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age. An example of this method can be seen in Figure 5.2B. The final fusion method (referred

to here as the stacked method) stacked the images depth-wise to create a multi-channel image,

similar to how a colour picture will have three values per pixel location to represent levels of red,

green, and blue. In this case, every pixel location contained 5 values (one for each EEG and EMG

spectrogram) to result in an image with a shape of 68 × 32 × 5. An example of this method

can be seen in Figure 5.2C. To provide a baseline comparison for evaluating the fusion methods,

spectrograms containing only EEG and only EMG signal information were also generated to see

if fusion can outperform using one signal alone. Two spectrogram types were generated for both

EEG and EMG: vertically stacked spectrograms (68 × 96 for EEG and 68 × 64 for EMG) to

provide single-channel spectrograms to compare to the grouped/mixed methods, and depth-wise

stacked spectrograms (68 × 32 × 3 for EEG and 68 × 32 × 2 for EMG) to provide multi-channel

spectrograms to compare to the stacked method.

Figure 5.2: A sample normalized spectrogram image to demonstrate the three EEG–EMG fusion
methods used, where (A) and (B) show single-channel spectrograms and (C) visualizes
a multi-channel spectrogram. (A) shows the grouped method, where signal channels of
the same type are grouped together within the image. (B) shows the mixed method,
where EEG and EMG channels are alternated to mix signal types. (C) provides a
visualization of the stacked method, where a multi-channel spectrogram is generated
by combining the different EEG/EMG spectrograms in depth-wise manner.
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5.2.2.2 Signal Images

Conversely, generating the signal images only required the time series signals to be organized into

an array to form the image, since the convolution is being performed on the time-series data

directly. After filtering, the five signal channels from each window were stacked vertically to create

an image where the width was the number of time samples in that window, and the height was

the number of signal channels. This resulted in a 1000 × 5 image for each window, in which the

pixels values of the image were the signal amplitude at that time point (in mV). The width of 1000

resulted from the 250 ms window length with the 4000 Hz sample rate used by the measurement

system.

The signal images were normalized using the same method as the spectrogram images, by

subject and by signal type. The max/min amplitude value of EEG and EMG for each subject was

recorded and used to scale all signal values between 0 and 1. To account for magnitude differences

between the two signal types, the EEG portion of the image was scaled using the EEG min/max

and the EMG portion of the image was scaled using the EMG min/max, preventing the larger

EMG values from dominating the image by diminishing the contribution of the smaller magnitude

EEG signals. A graphical representation of the normalized signal image can be seen in Figure 5.3.

Similar to the spectrogram images, signal images comprising of only EEG and only EMG were

also generated to provide a comparison point for evaluating EEG–EMG fusion.

5.2.2.3 Qualitative Image Response

To help illustrate the response of the EEG/EMG signals during task weight changes, an example

normalized spectrogram image along with a plot of the normalized signals for all three weight levels

(0 lbs, 3 lbs, and 5 lbs) can be seen in Figure 5.4. Based on this qualitative assessment of the

signal and spectrogram images, it can be seen that the images show different behaviour in both

the time domain and the time–frequency domain, depending on task weight. The distribution of

frequency magnitudes across time/channels is different in the spectrogram images and the shape

of the time domain signal varies in the signal images. This provides a qualitative demonstration

that there are changing patterns within the images for different task weights, which may be able
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Figure 5.3: A graphical representation of a sample normalized signal image. The image height
contains 5 rows, one for each signal channel, and the image width is dictated by the
number of samples in each 250 ms window (1000 samples at the 4000 Hz sampling
rate).

to be detected by the CNN models and used to train a classification model.

5.2.3 CNN Model Training

Once the dataset of images was developed, the CNN models based on fused EEG–EMG inputs

were trained to classify task weight. Model training was done using TensorFlow 2.3.0 with Keras

2.4.3 [243] in Python 3.8. The models trained were subject specific, meaning that each subject had

a model trained using only their data. To accomplish this, each subject’s data were split into three

parts: training, validation, and testing. The first two repetitions of each speed–weight combination

were dedicated as training data, while images generated from the third repetition were separated

into two equally sized groups: validation and testing data. To ensure that no bias was induced

by the split, the order of the windows within the third motion repetition was randomized and a

stratified split was used to ensure a 50/50 division, while keeping the number of observations of

each class balanced within the validation and testing set. The validation dataset was used during

model optimization while the testing set was kept separate until the final model evaluation, in

order to reduce potential for model bias and overfitting.

Model training had two stages. First, the base configuration of the model was determined (via

trial and error) to determine design factors such as number of layers, batch size, and optimizer
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0 lbs 3 lbs 5 lbs

Figure 5.4: Example normalized spectrogram images and graphical representations of sample nor-
malized signal images for each of the three weight levels, showing the qualitative
variations in the images as task weight changes. During different task weights, the
distribution of frequency magnitudes across time/channels is different in the spectro-
gram images and the shape of the time domain signal varies in the signal images. The
columns each represent a different task weight level (described by the label above),
with the rows being a matched spectrogram and signal image taken from the same
time window. The spectrograms shown use the grouped fusion method to arrange the
channels. The images shown follow the same labelling convention as the sample images
shown in Figure 5.2 and Figure 5.3, excluded here to avoid clutter.

choice, among others. The base configuration used for each model type was the same for all subjects

and is discussed further in Sections 5.2.3.1 and 5.2.3.2. Once a base configuration for the model had

been determined, the second stage of training was to tune the model further using hyperparameter

optimization. This tuning focused on finding optimal parameter values for the setting of the layers

within the set base model design. The structure of the model (e.g., number of layers, types of

layers used, etc.) was not changed during this optimization, only select hyperparameter values

were updated. Using Keras-Tuner 1.0.1 [244], the values of select hyperparameters were tuned

using the Random Search optimization method to find the set that resulted in the best validation

performance. The search space checked 50 random combinations of hyperparameters, and trained

each combination twice to account for variance in model training. Using the validation dataset, the
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hyperparameters were evaluated and the set that resulted in the lowest validation loss was selected

as the final hyperparameters to use for model training. Bayesian optimization was also tested as

a potential method for hyperparameter tuning, but it was found to result in a slight reduction

in performance compared to the Random Search method, so it was not used during training of

the final models. Early Stopping (using a patience value of five and an epoch limit of 50) was

also implemented into model training, using Keras, to stop classifier training once improvements

were no longer seen in the validation loss of the model. This was done to prevent overfitting

and to speed up training time. All models were optimized and trained using batch size of 32,

which was found using trial and error. Categorical Cross-Entropy was used as the loss function

with Adaptive Moment Estimation (ADAM) being used as the optimizer for all model types. A

Stochastic Gradient Decent (SGD) optimizer was also tested, but it resulted in a reduction in

accuracy and longer training times, so ADAM was chosen instead. The hyperparameters being

tuned, and their range of possible values, were the same for all subjects; however, each subject had

their own hyperparameter optimization performed to adjust the models better to the behaviour

seen in their specific EEG and EMG signals. The hyperparameters that were tuned for each model

type can be seen in Table 5.2 and are discussed further in Sections 5.2.3.1 and 5.2.3.2.

Table 5.2: The hyperparameters tuned during optimization, with the range of possible values used
by the Random Search algorithm. Unless specified (in brackets next to the hyperpa-
rameter name), all hyperparameters and value ranges shown were used for all model
types. Note: two exceptions to this are the kernel size for the stacked models, which
were limited to 3 × 3 to account for the smaller image size, and the split convolution
filter, which did not include the 1024 filter setting to prevent an out of memory error
while training.

Hyperparameter Parameter Values

Kernel Size (Spectrogram) 3×3, 5×5, (third layer only) 7×7

Kernel Width (Signal) 3–55 (step size of 2)

Filters 8, 16, 32, 64, 128, 256, 512, 1024

Dropout % 0.0–0.5 (step size of 0.05)

Units (FC Layers) 20–500 (step size of 20)

ADAM Learning Rate 10−5–10−2 (logarithmic sampling)
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5.2.3.1 Spectrogram CNN Models

A summary of the base model configuration for the spectrogram models can be seen in Figure

5.5. The base configuration for the spectrogram CNN models consisted of three convolution layers

followed by two Fully Connected (FC) layers, with a third FC layer used to output the class

probabilities. All convolution was done using valid padding, a stride of 1 × 1 and the Rectified

Linear Unit (ReLu) for the activation function. Each convolution layer included three sub-layer

steps: convolution, followed by a max pooling layer (with a size and stride of 2 × 2), and then a

dropout layer to reduce overfitting. Both FC layers contained two sub-layers: the FC step, followed

by a dropout layer. Batch Normalization was tested as an alternative to using dropout for the

convolution layers, but it led to a reduction in accuracy so it was not used. The output FC layer

used a softmax activation function to perform classification. This configuration was used for both

the single-channel and multi-channel models (as well as their EEG and EMG only equivalents); the

only difference between model types being the size of the inputted image. The hyperparameters

chosen for tuning, and the range of values included in the search space, are shown in Table 5.2.

Note that these are the same for both model types except for one deviation: the kernel size. For

the multi-channel models, the kernel size was fixed at 3 × 3. This was to account for the smaller

image size being fed into the model; with certain combinations of larger kernels, the tensor that

was passed between convolution layers could be reduced below the minimum allowable size, causing

an error in model training.

5.2.3.2 Signal CNN Models

For the signal CNN models, two base configurations were tested, shown in Figure 5.6. The first

configuration employed a method commonly used when developing CNN models based on time

domain signal inputs for EEG [167–170], referred to here as split convolution. The name arises from

that fact that it takes the first convolution layer and splits it into two back-to-back convolution

steps. This method sets the kernel size of the first two convolution layers such that convolution is

only happening across one axis of the image at time, with Layer 1 having a kernel size of 1 × kernel

width (to only convolve temporally across the time axis of the image) and Layer 2 having a kernel
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Figure 5.5: The base model configuration used for all three spectrogram CNN model types. All
spectrogram model types used three convolution layers, followed by two FC layers and
an output FC layer to perform the final classification. Each convolution layer had
three sub-layer steps (convolution, max pooling, and dropout) and each FC layer had
two sub-layer steps (the FC step followed by dropout). Note, that repeated layers only
show the sub-layers for the first layer, to reduce redundancy and condense the diagram.

size of image height × 1 (to only convolve spatially across signal channels). The output of the

temporal convolution layer is fed directly into the spatial convolution layer, with both layers using

valid padding, stride of 1 × 1, and ReLu for the activation function. The output of the temporal

convolution layer is fed into a max pooling layer (with a size and stride of 1 × 2), followed by a

dropout layer. This is followed up by two FC layers (both using ReLu as the activation function and

a dropout sub-layer), then a third output FC layer using a softmax activation function to perform

the final classification. A summary of the base model configuration for the split convolution signal

model can be seen in Figure 5.6A.

The second base configuration tested for the signal-image-based CNNs used regular one di-

mensional (1D) convolution layers to train the models. Unlike the split convolution, this layer

type convolves across both the time and signal channel axis simultaneously as it moves across the

time axis of the image (for this reason only a kernel width is specified, since all signal channels

are always included in the convolution). This is a common method of using CNNs for time series

signals, so it is useful to see how it compares to the split convolution method commonly seen in the

EEG literature. This configuration was similar in makeup to the spectrogram base configuration

(except using 1D convolution instead of 2D convolution), comprising of three convolution layers

followed by two FC layers and a third FC layer for classification. All convolution layers used valid

padding, a stride of 1 and ReLu for the activation function. Each convolution layer followed up
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Figure 5.6: The base model configurations used for the (A) split convolution and (B) 1D convolu-
tion models. Visual representations of the differences between both convolution types
are shown in the expanded view below each diagram, detailing the changes in kernel
size used to facilitate both types of convolution. Split convolution used one split con-
volution layer comprised of temporal and spatial convolution sub-layers, followed by
a max pooling and dropout sub-layer. 1D convolution used three convolution layers,
each with three sub-layer steps (convolution, max pooling, and dropout). All signal
model types followed convolution with two FC layers (containing two sub-layer steps:
the FC step followed by dropout) and an output FC layer to perform the final clas-
sification. Note, that repeated layers only show the sub-layers for the first layer, to
reduce redundancy and condense the diagram.

the convolution step with a max pooling layer (with a size and stride of 2) then a dropout layer

to reduce overfitting. Both FC layers used a dropout layer after the FC step. The output FC

layer used a softmax activation function to perform the final classification. A summary of the base

model configuration for the 1D convolution signal model can be seen in Figure 5.6B.
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Both signal image model types used similar hyperparameter tuning settings; however, there

were slight variations between them to account for the differences in the configurations. Due to

an out-of-memory error while training, the split convolution models could not use a filter setting

of 1024 and was limited to 512 as the maximum number of filters for any one convolution layer.

For both model types, the hyperparameters chosen for tuning, and the range of values included in

the search space, are shown in Table 5.2.

5.2.4 Model Evaluation

Once the optimized models for each subject were trained, they were evaluated to assess the perfor-

mance of CNN-based EEG–EMG fusion. To achieve this, the withheld test data for each subject

were inputted to their final models to obtain predictions about what task weight was being held

during each test image. Since three task weights were used during data collection (0 lbs, 3 lbs,

and 5 lbs), each classifier was trained to output a three-class prediction, where each output label

corresponded to one of three task weights. This output was compared with the actual class label

to obtain an accuracy score for each model. This accuracy was then averaged across all subjects

to obtain an overall accuracy score for each fusion method, which was then used to compare per-

formance via statistical analysis (performed using IBM SPSS 27). First, the merits of each fusion

method were evaluated by comparing EEG–EMG fusion to using EEG and EMG alone. The accu-

racy scores for each fusion method were compared to the accuracy scores of the EEG/EMG only

models of the same model type to see if the increase in accuracy obtained via EEG–EMG fusion

was statistically significant. A one-way Within-Subjects Analysis of Variance (ANOVA), followed

by pairwise comparisons with the Bonferroni post hoc test, was performed on the accuracy scores

for the models of each type (four one-way ANOVAs in total). Separate ANOVAs were used for

each model type to account for the different number of models present, depending on the type (the

single-channel spectrogram model type contained 4 models, because of the use of both the grouped

and mixed fusion methods, while the other model types only contained three models each). This

prevents model type from being a factor for a two-way ANOVA, so separate one-way ANOVAs

were used instead. Following this, the methods of EEG–EMG fusion were compared to each other

using a one-way Within-Subjects ANOVA, (using the Bonferroni post hoc test for pairwise compar-
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isons) to determine if statistically significant differences exist between the accuracy obtained from

each fusion method. The purpose of this was to see if any particular EEG–EMG fusion method

provided a clear advantage in regard to classification accuracy.

To evaluate the robustness of each model further, the effect of movement speed on accuracy

was also evaluated. The classifier output predictions were separated depending on the speed at

which the movement was being performed, and accuracy was calculated separately for the fast

and slow movement speed groups. Since changes in movement speed during dynamic motion

can greatly affect bioelectrical signals, it is important to know how the CNN EEG–EMG fusion

models will perform in the presence of such variability. To be useful in the control of robotic

devices, the models need to be able to operate adequately during the different speeds required to

perform various rehabilitation and assistance tasks. To see if the effect of speed was statistically

significant, a two-way Within-Subjects ANOVA was performed on the speed-separated accuracies

for each model type. Similar to the model accuracy one-way ANOVA, the two-way ANOVA was

performed between models of the same type, resulting in four two-way ANOVAs in total. Note, for

all statistical tests performed (on both the overall model accuracy and the speed-specific accuracy),

a significance threshold of p < 0.05 was used.

As a final analysis of model performance, the class predictions from every subject were combined

and used to plot a confusion matrix for each CNN model. This was done to observe how the models

performed for each task weight and to further verify that the classifiers were adequately trained. To

evaluate the model fitting of each classifier further, the confusion matrices were used to calculate

the class-wise precision (the likelihood that a class prediction is correct) and recall (the likelihood

that all observations of a specific class are correctly classified) scores, to check the balance between

both metrics.

5.3 Results

5.3.1 Model Accuracy

The accuracy results for the spectrogram-based CNN models are summarized in Figure 5.7A.

For all models, the mean accuracy was above chance level (33.33%). The highest accuracy was
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obtained by the grouped fusion method (80.51 ± 8.07%). This was higher than the other single-

channel models, beating the EEG (50.24 ± 17.06%, p < 0.001) and mixed fusion method (79.72

± 8.19%, p = 0.025) models, and trending towards a higher mean accuracy than EMG (78.98 ±

4.66%, p = 1.000), but the difference between these two was not statistically significant. The next

highest performing spectrogram model was the stacked fusion method (80.03 ± 7.02%), which

outperformed the multi-channel EEG model (48.44 ± 15.32%, p < 0.001), and trended towards a

higher accuracy than the multi-channel EMG model (78.09 ± 5.65%, p = 0.382), but again this

increase in accuracy was not statistically significant. The stacked fusion method also showed a

higher mean accuracy than all other single-channel models (except for the grouped fusion method).

When comparing the spectrogram fusion methods to their equivalent EEG/EMG model types, the

increase in accuracy for all fusion models was statistically significant for EEG, but not EMG;

however, a clear trend did emerge, where mean accuracy increased when using EEG–EMG fusion.

The accuracy results for the signal-based CNN models are summarized in Figure 5.7B. Again,

all models showed a mean accuracy higher than chance level. The highest accuracy was observed

from the 1D convolution EEG–EMG fusion model (78.40 ± 8.70%), which showed a statistically

significant increase in accuracy over using EEG alone (41.44 ± 12.25%, p < 0.001), but not EMG

alone (74.73 ± 6.90%, p = 0.054), even though the trend is towards an increase in accuracy.

The split convolution EEG–EMG fusion model (74.28 ± 7.42%), while lower than 1D convolution

fusion, also showed a statistically significant improvement over using only EEG (42.16 ± 13.67%,

p < 0.001), but not EMG (72.70 ± 7.60%, p = 0.401); however, as with 1D convolution, the mean

accuracy tends to increase between the split convolution fusion and EMG only models. When

comparing the signal fusion methods to their equivalent EEG/EMG model types, the increase in

accuracy for both fusion models was statistically significant for EEG, but not EMG; however, once

again a trend did emerge where mean accuracy increased when using EEG–EMG fusion.

For comparing the EEG–EMG fusion methods of all model types together, the results of the

pairwise comparisons can be seen in Table 5.3. The mean accuracy for split convolution was found

to be statistically significantly lower than all other fusion methods, indicating that it is the worst

performing method of fusion. The difference in accuracy between grouped and mixed fusion was

also found to be statistically significant, meaning that grouped fusion performed better than mixed
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Figure 5.7: The mean accuracy of all (A) spectrogram and (B) signal based CNN models, calcu-
lated across both speeds and all task weights. Error bars represent one standard devi-
ation. Note that the y axis begins at 30% (chance level for these models is 33.33%).

within this sample group. Stacked, grouped, and 1D convolution fusion showed no statistical signif-

icance in their accuracy differences, meaning that these methods demonstrate similar performance

within this sample group. In general, there was a trend of spectrogram-based methods having a

higher mean accuracy than signal-based methods (which held true for both EEG–EMG fusion, as

well as EEG and EMG alone).

Table 5.3: The p values obtained from the pairwise comparisons in the one-way ANOVA comparing
the accuracy of the different CNN based EEG–EMG fusion methods. Statistically
significant values (p<0.05) are shown in bold.

Fusion Method Grouped Mixed Stacked Split Conv. 1D Conv.

Grouped - 0.041 1.000 <0.001 0.431

Mixed 0.041 - 1.000 0.003 1.000

Stacked 1.000 1.000 - <0.001 1.000

Split Conv. <0.001 0.003 <0.001 - 0.018

1D Conv. 0.431 1.000 1.000 0.018 -

5.3.2 Speed-Specific Accuracy

The accuracy results, separated into the fast and slow speed groups, can be seen in Figure 5.8. For

all four model types, the effect of speed was statistically significant (p < 0.001 for all). Looking
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at the plot, it can be seen that performance was significantly worse during the fast speed for all

models. All models still remained above the chance level during the fast motion speed; however,

EEG accuracy decreased almost to this point (with 1D convolution in particular being essentially

at the chance level). It can also be seen that, even when accounting for speed, the trend of

EEG–EMG fusion outperforming EEG and slightly increasing accuracy over EMG still remained;

however, the increase was much less during fast motion (and in the case of 1D convolution, EMG

alone was slightly higher than fusion during the fast speed).
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Figure 5.8: The mean accuracy for all CNN models, separated by the two speed levels (fast and
slow). Models of the same type are grouped together, with the order of the groups from
left to right as follows: single-channel spectrogram models, multi-channel spectrogram
models, split convolution signal models, and 1D convolution signal models. Error bars
represent ± one standard deviation.

5.3.3 Classifier Performance

The confusion matrices for all four model types can be seen in Figures 5.9 to 5.12, with each figure

corresponding to one type of model. For each model type, a confusion matrix is presented for every

model (fusion, EEG, and EMG), shown as sub-figures. Looking at the class outputs, it can be seen

that all models successfully classified 0 lbs at a much higher rater rate when compared to 3 lbs

and 5 lbs (which were similar to each other in performance). An exception to this trend is the two
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signal-based EEG models (shown in Figure 5.11B and Figure 5.12B for split and 1D convolution,

respectively), which had generally poor performance for all weight classes. The precision and

recall scores for the spectrogram-based models are relatively similar between the two metrics,

demonstrating that on average the fit of the models was balanced in its performance. The signal-

based models show less balance between the two metrics comparatively, although not to a large

degree.
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Figure 5.9: Confusion matrices, using the combined classification results for all subjects, for the
single-channel spectrogram-based CNN models. (A) shows the matrix for the grouped
fusion method while (B) shows the matrix for the mixed fusion method. (C) and (D)
show the matrices for the EEG and EMG only models, respectively. Each matrix
contains a positive/negative precision score summary in the final two rows, and a
positive/negative recall score summary in the final two columns.

5.4 Discussion

The goal of this study was to evaluate if CNNs could be used as a new method of input level EEG–

EMG fusion to classify task weight during dynamic elbow flexion–extension motion. The hope was

that the ability of the CNN to automatically learn relevant information from an inputted image
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Figure 5.10: Confusion matrices, using the combined classification results for all subjects, for the
multi-channel spectrogram-based CNN models. (A) shows the matrix for the stacked
fusion method, while (B) and (C) show the matrices for the EEG and EMG only
models, respectively. Each matrix contains a positive/negative precision score sum-
mary in the final two rows, and a positive/negative recall score summary in the final
two columns.

may capture aspects of the EEG–EMG relationship not yet found when using manual feature

extraction techniques. To this end, this study investigated several methods of representing the

EEG–EMG signals as images (to convert the bioelectrical signals into a form suitable for input

into a CNN), as well as ways to fuse EEG/EMG during convolution while in image form. This was

done to act as a preliminary analysis of these methods, to see which CNN-based EEG–EMG fusion

techniques show the most promise to justify their further development. This will ultimately benefit

the field of rehabilitation and assistive robotics by providing a new method of EEG–EMG fusion

that can be used by the control system of such devices to detect user tasks to adapt accordingly,

resulting in devices that are safer and more comfortable to control.

Looking at the model accuracy for each method, it can be seen that all models performed above

the chance level (33.33%), and that the precision/recall scores were relatively balanced between

the two metrics (albeit less so for the signal-based models than the spectrogram models). This
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Figure 5.11: Confusion matrices, using the combined classification results for all subjects, for the
split convolution signal-image-based CNN models. (A) shows the matrix for the
EEG–EMG fusion model, while (B) and (C) show the matrices for the EEG and
EMG only models, respectively. Each matrix contains a positive/negative precision
score summary in the final two rows, and a positive/negative recall score summary
in the final two columns.

shows that the CNN classifiers were successfully able to decode task weight information from

the EEG/EMG signals, indicating that this classification method is feasible for this task. When

comparing EEG–EMG fusion to using EEG or EMG alone, a clear trend is seen where using

EEG–EMG fusion improves the performance of the models. For all model types, EEG–EMG

fusion resulted in some level of accuracy improvement, as well generally higher precision and recall

scores (and for the classes where the precision/recall scores were not higher, they were almost the

same). Even though no statistically significant difference was found between EEG–EMG fusion

and using EMG alone, this does not completely invalidate the use of this new method. Despite the

current iteration of these models showing that the improvements gained from using EEG–EMG

fusion compared EMG are small, the fact that improvements are consistently observed when using

fusion demonstrates that the method shows potential as a tool to improve task weight classification

and should be investigated further. By focusing future work on developing improvements to model
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Figure 5.12: Confusion matrices, using the combined classification results for all subjects, for the
1D convolution signal-image-based CNN models. (A) shows the matrix for the EEG–
EMG fusion model, while (B) and (C) show the matrices for the EEG and EMG
only models, respectively. Each matrix contains a positive/negative precision score
summary in the final two rows, and a positive/negative recall score summary in the
final two columns.

performance, the accuracy gains of using EEG–EMG fusion may be increased, providing a stronger

justification for its use over EMG alone. Based on the trend, it is highly likely that increasing study

power through the recruitment of more subjects may result in the difference in accuracy becoming

statistically significant. Also, improving the quality of the EEG signals may improve the EEG–

EMG fusion models further. Looking at the EEG models, a clear drop in accuracy and classifier

performance can be seen when compared to EMG and EEG–EMG fusion, which is likely due to

the noisy nature of EEG signals. Due to their significantly smaller signal amplitude, EEG is more

prone to signal contamination from motion artifacts and magnetic interference when compared to

EMG, which can make it harder to use for classification. The use of more advanced noise rejection

techniques and better measurement hardware may improve EEG task weight classification, which

should in turn improve the EEG–EMG fusion models. Increasing the amount of EEG channels

being used may also help improve the EEG models, as well as EEG–EMG fusion, since it will
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allow the classifier to draw from more sources from different areas in the brain. However, this

trade-off needs to be balanced when using this application for wearable robotics, as these devices

are very limited in the hardware resources available. Even though EEG showed worse performance

compared to EMG, it was still clearly able to be of some benefit to the EEG–EMG fusion models,

since their mean accuracy always tended to be higher than the models based on EMG alone. As a

preliminary analysis of EEG–EMG fusion, this work was able to demonstrate that there is a clear

benefit to using CNN-based EEG–EMG fusion over just using EEG or EMG alone. It showed a

trend of CNN-based EEG–EMG fusion resulting in an increase in mean accuracy, demonstrating

the feasibility of these methods and providing a justification for their continued development.

Future work should focus on improving these models further to increase the improvements that

these techniques provide.

Another objective of this work was to see which methods of combining EEG/EMG would result

in the best performance when using CNN models. Looking at the accuracy results of each fusion

method, it is clear to see that the CNNs models did perform differently depending on the method

used. Of all the fusion methods, split convolution using signal images as inputs performed the

worst (and this difference was found to be statistically significant when compared to all other

model types). Even though other studies have used this method successfully for classification

when only using EEG signals [167–170], it is clear from this work that it is not suitable when used

with EEG/EMG together for task weight classification. For signal-image-based models, using a

traditional 1D convolution to perform CNN-based EEG–EMG fusion results in better performance.

For the spectrogram-image-based models, it was less obvious which fusion type is superior. The

grouped method had the highest mean accuracy, and the increase over the mixed method was

statistically significant, which implies that of the two ways to mix EEG/EMG spectrograms, using

the grouped method is better. Between grouped and stacked methods though, the difference in

accuracy was not statistically significant, so it is less clear which method is best. It should be noted

that the stacked spectrogram method is much more computationally efficient than the grouped

method (CNNs can perform convolution on a smaller image with multiple channels faster than a

larger image with only one channel), which may be a reason to use the stacked method. Since

both methods have similar accuracy, the faster method is more ideal, as the end goal of these
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models is to be used in real time in wearable robotic exoskeletons. Regardless, both methods

should be developed further in future work to investigate which method is ultimately superior.

Comparing between spectrogram-image-based models and signal-image-based models, it can be

seen that, in general, the mean accuracy of spectrogram models was higher. This is also confirmed

when looking at the confusion matrices, as the precision and recall scores are not as balanced for

the signal models. This even held true for the EEG and EMG only models, in particular EEG,

which showed a significant drop in accuracy (as well as precision and recall) for the signal models.

This makes sense, since it is well known that much of the relevant information related to motor

tasks is encoded in the frequency of the EEG signals [103]. It is likely that the time-domain-

based representation of the signal images was not able to capture this information as well as the

time–frequency-based representation used in the spectrogram images could. This, in turn, would

also affect the EEG–EMG fusion methods, which are drawing information EEG, as well as EMG.

Despite the lower mean accuracy, no statistically significant difference was found between the 1D

convolution, grouped, and stacked methods. This means that even though the trend would make it

seem like the 1D convolution method is worse, it should still be considered for future development.

One potential benefit of the 1D convolution method is that it requires fewer processing steps to

generate the images. Performing a calculation like a STFT can be comparatively time consuming,

and computationally expensive, so the use of signal-image-based models may be justified when

used in a real-time context for a wearable robotic system. The slight decline in model performance

may be outweighed by the efficiency provided by the simpler method; however, further testing and

development is needed to confirm this. Since the purpose of this experiment was to investigate the

initial feasibility of the different CNN-based EEG–EMG fusion methods, an extensive evaluation of

the computational complexity of each algorithm was not performed. The discussion here is based

merely on qualitative observations; however, next steps should focus on additional quantitative

evaluations of model complexity, which will become essential for moving the models towards a

real-time application when integrating them into a wearable device. Ultimately, all three fusion

methods (grouped, stacked, and 1D convolution) should continue to be improved and investigated,

since there was not one method shown to definitely have better performance and all three methods

have clear benefits.
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The models can be evaluated further by looking at the speed separated results, as well as the

confusion matrices, to examine how robust the classifiers are to changes in task weight and motion

speed. Looking at the confusion matrices in Figures 5.9 to 5.12, it can be seen that task weight

affected classification accuracy. All models were able to recognize the 0 lbs class at a much higher

rate than the 3 lbs and 5 lbs classes. While both of these classes still had relatively good precision

and recall scores, 3 lbs and 5 lbs were often misclassified as each other, but not 0 lbs, which implies

that the models had a harder time distinguishing the smaller difference in weight. This still does

present some level of benefit to a wearable robotic exoskeleton, since even knowing that the user

is holding something or not, could be useful for allowing the control system to adapt; however,

future work should look at improving the model results further to make them more consistent

across different task weights. It is clear from Figure 5.8 that speed also has a great effect on

performance for all models, with the fast speed having a significantly lower accuracy than the slow

speed. The EEG–EMG fusion models were still above chance level when moving at the fast speed,

which means that they are still able to recognize relevant patterns in the EEG/EMG signals,

just not as effectively. It also should be noted that the trend of EEG–EMG fusion having higher

accuracy than using EEG or EMG alone continued, even when separated by speed; however, the

increase was very small during fast speed (and the 1D convolution model was actually slightly

less accurate than EMG during fast motion). There are multiple things that may be causing this

phenomenon. First, faster movements are more likely to cause the EEG and EMG signals to be

corrupted by motion artifacts. The more aggressive movements performed by the subject during

the fast motion speed may be causing more motion artifacts, which in turn makes the signals harder

to use for classification. To alleviate this, more advanced filtering techniques should be used during

signal processing to remove this noise. The second reason why the fast motion may be harder to

classify is due the nature of task weight classification itself. Despite being related to muscle force

(a heavy weight needs more muscle force to move), the task weight itself is not actually a direct

measurement of muscle force. The muscle force required to perform an elbow flexion–extension

repetition will be a combination of the speed at which the subject was moving and the weight they

are holding. It is possible that this is causing smaller weights, moving at a faster speed, to have the

appearance of a larger weights at a slower speed, causing the misclassification. EMG in particular
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may be prone to showing this pattern, since EMG is a measurement of muscle activation. This

theory is supported by the previous work described in Chapter 4, which classified task weight using

EEG–EMG-fusion based on traditional machine learning techniques that rely on manual feature

extraction. In this study, it was found that all EEG–EMG fusion models showed a statistically

significant improvement in accuracy when adding a feature for speed information (in this case a

categorical label for fast and slow), seeing improvements of 1.2% for the best performing fusion

method [224]. Basic knowledge about the speed of the motion given to the classifier was enough

to help improve accuracy, so it stands to reason this could be possible for the CNN models as well.

Future work should investigate ways to include speed information into the input of the CNN, and

evaluate the effect that this has on classifier performance. Finally, the reduction in accuracy seen

during the fast motion trials could be due to the way the CNN models fit to the data. The nature

of how the EEG/EMG signals were windowed mean that there are more observations of movement

during the slow speed than the fast speed (since for slow motion it took longer to complete an elbow

flexion–extension repetition, and there were the same number of repetitions for both speeds). It is

possible that the models became fitted more heavily towards the slow speed data points, causing

poorer performance for the fast speed. To account for this, future work should look at collecting

more repetitions for the fast motion speed to balance out the classifier training.

Based on the results of this work, CNN-based EEG–EMG fusion has shown to be a feasible

method for classification of task weight, and warrants further development to increase the im-

provements provided by this technique. One potential area for improvement is in the dataset used

to train the models. As previously discussed, increasing the number of subjects may improve

study power and allow for more statistically significant results; however, this can also allow for the

development of generalized models that do not need to be subject specific. Ideally, to allow for

ease of use, a wearable robotic exoskeleton should be able to function for any user with minimal

training/calibration required. With a large enough sample of the population, general classifica-

tion models can be pre-trained so that new users can skip the time consuming step of classifier

training. An improved dataset can also benefit subject specific models by collecting more elbow

flexion–extension repetitions, as well as more combinations of speed and weight. One aspect of

CNN models is that their performance can be reduced for smaller training datasets [245], so col-
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lecting more data per subject should improve performance. More speed/weight combinations will

help to provide a more in-depth analysis of the robustness of the classifiers, and will improve their

functionality. Since this was the first analysis of CNN-based EEG–EMG fusion, only a small range

of weights (0lbs to 5 lbs) and two speeds (approximately 10°/s and 150°/s) were evaluated. It is

possible that the inclusion of more task weights, and a larger range of allowable dynamic motion

speeds, will affect the classifier performance further, so this effect should be investigated in future

work. The current task weight resolution of the classifiers (three weight levels) may limit their

use for assistance with daily-living tasks, where the user is unpredictability lifting many objects

of varied weights; however, this resolution could still be relevant for more controlled tasks, such

as rehabilitation. During rehabilitation exercises, the movement patterns and weight changes per-

formed by the user will be more predictable than activities of daily living, making the use of these

classifiers more feasible. The models developed for this work could be used to help the control

system of a wearable robotic rehabilitation device automatically adapt changing weights as the

user performs different exercises, and will not require the user/therapist to enter the weight change

manually, via some external input method, which may feel cumbersome for the user (for example

a smartphone app). The ultimate goal, however, is to keep improving the CNN-based EEG–EMG

fusion models to increase their resolution, making them a viable tool for use in many different

applications, such as assistance with daily tasks.

One method that may improve CNN-based EEG–EMG fusion is to increase the complexity of

the models via the inclusion of other deep learning architectures into the model configurations. One

popular example of this is the development of models that combine CNNs with Long Short-Term

Memory (LSTM) classifiers. LSTM models are beneficial for the classification of information that

changes over time, by retaining a memory of inputs [246]. Since the behaviour of EEG and EMG

signals will change depending on what stage of elbow flexion–extension motion is currently being

evaluated (for example the biceps muscle should be more dominant during flexion), LSTMs may

benefit the model by being able to incorporate this information better than using only a CNN.

Other studies have shown that CNNs, combined with LSTMs, can be used for EEG [171–173]

and EMG [175] classification, and LSTMs alone have been used during decision-level EEG–EMG

fusion [75], so there is evidence to suggest that this can be a beneficial technique for improving
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EEG/EMG models. Future work should evaluate the use of combined CNN–LSTM models for

input-level EEG–EMG fusion. Another potential way of improving CNN-based EEG–EMG fusion

is to explore other methods of calculating time–frequency signal images. While the STFT is a

popular time–frequency representation method, it is far from the only one. Other studies have

shown that Wavelet-Transform-based images can also work for EEG [162, 241] and EMG [177]

CNN models, so future work should investigate these methods as an alternative to using STFT

spectrograms for CNN-based EEG–EMG fusion. Improving these models will move them closer

to being practically implemented within a wearable robotic exoskeleton, where they can improve

the usability of these devices during rehabilitation and assistive tasks.

5.5 Conclusion

This work demonstrated the feasibility of using CNNs as a method of input level EEG–EMG fusion

for task weight classification during dynamic elbow flexion–extension. It presents a new EEG–EMG

fusion method that can be used to improve the performance of bioelectrical signal controlled robotic

devices for assistance and rehabilitation. During the experiment performed, it was shown that a

trend exists where EEG–EMG fusion resulted in a higher mean accuracy compared to using EEG

and EMG alone. Different methods of representing the EEG/EMG signals for use in the CNNs were

also evaluated, and it was found that time–frequency-image-based models (spectrograms) tended

to outperform time domain (signal) models; however, signal models using 1D convolution may still

have the potential to match spectrogram model performance. Future work should expand upon the

results shown here, and focus on improving performance by increasing model complexity through

the inclusion of other deep learning architectures (such as Long Short-Term Memory networks),

as well as, investigating other time–frequency image representation methods (such as Wavelet

Transforms). It should also focus on improving the training dataset used by collecting EEG/EMG

signals during more speed/weight combinations, collecting more motion repetitions from each

subject, and collecting data from a larger population of subjects, to allow for a more in-depth

analysis of model robustness, as well as better trained models. Using CNNs to facilitate EEG–EMG

fusion presents a new way to utilize these bioelectrical signals for the control of wearable robotic
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devices, and implementing EEG–EMG fusion for task weight classification will allow such devices

to adapt to changes in system dynamics so that they can perform assistive and rehabilitation

tasks in a more stable and robust way. This will ultimately improve the user experience, leading

to safer devices that can be more widely adopted as a new treatment and assistance solution for

musculoskeletal disorders.



Chapter 6

Investigating the Effect of Image

Normalization on CNN-Based Fusion

6.1 Introduction

In the study outlined in the previous Chapter, the concept of using CNNs as an EEG–EMG fusion

method for task weight classification was introduced, multiple methods of combining EEG and

EMG signals within the CNN were evaluated, and the feasibility of these new EEG–EMG fusion

techniques was successfully demonstrated. While the evaluation of different CNN-based EEG–

EMG fusion methods performed in Chapter 5 provides a good starting point for the implementation

of these models, there are still many other aspects of the model architecture that could be varied to

further optimize classifier accuracy and robustness. As discussed in Section 5.4, model performance

needs to be improved before CNN-based EEG–EMG fusion models can be integrated into wearable

mechatronic devices, and future work should focus on iterating on model design now that the initial

feasibility has been demonstrated.

One aspect of model implementation that was not investigated in Chapter 5 was the method

used for image normalization used during pre-processing. The concept of normalizing a dataset of

images before using them to train a CNN classifier is a widely adopted practice, and is considered

a standard step in many CNN development pipelines [159, 160, 247]. Normalizing an image-

set before training has many potential benefits for a CNN model and, if looking at the practice

134
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more generally, normalization of datasets is also typically beneficial for most machine learning

applications (both traditional and deep learning classifiers). In traditional machine learning, where

various manual features are extracted, normalization is used to scale these features so that their

values are within the same range [248]. Since different features represent different aspects of a

signal, and are calculated using various formulas/methods, the range of the final output values

can vary drastically. Failing to account for this can lead to poor model optimization [248] and

can cause the features with larger value ranges to dominate the model (even if their underlying

information is not actually the most relevant to the classification task).

For CNNs specifically, normalization is also an important pre-processing technique that can

affect classifier training and optimization. Depending on the activation function used after the

convolution layers in the CNN classifier, large input values to the model can cause the output

of these activation functions to grow very large (or even saturate, depending on the function

type), while small inputs result in near-zero output values. This phenomenon is often referred

to as an exploding/vanishing gradient problem [160], and should be avoided as it can negatively

impact model training/optimization. Beyond computational optimization benefits, normalization

is also used with image inputs to highlight different information that may be relevant during

classification. In the image processing and recognition domain, normalization is often used to

regulate image intensity [249–253], by shifting all pixel values in the image-set to be within the

same range, regardless of what background noise/changes may have been present when the image

was captured. Examples of this include removing the effect of ambient lighting conditions from

images [251–253], compensating for changing factors, such as skin tone in medical imaging [252],

or reducing background noise introduced by the sensing method employed for image capture [249].

Normalization can also provide the benefit of increasing contrast between the “bright” (high pixel

value) and “dark” (low pixel value) portions of an image [249], which may expose more clearly

the relationship between these regions and help the CNN extract relevant information in a more

efficient manner [160]. As one may expect, the method used for normalization has consequences in

the way intensity and contrast are changed within an image, which in turn can affect CNN classier

performance. In the field of image-recognition CNNs, studies have been performed previously that

evaluate the impact normalization techniques on performance [247, 249, 252], demonstrating this
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fact quantitatively.

Normalization is also a key step in EEG/EMG signal processing, analysis, and classifier de-

velopment; making the method used an important choice when working with these signals. Since

bioelectrical signals are highly variable, with their behaviour changing drastically between par-

ticipants, and even within the same participant over time, normalization can be used to reduce

the effect of these variations [254–257]. Given the importance of this procedure for EEG/EMG

signal analysis, studies have investigated the effect of various EMG signal normalization methods

[255, 257–260], EEG signal normalization methods [261], and EEG feature normalization methods

[256, 262–264] to see which approach proves to be the most effective. Studies have also com-

pared normalized and non-normalized EMG features and found that normalization leads to better

outcomes during model development [265–267].

Knowing that the importance of EEG/EMG normalization has been demonstrated for tradi-

tional machine-learning models (using manual feature extraction), and that image normalization

has been shown to affect intensity/contrast in image-recognition CNN models, it stands to reason

that image normalization will also play a role in the performance of EEG-based and EMG-based

CNN classifiers. Despite numerous examples of CNNs trained using image representations of EEG

or EMG signals, the method employed to normalize EEG/EMG images seems to be inconsistent

between studies. For CNN models using time–frequency image representations (e.g., spectrograms)

as inputs, there are examples in both EEG [163, 164, 241, 268] and EMG [177] studies where the

normalization method used is not mentioned in the procedure, leaving it unclear whether raw

values were used as inputs. When the method was described, a range of techniques to normalize

time–frequency EMG images have been demonstrated, such as rescaling values to be between 0 and

1 [176, 269, 270], subtracting mean pixel values [175], or standardizing pixel values using z -scores

[271]. Another common method for both EEG [162, 165, 272] and EMG [174] time–frequency image

inputs is to represent the resulting spectrogram/scaleogram as a standard RGB colour image. This

transforms the classification problem into a conventional image-recognition task, aligning with the

traditional use of CNNs as an image classification tool. In this case, images are usually normalized

to be between 0–1 by simply diving the pixel values in each colour channel by 255 (this number

arising from the fact that each colour channel is represented per pixel via one byte, giving it a
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possible decimal value of 0–255). This simple method for normalizing colour images is commonly

demonstrated in the image-recognition domain [253, 273, 274], which is likely why is was imple-

mented in several EEG/EMG CNN studies. For CNN models that perform convolution directly on

the time domain EEG/EMG signals (these inputs referred to here as signal images), there appears

to be a more concrete trend in the normalization method used. For both EEG [167, 169, 275]

and EMG [178–181, 183], there are multiple examples where no normalization is performed, and

the raw signal was inputted directly into the CNN classifier. Despite the previously mentioned

benefits of normalization for both bioelectrical signals and images, some researchers chose to use

non-normalized signals for multiple reasons. Some feel that transforming how the EEG/EMG

signals are represented (using pre-processing like normalization or time–frequency image represen-

tations) may result in a loss of critical information that could have been extracted by the CNN

during convolution [167, 178]. Other work has sought to specifically evaluate the potential of

CNNs for extracting worthwhile information from raw EEG/EMG signals [169, 180, 275] (poten-

tially in an effort to see if pre-processing steps can be removed), or has focused on comparisons

between the features automatically extracted from raw EMG signals and traditionally used, man-

ually extracted, features [179, 183]. Regardless of this trend, there does exist examples of signal

image-based CNNs using normalization methods as a pre-processing step: one such example being

the standardization of EEG/EMG signals using z-scores [164, 168, 181, 276]. In the context of

both EEG-only and EMG-only CNN classification, the topic of if/how to normalize image repre-

sentations of the bioelectrical signals still requires more investigation before any strong consensus

can be made.

Not only are comparisons between normalization techniques for EEG and EMG images largely

unexplored, there is very little work in the literature currently that evaluates normalization of com-

bined EEG–EMG images. Due to the nature of the bioelectrical signals themselves, their behaviour

is very different, which leads to a large range of possible values when recording the two signal types

during data collection. It would not be appropriate to normalize them together as one image, since

the larger voltage amplitudes of the EMG signals would diminish the contribution of the smaller

amplitude EEG signals. Ideally, to properly fuse the information provided by both signal types,

they should provide an equal contribution within the model. While not focusing on EEG/EMG
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specifically, previous work has begun to investigate how normalization should be implemented in

sensor fusion CNN systems working with Inertial Measurement Unit (accelerometers, gyroscopes)

and altimeter (altitude measurement using air pressure) sensor data. This study found that sensor

specific normalization should be used (as opposed to normalizing the different signal types as one

group) [277]. This makes sense intuitively: the normalization process used for different types of

signals should be tailored to its unique response to maximize the amount of information it can

provide. This adds an extra layer of complication when implementing normalization pre-processing

for combined EEG–EMG image representations, since different regions of the image need to be

normalized separately.

One question of particular note regarding normalization used in EEG–EMG fusion models is

how to choose what range of boundary values to use for rescaling the signals. During normalization,

image pixel values are rescaled to be between 0 and 1, where 0 represents the minimum image pixel

value and 1 represents the maximum image pixel value. The selection of the maximum/minimum

limits used for normalization can have a consequences on the final resolution and appearance of

the image, ultimately affecting the performance of the CNN classifier. This has been demonstrated

in both traditional image recognition models [249, 252], as well as EMG-based signal image CNNs

[181]. In the previous study outlined in Chapter 5, the images used to train the subject-specific

models were normalized using the maximum/minimum EEG and EMG values across the partici-

pant’s entire image-set, essentially normalizing all of their data together simultaneously. This was

chosen since it mimics a standard approach in traditional machine learning model development,

where the entire feature-set is standardized before training; however, the potential to normalize

across different groupings of the data exists. For example, during image recognition tasks, pixel

values are often normalized only within a single image (e.g., normalizing each image individually)

[249–252]. This allows the normalization to be centred around the specific variation present in each

image, the effect of which may be diminished if normalizing using dataset wide upper/lower bounds

[252]. Image specific normalization has also been demonstrated for EMG images used with CNN

classifiers [176, 181, 269, 270], indicating this method may be appropriate for EEG–EMG combined

images. Going beyond image processing specifically, the decision of what range of boundary values

to use for rescaling the signals may have relevance based on the physiological behaviour of the
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bioelectrical signals themselves. Multiple studies have investigated which reference point to use as

the min/max boundary when normalizing EMG signals [255, 257, 260], and have found that using

a task-specific reference point may reduce inter-subject variation [255] and improve normalization

for EMG signals collected during high-velocity movements [257]. For EEG signals, it has been

shown that normalizing over a smaller set of data can improve performance when compared to

normalizing across the entire dataset, since important patterns in the EEG response may become

obscured when the signal is rescaled across a larger range of data [261]. For both signal types,

the choice of what portions of data to use during normalization can clearly impact how relevant

information can be extracted for classification; therefore, this aspect needs to be studied further

in the context of EEG–EMG images used for CNN classifiers.

Thus, the purpose of the study presented here is to investigate various methods of normalizing

EEG–EMG combined images used for CNN-based task weight classification and to evaluate which

method provides the best classifier accuracy. The goal of this work is to iterate on the EEG–

EMG fusion-based CNN models introduced in Chapter 5, and to begin the process of refining the

techniques implemented during model development, ultimately leading to improved performance.

The analysis performed here will provide quantitative evidence when choosing which normaliza-

tion method to use for future development of CNN-based EEG–EMG fusion classifiers and will

move these tools closer towards the eventual goal of successful implementation within a wearable

mechatronic device.

6.2 Methods

6.2.1 Signal Processing and Model Training

Since this study serves as a follow-up to the work done in Chapter 5, the same EEG and EMG

signals collected for that study were used to generate the necessary input images required for train-

ing the subject-specific CNN models. Likewise, the same filtering/processing methods described in

Section 5.2.1 were used to prepare the EEG and EMG signals for image generation. The idea be-

hind this experiment was to develop CNN models using the same methods followed in the previous

work, while only changing the method of image normalization applied to the spectrogram/signal
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images. This means that all base model configurations, hyperparameter optimization methods,

and model training settings match what was reported in Section 5.2.3, and all image generation

techniques (excluding normalization) that were discussed in Section 5.2.2 remained the same. The

intention behind fixing the model design between studies was to allow for a proper comparison

between CNN models developed using the previous normalization method and the models devel-

oped using the new normalization techniques described in this chapter. Changing other aspects

of image generation, or model training, could introduce variations in model performance that are

not related to the normalization method used. This would make a comparison of methods chal-

lenging, as it would be difficult to determine which aspects of the varied performance were due

to normalization specifically. Reducing the number of variables that can affect model behaviour

will allow for a more direct comparison of normalization methods and improve the strength of the

evaluation.

To reduce the number of models that need to be trained, this study only focused on three of

the previously reported CNN-based EEG–EMG fusion methods: grouped spectrogram, stacked

spectrogram, and signal 1D convolution. These methods were chosen because the results of the

experiment in Chapter 5 indicated that these fusion techniques had the best performance, and

showed the most promise for future development; therefore, it is the logical choice to use them in

a follow-up analysis. The mixed spectrogram and signal split convolution models were found to

have worse performance when compared to the other three (split convolution had a statistically

significant reduction in accuracy compared to all other methods and the accuracy of the mixed

spectrogram method was statistically significantly lower than the grouped spectrogram method);

therefore, they were excluded from the work presented here. The main reason for this was a

time saving measure; model training and optimization is a computationally expensive and time

consuming process, and the evaluation of normalization methods required repetitious training of

each model type (using differently normalized input images each time). Reducing the number

of model types in the evaluation allowed for a significant drop in the overall computation time.

Future work could potentially investigate the effect of image normalization on the performance of

mixed spectrogram and signal split convolution models; however, previous results imply that the

effort will be better spent on refining the other methods instead.


