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Abstract 
Knowledge of fraction magnitudes are an important, but notoriously difficult mathematical 

concept to master. Behavioural work has begun to explore and compare the instructional tools used 

for fraction learning. However, how fraction instructional tools are processed in the brain remains 

an underexplored question. Therefore, in the present thesis, we used functional brain MRI 

methodology to examine the neural activity of adult participants while completing a fraction 

verification task using the number line and area model, two common methods of fraction learning. 

We found that both models commonly recruited fronto-parietal activity, the neural regions 

typically implicated in number processing. However, we also found specific clusters of activation 

in frontal and parietal regions that displayed a greater response to area models. Given that 

participants indicated a greater familiarity with the area model, we suggest this could arise due to 

differences in strategy employed when using the number line and area model formats. 

 

Keywords 
Functional Magnetic Resonance Imaging, Fraction Magnitude, Learning Models, Number Line, 

Area Model, Fronto-parietal Network, Intraparietal Sulcus, Numerical Cognition  
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Summary for Lay Audience 
 

As the classic joke goes, “6 out of 5 people struggle to understand fractions”. Unfortunately, this 

joke holds some truth, as many studies have documented that both children and educated adults 

struggle considerably to understand fraction magnitude. As a result, this raises the question of 

whether methods used for teaching fractions are not effective instructional approaches. In the past, 

mathematics curriculums have predominantly relied on use of the area/pie model for teaching 

fraction magnitudes. However, recently, there has been a growing push to emphasize number line 

use in early fraction learning instead. Indeed, behavioural work has supported the notion that the 

number line is an effective model for fraction magnitude learning. However, it currently remains 

unknown how the brain processes magnitude in number line and area model formats. The inclusion 

of neuroimaging can complement our knowledge from the behavioural literature and can provide 

valuable insight towards best practices for fraction learning. Therefore, in this thesis, we used 

functional brain MRI methodology to explore commonalities and differences in how the brain 

processes fraction magnitude in number line and area model formats. Through this, we found that 

while the two models were processed in the brain highly similarly (both recruiting regions of the 

brain typically involved in magnitude processing), there were also regions within this network that 

were activated to a greater extent by the area model. We suggest that it is possible that these 

differences arose because the participants in our sample had a greater familiarity with the area 

model. Therefore, it is possible that there were different approaches taken when completing trials 

in number line and area model format. However, we encourage future work to explore this question 

more directly to obtain better insight towards the mechanisms that may be causing these 

differences between the models at the level of the brain. Given that our study is the first to directly 

explore how the brain processes fraction instructional models, we believe this can serve as a strong 

framework for future neuroimaging studies exploring fraction learning. Ultimately, we hope this 

will improve our knowledge regarding best practices for fraction learning. 
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Chapter 1 

1 Introduction 
Every day, we rely on our numerical skills to help us understand and navigate through the world 

around us. Numerical knowledge is relied upon to complete many of the tasks that are encountered 

in daily life, whether that be calculating discounts at a sale, cooking a new recipe, determining 

your portion of a split dinner bill, or calculating medical dosages. Further, from an educational 

standpoint, previous work has identified early mathematical skills as one of the strongest predictors 

of later academic achievement (Duncan et al., 2007; Romano et al., 2010). Additionally, the 

significance of numerical competency is also apparent at the societal level. Notably, it has been 

shown that sizable socio-economic costs incur when poor numeracy rises, including increased rates 

of mental and physical illness, incarceration, and unemployment (Bynner & Parsons, 1996; 

Parsons & Bynner, 2005). Taken together, these findings illustrate the relevance of number 

knowledge for both individual and societal functioning. 

1.1 Number Processing in the Brain 
Given the importance of numerical skills, the question of how the brain processes and represents 

number has been a growing topic of interest. With the rise of neuroimaging techniques, such as 

functional magnetic resonance imaging (fMRI), the ability to characterize the neural regions 

implicated in number processing has improved markedly. These additions have complemented our 

knowledge from the behavioural literature and have provided meaningful insights on the 

mechanisms and processes that underlie number processing (Matejko & Ansari, 2018). From these 

studies, we have learned that number processing is associated with the recruitment of fronto-

parietal regions of the brain (Arsalidou & Taylor, 2011, for meta-analysis). Specifically, 

neuroimaging work has consistently revealed activation associated with number processing in 

prefrontal regions, as well as in the bilateral parietal lobules, particularly around the intraparietal 

sulcus (IPS) (Appolonio et al., 1994; Dehaene et al., 1996; Dehaene et al., 2003; Roland & Friberg, 

1985; from Nieder & Dehaene, 2009). The IPS is a parietal brain region that has consistently been 

implicated in numerical cognition. Indeed, the IPS has been documented to be activated in 

response to a multitude of different numerical tasks, such as in the presentation of Arabic digits, 

in number comparison tasks, in calculation or mental arithmetic, in response to written and spoken 
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number words, as well as in the presentation of non-symbolic number (e.g., dot arrays) (e.g. Ansari 

et al., 2005; Chochon et al., 1999; Eger et al., 2003; Holloway et al., 2010; Pesenti et al., 2000; 

Piazza et al., 2004; Pinel et al., 2001). Taken together, frontal and parietal regions, predominately 

around the IPS, have been identified as key regions implicated in the processing of a wide array 

of numerical tasks (see Arsalidou & Taylor, 2011 for meta-analyses). 

 

However, while our understanding of how the human brain processes numbers has undoubtedly 

improved, it is important to note that, currently, much of what we know about number processing 

comes from the whole/natural numbers literature. Here, we refer to whole numbers as a positive 

number that does not contain a decimal or fractional component (e.g., 7).  While these insights 

have been meaningful, whole number reasoning only encompasses a subset of our daily processing 

and use of numerical information. Further, whole numbers are used relatively little in more 

complex mathematics (Sidney, Thompson, & Opfer, 2019). Therefore, interest has been directed 

towards better exploring how other forms of number are processed and understood. Among these, 

the study of fraction processing has emerged as a particular topic of interest within the numerical 

cognition field. Fractions, in particular, have provided an interesting case to explore because 

fraction knowledge is an important learning milestone (Bailey et al., 2012; Booth & Newton, 2012; 

Siegler et al., 2012; Siegler et al., 2013; Torbeyns et al., 2015). However, despite considerable 

instruction in early education, becoming proficient with fractions has been shown to be a 

notoriously difficult task for both children and educated adults (Bailey et al., 2015; Behr et al., 

1985; National Mathematics Advisory Panel, 2008; Siegler et al., 2013; Stigler et al., 2010).  

 

1.2 The Importance of Fraction Understanding 

1.2.1 What is a Fraction? 
A fraction is a numeral that is a notation of a rational number, which is a type of number that 

represents the ratio between two integers. The fraction notation takes on three elements, the 

numerator, denominator and the line that separates the two (e.g., 1
7
 ). In North America, fractions 

are introduced early on in primary school years with the expectation that by the end of grade school 

students will be fluent with fraction operations and application (CCSSI, 2010; Ontario Ministry of 
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Education, 2005). Specifically, curriculum standards suggest that fractions are first introduced to 

children in grade 1. By grade 4, it is expected that students have a solid grasp of fraction magnitude 

and can compare and order fraction numbers. Then, by grades 7 and 8, children should be able to 

carry out fraction arithmetic operations and successfully apply fractions in algebraic equations 

(CCSSI, 2010; Ontario Ministry of Education, 2005). Fraction instruction is included and 

emphasized in the early mathematics curriculum as developing a proficiency with fractions is a 

crucial component of our mathematical learning that is subsequently relied upon in many areas of 

life (Siegler et al., 2013). 

 

1.2.2 Fraction Importance in the Classroom 
Developing a sound understanding of fraction concepts is critically important for later math 

learning (Bailey et al., 2012; Booth & Newton, 2012; Siegler et al., 2012; Torbeyns et al., 2015).  

For instance, previous work has found that fraction magnitude knowledge is more strongly related 

to measures of algebra readiness than is knowledge of whole number magnitudes (Booth & 

Newton, 2012). Similarly, previous work has also identified relations between fraction knowledge 

and math achievement more generally. For example, Siegler and colleagues (2012) found that 

secondary school students’ knowledge of fractions were strongly correlated with measures of 

overall math achievement. Further, this study also found that early fraction knowledge can serve 

as a key indicator of student’s later achievement in mathematics. Indeed, this study demonstrated 

that student’s elementary school fraction knowledge uniquely predicted later mathematics gains in 

high school, even after controlling for relevant educational factors such as general IQ, family 

education levels as well as other types of mathematical knowledge (Siegler et al., 2012). Taken 

together, these findings illustrate that fractions serve as a foundational building block that are 

necessary for more advanced mathematical learning. 

 

1.2.3 Fraction Importance Beyond the Classroom 
Though, while the educational implications of fraction knowledge are clear, the importance of 

understanding fractions extend beyond the classroom. Fractions are among the most ubiquitous 

forms of number encountered in daily life and are necessary for carrying out various day-to-day 

activities like baking (e.g., ¾ a cup of flour), shopping (e.g., ½ off sale), or expressing time (quarter 
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after 7). Additionally, knowledge of fractions is also relied upon to decipher and understand 

important statistical and probability data, such as infection rates during COVID-19, changes in 

stock market price, or compound interest (Lortie-Forgues et al., 2015). Furthermore, fraction 

knowledge is relied upon in a wide range of occupations, in both STEM and non-STEM fields. 

For instance, the U.S labour survey reported that 68% of high-skill blue collar respondents 

indicated that they required fraction knowledge in their work (Handel, 2016). Therefore, being 

able to work with fraction concepts is an important cognitive skill, not only for academic 

achievement, but also for successful functioning in our everyday world. 

 

1.3 Documented Difficulties in Fraction Understanding 
Despite the fact that fractions are taught from an early age onwards, crucial gaps in fraction 

understanding are frequently documented (Bailey et al., 2015; Behr et al., 1985; Perie et al., 2005; 

Siegler et al., 2013; Stigler et al., 2010). For instance, in the 2004 National Assessment of 

Educational Progress (NAEP), a measure of educational achievement in the U.S, it was found that 

only 50% of 8th grade students were successful in accurately ordering the magnitude of three 

simple fractions (Lester, 2007). Unfortunately, similar trends in fraction difficulty have continued 

to persist in the NAEP data throughout the years. For instance, on the 2009 NAEP, it was found 

that only 25% of 4th grade students could identify the fraction closest to ½ out of a list of fractions. 

Further, in the 2017 NAEP data it was documented that only 32% of 4th grade students were able 

to accurately assess whether a fraction item was greater than, less than or equal to ½. This 

illustrates that while extensive efforts have been put forward towards advancing mathematics 

education, the challenges of learning fractions have persisted over time. As a result, these 

fundamental misconceptions in fraction knowledge have been identified as some of the most 

significant barriers to advanced mathematical learning by secondary school algebra teachers 

(Hoffer et al., 2007). 

 

Further, it is important to note that these gaps in fraction knowledge are not exclusive to early 

learners. Rather, difficulties with fractions remain apparent into adulthood as well. For example, 

Stigler and colleagues (2010) found that only 33% of college level students were able to identify 

which of four simple fractions were the largest in magnitude (Stigler et al., 2010). Further, perhaps 

most concerningly, these gaps in fraction understanding are present among those responsible for 
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teaching fractions as well. Indeed, previous work has shown that both pre-service and in-service 

teachers also display difficulties in fraction understanding (Copur-Gencturk, 2022; Ma, 2020; 

Newton, 2008; Olanoff et al., 2014). Specifically, it has been noted that even when teachers are 

able to apply procedural knowledge and compute with fractions, their conceptual understanding is 

largely lacking, as they struggle to provide an explanation for these procedures and when they 

should be applied (Newton, 2008; Olanoff et al., 2014; Son & Crespo, 2009). This finding is 

problematic given that it has been demonstrated that students learning outcomes are improved 

when their instructor holds a sound understanding of the material being taught (Hill et al., 2005). 

These findings demonstrate that while curriculum standards suggest that fraction concepts should 

be mastered in early education (CCSSI, 2010; Ontario Ministry of Education, 2005), this is often 

not the case. 

 

Finally, it is worthwhile to note that fraction difficulty is not restricted to the classroom setting. 

Indeed, misconceptions in fraction knowledge manifest in the everyday decisions that we make. 

A common example of this comes from the popular media headline “How failing at fractions saved 

the Quarter Pounder” (CBC Radio, 2021). In 1980, A&W introduced the ‘third-of-a-pound 

burger’, a competitor to the famous quarter pounder burger from McDonald’s. It was projected 

that this new addition would be a hit, given that A&W was offering a larger burger for the exact 

same cost as the quarter pounder. However, unexpectedly, sales on this burger were concerningly 

low. When A&W ran a focus group to explore why the burger had been so unsuccessful it became 

apparent that lack of fraction knowledge among consumers was the culprit. In fact, over 50% of 

consumers held the belief that one third was smaller than one fourth, and thus believed they were 

being ripped off by A&W by having to pay the same cost for a smaller burger (CBC Radio, 2021). 

While humorous, this real-life example illustrates how fundamental misconceptions in fraction 

knowledge can impact the day-to-day decisions that we make. Taken in sum, the above findings 

exemplify that, despite instruction in early education, difficulties with fractions are pervasive 

across development and exist in many different areas of life.  
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1.3.1 Understanding Fraction Magnitude: A Particular Challenge in 
Fraction Learning  

Given that difficulty with fractions is far from rare, it has led researchers to consider explanations 

for why such a difficulty occurs. One leading explanation is that there is a fundamental difficulty 

in understanding that fractions represent single numerical magnitudes (Bonato et al., 2007; Kallai 

& Tzelgov, 2012; Stafylidou & Vosniadou, 2004). Indeed, a common theme that emerges in many 

of the documented examples of fraction difficulty, including those provided above, are examples 

that revolve around misconceptions in magnitude. Magnitude understanding refers to the specific 

ability to “comprehend, estimate, and compare the sizes of numbers” (Fazio et al., 2014, page 54). 

However, to do so, this requires an understanding of what a fraction represents. A fraction, in 

essence, represents the exact same thing as a whole number, a single numeric value. However, this 

realization is not always intuitive because fractions take on a different representation 

(numerator/denominator) than the magnitudes we are first introduced to (whole numbers). As a 

result, this can lead to componential processing, where fractions are viewed as parts of a whole, 

rather than as a holistic, single magnitude (Zhang et al., 2014). 

 

Relatedly, difficulty in understanding fraction magnitude is often attributed to an inflexible 

fixation on whole number knowledge. In early education years, children work nearly exclusively 

with whole number magnitudes. Resultantly, a particular sensitivity towards whole number 

concepts is typically developed, which can lead to misconceptions and misapplications when 

children shift towards working with fractions – a phenomenon known as the ‘whole number bias’ 

(Ni & Zhou, 2005). Specifically, the whole number bias refers to the erroneous procedure whereby 

individuals attend to the whole number components of a fraction’s numerator and denominator 

rather than processing the fraction as a single number value (Ni & Zhou, 2005). A clear example 

of this bias was documented by Mack (1990). Specifically, in this study it was reported that 6th 

grade students commonly claimed that 1
8
 was a larger fraction value than 1

6
  with the reasoning 

being that 8 is a larger number than 6 (Mack, 1990). Indeed, this explanation can also explain why 

sales on A&W’s burger failed, as consumers believed that 1
3
 was less than 1

4
  because 3 is less than 

4. 
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Evidently, this difficulty is especially problematic as magnitude understanding is a foundational 

component of our number knowledge (Siegler, 2016). Indeed, without an understanding of what a 

number represents it becomes difficult to reason with that number in any capacity. This logic is 

supported in the ‘integrated theory of numerical development’, where theorist Robert Siegler 

highlights that the feature that unifies all real numbers is the representation of magnitude (Siegler 

et al., 2011). Thus, learning to view fractions as single numerical values that can be ordered and 

compared, alike whole numbers, is integral for a genuine understanding of fractions (Siegler et al., 

2011, 2013). More specifically, this difficulty is problematic because fraction magnitude 

knowledge has been shown to be crucial for fraction learning more generally. For instance, 

knowledge of fraction magnitudes is correlated with later achievement in fraction arithmetic 

(Siegler & Pyke, 2013). Further, previous interventional work has demonstrated that targeting 

magnitude understanding can yield transferable increases in knowledge of arithmetic and other 

fraction concepts (Fazio, Kennedy, et al., 2016; Fuchs et al., 2013; Moss & Case, 1999; Saxe et 

al., 2013). Moreover, understanding fraction magnitude also has critical implications for 

mathematical learning more broadly. For instance, the relationship between fraction magnitude 

knowledge and overall math achievement has been found in representative samples from North 

American, European, and Asian countries (Torbeyns et al., 2015). Furthermore, previous work has 

demonstrated that early fraction magnitude knowledge is a key indicator of performance in later 

advanced mathematics, particularly in algebra (Booth et al., 2014; Siegler et al., 2012). 

 

In summary, knowledge of fraction magnitude is crucial towards later fraction learning as well as 

math achievement overall (Booth et al., 2014; Siegler et al., 2012; Siegler & Pyke, 2013; Torbeyns 

et al., 2015). As a result, current work in the field has suggested that focusing on enhancing 

magnitude knowledge should be the first step that is addressed in improving fraction proficiency 

and understanding overall (Torbeyns et al., 2015). Therefore, our study aimed to explore common 

methods in which fraction magnitudes are taught and understood to obtain better insight towards 

the best practices for fraction magnitude learning. 
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1.4 Instructional Tools Used to Teach Fractions 
Thus far, we have seen that notable difficulties in comprehending fraction magnitude exist. Given 

that these difficulties have continued to be documented despite considerable instruction in school, 

it raises the question of whether the methods used to teach fraction magnitude are effective 

instructional approaches. Therefore, it is important to study the methods in which fraction 

magnitudes are taught in primary education. One of the most common approaches for teaching 

fraction magnitude is using visual models (Common Core Standards Writing Team, 2013). This 

approach, specifically, is recommended as a method of fraction learning by educational guides, 

such as the “IES Practice Guide for Developing Effective Fraction Instruction for Kindergarten 

through eighth Grade” (Institute of Education Studies, 2010). Moreover, visual models have been 

frequently implemented into fraction learning intervention studies and have yielded positive 

learning outcomes (e.g. Cramer et al., 1997; Fazio, Kennedy, et al., 2016; Fuchs et al., 2013). 

However, while this is true, it is important to acknowledge that the “fraction visual model” does 

not adopt a singular representation. Rather, different fraction models vary in many notable 

characteristics, including geometry and dimensionality. Consequently, the question of whether 

certain models yield better fraction learning outcomes, relative to others, has been raised (Rau et 

al., 2014). Specifically, here we consider two commonly used visual models for depicting fraction 

magnitude: the area/pie model and the number line model. 

 

1.4.1 The Area Model Fraction Instructional Tool 
In previous years, the area/pie model instructional tool has been the earliest and most emphasized 

model in fraction instruction (Common Core State Standards Initiative, 2015). This model consists 

of a two-dimensional circle, whereby a section of the circle is shaded. From this, magnitude is 

deciphered by assessing the amount of shading relative to the whole circle (Common Core State 

Standards Initiative, 2015) (Figure 1a). While this method has been widely implemented in the 

past, current theories have raised some concern about whether this model is actually exacerbating 

misconceptions in fraction magnitude (Hamdan & Gunderson, 2017). In particular, it has been 

suggested that the area model facilitates the notion that fractions are ‘parts of a whole’, thereby 

contributing to the lack in understanding that a fraction is a single numerical magnitude 

(Newcombe et al., 2015; Opfer & Siegler, 2012). Additionally, the two-dimensional feature of the 
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area model has been criticized because it goes against the conception that all real numbers can be 

ordered in a single dimension (i.e., in a left to right unidimensional fashion) (Dehaene et al., 1993; 

Gunderson et al., 2019; Institute of Education Studies, 2010). This has raised the question of 

whether these features of the area model prevent this from being an effective fraction instructional 

tool. 

 

1.4.2 The Number Line Fraction Instructional Tool 
Given the criticism existing around the area model, interest has been directed towards utilizing 

other tools for fraction learning. Among these, the number line has gained traction as an effective 

tool for extracting fraction magnitude (for review see Abreu-Mendoza & Rosenberg-Lee, 2022). 

The number line is a unidimensional, linear model that allows for magnitude to be assessed by 

estimating the location of a tick mark along the length of the line (Hamdan & Gunderson, 2017) 

(Figure 1b). A critical feature that differentiates the number line from the area model is the 

difference in dimensionality. As a unidimensional model, the number line facilitates the 

understanding that fractions represent continuous magnitudes that can be sequentially ordered, 

similar to whole numbers (Gunderson et al., 2019; Siegler & Lortie-Forgues, 2014). Further, 

another beneficial feature of the number line is that its geometrical shape aligns with our 

conventional understanding of spatial and numerical associations, whereby smaller numbers are 

represented on the leftmost of the line and larger numbers on the rightmost of the line (e.g. Dehaene 

et al., 1993; Newcombe et al., 2015; Patro & Haman, 2012). Indeed, previous work has found that 

even preschool children expect numbers to be ordered in a increasing left-to-right fashion, 

suggesting that this mental organization of numerical magnitude emerges early in human 

development  (Opfer et al., 2010). Further, this property is also analogous to how whole numbers 

are ordered and understood (Dehaene, 2011), thus reinforcing the idea that fractions are also single 

numeric magnitudes. For these reasons, it has been suggested that the number line may offer 

distinct advantages for learning and processing fraction magnitude (Gunderson et al., 2012, 2019; 

Hamdan & Gunderson, 2017; Siegler & Lortie-Forgues, 2014). 
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Figure 1: Example of the area/pie model format (a) and number line format (b). Magnitude 

in the area/pie model is assessed by examining the amount of black shading relative to the whole 

circle. Magnitude in the number line format is assessed by examining the location of the tick mark 

relative to the length of the 0-1 line. 

 

While the literature on fraction visual models remains relatively limited, several studies have 

highlighted the effectiveness of the number line as a tool for fraction magnitude learning (for 

review see Abreu-Mendoza & Rosenberg-Lee, 2022). For example, in a 2020 study conducted by 

Barbieri and colleagues, 6th grade students with mathematics difficulties were evaluated in a 

fraction learning intervention study that had a number line centered approach. The authors found 

that the experimental intervention led to significant improvements in performance on magnitude 

comparison tasks, as well as on measures of general fraction concepts after a 7 week delay period 

(Barbieri et al., 2020).  Similar findings to this have been obtained in intervention studies utilizing 

cohorts of 4th (Fuchs et al., 2013) and 5th grade students as well (Jayanthi et al., 2021). Therefore, 

this suggests that the number line can serve as an effective tool for enhancing fraction learning, 

especially in students with pre-existing math difficulties. 

 

However, while the above studies indicate that the inclusion of the number line can yield gains in 

fraction learning, these do not speak to how the number line compares to other tools for teaching 

fraction magnitude. Therefore, to better explore potential differences in the effectiveness of the 

fraction instructional models, Hamdan and Gunderson (2017) compared the performance of 2nd 

and 3rd grade children who were trained on the number line with those trained on the area model. 

Specifically, in this study, the authors implemented a pre-test-training-post-test design to explore 
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how training on each of the two models impacted students’ performance on an untrained fraction 

magnitude task. During the untrained task, participants were presented with two fraction items and 

were instructed to select the one that was larger in magnitude. The authors found that in both 

training groups, students’ performance estimating fractions using the model they were trained on 

improved in the post-test measure. However, interestingly, only children in the number line 

training group yielded transferable gains in fraction magnitude understanding. This was 

demonstrated as children who were trained on the number line performed significantly better on 

the novel magnitude comparison task than children who were trained on the area model. This study 

was the first to demonstrate that number line learning can causally impact knowledge of fraction 

magnitude. Further, this provides strong support towards the growing body of literature suggesting 

that the number line may be a more efficient model for representing fraction magnitude (Hamdan 

& Gunderson, 2017). 

 

1.5 Fraction Processing in the Brain 

1.5.1 Fraction Magnitudes Recruit Similar Regions as Whole Number 
Processing 

In recent years, meaningful insights have begun to be drawn regarding why fraction difficulty 

occurs and methods for combatting these difficulties. However, the majority of work that has been 

done has approached this topic through a behavioural lens. The inclusion of neuroimaging can 

complement findings from the behavioural literature and can expand our knowledge of the 

mechanisms underlying fraction magnitude processing (Matejko & Ansari, 2018). Further, the 

addition of neuroimaging can be valuable for guiding new theories and testable questions which 

can ultimately provide a deeper understanding of fraction processing. However, to date, only a 

handful of neuroimaging studies have been devoted towards exploring how fractions are processed 

in the brain. Based on these studies, it has been found that the processing of fraction magnitudes 

recruits prefrontal and parietal regions of the brain, namely around the IPS (DeWolf et al., 2016; 

Ischebeck et al., 2009; Jacob & Nieder, 2009a, 2009b; Mock et al., 2018; Wortha et al., 2020). 

Thereby demonstrating that the neural regions responsible for processing fraction magnitude are 

largely similar to the regions responsible for whole number processing, as discussed in earlier 

sections.  
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Early evidence for this was obtained by Jacob and Nieder (2009) using an fMRI adaptation 

paradigm. In this experiment, the authors first adapted participants to a single fraction magnitude 

(i.e., 1:6). During adaptation, the neural response decreased in response to the prolonged exposure 

of the same stimulus magnitude (Larsson et al., 2016). Following adaptation, the authors then 

presented deviant stimuli, either symbolic fractions (e.g., 1
9
) or fraction words (e.g., one-ninth) that 

were different magnitudes from the one they were adapted to. Once the deviants were presented, 

a recovery in the BOLD signal was found between the deviant and adapted stimuli in bilateral 

prefrontal regions and the bilateral IPS. This activity was observed for both the symbolic fraction 

and fraction word stimuli (Jacob & Nieder, 2009a). Furthermore, other studies have documented 

a recruitment of similar regions during fraction magnitude processing. For instance, Ischebeck and 

colleagues (2009) recorded the neural activity of adult participants while completing a fraction 

magnitude comparison task. In response to this task, the authors observed clear fronto-parietal 

activation in regions including the inferior and superior parietal lobules as well as the right inferior 

and middle frontal regions (Ischebeck et al., 2009). Therefore, in summary, the current 

understanding is that the regions of the brain responsible for processing magnitude of whole 

numbers are also implicated in the processing of fraction magnitudes (see Wortha et al., 2022 for 

review). 

 

1.5.2 The Neural Activity Associated with Learning using a Fraction 
Model 

However, while these findings have been obtained, the question of how the brain processes fraction 

magnitude using the instructional models remains incredibly underexplored. To the best of our 

knowledge, only one study to date has explored the neural activity associated with learning using 

a fraction model (Wortha et al., 2020). In this study, the authors examined whether training on the 

number line could elicit changes in brain activation during fraction magnitude processing. To 

explore this question, the authors collected brain and behavioural measures from adult participants 

before and after 5 days of number line training. During each of these sessions, the participants 

were asked to complete a variety of tasks, including a symbolic fraction magnitude comparison 

task. In this study, differences in fraction magnitude processing were explored from pre to post-

test, as modulated by the numerical distance effect. The numerical distance effect refers to the 
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notion that, when completing a number comparison task, the task is performed quicker and more 

accurately when the two values are further apart from one another on the number line (e.g., 2 vs 9 

is easier than 8 vs 9) (Moyer & Landauer, 1967). Importantly, the numerical distance effect has 

been shown to hold true for fraction magnitudes as well, with IPS activity being modulated by this 

effect when fractions are represented as a holistic numerical value (Ischebeck et al., 2009). As 

such, it has been suggested that the presence of a numerical distance effect when processing 

fraction magnitudes could be indicative of an active processing of the holistic magnitude, whereas 

a lack of distance effect could indicate less automatic access to magnitude or a difficulty processing 

the magnitude as a single value (Wortha et al., 2020). 

 

Interestingly, Wortha and colleagues (2020) found that before training on the number line, there 

were no voxels that were significantly modulated by the numerical distance effect when 

completing the symbolic fraction magnitude comparison. However, following training on the 

number line there were significant increases in activity around the IPS that were modulated by the 

numerical distance effect. Additionally, behavioural performance on the magnitude comparison 

task also improved significantly from pre to post test. Taken together, the authors suggest that prior 

to training, participants had a difficulty accessing the holistic magnitude of the fractions being 

compared. However, training on the number line facilitated more efficient and automatic access to 

fraction magnitude. Therefore, this study provides some initial evidence of neural plasticity in 

fraction learning, whereby small-scale training on the number line, can improve how fraction 

magnitudes are understood and processed in the brain (Wortha et al., 2020). 

 

This work has undoubtedly created an interesting avenue for exploring how fraction instructional 

models can facilitate magnitude learning on the neural level. However, there are still several 

questions that are left unanswered. Firstly, Wortha et al. (2020) explored how training on the 

number line impacted fraction magnitude understanding by using a fraction comparison task as a 

measure of magnitude knowledge. The use of the instructional model (i.e., training on the number 

line) took place outside of the scanner in between the pre and post-test scan. Therefore, how the 

brain processes and interprets fractional magnitude when presented in a fraction model has not yet 

been directly explored. Secondly, it is important to note that Wortha et al. (2020) only explored 

how number line training impacted brain and behavioural performance. Further, it should also be 
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kept in mind that the study design did not include a control group in addition to the interventional 

group. Therefore, it cannot be said with certainty whether the results obtained from this study are 

truly number line-specific or whether improvements are the product of training alone. Relatedly, 

it is unclear whether training on another fraction instructional model, such as the commonly 

encountered area model, would yield a comparable finding. Therefore, another question that has 

been left open for discovery is directly comparing how the brain processes fraction magnitude 

using the number line and area model formats. 

 

1.6 The Present Study 
In summary, previous work has exemplified that understanding fraction magnitude is an especially 

difficult mathematical concept to grasp.  One way to better understand the difficulties individuals 

experience when learning fractions is to examine the educational tools that are used to teach 

fraction magnitudes in early education. In many education curriculums, the area model is the first 

visual model that is introduced to children to teach fraction concepts (Common Core State 

Standards Initiative, 2015). However, a body of recent behavioural work has exemplified that the 

number line may actually be a more effective instructional tool for fraction learning (see Abreu-

Mendoza & Rosenberg-Lee, 2022 for review). In addition to these behavioural findings, recent 

neuroimaging work has also demonstrated that training on the number line holds the potential to 

facilitate better access to fraction magnitude in the brain (Wortha et al., 2020). However, while 

these insights have been drawn, it currently remains unknown how fraction magnitudes are 

processed in the brain when presented in number line and area model formats.  

 

Therefore, in the present study we sought to contribute to the currently limited body of literature 

by using functional brain imaging technology (fMRI) to explore the neural response of fractions 

presented in number line and area model formats. Based on the trends found in the behavioural 

literature (Hamdan & Gunderson, 2017), we hypothesized that the brain differentially processes 

fractional magnitude when presented in the different learning models. Specifically, we predicted 

that the number line would facilitate better access to fraction magnitude. Therefore, we expected 

to see greater activation in parietal regions, around the IPS, for fractions that were depicted in 

number line format. In contrast, we predicted that the area model would not efficiently facilitate 
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access to holistic magnitude, thus we expected to see comparatively less activation in these regions 

responsible for processing magnitude.  

 

Moreover, to complement our primary research aim, we also explored factors that may 

differentially impact magnitude processing in number line and area model format. Thus, as an 

exploratory addition, we also ran post-hoc analyses that examined whether different trial types 

were processed differently in number line and area model format. Specifically, we explored the 

processing of ‘benchmark’ fractions. In general, benchmark numbers are numbers that are highly 

familiar and easily identified (e.g. 10, ½ ) and thus can be used as a reference point when estimating 

the magnitudes of less familiar numbers (e.g. 13, 5
8
) (Obersteiner et al., 2020). This is a common 

strategy that is relied upon when performing whole number magnitude tasks (e.g. Peeters et al., 

2016; Peeters, Sekeris, et al., 2017; Peeters, Verschaffel, et al., 2017; Sullivan et al., 2011). Further, 

while the evidence is limited, some work has suggested that this may be a beneficial strategy for 

fraction magnitude estimation as well (Liu, 2018; Obersteiner et al., 2020). Therefore, we explored 

whether there was evidence to suggest strategy differences between the models by examining how 

the brain processes benchmarks in number line and area model format. 

 

To the best of our knowledge, this is the first study that explores how the brain processes fraction 

magnitude when presented in the different learning models. This is important because the inclusion 

of neuroimaging can contribute valuable insights toward assessing instructional methods used in 

education (see Seghier et al., 2019 for review). For instance, brain imaging can better explain 

common and discrete mechanisms that support cognitive functions, such as the processing of 

fraction magnitude (Mather et al., 2013). Specifically, for this reason, brain imaging can lend 

valuable insight in the context of comparing fraction learning models, by exploring whether the 

neural regions that are engaged when using the number line and area model instructional tools are 

largely overlapping or distinct. In conjunction with the behavioural literature, this line of 

investigation can contribute towards the question of which model is more effective for fraction 

learning by providing insight on whether the two models engage different processing mechanisms. 

Further, the addition of neuroimaging also holds the potential to inform how cognitive systems 

interact in the brain (Matejko & Ansari, 2018). Given that fraction magnitude understanding has 

been demonstrated to be a difficult task, this can be valuable for better understanding the cognitive 
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processes and strategies that are engaged when processing fraction magnitude in each of the 

learning models. Above all, the current study is significant as it will contribute to our currently 

limited understanding of how fractions are processed in the brain. Specifically, for the first time, 

we will be able to characterize the neural underpinnings of fraction magnitude processing when 

using the different learning models.  
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Chapter 2 

2 Methods 

2.1 Participants 
Healthy adult participants from London, Ontario were recruited to participate in the study. 

Participant recruitment occurred via recruitment emails and campus posting advertisements at 

Western University. Twenty-seven participants were recruited to participate in the study, however, 

due to motion exceeding the pre-registered head motion cut-off criteria, two participants were 

excluded from the final analysis (osf.io/ztjw7). Therefore, the final sample consisted of twenty-

five healthy adult participants (14 female, 11 male; 21.04 ± 2.81 years old). All participants 

provided written consent to participate in the study prior to beginning the study session. 

 

To be eligible for this study, it was required that participants were between 18 and 35 years of age, 

right-handed, a fluent English speaker, have normal or corrected-to-normal vision, and be MRI 

compatible (no non-removable metal on or in the body). Further, to be included in the final 

analysis, participants needed to have met the pre-registered head motion criteria (head movement 

that does not exceed 3 mm or 3 degrees across the entire run, with no sudden spikes that are greater 

than 1 mm or 1 degree). Functional runs that did not meet these parameters were excluded from 

the final analysis. Further, participants with head motion exceeding these criteria for more than 

two functional runs were excluded from the study completely. Data from this study was collected 

in a single session, which took an approximate duration of 1.5 hours. Participants were 

compensated a fixed amount of $30 for their participation. All procedures for this study were 

approved by the Non-Medical Research Ethics Board at Western University (Appendix 1). 

 

2.2 Study Stimuli and Study Task 
During the session, participants were presented with single-digit symbolic fractions (e.g., ¼) 

depicted in either number line or area/pie model format. In total, 36 fraction items were utilized, 

with numerators ranging from 1-9 and denominators ranging from 2-9 (see Appendix 2).  Rather 

than more complex numerals, single digit fraction items were chosen as the aim of the study was 

to assess fundamental fraction magnitude knowledge using the different learning models. The 

https://osf.io/ztjw7
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study stimuli were created using the Excel and Word Microsoft Office applications. The model 

(number line or area model) was depicted in the center of the screen with the associated fraction 

depicted directly above. The model and associated fraction were depicted in black-and-white 

colouration against a grey background (Figure 2). The experimental paradigm was coded using the 

PsychoPy open-source software package, version 2021.2.3 (Pierce et al., 2019). These stimuli were 

projected onto a computer screen. This computer screen was made viewable for participants in the 

scanner via a mirroring system that was attached to the MRI head-coil. 

 

2.2.1 Critical Trials 
Stimuli pertaining to the critical trials included a fraction-model pair that was defined as either a 

“correct” or “incorrect” depiction. Correctly depicted trials involved a fraction model that 

accurately depicted the associated fraction (Figure 2a,c). In contrast, incorrectly depicted trials 

involved a fraction model that did not accurately depict the associated fraction (Figure 2b,d). Trials 

defined as incorrectly depicted were set to be a value of 1
9
 away from where the correct location 

was. Half of the incorrect trials were presented 1
9
  greater than where the correct depiction would 

be, and the remaining half were presented 1
9
  less than where the correct depiction would be. Setting 

incorrect trials to be depicted a value of 1
9
  away from the correct location was initially chosen 

through trial and error (i.e., self-testing using different methods of defining incorrect trials). 

However, this decision was later explored in a fully powered pilot study where it was determined 

that this parameter was neither indiscriminably difficult nor blatantly easy, and thus was 

determined a reasonable choice (Henry et al., unpublished). During the study, each of the 36 

fraction items were both correctly and incorrectly depicted once in each model. Put simply, the 

item 1
7
, for instance, was presented four times during the session, once correctly depicted in number 

line format, once incorrectly depicted in number line format, once correctly depicted in area model 

format, and once incorrectly depicted in area model format. 
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Figure 2: Example Critical Trial Stimuli. Panel a) displays an example of a correctly depicted 

number line trial. Panel b) displays an example of an incorrectly depicted number line trial. 

Similarly, on the right, panel c) displays a correctly depicted area model trial, and panel d) 

displays an incorrectly depicted area model trial. 

 
Using these stimuli, participants were asked to perform a fraction verification task while in the 

scanner. This task required participants to view the fraction and associated model and make a 

judgement of whether the model accurately depicted that given fraction (e.g., using figure 2 as an 

example, does the model accurately depict the fraction 1
7

 ? ).  Specifically, participants were asked 

to press the button on the right when they believed the trial depicted a correct fraction-model match 

and to press the button on the left when they believed that trial depicted an incorrect fraction-model 

match. Responses were recorded using a response box that participants held in their right hand 

whilst in the scanner. Participants were instructed to respond as quickly and as accurately as 

possible but were not provided with any particular strategy on how to complete the task aside from 

this. 
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2.2.2 Control Trials 
It is important to consider that the number line and area model formats differ from one another, 

quite substantially, in terms of visual features. Therefore, to control for the differences in visual 

stimulation between the models, a control task was implemented in the study design. During 

control trials, participants saw stimuli that resembled the critical trial stimuli (a fraction model 

with an associated single-digit fraction depicted directly above), however, now with colour 

included. Indeed, rather than black-and-white colouration, as in the critical trials, the fraction 

numerals as well as features of the model (tick from number line and shading in the area model) 

were one of three colours – black, red, or blue. Half of the control trials depicted a “colour match” 

whereby the colour of the fraction numeral was the same as the colour shown in the model (e.g., 

blue fraction numeral and blue tick on the number line) (Figure 3a,c). Further, the remaining half 

of the control trials depicted a “incorrect colour match” whereby the colour of the fraction numeral 

was different from the colour shown in the model (e.g., blue fraction numeral and black tick on 

the number line) (Figure 3b,d). During control trials, the magnitude of the fraction was never 

correctly depicted in the model as we did not want participants to attend to magnitude, rather only 

to the visual features of the model. 

 

 
Figure 3: Example control trial stimuli. The left panels depict the number line control trials, 

with panel a) depicting an example of a colour match and panel b) depicting an example of an 
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incorrect colour match. Similarly, the right panels depict examples of area model control trials, 

with panel c) depicting an example of a colour match and panel d) depicting an example of an 

incorrect colour match.  

 

Therefore, rather than performing a fraction magnitude verification, as in critical trials, during 

control trials participants were asked to perform a colour verification judgement. This required 

participants to view the fraction and associated model to determine whether the colour of the 

fraction numeral matched the colour depicted in the model or not (tick colour of the number line 

and shading colour of the area model). During the control trials, participants were instructed to 

only focus on whether the colour match was correct or incorrect and to not attend to whether the 

magnitude shown in the model was accurate. Participants were instructed to follow a similar 

response pattern as in the critical trials, whereby the right button corresponded to a correct fraction-

model colour match and the left button corresponded to an incorrect fraction-model colour match. 

Once again, participants were asked to respond as quickly and as accurately as possible but were 

not provided with any specific strategy on how to complete these trials aside from this. 

 

As a result, the study consisted of a total of 288 trials that were divided into the following 

conditions: 1) Number line critical trials (36 correctly depicted trials, 36 incorrectly depicted 

trials); 2) Area model critical trials (36 correctly depicted trials, 36 incorrectly depicted trials); 

3) Number line control trials (36 correct colour match trials, 36 incorrect colour match trials); 4) 

Area model control trials (36 correct colour match trials, 36 incorrect colour match trials). These 

288 trials were presented over four functional runs, with each run containing 72 trials (9 trials from 

each of the above conditions per run). The study was administered as a within-subjects design. 

Therefore, each participant saw and completed all trials from each of these conditions.  

 

2.3 Experimental Procedure 
The fMRI task was presented in a rapid, jittered event-related design, however, with grouping 

according to the task type. It is important to keep in mind that the judgement made during critical 

trials (fraction verification) differed from the judgement made during control trials (colour 

verification). Therefore, we deemed it beneficial to divide trials into small ‘blocks/sections’ of six 



 

 
 

22 

trials, where all trials pertained to the same judgement (e.g., six trials of fraction verification then 

six trials of colour verification). Each sectioned group of trials commenced with a task cue which 

informed participants which of the two judgements should be made for the subsequent trials. 

Specifically, the word “Fraction” appeared on the screen to indicate that trials pertaining to the 

critical task would follow (fraction verification), or the word “Colour” appeared on the screen to 

indicate that trials pertaining to the control task would follow (colour verification). One of these 

two task cues was presented for a brief duration of 2 seconds, a randomized set of six trials 

pertaining to that cue would follow, then the next cue would be presented and so forth (Figure 4). 

Each trial had a stimulus duration of 3 seconds with a jittered fixation period of 2, 3, or 4 seconds 

following each individual trial. During this period, participants could respond to indicate whether 

they believed that trial was a correct fraction-model match/colour match. Participant responses 

made during the trial presentation and subsequent fixation period were recorded, therefore, 

participants could respond during either of these two periods. Participants were provided with 

instruction on how to complete the task, what each cue represented and how to make their 

responses prior to entering the scanner. In addition, during this instruction period, participants were 

provided the opportunity to complete a set of practice trials, to ensure that they were familiar and 

understood the task beforehand. 

 

Structuring the fMRI runs in this manner, whereby trials were sectioned according to the 

judgement made, was done to reduce the cognitive load placed on participants. Once again, given 

that participants were making a different judgement in control trials than in critical trials, this 

allowed participants to be informed of which judgement they would be making prior to the trial 

presentation. This was deemed to be far less cognitively demanding than switching response 

judgement on a trial-by-trial basis. Furthermore, this structure was additionally beneficial to our 

study design, as it allowed us to include more breaks within each functional run. Indeed, following 

each section of trials, participants were allotted a 4 second baseline break before the next cue was 

presented. This was beneficial as it allowed the opportunity to provide our participants with more 

rest periods and additionally allowed us to obtain a better estimation of the baseline during each 

run. 

 



 

 
 

23 

 
Figure 4: Overview of the procedure in which stimuli were presented during functional 

runs. Each run commenced with a 10 second fixation cross. Following this, an indication cue 

(Fraction or Colour) would briefly appear (2 seconds) to inform participants of which task to 

perform for the next 6 trials. Each individual trial was presented with a stimulus duration of 3 

seconds and was followed by a fixation period of jittered interval (2,3,4 seconds). Following 

each section of 6 trials, participants were allotted a 4 second break period before the onset of the 

next cue. 

 

2.4 Supplementary Behavioural Measures 
Following the scanning session, participants were brought into a nearby testing room at the Robarts 

Research Institute to complete two brief supplementary behavioural measures. The first of these 

measures was a fraction concepts measure, which was an online measure, distributed to 

participants through a Qualtrics survey (Qualtrics, Provo, UT). The fraction concepts measure 

consisted of a subset of 15 multiple choice and open-ended items taken from the National 

Assessment of Educational Progress, a United States department of education program that serves 

as a measure of student achievement (NAEP; U.S. Department of Education, Institute of Education 

Sciences, National Center for Education Statistics, National Assessment of Educational Progress, 

1990–2009). This measure assessed knowledge of different fraction concepts, including 
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understanding of fraction equivalence, fraction estimation, fraction ordering, fraction arithmetic, 

and fraction reasoning (Appendix 3). This supplementary measure was included in the study to 

obtain insight into our participants’ general fraction knowledge and abilities. Participants were 

allotted three minutes to complete this measure. If participants were not able to complete the 

measure in this duration, the Qualtrics system automatically re-directed participants to the next 

measure. 

 

The second and final supplementary measure participants were asked to complete during the study 

was a debrief form. Once again, this measure was completed online and was provided to 

participants through a Qualtrics survey (Qualtrics, Provo, UT). The debrief measure consisted of 

seven open-ended questions regarding participants thoughts and experiences pertaining to the 

study, as well as their previous math learning experiences. The debrief questions included: 1) What 

strategy or strategies were used to complete the task (if any)? 2) What did you find most difficult 

about this task? 3) Did you find one format more difficult to complete than the other? Or did you 

find the formats equal in difficulty? 4) Do you feel confident that you were able to judge whether 

the fraction was accurately depicted in the model? 5) What is your program of study or occupation? 

Would you say you use math often in your program/work? 6) Do you recall which fraction model 

you learned in school? Is one fraction model more familiar to you? Are they both familiar? Or 

neither familiar? 7) In general, how difficult do you find fractions? For this measure, no time limit 

was imposed, and participants were invited to provide whatever level of detail they deemed 

necessary. 

 

2.5 fMRI Data Acquisition  
The fMRI data was acquired at the Centre for Functional and Metabolic Mapping at the Robarts 

Research Institute at Western University. Structural and functional MRI scans were collected using 

a 3T Siemens Prisma Fit whole-body MRI scanner with a 32- channel head coil (Siemens, 

Erlangen, Germany). One high resolution T1-weighted anatomical scan was collected at the 

whole-brain level, where 192 slices were collected using an MPRAGE sequence in the sagittal 

plane (voxel size = 1 mm x 1 mm x 1 mm, TR = 2300 ms, TE = 2.98 ms , TI = 900 ms, flip angle 

= 9º). Additionally, functional data was acquired during four runs using a BOLD (blood 
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oxygenation level dependent) sensitive T2*-weighted single echo-planar sequence. During each 

functional run, 536 volumes were collected, with each volume being composed of 60 slices that 

were acquired through multi-band imaging (voxel size = 2 mm x 2 mm x 2 mm, TR = 1000 ms, 

TE = 30 ms, flip angle = 40º, multi-band acceleration factor = 5). In accordance with these 

parameters, each functional run took approximately nine minutes to complete. 

 

2.6 fMRI Preprocessing 
The anatomical and functional MRI data was largely preprocessed using the fMRIPrep 

preprocessing pipeline, version 20.2.6 (Esteban et al., 2018), which is a software based off of 

Nipype 1.7.0 (Gorgolewski et al., 2011). The fMRIPrep software generates a citation boilerplate 

that outlines all preprocessing steps performed. The developers of fMRIPrep suggest using this 

boilerplate verbatim in written work, as the boilerplate is public domain. According to this output, 

these steps are summarized here below. During anatomical preprocessing, the T1-weighted (T1w) 

scan was corrected for intensity non-uniformity using a N4BiasFieldCorrection (Tustison et al., 

2010). Further, the T1w image was then skull stripped using OASIS30ANTS as the target template. 

Following this, the brain extracted T1w image underwent tissue segmentation into cerebrospinal 

fluid, white matter, and grey matter (Zhang et al., 2001). Finally, the anatomical data was spatially 

normalized to standard space via non-linear registration with antsRegistration (ANTS 2.3.3), using 

the ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al., (2009), 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym]. 

 

Additionally, preprocessing was performed on the data from the four BOLD-sensitive functional 

runs. Firstly, a reference volume, along with a skull-stripped version, were generated through 

custom fMRIPrep methodology. Susceptibility distortion correction of the reference volume was 

then performed using a field-map based phase-difference map. According to the level of 

susceptibility distortion from this, a more accurate BOLD reference was calculated and was then 

co-registered with the T1w reference using the FreeSurfer function bbregister (Greve & Fischl, 

2009). Following this, the six head motion rotation and translation parameters were estimated with 

respect to the BOLD reference using the mcflirt motion correction tool from FSL (version 5.0.9) 

(Jenkinson et al., 2002). Following this step, the data was then slice-scan time corrected using 

https://www.sciencedirect.com/science/article/pii/S2213158223000347#b0065
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AFNI (Cox & Hyde, 1997). The functional data was then resampled into native space by applying 

a single composite transform to correct for head motion and susceptibility distortions. Next, the 

functional data was resampled into standard space, MNI152NLin2009Asym, in a single 

interpolation step that applied all the previous transformations (i.e., head motion correction, 

susceptibility distortion correction, etc) using the antsApplyTransforms command from ANTS 

configured from Lanczos interpolation. Finally, following initial preprocessing in fMRIPrep, the 

functional data was then spatially smoothed using a 6 mm FWHM Gaussian kernel, high-pass 

filtered and corrected for temporal autocorrelation assuming an AR(1) in the SPM 12 software 

(Ashburner et al., 2021). 

 

2.7 Data Analysis 

2.7.1 Statistical Threshold 
The preprocessed MRI data was then analyzed using the SPM 12 software package (Ashburner et 

al., 2021). To begin, first-level analyses were carried out at the individual level for each of the 

twenty-five subjects. The first-level analyses were based on a general linear model using the 

experimental conditions and task cue as predictors of interest and including regressors for the six 

motion parameters (three translation and three rotation), white matter, and cerebrospinal fluid 

signals. Once the first-level analysis was specified and estimated for each participant, the second-

level group analysis was performed at the whole-brain level. Second level analyses were then run 

with an uncorrected threshold of p<0.001. Whole-brain statistical maps were then corrected for 

multiple comparisons using a Gaussian Random Field (GRF) correction. For each statistical 

contrast, the minimum cluster size was simulated using the DPABI toolbox at the level of 

significance voxel p<0.001, cluster p<0.05 (Yan et al., 2016). These statistical threshold 

parameters, along with the minimum cluster sizes are reported with each individual contrast map. 

 

2.7.2 Whole-Brain Contrasts 
The primary question in this study was to explore how the brain processes fraction magnitude 

when presented in number line and area model format. Therefore, to explore this question, whole-

brain random effects analyses were run to examine neural regions that were common and distinct 
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for fractions depicted in number line and area model format. This was done through running the 

following contrasts: Firstly, to ensure that our task was functioning as intended we ran a sanity 

check t-contrast between the critical and control trials (Number Line and Area Model critical trials) 

– (Number Line and Area Model control trials). Then, to explore the regions of the brain that 

displayed common activation for both the number line and area model, a conjunction of the models 

was run (Number Line – Number Line Control) & (Area Model – Area Model Control). Finally, 

to explore potential differences in the neural response between the two fraction models, a t-contrast 

of the models was performed, with each model being subtracted by its respective visual control 

(Number Line – Number Line Control) – (Area Model – Area Model Control). In each contrast, 

the contrast vectors were weighted such that the contrasts were always balanced, or in other words 

summed to zero.  

 

In addition to our primary analyses, we also conducted a set of exploratory analyses to examine 

whether there was evidence to suggest potential processing differences between the models. In 

these exploratory analyses, we examined the role of benchmark fractions in each of the models. 

The use of benchmarks or reference fractions is a strategy that can be implemented to estimate the 

magnitude of other fractions. Thus, we were interested in exploring how the brain processes 

benchmark versus non-benchmark fractions and whether the brain processes these trial types 

differently in number line and area model format. In this exploratory analysis, we only explored 

trials from the critical fraction magnitude verification task. For the purpose of our study, the 

fraction items 1
2
, 1

3
, 1

4
, 2

3
, 3

4
, as well as all fractions equivalent to these (e.g., 2

4
, 6

8
) were considered as 

benchmark fractions. All remaining items were considered non-benchmark fractions (e.g., 1
7
, 5

9
) 

(Appendix 4). Using this design, we ran a contrast of benchmark versus non-benchmark fractions 

for both number line (Number Line Benchmark – Number Line Non-benchmark) and area model 

(Area Model Benchmark – Area Model Non-benchmark). All contrast vectors in the exploratory 

analysis were also weighted such that the contrast would be balanced. The primary and exploratory 

analyses conducted in this study were pre-registered on OSF prior to the study onset (osf.io/ztjw7). 

 

https://osf.io/ztjw7
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2.7.3 Behavioural Data Analyses 
In addition to the imaging data, behavioural data was also obtained from participants while in the 

scanner. Participant’s response to each trial, along with the time in which it took for participants 

to make their responses was recorded by the PsychoPy open-source software package, version 

2021.2.3 (Pierce et al., 2019). This behavioural data was processed using the tidyverse 

programming package (version 1.3.1, Wickham et al., 2019) in R studio (version 2022.07.1, 

RStudio, PBC, Boston). This allowed for trials to be filtered by condition so that response accuracy 

and response time could be explored across each of the experimental conditions at the group level. 

From this, descriptive statistics for response accuracy and response time were then calculated for 

each of the experimental conditions. In addition to this, for our primary analysis, a 2x2 repeated 

measures ANOVA, with task (critical vs control) and condition (Number line vs Area model) as 

the within-subjects factors was explored for both response time and response accuracy as the 

dependant variable. Similarly, for the exploratory analyses, a 2x2 repeated measures ANOVA with 

trial type (benchmark vs non-benchmark) and condition (Number line vs Area model) was 

explored for both response time and response accuracy as the dependent variable. Note that in the 

exploratory analysis, task was not included as a factor as only trials from the critical fraction 

magnitude task were explored. Where necessary, post-hoc tests from these analyses were corrected 

for multiple comparisons using a Bonferroni correction. 
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Chapter 3 

3 Results 
Analyses for the present study were pre-registered prior to data collection. The pre-registration can 

be found here osf.io/ztjw7. In this section, I begin by discussing the primary pre-registered 

analyses. The core research question in this study was to explore differences and commonalities 

in how the brain processes fraction magnitude in number line and area model format. Thus, 

presented first are the behavioural and imaging data that explore this question. Secondly, we also 

pre-registered an exploratory analysis that investigated whether trial type (benchmark versus non-

benchmark) is differentially processed in number line and area model format. This exploratory 

analysis was included to provide insight into factors that may impact how each of these models 

are processed. Behavioural and imaging results from this exploratory analysis are presented last. 

3.1 Primary Analysis: Behavioural Results 

3.1.1 Response Accuracy 
Descriptive statistics for response accuracy on the neuroimaging task and the fraction concepts 

measure are displayed in Table 1. Further, a 2x2 repeated measures ANOVA was conducted with 

task (critical vs control) and condition (number line vs area model) as the within-subjects factors 

and response accuracy as the dependent variable. This analysis revealed only a main effect of task 

F(1, 24) = 140.42, p < 0.001, whereby participants performed significantly more accurately when 

completing control trials (the colour judgement) in comparison to critical trials (the fraction 

verification judgement). The 2x2 repeated measures ANOVA revealed no main effect of condition 

F(1, 24) = 2.01, p = 0.17, and no statistically significant interaction between task and condition 

F(1, 24) = 2.24, p = 0.15. 

 

Table 1. Response Accuracy Descriptive Statistics on fMRI Task and Fraction Concepts 

Measure. 

Condition N M (% correct) SD (% correct) 

Number Line Critical 25 82.83 8.17 

https://osf.io/ztjw7
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Area Model Critical 25 84.72 6.19 

Number Line Control 25 99.28 0.99 

Area Model Control 25 99.22 1.07 

Fraction Concepts Measure 25 87.20 2.18 

Table 1. This table demonstrates descriptive data pertaining to response accuracy from the task 

completed in the scanner and the fraction concepts measure completed after the scanning session. 

The first four rows display response accuracy descriptive statistics on the neuroimaging task by 

each condition. The final row displays response accuracy descriptive statistics on the fraction 

concepts supplementary measure, a general measure of fraction understanding. 

3.1.2 Response Time 
Descriptive statistics for response time on the neuroimaging task are displayed in Table 2. A 2x2 

repeated measures ANOVA was conducted with task (critical vs control) and condition (number 

line vs area model) as the within-subjects factors and response time as the dependent variable. This 

analysis revealed a significant interaction between the effects of task and condition on response 

time F(1, 24) = 10.14, p = 0.004. Main effects analyses revealed a main effect of task F(1, 24) = 

216.25, p < 0.001 on response time, however, no main effect of condition F(1, 24) = 0.50, p = 0.49. 

Given the significant interaction, post-hoc t-tests with Bonferroni correction were run. The results 

of the post-hoc comparison revealed that, across both models, trials in the control conditions were 

responded to significantly more quickly than trials in the critical conditions. In addition, the post-

hoc comparison revealed that critical trials in number line format (M = 2.00, SD = 0.43) were 

responded to significantly more quickly than critical trials in area model format (M = 2.06, SD = 

0.48) (p = 0.031). There were no significant differences in response time between the number line 

and area model control conditions. 

 

Table 2: Response Time Descriptive Statistics by Condition from fMRI Task. 

Condition N M (seconds) SD (seconds) 

Number Line Critical 25 2.00 0.43 
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Area Model Critical 25 2.06 0.48 

Number Line Control 25 1.03 0.25 

Area Model Control 25 0.99 0.22 

Table 2. This table shows the response time descriptive data from the fMRI task. Each individual 

trial was displayed for three seconds, followed by a jittered fixation period of two, three or four 

seconds. Participants could respond to each trial at any point during the stimulus duration or 

subsequent fixation period. Response time values were recorded for each trial according to the 

time in which participants pressed the button box to make their response. 

 

3.2 Primary Analysis: Imaging Results 

3.2.1 Sanity Check Contrast (Critical Trials vs Control Trials) 
We first ran a sanity check contrast to verify that our task was functioning as intended. To do so, 

we ran a contrast of all critical trials (number line and area model) > than all control trials (number 

line and area model) to verify that activation was present in the regions of the brain that are 

characteristic of typical number processing (Figure 5). Indeed, in this contrast, clusters of 

activation were observed in regions such as the inferior and superior parietal lobules, middle 

frontal gyrus, and the insula. These are specific regions of the brain that have been consistently 

documented to be recruited when processing number information (see Arsalidou & Taylor, 2011 

for meta-analyses). In contrast, we observed activation in the opposite direction (where control 

trials > critical trials) in regions that are consistent with the default mode network (see Menon, 

2023 for review). For instance, activation peaks were jointly observed in regions including the 

medial prefrontal cortex, the posterior cingulate gyrus, the precuneus and the middle temporal 

gyrus. These are regions of the brain that have been identified to be part of the default mode 

network, which are neural regions that are more active at rest than they are during an externally 

engaging task (Mazoyer et al., 2001; Shulman et al., 1997). This provided a reasonable sanity 

check as the task performed in the control trials (colour verification) was an easier and less 

cognitively demanding task than the task performed in critical trials (fraction magnitude 

verification). 
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Figure 5: Sanity Check Contrast.  Clusters of activation from the contrast of all critical trials – 

all control trials. Only significant clusters of activation are shown here at the threshold of voxel p 

< 0.001, cluster p < 0.05, GRF corrected, k = 247. 

 

3.2.2 Common Neural Regions Activated for Number Line and Area 
Model 

Common regions activated by magnitude processing in both number line and area model format 

were identified through a conjunction analysis (Number line – Number line control) & (Area 

model – Area model control). The conjunction analysis revealed a high degree of overlap between 

the two models (Figure 6). Notably, a range of frontal and parietal regions were significantly 

activated by both the number line and area model. Activation was seen in regions including the 

bilateral superior and inferior parietal lobules, the inferior frontal gyrus, the right middle frontal 

gyrus and the insula. These are regions that are commonly implicated in number processing more 

generally (see Arsalidou & Taylor, 2011 for meta-analyses), as well as in fraction magnitude tasks 

in specific (Ischebeck et al., 2009). This high degree of overlap in these frontal and parietal regions 

suggests that there are many similarities in how fraction magnitude is processed in number line 

and area model format. In particular, this demonstrates that both number line and area model 

formats recruit brain regions that are characteristic of typical number magnitude processing. 
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Figure 6: Common Areas Activated by Both Number Line and Area Model Formats 

(Conjunction Analysis). Only significant clusters of activation are shown here at the threshold 

of voxel p < 0.001, cluster p < 0.05, GRF corrected, k = 251. 

3.2.3 Distinct Neural Regions Activated Between Number Line and Area 
Model Formats 

However, while we observed evidence for many similarities in how the fraction models were 

processed in the brain, we were also interested in exploring whether there are differences. 

Therefore, to examine whether magnitude processing in number line and area model formats 

engaged distinct neural regions a t-contrast between the models was conducted at the whole-brain 

level. In this contrast, the difference between the models was explored with each model having its 

model-respective visual control subtracted out (Number line – Number line control) – (Area model 

– Area model control). In this contrast, we found neural regions where magnitude processing in 

number line and area model format were significantly different (Figure 7). However, we observed 

clusters of activation that did not match our predictions (Table 3). Two significant clusters of 

activation were identified where the area model was significantly more active than the number line 

(voxel p value < 0.001, cluster p value < 0.05, GRF corrected). These clusters of activation were 

found in the left inferior frontal lobe and in the right parietal lobe around the IPS. Moreover, only 

one cluster of activation was found where the number line was significantly more active than the 

area model (voxel p value < 0.001, cluster p value < 0.05, GRF corrected). This cluster was found 

in the primary visual cortex, around the calcarine sulcus. The results from this contrast demonstrate 
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that while magnitude processing using the two fraction models recruit many overlapping regions, 

as seen in the conjunction contrast, there are also differences in how the brain processes fraction 

magnitude in number line and area model formats.  

 
Figure 7: Neural Differences Between the Number Line and Area Model. Clusters of activation 

are from the contrast (Number Line – Number Line Control) – (Area Model – Area Model 
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Control). NL corresponds to Number Line, AM corresponds to Area Model. Only significant 

clusters are depicted here at the threshold p voxel < 0.001, p cluster < 0.05, GRF corrected, k=156. 

Each cluster of activation is displayed on the left of the figure, with panel A and B displaying 

regions where AM>NL and panel C displaying the region where NL>AM. To the right of each 

contrast map is a plot displaying the parameter estimate from that cluster across each condition. 

Parameter estimates were extracted by drawing a 6 mm sphere around the peak coordinate value 

from each cluster. The error bars in these plots reflects the standard error. 

 

Table 3: Peak Neural Regions Identified in Contrast Between the Number Line and Area Model. 

Contrast Direction Brain Region     x     y z k 

Area Model > Number Line 

 

 

Right Intraparietal Sulcus 

Left Inferior Frontal Gyrus 

 

36 

-45 

-67 

20 

40 

24 

334 

204 

Number Line > Area Model    Left Visual Cortex/Calcarine -13 -95 -3 2692 

Table 3. Coordinates provided correspond to the peak MNI coordinates from each significant 

cluster. Cluster size (k) corresponds to the number of voxels. Regions were identified using the 

Jülich Histological Atlas (Amunts et al., 2020) and Harvard-Oxford Cortical Structural Atlas. 

 

3.3 Exploratory Analysis: The role of Benchmark Fractions 
To further explore the differences in how magnitude is processed using the number line and area 

model formats, we ran a set of exploratory analyses to examine whether there was evidence of 

strategy differences when making magnitude judgements in each of the models. To do so, we ran 

analyses looking at trial type in the critical fraction magnitude verification trials. Specifically, we 

explored the role of benchmark versus non-benchmark fractions in both number and area model 

format. The behavioural and imaging results from these exploratory analyses are presented below.  
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3.3.1 Behavioural Results of Benchmark vs Non-Benchmark Fractions 
(Response Accuracy) 

Descriptive statistics for response accuracy on benchmark versus non-benchmark fractions across 

both models are displayed in Table 4. A 2x2 repeated measures ANOVA was conducted with trial 

type (benchmark vs non-benchmark fraction) and condition (number line vs area model) as the 

within-subjects factors and response accuracy as the dependent variable. This analysis revealed 

only a main effect of trial type F(1, 24) = 66.23, p < 0.001, whereby participants performed 

significantly more accurate when completing benchmark fraction trials in comparison to non-

benchmark fraction trials. In this analysis, there was no main effect of condition F(1, 24) = 2.06, 

p = 0.16, and no statistically significant interaction between trial type and condition F(1, 24) = 

0.67, p = 0.42. 

 

Table 4: Response Accuracy Descriptive Statistics for Benchmark vs. Non-benchmark Fractions. 
 

Condition M (% correct) SD (% Correct) 

Number Line Benchmark 89.16 7.69 

Area Model Benchmark 89.77 7.12 

Number Line Non-benchmark 78.80 9.97 

Area Model Non-benchmark 81.49 7.68 

Table 4. Response accuracy descriptive statistics from the neuroimaging task. In the exploratory 

analysis, trials from the critical task (fraction verification task) are divided into benchmark 

versus non-benchmark trials across both models. 

 

3.3.2 Behavioural Results of Benchmark vs Non-Benchmark Fractions 
(Response Time) 

Descriptive statistics for the response time of benchmark versus non-benchmark trials across the 

models is displayed in Table 5. Using a 2x2 repeated measures ANOVA, we found a significant 

interaction between the effects of trial type and condition on response time F(1, 24) = 11.45, p = 

0.002. Main effects analyses revealed a main effect of trial type F(1, 24) = 75.74,  p < 0.001 on 

response time, however, no main effect of condition F(1, 24) = 1.89, p = 0.18. Given the significant 
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interaction, post-hoc t-tests with Bonferroni correction were run. The results of the post-hoc 

comparison revealed that, across both models, benchmark fraction trials were responded to 

significantly more quickly than non-benchmark fraction trials. However, in addition, non-

benchmark trials in number line format (M = 2.07, SD = 0.45) were responded to significantly 

more quickly than non-benchmark trials depicted in area model format (M = 2.19, SD = 0.49) (p 

= 0.016). There were no significant differences in response time between the number line and area 

model benchmark fraction conditions. 

 

Table 5: Response Time Descriptive Statistics for Benchmark vs Non-benchmark Fractions. 

Condition M (seconds) SD (seconds) 

Number Line Benchmark 1.89 0.41 

Area Model Benchmark 1.85 0.49 

Number Line Non-benchmark 2.07 0.45 

Area Model Non-benchmark 2.19 0.49 

Table 5. Response time descriptive statistics from the neuroimaging task. In the exploratory 

analysis, trials from the critical task (fraction verification task) are divided into benchmark 

versus non-benchmark trials across both models. 

3.3.3 Exploratory Analysis: Imaging Results 
To explore whether there are differences in how benchmark versus non-benchmark fractions are 

processed in the brain we ran a t-contrast for both the area model (Area model benchmark – Area 

model non-benchmark) and number line (Number line benchmark – Number line non-benchmark). 

Interestingly, we observed differences in how trial type impacted magnitude processing in number 

line and area model format, as these two contrasts revealed distinct clusters of activation. In the 

area model contrast (Area Model Benchmark – Area Model Non-benchmark), we only found 

significant clusters of activation where area model benchmark > area model non-benchmark 

(Figure 8) (Appendix 5). These significant clusters of activation were found in regions that are 

characteristic of the default mode network (see Menon, 2023 for review). For instance, activation 

was jointly observed in regions including anterior medial prefrontal regions, posterior division of 
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the cingulate gyrus and in the bilateral inferior parietal lobules (Table 6). There were no clusters 

of activation in this contrast that were significantly more active for area model non-benchmark 

trials than benchmark trials. 

 
Figure 8: Contrast Map of Area Model Benchmark – Area Model Non-benchmark. Only 

significant clusters of activation are depicted here at the threshold p voxel < 0.001, p cluster < 

0.05, GRF corrected, k=166. In this contrast, there were only significant clusters of activation 

revealed where area model benchmark > area model non-benchmark.  

 

Table 6: Peak Coordinates where Area Model Benchmark > Area Model Non-benchmark. 

Brain Region x y z k 

Left Visual Cortex/V2 -3 -91 16 1208 

Left Posterior Cingulate Gyrus -1 -13 34 800 

Right Inferior Parietal Lobule 64 -51 30 735 

Left Inferior Parietal Lobule 

Left Anterior Cingulate Cortex 

Right Superior Temporal Sulcus 

-61 

-9 

62 

-53 

58 

-25 

26 

14 

-5 

546 

497 

392 
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Left Superior Temporal Sulcus 

Right Frontal Pole 

Left Cerebellum 

-55 

26 

-25 

-27 

62 

-79 

-7 

30 

-37 

384 

256 

167 

Table 6. Coordinates provided correspond to the peak MNI coordinates from each cluster. 

Cluster size (k) corresponds to the number of voxels. Regions were identified using the Jülich 

Histological Atlas (Amunts et al., 2020) and Harvard-Oxford Cortical Structural Atlas. 

 
On the other hand, in the number line exploratory contrast (Number line benchmark – Number line 

non-benchmark) we observed different clusters of activation. For the number line, we only 

observed significant clusters of activation where number line non-benchmark > number line 

benchmark (Figure 9). Specifically, four significant clusters of activation were revealed where 

number line non-benchmark > number line benchmark (Appendix 6). These clusters of activation 

were found in frontal and parietal regions, including the right inferior parietal lobule around the 

IPS, and the right middle frontal gyrus (Table 7). There were no clusters of activation in this 

contrast that were significantly more active for number line benchmark fractions than number line 

non-benchmark fractions. 

 
Figure 9: Contrast Map of Number Line Benchmark – Number Line Non-benchmark. Only 

significant clusters of activation are depicted here at the threshold p voxel < 0.001, p cluster < 
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0.05, GRF corrected, k=166. In this contrast, there were only significant clusters of activation 

revealed where number line non-benchmark > number line benchmark. 

 
Table 7: Peak Coordinates where Number Line Non-benchmark > Number Line Benchmark. 

Brain Region x y z k 

Right Intraparietal Sulcus 48 -59 52 498 

Right Middle Frontal Gyrus 38 38 34 461 

Left Superior Frontal Gyrus -1 30 40 431 

Right Superior Frontal Sulcus 30 6 56 399 

Table 7. Coordinates provided correspond to the peak MNI coordinates from each cluster. 

Cluster size (k) corresponds to the number of voxels. Regions were identified using the Jülich 

Histological Atlas (Amunts et al., 2020) and the Harvard-Oxford Cortical Structural Atlas. 
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Chapter 4 

4 Discussion 
The primary goal of the present study was to gain insight into how the brain processes fraction 

magnitude using the number line and area model instructional tools. Behavioural work has 

provided data to support the notion that number lines are an effective tool for fraction magnitude 

learning (see Abreu-Mendoza & Rosenberg-Lee, 2022 for review). Further, recent neuroimaging 

work has generated some initial evidence that training on the number line facilitates better access 

to fraction magnitude in the brain (Wortha et al., 2020). However, it currently remains unknown 

how the brain processes fraction magnitudes when presented in visual models, a common method 

of fraction instruction. Further, how magnitude is processed in the number line format compares 

to how magnitude is processed in the commonly used area model format remains an underexplored 

question. These are questions that we aimed to address in the present study. 

 

To address our research question, we collected brain and behavioural measures from adult 

participants while they completed a fraction magnitude verification task. During this task, 

participants were presented with a single digit symbolic fraction alongside a fraction model (either 

a number line or area model). Participants were then asked to assess whether the fraction model 

was an accurate depiction of the fraction above it or not. To the best of our knowledge, our study 

is the first to explore the neural activity associated with magnitude processing using fraction 

instructional models. Therefore, given the novelty in this line of work, we conducted whole-brain 

analyses so that we could map out all the brain regions involved in our task. From this, we were 

able to identify the common and distinct neural regions that are involved in processing magnitude 

using these fraction instructional models for the first time. 

 

4.1 The Number Line and Area Model Elicit Common 
Fronto-Parietal Activation 

A conjunction analysis was run to determine the areas of the brain that revealed significantly 

common activation for both the number line and area model formats. The conjunction analysis 

revealed a high degree of overlapping regions that were commonly activated by both the number 
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line and area model. Specifically, these common clusters of activation were largely located in 

bilateral frontal and parietal regions of the brain. These are neural regions that have been 

documented to be implicated in the processing of fraction magnitude tasks in specific (Ischebeck 

et al., 2009) as well as in the processing of a wide array of numerical tasks more generally (see 

Arsalidou & Taylor, 2011 for meta-analyses). Therefore, contrary to our predictions, this finding 

suggests that, in the brain, there are many similarities in how fraction magnitude is processed in 

number line and area model format. 

 

However, it is important to note that while fronto-parietal activity is consistently documented in 

response to numerical tasks, fronto-parietal activity is by no means exclusive to number 

processing. Indeed, frontal and parietal regions are associated with a wide variety of cognitive 

tasks (e.g., Dosenbach et al., 2008; Zanto & Gazzaley, 2013) such as attentional demand (see 

Buschman & Kastner, 2015 for review) and executive functioning (see Ardila et al., 2018 for meta-

analyses). In addition to processing magnitude, these are cognitive processes that were also likely 

engaged in the critical task, that contribute to the strong fronto-parietal activity observed in the 

conjunction of the models. We suggest that this is probable given that our control task was a 

simpler task that required less cognitive demand relative to the critical task (as evidenced by much 

faster reaction times and the significantly higher response accuracy for the control task compared 

to the critical task). Nevertheless, this does yield some initial evidence that there are many 

commonalities in how magnitude is processed in number line and area model format, whereby 

both models recruit regions that are typically involved in magnitude processing.  

 

4.2 Differences Between Number Line and Area Model 
Processing in the Brain 

While we did find evidence to suggest that there are likely many similarities in how adults process 

fractions in number line and area model format, we also found evidence to suggest that there are 

differences as well. Our critical contrast revealed three areas where the neural response 

significantly differed between the two fraction models. Contrary to our predictions, the only cluster 

of activation found where the number line was significantly more active than the area model was 

in primary visual areas of the brain. This result was unexpected given that control conditions were 
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included in the study design with the aim of controlling for the low-level visual differences that 

are present between the number line and area model. When examining the parameter estimates 

across conditions from this specific cluster it was found that this activation was being driven by a 

significant difference in signal among the two control conditions (Figure 7). More specifically, 

this led to a notably larger difference in signal between the number line and its control than 

between the area model and its control. While it was not anticipated that such a large difference in 

signal would arise between the number line and the number line control condition, unexpected 

primary visual activation is not uncommon. Other studies, including Ischebeck et al. (2009) have 

identified similar activation in a seemingly visually-matched number paradigm and have 

speculated that this result could arise due to processes such as mental imagery or reanalysis of the 

stimuli (Kosslyn et al., 1995; Somers et al., 1999). Further, it is also possible that because our 

control stimuli did not specifically require all components of the stimulus to be examined in order 

to make the response, differential visual processing could arise (see Gilbert & Li, 2013, for 

review). In other words, it is possible that when completing critical trials in number line format 

participants were processing the entire visual stimulus, whereas in number line control trials only 

a narrow band of the visual stimulus was being processed. We speculate that it is possible that this 

difference in how the visual information was being processed in critical versus control conditions 

may not have arisen to the same degree for the area model because of some of the differences in 

visual properties between the number line and area model control stimuli (e.g., larger region of 

colouration for the area model controls) (see Gilbert & Li, 2013, for review). Resultingly, this may 

have encouraged participants to process the entire visual stimulus more during area model control 

trials than in number line control trials, thereby leading to a smaller difference in visual signal 

between the area model critical and control conditions. Regardless, for these reasons, we do not 

believe this specific cluster of activation is informative with respect to our hypotheses.  

 

The remaining two clusters of activation identified through our critical contrast were regions where 

the area model displayed a greater neural response relative to the number line. Interestingly, these 

clusters of activation were located in frontal and parietal regions of the brain, specifically the left 

inferior frontal gyrus (IFG) and the right parietal lobe around the IPS. This indicates that while 

both the number line and area model formats commonly recruit regions of the brain that are 
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implicated in magnitude processing, there are regions within this network that are activated to a 

comparatively greater extent when performing trials in area model format.  

 

4.3 Possible Explanation for Greater Activation in Area 
Model 

To summarize, data from the preliminary analyses revealed that both the number line and area 

model recruit regions of the brain that are involved in processing numerical magnitude. However, 

there were clusters within this region that were recruited to a greater extent for the area model 

relative to the number line. It is important to keep in mind that our study is the first of this kind in 

a largely novel field of research. Thus, from this study alone, it is not possible to draw definitive 

conclusions about what these results mean with absolute certainty. However, here, we aim to 

converge our behavioural and imaging findings to put forward a possible explanation for these 

results. 

 

While it is possible that this finding indicates that the area model facilitates more magnitude 

processing in the brain, trends observed in our behavioural data have led us to suggest an 

alternative explanation that we believe may be more likely. Specifically, we suggest that one 

potential explanation for this pattern of results is that there are differences in the strategy that is 

employed when verifying magnitude in each of the two formats. Here, we use the term strategy to 

refer to “a procedure or set of procedures for achieving a higher-level goal or task” (Lemaire & 

Reder, 1999, page 365). Previous work has demonstrated that strategy use is prevalent and non-

uniform in fraction tasks. For instance, various behavioural studies have demonstrated that feature 

differences of a fraction task yield within-subject variability in the strategies that are employed to 

complete the task (Alibali & Sidney, 2015; Fazio, DeWolf, et al., 2016; Schneider & Siegler, 2010; 

from Sidney, Thompson, & Rivera, 2019). Further, it has been demonstrated that differences in 

strategy can elicit differences in brain activity (e.g., Polspoel et al., 2017). For instance, 

neuroimaging work by Mock and colleagues (2018) recorded the neural response of participants 

while completing proportional magnitude tasks (e.g., magnitude comparison of symbolic fractions, 

pie chart magnitude comparison, etc.). The authors found that all these tasks elicited frontal lobe 

activation, regions of the brain typically implicated in strategy choice and procedural planning, in 
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their individual contrasts (Collins & Koechlin, 2012; Grabner et al., 2009; Klein et al., 2016; Park 

et al., 2019). However, a conjunction analysis of all the tasks did not reveal any significant clusters 

of common frontal activation (Mock et al., 2018). Among other regions, it has been shown that 

shifts in strategy and context can modulate differences in activation in the frontal areas of the brain 

(Wagner et al., 1998). Therefore, the authors interpreted this finding to suggest that these 

differences in frontal activation could be indicative of different strategies that are applied when 

processing magnitude in different presentation formats (Mock et al., 2018). Using a similar 

rationale, we therefore suggest that it is plausible that the differences in activation we are observing 

between the number line and area model could possibly be reflective of different problem-solving 

approaches. 

 

Specifically, we put forward the possibility that, perhaps when completing area model trials, a 

more consistent, deliberative strategy is applied, whereas number line trials are completed with 

more magnitude guided approximation. Our reasoning for this potential explanation stems from 

trends observed in our data, as well as in related work. Firstly, self-reported data from the debrief 

measure indicated that the majority of the participants in our sample learned using the area model, 

and thus were far more familiar with the area model format than with the number line format. 

Further, previous work within our lab explored this exact paradigm in a large-scale behavioural 

pilot study (n = 100) (Henry et al., unpublished). This study revealed a significant speed-accuracy 

trade-off, whereby participants responded significantly quicker on the number line but 

significantly more accurate on the area model. Similar trends were also observed in our 

behavioural fMRI data as well, where number line trials were responded to significantly quicker 

and area model trials were responded to with greater accuracy (though the response accuracy 

difference in our behavioural fMRI data did not reach significance, p = 0.17). Taken together, we 

speculate that due to greater familiarity, participants may have a better idea of how to approach 

using the area model. This could involve employing a more consistent strategy (less differences in 

strategy use both within and between participants), an approach that requires greater effort then 

just rough estimation, and thus takes longer to do but ultimately yields a more accurate result 

(Wickelgren, 1977). 
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This proposed explanation could align with the finding that the area model recruits the left inferior 

frontal gyrus and right IPS to a greater degree than the number line. For instance, neuroimaging 

work has proposed that the inferior frontal gyrus is implicated during rule-based cognitive 

operations when problem solving (see Arsalidou & Taylor, 2011 for meta-analyses). Similarly, 

other work has found that this region plays a role in retrieving stored conceptual representations 

within the brain (Badre & Wagner, 2007; Becker et al., 2020), and elicits a greater response for 

tasks that require more effortful processing to execute (Fedorenko et al., 2012). Similarly, 

increased activity in the right IPS could suggest a greater reliance on manipulating numerical 

information and semantic representation of the number information (Menon, 2014; Menon & 

Chang, 2021). Further, greater recruitment of the IPS could also suggest an increased reliance on 

attention due to greater effort required to complete the task (Mock et al., 2018; Shuman & 

Kanwisher, 2004). This therefore could align with the hypothesis that participants engage in a 

more systematic, consistent strategy when completing area model trials, which thus requires more 

cognitive effort than purely estimation. This could serve as a possible explanation for why certain 

frontal and parietal regions were recruited more when completing trials in area model format. 

 

4.4 Differences in how Benchmark vs Non-Benchmark 
Fractions are Processed 

To further explore the differences in how the two models are processed, we ran a set of exploratory 

analyses to examine whether there was evidence to suggest possible strategy differences between 

the models. To do so, one particular strategy that we assessed was the use of benchmarks. 

Benchmarks are familiar, commonly encountered numbers that can be used as a reference point 

when estimating the magnitude of other numbers (Obersteiner et al., 2020). The utilization of 

benchmark references is a common strategy used in whole number estimation tasks (e.g. Peeters 

et al., 2016; Peeters, Sekeris, et al., 2017; Peeters, Verschaffel, et al., 2017; Sullivan et al., 2011). 

While benchmark use in fractions tasks has not yet received much attention in the literature, 48% 

of our participants freely indicated that they employed a strategy that is consistent with benchmark 

use during the fraction verification task (e.g., “I tried to compare the fractions to simple fractions 

that I knew, like one-fourth or one-half”). Further, in our behavioural pilot data (Henry et al., 

unpublished), we obtained evidence that suggested that the influence of benchmark fractions was 
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greater in area model format then in number line format. Therefore, we explored benchmark 

fraction processing to see whether the brain processes these similarly or differently in number line 

and area model format and whether this could hint towards differences in strategy use between the 

models. 

 

The results of these contrasts demonstrated that the brain processes benchmarks differently in 

number line and area model formats. In the contrast of area model benchmarks (area model 

benchmark – area model non-benchmark), we only found significant clusters of activation where 

benchmarks > non-benchmarks. These clusters of activation were observed in regions within the 

so-called default mode network (DMN). Given that the default mode network is a task-negative 

network that shows greater response to easier tasks compared to harder tasks (Buckner et al., 2008; 

Gilbert et al., 2012; Shulman et al., 1997) we interpret this finding to indicate a highly intuitive, 

automatic access to area model benchmarks. Given that our participants identified a clear 

familiarity with the area model, this finding was not surprising to us as these items, in particular, 

were likely very recognizable and did not rely on too much engagement of magnitude processing. 

 

The contrast of number line benchmarks (number line benchmark – number line non-benchmark) 

revealed a different finding. Interestingly, in this contrast the only significant clusters of activation 

revealed were where non-benchmarks > benchmarks. Therefore, contrary to what was seen in the 

area model benchmark contrast, there were no clusters of activation that were significantly 

activated more by number line benchmarks. In fact, even when we lowered our statistical threshold 

down to p <0.05, for exploratory purposes, we still did not yield activity consistent with the DMN 

for benchmarks, as we did in the area model contrast. This suggests that the brain does not process 

benchmark fractions in number line format in the same straightforward, automatic fashion that it 

does in area model format. Moreover, the clusters of activation observed where number line non-

benchmark > benchmark were localized in frontal and parietal regions of the brain, including in 

the right IPS and the right frontal areas. These are areas that are commonly recruited when 

magnitude processing is engaged (see Arsalidou & Taylor, 2011 for meta-analyses). Further, the 

behavioural data from this analysis demonstrated that non-benchmarks in number line format were 

responded to significantly quicker than non-benchmark fractions in area model format. Together, 

this suggests that, in number line format, when participants do not have the same level of access 
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to recognizable reference points, participants may rely more heavily on a magnitude-guided 

estimation approach, rather than a consistent strategy. 

 

Taken together, the results of the exploratory benchmark contrasts do provide clear evidence that 

benchmark and non-benchmark fractions influence the number line and area model formats very 

differently. Specifically, within the area model format, we obtained evidence to suggest that 

benchmarks are very easily accessed and are processed in a straightforward fashion in the brain. 

In contrast, in number line format, no such strong differential seems to exist in the brain for 

benchmark items. Rather, in the absence of these clear reference points more quantitative 

strategies, typical of approximate magnitude processing seem to be engaged. Knowing that these 

differences exist, it is imperative to keep in mind that, in our critical contrast between the models, 

these trial types (benchmark and non-benchmark) were averaged within the number line and area 

model format conditions. Therefore, it is possible that these notable differences in how benchmarks 

influence the two formats may be driving, or at least contributing towards the findings in our 

critical contrast. Thus, it is possible that there are differences between the two models when true 

magnitude engagement must be executed that are being washed out due to the disproportionate 

influence of benchmarks in the area model format. This could explain why activity around the IPS 

was observed in the critical contrast where area model > number line but also in the number line 

benchmark contrast where non-benchmark > benchmark. To better understand whether this is the 

case, we suggest future work should remove the influence of benchmarks and compare only trials 

that require magnitude estimation to solve (i.e., non-benchmark trials). We suggest that by doing 

so, this will lend better insight towards whether the clear differences in how trial types are 

processed between the formats can explain trends seen in our critical contrast.  

  

In summary, the results of the exploratory benchmark contrasts do provide evidence that 

benchmark fractions influence the number line and area model formats differently. We suggest 

that these differences could possibly indicate that different strategies are engaged in when 

completing trials in the two formats, which can potentially contribute to findings seen in our critical 

contrast. However, it is important to preface that our paradigm was specifically designed to just 

assess the commonalities and differences in the neural response between the number line and area 

model formats. This study was not designed to assess the specific mechanisms that are engaged 
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when completing magnitude tasks in number line and area model format. Put differently, our 

paradigm was not designed to definitively answer the question of whether different strategies are 

engaged or relied upon when using the number line versus the area model. Therefore, it is 

imperative to keep in mind that we are simply suggesting one particular factor that may be at play 

based on the trends seen in our data. To gain more direct insight into whether strategy differences 

can truly account for the differences in brain activity observed between the models, we encourage 

future work to build off this study and intentionally design a paradigm with this goal. We believe 

that future exploration into this question is required to better understand what the differences in 

neural activity between the number line and area model correspond to. 

 

4.5 Limitations and Future Directions 
Our study has contributed to the, currently, very limited understanding of how fractions are 

processed in the brain. Specifically, we have been the first to explore and compare the neural 

activity associated with fraction instructional models. Accordingly, we believe that our study can 

serve as a strong baseline framework for future neuroimaging studies exploring methods of 

fraction learning. Notably, this is possible because we have taken the measures to create a fully 

reproducible workflow through pre-registration, utilizing a standard preprocessing pipeline and 

providing open access to our study paradigm and stimuli. However, there are clear limitations that 

we have identified in our current design that are worth taking note of. In this section, I review 

some of these limitations and follow each up with a specific recommendation of how future work 

can better explore this overarching question.   

 

1) The role of familiarity and learning history in our sample 

Firstly, it is important to note that our sample was composed of adult participants. We focused on 

adults as this is the first study to explore how the brain processes fraction magnitude using the 

different learning models. Thus, we aimed to get a baseline understanding of how this task 

functions in a neuroimaging study before running this paradigm in children. Nevertheless, 

examining adults in this context does introduce some caveats. First and foremost, fractions are 

learned and worked with early on in primary school education and throughout formal learning 

years (CCSSI, 2010; Ontario Ministry of Education, 2005). Therefore, it is expected that at this 
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point all participants in our sample will have already had extensive experience with fraction 

concepts. Given that there were disparities in familiarity between the models, whereby individuals 

were more familiar and had more learning experiences with the area model format, it is possible 

that learning history may impact trends seen in both the behavioural and imaging data. Indeed, 

previous work has demonstrated that learning history does play a role at the level of the brain, and 

that the role of instruction can remain evident beyond training (e.g., Yoncheva et al., 2015). Thus, 

it is very possible that previous experience is a factor that could be influencing the results we 

observed. Therefore, replicating this study in a developmental population or in a sample with a 

different learning background may yield different results than what we obtained here. 

 

To address the impact that learning history may play, we encourage future work to expand off this 

study and conduct a related study in a developmental population. Specifically, we suggest 

exploring a similar paradigm using a sample of children who are at the age when fractions are 

being taught for the first time. We suggest that by doing so, the role of previous learning 

experiences will be largely reduced, thereby mitigating the role of potential confounds in the 

behavioural and imaging data. One possible method for doing so could simply be conducting a 

complete replication of our study using a sample of school-aged children. A second possible 

method could involve employing a similar design as Wortha et al. (2020), a pre-test-training-post 

test design, whereby one group is trained on the number line and a second group on the area model. 

Regardless, we believe addressing this limitation can lend more fundamental insight toward which 

model yields the most effective fraction learning outcomes.  

 

2) Our sample contained predominantly educated STEM students 

Secondly, it should be kept in mind that our sample consisted exclusively of university students. 

Therefore, all our participants have completed, or are working towards completing a form of 

higher-level education. Further, the majority of participants in our study (92%) self-reported that 

they were completing a degree in a STEM-related program (e.g., Neuroscience, medical 

biophysics, computer science, biology, etc.). This means that the majority of our sample has likely 

completed at least some level of higher education mathematics, as this is often pre-requisite for 

university STEM programs (Dooley et al., 2016). Indeed, mathematical proficiency and 

competency with fractions was demonstrated by the high scores obtained on the fraction concepts 
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measure as well. Therefore, it is worthwhile to note that our results come from a sample of 

educated adults who are likely proficient with math in a manner that may not be reflective of the 

general population. Level of education is a factor that can account for variability in brain activity. 

For instance, individuals with different levels of education may recruit different strategies when 

completing cognitive tasks (Springer et al., 2005; Stern et al., 1999). Thus, it is possible that having 

a highly educated sample could impact the trends observed in our data as well. 

 

Accordingly, we suggest that future work exploring similar questions should aim to obtain more 

diversity in the sample collected. We encourage future work to incorporate more thorough pre-

screening in the inclusion criteria and systematically recruit participants from more diverse areas 

to ensure that these findings are generalizable. It would be interesting to see how these results 

compare to those obtained in our study using an educated sample. 

 

3) Fraction models are produced not verified in school 

Finally, it should be kept in mind that our study was a first attempt in trying to understand how 

magnitude processing using fraction models are processed in the brain. To do so we designed a 

magnitude verification task so that we could explore fraction model processing whilst balancing 

the restrictions of running a cognitive task in an MRI scanner. Put differently, we took 

consideration of what could be done that would not require too much movement of the head or 

body, an important component of collecting viable neuroimaging data (Friston et al., 1996; Power 

et al., 2012; Wylie et al., 2014). While this study undoubtedly provides meaningful insight, it 

should be noted that verification is not truly the process that is engaged in when learning and using 

fraction models (Doğan & Işik Tertemi̇z, 2020). Indeed, most often in school, children do not 

examine a model and fraction to verify that 4
8
 is accurately shown on the number line, but rather 

children are asked to draw a tick where 4
8
  would be on a blank line (Doğan & Işik Tertemi̇z, 2020). 

Therefore, by asking participants to verify rather than produce we introduce some caveats in terms 

of external validity. 

 

To address this, we challenge future work to design a paradigm that can assess how fraction models 

are used more typically in school. Specifically, this would require the act of production rather than 

verification. For instance, this could involve a paradigm that requires placing the tick on the 



 

 
 

52 

number line or shading in the circle according to a given fraction item. To support this, we suggest 

future work should consider making use of a more advanced hand-held response system that 

includes features beyond button presses (i.e. scrolling wheel, joystick, etc.) (e.g., Jarrahi et al., 

2013). While we recognize that this task will require intentional creative design and more post-

study scoring of responses, we believe that this would provide a better estimate of the true brain 

response that is engaged when completing fraction tasks in each of these instructional models. In 

addition, previous work has exemplified that the translational potential of fMRI research is 

improved when the paradigm resembles the real-world context as closely as possible (Lowe, 2012; 

Maguire, 2012; Seghier et al., 2019). Thus, we suggest that incorporating a design that is more 

reflective of the true fraction learning experience may be more effective for guiding changes in the 

classroom. 

 

4.6 Conclusion 
Fraction knowledge is an important educational milestone but is unfortunately associated with 

many learning challenges. Therefore, better understanding the tools used to teach fractions is an 

important educational question. To date there has been very little work that has explored how 

fraction magnitudes are processed in the brain and virtually no work that has directly explored 

methods of fraction learning in the brain. In this study, we were able to contribute to this very 

limited body of research and provide valuable insight towards how the brain processes fraction 

magnitude in two of the most common formats for fraction learning: the number line and area 

model. While we did not yield results that were consistent with our predictions, we were able to 

successfully identify commonalities and differences in how the brain processes fraction magnitude 

using these two learning models. 

 

Our study provides evidence to suggest that, at least in adult participants, fraction magnitude 

processing in number line and area model format are processed highly similar in the brain. Both 

the number line and area model recruited fronto-parietal regions of the brain, consistent with 

typical number magnitude processing. However, while the two formats are processed highly 

similarly, the brain does not process these two models identically. Indeed, we found clusters of 

activation in frontal and parietal regions that were recruited to a greater extent in the area model 
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format. Post-hoc exploratory analyses of this data generated evidence that certain fraction types 

(i.e., benchmarks) are processed differently in number line and area model format. We therefore 

take these findings to suggest that this could hint towards differences in strategies that are engaged 

when using these two models. However, future work would need to design a paradigm to address 

this question directly to verify if this is what is driving the differences in activation. 

 

Taken together, the results from this study provide a baseline understanding of the neural activity 

that supports fraction processing in number line and area model formats. Further, our study 

provides a reference framework that can be used to generate testable hypotheses about the 

mechanisms that support fraction processing using different learning methods. Our study, in 

conjunction with future neuroimaging work on this topic, will lend valuable insight towards which 

method of fraction magnitude learning yields the best learning outcomes. Ultimately, we hope this 

work can serve as a step forward in the quest to remediate the challenges in fraction learning. 
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Appendix 2: List of Fraction Items used in Study 

 Fraction Items  

1
2 

1
3 

1
4 

1
5

 

1
6 

1
7

 

1
8 

1
9 

2
3 

2
4 

2
5 

2
6 

2
7 

2
8 

2
9 

3
4

 

3
5 

3
6

 

3
7 

3
8 

3
9 

4
5 

4
6 

4
7 

4
8 

4
9 

5
6 

5
7

 

5
8 

5
9

 

6
7 

6
8 

6
9 

7
8 

7
9 

8
9 

Note. List of fraction items presented in the study. Fraction items presented were all single-digit 
symbolic fractions with numerators ranging from one to nine and denominators ranging from 
two to nine. 
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Appendix 3: Questions Included on the Fraction Concepts Measure 
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Appendix 4: Fractions Included in the Benchmark vs Non-Benchmark Categories in 
Exploratory Analysis 

Trial Type  
Benchmark 1

2
,  1

3
,  1

4
,  2

3
,  3

4
,  2

4
,  3

6
,   4

8
,  2

6
,  3

9
,  2

8
,  4

6
,  6

9
,  6

8
 

Non-Benchmark 1
5
,  1

6
,  1

7
,  1

8
,  1

9
,  2

5
,  2

7
,  2

9
,  3

5
,  3

7
,  3

8
,  4

5
,  4

7
,  4

9
,  5

6
,  5

7
,  5

8
,  5

9
,  6

7
,  7

8
,  7

9
, 8

9
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Appendix 5: Parameter Estimates from Area Model Benchmark Contrast 
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Note. Error bars represent standard error. Parameter estimates were obtained by drawing a 6mm 

sphere around the peak coordinate from each cluster. 
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Note. Error bars represent standard error. Parameter estimates were obtained by drawing a 6mm 

sphere around the peak coordinate from each cluster. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 6: Parameter Estimates from Number Line Benchmark Contrast 
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