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Abstract 

Bridge health monitoring (BHM) has recently gained significant interest worldwide in the 

inspection and maintenance of aging bridge infrastructure in the era of climate change and 

adverse weather conditions. However, extensive datasets resulting from these monitoring 

systems require appropriate tools to diagnose the data systematically under various operating 

conditions of bridges, leading to expensive and time intensive BHM strategies. To mitigate 

this challenge, a smart and cost-effective bridge infrastructure management system is of 

paramount need in today’s world. This thesis aims to develop a suite of cost-effective bridge 

management strategies by employing limited and mobile sensing technology and addressing 

their inherent challenges in real-world situations. First, a limited sensor-based cost-effective 

approach is developed to analyze the traffic-induced nonstationary vibration response of the 

bridge. The proposed technique can deal with practical challenges of direct BHM, such as 

traffic interruptions, bridge closures, limited space, and the limited number of sensors, 

thereby eliminating the need for high labor and equipment costs. Secondly, the visualization 

of BHM data is explored for systematic diagnosis of the bridge data. A visualization tool 

based on Bridge Information Modeling (BrIM) is proposed which is suitable for real-time 

system identification of bridges. The objective of the proposed tool is to take one step 

forward from static to dynamic BrIM by representing and visualizing real-time BHM data.  

Contact-based BHM usually involves direct instrumentation with sensors to extract the 

modal parameters from the ambient or forced vibrations. As an alternative to direct BHM, 

indirect BHM (iBHM) has emerged as a promising avenue for effective and inexpensive 

monitoring of bridge infrastructure. However, the existing iBHM methods face challenges 

associated with the accurate identification of bridge properties under various driving and 

vehicle conditions. In this thesis, a hybrid time-frequency method is proposed for decoupling 

vehicle bridge interactions and performing robust bridge modal identification under various 

operational challenges. The method is capable of bridge condition assessment using vehicle 

response from a passing vehicle traveling over a bridge, resulting in a smart drive-by BHM 

technology. The vehicle response in iBHM is often criticized as the presence of vehicle 

frequency can make vehicle scanning ineffective. Therefore, this thesis also explores the 
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robust contact point (CP)-based BHM method, which is free from vehicle conditions and 

provides more accurate estimates of bridge frequencies.  
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Summary for Lay Audience 

Modern bridge infrastructure plays a significant role in stimulating economic development. 

Bridge health monitoring (BHM) is essential for ensuring the safety, performance, and 

longevity of bridges, especially as climate change and extreme weather conditions impact 

aging bridge infrastructure. Monitoring a large inventory of bridges can result in a sizable 

amount of data which can be costly and time-consuming to analyze. To address this 

challenge, there is a need for a smart and affordable system bridge monitoring system. The 

proposed research of this doctoral thesis is focused on exploring cost-effective BHM 

strategies to identify structural defects in bridges using remote, noncontact, and fewer 

sensors.  Firstly, a limited sensor-based approach is developed to analyze bridge vibrations 

caused by the traffic. This method can overcome the practical challenges associated with 

direct BHM. A visualization tool based on Bridge Information Modeling (BrIM) is 

developed to visualize the dynamic behavior of the bridge using real-time BHM data. 

Indirect BHM (iBHM) has shown promise as a cost-effective alternative to direct BHM. 

However, it faces challenges in accurately determining bridge properties under different 

driving and vehicle conditions. This thesis introduces an innovative method to accurately 

identify characteristics of bridge structure, even when faced with different operational 

challenges. This method can assess the condition of a bridge by analyzing the response of a 

vehicle passing over it. However, it is often argued that analyzing vehicle responses may not 

be reliable due to the interference of vehicle and driving conditions. Hence, a contact point-

based BHM method is developed, which is independent of vehicle conditions and provides a 

more precise estimation of bridge parameters.   
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Chapter 1  

1 Introduction 

1.1 Research Motivation 

Civil infrastructure systems are being significantly threatened by age-related degradation, 

neglected maintenance, natural disasters, and anthropogenic hazards such as earthquakes, 

floods, hurricanes, fires, explosions, and toxic releases. The primary factor that leads to 

the failure of civil infrastructure systems is degradation. According to the ASCE Report 

Card, 42% of the bridges in the United States are at least 50 years old, and 7.5% of them 

are considered structurally deficient (ASCE, 2021). In Canada, the number of bridges 

rated fair or worse has reached 40%, according to the Canadian Infrastructure Report 

Card (CIRC 2019). Deteriorating bridge infrastructure is a major public safety concern 

that requires a multi-pronged solution that can be economical and efficient. Most of the 

bridges are assessed periodically using visual inspections, which can be subjective, 

expensive, and susceptible to errors. The drawbacks of a conventional bridge inspection 

approach restrict its widespread use in urban and highway bridges. Rapid detection 

methods and approaches are urgently required to satisfy the growing maintenance 

requirements for these bridges and have drawn increased attention recently.  

Bridge health monitoring (BHM) can provide an effective solution to address these 

challenges of assessing the severity of the degrading state of bridge infrastructure. 

Recently developed vibration-based BHM techniques (An et al. 2019, Sun et al. 2020, 

Sony et al. 2022, Singh et al. 2022) utilize the vibration data, which can expedite the 

accuracy of damage detection compared to visual inspection. Bridge modal parameters 

such as modal frequencies, damping, and mode shapes, measured from collected 

vibration data, can be effective indicators of structural degradation and damage. The 

visual representation and efficient management of real-time monitoring data is a 

challenge for BHM approaches. There is a need to standardize, integrate, and visualize 

the collected BHM data through a visualization framework for systematic monitoring of 

bridges based on their current condition.  
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Conventional BHM requires a dense array of sensors directly instrumented on the bridge 

structure to get the dynamic responses from different locations of the bridge, which 

demand significant time and expense, and often suffer from limited access to critical 

locations. It is imperative to develop robust and cost-effective direct BHM methods based 

on limited sensors capable of keeping the same information as a large network of sensors 

while providing high accuracy in damage detection and localization. As an alternative to 

direct BHM, indirect BHM (iBHM) or drive-by BHM (Yang et al. 2004a) has been put 

forth as a convenient, efficient, and low-cost monitoring technique. The dynamic 

parameters of the bridge are extracted from the response of an instrumented passing 

vehicle. Besides frequency identification, iBHM can be extended to estimate bridge 

damping and mode shapes. A passing vehicle acts as an exciter and a data collection 

device simultaneously in this method. However, to delineate bridge dynamic response 

from vehicle dynamic response, vehicle-bridge interaction (VBI) needs to be accurately 

analyzed to prevent inaccuracies in BHM. Powerful signal processing methods are 

required for analyzing nonstationary and nonlinear signals originating from direct BHM 

and iBHM networks.  In this thesis, output-only system identification (SID) using limited 

sensors is explored to enhance the condition assessment and damage detection 

capabilities of direct BHM as well as iBHM to provide autonomous monitoring of bridge 

infrastructure. The visualization of long-term BHM data is also investigated in this thesis 

using Bridge Information Modeling (BrIM). 

1.2 Research Scope 

The scope of this thesis is bounded in the search for smart and cost-effective BHM 

schemes by implementing output-only SID to supplement the practical application of 

direct BHM and propose iBHM methods for autonomous and real-time damage detection 

using limited sensors. This thesis also intends to provide a framework for a visual 

representation of long-term BHM data. This thesis aims to develop the theory as well as 

to validate the formulations and presumptions utilizing a variety of numerical, 

experimental, and full-scale studies. The proposed research and validation studies of this 

thesis are summarized in Figs. 1.1 and 1.2, respectively.  



3 

 

 

Figure 1.1: A schematic showing the scope of the proposed research. 

 

Figure 1.2: A schematic showing the proposed validation studies. 
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1.3 Research Objectives 

The general objective of the current research is to accomplish the following broad tasks: 

• To develop a limited sensor-based SID method for cost-effective condition 

assessment of bridges subjected to ambient and traffic-induced vibrations. 

• To explore smart drive-by modal identification of bridges using a moving 

instrumented vehicle and its contact point (CP) response.  

• To investigate the visualization and big data management capabilities of BrIM.  

1.4 Outline of the Thesis 

The thesis is organized as follows: 

A general introduction and thesis objectives, along with the organization of the thesis, are 

provided in Chapter 1. Chapter 2 provides a brief introduction and literature review of 

conventional and modern bridge infrastructure management along with the associated 

limitations and challenges. 

An improved time-varying Empirical Mode Decomposition method is proposed in 

Chapter 3, which utilizes limited sensors to process the bridge data containing ambient 

vibrations. In Chapter 4, Synchro-Extracting Transform is proposed for condition 

assessment using vehicle-induced nonstationary response.  

A hybrid time-frequency method is proposed for drive-by modal identification of bridges 

in Chapter 5. In Chapter 6, a novel vehicle scanning method independent of vehicle 

dynamics is proposed based on CP response. BrIM-based visualization tool for long-term 

bridge monitoring is presented in Chapter 7. 

Chapter 8 summarizes the key conclusions, research contributions, and provides some 

future directions from this thesis. 
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Chapter 2  

2 Literature Review 

A brief introduction to conventional and modern bridge health monitoring (BHM) is 

provided in this chapter. Direct BHM has utilized contact-based techniques and time-

frequency methods for structural condition assessment of bridges. With the advancement 

of noncontact sensing technologies, indirect BHM (iBHM) and visualization techniques 

have been explored in the literature. However, these techniques have several limitations 

that hider their direct implementation in providing cost-effective and smart bridge 

infrastructure management. In this context, literature on conventional and modern BHM 

has been reviewed and their existing challenges are identified. Based on these challenges 

and gap areas, the key objectives of this thesis are identified at the end of this chapter.  

2.1 Direct Bridge Health Monitoring 

The ability to continuously maintain the desired functionality of bridge infrastructure 

demands robust damage assessment techniques that are reliable, cost-effective, and 

autonomous. Traditional bridge monitoring has relied on visual inspection, which is 

highly variable, lacks resolution, and can only detect visible damage. With the 

advancements in signal acquisition and data transmission techniques, contact-based BHM 

(An et al. 2019) has emerged as a popular alternative to bridge monitoring and 

maintenance. Contact-based BHM relies on the detection of anomalies in bridge 

dynamics using the dynamic responses of the bridge. The underlying principle is that if 

damage occurs in a structure, it results in a change in physical properties such as stiffness 

loss, and subsequently causes discernible variations in dynamic properties. BHM offers 

robust diagnostic and prognostic tools to detect any unusual symptoms, serviceability, 

and safety concerns (Wu and Jahanshahi 2018). In a typical BHM setup, sensors are 

directly installed on a bridge and are connected to a data acquisition system that feeds 

raw data to a central unit. Fig. 2.1 shows a typical representation of a direct BHM system 

where the sensors are connected to a data acquisition (DAQ) system and send the 

acquired raw data to a central unit or a computer.  
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Figure 2.1: Setup of a Direct BHM strategy. 

Chang and Kim (2011) used Empirical Mode Decomposition (EMD) and proper 

orthogonal decomposition to extract structural displacement responses and mode shapes 

under impact and moving load. The results were compared with directly measured 

displacement, modal assurance criteria, and energy difference tracking method using the 

data collected from a three-story experimental model and a full-scale bridge. He et al. 

(2011) integrated EMD with Random Decrement Technique (RDT) to obtain the natural 

frequency and damping ratio of a steel truss bridge under ambient vibration. The results 

were compared with the peak-picking method using vibration data collected from the 

Nanjing Yangtze River bridge. The results showed that EMD-based RDT could be a 

suitable modal identification technique for large-scale civil structures. Reddy et al. 

(2014) used EMD to conduct damage detection in beams and bridge models using strain 

data. The results presented that EMD can detect even a 0.01% reduction in stiffness for a 

beam and up to 0.5% for a real bridge. In another study, Qin et al. (2015) utilized 

improved EMD to extract natural frequencies and damping ratios under ambient 

vibration. The results were compared with Finite Element Modeling (FEM), peak-

picking, and stochastic subspace identification using vibration responses collected from 

the Songtoujiang railway bridge. The results proved the significant efficiency of the 

proposed method compared to the other methods. 
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Aied et al. (2016) applied the ensemble EMD (EEMD) method to the mid-span 

acceleration response of a bridge to capture the sudden stiffness changes. Minor stiffness 

changes were successfully identified in cases of relatively high vehicle speeds and even 

significant noise since EEMD can separate high-frequency components related to 

stiffness changes from other frequency components associated with the vehicle-bridge 

interaction system. In another research, Wu et al. (2016) applied EMD to undertake 

damage detection and assess the bearing capacity using a numerical beam model and a 

real bridge subjected to moving loads. The results showed that the EMD method could 

accurately identify the location and intensity of the damage. Song et al. (2017) used EMD 

and the natural excitation technique to identify the natural frequency and damping ratio 

of the Tingkau bridge. The results showed that the proposed method could accurately 

extract the structural modal parameters, which makes it a suitable candidate tool for 

system identification (SID) of large civil structures. 

Recently, Barbosh et al. (2018) explored multivariate EMD (MEMD) to extract the 

modal parameters of various civil engineering structures using multichannel signals under 

different practical situations. The MEMD method was validated utilizing multichannel 

vibration data that was collected from a suite of numerical, experimental, and two full-

scale structures such as the Canton Tower in China and a highway bridge in Canada. Due 

to the mode-mixing issue in some modal responses, a powerful blind source separation 

(BSS) technique, namely, Independent Component Analysis, was used, which involved 

less computational effort and time. It was concluded that the proposed method was able 

to extract the closely spaced with 2% separation and low-energy modes, which makes it a 

suitable candidate as a modal identification tool using multiple vibration responses 

collected from various types of structures. On the other hand, Ni et al. (2018) utilized 

variational mode decomposition and EMD to identify the instantaneous frequency of the 

four degrees of freedom (DOF) numerical model and a bridge subjected to free vibration 

and moving load. The results showed that the proposed method was more accurate than 

EMD-based methods. Trung (2018) utilized the Hilbert Huang Transform (HHT) to 

identify instantaneous variations in the dynamic characteristics of bridge caisson 

foundations under liquefaction. 
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A novel data analysis method that combined permutation entropy and spectral 

substitution with EEMD (Huang et al. (2019)) showed that the technique could extract 

multiple frequencies from the data with significant noise. Data collected from the full-

scale bridge was analyzed using the proposed method, where the results indicated the 

capability of the proposed method to extract multi-frequencies. Shao et al. (2019) used a 

combination of EMD and fractal conservation law to de-noise and filter the vibration data 

collected from a full-scale long-span bridge. The results of the proposed filter were 

compared with the other methods and showed the high performance of the proposed filter 

over the other techniques. Lastly, Celik et al. (2020) used a noise-assisted version of the 

MEMD to extract the modal parameters of civil structures under the operational load 

using multichannel data from various experimental and full-scale studies. The authors 

applied complete EEMD with adaptive noise to alleviate the mode-mixing issue in the 

resulting intrinsic mode functions (IMFs) obtained from MEMD. It was concluded that 

the proposed method was successfully able to extract the modal parameters even in the 

case of vibration data with a short duration. 

2.1.1 Challenges of direct bridge health monitoring 

• To reap the benefits of contact-based sensing for direct BHM, a dense array of direct 

contact sensors is required, which can transmit the data to a central computer. 

However, direct instrumentation requires too many sensors, which subsequently 

results in high labor costs, lane closures, and traffic congestion. As a result, this 

approach cannot be implemented in a large inventory of bridges for continuous 

monitoring. 

• The vibration response of a bridge due to ambient and traffic-induced vibrations is 

primarily processed using various time-domain, frequency-domain, and time-

frequency domain methods. Most of these methods rely on multi-channel 

measurements and are not suitable for SID using a limited number of sensors.  

• Finer time-frequency representation of a nonstationary multi-component signal is 

significant for the successful identification of structural systems such as bridges. The 

vibration signal originating from bridges needs a powerful time-frequency (TF) 
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method that can effectively deal with the nonstationary signal in the presence of 

measurement noise, closely spaced, and low energy modes.  

2.2 Indirect Bridge Health Monitoring 

In recent years, BHM techniques have evolved from contact to non-contact sensors (Na 

and Baek 2017, Sony et al. 2019, Bodupalli et al. 2019, Sun et al. 2020, Dertimanis and 

Chatzi 2020, Sony et al. 2021) due to next-generation inexpensive sensors such as 

camera, robots, and drones. iBHM leverages the vehicle traveling over the bridge as a 

data-collecting device and a source of excitation. While traversing over the bridge, an 

instrumented vehicle can excite the bridge and collect the vibration response of the 

bridge. A conceptual difference between direct BHM and iBHM is shown in Fig. 2.2. It is 

expected that the moving sensor will have better damage localization capability than the 

direct BHM due to its thorough scanning of the bridge. The majority of iBHM studies 

have focused on moving mass, moving load, and moving the sprung mass model to 

capture the dynamic effects of bridges. Out of these studies, the moving sprung mass 

model best represents the moving vehicle over the bridge by considering the inertia 

effects of the vehicle. The measured vehicle response includes the contribution of bridge 

dynamics, vehicle dynamics, and surface-induced roughness (Yang et al. 2012). 

Therefore, it is always a challenge to delineate the effects of the latter two parameters 

from the measured data. Moreover, many other factors, such as road profile, test vehicle 

systems, and vehicle-bridge interactions, affect the performance of iBHM (Yang et al. 

2020a). 

 

Figure 2.2: Direct and indirect BHM. 
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The idea of using a test vehicle to extract the bridge frequencies was initially proposed by 

Yang et al. (2004) and was validated numerically by Yang and Lin (2005a) using a 

simply supported beam. It was concluded that vehicle response was largely dominated by 

driving frequency, vehicle frequency, and the associated pairs of shifted frequencies of 

bridges. It was observed that the displacement response of the vehicle was influenced by 

the vehicle speed, while the vehicle acceleration response was affected by the bridge 

frequencies. In this study, it was assumed the mass of the vehicle was small compared to 

the bridge. Later, EMD was used by Yang and Chang (2009) to extract the higher modes 

of the bridge using experimental studies. The importance of the selection of the most 

appropriate test vehicle properties was discussed. The idea of estimating bridge frequency 

from a common vibration component among multiple vehicle responses was put forth by 

Nagamaya et al. (2017). The frequency estimation strategy was based on the cross-

spectral density function estimated through a novel signal processing method. In the 

drive-by bridge inspection, the vehicle’s speed significantly affects the success of the 

method as high speed induces sufficient kinetic energy to excite the bridge mode, 

whereas low speed helps in collecting more data with less effect of road roughness on 

vehicle vibration.  

Elhattab et al. (2018) introduced the new Frequency Independent Underdamped Pinning 

Stochastic Resonance technique, which could extract the bridge dynamics properties 

from the vehicle response moving at high speed over the bridge. The vehicle at high 

speed had more noise components over the bridge vibration, so using Stochastic 

resonance, the feeble information, such as bridge vibration, could be amplified by the 

background noise. Passing vehicle across a bridge is excited by two sources which are 

pavement roughness and bridge vibration. Wang et al. (2018) based their work on this 

idea and proposed a frequency extraction method from the response of a vehicle with its 

parameters calibrated. Vehicle excitation sources, such as displacement inputs at the front 

and rear tires, were estimated from vehicle response using a particle filter method. The 

roughness influence was eliminated by shifting and subtracting the displacement inputs. 

The method was verified using numerical simulations and field tests. Wang et al. (2019) 

contributed to the field of vehicle bridge interaction (VBI) by estimating the vertical tire 

forces resulting from a vehicle-induced load. The estimation method was based on 
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vertical acceleration and angular velocity of the vehicle body. The measured data was 

analyzed using an augmented Kalman filter, and good accuracy was achieved against 

noise and error in numerical and experimental conditions.  

FE model updating was attempted by Kong et al. (2017) using the measured accelerations 

and strains of the bridge obtained from a passing vehicle. A tractor-trailer system was 

used to determine the bridge dynamic parameters. The test vehicle response was used to 

calculate the bending stiffness of the bridge by Yang et al. (2018b) using the frequency-

domain method and time-domain method. While the frequency-domain method was 

economical as it could estimate the initial bridge stiffness, the time-domain method was 

computationally demanding in nature. The field test results indicated that both methods 

were useful for assessing the bending stiffness of a full-scale bridge. In another study, 

Matsuoka et al. (2021) proposed the drive-by system to track down resonant bridges by 

high-speed trains using track irregularities. In this study, devices were mounted on the 

first and last train vehicles to measure the difference between two-track irregularities at 

the same position. The last vehicle response was attributed to abnormal bridge 

displacement due to resonance mechanisms and track irregularities. However, the first 

vehicle response was generated primarily due to the track irregularities, a resonance 

phenomenon yet to be completely excited. This difference between the track irregularities 

measured by the first and last mounted devices was used to compute the resonance 

detection index. This index would be used to detect the resonant bridge component 

excited by the vehicle length. Micu et al. (2022) investigated the static and dynamic 

effects of the railway bridge by repeated dynamic responses collected from an 

instrumented passing train to assess the condition of a bridge. This study proved that 

instrumented trains could potentially be used for ongoing monitoring and identification 

for repair or rehabilitation. 

A comprehensive monitoring method responsible for detecting the frequency, damping, 

mode shape, and local stiffness of a girder bridge was put forth by Yang et al. (2022a). In 

numerical and field investigations, a tractor was used in conjunction with two identical 

trailers whose residual acceleration was used to eliminate the effect of road roughness. 

The bridge frequency component was obtained using bandpass filtering and damping 
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ratio and mode shapes were reconstructed using Short-Time Fourier Transform (STFT). 

Bridge stiffness was determined using the reconstructed mode shape. The vehicle 

frequency and road roughness were two trouble-causing factors that hindered the vehicle 

scanning method in identifying bridge frequencies. Yang et al. (2022b) proposed a simple 

yet physically robust technique to detect adverse factors by recording the vehicle 

response in the parked state. The test vehicle in a parked condition would be free of 

pavement roughness and self-frequency if vehicle frequency were made far higher than 

the bridge frequency. This proposed methodology presented a trade-off between fixed 

sensors on the bridge deck to moving test vehicles with good data quality and less 

measurement time.  

With the recent developments in sensing technologies, there has been a paradigm shift in 

the sensing techniques that outperform traditional sensors, including wired or wireless 

sensors. Such emergent iBHM technologies that have been developed in the past few 

years and the use of next-generation sensing techniques such as smartphone monitoring 

or crowdsourcing (CS), and contact point (CP) response monitoring are reviewed. 

Modern smartphones are equipped with accelerometers, gyroscopes, and global 

positioning system (GPS) that can efficiently detect the structural health of bridges (Sony 

et al. 2019). Monitoring data collected through smartphones, even though it may be 

imperfect, can contribute valuable BHM information when aggregated using the 

crowdsourcing framework.  

Shirzad et al. (2020) investigated various vehicle features to enhance the implication of 

CS for bridge monitoring. The fundamental frequency of the bridge was captured using a 

large set of passing vehicles with different features. The proposed method was validated 

using different combinations of vehicle suspension and vehicle speed on two bridges with 

different support systems. Sitton et al. (2020) examined the applicability of CS for bridge 

monitoring using the analytical FEM simulation and a scaled laboratory experiment. 

Analytical and experimental results showed that the bridge frequency could be identified 

using the multi-vehicle approach. The CS framework established that iBHM could be 

accomplished without the information related to the mass and stiffness of the vehicle or 

bridge.  For large-scale road network monitoring, test vehicles need to be calibrated, and 
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road condition needs to be evaluated. Xue et al. (2020) proposed an algorithm capable of 

estimating the road profile while simultaneously identifying the vehicle parameters. The 

responses from the vehicle were collected using a smartphone, and optimization of 

estimated profiles was conducted using an objective function and constraint conditions.  

Shirzad and Gul (2021) proposed the drive-by frequency identification technique with 

enhanced inverse filtering-based methodology using smartphones as a vehicle’s vibration 

recorder. The study aimed to suppress the effect of vehicle features and road features by 

inverse filtering as vehicle response was dominated by the effect of the suspension 

system, road roughness, and vehicle speed. In this novel approach to inverse filtration, a 

dataset of vehicle response at different speeds was constructed to account for the effects 

of vehicle speed on the performance of the proposed method. At the same time, the 

impact of surface roughness on the performance was examined by the proposed energy-

based surface roughness criterion. In a recent study, Matarrazo et al. (2022, Preprint) 

attempted to achieve high-precision bridge monitoring and maintenance using CS 

smartphone data. Various datasets were collected from both short and long-span bridges 

using a variety of smartphone and vehicle models. The extraction of the most probable 

modal frequencies was conducted using a synchro-squeezed wavelet transform. The 

results from three broad classes of CS data: controlled, uncontrolled, and partially 

controlled, provided accurate modal properties. This study also suggested that data 

collection features such as vehicle speed and smartphone orientation do not necessarily 

need to be designed or influenced. It was also found that the service life of existing and 

new bridges could be significantly enhanced using CS monitoring data. 

2.2.1 Contact point-based bridge health monitoring 

While using a test vehicle to scan the bridge’s dynamic properties, vibration sensors fixed 

on the car body are used to obtain the vehicle response. The presence of vehicle 

frequency in the vehicle response may render the extraction of bridge frequency difficult 

in spectral analysis, especially in the presence of road roughness. To overcome this 

challenge, the vehicle’s CP response was proposed as a better method for scanning bridge 

properties (Yang et al. 2018a). The advantage of CP response is that it is independent of 

vehicle frequency and therefore allows more detection of bridge frequencies with 
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minimal inference of vehicle parameters. Hashlamon et al. (2021) investigated the 

effectiveness of the CP response of the stationary vehicle under various conditions, 

including damped and undamped conditions, road roughness, vehicle speeds, and masses, 

vehicle frequencies, and span length of the bridge to conduct iBHM. In this study, the 

bridge was excited by another moving vehicle while a stationary parked vehicle recorded 

the response, and a numerical model was developed. In previous studies, the damping 

effect of the test vehicle was ignored since the test vehicle was designed with high 

transmissibility/less damping to receive high bridge vibration. However previous studies 

suggested that vehicle damping could affect vehicle frequency, bridge response, and 

measured pavement roughness.  

The vehicle scanning method using CP response was not just restricted to highway 

bridges. Yang et al. (2021a) implemented it to assess the condition of the rail tracks and 

rail bridges. This study presented the theory of extracting the track/bridge frequencies 

and track modulus over a dual-beam model using an instrumented vehicle. This dual-

beam system simulated the track-bridge system and replicated the effect of sleepers and 

ballast. The recorded vehicle response was further translated into vehicle-track CPs using 

closed-form equations, and the solution provided the track and bridge frequencies. Rarely 

had any publication discussed the effect of torsional-flexural vibration on bridge health as 

that could not be represented well in 2D beams. Yang et al. (2022c) proposed a procedure 

to eliminate the vehicle frequencies and road roughness by skillful use of a two-axle 

moving test vehicle. This study presented that the vehicle-bridge CP would eliminate the 

vehicle frequencies, and the front and rear CP response residue would remove road 

roughness. Using vertical and rotational equations of motion, the CP response was 

derived, which would be processed by the Variational Mode Decomposition (VMD) to 

bring out the component response, followed by the mode shapes using Hilbert Transform 

(HT).  

Yang and Wang (2022a) proposed an improved vehicle scanning method to identify 

modal properties while considering the damping and road roughness of the bridge. Since 

the damping effect produced a weak signal by degrading it over time and road roughness 

corrupted the signal; thus appropriately tuned elliptic filter was employed over a 
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conventional bandpass filter, such as the Butterworth filter. Firstly, the dynamic response 

was computed by the moving internal node element method, and then the Fourier 

transform of the CP response would extract the bridge frequencies. Once the targeted 

natural frequencies are known, an appropriately tuned elliptic filter would be used to 

decompose the CP response time series. Finally, the instantaneous amplitude function 

would construct the mode shape from an analytic signal. The improved vehicle scanning 

method was further used to locate the bridge damage from the extracted mode shapes 

with minimal postprocessing effort in Yang and Wang (2022b). The narrowband signals 

from the CP response, when processed through the elliptical filter, revealed visible kinks 

that indicated the locations of bridge damage. Yang et al. (2021c) to decompose the 

vibration data under the desired frequency range. Then the CP response was calculated 

from the backward procedure by using vehicle response. The combined approach 

provided a more elegant response decomposition and removed the mode-coupling 

problem and undesired roughness frequencies. The double-pass mass-addition technique 

was formularized by Zhan et al. (2021) to obtain the CP response difference from vehicle 

response in the presence of bridge surface roughness. The study determined the bridge 

mode shapes from signal filtering and HT, and the possible damage locations could be 

identified by applying Wavelet Transform (WT) on CP displacement difference. 

Significant effects could be seen due to the presence of surface roughness in the 

simulated results. Other factors that may affect the high fidelity were also investigated, 

including vehicle speed, traffic, measured noise, and distribution of added mass.  

The dual Kalman filter and Singular Spectrum Analysis were employed by Li et al.  

(2022) in the drive-by bridge health monitoring to explore the bridge condition by 

identifying the dynamic response of the CP between the bridge and vehicle using two 

successive instrumental vehicles. It was a three-step formulation in which a dual Kalman 

filter identifies the input forces of two successive vehicles, and by using input forces and 

vehicle parameters, the responses of two CPs were extracted. After that, the subtraction 

technique assisted in the reduction of the road surface roughness effect from the 

identified CP responses. Finally, auto-singular spectrum analysis decomposed the 

response residue and brought out the mono-component modes of bridge response. Yang 

et al. (2022d) proposed a technique where a single-axle test vehicle was modeled as a 2-
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DOF system by installing the sensor near the test vehicle's wheels to catch the rocking 

motion. Since both wheels of the test vehicle might experience different surface 

roughness due to the uneven profile of the road and induce rocking motion, thus CP 

response was determined for both wheels separately. On the flat road surface, the vertical 

bridge frequencies can be extracted by averaging the CP responses and rocking 

frequencies by calculating the angular response. Factors such as vehicle frequencies and 

road roughness affected the vehicle scanning methods in extracting the bridge modal 

properties. 

2.2.2 Challenges of indirect bridge health monitoring 

• In the iBHM field of studies, most researchers used the responses recorded by the 

vehicle-mounted sensor to detect the bridge modal properties and damage extent. 

However, it had been observed that the recorded vehicle responses were contaminated 

with the vehicle and driving frequencies, which may mask the bridge frequencies. 

Therefore, it requires a high-resolution iBHM that can suppress the effects of vehicle 

and pavement conditions and extract the bridge frequencies. 

• The majority of iBHM studies have focused on moving mass, moving load, and 

moving sprung-mass models to capture the dynamic effects of bridges in the collected 

responses. Out of these studies, the moving sprung mass model best represents the 

moving vehicle over the bridge by considering the inertia effects of the vehicle. 

However, the vehicle response passing over a bridge always contains bridge 

frequencies along with driving frequency and vehicle frequency. Therefore, it is 

always a challenge to delineate the effects of the latter two parameters from the 

measured data and accurately extract bridge parameters. Moreover, many factors, 

such as road profile, vehicle systems, and vehicle-bridge interactions, affect the 

performance of iBHM. Therefore, a thorough investigation is required to explore the 

vehicle-bridge interaction in iBHM under these conditions. 
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2.3 Advanced Time-Frequency Methods in Bridge Health 
Monitoring 

The main goal after data collection is to analyze observed vibration data and extract 

damage-sensitive features using reliable SID techniques (Amezquita-Sanchez and Adeli 

2014). Traditional signal processing methods, whether used in the time or frequency 

domains, assume that the signal is linear and stationary (Ibrahim and Mikulcik 1973, 

Juang and Pappa 1985, Zhang et al. 1985, Allemang and Brown 1998, Perry and Koh 

2000, Brincker et al. 2001a, Ma et al. 2005). For non-stationary vibration signals of aging 

structures exposed to complex excitations, such as traffic loads, strong wind gusts, and 

earthquakes, this assumption does not hold (Entezami and Shariatmadar 2019). To extract 

damage-sensitive features from these non-stationary signals of time-varying systems, 

adaptive TF analysis is needed. 

TF methods offer a better depiction of the energy variation of a signal in the TF domain 

(Perez-Ramirez et al. 2016, Sadhu 2013). The use of TF techniques for structural health 

monitoring (SHM) of civil infrastructure has grown over the past two decades. WT 

(Wang and Deng 1999, Hong et al. 2002,  Douka et al. 2003, Loutridis et al. 2004, Sadhu 

et al. 2019), Empirical Wavelet Transform (EWT) (Yuan et al. 2017), Wigner-Ville 

Distributions (WVD) (Tang et al. 2010, Goyal and Pabla 2015, Zoubi et al. 2019), BSS 

(Sadhu et al. 2017), HHT (Huang et al. 1998, Xu et al. 2003, Bahar and Ramezani 2012), 

EMD (Yang and Chang 2009, Tang et al. 2011), RDT  (Zhang et al. 2015,  Zhang and 

Song 2016, Kodestani et al. 2018) and Short-Time Fourier Transform (STFT) 

(Nagarajaiah 2009, Nagarajaiah and Basu 2009, Ditommaso et al. 2012, Mata et al. 2013) 

are the most popular TF methods that have been used in modal identification for large-

scale civil infrastructure. 

2.3.1 Empirical Mode Decomposition 

HHT is specifically developed to examine nonlinear and nonstationary data and to 

describe its TF energy variations. It combines Hilbert Spectral Analysis (Huang et al. 

1998) and EMD. Any complex multicomponent data can be broken down using the EMD 

approach into a limited number of IMFs. EMD is adaptive (i.e. free of any basis function) 
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and performs decomposition based on a local characteristic of the data (Huang et al. 

1998) from a single-channel measurement, in contrast to many other TF approaches. This 

characteristic has led to the widespread usage of EMD as an SHM approach to extract 

complex dynamic behavior from structures. EMD generally divides the measured 

vibration signal into multiple mono-component signals (i.e., modal responses), which are 

then analyzed for structural condition assessment. This TF domain method has seen a 

substantial increase in popularity in output-only modal identification.  

An IMF is a function that satisfies the following two conditions (Huang et al. 1998): (a) 

the number of extrema and the number of zero-crossings must be either equal or differ at 

most by one in the whole data set, and (b) at any point, the mean value of the envelope 

denoted by the local maxima and the local minima is zero. The procedure of extracting an 

IMF is called sifting. The signal after the sifting process can be represented as:  

𝑥(𝑡) = ∑ 𝑖𝑗(𝑡)

𝑛

𝑗=1

+ 𝑟𝑛(𝑡)  ,                                             (2.1) 

where 𝑖𝑗(𝑡)(𝑗 = 1,2,3, … . , 𝑛) represents the IMFs of the original signal 𝑥(𝑡) and 𝑟𝑛(𝑡) is 

residue signal of 𝑥(𝑡). Theoretically, every IMF must have only one frequency 

component. However, sometimes, a single IMF contains multiple frequency components, 

which is known as mode mixing. EMD has been extended to include its variations, 

EEMD and Time-Varying Filter-based EMD (TVF-EMD), Robust EMD (REMD) to 

combat mode-mixing in the IMFs, particularly when analyzing signals with closely-

spaced frequencies and measurement noise.  A detailed review of variants of EMD and 

their application to vibration-based monitoring is provided in (Barbosh et al. 2020). 

2.3.2 Wavelet Transform 

WT can be viewed as an extension of conventional Fourier Transform (FT) with 

adjustable window location and size (Hou et al. 2000). FT can only be used to identify 

ambient systems since the sinusoidal basis it uses prevents a meaningful depiction of the 

nonstationary response of a system. STFT was created as an alternative to accommodate 

the time domain information because the Fourier basis functions are exclusively confined 
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to the frequency domain. However, because STFT uses fixed windows, the resulting 

temporal and frequency resolutions are severely constrained. It is impossible to obtain 

good time and frequency resolutions, simultaneously analogous to Heisenberg’s 

uncertainty principle. This motivated the development of a different transform, called 

WT, which offers a superior time-frequency representation of the signals in a multi-

resolution framework. The advantage of WT lies in its capability to examine the local 

data in an adaptive manner that can provide multiple levels of details of the original 

signal. As a result, this method can preserve the transient behavior of data.  

WT is essentially divided into two classes: Continuous Wavelet Transform (CWT) and 

Discrete Wavelet Transform (DWT). WT provides flexibility to achieve greater time and 

frequency resolutions with a suitable basis function. Many condition assessment 

applications, such as signal noise filtering, data compression, and pattern recognition, use 

the CWT as a signal processing method. It separates mixed signals into their components 

and filters out noise, and is given by:  

𝑊𝑓(𝑑, 𝜏) = ∫ 𝑥(𝑡)
−∞

∞

1

√𝑑
𝜓∗ (

𝑡 − 𝜏

𝑑
) 𝑑𝑡   ,                               (2.2) 

where 𝑑 and 𝜏 represent the scale and translation of the mother wavelet, respectively. 𝑑 

relates to frequency scale, where a higher value of 𝑑 corresponds to a low-frequency 

signal, and a lower value of 𝑑 corresponds to a high-frequency signal. At a point in time, 

when the spectral component of the signal is similar to the value of 𝑑, the product 

between the wavelet and signal will be higher. The wavelet shifts along with the signal to 

locate the frequencies in the time domain. The basis function is called mother wavelet 

𝜓(𝑡), where superscript (*) denotes its complex conjugate. With the right selection of 𝑑 

and 𝜏, the CWT uses the shifted and scaled versions of 𝜑 and subsequently forms its 

inner product with 𝑓(𝑡).  However, the selected basis function (e.g., basis such as Morlet, 

Daubechies, etc.) has a significant impact on its performance.  
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2.3.3 Synchro-Squeezing Transform 

A signal having time-varying oscillatory features can be identified using the TF approach 

known as Synchro-Squeezing Transform (SST). It is designed to examine and separate 

signals into the following components: 

𝑥(𝑡) = ∑ 𝐴𝑘(𝑡)𝑒2𝑖𝜋𝜑𝑘(𝑡)

𝐾

𝑘=1

   ,                                          (2.3) 

where 𝐴𝑘 and 𝜑𝑘 are time-varying amplitude and phase functions, respectively. SST is a 

variant of reassignment, a set of approaches that apply a non-linear postprocessing 

mapping of CWT. In the instance of synchro-squeezing, the coefficients resulting from a 

CWT are reallocated to generate a concentrated TF representation, from which 

instantaneous frequency (IF) can be retrieved. The fundamental steps of extracting the 

IFs utilizing SST begin with the CWT, 𝑊𝜓𝑥(𝑎, 𝑡) at a scale 𝑎 and time shift 𝑡 and is 

given by: 

𝑊𝜓𝑥(𝑎, 𝑡) = 𝑎−1/2 ∫ 𝑥(𝑢)𝜓
−∞

∞

(
𝑢 − 𝑡̅̅ ̅̅ ̅̅ ̅

𝑎
)   .                             (2.4) 

The phase transform 𝜔𝑥(𝑎,𝑡), is defined as the derivative of the complex phase of 𝑊𝜓𝑓: 

𝜔𝑓(𝑎,𝑡) =

𝑑
𝑑𝑡

𝑊𝜓𝑥(𝑎, 𝑡)

2𝜋𝑖𝑊𝜓𝑥(𝑎, 𝑡)
   .                                            (2.5) 

This nonlinear operator can be conceptualized as eliminating the impact of 𝜓 from the 

CWT and "encoding" the necessary localized frequency information using: 

𝑆𝑥(𝑡,𝜂) = ∫ 𝑎−
3
2𝑊𝜓𝑥(𝑎, 𝑡)𝑑𝑎

 

{(𝑎,𝑡):𝜂=𝜔𝑥(𝑎,𝑡)}

   .                            (2.6) 

The IFs are then extracted using:  

  𝜔(𝑎, 𝑡) =
−𝑖

𝑊𝑠(𝑎, 𝑏)

𝑑

𝑑𝑡
𝑊𝑠(𝑎, 𝑏)   .                                     (2.7) 
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2.4 Visualization Techniques of Bridge Health Monitoring 

Vibration-based BHM can produce a large amount of condition data over the design life 

of the bridge asset. Metadata relevant to BHM should be visualized, such as location, 

types of sensors and data sheets, status of BHM components, etc. Poor visualization of 

BHM data and metadata can lead to miscommunication about the condition of the 

structure and BHM system functionality. In conventional bridge inspection practices, 

there is a lack of data management and visualization tools. The challenge of accurately 

analyzing and interpreting the resulting big data can be solved by sensor-driven BHM 

through various visualization techniques. Tools such as Building Information Modeling 

(BIM), digital twins (DT), augmented reality (AR), virtual reality (VR), and mixed reality 

(MR) have been recently developed for data management and visualization.  

Kim et al. (2012) developed new software that made use of the ARToolKit toolkit and 

the OpenGL application programming interface (API) to allow multiple users to 

collaborate on the same 3D virtual object. Finally, a case study employing the software to 

simulate a cable-stayed bridge was carried out. To preserve and record damage data from 

a bridge inspection, McGuire et al. (2016) created a software add-in using Autodesk 

REVIT. Leap Bridge, Tekla Structures, and Autodesk Revit were the three BIM software 

environments assessed in the study, and it was determined that Revit had the best 

capability for documenting bridge SHM data. In another study, Jeong et al. (2017) 

provided a framework for exchanging BIM and SHM data based on existing Open Bridge 

Information Modeling (BrIM) standards. The study used SensorML to assign sensor 

descriptions to the BIM model and a NoSQL database to store massive amounts of SHM 

data. After that, a case study on the Telegraph Road bridge in Michigan was conducted 

using the established framework. The development of the database schema was supported 

by the CSiBridge software, which further enhanced BIM's capacity to contain a variety of 

useful metadata.  

Moreu et al. (2017) presented a framework for creating a conceptual design for AR-based 

structural inspection tools. Microsoft HoloLens device was used to simulate a dynamic 

response in the AR environment for the hologram of a railroad bridge. Napolitano et al. 

(2017) demonstrated a digital approach for classifying and incorporating pre-existing 
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documentation and SHM data through a customized interface into a VR environment. In 

this study, the virtual environment combined VR software (Kolor Panotour Pro) and 360° 

spherical imagery (Ricoh Theta) to provide a highly educational virtual experience for the 

end-user. The structure was viewed and examined using a combination of virtual tour 

(VT) and informational modeling (IM) technologies. A 350-foot pedestrian bridge was 

used for the full-scale demonstration, and fiber-optic strain, temperature, and 

displacement sensors were used for monitoring.  

Delgado et al. (2018) suggested gathering, standardizing, integrating, and visualizing 

monitoring data in a BIM setting. These procedures were utilized to circumvent the 

restrictions placed on the interpretation, analysis, and sharing of monitoring data by 

contemporary BIM software. A railway bridge was equipped with a widespread network 

of fiber-optic monitoring sensors to track changes in strain data and verify the suggested 

structure. Using the established BIM framework, the most important structural 

performance parameters were dynamically displayed. To address existing shortcomings 

in available methods for accessing and displaying topologically complex SHM data, VT 

and IM technologies were investigated by Napolitano et al. (2018). The effectiveness of 

the suggested visualization approach for both SHM data and metadata for a pedestrian 

bridge was evaluated based on two criteria: ease of access to sensor network data and 

method effectiveness as a 3D visualization tool.  

To ensure efficiency both on- and off-site, Napolitano et al. (2019) created a framework 

for recording and displaying data about the built environment using a combination of 

image-based documentation and AR. For a pedestrian bridge at Princeton University, a 

cross-platform, client-server system was created and put into place for making, saving, 

and displaying annotations. Alignment testing was used to assess the performance of GPS 

and AR location tracking. Dang and Shim (2020) suggested an approach to monitor 

bridges based on the nexus of BIM and AR. Over a year, BIM data from a cable-stayed 

bridge was collected and visualized using Microsoft HoloLens. To examine cracks and 

track bridge movement, Kilic and Caner (2020) used several advanced non-destructive 

testing (NDT) techniques, including ground-penetrating radar, light detection and ranging 

(LiDAR) distance sensors, infrared thermography, and a telescopic camera. The study 
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showed how to locate rebar and potential defects using AR technology by scanning the 

internal structure of a bridge. 

A bridge monitoring system capable of visual safety and early warning was presented by 

Deng et al. (2021) which featured a BIM-based integrated management framework linked 

with a SQL database. The technique incorporated visual warning and monitoring 

information management plug-ins using the Revit API and employed Revit as the 

primary development platform. The framework enhanced the visualization of monitoring 

data for a bridge in China and could record early warning signals and transmit them to the 

relevant personnel. 

2.4.1 Challenges of bridge health monitoring visualization 
techniques 

Long-term BHM, equipped with next-generation sensors, yields a significant amount of 

data. To undertake risk and hazard reduction promptly, high-quality data gathering from 

sensors and SID is essential. The processing, transmission, and analysis of huge amounts 

of data have been a significant barrier to the long-term monitoring of large-scale 

structures. It is not possible to monitor a significant amount of BHM data and make 

systematic decisions using only data-driven methodologies. There are few data 

management and visualization systems used in current structural inspection procedures. 

Despite the significant development of visualization techniques in BHM, several 

challenges remain:   

• The interoperability of different software pertaining to BIM, AR, and VR 

technologies and a variety of existing standards need to integrate with a wide range of 

BHM data and metadata originating from a suite of sensing technologies (e.g., 

vibration sensing, visual sensing).  

• The visualization environments or technologies lack incorporation and linkage of 

dynamic information related to SID and damage diagnostics to the adequate user 

interface of these technologies.  
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• Other practical challenges include the inability to use AR devices in bright 

conditions, limited analysis capacity, damage due to impact and moisture, mandatory 

user training, the need for frequent calibration, etc. 

2.5 Thesis Objectives 

Based on the challenges identified in the BHM literature, the key objectives of the thesis 

are as follows:  

• Develop a sparse SID technique to track the dynamic behavior of a bridge using 

ambient vibrations and a limited number of sensors (Chapter 3). 

• Develop a SID method for condition assessment of bridges subjected to moving 

vehicle-induced nonstationary vibrations (Chapter 4). 

• Develop a drive-by modal identification method using a moving instrumented vehicle 

(Chapter 5). 

• Develop a vehicle scanning method based on the CP response of a moving test 

vehicle (Chapter 6). 

• Develop a BrIM-based visualization framework for bridge infrastructure management 

(Chapter 7). 

2.6 Summary 

In this chapter, a brief overview of the traditional and modern BHM is presented, along 

with their challenges and limitations. Aging transportation infrastructure around the globe 

requires optimized maintenance programs. This is especially significant for existing 

structures that were built using antiquated design techniques, knowledge, and technology. 

Direct BHM has leveraged the advancements in sensing technologies to provide effective 

damage detection schemes using next-generation sensors. However, it cannot still use 

limited sensors and limited datasets for condition assessment and damage detection and a 

decentralized sensor network. The output-only and data-driven approaches are proposed 

to overcome these shortcomings. The proposed methods can provide an autonomous 

framework for inspecting bridges using passing vehicles. It is to be noted that chapters 3 

and 4 improve upon direct BHM by improving the existing SID methods. To create a 
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passing vehicle-based framework for bridge inspections, chapters 5 and 6 contribute to 

the advancement of indirect BHM. Chapter 7 takes one step forward from static to 

dynamic BrIM, which facilitates the representation and visualization of real-time BHM 

data. 
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Chapter 3  

3 Bridge Condition Assessment with Limited Sensors 
using an Improved Time-Varying Empirical Mode 
Decomposition 

In this chapter, a cost-effective structural condition assessment technique is proposed to 

identify the modal parameters of the bridge using a fewer number of sensors. The 

proposed method is explored not only for system identification (SID) but also for 

structural damage detection. Multi Synchro Squeezing Transform (MSST) enables a clear 

delineation of modal frequencies of the intrinsic mode functions (IMFs) (with improved 

frequency resolution) under the presence of closely-spaced and low energy frequencies, 

as well as facilitates tracking the change in frequency resulting from the structural 

damage. Such MSST-enabled automated visualization of instantaneous frequencies (IFs) 

yields accurate structural assessment even when there is a limited number of sensors. 

3.1 Introduction 

Direct bridge health monitoring (BHM) requires extensive instrumentation to collect 

responses using a large number of sensors from different locations on the bridge (Yi et al. 

2012). This direct sensing approach poses several practical challenges, such as the need 

for the closure of the bridge or highway, accidental damage to the equipment, and high 

initial costs of the sensory system, etc. Moreover, effective deployment of BHM to a 

wide number of bridges is hampered by the necessity of power, data storage, data 

transfer, and the complexity of installation (Malekjafarian et al. 2015). Blocking one or 

more lanes of the bridge for sensor instrumentation also affects the roadway capacity and 

causes traffic interruptions. The objective of this research is to alleviate these challenges 

and develop a structural condition assessment technique using fewer sensor 

measurements.   

The vibration response of a bridge due to traffic loads provides valuable information 

about the dynamic parameters such as frequency, damping, and mode shapes of the 

bridge. The measured data is primarily processed using various time-domain, frequency-
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domain, and time-frequency (TF) methods to track the variation of structural parameters 

over a long period (Perez-Ramirez et al. 2016). In the past two decades, TF methods have 

become increasingly popular, including the techniques such as Wavelet transform (WT) 

(Kankanamge et al. 2020), Wigner-Ville distributions (WVD) (Zoubi et al. 2019), Blind 

Source Separation (BSS) (Sadhu et al. 2017), Hilbert Huang Transform (HHT) (Bahar 

and Ramezani 2012), and Random Decrement Technique (RDT) (Kodestani et al. 2018). 

However, most of these methods rely on a multi-channel measurement and are not 

suitable for SID using a fewer number of sensors. 

To address the above challenge, sparse SID using a fewer number of sensors has been 

attempted in recent years (Khorram et al. 2012, Nguyen 2013, He et al. 2017). Sparse 

SID can be characterized as an underdetermined modal identification problem. Sparsity-

based methods (Hazra et al. 2012), tensor decomposition (Antoni and Chauhan 2011, 

Sadhu 2013, Sadhu et al. 2014), Hankel matrix-based method (McNeill 2013) and 

Empirical Mode Decomposition (EMD) (Barbosh et al. 2020) have been employed to 

solve this problem. In this study, a variant of EMD has been explored as a sparse SID 

technique to track the dynamic behavior of a structure using a fewer number of sensors.   

EMD is a TF signal decomposition technique that decomposes a multi-component signal 

into its simpler components or oscillatory waveforms, known as IMFs. An IMF is a 

function that satisfies the following two conditions: (a) the number of extrema and the 

number of zero-crossings has to be either equal or differ at most by one in the whole data 

set, and (b) at any point, the mean value of the envelope denoted by the local maxima and 

the local minima is zero. The procedure of extracting an IMF is called sifting, which is 

vulnerable to intermittence and separation problems and gives rise to mode-mixing. 

Recently, Barbosh et al. (2020) provided an extensive review of EMD-based structural 

health monitoring (SHM) literature, illustrating applications of EMD and its variants in a 

broad range of SID and damage detection methods. In another recent study (Lofrano et 

al. 2019), orthogonal EMD was explored for mode shape-based damage identification 

using experimental data. However, EMD frequently results in mode-mixing, which can 

be resolved using a variant of EMD, namely Time-Varying Filter-based EMD (TVF-

EMD) (Li et al. 2017). TVF-EMD uses B-spline functions, which are piecewise 
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polynomials with time-varying cut-off frequencies. With such property, TVF-EMD using 

a cluster diagram of frequencies (Lazhari and Sadhu 2019) can deal with vibration 

response to identify the structural frequencies without any mode-mixing issue in the 

modal responses. In this study, TVF-EMD is further enhanced by integrating with WT to 

identify the modal parameters and undertake damage detection using a single-channel 

nonstationary response of bridges with less user intervention. 

WT is one of the powerful TF methods that can provide good time and frequency 

resolutions of the signal. A few variants of WT, such as Continuous Wavelet Transform 

CWT), Empirical Wavelet Transform (EWT) (Yuan et al. 2017), and Wavelet Packet 

Transform (WPT) (Sadhu 2013, Plaza and Lopez 2018) have been used to detect 

anomalies and structural damage in the data. Synchro Squeezing Transform (SST) is 

another recently developed wavelet-based reallocation method (Daubechies et al. 2010) 

that yields a finer TF representation of a nonstationary multi-component signal. SST has 

shown significant potential for the identification of structural systems (Kumar et al. 2017, 

Li and Park 2017, Mahato and Chakraborty 2019, Sony and Sadhu 2020). In this study, 

an improved version of SST, MSST is integrated with TVF-EMD to improve its 

capability to track the changes in modal parameters of a nonstationary response. MSST 

consists of an iterative reassignment process that results in a sharper energy concentration 

of TF representation (Yu et al. 2019). It is proposed to integrate MSST with TVF-EMD 

such that MSST of the resulting IMFs obtained from TVF-EMD can show better energy 

concentration and suppresses the cross-terms over the TF-plane to effectively deal with 

the nonstationary signal in the presence of measurement noise, closely-spaced and low 

energy modes, and structural damage using a fewer number of sensors. 

This chapter is organized as follows. A brief background of MSST and TVF-EMD is 

presented first, followed by the formulation of the proposed method. The proposed 

method is then illustrated using various analytical and numerical simulations, followed by 

a case study using a full-scale bridge. 

3.2 Background 

In this section, a brief background of MSST and TVF-EMD is presented. 
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3.2.1 Multi-Synchro Squeezing Transform 

SST (Thakur 2015) has been recently developed to enhance the TF representation of a 

signal as an improvised version of CWT. In SST, the sparsity and localization properties 

of TF representation are combined with the invertibility of conventional TF transform. It 

can be observed that the error between the estimated and true IF increases with increasing 

non-stationarity in the signal (Yu et al. 2019). By iteratively applying multiple SST 

operations, the resulting TF energy can be concentrated in a stepwise manner. An 

improved version of SST, MSST has been recently proposed by (Yu et al. 2019), 

consisting of an iterative reassignment process, which results in sharper energy 

concentration of TF representation. Sun et al. (2019) utilized MSST for fault diagnostics 

in bearings, whereas it was explored in high-rate systems by Yan et al. (2020); however, 

it has not been yet explored for structural SID. MSST employs a Short-Time Fourier 

Transform (STFT) as a post-processing tool. STFT of a signal 𝑥(𝑡) for a real and even 

window is shown as: 

                                     𝐻(𝑡, 𝜔) = ∫ ℎ(𝑢 − 𝑡)𝑥(𝑢)𝑒−𝑖𝜔(𝑢−𝑡)𝑑𝑢
+∞

−∞
   ,           (3.1) 

where ℎ(𝑢) is the window function, and 𝜔 is the angular frequency. The SST employs a 

frequency-reassignment operator to estimate the spread of TF coefficients, which is 

expressed as: 

                                      𝐹𝑠(𝑡, 𝜂) = ∫ 𝐻(𝑡, 𝜔)𝛿(𝜂 − �̂�(𝑡, 𝜔))𝑑𝜔
+∞

−∞
   ,                 (3.2) 

where 𝛿 is the Dirac delta function and �̂�(𝑡, 𝜔) is the IF. Performing SST iteratively 

yields:  

                                𝐹𝑠
[𝑁](𝑡, 𝜂) = ∫ 𝐹𝑠

[𝑁−1](𝑡, 𝜔)𝛿(𝜂 − �̂�(𝑡, 𝜔))𝑑𝜔
+∞

−∞
   ,                    (3.3) 

 where 𝐹𝑠
[𝑁](𝑡, 𝜂) is the SST at N-th iteration for 𝑁 ≥ 2. Replacing Eq. 3.2 in Eq. 3.3 

yields (Yu et al. 2019):   

                                𝐹𝑠
[𝑁](𝑡, 𝜂) = ∫ 𝐻(𝑡, 𝜔)𝛿 (𝜂 − �̂�[𝑁](𝑡, 𝜔)) 𝑑𝜔

+∞

−∞
   ,                     (3.4) 
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where, �̂�[𝑁](𝑡, 𝜔) represents the estimate of IF at N-th iteration, which is calculated as 

(Yu et al. 2019): 

                                  �̂�[𝑁](𝑡, 𝜔) = 𝜑′(𝑡) + (
𝜑′′(𝑡)2

1+𝜑′′(𝑡)2)
𝑁

(𝜔 − 𝜑′(𝑡))   ,                      (3.5) 

where 𝜑′(𝑡) is the first-order derivative of the instantaneous phase 𝜑(𝑡) of 𝑥(𝑡). With an 

appropriate number of iterations, the estimates of IF will be closer to the true estimate 

(Yu et al. 2019). In this study, MSST is employed to track the frequency change of the 

IMFs resulting from the TVF-EMD. 

3.2.2 Time-Varying Filter Empirical Mode Decomposition 

EMD decomposes a multi-component signal into a set of oscillatory waveforms known as 

IMFs (Yang et al. 2004b). The mode-mixing problem of EMD can be dealt with using a 

time-varying filter (TVF) (Li et al. 2017). The cut-off frequency of a TVF is time-

varying, which makes it suitable for nonstationary vibration signals. In TVF-EMD, each 

signal can be estimated in B-spline space by (Li et al. 2017): 

                                               𝑏𝑣
𝑝(t) = ∑ 𝑞(𝑗)𝛽𝑝+∞

𝑗=−∞ (
𝑡

𝑣
− 𝑗)   ,                                   (3.6) 

where 𝑞(𝑗) is the B-spline coefficient, and it is enlarged by a factor of 𝑣, which is the step 

size of the knot sequence. The signal is determined by the order 𝑝, 𝑣, and 𝑞(𝑗). The B-

spline coefficients 𝑞(𝑗) are determined using the B-spline approximation that minimizes 

the approximation error. For an original signal 𝑦(𝑡), 𝑞(𝑗) is determined by minimizing 

the approximation error 𝛿𝑣
2: 

                                          𝛿𝑣
2 = ∑ (𝑦(𝑡) − {𝑞}↑𝑣 ∗ 𝑤𝑣

𝑝(𝑡))2+∞
𝑡=−∞    ,                              (3.7) 

where {−}↑𝑣 is the up-sampling operation by 𝑣. It is assumed that the filter 𝑤𝑣
𝑝(𝑡) =

𝛽𝑝 (
𝑡

𝑣
) and the asterisk denotes the convolution operator. After introducing the concept of 

B-spline approximation (i.e., revealing its low-pass filtering property), the solution of 

𝑞(𝑗) is obtained as: 
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                                                        𝑞(𝑗) = {𝑐𝑣
𝑝

∗ 𝑦}↓𝑣(𝑗)   ,                                           (3.8) 

where {−}↓𝑣 is the down-sampling operation by 𝑣 and 𝑐𝑣
𝑝
 is the pre-filter represented by: 

                                             𝑐𝑣
𝑝 = {({𝑤𝑣

𝑝 ∗ 𝑤𝑣
𝑝}↓𝑣)−1}↑𝑣 ∗  𝑤𝑣

𝑝
   .                                  (3.9) 

𝑏𝑣
𝑝(t) can be rewritten as: 

                                                  𝑏𝑣
𝑝(t) = {𝑐𝑣

𝑝 ∗ 𝑦}↓𝑣 ∗ 𝑤𝑣
𝑝(𝑡)   .                                   (3.10) 

In summary, the signal 𝑦 is first band-limited through a pre-filter 𝑤𝑣
𝑝
. Next, by a factor of 

𝑣, the band-limited signal is decimated. Finally, the approximation is reconstructed using 

a post-filter 𝑤𝑣
𝑝
. In this chapter, TVF-EMD is used to decompose a single-channel 

nonstationary response of the bridge into multiple IMFs. 

3.3 Proposed Method 

This section builds on the background of MSST and TVF-EMD provided in the previous 

section. The proposed method is formulated for analyzing vibration signals collected 

from limited sensors. Let us consider the following equation of motion of a linear and 

discrete lumped mass n degrees of freedom (DOFs) structural system subjected to a 

wideband random input force, u(t):  

                                             𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝒛(𝑡) = 𝒖(𝑡)   ,           (3.11) 

where z is the displacement response vector at different DOFs. M, C, and K are the mass, 

damping, and stiffness matrices, respectively. A state-space model with the following 

form can be used to solve the dynamical system given in Eq. (3.11): 

                                                                �̅� =  [
𝒛𝟏

𝒛𝟐
]   ,                      (3.12) 

                                                            �̇� = 𝐀𝑧̅ + 𝐁𝑢   ,                                                (3.13) 

                                                            𝒑 = �̂�𝑧̅ + 𝐃𝑢   ,                                                (3.14) 
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where A is the state matrix, B is the input matrix, �̂� is the output matrix, and D is the 

transmission matrix. Under the excitation u(t), the resulting solution can be written in 

terms of vibration modes:  

                                                                  𝒛 = 𝛗𝜼   ,                                                   (3.15) 

where z and 𝜼 are the physical and modal responses, respectively. 𝛗mxn is the mode 

transformation matrix. m and n are the number of modal responses and measurements, 

respectively. In Eq. 3.15, the measurement at the k-th DOF (k=1,2,….., m) can be shown 

as:  

                                                     𝑧𝑘(𝑡) =  ∑ 𝜑𝑘𝑗𝜂𝑗(𝑡)𝑛
𝑗=1    .                                       (3.16) 

By performing TVF-EMD of the k-th measurement 𝑧𝑘(𝑡), it can be expressed in terms of 

IMFs: 

                                                       𝑧𝑘(𝑡) =  ∑ 𝑓𝑘𝑗(𝑡)𝑛
𝑗=1    .                                        (3.17) 

By comparing Eq. 3.16 and Eq. 3.17, we get: 

                                                         𝜑𝑘𝑗𝜂𝑗(𝑡) =  𝑓𝑘𝑗(𝑡)   .                                          (3.18) 

Once the IMFs are obtained, MSST is undertaken on each IMF 𝑓𝑘𝑗(𝑡) to provide a 

precise TF representation of a nonstationary signal. MSST (Yu et al. 2019) uses a 

frequency-reassignment operator to estimate the TF coefficients, which is shown in Eq. 

3.2 where 𝐻(𝑡, 𝜔) is the STFT (Eq. 3.1) of a signal x(t). Eq. 3.2 can be written for a 

number of iterations (say, N), which gives Eq. 3.3 by performing multiple SST operations 

to achieve improved TF representation. In this way, each of the resulting IMFs obtained 

from TVF-EMD is analyzed using MSST.  For a given IMF 𝑓𝑘𝑗(𝑡) of Eq. 3.18, it can be 

written as:  

                                                         𝑓(𝑡) =  𝐴(𝑡)𝑒𝑖𝜑(𝑡)   ,                                           (3.19) 

where 𝐴(𝑡) is the instantaneous amplitude, and 𝜑(𝑡) denotes the instantaneous phase. 

Eqs. 3.4 and 3.5 can be utilized to track the IF of the IMF, as shown below:  
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                                       𝐼(𝑡, 𝜔) = ∫ ℎ(𝑢 − 𝑡)𝑓(𝑢)𝑒−𝑖𝜔(𝑢−𝑡)𝑑𝑢
+∞

−∞
   .                         (3.20)  

 

Figure 3.1: Flowchart of the proposed methodology. 

The proposed method (Singh et al. 2021) is finally illustrated using a flowchart, as shown 

in Fig. 3.1. Following the sensor instrumentation of a structural system, vibration data is 

collected using a data acquisition system. The collected data is decomposed into its IMFs 

using TVF-EMD, and the resulting IMFs are fed into MSST to track the IF. The resulting 

IMFs are used to estimate the modal damping ratio. 

3.4 Numerical Validation 

In this section, the proposed method is validated using the data originating from the 

multi-degrees of freedom (MDOF) systems. The capability of the proposed method is 

used to delineate and track the structural frequencies in the presence of closely-spaced 

and low energy frequencies, measurement noise, and structural damage using a fewer 

number of sensors. 
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3.4.1 4-DOF model 

A dynamic 4-DOF model is considered with the lumped mass values of 20 kg for each 

floor. The stiffness values for the first to the fourth floor are assumed to be 8, 7, 5, and 3 

kN/m, respectively. The natural frequencies of the 4-DOF model are 0.98, 2.4, 3.7, and 

5.2 Hz. The model is excited with the Imperial Valley earthquake at its base. Fig. 3.2 

shows the resulting Fourier spectra of vibration response of the fourth floor, illustrating 

the presence of a low energy mode (i.e., fourth mode) in the data. The proposed method 

is used for the fourth-floor and first-floor vibration responses, and the results are shown 

in Figs. 3.3 and 3.4, respectively. 

 

Figure 3.2: Fourier spectra of the fourth-floor vibration response. 

The first row of Fig. 3.3 shows the IMFs of each modal response of the fourth-floor 

vibration response resulting from TVF-EMD, while the second row of Fig. 3.3 shows 

MSST results for each of the corresponding IMFs. Fig. 3.4 shows the modal responses 

and their MSST of the first-floor vibration response. It may be observed that the TVF-

EMD has been successful in differentiating the natural frequencies using single-channel 

data obtained from both the first and fourth-floor responses. IMFs generated from TVF-

EMD are used to estimate the modal damping ratio. Fig. 3.5 shows the damping ratio 

estimation for two IMFs from the fourth-floor vibration response. Damping values are 
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calculated for IMFs from the first and fourth floors. The results are compared with the 

analytical values and are summarized in Table 3.1.   

  

Figure 3.3: Identification results from the fourth-floor vibration response. 

 

Figure 3.4: Identification results from the first-floor vibration response. 
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.  

(a)                                                               (b) 

Figure 3.5: Damping ratio estimation for (a) first, and (b) second mode of the fourth-floor 

vibration response. 

Table 3.1: Comparison of the analytical and estimated modal parameters of the 4-DOF 

model. 

Mode # Analytical  

f (Hz)/ʓ (%) 

Estimated  

f (Hz)/ʓ (%) 

  First floor Fourth floor 

1 0.98/2.1 1.0/2.1 1.0/2.0 

2 2.4/0.82 2.4/1.0 2.4/0.72 

3 3.7/0.53 3.9/0.5 4.0/0.45 

4 5.2/0.38 5.3/0.39 5.7/0.4 

3.4.2 10-DOF model 

In this section, the validity of the proposed method is tested using a 10-DOF system. The 

properties of the model are chosen to cover a wide range of dynamical characteristics of a 

flexible civil structure, such as closely-spaced and low energy frequencies. The lumped 

mass of each floor is assumed to be 1 kg, and the stiffness values from the first to the 

tenth DOF are 1.75, 1.575, 1.4, 1.225, 1.05, 0.875, 0.7, 0.525, 0.35 and 0.175 kN/m, 

respectively. The model is excited by the Imperial Valley earthquake at its base. Fig. 3.6 

shows (a) time-history, and (b) MSST results of the first-floor vibration response. Fig. 3.6 

(b) also illustrates the presence of closely-spaced frequencies in the data. MSST results 
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show how the individual frequencies of the 10-DOF system evolve in the raw data; 

however, the individual IMFs are now analyzed using the proposed method.  

 

(a)                                                              (b) 

Figure 3.6: (a) Time history, and (b) MSST results of the first-floor vibration response. 

Fig. 3.7 is generated by combining TVF-EMD and MSST results for the first-floor 

vibration response. The first and third rows of Fig. 3.7 show the IMFs containing the 

modal frequencies that are separated using TVF-EMD. The second and fourth rows 

contain MSST results that are developed using the IMFs resulting from TVF-EMD.   
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Figure 3.7: Identification results for the first-floor vibration response. 

Similarly, Fig. 3.8 shows the TVF-EMD and MSST results for the fifth-floor vibration 

response. The first and third rows of Fig. 3.8 show the IMFs generated by TVF-EMD for 

each modal frequency of the 10-DOF model. Those IMFs are utilized in the next step to 

show the frequency evolution using MSST in the second and fourth rows of Fig. 3.8.  
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Figure 3.8: Identification results for the fifth-floor vibration response. 

To compare the performance of the proposed method against noise contamination, 5%, 

and 10% measurement noise is added to the first-floor vibration response. Fig. 3.9 shows 

the MSST results for the first-floor vibration response with (a) 5% measurement noise 

and (b) 10% measurement noise, showing the insensitivity of MSST to the level of 

measurement noise. Vibration data collected under various levels of measurement noise 

is summarized in Table 3.2, in which the natural frequency for each mode of the 10-DOF 

model is tabulated under different levels of measurement noise. 
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Figure 3.9: MSST results of the first-floor vibration response with (a) 5%, and (b) 10% 

measurement noise. 

Table 3.2: Frequency values identified with different levels of measurement noise. 

Mode # 0% Noise 
  f (Hz) 

5% Noise 
  f (Hz) 

10% Noise 

  f (Hz) 

1 0.76 0.76 0.76 

2 1.78 1.78 1.78 

3 2.83 2.83 2.83 

4 3.89 3.89 3.89 

5 4.95 4.95 4.95 

6 6.09 6.09 6.09 

7 7.22 7.22 7.22 

8 8.45 8.45 8.43 

9 9.89 9.89 9.89 

10 11.53 11.53 11.53 

Once the modal responses or IMFs are obtained from a single channel measurement 

using TVF-EMD, the autocorrelation function of modal responses is used to extract the 

modal damping ratio. Fig. 3.10 shows the estimation of the damping ratio as obtained 

from the IMFs of vibration response of the first floor. The variation in frequency and 

damping ratio has been further investigated among the first and fifth-floor vibration 

responses in the presence of 10% measurement noise. The data relating to frequency and 

damping ratio has been summarized in Table 3.3. Although the frequency estimates 

merely change with the change in sensor location, there are variations in modal damping 
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ratio across different measurements as the damping estimates are often sensitive 

(Adhikari 2007) to the amplitude of the autocorrelation functions of modal responses of 

two different sensor locations and the random measurement noise. 

 

(a)                                                          (b) 

Figure 3.10: Damping ratio estimation for (a) first, and (b) second mode of the first-floor 

vibration response. 

Table 3.3: Modal identification results for the 10-DOF model with 10% measurement 

noise. 

Mode # 1st floor 
f (Hz)/ʓ (%) 

5th floor 

f (Hz)/ʓ (%) 

1 0.76 (3.2) 0.78 (2.3) 

2 1.78 (3.5) 1.78 (2.5) 

3 2.83 (2.1) 2.83 (1.8) 

4 3.89 (0.96) 3.89 (1.1) 

5 4.95 (0.62) 4.95 (0.7) 

6 6.09 (1.4) 6.09 (1.5) 

7 7.22 (0.75) 7.22 (0.6) 

8 8.43 (1.4) 8.45 (1.1) 

9 9.89 (1.67) 9.89 (1.5) 

10 11.53 (0.31) 11.53 (0.4) 

3.5 Full-Scale Validation 

In this section, a full-scale bridge under different damage conditions is used to evaluate 

the performance of the proposed method. 
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3.5.1 Details of full-scale validation 

The Z24 ridge (Kramer et al. 1999) was a highway overpass connecting Utzenstorf to 

Koppigen in Switzerland. It was a post-tension concrete bridge consisting of three spans 

with an overall length of 58 m and two lines. The length of the middle span was 30 m, 

and the two side spans were 14 m. As shown in Fig. 3.11, both end abutments were made 

up of triplet columns connected to the girder, while two intermediate concrete piers were 

rigidly clamped to the main girder. The original bridge was built in 1963 and was 

eventually destroyed in 1998 to build a new one with a larger side span as a part of a new 

railway infrastructure project. This bridge has many progressive damage cases, forming a 

good database for the proposed research. Moreover, this bridge has been used by many 

researchers (Maeck et al. 2001, Kullaa 2003, Masciotta et al. 2016) in the past.  

 

Figure 3.11: Elevation and plan view of the Z24 bridge. 
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A progressive damage test was conducted to study the effect of different damage 

scenarios on the dynamic behavior of the Z-24 Bridge. Ambient and forced vibration tests 

were carried out before and after each damage scenario. A complete description of the 

damage scenarios can be found in (Kramer et al. 1999). Two shakers (1 kN and 0.5 kN) 

were placed in two locations of the bridge to implement forced vibration tests. The bridge 

was divided into several grids on the bridge deck and on two supports for installing 

sensors, which resulted in 291 DOFs being measured. Therefore, the data were collected 

in nine different setups since the number of available accelerometers was less than the 

number of degrees of freedom (i.e., an ideal example of limited sensor measurements). 

The sampling frequency used in the study was 100 Hz. Results obtained using the 

proposed methods are discussed in the next section.  

3.5.2 Identification results 

In this study, the forced vibration data of two sensors are selected to assess the dynamic 

properties of the bridge subjected to two discrete damage cases. The recorded vertical 

accelerations of sensor 221 (from setup 5) and sensor 229 (from setup 7) are analyzed 

using the proposed method, which is indicated in Fig. 3.12. To capture the effect of 

structural damage on the dynamic characteristics of the bridge, the stage #1 and #7 are 

selected. Stage #1 represents the undamaged condition of the bridge, whereas stage #7 

shows the damaged state of the bridge after the tilt of the foundation (Kramer et al. 

1999).  
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Figure 3.12: Schematic of the sensor locations and various setup configurations. 

Fig. 3.13 shows the data related to stage 1 of sensor #229. Fig. 3.13 shows (a) time-

history, and (b) Fourier spectra of the vibration response. Furthermore, Fig. 3.13 shows 

(c) SST, and (d) MSST results of the vibration response from stage #1 of sensor #229, 

respectively, and demonstrate that MSST outperforms SST in terms of resolution and 

accurate TF representation.  

 

(a)                                                     (b) 
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(c)                                                    (d) 

Figure 3.13: (a) Time history, (b) Fourier spectra, (c) SST, and (d) MSST results for 

vibration response of sensor #229 (Stage 1). 

A comparison has been performed between the undamaged and damaged stages for two 

sensor responses. Fig. 3.14 shows the identification results for the vibration response of 

sensor #229 of stage #1, showing the undamaged conditions. The first row of Fig. 3.14 

shows the IMFs generated by TVF-EMD, and the second row shows the MSST results 

generated using those IMFs. Fig. 3.15 shows the identification results of vibration 

response for sensor #229 of stage #7, showcasing damaged conditions. The frequency 

estimates from Figs. 3.14 and 3.15 are summarized in Table 3.4, in which it is evident 

that the frequency values are reduced from stage #1 to #7 due to the initiation of 

structural damage.   
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Figure 3.14: Identification results for vibration response of sensor #229 (Stage 1). 

 

Figure 3.15: Identification results for vibration response of sensor #229 (Stage 7). 

Another sensor is chosen from a different setup for comparison of damaged and 

undamaged states. Fig. 3.16 shows the identification results of measured data from stage 

#1 of sensor #221 in which the first row shows the TVF-EMD results, and the second 

row shows the MSST results. Similarly, the results for stage #7 of sensor #221 are shown 

in Fig. 3.17. The first row of Fig. 3.17 shows the IMFs generated by TVF-EMD, and the 

second row shows the MSST results for the vibration response of the damaged state. 

Using the autocorrelation function, IMFs generated from TVF-EMD are utilized to 

estimate the damping ratios for the sensor data. A detailed comparison is performed using 

the frequency and damping ratio obtained from the Finite Element Modeling (FEM) 

method (Brincker et al. 2001b) and sensor data. Table 3.4 contains the FEM and 

identification results obtained from the measured data with undamaged and damaged 
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conditions, showing the efficiency of the proposed method under both undamaged and 

damaged states. It may be observed that the proposed method performed well despite the 

presence of closely-spaced frequencies in the data. 

 

Figure 3.16: Identification results for vibration response of sensor #221 (Stage 1). 

 

Figure 3.17: Identification results for vibration response of sensor #221 (Stage 7). 

Table 3.4: Comparison of identification results from two stages. 

Mode # Stage #1 (undamaged) Stage #7 (damaged) 

 

FEM 

 f (Hz)/ʓ (%) 

Sensor #221 

f (Hz)/ʓ (%) 

Sensor #229 

f (Hz)/ʓ (%) 

FEM 

f (Hz)/ʓ (%) 

Sensor #221 

f (Hz)/ʓ (%) 

Sensor #229 

f (Hz)/ʓ (%) 

1 3.88/0.85 3.95/0.76 3.95/0.7 3.84/0.75 3.90/0.86 3.75/0.77 

2 5.02/1.4 4.7/1.42 4.7/1.38 4.65/1.74 4.40/1.76 4.55/1.77 

3 9.83/1.21 9.9/1.32 9.9/1.33 9.71/1.23 9.70/1.28 9.55/1.30 

4 10.28/1.23 10.45/1.28 10.45/1.2 10.16/1.12 10.25/1.13 10.25/1.25 
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5 12.70/1.17 12.85/1.3 12.85/1.5 12.11/1.7 12.55/1.78 12.2/1.75 

6 13.48/0.86 13.9/0.8 13.9/0.75 13.13/1.73 13.15/1.64 13.7/1.5 

3.6 Summary 

In this study, a wavelet-based TVF-EMD method is proposed to identify modal 

parameters of structures using a fewer number of measurements. The proposed method is 

validated using a suite of numerical and full-scale studies. The results show that the 

proposed method can identify the modal parameters under the various levels of 

measurement noise, closely-spaced and low energy frequencies, and damages using a 

limited number of measurement channels. The full-scale study reflects the capability of 

the proposed method to identify the modal parameters under the damaged condition with 

reasonable frequency resolution.  
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Chapter 4  

4 An Integrated Time-Frequency Damage Detection 
Method using Vehicle-induced Nonstationary Response 

In this chapter, a limited sensing-based novel bridge health monitoring (BHM) technique 

is proposed for bridge condition assessment using vehicle-induced vibration responses. It 

is shown that the proposed method can successfully identify the time-varying modal 

frequencies of the bridge in both Finite Element Modeling (FEM) study and full-scale 

study using a limited number of sensors. In this chapter, the evaluation of the dynamic 

behavior of a bridge has been attempted only under traffic loading conditions. The effect 

of environmental conditions on the bridge dynamics and damage identification is not 

considered in this study. 

4.1 Introduction 

In the majority of BHM studies, conventional monitoring requires extensive 

instrumentation and actuation along the bridge. Depending on the length of the bridge or 

underneath water bodies, this approach has several practical challenges, such as the risk 

of accidental damage to equipment, extravagant initial equipment cost, accessibility, and 

obligation for bridge closures. Moreover, in existing techniques, vibration data is 

collected by exciting the bridge using ambient and forced vibration. However, ambient 

vibrations are produced using wind loads that may not be able to excite a stiff bridge with 

adequate participation of all key modes and are often contaminated with measurement 

noise. Forced vibration is used to excite the bridges to collect vibration data and is 

conventionally achieved using hydraulic actuators, impact hammers, or human-induced 

excitation. However, depending on the length of the bridge, more than one actuator may 

be required, which leads to significant serviceability issues in the bridge and potentially 

increases the maintenance budget to the bridge owners. Acquiring bridge vibrations using 

a moving load (i.e., a moving vehicle) is another active research topic of BHM (Yang and 

Yang 2017, Zhu et al. 2019). In these cases, the probability of collecting a noisy signal is 

significantly reduced since the data is collected only for the duration when the vehicle is 

traveling over the bridge, causing active motion of the bridge (Arjomandi and Araki 
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2019). Moreover, the process of bridge excitation becomes inexpensive since it can be 

achieved through ongoing traffic, and the data can be easily acquired when the vehicles 

remain on the bridge.  

Recently, Cantero and Gonzalez (2015) proposed a damage detection technique for short 

to medium-span bridges using weigh-in-motion (WIM) technology. The authors 

compared a pavement-based WIM station with a bridge-based WIM system. The ratio of 

estimated vehicle weights at different bridge locations allowed the distinguishing 

between global and local damage making the damage localization possible.  In another 

study, OBrien et al. (2015) used a novel approach of moving force identification to 

estimate the deterioration of the bridge. The authors used the weigh-in-motion data from 

two axles of a vehicle and detected structural damage using deflection data of the bridge 

subjected to the traffic. Aied et al. (2016) used ensemble Empirical Mode Decomposition 

(EMD) for damage detection by identifying the stiffness changes due to rough profiles, 

high vehicle speeds, and noisy signals. For the load rating of reinforced concrete slab 

bridges, Bagheri et al. (2018) proposed a method based on structural monitoring and non-

destructive approaches. Li et al. (2018) investigated the dynamic performance of a curved 

continuous truss girder bridge under moving vehicles by combining field testing and 

numerical simulations. The dynamic characteristics and vehicle ride comfort were tested 

using moving test vehicles. It was concluded that the dynamic impact factors varied 

significantly among the bridge components. 

In another vein, Meng et al. (2018) investigated vehicle-bridge interactions and proposed 

a new method for assessing bridge conditions based on nonlinear vibration analysis. A 

five-span bridge was instrumented with accelerometers and was excited by a truck. The 

nonlinear dynamic characteristics were identified using Lyapunov exponents, which can 

be utilized to identify damage-sensitive features for BHM. To improve the sensor 

requirements, Nie et al. (2019) proposed a method to detect the structural damage of 

bridges subjected to moving loads. The cross-correlation was calculated using the 

windowed pair time-series extracted from the two measured responses and was used as a 

local damage index. Taking into account the bridge-vehicle interaction, Pagnoncelli and 

Miguel (2019) determined the dynamic response of a bridge due to the moving load 
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caused by vehicles traveling over rough pavement. Synchronous identification of 

structural damage and vehicle loads was attempted by Zhang et al. (2020) using long-

gauge fiber Bragg grating sensors on a bridge. The effectiveness of the approach was 

validated using a numerical case study and a laboratory experiment. However, the 

dynamic behavior of bridges under moving vehicular loads gives rise to a time-varying 

system. The effect of various parameters such as vehicle speed, vehicle size, sensor 

location, structural damage, etc., on such a system, remains a challenge. Furthermore, the 

bridge vibrations due to moving vehicles last for a short duration (Kaloop et al. 2020, 

Obrien et al. 2020, Tian and Zhang 2020). The use of limited sensors to capture such 

short-duration vehicle-induced excitation and the performance of the modal identification 

of the bridge has not been fully explored.   

The objective of this chapter is to develop a system identification (SID) method that can 

utilize fewer sensor measurements of a bridge when subjected to moving loads. 

Traditional SID methods assume the vibration signal to be linear and stationary (Ma et al. 

2005). This assumption does not hold well for nonstationary signals collected from aging 

bridges, which are subjected to random excitation ranging from time-varying traffic load, 

high-intensity wind, and earthquakes (Entezami and Shariatmadar 2019). Time-frequency 

(TF) decomposition-based SID can provide a picture of the signal both in the time and 

frequency domain for time-varying systems. Some of the popular TF methods, such as 

Wavelet Transform (WT) (Douka et al. 2003, Loutridis et al. 2004, Sadhu et al. 2013), 

Blind Source Separation (BSS) (Sadhu et al. 2017), and EMD (Barbosh et al. 2020) are 

explored for structural SID using ambient vibration responses. Lazhari and Sadhu (2019) 

explored Time-Varying Filter (TVF)-based EMD (another variant of EMD) for modal 

identification under stationary and ambient loading conditions. This approach was 

illustrated using a decentralized framework of wireless sensors using a suite of numerical, 

experimental, and full-scale studies. Although MSST offers better TF resolution than any 

standard WT, it requires an appropriate selection of the iteration number, which involves 

significant user intervention (Yan et. al. 2020). Moreover, the capability of TVF-EMD to 

undertake damage detection using nonstationary vehicle-induced vibrations has not been 

explored yet.  
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To alleviate the above challenges, an integrated TF method is proposed to undertake 

bridge condition assessment using a fewer number of sensors. The novelty of this chapter 

lies in the SID of a bridge from moving-vehicle-induced nonstationary data obtained 

from limited sensors. In addition, the sensitivity study of various vehicular parameters 

such as vehicle speed, vehicle size, presence of multiple vehicles, the extent of structural 

damage, etc., on damage identification constitutes the main contribution of this study. 

First, TVF-EMD is used to analyze the fewer measurements and identify the modal 

responses of the bridge, and then, a feature extraction tool, Synchro Extracting Transform 

(SET), is employed to extract the time-varying features of the signal containing vehicle-

bridge dynamics. Unlike MSST, SET is free of pre-selection of iteration numbers, which 

enables the condition assessment autonomous in nature.   

This chapter is organized as follows. After introducing the concepts of moving vehicle-

based BHM and the associated practical challenges, the proposed idea is briefly 

explained in this section. In Section 4.2, a brief background of SET is provided. The 

proposed method is presented next in Section 4.3. In Section 4.4, the analytical study 

illustrates results for vehicles traveling over a bridge at different speeds. The Finite 

Element (FE) study in Section 4.5 shows the effect of the sensor location, vehicle speed, 

vehicle model, presence of multiple vehicles, and the effect of structural damage in a 

bridge. Lastly, a full-scale bridge is analyzed using the proposed method in Section 4.6, 

followed by key conclusions in Section 4.7.  

4.2 Background 

A brief background of SET is provided in this section.   

4.2.1 Synchro-Extracting Transform 

TVF-EMD, as explained in section 3.2.2, decomposes a signal into its mono-component 

signals; however, the resulting signals cannot track the time-varying bridge frequency 

over time as a vehicle travels over the bridge. Therefore, after the signal decomposition 

using TVF-EMD, a TF method is required that can provide information about the time-

varying frequencies of vehicle-bridge dynamics. Synchro Squeezing Transform (SST), a 

special form of WT (Yan et al. 2020), squeezes all TF coefficients of the instantaneous 
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frequency (IF) trajectories. Unlike the squeezing operation over entire trajectories of IFs, 

SET retains only the TF information that is most related to time-varying features and 

eliminates any smeared region of TF representation (Yu et al. 2017). Therefore, SST has 

lesser TF resolution when it is used to reconstruct the key components of a nonstationary 

signal, while SET results in more energy-concentrated TF results compared to any other 

TF analysis (Li et al. 2020, Yu and Lin 2020).  

Short-Time Fourier Transform (STFT) representation 𝑆𝑒(𝑡, 𝜔) of the signal 𝑥(𝑡) can be 

derived by using the first-order approximation form: 

                                    𝑆𝑒(𝑡, 𝜔) ≈ ∑ 𝐴𝑖(𝑡) ∗ ℎ̂

𝐾

𝑖=1

(𝜔 − 𝜔𝑖(𝑡))𝑒𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡   ,                       (4.1) 

where 𝜔 is the angular frequency and ℎ̂ represents the Fourier Transform (FT) of the 

window function. The IF is represented by: 

𝜔(𝑡) = ∑ 𝜔𝑖(𝑡)

𝐾

𝑖=1

=  −𝑗 ∗
𝜕𝑆𝑒(𝑡, 𝜔)

𝑆𝑒(𝑡, 𝜔)
   .                                 (4.2) 

Yu et al. (2017) proposed to retain only the TF information that is highly correlated with 

the IF of the data and eliminate the effect of random noise that may be present in the data. 

A Dirac delta function is initiated to represent the TF representation of the signal along 

with the key IF: 

                   𝑆𝐸𝑇𝑒(𝑡, 𝜔) =  𝑆𝑒(𝑡, 𝜔) ∗ 𝛿2(𝜔 − 𝜔𝑖(𝑡))  ,                               (4.3) 

where 𝛿2(𝜔 − 𝜔𝑖(𝑡)) is termed as the synchro-extracting operator, and is represented as:  

                                              𝛿2(𝜔 − 𝜔𝑖(𝑡)) = {
1, 𝜔 = 𝜔𝑖(𝑡)  

0, 𝑒𝑙𝑠𝑒
   .                                    (4.4) 

It is shown that SET yields a more energy-concentrated TF representation than SST (Yu 

et al. 2017); thereby, the TF resolution is enhanced while the effect of measurement noise 

is significantly reduced. Recently, Li et al. (2020) compared the performance of SET 
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with the Fourier-based SST, where the authors concluded that SET is more concentrated 

with fewer cross-terms, and it is less sensitive to its window parameter. In this method, 

SET is used to analyze the IMFs resulting from TVF-EMD to track the vehicle and 

bridge frequencies. The applicability of SET is illustrated using a frequency-modulated 

signal (similar to a bridge response subjected to moving vehicles), as shown in Fig. 4.1. 

The data contains a signal with a frequency of 3 Hz and a frequency modulation of 1 Hz. 

Fig. 4.1 shows (a) the modulated signal, and (b) its SET results, indicating a clear 

decomposition of the frequency-modulated signal with a mean frequency of 3 Hz and 

modulation of 1 Hz. 

 

                                     (a)                                                                 (b)  

Figure 4.1: (a) Time history, and (b) SET result of the frequency modulated signal. 

4.3 Proposed Method 

After illustrating a brief background of TVF-EMD and SET, the proposed methodology 

is presented in this section. Consider a linear with n degrees of freedom (DOFs), damped 

and discrete lumped-mass structural system, subjected to a random input force, u(t):  

                                             𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝑦(𝑡) = 𝐮(𝑡)   ,                                       (4.5) 

where M, C, and K are mass, damping, and stiffness matrix, respectively, and y(t) is a 

displacement response vector at various available DOFs. A state-space model can be used 

to find the solution for a dynamical system given above: 
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                                                                �̅� =  [
𝑦1

𝑦2
]   ,                                                           (4.6) 

                                                              �̇� = 𝐀y̅ + 𝐁u   ,                                                       (4.7)                                                                          

                                                                     𝐩 = �̂�y̅ + 𝐃u   ,                                                       (4.8) 

where A is the state matrix, B is the input matrix, �̂� is the output matrix, and D is the 

feedback matrix. Under excitation u(t), the resulting solution can be written in terms of 

expansion of vibration modes: 

                                                                 𝐲 = 𝛗η   ,                                                             (4.9) 

where y and 𝛈 are response and mode shape matrix, respectively. 𝛗mxn is the mode 

transformation matrix. n and m are the number of modal responses and measurements, 

respectively. The measurement at k-th DOF (k=1,2,….,m) from the above equation can be 

expressed as:  

𝑦𝑘(𝑡) =  ∑ 𝜑𝑘𝑗𝜂𝑗(𝑡)

𝑛

𝑗=1

   .                                           (4.10) 

TVF-EMD is capable of eliminating the mode-mixing or end-effects under the presence 

of closely spaced modes or measurement noise. This method performs local cut-off 

filtering where a signal is filtered and decomposed into narrowband components called 

intrinsic mode functions (IMFs). By performing TVF-EMD of the k-th measurement yk(t) 

in terms of IMFs (i.e., ikj), one can get: 

𝑦𝑘(𝑡) =  ∑ 𝑖𝑘𝑗(𝑡)

𝑛

𝑗=1

   .                                              (4.11) 

From Eqs. 4.10 and 4.11, we get: 

 𝑖𝑘𝑗(𝑡) = 𝜑𝑘𝑗𝑛𝑗(𝑡)   .                                                (4.12) 

Normalized mode shape ordinates for k-th DOF w.r.t. n-th DOF can be calculated using 

the ratio of Eq. 4.12 for k-th and n-th DOF: 
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𝑖𝑘𝑗

𝑖𝑛𝑗
=  

𝜑𝑘𝑗𝜂𝑗(𝑡)

𝜑𝑛𝑗𝜂𝑗(𝑡)
=  

𝜑𝑘𝑗

𝜑𝑛𝑗
=  𝜑𝑘�̂�   .                                   (4.13) 

A multicomponent amplitude and frequency-modulated signal 𝑖𝑘𝑗(𝑡) can also be written 

in the following form: 

                                                𝑖𝑘𝑗(𝑡) =  ∑ 𝐴𝑘(𝑡)𝑒2𝑖𝜋𝜙𝑘(𝑡)𝐾
𝑘=1    .                                 (4.14) 

By applying Eqs. (4.1-4.3) to the IMF from Eq. 4.14, we get:  

                                         𝑆𝐸𝑇𝑖(𝑡, 𝜔) =  𝑆𝑖(𝑡, 𝜔) ∗ 𝛿2(𝜔 − 𝜔𝑖(𝑡))   .                            (4.15) 

Fig. 4.2 shows the framework for the proposed methodology (Singh and Sadhu 2021). 

The measured signal is decomposed using TVF-EMD followed by SET to extract the IFs 

of the structure and track the structural frequencies.  

 

Figure 4.2: Framework of the proposed BHM method. 

4.4 Numerical Study 

To simulate the dynamic characteristics of the coupled vehicle-bridge system, a 

mathematical model is adopted, as shown in Fig. 4.3 (Yang and Lin 2005a). Consider a 

simply supported beam subjected to a vehicle load moving at speed 𝜐. The vehicle is 

modeled as a lumped mass 𝑚𝑣 supported by a spring of stiffness 𝑘𝑣 and the effective 

damping of the suspension system is neglected. The beam is assumed to be of the 

Bernoulli-Euler type with a constant cross-section. Only a single moving vehicle is 
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considered to travel on the beam, and the mass of the vehicle is assumed to be small 

compared to the bridge. The inertial effect of the vehicle is neglected. The vehicle 

traverses over the beam of length 𝐿 at a constant speed. The beam is assumed to have a 

constant mass density �̅� per unit length and a constant flexural rigidity 𝐸𝐼. 

 

Figure 4.3: Schematic of the vehicle traveling along a simply supported beam. 

The mass and stiffness of the vehicle are 1200 kg and 500 kN/m, respectively (Yang and 

Lin 2005a). The simply supported beam has a length of 25 m and a mass density of 4800 

kg/m. Young’s modulus of elasticity, E for the beam is 2.75 x 1010 N/m2, and the moment 

of inertia, 𝐼 for the beam is 0.12 m4. The frequency of vibration of the n-th mode of the 

bridge is given by:   

𝜔𝑏𝑛 =
𝑛2𝜋2

𝐿2
√

𝐸𝐼

�̅�
   ,                                               (4.16) 

𝑓𝑏𝑛 =
𝜔𝑏𝑛

2𝜋
   .                                                     (4.17) 

The frequency of vibration of the vehicle is as follows: 

𝜔𝑣 = √
𝑘𝑣

𝑚𝑣
   .                                                     (4.18) 

The expression for driving frequency 𝜔𝑑 can be given as: 

𝜔𝑑 =
𝑛𝜋𝑣

𝐿
   .                                                      (4.19) 
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The non-dimensional speed parameter Sn is given by: 

𝑆𝑛 =
𝑛𝜋𝑣

𝐿𝜔𝑏𝑛
   .                                                     (4.20) 

The static deflection caused by the vehicle w.r.t the n-th mode, Δ𝑠𝑡𝑛 is given by: 

∆𝑠𝑡𝑛=
−2𝑚𝑣𝑔𝐿3

𝑛4𝜋4𝐸𝐼
   .                                                (4.21) 

The displacement response of the beam to a moving vehicle at speed v is: 

𝑢(𝑥, 𝑡) = ∑
∆𝑠𝑡𝑛

1 − 𝑆𝑛
2

𝑛

{sin
𝑛𝜋𝑥

𝐿
[sin

𝑛𝜋𝑣𝑡

𝐿
− 𝑆𝑛 sin 𝜔𝑏𝑛𝑡]}   .           (4.22) 

By differentiating 𝑢(𝑥, 𝑡) twice w.r.t time t, the acceleration response of the beam can be 

obtained as (Yang and Lin 2005a):  

      �̈�(𝑥, 𝑡) =  ∑
Δ𝑠𝑡𝑛

1 − 𝑆𝑛
2

𝑛

{sin
𝑛𝜋𝑥

𝐿
[(𝜔𝑏𝑛

2 𝑆𝑛)sin 𝜔𝑏𝑛𝑡 − (
𝑛𝜋𝑣

𝐿
)

2

sin 𝜔𝑏𝑛𝑡]}  .  (4.23) 

When the sensors are installed on the beam, the beam response is dominated by the 

natural frequencies as compared to vehicle frequencies. The acceleration responses are 

simulated using Eq. 4.23 at the quarter-span length of the beam, and the Fourier spectra 

of the simulated acceleration responses for a vehicle traveling at (a) 60, (b) 80, and (c) 

100 km/h are shown in Fig. 4.4. The acceleration amplitude, most notably in the first few 

modes, increases as the speed of the vehicle increases. Also, the relatively smaller peaks 

at the beginning of all three plots corresponding to driving frequencies provide an idea 

about vehicle speed. The estimated values of driving frequencies for 60 km/h are 0.3 and 

0.7 Hz, and for 100 km/h are 0.6 and 1.1 Hz, respectively. Analytical values for driving 

frequencies (𝑓𝑑) are calculated using Eq. 4.19 and are 0.33, and 0.67 Hz for 60 km/h and 

0.55 and 1.1 Hz for 100 km/h. Since the estimated values are close to analytical values, 

therefore, theoretically, it is feasible to detect the speed of the vehicle if the bridge 

response is recorded and processed in real-time.  
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(a)                                      (b)                                       (c) 

Figure 4.4: Fourier spectra of the acceleration response of the beam for vehicle speed of 

(a) 60 km/h, (b) 80 km/h, and (c) 100 km/h. 

The proposed method is employed to decompose the data, as shown in Fig. 4.5. Fig. 4.5 

shows (a-d) the TVF-EMD results, and (e-h) SET results of the beam response for a 

vehicle traveling at 80 km/h. It can be seen that the combination of TVF-EMD and SET 

can separate the closely spaced vehicle frequency content of acceleration data (i.e., 0.4 

and 0.9 Hz), as shown in Figs. 4.5 (e-f). The analytical value of driving frequency, 

according to Eq. 4.19, is 0.44 and 0.88 Hz. It is also seen that the vehicle excites the low-

frequency modes more compared to higher-frequency modes, which are excited for only 

a shorter duration, as reflected in Fig. 4.5 (h). As shown in SET, the active period reduces 

with higher modes, which cannot be observed from the Fourier spectra of the IMFs.    

 

                                            (a)                       (e)            
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                                            (b)                                                       (f) 

 

                                             (c)                                                      (g)                       

 

                                           (d)                                                        (h) 



61 

 

Figure 4.5: (a-d) Fourier spectra, and (e-h) SET results of the first four IMFs of the 

acceleration response of the beam for vehicle speed of 80 km/h. 

Table 4.1: Comparison of the analytical and identified frequencies of the beam subjected 

to vehicle-induced load. 

Mode # 𝒇𝒃𝒏 (Hz) �̂�𝒃𝒏 (Hz) 

  𝒗 = 𝟔𝟎 𝐤𝐦/𝐡        𝒗 = 𝟖𝟎 𝐤𝐦/𝐡        𝒗 = 𝟏𝟎𝟎 𝐤𝐦/𝐡  

1 2.08 2.1 2.1 2.1 

2 8.33 8.3 8.3 8.3 

3 18.76 18.7 18.7 18.7 

4 33.35 31.3 31.3 31.3 

The identification results obtained from Fig. 4.5 are reported in Table 4.1. The estimated 

frequencies (𝑓𝑏𝑛) calculated from the SET coincide with the analytical values of the 

natural frequencies (𝑓𝑏𝑛) calculated using Eq. 4.17.  

4.5 Finite Element Study 

The FEM model of a bridge is used to study the effect of various parameters of a vehicle 

traveling over a bridge. A reinforced concrete bridge of 100 m length consisting of three 

spans is used in this study. Frame elements are used to model the beams and columns. 

Fixed supports are used at the bottom of the columns, which restrict the translations as 

well as rotations along with all three directions. The bridge is subjected to dead load, live 

load, and moving load. No other lateral loads, such as wind and seismic loads, are 

considered. Fig. 4.6 (a) shows the schematic of the bridge, which is made up of 35 MPa 

concrete. Each span is 33 m in length, and the height of the pier is 4m. The typical cross-

section A-A of the bridge is 500 mm in height and 300 mm in width and is shown in Fig. 

4.6 (b). FEM beam contains discretized beam elements of 0.1 m in length. The bridge is 

excited using moving vehicles of different classes and sizes provided by AASTHO 

standards. A typical time history of the bridge acceleration response due to the non-

overlapping presence of multiple moving vehicles is shown in Fig. 4.7. The first four 

natural frequencies of the bridges are obtained as 1.43, 3.24, 4.10, and 7.87 Hz, 

respectively. TVF-EMD and SET are utilized to analyze acceleration responses generated 

from different configurations of passing vehicles and compare the identified frequencies 

with the above analytical values.  
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(a)                                                          (b) 

Figure 4.6: (a) Schematics of the FEM bridge, and (b) cross-section A-A of span 2. 

 

Figure 4.7: Typical time history of the bridge acceleration response. 

4.5.1 Effect of sensor location 

The effect of sensor location is investigated in this study to gain insight into the 

optimization of sensor instrumentation. A heavy vehicle (AASTHO HS20) traveling at 80 

km/h passes over the bridge, and the corresponding acceleration response is analyzed at 

quarter-length and mid-length of spans 1 and 2. Fig. 4.8 shows the Fourier spectra of (a) 

quarter-length, and (b) mid-length responses. By comparing Figs. 4.8 (a) with (b), it is 

evident that the first mode has higher amplitude (i.e. higher energy) at mid-length as 

compared to quarter-length, while the second or third modes have higher energy in 

quarter-length acceleration response. Therefore, sensor location at the mid-span remains 

important to capture the first mode. In the acceleration response of the mid-span, which is 
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denoted by the blue line in Figs. 4.8 (a) and (b), more natural frequencies are excited as 

compared to span 1.  

 

    (a)                                                         (b) 

Figure 4.8: Fourier spectra of bridge response at (a) quarter-span length, and (b) mid-span 

length for vehicle speed of 80 km/h. 

Fig. 4.9 shows (a-b) the TVF-EMD results, and (c-d) SET results for the quarter-length 

response. Mode-mixing with the first two modes can be seen in Fig. 4.9 (a). Fig. 4.10 

shows (a-b) the TVF-EMD results, and (c-d) SET results for the mid-length response. 

Contrary to Fig. 4.9, Fig. 4.10 shows a lower number of modes and a higher and 

continuous energy profile for the first mode. The identification results from Fig. 4.9 are 

shown in Table 4.2. Depending on sensor locations, some of the resonant frequencies of 

the bridge have low (e.g., nearly zero) energy (as shown in Fig. 4.8) in the respective 

sensors, which are not identified in Table 4.2. More modes of vibration or higher 

frequencies can be seen in the mid-length of the mid-span response. Therefore, any 

responses analyzed further will be focused on that specific location. 
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(a) (b)  

  

(c)                                                              (d) 

Figure 4.9: (a-b) TVF-EMD results, and (c-d) SET results for the bridge response at 

quarter-span length of span 2. 
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(a)                                                               (b) 

 

                                      (c)                                                                 (d) 

Figure 4.10: (a-b) TVF-EMD results, and (c-d) SET results for the bridge response at the 

mid-span length of span 2. 

Table 4.2: Frequency values identified from span 1 and span 2. 

Mode # f (Hz) v = 80 km/h 0.25L v = 80 km/h 0.5L 

  Span 1 Span 2 Span 1 Span 2 

1 1.433 1.42 1.44 1.44 1.44 

2 3.24 3.24 3.24 - 3.24 

3 4.10 4.08 4.08 4.08 4.08 

4 7.87 7.96 7.72 7.96 7.72 
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4.5.2 Effect of vehicle speed 

To simulate the effect of vehicle speed, the same truck (AASTHO HS20) used in section 

4.5.1 is used to excite the bridge traveling at 40 and 100 km/h, and acceleration responses 

from mid-length of spans 1 and 2 are analyzed. Fig. 4.11 shows the Fourier spectra of the 

acceleration responses of the bridge generated by a vehicle traveling at (a) 40, and (b) 

100 km/h. With an increase in speed, the amplitude of each mode of vibration increases. 

It implies that if some modes of vibration have comparatively lower energy, they may 

have higher energy due to higher speed. The practical importance of this observation lies 

in the field-testing of a stiff bridge.  

 

                                       (a)                                                             (b)  

Figure 4.11: Fourier spectra of bridge response at mid-span length for vehicle speed of 

(a) 40 km/h, and (b) 100 km/h. 

SET results from Figs. 4.12 and 4.13 show that the frequency profiles are more stabilized 

in case of higher speed since higher energy is imparted to the system by the passing 

vehicle. Table 4.3 shows the detailed identification results. 
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      (a)                                                                 (b) 

Figure 4.12: Frequency profile of (a) 1.44 Hz and (b) 8.2 Hz identified from the mid-span 

length of span 2 for vehicle speed of 40 km/h. 

 

                                    (a)                                                                   (b) 

Figure 4.13: Frequency profile of (a) 1.44 Hz and (b) 8.2 Hz identified from the mid-span 

length of span 2 for vehicle speed of 100 km/h. 

Table 4.3: Frequency values identified from the mid-span length of span 1 and span 2. 

Mode # f (Hz) v = 40 km/h v = 100 km/h 

  Span 1 Span 2 Span 1 Span 2 

1 1.43 21.42 1.44 1.42 1.44 

2 3.24 - 3.24 - 3.24 
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3 4.10 4.08 4.08 4.08 4.08 

4 7.87 7.96 7.72 8.2 8.2 

4.5.3 Effect of vehicle class 

In this section, the vehicle speed is kept constant at 40 km/h. The effect of vehicle weight 

is simulated using two vehicles from AASTHO standards (HS15 and HS25) and is shown 

in Fig. 4.14 (a). By using a heavier vehicle, the vibration modes can be excited with 

higher amplitudes. A practical limitation of the bridge with permitted low speed can be 

overcome with this observation of using a heavier vehicle to excite the bridge. Fig. 4.14 

(b) shows the acceleration responses due to H20 and HS20 trucks, which differ in terms 

of the number of axles. H20 is a two-axle truck, and HS20 is a three-axle truck. It is 

evident from Fig. 4.14 (b) that the three-axle truck enables higher excitation and higher 

energy for each mode of vibration.  The effect of the presence of vehicles is simulated in 

Fig. 4.14 (c). With an increase in the number of vehicles present on the bridge, the 

amplitudes of vibration for each mode are increased.  

 

                             (a)                                       (b)                                       (c)  

Figure 4.14: Fourier spectra of bridge response due to (a) different vehicle weights, (b) 

different number of vehicle axles, and (c) different number of vehicles. 

Figs. 4.15 (a) and (b) show the SET results for the two natural bridge frequencies when 

multiple vehicles are traveling over the bridge at a speed of 40 km/h. By comparing Fig. 

4.15 with Fig. 4.12, it is evident that the presence of two trucks on the bridge imparts 

higher energy to the structure and, in turn, the frequency profiles of vibration modes are 

active for a longer duration and are continuous over-time.     



69 

 

 

                                     (a)                                                                 (b) 

Figure 4.15: Frequency profile of (a) 1.44 Hz, and (b) 8.2 Hz identified from the mid-

span length of span 2 subjected to two trucks. 

4.5.4 Effect of structural damage 

The damage in a bridge causes stiffness discontinuity. In this section, structural damage 

is introduced into the FEM, and the performance of the proposed method is verified. The 

structural damage is simulated using a change in cross-section of the middle span (i.e., 

span 2), and Fig. 4.16 shows the comparison of Fourier spectra of response between 

undamaged and damaged cross-sections. A reduction of depth of 100 mm in the cross-

section is introduced in the damaged case. Fig. 4.16 shows that there is evidence of a 

reduction in the frequency values of the damaged case. Fig. 4.17 shows the SET results 

for the first natural frequencies for the damaged case. By comparing the SID results of 

Fig. 4.15 (a) and with Fig. 4.17, it is evident that the natural frequencies of the bridge are 

changed and reduced as the structural damage is introduced to the bridge.  
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Figure 4.16: Fourier spectra of undamaged and damaged bridge response for vehicle 

speed of 100 km/h. 

 

Figure 4.17: Frequency profile of 1.24 Hz identified from the mid-span length of 

damaged span 2 for vehicle speed of 100 km/h. 

4.6 Full-Scale Study 

This section demonstrates the in-field application of the proposed framework developed 

in this chapter. 

4.6.1 Details of full-scale study 

In this section, the proposed method is illustrated using a 90 m pony truss steel bridge, as 

shown in Fig. 4.18 (a). Bridge vibrations are monitored while different numbers of 
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vehicles travel over the bridge. BHM data is collected using accelerometers instrumented 

throughout the bridge. The temperature during the testing is around 24oC. Nine high-

sensitive sensors with a sensitivity of 10 V/g are placed along the walkway on the 

southside of the bridge, and the sensors are set up to measure uniaxial vertical vibration. 

A sampling frequency of 200 Hz is used. Sensors are placed at a distance of 3, 6, 15, and 

30 m on both sides from the centerline of the bridge shown in Fig. 4.18 (b). The data 

collection is performed through the data acquisition (DAQ) system by connecting it with 

sensors using BNC cables and with a laptop using a USB cable. The duration of each test 

was between 30 seconds to 5 minutes. A typical time history of the acceleration response 

at the mid-span of the bridge is shown in Fig. 4.19. 

       

(a)                                                                 (b) 

Figure 4.18: (a) Steel truss bridge, and (b) sensor instrumentation. 

 

Figure 4.19: Time history of bridge acceleration response at mid-span length. 
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4.6.2 Identification results 

Two tests are selected to be analyzed and compared using the proposed method. The first 

test contains the vibration data for a bus traveling over the bridge, and the second test 

entails multiple vehicles (11 vehicles) traveling over the bridge. For both tests, sensor 

data at the center of the bridge is used to validate the proposed method. Fig. 4.20 shows 

the comparison of the Fourier spectra of (a) a bus and (b) multiple cars. From Fig. 4.20, it 

is evident that a single heavy vehicle is sufficient to excite the various modes of the 

bridge to a greater extent as compared to multiple smaller vehicles.  

 

Figure 4.20: Fourier spectra of bridge acceleration response subjected to (a) a bus, and (b) 

multiple vehicles. 

Using TVF-EMD and SET, the modal responses are separated and shown in Fig. 4.21. 

The identified frequencies for two test data sets in Fig. 4.21 are shown in Table 4.4. The 

identified mode shapes of the first two modes of the bridge are extracted in Fig. 4.22 

using the proposed methodology, as shown in Eq. 4.13. In Fig. 4.22, ‘s’ denotes the 

supports for the bridge. Since the proposed approach is based on the utilization of limited 

sensors, responses from only three pairs of sensors are used to generate the mode shapes.  
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                            (a)                                        (b)                                         (c) 

Figure 4.21: SET results for (a-c) the first three natural bridge frequencies. 

 

                                         (a)                                                  (b)  

Figure 4.22: (a) First, and (b) second mode shape of the bridge. 

Table 4.4: Frequency values identified from bridge acceleration response. 

Mode # Test 1 Test 2 

 f (Hz) f (Hz) 

1 4.38 4.38 

2 5.40 5.43 

3 9.08 9.07 

4.7 Summary 

In this chapter, an improved TF decomposition-based modal identification method is 

proposed to address the practical challenges associated with BHM using vehicle-induced 

responses. In the proposed method, TVF-EMD is first employed to decompose the 

vibration responses of the bridge, and then, the time-varying modal frequencies of the 

bridges are tracked using SET. Detailed analytical and FEM simulations are conducted to 
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investigate the effect of sensor locations, vehicle speeds, vehicle parameters, and damage 

identification due to the vehicle-induced excitation. A full-scale validation is also 

conducted to investigate the modal identification of the bridge using limited sensors 

subjected to a suite of vehicles of different sizes.  
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Chapter 5  

5 Drive-by Modal Identification of Bridges utilizing 
Wavelet Decomposition 

This chapter presents a hybrid time-frequency (TF) method capable of decoupling 

vehicle-bridge interactions (VBI) of vehicle response and performing robust bridge 

modal identification under various operational challenges. Results from this chapter 

demonstrate that the proposed method can be used to decompose the signal collected 

from the moving vehicle. Modal frequencies, which hold key importance in bridge health 

monitoring (BHM), can be successfully identified using the proposed hybrid TF method. 

Numerical results confirmed that the proposed algorithm could be used in varying 

conditions of vehicle speed, structural damage, and measurement noise. Laboratory 

experiments and full-scale validation provide further evidence of the potential of the 

proposed algorithm. 

5.1 Introduction 

Direct BHM (Elhattab and Uddin 2017, An et al. 2019, Sun et al. 2020, Singh and Sadhu 

2021, Singh et al. 2021, Sony et al. 2022) usually involves direct instrumentation with 

sensors such as accelerometers to extract the modal parameters from the ambient or 

forced vibrations. As an alternative to direct BHM, researchers have recently geared 

toward indirect BHM (iBHM) (Malekjafarian et al. 2015, Yang and Yang 2017, Shokravi 

et al. 2020). iBHM leverages a vehicle traveling over a bridge as a data acquisition 

device as well as a source of excitation. While traversing over a bridge, an instrumented 

vehicle can excite the bridge and collect the vibration response of the bridge. The idea of 

using a test vehicle to extract the bridge frequencies was initially proposed by Yang et al. 

(2004a).  

Unlike the identification of bridge frequencies in previous iBHM methods, Gonzalez et 

al. (2012) conducted a study to identify the absolute damping of a bridge from the vehicle 

response and detect structural damage. Theoretical simulations, including a simplified 2-

degrees of freedom (DOF) half-car VBI model, were used to validate the method for a 
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range of bridge spans and vehicle speeds. The relationship between driving speed, vehicle 

frequency, and bridge frequency was examined analytically and experimentally by 

Siringorongo and Fujino (2012). In their study, the effects of surface roughness, vehicle 

damping, and expansion joints were ignored. From the results, it was clear that higher 

vehicle velocities (e.g., larger than 30 km/h) created practical difficulties due to vehicle 

bouncing impact on expansion joints and shorter response duration.  

Obrien et al. (2014) used the vehicle response to identify VBI forces. The bridge modal 

identification was completed using a coupled 4-DOF half-car model in theoretical 

simulations. Based on moving force identification theory, the proposed method identified 

the global bending stiffness of a bridge and predicted the pavement roughness, which was 

insensitive to measurement noise. Malekjafarian and OBrien (2014) extracted the mode 

shapes of a bridge by monitoring the accelerations in two connected axles of the passing 

vehicle. This study proposed a short-time frequency-domain decomposition method that 

relied on multi-stage measurements. After the segmentation of the bridge, the proposed 

method was applied to the acceleration responses, and local mode shape elements were 

estimated. Furthermore, global mode shape vectors for the bridge were constructed from 

the local mode shape elements using a correction procedure. 

Recently, time-frequency methods (Sadhu et al. 2017, Yan et al. 2020, Barbosh et al. 

2020) such as Short-Time Fourier Transform (STFT), Wavelet Transform (WT), Hilbert 

Transform (HT), and Empirical Mode Decomposition (EMD) have shown significant 

success in analyzing iBHM data. For example, EMD was used by Yang and Chang 

(2009) to extract the higher modes of the bridge using experimental studies (Yang and 

Lin 2005b), and the importance of the selection of the most appropriate vehicle properties 

in a bridge was discussed.  EMD was used by OBrien et al. (2017) for bridge damage 

detection using the response measured in a passing vehicle. EMD was applied to the axle 

response to decompose it into various component, and the resulting intrinsic mode 

functions (IMFs) corresponding to the pseudo-frequency component of the vehicle speed 

was used to extract the damaged location.  
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In a recent study, the finer frequency resolution capability of WT was leveraged to detect 

structural damage in bridges using the response from a passing vehicle. Tan et al. (2019) 

used the HT to analyze the acceleration responses and extract bridge modal parameters 

from a passing vehicle. The proposed algorithm was used to extract the mode shapes and 

damping ratio of a bridge. Another relevant research was further explored by Tan et al. 

(2020a), where a damage index, based on the extracted mode shape, was proposed to 

detect structural damage in bridges. Tan et al. (2020b) introduced the wavelet entropy 

theory in which the optimal wavelet scale was selected by minimizing wavelet entropy. 

This approach was a step forward in enhancing the existing wavelet-based damage 

detection methods. Fitzgerald et al. (2019) detected the presence of bridge scours using 

acceleration responses from a passing train. The structural damage was identified in 

terms of pier stiffness reduction by analyzing the acceleration of train passages using 

continuous wavelet transform. A damage indicator was developed using wavelet 

coefficients from healthy and damaged bridge states, which performed well in the blind 

test.  

The feasibility and challenges of the implementation of bridge parameter identification 

were explored by Li et al. (2019a). An experimental investigation was performed in the 

laboratory using a vehicle-bridge system. The numerical simulation of the VBI system 

was accomplished using a single-DOF (SDOF) quarter-car model and an Euler-Bernoulli 

beam. Effects of measurement noise, vehicle properties, and bridge surface roughness 

were numerically studied. In another study, Li et al. (2019b) proposed a blind modal 

identification method to extract bridge modal frequencies from the dynamic vehicle 

response. Singular spectrum analysis was used to decompose the vehicular response and 

blind modal identification to extract the bridge frequencies. Bridge frequencies were 

successfully identified in laboratory experimentation. The effects of vehicle speed and 

other vehicle parameters on the results were investigated. 

In drive-by monitoring, variabilities in vehicle responses can be caused by environmental 

and operational conditions such as temperature, traffic, vehicle speed, road roughness, 

etc. Tan et al. (2017) investigated the use of a subtracted signal from two consecutive 

axles to remove the effect of road roughness and showed good agreement between the 
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extracted and theoretical bridge frequencies, followed by damage identification. The 

variabilities and numerous levels of structural damage were also examined by Locke et 

al. (2020). Vehicle acceleration data was analyzed using a neural network architecture to 

study the changes in dynamic response due to noise-inducing variables. The application 

of machine learning for bridge damage detection was attempted by Malekjafarian et al. 

(2019). An artificial neural network was trained using data from a vehicle traveling over 

a healthy bridge. Numerical case studies verified the proposed damage indicator, based 

on a Gaussian process, by successfully detecting the structural damage despite the 

contribution of road profile roughness and measurement noise.  

The study by Shirzad-Ghaleroudkhani and Gul (2020) filtered out the effects of vehicle 

speed and vehicle suspension using a smartphone-based inverse filtering technique. This 

study utilized the off-bridge data to design an inverse filter to process the on-bridge data. 

A scaled lab experiment was used to demonstrate the validity of the proposed method. 

Although smartphones have relatively low accuracy than accelerometers, the proposed 

filter was able to successfully extract the bridge frequencies. In another recent study, 

Sitton et al. (2020) examined the applicability of crowdsourcing for bridge monitoring 

using the analytical Finite Element Modeling (FEM) simulation and a scaled laboratory 

experiment. Analytical and experimental results showed that the bridge frequency could 

be identified using the multi-vehicle approach. The crowdsourcing framework established 

that iBHM could be accomplished without the information related to the mass and 

stiffness of the vehicle.    

Cronin et al. (2021) solved the problem of preprocessing data that results from iBHM and 

contains noise from road profile roughness and vehicle suspension dynamics. This 

approach focused on tire-level response estimation and deconvolved the signal collected 

from the cabin of the vehicle containing the input from the suspension system using 

autoencoders. A network of moving vehicles was used by Eshkevari et al. (2020a) for the 

system identification (SID) of a bridge. The noise due to the vehicle suspension system 

was removed by deconvolving the vehicle response in the frequency domain. Two 

approaches, such as vehicle transfer function and Ensemble EMD (EEMD), were utilized, 

while road profile roughness was delineated using the second-order blind identification 
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method. Various road surface patterns were considered, and the results indicated that the 

proposed framework could extract the bridge vibrations for a long-span bridge with 

various levels of traffic volume. VBI problems related to medium to long-span bridges 

were examined by Eshkevari et al. (2020b). The authors concluded that with an increase 

in bridge flexibility, the decoupling between the bridge and the vehicle increases 

considerably. In another recent study, Eshkevari et al. (2020c) proposed a crowdsourcing 

method that was capable of considering vibration data collected by multiple sensors with 

random motions.  

Kildashti et al. (2020) developed drive-by monitoring by extending its application to 

cable-stayed bridges for structural damage detection. The study identified the location 

and severity of damage incurred by the cables by measuring the vibration response from a 

passing vehicle over the bridge. The FEM was used for new formulations of dynamic 

coupling between the vehicle and the bridge. Various damage cases due to changes in 

structural stiffness were considered, and it was demonstrated that the vehicle vibration 

response identified the structural damage, its location, and severity. The limitations in 

Shirzad-Ghaleroudkhani and Gul (2020) related to constant vehicle speed and similar 

surface roughness throughout the test were addressed in Shirzad-Ghaleroudkhani and Gul 

(2021). The inverse filtering methodology was enhanced with a new framework along 

with a full-scale validation. A database of off-bridge acceleration signals to sort out 

different vehicle speeds was developed. In addition, a surface roughness criterion was 

defined based on the average energy level of the acceleration signal.  

Shi and Uddin (2021) worked on a closed-form solution and decoupling of the VBI 

system. Effects of bridge damping, vehicle frequency, vehicle speed, vehicle mass, and 

vehicle damping on extracting the bridge frequencies from the vehicle were studied. This 

theoretical study provided guidelines for designing a field test vehicle for bridge 

monitoring. In another study, Alamdari et al. (2021) examined the practical viability of 

drive-by bridge inspection using numerical and experimental investigations. The authors 

proposed an index based on vehicle and bridge frequencies to quantify the performance 

of transmission between the bridge and the vehicle. The first few bridge vibration modes 

were identified using the test vehicle moving at constant and low speed. Zhang et al. 
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(2021) proposed an instantaneous frequency identification technique based on modified 

S-transform reassignment. The resolution was enhanced by introducing a frequency 

function in the Gaussian window with two parameters determined by the time-frequency 

concentration criterion. Numerical studies validated the effect of road profile roughness 

and vehicle parameters such as weight and speed on the time-varying characteristic 

identification.  

The influence of vehicle parameters such as vehicle-to-bridge mass ratio, vehicle speed, 

and frequency ratio on the frequency identification accuracy was investigated by Wu et 

al. (2022). Through parametric analysis in laboratory tests, it was found that the vehicle-

to-bridge mass ratio and vehicle speed had a great impact on the identified frequency 

patterns. Additionally, a frequency extraction method was proposed in this study to filter 

out the bridge frequency from the vehicle response. In another vein, Micu et al. (2022) 

validated the idea of using dynamic responses taken on a passing train to determine the 

condition of a railway bridge. The full-scale experiment successfully showed that 

instrumented trains could be used for bridge maintenance and monitoring.   

Throughout the literature, limited attention has been undertaken to the investigation of 

time-varying VBI resulting from noisy vehicle movement due to the combination of 

various factors, including vehicle speed, vehicle suspension system, road roughness, 

limited sensor measurement, structural damage, and operational condition. To address 

these challenges in a unified fashion, the proposed method harnesses the decomposition 

and denoising capability of a powerful TF method, Wavelet Packet Transform (WPT), 

and delineates the bridge frequencies found in the noisy vehicle response. Since vehicle 

response contains significant measurement noise and closely-spaced frequencies, WPT is 

used to eliminate the vehicle noise and other unwanted noise sources from the bridge and 

vehicle dynamic component.  

In addition, WPT enables robust decomposition of a single channel measurement, 

facilitating bridge SID using limited measurement. Afterwards, Synchro Extracting 

Transform (SET) is used as a quantification method to classify the individual bridge and 

vehicle dynamic components, namely bridge frequencies, vehicle frequencies, and 
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driving frequencies. The accuracy of the proposed hybrid TF method is then validated 

using numerical, experimental investigations and a full-scale study. In the numerical 

investigation, a vehicle travels over a beam model at varying speeds, varying degrees of 

structural damage, and measurement noise, and the vehicle responses are analyzed using 

the proposed method. In the laboratory experiment, a moving vehicle model travels over 

a scaled bridge model, and the resulting vehicle response is used for the validation of the 

proposed method. The full-scale study shows the field application of the proposed 

method to a 220m long box-girder bridge. Both direct and indirect monitoring data are 

compared to validate the efficacy of the proposed research.  

This chapter is organized as follows: section 5.2 is used to provide a background about 

the VBI, WPT, SET, and their respective governing equations. Section 5.3 is used to 

formulate the proposed methodology from the dynamics of the vehicle response. In 

sections 5.4 and 5.5, the numerical and experimental investigations are presented. Section 

5.6 illustrates the full-scale study using both direct BHM and iBHM. Section 5.7 

summarizes the highlights and contributions of this chapter.   

5.2 Background 

In this section, a brief background of VBI, and WPT is provided. The governing 

equations are provided for each topic, followed by a detailed description of the proposed 

methodology.  

5.2.1 Vehicle bridge interaction  

The concept of iBHM uses a vehicle passing over a bridge as an excitation source as well 

as a sensor. Fig. 5.1 shows an example of a simplified VBI model that is used for the 

theoretical formulation. The vehicle is modeled as an SDOF system with a lumped mass 

𝑚𝑣 and spring of stiffness 𝑘𝑣 and the effective damping of the suspension system is 

neglected. The bridge is modeled as a simply supported Euler Bernoulli beam with length 

L and a constant cross-section and smooth profile; therefore, it has a constant flexural 

rigidity EI and a constant mass density �̅� throughout the length. The vertical 

displacements of the vehicle, moving at a speed of 𝑣, and the beam are denoted by 𝑞𝑣 and 

𝑢𝑏 , respectively.  
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Figure 5.1: Schematic of the vehicle traveling along a simply supported beam. 

From the equation of motion of a coupled VBI system, the solution in the form of vertical 

displacement of the beam can be expressed as (Yang and Lin 2005a):  

𝑢𝑏(𝑥, 𝑡) = ∑
∆𝑠𝑡𝑛

1 − 𝑆𝑛
2

𝑛

{sin
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𝐿
[sin

𝑛𝜋𝑣𝑡

𝐿
− 𝑆𝑛 sin 𝜔𝑏𝑛𝑡]}   ,            (5.1) 

where 𝑛 represents the number of modes of vibration.  

Using Duhamel’s integral, the vertical displacement of the vehicle (q) can be obtained as 

(Yang and Chang 2009):  

𝑞(𝑡) = ∑ {𝐻𝑑𝑙,𝑛 cos
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𝐿
) 𝑡}   .                 (5.2) 

The coefficients 𝐻𝑑𝑙,𝑛, 𝐻𝑑𝑟,𝑛, 𝐻𝑣,𝑛, 𝐻𝑏𝑙,𝑛, and 𝐻𝑏𝑟,𝑛 are defined in Eqs. 5.3-5.7:  
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                                                                                                                                                           ,          (5.5) 
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The vertical acceleration response of a vehicle can be obtained by differentiating Eq. 5.2 

(Yang and Chang 2009):  

�̈�(𝑡) = ∑ {−�̃�𝑑𝑙,𝑛 cos
(𝑛 − 1)𝜋𝑣

𝐿
𝑡 + �̃�𝑑𝑟,𝑛 cos

(𝑛 + 1)𝜋𝑣

𝐿
𝑡 − �̃�𝑣,𝑛 cos 𝜔𝑣𝑡                   

𝑛

+ �̃�𝑏𝑙,𝑛 cos (𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
) 𝑡 − �̃�𝑏𝑟,𝑛 cos (𝜔𝑏,𝑛 +

𝑛𝜋𝑣

𝐿
) 𝑡}   .                 (5.8) 

The coefficients 𝐻𝑑𝑙,𝑛, �̃�𝑑𝑟,𝑛, �̃�𝑣,𝑛, �̃�𝑏𝑙,𝑛, and �̃�𝑏𝑟,𝑛 are further explained in Eqs. 5.9-

5.13: 

                                                           �̃�𝑑𝑙,𝑛 = 𝐻𝑑𝑙,𝑛𝜔𝑏,𝑛−1
2 𝑆𝑛−1

2    ,                                            (5.9) 

                                                   �̃�𝑑𝑟,𝑛 = 𝐻𝑑𝑟,𝑛𝜔𝑏,𝑛+1
2 𝑆𝑛+1

2    ,                                          (5.10) 

                                                                     �̃�𝑣,𝑛 = 𝐻𝑣,𝑛𝜔𝑣
2   ,                                                   (5.11) 

                                                         �̃�𝑏𝑙,𝑛 = 𝐻𝑏𝑙,𝑛𝜔𝑏,𝑛
2 (1 − 𝑆𝑛)2   ,                                       (5.12) 

                                                         �̃�𝑏𝑟,𝑛 = 𝐻𝑏𝑟,𝑛𝜔𝑏,𝑛
2 (1 − 𝑆𝑛)2   .                                     (5.13) 

Five terms involved in vehicle response in Eq. 5.8 can be labeled into three groups as 

driving frequencies (in rad/s), including (
(𝑛−1)𝜋𝑣

𝐿
𝑎𝑛𝑑 

(𝑛+1)𝜋𝑣

𝐿
); vehicle frequency 𝜔𝑣; and 

bridge frequencies, including (𝜔𝑏𝑛 −
𝑛𝜋𝑣

𝐿
 and 𝜔𝑏𝑛 +

𝑛𝜋𝑣

𝐿
), where 𝑛 indicates the index of 

the vibration mode. It may be observed that bridge frequency 𝜔𝑏𝑛  is shifted by an equal 

amount to the vehicle speed ±
𝑛𝜋𝑣

𝐿
. The importance of bridge frequency terms (𝜔𝑏𝑛 −

𝑛𝜋𝑣

𝐿
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and 𝜔𝑏𝑛 +
𝑛𝜋𝑣

𝐿
) is crucial, and most of these terms may be visible in the vehicle response 

depending on the bridge-vehicle interaction.  

5.2.2 Wavelet Packet Transform 

WPT is a TF technique that can decompose a signal into consecutive low and high-

frequency components. WPT has several advantages over Fourier Transform (FT) (Wu 

and Liu 2009, Sadhu 2013) and serves as an excellent decomposition tool for analyzing 

nonstationary and nonlinear signals. As the signal, originating from the passing vehicle, 

containing coupled dynamic information related to the bridge and the vehicle, is 

nonstationary, WPT is used to analyze the vehicle response. This method results in both 

approximation and detailed coefficients to further decompose and provide a wider and 

more flexible analysis base for the signal (Kankanamge et al. 2020).  

The decomposition process using WPT is a recursive filter-decimation operation. After j-

th level of decomposition, a signal f(t) can be represented as (Mallat 2009):  

𝑓(𝑡) =  ∑ 𝑓𝑗,𝑠

2𝑗−1

𝑠=0

   .                                               (5.14) 

A linear combination of wavelet basis functions 𝜓𝑘
𝑗,𝑠

(t) can be used to represent the 

wavelet packet component signal 𝑓𝑗,𝑠 at each node (j,s): 

𝑓𝑗,𝑠(𝑡) = ∑ 𝑐𝑘
𝑗,𝑠

∞

𝑘=−∞

𝜓𝑘
𝑗,𝑠(𝑡)   ,                                      (5.15) 

 

 

where a wavelet basis is a function with three indices, 𝑠,  j, and k, which correspond to 

modulation, scale, and translation, respectively (Mallat 2009). Furthermore, wavelet 

packet coefficients, 𝑐𝑘
𝑗,𝑠

(𝑡), can be calculated as: 
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   𝑐𝑘
𝑗,𝑠(𝑡) =

1

2
𝑗
2

∗ ∫ 𝑓𝑗,𝑠
∞

−∞

(𝑡)𝜓𝑠 (
𝑡 − 𝑘

2𝑗
) 𝑑𝑡   .                          (5.16) 

The process of WPT starts with decomposing the parent signal into an approximate and 

detailed component using a pair of low-frequency and high-frequency filters, respectively 

derived through multi-resolution analysis. Both the approximate and detailed coefficients 

are further divided into the next level approximate and detailed parts. The operation 

proceeds until the stopping criterion is met.   

5.3 Proposed Framework 

The response of the VBI system from Eq. (5.8) can be expressed in terms of WPT 

coefficients using Eq. 5.14.  

                                                                   �̈�(𝑡) = ∑ �̈�𝑗,𝑠

2𝑗−1

𝑠=0

   .                                                  (5.17) 

In this chapter, Daubechies (“db5”) is used as the wavelet basis function due to its 

oscillatory nature to capture vibration time-history. Depending on the selected scale level, 

which is considered a stopping criterion, WPT generates a suite of low- and high-pass 

frequency coefficients. The scale level for WPT is determined based on sampling 

frequency and the lowest frequency of interest (Sadhu 2013). The WPT coefficients 

include driving frequencies, bridge frequencies, and vehicle frequencies. After j levels of 

decomposition, the WPT coefficient �̈�𝑗,𝑠 can be calculated using Eq. 5.15:  

                                                              �̈�𝑗,𝑠 = ∑ �̈�𝑘
𝑗,𝑠

𝜓𝑘
𝑗,𝑠

(𝑡)   .                                            (5.18) 

WPT yields well-separated frequency components; however, they do not provide time-

varying information related to the individual frequency content of the data. Therefore, 

SET is used to examine the WPT coefficients. By applying Eqs. 4.2-4.4 to the WPT 

coefficients, the SET of the WPT coefficients is obtained as: 
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                                       𝑆𝑒
𝑞(𝑡, 𝜔) ≈ ∑ �̈�𝑗,𝑠 ∗ ℎ̂

𝐾

𝑖=1

(𝜔 − 𝜔𝑖(𝑡))𝑒𝑗 ∫ 𝜔𝑖(𝑡)𝑑𝑡   ,                       (5.19) 

                                             𝑆𝐸𝑇𝑒(𝑡, 𝜔) = 𝑆𝑒
𝑞(𝑡, 𝜔) ∗ 𝛿2(𝜔 − 𝜔𝑖(𝑡))   .                            (5.20) 

The WPT coefficients are classified as the modal responses of the bridge if they remain 

stationary in the spectrogram of the SET. The flowchart of the proposed methodology  

(Singh and Sadhu 2022) is shown in Fig. 5.2.  

 

Figure 5.2: Framework of the proposed drive-by BHM method. 

5.4 Numerical Investigation 

This section begins with a description of the model used for numerical simulation. The 

effect of vehicle speed, structural damage, and measurement noise on the vehicle 

response is investigated in the following sub-sections.  

5.4.1 Model description 

A coupled VBI system is simulated using the model shown in Fig. 5.1. The values of 𝑚𝑣 

and 𝑘𝑣  are 1200 kg and 500 kN/m, respectively. Only a single moving vehicle is 

considered passing on the beam at one instance of time. The mass of the vehicle is 
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assumed to be small compared to the beam. The inertial effect of the vehicle is neglected. 

The vehicle traverses over the beam of length 𝐿 at a constant speed. The simply 

supported beam has an 𝐿 of 25m and  �̅� of 4800 kg/m. The values of E and 𝐼 for the 

beam used in this study are 2.75 x 1010 N/m2 and 0.12 m4, respectively. The natural 

frequencies of the beam are fb1 and fb2, 2.08 Hz and 8.33 Hz, whereas the vehicle 

frequency, fv, is calculated as 3.2 Hz. Finally, the vehicle acceleration response is 

simulated using Eq. 5.8. 

5.4.2 Effect of vehicle speed 

Vehicle speed plays a crucial role in the excitation of the bridge. In this section, the 

vehicle travels over the beam at a speed of 40 and 80 km/h, respectively, while keeping 

the other vehicle properties the same. Fig. 5.3 shows (a) the time history, and (b) Fourier 

spectra of the vehicle acceleration response for vehicle speed of 40 km/h. The first 

resonant peak in Fig. 5.3 (b) shows the primary driving frequency, fd, of 0.43 Hz, and the 

next two resonant peaks represent the frequency pair of fb1, 1.86 Hz, and 2.30 Hz. It can 

be noted that the frequency pair values can be averaged out to compute the first natural 

frequency of the beam (i.e., 2.08 Hz), which matches the theoretical value (i.e., 2.08 Hz). 

The fourth resonant peak in Fig. 5.3 (b), 3.2 Hz, represents fv, whereas the last two 

resonant peaks, 7.9 Hz and 8.8 Hz, indicate the frequency pair of fb2. The average value 

of the second frequency pair is 8.35 Hz, and the theoretical value of the second natural 

frequency is 8.33 Hz. The vehicle response is decomposed using WPT, which results in 

WPT coefficients, and their Fourier spectra are shown in Fig. 5.4. It can be observed that 

WPT can efficiently decompose the signal into its components, where fv, fd, and fbn are 

well separated. The WPT coefficients are analyzed using SET to differentiate the beam 

frequencies from driving and vehicle frequencies. Fig. 5.5 shows SET results of the WPT 

coefficients of the vehicle response at a speed of 40 km/h.  
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                                              (a)                                                  (b) 

Figure 5.3: (a) Time history, and (b) Fourier spectra of vehicle acceleration response for 

vehicle speed of 40 km/h. 

 

Figure 5.4: WPT coefficients of vehicle acceleration response for vehicle speed of 40 

km/h. 

To show the effect of speed, another data set is generated using the vehicle speed of 80 

km/h. As the vehicle speed increases, the amount of energy imparted by the vehicle to the 

beam increases, and the value of fd changes which also affects the fbn pairs. Fig. 5.6 shows 
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(a) the time history, and (b) Fourier spectra of the vehicle acceleration response while the 

vehicle travels at 80 km/h. Fourier spectra of vehicle response show that the value of fd, 

the first resonant peak in Fig. 5.6 (b), as 0.9 Hz, which is nearly doubled as compared to 

the fd value from the last case (i.e., 0.43 Hz) due to the doubling of the vehicle speed. The 

values of structural frequency pairs are also changed due to the change in vehicle speed. 

WPT and SET results for vehicle acceleration response at 80 km/h are presented in Figs. 

5.7 and 5.8, respectively. The identified frequency values from Figs. 5.5 and 5.8 are 

summarized in Table 5.1. The theoretical values are also provided for comparison in 

Table 5.1, which are depicted in brackets. It can be observed that the bridge and vehicle 

frequencies are identified using the proposed method for both cases of vehicle speed. 

 

Figure 5.5: SET results of vehicle acceleration response for vehicle speed of 40 km/h. 
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                                               (a)                                                  (b) 

Figure 5.6: (a) Time history, and (b) Fourier spectra of vehicle acceleration response for 

vehicle speed of 80 km/h. 

 

Figure 5.7: WPT coefficients of vehicle acceleration response for vehicle speed of 80 

km/h. 

Table 5.1: Frequency values identified with different values of vehicle speed. 

  v = 40 km/h v = 80 km/h 

 Mode # fb (Hz) �̂� from Fig. 5.5 �̂�b �̂� from Fig. 5.8 �̂�b 
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(Hz)  (Hz) (Hz)  (Hz) 

  fd = 0.43 (0.44)  fd = 0.9 (0.88)  

1 2.08 fb1
1 = 1.86 (1.86), 

fb1
2 = 2.30 (2.30) 

2.08 fb1
1 = 1.63 (1.64), 

fb1
2 = 2.53 (2.52) 

2.08 

  fv = 3.2  fv = 3.2  

2 8.33 fb2
1 = 7.89 (7.89), 

fb2
2 = 8.77 (8.77) 

8.33 fb2
1 = 7.44 (7.45), 

fb2
2 = 9.24 (9.21) 

8.34 

 

Figure 5.8: SET results of vehicle acceleration response for vehicle speed of 80 km/h. 

5.4.3 Effect of structural damage 

To study the performance of the proposed methodology on the effect of structural 

damage, two damage cases are simulated, namely 20% and 50% structural damage. The 

damage cases are simulated by reducing the bending rigidity of the beam. It affects the 

dynamic behavior of the beam, and this change in behavior manifests itself in the form of 

changes in structural frequency. Fig. 5.9 shows the Fourier spectra of the vehicle 

acceleration response for the vehicle traveling at a speed of 80 km/h over a beam with (a) 

20%, and (b) 50% structural damage. The driving frequency and vehicle frequency can 

be seen unchanged concerning the values from Fig. 5.6 (b). The WPT results for the 

vehicle acceleration response at 20% structural damage are presented in Fig. 5.10, in 
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which the WPT coefficients can be seen as separated by the algorithm. Furthermore, the 

SET results are generated using the WPT coefficients and are shown in Fig. 5.11. The 

SET results for the 50% structural damage case are shown in Fig. 5.12, and the results 

from Figs. 5.11 and 5.12 are shown in Table 5.2, in which the bridge frequency pair 

values, as well as their average values, are shown. The theoretical values for the resonant 

peaks are shown in brackets in Table 5.2. The structural frequencies change due to 

structural damage, and the beam frequency pairs can also be seen to have changed in 

Figs. 5.11 and 5.12. This demonstrates that the proposed methodology is a robust way to 

successfully identify the bridge and vehicle frequencies in damage cases.   

 

                                                (a)                                                (b) 

Figure 5.9: Fourier spectra of vehicle acceleration response for vehicle speed of 80 km/h 

with (a) 20%, and (b) 50% structural damage. 
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Figure 5.10: WPT coefficients of vehicle acceleration response for vehicle speed of 80 

km/h with 20% structural damage. 

 

Figure 5.11: SET results of vehicle acceleration response for vehicle speed of 80 km/h 

with 20% structural damage. 
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Table 5.2: Frequency values identified for vehicle speed of 80 km/h with different levels 

of structural damage. 

 No damage 20% damage 50% damage 

 Mode 

# 

fb (Hz) fb 

(Hz) 
�̂� from Fig. 5.11 

(Hz) 

�̂�b 

 (Hz) 

fb 

(Hz) 
�̂� from Fig. 5.12 

(Hz) 

�̂�b 

 (Hz) 

   fd = 0.90 (0.88)   fd = 0.90 (0.88)  

1 2.08 1.86 fb1
1 = 1.43 (1.42), 

fb1
2 = 2.30 (2.30) 

1.86 1.47 fb1
1 = 1.03 (1.03), 

fb1
2 = 1.93 (1.91) 

1.48 

   fv = 3.2   fv = 3.1  

2 8.33 7.45 fb2
1 = 6.57 (6.57), 

fb2
2 = 8.34 (8.33) 

7.45 5.89 fb2
1 = 5.01 (5.01), 

fb2
2 = 6.77 (6.77) 

5.89 

 

Figure 5.12: SET results of vehicle acceleration response for vehicle speed of 80 km/h 

with 50% structural damage. 

Similarly, the effect of structural damage is shown using the vehicle speed of 40 km/h. 

Fig. 5.13 shows the Fourier spectra results for (a) 20%, and (b) 50% structural damage 

while the vehicle is traveling at a speed of 40 km/h. WPT and SET results for 20% 

structural damage are presented in Figs. 5.14 and 5.15, respectively, and SET results for 

50% structural damage are shown in Fig. 5.16. The results for vehicle speed of 40 km/h 
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are summarized in Table 5.3. The average values of bridge frequencies, 𝑓b, calculated 

using the proposed method are identical with the theoretical values of bridge frequencies 

fb. This shows that the proposed method can detect the bridge frequencies using a passing 

vehicle in the presence of structural damage to the model. 

 

                                                 (a)                                               (b) 

Figure 5.13: Fourier spectra of vehicle acceleration response for vehicle speed of 40 km/h 

with (a) 20%, and (b) 50% structural damage. 
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Figure 5.14: WPT coefficients of vehicle acceleration response for vehicle speed of 40 

km/h with 20% structural damage. 
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Figure 5.15: SET results of vehicle acceleration response for vehicle speed of 40 km/h 

with 20% structural damage. 

Table 5.3: Frequency values identified for vehicle speed of 40 km/h with different levels 

of structural damage. 

 No damage 20% damage 50% damage 

 Mode 

# 

fb (Hz) fb 

(Hz) 
�̂� from Fig. 5.15 

(Hz) 

�̂�b 

 (Hz) 

fb 

(Hz) 
�̂� from Fig. 5.16 

(Hz) 

�̂�b 

 (Hz) 

   fd = 0.43 (0.44)   fd = 0.43 (0.44)  

1 2.08 1.86 fb1
1 = 1.67 (1.64), 

fb1
2 = 2.10 (2.08) 

1.86 1.47 fb1
1 = 1.27 (1.25), 

fb1
2 = 1.70 (1.69) 

1.48 

   fv = 3.2   fv = 3.2  

2 8.33 7.45 fb2
1 = 7.00 (7.01), 

fb2
2 = 7.91 (7.89) 

7.46 5.89 fb2
1 = 5.44 (5.45), 

fb2
2 = 6.34 (6.33) 

5.89 
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Figure 5.16: SET results of vehicle acceleration response for vehicle speed of 40 km/h 

with 50% structural damage. 

5.4.4 Effect of measurement noise 

In this section, the effect of background noise and road roughness is studied by 

introducing measurement noise in the simulated vehicle acceleration response. The 

vehicle speed is kept at 80 km/h, and measurement noise is added to the vehicle 

acceleration response. Figs. 5.17 and 5.18 show the SET results for 10% and 20% 

measurement noise, respectively, added to the vehicle acceleration response. SET results 

are generated using the WPT coefficients obtained from the simulated noisy vehicle 

response. SET results clearly show the profiles of the individual frequency components 

for the duration of the test. The identification results from Figs. 5.17 and 5.18 are 

summarized in Table 5.4. In addition, the effect of measurement noise on the 

performance of the proposed methodology is investigated using a lower vehicle speed of 

40 km/h, and the results are summarized in Table 5.5. By comparing Table 5.1 with 

Tables 5.4 and 5.5, it may be observed that the frequency pairs have a slight deviation 

from initial values in the case of 20% measurement noise compared to 10% measurement 

noise, however, the averaged value of the frequency pairs remained unaffected in both 
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cases. This provides evidence that the proposed method can be used to identify the 

individual frequency components regardless of the background measurement noise in 

vehicle response due to the denoising capability of WPT.     

 

Figure 5.17: SET results of vehicle acceleration response with 10% measurement noise. 
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Figure 5.18: SET results of vehicle acceleration response with 20% measurement noise. 

Table 5.4: Frequency values identified for vehicle speed of 80 km/h with different levels 

of measurement noise. 

  10% noise 20% noise 

 Mode # fb (Hz) �̂� from Fig. 5.17 

(Hz) 

�̂�b 

 (Hz) 

�̂� from Fig. 5.18 

(Hz) 

�̂�b 

 (Hz) 

  fd = 0.90 (0.88)  fd = 0.90 (0.88)  

1 2.08 fb1
1 = 1.63 (1.64), 

fb1
2 = 2.53 (2.52) 

2.08 fb1
1 = 1.62 (1.64) 

fb1
2 = 2.54 (2.52) 

2.08 

  fv = 3.2  fv = 3.2  

2 8.33 fb2
1 = 7.44 (7.45), 

fb2
2 = 9.24 (9.21) 

8.34 fb2
1 = 7.42 (7.45), 

fb2
2 = 9.26 (9.21) 

8.34 

Table 5.5: Frequency values identified for vehicle speed of 40 km/h with different levels 

of measurement noise. 

  10% noise 20% noise 

Mode # fb (Hz) �̂� (Hz) �̂�b 

(Hz) 

�̂� (Hz) �̂�b 

(Hz) 

  fd = 0.43 (0.44)  fd = 0.43 (0.44)  

1 2.08 fb1
1 = 1.86 (1.86), 

fb1
2 = 2.30 (2.30) 

2.08 fb1
1 = 1.86 (1.86) 

fb1
2 = 2.30 (2.30) 

2.08 

  fv = 3.2  fv = 3.2  
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2 8.33 fb2
1 = 7.91 (7.89), 

fb2
2 = 8.77 (8.77) 

8.34 fb2
1 = 7.92 (7.89), 

fb2
2 = 8.76 (8.77) 

8.34 

5.5 Experimental Validation 

A scaled VBI model is built to investigate the viability of the proposed iBHM method. 

The bridge model used in the laboratory experiment is a 2.4 m simply supported wooden 

beam shown in Fig. 5.19 (a). The model is instrumented with an accelerometer at the 

mid-span to collect the bridge response. The parameters for the bridge model are shown 

in Table 5.6. A two-axle vehicle, shown in Fig. 5.19 (b), is selected to travel along the 

bridge at a speed of 2 m/s. The vehicle is remotely controlled using a smartphone during 

its multiple passages over the bridge model. The weight of the vehicle is approximately 

3.3 kg, and the weight of the wooden beam is approximately 8 kg. The bridge model to 

vehicle weight ratio is 2.4. An accelerometer is mounted on the vehicle between the two 

axles to collect the vibration response of the vehicle, as presented in Fig. 5.19 (b). A 

sampling frequency of 200 Hz is used for both sensors (on bridge and vehicle) used in 

this experiment. The bridge is subjected to forced vibrations using a shake table shown in 

Fig. 5.20, where a zero-mean white Gaussian noise is used to mimic the ambient 

vibrations and traffic-induced vibration of a bridge.  

     

(a)                                                               (b) 
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Figure 5.19: (a) Simply supported wooden beam, and (b) two-axle vehicle model. 

 

Figure 5.20: Simply supported wooden beam subjected to measurement noise excitation. 

Table 5.6: Properties of the scaled bridge model. 

Width (m) Length (m) Thickness (mm) �̅� (kg/m) fb1 (Hz) fb2 (Hz) 

0.6 2.4 12.7 3.34 4.78 9.74 

Figs. 5.21 (a) and (b) show the time history and Fourier spectra of the vehicle 

acceleration response, respectively. In Fig. 5.21 (b), several resonant peaks can be seen, 

and the signal is analyzed using WPT. Figs. 5.22 and 5.23 show the WPT coefficients 

and SET results, respectively, resulting from the vehicle acceleration response. The 

individual frequency components are well-separated by the WPT algorithm and can be 

easily identified as the fb pairs. The first two plots in Fig. 5.23 show the fb1 pair, and the 

last plot shows fb2. The identification results are summarized in Table 5.7. 
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(a)                                                  (b) 

Figure 5.21: (a) Time history, and (b) Fourier spectra of vehicle acceleration response. 

 

Figure 5.22: WPT coefficients of vehicle acceleration response. 

 

Figure 5.23: SET results of vehicle acceleration response. 

Table 5.7: Frequency values identified from the scaled VBI model. 

Mode # fb
 (Hz) �̂� from Fig. 5.23 (Hz) �̂�b (Hz) 
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1 4.78 4.03, 5.03 4.53 

2 9.74 9.85 9.85 

5.6 Full-Scale Validation 

The proposed method is validated using a full-scale bridge and a passing vehicle in this 

section.  

5.6.1 Details of full-scale study 

The bridge used for the full-scale study is a five-span continuous box-girder bridge 

located in London, Ontario, Canada, as shown in Fig. 5.24. The bridge has a total length 

of 220 m, with outer spans of 36.5 m and three inner spans of 49 m. There are four lanes 

on this bridge, with two serving the traffic flow in each direction. In this study, the bridge 

is used for direct monitoring by installing the sensors directly onto the bridge deck, and 

indirect monitoring by using a vehicle scanning over it. The bridge remains operational 

for the duration of testing to enhance the amplitude of bridge vibrations and collect 

quality data. Direct monitoring of the bridge is carried out using the data acquisition 

(DAQ) system shown in Fig. 5.25 (a) and nine accelerometers, one of which can be seen 

in Fig. 5.25 (b).  

 

Figure 5.24: Five-span continuous box-girder bridge. 
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                                    (a)                                                                  (b) 

Figure 5.25: (a) Data acquisition system, and (b) contact sensor instrumented on the 

bridge. 

The vibration testing of the bridge includes several data collection intervals ranging from 

several minutes under the impact of ongoing traffic, which included vehicles such as 

sedans, pick-up trucks, buses, heavy trucks, etc., traveling at an average speed of 60 

km/h. A sampling frequency of 200 Hz was used to measure the bridge as well as vehicle 

response. While undertaking iBHM, a hatchback car (Hyundai Elantra), as shown in Fig. 

5.26 (a) is considered. The plan view of the sensor arrangement used for the test vehicle 

is presented in Fig. 5.26 (b). The black dots in Fig. 5.26 (b) represent the sensors used to 

collect the vibration data, which are fixed to the floor of the vehicle. The accelerometers 

are instrumented on the front passenger side, as shown in Fig. 5.26 (c), and in the back of 

the test vehicle, as shown in Fig. 5.26 (d).  

   



106 

 

(a)                                                             (b) 

      

                                      (c)                                                              (d) 

Figure 5.26: (a) Test vehicle, (b) plan view of sensor arrangement, sensor instrumentation 

in the (c) front, and (d) back of the test vehicle. 

The data from direct BHM serves as a reference for the comparison of iBHM. Before 

conducting iBHM using the test vehicle, a few calibration tests are performed to acquire 

dynamic information about the engine noise and suspension system of the vehicle. Upon 

conducting a few tests of the stationary vehicle in ignition mode, the two modes of engine 

noise are recorded as 5.4 Hz and 10.9 Hz. The contribution of vehicle suspension is 

identified by performing several trial runs over a bump. The tests conclude that the 

frequency due to vehicle suspension is 1.65 Hz. After conducting these preliminary tests, 

the iBHM data is collected using the test vehicle traveling over the bridge at a speed of 

60 km/h in the presence of regular traffic. To follow the traffic constraints and avoid the 

traffic impediment, only the vehicle speed of 60 km/h was followed. Moreover, the speed 

limit of 60 km/h is widely used on most arterial and collector roads. 

5.6.2 Identification results 

Data collected by one of the sensors instrumented on the midspan of the bridge is shown 

in Fig. 5.27. The time history of acceleration response and its Fourier spectra are shown 

in Figs. 5.27 (a) and (b), respectively. The outcome of the WPT analysis is shown in Fig. 

5.28. All the resonant peaks from Fig. 5.27 (b) are well separated by the WPT algorithm. 

From Fig. 5.28, three bridge frequencies can be identified as 2.8 Hz, 6.4 Hz, and 13.0 Hz. 
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(a)                                                   (b) 

Figure 5.27: (a) Time history, and (b) Fourier spectra of bridge acceleration response. 

 

Figure 5.28: WPT coefficients of bridge acceleration response. 

Figs. 5.29 shows the Fourier spectra of the data collected from (a) the front, and (b) the 

back of the test vehicle. Furthermore, the SET results for the front sensor vehicle data are 

provided in Fig. 5.30. The individual components are well separated and include the 

contributions of bridge frequencies, vehicle engine noise, vehicle suspension, etc. The 

first column of Fig. 5.30 shows three plots which include frequency components for 

vehicle suspension (1.65 Hz), the first mode of vehicle engine noise (5.1 Hz), and the 

second mode of vehicle engine noise (10.1 Hz), respectively. These values are confirmed 

by the prior results described in the previous paragraph, with a slight difference in 

frequency due to the ignition mode (i.e., the former one) and steady-state movement of 

the vehicle. The rest of the two plots in the first row show the first pair of natural bridge 

frequencies (2.5 Hz and 2.7 Hz), which average out to be 2.6 Hz. In the second row of 
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Fig. 5.30, the second and third plots show the pair (6.3 Hz and 7.1 Hz) of the second 

natural bridge frequency, and their mean value is 6.7 Hz. The last two plots in the third 

row of Fig. 5.30 show the pair (12.6 Hz and 13.0 Hz) of the third natural bridge 

frequency, which results in 12.8 Hz as the average value. A comparison of direct and 

iBHM data is provided in Table 5.8, and SET results for the sensor in the back of the test 

vehicle are shown in Fig. 5.31. 

 

                                                   (a)                                           (b) 

Figure 5.29: Fourier spectra of test vehicle acceleration response from (a) front sensor, 

and (b) back sensor. 
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Figure 5.30: SET results of test vehicle acceleration response from the front sensor. 

Table 5.8: Frequency values identified from direct and indirect BHM results. 

 Direct BHM iBHM 

 Mode # �̂�b from Fig. 5.28 (Hz) �̂�b from Fig. 5.30 (Hz) �̂�b (Hz) 

  fv = 1.65  

1 2.8 fb1
1 = 2.5,  

fb1
2 = 2.7 

2.6 

  fv = 5.1  

2 6.4 fb2
1 = 6.3,  

fb2
2 = 7.1 

6.7 

  fv = 10.1  

3 13.0 fb3
1 = 12.6, 

fb3
2 = 13.0 

12.8 
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Figure 5.31: SET results of test vehicle acceleration response from the back sensor. 

5.7 Summary 

This chapter proposed a methodology to extract the modal frequencies of a bridge using 

iBHM. Apart from the numerical and experimental investigation, a real-life application of 

drive-by monitoring is used to demonstrate the proposed framework. The data originating 

from an instrumented vehicle traveling over the bridge contains dynamic vibrations of the 

bridge, vehicle suspension, engine vibration, and measurement noise due to ambient 

traffic. The proposed algorithm can accurately detect the modal parameters by using a 

single sensor instrumented on the test vehicle. This method has the potential to 

significantly reduce the economic footprint of bridge monitoring. The proposed method 
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can be enhanced with the application of smartphones to extract the bridge modal 

parameters. 
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Chapter 6  

6 Vehicle Scanning Method Based on Contact Point 
Response 

This chapter features a vehicle scanning method capable of extracting bridge modal 

parameters using the contact point (CP) response of a passing vehicle. In the numerical 

study, the feasibility of the application of Robust Empirical Mode Decomposition 

(REMD) to the CP response is verified using various parameters such as vehicle speed, 

measurement noise, and structural damage. The proposed method can detect the changes 

in bridge frequencies due to changes in the parameters of the numerical study. A 

comparison of the proposed approach is provided with the direct monitoring approach 

using data from a full-scale bridge.  

6.1 Introduction 

In general, indirect bridge health monitoring (iBHM) is the practice of using vibration 

data collected using the sensors placed in the moving test vehicle traveling over the 

bridge to detect structural damage. The collected data includes the dynamic response of 

the bridge accompanied by the vehicle suspension input and road roughness. Bridge 

frequencies estimated from vehicle acceleration data can be used as indicators for bridge 

health. This method aims to continuously monitor bridges in a more efficient, 

economical, and less labor-intensive way than conventional BHM methods.  

To deal with high-speed vehicles and bridges with short characteristic lengths, Jin et al. 

(2022) established a subspace identification method. The feasibility of a multivariable 

output error state space model for bridge frequency estimation was tested using two 

traverses over the target bridge. The study employed the use of a single-value 

decomposition-based pseudo-inverse algorithm to account for the time-varying nature of 

the vehicle-bridge system. The results from numerical experiments demonstrated that the 

proposed approach successfully identified the bridge frequencies in the presence of high 

vehicle speed and high road surface roughness. Analysis of iBHM vibration data requires 

a powerful decoupling framework due to the presence of sensor-vehicle-bridge 
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interactions. Variabilities due to some operational and environmental factors need to be 

addressed to ensure the accuracy of iBHM. Operational and environmental parameters 

such as road roughness, vehicle speed, traffic, and temperature have been shown to shift 

the bridge frequencies such that accurate damage detection becomes very difficult (Yang 

et al. 2013). One challenge with the iBHM method is the presence of vehicle frequency 

that can render the estimation of bridge frequencies difficult especially when coupled 

with road surface roughness. To resolve this problem, the response of the vehicle’s CP 

was proposed as a better method for scanning bridge dynamics. 

Corbally and Malekjafrian (2021) derived an expression for CP response to be inferred 

directly from vehicle responses. The study examined the response at the point of contact 

between the tire and the bridge as a means of monitoring bridge frequency. The proposed 

approach could successfully identify the bridge frequencies and any changes caused by 

bridge damage without being affected by vehicle frequencies. The closed-form solutions 

for vehicle and CP responses were derived by Xu et al. (2021). Since the CP response 

was free from vehicle frequency, it enabled the extraction of more bridge frequencies. 

Numerical simulations and field tests confirmed that the performance of the CP response 

was better than that of the vehicle response. The study also confirmed that the adverse 

effect of surface roughness could be outbalanced by the positive effect of ongoing traffic.  

A data-driven approach based on Artificial Neural Network (ANN) was proposed by 

Corbally and Malekjafarian (2022). The proposed algorithm was trained to predict bridge 

behavior using vehicle responses. CP response calculated from vehicle response was fed 

into the ANN along with the vehicle speed. A structural damage indicator was also 

proposed by training the ANN to recognize the influence of temperature on the vehicle 

response.   

The coupled problem of vehicle bridge interaction (VBI) in CP response, as the vehicle 

travels over the bridge and the signals are recorded from the passing vehicle, is non-

stationary. In addition, the presence of measurement noise in the nonstationary CP 

response yields significant inaccuracy in iBHM subjected to various vehicle speeds and 

the extent of the structural damage. This current challenge of CP-based iBHM is resolved 

in this chapter using a novel time-frequency decomposition method. In this study, REMD 
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is used to analyze the CP response. REMD is powered by a soft sifting stopping criterion 

(SSSC) which can adaptively stop the sifting process for EMD. EMD and its variants 

such as Ensemble EMD (EEMD), REMD, and Time-Varying Filter-EMD (TVF-EMD), 

are analyzed to determine their suitability for signal decomposition of CP response in this 

study. However, by comparing the computational processing time required to use these 

variants (Barbosh et al. 2020), an optimized method, REMD, is selected due to its least 

computational processing time. A numerical study is used to validate the proposed 

method of using REMD to analyze the CP response. In the numerical study, the effect of 

parameters such as vehicle speed, measurement noise, and structural damage on the 

performance of the proposed method is studied. A full-scale study is also conducted to 

show the in-field application of the proposed method. The vehicle responses collected 

from the test vehicle are processed to obtain the CP response, and REMD is used to 

analyze the CP response.  

After a brief introduction and literature review of iBHM, and CP response, governing 

equations of CP response and REMD are provided in section 6.2. Following the 

background section, the proposed methodology is explained in section 6.3. The details 

and results of the numerical simulation and full-scale experimental studies are 

summarized in sections 6.4, and 6.5, respectively, followed by a summary in section 6.6.  

6.2 Background 

In this section, a brief background of CP response and REMD is discussed. 

6.2.1 Contact point response 

In this section, the analytical formulation of the moving test vehicle and its CP with the 

bridge is illustrated. A simply supported beam is used in this analysis to obtain closed-

form solutions. Fig. 6.1 shows the model used for this study as a simply supported bridge 

subjected to a test vehicle moving at speed v. The vehicle is modeled as a quarter car or 

single degree-of-freedom sprung mass mv supported with a spring of stiffness kv. The 

bridge is assumed to be a uniform Euler-Bernoulli beam of length L, flexural rigidity EI, 

and mass per unit length m. In this analytical formulation, there is a significant 

assumption that the vehicle mass is negligible compared with the bridge mass. Another 
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important point in the formulation is to keep the vehicle speed as constant as possible, 

which is also followed in numerical and full-scale studies.  

 

Figure 6.1: Schematic of the vehicle traveling along a simply supported beam. 

The CP displacement can be written as (Xu et al. 2021): 

                               𝑢𝑐(𝑡) = ∑
∆𝑠𝑡𝑛

1 − 𝑆𝑛
2

𝑛

(sin
𝑛𝜋𝑣𝑡

𝐿
− 𝑆𝑛 sin 𝜔𝑏,𝑛𝑡) sin

𝑛𝜋𝑣𝑡

𝐿
   .                (6.1) 

The CP acceleration �̈�𝑐(𝑡) can be determined using twice differentiation: 

 �̈�𝑐(𝑡) = ∑
∆𝑠𝑡𝑛

2(1 − 𝑆𝑛
2)

𝑛

(𝜔𝑑,𝑛
2 cos𝜔𝑑,𝑛 𝑡 + 𝑆𝑛𝜔𝑏𝑙,𝑛

2 cos𝜔𝑏𝑙,𝑛 𝑡 − 𝑆𝑛𝜔𝑏𝑟,𝑛
2 cos𝜔𝑏𝑟,𝑛 𝑡), 6.2) 

where 𝛥𝑠𝑡,𝑛 is the n-th modal static deflection, 𝑆𝑛 the speed parameter, and 𝜔𝑏,𝑛 is the 

𝑛th bridge frequency: 

𝛥𝑠𝑡,𝑛 = −
2𝑚𝑣𝑔𝐿3

𝐸𝐼𝑛4𝜋4
   ,                                                (6.3) 

𝑆𝑛 = −
𝑛𝜋𝑣

𝐿𝜔𝑏,𝑛
   ,                                                     (6.4) 

𝜔𝑏,𝑛 =
𝑛2𝜋2

𝐿2
√

𝐸𝐼

𝑚
   ,                                                  (6.5) 
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and 𝜔𝑑,𝑛 is the driving frequency, 𝜔𝑏𝑙,𝑛 and 𝜔𝑏𝑟,𝑛 are two shifted bridge frequencies: 

𝜔𝑑,𝑛 =
2𝑛𝜋𝑣

𝐿
   ,                                                     (6.6) 

𝜔𝑏𝑙,𝑛 = 𝜔𝑏,𝑛 −
𝑛𝜋𝑣

𝐿
   ,                                               (6.7) 

𝜔𝑏𝑟,𝑛 = 𝜔𝑏,𝑛 +
𝑛𝜋𝑣

𝐿
   .                                              (6.8) 

To analyze data from the full-scale study, the CP response is calculated using the vehicle 

response. The CP acceleration �̈�𝑐 can be related to vehicle acceleration �̈�𝑣 by (Yang et al. 

2020b): 

�̈�𝑐 = �̈�𝑣 +
𝑑2�̈�𝑣

𝜔𝑣
2𝑑𝑡2

   ,                                                 (6.9) 

where 𝜔𝑣 is the vehicle frequency. The term 𝑑2�̈�𝑣/𝑑𝑡2 can be replaced with the central 

difference, as the accelerations recorded by the vehicle are discrete data: 

𝑑2�̈�𝑣

𝑑𝑡2
=

�̈�𝑣|𝑖+1 − 2�̈�𝑣|𝑖 + �̈�𝑣|𝑖−1

(∆𝑡)2
   ,                                  (6.10) 

where 𝑖 and ∆𝑡 denote the 𝑖𝑡ℎ sampling point and sampling interval, respectively.  

6.2.2 Robust Empirical Mode Decomposition 

A powerful signal processing technique is required to process a complex time-frequency 

signal that is nonlinear and nonstationary. EMD (Huang et al. 1998, Barbosh et al. 2020) 

has been used as a tool which is based on a sifting process that can be used to decompose 

any complicated dynamic signal into a set of intrinsic mode functions (IMFs) EMD can 

be applied to the recorded vehicle responses to generate the IMFs and Fast Fourier 

Transform (FT) can be applied to the IMFs to extract the bridge frequencies. EMD can be 

used to decompose a discrete-time signal into many mono-component signals. The sifting 

iteration number in EMD is directly decided by SSSC. This iteration number holds 

significant importance in the mode-mixing problem. If the iteration number is too small, 



117 

 

it may result in an under-sifting case wherein multiple mono-component signals may 

appear in a single IMF. If the iteration number is too large, it can result in over-sifting 

and a large number of computation time increments. The issue of mode mixing hampers 

the application of EMD (Gao et al. 2008, and Xu et al. 2019) to complex and coupled 

signals, such as a signal originating from VBI. Therefore, optimizing the iteration number 

is crucial to tackling the mode mixing problem. REMD incorporates the implementation 

of SSSC into the sifting process of EMD. SSSC can monitor the sifting process of 

separation in the EMD and select the optimal iteration number (Liu et al. 2022). The 

steps for implementation of REMD are as follows (Wu et al. 2022):  

(i) Initialize the algorithm: 𝑗 =1, initialize residue 𝑟𝑜(𝑡) = 𝑥(𝑛)  

(ii) Identify all the local maxima and minima of 𝑟𝑗−1(𝑛) 

(iii) Evaluate the upper 𝑈𝑗(𝑛) and lower 𝐿𝑗(𝑛) envelope by cubic spline 

interpolation of local maxima and minima, respectively.  

(iv) Calculate the mean of the envelope as 𝑚𝑗(𝑛) = 
(𝑈𝑗(𝑛)+𝐿𝑗(𝑛))

2
. 

(v) Take the difference between the data and the mean as the proto-IMF: compute 

the 𝑗𝑡ℎ  component ℎ𝑗(𝑛) = 𝑟𝑗−1(𝑛) − 𝑚𝑗(𝑛).  

(vi) ℎ𝑗(𝑛) is processed as 𝑟𝑗−1(𝑡). Assume ℎ𝑗0 = ℎ𝑗(𝑛) and 𝑚𝑗,𝑘(𝑛), 𝑘 = 0,1 … 

Compute ℎ𝑗𝑘(𝑛) = ℎ𝑗𝑘−1(𝑛) − 𝑚𝑗𝑘−1(𝑛) until the soft stop criterion is 

satisfied. The stop criterion is described as:  
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𝑓𝑗𝑘 = 𝑅𝑀𝑆𝑗𝑘 + |𝐸𝐾𝑗𝑘|   ,                                 (6.11) 

𝑅𝑀𝑆𝑗𝑘 = √
1

𝑁𝑠
∑ (𝑚𝑗𝑘[𝑛])

2𝑁𝑠

𝑛=1
   ,                      (6.12) 

𝐸𝐾𝑗𝑘 =

1
𝑁𝑠

∑ (𝑚𝑗𝑘[𝑛] − �̅�𝑗)
4𝑁𝑠

𝑛=1

(
1

𝑁𝑠
∑ (𝑚𝑗𝑘[𝑛] − �̅�𝑗)

2𝑁𝑠
𝑛=1 )

2 − 3   ,              (6.13) 

where �̅�𝑗 is the mean of 𝑚𝑗𝑘[𝑛]. If it meets: (1) the number of zero points 

(𝑁𝑧𝑝) and extremal points (𝑁𝑒𝑝) is equal, or the difference between them is 

less than one; and (2) 𝑓𝑘−2 < 𝑓𝑘−1 and 𝑓𝑘−1 < 𝑓𝑘 the sifting process stops and 

returns the (𝑘 − 2)𝑡ℎ decomposition results. If not, the sifting process does 

not stop until the iteration number reaches the maximum iteration number.  

(vii) Compute the 𝑗𝑡ℎ IMF as 𝐼𝑀𝐹𝑗(𝑡) = ℎ𝑗,𝑘(𝑛). 

(viii) Update the residue 𝑟𝑗(𝑛) = 𝑟𝑗−1(𝑛) − 𝐼𝑀𝐹𝑗(𝑛). 

(ix) Increase the sifting index 𝑗 and repeat steps (ii) to (viii). The signal 

reconstruction process 𝑥(𝑛), which involves combining the IMFs formed 

from the EMD and the residual:  

𝑥(𝑛) = ∑ 𝐼𝑀𝐹𝑗(𝑛)
𝑁

𝑗=1
+ 𝑟𝑁(𝑛)   .                        (6.14) 

6.3 Proposed Methodology 

Based on the Eqs. mentioned in the previous section, the procedural steps of iBHM using 

CP response from the test vehicle and REMD are shown in Fig. 6.2 (Singh and Sadhu 

2023) and are as follows:   
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(i) Record the vehicle CP response using the accelerometer sensor placed in the test 

vehicle,  �̈�𝑐(𝑡) For numerical investigation, the CP acceleration response is 

simulated using Eq. 6.2. 

(ii) After determining the CP acceleration response, REMD is used to decompose the 

discrete time signal into a suite of mono-component signals, which involves a 

sifting process, and an SSC is required to end the sifting process of EMD. The 

SSSC of REMD can monitor the sifting process of separation in the EMD and can 

select the optimal iteration number. Therefore, it can help suppress the mode-

mixing problem of EMD and provide IMFs corresponding to a mono-component 

using steps outlined in section 6.2.2.  

�̈�𝑐(𝑡) = ∑ 𝐼𝑀𝐹𝑗(𝑡)
𝑁

𝑗=1
+ 𝑟𝑁(𝑡)   .                               (15) 

(iii) The individual IMFs can be further analyzed to determine the natural frequencies 

and damping ratio of the bridge.  

 

Figure 6.2: Framework of the proposed CP-based BHM method. 

6.4 Numerical Validation 

In this section, a parametric study is performed to examine the effect of driving velocity, 

measurement noise, and structural damage on the performance of the proposed 

methodology. A quarter-car VBI model is adopted, which is shown in Fig. 6.1. The road 

surface profile is not considered in this study, and the vehicle is assumed to travel at a 

constant speed. The dynamic interaction between the bridge and the vehicle is modeled 
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using MATLAB and the properties used are listed in Table 6.1. The bridge is modeled as 

a simply supported Euler-Bernoulli beam with uniform properties throughout its cross-

section. The first three natural frequencies of the bridge are identified as 3.8, 15.22, and 

34.24 Hz, respectively. The CP acceleration response is simulated using Eq. 6.2, and 

subsequently, REMD is applied to the CP response.  

Table 6.1: Properties of test vehicle and bridge. 

 Property Value 

Vehicle Mass mv = 900 kg 

 Spring Coefficient kv = 1780 kN/m 

Bridge Length L = 25 m 

 Young’s Modulus E = 27.5 GPa 

 Moment of Inertia I = 0.2 m4 

 Mass per unit length m = 2400 kg/m 

6.4.1 Effect of vehicle speed 

Vehicle speed holds an important role in the excitation of the bridge. In this section, the 

test vehicle is allowed to cross the bridge at two speeds: 18 and 30 km/h. Considering the 

small length of the bridge model, a relatively low vehicle speed is considered for this 

study to achieve a significant travel time for the decomposed signal using REMD. All the 

other properties of the vehicle and bridge are kept, as mentioned in Table 6.1. Fig. 6.3 

shows (a) the time history, and (b) the Fourier spectra of the CP response collected from 

the test vehicle traveling at a speed of 18 km/h. In Fig. 6.3 (b), the bridge natural 

frequencies can be observed in pairs except for the first natural frequency. This can be 

attributed to the low magnitude of vehicle speed that is responsible for the frequency 

pairs. Fig. 6.4 shows the Fourier spectra of the CP response for a vehicle speed of 30 

km/h. By comparing Figs. 6.3 (b) and 6.4, it can be observed that the amplitude increases 

with the increase in vehicle speed as the energy input to the bridge increases with an 

increase in vehicle speed. Also, all three natural bridge frequencies can be observed in 

pairs.  
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                                                                         (a) 

 

                                                                        (b) 

Figure 6.3: (a) Time history, and (b) Fourier spectra of CP response for vehicle speed of 

18 km/h. 

 

Figure 6.4: Fourier spectra of CP response for vehicle speed of 30 km/h. 

The REMD results for the CP responses of two different speeds of 18 and 30 km/h are 

shown in Figs. 6.5, and 6.6, respectively. With the increase in speed, the shift becomes 
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clearer as bridge frequencies split into a pair of frequencies. The resonant peaks for three 

bridge frequencies are well separated using REMD. By observing Figs. 6.5 and 6.6, it is 

clear that the bridge frequencies can be easily identified because CP response is used in 

this study instead of vehicle response. Also, the proposed method is capable of separating 

the closely-spaced frequencies from the CP response, demonstrating the suitability of the 

proposed method in iBHM.   

 

Figure 6.5: REMD results of (a-c) the first, second, and third modes of bridge model 

obtained from CP response for vehicle speed of 18 km/h. 
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Figure 6.6: REMD results of (a-c) the first, second, and third modes of bridge model 

obtained from CP response for vehicle speed of 30 km/h. 

6.4.2 Effect of measurement noise 

In full-scale studies, vehicle responses collected using sensors in the test vehicle are 

contaminated by measurement noise. To examine the reliability of the proposed method 

against such interference, the measurement noise of various levels is added to the CP 

response while keeping the vehicle speed constant at 18 km/h. Figs. 6.7 shows the 

Fourier spectra of CP response with added 20% measurement noise collected from the 

test vehicle. The time history plot and Fourier spectra for CP response with an additional 

measurement noise of 50% are shown in Figs. 6.8 (a), and (b), respectively. The REMD 

results of CP response with additional measurement noise levels of 20% and 50% are 

shown in Figs. 6.9, and 6.10, respectively. From the REMD results in Figs. 6.9, and 6.10, 

in which the resonant peaks of bridge frequencies are separated, the performance of the 

proposed method under measurement noise is confirmed. The damping values are 

calculated for the IMFs generated from REMD and are summarized along with the 

frequency values in Table 6.2.  
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Figure 6.7: Fourier spectra of CP response with 20% measurement noise. 

            

                                                                           (a) 

 

                                                                         (b) 

Figure 6.8: (a) Time history, and (b) Fourier spectra of CP response with 50% 

measurement noise. 
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Figure 6.9: REMD results of (a-c) the first, second, and third modes of bridge model 

obtained from CP response with 20% measurement noise. 

 

Figure 6.10: REMD results of (a-c) the first, second, and third modes of bridge model 

obtained from CP response with 50% measurement noise. 
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Table 6.2: Frequency and damping ratio values identified with different levels of 

measurement noise. 

 No noise 20% noise 50% noise 

 𝜔 (Hz) 𝜁 (%) 𝜔 (Hz) 𝜁 (%) 𝜔 (Hz) 𝜁 (%) 

𝛚𝐛,𝟏 3.80 3.26 3.80 3.74 3.80 2.11 

𝛚𝐛𝐥,𝟐 15.01 - 15.01 - 15.01 - 

𝛚𝐛𝐫,𝟐 15.41 - 15.41 - 15.41 - 

𝛚𝐛,𝟐𝐚𝐯𝐠 15.21 1.18 15.21 1.01 15.21 1.63 

𝛚𝐛𝐥,𝟑 34.03 - 34.03 - 34.03 - 

𝛚𝐛𝐫,𝟑 34.63 - 34.63 - 34.63 - 

𝛚𝐛,𝟑𝐚𝐯𝐠 34.33 1.09 34.33 1.05 34.33 0.87 

6.4.3 Effect of structural damage 

With the use of the proposed framework, the changes in bridge frequencies for each 

mode of vibration can be studied. To simulate structural damage, the bending stiffness 

(EI) is reduced by 20% and 50%. Vehicle speed is kept at 18 km/h, and no measurement 

noise is added to the CP response. Figs. 6.11 and 6.12 show the Fourier spectra of CP 

response for structural damage cases of 20% and 50%, respectively. By comparing Figs. 

6.11 and 6.12 with Fig. 6.3 (b), a reduction of bridge frequencies can be observed as the 

extent of damage increases. A similar trend can be observed in Figs. 6.13 and 6.14 when 

compared with Fig. 6.5. The frequency values from the undamaged bridge are compared 

with 20% and 50% structural damage cases in Table 6.3. For comparison, other structural 

damage cases are also added to Table 6.3, which include 1%, 5%, and 10% structural 

damage to the bridge. It is noted that the first natural bridge frequency remains 

unchanged until 10% structural damage, whereas the second and third natural average 

bridge frequencies show a change at 5% and 1% structural damage cases, respectively.    
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Figure 6.11: Fourier spectra of CP response with 20% structural damage. 

 

Figure 6.12: Fourier spectra of CP response with 50% structural damage. 

 

Figure 6.13: REMD results of (a-c) the first, second, and third mode of bridge model 

obtained from CP response with 20% structural damage. 
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Figure 6.14: REMD results of (a-c) the first, second, and third mode of bridge model 

obtained from CP response with 50% structural damage. 

Table 6.3: Frequency values identified with different levels of structural damage. 

𝝎(𝐇𝐳) 0% 

damage 

1% 

damage 

5% 

damage 

10% 

damage 

20% 

damage 

50% 

damage 

𝛚𝐛,𝟏 3.80 3.80 3.80 3.60 3.40 2.80 

𝛚𝐛𝐥,𝟐 15.01 15.01 14.61 14.21 13.41 10.61 

𝛚𝐛𝐫,𝟐 15.41 15.41 15.01 14.61 13.81 11.01 

𝛚𝐛,𝟐𝐚𝐯𝐠 15.21 15.21 14.81 14.41 13.61 10.81 

𝛚𝐛𝐥,𝟑 34.03 33.83 33.03 32.23 30.42 24.02 

𝛚𝐛𝐫,𝟑 34.63 34.43 33.63 32.83 31.02 24.42 

𝛚𝐛,𝟑𝐚𝐯𝐠 34.33 34.13 33.33 32.53 30.72 24.22 

6.5 Full-Scale Validation 

In this section, a full-scale experiment is conducted to demonstrate the proposed method. 

The test bridge is a five-span continuous box-girder bridge with a total length of 220m, 

outer spans of 36.5m, and three inner spans of 49m, as shown in Figs. 6.15 and 6.16. The 

bridge has four lanes, with two lanes serving the traffic flow in each direction. The bridge 

is the one to be used both in direct monitoring and vehicle scanning tests for comparison. 
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The bridge is subjected to moderate traffic, and while collecting direct and indirect data, 

the bridge remains in operational conditions.  

 

Figure 6.15: Five-span continuous box-girder bridge. 

 

Figure 6.16: Schematics of the five-span test bridge. 

6.5.1 Direct bridge health monitoring 

In the direct monitoring test, the accelerometer sensors are placed throughout the length 

of the bridge. Various trials are performed to collect the vibration data under normal 

traffic conditions that include vehicles such as sedans, pick-up trucks, buses, heavy 

trucks, etc. traveling at a speed of 60 km/h. The sampling frequency is kept at 200 Hz for 

direct and indirect monitoring tests. Fourier spectra of data collected by one of the 

sensors located at the mid-span of the bridge is shown in Fig 6.17. REMD results for the 

direct data interval are shown in Fig. 6.18 from which three bridge frequencies can be 

identified as 2.8, 6.4, and 13.0 Hz. The damping ratios are estimated using the IMFs from 
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REMD results and the values for the first three vibration modes are 0.63%, 0.19%, and 

0.29%.  The challenge with direct monitoring is that it is generally expensive, labor-

intensive, and time-consuming. For a test to be completed, numerous technological 

concerns must be handled flawlessly on the testing site. In contrast, the same results can 

be achieved using a vehicle scanning method outlined in the next subsection.  

 

Figure 6.17: Fourier spectra of bridge acceleration response. 

 

Figure 6.18: REMD results of (a-c) the first, second, and third modes of test bridge 

obtained from bridge acceleration response. 
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6.5.2 Indirect bridge health monitoring 

In the iBHM test, the test vehicle used to collect the bridge response is shown in Fig. 6.19 

(a). The test vehicle is a hatchback car that is instrumented with two accelerometer 

sensors. Sensors are placed on the passenger side floor, one in the front and the other in 

the back of the vehicle, as shown in Figs. 6.19 (b) and (c) respectively. In this study, 

Fourier spectra and REMD results are shown for the front sensor only. The dynamic 

properties of the test vehicle are investigated using flat road tests and bump tests before 

the bridge data collection. Upon conducting a few tests, the modes of the engine noise are 

found to be 5.4 and 10.9 Hz, and the contribution of suspension is found to be 1.65 Hz. 

The iBHM data is collected at a speed of 40 km/h. To avoid traffic impediments, data is 

collected at off-traffic timings.  

 

                                                                     (a) 

        

                                (b)                                                                       (c) 
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Figure 6.19: (a) Test vehicle, sensor instrumentation in the (b) front, and (c) back of the 

test vehicle. 

The response of the vehicle’s CP with the bridge has been demonstrated to be a better 

parameter than the vehicle response for identifying bridge modal parameters since it is 

free of vehicle frequency. Using Eq. 6.9, the CP response is generated using the collected 

vehicle response. Fourier spectra of vehicle acceleration response is shown in Fig. 6.20. 

And Fourier spectra of CP response, determined using vehicle response, is shown in Fig. 

6.21.  REMD results for the CP response generated using vehicle acceleration response 

are shown in Fig. 6.22. From Fig. 6.22, the values for three bridge frequencies and 

damping ratio are identified and summarized in Table 6.4. The time duration of iBHM 

data is limited due to the limited length of the bridge and therefore, limited travel time for 

the test vehicle. This may result in inaccurate results as the data stream may be short 

depending on the length of the bridge. The resolution of the results depends on the time 

duration of the test. 

Without an adequate period, the bridge dynamic features cannot be successfully captured. 

Since iBHM is performed using a sensor in the passing vehicle, the test can be repeated 

multiple times to increase the accuracy of the approach. Damping ratio values from 

column 5 of Table 6.4 represent only one trip made by the test vehicle. Multiple passes 

over the bridge can provide results that can be averaged out to provide accurate results. In 

this study, five round trips are made and therefore, ten test durations are used to average 

the acquired results. The distributions of bridge frequency and damping ratio values 

identified from these trials are summarized in Figs. 6.23 (a), and (b), respectively. For the 

first three modes of vibration, the average values for the frequencies are 2.45, 6.19, and 

13.08 Hz, and damping ratios are 0.38, 0.19, and 0.15%.  
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          Figure 6.20: Fourier spectra of vehicle acceleration response. 

 

Figure 6.21: Fourier spectra of CP response generated using vehicle acceleration 

response. 
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Figure 6.22: REMD results of (a-c) the first, second, and third modes of test bridge 

obtained from CP response generated using vehicle acceleration response. 

Table 6.4: Frequency and damping ratio values identified from direct and indirect BHM 

results. 

 Direct BHM Indirect BHM 

 𝜔(𝐇𝐳) 𝜻 (%) 𝜔(𝐇𝐳) 𝜻 (%) 

𝛚𝐛,𝟏 2.8 0.63 2.83 0.29 

𝛚𝐛,𝟐 6.4 0.19 6.21 0.18 

𝛚𝐛,𝟑 13.0 0.29 11.66 0.19 

 

    (a) 
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(b) 

Figure 6.23: Distribution of (a) bridge natural frequencies, and (b) bridge damping ratio 

values. 

6.6 Summary 

This chapter proposes a vehicle scanning method that can extract the bridge's natural 

frequencies using the dynamic response of the vehicle. Since the vehicle response 

contains the contributions of vehicle and bridge vibrations, the CP response is calculated 

from the vehicle response using an analytical relationship between the vehicle response 

and the vehicle’s CP response. Once the CP response is known, it is processed using a 

variant of EMD. REMD can decompose a vibration signal into its simpler components, 

and it is explored to provide IMFs from the original signal from which the bridge 

frequencies can be successfully identified. The proposed method is verified using 

numerical and full-scale studies.  
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Chapter 7  

7 Visualization Tool for Bridge Infrastructure Monitoring 
and Maintenance 

In this chapter, it is attempted to integrate system identification (SID) within the 

framework of Bridge Information Modeling (BrIM). A single-sensor-based modal 

identification technique is used, which enables visualization of the bridge frequencies at a 

given sensor location for different periods. By linking the real sensory data with the 

virtual sensor, this chapter extends the BrIM model from static to dynamic and provides 

an effective management and visualization tool for engineers and project owners at large 

by providing them with updated, monitored information.  

7.1 Introduction 

Vibration data originating from the structure, collected using direct bridge health 

monitoring (BHM) or indirect BHM (iBHM) methods, goes through a post-processing 

phase that includes sorting and de-noising of the data, and vital information about the 

structure is determined, including critical deflections and modal parameters such as 

frequency, damping ratio, and mode shapes, etc. Once such parameters are studied and 

documented from the measured structural response over a long period, automated alerts 

can be set up using the appropriate thresholds for safe and reliable use of the public 

infrastructure. However, the interpretation of long-term data collected from continuous 

monitoring can be overwhelming due to the processing of an enormous amount of data. 

Automated processing and visualization of data facilitate accurate decision-making 

promptly. Building Information Modeling (BIM) is a digital representation of the 

physical and functional characteristics of a structure (Ren et al. 2018), which is utilized 

here for structural monitoring and maintenance.  

BIM is not only a computer-aided-design tool but also a three-dimensional (3D) 

modeling and information management tool that can aid stakeholders and infrastructure 

owners in monitoring projects remotely. Traditional BIM aims at the design and life-

cycle analysis of a new building and its construction (Arayici and Aouad 2010, Grilo and 
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Goncalves 2010, Liu et al. 2014, Singh and Sadhu 2019). BIM is capable of integrating 

various engineering aspects through 3D spatial representation. The capabilities of BIM 

are not only limited to being a software environment, but it also serves as a visualization 

tool providing a better understanding of the project and helping designers to convey the 

design information and ideas to the project owners (Ivson et al. 2019). With all the 

information about each component being in one place in a single model, it enables end-

users to access such information at any time during its lifecycle. Such capability of big 

data inventory is utilized in this study and explored how it can provide a real-time 

representation of BHM data to the end-users. During long-term monitoring of structure, 

raw and preprocessed data can add up to hundreds of gigabytes of data, which makes the 

process of data retrieval prone to errors (Alampalli et al. 2016, Cremona and Santos 

2018, Almasri et al. 2019). Damage detection can be visualized in the model by 

assimilating the sensor data within the BIM model. BIM uses a static data source to 

assess the structure. Therefore, the sensor data collected from the bridge, while linked to 

BIM, can extend the application of BrIM model from a static to a dynamic model as it 

can feature real-time data retrieval and interpret the current performance of the bridge.  

Recently, there have been several efforts to develop BIM-based structural health 

monitoring (SHM) strategies. For example, (Zhang and Bai 2015) created a low-cost 

structural condition assessment device that used BIM computing environment for 

automated health management of structures. (Chen et al. 2014) developed a dynamic 

BIM framework by developing a prototype to insert real-time data into the BIM model. 

The dynamic BIM model developed in the study represented real-time building 

information by connecting the sensor data with the BIM model. A geothermal bridge 

deck de-icing system monitored with embedded sensors was used as a case study. 

(Delgado et al. 2017) formulated a standard data model to include and visualize SHM 

data directly to BIM models. A case study was conducted in a pre-stressed concrete 

girder bridge featuring a fiber optic-based SHM system. The goal to accurately represent 

the SHM sensory system, including damage-sensitive features in the object properties, 

was achieved by (Grosso et al. 2017). The authors demonstrated the linking of data to 

sensor representations within the BIM model.  
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The viability of bridge information modeling with different modules of bridge 

management systems was explored by (Marzouk and Hisham 2011). (Huston et al. 2016) 

worked on the integration of BIM and decision-making systems with SHM involving 

collection, storage, transmission, and processing of information obtained from sensor 

data and design documents. The extended Industry Foundation Classes (IFC) schema, 

referred to as IFC Monitor was formulated by (Theiler et al. 2017) to facilitate the 

documentation of SHM systems since the current schema was unable to support the full 

description of modeling-related information. The automatic generation of parametric 

building models of SHM systems and efficient integration with other data sets was 

enabled by (Delgado et al. 2018). Recently, (Boddupalli et al. 2019) developed a data 

visualization tool for systematic decision-making using the computing environment of 

BIM as a primary platform.  

The significant limitation of these studies is the lack of a single standardized neutral 

exchange format for sharing information among the various data software. The problem 

arises when attempting to extract data from sensors in many different protocols. The 

handling of large volumes of data requires high-performance hardware. Lack of 

interoperability is another challenge in the seamless integration of a BHM system with 

the BIM platform. There is a lot of software commercially available for the modeling and 

development of structures. However, the development of various computational tools, 

such as add-ins or plug-ins, is undertaken in a standalone fashion, which is also 

inefficient in addressing the complications arising from multiple data sources. The 

existing BIM-based SHM tools lack interoperability and information sharing with other 

software and technology (Grillo and Jardim-Goncalves 2010, Cemesova et al. 2015, 

Karan and Irizarry 2015, Tomasi et al. 2015). Moreover, the capability of SID and the 

evolution of structural parameters over time are not available in the existing visualization 

tools in the literature, which forms the focus of this chapter. 

After a basic introduction of BIM and BHM techniques and identification of the 

limitations in the current literature, the proposed method is discussed in section 7.2. The 

proposed framework is finally illustrated using a case study consisting of visualization of 

the BHM data in section 7.3, followed by a summary in section 7.4.  
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7.2 Proposed Visualization Framework 

This section provides an overview of the proposed methodology implemented to 

visualize BHM data within BrIM through Autodesk REVIT®. The proposed framework 

utilizes the relative merits of BHM and BrIM to develop a visualization tool for 

monitoring bridge infrastructure. This method uses REVIT and MATLAB (MathWorks 

2018) online portal to integrate the sensor information with condition data and diagnostic 

results. Virtual sensors in this study are used to visualize the BHM information in the 

BrIM environment. Accelerometer sensors used for vibration data collection are modeled 

in the REVIT as a new class of family, as shown in Fig. 7.1. Sensor metadata is used to 

create a sensor family and can be accessed by highlighting any sensor from the BrIM 

model. The dynamic behavior of the structure is analyzed using the sensor data in 

MATLAB. 

 

Figure 7.1: Virtual sensor modeled in Autodesk REVIT. 
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Figure 7.2: IFC sensor data. 

Virtual sensors used in this study to mimic the sensors installed on a real structure are 

created as a new REVIT family using the IFC standard of data exchange shown in Fig. 

7.2. IFC is used by building-model-based applications to exchange data with each other, 

and it constitutes a specification that can describe model data related to all phases of the 

life-cycle of a project (Rio et al. 2013, Augenbroe et al. 2004). The IFC model represents 

tangible building elements such as doors, walls, ceilings, beams, etc., and even more 

abstract entities such as time, schedule, space, cost, organization, etc. There are different 

IFC classes for each element, while the sensors are included in the IFCBuildingControls 

domain module. There are two classes associated with sensors; IFCSensor and 

IFCSensorType. As the sensors are defined in the BIM environment, sensor information 

can be accessed using the properties box of each sensor. The link to MATLAB is also 

connected to the properties box. By clicking the MATLAB link, the user is taken to the 

MATLAB online portal, where SID scripts can be run. Subsequently, the SID results can 

be analyzed for decision-making.  
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Pre-processed and processed BHM data is embedded within the BrIM software such that 

long-term health monitoring information can be visualized. A wide range of SID methods 

(Dessi and Camerlengo 2015, Perez Ramirez et al. 2016, Pappalardo and Guida 2018, 

Barbosh et al. 2018, Mao et al. 2019) were developed by the researchers to estimate 

modal parameters from the measured vibration data. Most of these techniques are suitable 

where all critical locations of the structure are instrumented. For visualization purposes, 

each sensor installed in a real structure corresponds to a virtual sensor in the BIM model. 

Therefore, while visualizing a particular virtual sensor, each sensor creates a time history 

that requires a SID method that is capable of using only a single channel measurement. In 

this study, a newer time-frequency method, Time-Varying Filter-based Empirical Mode 

Decomposition (TVF-EMD) (Li et al. 2017, Lazhari and Sadhu 2019) is used to conduct 

SID using single-channel measurement.  

The details of the TVF-EMD method can be found in section 3.2.2. TVF-EMD uses the 

root-mean-square (RMS) value of the resulting intrinsic mode functions (IMFs) to extract 

the modal responses. However, all the frequencies with energy higher than the average 

RMS value cannot be utilized to differentiate the actual structural frequencies from the 

background noise. To automate the identification step, it is proposed that when the 

difference between the respective Fourier peaks in an IMF is more than a specific percent 

(say, 70%) of the higher peak value, then the IMF represents a structural modal response 

rather than a mixed modal response.  
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Figure 7.3: Proposed framework for the BrIM-based BHM method. 

The proposed framework (Singh and Sadhu 2020) has three-fold advantages of online 

visualization of data, real-time SID, and decision-making by tracking the SID results 

obtained from the measured data. Fig. 7.3 shows the proposed framework that can 

automate SID and visualization of BHM data in the BIM environment. First, a parametric 

3D model of the structure is developed in Autodesk REVIT. Since the virtual sensors are 

not predefined elements in the REVIT library, these are manually created using a new 

REVIT family and IFC attributes. On the other hand, physical sensors, which are 

connected to a data acquisition (DAQ) system, record the BHM data for structural 

condition assessment. Therefore, accelerometers are used to collect the BHM data, and 

virtual sensors are created in the BIM environment using IFC (as shown in Fig. 7.2) to 

mimic the physical sensors on site. Data file from each physical sensor is associated with 

the respective virtual sensor in REVIT. SID is performed using the TVF-EMD algorithm, 

which is integrated with REVIT through an online MATLAB portal linked via the 

“Properties” box of the virtual sensor in the BrIM model. Owing to its capability of 

analyzing single-sensor data associated with a virtual sensor, the TVF-EMD is adopted to 

undertake SID from single-channel data. It is automated and can be implemented in real-
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time for condition assessment of structures within the BrIM platform. A case study is 

presented next to demonstrate the implementation of the developed framework.  

7.3 Full-Scale Validation 

The proposed framework is validated using a 90 m pony-truss bridge in London, Ontario, 

shown in Fig. 7.4 (a). This section demonstrates the application of the proposed 

visualization tool developed in this study. Bridge vibrations are monitored while different 

numbers of vehicles travel over the bridge. A virtual model for the bridge is developed in 

REVIT and sensor data is integrated with the virtual sensors. SID results from the BHM 

data are shown in a user-friendly format integrated with the visualization platform of 

REVIT.  

 

(a) 



144 

 

                      

                            (b)                                                                              (c)  

Figure 7.4: (a) Direct sensor instrumentation of steel bridge, (b) DAQ system, and (c) 

sensor instrumented on bridge sidewalk. 

7.3.1 Details of instrumentation 

The bridge is instrumented with accelerometers to evaluate its modal parameters and 

analyze and predict the structural health of the bridge. Nine high-sensitive sensors are 

placed along the walkway of the bridge, and the sensors are set up to measure uniaxial 

vertical vibration. The sensors used for the testing have a sensitivity of 10V/g. A 

sampling frequency of 200 Hz is used. Sensors are placed at a distance of 3, 6, 15, and 30 

m on both sides from the centerline of the bridge shown in Fig. 7.4 (a). The data 

collection is performed through (b) the DAQ system by connecting it with (c) sensors 

using BNC cables and a laptop using a USB cable shown in Fig. 7.4. Test details 

regarding the number and class of vehicles during each test run are tabulated in Table 7.1. 

The duration of each test is between 30 seconds to 5 minutes. Tests 4, 5, and 6 include 

the free vibration response recorded during the jumping of a single subject near the center 

of the bridge. 



145 

 

 

Table 7.1: Description of test data. 

Test # Bus Car Truck Total 

1 0 11 0 11 

2 1 20 1 22 

3 1 29 3 33 

4 3 jumps of 2 subjects  

5 3 jumps of 3 subjects  

6 3 jumps of a single subject  

7.3.2 Bridge Information Modeling-based model 

For the framework presented in this study, a structural model is developed that closely 

represents the real bridge. Data attributes define the physical, geometrical, and abstract 

properties of the structure. REVIT is used as a BrIM tool to visualize the bridge virtually. 

With the help of 2D drawings provided by the City engineers, a virtual model of the 

bridge is developed into a 3D model with the generic parameters and properties using 

REVIT as shown in Fig. 7.5. 
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Figure 7.5: Virtual 3D model of bridge and sensor. 

This model is used to define the real-time dynamic behavior of the bridge that can be 

used for visualization of long-term monitored BHM data. Sensors feed the vibration data 

to DAQ, which is connected to a computer. The raw data file generated by the DAQ 

system is used to perform SID and serves as a link to connect the BrIM model with the 

MATLAB online portal. Virtual sensors that are not pre-defined in Autodesk REVIT are 

manually created in the BrIM model. A new REVIT family is used to create the 

accelerometer sensor virtually and the IFC exchange format is used to define the virtual 

sensor attributes shown in Figs. 7.1 and 7.2, respectively. Fig. 7.5 shows the virtual 

sensors placed in the BrIM model of the bridge. Properties related to sensors used for this 

particular study are defined in REVIT shown in Fig. 7.6. Upon selecting a particular 

virtual sensor in the bridge, its properties box shows all the data associated with that 

specific sensor, including sampling frequency, raw datasheet location, sensor serial and 

location, MATLAB link for SID, etc. 



147 

 

 

Figure 7.6: Sensor metadata defined in Autodesk REVIT. 

7.3.3 Implementation of the proposed framework  

The data collected from the building and MATLAB scripts (Mathworks, 2018) is linked 

with the virtual sensors which are modeled in REVIT shown in Figs. 7.1 and 7.6. By 

selecting a sensor, its related properties are shown in the properties box, including serial 

number, date, time, sensor location, sampling frequency, datasheet link, MATLAB link, 

etc. The properties box for a highlighted sensor is shown in Fig. 7.7. After clicking on the 

MATLAB link for a particular sensor, the user is taken to the MATLAB online portal, 

which performs the SID using the datasheet assigned to the specific sensor. The DAQ 

file, containing the raw and unprocessed data collected by the sensors, is saved as a text 

file and is shown in Fig. 7.7. 
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Figure 7.7: DAQ file containing raw and unprocessed data. 

This file is linked with the virtual sensor of the BrIM model of the bridge and can be 

accessed by clicking on the datasheet link on the properties box of the virtual sensor. This 

text file is also uploaded on the MATLAB online compiler along with the scripts of the 

TVF-EMD method. By clicking on a sensor in the BrIM model, the respective sensor gets 

highlighted, and a “Properties box” shows up in the REVIT window, and all necessary 

sensor information is contained in this icon shown in Fig. 7.7. By clicking on the 

datasheet link in the properties box, the user is taken to the raw data file linked to that 

particular sensor containing unprocessed data. By clicking the MATLAB link, 

highlighted in Fig. 7.8, the user is taken to the MATLAB online portal. In the portal, by 

executing the MATLAB scripts, SID results can be generated using single-channel 

measurement through the TVF-EMD method. 
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Figure 7.8: Execution of SID in Autodesk REVIT using MATLAB online portal. 

   

Figure 7.9: Time history of measured bridge response. 
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The framework presented in this study is used to perform modal identification using a 

single sensor measurement. The time history of the physical response of the bridge is 

shown in Fig. 7.9. The method used in this study successfully extracts the mono-

component modal responses. The resulting IMFs (i.e., extracted modal responses) are 

separated by the TVF-EMD algorithm. The resulting mono-component responses and the 

identified structural frequencies are discussed below.  

     

(a)                                                                  (b) 

Figure 7.10: Fourier spectra of the measured (a) free vibration response, and (b) vehicle 

traffic-induced response of the bridge. 

Test runs are selected for analysis in such a way that represents live traffic conditions. All 

the test runs except 4, 5, and 6 include the structural response generated by passing 

vehicles over the bridge. Tests 1, 2, and 3 are selected for further analysis as their vehicle 

count is 11, 22, and 31, respectively which represent a wide range of vehicles passing 

over the bridge. Fig. 7.10 (a) shows the processed data from the first three tests, which 

cover most of the range of vehicle count. As seen in Fig. 7.10 (a), Fourier amplitudes 

have higher values with an increasing number of vehicles in the bridge. 

Free vibration tests are conducted to estimate the natural frequencies of the bridge. To 

achieve this, the bridge is excited by the jumping action of a subject at the center of the 

bridge. This test has another significance of mimicking the pedestrian activity (walking 

or running) on the bridge. As shown in Fig. 7.10 (b) and Table 7.2, around four resonant 
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peaks can be observed between 0-20 Hz, indicating four natural frequencies of the bridge 

in this range, which are consistent with traffic-induced vibration.  

Table 7.2: Frequency values identified from free vibration response of bridge. 

Test # ω1 ω2 ω3 ω4 

4 4.43 5.41 9.24 14.83 

5 4.45 5.41 9.22 14.83 

6 4.42 5.41 9.15 14.78 

 

 

Figure 7.11: TVF-EMD results of vehicle traffic-induced response of the bridge. 

TVF-EMD is used to acquire the bridge frequencies from the single-channel 

measurement or vibration response generated by a bus driving over the bridge, and the 

results are shown in Fig. 7.11. The resulting IMFs are separated by the TVF-EMD 

method. The mono-component responses and the identified structural frequencies are 
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shown in Fig. 7.11. Table 7.3 contains the modal frequencies obtained from different 

sensors generated using the proposed framework.  

Table 7.3: Frequency values identified from bridge response originating from various 

sensors. 

Test # ω1 ω2 ω3 ω4 

1 4.45 5.52 9.18 14.82 

2 4.45 5.45 9.41 13.15 

3 4.43 5.45 9.92 14.82 

4 4.44 5.46 9.91 14.82 

5 4.44 5.47 9.14 14.81 

6 4.43 5.47 9.15 14.84 

7.4 Summary 

This chapter investigated the potential of BrIM in data management and maintenance of 

infrastructure using a web-based workflow. The use of different data formats can be 

omitted since the process is web-based and features real-time integration of sensor data 

with the BIM model. The proposed framework enhances software interoperability and 

frequent communication, which are required on civil infrastructure projects. The 

extension of the BrIM model from static to dynamic enables the real-time link between 

the data-driven SHM techniques and BrIM software. The web-based approach can be 

utilized to identify the modal frequencies from the sensor data using the TVF-EMD 

method used in this study. In this way, the SID of BHM data is integrated within the 

BrIM model, which can be beneficial for better interpretation of BHM data.  
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Chapter 8  

8 Conclusion and Discussion 

In this chapter, the key conclusions, thesis contributions, thesis limitations, and future 

work are summarized. 

8.1 Key Conclusions 

• A novel system identification (SID) technique is developed to solve the practical 

challenges associated with direct bridge health monitoring (BHM). The method 

employs a limited number of sensors for monitoring bridges when subjected to 

ambient and forced vibrations. A time-varying Empirical Mode Decomposition 

(EMD) variant is utilized to decompose the nonstationary bridge response, and a 

wavelet-based reallocation algorithm is used to provide the time-frequency 

representation of the response. The sparse SID capability of the proposed method is 

demonstrated using numerical and full-scale studies.  

• A drive-by modal identification method is proposed that uses a single sensor 

instrumented on the test vehicle for the SID of the bridge. This method has the 

potential to significantly reduce the economic footprint of BHM. Vehicle response 

contains dynamic information about the bridge, vehicle suspension, engine noise, 

ambient traffic noise, road roughness, etc. Due to the presence of sensor-vehicle-

bridge interactions in vehicle response, a decoupling framework featuring wavelet 

transforms is proposed to extract bridge modal parameters. The results from 

numerical, laboratory, and full-scale studies provide evidence that the proposed 

method can serve as a promising indirect BHM (iBHM) method.  

•  A vehicle scanning method is introduced to perform modal identification of bridges 

using the contact point (CP) response of the test vehicle. CP of the vehicle is 

independent of vehicle frequency and can enable a more accurate extraction of bridge 

modal parameters. The analysis of nonstationary CP response is challenged by the 

presence of measurement noise, varying vehicle speed, and extent of structural 
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damage, which yield significant inaccuracies. In this method, a variant of EMD is 

employed for computationally efficient modal identification by analyzing the CP 

response. The accuracy of the proposed method is illustrated using numerical and 

full-scale validation studies.  

• The potential of Bridge Information Modeling (BrIM) in bridge infrastructure 

maintenance and BHM data management is investigated using a web-based 

workflow. The proposed framework enhances software interoperability and frequent 

communication and extends the BrIM model from static and dynamic by enabling a 

real-time link between the data-driven BHM techniques and BrIM software. The 

proposed method features visualization and processing of BHM data on a web-based 

platform to facilitate the end-users in identifying the changes in structural 

performance.   

8.2 Thesis Contributions 

The research conducted through this thesis is directed toward creating a bridge 

infrastructure management system with limited and mobile sensing technology. BrIM-

based visualization and advanced basis-free time-frequency methods are explored to 

provide a framework capable of detecting structural damage in bridges. The broad 

contributions of this thesis are mentioned below:  

• A sparse SID technique to track the dynamic behavior of bridges subjected to ambient 

and moving vehicle-induced nonstationary vibrations is developed. 

• iBHM leverages a vehicle traveling over a bridge as a data acquisition device as well 

as a source of excitation. A robust drive-by modal identification is attempted in this 

thesis using vehicle response and CP response for damage identification in bridges.  

• A step forward from static to dynamic BrIM is attempted to facilitate the 

representation and visualization of BHM data. The proposed BrIM-based 

visualization framework provides a tool for long-term monitoring and maintenance of 

bridge infrastructure. 
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The thesis results followed research articles in leading journals and conference papers.   

8.2.1 Journal papers 

1. Singh, P., and Sadhu, A. (2023). Contact point response-based indirect bridge health 

monitoring using robust empirical mode decomposition. Under review.  

2. Singh, P., Mittal, S., and Sadhu, A. (2023). Recent advancements and future trends in 

indirect bridge health monitoring. Practical on Structural Design and Construction, 

ASCE, 28(1).  

3. Singh, P., and Sadhu, A. (2022). A hybrid time-frequency method for robust drive-by 

modal identification of bridges. Engineering Structures, Elsevier, 264, 114624.  

4. Singh, P., and Sadhu, A. (2021). Limited sensor-based bridge condition assessment 

using vehicle-induced nonstationary measurements. Structures, Elsevier, 32, 1207-

1220.  

5. Singh, P., Keyvanlou, M., and Sadhu, A. (2021). An improved time-varying 

empirical mode decomposition for structural condition assessment using limited 

sensors. Engineering Structures, Elsevier, 232, 111882.  

6. Singh, P., and Sadhu, A. (2020). System identification enhanced automated 

visualization tool for infrastructure monitoring and maintenance. Structural Sensing, 

Frontiers in Built Environment, 6(76). 

7. Barbosh, M., Singh, P., and Sadhu, A. (2020). Empirical mode decomposition and its 

variants: A review with applications in structural health monitoring. Smart Materials 

and Structures, IOP, 29(9), 093001.  

8. Yan, J., Laflamme, S., Singh, P., Sadhu, A., and Dodson, J. (2020). A comparison of 

time-frequency methods for real-time application to high-rate dynamic systems. 

Vibration, MDPI, 3(3), 204-216.  
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9. Singh, P., and Sadhu, A. (2019). Multicomponent energy assessment of buildings 

using building information modeling. Sustainable Cities and Society, Elsevier, 49, 

101603. 

8.2.2 Conference papers 

1. Singh, P., and Sadhu, A. (2023). An improved vehicle scanning method based on 

contact point response. CSCE General Conference, Moncton, Canada. 

2. Singh, P., and Sadhu, A. (2023). Modal identification framework for bridges using 

traffic smartphone data. CSCE General Conference, Moncton, Canada. 

3. Peplinski, J., Singh, P., and Sadhu, A. (2022). Real-time structural inspection using 

augmented reality. CSCE Structural Specialty Conference, Victoria, Canada. 

4. Singh, P., and Sadhu, A. (2022). Indirect bridge health monitoring using time-

frequency analysis: Analytical and experimental analysis. IMAC-XL, Society for 

Experimental Mechanics, Orlando, USA. 

5. Singh, P., and Sadhu, A. (2020). Towards mobile sensing technique in bridge health 

monitoring. CSCE General Conference, Saskatoon, Canada. 

6. Barbosh, M., Singh, P., and Sadhu, A. (2020). Structural condition assessment using 

empirical mode decomposition and its variants. CSCE General Conference, 

Saskatoon, Canada. 

7. Singh, P., and Sadhu, A. (2019). Towards building information modeling-based 

automated structural health monitoring tool. CSCE General Conference, Montreal, 

Canada. 

8.3 Limitations of the Proposed Thesis 

After an extensive review of the BHM research, iBHM has enormous potential for future 

implications in bridge monitoring. This research field has garnered significant attention 

from BHM researchers worldwide since its inception in 2004. Despite the use of this 
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research for general applications, several challenges must be addressed that this research 

field faces. 

• Appropriate modeling of the test vehicle: The vehicle model used in numerical 

simulations is simplified as a single degree of freedom (SDOF) system. If a vehicle is 

to be modeled as a multi-DOF (MDOF) system, the coupling effect of MDOFs needs 

to be considered in numerical studies. A limited number of full-scale studies have 

been identified in the literature, as very few test vehicles resemble the theoretical 

models presented in the respective studies. If MDOF systems are to be used, the 

mechanical coupling between the MDOFs of the vehicle should be considered. 

• Effect of road roughness: The presence of road roughness excites the vehicle 

overwhelmingly more than the bridge does. This can result in the bridge acceleration 

spectrum being masked by the vehicle response. Road roughness analysis and road 

profile estimation are not commonly included in iBHM studies. One solution to the 

road roughness problem is to subtract the signal of two consecutive axles to remove 

the roughness effect. 

• Effect of optimal vehicle speed: The traveling speed of the test vehicle dictates the 

amount of time the vehicle is present over the bridge and is collecting data related to 

the bridge acceleration spectrum. The duration of VBI could be rendered very short 

due to the vehicle speed. This problem can be dealt with by reducing the test vehicle 

speed; however, this might not be an ideal solution for in-service roads and bridges. 

• Effect of vehicle configuration: The sensitivity of the test vehicle (i.e., damping and 

stiffness of the vehicle) is another challenging aspect of iBHM research. Each 

researcher has utilized a specific test vehicle which may only be suitable for the 

specific bridge used in that study. There is a lack of literature that focuses on 

generalizing the design and parameters of the test vehicle. 

• Sensor placement on test vehicle: Sensor placement on the test vehicle can be 

considered another challenge for iBHM. Even though the CP response can provide 

more accurate bridge information, free from any kind of vehicle input, extracting the 
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CP response using a sensor placed on vehicle axles is a challenging task. Advanced 

sensing techniques, such as sensors based on the Internet of Things (IoT), can be 

employed to accomplish this task. Such sensors can streamline the sensor placement 

and data collection phases of iBHM 

8.4 Potential Future Research 

The research field of iBHM has grown exponentially since its introduction, and its role in 

making bridge monitoring economical is evident. After enumerating the challenges in the 

previous section, a couple of recommended steps for the future development of iBHM 

research field are provided in this section. 

• Test vehicle design: Optimizing the design for a test vehicle can be beneficial for the 

iBHM research. A test vehicle designed for monitoring various types of bridges such 

as short bridges, long bridges, truss bridges, cable-stayed bridges, suspension bridges, 

etc. Such a test vehicle, which most likely can be simulated using an unmanned 

ground vehicle, may be highly customizable in terms of different vehicle mass and 

vehicle stiffness values and different sensitivity characteristics depending upon the 

boundary conditions and type of the bridge. 

• Sensor communication: Vehicles traveling on the roads nowadays are undergoing 

distinct evolution in design and technology. Autonomous driving vehicles are 

expected to revolutionize the transportation system. These vehicles are equipped with 

sophisticated sensors such as cameras, light detection and ranging (LIDAR), and 

ultrasonic sensors. It is essential to direct the future development of such vehicles 

toward integration with smart bridge monitoring. A monitoring system built based on 

the constant communication between the smart vehicles, and smart infrastructure can 

result in higher reliability and self-sufficiency and provide enhanced decision-making 

capabilities to the stakeholders by fusion of various sensor data. 

• Sensor sustainability: In the realm of wireless sensor networks, the development of 

self-powered sensors has gathered a great deal of research interest. These sensors are 

capable of harvesting energy from the sensed vibrations and can potentially transform 
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the data acquisition by enhancing energy efficiency. The implementation of self-

powered sensors attached to the test vehicle will significantly reduce the maintenance 

cost and increase the efficiency of data collection. 

• IoT-based applications: Wireless data transmission and cloud-based computation 

have given rise to IoT-based sensors. The tasks of data collection, transmission, and 

processing can be facilitated using IoT sensors. Smart and sustainable infrastructure, 

cities, and communities have been the prime directive for the concept of IoT. Future 

studies can focus on extracting information from a large amount of data by deploying 

IoT sensors on a large scale and expanding the boundaries of iBHM. 

• Mode shape identification: Most of the studies worked on the identification of the 

bridge frequencies and the effects of vehicle damping, bridge damping, and road 

roughness for the identification of the CP response. However, limited studies have 

explored ways to identify the mode shapes from the CP response. The moving public 

transportation system, such as buses and taxis, could be used as test vehicles to record 

the mode shapes or any other modal parameters. 

• Vision-based monitoring: With the advancements in the video camera, computer 

vision using video could be a viable alternative for iBHM, which has not been 

appropriately explored. With the use of a computer vision algorithm, a pixel in the 

image could be modified and tracked to detect the vibration response at any point. 

This new field of study may open the doors to access the inaccessible structural parts 

of the bridge for its timely maintenance. 
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