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Abstract
Internet traffic forecast is a crucial component for the proactive management of self-organizing
networks (SON) to ensure better Quality of Service (QoS) and Quality of Experience (QoE).
Given the volatile and random nature of traffic data, this forecasting influences strategic de-
velopment and investment decisions in the Internet Service Provider (ISP) industry. Modern
machine learning algorithms have shown potential in dealing with complex Internet traffic pre-
diction tasks, yet challenges persist.

This thesis systematically explores these issues over five empirical studies conducted in the
past three years, focusing on four key research questions: How do outlier data samples im-
pact prediction accuracy for both short-term and long-term forecasting? How can a denoising
mechanism enhance prediction accuracy? How can robust machine learning models be built
with limited data? How can out-of-distribution traffic data be used to improve the general-
izability of prediction models? Based on extensive experiments, we propose a novel traffic
forecast/prediction framework and associated models that integrate outlier management and
noise reduction strategies, outperforming traditional machine learning models. Additionally,
we suggest a transfer learning-based framework combined with a data augmentation technique
to provide robust solutions with smaller datasets. Lastly, we propose a hybrid model with
signal decomposition techniques to enhance model generalization for out-of-distribution data
samples.

We also brought the issue of cyber threats as part of our forecast research, acknowledg-
ing their substantial influence on traffic unpredictability and forecasting challenges. Our thesis
presents a detailed exploration of cyber-attack detection, employing methods that have been
validated using multiple benchmark datasets. Initially, we incorporated ensemble feature selec-
tion with ensemble classification to improve DDoS (Distributed Denial-of-Service) attack de-
tection accuracy with minimal false alarms. Our research further introduces a stacking ensem-
ble framework for classifying diverse forms of cyber-attacks. Proceeding further, we proposed
a weighted voting mechanism for Android malware detection to secure Mobile Cyber-Physical
Systems, which integrates the mobility of various smart devices to exchange information be-
tween physical and cyber systems. Lastly, we employed Generative Adversarial Networks for
generating flow-based DDoS attacks in Internet of Things environments.

By considering the impact of cyber-attacks on traffic volume and their challenges to traffic
prediction, our research attempts to bridge the gap between traffic forecasting and cyber se-
curity, enhancing proactive management of networks and contributing to resilient and secure
internet infrastructure.

Keywords: Proactive Networks, Internet Traffic Forecast, Machine Learning, Deep Learn-
ing, Transfer Learning, Outlier Data Samples, Traffic Denoising, Model Generalization, Out-
of-Distribution Traffic, Data Augmentation, Cyber-attacks, Distributed Denial of Service (DDoS)
Attacks, Ensemble Feature Selection (EnFS), Ensemble Classification (SupEnML), Android
Malware Detection, IoT, Generative Adversarial Networks (GANs).
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Lay Abstract
Predicting internet traffic is like forecasting the weather - it’s crucial for planning, but it’s
also quite challenging due to the unpredictable nature of data flow. This process is important
for companies that provide internet services because it helps them plan their resources and
investments more effectively.

In our research, we have used modern computer algorithms, commonly known as machine
learning, to predict this traffic. However, we faced certain challenges - for instance, sometimes
we have limited data or outliers (data points that are significantly different from others), which
can impact the prediction’s accuracy.

Over the past three years, we conducted five studies to answer these challenges and others.
The result was the creation of a new model that can predict traffic better than traditional ones by
managing unusual data and reducing the noise in the information. We also developed methods
to work with small data and improve predictions on data types not seen during the training of
the model.

On top of traffic prediction, our work also focused on detecting cyber-attacks, specifically
those causing a lot of internet traffic like DDoS attacks. These attacks often disguise them-
selves and cause unexpected traffic bursts, making it hard to predict traffic volumes accurately.
To solve this, we combined different techniques to improve detection accuracy with fewer false
alarms. We also created different models for detecting various types of attacks, malware on
Android devices, and even developed a way to enhance data in Internet of Things (IoT) envi-
ronments. We validated all these methods with multiple sets of data, proving the effectiveness
of our solutions.

In simple terms, our work helps internet providers better predict traffic and secure networks
from cyber-attacks. It’s like providing them with a more accurate traffic forecast and a better
security system, ensuring smoother internet experiences for all users.
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Chapter 1

Introduction

The internet continues changing how we connect with others, organize the flow of things,
and communicate information worldwide. The demand for network traffic has risen signif-
icantly around the globe as network technology has advanced and digital activities such as
video streaming, remote conferencing, online gaming, and e-commerce have increased. Ac-
cording to projections in the study of Cisco [1], the total number of internet users worldwide
is expected to increase from 3.9 billion in 2018 to 5.3 billion by 2023, which corresponds to
a compound annual growth rate (CAGR) of 6%. This means that in 2018, about 51% of the
world’s population was using the internet, while by 2023, it is estimated that about 66 per-
cent of the global population will have access to the internet. Although the growth of internet
users is a worldwide phenomenon, there are regional disparities, as indicated in Fig 1.1. While
North America (and subsequently Western Europe) is projected to have the highest adoption
rate throughout the forecast period, the Middle East and Africa are expected to experience the
fastest growth, with a projected CAGR of 10% from 2018 to 2023.

The increased growth of internet users globally has led to a significant increase in inter-
net traffic, which has put a strain on the capacity of existing networks. Key factors such as
increased M2M (Machine-to-Machine) connections, IPv6 adaptation, and the rise in video
conferencing have been instrumental in driving this change. However, another important yet
often overlooked factor impacting internet traffic worldwide is the escalating frequency and
scale of cyber attacks. Cyber attacks, specifically Distributed Denial of Service (DDoS) at-
tacks, can significantly contribute to internet traffic. According to report [1], when a DDoS
attack is happening, it can consume up to a quarter of a country’s total Internet traffic. DDoS
attacks function by flooding a target with unwanted data traffic in an attempt to overwhelm its
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2 Chapter 1. Introduction

resources and disrupt normal operations. This unwanted data represents a substantial portion
of internet traffic when such an attack is underway. Given the rising intensity and prevalence of
these attacks, their contribution to overall internet traffic is becoming increasingly significant.
Moreover, as attackers leverage the growth in internet traffic to camouflage their activities, their
methods are becoming more sophisticated. This leads to an increased volume of malicious
traffic, contributing further to the overall traffic growth. The use of botnets, which involve a
network of compromised devices that generate traffic to carry out large-scale attacks, further
exacerbates the situation. In conclusion, the growth in global internet traffic is influenced not
only by increasing user numbers, M2M connections, and the adoption of new technologies
like IPv6 but is also significantly affected by the escalating trend of cyber attacks. As the
digital world continues to expand, understanding and addressing these factors will be vital for
maintaining network capacity and integrity.

Accurate forecasting of internet traffic patterns has become crucial to enable service providers
to meet the demands of a larger customer base. Traffic forecasting helps service providers plan
their network capacity and optimize the allocation of resources to ensure that customers receive
reliable and consistent internet speeds. This can lead to fewer network outages, faster down-
load and upload speeds, and better overall network performance. Accurate traffic forecasting
allows service providers to identify potential bottlenecks in their networks and take corrective
actions before they impact the quality of service experienced by customers. This can lead to a
better customer experience, higher customer satisfaction, and increased customer loyalty. By
accurately forecasting traffic patterns, service providers can optimize their network resources
and reduce their costs. For example, they can avoid over-provisioning their network capacity,
which can lead to unnecessary costs, or under-provisioning, which can result in network con-
gestion and poor customer experience. Providing reliable and high-quality service is key to
attracting and retaining customers. Accurate traffic forecasting helps service providers ensure
that they can deliver a consistent and reliable service, which can increase customer satisfaction
and loyalty, leading to a larger customer chunk. As a result, predicting network traffic based on
historical trends is indispensable for dynamic bandwidth reservation and allocation, congestion
control, admission control [2], and privacy-preserving routing [3] to ensure better Quality of
Service (QoS) and Quality of Experience (QoE).

Overall, the benefits of wireless internet traffic forecasting based on real statistical data
are significant for the telecommunications industry. By leveraging advanced analytics and
machine learning techniques to analyze historical data and predict future traffic patterns, service
providers can improve their network performance, reduce costs, and gain a competitive edge
in the market. ISP industries are focusing on Artificial Intelligence (AI) to accommodate with
global wireless network infrastructure ecosystem market is expected to surpass USD 51,716
Million by 2030 with a CAGR rate of 12.32% during the projected period [4]. For example,
Verizon[5], a major wireless service provider in the United States, uses advanced analytics
and machine learning to forecast wireless internet traffic. By doing so, the company is able
to optimize its network performance and deliver a better quality of service to its customers.
Huawei[6], a global leader in telecommunications equipment and services, has developed a
wireless traffic forecasting solution that uses machine learning and big data analytics to predict
network traffic trends. The solution has been successfully deployed by several major service
providers around the world. Nokia[7], another leading telecommunications equipment and
services provider, offers a wireless traffic forecasting solution that uses artificial intelligence to



3

predict network traffic patterns. The solution has been shown to improve network performance
and reduce costs for service providers. However, despite the progress made in machine learning
techniques, accurately predicting real-world internet traffic remains a difficult task. The main
reasons are as follows [8]:

• Data Anomaly: The traffic in real-world internet networks is affected by a multitude of
external and internal factors that generate complex non-stationary traffic patterns. The
internal factors that influence internet traffic are associated with Internet Service Provider
(ISP) activities, such as the introduction of new services, traffic migration, and speed
upgrades. Conversely, external factors are linked to events and circumstances that occur
outside the ISP’s control, such as the emergence of new internet applications, regional
economic fluctuations, and seasonal effects. These factors often result in unexpected and
suspicious variations in real IP traffic, commonly referred to as outliers or anomalies.
These abnormal data points in traffic flow can have an adverse effect on the learning of
the general trends in the data. As a result, prediction models may generate incorrect
inferences, mistaking these anomalies for normal behavior. Consequently, it is crucial
to identify and address any anomalies or outliers in internet traffic before applying any
prediction model.

• Data Scarcity: To enhance the accuracy of predictions on the testing set, it is impera-
tive to train the prediction model with a vast dataset, allowing the model to comprehend
patterns effectively. However, in reality, managing a large historical dataset to train the
prediction model can be challenging, resulting in poor performance. Despite this, nu-
merous synthetic public datasets are available for research purposes, but they lack the
random characteristics present in real-world traffic data. Consequently, developing an
efficient traffic prediction tool that can provide accurate predictions in real-world scenar-
ios is challenging.

• Data Heterogeneity: Internet traffic exhibits heterogeneity in the temporal dimension,
with distinct geographical regions displaying different traffic patterns at different periods.
Thus, proposing a generic prediction model that can accurately predict traffic patterns in
diverse datasets is a challenging task. Additionally, the traffic prediction tool is likely
to encounter deployment data that is slightly different or entirely unknown compared to
the model’s training and testing data distribution. Consequently, measuring the perfor-
mance of the prediction tool using identically distributed data alone can be difficult. As a
result, constructing a robust machine-learning model capable of handling a shift in data
distribution is a non-trivial task.

• Unpredictable Bursts of Traffic: Cyber attacks, particularly DDoS attacks, create sud-
den, unexpected surges in traffic. These traffic bursts are unpredictable and can signif-
icantly skew the volume, making it difficult for traditional forecasting models to accu-
rately predict overall internet traffic.

There are several existing works on wireless internet traffic prediction. Predicting inter-
net traffic is commonly thought of as a time series forecasting problem that can be tackled by
using traditional statistical techniques such as ARIMA [9], SARIMA, Holt-Winter [10], etc.
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But these models cannot predict the non-linear component of the actual internet traffic. On the
other hand, the non-linear element of the time-series data can be captured by Neural Network
(NN) based model such as a multi-resolution Finite-Impulse-Response (FIR) model [11], Ge-
netic Algorithm and Radial Based Function Network (GA-RBF) [12] etc. Also, there are some
non-linear statistical models e.g. Threshold AutoRegressive (TAR) [13], and Exponential Au-
toRegressive (ExpAR) [14] for handling the non-linear part in time series data. However, recent
studies noticed an extensive usage of machine learning and deep learning models for accurate
and efficient prediction in different domains, e.g., predicting the stock market[15], finance[16],
weather forecast[17], etc. Among various deep neural networks, Recurrent Neural Networks
(RNN) and their variants, such as Long Short Time Memory (LSTM), LSTM Encode-Decoder,
Gated Recurrent Unit (GRU), etc., received extra attention due to their capability of sequential
data processing. The sequence model can store previous inputs and share hyper-parameters
across time. Since the standard neural networks cannot remember previous state information,
the sequence model architecture provides an extra benefit for effectively processing internet
traffic in a time-series format. For example, in [18], they used a residual network (LAResNet)
to model the spatial characteristics of the sequence data. Also, the combination of RNN and
an attention structure is employed to understand the transformation mode of the wireless net-
work in the temporal dimension and to extract the difference between different regional traffic
patterns. The LSTM and Online-Sequential Extreme Learning Machine (OS-ELM) models
are used for forecasting traffic load using a real ISP dataset [19]. In [20], an LSTM encoder-
decoder model has been proposed to predict the statistical characteristics of the traffic data in a
6G environment. A multi-variate time-series dataset was collected from their experimental test
bed, and the results show that their proposed novel framework provides accurate performance
compared to the ground truths. The literature suggests that there are various approaches to
predicting traffic, such as statistical models, machine learning, and deep learning. However,
many of these solutions are highly dependent on the data, which creates substantial research
gaps, as below, when it comes to accurately forecasting real-world internet traffic.

Firstly, outlier point detection is important for internet traffic forecasting because it helps
identify unusual patterns or behavior in the traffic data. Outliers are data points that deviate
significantly from the average or expected values of the dataset. These outliers can be caused
by various factors such as network failures, cyber-attacks, unexpected spikes in demand, or
other anomalies. If outliers are not detected and removed from the dataset, they can signifi-
cantly skew the statistical analysis and forecasting models. This can lead to inaccurate predic-
tions, which can have serious consequences for businesses that rely on internet traffic data for
planning and decision-making. By detecting and removing outliers, internet traffic forecast-
ing models can be improved in accuracy and reliability. This can help businesses make better
decisions about network capacity planning, traffic management, and other related activities.
In summary, outlier point detection is crucial for internet traffic forecasting because it helps
identify abnormal patterns in the data and improves the accuracy and reliability of forecasting
models. But current literature did not analyze the impact of outlier on traffic prediction. As
most of the works considered synthetic dataset without having any abnormal characteristics
for their experiment and it did not require any outlier detection and mitigation before develop-
ing the prediction model. Although, outlier analysis is one of the fundamental step of traffic
analysis.

Secondly, noise reduction is useful in removing unwanted or irrelevant data from the signal,
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which can improve the accuracy of the predictive model. This is particularly important in
wireless traffic forecasting because wireless networks can be subject to various sources of
noise, such as interference from other networks, radio frequency interference, or environmental
factors. By removing this noise, the predictive model can better identify the underlying patterns
in the data, resulting in more accurate predictions. However, noise reduction can also lead to
the loss of important information, particularly if the noise is not well understood or if the
model is overly aggressive in removing it. There are various ways of noise reduction from time
series data. But in case of wireless traffic forecasting, these techniques are not well analyzed
in existing works.

Thirdly, the field of internet traffic prediction has seen significant advancements with the
integration of artificial intelligence, machine learning, and deep learning-based models. How-
ever, these models require a vast amount of historical data to learn the general patterns in traf-
fic, making it challenging to develop individual models for different geographical or network
sectors. But transfer learning is being explored as a potential solution, allowing knowledge
to be transferred from existing prediction models to devise new models for smaller datasets.
By leveraging transfer learning techniques such as parameter transfer, domain adaptation, and
multi-task learning, researchers aim to create more accurate and reliable traffic prediction mod-
els that can be efficiently deployed across different network segments. We found a limited ex-
ploration of transfer learning in wireless traffic prediction so that we can make better prediction
model for smaller dataset using prior knowledge.

Finally, developing an accurate prediction model for real internet traffic is a challenging
task due to its non-linear characteristics such as time-variability, long-term correlation, self-
similarity, suddenness, and chaos[21]. Despite these complexities, machine learning and deep
learning-based methods have shown impressive performance. However, most of the current
approaches assume that the data is independent and identically distributed (IID) which is not
always the case in real-world scenarios. The data distribution can vary due to heterogeneous
and anomalous internet traffic, which can result in selection biases, confounding factors, and
other biases in the datasets[22]. These biases can lead to models that overfit to the training
data and fail to generalize to out-of-distribution data[23]. Therefore, OOD generalization is re-
quired to address the problem of overfitting and ensure that the predictive model can effectively
generalize to new scenarios. This can be achieved by training the model on a diverse range of
traffic scenarios, including those that are different from the ones encountered in the training
data. The model can then learn to identify the underlying patterns in the traffic data, enabling it
to accurately predict traffic in new scenarios. Current works on internet traffic forecasting did
not explore this particular topic extensively.

1.0.1 Thesis Contribution
In our research, we address the aforementioned limitations in internet traffic forecasting and
perform a comprehensive analysis to investigate each problem separately. Our core contribu-
tions in internet traffic volume prediction domain are as follows:

• We conducted a comprehensive analysis of the performance of deep sequence models
and gradient-boosting algorithms for single-step and multi-step traffic prediction. We
also compared the performance of these models with standard machine learning models
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commonly used for traffic prediction. To further enhance the accuracy of the prediction
model, we integrated an outlier detection and mitigation module to identify and remove
data points that deviate significantly from the general pattern in the data. We evaluated
the impact of outlier data points on traffic prediction and compared the performance of
the model with and without the outlier detection and mitigation module.

• In internet traffic forecasting, outlier data point analysis, and noise reduction are com-
monly used techniques to improve prediction accuracy. In this study, we proposed
a unique traffic prediction model integrated with an Empirical Mode Decomposition
(EMD)-based noise reduction technique. We applied this technique to remove unwanted
or irrelevant data from the signal, such as random fluctuations or interference, to improve
the accuracy of the prediction model.

• We devised a unique approach for predicting internet traffic with limited data. We inte-
grated transfer learning and data augmentation ti utilize knowledge from a larger dataset
and addressed overfitting concerns using Discrete Wavelet Transform (DWT) augmenta-
tion. We analyzed model performance under varying source-to-target data ratios.

• We addressed the challenges posed by the unpredictable and complex nature of internet
traffic, specifically focusing on the accuracy of prediction models in scenarios where the
distribution of test data deviates significantly from that of the training data. We assess
the performance of various boosting and deep sequence models using both Independent
and Identically Distributed (IID) and Out-of-Distribution (OOD) data samples. Through
our analysis, we found a significant reduction in the predictive accuracy of these mod-
els when dealing with OOD samples, indicating a performance limitation of classical
machine learning models in OOD scenarios. To overcome this problem, we proposed a
novel solution that combines a hybrid deep learning model with Discrete Wavelet Trans-
formation (DWT).

Following a thorough investigation into traffic prediction, we have identified several chal-
lenges intrinsic to real-world traffic forecasting, particularly those arising from the unpre-
dictability of traffic bursts. Cyberattacks, notably Distributed Denial of Service (DDoS) at-
tacks, significantly contribute to the spike in global network traffic. During their occurrence,
DDoS attacks can account for as much as 25 percent of a country’s total Internet traffic.

The escalating frequency and intensity of cyber attacks pose a significant hurdle for accu-
rate internet traffic volume forecasting. This complexity is compounded by the fast-evolving
techniques employed by cybercriminals, which create new forms of traffic that can outpace the
adaptability of forecasting models. The increased noise from heightened attack activities, the
insufficiency of historical data due to the rapidly changing cyber threat landscape, and the vari-
able impact of attacks further obscure patterns essential for precise forecasts. Consequently,
tackling this challenge necessitates the evolution of more advanced forecasting models capable
of considering the unique traits and implications of cyber attacks. Therefore, we plan to ini-
tially employ supervised learning for attack detection before transitioning to forecasting-based
models is founded on several strategic advantages. Firstly, supervised learning offers a ba-
sic understanding of the domain, laying the groundwork for more complex methodologies by
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demonstrating how labeled data can predict outcomes. Its relative simplicity compared to fore-
casting models makes it an ideal starting point. Furthermore, it facilitates the establishment of
a performance baseline for comparison with more complex models. The abundant availability
of labeled datasets for network intrusion detection and the interpretability of supervised learn-
ing models also support this choice. Moreover, understanding supervised learning is crucial
as forecasting-based models may still require some form of supervised learning for labeling
anomalies. Therefore, starting with supervised learning ensures a solid foundation and a thor-
ough understanding of the data, which will be valuable during the planned future transition
to forecasting-based attack detection models. Our core contributions in cyber-attack detection
domain are as follows:

• Our method involves systematic steps for optimal network anomaly detection. We uti-
lized grid search to find the best feature selection techniques, leading to our novel en-
semble feature selection (EnFS) approach. This improved classification outcomes by
optimizing feature sets. We extended the Supervised Ensemble Machine Learning frame-
work for broader anomaly detection and incorporated EnFS, yielding a robust Intrusion
Detection System validated on renowned datasets.

• We presented ENIDS, an innovative Ensemble Network Intrusion Detection System.
ENIDS employs deep learning algorithms (CNN, LSTM, GRU) to detect known attacks
and integrates them into an efficient stacked ensemble framework. Addressing class
imbalance, ENIDS utilizes SMOTEENN and resampling to enhance detection perfor-
mance. Rigorously evaluated on real-world datasets, ENIDS outperforms in network
intrusion detection.

• Tackling Android malware in Mobile Cyber-Physical Systems, our approach introduced
dynamic analysis for identifying malicious apps and their categories. The key innova-
tion is ”Dynamic Weighted Voting,” an ensemble technique outperforming other deep
learning models in detecting and categorizing Android malware.

• In IoT-based smart homes, we addressed neural network vulnerability to attacks by using
GANs to create realistic synthetic datasets simulating DDoS attack traffic. Uniquely fo-
cusing on smart home-specific IoT traffic, our GAN model generates datasets for training
classifiers, evaluated using Train-on-Synthetic, Test-on-Real approach against actual IoT
traffic data.

1.0.2 Chapter Mapping
The chapters in this thesis are thoughtfully organized to furnish the reader with a comprehen-
sive understanding of the progression of our ideas. We commenced our research primarily
focused on addressing data anomalies within real-world internet traffic, examining both point
outliers and noise. Initially, we conducted an investigation into outlier data points, analyzing
the performance of various deep sequence models and boosting algorithms for both single and
multi-step prediction. This exploration is reflected in Chapter 2. Subsequently, we ventured
to design machine learning models adept at managing noise in internet traffic. To this end,
we integrated an Empirical Mode Decomposition (EMD) based noise reduction technique into
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our traffic prediction framework. This methodology is elaborated in Chapter 3. Building on
this, we proposed a transfer learning-based traffic prediction model to tackle data scarcity. Fur-
thermore, we integrated a data augmentation technique to identify the optimal ratio between
source and target domain data sizes. This concept is detailed in Chapter 4. In our final ap-
proach to enhance traffic prediction task, we addressed out-of-distribution data generalization
in traffic prediction. We introduced a hybrid machine learning model, coupled with Discrete
Wavelet Transformation (DWT), aiming to enhance the generalization capability of our predic-
tion model. This architecture is discussed in Chapter 5.

Parallel to these efforts, our research also delved into cyber attack detection, specifically
zeroing in on Distributed Denial of Service (DDoS) attacks, a significant contributor to the
global network traffic surge. The escalating frequency and severity of these cyber attacks pose
a considerable challenge to accurate internet traffic volume forecasting. Our initial foray into
attack detection, based on supervised learning, is presented in Chapter 6. Here, we intro-
duced an ensemble machine learning model to detect DDoS attacks, validating this approach
with three benchmark datasets. In Chapter 7, we further enhanced our work with deep learn-
ing techniques, shifting our focus towards multi-classification rather than binary classification.
Here, we expound on our stacking ensemble model designed to detect multiple types of at-
tacks. Chapter 8 proposes a weighted voting mechanism for Android malware detection in
mobile cyber-physical systems. Lastly, in Chapter 9, we turn our attention to the Internet of
Things (IoT) environment. Here, we constructed smart home networks to collect DDoS at-
tack data and integrated a Generative Adversarial Network (GAN) based approach to generate
additional synthetic data within the smart home environment.

1.0.3 Thesis Organization

The organization of this thesis (Fig. 1.2) is as follows:
Chapter 1 sets the stage, presenting an introduction that encapsulates the problem at hand,

the driving motivation behind this research, the objectives of the thesis, and the contributions
it seeks to make to the wider research community.

In Chapter 2, we conduct a performance analysis of a variety of deep sequence models
and boosting algorithms, focusing on their integration with outlier management for both single
and multi-step predictions.

In Chapter 3, our focus shifts towards noise reduction in traffic data. We aim to enhance
prediction accuracy by incorporating an Empirical Mode Decomposition (EMD)-based noise
reduction technique into our traffic prediction framework. This chapter delves into the integra-
tion process and its potential impact on improving our predictions.

Chapter 4 introduces our proposal of a transfer learning-based traffic prediction model to
combat data scarcity. Here, we also incorporate a data augmentation technique to discern the
ideal ratio between source and target domain data sizes.

In Chapter 5, we tackle the issue of out-of-distribution data generalization in traffic predic-
tion. We present a hybrid machine learning model paired with Discrete Wavelet Transformation
(DWT) in our quest to boost the generalization potential of our prediction model.

Chapter 6 introduces our ensemble machine learning model, designed to detect DDoS
attacks. We validate this approach using three benchmark datasets.
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Goal: Develop a robust framework for predicting internet traffic, effectively handling anomalies and noise in data (1), dealing with
limited data availability (2), and managing out-of-distribution data (3), aiming for a intelligent and secure network (4).

(1) Data 
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(2) Data 
Scarcity
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Data
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Chapter 5: Evaluating ML 
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Hybrid Deep Learning 
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Attack Detection and 
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for Network Intrusion 
Detection: A 
Comparative Analysis

Chapter 8: Dynamic 
Weighted Voting for 
Enhanced Android Malware 
Detection in Mobile CPS

Chapter 9: Exploring 
GANs for Smart Home 
DDoS Traffic Generation

Figure 1.2: Thesis architecture.
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Chapter 7 extends our work with the inclusion of deep learning techniques, moving our fo-
cus from binary to multi-classification. This chapter delves into our stacking ensemble model,
engineered to identify multiple types of attacks.

Chapter 8 introduces a proposal for a weighted voting mechanism, designed for the detec-
tion of Android malware within mobile cyber-physical systems.

In Chapter 9, we turn our lens onto the Internet of Things (IoT) environment, constructing
smart home networks to amass DDoS attack data. Here, we also incorporate a Generative
Adversarial Network (GAN)-based approach to generate further synthetic data within the smart
home environment.

Finally, Chapter 10 provides a succinct summary of the thesis, evaluating its limitations
and suggesting potential directions for future research.



Chapter 2

Single-step and Multi-step Internet Traffic
Forecasting: Integrating Outlier Detection
and Mitigation Techniques

Abstract: Internet traffic prediction (ITF), particularly multi-step forecasting, is complex due
to data volatility and the presence of outliers. This issue is critical in the Internet Service
Provider (ISP) industry for long-term planning and network management. We propose method-
ologies integrating outlier detection and mitigation (OTM) with deep sequence and gradient
descent and boosting models. First, we contrast conventional deep sequence models (RNN,
LSTM, LSTM Seq2Seq, LSTM Seq2Seq ATN, and GRU) with our proposed outlier inte-
grated model. Second, we introduce an ITF framework merging OTM with gradient descent
and boosting algorithms. Applying real-world anomalous ISP traffic data, we explore five re-
gression models (GBR, XGB, LGB, CBR, SGD) for both single and multi-step ITF across
multiple forecast horizons. Our framework, pre-processing outliers, surpasses traditional mod-
els in prediction accuracy. These studies suggest a new direction in internet traffic prediction
and offer insights for ISP industry’s network management and strategic planning.

2.1 Introduction

Internet traffic volume forecasting is one of the most important tasks in the proactive manage-
ment of modern telecommunication networks. Improving the accuracy and efficiency of traffic
demand forecasting can help ISP companies develop reasonable business planning and enhance
the industry’s economic benefits. Moreover, the forecasting results with high accuracy can also
be effective for better resource management, route scheduling, short and long-term business
capacity planning, sophisticated network design, etc. In other words, an accurate traffic pre-
diction framework can assist ISPs with preemptive network management and ensure better
network Quality of Service (QoS) and Quality of Experience (QoE) [24]. Therefore, internet
traffic demand management is vital for future requirements, capacity utilization, management,
planning, and optimization. Because of these reasons, research on internet traffic forecasting
has gained significant interest from researchers, the ISP industry, and operational planners.
However, predicting wireless internet traffic remains challenging due to the high variability

11
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and unpredictability of network traffic. Traditional forecasting methods tend to be limited in
their ability to handle the complex and dynamic nature of wireless network traffic, particularly
in detecting and mitigating outliers or anomalous data points.

One significant research gap in this field is the need for a multi-step wireless internet traffic
forecasting model integrated with outlier point detection and mitigation techniques. Real-
world internet traffic is influenced by a multitude of internal and external factors, leading to
unpredictable and random characteristics [25]. Internal factors such as service launches, traffic
migration, and speed upgrades, and external factors such as new internet applications, regional
economic variables, and seasonal effects can result in sudden changes in traffic patterns. As a
result, accurately predicting internet traffic can be challenging. Moreover, anomalies or outliers
are common in real-world internet traffic [26], which can further complicate traffic forecasting.
These anomalies can occur due to issues with data collection sensors, leading to faulty data
being included in the analysis. To improve the generalization capability of prediction mod-
els, it is essential to identify and address anomalies/outliers in internet traffic before using any
prediction model. Thus, it is critical to develop robust methods for identifying and mitigating
anomalies in internet traffic to improve the accuracy of traffic forecasts. By doing so, network
operators can more effectively allocate network resources, improve the quality of service for
end-users, and reduce the occurrence of network failures or congestion. Outlier data points can
significantly impact the accuracy of traffic forecasts and lead to sub-optimal network perfor-
mance. Therefore, the development of a multi-step traffic forecasting model that incorporates
outlier detection and mitigation techniques can have several significant benefits.

The proposed model should be able to accurately predict traffic patterns while identifying
and mitigating outlier data points in real-time. This approach will ensure that the forecasting
model is robust and can provide accurate predictions, even when anomalous data points are
present in the data. The use of outlier detection techniques can also provide network opera-
tors with insights into network behavior, enabling them to take proactive measures to main-
tain network performance. Moreover, the proposed model’s integration with outlier detection
and mitigation techniques can lead to better network performance and user experience. Net-
work operators can use the model’s predictions to optimize network resource allocation, which
can lead to improved network reliability, reduced network congestion, and lower latency [27].
Therefore, the motivation for this research is to develop a multi-step wireless internet traf-
fic forecasting model integrated with outlier point detection and mitigation techniques. The
proposed model’s effectiveness will be evaluated using real-world wireless network data, and
the results will be compared to traditional forecasting methods to demonstrate its superiority.
This research will contribute to the advancement of wireless network technologies and provide
valuable insights for network operators to improve network performance and reliability.

Wireless internet traffic forecasting is a critical task in the field of telecommunications as it
enables efficient network management and resource allocation. Multi-step forecasting, which
involves predicting traffic patterns for multiple time steps into the future [28], is particularly im-
portant for proactive network planning and optimization. Gradient Boosting Algorithm (GBM)
is a popular machine learning technique that has shown impressive results in various forecast-
ing tasks, including time-series forecasting. Studies have demonstrated that GBM has been
shown to outperform traditional forecasting methods such as ARIMA and neural networks,
making it an attractive option for wireless internet traffic forecasting. However, there is a re-
search gap in the comparative analysis of different gradient-boosting algorithms for wireless
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multi-step internet traffic forecasting. Understanding the performance of different GBM al-
gorithms, such as XGBoost, LightGBM, and CatBoost, can help researchers and practitioners
choose the most suitable algorithm for their specific needs. Additionally, exploring the impact
of different feature subsets on the performance of GBM algorithms can provide valuable in-
sights into optimizing these models for wireless multi-step internet traffic forecasting. We also
extended this experiment using deep learning models as we found a lack of investigation in
the performance comparison of deep sequences modeling techniques such as RNN and their
variations which have the unique ability of sequence data analysis, e.g., time-series, audio data
analysis, etc. The research motivation for this topic, therefore, is to conduct a comparative anal-
ysis of different GBM algorithms and deep sequence models for wireless multi-step internet
traffic forecasting. The study aims to address the research gap in this area and provide insights
into the most effective ways to use gradient boosting and deep sequence algorithms for traffic
prediction task. Ultimately, this research can contribute to the development of more accurate
and efficient wireless internet traffic forecasting models, which can have practical applications
in telecommunications network management and resource allocation.

This chapter is organized as follows. Section 2.2 describes the literature review of cur-
rent traffic prediction using machine learning models. Section 2.3 presents the methodology,
including dataset description, machine learning models explanation, anomaly identification
process, and experiment details. Section 2.4 summarizes different machine learning methods’
performance for single-step and multi-step prediction and draws a comparative picture among
prediction models with and without outliers in the dataset. Finally, section 2.5 concludes our
paper and sheds light on future research directions.

2.2 Literature Review
Currently, machine learning models have been extensively using to predict complex real IP
traffic. S. Fischer et al. [29] proposed a traffic prediction system called DEEPFLOW that
processes the ingress traffic data and produces a prediction for all traffic flows using differ-
ent machine learning techniques. The prediction model includes two different categories of
models, such as statistical model and neural network-based deep learning model. They specif-
ically focused on handling traffic volatility using a non-neural VAR (Vector Autoregression)
model. According to their experimental results, the average model prediction error was around
10%, which could have been improved. D. Szosta et al. [30] extensively investigated machine
learning classification and regression models for optical network traffic prediction. The pro-
posed model considered four supervised machine learning models tested on real traffic patterns
collected from Seattle Internet Exchange Point. They used a total of five different datasets
in their experiment to evaluate the prediction performance based on their proposed evaluation
metric called Traffic Level Prediction Quality (TLPQ). The prediction models were trained
on the different feature sets arranged from various window sizes and other features such as
minute, day, and traffic values. Their experiment claims the outperformance of the regression
model over the classification model in traffic prediction. Y. Xu et al. [31] proposed a Gaussian
Process (GP) based machine learning model for real-world traffic prediction. They compared
the model performance against the state-of-the-art seasonal ARIMA (SARIMA) and sinusoid
superposition. The computational complexity of extracting optimal hypermeters for the pre-
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diction model has also been reduced from O(n3) to O(n2). The GP-based machine learning
model shows an average prediction of 3% when predicting one-hour-ahead traffic, and it’s in-
creased to 5% when the prediction length is extended to ten hours ahead. The performance of
conventional statistical models such as ARIMA, SARIMA, SARIMAX, and Holt-Winter for
real-world ISP traffic prediction has been studied in [32]. They also discussed a training tech-
nique called rolling prediction that significantly increases the performance of the traditional
statistical prediction model compared with the standard training procedure. T. P. Oliveira et
al. [33] experimented with two different machine learning models for traffic prediction: multi-
layer perceptron and stacked autoencoder. They used a dataset collected from a private ISP
in European cities. They used two hidden layers of MLP (Multi-Layer Perceptron) with 60
and 40 neurons, respectively, while they found the best result for four hidden layers of SAE
with 80, 60, 60, and 40 neurons. They trained their model for 1000 epochs in both MLP
and SAE (Stacked Auto Encoder), although the SAE training was divided into two-stage the
unsupervised pre-training for 900 epochs and 100 epochs supervised training. Different pre-
diction length has been investigated using their prediction model, and the error increased with
longer prediction length. Their experimental results show the better performance of the sim-
pler MLP than the SAE deep neural network. Also, the MLP has taken lesser computational
resources than SAE. Y. Zang et al. [34] author proposed a traffic prediction model by com-
bining K-means clustering, Elman-NN, and wavelet decomposition. They cluster the adjacent
and correlated base stations using K-means so it can improve the overall prediction accuracy.
They reconstructed traffic into high-frequency and low-frequency components using wavelet
decomposition to feed their traffic prediction model. Finally, a three-layer feed-forward neural
network ENN is used to train the decomposed traffic data for making the prediction. P. Cortez
et al.[35] proposed three different forecasting methods to predict the volume of internet traffic
in TCP/IP-based networks. They investigated both the neural network model and statistical
model in their experiment. The proposed novel neural ensemble method performs better in
two different time scales, 5-minute and hourly forecasting, while the Holt-Winter outperforms
daily forecasting. They used the linear interpolation technique to replace the missing data. L.
Miguel et al.[24] compared the performance of the Artificial Neural Network (ANN) model
and a statistical model, Holt-Winter, in traffic volume forecasting. The proposed ensemble of
Time Lagged Feed-Forward Network (TLFN) explicitly handled the temporal data by incor-
porating a short-term memory in the input layer of the ANN model. R. Alfred et al. [36]
identified a few drawbacks, such as slow convergence, a long training time, and easily falling
into a local minimum of Back Propagation Neural Network (BPNN) in predicting time series
data. They proposed a modified version of BPNN (GABPNN), where the initial model weights
and threshold were optimized using a Genetic Algorithm (GA). The model has been trained
on different configurations to determine the best-performing hyper-parameters. The overall
performance of the GA-based BPNN was significantly better than the BPNN. C.W. Huang et
al. [37] investigated three state-art-of deep learning models for predicting mobile traffic data.
The geographical and temporal properties of the time series data have been extracted using
CNN and RNN models, respectively. Their experiment proposes a hybrid model combining
CNN and RNN, outperforming deep and non-deep learning models. Their investigation con-
sidered various parameter settings to identify the best-performing model. W. Wang et al. [38]
proposed a novel traffic prediction model called SDAPM based on a stacked denoising autoen-
coder prediction model (SDA). The SDAPM can extract the generic attributes from the traffic
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flow. Their model is fine-tuned using a different combination of related hypermeters such as
the number of hidden layers, number of neurons in the hidden layer, learning rate, etc. R.
Madan and P.S. Mangipudi [39] proposed an ensemble traffic prediction model combining the
statistical model ARIMA (Auto Regressive Integrated Moving Averages) and the deep learning
model RNN (Recurrent Neural Network). The Discrete Wavelet Transform (DWT) transfor-
mation technique has been applied to separate the linear and non-linear components from the
original time series data. The linear and non-linear parts were analyzed using two different
prediction models, ARIMA and RNN, respectively, and combined to predict the final value.
Their proposed ensemble model shows better prediction than the individual prediction model.

The modern machine learning model for predicting internet traffic is getting attention due to
its ability to handle complex non-linear real-world traffic data, which are volatile and random.
Several existing works on internet traffic prediction use machine learning and deep learning
models, which are compared with a conventional statistical model for performance evaluation
[31][35][24]. However, we found a lack of investigation in the performance comparison of
deep sequences algorithms such as RNN and their variations which have the unique ability of
sequence data analysis, e.g., time-series, audio data analysis, etc. Existing works experimented
with sequence models compared to other machine learning models for either single-step [31]
[38] or multi-step forecasting [40] [41]. But in this proposal, we investigated the performance
among different deep sequence models for single and multi-step prediction.

We found another popular machine learning technique called boosting algorithm that has
shown impressive results in various forecasting tasks, including time-series forecasting. Boost-
ing algorithm outperform traditional forecasting methods such as ARIMA and neural networks,
making it an attractive option for wireless internet traffic forecasting. However, there is a lack
of investigation in the performance analysis of different gradient-boosting algorithms for inter-
net traffic forecasting. Understanding the performance of different boosting algorithms, such
as XGBoost, LightGBM, and CatBoost, can help researchers and practitioners choose the most
suitable algorithm for their specific needs.

Real-world internet traffic is influenced by many internal and external factors, leading to
unpredictable and random characteristics. Internal factors such as service launches, traffic mi-
gration, and speed upgrades, and external factors such as new internet applications, regional
economic variables, and seasonal effects can result in sudden changes in traffic patterns. As a
result, accurately predicting internet traffic can be challenging. Moreover, anomalies or out-
liers are common in real-world internet traffic, further complicating traffic forecasting. These
anomalies can occur due to issues with data collection sensors, leading to erroneous data being
included in the analysis. To improve the generalization capability of prediction models, it is es-
sential to identify and address anomalies/outliers in internet traffic before using any prediction
model. Thus, it is critical to develop robust methods for identifying and mitigating anomalies
in Internet traffic to improve the accuracy of traffic forecasts. But in the current literature, we
found a lack of investigation on analyzing the impact of outlier data points on traffic prediction
model performance. Additionally, exploring the impact of different feature subsets on the per-
formance of machine learning algorithms has not been done in the current literature. Finally,
most existing works consider a static forecast length for their prediction model.

Therefore, the research motivation is to conduct a comparative analysis of different deep
sequence and boosting algorithms for single and multi-step internet traffic forecasting. Also,
we plan to integrate an outlier detection and mitigation module with our prediction model to
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Table 2.1: Our Core Contribution Compared to Existing Works.
Contribution Our proposed work Existing works
Anomaly
detection
and mitiga-
tion

We have integrated statistical and un-
supervised anomaly detection tech-
niques with our prediction model.
Also, the anomaly mitigation module
has been combined to handle them be-
fore feeding into deep learning mod-
els.

Although anomaly detection and mit-
igation is a fundamental step of traf-
fic analysis, according to our literature
survey, we could not find any existing
works considering this step in the traf-
fic prediction tasks.

Forecast
length

We have considered both single-step
and multi-step forecasting in our work.

Most of the existing works focused
on single-step forecasting. Multi-step
forecasting works consider a limited
forecast horizon, while we consider
four different forecast horizons to in-
vestigate the pattern of prediction error
with prediction length.

Time-
lagged
feature op-
timization

Our feature extraction module consid-
ers different window-width for identi-
fying the optimized time-lagged fea-
ture set based on prediction accuracy.

To the best of our knowledge, feature
optimization is not used in the current
traffic prediction literature.

analyze the impact of abnormal data points on model accuracy. The study aims to address
existing research gaps in traffic forecasting and provide insights into the most effective ways to
use deep sequence and boosting algorithms. Ultimately, this research can contribute to devel-
oping more accurate and efficient wireless internet traffic forecasting models, which can have
practical applications in telecommunications network management and resource allocation.

2.3 Proposed Methodology
In this section, we discuss our methodology depicted in Fig. 2.1. We begin by describing
our data in subsection 2.3.1 and perform several data preprocessing steps in subsections 2.3.2
and 2.3.3. The next subsection, 2.3.4, focuses on anomaly detection and mitigation tasks.
Following that, we delve into feature extraction and time-series cross-validation in subsections
2.3.5 and 2.3.6, respectively. Subsequently, we discuss our prediction model in subsections
2.3.7 and 2.3.8.

2.3.1 Dataset Description
Real internet traffic telemetry on several high-speed interfaces has been used for this experi-
ment. Telemetry data were collected by sampling the value of the SNMP (Simple Network
Management Protocol) interface MIB (Management Information Base) counter of a core-
facing interface on a provider edge router. Samples are taken at 5-minute intervals, with the
bps (bit per second) value for the interval being the difference between the samples at each
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end of the interval times 8. This was a 40 Gbs interface, so at no point in the sampling pe-
riod were there any discards. There are 8563 data samples in our dataset consisting of 29
days of complete data (288 data instances per day), while the last one-day data is incomplete.
We considered only the timestamp (GMT) and traffic data from the original data file in JSON
(JavaScript Object Notation) format, and all other information is discarded. Ultimately, 29
days of data were considered for developing our prediction model.
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Figure 2.1: High-level framework of proposed traffic prediction model integrated with anomaly
detection and mitigation.

2.3.2 Handling Missing Value

The last day data from our dataset was removed in our experiment as its network trace was
collected partially on that day. There are 29 missing values in our dataset, which are replaced
using the forward-filling technique. The previous valid data instance has replaced the missing
value in our traffic data. There are other methods, such as linear interpolation, quadratic inter-
polation, replacement with mean value, etc., to handle the missing data in time series analysis.
Linear interpolation assumes a linear relationship among data points and estimates a missing
value connecting points in a straight line. Since our traffic data is non-linear, we found this
method inappropriate for handling missing values. Also, the polynomial interpolation method
seems unsuitable because we must specify the order before applying this method to replace the
missing data. It replaces missing values with the smallest probable degree that passes through
available data points. In the case of mean value replacement, the outliers must be treated
first. The real-world traffic data may contain outlier or anomalous data points, so we do not
consider the mean value to change the missing values. Finally, we found the forward-filling
technique[42] useful for our experiment, mainly used for time-series data. This method implies
that the generated traffic volume would have remained consistent from the moment of dropout
through data collection completion rather than dropping or rising further and replaces a miss-
ing value after dropout with the most recent measurement. Additionally, it is predicated on the
idea that missing data are random, i.e., the probability of missing values is not associated with
factors that affect traffic volume at a particular time-stamp.
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2.3.3 Autocorrelation Function (ACF) Analysis

The ACF is widely used to assess the data in time series analysis and prediction. The ACF
plot visually displays the degree of a correlation between an observation in a time series and
observations made at earlier time steps. The underlying time series must be stationary for ACF
to operate. ACF plot identifies the correlation between a time series data point and previous
data points, called lag (l), of the same time series. For a given set of lags, the ACF evaluates
the correlations among samples in a time series. The ACF for time series x is given by:

ACF = Corr(xt, xt−l), where l = 1, 2, 3.. (2.1)

We can determine the stationarity and randomness of time-series data using an ACF plot.
Also, the time-series seasonality and trend can be identified based on ACF plot information.
Each bar in an ACF plot indicates the strength and direction of the correlation among data
points. The bar value should be near zero for all lags for random data, which we can also
consider as white noise. Non-random time-series data should have at least one lag value with
a strong correlation. We can use time-lagged features in building a prediction model for non-
random time-series data. Our traffic data has many lags with strong correlations which indicates
data is non-random. Therefore, we considered previous timestamp features for our regression
models to predict the following values. Based on our ACF plot, we now analyze two important
time series characteristics: seasonality and trend. Smaller lags frequently exhibit strong asso-
ciations when trends are prevalent in the time series because samples closer in the period tend
to have comparable values. As the lags lengthen, the correlations gradually diminish. When
periodic patterns are evident, multiples of the frequent recurrence have stronger autocorrela-
tions than other lags. The ACF plot blends both characteristics when a time series contains a
trend and seasonality. We can conclude that our traffic data has trend and seasonality based
on the correlation value for different lags. Since the correlation is higher for smaller lag and
decreases for larger lag, there is a trend in our traffic. Also, there is a repetition of higher cor-
relation values for every 288 lag values for our traffic dataset in which samples are collected
every five minutes interval. In other words, we find a daily periodic pattern in our traffic data.
So, ACF plot analysis gives us several important pieces of information about our traffic data,
such as our traffic data is non-random, has a trend, and daily seasonality. Also, it helps to de-
cide that we can better model our regressor model based on the time-lagged feature. Hence, we
investigated several lagged feature set for single and multi-step forecasting model for optimum
input settings.

2.3.4 Anomaly Detection and Mitigation

In this subsection, we discuss our methods to detect those data points that are deviated from
most of the data instances in the dataset. Those unexpected data points are called anomalies
or outliers. Many external and internal factors make real-world IP internet traffic susceptible.
These issues disrupt normal traffic flow, which must be discovered and corrected so that a
machine-learning model may improve its generalization capability. There are different types of
anomalies: point anomalies, contextual anomalies, and collective anomalies. In our research,
we considered only the point anomalies, i.e., those data points which are far away from the
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Figure 2.2: Outliers identified by Three-Sigma rule.
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Figure 2.3: Anomaly detected by ISoF.

general distribution of the data. There are mainly three main categories of anomaly detection
methods: statistical profiling, supervised learning, and unsupervised modeling.

In statistics, the three-sigma rule is a statistical calculation that defines the upper limit and
lower limit for point anomaly detection based on three standard deviations from the mean value
of the dataset. The data points outside the boundary defined by the three-sigma rule are con-
sidered outliers in the dataset. Therefore, it is necessary to calculate the absolute difference for
each data point and their average; if the difference is within the three standard deviations of
the dataset, it is considered a statistically valid data point. According to the three-sigma rule,
the probability of a data point X lying within three standard deviations of the mean is 99.73%.
In our experiment, we applied this empirical method for identifying point anomalies from our
dataset before providing them to our machine learning models. Using the Three-sigma rule
assumes that the probability distribution of the data follows a normal distribution. It is true
that data that follows a normal distribution responds to the three-sigma rule the best. However,
even with non-normally distributed variables, the Bienaymé-Chebyshev inequality, sometimes
known as Chebyshev’s inequality, states that at least 88.8% of cases should fall inside correctly
computed three-sigma ranges. For a wide range of distinct probabilistic, Chebyshev’s inequal-
ity states that a minimum of just 75 percent of observations must reside within two standard
deviations of the mean and 88.89 percent between three standard deviations[43, 44]. The valid
data points are surrounded by the upper and lower horizontal red lines in Fig. 2.2 according to
the three-sigma rule.

We applied three different unsupervised machine learning models from the clustering cat-
egory, although there are other categories: model-based, graphical, distance-based, and su-
pervised learning. Isolation Forest (ISoF), K-Nearest Neighbors (KNN), and Clustering-Based
Local Outliers (CBLO) are selected for our experiment. The clustering-based approach grouped
all data points into several clusters, and the data instances that do not belong to these clusters
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Figure 2.4: Anomaly detected by KNN.
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Figure 2.5: Anomaly detected by CBLO.

are called outliers. Generally, it is challenging to define and identify the outliers from the
datasets, and that is why we compared the performance of different models to evaluate their
corresponding results. For the sake of the analysis, the contamination percentage in the data is
set at 1%. Fig. 2.3, Fig. 2.4, and Fig. 2.5 depicted the anomalies or outliers identified by ISoF,
KNN, and CBLO respectively. After studying the associated temporal information, we discov-
ered that the data points recommended by the Three-Sigma rule are more likely to constitute
the anomaly. And backward filling has been applied for correcting outliers in our experiment
in which the next valid data point replaces the outlier.

2.3.5 Time-Lagged Feature Extraction
Time series data need to be expressed in the proper format for supervised learning. Generally,
the time-series data consists of several tuples (time, value), which is inappropriate for feeding
them into the machine-learning model. So, we restructured our original time series data using
the sliding window technique. The sliding window technique is illustrated in Fig. 2.6. Every
time series data instance in this figure is represented by ti where i denotes the index of the
data. For example, in Fig. 2.6(a), we considered the first three data points as a feature set X1

to predict the fourth data point denoted by y1 as the target. The number of previous time steps
used to predict the next time-step is called window width or lag size. This process continues
until we consider the last value in our training set for the prediction. It represents the sliding
window method for single-step prediction, while for multi-step prediction, the target values
must be more than one.

We consider different window widths for single-step prediction to predict our next step. We
performed a grid search to find out the best window width for single-step data conversion. A
set of five different window widths as {6, 9, 12, 15, 18} is considered for our experiment, which
indicates five different data conversion configurations for single-step prediction. The initial
data configuration consists of six features to predict the target, and it continues to eighteen
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(a) Feature extraction for single-step prediction
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Figure 2.6: Time-lagged feature extraction.

features for identifying the optimized window width for the sliding technique.
In the case of multi-step prediction, previous time steps are used to predict the next two or

more steps, known as forecast horizon. Fig. 2.6(b) illustrates the process of feature extraction
for multi-step forecasting. We considered three different: six steps, nine steps, and twelve
steps ahead forecast in our experiment. In addition, we explored various feature sets based
on forecast length to find optimum inputs for the model. For example, we searched through a
window width set of {6, 9, 12, 15, 18} for six-step prediction to identify the optimum number of
inputs for six-step forecast models. Therefore, our proposed prediction model’s performance
has been evaluated based on multiple combinations of (features and targets). We provided
five different varieties of feature and target variables such as {(6, 6), (9, 6), (12, 6), (15, 6),
(18, 6)} to our prediction model to find the best input set for six step prediction. The exact
process has been followed for other forecasting lengths in our experiment. For example, a total
of four and three different (features, input) combinations have been considered for nine and
twelve steps forecasting models. We analyze the performance of each combination for every
particular forecast horizon and identify the best input settings for the corresponding model.

2.3.6 Time-series Cross-validation
A cross-validation method was used in our experiment to evaluate the performance of our traffic
prediction models. Different ways exist to split the dataset into several folds to train and test
the classification/prediction models. K-fold-cross validation splits the dataset into K almost
similar size folds and all folds except one are used to train the model while the remaining fold
is kept for testing[45]. The process continues until all the model is tested on every fold, and
the final performance of the model is measured as the average performance on each fold. Since
most of the cross-validation techniques in machine learning select folds randomly, we need to
follow a different approach in splitting and selecting folds from time-series data to keep the
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Figure 2.7: Rolling-based cross validation.

temporal relation among folds. Our experiment used a rolling basis cross-validation technique
where training starts with one-fold and finishes by predicting the next fold. In the next step, the
test fold from the previous step is included in the training process, and the subsequent fold is
for the testing. The final performance of the model is the average of the prediction on each fold.
We split our 29 days of original time series data into two smaller datasets: a training dataset
of 21 days and a holdout dataset of 8 days, which is 70% and 30% of the dataset, respectively.
The training dataset was cross-validated using the TimeSeriesSplit method from scikit-learn
[46] for model training, while the holdout dataset was used for testing.

2.3.7 Boosting Algorithms for Traffic Prediction

This subsection briefly explained machine learning models used for our traffic task. We also
discussed the multi-output strategy for multi-step prediction using boosting algorithms. A total
of five different boosting algorithms have considered for our experiment as below:

• Gradient Boosting Regressor (GBR): Gradient Boosting permits for the optimization of
random differentiable loss functions and constructs an additive model in a forward stage-
wise process [46]. A regression tree in each stage fits the non-positive gradient of the
provided loss function.

• Extreme Gradient Boosting (XGB): It is an implementation of the gradient boosting
algorithm initially developed in [47]. This model can be used for both classification and
regression problems, and it is comparatively fast in computation in comparison with the
other implementation of gradient boosting.

• Light Gradient Boosting Machine (LGB): LightGBM is another implementation of the
gradient boosting algorithm proposed in [48]. This algorithm minimizes the limitation
of the histogram-based algorithm by introducing two novel techniques: Gradient-based
One Side Sampling and Exclusive Feature Bundling (EFB).
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• CatBoost Regressor (CBR): This is a binary-tree based implementation of gradient boost-
ing. The catBoost technique addresses a very general implementation problem of gra-
dient boosting and tries to solve the issue by proposing an ordering principle. All of
the gradient boosting implementation relies on the targets of all training samples after
several steps [49].

• Stochastic Gradient Descent (SGD): It is a simple but efficient machine learning model
used for both classification and regression [50]. The basic difference between gradi-
ent descent and SGD is the number of samples taken to compute the derivatives. SGD
randomly select one data sample in each iteration for calculating the gradient, which sig-
nificantly reduces the number of computations in comparison with the gradient descent.

Regression    
Model 1

Independent 
Features (IF)

Regression    
Model 2

{IF+ Dependent Variable (DV) 1}

Regression    
Model 3

{IF + DV1 + DV2}

Prediction 3Prediction 2Prediction 1

Figure 2.8: Chain multi-output regression model.

Several machine learning models, such as linear regression, decision tree regressor, random
forest regressor, etc., can predict multiple outputs. But not all machine learning regression
models, such as the support vector regression model, directly allow various outputs. However,
there are different ways of modifying these models for multi-output regression. One popular
method is to divide the multi-output regression problem into multiple individual regression
sub-problem. In that case, the machine learning model predicts each particular step separately
based on the same input data. It is sometimes called a direct multi-output regression model
where outputs are assumed independent of each other. There is an extension of this approach
where individual model outputs are connected to each other. A sequence of regressors can
be employed to solve multi-output regression problems, where each regressor in the sequence
learns the relationship between the input variables and a specific output variable. The first
regressor learns the relation between the inputs and the first output, and the subsequent regres-
sors use the inputs and the outputs predicted by the previous regressors to learn the remaining
output variables. The final regression model then uses all the input variables and the predicted
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outputs from the previous regressors to predict the final output. This approach is known as
chained multi-output regression[51], as depicted in Fig. 2.8. We applied the second strategy
for our multi-step prediction problem as there is a correlation between traffic volume for two
consecutive timestamps. However, one major drawback of this approach is that the order in
which the output variables are arranged in the sequence can have a significant impact on the
accuracy of the predicted outputs.

2.3.8 Deep Sequence Algorithms for Traffic Prediction
Five deep sequence models have been chosen for our traffic prediction task. First, we started
our experiment with a Recurrent Neural Network (RNN)[52] as it is the basic deep learning
model capable of processing sequence data such as time series. After that, the experiment was
extended by adding two more models, Long Short-Term Memory (LSTM)[53] and Gated Re-
current Unit (GRU)[54] because they can retain the information from a longer sequence com-
pared to the RNN. Finally, we included another model architecture capable of predicting more
than one step at a time, called the sequence-to-sequence model. LSTM Encoder-Decoder[55]
model has the limitation of extracting strong contextual information from long sequential data,
which we tried to solve by incorporating an attention layer in the encoder-decoder model. This
subsection briefly explained deep learning techniques for single- and multi-step prediction.

• Recurrent Neural Network (RNN): RNN model is specifically designed to handle se-
quential data such as text mining, audio classification, language modeling, time series
analysis, etc. The RNN uses the current and previous sequence information to produce
the current output at every step. Thus, the model learns about all previous data points in
the series at the last step. However, there is a short-term memory problem in the RNN
model training process which is caused due to the vanishing gradient issues.

• Gated Recurrent Unit (GRU): The GRU has been proposed to solve the short-time mem-
ory problem in the RNN model. The gate concept is used in this model to control the
flow of information between two consecutive cells. The GRU model has an update gate
that decides whether to transfer the previous cell output to the next cell. A gate is a math-
ematical unit that can measure the importance of the information and determine whether
it should be stored. There are two gates called the update gate and reset gate GRU model,
which works on the update of cell state.

• Long Short-Term Memory (LSTM): The purpose of the LSTM is similar to the GRU
model. There are two additional gates called forget and output gates, along with the
update and reset gates. LSTM has more control in transferring information among cells
of the network. LSTM network is popular for processing time-series data to classify and
make predictions. It alleviates the inherent vanishing gradient problem of the traditional
RNN model and performs comparatively better.

• LSTM Encoder-Decoder (LSTM Seq2Seq): This model can predict an output sequence
from an input sequence known as the sequence-to-sequence model. It consists of two
recurrent neural networks; one is called an encoder, and the other is a decoder. The
encoder converts the input sequence into a fixed-length context vector and passes it to
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the decoder. The decoder uses the context vector and the final state of the encoder as
the input and returns a sequence of output. We used this model for both single-step and
multi-step prediction.

• LSTM Encoder-Decoder with Attention Layer (LSTM Seq2Seq ATN): This model can
also predict an output sequence from an input sequence, known as the sequence-to-
sequence model. However, the conventional encoder-decoder model has a drawback,
which is solved by adding an extra layer called the attention layer, first proposed in
[56]. The encoder-decoder model cannot extract the strong contextual relationship from
long sequence data, which affects the model performance and decreases accuracy. On
the other hand, the extra attention layer in the encoder-decoder model can identify the
significance of sequence data.

2.3.9 Evaluation Metrics

The performance of our traffic forecasting models was estimated using Mean Absolute Per-
centage Error (MAPE). The performance metric identifies the variation of the anticipated re-
sult from the original data. MAPE error, for example, is the average percentage of the variance
between the actual and predicted values. As a result, we can formally define our performance
metric MAPE and Mean Accuracy (MA) for single-step forecasting as follow where pi and oi

are predicted and original values respectively, and n is the total number of test instance:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣ pi − oi

oi

∣∣∣∣∣ × 100 (2.2)

MA = (100 − MAPE)% (2.3)

The MAPE formula for multi-step prediction is similar to the formula for single-step pre-
diction, but it considers all the predicted values over the forecast horizon. Assuming actual
traffic volume values ot and predicted values pt+h for h steps ahead, the formula for MAPEh for
multi-step prediction is:

MAPEh =
1
n

n∑
t=1

∣∣∣∣∣ot − p̂t+h

ot

∣∣∣∣∣ × 100 (2.4)

We can define MAh for multi-step forecasting as the average MAi of each individual step
prediction, i, in forecast horizon h.

MAPEavg =
1
h

h∑
i=1

MAPEi (2.5)

MAh = (100 − MAPEavg)% (2.6)
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Table 2.2: Single-Step Traffic Prediction Machine Learning Model Performance Summary.
With Outlier Without Outlier

Model 6 9 12 15 18 6 9 12 15 18
GBR 7.47 7.74 7.57 7.60 7.76 5.20 5.31 5.24 5.26 5.25
XGB 7.65 7.69 7.47 7.59 7.60 5.16 5.20 5.19 5.15 5.17
LGB 8.51 8.47 8.47 8.47 8.53 5.11 5.09 5.13 5.14 5.10
CBR 7.56 7.58 7.64 7.78 8.12 5.10 5.08 5.20 5.32 5.44
SGD 12.80 10.51 10.44 11.13 12.16 6.10 7.27 8.01 8.50 8.23

2.4 Analysis of Experimental Results

The first 21 days of IP traffic, that is 70% of our total data were utilized for training our
machine learning models, while the rest 30% data , i.e., eight days were used for testing. Our
investigation is divided into two phases: I) machine learning model performance evaluation for
single-step traffic prediction, and II) machine learning model performance evaluation for multi-
step traffic prediction, as described in subsections in subsection 2.4.2, and 2.4.3, respectively.
Before that, we discussed the impact of outlier mitigation on data variability in subsection
2.4.1.
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Figure 2.9: Original traffic vs. outlier mitigated traffic.
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Figure 2.10: Empirical Cumulative Distribution Function (ECDF) plot of our traffic data.
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Table 2.3: Statistical Analysis Before and After Outlier Mitigation.
Data Samples Statistics

Statistics Before After
Mean 8364742790 8344127355
SD 4096690529 4013117118

Statistical Test Results Summary
Test Test statistic p-value
Two-sample t-test 0.328505869 0.742533327
Wilcoxon Rank-sum test 0.015409873 0.987705187
Kolmogorov-Smirnov test 0.005148467 0.999891457

2.4.1 Outlier Mitigation Impact Analysis

The outlier replacement on our dataset, resulting in a change in the mean and standard deviation
of the data as shown in Table 2.3. In addition, we depict the actual traffic and outlier mitigated
traffic to show their variability in Fig. 2.9. To assess whether this change is statistically signif-
icant, we conducted three hypothesis tests: a two-sample t-test, a Wilcoxon rank-sum test, and
a Kolmogorov-Smirnov test and the result has been summarized in Table 2.3. Before perform-
ing these tests, we compared the distribution of our dataset before and after outlier treatment
depicted in Fig. 2.10.

The ECDF plot capture a clear visual difference in the range of the two datasets before
and after outlier replacement. The ECDF plot suggests that the range of values is narrower
after outlier replacement, indicating a reduction in variability. While the removal of the outlier
reduced the range of values, it may not have had a substantial impact on the overall variability
of the data. To determine this fact, we performed three different statistical tests to examine
the overall shape of the distributions, rather than just the range of values. It is possible for the
standard deviation of the two groups to be similar, but for the range of values to differ due to
the presence or absence of an outlier.

The two-sample t-test is used to compare the means of two independent samples. In this
case, the two samples are the data before outlier replacement and the data after outlier replace-
ment. The test statistic is the t-statistic, which measures the difference between the means
relative to the variability within the samples. The p-value is the probability of obtaining a
test statistic as extreme as the one observed, assuming that the null hypothesis (no difference
in means) is true. The p-value for the two-sample t-test is 0.7425, which is greater than the
conventional threshold of 0.05 for statistical significance. This suggests that there is insuffi-
cient evidence to reject the null hypothesis of no difference in means, and that the difference
between the means is likely due to chance. The Wilcoxon rank-sum test, also known as the
Mann-Whitney U test, is a non-parametric test that compares the medians of two independent
samples. Like the t-test, it can be used to test for a difference in location (i.e., central tendency)
between two groups. The p-value for the Wilcoxon rank-sum test is 0.9877, which is much
greater than 0.05. This also suggests that there is insufficient evidence to reject the null hy-
pothesis of no difference in medians. The Kolmogorov-Smirnov test is a non-parametric test
that compares the distributions of two samples. It is based on the maximum difference between
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the cumulative distribution functions of the two samples. The p-value for the Kolmogorov-
Smirnov test is 0.9999, which is very close to 1. This also suggests that there is insufficient
evidence to reject the null hypothesis of no difference in distributions. In summary, based on
the results of these three tests, there is no significant evidence to suggest that the outlier replace-
ment has had a significant effect on the central tendency or distribution of the data. Based on
the statistical tests we performed, it appears that the variability of our traffic data has decreased
after the outlier replacement. However, the difference in standard deviation is not statistically
significant, as indicated by the p-values of the tests. The fact that these tests did not find a
statistically significant difference in the standard deviation of the two groups suggests that the
reduction in variability after outlier replacement is not likely to be due to chance. Therefore, it
may be appropriate to interpret the results as follows:

• The ECDF plot suggests that the range of values is narrower after outlier replacement,
indicating a reduction in variability.

• The statistical tests indicate that there is no significant difference in the standard deviation
of the two groups, suggesting that the difference in range is not likely to be due to chance.

• Taken together, these results suggest that the removal of the outlier have resulted in a
reduction in the range of values, even though the standard deviation of the two groups is
similar.

Based on the results, it appears that outlier replacement has some impact on reducing the
variability of in data, but the magnitude of this reduction may not be large enough to be statis-
tically significant.

2.4.2 Single-Step Prediction Result Analysis Using Boosting and Deep
Sequence Algorithms

We applied total of five machine learning models such as XGB, LGB, CBR, SGD, GBR for our
traffic prediction task. We used five-fold cross-validation to train our models. The performance
evaluation metrics of our experimental model are summarized in Table 2.2. Two different
versions of each model were investigated based on the data with and without outliers. We used
a total of five different feature sets of equivalent traffic lengths of 30 minutes, 45 minutes, 60
minutes, 75 minutes, and 90 minutes for training our model to identify the optimum number of
inputs for our prediction model. The best results for the individual model are marked bold and
underlined in the table.

For the XGB model, we achieved the best prediction using 12 and 15 inputs respectively for
models with and without outlier data. The best average deviation between actual and predicted
traffic is 7.47% and 5.15% with and without outliers, respectively, which indicated more than
30% improvement in traffic prediction after adjusting outliers. In the LGB model, the mini-
mum prediction error between actual and predicted traffic is 5.09% for 9 outlier-adjusted input
variables. The prediction improvement is around 40% when compared with the best forecast-
ing error of 8.51% for the prediction model having outliers in the training data. For other input
variables 9, 12, 15, and 18, we have seen a similar amount, around 40% (8.51% to 5.11%,
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8.47% to 5.13%, 8.47% to 5.14%, and 8.53% to 5.10% respectively) of prediction enhance-
ments after adjusting the anomalies in the data. For SGD, we found the best prediction result
with MAPE of 6.10% using an input length of 6, and the result improved by more than 41%
after removing the outliers compared with 10.44% error in prediction with outlier data. The
other input variables show a lower gap between actual and predicted traffic for outlier-adjusted
data. The GBR model showed a minimum deviation of 5.20% when trained using thirty min-
utes of traffic data without the outlier. After mitigating abnormal data points, our experimental
results depict more than 30% better predictions for all input variables. In the CBR model, the
minimum prediction error of 5.08% is achieved using 9 input variables. The traffic predic-
tion improvement for the CBR model is more than 30% compared with the minimum error of
7.56% in the case of outlier data. Our experimental results show overall performance improve-
ment for all considering machine learning models after adjusting the abnormal traffic. From
our experimental result, we can conclude, the outlier mitigation in the dataset before training
the prediction model can improve the prediction by an average of 30% more accuracy. Our
experimental result shows that outlier mitigation in the dataset before training the prediction
model can improve the prediction by an average of 30% more accuracy.

Figure 2.11: Machine learning model accuracy comparison for different input length.

The comparative analysis of the model mean accuracy based on different input lengths is
depicted in Fig. 2.11. Our experimental results showed that the performance of SGD is more
sensitive to the input lengths. The SGD model accuracy rises from input 6 to 9 then plummets
from 15 to 18 when trained with outlier data. But in the other case, the accuracy decreases with
the increased input length. There is a variation in the model accuracy with the input length
for other models, but the magnitude is much lower than the SGD. However, many internal
and external factors can affect the regular traffic pattern in the real world. Since machine
learning-based traffic prediction algorithms learn the general pattern in the dataset and predict
accordingly, it is essential to handle the outliers before providing them to learn. Otherwise,
there is a chance of learning from abnormal traffic patterns, affecting the prediction result. Our
experimental results also showed that outliers in the data make the model performance poor
than the clean data.

After experimenting with boosting algorithms for single-step traffic prediction, we applied
several deep sequences models such as RNN and their variants, including LSTM, LSTM Seq2Seq,
LSTM Seq2Seq ATN, and GRU to evaluate the comparative performance in traffic prediction.
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Table 2.4: Single-Step Traffic Prediction Deep Learning Model Performance Summary.
Model With Outlier Without Outlier
RNN 7.51% 5.28%
LSTM 5.03 % 3.80 %
GRU 6.41 % 5.28%
LSTM Seq2Seq 3.94% 3.51%
LSTM Seq2Seq ATN 3.95% 3.55%

Figure 2.12: Actual vs. predicted traffic by proposed LSTM Seq2Seq model.

All our model training continued for 100 epochs with a batch size of 16. The performance
evaluation metrics of our experimental model are summarized in Table 2.4. Two different ver-
sions of each model were investigated to identify the impact of anomaly or outlier detection
in traffic prediction. Our results show improved performance for prediction models trained on
outlier-adjusted data. For example, the average deviation between actual and predicted traffic
by the RNN model is 7.51% and 5.28% with and without outliers, respectively, which improved
traffic prediction by more than 29% after adjusting outliers. In the LSTM model, the average
prediction error between actual and predicted traffic is reduced from 5.03% to 3.80%, i.e., more
than 24% after handling the outlier. Similarly, we noticed an error reduction of more than 11%
(3.94% to 3.51%) and 10% (3.95% to 3.55%) due to the outlier adjustment in LSTM Seq2Seq
and LSTM Seq2Seq ATN, respectively. The deviation between actual and predicted traffic is
reduced by more than 19% from 6.41% to 5.28% in the GRU model. According to our exper-
imental result, LSTM Seq2Seq is the best prediction model with a minimum prediction error
of 3.94% with outliers in the data and 3.51% without outliers. A graphical representation of
real traffic and predicted traffic using the LSTM Seq2Seq model after adjusting the outliers are
shown in Fig. 2.12. Our experimental results show overall performance improvement for all
considering deep sequence models after adjusting the abnormal traffic. However, in the real
world, many internal and external factors can affect the regular traffic pattern. Since machine
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learning-based traffic prediction algorithms learn the general pattern in the dataset and predict
accordingly, it is essential to handle the outliers before providing them to learn. Otherwise,
there is a chance of learning from abnormal traffic patterns, which can affect the prediction
result. Our experimental results also showed that outliers in the data make the model perfor-
mance poor than the clean data.

2.4.3 Multi-Step Prediction Result Analysis Using Boosting Algorithm
and Deep Sequence Model

Our multi-step forecasting experiment considered different forecast lengths of six, nine, and
twelve steps. We evaluated and compared the performance of several models from the gradient
boosting category, such as Gradient Boosting Regressor (GBR), XGBoost (XGB), LightGBM
(LGB), CatBoost (CBR), and the gradient descent category, such as Stochastic Gradient De-
scent (SGD). Tables 2.5, 2.6, and 2.7 summarize the performance for six-step, nine-step, and
twelve-step forecasting, respectively. We report the mean absolute percentage error between
actual and predicted traffic for each step in multi-step forecasting, for different input lengths.
The best performance for the corresponding model is highlighted in bold and underlined.

Now, we analyze the detailed prediction results for multi-step forecasting. In the case of
six-step forecasting, our proposed GBR model performs better for each step. The minimum
prediction error we achieved with eighteen input data where the last prediction accuracy was
around 93% with an average error of 7.03%. The individual step prediction error increases with
larger forecast steps as the prediction error in the current steps accumulates on the next step
prediction. As a result, multi-step forecasting is more challenging than single-step forecasting.
In the case of nine and twelve steps forecasting, our proposed GBR model performs better
with a minimum average gap of 8.88% and 10.60%, respectively, between actual and predicted
traffic for the last step. Next, we investigated the performance of the XGB model and noticed
a general performance improvement compared to GBR. For example, in the case of six-step
forecasting, our proposed XGB model provided the lowest average gap of 6.99% with eighteen
features, which is better than the GBR model’s performance and standard XGB performance.
XGB and GBR both follow the same principle of gradient boosting. But XGB can control over-
fitting by formalizing a more regularized model, which results in better prediction accuracy.
As a result, we noticed an outperformance of the XGB model over GBR. Compared to nine
and twelve steps forecasting, our proposed XGB performs better than GBR for twelve-step
prediction only. But GBR took approximately 1.5 times more execution time than XGB for
nine-step forecasting, as depicted in Fig. 2.13. Moreover, the execution time for the six and
twelve steps forecasting model, GBR execution time, is 1.8 and 1.7 times greater than XGB.
XGB takes lesser time for execution than GBR because XGB reduces the size of the search
space for possible splitting by considering the distribution of the feature across all data samples
in the tree leaf. Overall, XGB’s performance is better than GBR evaluating prediction accuracy
and execution time.

Now, we analyze the performance of another model of gradient boosting category called
LightGBM (LGB). Compared with XGB and GBR prediction performance, our proposed LGB
gave the minimum average prediction error of 6.30% and 7.18% for nine and twelve-step pre-
diction, respectively. In contrast, for nine and twelve steps, the best performing GBR and XGB
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Table 2.5: Six-Step Forecasting MAPE (%) Value For The Standard And Proposed Machine
Learning Models. Each Value Represents An Average Gap Between Actual and Predicted
Traffic Volume For Each Individual Forecast Step.

Model GBR XGB LGB CBR SGD
With

Outlier
Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

6

Step1 3.80 3.76 3.78 3.75 3.68 3.63 3.65 3.61 6.41 5.23
Step2 4.95 4.84 4.85 4.85 4.71 4.63 4.55 4.54 7.45 6.46
Step3 5.93 5.85 5.88 5.84 5.53 5.44 5.44 5.38 8.62 7.57
Step4 6.85 6.78 6.84 6.80 6.26 6.22 6.21 6.16 9.72 8.71
Step5 7.74 7.58 7.76 7.63 7.02 6.96 6.90 6.91 10.85 9.81
Step6 8.66 8.46 8.68 8.62 7.77 7.76 7.70 7.68 11.80 10.92

9

Step1 3.79 3.70 3.75 3.71 3.67 3.60 3.64 3.60 7.36 5.61
Step2 4.82 4.73 4.75 4.71 4.61 4.52 4.55 4.46 8.54 6.71
Step3 5.70 5.54 5.71 5.63 5.44 5.31 5.27 5.24 9.76 7.77
Step4 6.60 6.42 6.59 6.51 6.08 5.98 5.99 5.94 10.75 8.83
Step5 7.31 7.22 7.34 7.21 6.69 6.55 6.56 6.51 11.79 9.92
Step6 8.15 7.99 8.14 8.10 7.31 7.25 7.17 7.19 12.99 10.96

12

Step1 3.92 3.68 3.78 3.69 3.72 3.58 3.60 3.55 8.40 5.38
Step2 4.73 4.58 4.62 4.55 4.59 4.43 4.43 4.43 9.49 6.39
Step3 5.51 5.36 5.57 5.37 5.31 5.21 5.18 5.12 10.67 7.35
Step4 6.29 6.13 6.24 6.13 5.94 5.89 5.74 5.74 11.65 8.31
Step5 6.85 6.75 7.00 6.79 6.52 6.45 6.35 6.33 12.86 9.22
Step6 7.63 7.45 7.60 7.50 7.08 7.01 6.91 6.92 13.92 10.10

15

Step1 3.69 3.59 3.71 3.60 3.68 3.60 3.66 3.62 9.15 4.87
Step2 4.53 4.46 4.53 4.43 4.57 4.43 4.44 4.39 10.82 5.73
Step3 5.26 5.19 5.26 5.16 5.26 5.14 5.14 5.09 11.39 6.59
Step4 5.89 5.81 5.91 5.76 5.87 5.79 5.66 5.68 12.24 7.36
Step5 6.57 6.38 6.59 6.46 6.45 6.41 6.27 6.21 13.31 8.15
Step6 7.23 7.06 7.16 7.12 7.03 7.01 6.76 6.85 14.71 8.90

18

Step1 3.68 3.55 3.67 3.55 3.60 3.53 3.64 3.62 9.48 4.36
Step2 4.45 4.40 4.46 4.39 4.54 4.43 4.48 4.42 10.50 5.12
Step3 5.19 5.08 5.17 5.08 5.21 5.09 5.12 5.07 11.50 5.87
Step4 5.81 5.73 5.82 5.72 5.81 5.76 5.71 5.67 12.72 6.59
Step5 6.51 6.38 6.51 6.39 6.40 6.35 6.35 6.31 13.34 7.25
Step6 7.08 7.03 7.10 6.99 7.04 7.02 6.93 6.96 14.31 7.94
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Table 2.6: Nine-Step Forecasting MAPE (%) Value For The Standard And Proposed Machine
Learning Models. Each Value Represents An Average Gap Between Actual and Predicted
Traffic Volume For Each Individual Forecast Step.

Model GBR XGB LGB CAB SGD
With

Outlier
Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

9

Step1 3.78 3.71 3.76 3.69 3.66 3.60 3.67 3.60 7.40 5.64
Step2 4.83 4.67 4.76 4.74 4.61 4.54 4.60 4.52 8.56 6.73
Step3 5.73 5.55 5.69 5.59 5.42 5.33 5.28 5.25 9.66 7.80
Step4 6.69 6.40 6.58 6.42 6.07 6.03 5.98 5.91 10.74 8.90
Step5 7.35 7.20 7.37 7.15 6.65 6.56 6.58 6.53 11.90 9.90
Step6 8.12 7.94 8.10 8.03 7.29 7.24 7.23 7.20 13.22 10.96
Step7 8.97 8.77 9.01 8.79 7.98 7.92 7.96 7.88 14.15 11.98
Step8 9.66 9.43 9.65 9.48 8.55 8.51 8.53 8.50 15.49 12.91
Step9 10.41 10.15 10.49 10.17 9.17 9.17 9.08 9.02 16.26 13.84

12

Step1 3.84 3.66 3.82 3.64 3.70 3.58 3.59 3.56 8.47 5.37
Step2 4.68 4.58 4.65 4.56 4.57 4.44 4.43 4.41 9.51 6.42
Step3 5.53 5.40 5.51 5.39 5.31 5.22 5.18 5.14 10.56 7.36
Step4 6.26 6.10 6.20 6.16 5.97 5.84 5.76 5.77 11.74 8.31
Step5 6.91 6.77 7.05 6.80 6.57 6.41 6.43 6.36 12.77 9.22
Step6 7.63 7.56 7.60 7.52 7.09 6.99 6.96 6.95 13.97 10.12
Step7 8.28 8.16 8.34 8.18 7.73 7.69 7.57 7.53 14.92 10.97
Step8 8.98 8.84 8.96 8.78 8.24 8.25 8.08 8.06 16.03 11.74
Step9 9.64 9.50 9.56 9.40 8.78 8.77 8.60 8.69 17.62 12.59

15

Step1 3.73 3.59 3.68 3.57 3.64 3.58 3.67 3.64 9.12 4.88
Step2 4.57 4.42 4.52 4.43 4.54 4.42 4.51 4.41 10.37 5.74
Step3 5.26 5.16 5.23 5.15 5.27 5.15 5.10 5.08 11.28 6.55
Step4 5.89 5.86 5.90 5.84 5.86 5.77 5.69 5.67 12.28 7.36
Step5 6.60 6.46 6.63 6.48 6.46 6.41 6.28 6.23 13.36 8.19
Step6 7.22 7.15 7.19 7.10 7.09 6.99 6.76 6.90 14.46 8.90
Step7 7.89 7.77 7.91 7.77 7.71 7.63 7.40 7.42 15.44 9.37
Step8 8.54 8.41 8.52 8.39 8.09 8.13 7.93 8.04 16.33 10.05
Step9 9.14 9.07 9.19 8.99 8.73 8.65 8.53 8.61 17.24 10.72

18

Step1 3.66 3.54 3.68 3.54 3.61 3.55 3.61 3.63 9.68 4.36
Step2 4.45 4.43 4.46 4.39 4.52 4.43 4.49 4.44 10.60 5.12
Step3 5.19 5.06 5.19 5.10 5.21 5.11 5.13 5.09 11.39 5.87
Step4 5.79 5.76 5.84 5.74 5.85 5.75 5.73 5.66 12.42 6.59
Step5 6.59 6.40 6.52 6.37 6.47 6.35 6.33 6.28 13.34 7.27
Step6 7.12 7.00 7.10 6.97 6.98 7.03 6.95 6.94 14.40 7.91
Step7 7.80 7.66 7.88 7.67 7.63 7.57 7.52 7.52 15.24 8.43
Step8 8.33 8.27 8.34 8.24 8.15 8.16 8.11 8.16 16.12 9.06
Step9 8.98 8.88 8.97 8.90 8.74 8.72 8.70 8.75 17.10 9.69



34 Chapter 2. Single andMulti-step Traffic Forecasting with OutlierMitigation

Table 2.7: Twelve-Step Forecasting MAPE (%) Value For The Standard And Proposed Ma-
chine Learning Models. Each Value Represents An Average Gap Between Actual and Pre-
dicted Traffic Volume For Each Individual Forecast Step.

Model GBR XGB LGB CBR SGD
With

Outlier
Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

With
Outlier

Without
Outlier

12

Step1 3.92 3.67 3.82 3.65 3.70 3.58 3.59 3.56 8.42 5.36
Step2 4.75 4.57 4.69 4.54 4.56 4.46 4.44 4.42 9.47 6.40
Step3 5.52 5.38 5.52 5.42 5.30 5.23 5.17 5.12 10.59 7.36
Step4 6.24 6.11 6.26 6.11 5.92 5.85 5.77 5.76 11.75 8.35
Step5 6.91 6.80 7.00 6.84 6.55 6.47 6.42 6.34 12.85 9.23
Step6 7.62 7.48 7.61 7.41 7.11 6.95 6.94 6.99 13.82 10.15
Step7 8.26 8.16 8.34 8.17 7.73 7.66 7.50 7.55 15.05 11.02
Step8 8.94 8.80 8.94 8.71 8.31 8.21 8.05 8.11 15.91 11.78
Step9 9.56 9.50 9.56 9.40 8.84 8.84 8.63 8.74 17.03 12.58
Step10 10.22 10.11 10.20 10.03 9.35 9.31 9.18 9.25 18.15 13.41
Step11 10.81 10.68 10.88 10.63 9.96 9.90 9.79 9.87 19.16 13.86
Step12 11.46 11.39 11.43 11.27 10.52 10.52 10.50 10.48 20.11 14.69

15

Step1 3.68 3.61 3.70 3.60 3.66 3.57 3.68 3.63 9.12 4.84
Step2 4.57 4.48 4.52 4.44 4.54 4.43 4.51 4.42 10.23 5.74
Step3 5.28 5.23 5.29 5.15 5.22 5.16 5.11 5.10 11.32 6.61
Step4 5.99 5.81 5.95 5.83 5.84 5.75 5.73 5.70 12.50 7.44
Step5 6.55 6.50 6.62 6.48 6.45 6.39 6.28 6.19 13.43 8.19
Step6 7.23 7.12 7.25 7.03 7.09 7.02 6.84 6.82 14.30 8.91
Step7 7.86 7.73 7.91 7.81 7.74 7.66 7.48 7.45 15.37 9.61
Step8 8.51 8.41 8.50 8.39 8.08 8.14 7.99 7.99 16.46 10.03
Step9 9.16 9.03 9.14 9.01 8.73 8.72 8.53 8.62 17.36 10.71
Step10 9.65 9.66 9.72 9.64 9.25 9.26 9.16 9.17 18.32 11.43
Step11 10.26 10.19 10.30 10.14 9.80 9.86 9.82 9.80 19.24 12.13
Step12 10.90 10.79 10.94 10.78 10.43 10.40 10.36 10.47 20.27 12.80

18

Step1 3.68 3.55 3.65 3.53 3.63 3.53 3.68 3.61 9.51 4.35
Step2 4.46 4.41 4.46 4.38 4.58 4.42 4.51 4.40 10.43 5.15
Step3 5.20 5.10 5.20 5.09 5.21 5.12 5.16 5.10 11.48 5.87
Step4 5.84 5.74 5.83 5.74 5.91 5.73 5.76 5.69 12.43 6.57
Step5 6.49 6.40 6.57 6.40 6.47 6.36 6.36 6.28 13.66 7.27
Step6 7.12 6.97 7.15 6.99 7.06 7.01 6.93 6.95 14.47 7.96
Step7 7.84 7.69 7.80 7.66 7.76 7.67 7.58 7.52 15.32 8.47
Step8 8.31 8.27 8.35 8.21 8.19 8.10 8.14 8.15 16.14 9.04
Step9 8.96 8.97 9.02 8.92 8.70 8.74 8.68 8.73 17.18 9.72
Step10 9.49 9.42 9.45 9.43 9.20 9.28 9.18 9.19 18.20 10.31
Step11 10.03 10.02 10.06 10.06 9.78 9.81 9.74 9.77 19.82 10.89
Step12 10.71 10.60 10.72 10.57 10.35 10.36 10.42 10.38 20.28 11.58
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Figure 2.13: Average execution time of our proposed models for different forecast length.
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Figure 2.14: A comparative comparison among different feature subset performances regarding
average prediction accuracy for six-steps forecasting. The average accuracy is calculated as the
mean of each step’s individual prediction accuracy.

prediction errors are 6.33% and 7.26%, and 6.32% and 7.25%, respectively. For six-step pre-
diction, the LGB average prediction accuracy was 94.64%, the same as GBR, while the XGB
provided the highest average accuracy of 94.65%. Overall, LGB performs prediction accuracy
better compared to GBR and XGB. Since LGB performs leaf-wise growth as opposed to level-
wise expansion in XGB, which produces larger loss reduction and much more complex trees
and, as a result, improved accuracy while also being faster.

Also, we noticed a slow error-propagation rate between consecutive forecast steps in LGB
compared to GBR and XGB. For example, in nine-step forecasting, our proposed XGB model
started with a better first-step prediction with an error of 3.54%, which is lesser than the LGB
first-step error of 3.55%, but for the last step, the XGB error was 8.90%, which is higher than
the LGB’s last-step error of 8.72%. According to Fig.3, LGB execution time is lesser than
GBR and XGB. After analyzing the execution time for each forecast length, we concluded
that LGB execution time is a minimum of 2 and 1.5 times shorter than GBR and XGB. LGB
is a histogram-based approach that accelerates the training process by bucketing continuous
attribute values into discrete bins. Finally, our last model from gradient boosting is CatBoost
(CBR). CBR is the best-performing model with and without outlier detection among all con-
sidering models in our single-step and multi-step forecasting experiment. The best average
prediction accuracy using our proposed CBR is 94.70%, 93.78%, and 92.89%, respectively,
for six, nine, and twelve-step forecasting. All best-performing CBR models provided the high-
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Table 2.8: Six-Step Forecasting MAPE (%) Value For The Standard And Proposed Deep Learn-
ing Models. Each Value Represents An Average Gap Between Actual and Predicted Traffic
Volume For Each Individual Forecast Step.

Model LSTM Seq2Seq LSTM Seq2Seq ATN
With Outlier Without Outlier With Outlier Without Outlier

6

Step 1 4.76 3.75 4.93 3.78
Step 2 5.46 4.71 5.58 4.69
Step 3 6.34 5.64 6.40 5.61
Step 4 7.31 6.56 7.30 6.53
Step 5 8.36 7.61 8.30 7.59
Step 6 9.42 8.66 9.31 8.67

9

Step 1 4.72 3.74 5.00 3.83
Step 2 5.20 4.53 5.35 4.60
Step 3 5.91 5.32 5.96 5.41
Step 4 6.75 6.14 6.70 6.19
Step 5 7.70 7.07 7.56 7.05
Step 6 8.67 8.05 8.43 7.95

12

Step 1 4.62 3.65 4.95 3.72
Step 2 5.07 4.34 5.15 4.41
Step 3 5.70 5.07 5.73 5.17
Step 4 6.48 5.78 6.49 5.89
Step 5 7.41 6.50 7.37 6.60
Step 6 8.38 7.21 8.28 7.28

15

Step 1 4.58 3.47 4.83 3.51
Step 2 5.02 4.18 5.05 4.21
Step 3 5.65 4.85 5.61 4.91
Step 4 6.40 5.48 6.32 5.58
Step 5 7.28 6.10 7.11 6.27
Step 6 8.20 6.71 7.89 6.96

18

Step 1 4.49 3.48 4.63 3.48
Step 2 4.90 4.21 5.00 4.13
Step 3 5.75 4.86 5.80 4.77
Step 4 6.65 5.47 6.67 5.37
Step 5 7.47 6.15 7.49 5.99
Step 6 8.19 6.85 8.22 6.59
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Table 2.9: Nine-Step Forecasting MAPE (%) Value For The Standard And Proposed Deep
Learning Models. Each Value Represents An Average Gap Between Actual and Predicted
Traffic Volume For Each Individual Forecast Step.

Model LSTM Seq2Seq LSTM Seq2Seq ATN
With Outlier Without Outlier With Outlier Without Outlier

9

Step 1 5.19 3.90 5.34 3.92
Step 2 5.66 4.53 5.74 4.57
Step 3 6.26 5.33 6.21 5.35
Step 4 7.02 6.13 6.90 6.10
Step 5 7.94 6.97 7.77 6.90
Step 6 8.87 7.81 8.65 7.69
Step 7 9.83 8.60 9.56 8.42
Step 8 10.76 9.30 10.41 9.05
Step 9 11.69 10.01 11.27 9.69

12

Step 1 5.01 3.75 5.25 3.73
Step 2 5.24 4.37 5.35 4.34
Step 3 5.81 5.07 5.86 5.04
Step 4 6.52 5.77 6.55 5.73
Step 5 7.34 6.45 7.34 6.39
Step 6 8.18 7.11 8.13 7.00
Step 7 9.06 7.72 8.96 7.55
Step 8 9.91 8.21 9.75 8.00
Step 9 10.77 8.72 10.54 8.49

15

Step 1 4.88 3.75 5.18 3.70
Step 2 5.37 4.42 5.45 4.21
Step 3 6.13 5.11 6.28 4.82
Step 4 6.96 5.77 7.10 5.43
Step 5 7.76 6.46 7.87 6.04
Step 6 8.54 7.11 8.60 6.62
Step 7 9.30 7.78 9.32 7.15
Step 8 10.00 8.38 10.03 7.60
Step 9 10.76 9.00 10.78 8.13

18

Step 1 4.85 3.54 4.66 3.56
Step 2 4.86 4.17 4.81 4.14
Step 3 5.34 4.79 5.33 4.84
Step 4 5.96 5.39 5.96 5.49
Step 5 6.64 6.01 6.63 6.08
Step 6 7.34 6.63 7.30 6.63
Step 7 8.08 7.22 7.99 7.16
Step 8 8.82 7.72 8.64 7.62
Step 9 9.61 8.28 9.33 8.16
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Table 2.10: Twelve-Step Forecasting MAPE (%) Value For The Standard And Proposed Deep
Learning Models. Each Value Represents An Average Gap Between Actual and Predicted
Traffic Volume For Each Individual Forecast Step.

Model LSTM Seq2Seq LSTM Seq2Seq ATN
With Outlier Without Outlier With Outlier Without Outlier

12

Step 1 5.25 4.07 5.71 3.95
Step 2 5.42 4.63 5.64 4.47
Step 3 6.06 5.27 6.17 5.16
Step 4 6.81 5.92 6.88 5.86
Step 5 7.59 6.62 7.62 6.56
Step 6 8.32 7.26 8.32 7.20
Step 7 9.08 7.94 9.02 7.80
Step 8 9.81 8.52 9.69 8.34
Step 9 10.59 9.12 10.40 8.89

Step 10 11.37 9.69 11.08 9.46
Step 11 12.22 10.33 11.81 10.13
Step 12 13.08 11.01 12.56 10.82

15

Step 1 4.99 3.75 5.54 3.84
Step 2 5.23 4.23 5.57 4.25
Step 3 5.66 4.88 5.92 4.86
Step 4 6.23 5.55 6.43 5.50
Step 5 6.91 6.19 7.04 6.12
Step 6 7.61 6.80 7.66 6.73
Step 7 8.34 7.37 8.30 7.26
Step 8 9.06 7.83 8.91 7.74
Step 9 9.81 8.35 9.53 8.25

Step 10 10.51 8.85 10.11 8.76
Step 11 11.27 9.43 10.73 9.34
Step 12 12.06 10.06 11.38 9.98

18

Step 1 5.18 3.75 5.57 3.66
Step 2 5.03 4.41 5.26 4.19
Step 3 5.46 4.97 5.58 4.77
Step 4 6.10 5.55 6.16 5.35
Step 5 6.78 6.21 6.78 5.95
Step 6 7.44 6.87 7.39 6.52
Step 7 8.08 7.53 8.00 7.05
Step 8 8.71 8.08 8.60 7.52
Step 9 9.39 8.65 9.27 8.05

Step 10 10.09 9.16 9.96 8.53
Step 11 10.87 9.72 10.72 9.10
Step 12 11.67 10.32 11.51 9.69
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Figure 2.15: A comparative comparison among different feature subset performances regarding
average prediction accuracy for nine-steps forecasting. The average accuracy is calculated as
the mean of each step’s individual prediction accuracy.
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Figure 2.16: A comparative comparison among different feature subset performances regarding
average prediction accuracy for twelve-steps forecasting. The average accuracy is calculated
as the mean of each step’s individual prediction accuracy.

est accuracy with fifteen features. A weighted sample variation of SGD, known as minimal
variance sampling (MVS), is provided by CBR. This method uses weighted sampling at the
tree layer rather than the split level. To increase the precision of split grading, the data for
each boosting tree are chosen in a certain way, resulting in better accuracy. However, CBR
takes the highest execution time among all prediction models. For example, LGB is the fastest
algorithm from boosting category, and CBR execution time is more than three, four, and six
times more than LGB, respectively, for six, nine, and twelve-step forecasting. Lastly, we con-
sider a simple machine learning model called stochastic gradient descent (SGD) for our traffic
prediction task. Since gradient boosting and gradient descent both work similarly and descend
the slope of the loss function, we consider SGD for our experiment to show a comparative
analysis with the gradient boosting algorithm. According to our investigation, the SGD predic-
tion is lower among all prediction models for single-step and multi-step. For example, the best
standard SGD model performance for twelve-step forecasting is 85.64% without outlier detec-
tion, which is more than 6% less than the gradient boosting algorithm. But our proposed SGD
model performance improved significantly compared to classical SGD with an average accu-
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Figure 2.17: Multi-step actual vs. predicted traffic by best-peforming deep sequence model.

racy of 91.90% for twelve-step prediction; but still, it is smaller than the gradient boosting best
performance. Gradient boosts descent gradient by adding new models, as opposed to gradient
descent, which descends the gradient by introducing modifications to hyper-parameters. As a
result, the model architecture gradient boosting changed dynamically as opposed to the fixed
model in SGD, which gave us a better prediction using gradient boosting than SGD. However,
the SGD is the fastest algorithm among all prediction models from boosting category.

We also investigated the average accuracy for each input set. Then, we calculated all in-
dividual step prediction accuracy to determine the average accuracy for particular input and
model settings. Fig. 2.14, Fig. 2.15, and Fig. 2.16 illustrate the average accuracy comparison
between the standard model and our proposed model for each feature set. From these figures,
we noticed our proposed model outperforms traditional models for each input configuration,
and the average accuracy is increasing with the larger feature set except the CBR model. In
the case of the CBR model, the model performance dropped for eighteen time-lagged features,
which is common for each multi-step forecast window. However, SGD showed a completely
different behavior compared to gradient boosting algorithms. Furthermore, the standard SGD
model average prediction accuracy decreases with an increase in the input size, while our pro-
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Figure 2.18: Model average accuracy comparison with the input length.

posed SGD model average accuracy increases with the input size. Therefore, we can conclude
that the anomaly mitigation module helps the model to learn better the traffic pattern resulting
in better accuracy.

After performing a comprehensive analysis of multi-step forecasting using boosting algo-
rithms, we have noticed that best-performing single-step boosting algorithms also perform bet-
ter in multi-step forecasting. Therefore, we chose two best-performing deep sequence models
from our single-step experiment: LSTM Seq2Seq and LSTM Seq2Seq ATN for the multi-step
forecasting tasks. Multi-step prediction is more challenging than single-step prediction as the
prediction error accumulates forward with the prediction length. So, the prediction error is
more likely to increase for more extended step forecasting. In this experiment, we considered
different prediction lengths of six steps (30 minutes), nine steps (45 minutes), and twelve steps
(60 minutes). All multi-step forecasting models are trained using data with and without out-
liers to analyze the anomaly’s impact on traffic prediction. Also, we considered varying input
lengths for data windowing to extract the optimum feature length for the predictive model.
Next, we explained our multi-step experimental results based on different prediction lengths.

A total of seven different input sets are used to train our predictive model to identify the
optimum feature length for model training. The input set starts from length six to length 24
with a gap of break of 15 minutes of traffic. The experimental results are represented in Table
2.8. The LSTM Seq2Seq ATN model with an input length of 18 produced the best predic-
tion result for six steps with an average MAPE of 5.06 %, where the data was outlier free.
Our best prediction model’s MAPE for individual steps are 3.48%, 4.13%, 4.77%, 5.37%,
5.99%, and 6.59%. Although the input lengths 21 and 24 gave us a minimum average MAPE
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Figure 2.19: LSTM Seq2Seq model average accuracy comparison with the input length.

of 5.06%, we considered the minimum feature length to reduce model training time. The
LSTM Seq2Seq ATN also performed better with outliers in the data, and the average MAPE
was 5.66% for input length 24. We noticed an increasing pattern in the gap between actual and
predicted traffic for multi-step forecasting as the error in the previous step is propagated to the
next steps. Fig. 2.17(b)compares the actual and predicted traffic by the best-performing model
for the sixth step. Our results again indicate a better prediction when we mitigate the outliers
before training the models.

According to the experiment in Table 2.9, the best prediction model for nine steps ahead
forecasting is the LSTM Seq2Seq ATN with an input layer of 24-time steps. The minimum
average MAPE between actual and predicted traffic is 5.82% without outliers in the data. We
used six sets of input variables to determine the optimum number of inputs for the model.
Firstly, we tried 45 minutes of traffic to predict the next 45 minutes. Then we increased the
input length by 15 minutes and extended it to 120 minutes or 24 inputs variables. However,
The LSTM Seq2Seq model also showed better performance of average MAPE of 5.88% for an
input length of 24 compared with data having anomalies (6.75% for an input length of 21). Our
experimental result showed an outperformance of the LSTM Seq2Seq ATN (average MAPE
of 6.65% and 5.82% for input lengths 21 and 24) model compared to the LSTM Seq2Seq
(average MAPE of 6.75% and 5.88% for input length 21 and 24) for both data type scenarios.
The step-wise comparison between actual and predicted traffic by the best-performing model
is shown in Fig. 2.17(c). Again, the anomalies in data affect the model performance, and it
improves as outliers are mitigated.

Finally, we trained our model for 12 steps ahead prediction for 60 minutes of traffic.
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Figure 2.20: LSTM Seq2Seq ATN model average accuracy comparison with the input length.

The input lengths are varied from 12 to 24 with a gap of 3 steps. We showed our exper-
imental results in Table 2.10. The experimental results showed better performance of the
LSTM Seq2Seq ATN (average MAPE of 6.66% for input length 21) model compared with
the LSTM Seq2Seq (average MAPE of 6.74% for input length 21) when they trained with
anomalous data. LSTM Seq2Seq ATN model also performs better than LSTM Seq2Seq when
trained using data with outliers. We illustrated the actual and predicted for the last step in Fig.
2.17(c). Ultimately, the prediction model performed better when trained with cleaned data.

The model accuracy is calculated as the mean of each step for the corresponding model.
Fig. 2.18 illustrates a comparison of the average model accuracy with the input length. Overall,
all graphs show an accuracy improvement with the larger input length. In the outlier-handled
dataset, the accuracy for the LSTM Seq2Seq ATN model rises quickly as we increase the input,
and model performance seems stable for the last couple of inputs. For the LSTM Seq2Seq
model, the average accuracy increases soon for the first few input lengths and drops again,
although it shows an upward trend. In the case of model training with outliers in the dataset,
the graphs are shown an increasing pattern with a higher number of inputs. However, at some
input points, the average accuracy drops sharply. According to our experiment, optimizing the
input lengths for the prediction model significantly impacts the model’s accuracy.

Fig. 2.19 and Fig. 2.20 depict a comparative analysis among best accuracy for different pre-
diction lengths with and without outliers in the data. We have found a similar pattern of accu-
racy improvement after adjusting outlier for both LSTM Seq2Seq, and LSTM Seq2Seq ATN
model illustrates in Fig. 2.19 and Fig. 2.20. With the increasing prediction length, the gap
between the best accuracy for two different data settings is also increasing. We notice a de-
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creasing pattern in accuracy with the increased size of the prediction window, as the prediction
error is cumulative for the next steps. The impact of outlier points in the traffic is apparent in
both model performances, and it is essential to mitigate them for long-term prediction.

2.5 Conclusion
This study embarked on a comprehensive investigation of single-step and multi-step traffic pre-
diction tasks using various machine learning models, which included gradient boosting models,
gradient descent models, and deep sequence models. A range of algorithms were utilized, such
as XGBoost (XGB), LightGBM (LGB), CatBoost (CBR), Stochastic Gradient Descent (SGD),
Gradient Boosting Regressor (GBR), and Recurrent Neural Networks (RNN) and their variants,
including Long Short-Term Memory (LSTM) models with distinct configurations.

Our findings clearly indicated that rigorous data preprocessing, particularly outlier miti-
gation, was instrumental in enhancing model accuracy, providing an average improvement of
30% in traffic prediction accuracy. In the single-step prediction tasks, XGB performed excep-
tionally well among boosting algorithms while LSTM Seq2Seq achieved the lowest prediction
error among deep sequence models. Interestingly, SGD was identified as the most sensitive
model to variations in input length. In multi-step forecasting scenarios, different dynamics
came into play. CBR emerged as the top performer across all forecast lengths (six, nine, and
twelve-step predictions), exhibiting the highest prediction accuracy, although it had the highest
execution time. Among the deep sequence models, LSTM Seq2Seq and LSTM Seq2Seq ATN
demonstrated promising multi-step forecasting capabilities, with accuracy improving as the
input length increased. Furthermore, the importance of efficient outlier mitigation became
increasingly pronounced with lengthier prediction horizons, accentuating the value of data
quality management in predictive modeling. Across both single-step and multi-step prediction
tasks, the importance of optimized input length and careful handling of outliers were the re-
curring themes. The models’ sensitivities to these factors underline the necessity of thorough
data preprocessing and model-specific parameter optimization for achieving high-quality traffic
prediction.

Summarizing, this research provides valuable insights into the effectiveness of advanced
machine learning algorithms for traffic prediction tasks, given proper training on outlier-adjusted
datasets. The study’s outcomes highlight the strengths and limitations of each model in differ-
ent prediction scenarios and emphasize the necessity of robust outlier detection and removal.
With ongoing advancements in machine learning, the accuracy and efficiency of traffic predic-
tion systems can significantly improve, aiding in the development of smarter and more effective
traffic management systems.



Chapter 3

Empirical Mode Decomposition and
K-Nearest Neighbour Integrated Traffic
Prediction Model: An Approach to
Improve Noise Reduction and Outlier
Mitigation

Abstract: Internet traffic volume estimation has a significant impact on the business policies
of the ISP (Internet Service Provider) industry and business successions. Forecasting the in-
ternet traffic demand helps to shed light on the future traffic trend, which is often helpful for
ISPs’ decision-making in network planning activities and investments. Besides, the capabil-
ity to understand future trend contributes to managing regular and long-term operations. This
study aims to predict the network traffic volume demand using deep sequence methods that in-
corporate Empirical Mode Decomposition (EMD) based noise reduction, Empirical rule based
outlier detection, and K-Nearest Neighbour (KNN) based outlier mitigation. In contrast to the
former studies, the proposed model does not rely on a particular EMD decomposed component
called Intrinsic Mode Function (IMF) for signal denoising. In our proposed traffic prediction
model, we used an average of all IMFs components for signal denoising. Moreover, the abnor-
mal data points are replaced by K nearest data point’s average, and the value for K has been
optimized based on the KNN regressor prediction error measured in Root Mean Squared Er-
ror (RMSE). Finally, we selected the best time-lagged feature subset for our prediction model
based on AutoRegressive Integrated Moving Average (ARIMA) and Akaike Information Cri-
terion (AIC) value. Our experiments are conducted on real-world internet traffic datasets from
industry, and the proposed method is compared with various traditional deep sequence baseline
models. Our results show that the proposed EMD-KNN integrated prediction models outper-
form comparative models.

45
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3.1 Introduction
In the previous chapter, we discussed the impact of outlier data points in single-step and multi-
step traffic forecasting using both machine learning and deep learning. According to our ex-
perimental results, the outlier detection and mitigation module helps us to improve overall
prediction accuracy. This section proposes a traffic prediction model integrated with a noise re-
duction module. We consider only deep learning models for this experiment as they outperform
machine learning models in the case of the previous experiment.

Outlier detection is the process of identifying data points that are significantly different
from the rest of the data. These outliers may be caused by measurement errors, faulty sensors,
or unusual events. Outliers can have a significant impact on statistical analysis, so detecting and
removing them is important to ensure accurate results. In time series analysis, outlier detection
typically involves identifying individual data points that are far from the expected value or
pattern of the time series. Noise reduction, on the other hand, is the process of reducing random
fluctuations in the data that are not related to the underlying trend or pattern. Noise can make
it difficult to identify trends and patterns in the data and can obscure important information.
In time series analysis, noise reduction typically involves applying smoothing techniques or
filters to remove high-frequency noise. In summary, outlier detection focuses on identifying
and removing individual data points that are significantly different from the rest of the data,
while noise reduction focuses on reducing random fluctuations in the data to make it easier to
identify underlying trends and patterns.

As a unique time-series, network traffic reflects the interaction and influence between net-
work services through complex features like nonlinearity, fractality, bursts, disorder, and het-
erogeneity. In this work, we proposed a traffic prediction methodology integrating empirical
mode decomposition (EMD) based denoising and Empirical rule-based outlier detection. There
are several works where EMD-based hybrid models have been proposed for traffic prediction.
Most of them used EMD to decompose a signal into several components, where each compo-
nent was modeled separately using either a linear or non-linear model. This multiple-model
prediction strategy is time-consuming, and selecting a suitable model for a particular compo-
nent is non-trivial. In this study, we aim to predict network traffic volume demand using single
deep sequence methods that incorporate Empirical Mode Decomposition (EMD) based noise
reduction, Empirical rule based outlier detection, and K-Nearest Neighbour (KNN) based out-
lier mitigation. We used real-world internet traffic datasets from industry for our experiments
and compared the proposed EMD-KNN integrated prediction models with various statistical
and traditional deep sequence baseline models.

Our methodology involved several steps. First, we performed EMD-based noise reduction
on the dataset to remove any high-frequency noise that might affect the accuracy of our pre-
dictions. We then applied Empirical rule based outlier detection to identify any abnormal data
points in the dataset. These data points were then replaced by the K nearest data point’s av-
erage using KNN-based outlier mitigation. To identify the best value for K, we performed a
grid search algorithm based on the KNN regressor. We also used AutoRegressive Integrated
Moving Average (ARIMA) and Akaike Information Criterion (AIC) values to select the best
time-lagged feature subset for our prediction model. Finally, we used deep learning techniques
to develop our EMD-KNN Traffic Forecaster model, which combines EMD-KNN methods
with a deep neural network to predict network traffic volume demand accurately. This paper
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is organized as follows. Section 3.2 describes the literature review of current traffic prediction
using machine learning models. Section 3.3 presents our proposed methodology. Section 3.4
summarizes the experimentation configuration and discusses results for comparative analysis.
Finally, section 3.5 concludes our paper and sheds light on future research directions.

3.2 Literature Review
By making accurate predictions about how much traffic will be on the network in the future,
network administrators can make plans for how to meet service delivery goals in the areas of
resource allocation, congestion control, routing decisions, capacity planning, quality of ser-
vice, and anomaly detection [57]. As a result, significant research works have been conducted
to explore effective techniques that can be used to predict network traffic with the minimum
deviation between actual and predicted traffic.

Since real-world traffic data is a nonlinear time series with noise, breaking down the time
series into its hierarchical components would provide more accurate predicting results [58, 59].
It has been observed that splitting up traffic time series into finite subsequences using the Dis-
crete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), or Empirical Mode
Decomposition (EMD) is an efficient way to capture both the general trend and certain varia-
tions in traffic flow [58, 60]. For predicting computer network traffic, Rishabh and Partha [39]
introduced the DWT, ARIMA model, and RNN-based approach. The traffic data is initially di-
vided into non-linear (approximate) and linear (detailed) components using a discrete wavelet
transform. Afterward, predictions are performed using ARIMA and RNN, respectively, and
detailed and approximate components are rebuilt using inverse DWT. The approach, according
to the authors, is simple to use and computationally less costly. Thus it may be simply de-
ployed in data centers to increase QoS (quality of service) while lowering costs. The recurrent
wavelet neural network (RWNN) based on the Elman network was developed. The dynamic
gradient descent technique of RWNN was also provided, and it could be utilized to anticipate
network traffic [61]. The network traffic prediction model based on RWNN is practical and
efficient, according to experimental data. In [62], an artificial neural network model integrated
with a multi-fractal DWT is proposed. With the input of the original traffic data, the network
traffic is divided into low-frequency and high-frequency components using a mother wavelet
called haar. When compared to the two current approaches, their model performs better. The
authors of [63] conducted a comparative investigation of several DWT and spline-extrapolation
techniques in order to forecast the features of IoT multimedia internet traffic. The best spline-
extrapolation used B-splines, which had the lowest forecast error of 5%, while quadratic and
Haar-wavelet splines had prediction errors of 10% and 7–10%, respectively.

In [64], authors proposed a novel short-term traffic flow forecast method based on combina-
tion model fusion and empirical mode decomposition. They begin by looking at the amplitude-
frequency properties of short-term traffic flow series, then apply empirical mode decomposition
to break the traffic flow up into numerous components with various frequencies. Second, im-
proved extreme learning machines, seasonal autoregressive integrated moving averages, and
autoregressive moving averages are chosen to predict various components based on the find-
ings of the self-similarity analysis of each component. To anticipate traffic flow data at various
yet typical time scales, authors suggested an ensemble framework with ensemble empirical
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mode decomposition (EEMD) and an Artificial Neural Network (ANN) model [65]. The sug-
gested EEMD model divided the raw traffic flow data into several IMFs, suppressed the noisy
IMFs, then combined the remaining IMFs to provide the noise-free traffic flow data. Following
this, the ANN model was introduced to forecast traffic flow at various time scales. Accord-
ing to the experimental findings, hybrid models, specifically, EEMD+ANN and EMD+ANN
significantly outperform the traditional ANN model when it comes to predicting traffic flow.

As a unique timeseries, network traffic reflects the interaction and influence between net-
work services through complex features like nonlinearity, fractality, bursts, disorder, and het-
erogeneity [66]. In this work, we proposed a traffic prediction methodology integrating empir-
ical mode decomposition (EMD) based denoising and Empirical rule-based outlier detection
with various state-of-the-art deep sequence models. There are several works where EMD-based
hybrid models have been proposed for traffic prediction. Most of them used EMD to decom-
pose a signal into several components, where each component was modeled separately using
either a linear or non-linear model. This multiple-model prediction strategy is time-consuming,
and selecting a suitable model for a particular component is non-trivial. But in this work, we
consider a single model strategy for traffic forecasting while EMD has been used to denoise
our original traffic signal. After extracting all Intrinsic Mode Function (IMF) components by
EMD, we calculate the average of all IMF elements to subtract them from the original signal
to make it noise-free. Moreover, we integrate an outlier detection and mitigation module in our
proposed methodology. In the real world, internet traffic is very susceptible to various internal
and external factors resulting in many outliers in the original data. The Empirical Rule has
been applied in our traffic data to identify the point outlier, which is mitigated using K nearest
neighbor observation’s average traffic. To identify the best value for K, we performed a grid
search algorithm based on the KNN regressor. We consider the best K value based on mini-
mum prediction error, which is later used as a parameter in KNN imputation method. Finally,
we identify the optimum lagged features based on the ARIMA (AutoRegressive Integrated
Moving Average) model and Akaike Information Criterion (AIC) value. ARIMA model uses
the time-lagged feature to predict the future, which we fine-tuned by applying a grid search
approach. The lower AIC value presents the better model performance, and that model gives
us the corresponding best time-lagged feature parameter. Hence, we consider the optimum
lagged feature number as an input parameter for our prediction models. In addition to EMD-
based noise reduction, we proposed another novel traffic prediction model based on a single
algorithm where the decomposed components from EMD have been used to prepare our train-
ing data for the prediction model. Finally, we compare two EMD-integrated traffic prediction
methodologies to find best-possible way of modeling real-world internet traffic.

3.3 Proposed Methodology

In this section, we delve into the details of our proposed model, as illustrated in Fig. 3.1. We
initiate the discussion by describing our noise reduction module in subsection 3.3.1. Following
that, we explore our outlier detection module and feature extraction module in subsections
3.3.2 and 3.3.3, respectively.



3.3. ProposedMethodology 49

3.3.1 Empirical Mode Decomposition Based Noise Reduction
Empirical Mode Decomposition (EMD) is a technique to extract several components from a
signal assuming every signal comprises of sub-components. This approach is also known as
Hilbert–Huang transforms (HHT) and is extensively used for time-frequency analysis of non-
stationary and non-linear time series data. EMD decomposed an original signal into several
zero mean and quasi-periodic components called Intrinsic Mode Functions (IMF) alongside a
residue element representing the trend as shown in Eq.3.1 where each hi(t) stands for the ith
IMF, r(t) is the residual component, and y(t) is the original value of the data.

y(t) =
n∑
i

hi(t) + r(t) (3.1)

Real-world internet traffic has random, non-stationary characteristics influenced by various
external and internal factors related to ISP companies. These factors can be categorized as
geographic factors, economic factors, ISP new service, service decommission factors, weather,
time, day, season, special event, etc. Due to these factors, the ISP traffic is composed of many
individual components, and
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Figure 3.1: High-level framework of our proposed methodology integrated with EMD based
noise reduction and KNN based outlier mitigation.

EMD can be helpful for better analysis and forecasting of internet traffic. Noise filtering or
reduction or signal denoising is a process of removing noise from time-series data. Any time
series may consist of three systematic elements: level, trend, and seasonality, and one non-
systematic element, noise. The noise reduction approach for better learning and forecasting by
the machine learning model should minimize noise elements in time series. Among different
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noise filtering approaches, EMD based denoising technique has been applied extensively in
different areas. Classic EMD-based denoising techniques choose a particular IMF component
to eliminate noise elements from the signal, but there is no formal logic for selecting an IMF
from decomposed components. Moreover, choosing one IMF for denoising is difficult as the
number of IMF depends on the original signal. Therefore, a new EMD-based noise filtering
method has been proposed in [67]. They showed that the average of all IMF (avgIMF) compo-
nents is normally distributed. The avgIMF corresponds to the maximum signal noise level and
has the most white Gaussian noise features of any IMF element.

The EMD technique is used in this study to remove noise from the internet traffic time series
data, which is considered one-dimensional data. The abrupt changes in our traffic forecasting
data have been smoothed by removing noise based on steps 3 and 4 in Algorithm 1. We
extracted the average of all IMF elements, avgIMF, from our original signal, y(t), to obtain a
noise-free traffic data yn(t).

3.3.2 Empirical Rule and KNN Based Outlier Management

Outlier detection is a necessary preprocessing step for real-world internet traffic analysis. The
data points significantly different from most of the values are considered outliers. Outliers are
characteristically different than noise in the time series. Noise is a random error in the data
and needs to be removed entirely from the original signal for a better prediction model. On the
contrary, the outliers are the part of the time series that impacts different statistical parameters,
such as mean, standard deviation, correlation, etc., of the original signal. Outliers can lead to
incorrect future predictions of internet traffic.

A statistical principle known as the empirical rule, the three-sigma rule or 68-95-99.7 rule,
holds that almost all observed data will lie within three standard deviations of the mean with
a normal distribution. However, this rule is also applicable for non-normally distributed data
where 88.8% of data fall within the three-sigma interval as opposed to 99.97% for normal
distribution. According to Chebyshev’s inequality, 75% of the data lie inside two standard
deviations for a wide range of various probability distributions, while the empirical rule claim
95% data points within the second standard deviation for normal distribution[43]. In this work,
we set an upper and lower limit for most of the data instances in our original signal. The in-
dividual data point is outside the three-standard deviation considered as point outliers. Those
point outliers in our dataset have been mitigated by K nearest data points based on the stan-
dard KNN-Imputation algorithm. Each outlier point is imputed using the mean value from K
nearest neighbors in the training set. The training dataset’s members’ distances are calculated
using a Euclidean distance measure that is NaN aware, which excludes NaN values from the
calculation. For optimum K value, we apply KNN-regressor in our traffic dataset where past
observations are used to predict the following data points, and this experiment has been con-
ducted for different K values ranging from 2 to 24. The minimum prediction error measured
in terms of RMSE (Root Mean Squared Error) is the criteria for best choosing the best K for
imputing outlier data points.
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3.3.3 ARIMA Based Time-lagged Feature Extraction
Generally, the time series prediction task uses previous data samples to predict the following
values. We extract the time-lagged feature from our original dataset for training and testing
our prediction model in this work. Based on ACF analysis in subsection 2.3.3, we concluded
that our traffic data is non-random. Hence, we considered previous timestamps features for our
deep-learning models to predict the following values. We performed a grid search based on
the Akaike Information Criterion (AIC) value and a statistical prediction model called ARIMA
to determine the optimum number of lagged features. The AIC measures the relative quality
of statistical models for a given set of data and predicts prediction error. AIC calculates each
model’s efficiency in relation to the other predictions given a set of models for the data. As a
result, AIC offers a model ranking method. However, we compare ARIMA model prediction
performance with various settings of hyperparameters and rank them based on the AIC value.
ARIMA model predicts the future value based on the past values of the time series, that is,
its own lagged values. The model requires three parameters such as AR(p), MA(q), and I(d),
which represent the Autoregressive, Moving Average and differencing order. Among these
parameters, the AR term defines the number of lagged features used to forecast the next value.
Therefore, we performed a grid search using a different combination of p, q, and d to perform
single-step prediction using the ARIMA model and select the best model by comparing their
prediction performance based on our selection criteria. We consider AR term, p, from best
performing model based on minimum AIC and p indicates the time-lagged feature which gave
us better prediction. So, the prediction task in this study is performed as in Eq.3.2. where y(t)
is the traffic volume for the current time step, y(t − 1) to y(t − p) represents the previous p data
points, and h is the prediction function.

y(t + 1) = h(y(t − 1), y(t − 2), ...., y(t − p)) (3.2)

3.4 Analysis of Experimental Results
In this section, we begin by analyzing the output of the outlier detection and mitigation module
in our proposed model in subsection 3.4.1. We then discuss the results of traffic denoising,
demonstrating its positive impact on improving data quality in subsection 3.4.2. Subsection
3.4.3 focuses on the performance of our ARIMA-based feature selection module. Finally, we
present the performance of our prediction model in Subsection 3.4.4.

3.4.1 Outlier Data Identification and Mitigation
According to our outlier detection module based on empirical rule, there are total of 43 outlier
data points. In Fig. 3.2, we depicted the data samples which are lies outside three standard
deviation. Moreover, the distribution of the data with highlighting outlier points has been
illustrated in Fig. 3.3. It is a right-skewed histogram where the data is clustered towards the
left side of the histogram and extends further to the right. This type of distribution is also
called also called a positive skew. In this diagram, we identified the outlier points on the right-
side of the right-skewed histogram. A right-skewed histogram with an outlier on the right side
indicates that at least one data point has an extremely high value relative to the rest of the data
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and Fig. 3.2 depicted several data points which are relatively high. These outliers can have a
significant impact on the overall distribution of the data, as they can affect the mean and median
of the dataset. In general, it is important to identify and handle outliers in a dataset, especially
if they are affecting the distribution of the data. Therefore, we applied KNN-Imputation to
handle these outlier data points in our traffic dataset.

We used the KNN algorithm to handle outlier values in your dataset, and determined the
optimal value of K by using a KNN regressor and comparing the root mean squared error
(RMSE) for different values of K. Based on this, we replaced the outlier point with the average
of the K nearest neighbors. The choice of K can have a significant impact on the quality of the
imputed values. A small K value may result in overfitting, where the imputed values are too
similar to the original data and may not be accurate. A large K value may result in underfitting,
where the imputed values are too different from the original data and may not be representative
of the underlying distribution. Therefore, a range of K values has been used and reported their
corresponding RMSE in Table in 3.1. The K value 11 gave us the lowest RMSE of 1796783992
bps. Based on this, we considered average of 11 previous data points to replace corresponding
outlier data.
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Table 3.1: KNN-Regressor Prediction Error (RMSE) For Different K Values.
K-value RMSE

2 1856644563
3 1828291277
4 1816389491
5 1826662669
6 1811743008
7 1815585493
8 1817635025
9 1810554111
10 1797064368
11 1796783992
12 1804298868
13 1809809913
14 1814868475
15 1818749549
16 1831109596
17 1841230237
18 1856738081
19 1866925893
20 1881460309
21 1892611532
22 1902113203
23 1914844430
24 1922448158

3.4.2 Internet Traffic Denoising

After removing outliers from a dataset using techniques such as KNN imputation, it is of-
ten the case that the remaining data still contains some level of noise or unwanted variability.
This noise can obscure the underlying patterns and relationships in the data, making it more
difficult to analyze and interpret. Therefore, it can be useful to apply additional noise reduc-
tion techniques to further improve the quality of the data. EMD-based noise reduction is one
such technique we used to remove unwanted noise and variability from the data, resulting in
a smoother and more interpretable signal. We summarized Noise-to-Signal(SNR) ratio in the
Table 3.2 for analyzing the signal quality after denoising. The signal-to-noise ratio (SNR) val-
ues that we obtained indicate that the EMD-based noise reduction method has significantly
improved the quality of the signal. A negative SNR value for the noisy signal (-7.05 dB) in-
dicates that the noise in the signal is actually stronger than the signal itself. This can make
it difficult to accurately analyze and interpret the data. However, after applying EMD-based
noise reduction, the denoised signal has a much higher SNR value (21.47 dB), indicating that
the quality of the signal has been significantly improved relative to the noise. This means that
the denoised signal is now much easier to analyze and interpret, and can provide more accurate
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Table 3.2: Signal-to-Noise(SNR) Ratio Comparison.
Signal-to-Noise (SNR) Ratio

Noisy signal SNR -7.05 dB
Denoised signal SNR 21.47 dB

and reliable insights into the underlying patterns and relationships in the data. In summary,
the significant improvement in SNR value for the denoised signal compared to the noisy signal
suggests that the EMD-based noise reduction method has been effective in reducing unwanted
noise and variability in the data, resulting in a higher quality and more interpretable signal. In
Fig. 3.4, we depicted actual traffic, denoised traffic, and the noise in in the dataset.

3.4.3 Optimum Feature Selection for Prediction Model

We identify optimal time-lagged feature set for our deep learning prediction model based on
ARIMA model performance in single-step prediction. The AR term in ARIMA refers to the
number of lagged values of the dependent variable (i.e., the time series data) that are used to
predict the future values. The AR term is denoted by p and it indicates the order of autoregres-
sion. For example, ARIMA(p, d, q), where p represents the order of the AR term. Table 3.3
summarize five best-performing ARIMA model

Table 3.3: Top Ten Best-Performing ARIMA Model Parameter Configuration.
SL. (p, d, q) AIC
1 (13, 1, 16) 3782.588307
2 (21, 1, 2) 3782.751381
3 (14,1,17) 3783.706900
4 (13, 1, 18) 3785.061129
5 (21, 1, 3) 3785.332434
6 (22, 1, 3) 3786.325772
7 (16, 1, 17) 3786.547150
8 (17,1,17) 3786.761965
9 (22, 1, 4) 3786.964070
10 (20, 1, 2) 3787.326614

hyper-parameters and their corresponding AIC value. We considered AR and MA term
ranges from 2 to 24 for finding best combination of model parameters so that we can select op-
timum AR term represents the most relevant time lag for capturing the temporal dependencies
in the traffic data. This time-lagged feature was then incorporated into our deep learning pre-
diction model to enhance its performance. According to our experimental result, the ARIMA
model with the lowest AIC value, which was ARIMA (13, 1, 16) with an AIC of 3782.588307,
as the best-performing model for our analysis. Therefore, we chosen 13 time-lagged features
to train our deep sequence model for traffic prediction.
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3.4.4 Proposed Model Performance Analysis

As shown in Table 3.4, the best prediction performance from our baseline models is given
by Multiple Seasonal-Trend decompositions (MSTL) with an average gap between actual and
predicted traffic of 19.57%. Compared to other baseline models, the MSTL prediction accuracy
is higher by 10%-15%. MSTL has the capability of handling multiple seasonality in the time-
series data as opposed to ARIMA. The MSTL model uses a Local Polynomial Regression
(LOESS) to divide the time series into different seasonalities. As our traffic data set has a daily
seasonality, MSTL performs significantly better than other baseline models. ARIMA model
requires additional parameters for handling seasonality in the time-series data, and hence it
gave a very low prediction accuracy of 68.21% compared to MSTL.

Our proposed deep learning model integrated with KNN based outlier detection outper-
form conventional model. According to Table 3.4, each prediction model error has been re-
duced significantly compared to the standard deep learning model. For example, in case of
RNN, the prediction error has been reduced from 7.51% to 4.27% when outliers were handled
and it is approximately 43% less error compared to traditional RNN. Similarly, LSTM KNN,
LSTM Seq2Seq KNN, LSTM Seq2Seq ATN KNN, and GRU KNN gave better prediction
accuracy compared to their corresponding traditional model. From our experimental data in
Table 3.4, we noticed approximately 25%, 8%, 9%, and 40% less error we achieved respec-
tively for LSTM KNN, LSTM Seq2Seq KNN, LSTM Seq2Seq ATN KNN, and GRU KNN
by managing outliers before using them to train our model. Overall, it seems that the addition
of outlier detection techniques helps in reducing the MAPE and improving the accuracy of the
models across different types of recurrent neural networks.

To further improve model performance, we analyze noise in our traffic data. Noise refers
to random variations or errors in the data that can affect the accuracy of a model’s predictions.
Noise can arise from various sources, such as measurement errors, data recording issues, or
other random fluctuations. By applying noise reduction techniques, such as smoothing, filter-
ing, or denoising algorithms, the noisy data can be cleaned up, resulting in a more accurate
representation of the underlying pattern in the data. This can lead to improved model perfor-
mance by reducing the impact of noise on the model’s predictions.

The conventional RNN model gave us a prediction error of 7.51%, which is almost 12%
and 24% lesser than MSTL and ARIMA, respectively. This indicates that the RNN has cer-
tain adaptability when dealing with complex temporal sequences with seasonality. Moreover,
our proposed RNN KNN EMD model prediction error is smaller by more than 3% with an
average prediction error of 4.02% with noise reduction and outlier mitigation. This states the
effectiveness of our proposed traffic prediction method in handling real-world internet traffic,
which might have noise and outliers due to various external and internal factors. The exper-
iment was expanded by including two extensions of RNN called Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) because these models had a greater capacity for
knowledge retention from longer sequences than the RNN. Traditional LSTM and GRU out-
performed RNN by 2.48% and 1.1% more prediction accuracy, respectively. Since RNN has
an inherent problem of vanishing gradient problem in handling longer sequence data, its pre-
diction accuracy was smaller than LSTM and GRU, specifically designed to address RNN
limitations. Our experimental results indicate that LSTM and GRU have more power to retain
information from sequential data compared to RNN. We further improved LSTM and GRU



56 Chapter 3. EMD-KNN Integrated Efficient Traffic PredictionModel

Table 3.4: Prediction Accuracy by Different Traffic Model.
Model MAPE Mean Accuracy

Baseline model
AutoARIMA 31.79 68.21
SeasonalNaive 35.53 64.47
ETS 31.80 68.20
MSTL 19.57 80.43

Conventional Deep Learning Model
RNN 7.51 92.49
LSTM 5.03 94.97
LSTM Seq2Seq 3.94 96.06
LSTM Seq2Seq ATN 3.95 96.05
GRU 6.41 93.59

Proposed Model Integrated with Outlier Management
RNN KNN 4.27 95.73
LSTM KNN 3.77 96.23
LSTM Seq2Seq KNN 3.63 96.37
LSTM Seq2Seq ATN KNN 3.60 96.40
GRU KNN 3.88 96.12
Proposed Model Integrated with Outlier Management and Noise Reduction
RNN KNN EMD 4.02 95.98
LSTM KNN EMD 3.30 96.70
LSTM Seq2Seq KNN EMD 3.24 96.76
LSTM Seq2Seq ATN KNN EMD 3.22 96.78
GRU KNN EMD 3.52 96.48

performance by integrating our proposed denoising and outlier detection module. Our pro-
posed LSTM KNN EMD and GRU KNN EMD perform better than conventional LSTM and
GRU. The LSTM KNN EMD prediction accuracy is increased by 1.73% compared to LSTM,
while for GRU KNN EMD, the accuracy improvement was 2.89% than GRU. Since deep se-
quence models considered only the temporal information for learning, the noise and outlier in
the training data ultimately affect its generalization capability resulting in lower accuracy. Our
EMD-based noise reduction and empirical rule based outlier mitigation provide traffic with ran-
dom abrupt changes for model training, which eventually increase the prediction accuracy and
decrease the average prediction error between actual and predicted traffic. Finally, we got our
best prediction accuracy from our proposed LSTM Seq2Seq ATN KNN EMD model, where
we integrated an attention layer. The extra layer helps our Seq2Seq architecture to extract
strong contextual information from the traffic data. The conventional LSTM Seq2Seq ATN
model without the proposed module provided the lowest prediction error of 3.95% compared
to other deep learning models. Moreover, Our proposed LSTM Seq2Seq ATN KNN EMD
prediction accuracy is the highest among all prediction models with 96.48% accurate forecast.
Our proposed model performs better than the traditional Seq2Seq model with nearly 1% more
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prediction accuracy.
For all model, we achieved better prediction accuracy by combining handling both outlier

and noise in the traffic data. For example, LSTM Seq2Seq KNN EMD gave approximately
18% less error compared to LSTM Seq2Seq while LSTM Seq2Seq KNN provide approxi-
mately 8% less prediction error. So, it is evident that the combination of outlier management
and noise reduction would be better approach to deal with real-world internet traffic. For exam-
ple, our best performing LSTM Seq2Seq KNN EMD model provided us approximately 11%
less error compared to LSTM Seq2Seq KNN. Therefore, based on all model performance, we
can conclude that, traffic analysis is very crucial before using them to develop model. Spe-
cially, the outliers and noise in the traffic might affect the model prediction accuracy and it is
very important to deal with them first before using traffic data to training and evaluating model.

3.5 Conclusion
Traffic volume forecasting is an essential tool for the ISP industry to assist them in their network
capacity planning activities and network investment decisions. Assessing the network traffic
trend accurately helps ISPs to define, develop, and adjust their current and new infrastructure
and services. Therefore, it is worthwhile to improve the accuracy of internet traffic volume
predictions. This study proposes a deep learning methodology that integrates an EMD-based
noise reduction and an empirical rule-based outlier detection module. Most of the previous
hybrid models use EMD to obtain ensemble prediction models. Unlike the earlier studies, the
proposed algorithm is not an ensemble model and does not depend on a specific Intrinsic Mode
Function (IMF) for model learning. The proposed algorithm applies EMD method for denois-
ing the original signal to grasp the general tendency of the data. After EMD denoising, the
deep learning model is trained on the noise-free dataset. However, the EMD process requires
the selection of a stopping criterion to determine the number of IMFs to be extracted. The
choice of this criterion can significantly affect the quality of the decomposition and the effec-
tiveness of noise reduction. In future, we plan to explore other methods of noise reduction such
as Singular value decomposition (SVD)-based methods, Non-local means (NLM)-based meth-
ods, and deep learning-based methods. We identified the point outlier based on the empirical
rule, and these points are mitigated with near K values, optimized based on KNN regressor.
There are few limitations of using of KNN for parameter optimization. For example, the KNN
algorithm can be computationally expensive when the dataset has a large number of features or
dimensions. As the number of features increases, the distance between the nearest neighbors
can become more similar, which can make it difficult to identify the K nearest neighbors. Also,
the choice of distance metric can have a significant impact on the quality of the imputed val-
ues, and different distance metrics may be more appropriate for different types of data. Results
are evaluated with widely used MAPE and mean accuracy measures to perform a favorable
comparison. The proposed method is also compared with traditional statistical and deep se-
quence models and is trained on the original signal. According to the results, the proposed
method outperforms all baseline prediction models. The performance of our proposed algo-
rithm clearly shows its potential in accurately forecasting internet traffic demand compared to
the other approaches.



Chapter 4

Overcoming Data Scarcity Challenges:
Predicting Internet Traffic in Small ISP
Networks with Transfer Learning and
Data Augmentation

Abstract: Predicting internet traffic is vital for efficient network management, especially in
tasks like anomaly detection, traffic engineering, and capacity planning. For smaller Internet
Service Providers (ISPs), limited data availability impedes the creation of reliable prediction
models. This paper tackles this challenge by applying transfer learning and data augmen-
tation techniques, specifically for smaller ISP networks. Two models, LSTM Seq2Seq and
LSTM Seq2Seq ATN, initially trained on a larger dataset, were fine-tuned on smaller ones.
Performance assessment on single-step and multi-step predictions revealed that while both
models performed well in single-step predictions, they struggled with multi-step ones, under-
scoring the inherent difficulties in long-term forecasts. On smaller datasets, LSTM Seq2Seq
generally outperformed LSTM Seq2Seq ATN, indicating that greater model complexity does
not necessarily yield better results. Moreover, model performance varied across domains, sug-
gesting unique characteristics per domain affecting prediction accuracy. To improve these re-
sults, Discrete Wavelet Transform (DWT) was employed to augment the target dataset size,
which led to notable performance enhancement. This study offers a practical solution to data
scarcity in smaller ISPs, showing that transfer learning and data augmentation can significantly
improve prediction model performance.

4.1 Introduction
The rapid growth of internet traffic has led to an increasing demand for accurate and effi-
cient prediction models to manage and optimize network resources. Deep learning techniques
have emerged as a powerful tool for time-series prediction, demonstrating promising results in
various applications, such as finance, healthcare, and transportation [68]. However, the per-
formance of deep learning models is heavily reliant on the availability of large amounts of
training data, which may not always be possible in real-world scenarios [69] due to various
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reasons. Consequently, this paradigm underlines the necessity for the development of innova-
tive strategies, capable of addressing the challenges of limited training data whilst preserving
the robust performance of the models.

Transfer learning has surfaced as a viable solution to the problem posed by limited avail-
ability of training data. This strategy is premised on utilizing pre-existing knowledge from
a model trained on a related task or domain, effectively addressing the scarcity of data in a
new context [70]. This concept of applying learned information from one scenario to another
has proven to be particularly beneficial in enhancing the performance of deep learning mod-
els, even when operating with restricted training data [71]. Despite these promising attributes,
the implementation of transfer learning in the field of time-series prediction, especially in the
context of internet traffic prediction, has not been thoroughly investigated. This is a domain
where prediction tasks are inherently complex due to unique characteristics of the data such as
seasonality, trends, and auto-correlation. It stands to reason, therefore, that transfer learning
could potentially be harnessed to improve the accuracy and efficiency of prediction models in
this context. In essence, transfer learning could bridge the gap between the necessity of large
datasets and the constraints of practical data availability, thus presenting a valuable tool for in-
ternet traffic prediction. Its potential effectiveness in this context warrants further exploration,
as it could pave the way towards more robust network management and optimization strategies
in scenarios with limited training data.

In this study, we turn our attention towards tackling the challenge of constrained train-
ing data for internet traffic time-series prediction. We propose the use of a transfer learning
framework, driven by the capacity of this approach to boost the predictive accuracy of models
operating with limited training data. This enhancement is pivotal to the goal of advancing net-
work resource management and optimization strategies. Our initial step involves the creation
of a predictive model using a comparatively large dataset of 8,000 samples. This model caters
to both single-step and multi-step predictions, functioning as our source domain. Following
this, we use this developed model as a foundational reference to construct additional models,
each utilizing smaller datasets of approximately 350 samples, serving as our target domains.
By exploiting the potential of transfer learning, our objective is to shed light on its efficacy
in amplifying the performance of prediction models specifically designed for internet traffic.
Consequently, we aim to demonstrate how this approach can contribute significantly towards
augmenting network management and optimization strategies, even when confronted with the
challenge of limited training data.

Transfer learning involves leveraging knowledge from a pre-trained model on a related task
or domain. While this approach can be very effective, especially when dealing with smaller
datasets, the success of transfer learning can still be somewhat dependent on the amount and
diversity of the available data. If the target task’s dataset is small or lacks diversity, the model
might not generalize well, leading to overfitting. This is where data augmentation comes in.
Data augmentation techniques generate synthetic data by applying transformations to the orig-
inal data samples. For time-series data, these transformations can include methods like adding
noise, scaling, shifting, or applying wavelet transforms. In image data, it could involve ro-
tation, scaling, translation, flipping, or adding filters. This process increases the size of the
dataset and introduces more variability, thereby helping the model generalize better to unseen
data.

Given the marked disparity in the sizes of the source and target datasets in our study, there
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exists a potential hurdle to the effective generalization of the prediction model to the target
domains. To thoroughly investigate this issue, we undertook an expansion of our target datasets
from a base of approximately 350 samples to a sizeable 2,000 samples. This increase was
made possible through the implementation of the Discrete Wavelet Transform (DWT) data
augmentation technique. The DWT technique offers a valuable approach to augmenting data
by extracting high and low-frequency components, allowing us to effectively increase the size
of our target dataset without losing the inherent patterns and correlations present in the original
internet traffic data. This augmentation is crucial in bridging the size discrepancy between the
source and target datasets and improving the model’s generalizability. Subsequently, we carried
out a comparative analysis of the model’s performance, specifically examining the implications
of differing ratios of source to target data. This examination enables us to assess the efficacy
of transfer learning under varied conditions and ultimately identify the optimal ratio for model
performance in internet traffic time-series prediction. Through this comprehensive analysis, we
aim to better understand how data augmentation and transfer learning interplay to enhance the
robustness and performance of internet traffic prediction models, especially in scenarios where
training data may be limited. This chapter is organized as follows. Section 4.2 describes the
literature review of current traffic prediction using deep learning models. Section 4.3 presents
the methodology, including dataset preprocessing, deep transfer learning, deep learning models
explanation, and experiment details. Section 4.4 summarizes different deep learning methods’
performance with smaller datasets by applying both standard learning and transfer learning and
draws a comparative picture among them. Finally, section 4.5 concludes our paper and sheds
light on future research directions.

4.2 Literature Review
Wu, Qiong, et al. [72] proposed a novel mobile traffic prediction framework that combines the
parameter-transfer [73] and domain adaption [74] approaches from deep transfer learning to
enhance the model performance with a smaller dataset. The framework functionality is divided
into two main parts: build the target prediction model with a massive dataset and then use the
pre-trained model knowledge from the source domain, which faces the data-scarcity problem.
Furthermore, they applied a GAN-based approach to solving the domain shift problem due to
different data distribution between source and target domain. According to their experiment,
the GAN-based domain adaption helps their model leverage the knowledge from the source
domain to the target domain, giving a better prediction for a smaller dataset.

However, the effectiveness of the adapter may be affected by the quality and representa-
tiveness of the synthetic data generated by the GAN. If the GAN fails to generate samples that
accurately capture the nuances and complexities of the source data distribution, the adapter
may not be able to effectively align the data distributions of the two cities and may even harm
the performance of the target model. Also the proposed approach requires a significant amount
of computational resources and time to train the GAN and the adapter, especially if the source
and target domains are very different. This can be a significant challenge in practice, especially
if the data sets are large and complex. Finally, the proposed approach assumes that the source
domain and the target domain have similar enough features that can be aligned through the
GAN. If the domains are too dissimilar, the proposed approach may not be effective in aligning
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the data distributions.
Li, Ning, et al. [27] proposed a satellite traffic prediction model based on Gated Recurrent

Unit (GRU) architecture that uses the transfer learning and particle filter algorithm for better
prediction with a smaller dataset and lower training time. According to their experimental en-
vironment, they used similar distribution for the source and target domain in transfer learning.
It is unclear how their prediction model will perform if the source and target distribution are
asymmetric. The distribution is unlikely to be similar for the source and target domain in the
real world, and that’s why it is crucial to validate the model performance with data coming
from a different distribution than that source domain. They evaluated the proposed approach
on a single dataset, which may limit the generalizability of the approach to other datasets and
scenarios. Further evaluation on diverse datasets would be necessary to demonstrate the effec-
tiveness and generalizability of the approach.

A wireless cellular traffic prediction model has been proposed by Zeng, Qingtian, et al.
[25], which is trained based on a cross-domain dataset. They also used the already trained
model’s parameters for the target domain by adjusting the parameter’s values or transferring the
learned features to improve the model accuracy. The experimental results showed the outper-
formance of the model with the transfer learning capability than the model having no transfer
learning. In [75], Dridi, Aicha, et al. proposed a transfer-learning based deep learning model
for time series classification and prediction. The transfer-learning technique is adapted in their
model mainly for two reasons: better prediction with a smaller dataset and re-adaption of the
already trained model for another domain. Their experimental results showed an outperfor-
mance of transfer learning in time-series prediction. However, their source and target domain
data are drawn from the same distribution, which is unlikely to happen in the real world.

The current works show the usefulness of the transfer learning method in traffic prediction.
But we found a lack of investigation in the performance comparison of the deep sequence
model such as RNN and its varieties in real-world traffic prediction based on deep transfer
learning. In this work, a comprehensive analysis of different deep sequence models has been
performed for networks with limited training data based on transfer learning. In addition,
we evaluate the performance using five different real-world internet traffic datasets. Internet
Service Provider (ISP) networks generate a significant amount of traffic data. This data volume,
influenced by factors such as the network size and number of users, can be a challenge to
manage, especially when developing machine learning models in situations where data might
be sparse. Transfer learning, a technique that applies knowledge from a pre-existing model to
a new task, can be a highly effective tool in these scenarios, facilitating the creation of reliable
prediction models with fewer training samples.

We propose that predictive models, previously trained on large datasets, can be adapted to
forecast traffic in smaller networks. By utilizing the insights from these pre-existing models, we
can create accurate models for smaller networks that have a limited amount of data available.
This method can mitigate the issues surrounding data scarcity, lessening the need for extensive
data when building reliable prediction models. While smaller datasets can be used to train ma-
chine learning models, these models often struggle to generalize effectively, as they typically
require a greater amount of data to learn complex patterns efficiently. Pre-trained models, on
the other hand, can be fine-tuned on smaller datasets, improving their performance on the tar-
get task. This approach allows for the transfer of knowledge from pre-existing models, which
have already recognized important features and patterns, to new, smaller datasets, resulting in
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more accurate predictions. Although Generative Adversarial Networks (GANs) could be used
to augment smaller datasets, this method requires a considerable amount of time and effort to
ensure the synthetic dataset aligns with the distribution of real-world internet traffic. Addition-
ally, it may not always be feasible to create a synthetic dataset that accurately represents the
target domain’s distribution. Using transfer learning can also reduce the resources required to
develop traffic prediction models for ISP networks. Given the variety of network structures
and traffic patterns across different ISPs, it can be challenging to create individual models for
each network. By using pre-trained models, we can develop accurate models with fewer train-
ing samples, maintaining good performance while lessening the need for individual models for
each network.

In summary, transfer learning presents a robust solution for overcoming data scarcity and
reducing the resources required to develop traffic prediction models for ISP networks. By lever-
aging pre-existing models, it is possible to build more accurate models for smaller networks
with limited data, thereby reducing the need for distinct models for each network.

4.3 Proposed Methodology
In this section, we will discuss our proposed methodology, as presented in Fig. 4.1. We
utilized four different datasets for our experimentation, and these datasets will be described in
subsection 4.3.1. Additionally, we will discuss our data augmentation technique in subsection
4.3.2. Finally, we will describe transfer learning for our traffic prediction task in subsection
4.3.3 and our prediction model in subsection 4.3.4, respectively.
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Figure 4.1: High-level overview of our proposed traffic prediction model integrated with trans-
fer learning and data augmentation.
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4.3.1 Dataset and Preprocessing Steps

Real internet traffic telemetry on several high-speed interfaces has been used for this exper-
iment. Telemetry data was collected by sampling the value of the SNMP(Simple Network
Management Protocol) interface MIB (Management Information Base) counter of a core fac-
ing interface on a provider edge router. Samples are taken on 5-minute intervals, with the bps
(bit per second) value for the interval being the difference between the samples at each end of
the interval times 8. This was a 40 Gbs interface, so at no point in the sampling period were
there any discards (ifOutDiscards did not change during the sampling period). A total of four
different datasets are used in our experiment. The source domain dataset, Dataset A, consists
of 8563 data samples and it is used to build the predictive model for the source task. The other
three datasets, Dataset B, C, and D, are comparatively smaller in size, having 363, 369, and
358 data instances, respectively. We used these three datasets for the predictive task in target
domain. The smaller datasets for target domain are collected from three specific pair of source
and destination node.

Transfer learning was employed in this experiment to address the challenge of limited data
availability in the target domain and to leverage the knowledge learned from the larger source
domain dataset to improve predictions in the target domain. The source and target domain
datasets share similar attributes, such as timestamps and corresponding internet traffic volume
at specific time-points. However, there are some key differences between the domains that
could impact the transfer learning performance. First, the data distributions differ between
the source and target domains. The source domain dataset A has a considerably higher mean
traffic volume (8, 364, 386, 961) compared to the target domain datasets B (552, 753, 735.6),
C (729, 400, 375.1), and D (553, 417, 309.4) according to Table 4.1. This indicates that the
source domain experiences significantly more traffic on average than the target domains. Fur-
thermore, the standard deviation and variance values also exhibit differences between the
source and target domains. The source domain dataset A has a higher standard deviation
(4, 098, 702, 833) and variance (1.68 × 1019) compared to the target domain datasets B (stan-
dard deviation: 210,546,994.7, variance: 4.43 × 1016), C (standard deviation: 287, 908, 086.1,
variance: 8.29 × 1016), and D (standard deviation: 210, 166, 274.1, variance: 4.4216). This im-
plies that the source domain exhibits greater variability in traffic volume compared to the target
domains. The data distributions for source and target domains dataset is shown in Figure 4.2.

The skewness values for datasets A, B, C, and D reveal differences in the asymmetry of
their data distributions. Dataset A has a positive skewness, indicating a longer right tail with
more instances of higher traffic volume values. Datasets B and D exhibit slightly negative
skewness, suggesting somewhat longer left tails with more instances of lower traffic volume
values, though the asymmetry is not very strong in either case. Dataset C has a skewness value
close to 0, indicating a nearly symmetric distribution. These differences in skewness among
the datasets could impact the transfer learning performance, as models may need to adapt to
varying data asymmetries between the source and target domains. Despite these differences,
our transfer learning approach aims to leverage the shared attributes and knowledge gained
from the larger source domain dataset to improve predictions in the target domain.
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Figure 4.2: Data distribution of source and target domain datasets.

Table 4.1: Summary Statistics Comparison across Different Datasets.
Mean STD VAR Skewness

Source Domain Dataset A 8364386961 4098702833 1.68E+19 0.793776342
Target Domain Dataset B 552753735.6 210546994.7 4.43E+16 -0.249849673
Target Domain Dataset C 729400375.1 287908086.1 8.29E+16 0.057702382
Target Domain Dataset D 553417309.4 210166274.1 4.42E+16 -0.258100096

Algorithm 1: Discrete Wavelet Transform (DWT) Data Augmentation
1: Input: Original dataset Dorig, wavelet function w (e.g., ’db4’), number of levels l,

augmentation factor range [a, b] (e.g., [0.5, 1.5])
2: Output: Augmented dataset Daug

3: for each data point xi in Dorig do
4: Perform wavelet decomposition of xi using w and l to obtain sets of coefficients,

Ci = {ci1, ci2, ..., cin}

5: for each set ci j in Ci corresponding to higher frequency bands do
6: c′i j = ci j × fi j where fi j ∼ Uni f orm(a, b)
7: end for
8: Perform inverse wavelet transform on modified coefficients C′i to generate new data

point x′i
9: Daug = Daug ∪ {x′i}

10: end for
11: Dexp = Dorig ∪ Daug

12: return Dexp
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4.3.2 Data Augmentation
Discrete Wavelet Transform (DWT) is a data augmentation technique employed in this study
to address the challenge of limited data in the target domains, which can significantly impact
the performance of machine learning models [76]. DWT is a powerful tool for time-frequency
analysis and has been widely used for signal processing, image compression, and feature ex-
traction [77]. By augmenting the dataset with new, meaningful information using DWT, this
study aims to enhance the performance of the LSTM Seq2Seq and LSTM Seq2Seq ATN mod-
els by providing a richer and more diverse representation of the target domains. The process
of applying the DWT technique to the smaller datasets of the target domains involves several
steps as below:

Step 1: Perform wavelet decomposition on the original data using a suitable wavelet function
(e.g., ’db4’, a Daubechies wavelet) and a specified number of levels. Wavelet decom-
position is a multi-scale analysis technique that breaks down the data into multiple
frequency bands, each represented by a set of coefficients.

Step 2: Modify the detail coefficients of the higher frequency bands by multiplying them with
random factors between 0.5 and 1.5 and we empirically selected this range for co-
efficient modification. This step introduces controlled variability in the data, while
retaining the essential characteristics of the original signal.

Step 3: Perform inverse wavelet transform on the modified coefficients to generate new, aug-
mented data points that preserve the overall structure of the original data.

Step 4: Combine the original data and augmented data to create an expanded dataset for each
target domain.

By employing the DWT data augmentation technique summarized in Algorithm 1, the study
anticipates improving the performance of the LSTM Seq2Seq and LSTM Seq2Seq ATN mod-
els by enabling them to learn more diverse and robust representations of the target domains.
This enhancement is expected to lead to better generalization and reduced overfitting when
tested on smaller datasets.

4.3.3 Deep Transfer Learning
Transfer learning is an deep learning or machine learning optimization approach in which
knowledge is transferred from one domain to another similar domain. We can formally define
transfer learning in terms of domain and task. There are two domains such as source and
target domain involved in transfer learning while the domain consists of a feature space X and
probability distribution P(X) where X = {x1, x2, ..., xn} ∈ X. The task T in transfer learning is
consists of label space Y and an objective function f : X −→ Y while X is a feature space for
particular domain, {X, P(X)}. In transfer learning, the source domain DS and target domain DT

consists of two different task TS and TT and the purpose of the transfer learning is to assist the
task in target domain to perform better using the knowledge in DS and TS .

In this study, we employ transfer learning summarized in Algorithm 2 to adapt a pre-trained
Encoder-Decoder LSTM model from a source domain to a target domain, particularly when the



66 Chapter 4. Traffic Prediction via Transfer Learning & Data Augmentation

Algorithm 2: Transfer Learning for Time Series Prediction
1: Initialize lists for the number of future time steps n f uture, past time steps npast

2: Prepare the input sequences with npast and n f uture time steps
3: Split the input data into training and testing sets
4: for each n f uture in future list do
5: for each npast in past list do
6: Prepare the input sequences with npast and n f uture time steps
7: Split the input data into training and testing sets
8: Load the pre-trained source model Ms

9: Remove the last dense layer Ds from the source model Ms

10: Add a new dense layer Dt with the target domain’s output features to the source
model Ms

11: Create a new model Mt with the modified source model’s input and the new dense
layer’s output: Mt = Ms ∪ Dt

12: Freeze all layers except the new dense layer Dt by setting their ’trainable’ attribute to
’False’

13: Compile the model with the Adam optimizer (learning rate = 0.001) and the Huber
loss function

14: Train the model on the target domain data D(T )
train for a predefined number of epochs

15: Unfreeze all layers by setting their ’trainable’ attribute to ’True’
16: Compile the model with the Adam optimizer (learning rate = 0.0001) and the Huber

loss function
17: Fine-tune the model on the target domain data D(T )

train for the same number of epochs
18: Evaluate the adapted model on the testing data D(T )

test
19: end for
20: end for
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target domain dataset is relatively small. The rationale behind this approach is to leverage the
knowledge acquired by the model on the source domain, where abundant data is available, to
improve its performance on the target domain with limited data. This technique reduces the
risk of overfitting and allows the model to generalize better to the target domain. To imple-
ment the transfer learning process, we first remove the output layer of the pre-trained source
model, which is tailored to the source domain’s prediction task, and replace it with a new
dense layer designed for the target domain. This modification ensures that the output of the
adapted model is compatible with the target domain’s prediction task. During the initial train-
ing phase, we freeze all layers of the model except the newly added dense layer by setting
their ’trainable’ attribute to ’False’. This approach allows the model to focus on learning the
target domain-specific characteristics without altering the weights of the other layers, which
have already captured useful information from the source domain. We use a higher learning
rate of 0.001 during this phase to encourage faster convergence. Subsequently, we unfreeze
all layers in the model and fine-tune it on the target domain data with a reduced learning rate
of 0.0001. This lower learning rate ensures that the fine-tuning process makes small, precise
updates to the model’s weights, allowing it to adapt to the target domain while preserving the
knowledge acquired from the source domain. Throughout the training process, we employ
the Adam optimizer and the Huber loss function, which have been proven effective in training
deep neural networks, such as LSTM models. By utilizing transfer learning in combination
with the Encoder-Decoder LSTM model, we effectively adapt the model to the target domain
while leveraging the knowledge gained from the source domain. This approach results in im-
proved performance on the smaller target domain dataset, demonstrating the potential benefits
of transfer learning for time series prediction tasks in various domains.

4.3.4 Model Selection and Implementation
We used two differnet model: LSTM Seq2Seq and LSTM Seq2Seq ATN for our prediction
task. Both models are based on Long Short-Term Memory (LSTM) networks, which are a type
of recurrent neural network (RNN) designed to handle long-range dependencies in sequential
data. These models are particularly well-suited for time series prediction tasks, such as traffic
forecasting. The addition of the attention mechanism in the LSTM Seq2Seq ATN model can
potentially improve performance by allowing the model to focus on the most relevant parts of
the input sequence during prediction.

LSTM Seq2Seq (LSTM Encoder-Decoder)

The Encoder-Decoder LSTM summarized in Algorithm 3 for time series prediction is a deep
learning technique that leverages the power of recurrent neural networks to effectively capture
temporal dependencies in time series data. The model consists of two key components: an
encoder LSTM and a decoder LSTM. The encoder LSTM processes the input sequence of past
time steps and generates a final hidden state and cell state, which encapsulate the relevant infor-
mation from the input. This final hidden state is then replicated and used as the initial input for
the decoder LSTM. The decoder LSTM predicts future time steps based on the encoder’s final
hidden and cell states. To obtain the final prediction, a TimeDistributed dense layer is applied
to the output sequence of the decoder LSTM. The model is compiled using the Adam optimizer



68 Chapter 4. Traffic Prediction via Transfer Learning & Data Augmentation

and the Huber loss function and trained on the given training data. This approach effectively
captures the temporal dynamics of the input sequence and allows for accurate predictions of
future time steps in the time series data.

The Encoder-Decoder LSTM algorithm for time series prediction uses various parameters
that contribute to the model’s performance. The choice of 100 hidden units for both the encoder
and decoder LSTM layers balances model complexity and computational efficiency. A higher
number of hidden units would increase the capacity to capture complex patterns in the data but
could lead to overfitting and longer training times. Conversely, fewer hidden units might reduce
the model’s ability to learn and represent the underlying structure of the time series data. The
use of the Adam optimizer is motivated by its adaptive learning rate, which adjusts based on the
gradient’s magnitude, resulting in faster convergence compared to traditional gradient descent
methods. This makes it suitable for training deep neural networks such as LSTM models. The
Huber loss function is employed as it combines the best properties of Mean Squared Error
(MSE) and Mean Absolute Error (MAE) loss functions. It is less sensitive to outliers than
MSE and has a smoother gradient than MAE, allowing for a more stable learning process.
The TimeDistributed dense layer is applied to the output sequence of the decoder LSTM to
obtain the final prediction, enabling the model to process each time step independently while
maintaining the same weights across all time steps. This approach helps the model generalize to
varying sequence lengths and makes it more robust to the intricacies of time series data. These
parameter choices, while not exhaustive, provide a solid foundation for the Encoder-Decoder
LSTM model. Further fine-tuning or hyperparameter optimization could be performed based
on the specific dataset and problem domain to improve the model’s performance.

LSTM Seq2Seq ATN (LSTM Encoder-Decoder with Attention)

The model starts by initializing lists for the number of future time steps (n f uture) and past time
steps (npast). Then, the input sequences are prepared using these time steps, and the input
data is split into training and testing sets. For each combination of future and past time steps,
the algorithm prepares input and output tensors for training and testing data. It initializes
an encoder LSTM layer with 100 hidden units and processes the input sequence using this
layer, obtaining the final hidden state (hT ), cell state (cT ), and encoder hidden states (h =
(h1, h2, . . . , hT )). Next, the final hidden state (hT ) is replicated n f uture times to initialize the
decoder input. A decoder LSTM layer with 100 hidden units is initialized, using the final
hidden state (hT ) and cell state (cT ) from the encoder. The decoder input is then processed with
the decoder LSTM. Attention scores are computed between the encoder and decoder hidden
states, and a context vector is calculated as a weighted sum of the encoder hidden states. The
context vector is concatenated with the decoder hidden states, and a TimeDistributed dense
layer is applied to the combined context to obtain the final prediction (y′). Finally, the model
is compiled using the Adam optimizer and Huber loss function. It is trained on the training
data and evaluated on the testing data for each combination of future and past time steps. The
algorithmic steps of the model are summarized in Algorithm 4.
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Algorithm 3: Encoder-Decoder LSTM for Time Series Prediction
1: Initialize lists for the number of future time steps n f uture, past time steps npast

2: Prepare the input sequences with npast and n f uture time steps
3: Split the input data into training and testing sets
4: for each n f uture in future list do
5: for each npast in past list do
6: Prepare the input sequences with npast and n f uture time steps
7: Split the input data into training and testing sets
8: Initialize the encoder LSTM layer with 100 hidden units
9: Process the input sequence x = (x1, x2, . . . , xT ) with the encoder LSTM:

10: for t = 1 to T do
11: ht = LSTM(xt, ht−1)
12: end for
13: Obtain the final hidden state hT and cell state cT

14: Replicate the final hidden state of the encoder n f uture times:
15: decoder input = RepeatVector(n f uture)(hT )
16: Initialize the decoder LSTM layer with 100 hidden units, using the final hidden state

hT and cell state cT from the encoder
17: Process the decoder input with the decoder LSTM:
18: for t = 1 to n f uture do
19: yt = LSTM(yt−1, ht−1)
20: end for
21: Obtain the output sequence y = (y1, y2, . . . , yn f uture)
22: Apply a TimeDistributed dense layer to the output sequence y to obtain the final

prediction y′:
23: y′ = TimeDistributed(Dense(1))(y)
24: Compile the model using the Adam optimizer and the Huber loss function
25: Train the model on the training data, and evaluate on the testing data.
26: end for
27: end for
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Algorithm 4: Encoder-Decoder LSTM with Attention for Time Series Prediction
1: Initialize lists for the number of future time steps n f uture, past time steps npast

2: Prepare the input sequences with npast and n f uture time steps
3: Split the input data into training and testing sets
4: for each n f uture in future list do
5: for each npast in past list do
6: Prepare input and output tensors for the training and testing data
7: Initialize the encoder LSTM layer with 100 hidden units
8: Process the input sequence x = (x1, x2, . . . , xT ) with the encoder LSTM:
9: for t = 1 to T do

10: ht = LSTM(xt, ht−1)
11: end for
12: Obtain the final hidden state hT , cell state cT , and encoder hidden states

h = (h1, h2, . . . , hT )
13: Initialize the decoder input with the final hidden state hT replicated n f uture times
14: Initialize the decoder LSTM layer with 100 hidden units, using the final hidden state

hT and cell state cT from the encoder
15: Process the decoder input with the decoder LSTM:
16: for t = 1 to n f uture do
17: yt = LSTM(yt−1, ht−1)
18: end for
19: Compute the attention scores between the encoder and decoder hidden states
20: attention = softmax(dot(decoder stack h, encoder stack h, axes = [2, 2]))
21: Compute the context vector as a weighted sum of the encoder hidden states
22: context = dot(attention, encoder stack h, axes = [2, 1])
23: Concatenate the context vector and the decoder hidden states
24: decoder combined context = concatenate(context, decoder stack h)
25: Apply a TimeDistributed dense layer to the decoder combined context to obtain the

final prediction y′:
26: y′ = TimeDistributed(Dense(1))(decoder combined context)
27: Compile the model using the Adam optimizer and the Huber loss function
28: Train the model on the training data, and evaluate on the testing data
29: end for
30: end for
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Table 4.2: Prediction Model Performance Summary in Source Domain.
LSTM Seq2Seq LSTM Seq2Seq ATN

MAPE MAPE
Step 1 3.94 3.95
Step 6 5.08 5.06
Step 9 5.88 5.82
Step 12 6.74 6.77

4.4 Analysis of Experimental Results
In this section, we first evaluate the performance of our prediction models in the source domain
for both single and multi-step prediction in subsection 4.4.1. Then, we transfer the knowledge
of the source domain model for the prediction task in the target domain and evaluate the model
performance before and after data augmentation, respectively, in subsections 4.4.2 and 4.4.3.

4.4.1 Prediction Model Performance in Source Domain
The performance results of the source domain models, LSTM Seq2Seq and LSTM Seq2Seq ATN,
on the larger dataset demonstrated their effectiveness in predicting internet traffic. The MAPE
values for both single-step and multi-step predictions are summarized in Table 4.2. For single-
step predictions, both models achieved consistently low MAPE values. LSTM Seq2Seq achieved
a MAPE of 3.94%, while LSTM Seq2Seq ATN achieved a slightly higher MAPE of 3.95%.
These results indicate accurate forecasts of the immediate future values in the larger dataset.
Moving to multi-step predictions, the MAPE values slightly increased as the prediction horizon
extended. At Step 6, both models had similar MAPE values, with LSTM Seq2Seq at 5.08%
and LSTM Seq2Seq ATN at 5.06%. The MAPE values continued to increase at Steps 9 and
12, with LSTM Seq2Seq reaching 5.88% and 6.74%, respectively, and LSTM Seq2Seq ATN
reaching 5.82% and 6.77%, respectively. These findings highlight the challenges associated
with making accurate long-term forecasts due to accumulated errors over time. Interestingly,
the comparison between LSTM Seq2Seq and LSTM Seq2Seq ATN models reveals that the
inclusion of the attention mechanism in LSTM Seq2Seq ATN did not significantly improve
the models’ predictive accuracy. The performance of attention-based models heavily relies on
having sufficient training data to learn the attention weights effectively. If the size of the dataset
is limited or if the attention weights are not able to be trained robustly due to data sparsity, the
attention mechanism may not be able to effectively capture the important information for pre-
diction. Both models performed similarly for both single-step and multi-step predictions. The
achieved MAPE values have several implications for achieving the research objectives and the
potential applications of the prediction models. The accurate single-step predictions demon-
strate the models’ effectiveness in real-time monitoring and decision-making tasks, such as
network management, capacity planning, and anomaly detection in internet traffic. However, it
is crucial to acknowledge the limitations of multi-step predictions. The increasing MAPE val-
ues with an extended forecasting horizon indicate the inherent challenges of making accurate
long-term forecasts. Stakeholders should consider these limitations and manage expectations
accordingly when using the models for longer-term projections. The comparable performance
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Table 4.3: Multi-step Model Performance Summary Before Data Augmentation in Target Do-
main.

Target Domain A Target Domain B Target Domain C
LSTM Seq2Seq

MAPE MAPE MAPE
6 step 16.96 22.38 18.05
9 step 17.88 21.77 18.09

12 step 20.99 19.73 19.83
LSTM Seq2Seq ATN

6 step 17.13 22.81 17.18
9 step 18.69 23.06 19.06

12 step 21.17 24.15 19.64

between LSTM Seq2Seq and LSTM Seq2Seq ATN models suggests that the attention mech-
anism may not provide substantial benefits for the considered prediction tasks. This finding
prompts further exploration of alternative techniques or architectures to improve multi-step
prediction accuracy.

4.4.2 Source Domain Model Performance on the Target Domain Before
Data Augmentation

The source domain dataset, with 8,352 data points, is significantly larger than the average
target domain dataset, which has only 350 data points. This size difference can impact the per-
formance of the transfer learning models when predicting internet traffic for the target domains.

Based on the provided results in Table 4.3, it can be observed that as the prediction steps in-
crease from 6 to 12, the Mean Absolute Percentage Error (MAPE) generally increases for both
LSTM Seq2Seq and LSTM Seq2Seq ATN models across all target domains. This suggests
that the models become less accurate in predicting internet traffic as the forecasting horizon
grows, which is a common trend in time series forecasting due to increasing uncertainty with
the forecast horizon. For example, in Target Domain A, the LSTM Seq2Seq model has a
MAPE of 16.96 for 6-step prediction, increasing to 17.88 and 20.99 for 9-step and 12-step
predictions, respectively. Similarly, the LSTM Seq2Seq ATN model exhibits an increase in
MAPE from 17.13 to 21.17 as the prediction steps grow from 6 to 12.

When comparing the two models, it can be seen that the LSTM Seq2Seq ATN model gen-
erally performs worse than the LSTM Seq2Seq model, with higher MAPE values across all
target domains and prediction steps. This might indicate that the attention mechanism in the
LSTM Seq2Seq ATN model does not provide additional benefits for this specific task, or it
may not have been optimized properly given the significant difference in dataset sizes between
the source and target domains. In addition, the performance of the models varies across differ-
ent target domains. For instance, both models perform best on Target Domain B at the 12-step
prediction, while they show the worst performance on Target Domain B at 6-step and 9-step
predictions. This suggests that the domains have different characteristics that affect the model’s
performance, and these characteristics may not be fully captured by the source domain model
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due to the dataset size discrepancy.
To summarize, the transfer learning models’ performance on the smaller target domain

datasets is influenced by the size difference between the source and target domains, as well as
the varying characteristics of each target domain. A simpler model like LSTM Seq2Seq might
be more suitable for these specific target domains than the more complex LSTM Seq2Seq ATN
model. Further fine-tuning of the models or the development of new models tailored to the
specific characteristics of each target domain could lead to improved performance in internet
traffic prediction tasks. This experiment offers valuable insights into the application of transfer
learning for internet traffic prediction tasks using different model architectures. The findings
have several implications that can inform future research and applications in this domain.

Firstly, the experiment emphasizes the importance of choosing the right model architecture
for a given task. The simpler LSTM Seq2Seq model demonstrated better performance than the
more complex LSTM Seq2Seq ATN model, which incorporated an attention mechanism. This
finding suggests that adding complexity does not always guarantee improved performance and
that it is crucial to consider the specific characteristics and requirements of the task at hand.
Secondly, the results indicate that the performance of transfer learning models can be influ-
enced by the size of the source and target domain datasets. The significant difference in dataset
sizes between the source domain (8,352 data points) and target domains (average of 350 data
points) may have affected the models’ ability to generalize to the smaller target domains. This
finding highlights the need for further research on the impact of dataset size when applying
transfer learning in time series prediction tasks. Additionally, the experiment underscores the
varying performance of the models across different target domains. This suggests that each
target domain has distinct characteristics that influence the models’ performance, necessitating
a more in-depth understanding of these domain-specific features to optimize model perfor-
mance. As a result, future work could focus on developing models that can better adapt to the
specific characteristics of each target domain, potentially improving prediction accuracy. Fur-
thermore, the increasing MAPE values with longer prediction horizons highlight the challenges
associated with predicting internet traffic over longer timeframes. This observation implies the
need for better strategies to manage uncertainty in longer-term forecasts, such as incorporating
additional features, using ensemble methods, or improving the underlying models.

In conclusion, the experiment provides valuable insights into the performance of transfer
learning models for internet traffic prediction tasks across smaller target domains. The findings
emphasize the need for careful model selection, consideration of dataset size, and a deeper
understanding of domain-specific characteristics. These insights can inform the development
of more effective models and strategies for improving internet traffic prediction performance
in future work.

4.4.3 Source Domain Model Performance on the Target Domain After
Data Augmentation

After applying the DWT data augmentation technique and increasing the target dataset size
to approximately 2,000, both the LSTM Seq2Seq and LSTM Seq2Seq ATN models showed
improved performance across the target domains as shown in Table 4.4

For the LSTM Seq2Seq model, the MAPE values decreased compared to the previous
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Table 4.4: Multi-step Model Performance Summary After Data Augmentation in Target Do-
main.

Target Domain A Target Domain B Target Domain C
LSTM Seq2Seq

MAPE MAPE MAPE
6 step 12.27 15.86 12.18
9 step 12.6 14.28 13.07

12 step 13.1 13.83 13.53
LSTM Seq2Seq ATN

6 step 13.30 16.99 12.61
9 step 13.25 15.62 13.69

12 step 13.19 15.05 14.46

results. In Target Domain A, the MAPE ranged from 12.27 to 13.10 for 6-step to 12-step
predictions. In Target Domain B, the MAPE ranged from 13.83 to 15.86, and in Target Do-
main C, the MAPE ranged from 12.18 to 13.53. These lower MAPE values indicate that
the LSTM Seq2Seq model achieved better accuracy in predicting internet traffic in the target
domains after data augmentation. Similarly, the LSTM Seq2Seq ATN model also exhibited
improved performance. In Target Domain A, the MAPE ranged from 13.19 to 13.30 for 6-step
to 12-step predictions. In Target Domain B, the MAPE ranged from 15.05 to 16.99, and in
Target Domain C, the MAPE ranged from 12.61 to 14.46. Although the LSTM Seq2Seq ATN
model had slightly higher MAPE values compared to the LSTM Seq2Seq model, it still demon-
strated improved performance after data augmentation. The performance improvement can be
attributed to the increased dataset size achieved through DWT data augmentation. The expan-
sion of the target domain dataset through DWT data augmentation provided a larger and more
diverse set of samples for training the models. The increased dataset size enabled the models
to learn more effectively and capture a broader range of patterns present in the target domains.
By expanding the target dataset, the models were exposed to a more diverse and representative
set of samples. This allowed the models to capture a wider range of underlying patterns and en-
hance their ability to generalize to unseen data. The larger dataset size also helped mitigate the
effects of limited data availability in the smaller target domains, enabling the models to learn
more effectively and improve their prediction accuracy. The increased dataset size may have
facilitated better adaptation of the models to the specific characteristics of each target domain
and aided in fine-tuning their parameters accordingly.

Overall, the DWT data augmentation technique and the resulting increase in dataset size
had a positive impact on the performance of both the LSTM Seq2Seq and LSTM Seq2Seq ATN
models. These findings underscore the importance of data augmentation in improving model
performance in time series prediction tasks, particularly when dealing with limited data avail-
ability in smaller target domains. The results highlight the value of data augmentation tech-
niques, such as DWT data augmentation, in expanding the target domain dataset. Augmenting
the data helped mitigate the limitations of smaller target domain datasets and improve the mod-
els’ performance by providing more representative samples for training. The success of the
transfer learning approach, even with a smaller target domain dataset, suggests that leveraging
knowledge from a larger source domain dataset can still provide benefits. Transfer learning al-
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lowed the models to capture domain-agnostic patterns from the source domain and adapt them
to the target domains, leading to improved performance. The ratio between the target domain
and source domain data is an important factor to consider. While the target domain dataset was
still smaller than the source domain dataset, the augmentation techniques helped bridge the
gap and improve the model’s ability to generalize to the target domains. This finding empha-
sizes the significance of balancing the size and representativeness of the target domain data to
achieve optimal performance. Overall, the results indicate that augmenting the target domain
dataset and leveraging transfer learning can effectively improve the performance of internet
traffic prediction models. The findings reinforce the importance of data augmentation tech-
niques and highlight the benefits of incorporating prior knowledge from larger source domain
datasets, even when the target domain dataset is relatively small.

4.5 Conclusion
In this research, we utilized transfer learning techniques and data augmentation methods to
predict internet traffic patterns in smaller network datasets. Our investigation aimed to alleviate
the challenges of scarce data in smaller Internet Service Provider (ISP) networks, which makes
the development of reliable prediction models a difficult task. The models LSTM Seq2Seq and
LSTM Seq2Seq ATN, originally trained on larger datasets, were transferred and fine-tuned on
smaller datasets. This approach successfully reduced the need for extensive data collection in
smaller ISP networks, saving time and resources.

The findings revealed that both LSTM Seq2Seq and LSTM Seq2Seq ATN models per-
form comparably well on single-step predictions in the larger dataset, indicating their robust-
ness and reliability. In contrast, the models struggled with multi-step predictions, revealing
inherent challenges in long-term forecasts due to accumulated errors over time. Upon trans-
fer to the smaller datasets, it was observed that LSTM Seq2Seq performed generally better
than LSTM Seq2Seq ATN. The attention mechanism in LSTM Seq2Seq ATN did not seem to
provide additional benefits for the prediction tasks at hand, suggesting that increasing model
complexity does not always lead to improved performance. It is crucial to consider the specific
characteristics and requirements of the task when selecting a model. The significant difference
in dataset sizes between the source domain and target domains may have affected the models’
ability to generalize to the smaller target domains. The models’ performance varied across
different target domains, suggesting that each domain has distinct characteristics that influence
model performance.

Data augmentation via the Discrete Wavelet Transform (DWT) was utilized to enhance
the target dataset size. This significantly improved the performance of both models, sug-
gesting that data augmentation techniques can play a crucial role in improving model perfor-
mance, especially when dealing with limited data. Despite the promising results, the research
has limitations that provide directions for future work. First, the attention mechanism in the
LSTM Seq2Seq ATN model may need further fine-tuning or alternative approaches to improve
its performance. Second, while DWT was effective in this study, other data augmentation tech-
niques could also be explored to further increase the diversity and representativeness of the
smaller datasets. Third, we might also need to look into further improving the multi-step pre-
diction performance of these models, as it is crucial for longer-term projections. Lastly, the
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discrepancies observed in the performance across different target domains suggest a need for
further investigation into domain-specific features. Understanding these features better could
help design models that are more adaptable and thus more accurate for each specific domain.
We also plan to explore other architectures and strategies to handle the uncertainty associated
with longer prediction horizons.

In summary, the study presents an approach to tackle the problem of data scarcity in smaller
ISP networks. The application of transfer learning and data augmentation techniques show
promise in enhancing prediction model performance. This work paves the way for further
research in this direction, emphasizing the importance of choosing the right model, augmenting
the data effectively, and understanding domain-specific characteristics.



Chapter 5

An Evaluation of Machine Learning
Models for Internet Traffic Prediction:
Identical vs. Out-of-Distribution Data
Samples

Abstract: Internet traffic prediction, crucial for proactive network management and Quality
of Service (QoS) in self-organizing networks (SON), often faces challenges due to complex,
non-linear, and non-stationary real-world traffic. While existing machine learning and deep
learning models demonstrate strong performance, they typically operate on the assumption
that data samples are independent and identically distributed (IID), an often untrue presump-
tion in real scenarios. This mismatch leads to performance inconsistencies between IID and
out-of-distribution (OOD) samples. Our research analyzes various boosting algorithms and
deep sequence models using both IID and OOD samples from diverse actual traffic datasets.
We report a notable accuracy drop with OOD samples and propose a hybrid architecture com-
bining deep sequence models and discrete wavelet transformation (DWT). Training models on
decomposed hierarchical components instead of the original data, our hybrid models exhibit
improved prediction accuracy for both IID and OOD samples, also substantially reducing the
performance gap between IID and OOD predictions. The results affirm the superiority of our
methodology over traditional models, highlighting its robustness and adaptability in real-world
traffic prediction.

5.1 Introduction
The Internet and its applications have become fundamental means of communication for all
classes of consumers in modern society, resulting in significant internet traffic. Predicting
internet traffic is crucial for any network as it helps to design better strategic plans for the
business. Internet traffic prediction can be beneficial in traffic engineering, performance diag-
nostics, failure recovery, anomaly detection, load balancing, etc. [78]. It also plays a vital role
in dynamic bandwidth reservation and allocation, congestion control, admission control [79],
and privacy-preserving routing [80] etc., which assure better Quality of Service (QoS), Quality
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of Experience (QoE). Therefore, a substantial number of research works have been proposed on
predicting internet traffic using statistical models, machine learning, and deep learning models.

Due to time-variability, long-term correlation, self-similarity, suddenness, and chaos [81]
in internet traffic, it is challenging to develop an accurate prediction model. The majority of
recent studies on traffic prediction used data from independent and identical distribution (IID)
for model training and testing, i.e., Ptr(X,Y) = Pte(X,Y) where X is the feature set and Y its
corresponding target. But the train and test distribution can be different for several reasons,
such as the temporal/spatial evolution of data or the sample selection bias in the data collection
process. Therefore, there is a high probability of dealing with a dataset different from the train-
ing set during the model’s deployment phase in the real world. Furthermore, internet traffic is
volatile due to heterogeneous sources. Hence, it is challenging to design a robust predictive
model that can perform better for both IID and out-of-distribution (OOD) data samples. In
addition, there is considerable evidence that AI-based prediction models give unexpected out-
comes caused by selection biases, confounding factors, and other biases in the data[82]. As
a result, OOD generalization refers to machine learning techniques in which there is a distri-
bution shift between Ptr and Pte. We must specify how the testing distribution varies from the
training distribution in OOD scenarios.

While existing works, based on machine learning and deep learning, have demonstrated
promising results in traffic prediction, they have primarily assumed that the train and test data
samples come from a similar distribution. This leaves a gap in understanding how these models
perform when presented with an inference dataset that has a slightly different or completely
unknown distribution than the training dataset. Without this assessment, the effectiveness of
these predictive models in unknown scenarios remains unclear. Addressing this challenge,
our study evaluates the performance of several boosting and deep sequence models using both
IID and OOD data samples. We discovered a significant drop in the prediction accuracy of
these classical machine learning models for OOD samples compared to IID data. To address
this problem, we propose a novel approach that integrates a hybrid deep learning model with
discrete wavelet transformation (DWT). The integration of DWT allows us to extract multiple
lower resolution levels from the original time series data, capturing the detailed characteristics
of internet traffic [83]. Training the hybrid model on these detailed components offers enhanced
prediction accuracy for both IID and OOD data samples, and provides a promising avenue for
future exploration in the field of internet traffic prediction.

In summary, this chapter presents our investigation into the effectiveness of boosting algo-
rithms and deep sequence algorithms on OOD data samples and introduces a potential solution
in the form of a hybrid machine learning model incorporating DWT. We aim to contribute to
the body of knowledge in traffic prediction, helping to develop more effective strategies for
network management and enhancing the QoS and QoE. This chapter is organized as follows.
Section 5.2 describes the literature review of current traffic prediction using machine learning
models. Section 5.3 presents the methodology, including data preprocessing, discrete wavelet
transformation, machine learning models, and experiment details. Section 5.4 summarizes the
different machine learning and deep learning methods’ performance with both identical and
out-of-distribution data and draws a comparative picture between standalone and hybrid mod-
els. Finally, section 5.5 concludes our paper and sheds light on future research directions.
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5.2 Literature Review
Internet traffic prediction has gained considerable attention in recent years due to the need for
efficient network management and control. Numerous techniques have been developed for
this purpose, which can broadly be categorized into conventional statistical models, machine
learning methods, and deep learning-based methods.

Generally, conventional statistical models are incapable of capturing complex underlying
patterns in time-series data. As a result, researcher integrated statistical models with others
machine learning models to utilize their power in linear prediction. For example, a compara-
tive performance analysis between a conventional statistical model, AutoRegressive Integrated
Moving Average (ARIMA), and a deep learning model, Long Short-Term Memory (LSTM),
has been conducted in [84] for internet traffic prediction. In addition, they used the signal
decomposition technique, discrete wavelet transforms (DWT), to separate the linear and non-
linear components from the original data before feeding them into the prediction model. A
hybrid model consisting of a statistical and deep learning model is proposed in [85] for better
performance than the standalone model. In addition, they applied DWT on the time series data
for separating the linear and non-linear components, modeled respectively using Auto Regres-
sive Moving Average (ARMA) and Recurrent Neural Networks (RNN). Since the conventional
statistical models, such as ARMA, and ARIMA, are incapable of handling the non-linear com-
ponents in the time series, the author tried to use the signal decomposition technique here to
deal with the complex, non-stationary internet traffic by combining the power of deep learn-
ing. According to their experimental results, the combination of ARIMA and RNN performed
better than the individual model.

Deep learning models, a subcategory of machine learning models, have become the stan-
dard for solving network traffic prediction issues in various contexts. These prediction models
grounded in deep learning can be broadly classified based on the method of neuron intercon-
nection in neural networks, such as RNN, convolutional neural networks (CNN), and graph
neural networks (GNN).

RNNs, particularly LSTM and Gated Recurrent Units (GRU), are capable of handling long
sequence data, including natural languages and time series, by employing recurrent connec-
tions and memory mechanisms. These representative RNN variants address the vanishing gra-
dient problem associated with the traditional RNN structure and have been applied successfully
to network traffic issues with univariate and multivariate time series forecasting [86]. CNNs,
on the other hand, treat traffic data in different grids as image pixel values [87]. Integrating
the attention mechanism into CNNs enhances their predictive performance [88]. For instance,
a combination of the attention mechanism with ConvLSTM has been successful in capturing
long-term spatial-temporal dependencies for cellular traffic prediction, leading to accurate pre-
dictions over hourly and daily time scales [89]. Additionally, a spatial-temporal downsampling
neural network model based on the Transformer network has been proposed for citywide mo-
bile traffic prediction [90]. More recently, GNNs have emerged as a new frontier in AI research,
using input data structured as graphs [91]. GNNs have found successful application in com-
munication networks, including network traffic prediction [92]. To enhance the performance
of the GNN-based prediction model in large-scale traffic prediction, transfer learning has been
introduced to reuse knowledge and reduce computation in cellular traffic prediction [93].

In the field of internet traffic prediction, an emerging trend is the fusion of signal decom-
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position techniques with prediction models, specifically those based on deep learning. These
models have demonstrated their effectiveness in handling the complex, time-series data typical
of network traffic. When coupled with signal decomposition techniques like Discrete Wavelet
Transformation (DWT), these models are endowed with the ability to dissect data into simpler,
manageable components, subsequently improving prediction capabilities. Several noteworthy
studies have embraced this approach, successfully integrating signal decomposition methods
into their models to enhance predictive accuracy. For example, an artificial neural network
model combined with the multi-fractal DWT is proposed in [94]. The network traffic is dis-
composed into low-frequency and high-frequency components using Haar Wavelet, which has
been considered a target for the ANN model with the input of the original traffic data. In
the end, model predictions are combined to reconstruct the actual value. Their model out-
performed compared with two existing methodologies. In [95], they performed a comparative
analysis among different methods of DWT and spline-extrapolation in predicting the character-
istics of the IoT multimedia internet traffic. The spline-extrapolation with the B-splines was the
best, giving them the minimum forecast error of 5% compared with Haar-wavelet and quadratic
splines having prediction errors respectively 7-10% and 10%.

Moreover, some studies have even combined various technical methods, including wavelet
transformation, Hurst exponent analysis, model parameter optimization, and fusion of multiple
prediction models, to further improve prediction accuracy. For example, In [96], the author
developed a traffic prediction framework by combining the power of several technical methods
such as Mallat wavelet transformation, Hurst exponent analysis, model parameter optimization,
and fusion of multiple prediction models. Firstly, a three-level decomposition has been carried
out on the original traffic data to extract a set of approximate and detailed components. Then,
the individual component predictability was analyzed using Hurst exponent analysis, where
a higher Hurst exponent (H) indicates more predictableness. According to their study, the
approximate component has a higher H than the detailed component. As a result, a more
efficient machine learning model, the Least squares Support vector machine (LSSVM), is used
to predict detail components while the approximate component is analyzed using ARIMA. The
proposed method showed better prediction accuracy compared with the other models.

The use of signal decomposition in real-world internet traffic prediction is prevalent in the
current literature. The existing works indicate the outperformance of the hybrid model capable
of handling the linear and non-linear components separately using different types of models.
However, most research assumes that the train data and test data have come from the same
distribution, i.e., Ptr(X,Y) = Pte(X,Y). But, the train and test distribution can be different due
to several reasons, such as the temporal/spatial evolution of data or the sample selection bias
in the data collection process. Therefore, out-of-distribution (OOD) generalization discusses
machine learning methodology where a distribution shift exists between Ptr and Pte. In OOD
problem settings, we need to define how the test distribution is different from the strain distri-
bution. There are different distribution shifts in the literature, but the most common one is the
covariate shift, where the target generation process is the same with the marginal distribution
of X shifts from the training set to the test set. According to recent studies, machine learning
methods do not guarantee the generalization of out-of-distribution data. And this issue is not
considered extensively in the existing literature on internet traffic prediction. Therefore, it is
significantly vital to building a robust prediction model so that it can generalize the unknown
distribution in the future. In this research, we propose a hybrid machine learning model that
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can better generalize the covariate shift in the data.
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Figure 5.1: High-level framework of our proposed hybrid traffic prediction model for our-of-
distribution generalization.

5.3 Proposed Methodology
In this section, we describe each component of our proposed traffic prediction model depicted
in Fig. 5.1. Also, we include a detailed description of our experimental datasets used for
machine learning model training and evaluation.

Given a sequence of internet traffic data, our goal is to accurately predict future data
points. The sequences are non-linear, non-stationary, and may have different distributions
(in-distribution and out-of-distribution). Given a time series X = {x1, x2, . . . , xn}, our aim is
to design a model f such that f (Xt−m:t−1) can accurately predict xt for t = m+ 1, . . . , n where m
is the size of the sliding window. For the OOD generalization, we want our model to perform
well not only on the in-distribution data (similar to the training data distribution) but also on
out-of-distribution data (different from the training data distribution). In our study, we pro-
pose a Discrete Wavelet Transformation (DWT) based hybrid model that takes advantage of
the strength of deep learning and the effective feature extraction capability of wavelet transfor-
mations. The purpose of this hybrid model is to effectively overcome the OOD generalization
problem, which is a common pitfall for conventional machine learning models.

Discrete Wavelet Transformation is a mathematical tool for hierarchically decomposing a
signal. For a given signal X = {x1, x2, . . . , xn}, it provides two sets of coefficients, Approx-
imation coefficients (Ca) and Detail coefficients (Cd). This process can be mathematically
represented as:

Ca = DWTapprox(X),

Cd = DWTdetail(X).

The Approximation coefficients (Ca) capture the overall trend or slow changes in the data,
while the Detail coefficients (Cd) represent the specific occurrences or fast changes in the data.
This hierarchical decomposition provides a more detailed feature extraction from complex and
non-stationary signals like internet traffic. We propose to integrate these wavelet features into
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a deep learning model for improved prediction. The Approximation coefficients (Ca) and De-
tail coefficients (Cd) obtained from the DWT are used as input features for the deep learning
model. This way, the model not only benefits from the powerful representational learning
of deep learning but also from the fine-grained, hierarchical features provided by the wavelet
transformation. By including the wavelet transformation as a signal processing step, our model
is more capable of understanding and adapting to the non-linear and non-stationary properties
of internet traffic data. This feature also empowers the model to handle the OOD generaliza-
tion problem by learning more abstract and versatile representations. This integration can be
represented mathematically as:

y = f (Ca,Cd),

where f represents the deep learning model, Ca and Cd are the wavelet features, and y is the
predicted value.

Our proposed hybrid model exhibits superior out-of-distribution generalization. This is
largely due to the wavelet transformation’s capability of capturing the essential features from
signals with different characteristics and distributions. As such, even when faced with OOD
data, our model can effectively identify the underlying patterns and make accurate predictions.
We showcase this strength by testing our model on different datasets with diverse distribu-
tions. The consistent performance across these datasets proves our model’s ability to generalize
well to out-of-distribution data, which is a significant improvement over traditional machine
learning models. Through our research, we contribute to the field of internet traffic predic-
tion by providing a novel methodology that effectively handles the challenges of non-linear,
non-stationary data, and out-of-distribution generalization.

Figure 5.2: Data distribution of different datasets.

5.3.1 Dataset Description
In this research, we rely on four distinct real-world internet traffic datasets labeled as A, B,
C, and D. These datasets consist of telemetry data collected through SNMP (Simple Net-
work Management Protocol) interface MIB (Management Information Base), sampled from a
core-facing interface on a provider edge router. The sampling process occurred at 5-minute
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intervals, with the bps (bit per second) value for each interval being determined from the dif-
ference between the samples at both ends of the interval, multiplied by 8. Given that the
interface’s capacity was 40 Gbs, no discards (ifOutDiscards) were observed throughout the
sampling period.

For our experimental setup, dataset A was utilized for training our proposed model and
evaluating its in-distribution prediction performance, while datasets B, C, and D were em-
ployed solely for assessing the model’s performance on out-of-distribution (OOD) data. No-
tably, dataset A is relatively larger, consisting of 8563 data samples, whereas datasets B, C, and
D are smaller, comprising 363, 369, and 358 data instances respectively.

Given that each dataset was procured from different network interfaces, they exhibit distinct
distributions, as depicted in Fig. 5.2. Specifically, the training dataset, A, demonstrates a shift
in distribution in comparison to the testing datasets B, C, and D. The introduction of testing
datasets possessing OOD samples allowed us to gauge the proposed hybrid model’s proficiency
in addressing the out-of-distribution generalization issue typically encountered in conventional
machine learning models.

5.3.2 Data Preprocessing
The preprocessing stage of our hybrid traffic prediction framework primarily involves two
tasks: data transformation with normalization and feature extraction. Initially, we examined
the presence of missing values in our datasets. Within dataset A, we identified 29 missing
data instances. These were handled using the forward fill technique, which replaces missing
values with the preceding valid data point. Other approaches, including linear interpolation
and quadratic interpolation, are often used for dealing with missing data in time series analy-
sis. However, these methods were unsuitable for our data due to its non-linear nature. Linear
interpolation, which estimates missing values by connecting points along a straight line, and
polynomial interpolation, which requires a predefined order and fills missing data points based
on the minimum possible degree fitting the existing points, were therefore not chosen. After
weighing different replacement methods, we decided to employ the forward-fill technique for
handling missing values in our experiment.

Subsequently, we executed normalization and standardization operations on both our train-
ing and testing datasets. This step is vital to prevent potential biases during model fitting
resulting from variations in measurement scales. To finalize the preprocessing, we reformatted
our time series data from the (time, values) structure to a ( f eatures, target) format compatible
with supervised learning. This conversion was carried out using a sliding window technique,
where we generated lagged features from our time-series dataset. This method uses a set num-
ber of preceding data samples, the lagged features, to predict the subsequent value or target in
time-series data. The width of the window, indicating the number of features, must be defined
for this feature extraction process. We experimented with several window-width parameters,
such as 6, 9, 12, and 15, aiming to identify the optimal input size for the prediction model.

5.3.3 Discrete Wavelet Transform
Our proposed hybrid prediction model incorporates a signal transformation element based on
wavelet decomposition. Though we considered various machine learning models to capture
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the non-linear and non-stationary nature of internet traffic, traditional machine learning models
have certain drawbacks including overfitting, difficulty in identifying global optima, and subop-
timal performance on out-of-distribution data. To counter these challenges, we included a non-
classical signal transformation module – the Discrete Wavelet Transformation (DWT)–into our
approach. This module aids in extracting hierarchical components of intricate signals, thus re-
vealing finer characteristics. Unlike classical transformation techniques that perform optimally
with linear data, DWT has the capacity to comprehend the stochastic properties of non-linear
real-world internet traffic.

DWT is an analytical method to uncover concealed patterns within an original signal by
transforming this signal into the time-frequency domain. This transformation employs a wavelet
– a wave-like oscillation – that extracts multiple lower-resolution levels by adjusting the wavelet’s
scale and location [83]. We have a selection of wavelets available for signal decomposition,
but for our model, we opted for mother wavelets from two primary wavelet categories: orthog-
onal and bi-orthogonal. Orthogonal wavelet filters-low-pass and high-pass filters-have consis-
tent lengths, unlike bi-orthogonal filters. Furthermore, orthogonal wavelet filters are symmet-
ric, while the low-pass bi-orthogonal filter is symmetric and the high-pass filter is symmetric
or anti-symmetric. As signal transformation characteristics are strongly linked with wavelet
properties, mother wavelets should be chosen based on the specific problem requirements. In
our experiment, we utilized and compared three commonly used mother wavelets: dmey (or-
thogonal), haar (orthogonal), and bior (biorthogonal). These wavelets have found extensive
application in prior works for time-series analysis [97, 98].

In each DWT stage, the signal breaks down into two components: the approximate compo-
nent (Ca), and the detailed component (Cd), which correspond to the overall trend and intricate
events within the data, respectively. The Ca from level i is utilized to calculate Ca in the subse-
quent level, i+1. The signal undergoes convolution through a low-pass filter (lp) and high-pass
filter (hp) to generate the new Cai+1 and Cdi+1. We trained our prediction model using these
decomposed components to provide the model with a more nuanced understanding of the sig-
nal’s individual components. After predicting the individual components, we reconstructed
the original data by merging all level’s detailed components and the last level’s approximate
components. We conducted experiments both with and without this decomposition component
to contrast the standalone and hybrid models’ performances in predicting testing data non-
identical to the training data. The formulas for the components and their reconversion into
original data are as follows [99]:

Cai+1[n] = Cai ∗ lp[n] =
∞∑

m=−∞

Cai[m]lp[n − 2m] (5.1)

Cdi+1[n] = Cai ∗ hp[n] =
∞∑

m=−∞

Cai[m]hp[n − 2m] (5.2)

Original data, yt = Can +

n∑
i=1

Cdi (5.3)
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Table 5.1: Model Performance: Train and Test on Dataset A Using Gradient Boosting Algo-
rithm.

Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

GBR 96.1 96.1 96.2 96.2 97.1 97.1 97.1 97.2 97.1 97.1 97.1 97.1 97.1 97.2 97.2 97.2
XGB 96.1 96.0 95.9 95.9 97.4 97.4 97.4 97.3 97.2 97.3 97.3 97.2 97.2 97.2 97.2 97.3
LGB 96.2 96.2 96.1 96.2 97.4 97.4 97.4 97.4 97.3 97.3 97.3 97.3 97.1 97.2 97.2 97.2
CBR 96.3 96.1 96.2 96.2 97.3 97.2 97.2 97.2 97.2 97.1 97.1 97.1 97.2 97.2 97.2 97.1
SGD 96.0 96.1 96.2 96.1 96.7 96.9 97.0 97.0 96.7 96.6 96.9 96.9 96.7 96.8 96.8 96.9

Table 5.2: Model Performance: Trained on Dataset A, Tested on Dataset B Using Gradient
Boosting Algorithm.

Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

GBR 82.6 81.6 82.0 81.0 86.7 86.9 86.8 86.7 86.5 86.2 85.6 85.5 82.5 82.5 82.0 81.5
XGB 78.9 78.7 80.1 78.0 87.9 87.6 87.4 87.4 87.3 87.5 87.5 87.1 83.3 81.9 82.1 82.8
LGB 83.4 83.3 82.9 82.8 87.6 87.3 87.1 86.9 87.3 87.4 87.2 87.0 84.8 84.5 84.1 83.9
CBR 80.6 79.8 81.3 80.4 85.7 84.9 84.8 84.0 85.6 85.2 85.3 84.8 83.8 83.2 83.0 81.3
SGD 80.1 79.5 78.6 77.9 84.1 83.8 82.8 82.6 84.0 83.3 82.5 81.7 83.6 83.3 82.3 81.4

Table 5.3: Model Performance: Trained on Dataset A, Tested on Dataset C Using Gradient
Boosting Algorithm.

Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

GBR 74.1 72.8 73.9 73.0 83.1 83.1 82.6 82.8 80.9 81.1 80.8 80.6 79.1 78.7 78.7 78.9
XGB 72.6 71.7 72.9 71.0 84.0 83.6 83.2 83.1 82.2 82.5 82.3 82.3 80.7 79.7 79.6 80.2
LGB 75.6 75.9 75.4 75.1 83.5 83.3 83.2 83.1 82.2 82.2 82.0 81.9 82.0 81.7 81.4 81.1
CBR 74.0 73.2 73.6 73.8 82.5 81.4 81.8 81.1 80.8 80.6 80.4 80.0 80.9 80.9 81.1 80.0
SGD 73.9 73.6 73.3 72.6 79.7 79.5 78.9 78.9 78.6 78.4 77.9 77.3 79.6 79.2 78.9 78.1

Table 5.4: Model Performance: Trained on Dataset A, Tested on Dataset D Using Gradient
Boosting Algorithm.

Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

GBR 86.5 86.0 86.3 86.2 88.6 88.7 88.7 88.7 88.7 88.6 88.5 88.8 87.0 87.0 86.9 87.1
XGB 85.3 84.9 85.1 85.0 89.4 89.4 89.1 89.4 89.1 89.1 89.1 89.1 87.8 87.2 87.2 87.4
LGB 86.6 86.5 86.4 86.6 89.6 89.5 89.4 89.6 89.3 89.2 89.1 89.3 89.8 89.5 89.3 89.4
CBR 86.3 86.2 86.0 86.2 89.6 89.5 89.6 89.7 89.3 89.4 89.2 89.3 89.5 89.1 88.7 88.6
SGD 85.0 84.5 84.5 84.7 87.5 87.2 87.0 87.1 87.4 86.9 86.9 87.0 88.2 87.7 87.6 87.7
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Figure 5.3: Best accuracy comparison between standalone and hybrid model.

5.4 Analysis of Experimental Results
In this section, we analyze our experimental data to find out the result. Firstly, we evaluate
the performance of our proposed hybrid model based on dataset A where 70% and 30% data
are used for model training and in-distribution testing, respectively. After that, the performance
was evaluated using three other datasets, B, C, and D, which are entirely unknown to the model,
to measure the effectiveness of our proposed model for out-of-distribution generalization. We
evaluate the performance of our proposed hybrid model using both boosting and deep sequence
algorithm in subsection 5.4.1 and 5.4.2 respectively.

The group column ‘Standalone (No Wavelet)’ represents the standalone model performance
while the other three columns ‘Hybrid (dmey)’, ‘Hybrid (haar)’, and ‘Hybrid (bior3.7)’ rep-
resent the hybrid model with the corresponding mother wavelet. In addition, we used four
different window widths such as 6, 9, 12, and 15, for our feature extraction process. There-
fore, all our experimental results summarize the performance of the prediction models based
on different feature sets.

5.4.1 Performance Analysis Using Boosting Algorithms
In this section, we analyze and compare the performance of our proposed prediction model
using data samples from a similar distribution of the training dataset. In the case of the stan-
dalone model where the signal decomposition module was off, the best prediction accuracy by
the XGB model is 96.1% using the six input features according to the Table 5.1. The highest
accuracy for LGB, SGD, GBR, and CBR are respectively 96.2%, 96.2%, 96.2%, and 96.3%
using inputs 6, 12, 12, and 6.

After evaluating standalone models with a test set having similar distribution as the training
set, we used three other datasets from different distributions to validate model performance in
case of out-of-distribution. The results are summarized in Table 5.2, Table 5.3, and Table 5.4,
respectively, for dataset B, dataset C, and dataset D. As the distribution of these three datasets
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Figure 5.4: Comparison of actual and predicted traffic using our proposed hybrid model for
OOD dataset.

differs from the data samples used in training, the standalone model performance decreases
significantly in predicting these OOD samples. Fig. 5.3 depicts a comparative view of best
performance by the standalone model and proposed hybrid model. Overall, the standalone
model performance was at its peak when it was evaluated using the same distribution data, i.e.,
training and testing on dataset A. The performance dropped from 96% to 83% when tested
using dataset B, where the samples have a distribution shift compared to data samples in A.
Also, the performance gap between IID and OOD evaluation using data samples from dataset
C and D is significantly large, and it is more than 20% and 10%, respectively. This portion of
our experiment indicates a classical out-of-distribution problem of the machine learning model,
which assumes both training and testing data are identically distributed.

In our experiment, the classical machine learning model showed a pretty high prediction
accuracy of more than 96% for IID samples which indicates their capability of handling non-
linear and non-stationary traffic data. But the standalone models were straggling to maintain
a similar range of prediction accuracy when tested with OOD data. The accuracy falls from
96% to 75%-86% compared to IID and OOD evaluation. However, there is a high probability
of having a distributional shift in the data after deployment of the prediction model in the
real world, which we imitated in our work by considering three different data distributions for
evaluating our proposed model. Also, we tried to propose a hybrid machine learning model so
that it can reduce the IID and OOD performance gap compared to the standalone model. In
the next section, we discuss the performance of our proposed hybrid model for identical and
out-of-distribution data.

In our hybrid model architecture, the models have an extra module that transforms the
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Table 5.5: Model Performance: Train and Test on Dataset A Using Deep Sequence Algorithm.
Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)

6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15
RNN 96.0 95.9 96.1 96.3 97.6 96.9 97.0 97.1 97.2 97.3 96.5 97.0 97.5 97.4 97.4 96.8
LSTM 96.5 96.5 96.6 96.6 97.9 98.0 98.0 97.7 97.7 97.6 97.7 97.5 98.1 98.0 97.9 97.9
LSTM Seq2Seq 96.6 96.7 96.7 96.7 98.3 98.4 98.4 98.4 97.9 97.8 97.7 98.0 98.2 98.3 98.3 98.4
LSTM Seq2Seq ATN 96.6 96.7 96.7 96.7 98.3 98.4 98.4 98.4 97.9 97.9 97.9 98.0 98.2 98.4 98.4 98.4

original signal into several hierarchical detailed components based on wavelet transformation.
The hybrid model is trained using decomposed components instead of original time-series
data. This operation allowed the prediction model to learn individual components we aggregate
later for converting results into original data. However, the performance of the hybrid model
evaluated using identically distributed data, i.e., training and testing using both datasets A is
better than the standalone model. The best hybrid model performance we achieved is 97.4%
using the ensemble hybrid model (demy), which is a 1% improvement over the standalone
model. It indicates our proposed model better captures the general trend of the traffic compared
to the standalone model, as we trained them using detailed components.

Next, we evaluated our hybrid model performance using completely unknown datasets
which do not have similar distribution as the training dataset. Our experiment showed a sig-
nificant performance enhancement after applying wavelet transformation to handling out-of-
distributed datasets. For example, the hybrid XGB model with dmey wavelet gave us more
than 8% accurate results for dataset B compared with the standalone model. Similarly, more
than 10% accuracy has been improved in the case of dataset C by the hybrid LGB model with
haar wavelet. Overall, the hybrid model’s performance is better than the standalone model for
each dataset. According to the Fig. 5.3, the best prediction accuracy for out-of-distributed data
has been jumped by more than 4.5%, 7.5%, and 3% respectively for dataset B, C, and D when
compared with the standalone model. Also, the hybrid model reduces the best IID and OOD
performance gap from 13% to 10%, 20% to 13%, and 10% to 7%, respectively, for dataset
B, C, and D compared with the classical machine learning model. The comparison between
actual and predicted traffic by best-performing hybrid models for different datasets has been
depicted in Fig. 5.4. Due to the complex and non-linear characteristics of internet traffic, it is
challenging to figure out the actual trend and pattern using original time-series data, affecting
the standalone model’s performance for unknown distribution. In contrast, the detailed hierar-
chical component of the time-series data gave more information about the general trend of the
traffic.

5.4.2 Performance Analysis Using Deep Sequence Models

First, four different deep sequence models have been implemented for single-step traffic pre-
diction. The experimental result is summarized in Table 5.5 where we assumed the test data
samples came from a similar distribution of the training dataset. We considered dataset A for
this experimentation as it is the larger dataset among the other three, and the train-to-test data
sample ratio was 70%/30%. However, Table 5.5 contains results of the standalone model with-
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Table 5.6: Model Performance: Trained on Dataset A, Tested on Dataset B Using Deep Se-
quence Model.

Standalone Hybrid (dmey) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

RNN 82.7 82.2 81.4 79.0 89.8 88.7 88.2 88.1 88.2 88.4 87.2 86.4 90.5 88.3 87.9 87.9
LSTM 83.3 81.6 79.8 81.0 89.8 89.7 89.9 89.5 88.3 88.0 87.5 86.6 89.5 88.6 89.4 87.7
LSTM Seq2Seq 69.2 69.3 69.5 69.3 91.3 91.7 91.5 91.6 88.6 88.9 88.5 87.3 90.0 90.9 90.4 90.7
LSTM Seq2Seq ATN 67.8 67.9 68.2 68.0 91.2 91.6 91.6 91.5 88.9 88.7 87.9 87.9 90.0 90.9 90.5 89.7

Table 5.7: Model Performance: Trained on Dataset A, Tested on Dataset C Using Deep Se-
quence Model.

Standalone Hybrid (demy) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

RNN 73.9 73.8 73.9 72.8 85.8 85.0 85.0 84.6 83.6 83.8 83.3 82.2 86.5 84.8 85.2 84.7
LSTM 74.9 74.6 72.7 73.2 85.6 85.7 85.8 85.8 83.2 83.4 83.1 82.2 85.8 83.8 85.1 84.1
LSTM Seq2Seq 66.3 66.2 66.6 66.6 86.7 87.0 87.0 87.0 84.4 84.6 84.4 83.7 87.2 87.9 87.4 87.2
LSTM Seq2Seq ATN 65.2 65.1 65.6 65.6 86.7 86.9 87.0 86.9 84.6 84.6 84.1 84.2 87.2 87.7 87.3 86.7

Table 5.8: Model Performance: Trained on Dataset A, Tested on Dataset D Using Deep Se-
quence Model.

Standalone Hybrid (demy) Hybrid (haar) Hybrid (bior3.7)
6 9 12 15 6 9 12 15 6 9 12 15 6 9 12 15

RNN 85.1 84.3 85.4 84.4 90.7 90.2 90.4 90.1 89.9 90.0 89.7 89.5 91.4 91.0 91.0 91.0
LSTM 85.8 83.3 83.4 83.2 90.2 90.6 90.6 90.7 89.4 89.3 89.4 89.3 91.0 91.0 90.7 90.4
LSTM Seq2Seq 81.6 81.6 81.7 82.0 90.9 90.8 91.0 91.2 89.5 89.8 89.7 89.7 91.4 91.7 91.6 91.7
LSTM Seq2Seq ATN 81.0 81.0 81.1 81.5 90.8 90.8 90.9 91.2 89.7 89.8 89.7 89.9 91.4 91.6 91.6 91.6
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Figure 5.5: Comparison of actual and predicted traffic using our proposed hybrid model for
OOD dataset.

out any wavelet decomposition and three hybrid model settings with varying mother wavelets.
In addition, we reported results for different feature lengths of 6, 9, 12, and 15.

In the case of the standalone model, the best prediction accuracy of 96.7% we achieved
through the encoder-decoder model with nine features, while RNN performance was compara-
tively poor. When we provided a longer sequence, e.g., 15 features, to train our prediction mod-
els, we noticed that the RNN model failed to capture information very well compared to LSTM
and encoder-decoder model. The prediction accuracy was 96.3% using 15 input variables for
RNN, while LSTM, LSTM Seq2Seq, and LSTM Seq2Seq ATN models, the corresponding
accuracy was 96.6%, 96.7%, and 96.7% respectively. It indicates the inherent vanishing gra-
dient problem of RNN in processing longer sequences which have been solved by introducing
the gate concept in LSTM architecture. On the other hand, LSTM and LSTM encoder-decoder
model performances were very close, and they could retain information from longer sequences,
resulting in better accuracy. However, after evaluating the standalone model, we tested similar
data samples using our proposed hybrid method. The prediction models were trained using
the decomposed detailed and approximate components instead of the original time-series data.
Since real-world internet traffic is very complex and might have an irregular pattern, we pro-
vided the hierarchical signal components to our deep sequence models for better generalization
using unknown samples. As a result, the best prediction accuracy using the hybrid encoder-
decoder model is 98.4% which is 1.7% more than the best standalone model performance.
When we compared the average accuracy of each input setting of the standalone model with
our proposed hybrid model, we noticed more than 1% accuracy improvement for each type of
hybrid model with different wavelets. Furthermore, the dmey wavelet function improved the
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highest average accuracy among three different mother wavelets, while haar gave the lowest
enhancement. However, the haar wavelet function might fail to capture the high-frequency
changes in the high-frequency coefficients as the haar window is only two elements wide. As a
result, it might have performed poorly than the other two wavelets in case of decomposing the
time-series data resulting in lower prediction accuracy.

When we evaluate the performance of standalone conventional prediction models using
dataset B, the average accuracy for different input settings dropped from 96% to 81% for
RNN as shown in Table 5.6. Also, the other three prediction models showed a massive gap
between in-distribution and out-of-distribution average prediction, which are 15%, 27%, and
28% respectively for LSTM, LSTM Seq2Seq, and LSTM Seq2Seq ATN. It indicates a clas-
sical problem of the conventional machine learning model in OOD generalization. However,
the similar dataset B is used to evaluate our hybrid prediction models, where the average per-
formance gap between in-distribution and out-of-distribution evaluation is 9% for RNN dmey,
which was 15% for standalone RNN. Similarly, the other three hybrid models: LSTM dmey,
LSTM Seq2Seq dmey, and LSTM Seq2Seq ATN dmey showed an improved prediction ac-
curacy with respectively 9%, 7%, and 7% gap between in-distribution and out-of-distribution
average prediction. When we compared them with the standalone model performance, we no-
ticed a significant performance enhancement by our hybrid model. For example, the encoder-
decoder model performance gap reduces from 27% to 7%, indicating the wavelet component’s
effectiveness in our framework better to understand the complex pattern of real-world internet
traffic.

Finally, we validated the performance of our proposed model with varying mother wavelet
functions. The original signal has been decomposed into several hierarchical components based
on the wavelet characteristics, ultimately impacting the model’s accuracy. For example, In the
case of haar wavelet, the hybrid RNN model reduces the performance gap from 15% to 10%
when compared with the standalone RNN model. Also, the other three prediction models pro-
vided better accuracy than the standalone model. For example, the LSTM haar model reduces
the performance gap from 15% to 10%. However, considering all models’ performance, we
noticed that the dmey wavelet performance was better than the haar. As mentioned in the
previous section, the haar window is only two elements wide, which might affect the proper
capturing of the high-frequency changes in the high-frequency coefficients. As a result, hy-
brid models with haar wavelet perform lower than dmey wavelet, although their performance
is significantly better than standalone models. Using bior3.7 bi-orthogonal wavelet function
for signal decomposition, our prediction models perform better than haar wavelet and close to
dmey wavelet function. For example, the average accuracy improvement was 6% for out-of-
distributed data using RNN bior3.7 model, similar to RNN dmey. The gap between average
accuracy for LSTM bior3.7, LSTM Seq2Seq bior3.7, and LSTM Seq2Seq ATN bior3.7 was
respectively 10%, 8%, and 8% which is better than haar and very close to dmey wavelet func-
tion.

Finally, we used our hybrid model to evaluate two other unknown datasets, C and D. The
details results are summarized in Table 5.7, and Table 5.8 respectively for dataset C, and D.
In the standalone model, the performance of RNN and LSTM models is relatively similar
across all parameter settings (6, 9, 12, 15), with the LSTM showing a marginal improvement
for dataset C. However, when shifted to a hybrid mode, all models demonstrate a significant
increase in performance, with the highest results achieved by the LSTM Seq2Seq model in
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the bior3.7 hybrid variant. The LSTM Seq2Seq model has a lower performance in standalone
mode but performs better when combined with hybrid techniques, especially the bior3.7 hybrid
type. Interestingly, the addition of an attention mechanism (ATN) in the LSTM Seq2Seq model
doesn’t significantly change the results, suggesting that the main driver of performance in these
settings is the Seq2Seq structure, rather than the attention mechanism.

For dataset D, our findings indicate that the hybrid models, across all network variants,
consistently outperform their standalone counterparts. Notably, the RNN and LSTM mod-
els exhibit similar performance trends, achieving peak performance in the standalone mode
at 85.4 and 85.8, respectively. These models demonstrate a considerable increase in perfor-
mance in the hybrid mode, with RNN peaking at 91.4 under the bior3.7 condition, and LSTM
reaching a high of 91.0, also in the bior3.7 setting. The more complex LSTM Seq2Seq and
LSTM Seq2Seq ATN models display a reduced performance in the standalone mode relative
to the basic RNN and LSTM models. However, they demonstrate robust performance in the
hybrid modes, surpassing the performance of the simpler models. The LSTM Seq2Seq and
LSTM Seq2Seq ATN models achieve the highest overall performance, reaching 91.7 and 91.6
respectively under the bior3.7 condition.

The comparison between actual and predicted traffic by best-performing hybrid deep se-
quence models for different datasets has been depicted in Fig. 5.5. After analyzing all results,
we noticed a general performance improvement for out-of-distributed traffic prediction us-
ing our hybrid models with varying wavelet functions while the standalone model accuracy
dropped significantly when tested with OOD data compared to IID data samples, however,
our proposed model reduces this significant gap into marginal quantity by analyzing the de-
composed hierarchical component of the original time-series data. The results underscore the
performance advantages conferred by hybrid model techniques on various RNN architectures,
particularly the more complex LSTM Seq2Seq and LSTM Seq2Seq ATN models. Our results
indicate an overall more than 10% accuracy improvement by the hybrid model when it is tested
using unknown datasets to the model.

5.5 Conclusion
In this paper, we introduced a novel approach for internet traffic prediction using a hybrid ma-
chine learning model incorporating signal decomposition techniques and deep learning models.
Our approach aimed to overcome the key challenges in internet traffic prediction, namely the
non-linear, non-stationary characteristics of traffic data, and the issue of out-of-distribution
generalization.

Our research demonstrated that traditional machine learning models exhibited high predic-
tion accuracy when trained and tested with data from identical distributions, indicating their
capability to handle non-linear and non-stationary traffic data. However, they faltered when
faced with out-of-distribution data, exhibiting a significant drop in accuracy. In response to this
issue, we proposed a hybrid model that applied wavelet transformation to decompose the orig-
inal time-series data into multiple hierarchical components, allowing our model to capture the
complex underlying patterns in internet traffic. Our hybrid model demonstrated a superior per-
formance over standalone models, achieving a prediction accuracy of 97.4% for in-distribution
data. The model also significantly outperformed standalone models when tested with out-of-
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distribution data, demonstrating an improvement in accuracy of more than 8%, 10%, and 3%
for datasets B, C, and D respectively. The results thus highlighted the effectiveness of the
hybrid model in reducing the performance gap between in-distribution and out-of-distribution
data.

Furthermore, we also explored deep sequence models for internet traffic prediction. Our
proposed hybrid deep sequence models outperformed their standalone counterparts in terms of
prediction accuracy, achieving an accuracy of 98.4% for in-distribution data, and significantly
reducing the performance gap when tested with out-of-distribution data. This research con-
tributes to the field of internet traffic prediction by providing a novel methodology to handle
non-linear, non-stationary data and out-of-distribution generalization. It offers a promising so-
lution for effective and efficient internet traffic prediction, which could pave the way for better
network management and optimization. Nevertheless, future research should focus on improv-
ing the robustness of the proposed model and expanding the application of the model to other
types of non-stationary and non-linear time series data. In addition, the impact of different
wavelet functions on the performance of the hybrid model warrants further exploration. We
hope our work will stimulate further research and development in the field of internet traffic
prediction and beyond.



Chapter 6

Network Intrusion Detection and
Comparative Analysis using Ensemble
Machine Learning and Feature Selection

Abstract: Proper security solutions in the cyber world are crucial for enforcing network se-
curity by providing real-time network protection against network vulnerabilities and data ex-
ploitation. An effective intrusion detection strategy is capable of taking a holistic approach for
protecting critical systems against unauthorized access or attack. In this paper, we describe a
machine learning (ML) based comprehensive security solution for network intrusion detection
using ensemble supervised ML framework and ensemble feature selection methods. In addi-
tion, we provide a comparative analysis of several ML models and feature selection methods.
The goal of this research is to design a generic detection mechanism and achieve higher ac-
curacy with minimal false positive rates (FPR). NSL-KDD, UNSW-NB15, and CICIDS2017
datasets are used in the experiment, and results show that our detection model can identify
99.3% of intrusions successfully with the lowest 0.5% of false alarms, which depicts better
performance metrics compared to existing solutions.

6.1 Introduction

The growing frequency of cyber-attacks is an eminent problem of the modern era. These at-
tacks are detrimental for both individuals and enterprises, and are capable of impacting the
confidentiality, integrity, and availability of critical information that is carried through the net-
work. It is essential for enterprises to protect their networks against intruders, hackers, and
network threats. Therefore, a network system must incorporate several security tools to protect
important data and services from potential threats. The Intrusion Detection System (IDS) is a
software or hardware implementation for screening vindictive movement or strategy infringe-
ment in the network. It monitors the malicious activity or security violation within the network
and notifies the administrator of potential threats. Cyber-attacks are becoming pernicious day
by day. In order to keep pace with the constantly changing cyber threats, modern networked
business environments require a high level of security for safe and trusted communication of
information between organizations. Traditional IDSs (Signature-based and Anomaly-based)
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are not adequately designed to adapt to the continuously changing patterns of network intru-
sion. Incorporating artificial intelligence within the IDS has the potential to cope with the new
attack patterns and to ensure network security.

In the last few decades, machine learning (ML), a subset of artificial intelligence, has been
used extensively to improve intrusion detection by enabling automation and prediction on an
advanced level. ML techniques enable dealing with the modifiable, reproducible, and extensi-
ble datasets. These techniques help IDSs to become robust by learning and tackling seen and
unseen attacks. In addition, a single ML model may not always predict accurately, whereas
a combination of ML models (ensemble ML) detect more precisely. Dietterich et al., [100]
mentioned that ensemble ML classifiers outperform individual classifiers in solving various
classification problems. Besides, Feature Selection (FS) is a process of selecting a subset of
appropriate and relevant features from a large feature space. It plays a vital role in achieving
higher accuracy as well as minimizing the model training time. The challenges of feature opti-
mization and designing IDSs with the best suitable ML techniques motivated us to investigate
the performances of various FS methods. Also, we were motivated to explore the ensemble
techniques for feature selection and model classification as it consider several candidates’ de-
cisions for optimization rather than individual choices.

In this research, we have extended our existing work [101] and implemented a supervised
ensemble ML framework (SupEnML) by combining multiple ML classifiers from various clas-
sification families such as Decision Tree, Logistic regression, Naı̈ve Bayes, Neural Network,
Support Vector Machine for network intrusion detection. Furthermore, the ensemble fea-
ture selection (EnFS) technique has been incorporated inside the classification procedure of
this framework. This EnFS technique combines three major FS method types (Filter-based,
Wrapper-based and Embedded methods) for feature selection such as Chi-squared, Mutual In-
formation, Pearson Correlation, SFPR, Logistic Regression with L1 penalty, Random Forests,
ANOVA, Recursive Feature Elimination, and LASSO. The yielded features are ensembled with
majority voting and resulted in an optimized set of features. After getting the feature set, both
individual and ensemble classification have been performed using the SupEnML framework.
This study shows comparative performance analysis of single models (built from individual
classifications) and ensemble models (built from ensemble classifications). Three benchmark
intrusion detection datasets: NSL-KDD [102], UNSW-NB15 [103], and CICIDS2017 [104]
are used for the experimentation, where the outcome displays significant improvement of per-
formance in terms of the accuracy and false-positive rate for our ensemble-based approach.
The proposed approach detects network intrusion more accurately and efficiently than existing
ML-based intrusion detection methods mentioned in the literature [105], [106], [107], [108].
The rest of the chapter is organized as follows: Section 6.2 discusses the previous state-of-
the-art approach to developing NIDS with AI techniques. The proposed framework for de-
tecting cyberattacks using ensemble techniques is briefly discussed in Section 6.3. Section 6.4
presents and discusses the experimental results of the proposed framework. Finally, section 6.5
concludes the paper with future directions.
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6.2 Literature Review

Machine Learning (ML) algorithms focus on the development of computer programs with the
system’s ability to automatically acquire and improve functionality without human interven-
tion. Tsai et al., [109] reviewed 55 papers on intrusion detection using ML and performed a
comparative analysis of algorithms and datasets used. Mukkamala et al., [110] performed a
comparative analysis on artificial neural network, support vector machine, and the ensemble of
these two models. They concluded that the ensemble classifier outperformed these single clas-
sifiers in detecting intrusions. Chebrolu et al., [111] proposed a lightweight intrusion detection
technique using two feature selection methods and ensemble learning. Amiri et al., [112] stud-
ied the effect of feature selection and proposed a modified mutual information-based feature
selection method (MMIFS) using the KDD cup 99 data set. Deep learning based detection
system is becoming promising now a days. Vinayakumar, Ravi, et al., [113] proposed a highly
scalable and hybrid DNNs framework which is capable of detecting real-time cyberattacks
by monitoring network traffic and host level events. These authors have also examined and
evaluated the effectiveness of various shallow and deep networks for Network Intrusion De-
tection Systems (NIDS) in a different research [114]. Both research have been evaluated with
the KDDCup’ 99 dataset. Moreover, Vinayakumar, Ravi, et al., [115] have proposed a deep
learning-based botnet detection system for detecting and classifying domain names, and this
system can be deployed at the ISP level for monitoring IoT devices.

Gomes et al., [116] proposed a taxonomy of ensemble methods for data stream classifi-
cation, identified open-source tools, and discussed the upcoming trends in ensemble learning.
Sagi, Omer, and Lior Rokach [117] reviewed the major approaches and techniques for ensem-
ble learning and discussed the future trends, including refinement of popular algorithms for
big data compatibility, model transformation into a more straightforward form, and integration
with deep neural networks. Gao et al., [105] designed an ensemble adaptive voting algorithm
to improve the detection accuracy using the NSL-KDD dataset and compared it with their con-
structed MultiTree algorithm. Tu Pham et al., [106] proposed an improved IDS using limited
FS (25 subsets and 35 subsets of features) and ensemble models based on bagging and boosting
techniques which depicted high accuracy for the NSL-KDD dataset. Das et al., [101] designed
an ensemble framework for supervised classifiers, which accomplishes an immense increase in
accuracy for detecting DDoS attacks based on four ML classifiers. Kittler et al., [118] devel-
oped a theoretical framework for classifier combination schemes, and analyzed the sensitivity
of these schemes to the estimated errors, especially for sum rule.

To improve the ML algorithm’s efficiency, feature selection (FS) plays a vital role during
the preprocessing phases by removing unwanted and irrelevant features. Chandrashekhar and
Sahin [119] provided a thorough study on the FS technique that demonstrates improved perfor-
mance in analyzing standard and RF generator datasets with supervised learning. Sheikhpour et
al., [120] investigated the semi-supervised FS methods that use both labeled and unlabeled data
and illustrated two taxonomies based on a hierarchical structure. Khalid et al., [125] performed
a detailed survey on feature selection and extraction to reduce dimensionality for improved data
analysis. Luis et al., [126] proposed an evaluation technique to determine the correct usage of
feature selection algorithms based on a scoring measure and explained the particularities of
relevance, irrelevance, and redundancy. Adams and Beling [127] performed a survey on FS
methods for Gaussian mixture models (GMM) and hidden Markov models (HMM), demon-
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Table 6.1: A Comparative Analysis of the Study of Literature Review.
Classification
Method

Feature selec-
tion method

Pre-processing Pros Cons Dataset

Ensemble [110] Not mentioned Not mentioned Comparative analysis
and proposed two en-
semble methods

Experiment is done on
one dataset only.

DARPA,
KDD-
Cup’99

Supervised [111] Not mentioned Not mentioned Suitable for specific
intrusion detection

No preprocessing and
not as a general purpose
IDS

DARPA,
KDD-
Cup’99

Supervised [112] Modified
Mutual Infor-
mation

FS methods for
preprocessing

Proposed two FS
method and performed
comparative analysis

Experiment is done on
one dataset only.

KDDCup’
99

Deep Learn-
ing [113],
[114], [115]

Deep learning Levenshtein
distance func-
tion

They examine the ef-
fectiveness of shallow
and deep networks to
NIDS. Highly scalable
with real time data
processing

Training was not
done using advanced
hardware through dis-
tributed approach

KDDCup
99, NSL-
KDD,
UNSW-
NB15,
Kyoto,
WSN-
DS, and
CICIDS
2017

Ensemble [105] Not mentioned One hot encod-
ing, PCA, scal-
ing

Ensemble model ef-
fectively improves de-
tection accuracy.

No FS method is ap-
plied

NSL-
KDD

Ensemble [106] Leave-one-out
techniques and
NB, Gain Ratio

FS methods for
preprocessing

Achieved high accu-
racy and low false
alarm rate (FAR)

Experiment is done on
one dataset only.

NSL-
KDD

Ensemble [101] Existing meth-
ods

MinMax,
transformed,
normalized

DDoS attack detection
with higher accuracy

only one dataset was
used to evaluate the
built classifiers.

NSL-
KDD

Supervised [119] Filter, Wrap-
per, Embedded
method

PCA, FFT Providing overall view
for supervised feature
selection method with
comparison.

Unsupervised learning
methods are not cov-
ered.

Breast
cancer,
Diabetes,
Iono-
sphere,
Liver
disor-
der,Medical,Fault
mode

Supervised [120] Filter, Wrap-
per, Embedded
method

PCA Two taxonomies of
semi-supervised fea-
ture selection methods
presented

The have’nt provided
the solution for regres-
sion problems.

WDBC,
WBCD,
Diabetes

Supervised [121] Combination
of SVM, DT,
and SA

Not mentioned Obtained decision
rules for detecting
new attacks

Experiment is done on
one dataset only.

KDDCup’99

Supervised [122] Info gain
Gain ratio
Chi-squared
ReliefF

EMFS Ensemble-based
multi-filter feature
selection method pro-
vides better accuracy
with less complexity.

Needs to incorporate
more dataset and algo-
rithm.

NSL-
KDD

Ensemble [123] EnFS MinMax,sanitized,
transformed,
normalized

Not mentioned NSL-KDD

Ensemble,
Unsuper-
vised [124]

Not mentioned Non numeric
to numeric
conversion

Detects DDoS attack
using ensemble clas-
sifiers and a reduced
feature dataset.

Not mentioned NSL-
KDD
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strating that FS methods developed for GMM can be adapted for HMM and vice versa. Lin et
al., [121] performed research on intrusion detection using the KDD’99 dataset and proposed
an intelligent algorithm with the FS method. Osanaiye et al., [122] came up with an ensemble-
based multi-filtered feature selection technique combining four filter-based FS methods. The
technique generated important features from the selected algorithm with higher accuracy for
the NSL-KDD dataset. Das et al., [123] proposed an ensemble framework for FS methods
to produce an optimal set of features and performed a comparative analysis of the existing
approaches in terms of accuracy and false alarms using the NSL-KDD dataset.

In a nutshell, the literature study indicates that the ensemble technique can be broadly
applied in feature selection and model classification to obtain better outcomes in intrusion
detection. We have found that the researchers were focused on detecting specific cyber-attack
from a particular dataset. Here, the goal of our research is to provide a generic intrusion
detection framework with higher accuracy using various anomalous datasets, like NSL-KDD,
UNSW-NB15 and CICIDS2017. As the critical features are important in model classification,
we have increased the number of FS methods in comparison to earlier research. We also
ensemble filter-based, wrapper-based, and embedded FS methods in our EnFS framework.
Finally, we have incorporated ensemble feature selection (EnFS) with ensemble classification
(SupEnML) to get better accuracy with minimal false alarms.

6.3 Proposed Methodology
This section provides an overview of our proposed methodology. The detailed architecture
illustrating the process flow is given in Fig. 6.1 and 6.2. The methodology is divided into five
main phases, namely a) data collection, b) data preprocessing, c) ensemble feature selection,
d) model classification, and e) anomaly detection.

6.3.1 Data Collection
The performance of a machine learning model largely depends on the quality of the data used
for model training. The data contain relevant information of the problem domain and need
to be cleaned for further analysis. Here, we use three well-known datasets from different
research organizations to train, test, and verify our proposed framework, and they are NSL-
KDD, CICIDS2017, and UNSW-NB15 from the Canadian Institute of Cybersecurity and the
University of New South Wales. Apart from dividing the dataset into train and test data, we
have a third portion of the dataset that we call the ‘verification data’. This verification data
mimics the real time data and is used to verify our proposed model within the IDS.

6.3.2 Data Preprocessing
The crude datasets need to be cleaned, sanitized, transformed, normalized, and feature reduced
before feeding the ML classifiers. To clean and sanitize the dataset, we remove the rows con-
taining ‘,’ or ‘inf’ values. For the CICIDS2017 dataset, the single space before each of the
feature names was stripped. We also deleted the column ‘id’ in the UNSW-NB15 dataset. As
the ML models can handle numeric input, we converted the non-numeric data into numeric
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Figure 6.1: High-level framework of our proposed ensemble machine learning model for in-
trusion detection.

using the data encoding technique for all three datasets. Though level encoding and OneHot
encoding are two well known data transformation techniques, we haven’t used them as they
increase the data dimensionality and do not provide feature names. Instead, we performed this
conversion using our algorithm. To normalize the data, we use the MinMax scaling technique
that fits the wide range of values within a scale ranging from 0 to 1.

We separated benign and attack data instances from the training datasets provided by the
repositories mentioned above. We used supervised methods that perform better with a balanced
dataset. To make a training dataset balanced, we first chose the data type (benign or attack)
with the minimum count of data instances within that training dataset. Using this minimum
count, we have taken almost the same amount of normal (benign) and anomalous (attack) data
instances to prepare a balanced training set for NSL-KDD and UNSW-NB15 datasets. The
original amount of testing data instances were considered for preparing the testing set for these
datasets. However, the CICIDS2017 dataset doesn’t have separate training and testing sets. To
prepare a balanced dataset, we followed the same procedure as with the two datasets. Then
it was split in a 75 to 25 ratio where 75% are training data, and 25% are testing data. The
numbers of benign and attack data in the three datasets are shown in TABLE 6.2.
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Figure 6.2: Ensemble feature selection approach (EnFS) using majority voting.

6.3.3 Ensemble Feature Selection (EnFS)

Ensemble feature selection is a process of identifying the best feature subset based on the
majority voting technique. The process is illustrated in Fig. 6.2, where we use nine individual
FS methods. Afterwards, we rank the features according to majority voting where more than
half of the FS methods select the features. The major contributions of this research are to
use several feature selection algorithms, perform a comparative analysis among them, and
ensemble them using majority voting. Based on the performances, we have chosen the top
nine FS methods from a list of fifteen well-known methods. They are Anova, Chi-squared,
LASSO, Logistic Regression with L1 Penalty, Random Forest, Recursive Feature Elimination,
Pearson Correlation, Mutual Information, and SFPR. First, we used these feature selection
methods to find the optimal feature sets, and the ensemble supervised framework trained five
individual and six ensemble models for performance analysis using these feature sets. We
tuned the feature selection methods using several feature counts, like 5, 10, 15, 20, 25, 30,
and full set. In most of the cases for all three datasets, feature count 20 generated the optimal
feature sets that produced the best results among them. Then we combined all nine feature sets
using a majority voting technique and generated a minimal number of features. All features
i.e.; nine feature sets from nine FS methods, feature set from EnFS approach, and a full set of
features are used to train the models listed in ensemble supervised framework (SupEnML) for
analysis purposes.

6.3.4 Model Classification

In our proposed ensemble supervised ML framework, we perform two-stage classification us-
ing individual and ensemble classifiers sequentially to discern anomalies from the datasets. We
train five supervised individual models, such as Logistic regression (LR), Decision tree (DT),
Naı̈ve Bayes (NB), Neural network (NN), and Support vector machine (SVM) using the train-
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Table 6.2: Data Instances for NSL-KDD, UNSW-NB15, and CICIDS2017 Datasets Used in
Experiment.

Dataset
Training Testing Verification

Total Benign Attack Total Benign Attack Total Benign Attack
NSL-KDD 125974 67343 58630 22544 12833 9711 1000 200 800

UNSW-NB15 112000 56000 56000 70000 35000 35000 1000 200 800
CICIDS2017 75000 38000 38000 25000 13000 12000 1000 200 800

Table 6.3: Hyper-Parameter Values Used for Different Individual and Ensemble Classifiers.

Classifier Short Hyper-parameter Values
Names

Supervised Logistic Regression LR random state=0, solver=‘lbfgs’,
Models multi class=‘multinomial’

Decision Tree DT default parameters
Naı̈ve Bayes NB alpha=1.0, binarize=0.0,

fit prior=True, class prior=None
Neural Network NN solver=‘lbfgs’, alpha=1e-5,

hidden layer sizes=(5, 2), random state=1
Support Vector SVM C=1.0, kernel=‘rbf’, degree=3, gamma=‘scale’,
Machine coef0=0.0, shrinking=True, probability=True

Ensemble Majority Voting Ens MV none
Models Decision Tree Ens DT default parameters

Naı̈ve Bayes Ens-NB alpha=1.0, binarize=0.0,
fit prior=True, class prior=None

Logistic Regresion Ens LR random state=0, solver=‘lbfgs’,
multi class=‘multinomial’

Neural Network Ens NN solver=‘lbfgs’, alpha=1e-5, novelty=True
hidden layer sizes=(5, 2), random state=1

Support Vector Ens SVM C=1.0, kernel=‘rbf’, degree=3, gamma=‘scale’,
Machine coef0=0.0, shrinking=True, probability=True
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ing data. These models are tested using the testing data, and the corresponding test outputs (e.g;
1 for anomalous, 0 for benign) generate a prediction matrix. Appended by the label from test-
ing data, this prediction matrix forms the data for ensemble classifiers. This dataset is divided
into training and testing data with a ratio of 70 to 30. Then we train and test six ensemble clas-
sifiers, namely Ensemble majority voting (Ens MV), Ensemble logistic regression (Ens LR),
Ensemble naive bayes (Ens NB), Ensemble neural network (Ens NN), Ensemble decision tree
(Ens DT), and Ensemble support vector machine (Ens SVM). We tuned the hyper-parameters
of these classifiers using a grid search algorithm to obtain the best valued hyper-parameters
that are listed in our paper earlier [124]. We have performed 10-fold cross-validation during
the model training time over a randomly divided dataset to avoid the model overfitting. After a
comparative performance analysis of these eleven models using the evaluation metrics, the best
performing model is obtained for anomaly detection. The mechanism of combining individual
classifiers using the ensemble technique is illustrated in Fig. 6.1.

Figure 6.3: Ensemble machine learning framework as the detection technique of an IDS.

6.3.5 Anomaly Detection

In the real world, an IDS as shown in Fig. 6.3 can be placed at the gateway in a secured
network. The IDS consists of sensors and an audit data preprocessor, to convert the incoming
traffic into activity data. We use ‘Verification data’ to mimic the real time data stream. The best
performing model obtained from the ensemble supervised framework is used as the detection
model of the IDS. The detection model within the detection engine analyzes the verification
data and identifies the data as anomaly or benign. Afterwards, based on the rules from the
decision table, the decision engine takes necessary actions and reports the network admin about
the potential threat.
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6.3.6 Proposed Algorithm
We implement an ensemble feature selection and ensemble classification algorithm to improve
the overall performance of our proposed machine learning model. As defined in Algorithm 1, it
takes input as features and targets for training and testing purposes of our classification models.
We initialize a list of feature selection methods, machine learning models for individual classi-
fication, machine learning models for ensemble classification, and the number of best features
as shown between lines 1 to 8. Also, the data structure for storing the individual model predic-
tion result has been initialized here. The ensemble feature selection and classification approach
execute for all considered best feature sets controlled by the outer loop in line number 9. The
k-best features extracted by individual feature selection algorithms have been stored between
lines 11 to 14 for ensembling them later. We use the training features and target to extract the
best feature set from the dataset. The ensemble feature set has been calculated based on the
majority voting technique, i.e.,a feature is essential when it is selected by at least half of the
feature selection algorithm. The code block starting from line number 15 to 20 executes to
identify the ensemble feature set, and it is the end of the ensemble feature selection part of our
algorithm. The ensemble classification part of the algorithm has started from line number 21,
where the code block from line number 21 to 27 trains our machine learning models and stores
the classification result in the data structure initialized at the beginning of the algorithm. The
accumulated result has been used as our new dataset where features are the individual classi-
fication results, and the target is the ground truth from the dataset. The new dataset has been
trained and classified again by all machine learning models considered for our experiment, and
it shows in between line numbers 30 to 34. Finally, we analyze the result at line number 35 to
evaluate the performance of the individual classifier to identify the best-performing model.

6.4 Analysis of Experimental Results

6.4.1 Software and Hardware Preliminaries
We have used Python and the machine learning library scikit-learn [128] to conduct the ex-
periments in computers with the configuration of Intel®CORE™i5-6600K CPU@3.50GHz,
8GB memory & 64-bit Ubuntu operating system, and Intel (R) i5-5250U CPU@1.6GHz, 4GB
memory & MacOS operating system.

6.4.2 Datasets
In this research, three intrusion detection benchmark datasets are used to perform all of the
experiments. Details of these datasets are as follows:

NSL-KDD: NSL-KDD [102] dataset is the improved version of the KDD’99 dataset pro-
posed by the Canadian Institute of Cybersecurity and is widely used for detecting network
intrusion. It comprises 41 features and a class label to describe 39 common cyberattacks.

UNSW-NB15: The Cyber Range Lab of the Australian Centre for Cyber Security created
the UNSW-NB15 dataset [103] using the IXIA PerfectStorm tool. They captured 100 GB of
raw traffic that consists of nine types of cyberattacks. The dataset has a total of 49 features with
a class label.
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CICIDS2017: The Canadian Institute for Cybersecurity generated the CICIDS2017 [104]
dataset that represents recent day cyber-attacks by analyzing network traffic using CICFlowMe-
ter. This benchmark dataset exclusively covers 11 necessary criteria that make it reliable to
cybersecurity data analysts.

6.4.3 Evaluation Metrics

In this research, well established evaluation metrics are required to find the best performing
model which can be incorporated within an IDS. Sensitivity, specificity, accuracy, precision,
recall, and f-measure are the well-known performance evaluation metrics. These are derived
from four basic terms, such as true positive, false positive, true negative, and false negative
rates. The evaluation metrics are defined as follows:

1. Accuracy [(T P + T N)/Total]: the percentage of true DDoS detection over total data
instances.

2. Precision [T P/(FP + T P)]: is the measurement of how often the model correctly identi-
fies a DDoS attack.

3. False Positive Rate (FPR) [FP/(FP + T N)]: indicates how often the model raise a false
alarm by identifying a benign as a DDoS attack.

4. Recall [T P/(FN+T P)]: is the measurement of how many of the DDoS attacks the model
does identify correctly. Recall is also known as true-positive rate, sensitivity, or DDoS
detection rate,

5. F1-Score [2T P/(2T N + FP + FN)]: is the harmonic average of precision and recall.

Additionally, ROC curve is used to portrait the relationship between the True Positive and
False Positive rates.

6.4.4 Discussion of Results

In this section, we describe the results obtained from our experiments. As mentioned earlier,
we have performed similar experiments with three datasets, NSL-KDD, UNSW-NB15 and
CICIDS2017, in two phases: feature selection and data modeling.

TABLE I, II and III listed in the above mentioned URL show the features versus feature
selection methods for NSL-KDD, UNSW-NB15 and CICIDS2017, respectively, where 1 rep-
resents a feature (in a row) is selected by a corresponding FS method (in a column) and 0
represents not selected. The last column counts the total selection by the FS methods for a
single feature. The features are listed in a descending order of total count value. As we have
used nine FS methods, majority wins when the count is greater than 4.5 (i.e; 5). The count
values for the features below 5 are discarded from the feature list and are not shown on these
tables. This majority voting technique is used to select a total of 20 out of 43, 19 out of 42, and
22 out of 80 optimized features from NSL-KDD, UNSW-NB15, and CICIDS2017 datasets,
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Table 6.4: Best Performing Results Using Nine Feature Sets, Full Feature Sets and Ensemble
Feature Sets for NSL-KDD Dataset.
Feature Sets Classifier F-1 Accuracy Precision Recall FPR ROC auc Elp time

Full Set Ens DT 0.825 0.823 0.945 0.732 0.057 0.889 0.209
Anova Ens LR 0.884 0.877 0.96 0.819 0.045 0.895 0.296
Chi-2 Ens LR 0.887 0.881 0.959 0.826 0.046 0.898 0.278
Lasso Ens DT 0.85 0.846 0.959 0.763 0.043 0.871 0.238
LRL1 Ens DT 0.832 0.831 0.959 0.735 0.041 0.857 0.263
MutInfo Ens NB 0.86 0.853 0.938 0.795 0.07 0.841 0.211
Pearson Ens LR 0.884 0.877 0.96 0.818 0.045 0.895 0.3
RF Ens NN 0.818 0.819 0.953 0.717 0.047 0.843 1.455
RFE Ens DT 0.805 0.807 0.952 0.697 0.046 0.835 0.232
SFPR Ens DT 0.832 0.829 0.945 0.743 0.057 0.858 0.509
EnFS Ens NB 0.887 0.881 0.959 0.826 0.046 0.892 0.234

respectively. Our proposed EnFS technique significantly reduces the feature set for classifi-
cation model by 53.5%, 54.8%, and 72.5 % respectively for NSL-KDD, UNSW-NB15, and
CICIDS2017 dataset.

From each of these three datasets, eleven feature sets are extracted: nine of them are from
nine individual FS methods, a feature set from ensemble feature selection framework, and the
full feature set (i.e., no feature selection was applied). Using these eleven feature sets, we
trained and tested our classifiers which are listed in ensemble supervised framework. For each
feature set, the ensemble supervised framework is used to train five individual models and
six ensemble models. Therefore, a total of 121 models are generated for eleven feature sets.
After analyzing the performances of the eleven trained models for each feature set in terms
of F-1 score, FPR and training time (Elp time as elapsed time in tables), the best performing
models are listed in TABLE 6.4, 6.5 and 6.6 for NSL-KDD, UNSW-NB15 and CICIDS2017
dataset, respectively. Our experimental results shows an out-performance of proposed ensem-
ble classification model in comparison with the individual classifier. In case of NSL-KDD
and CICIDS2017 dataset, our proposed SupEnFS framework shows 100% better classification
accuracy for all individual and ensemble feature set while 7 out of 11 (63.3%) best perform-
ing classifier were our proposed ensemble machine learning model for UNSW-NB15 dataset.
Overall, our proposed ensemble classification model outperform than the individual classifica-
tion model for all datasets in the experiments.

From TABLE 6.4, a better performance measure in terms of F-1 (0.825), Accuracy (0.881),
Precision (0.959), Recall (0.826), False Positive Rate (0.046), etc. is achieved using our EnFS
method compared to any individual FS method except Chi-square. However, our EnFS method
requires comparatively smaller training time (0.234 Sec.) than that for Chi-square (0.278 Sec.).
The graphical representation of this table is illustrated in Fig. 6.4 (a). From this bar chart, it
is clear that the bunch of bars at the rightmost side which is for EnFS is found better compared
to any other bunches. Fig. 6.4 (b) represents the ROC curves for all 11 models using EnFS
feature set for NSL-KDD dataset.

TABLE 6.5 shows a better performance measure in terms of Accuracy (0.881), Precision
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(a) Performance analysis.

(b) ROC curves.

Figure 6.4: a) Comparative performance analysis using nine feature sets, full feature sets and
ensemble feature sets for NSL-KDD dataset, b) ROC curves for ensemble feature selection
using NSL-KDD datasets.

(0.808), False Positive Rate (0.22), etc. except the similar F-1 score (0.867) with the Chi-
squared and Recall (0.935) deviation of 0.064 from the best score (0.999 for SFPR and RFE)
using our EnFS method compared to any individual FS method. The table is graphically rep-
resented in Fig. 6.5 (a) in order to visualize the performances of all FS methods. Fig. 6.5 (b)
represents the ROC curves for all 11 models using EnFS feature set for UNSW-NB15 dataset,
where Ens NN model shows the best auc value.

In TABLE 6.6, we see the better performance measure in terms of F-1 (0.995), Accuracy
(0.995), Precision (0.995), Recall (0.996), False Positive Rate (0.006), etc. using our EnFS
method compared to any individual FS method except the LASSO method, which has lesser
FPR (0.005) than that for the EnFS method (0.006). Fig. 6.6 (a) shows the visual representation
of the table. In Fig. 6.6 (b), we see the ROC curves for all 11 models using EnFS feature set
for CICIDS2017 dataset.

From TABLE 6.4, 6.5, and 6.6, it is clear that Chi-squared and LASSO methods generate
equal or better performances for some metrics like, FPR in CICIDS and Recall in UNSW-NB15
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Table 6.5: Best Performing Results Using Nine Feature Sets, Full Feature Sets and Ensemble
Feature Sets for UNSW-NB15 Dataset.
Feature Set Classifier F-1 Accuracy Precision Recall FPR ROC auc Elp time

Full Set Ens DT 0.839 0.813 0.735 0.977 0.348 0.815 0.241
Anova Ens DT 0.864 0.853 0.798 0.942 0.235 0.853 0.242
Chi-2 DT 0.867 0.856 0.802 0.944 0.233 0.856 1.196
Lasso Ens SVM 0.805 0.789 0.743 0.879 0.3 0.79 301.68
LRL1 Ens DT 0.821 0.801 0.742 0.919 0.316 0.802 0.245
MutInfo Ens DT 0.835 0.808 0.727 0.98 0.363 0.809 0.242
Pearson DT 0.863 0.85 0.794 0.946 0.246 0.85 1.193
RF Ens SVM 0.789 0.776 0.741 0.844 0.291 0.776 315.367
RFE NN 0.828 0.792 0.706 0.999 0.415 0.792 14.363
SFPR SVM 0.828 0.792 0.706 0.999 0.416 0.792 6681.006
EnFS Ens NN 0.867 0.857 0.808 0.935 0.22 0.858 6.019

Table 6.6: Best Performing Results Using Nine Feature Sets, Full Feature Sets and Ensemble
Feature Sets for CICIDS2017 Dataset.
Feature Set Classifier F-1 Accuracy Precision Recall FPR ROC auc Elp time

Full Set Ens DT 0.945 0.942 0.941 0.948 0.063 0.978 0.105
Anova Ens DT 0.892 0.884 0.861 0.925 0.16 0.955 0.102
Chi-2 Ens DT 0.938 0.933 0.9 0.978 0.116 0.961 0.103
Lasso Ens DT 0.995 0.995 0.995 0.995 0.005 0.998 0.1
LRL1 Ens DT 0.94 0.936 0.907 0.975 0.106 0.967 0.103
MutInfo Ens DT 0.945 0.944 0.965 0.925 0.036 0.97 0.101
Pearson Ens DT 0.892 0.884 0.861 0.925 0.16 0.955 0.101
RF Ens DT 0.92 0.92 0.944 0.898 0.057 0.969 0.102
RFE Ens DT 0.946 0.946 0.985 0.911 0.015 0.982 0.101
SFPR Ens SVM 0.94 0.935 0.904 0.978 0.111 0.953 4.037
EnFS Ens NN 0.995 0.995 0.995 0.996 0.006 0.998 0.286
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(a) Performance analysis.

(b) ROC curves.

Figure 6.5: a) Comparative performance analysis using nine feature sets, full feature sets and
ensemble feature sets for UNSW-NB15 dataset, b) ROC curves for ensemble feature selection
using UNSW-NB15 datasets.

dataset but not for all performance metrics when compared with our EnFS method. On the
other hand, our EnFS method always yields better performances for most of the performance
metrics and especially in case of classification accuracy and F1-score which is very crucial for
any machine learning based IDS.

Comparing TABLE 6.4, 6.5 and 6.6, and Fig. 6.4, 6.5, and 6.6, we can summarize that
the feature set obtained from the EnFS framework provides the best performances in terms of
F-1 score and Accuracy for all experimental setups. Also the FPR (False Positive Rate) was
better for most of the dataset (2 out of 3) where for CICIDS2017 dataset the FPR was a slightly
lower (0.001) than the best FPR (0.006). From these tables, it is also clear that our proposed
ensemble classification models (i.e., the Classifier in the tables that starts with Ens ) outper-
form single models for more than 85% (29 classification model out of total 33 model) of our
experimental models. So, it is very clear from extensive experimental result that our proposed
ensemble feature selection (EnFS) based SupEnML, an anomaly classification framework, gen-
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(a) Performance analysis.

(b) ROC curves.

Figure 6.6: a) Comparative performance analysis using nine feature sets, full feature sets and
ensemble feature sets for CICIDS2017 dataset, b) ROC curves for ensemble feature selection
using CICIDS2017 datasets.

erally perform better than the individual feature selection and classification approach. As per
our knowledge, we have come across a very few existing related works on either ensemble
classification or feature selection research, and results are not produced for similar datasets
that we have used. Therefore, we were unable to provide a detailed comparison between our
methods and results with the existing related works. However, we have added a comparison of
the results from any of the three datasets irrespective of existing works’ ensemble techniques
which is summarized in TABLE 6.7.

Furthermore, we verified the best performing models for each datasets obtained from our
proposed methods using the verification data consisting of 1000 instances. Among these in-
stances, 800 of them are attacks and 200 are benign. Table 6.8 shows the performances of
three best models using the verification data. From the table, we observe that the performance
measures are almost the same with the results of EnFS from TABLE 6.4, 6.5, and 6.6.
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Table 6.7: A Performance Comparison of Our Method Compared to Existing Methods.
Method Ensemble feature

Selection
Ensemble machine
learning

Verification
Dataset

Best performance (Accuracy)

Ensemble,
[105]

Not implemented Adaptive voting NSL-KDD 85.2%

Ensemble,
[106]

Not implemented Bagging (Base
classifier - J48)

NSL-KDD 84.25%

Ensemble,
[107]

Not implemented DAREnsemble NSL-KDD 78.8%

SVM,
[108]

Not Implemented Not Implemented NSL-KDD 82.68%

Deep
Learn-
ing,
[113],
[114], [115]

Not Implemented Not Implemented NSL-KDD, KDD-
Cup 99, UNSW-
NB15, WSN-DS,
CICIDS 2017

NSL-KDD (DNN): 78.9%,
UNSWNB-15 (DNN): 78.4%,
CICIDS 2017 (DNN): 96.3%, NSL-
KDD (ML): 93.4%, UNSWNB-15
(ML): 90.3%, CICIDS 2017 (ML):
94.1%

Our
work

EnFS SupEnML NSL-KDD,
UNSWNB-15
CICIDS

NSL-KDD: 88.1%, UNSWNB-15:
85.7%, CICIDS 2017: 99.5%

Table 6.8: Verified the Best Performing Models’ Performances Using Verification Set for Three
Datasets.

Dataset Best Model
Instances Predicted Results

F-1
Score

Accuracy Precision Recall FPRAttack Benign Attack Benign
TP FP TN FN

NSL-KDD Ens NB 800 200 640 9 191 160 0.883 0.831 0.986 0.8 0.04
UNSW-NB15 Ens NN 800 200 618 21 179 182 0.859 0.797 0.967 0.773 0.105
CICIDS2017 Ens NN 800 200 790 1 199 10 0.993 0.989 0.999 0.988 0.005
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6.5 Conclusion
Typically, the network anomalies can be detected using an intrusion detection system (IDS).
In this research, we have combined ensemble feature selection and ensemble machine learning
approaches as the detection mechanism within an IDS to detect the network anomalies. For
the ensemble feature selection framework, we first have experimented with the feature sets ob-
tained from nine feature selection methods and then have combined these feature sets to get the
minimal number of features using majority voting. Our experiments demonstrate that the fea-
ture set obtained from the EnFS approach has better outcomes compared to any individual FS
method. In addition, we have used this feature set in our ensemble supervised ML framework
to find the best performing model which can be incorporated into any IDS. A total of eleven
feature sets (nine from nine different FS methods, a feature set from EnFS, and a full set of
features) have been used for the experimentation. We have also performed a comparative anal-
ysis among these feature sets where the EnFS set outperforms individual feature sets in most
cases. Moreover, for each feature set, we have used our ensemble supervised ML framework to
train eleven models (five individual and six ensemble models). Almost 80% of ensemble mod-
els outperform single models. For this extensive experimentation, we have used NSL-KDD,
UNSW-NB15, and CICSIDS2017 datasets.

Using a full set of data instances for all three datasets can exact a toll in terms of longer
experimentation runtime. Therefore, sometimes we have used a reduced amount of data for
training purposes to boost the simulation time, and thus compromising the probability of a
near-perfect performance. In future, we plan to incorporate the full amount of data as well as
new datasets (including other domains) to verify the efficiency of our method. Furthermore,
we plan to consider unsupervised learning with our ensemble classification which will solidify
our method. In addition, adversarial machine learning (AML) can be added as an extension of
our research in the future to remove the malicious adversaries by enabling safe adoption of the
ML techniques in adversarial settings, and thus to retain the whole system security [129].



Chapter 7

ENIDS: A Hybrid Model Using Stacking
Ensemble and Deep Learning for Network
Intrusion Detection and Classification of
Cyber-Attacks

Abstract: Rapid and widespread adoption of emerging Information Technology (IT) infras-
tructures and services in commercial and private endeavors opens new horizons for novel
cyberattacks. Network Intrusion Detection Systems (NIDS) gained attention as an effective
means of combating various cyber threats. Recent research demonstrates the potency of ma-
chine learning (ML) and deep learning (DL) approaches in the development of NIDS. In this
study, we propose a DL-based framework called the Ensemble approach for Network Intru-
sion Detection System (ENIDS) to detect various types of cyberattacks, which includes dy-
namic data pre-processing, optimal feature selection, the handling of imbalanced data samples,
and a DL-based ensemble model. Our DL-based ensemble model is comprised of two lay-
ers: the base learner and the meta-learner. The base learner is composed of three robust DL
models: convolutional neural networks (CNN), long short-term memory (LSTM), and gated
recurrent units (GRU), and the meta-learner is a deep neural network (DNN) model. The
proposed framework experimented with two publicly available and popular network traffic
datasets, namely UNSW-15 and CICIDS-2017. In the UNSW-15 and CICIDS-2017 datasets,
our proposed framework detects cyberattacks with an accuracy of 90.6% and 99.6% and an
f1-score of 90.5% and 99.6%, respectively. According to experimental findings, the proposed
ensemble framework outperforms existing state-of-the-art approaches and demonstrates better
performance than benchmark DL methods in terms of accuracy, f1-score, and execution time
for training and testing.

7.1 Introduction
IT infrastructures have been expanding rapidly in capacity, system loads, and complexity in
recent years. People’s lives are becoming more reliant on the applications of smart appliances,
smartphones, and cloud services. Particularly, when the COVID-19 outbreak began in 2020,
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the internet became a lifeline for people in practically every industry. According to the Pew
Research Center, 90% of Americans regarded various online tools as a vital part of their daily
lives during the coronavirus pandemic, with most of them using those tools for business, video
meetings, academics, and communication purposes [130]. As per DataReportal, a total of 4.94
billion individuals, or 62.4% of the world’s population, use the Internet [131]. Besides that, the
deployment of 5G and its advanced features is expected to boost the number of 5G users to 1.02
billion in the coming year [132]. This rapid expansion of the users, network infrastructures,
and protocols of emerging technologies is posing security issues and opening horizons for
novel threats [133]. 5G networks, for example, provide greater bandwidth and reduced latency
but expand the attack surface, increasing system vulnerabilities [134].

Any offensive action conducted towards diverse systems to access, steal, or modify valu-
able data, install malicious software, or interrupt routine services without the administrator’s
consent is considered a cyberattack. Any cyberattack can be categorized as targeted or un-
targeted. Targeted attacks attempt to infiltrate specific businesses, while untargeted attacks
breach as many systems or devices as possible. Targeted cyberattacks include spear-phishing
and deploying botnets, while untargeted attacks include ransomware and phishing [135]. Mal-
ware, phishing, denial-of-service (DoS), distributed denial-of-service (DDoS), reconnaissance,
backdoors, etc. are some common types of cyberattacks.

Cyberattacks on both the core network and host levels have increased in recent years, dis-
rupting a broad range of business and government domains. According to Check Point Re-
search, the weekly incidence of cyberattacks soared to 50% during the COVID-19 pandemic,
with education and research being the most afflicted sectors [136]. In 2021, a large-scale
cyberattack hampered nine US government agencies, where attackers deployed untraceable
backdoors in Microsoft Exchange and compromised access to the server to gain all informa-
tion residing inside the server [137]. According to CSIS (Center for Strategic and International
Studies), a Russian hackers group launched an ”information attack” in February 2022 to obtain
access to two of Ukraine’s financial institutions, causing service outages [138]. Throughout
the first half of 2021, 5,591 network layer DDoS attacks were reported, according to the ”2021
DDoS Threat Landscape Report”, and the attack technique is changing in dimension, volume,
regularity, and complexity [139].

In order to detect and prevent cyberattacks on the networks, firewalls are used as the pri-
mary defense mechanism, and a network intrusion detection system, or NIDS, is employed as
an advanced security mechanism. NIDS is mainly a security application that can analyze net-
work traffic, detect security threats, and take measures when an anomaly is detected. Based on
Donghwoon et al. [140] intrusion detection system (IDS) should consist of three main steps:
First, IDS needs to collect and track network flow data. After that, IDS needs to reformat and
reshape the network data by cleaning the raw data, processing them, and making them feasible
in the next step. Finally, using the processed data as input, a model will determine if network
traffic is normal or possesses any abnormalities. Developing an effective and efficient model is
the most crucial part of building a NIDS. IDS are categorized as signature-based and anomaly-
based. Traditional signature-based intrusion detection systems (IDS) compare network packets
to known signatures. In contrast, models in anomaly-based IDS produced by integrating ML
and DL are capable of learning attack signatures to create the attack pattern. Because of the
dynamic nature of diverse cyberattack patterns, anomaly-based IDS is more viable than tradi-
tional IDS. However, DL techniques outperform shallow ML-based approaches in the case of
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high-dimensional and substantially large datasets [141].
Many previous studies utilized UNSW-15 [103] and CICIDS-2017 [104] to detect network

abnormalities; however, the majority followed binary classification or shallow ML and DL ap-
proaches. Because each type of threat follows a different attack procedure, multi-classification
is getting attention because it aids in selecting prevention techniques [142]. Also, ensemble
approaches were utilized to get better accuracy than baseline ML and DL approaches [133].
To address the previous challenges, we proposed a DL-based stacking ensemble approach to
identify and categorize various DDoS attacks [143]. This is an extension of our previous work,
where we present an efficient and dynamic NIDS that can detect a wide range of cyberat-
tacks. This time we introduced the Synthetic Minority Oversampling Technique (SMOTE)
in data pre-processing to tackle imbalanced datasets, and we included a few more datasets to
evaluate the efficacy of our proposed hybrid model. The rest of the chapter is organized as
follows: Section 7.2 discusses the previous state-of-the-art approach to developing NIDS with
AI techniques. The proposed framework for detecting cyberattacks using ensemble techniques
is briefly discussed in Section 7.3. Section 7.4 presents and discusses the experimental results
of the proposed framework. Finally, section 7.5 concludes the paper with future directions.

7.2 Literature Review
This chapter will review the related literature of previous works in the network intrusion de-
tection system (NIDS) field as well as pinpoint the shortcomings of existing studies, which is
the motivation for this research. This section discusses three distinctive phases of developing a
NIDS: statistical-based approach, machine learning-based approach, and deep learning-based
approach.

7.2.1 Machine Learning-Based Approach
In 1999, Chris Sinclair used an ML-based expert system to automatically classify a network
connection by utilizing network patterns [144]. They employed a genetic algorithm and de-
cision tree to develop the IDS to detect “low and slow” attacks, which may contain intrusion
behavior. Zhang et al. presented a hierarchy-based network intrusion detection system (HIDE)
using a hybrid model comprised of perceptrons and backpropagation to distinguish normal and
abnormal traffic flows [145]. The HIDE model is composed of three tiers, and each tier has
multiple agents to detect network intrusion. Tier-1 pre-processes the network traffic collected
by the probe and sends periodic reports about the traffic to Tier-2. Tier-2 observes the LAN
to check network status, and finally, Tier-3 receives data from both Tier-1 and Tier-2. After
pre-processing, all data are sent to the statistical processor to be converted into stimulus vec-
tors and feed them to the perceptron and backpropagation processor to classify network traffic.
Ripon et al. employed an ML-based approach in an old dataset named NSL-KDD to detect
cyberattacks generated from the Internet of Things (IoT) devices, cloud computing, and social
networking sites [146]. Their research focused on comparing the effectiveness of different ML
models in detecting four different types of cyberattacks, and they concluded that their utilized
classification algorithms, Random Forest (RF) and Support Vector Machine (SVM), can detect
cyberattacks effectively.
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Eskin et al. first presented a network intrusion detection technique using unsupervised ML
methods in 2002. It includes clustering algorithms, an SVM, and the K-Nearest Neighbor al-
gorithm [147]. Their research introduces a geometrical paradigm for unsupervised anomaly
detection that maps typical metadata into a feature space. Chih-Fong Tsai and his research
team reviewed 55 ML-related intrusion detection systems developed between 2000 and 2007
[109]. They divided the system into single, hybrid, and multi-classifiers and compared them
based on the datasets, classification method, and experimental setup. Their findings conclude
that K-Nearest Neighbor and SVM are more popular single classifiers, integrated-hybrid clas-
sifiers are the most commonly used hybrid classifiers, and ensemble techniques did not receive
much attention. Zhang et al. [148] introduced a hybrid NIDS based on Random Forest (RF)
that can detect misuse, patterns of intrusions, and outliers. The authors used an unsupervised
learning technique to train the anomaly detection components to detect anomalies and outliers
in network traffic flow. Finally, their work combines misuse detection with anomaly detec-
tion, allowing anomaly detection to detect novel cyberattacks while misuse detection filters out
known intrusions. Phurivit et al. [149] developed a real-time IDS named RT-IDS, which could
distinguish between normal traffic and anomalies. The authors identify 12 essential features
from network traffic that are important for detecting network anomalies, and several ML al-
gorithms such as Decision Tree (DT), and Neural Network with back-propagation are used,
where DT with the Rippler rule outperforms all other algorithms.

Injadat et al. [150] introduced a multi-level optimum ML approach for network anomaly
detection. Their strategy showed a 99% detection accuracy and reduced the number of false
positives by 1% to 2% using the CICIDS-2017 and UNSW-15 datasets. Raisa et al. [151] used
Gini Impurity-based Weighted Random Forest to select features from UNSW-15 and Network
TON IoT datasets and compare the performance of different ML models with different feature
sets. Roberto et al. [152] proposed an ML-based intrusion detection system to identify the
cyberattacks from the network traffic dataset called UGR’16 generated from heterogeneous
devices. Saikat et al. [153] performed ensemble feature selection and used ensemble ML
techniques to detect different types of cyberattacks in the CICIDS-2017, UNSW-NB15, and
NSL-KDD datasets. They proposed ensemble feature selection (EnFS) which achieved better
accuracy and f1-score in all three datasets, however, they performed binary classification which
did not resemble the detection rate of different types of cyberattacks. In their other study, Das
et al. [123] developed an ensemble framework for feature selection (FS) methods that aimed
to generate an optimal set of features. They also conducted a comparative analysis of various
existing approaches and focused on accuracy and false positives, using the NSL-KDD dataset.

7.2.2 Deep Learning-Based Approach
A research team from the University of Toronto led by Geoffrey Hinton proposed ImageNet
and addressed the fact that deep learning (DL) can outperform any ML algorithms in image
classification tasks [154]. In the LSVRC-2010 contest, they trained 1.2 million images using
Convolutional neural networks (CNN) with thousands of features. They achieved a lower error
rate than any other advanced ML model in the ILSVRC-2012 contest, where they achieved
only a 15.3% error rate in the test data, which outperformed every other model. In 2015, Yann
et al. proposed that traditional ML cannot process raw forms of natural data like pixel values
of images, matching news items, user interests in a particular product, and many more [155].
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However, DL makes up multiple levels of representation layers, which take raw input in one
representation layer and transform it into a higher layer that can learn complex functions more
abstractly.

In 2016, Niyaz et al. proposed a DL-based strategy named STL (self-taught learning) to
detect network anomalies using the NSL-KDD dataset [156]. Their self-taught learning ap-
proach can learn about features from different network sources. These pre-processed features
are passed through the auto-encoder and regression with the SoftMax function to classify nor-
mal and attack traffic. Their experiments outperform some other research conducted using
DL techniques. The authors used the KDD Cup 1999 (KDD-99) dataset for their IDS by us-
ing a DL-based method named deep neural network (DNN) and an ML-based method called
SVM, where the accuracy of DNN is 15% higher than SVM. Vinayakumar et al. [113] pro-
posed a hybrid deep neural network (DNN) called the scale-hybrid-IDS-AlertNet framework
that is both scalable and capable of identifying real-time cyberattacks by analyzing network
traffic and host-level events. In a related study [114], the authors evaluated the efficacy of a
variety of shallow and deep networks for use in NIDS, utilizing the KDD-99 dataset. Finally,
Vinayakumar [115] presented a DL-based botnet detection system designed to detect and clas-
sify domain names, which can be implemented at the Internet Service Provider (ISP) level to
monitor IoT devices. Before 2016, most of the researchers used KDD-98, KDD-99, and NSL-
KDD datasets for their decade-old IDS, which do not match the current network scenario. This
dataset crisis was solved when, in 2015, Moustafa et al. published the UNSW-15 Network
Flow datasets, which have both normal and anomalous network traffic [103]. The UNSW-15
network dataset is more useful than previous datasets to evaluate NIDS perfection because it
represents contemporary network traffic contexts.

Hanif et al. utilized Artificial Neural Networks (ANN) to detect network intrusion on In-
ternet of Things (IoT) devices, and in their experiment, they used the UNSW-15 dataset [157].
In their experiment, instead of predicting different types of network attacks, they only detected
the normal attribute of the traffic. In order to examine network traffic characteristics of Internet
of Things (IoT) devices in 2018, Moustafa et al. [158] utilized the UNSW-15 dataset, where
the authors used AdaBoost ensemble algorithms to discern between normal and abnormal traf-
fic. To construct the NIDS dedicated to identifying attacks in IoT networks, this framework
focuses on Domain Name Systems (DNS) and Hypertext Transfer Protocols (HTTP), together
with MQ Telemetry Transport (MQTT) and associated flows. They merged three techniques in
their framework: ANN, Naive Bayes, and DT, and then passed them through AdaBoost ensem-
ble methods. The DL-based NIDS got more attention from the research community when the
Canadian Institute of Cybersecurity (CIC) published two large network traffic datasets, namely
CICIDS-2017 [104] and CSE-CIC-IDS-2018.

In 2021 Aleesa et al. [159] utilized UNSW-15 datasets and proposed an AI-based approach
to detect network anomalies from the traffic flow. The authors suggested a framework with
two levels: level 1 could determine whether a traffic flow was normal or abnormal, and level 2
could classify the many forms of attacks when abnormal traffic was discovered. In their work,
instead of incorporating any DL models, shallow ML models are used. In order to evaluate
DL and ML-based methods for detecting network anomalies, Liu et al. [160] presented a tax-
onomy for NIDS. The proposed taxonomy in this work can answer several questions about
feature selection, data type selection to predict certain types of attacks, as well as ML and DL
model selection based on the type of network data available. Ana et al. [161] made a com-
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parison between incremental and non-incremental broad learning systems (BLS) to identify
DoS attacks on the communication networks using the CSE-CIC-IDS-2018 and CICIDS-2017
datasets, where they concluded that in both datasets, the non-incremental approach gives bet-
ter accuracy; in contrast, the incremental process takes less training time. Faker et al. [162]
employed big data as well as DL methods and used UNSW-15 and CICIDS-2017 datasets to
evaluate the performance of the models. They incorporated DNN, Random Forest (RF), and
Gradient Boosting Tree (GBT), where DNN shows better performance in both datasets for
multiclass classification and GBT shows better performance in CICIDS-2017 during binary
classification compared to DNN. Azriel et al. [163] employed bidirectional DL methods and
showed a performance comparison between traditional ML and DL models.

Unlike the above-mentioned research efforts, we used two different recent network traf-
fic datasets, UNSW-15 released by the University of New South Wales [103], and CICIDS-
2017 published by the Canadian Institute of Cybersecurity (CIC) [104], to train our DL-based
stacking ensemble model and analyze how it performs in different attack scenarios. Many
researchers have proposed ML and DL-based techniques to detect and predict network anoma-
lies. Moreover, some researchers proposed DL-based methods, but most of them were focused
on binary classification and used shallow ML and DL methods. Moreover, some researchers
used an out-of-date dataset where traffic patterns no longer resemble today’s diverse network
traffic [164]. In our proposed NIDS, we used a data resampling technique to balance the im-
balanced data samples and employed a stacking ensemble technique composed of different DL
models to detect the different kinds of cyberattacks.

7.3 Proposed Methodology
This work aims to propose an ensemble NIDS framework to identify several types of cyber-
attacks that will impact network services. The proposed framework comprises four phases:
dataset collection, data pre-processing and normalization, optimal feature selection, data re-
sampling, and base and ensemble model learning. Fig. 7.1 demonstrates the overall overview
of the proposed AI-based NIDS framework to detect cyberattacks from network traffic. In the
overall experiment, we first performed multi-step data pre-processing. In section 7.3.1, we
discuss the utilized datasets in developing the NIDS and performed the first step of data pre-
processing to remove the data redundancy as well as improve data quality; the dataset and data
pre-processing are discussed in this section. Moreover, we also perform the data normalization
method using a min-max scaler to handle outliers.The third phase will perform the optimal
feature selection to select the appropriate features for specific types of attacks. Random feature
elimination (RFE) is used with 5-fold cross-validation where it defines two options to remove
the irrelevant features: select the number of features and utilization of a base algorithm to select
the features based on their importance. The feature selection approach is discussed in section
7.3.2. In the fourth phase, we perform data resampling techniques, to solve the data imbalance
classification problems. The data resampling method dynamically oversamples and under-
samples the data samples to balance the underrepresented minority class in the datasets. The
synthetic minority oversampling technique (SMOTE) [165] is used to oversample the minor-
ity class, and then the edited nearest neighbor (ENN)[166] is used to oversample the majority
class. The details of the data resampling are discussed in section 7.3.3. The final phase in
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Figure 7.1: The framework of the proposed NIDS.
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Figure 7.2: UNSW-15 dataset attack distributions.

section 7.3.4 consists of base model learning and ensemble model learning. We use three base
learners in our experiments including CNN, LSTM, and GRU, which resided in the ensemble
model’s first layers. The three base learners are trained with the pre-processed data, and their
training weights are saved; their performance with the test data is recorded. The three base
learners are discussed in section III-E.1. The weight of the three base learners is concatenated
and passed to the second layer of the ensemble model, which is a DNN, and then the ensemble
model has trained again. The details of the ensemble model have discussed in sections III–E.2.
Finally, section III–E.3 shows the runtime complexity of the proposed ENIDS model.

7.3.1 Dataset Description and Preprocessing

The proposed ensemble NIDS was built using two up-to-date datasets, UNSW-15[103], and
CICIDS-2017[104] which contain the different types of most recent cyberattacks. The attack
distributions and the number of features are different in both datasets. Data pre-processing is
crucial for ML/DL methods as the performance of the model largely depends on pre-processing.
In the network traffic datasets, network availability and traffic failure are common issues that
can be solved by pre-processing the data from different extents. Data pre-processing removes
noise from data, handles missing values, and reduces redundancy from datasets.

Dataset Description

The UNSW-15 dataset captures raw packets with the IXIA PerfectStorm tool. The Australian
Centre for Cyber Security (ACCS) published this network flow data available for public use,
including both normal and malicious traffic. For archiving 100 GB of raw traffic, the tcpdump
device is employed. ACCS used three networks with 45 different IP addresses to create the
dataset, which took 31 hours to collect. The UNSW-15 dataset is divided into four CSV files
and comprises 2.5 million records with 49 features. The dataset is further divided into 82,332
testing records and 1,75,341 training records. Backdoor, worms, generic, exploits, fuzzers, re-
connaissance, DoS, and shellcode are among the nine categories of network attacks classified
as anomalous traffic. In our experiments, we worked with worms, generic, fuzzers, reconnais-
sance, DoS, and shellcode. The attack distributions in the UNSW-15 dataset are similar to Fig.
7.2.

The Canadian Institute of Cybersecurity (CIC) published the CICIDS-2017 network traffic
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Figure 7.3: CICIDS-2017 dataset attack distributions.

data, which contains eight separate CSV files containing five days of regular and aberrant ac-
tivity of the network flows from Monday to Friday. They build an attack network with a router
and a switch for the testbed, and a victim network with a firewall, router, and switches. They
produced normal and anomalous traffic using CICFlowMeter software, and 80 features were
collected from traffic-generated pcap files. The heartbleed attack, infiltration attack, brute force
attack, DDoS attack, DoS attack, web attack, and botnet are among the cyberattacks covered in
CICIDS-2017. It comprises 2,09,417 records, and the attack distributions of the CICIDS-2017
dataset are like in Fig. 7.3.

Data Pre-processing

We excluded various features from both datasets that have little impact on normal or abnormal
traffic in the initial round of our data pre-processing phase. We remove the following features
from the UNSW-15 datasets:

1) The ‘id’ column is removed as it has no impact.

2) Time-based features (‘stime’, ‘ltime’) are deleted from the UNSW-15 dataset since they
are redundant.

3) Switch-related information like ‘sport’, ‘srcip’, ‘dstip’, and ‘dsport’ is also removed from
the UNSW-15.

4) Categorical features such as ‘proto’, and ‘service’ have a wide range of values, thus we
employ the label-encoder approach, which generates new, unique numerical values for
each category.

5) We also eradicate features like ‘ct ftp cmd’, ‘is ftp login’, and ‘ct flw http method’ which
have many missing values.

The CICIDS-2017 dataset is pre-processed by considering the following steps:

1) Less relevant features such as ‘timestamps’, and ‘IP addresses’ were eliminated from the
CICIDS-2017.
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2) As the network flow of this dataset is created using CICFlowMeter, it collects some
network-related redundant features such as ‘Bwd PSH Flags’, ‘Bwd Avg Bytes/Bulk’,
‘Bwd Avg Packets/Bulk’, ‘Bwd Avg Packets/Bulk’, ‘Bwd URG Flags’, ‘Fwd Avg Bytes/Bulk’,
‘Fwd Avg Packets/Bulk’, ‘Fwd Avg Bulk Rate’, which have many missing values.

3) The ‘Fwd Header Length’ feature is also excluded as it exists twice in the dataset.

4) Due to the similarity in network traffic behavior of web attack-brute force, web attack-
xss, and web attack SQL injection, they are labeled as web-attack. Additionally, various
forms of DoS attacks, including DoS slowHTTP, dos hulk, DoS slow loris, and DoS
goldeneye, are labeled as DoS.

After removing redundant features, we performed data normalization, also known as scal-
ing the features. It is a data pre-processing strategy where all the data transforms into the same
scale. In deep learning, normalization is a process to transform data within a range between
0 and 1. Moreover, when we do not know about the data distribution then normalization is a
good approach. If we do not normalize our data that are measured in different scales, they will
not contribute equally during model training. Scaling the data equalizes all features, which
also assists the algorithm to converge faster, along with optimizing with the gradient descent
algorithm. Data distribution is different in both UNSW-15 and CICIDS-2017 datasets, and to
fit the data appropriately into the model to get better accuracy we need to normalize our data.
As we frequently encounter extremely large or small values among data samples in network
traffic data, the min-max scaler is better suited for network anomaly identification due to its
high sensitivity to outliers. In our proposed framework, we employed the min-max data nor-
malization technique which scales the data from minimum range 0 to maximum range 1. The
mathematical formulation for the min-max scaler is given below:

min − max =
(x − min(x))

(max(x) − min(x))
(7.1)

The real-time lowest and maximum values from all the processed data samples are represented
here by min and max.

7.3.2 Optimal Feature Selection
Feature selection is the process of selecting the most relevant features from a huge number
of feature sets and eliminating irrelevant features to improve model performance and reduce
the computational cost of the predictive models. Moreover, removing noisy features improves
learning efficiency, and reduces the training time of the models. Feature importance determines
the contribution of each feature in the prediction model. Selecting important features is critical
for developing a better NIDS, as it contains network traffic-related irrelevant information which
does not contribute to occurring a cyberattack in the network traffic. In our experiments, we
utilized Random Feature Elimination (RFE) with a 5-fold cross-validation which is easy to
configure, and its configuration consists of two options: selecting the number of features and a
base algorithm to select the number of features.

RFE followed both wrapper-style and filter-based feature selection algorithms, where it first
searched a subset of features from the entire datasets and removed features until the desired
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Figure 7.4: Feature importance in UNSW-15 dataset.

number of features remained. RFE performs k-fold cross-validation, removing characteristics
that are less significant for the model with each cross-validation. The process continues until
RFE has read all the features from the dataset and only keeps those that improve the overall
cross-validation performance. Random Feature Elimination with Cross-Validation (RFECV) is
a time-consuming method for selecting features yet yields the best results. In our experiments,
we did not define how many features we wanted to select, rather we let the algorithm decide
to select the optimum number of features. We used Random Forest (RF), as a base algorithm
which is a supervised ML method that employs both the bagging method and DT, to identify
the optimal features for our NIDS model. To calculate the soft voting for classification, RF
takes the original columns, fits them into decision trees, and then mixes them. The RFECV
with Random Forest gave us 25 relevant features from the UNSW-15 dataset and 49 applicable
features from the CICIDS-2017 dataset. We also calculated the feature importance using the
RF by increasing the purity of the child nodes. One feature gains relevance when the purity of
its related child nodes is improved. Each tree estimates the importance of each feature, which
is then averaged to obtain the total feature importance. Fig. 7.4 and Fig. 7.5 portray the feature
importance of the 15 best features from the UNSW-15 and CICIDS-2017 datasets.

Figure 7.5: Feature importance in CICIDS-2017 dataset.
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Figure 7.6: Attack distribution of UNSW-15 after resampling.

7.3.3 Data Resampling
In an ML-based approach, imbalanced data is a classification problem. All the classes are
not distributed equally in imbalanced data, meaning that the dataset is biased towards one or
more classes, with only a few samples for others. As a result, while training a model us-
ing imbalanced data, the model was biased toward one or two classes. The majority class
is balanced using the under-sampling technique, while the minority class is balanced using
the over-sampling technique. To overcome the imbalanced class problems Synthetic Minority
Oversampling Technique (SMOTE) is used [165]. The less frequent samples were oversampled
using SMOTE, whereas the more frequent samples were under-sampled using Edited Nearest
Neighbors (ENN). Imbalanced learn, imported as imblearn from the scikit-learn library, is a
widely known machine learning library that deals with imbalanced classes. SMOTE takes the
following three steps to oversample the minority class:

1) It calculates the distance between each sample using Euclidean distance and then modi-
fies these samples using the k-nearest neighbor.

2) Then they take n samples and calculate the imbalance ratio from them, as well as the
number of samples that need to be made from the samples.

n = round(imbalancedratio) − 1 (7.2)

imbalancedratio =
S max

S min
(7.3)

Where n is the number of samples.

3) Finally, the set of produced samples y is taken from the k-nearest neighbor, and new
synthetic samples are constructed from those neighbors.

In order to under-sample, the majority class was chosen. The majority of their k-nearest
neighbors sample is removed by ENN. If one sample is owned by a most frequent class also
if the classification of the original class is disputed by its three nearest neighbors, it is deleted
from the samples; otherwise, it belongs to the minority class. Worms and shellcode traffic have
only 130 and 1133 samples in the UNSW-15 dataset, which is relatively low when compared
to normal and generic traffic, which includes 56,000 and 40,000 samples, respectively. Fig. 7.6
depicts the attack distribution of the UNSW-15 dataset after data resampling using SMOTEEN
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On the other hand, only 1% of samples in the CICIDS-2017 dataset belong to web-attack and
bot attack traffic, while benign, DoS, and DDoS attack traffic each include 26%, 24%, and 22%
of samples, respectively. Fig. 7.7 depicts the attack distribution of the CICIDS-2017 dataset
before and after data resampling using SMOTEENN.

Algorithm 1 illustrates the primary learning procedure of the proposed ENIDS model. In
the first stage from lines 1-4, we checked the training set IDS train and if it is imbalanced per-
formed class resampling, and the resampling strategy is only applied to the training data when
it is imbalanced. After that, from lines 5–9, we train the three base learners, BL1, BL2, and
BL3, with training data samples in IDS train. Base learner training is the process of training
base learners to make predictions on new data using training data. The algorithm concate-
nates the trained weights gained from each base learner into a list called Concat − BLW after
training the base learners. This list is then used to train the meta-learner (ML) in IDStrain
using the meta-learner training function (meta − learnertraining) on all training data samples.
The Concat-BLW list, as well as the training data samples and the weights of the base learners
(BL1, BL2, and BL3), are used to train the meta-learner. Line 10 concatenates all the training
weight gained from three base learners. The weights of the base learners, on the other hand,
are marked as non-trainable, so they are not updated during the training process. Finally, the
algorithm makes predictions on the test data samples using the trained base learners and the
meta-learner ML. Individual predictions are made using the base learners, and the results are
saved in BLO1, BLO2, and BLO3. After that, the meta learner is used to generate an ensemble
prediction, which is saved in MLP. The algorithm’s final output is MLP, which represents the
predicted results for the various types of cyberattacks in the test data set IDS test.

Figure 7.7: Attack distribution of CICIDS-2017 after resampling.

7.3.4 Stacking Model Description

Our overall stacking ensemble architecture is comprised of two layers; in the first layer, we
employed three different DL-based architectures for our IDS system, which consists of con-
volutional neural networks (CNN), gated recurrent units (GRU), and long short-term memory
(LSTM). We used a deep neural network (DNN) in the second layer, which takes prediction
results from the previous three DL models. Each DL architecture has input, hidden, fully
connected, and output layers for multi-classification.
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Base Model

Convolution neural network (CNN) also known as ConvNet designed to process grid-like topo-
logical data such as images. The first CNN [167] was developed by Yann LeCun, where he
proposed LeNet-5 which was able to recognize handwritten characters like postal codes. CNN
consists of multiple layers where earlier layers are responsible for extracting features and later
layers combine the features and make predictions. CNN model consists of convolution and
pooling layers that are used for feature extraction and fully connected layers are responsible
for classifying results. Dropout layers are used to prevent the model from becoming overfitted
and the sigmoid or SoftMax activation function is to derive class label predictions.

CNN model generally takes an image as input. We reshaped the train and test dataset to (5,
5, 1) dimensions for the UNSW-15 dataset where the model takes 5×5 matrix and ImageData-
Generator from Keras [168] library generating an image type data. For the CICIDS-2017 train
and the test is reshaped to (7, 7, 1) dimensions. In our CNN model of the first layer, we used
six two-dimensional filters with a kernel size of (2×2) for the UNSW-15 dataset and a kernel
size of (3×3) for the CICIDS-2017 dataset. Every layer of CNN deals with a ReLU activation
function. After every two convolution layers, we set one two-dimensional max-pooling layer
with different pool sizes. The output is then delivered to fully connected layers, where it is
used to train representations of higher-order features that may be used to classify the output
into distinct class labels.

Hochreiter and Schmidhuber initially proposed Long Short-Term Memory (LSTM)[53] as
an advanced variant of RNN in 1997, to address the problem of exploding and disappearing
gradients. The only objective of LSTM is to avoid long-term reliance issues, and it is capable
of automatically remembering information for lengthy periods of time. The forget gate of
the LSTM cell decides whether the cells need to keep information gained from the previous
cell or forget it. The input gate, also known as the store gate, is in control of storing and
quantifying new information. A sigmoid function is utilized in the output gate to determine
which elements of the cell state will be the output. The LSTM model of the first layer of our
proposed stacking ensemble model consists of two LSTM layers, one dense layer, followed
by one dropout layer. Like the CNN model, every layer in the LSTM model interacts with
a corrected ReLU activation function. The LSTM model’s loss function is categorical cross-
entropy, and an Adam optimizer with a learning rate of 0.001 was employed for optimization.
For LSTM, the input shape is (batch, timestamps, and features), and here batch size means the
number of samples we send to the model at a time. For UNSW-15, the timesteps are 5, features
are 25 and the input shape is (5, 25); for CICIDS-2017, it is (5, 49).

The Gated Recurrent Unit (GRU) is another short-term memory solution, and its essential
principle is virtually identical to that of the LSTM. GRU used a hidden state to transport in-
formation instead of a cell state, and its design consists of two hidden states: the reset gate
and the update gate. Tangen’s hyperbolic activation function (Tanh), as opposed to CNN and
LSTM models, is employed with the GRU model. GRU also takes an input of a 3D tensor,
with shape (batch size, timesteps, features), here batch size means the number of samples we
send to the model at a time. In UNSW-15, we take 5 timesteps, and 25 features and the input
shape becomes (5, 25); for CICIDS-2017 we take 5 timesteps and 49 features and the input
shape becomes (5, 49). The details of the three base model learning using training data and
their prediction approach using test data in the proposed framework are shown in Algorithm 1.
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The primary reasons for selecting CNN, LSTM, and GRU as base learners are given below.

1) All three DL models can identify important features during training, which increases
learning efficiency in terms of time and resources.

2) These three DL models are robust and able to handle large amounts of data samples with
multiple classes, which is suitable for multiclass classifications.

3) All three DL models can learn from a long sequence of data samples, have little depen-
dence on pre-processing, and require a low computational cost.

4) All three DL models support Graphics Processing Units (GPU), which employ parallel
computing and accelerate the training time.

Ensemble Model

In our work, we are using stacking-based ensemble methods because it uses a second label, also
known as a ”meta-learner,” through which it can define which classifiers are appropriate and
which are not. While bagging and boosting employ homogeneous weak learners, the ensemble
uses heterogeneous weak learners to train them in parallel and aggregate them. The idea of
stacking was initially presented by David H. Wolpert in 1992 when he divided the dataset
into J equal pieces and utilized Jth fold cross-validation during training while the remaining
samples were used for testing purposes [169]. He later trained numerous models using the
training test pairs as input for the meta-model. Parameter estimates, model selection, and
hyperparameter tuning are all part of the stacking framework. Algorithm 1 shows the learning
of the meta-learner in the proposed model, where it first concatenates the training weight of the
base learners and passes them as input to the meta-learner. Fig. 7.8 shows the architecture of
the proposed stacking ensemble technique.

Figure 7.8: The stacking ensemble architecture.

In our proposed hybrid deep learning model, called the stacking ensemble model, the meta-
learner in the second layer is composed of a deep neural network (DNN). All the results ob-
tained from the first three DL models in the first layer are concatenated and delivered to the
DNN model. The non-linear nature of deep learning neural networks can pose difficulties in
learning specific features from large datasets, leading to a reduced predictive capacity of a
single deep learning model. Stacking ensembles is a technique that addresses this issue by
employing a meta-learner, which takes the output of first-layer feature sub-models, combines
them, and trains the meta-learner to make improved predictions. This method enhances the
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prediction ability and robustness of the model by directly passing the output weights of sub-
models to the meta-learner. Previous experiments have encountered challenges in detecting
multiple types of cyberattacks using large, imbalanced datasets. In this study, we aimed to
enhance predictive performance and reduce variance by utilizing the stacking ensemble tech-
nique. Specifically, we applied this technique to two large, imbalanced datasets, where the
meta-learner of the stacking ensemble model receives and combines predictions from exist-
ing models generated by the first-layer base learners. By doing so, we aimed to improve the
model’s ability to accurately predict and classify multiple types of cyberattacks.

The proposed stacking ensemble configuration is shown in Fig. 7.9. The Ensemble model
considers the following steps during the model training:

1) The weights of the three first-layer base learners—CNN, LSTM, and GRU—are loaded
as a list; each loaded model is used as a separate input head to the ensemble model,
and because the base learners are marked as non-trainable, their weights won’t change
throughout training.

2) The output weight of the three distinct DL models of the base learners merged using a
single concatenation merge that creates a single vector of 21 elements from 7 different
class labels predicted by each of the 3 models.

3) The meta-learner will then analyze the input employing two hidden layers and make
predictions using an output layer. During the training of the ensemble model, only the
weights of the new hidden and output layer will be changed, as the three base learners
are marked as non-trainable. Once the model has been fitted, the stacking model is used
to predict the unseen data.

Figure 7.9: Configuration of the proposed stacking model.

7.3.5 Complexity Analysis of Proposed Model
Runtime complexity is an important metric for assessing algorithm performance and efficiency.
Developing an intrusion detection system with a low runtime complexity will aid in perfor-
mance and reduce the computational resources required. The proposed ENIDS can be trained
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on a high-speed server; however, the proposed model’s deployment may differ depending on
the system where it is deployed.
The class resampling operation in line 3 will take O(N), where N is the number of samples in
the training set. Lines 5–9 will execute N times, and each base learner training operation in
lines 6–8 will take O(T ), where T is the time required to train the base learner on one sample.
As a result, the time complexity of lines 5-9 is O(N ∗ T ). Because it is a simple concatenation
operation, the Concat-BLW operation in line 10 will take O(1) time. Lines 11–13 will execute
N times, and line 12 will take O(M), where M is the time required to train the meta-learner on
one sample. As a result, the time complexity of lines 11-13 is O(N ∗ M). Lines 14–19’s for
loop will run M times, and each IDS-prediction test operation in lines 15–18 will take O(P),
where P is the time it takes to predict one sample. Thus, the time complexity of lines 14-19 is
O(M ∗ P).
Therefore, the total time complexity of the given algorithm will be O(NT +NM +M ∗ P). The
actual time taken by the algorithm will be determined by the values of N, T , M, and P.

7.4 Analysis of Experimental Results

The proposed NIDS framework is trained with two publicly available datasets namely UNSW-
15 and CICIDS-2017. Each of the datasets is pre-processed, and an optimal number of features
is selected from both datasets. Each dataset contains the seven most recent types of cyberat-
tacks. To train the proposed AI-based NIDS, we divided our datasets into three parts: the
training set, testing set, and validation set. We used the stratified training-test split of the
Scikit-Learn library. The stratified train-test split divided the data samples into similar propor-
tions. A total of 70% of data samples are used for training the models, while 10% of the data
samples are used for validation and the remaining 20% of the data samples are used for testing
purposes.

7.4.1 Software and Hardware Requirements

In this experiment, a Windows 10 PC with an AMD Ryzen 9 5900HX processor is used. It
has 16 GB of RAM, 512 GB of solid-state drive (SSD), and 4GB of NVIDIA GeForce RTX
3050 graphics processing unit (GPU). The NIDS model is implemented using different libraries
of Python 3.7 including Keras [168], TensorFlow 2.8.0 [170], and Scikit-learn [128]. The
Pandas package for data analysis, NumPy for numerical analysis, and Matplotlib and Seaborn
to generate graphs for the experiment results.

7.4.2 Evaluation Metric

In order to evaluate the performance of the proposed NIDS we used a confusion matrix, which
is a graphical depiction of the performance of a classification problem and gives the output in
matrix format. Using a confusion matrix, a classification model’s outcomes can be character-
ized as true positive (TP), true negative (TN), false positive (FP), and false negative (FN). A
classification model’s outcomes can be characterized as follows using a confusion matrix:
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1) True Positive: These values are predicted and labelled as positive. For example, if traffic
is forecasted as a DoS assault in our IDS system and it is indeed a DoS attack, we can
conclude that the IDS made an accurate prediction.

2) True Negative: These are the values labeled as negative and also predicted as negative
and correct. For instance, in the NIDS model, if traffic is predicted not as a DoS attack
and it was not a DoS attack then the model correctly predicted the traffic.

3) False Positive: This occurs when a model predicts a positive value for a class, but the
actual value is negative. For example, if our IDS model predicted a DoS attack but it
turned out to be typical traffic, we’d have a false-positive result.

4) False Negative: This is used to describe results that were anticipated to be negative but
ended up being positive. For example, if a NIDS model projects a packet as regular
traffic, however, the traffic was actually a DoS attack. Higher false-negative numbers
indicate a defective model.

Fig. 7.10 shows a perceptible representation of a binary classification confusion matrix.
The confusion matrix for multi-class classification will be the same size as the number of
classes the model must predict.

Figure 7.10: Confusion matrix.

In our experiments, we used two imbalanced datasets, and it is difficult to obtain accurate
results from the imbalanced data. The classification accuracy does not always correspond to
the model’s real performance, especially when the misclassification rate for minor classes is
high. It also ignores the problem of class imbalance in a dataset, which occurs when the
number of positive and negative levels is vastly different. As a result, various performance
evaluation indicators must be considered to achieve actual model performance. In order to get
a better overview of the performance of our proposed NIDS, we considered four important
performance metrics for multiclass classification: accuracy, recall, precision, and f1-score.
The term accuracy is a ratio of the total number of actual predictions made by the model to the
total number of predictions. Precision is determined by dividing the true positives predicted to
belong to a specific class by the total number of positive outcomes predicted by the classifier,
and recall is a metric that measures how well our model detects true positives. Finally, the
f1-score is used to determine how well our model detects actual positives. It’s calculated by
dividing the number of real positive results by the total number of positive values. The training
and testing times of the models are also used to measure the efficacy of the proposed NIDS.
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Accuracy =
T P + T N

T P + T N + FP + FN
(7.4)

Precision =
T P

T P + FP
(7.5)

Recall =
T P

T P + FN
(7.6)

F1S core = 2 ×
Precision ∗ Recall
Precision + Recall

(7.7)

7.4.3 Analysis of Experimental Results
Three different DL models, including CNN, LSTM, and GRU, are used in the first layer of
the proposed stacking ensemble-based NIDS, and their training weights are used as the input
for the meta learner in the second layer, which is a DNN. The ensemble model, as well as the
base learners of the first layer, are evaluated with the test set to make a comparison with the
proposed ensemble NIDS.

Table 7.1 presents a performance comparison of the proposed Ensemble-based Network In-
trusion Detection System (ENIDS) with single deep learning (DL) models and some previous
state-of-the-art works on the UNSW-15 dataset proposed in [153], [157], and [159]. ENIDS
achieved the best overall performance of the models in the table, with an accuracy of 90.64%
and an F1 score of 90.50%. This is superior to the performance of the individual DL mod-
els, including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU), which attained accuracy scores ranging from 88.4% to 89.1%
and F1 scores ranging from 88.2% to 89.1%. While requiring more training time, the proposed
ensemble approach outperforms the CNN and GRU models (7.3 and 7.5 seconds, respectively)
in terms of attack detection rates with unseen data, taking only 6.9 seconds. ENIDS outper-
formed the other models due to its ability to integrate multiple DL models into an ensemble
framework, allowing it to capture different aspects of network traffic and make more informed
decisions by combining the predictions of the base models. Additionally, the ENIDS model
used a meta-learner in the second layer to learn how to combine the weights of the base models
to make a final prediction, which improved the model’s accuracy.

Furthermore, ENIDS addressed the issue of imbalance classification by using data augmen-
tation techniques or class weighting, which helped to balance the class distribution and led to
improved classification performance. In contrast, the proposed EnFS model in [153] achieved
a high precision score of 96.7%, which was higher than the proposed ENIDS model’s precision
score of 90.94%. However, EnFS is limited to detecting only one type of attack and does not
address the issue of imbalance classification. Overall, the superior performance of the proposed
ENIDS model is due to its ability to integrate multiple DL models into an ensemble framework,
to use a meta-learner to combine the predictions of the base models and to address the issue
of imbalance classification. These techniques allowed ENIDS to achieve high accuracy and
F1 score while still maintaining a relatively high precision score, outperforming the individual
DL models and the state-of-the-art EnFS model. Fig. 7.11 presents a confusion matrix that
provides insights into the detection rates of different types of attacks in the UNSW-15 dataset
using the proposed ensemble approach. The results show that the ensemble approach achieves
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Table 7.1: Model Performance Comparison for the UNSW-15 Dataset.

Model
Accuracy

(%)
Precision

(%)
Recall

(%)
F1
(%)

Train
Time

(s)

Test
Time

(s)
CNN 89.1 89.7 89.2 89.1 322 7.3
LSTM 89.0 89.5 89.0 89.0 381 7.8
GRU 88.4 89.4 88.4 88.2 364 7.5
EnFS EnNN[153] 79.7 96.7 77.3 85.9 - -
ANN[157] 84 - - - - -
RNN-LSTM[159] 85.38 - - - - -
Proposed ENIDS 90.6 90.9 90.6 90.5 460 6.9

high detection rates for several types of attacks, including worms, reconnaissance, and generic
attacks, with detection rates exceeding 95%. The proposed model also achieves a detection rate
of more than 90% for shellcode and normal traffic. However, approximately 6% of these are
misclassified as reconnaissance and fuzzers attacks. The model can detect 89% of DoS attacks
but only achieves a 53% detection rate for fuzzer attacks, with 32% of them misclassified as
normal traffic. This is because fuzzers attacks are designed to closely resemble normal traffic,
making them difficult to distinguish from legitimate traffic. Moreover, hackers may use fuzzers
to simulate normal traffic, further complicating the detection process. Overall, the proposed
ensemble approach performs well in detecting most attacks in the UNSW-15 dataset but strug-
gles with identifying fuzzers attacks. Further research is needed to improve the model’s ability
to detect these attacks, which could include incorporating additional features or developing
more advanced detection techniques.

Figure 7.11: Confusion matrix of the proposed ENIDS model on the UNSW-15 dataset.
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Table 7.2 presents the performance comparison of different models on the CICIDS-2017
dataset in terms of accuracy, precision, recall, and F1 score. The proposed ENIDS model
achieves outstanding results, outperforming all other models in the table. Specifically, the
proposed ENIDS model achieves an accuracy of 99.6%, precision of 99.5%, recall of 99.7%,
and F1 score of 99.6%. In comparison, the EnFS model [153] achieves an accuracy of 98.9%,
which is comparable to the state-of-the-art models in previous works. However, the EnFS
model [153] does not address the issue of attack variations or imbalanced datasets, which can
be critical for practical deployment. Moreover, the proposed ENIDS model outperforms other
traditional models, such as RBF-BLS [161] and Bidirectional RNN-GRU [163], achieving an
accuracy of 96.63% and 98.99%, respectively. The proposed ENIDS model demonstrates a
high recall rate of 99.7%, indicating a low false-negative rate and high detection rate. Despite
the longer training time of the proposed ensemble approach (1153 seconds) compared to the
training time of the base learners, the attack detection rate with unseen data is achieved in only
8.6 seconds. This is faster than the LSTM and GRU models, which require 12.7 seconds and
12.3 seconds, respectively, for detection. The confusion matrix of CICIDS-2017 illustrates
that the proposed ensemble NIDS can successfully detect all types of attacks, including Bot,
Brute-force, DoS, DDoS, Port scan, and Web-attack, while accurately detecting 98% of benign
network traffic. Moreover, Fig. 7.12 depicts the confusion matrix for the CICIDS-2107 dataset.

Table 7.2: Model Performance Comparison for the CICIDS-2017 Dataset.

Model Acc.(%) Prec.(%) Recall(%) F1(%) Train Time (s) Test Time (s)
CNN 97.5 97.7 97.6 97.3 499 8.6
LSTM 97.2 97.4 97.3 97.1 677 12.7
GRU 96.0 96.4 96.1 96.0 637 12.3
EnFS EnNN[153] 98.9 99.9 98.8 99.3 - -
RBF-BLS[161] 96.63 - - 96.87 15.60 -
Bi RNN-GRU[163] 98.99 - - - - -
Proposed ENIDS 99.6 99.5 99.7 99.6 1153 8.6

The proposed ensemble approach requires additional training time compared to the base
models, as it involves training both the base models in the first layer and the meta-learner in
the second layer. This is because, during training, the ensemble model takes both the training
data and the training weights of the base learners from the first layer. However, this extra
training time is offset by the improved performance of the ensemble model, as it combines
the predictions of multiple models to improve generalization performance. During testing, the
proposed ensemble approach requires less time than the base learners and other existing works,
as it makes predictions using a combination of multiple models. This reduces the likelihood of
overfitting to the training data, as the ensemble model is more robust to variations in the data.
Additionally, the ensemble model can handle different types of network traffic more effectively
than the individual base models, as it is able to capture different aspects of the data and combine
them to make more informed decisions. Overall, although the proposed ensemble approach
requires more training time than the base models, it ultimately leads to improved performance
and requires less testing time, making it a promising approach for network intrusion detection.
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Figure 7.12: Confusion matrix of the proposed ENIDS model on the CICIDS-2017 dataset.

In our experiments, we found that LSTM outperformed GRU in terms of detection accuracy
on both datasets. This is because LSTM is better equipped to handle larger datasets, and the
datasets used in this study were substantially large. LSTM’s complex architecture with three
gates, including an input gate, an output gate, a forget gate, and an additional memory cell,
allows it to capture more long-term dependencies in the input data. On the other hand, GRU has
a simpler architecture with only two gates, an update gate and a reset gate, which makes it less
effective in capturing long-term dependencies. However, despite LSTM’s superior detection
accuracy, GRU has a faster training time and is more computationally efficient than LSTM.
This is because the GRU’s simpler architecture requires fewer calculations and parameters,
resulting in faster training times. Therefore, if training time and computational efficiency are
more significant factors than detection accuracy, GRU may be a better choice than LSTM.

In summary, ENIDS integrates multiple deep-learning models into an ensemble framework
to capture different aspects of network traffic and make informed decisions. A meta-learner
combines the predictions of the base models to improve accuracy. ENIDS addresses imbal-
anced classification with data augmentation techniques or class weighting, outperforming indi-
vidual models and state-of-the-art models on UNSW-15 and CICIDS-2017 datasets. However,
it struggles with identifying fuzzers attacks and requires further research. ENIDS achieves an
attack detection rate with unseen data in only 6.9 seconds and 8.6 seconds respectively for
UNSW-15 and CICIDS-2017 datasets respectively, despite longer training time.

7.5 Conclusion
Driven by the advancement in ultra-high speed network technologies such as 5G, the number
of connected devices to the Internet is growing rapidly. Hackers/intruders continue to use new
techniques to launch large-scale cyberattacks, making network traffic more vulnerable. This re-
search suggested an AI-based ensemble approach for identifying various types of cyberattacks.
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In contrast to earlier research, our proposed novel ensemble NIDS model not only determines
if the network traffic is benign or normal but also the type of assault in the flow. Compared
to the existing models, our suggested stacking ensemble model provides a more accurate fore-
cast. Overall, stacking ensemble DNN, a hybrid deep learning approach, and a well-defined
data pre-processing technique are presented in this study. Two well-known datasets, UNSW-
15 and CICIDS-2017, were selected for this study because they closely mimic real network
traffic flow, which improves the efficiency, robustness, and practicality of our approach. The
best possible traffic flow features are selected using random feature elimination with cross-
validation (RFECV), and the SMOTEENN technique is employed to resample the imbalanced
classes. With the help of the suggested technique, we trained various robust and large deep
learning models in the first layer of the proposed model, concatenated their training weights,
and then passed them to the second layer of the stacking ensemble technique, which consists
of a DNN model. By retraining the model, we can increase the classification accuracy for iden-
tifying various cyberattacks. Through the experiments, the proposed NIDS model achieved
higher accuracy of 90.4% and 99.6% in the UNSW-15 and CICIDS-2017 datasets, respec-
tively. Moreover, the experiments show that the proposed model achieves a higher F1-score of
90.0% and 99.6% in both datasets, which outperformed other state-of-the-art approaches.

The main limitation of the proposed NIDS is that it can’t detect new attacks before they
are detected since it is constrained by the labels used in the training phase. Additionally, the
proposed NIDS cannot distinguish it from legitimate traffic or other intrusions if new traffic
comes in. To overcome this, we will employ the transfer learning technique to assess how well
they function on unknown network traffic. Moreover, we will deploy the proposed NIDS into
live network traffic so that the model can analyze the traffic flow of networks and distinguish
between normal and malicious traffic.



Chapter 8

A Dynamic Weighted Voting Approach to
Improve Android Malware Detection in
Mobile Cyber-Physical Systems

Abstract: The Mobile Cyber-Physical System (MCPS) integrates the mobility of various smart
devices to exchange information between physical and cyber systems. Among those intelligent
devices, Android-powered smartphone usage increased significantly due to its low cost and
simplicity. But this global prominence of Android operating system also makes it more ap-
pealing for cyber-attacks to obtain users’ physical private information. Since attackers mostly
prefer malicious applications to spread different viruses and take control of the user’s device,
it is crucial to classify and categorize the malignant application for secure MCPS. Modern
machine learning algorithms have shown promising performance in identifying dangerous ap-
plications compared to traditional signature-based methods. But most existing works identify
only the malicious application where category identification is essential for proper precaution.
Also, the static analysis is insufficient for polymorphic malware, which includes regenerat-
ing code and changing its properties frequently to evade the detection process. In this study,
we compare several state-of-the-art deep learning methods for malapps classification and cat-
egorization. Moreover, we propose an ensemble Dynamic Weighted Voting model to identify
and label a wide variety of malicious applications using the CCCS-CIC-AndMal-2020 dataset,
which contains an extensive collection of Android malware samples. Our proposed ensemble
model outperforms the baseline ensemble method Majority Voting by 1% and the classical
LSTM model by 2%.

8.1 Introduction

Mobile Cyber-Physical Systems (MCPS) are an essential subgroup of Cyber-Physical Systems
(CPS), which integrate the mobility power of the smart devices with the typical cyber com-
ponents for a better physical system. Nowadays, various mobile devices, e.g., smartphones,
smartwatches, tablet computers, netbooks, etc., are available everywhere and equipped with
multiple sensors. And because of their unique characteristic, they are involved in many appli-
cation domains such as vehicular networking systems, healthcare systems, mobile education,
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etc. [171]. Among them, smartphones play a vital role in exchanging information between
physical and cyber systems using various in-built sensors such as MIC, camera, and GPS.
Also, the recent advancement in processing and storage chips for intelligent devices enables
them to operate different types of applications for everyday usage [172]. Therefore, many oper-
ating systems (OS) such as iOS, windows, and blackberry has been developed for smartphones.
Among them, Android is one of the most commonly used OS due to its open-source nature,
low cost, and simplicity [173].

Due to the global prominence of android OS and the massive number of users, it became a
more appealing target for attackers to obtain users’ physical private information. The adversary
follows different ways to attack devices. For example, they can operate different malware, such
as Trojan horses, in the end devices and take control of specific sensors for stealing sensitive in-
formation [173]. Attackers offer various malicious applications to install in the smart devices to
perform these adversary operations. According to Norton’s security blog, there was a 54% in-
crease in mobile malware variants between 2016 and 2017 [174]. These malicious applications
can take control of the device on which it is being installed and the other devices connected to
the same network. As a result, the smartphone is a vital entry point for cyber-attacks in MCPS.
A successful cybercrime could have disastrous, severe, or even lethal consequences on CPS
and MCPS [175]. Therefore, defending against attacks through a malicious mobile application
is crucial.

Using only tried-and-true techniques are insufficient since sophisticated malware constantly
changes and becomes difficult to recognize. The accuracy of traditional signature-based meth-
ods is compromised, mainly when malicious programs use polymorphism or code obfuscation
[176]. Additionally, merely identifying as a malignant entity is no longer adequate. The cate-
gory needs to be determined in order to begin employing the appropriate mitigation methods.
Since machine learning approaches do not rely on specific rules and are, therefore, more auto-
mated and resilient, they have been actively explored for malware detection over the past ten
years [177].

Although several android malware detection techniques have been proposed, the existing
solutions contain several similar flaws. First, it is no longer sufficient to find malicious pro-
grams. It is essential to determine the kind of android malware to understand the threat to
which we are correctly exposed. Second, most of them utilize static analysis, which uses stati-
cally extracted features to identify malicious applications. However, these static approaches are
insufficient to detect complicated malware programs that employ evasion techniques like poly-
morphism which includes regenerating code to evade the signature-based detection process.
As a result, several static-based malware detection algorithms’ detection rates declined when
assessing recent malware incidents. In this study, we obtain dynamic analysis to detect a wide
variety of malicious applications and their corresponding malware categories. We propose an
ensemble technique called Dynamic Weighted Voting that outperforms Majority Voting and
other baseline deep learning models.

This chapter is organized as follows. Section 8.2 describes the literature review of current
malware detection techniques. Section 8.3 presents our proposed methodology. Section 8.4
summarizes the different deep learning methods’ performance and draws a comparative picture
between baseline ensemble method and our proposed weighted voting model. Finally, section
8.5 concludes our paper and sheds light on future research directions.
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8.2 Literature Review

Utilizing the description of the Android application, they were categorized into several types
and these data have been used for identifying malicious applications [178]. Their proposed
TFDroiduses method used SVM (Support Vector Machine) to classify the malware based on the
application description data. The model was trained using benign application data while a small
cross-validation dataset used to measure the performance. The proposed classifier was 93.65%
accurate in recognizing malicious applications. Suleiman et al.[179] used static characteristics
such as permissions, intents, API calls, date of appearance which were derived from date-
labeled benign and malware datasets to examine the effectiveness of several machine learning
classifiers: Naive Bayes (NB), SVM, Random Forest (RF) etc. In order to define an application,
Zhang et al.[180] calculated the consistency of association rules between abstracted API calls,
and then utilized multiple machine learning methods: K-Nearest Neighbour (KNN), RF, SVM
for detection. The model performed better than MaMaDroid[181], a model created utilizing
the same traits and machine learning techniques.

By applying dynamic analysis to extract API calls from apps, Tan, Li, Wang, and Xu[182]
enhanced the use of the dynamic feature approach. Their model was optimized for model
accuracy and computation burden using the model portioning and early exit strategies. Even
though they conducted excellent research, they did it using sample devices rather of actual de-
vices. Another detection model called MaxNet has been proposed in [183] using API calls and
system calls that were taken from Android apps. In order to increase the temporal complexity
of their model, they combined the recurrent neural network approach with the LSTM. They uti-
lized a dataset of 36000 samples, and their model had an accuracy rate of 96.2%. In [184], they
proposed a dynamic model by combining two LSTM models in which system call sequences
data were used. Two individual LSTM model in their proposed framework were trained using
two different dataset containing either benign and malicious samples. On the basis of the re-
sults of trained models, similarity scores were computed to categorize a new malware/benign
sample. Dhanya and Kumar[185] proposed a hybrid analysis approach that uses 77 hybrid best
features set where application permissions acting as static features and network, file system,
cryptographic activities, and information leakage acting as dynamic features. Machine learning
methods including NB, J48, and RF were used to characterize the malapps. In order to define
the behaviours of the apps, Wang et al.[186] retrieved 11 different kinds of static character-
istics from each app, mostly from API calls, permissions, intents, and hardware information.
To identify safe applications and identify malware, it used an ensemble of many classifiers,
including SVM, KNN, NB, CART, and RF. Another hybrid detection model was proposed by
S. Morales-Ortega et al.[187] where they combine feature extraction, feature selection, and
ensemble approaches for classifying android malware. The chi-square, relief, and information
gain feature selection strategies are utilized to extract key features and an ensemble technique
has been used for detection task.

The process of evaluating malware samples without actually running or executing them is
known as static malware analysis. In contrast, dynamic malware analysis examines the code
while it is being executed inside a controlled setting. The malware is operated in a secured,
separated, simulated environment, and its actions are monitored. Though many studies con-
ducted static analysis and dynamic analysis both, larger portion conducted either static analysis
or dynamic analysis. However, dynamic analysis which is more resilient to code obfuscation
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Figure 8.1: High-level framework of proposed methodology of Android malware detection.

and polymorphism evasion techniques, and categorization of the genre of malware were sug-
gested by the recent studies. Modern research also recommended the categorization of detected
malware to better prepare against the vulnerability posed by the malicious applications. In this
study, we proposed a hybrid deep learning approach combining feature selection and different
ensemble strategies such as Majority Voting and our proposed Weighted Majority Voting for
efficient classification of different malware categories.

8.3 Proposed Methodology

8.3.1 Dataset and Data Preprocessing

A publicly accessible dataset named as CCCS-CIC-AndMal-2020 was created by the Cana-
dian Institute for Cybersecurity and the Canadian Centre for Cyber Security in 2020. There
are 400K android applications in this enormous collection, of which 200K are typically harm-
less apps and the other 200K are malware apps. The 141 features in this dataset divided into
Memory (23 features), API (105 features), battery (2 features), network (4 features), logcat
(6 features), and process for dynamic analysis (1 feature). This dataset contains 53439 sam-
ples that belong to 14 distinct categories. The authors of the dataset suggest excluding some
categories owing to the lack of comprehensive data in these labels [188]. We considered 10
prominent malware types for classification in this study, such as Adware, Backdoor, Scareware,
Ransomeware, No-Category, Zero-Day, Trojan, Trojan-SMS, Trojan-Spy, Trojan-Banker, Po-
tentially Unwanted Apps (PUA), and FileInfector.

We used SimpleImputer from the Scikit-Learn package with the ”mean” technique to en-
sure that the dataframe was missing no values. First, we used the NumPy np.inf value to
replace any infinite values, whether they were positive or negative. Then, we substituted a
NumPy np.nan value for each empty value. After that, we once again substituted all NumPy
np.nan and np.inf values with the mean value of a particular feature using SimpleImputer from
the Scikit-Learn module.

According to the attack distribution, CCCS-CIC-AndMal-2020 is a highly imbalanced
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Algorithm 5: Dynamic Weighted Voting
1 Input: Trained models, Test-set;
2 Initialization: models← [CNN, LSTM, GRU, MLP];
3 labels← [Adware, Backdoor, ..., Trojan Spy];
4 success rate[number of models][number of labels]← ∅;
5 final prediction[no. of samples in test set]← ∅;
6 foreach model m in models do
7 foreach label l in labels do
8 success rate[m][l]← True Positive[m][l] - Sum(False Positive[m][l]);
9 end

10 end
11 foreach sample s in test set do
12 Initialization: fittest model← ∅;
13 prediction[number of models]← ∅;
14 rating point[number of models]← ∅;
15 max rating← 0;
16 foreach model m in models do
17 prediction[m]← predicted label by m;
18 rating point[m]← success rate[m][prediction[m]] - MAX(success rate[models

\m][prediction[m]]);
19 end
20 foreach model m in models do
21 if rating point[m] > max rating then
22 fittest model← m;
23 max rating← rating point[m];
24 end
25 end
26 final prediction[s]← prediction[fittest model];
27 end
28 Output: final prediction;
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Figure 8.2: Frequency of features over feature importance.

dataset where the ratio of Adware to Trojan-Banker is 45:1. Generally imbalanced datasets
are not a good choice for ML/DL algorithms. There are many techniques suggested to deal
with imbalanced dataset. One of them is random oversampling of minority labels. We utilized
Synthetic Minority Oversampling Technique (SMOTE). It synthesizes new data point from
augmentation of existing minority classes. Then to normalise the data in each feature in accor-
dance with the lowest and maximum values provided in the feature, we employed the MinMax
Scaler function in the Scikit-Learn package. Finally, we split the whole dataset into 70:30 ratio
and provided 70% to the models while training and kept 30% for validation.

8.3.2 Feature Selection

CCCS-CIC-AndMal-2020 dataset contains a large number of features totalling to 141. As
choosing optimum number of features by discarding less important features increases DL
model accuracy and lessens the complexity, we employed Random Forest regressor to find
out the feature importances. The minimum and maximum values of the feature importances
are 0 and 0.05998, respectively. The standard deviation of this distribution is 0.00926064.
We considered from the minimum value, which is 0, to 1/10 of the standard deviation, which
is 0.0009, as range for less important features. We found 41 number of features belong to
this range. To remove 41 less important features from dataset, we employed Recursive Fea-
ture Elimination with Random Forest Classifier. Fig. 8.2 depicts the number of features over
feature importance.
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8.3.3 Malicious Application Detection Model

Our malicious application detection model is comprised of two layers as depicted in Fig. 8.1. In
first layer, we utilized four DL methods for classification of malware those are found effective
in many studies [189, 190, 191, 192]. These are Convolutional Neural Network (CNN), Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Multilayer Perceptron (MLP).
We provided training dataset separately to each DL model and collected predictions from each
model for evaluation. In the second layer, we propose an ensemble voting technique named as
Dynamic Weighted Voting. However, to compare and contrast the performance of our proposed
model, we also arrange another ensemble technique named as Majority Voting.

Majority Voting

In Majority Voting each of the four DL models implemented in first layer, has equal right to
vote. The final prediction for each data in validation set depends on how the four DL model
predict that data. However, there are even number of models, there are chances for 2-2 votes
for any case. In that situation, we set rule that, the prediction from model with highest accuracy
would be taken into account.

Proposed Dynamic Weighted Voting

We propose an ensemble weighted voting where the weights of the voter models dynami-
cally change depending on their predicted labels while testing, and accuracies observed when
predicting those labels while training. For every voter models while training, it computes a
Success Rate for each label, that is true positive subtracted by the sum of all false positives for
that label. Then while testing for each instance in the test set, we have four predictions from
four individual DL models. Our proposed model selects the prediction from the fittest model.
The model computes a Rating Point for each voter model to assess, how fit that model is for
predicting that particular instance. This Rating Point is computed as its Success Rate in its cur-
rent predicted label subtracted by maximum value for Success Rates of other voter models in
predicting the same label. For an example, if CNN predicts Adware for any instance in test set,
its Rating Point for voting would be calculated as its Success Rate in predicting Adware sub-
tracted by the largest Success Rate among other three models in predicting Adware. If LSTM
for the same instance predict Trojan, its Rating Point would be Success Rate in Predicting
Trojan subtracted by the largest Success Rate among other three models in predicting Trojan.
Thus Rating Points for the other two models would be computed. Then the prediction from the
model having highest Rating Points would be added to final prediction. This algorithm is given
in Algorithm 1.

8.3.4 Evaluation Metrics

We used different evaluation metrics, e.g., Accuracy, Precision, Recall, and F-1 Score estimate
the performance of our classification models. There are four measurement parameters in the
confusion or error matrix: True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN), which are used to define the evaluation metrics stated above.
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Figure 8.3: Performance comparison among detection models.

Accuracy =
T P + T N

T P + FP + T N + FN
(8.1)

Precision =
T P

T P + FP
(8.2)

Recall =
T P

T P + FN
(8.3)

F1 = 2 ∗
Precision + Recall
Precision ∗ Recall

(8.4)

Here, the accuracy can be defined as the percentage of true attack detection over total data
samples. Precision measures how often the model can correctly identify the DoS attack from
the dataset. Recall is the measurement of how many of the DDoS samples from dataset the
model does distinguish correctly. Finally, F-1 score is the harmonic average of precision and
recall.

8.3.5 Software and Hardware Requirement
We used Python and deep learning library TensorFlow-Keras[168] to conduct the experiments.
Our computer has the configuration of M1-Max Chip, 64GB memory, MacOS V.12.6.

8.4 Analysis of Experimental Results
MLP in the first layer showed highest accuracy among all four individual models. It obtained
90.8% accuracy with 92.5% precision. It mostly failed with Trojan kinds and mistakenly cat-
egorised as Adware. LSTM and GRU showed almost similar results, reaching around 90% in
all performance metrics, while CNN showed slightly reduced accuracy than other individual
models. LSTM and GRU also suffered with Trojan kinds, and Adware. In addition, those two
models also mixed up with Ransomeware and Trojan Spy. However, for CNN it’s a different
story, it mostly struggled among Trojan kinds. That means it mistakenly categorized one Tro-
jan kind as other kind of Trojan. This is due to the fact that these kinds of Trojan belong to
same family of malwares and they have similarity in using resources. MLP performed better
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Figure 8.4: Confusion matrix for majority voting model.

than RNNs (Recurrent Neural Network) like LSTM and GRU because RNNs are usually best
for time series data, however, we utilized tabular dataset. With CNNs, we assume that pixels
close to one another are connected. In a tabular dataset, it may not be the case. Additionally,
CNNs have translational equivariance, which a tablular dataset does not require.

Majority Voting improved the individual model performance by slight margin. We observe
that different individual models struggled with different labels. When it comes to the opinion
of majority, there is higher probability for an increased accuracy. We observe in the confusion
matrix that, Majority Voting model improved detection where individual models were strug-
gling. However, it underperformed where individual models showed peak accuracy. Fig. 8.4
depicts the confusion matrix of the Majority Voting. Our proposed Weighted Voting model
showed the highest performance among all the models previously discussed, climbing up to
92% in terms of evaluation metrics. It raised the accuracy by 1% than even Majority Voting
model, while other individual model lagging 1.2-3.2%. The performance metrics of all the
models are depicted in the Fig. 8.3. Though Weighted Voting was beaten by Majority Vot-
ing only in Trojan spy label by only 5 instances, Weighted Voting outperformed in all other
categories. This model showed strikingly better performance with Adware, while most in-
dividual models and Majority Voting struggled with this kind. Though MLP showed largest
true positive for Adware, it also carries heavy false positive for this kind. On the other hand,
Weighted Voting came up with less true positive than MLP, (which is still much higher than
other models) and reduced number of false positive. Fig. 8.5 shows the confusion matrix of the
Weighted Voting. The reason for better performance by our proposed Weighted Voting lies in
the idea of setting dynamic weights to the models while voting, according to the category-wise
prediction performance by the individual models. And it is worth mentioning that, it does not
only considers the true positive rate, but also false positive rate in predicting the labels, while
evaluating category-wise performance. As a result, when multiple individual model come up
with multiple predictions for any instance, this Weighted Voting can pick the best model for
prediction according to that scenario.
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Figure 8.5: Confusion Matrix for dynamic weighted voting model.

Table 8.1: Result Comparison with Existing Works.
Ref. Model Dataset Target Type Acc.
[193] Dynamic CICMalDroid2020 5 PLDNN 97.84
[191] Static CICMalDroid2020 2 CNN 95.9
[190] Static Drebin 2 LSTM 92.94
[189] Dynamic CCCS-CIC-AndMal-2020 14 DNN 78.82
Proposed Dynamic CCCS-CIC-AndMal-2021 10 Ensemble 92

We compare the performance of our proposed model with other similar studies that carried
out DL methods. Table 8.1 shows the comparison of performance of other studies. Some of
the studies showed higher accuracy than our proposed model, however, with reduced number
of categories. Generally, binary classification shows better accuracy than multi-classification.
For two different datasets, using LSTM and CNN, [191] and [190] carried out binary classi-
fication and showed accuracy of 95.9% and 92.94%, respectively. S. Mahdavifar et al. [193]
with 5 labels reached up to 97.84% accuracy deploying Semi-supervised DL method. This
model utilized half the number of labels than our proposed model. P. Musikawan et al. [189]
conducted experiment having more number of categories than our study, however, it showed
78.82% accuracy.

8.5 Conclusion

The Android-powered smartphones are the most commonly used devices engaged in Mo-
bile Cyber-Physical systems due to their open-source nature, low cost, and ease. As mali-
cious applications are prevalent for carrying out adversary operations on Android devices, it
is crucial to identify and classify malapps to ensure security in MCPS consisting of Android-



8.5. Conclusion 145

operated devices. The classical signature-based detection approach is insufficient for effective
identification of malignant applications that obtain modern techniques like code obfuscation.
However, machine learning models showed promising performance in malware detection and
classification, while malware classification is crucial for deciding mitigation methods. In this
study, we compare several conventional deep learning model performances for malware multi-
classification using dynamic analysis. Also, the individual model predictions have been en-
sembled using the majority voting technique for better accuracy, and it outperforms standalone
models by 1%. Finally, we proposed dynamic weighted voting technique to improve further
and increase accuracy by 2% compared to the best individual model performance. As part
of our future work, we plan to use additional datasets to evaluate the efficacy of the dynamic
weighted voting approach.



Chapter 9

Examining Generative Adversarial
Network for Smart Home DDoS Traffic
Generation

Abstract: Adversarial attacks have become a common place in network security. Neural
network-based traffic classifiers have been regarded as effective tools against malicious at-
tacks. However, their performance highly depends on the quality of the training dataset that is
often hard to obtain. IoT-centric smart home network is vulnerable to adversarial attacks with
a high cost to the individual. In this research, we perform a thorough study on the performance
of the original GAN model towards generating flow-based IoT traffic in smart home DDoS
attacks. Based on a unique IoT traffic dataset of smart home, we implemented four versions
of the original GAN model by using four batch sizes per epoch during training. We captured
synthetic IoT traffic at different epochs of the models, which results in a total of 200 IoT traffic
datasets. Then, we evaluate the quality of the 200 synthetic datasets using an approach called
train-on-synthetic, test-on-real (TSTR). Our study suggests that the original GAN can produce
a quality IoT traffic of smart home DDoS attacks at most of the epochs but lacks in providing
consistent performance across all the epochs of the GAN model. However, by using TSTR
metrics, it is possible to identify the datasets of good quality to be used for real applications.

9.1 Introduction

The Internet of Things (IoT) has brought about a new era to the concept of home automation,
now being referred to as a smart home. IoT-based smart home system is a network of home
devices enabled with programmability, sensing capability, and connectivity to the Internet,
providing access and control both locally and remotely. The smart home system is exposed to
many kinds of cyber-attacks (e.g., DoS/DDoS attack, Man in the Middle attack, Sybil attack,
etc.) that impede the operability of this system [194]. A machine learning based intrusion
detection system (IDS) is a de facto solution now-a-day. However, adversarial attacks that
subtly alter original data in an undetectable way could easily be misclassified by responsible
classification systems and capable of evading the classifiers that are based on state-of-the-
art neural networks [195]. Thus, it becomes a fundamental shortcoming of traditional neural

146
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network models against adversarial attacks.
In such context, Generative Adversarial Networks (GAN) [196], capable of generating re-

alistic synthetic datasets, opens up a unique opportunity to explore its applicability in network
traffic generation. GAN creates a learning framework that can generate realistic adversary
samples after gradually approximating the data distribution of the input dataset. It has shown
promising results in generating realistic datasets in the field of image generation [197]. More
recently, the prospect of GAN to generate internet traffic data has also been investigated through
several researches [198], [199], [200], [201]. However, IoT traffic pertaining to the smart home
environment exhibits distinct properties from internet traffic that are dealt with by the above-
mentioned body of work [202]. This is due to the diversified household devices communicat-
ing in the IoT environment through distinct communication protocols (e.g., CoAP, Zigbee, and
MQTT) [203]. Further, different kinds of applications and services in an IoT network exhibit
unique traffic patterns. To the best of our knowledge, there is a severe lacking scientific litera-
ture on generating IoT traffic specific to smart home environments. In this research, we attempt
to fill up the gap by investigating the regular GAN [196] for generating IoT traffic of DDoS
attack traces in a smart home network. It is worthwhile to mention that a DDoS attack is the
most prominent kind of attack in the context of a smart home IoT environment [204].

We used a labeled smart home flow-based IoT traffic dataset of DDoS attack traces for
training the GAN model at different settings (i.e., attributed by the batch size and the number
of epochs), which we had previously captured from an emulated smart home network (origi-
nally presented in [203]). This dataset constituted the real dataset of IoT traffic in our experi-
ment. Then, we captured 200 synthetic datasets as they were generated by the GAN model in
different settings. Next, we evaluated the quality of the synthetic datasets by using the Train-
on-Synthetic, Test-on-Real (TSTR) approach [205]. In this approach, using each synthetic
dataset, we first trained four machine learning classifiers (e.g., logistic regression (LR), naive
Bayes (NB), neural network (NN), and support vector machine (SVM)). Then, we tested the
classification accuracy of the trained classifiers against the actual dataset of smart home IoT
traffic (used to train the GAN model). This evaluation metric is decisive since it validates the
ability of the synthetic data to be used for real applications.

The implication of such research is manifolds, including: (i) the synthetic labeled dataset
can be used as an alternative source for privacy-preserving training datasets; (ii) it can augment
existing real training datasets for enriching their quality by adding up more anonymity, vol-
umes, varieties, and dimensions. The remainder of this work is organized as follows: Section
9.2 discusses related literature. Section 9.3 describes the IoT traffic dataset, construction of the
GAN model, and TSTR method. Experimental results pertaining to the quality of the synthetic
IoT traffic datasets is analyzed in Section 9.4. Finally, we conclude the paper with directions
to future work in Section 9.5.

9.2 Literature Review
In recent times, Generative Adversarial Network (GAN) is being investigated to generate syn-
thetic network traffic by several research. The authors in [198] propose a GAN model, based
on CIDDS-001 dataset, for generating flow-based traffic dataset. But the dataset does not in-
clude sequencing information among individual traffic in a flow. In [199], the authors present



148 Chapter 9. Exploring GANs for Smart Home DDoS Traffic Generation

a framework of GAN to generate adversarial malicious traffic examples capable of evading
intrusion detection systems. This framework is tested on the benchmark dataset NSL-KDD.
In [200], the authors propose a Wasserstein Generative Adversarial Networks (WGAN)-based
model that is integrated with gradient penalty technology for DoS attack generation. The model
used the KDD Cup 99 dataset for generating 41 network attributes data. In [201], another GAN
version is adapted to generate realistic traffic at the IP packet level (such as ICMP Pings, DNS
queries, and HTTP web requests). A network traffic encoding scheme is presented, which con-
verts and maps network traffic data from the IP domain into image-based matrix representations
that are typically used in CNN frameworks. The authors in [206] propose a semi-supervised
approach that enables training of Deep Convolutional GAN (DCGAN) model with a limited
dataset. A feature engineering method is proposed in [207] for selecting features that are the
most appropriate to traffic data. This combination of filter and wrapper-based approach is able
to reduce the 41 features of the KDD-99 and NSL-KDD dataset into only ten features. The
effectiveness of the variants of GAN models is yet to be fully explored by research community.
According to the analysis provided in [208], unlike Conditional GAN (CGAN) and Adversarial
Autoencoders (AAE), the regular GAN [196] often fails to generate new instances of certain
class and shows lack of feature extraction capabilities. On the other hand, CGAN cannot detect
anomalies that AAEs are capable of.

The abovementioned research have focused on internet traffic constituting distinct proper-
ties than IoT traffic [203] [209] [210]. Since it represents the traffic generated by new kind of
participating household devices made by different manufacturers with various communication
protocols (CoAP, MQTT, and Zigbee). Moreover, the IoT traffic pattern exhibits new kinds us-
age and attack scenarios reflecting unique applications, services, and protocol-specific security
threats with regards to IoT devices [202]. Therefore, examining IoT traffic generation of smart
home by using GAN framework needs to be evaluated on the merit of the tools and methods
built upon smart home IoT traffic dataset.

There is severe scarcity of publicly available IoT traffic dataset, especially in smart home
environment. A common understanding on the characteristics of IoT traffic is still warranted
in the scientific community. In [211], the authors characterize IoT traffics collected from 200
sources and highlight concerning security and privacy areas of smart home IoT. It includes
third-party advertising and tracking through supplied devices, less policy-based access control,
and weaker application layer encryption. In [209], the authors proposed an open-source traffic
generator tool IoT-Flock specific to IoT environment. This tool allows a user to customize his
own use case of attack limited to four MQTT-based and CoAP-based attacks, and to collect the
generated traffic from the IoT network. Yet another IoT packet level traffic generator tool is
proposed in [210]. This tool helps to analyze traffic characteristics of given dataset and enables
to model different IoT environment.

The IoT traffic generator tools [209] [210] are helpful for easily emulating an IoT envi-
ronment and to generate IoT traffic. We adopted similar approach to emulate a smart home
network and collected IoT traffic [203]. On the contrary, in this work, we explore the prospect
of generating “synthetic” dataset using GAN model that uses “emulated” or “real” dataset as
its input. Synthetic dataset is more privacy-preserving and can be used as useful alternatives to
real dataset for training IDS classifiers.



9.3. ProposedMethodology 149

Network
router

(vSwitch)

Floodlight 
Controller

Host 1 Host 2 Host 3

Generator

Discriminator

Random Noise

Real Data

G
en

er
at

ed
  D

at
a

D
isc

ri
m

in
at

or
 D

ec
isi

on

Synthetic D
ata

IDS

Data
Preprocess

ing

Build 
Classifica-
tion Model

Internet

Network Topology Model

Synthetic Data Generation and Validation

Figure 9.1: High-level overview of proposed framework for adversarial attack generation using
GAN.

9.3 Proposed Methodology
In this section, we first briefly discuss the characteristics of IoT dataset and its associated smart
home IoT environment in the Section 9.3.1. Then, we describe our proposed GAN-based
synthetic data generation model in Section 9.3.2.

9.3.1 Smart Home Emulated Network and IoT Dataset
In this subsection, we discuss our data collection simulation environment as depicted in Figure
9.1. Firstly, we explain our network topology considered for attack data generation in IoT
environment in subsection 9.3.1. Then, we briefly discuss our data collection approach and
describe attack features in subsection 9.3.1.

Network Topology Model

The dataset used in the GAN models was originally captured within an emulated smart home
IoT network environment. The topology model of the IoT network was created using Mininet
2.2.2 with the vSwitch 2.5.4 that is supported by OpenFlow 1.3 and Floodlight controller 1.2.
This was a small network consisting of three hosts, i.e.: (i) a HTTP webserver; (ii) a Nest
thermostat, and (iii) a Wyze home camera. All the hosts were connected to a network controller
through a vSwitch. The vSwitch acts as a WIFI router.

Data Collection and Description

The collected IoT traffic dataset of Smart-home contains 6590 flows of traffic (i.e., each flow
contains 100 IoT traffic packets). The dataset includes both benign traffic and malicious traffic
of DDoS attack. It is worthwhile to mention that DDoS attacks appears to be extremely dif-
ficult to detect by the typical IDS due to their similarity to regular benign traffic at a packet
level. A combination of packet-level and flow-level features were extracted to be used by IDS
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Table 9.1: Collected Features for Attack Classification
Feature Description
avg pkt size The average size of a packet per batch
number uniq ips Number of unique incoming IP addresses
number of FA Number of False Fast Re-transmit Avoidance (FA) packets
ack rst ratio This is the ratio of the number of acknowledgment (ACK)

packets to the number of reset (RST) packets in a batch.
syn rst ratio This is the ratio of the number of SYN packets to the num-

ber of RST packets in a batch.
Avg number des port 50 The average number of destination ports constituting 50%

of the batch
Avg number des ip 50 The average number of destinations constituting 50% of the

batch

classifiers. The features capture critical information signifying typical DDoS attack, including
packet size, proportion of SYN vs. ACK requests, volume of RST (hinting a web server fails
due to hijack a TCP connection), abnormal density of a particular destination port or source
port in a flow, etc. Total seven features were derived from traffic flow dataset, which constitutes
the IoT traffic dataset (the dataset is made available for public use and accessible in [212]). The
features are given in Table 9.3.1. The actual formulations of the above feature metrics are pro-
vided in [203]. The packets in a batch are considered malicious if more than half of the packets
represent attack traffic. Otherwise, they are considered benign. It is important to mention that
all features (metadata about a traffic flow) have numerical and continuous values, unlike some
packet-level data containing categorical values (e.g., IP addresses, port numbers, and transport
protocol).

9.3.2 Synthetic Attack Data Generation and Validation Approach

In this section, the second module of our proposed methodology has been discussed. First, we
explain our GAN based data generation through feature space model in subsection 9.3.2. And
finally, we summarize our synthetic data validation method in 9.3.2.

GAN Based Data Generation in Feature Space

Generative Adversarial Networks (GANs) [196] are a method to generate synthetic data by
learning from a given set of input data distribution. GANs consist of two neural networks: a
generator network and a discriminator network as depicted in Figure 1. The generator network
is trained to generate synthetic data from random noise. The discriminator network is trained to
distinguish generated synthetic data from real world data. The generator network is trained by
the output signal gradient of the discriminator network. Both networks are trained iteratively
until the generator network can deceive the discriminator network. In our methodology, we
followed feature space model for designing the discriminator model of our GAN where the
discriminator operates on features extracted from the input data. This is in contrast to the
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problem space model where the discriminator operates directly on the input data, without first
extracting features.

Our proposed generator is a neural network that takes a noise vector of shape (100,) as input
and outputs a synthetic data sample of shape (8,). The architecture of the generator network
consists of the four dense layers with 256, 512, 1024, and 8 unit followed by LeakyReLU ac-
tivation with an alpha of 0.2. We chose LeakyReLU activation for both generator and discrim-
inator as it helps mitigates the vanishing gradient problem, common in deep neural networks,
by allowing a small negative slope (controlled by the alpha parameter) when the input is nega-
tive. This ensures that gradients flow even for negative input values, promoting better learning
and helping the GAN to generate more realistic data. Batch Normalization layers are added
after certain layers in the generator network. These layers normalize the output of the previous
layers, maintaining the mean activation close to 0 and the activation standard deviation close
to 1. This helps in improving the training process by reducing internal covariate shift, leading
to faster convergence and better generalization. As a result, the generator can produce more
realistic synthetic data. Our discriminator is a neural network that takes a data sample of shape
(8,) as input and outputs a scalar value representing the probability that the input data is real.
The architecture of the discriminator network consists of the four dense layers consisting of
1024, 512, 256, and 1 neuron. GANs excel at capturing the underlying feature distribution
of the input data through the adversarial training process. The generator network is trained to
create synthetic data resembling the original DDoS attack features, while the discriminator net-
work is trained to differentiate between real and generated data. The iterative training process
of GANs involves a minimax game between the generator and discriminator. The adversarial
nature of this training process encourages the generator to create more realistic and diverse
samples, benefiting the feature space model’s ability to generalize across different models and
architectures. Our generator network uses a noise vector of length 100 as input. The ratio-
nale behind using a noise vector is to provide a source of randomness for the generator, which
helps it to explore the data distribution and to learn to create diverse synthetic samples. The
choice of 100 dimensions is arbitrary but it is large enough to represent complex patterns in the
data while remaining manageable for the neural network. We use Adam optimizer for training
both the generator and the discriminator. Adam combines the benefits of two other popular
optimization algorithms, AdaGrad and RMSProp, and is known for its efficiency and robust-
ness. The learning rate and the beta 1 parameter are manually tuned to prevent oscillations and
ensure stable training. We performed GAN training for different batch size of 16, 32, 64, and
128. Investigating the impact of different batch sizes on the GAN model’s performance is worth
exploring due to several influencing factors that contribute to the model’s effectiveness. For ex-
ample, varying batch sizes can have a significant impact on the GAN model’s convergence rate
and training stability. Smaller batch sizes may lead to faster convergence but introduce more
noise in the gradient updates, while larger batch sizes provide more stable gradient updates at
the cost of longer training times. Also, the choice of batch size may affect the likelihood of
mode collapse, a common issue in GAN training where the generator learns to produce only a
limited set of samples instead of covering the entire data distribution. The training process is
repeated for a specified number of epochs, with the generator and discriminator being updated
alternately in each epoch. Finally, we saved our fifty individual model at regular epoch interval
for generating different set of synthetic dataset for analysis.
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Table 9.2: Proportion of Quality Synthetic Dataset Generated by Various Batch Sizes (BS) of
GAN.

IDS BS*-16 BS-32 BS-64 BS-128 Total
LR 35 (70%) 25 (50%) 38 (76%) 36 (72%) 134 (67%)
NB 31 (62%) 24 (48%) 32 (64%) 25 (50%) 112 (56%)
NN 35 (70%) 21 (42%) 33 (66%) 25 (50%) 114 (57%)

SVM 25 (50%) 18 (36%) 26 (52%) 16 (32%) 85 (43%)
Total
(200) 126 (63%) 88 (44%) 129 (65%) 102 (51%)

Evaluation of Synthetic IoT Traffic Dataset

We followed the “Train on Synthesis and Test on Real” (TSTR) approach [205] originally
developed to assess the performance of time-series GAN in the health domain. In this approach,
the effectiveness of GAN is indirectly evaluated in terms of the quality of generated traffic for
informing sufficient pattern to the anomaly-based IDS it is being used to train. That said, the
IDS classifiers are trained on the synthetic data produced by GAN model under evaluation, and
then the performance of the classifiers is tested against the real dataset used by the GAN. Thus,
the test accuracy would imply the quality of the GAN model. This evaluation metric confirms
the ability of the synthetic data to be used for real applications. The TSTR metric is also later
used in evaluating traffic GAN for the CIDDS dataset [213].

9.4 Analysis of Experimental Results

In this section, we first describe the various sets of synthetic IoT traffic datasets that we gen-
erated using the GAN model described in the Subsection 9.4.1. We also implemented the
TSTR approach to evaluate the quality of the produced IoT datasets. Our evaluation results are
presented, interpreted and analyzed in the subsection 9.4.2.

9.4.1 Generated Synthetic IoT Traffic Dataset

Using the methodology described in the Section III (A), we generated 200 different IoT traffic
datasets of DDoS attack to smart home environment. We examined four different batch size
for training the GAN to analyze the impact of batch size on the model’s convergence rate
and training stability. We collected a set of synthetic traffic data for each individual training
settings. Firstly, we trained our GAN models using four different batch sizes (i.e., batch size
16, batch size 32, batch size 64, and batch size 128). During each training phase, we saved
our GAN model snapshot at every 10 epochs while our training continued for total of 500
epochs, and we got 50 different GAN models for each training session with different batch
size. As a result, a total of 200 (4 different batch * 50 model in each batch) different GAN
model were employed to generate 200 different synthetic attack datasets for our analysis. Each
of the datasets includes 3000 traffic flow (can be accessed from our online repository in [212]).
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100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350
LR 0.991 0.991 0.767 0.991 0.995 0.993 0.993 0.991 0.991 0.991 0.991 0.992 0.994 0.722 0.994 0.994 0.991 0.992 0.994 0.995 0.993 0.991 0.991 0.991 0.522 0.543
NN 0.991 0.991 0.868 0.991 0.419 0.995 0.993 0.991 0.991 0.991 0.991 0.991 0.998 0.723 0.992 0.994 0.991 0.995 0.871 0.594 0.990 0.990 0.991 0.991 0.398 0.543
NB 0.539 0.991 0.891 0.989 0.992 0.995 0.991 0.991 0.991 0.991 0.990 0.991 0.991 0.709 0.991 0.992 0.539 0.991 0.992 0.990 0.991 0.991 0.878 0.989 0.520 0.518
SVM 0.990 0.994 0.760 0.992 0.991 0.482 0.495 0.995 0.990 0.990 0.990 0.991 0.995 0.596 0.991 0.719 0.577 0.620 0.995 0.719 0.991 0.991 0.991 0.989 0.520 0.518
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Figure 9.2: Accuracy of different classifiers trained by synthetic datasets.

9.4.2 Evaluation of Synthetic Traffic for Quality

The 200 synthetic datasets were evaluated indirectly through the accuracy of the classifiers they
trained to. The quality of a classification model depends on the quality of the training dataset.
For each setting of GAN models (characterized by batch-size used per epoch during training),
50 different IoT datasets are collected during different epochs. We implemented four types of
classifiers for each dataset, resulting in a total of 200 classification models to test. Then, we
tested each of their classification accuracy against real IoT traffic dataset.

We determined a classifier producing “satisfactory performance” (reflecting “good quality”
of the underlying datasets and hence, the effectiveness of the GAN models) if it demonstrates
classification accuracy above 90% when tested against the real dataset. Table I summarizes
the number and proportion of quality traffic datasets that reflects satisfactory performance.
Each of the columns (2nd to 5th) of the Table I presents results from classifiers trained with a
particular batch size (i.e., 16, 32, 64, and 128). Each row (2nd to 6th) shows results pertaining
to a particular type of classifier. For instance, with reference to the 1st column of the 1st row
of Table I, 35 LR classifiers out of the total 50 (70%) that are trained with batch size 16, shows
satisfactory performance. Therefore, 70% of the datasets generated by GAN models involving
batch size 16 is of good quality. From our experimental analysis on the effect of batch-size, we
observe that the GAN model trained with different batch sizes (i.e., 16, 32, 64, 128) achieves
diverse performance (please see the variations of performance in all the rows from the 2nd to
6th). In all, the GAN model that is trained with batch size 64 exhibits the best performance
(76%) in terms of generating quality datasets as evident by the LR classifier. However, batch
size 16 exhibits the overall best performance (63%) in producing good quality dataset.

Overall, most of the 200 synthetic datasets exhibit satisfactory quality as validated by at the
performance of at least four types of trained classifiers. These are LR (134 vs. 200), NB (112
vs. 200), and NN (114 vs. 200) (shown in the last column of the Table I). In contrast, SVM
achieves the least performance (85 vs. 200 (43%)) with the same dataset. Please note that the
results also include the datasets collected during the initial period (e.g., less than 130 epochs)
when the models were still learning, which indicates a higher percentage of quality datasets
in the later epochs. In Figure 2, we illustrate how the performance of GAN evolves with the
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number of epochs during training. Fig 2 shows the classification accuracy of the IDS classifiers
that are trained by datasets collected between 100 and 350 epochs with BS-64. The colored
line curves depict the classification accuracy of the classifiers while testing against real dataset.
All of the classifiers, with a few exception, trained by datasets collected during 100-250 epoch
show above 99% classification accuracy. However, the infrequent degradation of performance
of the classifiers also reflects the lack of stability in GAN training.

The datasets unveil the best results in quality when tested by the performance of the imple-
mentation of the LR classifiers (shown in orange color) that only degrade performance at three
occasions (i.e., 120 epoch, 230 epoch, 340 epoch, and 350 epoch). The performance patterns
are quite similar for Naı̈ve Bayes classifiers (shown in green color) and Neural Network clas-
sifiers (shown in yellow color). The finding is that the datasets generated by the GAN models
between 130-330 epochs are of expected quality to be used by real applications. During the
other epochs (< 100 and > 330 ), the GAN models show more frequent instability to producing
dataset of similar quality. The reason for the occurring of such instability during GAN training
could be due to the mode collapse problem inherently persist with the GAN [214]. On the other
hand, the SVM classifier (brown colored line) demonstrates lack of consistency in accuracy.
Further, it has no trend of performance improvement with the increase of epoch.

In summary, the regular GAN does not show stable performance throughout the training.
This finding supports the existence of the mode collapse problem in the regular GAN reported
in [208]. Despite the instability of learning, the regular GAN is able to generate quality datasets
during most of the epochs. This is evident by the performance of at least three types of classi-
fiers (i.e., LR, NB, and NN) that we examined in our study. The evaluation by TSTR metrics
shows that out of the total 200 dataset generated by the different settings of GAN model, most
of them (e.g., LR (134 vs. 200), NB (112 vs. 200), and NN (114 vs. 200) demonstrated sat-
isfactory quality (shown in the Table I). One implication of this finding is that TSTR method
can be effectively complemented with the regular GAN for differentiating the quality datasets
to be used for real applications.

9.5 Conclusion
The new era of IoT brings new security threats, especially to the smart home network. To
provide protection against the cyber-attacks through IDS for IoT centric smart home network,
there is a need to have labeled diverse and up-to-date training traffic dataset. Although GAN
was initially developed in the field of image generation but recently it has been investigated
into the field of traffic generation specific to internet traffic. However, IoT traffic differs from
internet traffic due to the difference in protocols used by the communicating devices, especially
in smart home environments. In this paper, we explore the performance of the original GAN
model towards generating IoT traffic dataset of smart home environment. We captured 200
IoT traffic datasets from the implemented GAN model. The quality of the datasets collected
at different epochs is evaluated based on the TSTR method. The results of our study suggest
that the original GAN model can produce quality datasets during most of the epochs, while
the best performance is observed during 130 - 330 epochs (shown in Fig 2). Further, the GAN
model trained by different batch sizes exhibits variations in performance, achieving the best
results (76% quality datasets) when trained with the batch size 64 (please see the 2nd row and
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the 4th column of the Table I). With respect to Table I, as evident by the three different types
of classifiers, most of the 200 synthetic datasets (i.e., LR (134 vs. 200), NB (112 vs. 200), and
NN (114 vs. 200)) exhibits good quality (i.e., above 99% classification accuracy achieved by
their trained classifiers) (shown in the Table I). Though its performance is not stable throughout
the GAN training. This is potentially due to the mode collapse problem, which supports the
previous analysis presented in. Nevertheless, the quality of the datasets can be realistically
measured through the TSTR metric, which would help to distinguish quality datasets for use
in real applications. This finding contributes to producing IoT traffic datasets of smart home to
be used by real applications and conducting network security research. Such synthetic datasets
would also reduce privacy-related concerns typically arise in research work conducted on real
dataset in smart home and other applications of IoT. In the future, we plan to create and use
more diversified dataset involving more complex IoT network and different types of cyber-
attacks by the use of IoT traffic generator tool. Further, we look forward to implementing or
upgrade other versions of GAN that show more stability in learning.



Chapter 10

Conclusion and Future Work

In this chapter, we present the conclusions and future work of this thesis. In Section 10.1,
we revisit the research problem and the emerging theory from Chapter 2-9. Then, we discuss
future work in Section 10.2.

10.1 Conclusion

The digital age has accelerated the rise of global internet usage and, consequently, the volume
of network traffic. Predicted to reach 5.3 billion users by 2023, the internet and its surround-
ing technologies have transformed the way we communicate, work, and entertain. This rapid
expansion has brought along some significant challenges, particularly the strain on network
capacity due to the escalating growth of internet traffic. Key factors such as increasing user
numbers, Machine-to-Machine connections, IPv6 adoption, and the rise in cyber-attacks, in-
cluding DDoS attacks, significantly contribute to this growth. With this complexity in mind,
it becomes evident that accurate traffic forecasting is crucial for service providers to optimize
network performance, reduce costs, ensure Quality of Service (QoS) and Quality of Experi-
ence (QoE), and deliver reliable and consistent internet speeds. Leveraging machine learning
techniques and advanced analytics, major industry players like Verizon, Huawei, and Nokia
have been able to predict future traffic patterns and thereby improve their service provision.

In this study, we emphasized four main challenges that hinder the accurate prediction of
real-world internet traffic. Firstly, the data anomalies or outliers significantly affect the per-
formance of the predictive models by causing incorrect inferences and skewing the overall
analysis. Therefore, proper detection and removal of these outliers are critical to improving the
model’s accuracy. Secondly, the noise present in wireless network traffic can obscure valuable
data patterns, hence the need for effective noise reduction techniques. Thirdly, the issue of
having a limited amount of historical data makes it challenging to create prediction models for
different geographical or network sectors. Here, transfer learning offers a promising solution.
Lastly, the problem of overfitting caused by the non-identical distribution of internet traffic data
and the lack of Out-of-Distribution (OOD) generalization in most current approaches requires
more focus.

In light of these challenges, we proposed several approaches. We conducted an analysis of
deep sequence models and gradient-boosting algorithms for traffic prediction, integrated out-
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lier detection, and employed noise reduction techniques. We also presented a novel approach
that combines transfer learning and data augmentation for efficient forecasting in limited data
scenarios. Lastly, we addressed the OOD generalization issue by proposing a solution that
combines a hybrid deep learning model with Discrete Wavelet Transformation.

Additionally, our research delved into the realm of cyber threats, focusing on the detection
of DDoS attacks, which contribute significantly to the surge in global network traffic. The
escalating frequency and intensity of such cyber attacks pose considerable challenges to accu-
rate internet traffic volume forecasting. The unpredictability of traffic spikes caused by these
attacks, often concealed, introduces substantial uncertainty into the forecasting process. More-
over, the complexities of these challenges are intensified by the rapidly evolving techniques
employed by cybercriminals, resulting in new forms of traffic that can outpace the adaptability
of existing forecasting models. Increased noise due to heightened attack activities, the lack of
historical data due to the rapidly changing cyber threat landscape, and the inconsistent impact
of such attacks obscure the discernment of patterns essential for accurate forecasts.

To tackle these challenges, we advocated for a phased approach, initially employing super-
vised learning for attack detection, followed by a transition to forecasting-based models. This
strategy, grounded in several strategic advantages, ensures a comprehensive understanding of
the domain and the data, which will prove invaluable during the planned future transition to
forecasting-based attack detection models. Our core contributions in the cyber-attack detection
domain are manifold. We have proposed innovative methodologies for network anomaly detec-
tion, introduced a novel Ensemble Network Intrusion Detection System (ENIDS), addressed
the challenges in Mobile Cyber-Physical Systems (MCPS) security, specifically concerning
Android devices, and aimed to counter the vulnerability of traditional neural network models
used for intrusion detection systems (IDS) in IoT-based smart homes to adversarial attacks.

In conclusion, as the digital world continues to expand, understanding and addressing these
challenges are of paramount importance for ensuring network capacity, integrity, and a seam-
less internet experience for the growing global user base. This study provides invaluable in-
sights and suggests potential solutions for improving internet traffic prediction and cyber-attack
detection. Future work should aim to build upon these findings, exploring more efficient tech-
niques for traffic prediction, cyber-attack detection, and addressing any new challenges that
may emerge due to the continually evolving nature of internet traffic.

10.2 Future Work
In this section, we explain how we are going to extend some of the research that we have dis-
cussed above, either by improving performance or by broadening the scope of the application.
We also present some novel ideas on which we plan to work.

10.2.1 Adaptation of External and Internal Factors
We are aiming to improve our traffic prediction model with the first enhancement being the
incorporation of both external and internal factors affecting internet traffic. In reality, IP net-
work traffic is highly sensitive to influences such as the integration of new internet services,
traffic migration, the use of various internet applications, and more. These factors introduce
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non-linearity and complexity, making long-term forecasting of internet traffic quite challeng-
ing. Consequently, our goal is to develop a method that overlays the impacts of these influences
onto our traffic predictions.

10.2.2 Internet Traffic Synthetic Dataset Generation using GAN
Despite the progress made in the internet traffic prediction task, there are still several chal-
lenges to be addressed. For instance, most existing approaches assume that the traffic data
is independent and identically distributed (i.i.d.), which is not always true in real-world sce-
narios. Furthermore, the impact of outliers on traffic forecasting accuracy is often ignored.
Another challenge is the limited availability of labeled data, which can hinder the development
of accurate prediction models. Additionally, most existing models are designed to handle a
specific type of traffic and may not be generalizable to different types of traffic. To overcome
these challenges, there is a need for more advanced techniques that can model the complex,
dynamic nature of internet traffic accurately. In recent years, Generative Adversarial Networks
(GANs) have shown great potential in generating synthetic data that can be used for training
machine learning models. Using GANs, it is possible to generate synthetic traffic data that
closely resembles real-world traffic, thereby providing a way to augment the limited labeled
data. Therefore, we would like to develop novel approaches that leverage GANs to generate
internet traffic datasets that can be used to train accurate traffic prediction models.

10.2.3 Real-time Anomaly Detection Based on Traffic Prediction
Traffic forecasting-based anomaly detection is a technique that uses traffic prediction models
to identify unusual patterns in network traffic. By analyzing predicted traffic patterns against
actual traffic patterns, the system can detect if there are any discrepancies or deviations from
normal traffic behavior. This approach is particularly useful in identifying network attacks,
faults, or congestion that may impact the network’s performance. For example, if the predicted
traffic pattern shows a sudden spike in network usage, but the actual traffic pattern shows a
decline, the system can alert network administrators of a possible anomaly. By detecting these
anomalies in real time, network administrators can take action to address any issues that may
impact network performance, improving the overall reliability and efficiency of the network.
Therefore, we would like to explore the real-time anomaly detection capabilities of our pro-
posed traffic prediction model in the wireless network.

10.2.4 Anomaly Detection Based on Traffic Forecasting
In this thesis, we have extensively engaged in supervised cyber attack detection, utilizing en-
semble feature selection and ensemble machine learning. Concurrently, we also explored the
domain of internet traffic forecasting. As we look towards the future, our interest pivots to-
wards an innovative fusion of these areas: cyber attack detection based on traffic forecasting.
We believe that by applying the principles of traffic forecasting to the realm of cyber security,
we could anticipate and identify cyber attacks more effectively. This ambitious intersection of
forecasting and security would facilitate the proactive detection of threats, thereby enhancing
the robustness of our network security measures.
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10.2.5 Enhancing Attack Detection through Reinforcement Learning
We also want to plan a comprehensive strategy for advancing the field of attack detection by
utilizing the capabilities of reinforcement learning (RL). With the increasing complexity and
diversity of cyber threats, conventional intrusion detection systems face challenges in accu-
rately identifying evolving attack patterns. Therefore, we aim to integrate RL’s adaptive learn-
ing and decision-making capabilities to develop a novel approach that enhances the accuracy
and adaptability of attack detection systems.
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