('m', 'f') 
    group by sex; 
quit; 
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Appendix D. Codes Used in R 

Table D1 
R Codes Used for Decision Tree Model 

Step R code 

Install necessary 
packages 

install.packages(c("rpart", "rpart.plot", "ggplot2", 
"lattice", "caret", "e1071")) 

Load the required 
libraries 

library(rpart) 

 
library(rpart.plot)  
library(ggplot2) 

 
library(lattice) 

 
library(caret)  
library(e1071) 

Load the dataset data(nacrs_final) 

Split the dataset into 
training and testing sets 

set.seed(123) 

 
trainIndex <- createDataPartition(nacrs_final$FRI, p = 
0.7, list = FALSE) 

 
trainData <- iris[trainIndex, ]  
testData <- iris[-trainIndex, ] 

Train the decision tree 
model 

dt_model <- rpart(FRI ~ ., data = trainData, method = 
"class") 

Plot the decision tree rpart.plot(dt_model) 

Predict using the trained 
model 

predictions <- predict(dt_model, testData, type = 
"class") 

Create a confusion 
matrix 

confusionMatrix(predictions, testData$FRI) 

Calculate variable 
importance 

var_importance <- varImp(dt_model) 

Plot variable importance 
graph 

print(var_importance) 
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Table D2 
R Codes Used for Random Forest Model 

Step R code 

Install necessary packages install.packages(c("stats", "dplyr", "randomForest")) 
Load the required 
libraries library(stats) 

 library(dplyr) 

 library(randomForest) 

Load the dataset data(nacrs_final) 

Split the dataset into 
training and set.seed(123) 

testing sets 
trainIndex <- sample(1:nrow(nacrs_final), 
nrow(nacrs_final) * 0.7) 

 trainData <- nacrs_final[trainIndex, ] 

 testData <- nacrs_final[-trainIndex, ] 

Train the random forest 
model 

rf_model <- randomForest(FRI ~ ., data = trainData, 
ntree = 100) 
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Table D3 
R Codes Used for XGBoost  Model 

Step R code 

Install necessary 
packages 

install.packages(c("xgboost", "magrittr", "dplyr", 
"Matrix")) 

Load the required 
libraries 

library(xgboost) 

 library(magrittr) 

 library(dplyr) 
Load the dataset data(nacrs_final) 

Convert the dataset to a 
DMatrix object 

dtrain <- xgb.DMatrix(as.matrix(nacrs_final[, -5]), 
label = as.numeric(nacrs_final$FRI)) 

Set XGBoost parameters 

params <- list( 
  objective = "multi:softprob", 
  eval_metric = "mlogloss", 
  num_class = 3 
) 

Train the XGBoost 
model 

xgb_model <- xgboost(data = dtrain, params = params, 
nrounds = 10) 

Predict using the trained 
model 

predictions <- predict(xgb_model, 
as.matrix(nacrs_final[, -5])) 

Convert predicted 
probabilities to class 
labels predicted_labels <- max.col(predictions) - 1 

Create a confusion 
matrix 

confusionMatrix(predicted_labels, 
as.numeric(nacrs_final$FRI)) 

Calculate variable 
importance var_importance <- xgb.importance(model = xgb_model) 

Plot variable importance 
graph xgb.plot.importance(importance_matrix = var_importance) 
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Table D4 
R Codes Used for Finding FRI Observations 

Step R code 

Merging Full and Master datasets 
by Study_ID 

merged_dataset <- merge(Full, Master, by = 
"Study_ID") 

Filtering observations with case 
groups 

filtered_dataset <- filter(Groups == ‘case’) 

Filtering observations with "Days 
from index date to registration 
date" = 0 

filtered_dataset <- filter(filtered_dataset, 
days_to_regdate == 0) 

Merging NACRS and DAD 
datasets separately with the 
Master-Full dataset 

NACRS_merged_dataset <- merge(filtered_dataset, 
NACRS, by = "Study_ID") 
DAD_merged_dataset <- merge(filtered_dataset, DAD, by 
= "Study_ID") 

Removing multiple observations 
for the same Study_ID 

NACRS_final_dataset <- 
distinct(NACRS_merged_dataset, Study_ID, 
.keep_all = TRUE) 
DAD_final_dataset <- 
distinct(DAD_merged_dataset, Study_ID, 
.keep_all = TRUE) 
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Appendix E. ICD-10-CA Codes Used for FRIs 

Table E1 
Codes for Fall Types based on the International Classification of Diseases Tenth Edition with 
Canadian Enhancements 

Fall type ICD-10-CA code 

Fall on same level involving ice and snow W00 

Fall on same level from slipping, tripping and stumbling W01 

Fall involving skates, skis, sport boards and in-line skates W02 

Other fall on same level due to collision with, or pushing by, another person W03 

Fall while being carried or supported by other persons W04 

Fall involving wheelchair and other types of walking devices W05 

Fall involving wheelchair W0500 

Fall involving walker W0501 

Fall involving bed W06 

Fall involving chair W07 

Fall involving other furniture W08 

Fall involving playground equipment W09 

Fall on and from stairs and steps W10 

Fall on and from ladder W11 

Fall on and from scaffolding W12 

Fall from, out of or through building or structure W13 

Fall from tree W14 

Fall from cliff W15 

Diving or jumping into water causing injury other than drowning or submersion 
W16 

Other fall from one level to another W17 

Other fall on same level W18 

Unspecified fall W19 

Note. CIHI, 2015. ICD 10-CA = International Classification of Diseases Tenth Edition with Canadian Enhancements. 

Table E2 

Codes for Body Locations of Injuries based on the International Classification of Diseases Tenth Edition with Canadian 

Enhancements 

Body location ICD 10-CA codes 

Head S00-S09 

Neck S10-S19 

Trunk S20-S29 (thorax) 

S30-S39 (abdominal, lower back, lumbar spine and pelvis) T08, T09 

(spine, trunk) 

Upper limb S40-S49 (shoulder and upper arm) S50-S59 

(elbow and forearm) 

S60-S69 (wrist and hand) T10, T11 

(level unspecified) 

Lower limb S70-S79 (hip and thigh) 

S80-S89 (knee and lower leg) S90-S99 
(ankle and foot) T12, T13 (level 

unspecified) 

Multiple regions T00-T07 

Unspecified level T14 (unspecified body region) 

Note. CIHI, 2015. ICD 10-CA = International Classification of Diseases Tenth Edition with Canadian Enhancements. 
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Appendix F. ICD-10-CA Codes Used for Diagnostic Categories 

Table F1 
Codes for Sprains, Strains, or Tears by Body Location based on the International Classification 
of Diseases Tenth Edition with Canadian Enhancements 

Chapter Title ICD-10-CA 
Code 

Chapter I Certain infectious and parasitic diseases (A00-B99) A00-B99 

Chapter II Neoplasms (C00-D48) C00-D48 

Chapter III Diseases of the blood and blood-forming organs and certain disorders involving the 
immune mechanism (D50-D89) 

D50-D89 

Chapter IV Endocrine, nutritional, and metabolic diseases (E00-E90) E00-E90 

Chapter V Mental and behavioural disorders (F00-F99) F00-F99 

Chapter VI Diseases of the nervous system (G00-G99) G00-G99 

Chapter VII Diseases of the eye and adnexa (H00-H59) H00-H59 

Chapter VIII Diseases of the ear and mastoid process (H60-H95) H60-H95 

Chapter IX Diseases of the circulatory system (I00-I99) I00-I99 

Chapter X Diseases of the respiratory system (J00-J99) J00-J99 

Chapter XI Diseases of the digestive system (K00-K95) K00-K95 

Chapter XII Diseases of the skin and subcutaneous tissue (L00-L99) L00-L99 

Chapter XIII Diseases of the musculoskeletal system and connective tissue (M00-M99) M00-M99 

Chapter XIV Diseases of the genitourinary system (N00-N99) N00-N99 

Chapter XV Pregnancy, childbirth, and the puerperium (O00-O99) O00-O99 

Chapter XVI Certain conditions originating in the perinatal period (P00-P99) P00-P99 

Chapter XVII Congenital malformations, deformations, and chromosomal abnormalities (Q00-
Q99) 

Q00-Q99 

Chapter 
XVIII 

Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere 
classified (R00-R99) 

R00-R99 

Chapter XIX Injury, poisoning, and certain other consequences of external causes (S00-T88) S00-T88 

Chapter XX External causes of morbidity and mortality (V01-Y99) V01-Y99 

Chapter XXI Factors influencing health status and contact with health services (Z00-Z99) Z00-Z99 
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Appendix G. ICD-10-CA Codes Used for Diagnostic Subcategories 

Table G1 
Codes for Subcategories of Category 2: Neoplasms (C00-D48) 

 
Title ICD-10-CA Code 

Malignant neoplasms of lip, oral cavity, and pharynx C00-C14 

Malignant neoplasms of digestive organs C15-C26 

Malignant neoplasms of respiratory and intrathoracic organs C30-C39 

Malignant neoplasms of bone and articular cartilage C40-C41 

Melanoma and other malignant neoplasms of skin C43-C44 

Malignant neoplasms of mesothelial and soft tissue C45-C49 

Malignant neoplasm of breast C50 

Malignant neoplasms of female genital organs C51-C58 

Malignant neoplasms of male genital organs C60-C63 

Malignant neoplasms of urinary tract C64-C68 

Malignant neoplasms of eye, brain, and other parts of CNS C69-C72 

Malignant neoplasms of thyroid and other endocrine glands C73-C75 

Malignant neoplasms of ill-defined, secondary, and unspec. C76-C80 

Malignant neoplasms of lymphoid, hematopoietic, and others C81-C96 

In situ neoplasms D00-D09 

Benign neoplasms D10-D36 

Neoplasms of uncertain behavior, polycythemia vera, etc. D37-D48 

Malignant neoplasm of other and ill-defined sites C76 

Secondary and unspecified malignant neoplasms of lymph nodes C77 

Secondary malignant neoplasm of respiratory and digestive organs C78 

Secondary malignant neoplasm of other and unspecified sites C79 

Malignant neoplasm without specification of site C80 
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Table G2 
Codes for Subcategories of Category 18: Symptoms, Signs, and Abnormal Clinical and 
Laboratory Findings, not Elsewhere Classified (R00-R99) 

Title ICD-10-CA Code 

R00-R09  Symptoms and signs involving the circulatory and respiratory systems 

R00 Abnormalities of heart rate and rhythm 

R01 Cardiac murmurs and other cardiac sounds 

R02 Gangrene, not elsewhere classified 

R03 Abnormal blood-pressure reading, without diagnosis 

R04 Hemorrhage from respiratory passages 

R05 Cough 

R06 Abnormalities of breathing 

R06.0 Dyspnea 

R06.1 Stridor 

R06.2 Wheezing 

R06.3 Acute respiratory distress 

R06.4 Hyperventilation 

R06.5 Mouth breathing 

R06.6 Hiccough 

R06.7 Sneezing 

R06.8 Other abnormalities of breathing 

R06.81 Apnea, not elsewhere classified 

R06.82 Tachypnea, not elsewhere classified 

R06.83 Snoring 

R06.89 Other abnormalities of breathing 

R09 Other symptoms and signs involving the circulatory and respiratory systems 

R10-R19 Symptoms and signs involving the digestive system and abdomen 

R20-R23  Symptoms and signs involving the skin and subcutaneous tissue 

R25-R29 Symptoms and signs involving the nervous and musculoskeletal systems 

R30-R39 Symptoms and signs involving the urinary system 

R40-R46 Symptoms and signs involving cognition, perception, emotional state, and behavior 

R47-R49 Symptoms and signs involving speech and voice 

R50-R69 General symptoms and signs 

R70-R79 Abnormal findings on examination of blood, without diagnosis 

R80-R82 Abnormal findings on examination of urine, without diagnosis 

R83-R89 Abnormal findings on examination of other body fluids, substances, and tissues, without diagnosis 

R90-R94 Abnormal findings on diagnostic imaging and in function studies, without diagnosis 

R95-R99 Ill-defined and unknown cause of mortality 
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Appendix H. Informativeness of Subcategories 

Figure H1 
Informativeness of Subcategories of Category 18: Symptoms, Signs, and Abnormal Clinical and Laboratory Findings, not  
Elsewhere Classified (R00-R99) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. R09= Symptoms and signs involving the circulatory and respiratory systems; R5069= General symptoms and signs; R1019= Symptoms and signs involving the digestive 
system and abdomen; R4046= Symptoms and signs involving cognition, perception, emotional state and behaviour; R3039= Symptoms and signs involving the urinary system;  
R9094= Abnormal findings on diagnostic imaging and in function studies, without diagnosis; R2023= Symptoms and signs involving the skin and subcutaneous tissue; R7079= 
Abnormal findings on examination of blood, without diagnosis; R2529= Symptoms and signs involving the nervous and musculoskeletal systems; R9599= Ill-defined and 
unknown causes of mortality; R4749= Symptoms and signs involving speech and voice.
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Figure H2 

Informativeness of Subcategories of R00-R09: Symptoms and Signs Involving the Circulatory 

and Respiratory Systems 

 

Note. R06= Abnormalities of breathing; R07= Pain in throat and chest; R00= Abnormalities of heartbeat; R04= Hemorrhage 
from respiratory passages; R05=Cough; R09= Other symptoms and signs involving the circulatory and respiratory systems; 
R02= Gangrene, not elsewhere classified; R03= abnormal blood-pressure reading, without diagnosis; R01= Cardiac murmurs 
and other cardiac sounds.
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Figure H3 

Informativeness of Subcategories of R06: Abnormalities of Breathing 

 

Note. R060=Dyspnea; R068=Other and unspecified abnormalities of breathing; R066=Hiccough; R062=Wheezing; 
R064=Hyperventilation; R061=Stridor; R065=Mouth breathing; R067=Sneezing; R063=Periodic breathing.
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Figure H4 

Informativeness of Category 2: Neoplasms 

 

Note. C7680= Malignant neoplasms of ill-defined, secondary and unspecified sites; C1526= Malignant neoplasms of digestive 

organs; C3039= Malignant neoplasms of respiratory and intrathoracic organs; C6468= Malignant neoplasms of urinary tract; 

C6063= Malignant neoplasms of male genital organs; C6972= Malignant neoplasms of eye, brain and other parts of central 

nervous system; C1036= Benign neoplasms; C7375= Malignant neoplasms of thyroid and other endocrine glands; C8196= 

Malignant neoplasms, stated or presumed to be primary, of lymphoid, hematopoietic and related tissue; C014= Malignant 

neoplasms of lip, oral cavity and pharynx; C97= Malignant neoplasms of independent (primary) multiple sites; C50= Malignant 

neoplasm of breast; D3748= Neoplasms of uncertain or unknown behaviour; C4044= Malignant neoplasms of bone and articular 

cartilage; C4549= Malignant neoplasms of mesothelial and soft tissue; C5158= Malignant neoplasms of female genital organs; 

D09= In situ neoplasms.



122 

 

Figure H5 

Informativeness of Subcategories of C76-80: Malignant Neoplasms of Ill-defined, Other 

Secondary and Unspecified Sites 

 

Note. C78= Secondary malignant neoplasm of respiratory and digestive organs; C79= Secondary malignant neoplasm of other 

and unspecified sites; C80= Malignant neoplasm, without specification of site; C77= Secondary and unspecified malignant 

neoplasm of lymph nodes.
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Figure H6 

Informativeness of Subcategories of C78: Secondary Malignant Neoplasm of Respiratory and 

Digestive Organs 

 

Note. C787= Secondary malignant neoplasm of liver and intrahepatic bile duct; C786= Secondary malignant neoplasm of 

retroperitoneum and peritoneum; C780= Secondary malignant neoplasm of lung; C782= Secondary malignant neoplasm of 

pleura; C785= Secondary malignant neoplasm of large intestine and rectum; C788= Secondary malignant neoplasm of other and 

unspecified digestive organs; C781= Secondary malignant neoplasm of mediastinum; C784= Secondary malignant neoplasm of 

small intestine; C783= Secondary malignant neoplasm of other and unspecified respiratory organs. 
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