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Abstract

Much of everyday life depends on making informed decisions. The process of decision-making

depends heavily on gathering pertinent information which comes from quality data. To obtain

such relevant information, one needs appropriate tools for collecting and analyzing data. Sta-

tistical methods are an essential and vital tool for collecting and turning data into useful infor-

mation. The role of statistics in decision-making became more apparent with the emergence

of COVID-19 as a global pandemic which drew significant attention to using data as a funda-

mental component of evidence-based decision-making. With the involvement of COVID-19 in

many areas, such as medicine, epidemiology, and economy, many researchers from different

branches of science conducted research on COVID-19-related problems from various angles.

In this thesis, we employ statistical modeling and methods to examine COVID-19 data, and we

develop new methods to address new issues that invalidate some standard methods.

The first project examines the clinical manifestations and epidemiological features of COVID-

19 pertinent to the early pandemic stage. We employ semiparametric and nonparametric sur-

vival models as well as text mining and data visualization techniques to shed light on COVID-

19 incubation and recovery times. Using a dataset from January 22, 2020 to March 29, 2020,

we explore some of the risk factors associated with the severity of the disease. Our analysis

shows that the median incubation time is about 5 days, and older people tend to have a longer

incubation period. The median time for infected people to recover is about 20 days, and the

recovery time is significantly associated with age but not gender.

The second project uses a data-driven approach to explore optimal preventive measures

with the goal of lowering the COVID-19 case fatality rate. In this study, using a reinforce-

ment learning algorithm to characterize the evolving situation and country-specific features,

we study the effectiveness of country-level preventive actions. Our analytical results suggest

that country-specific characteristics and the baseline information of COVID-19 determine opti-

mal preventive policies. Furthermore, our study reveals that the factors significantly associated

with the COVID-19 case fatality rate include the population proportion of elders ages 65 and

over, gross domestic product per capita, obesity prevalence, substance use prevalence, popula-

tion density, and health system quality.

The framework of the second project is cast under dynamic treatment regimes, which has
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attracted lots of interest among statisticians and quantitative researchers. Dynamic treatment

regimes require a special class of designs, called sequential multiple assignment randomized

trial (SMART) designs, for the validity of the results derived from them. However, similar to

randomized controlled designs, SMART designs are prone to the violation of the condition that

all variables must be precisely measured. Misclassification in categorical variables as well as

measurement error in continuous variables are among common problems in the applications.

In the next two projects, we explore correction strategies to overcome the effects induced by

such erroneous data.

The third project examines Q-learning with covariates subject to misclassification. We

present two correction methods, namely regression calibration and corrected estimation equa-

tions, where we consider the main study/validation study setup. We assess the performances of

the proposed methods by conducting extensive simulation studies as well as real data analysis.

Numerical results confirm the satisfactory performance of the proposed methods in reducing

or eliminating the bias induced by covariate misclassification in parameter estimates.

In the fourth project, we aim to expand upon the developments made in the third project by

considering the scenario of compound outcome in conjunction with mixed measurement error

and misclassification in covariates. The effectiveness of the correction strategies proposed in

this study is evaluated through comprehensive simulation studies and real-world data analysis.

The numerical findings indicate that the suggested methods exhibit satisfactory performance

by reducing or removing the bias resulting from covariate mismeasurement.

Keywords: Case fatality rate, COVID-19 data, COVID-19 risk factors, dynamic treatment

regimes, estimating function, incubation time, measurement error, misclassification, optimal

preventive policy, precision medicine, Q-learning, regression calibration, regression models,

recovery time, survival analysis, text mining, validation data.
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Summary for Lay Audience

This thesis explores various statistical and reinforcement learning methods to gain insights

into epidemiological characteristics and effective containment measures related to COVID-19.

However, caution must be exercised when interpreting the results from such analyses due to

the use of error-contaminated data. Consequently, as a complementary remedy, we develop

procedures for addressing such complications.

In the first study, we use a dataset, dated from January 22, 2020 to March 29, 2020, to

examine epidemiological characteristics of COVID-19. We use survival analysis techniques to

quantify how the recovery time may be associated with age and gender. Using data visualiza-

tion and text mining tools, we study incubation times, fatality rate, as well as most common

symptoms. Based on our numerical results, the median incubation time is about 5 days, and

the elders are more likely to have longer incubation periods. Furthermore, we find that the

median recovery time for infected patients is about 20 days, and there is no gender difference

in recovery times.

In the second study, we use data from 175 countries from January 13 of 2020 to March

9 of 2021, and investigate possible factors associated with the case fatality rate of COVID-

19. The Q-learning algorithm is employed to assess optimal preventive policies adopted by

individual countries to reduce their COVID-19 case fatality rates. The data analysis suggests

that, in addition to addressing traditional risk factors, policymakers should tailor the strictness

of preventive policies to country-specific characteristics and evolving situation to alleviate the

risk of death from COVID-19.

The third study investigates the effects of misclassified covariates in developing dynamic

treatment regimes with the Q-learning approach. We present two procedures to account for the

bias induced by covariate misclassification. The satisfactory performance of these procedures

is demonstrated through extensive simulation studies.

The fourth study deals with mixed measurement error and misclassification in covariates

within the context of Q-learning with compound outcome. We demonstrate that the presence

of such measurement inaccuracies can pose significant challenges to the accurate estimation

process in Q-learning. To address this issue, we propose effective correction strategies that

successfully alleviate the impact of mismeasurement.
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Chapter 1

Introduction and Literature Review

SARS-CoV-2 (Lai et al., 2020) is a member of the coronaviruses family, which causes a trans-

mittable infectious respiratory disease known as COVID-19. The novel virus was first reported

in December 2019 in the city of Wuhan, China (Zhang et al., 2020). On March 11, 2020, the

World Health Organization (WHO) upgraded the status of the COVID-19 outbreak from epi-

demic to a global pandemic, and now almost all countries have reported confirmed cases, with

the USA and India having the highest numbers of confirmed cases (Worldometers, 2022). As

of November 17, 2022, the WHO reported 633,263,617 confirmed cases with 6,594,491 deaths

(WHO, 2022).

This research is motivated by data on public health, social and economic aspects of COVID-

19. Analysis of different aspects of COVID-19-related issues requires subject-specific statis-

tical methods. Therefore, the aim of this chapter is to provide brief descriptions of some

statistical methods employed in the proceeding chapters.

1.1 Survival Analysis

Survival analysis is a collection of statistical methods primarily concerned with the modeling

of survival time (lifetime) or the length of time until the occurrence of some specific event.

Such data arise in many areas, including epidemiological, social, engineering, and reliability

studies. There are basically three requirements for time-to-event data: (A) a well-defined origin

of measure to the occurrence of the event of interest, (B) a scale for the measurement, and (C)

1



2

a precise definition of the occurrence of the event of interest (Lawless, 2003).

1.1.1 Notation and Notion

Let T be a non-negative random variable representing the time to a specific event occurrence

associated with individuals in the population, and let the small letter t denote any realization

for the variable T . Let f (t) denote the probability density function of T and let F(t) denote the

cumulative distribution function, defined as

F(t) = P(T ≤ t) =
∫ t

0
f (x)dx for t ≥ 0.

The survivor function, denoted S (t), gives the probability of an individual surviving beyond

time t, given by

S (t) = 1 − F(t) = P(T ≥ t).

The hazard function, denoted h(t), gives the instantaneous rate of failure or death at time t,

given that the individual has survived up to time t. That is, in notation

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)
∆t

=
f (t)
S (t)

,

where ∆t denotes a small time magnitude. It is clear that the values of the hazard function

range from zero to infinity.

Censoring

A common feature in survival analysis is censoring. Censoring is said to occur when there is

some information about an individual event time, but the exact event time cannot be observed.

Ignoring censored observations or treating them as if they were uncensored measurements

can lead to a considerable degree of bias in results. Censoring can be due to termination of

follow-up, death, withdrawal, migration, etc. There are different types of censoring, such as

“right censoring”, “left censoring”, and “interval censoring” among which right censoring has

received the most attention in the literature (Lawless, 2003).
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Right censoring occurs when the survival time is “incomplete” at the right side of the

follow-up period. Suppose that C is a censoring time for an individual (e.g., the end time

of the study). If T > C, then we say the subject is right censored. Often, we introduce the

censoring indicator, δ = I(T > C), to indicate whether the observed time for a study subject is

censoring time or survival time, where I(·) is the indicator function.

A lifetime is said to be left-censored at time C if the exact event time is not observed but

is known to be less than time C. For example, if the event of interest has already happened

before the individual is enrolled in the study and the exact event time is unknown, then the

enrollment time is the left censoring time (i.e., C). In the case of left censoring, the observed

time is t = max (T,C).

Interval censoring occurs when the event of interest is known to occur within a known time

interval of non-zero length. That is, the observed data consists of (L,U] with the information

that L < T ≤ U. Interval censoring can be thought of as a generalization of left and right

censoring. To be specific, interval censoring yields left-censoring if L = 0 and U is a known

upper bound on the true survival time. On the other hand, interval censoring gives right-

censoring if L is a known lower bound on the true survival time and U = ∞.

Truncation

Truncation is defined as a condition that excludes individuals from the study population if

their event times are smaller or larger than certain values. There are two types of truncation,

namely “left truncation” and “right truncation”. Left truncation, also called delayed entry, oc-

curs if individuals survive past a certain time u, say, the entry of the study. This means that

individual event time t > u. In the presence of left truncation, the observed data for an indi-

vidual consists of {u, t, δ}, where t > u and t is an event time or censoring time. On the other

hand, time-to-event data are right-truncated if only individuals who have experienced the event

of interest by a certain time can be included in the study.
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Incubation Period

The incubation period is the time elapsed between exposure to a disease-causing organism

and symptom onset (Wagner et al., 2006). Let S denote the symptom onset time, and let EL

and EU denote the lower and upper time points for the exposure period, respectively, where the

exposure period pertains to the duration within which an individual comes into contact with a

pathogen. Define tL ≜ S −EU and tU ≜ S −EL. Then the incubation time is between tL and tU ,

shown in Figure 1.1. A good understanding of the incubation period of an infectious disease is

critical because it can provide information about when infected individuals will be symptomatic

and, therefore, infectious. The incubation period also offers insights into the decision-making

process around the control of infectious diseases (e.g., by determining a sensible quarantine

time).

tU

exposure to
virus tL

exposure
starts

exposure
ends

symptoms
appear

EL EU S

Figure 1.1: Visualization of the incubation period. EL: Lower time
point of exposure period; EU : Upper time point of exposure period; S :

Symptoms onset; tL = S − EU ; tU = S − EL.

1.1.2 Useful Methods and Models

Kaplan-Meier Method

The Kaplan-Meier (KM) method is a nonparametric method used to estimate survival func-

tion from data that are censored or truncated. In what follows, we describe the procedure for
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computing KM probabilities of survival, given survival time and censoring status. Let n repre-

sent the size of a random sample, and let i denote the index for a subject in the sample. Suppose

we have the observed data
{{

ti, δi
}

: i = 1, · · · , n
}
, where δi is the censoring indicator for subject

i with δi = 1 (or δi = 0) indicating the observed value ti to be the event (or censoring) time. We

order distinct event times to be t′1 < t′2 < · · · < t′k, where k ≤ n.

For j = 1, · · · , k, let d j =
∑n

i=1 I(ti = t′j, δi = 1) represent the number of events occurring

at time t′j, and let n j =
∑n

i=1 I(ti ≥ t′j) denote the number of individuals at risk prior to time t′j.

Then, the KM estimator (Lawless, 2003), also known as the product limit estimator, of S (t) is

expressed as

Ŝ (t) =
∏
j: t′j<t

P̂
(
T > t′j | T ≥ t′j

)
=

∏
j: t′j<t

n j − d j

n j
.

Cox Proportional Hazards Model

The Cox proportional hazards (PH) model (Cox, 1972) is a semi-parametric model used

to study relationships between time-to-event outcomes and risk factors or exposures. The Cox

PH regression model is usually written in terms of the hazard function:

h(t, X) = h0(t) exp
{ p∑

j=1

β jX j

}
, (1.1)

where X ≜ (X1, · · · , Xp)T is a p-dimensional vector of explanatory variables, h0(t) is the base-

line hazard function, and the β j are regression coefficients associated with X j. Here the ex-

planatory variables X j’s are time-independent. With time-dependent explanatory variables, the

Cox PH model form can still be used and is called the extended Cox model.

The Cox PH model is popular because of its attractive characteristics. Estimation of the

covariate effects β j may be performed by leaving the baseline hazard function, h0(t), unspeci-

fied, and thus, gaining robust estimation results. To be specific, let β = (β1, · · · , βp)T denote the

vector of parameters. Estimation of β can be performed by maximizing the partial likelihood

(Lawless, 2003).

Suppose we have observations
{
ti, δi, Xi

}
for i = 1, · · · , n, and suppose there is no tie at each

event time. The partial likelihood, denoted L(β), for the Cox PH model is given by
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L(β) =
n∏

i=1

 h0 (ti) exp
(
βTXi

)
∑

j∈Ri
h0 (ti) exp

(
βTX j

)

δi

=

n∏
i=1

 exp
(
βTXi

)
∑

j∈Ri
exp

(
βTX j

)

δi

,

where Ri = {l : Tl ≥ ti} denotes the risk set.

Accelerated Failure Time Model

The accelerated failure time (AFT) model is a parametric regression model commonly used

in survival analysis. The AFT model assumes that the effect of a covariate is to accelerate or

decelerate the life course of a disease by some constant. Unlike its counterpart, the Cox PH

model, it allows us to directly model the relationship between log T and covariates, given by

log T = u + βTX + ϵ, (1.2)

where u is the intercept term, β is the vector of regression coefficients, X is a vector of covari-

ates, and ϵ is the error term that is independent of X and has a given distribution.

The AFT model (1.2) describes a general class of models where the distribution of ϵ can

assume different forms. The AFT model facilitates survival times directly and thus enables

us to describe survival curves. The AFT model is transparent in the interpretation of survival

curves that can be used to construct confidence intervals, either for survival times or parameters.

Goodness-of-fit may be performed under the AFT model with the use of different forms of

residuals (Balakrishnan et al., 2013).

Further, assuming zero mean for the error term in (1.2) but leaving its distribution unspeci-

fied, one may develop a semi-parametric AFT model (e.g., Jin et al., 2006; He and Yi, 2020).
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1.2 Dynamic Treatment Regimes

1.2.1 A Literature Review

Precision medicine, also referred to as personalized medicine, is an emerging practice of

medicine that helps produce targeted therapies for patients with chronic diseases and reduces

the cost of healthcare by reducing the quantity, duration, frequency, or scope of unnecessary

treatments. The primary motivation for this practice stems from the concerns that the previ-

ously widely regarded acute inpatient care model with “one-size-fits-all” or static treatment

strategy, which does not take into account the heterogeneities and time-varying conditions of

patients. Personalized medicine for chronic diseases, however, follows the concept of chronic

care model (CCM) developed by Wagner et al. (2001) to improve chronic illness care programs.

Some of the key features of CCM are “embedding evidence-based guidelines into daily clinical

practice”, “individualizing the treatment type, dosage and timing based on patient’s ongoing

conditions”, and “using individual patient’s case history to change therapeutical strategies in

a sequential manner” (Wagner et al., 2001). The latter feature is known as dynamic treatment

and highlights the heterogeneity of patients’ responses to treatments.

In the context of personalized medicine, changing therapeutical interventions in a sequen-

tial manner requires personalizing interventions over multiple stages of a patient’s recovery tra-

jectory. The implementation of such practice can be done through dynamic treatment regimes

(DTRs) (Murphy et al., 2001; Murphy, 2003; Robins, 2004). DTRs, aka adaptive interven-

tions, have become increasingly important in medical studies. Casting the problem under a

dynamic framework, the objective of a DTR is to optimize the long-term clinical outcome of

an individual with his or her characteristics and medical history taken into account. DTRs

allow individualization of treatments, and thus are mostly beneficial for patients with chronic

illnesses who need long-term medication. In contrast to the acute inpatient care model, where

clinicians recommend a one-size-fits-all treatment strategy based on a priori empirical popula-

tion information, DTRs are an evidence-based strategy to implement subject-specific treatment

or intervention. This highly customized strategy is regarded as a key element of the CCM

(Wagner et al., 2001).

Basically, a DTR is a set of decision rules over a sequence of time-intervals or stages, and
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each decision rule recommends an effective treatment for an interval based on a patient’s indi-

vidual characteristics and treatments histories (Murphy, 2003,0). DTRs facilitate therapeutic

intervention that evolves over time, which is mainly dedicated by the patient’s characteristics

and other relevant information. They can be particularly useful for accounting for patients’

heterogeneities and time-varying needs. In the development of the optimal DTR, the objective

of each decision rule is not to optimize the outcome of a patient in any specific stage, but to

optimize the patient’s long-term outcome.

Many methods have been developed for estimating the optimal DTRs. These methods can

be broadly classified as either direct or indirect estimation methods. Direct estimation meth-

ods, also known as policy search methods, establish the optimal sequence of treatment rules by

optimizing the expected outcome over a set of candidate treatments. Popular methods under

this category include inverse probability of treatment weighting (IPTW) approaches, marginal

structural models, and classification-based methods (Chakraborty and Moodie, 2013). In con-

trast, indirect methods use approximate dynamic programming to describe models for the

stage-specific conditional mean outcome, and then optimize the resulting approximate con-

ditional mean outcome to find the optimal DTRs. Popular indirect methods are Q-learning

(Murphy, 2005b; Chakraborty and Moodie, 2013), A-learning (Robins, 2004, pp.189-326),

and G-estimation for structural nested models (Robins, 1997, pp.69-117).

1.2.2 Estimating Treatment Rules by Q-Learning

Q-learning, originating from the computer science community (Watkins, 1989), is a well-

known method for constructing optimal DTRs. The implementation of the Q-learning method

relies on the specification of a function called the Q-function. In the context of DTRs, Q-

functions represent the expected cumulative rewards (e.g., clinical effectiveness or patient

health) obtained by following specific treatment regimes (policy) in a sequential decision-

making problem. The implementation of the Q-learning method is simple, which typically

involves two steps: (1) estimate the stage-specific Q-functions, and (2) recommend the ac-

tions that optimize the estimated Q-functions (Qian et al., 2012, pp.127-148). These steps

basically hinge on the specification of the Q-functions, which can be modeled parametrically,
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semi-parametrically, or nonparametrically (Zhao et al., 2009).

In this section, we present the basic notation and necessary steps for constructing optimal

treatment regimes using the Q-learning algorithm in a mismeasurement-free context. Consider

the setting with K stages of decision rules, where K is a positive integer greater than 1.

For k = 1, · · · ,K, let Ak denote the binary treatment indicator received at the kth stage for

a subject, taking value 0 or 1. Let Xk denote an error-prone binary covariate taking value 0 or

1, and let Zk denote a vector of precisely measured covariates where Xk and Zk are measured

prior to the treatment receipt at the beginning of the kth stage. For k = 1, · · · ,K, let Xk ={
X1, · · · , Xk

}
, Zk =

{
Z1, · · · ,Zk

}
, and Ak =

{
A1, · · · , Ak

}
.

For k = 1, · · · ,K, let Yk denote the observed outcome at the end of stages k, which is

assumed “the bigger the better” and is regarded as a function, say g(·), of the history of the

treatment, Ak−1, together with the current treatment Ak, and the history of the covariates, Xk

and Zk, as well as the covariates Xk+1 and Zk+1 at the next stage. That is,

Yk = g(Ak, Xk+1,Zk+1) (1.3)

for k = 1, · · · ,K (Chakraborty and Moodie, 2013, p.35), where XK+1 and ZK+1 are null.

The objective is to find a sequence of optimal treatments by retrospectively maximizing the

expected value of the outcome for each stage in a backward manner (i.e., from stage K back

to stage 1), with the impacts of the history of treatments and the covariates incorporated. This

idea is realized by the Q-learning method, which is rooted in the use of Q-functions defined for

K stages (Chakraborty and Moodie, 2013, Section 3.4.1).

To be specific, set QK+1 = 0. Define

QK(AK , XK ,ZK) = E(YK | AK , XK ,ZK), (1.4)

and for stage k with k = K − 1, · · · , 1, define the stage k Q-function recursively in a backward

direction:

Qk(Ak, Xk,Zk) = E
{

Yk +max
ak+1

Qk+1(Ak, Xk+1,Zk+1, ak+1)
∣∣∣∣ Ak, Xk,Zk

}
, (1.5)
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where Ak+1 in Qk+1(Ak+1, Xk+1,Zk+1) in the right-hand side of (1.5) is written as Ak ∪ {ak+1} so

that the future treatment ak+1 for stage k can be evaluated to find the optimal one.

In other words, for k = K − 1, · · · , 1, let

Ŷk ≜ Yk +max
ak+1

Qk+1(Ak, Xk+1,Zk+1, ak+1) (1.6)

denote the stage k pseudo-outcome constructed in a way that assumes the subject is given the

best treatment at the subsequent stage. The additive structure between Yk and the maximized

value of Qk+1(Ak, Xk+1,Zk+1, ak+1), related to the Bellman equation (Bellman, 2010), reflects

the belief that the treatments over the multiple stages affect the outcomes cumulatively in an

additive manner. Then the stage k Q-function is defined as

Qk(Ak, Xk,Zk) = E
{
Ŷk | Ak, Xk,Zk

}
, for k = K − 1, · · · , 1, (1.7)

together with (1.4).

To find optimal treatments, a natural approach is to use a backward procedure by examining

the Qk(Ak, Xk,Zk) functions for k = K, · · · , 1. In the case where the true Q-functions are known,

optimal treatments, denoted dk, are determined by:

dk = arg max
ak

Qk(Ak−1, Xk,Zk, ak) for k = K, · · · , 1. (1.8)

When the true Q-functions are unknown, as is often the case in applications, we employ

regression models, especially linear regression models, to delineate them as they represent

conditional expectations. To be specific, for k = K, · · · , 1, consider the linear regression model

Qk(Ak, Xk,Zk) = βT
k Hk0 + (ψT

k Hk1)Ak, (1.9)

where we separate the treatment effects from those of covariates and express Ak−1 ∪ Xk ∪ Zk

as {Hk0,Hk1}, with Hk0 representing the covariates that have a predictive effect on the outcome,

and with Hk1 standing for the covariates that interact with treatment; Hk0 and Hk1 may include

a constant, or intercept, term, and they may include the same covariates. Here βk and ψk are
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the associated regression coefficients (Chakraborty and Moodie, 2013, p.40), and we write

θk = (βT
k , ψ

T
k )T for k = 1, · · · ,K.

Suppose we have a random sample D ≜
{{

Aki, Xki,Zki,Yki
}

: k = 1, · · · ,K; i = 1, · · · , n
}

with the
{
Aki, Xki,Zki,Yki

}
for i = 1, · · · , n being independent and identically distributed (i.i.d.)

following the same distribution of
{
Ak, Xk,Zk,Yk

}
. In the following development, index i is

added to Xk, Zk, and Ak in a similar manner.

Now we describe a procedure for finding optimal treatments, called the Q-learning algo-

rithm, using the data in the random sample. The algorithm is basically a backward recursion

process that aims to minimize the mean squared error between the (pseudo-) outcome and its

conditional expectation at each stage, starting from the last stage backward to the first stage. At

the last stage K, the minimization is essentially the least squares method which minimizes the

squared difference between the observed outcome YK and its conditional expectation (1.4); for

stage k with k = K − 1, · · · , 1, the least squares method is individually applied to conceptually

minimize the squared difference between the pseudo-outcome Ŷk in (1.6) and its conditional

expectation (1.7).

To be specific, with QK+1 ≜ 0, we estimate the regression coefficients for each stage via

the least squares approach:

θ̂k = arg min
θk

1
n

n∑
i=1

[
Ŷki − Qk(Aki, Xki,Zki; θk)

]2
(1.10)

for k = K, · · · , 1, where ŶKi = YKi; for k = K − 1, · · · , 1,

Ŷki = Yki +max
ak+1

Qk+1(Aki, X(k+1)i,Z(k+1)i, ak+1; θ̂k+1), (1.11)

representing stage k pseudo-outcome for subject i; and Qk(Aki, Xki,Zki; θk) is determined by

regression model such as (1.9).

Substituting the estimates of (1.10) into (1.8), we estimate the optimal treatment by

d̂k = arg max
ak

Qk(Ak−1, Xk,Zk, ak; θ̂k) for k = K, · · · , 1, (1.12)

where Qk(Ak−1, Xk,Zk, ak; θ̂k) is determined by (1.9) with θk replaced by its estimate θ̂k, deter-
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mined by (1.10).

For K = 2, the implementation of (1.10) under model (1.9) can be carried out using the

R package qLearn. The R package, DTRreg, initially developed for the G-estimation and

dWOLS methods, can also be used for Q-learning with any K.

We conclude this section with comments on inference about the model parameters using the

estimators derived from (1.10). While the least squares method is applied to all k = K, · · · , 1 in

(1.10), the interpretation of the resulting estimators differ for k = K and k < K. When k = K,

the resulting estimator θ̂K is the least squares estimator of θK , and thus inference about θK can

be carried out in a usual way. For instance, coverage rates (CRs) of confidence intervals (CIs)

for the Kth stage estimators in (1.10) can be calculated using either Wald-type (W-type) CIs

or percentile bootstrap (PB) CIs. However, caution should be exercised when obtaining CIs

for the estimators in stage k with k < K, as those estimators θ̂k with k = K − 1, · · · , 1 are not

the least squares estimators of the θk due to the unobservable feature of pseudo-outcomes Ŷki.

For k = K − 1, · · · , 1, the pseudo-outcome, Ŷki, may be a non-smooth function of θ̂k+1, which

creates the non-regularity or weak non-regularity issue to be discussed in Section 1.2.3.

1.2.3 Inference in the Presence of Non-regularity

In implementing (1.12), the non-regularity issue for estimators may arise when optimal treat-

ments at subsequent stages are not unique for a portion of subjects in the population; this

happens when the coefficient of the treatment is equal to zero with a positive probability. Fur-

thermore, weak non-regularity occurs if the coefficient of the treatment assumes values near

zero (Robins, 2004). Non-regularity or weak non-regularity often distorts usual inferential

procedures that root in the asymptotic normal distribution. In applications, it is generally ad-

vised to examine analysis results for any severe non-regularity issue. A few approaches have

been proposed to address the non-regularity or weak non-regularity problem. One strategy to

circumvent non-regularity is to employ the soft-thresholding or hard-thresholding approach to

modify the pseudo-outcome in the Q-learning algorithm to regularise the non-regular estima-

tors (Chakraborty et al., 2010).

An alternative remedy is to report double bootstrap (DB) or m-out-of-n bootstrap CIs
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(Chakraborty and Moodie, 2013, Chapter 8) when doing inference about the model param-

eters. DB CIs are of particular interest in cases where asymptotically pivotal statistics are not

available (Nankervis, 2005). To be specific, let ϕ denote a parameter of interest, and let ϕ̂ de-

note its least squares estimate. For 0 < α < 1, we construct a (1 − α)100% DB CI for ϕ by

running the following steps, with M1 and M2 being given positive integers:

1. Draw M1 first-stage bootstrap samples from the original data. For b = 1, · · · ,M1, use the

bth bootstrap sample, denoted S b, to obtain an estimate of ϕ, denoted ϕ̂∗b.

2. For b = 1, · · · ,M1, draw M2 second-stage bootstrap samples from the first-stage boot-

strap sample S b. For m = 1, · · · ,M2, use the mth bootstrap sample, denoted S bm, to

obtain an estimate of ϕ denoted by ϕ̂∗∗bm.

3. For b = 1, · · · ,M1, calculate u∗b = 1
M2

∑M2
m=1 1{ϕ̂

∗∗bm ≤ ϕ̂}, where 1(·) is the indicator

function.

4. Let u∗( α2 ) and u∗(1− α2 ) denote the (α2 )-percentile and (1 − α
2 )-percentile of

{
u∗b : b =

1, · · · ,M1

}
, respectively. Find the u∗( α2 )-percentile and u∗(1− α2 )-percentile of

{
ϕ̂∗b : b =

1, · · · ,M1

}
, denoted ϕ̂∗u∗

( α2 )
and ϕ̂∗u∗

(1− α2 )
, respectively. Then a (1 − α)100% DB CI for ϕ is

given by
(
ϕ̂∗u∗

( α2 )
, ϕ̂∗u∗

(1− α2 )

)
.

While larger M1 and M2 are expected to give better results, the choice of M1 and M2 is usually

driven by the trade-off of the computational burden and accuracy of the results.

1.3 Optimization Procedures

1.3.1 Constrained Optimization

Optimization problems are generally categorized into two broad categories: convex and non-

convex optimization. Convex optimization is further categorized into linear and nonlinear pro-

gramming, while nonconvex optimization is categorized into discrete and continuous optimiza-

tion (e.g., Lin et al., 2012). The review in this section is kept general in nature. To start with,

we present the following optimization problem:
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minimize f (x)

subject to fi(x) ≤ bi, i = 1, · · · ,m,

h j(x) = c j, j = 1, · · · , p,

xiL ≤ xi ≤ xiU i = 1, · · · , n,

(1.13)

where the vector x = (x1, · · · , xn)T
∈ Rn, with coordinate xi bounded by given constants xiL and

xiU for i = 1, · · · , n, called the design variables; f : Rn → R is the objective (or goal) function;

fi : Rn → R is an inequality constraint function for i = 1, · · · ,m; h j : Rn → R is an equality

constraint function for j = 1, · · · , p; bi is a given constant for i = 1, · · · ,m; and c j is a given

constant for j = 1, · · · , p.

Optimization techniques are used to find the optimal vector, denoted x⋆, that has the small-

est objective value among all vectors that satisfy the constraints in (1.13). That is, for any z

with f1(z) ≤ b1, · · · , fm(z) ≤ bm and h1(z) = c1, · · · , hp(z) = cp, we have f (z) ≥ f
(
x⋆

)
.

If the objective and constraint functions in the optimization problem (1.13) are all linear

functions, the optimization problem (1.13) is called a linear programming, and otherwise, a

nonlinear programming.

If the equality constraints are affine, and the objective function, as well as inequality con-

straint functions, are convex, i.e., they respectively satisfy the inequalities

f (αx + βy) ≤ α f (x) + β f (y)

and

fi(αx + βy) ≤ α fi(x) + β fi(y) with i = 1, · · · ,m,

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0, the optimization problem (1.13)

is called convex optimization problem.

It is noted that the variables x in (1.13) can also be of discrete or integer nature. Op-

timization problems with discrete variables are referred to as discrete optimization problems.

Discrete optimization problems are generally approached using global optimization algorithms

rather than local optimization algorithms. In what follows, we briefly review some local and

global optimization algorithms.
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1.3.2 Nature of Optimization Algorithms

Local Optimization Algorithms

Local optimization algorithms are mostly gradient-based, and they result in a locally op-

timal solution in the vicinity of which we cannot find other feasible solutions with better ob-

jective function values. In convex optimization problems, a locally optimal solution is also

globally optimal. That is, for linear programming problems, quadratic programming problems

with a positive or negative definite objective function, and nonlinear programming problems

with convex or concave objective and constraint functions, a locally optimal solution is also

globally optimal (Boyd and Vandenberghe, 2004).

Global Optimization Algorithms

An objective function may have multiple optima, and an optimization problem with such an

objective function is referred to as a multimodal optimization problem. Some of the solutions to

a multimodal optimization problem can be globally optimal solutions having identical objective

function value, and some can be locally optimal solutions having different objective function

value. Although one can still use local optimization algorithms in conjunction with a multi-

start approach to deal with such problems, it is more practical to employ global optimization

algorithms that focus on finding the best possible solution in the entire search space. Global

optimization algorithms generally require more time, but they are more likely to result in more

reliable solutions (Horst and Tuy, 2013).

1.3.3 Useful Optimization Algorithms

Newton Raphson Algorithm

The Newton Raphson algorithm (Avriel, 2003) is an iterative gradient-based optimization

algorithm without constraints, i.e., no constraints in (1.13). The Newton Raphson algorithm
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basically consists of two general steps:

• Step 1: Use the second-order Taylor series expansion to construct a quadratic approxi-

mation of the objective function around some initial design point x0.

• Step 2: Adjust the design point to that which maximizes the quadratic approximation.

Iterate through these steps until the design point stabilizes. To clarify, consider the following

second-order Taylor series expansion of the objective function f (x)

f (x) ≈ f
(
x0

)
+ ∇ f

(
x0

)T (
x − x0

)
+

1
2

(
x − x0

)T
H

(
x0

) (
x − x0

)
, (1.14)

where ∇ f
(
x0

)
is the gradient, and H

(
x0

)
is the Hessian matrix. Differentiating (1.14) with

respect to x and setting the result equal to zero results in the following update formula for the

current design point:

x = x0 − H
(
x0

)−1
∇ f

(
x0

)
.

One of the downsides to the Newton Raphson algorithm is that calculating both the Hessian

matrix and its inversion is computationally expensive, especially when dimensions get large.

To overcome this issue, other optimization methods are available, as indicated by the following

methods.

BFGS Method

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Shanno, 1970) is a second-

order optimization algorithm and is usually referred to as the most popular quasi-Newton algo-

rithm. It is known as a quasi-Newton method since it approximates the inverse of the Hessian

matrix using the gradient. This means that, unlike the Newton Raphson method, which re-

quires the calculation of the inverse of the Hessian matrix, the BFGS method does not need the

Hessian and its inverse to be available or calculated precisely for each step of the algorithm.

The approximation to the inverse of the Hessian matrix is updated at each iteration using the

first-order gradient information from that iteration.
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Nelder-Mead Method

The Nelder-Mead method (Nelder and Mead, 1965), also known as the Simplex search

method, is a heuristic multidimensional unconstrained optimization. The algorithm does not

require the availability of the gradient and therefore is suitable for problems with non-smooth

functions. It basically navigates through the search space stochastically to find the best optimal

point it encounters during the search. The Nelder-Mead algorithm uses a geometrical shape

called a simplex to search over the domain of the optimization problem. The algorithm starts

with a randomly-generated simplex and evolves by moving and/or reshaping the simplex at

every iteration until a desired bound is obtained to result in the most optimal objective value.

Genetic Algorithm

The genetic algorithm (De Jong, 1988) is a stochastic search that uses the concept of sur-

vival of the fittest to approximate the solutions for a problem. The algorithm is suitable for

solving various optimization problems, including problems in which the objective function is

nonlinear, discontinuous, or non-differentiable. The genetic algorithm starts with a population

of all possible solutions, called “generation zero”. The next step is to score the population by

evaluating how good each solution in the generation zero population is. Based on the result-

ing scores, some solutions are selected for reproduction (also called parents). Crossover rules

combine two parents to form new solutions for the next generation. This process continues

until the score of the best solution stabilizes and does not change for many generations.

1.4 Estimation Equations Approach

Suppose
{
Y1, · · · ,Yn

}
consists of i.i.d. random variables, and let

{
y1, · · · , yn

}
be their realized

values. Suppose the i.i.d. random variables are drawn from the density f (y; θ), where the

finite vector θ = (θ1, · · · , θp)T ⊆ Rp. When interest lies in learning about the unknown θ,

one may make use of a parametric model with the full specification of the joint distribution

f (y; θ). In such a case, inference is basically done using the maximum likelihood method,
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which is a centerpiece of statistical inference (e.g., Lehmann and Casella, 2006). Given the

data
{
y1, · · · , yn

}
, the likelihood function is defined as

L(θ) =
n∏

i=1

f (yi; θ).

With the given data, maximizing L(θ) with respect to θ gives the maximum likelihood estimator

of θ.

Formulating a likelihood function requires correct specification of the distribution form,

which may not always be possible in applications. To get around this problem, we can employ

estimation function (Godambe, 1991) approaches as an alternative to estimate θ.

The estimating function approach starts with specifying a p × 1 vector of functions which

involves both the unknown parameter θ and yi. Let S (θ; yi) denote such a vector-valued func-

tion.

An estimate for θ, denoted θ̂, can be obtained by solving the equations

n∑
i=1

S (θ; yi) = 0. (1.15)

Here S (θ; yi) is called an estimating function for θ, and (1.15) is referred to as estimating

equations. To ensure the resulting estimator θ̂ to be consistent and asymptotically normal, we

need to impose certain conditions on S (θ; yi). Typically, S (θ; yi) is required to satisfy

E
{
S (θ; Yi)

}
= 0 (1.16)

together with other conditions. A function satisfying (1.16) is called an unbiased estimating

function.

Define

I(θ) = E
{
∂S (θ; Yi)
∂θT

}
, J(θ) = E

[
S (θ; Yi)

{
S (θ; Yi)

}T
]
, (1.17)

and

Σ(θ) =
{
I(θ)

}−1
J(θ)

{
I(θ)

}−1T
,

where the expectations are taken with respect to f (yi; θ) and the inverse matrices are assumed
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to exist. Under the regularity conditions,
√

n(θ̂ − θ) is asymptotically normal with mean zero

and asymptotic covariance matrix Σ(θ) (Yi, 2017, Section 1.3).

The estimating equation method outlined here has been commonly used to conduct infer-

ence about model parameter θ. The usefulness of this approach is mainly pertinent to its nice

feature of not requiring the full distribution of the associated variables, yet yielding consistent

estimators which have asymptotic normal distributions as long as certain regularity conditions

are satisfied. In applications, different sets of regularity conditions may be imposed when using

the estimating equation method to handle different problems, and those regularity conditions

are usually only sufficient but not necessary conditions to ensure consistency of θ̂ and asymp-

totic normality of
√

n(θ̂ − θ).

For example, assuming θ is a scalar, the following regularity conditions were considered

by Godambe (1960):

(i) E
[
S (θ; yi)

]
=

∫
S (θ; yi) f (yi; θ)dyi = 0 for all θ ∈ Θ, where Θ is the parameter space that

is open;

(ii) dS (θ;yi)
dθ exists for all θ ∈ Θ;

(iii)
∫

S (θ; yi) f (yi; θ)dyi is differentiable under the sign of integration,

(iv) E
[

dS (θ;yi)
dθ

]2
> 0 for all θ ∈ Θ;

together with the assumptions for f (yi; θ). More discussions of regularity conditions can be

found in Yi (2017, Section 1.3) and the references therein.

1.5 Measurement Error and Misclassification

A variable is said to be subject to measurement error or misclassification when a difference

exists between the true value of the measurement and the observed measurement. The term

“measurement error” is mostly used for continuous error-prone variables, while the term “mis-

classification” is used for error-prone discrete variables. In this thesis, we use the term “mis-

measurement” to refer to any setting where a measured quantity and its true value may be



20

different. Mismeasurement can be classified as “random error” and “systematic error”. Ran-

dom errors are regarded as a chance difference between a measured quantity and its true value.

These types of errors are often described with a distribution, whereas systematic errors are

referred to those that are featured by a constant, thus removable by calibrating the measuring

instruments or procedures.

In the following sections, we briefly touch on some of the most important mismeasurement

models and mechanisms. To this end, for i = 1, · · · , n, let Yi denote the error-free response vari-

able, let Xi denote an error-prone explanatory variable whose imprecisely measured surrogate

is denoted by X∗i , and let Zi denote an error-free explanatory variable.

1.5.1 Measurement Error and Misclassification Models

Measurement error and misclassification models are used to uncover the underlying relation-

ship between the observed variables and true variables. We begin by describing one of the most

widely used measurement error models, called the classical additive error model.

Classical Additive Error Model

A classical additive error model has the following form

X∗i = Xi + ei, (1.18)

where the error term ei is independent of the true variable Xi as well as Zi, and has mean zero.

Berkson Model

The Berkson model is of the form

Xi = X∗i + ei,

where ei is independent of X∗i as well as Zi, and has mean zero.
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The classical additive error model and the Berkson model differ in the perspective of view-

ing the relationship between X∗i and Xi, where one is treated as a dependent variable, and the

other is regarded as an independent variable.

Misclassification Model

In settings where Xi is not continuous but discrete, the relationship between Xi and X∗i can be

studied in two ways through modeling: (1) the conditional probability P(X∗i = x∗i | Xi = xi,Zi)

or (2) the conditional probability P(Xi = xi | X∗i = x∗i ,Zi). The probabilities P(X∗i = x∗i |

Xi = xi,Zi) and P(Xi = xi | X∗i = x∗i ,Zi) are known as misclassification probabilities and

reclassification probabilities, respectively (Yi, 2017, p.70).

1.5.2 Impacts of Covariate Measurement Error or Misclassification

Consider a random sample of n observations {yi, xi} of i.i.d. random variables
{
Yi, Xi

}
. Suppose

the relationship between Yi and Xi is delineated by a simple linear regression of the form

Yi = β0 + βxXi + ϵi for i = 1, · · · , n, (1.19)

where β0 and βx are regression parameters, and ϵi is independent of Xi with mean zero and

variance σ2. Suppose that Xi is not observed, but its surrogate version X∗i is available.

If applying the least squares method with Xi in (1.19) replaced by X∗i , then the resultant

estimator of βx is given by:

β̂∗x =

∑n
i (x∗i − x̄∗)(yi − ȳ)∑n

i (x∗i − x̄∗)2 ,

and it can be shown that as n→ ∞,

β̂∗x
p
−−→

Cov(X∗i ,Yi)
Var(X∗i )

. (1.20)

We now consider two cases. In the first case, we assume that Xi is continuous and linked

with X∗i by the model

X∗i = Xi + ei,



22

where error ei has mean zero and variance σ2
e , and is independent of Xi and ϵi. In this case,

(1.20) becomes

β̂∗x
p
−−→ W βx as n→ ∞,

where W =
σ2

x
σ2

x+σ
2
e
, and σ2

x is the variance of Xi (Fuller, 1987; Yi, 2017, Section 2.2). Since

W ≤ 1, the measurement error in Xi has caused an attenuation bias in using β̂∗x to estimate βx.

Now, we consider the second case where Xi is not a continuous random variable. Let Xi be

a binary random variable taking 0 or 1, with π = P(Xi = 1). Suppose that X∗i and Xi are linked

by the misclassification matrix

Π j =

π00 π01

π10 π11

 , (1.21)

where πkl = P(X∗i = k | Xi = l) for k = 0, 1 and l = 0, 1, and X∗i is assumed to be independent

of Yi given Xi.

To calculate Cov(X∗i ,Yi), we first obtain the expected value of X∗i :

E(X∗i ) = E
{
E(X∗i | Xi)

}
= E

{
π11Xi + (1 − π00)(1 − Xi)

}
= π11π + (1 − π00)(1 − π).

Let p ≜ π11π + (1 − π00)(1 − π). By the conditional independence of X∗i and Yi, given Xi,

we obtain the expected value of X∗i Yi:

E(X∗i Yi) =E
{
E(X∗i Yi | Xi)

}
=E

{
E(X∗i | Xi)E(Yi | Xi)

}
=E

{
E(X∗i | Xi)(β0 + βxXi)

}
=E

[{
π11Xi + (1 − π00)(1 − Xi)

}
(β0 + βxXi)

]
=E

{
π11β0Xi + (1 − π00)(1 − Xi)β0

}
+ E

{
π11βxX2

i + (1 − π00)βx(Xi − X2
i )
}

=pβ0 + πβxπ11,

where the last step is due to X2
i = Xi.
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Finally, we have

Cov(X∗i ,Yi)
Var(X∗i )

=
E(X∗i Yi) − E(X∗i )E(Yi)

Var(X∗i )

=
(pβ0 + πβxπ11) − p(β0 + βxπ)

p(1 − p)

=
π(1 − π)(π00 + π11 − 1)

p(1 − p)
βx,

where we use Var(X∗i ) = p(1 − p).

Shieh (2009, p.41) showed that π(1−π)(π00+π11−1)
p(1−p) ≤ 1, and thus, (1.20) suggests that covariate

misclassification has an attenuated effect on the estimation of covariate effect βx.

1.5.3 Model Identifiability

Identifiability is a fundamental requirement in statistical modeling. It means that different

parameter values give rise to different probability distributions. Conversely, if two sets of

parameter values generate identical distributions of the data, the model is not identifiable. LetΘ

denote parameter space, and let S Y denote the sample space of data. A model,
{
F(y; θ) : θ ∈ Θ

}
,

is called identifiable if for all θ0, θ1 ∈ Θ and for all y ∈ S Y :

F(y; θ0) = F(y; θ1) if and only if θ0 = θ1,

where F(y; ·) is a probability distribution (Guillaume et al., 2019).

Nonidentifiability occurs when a model is poorly specified or when the parameter space is

“too large”. For example, when the number of the model parameters exceeds the number of

observations in the data, the model is nonidentifiable. In the presence of error-prone data, we

usually need additional modeling of mismeasurement and/or covariate processes in addition to

modeling the response process. This, in particular, results in the parameter space expansion,

which typically generates model nonidentifiability issues. One strategy to overcome model

nonidentifiability is to collect additional data to help characterize the mismeasurement process.

Now, we describe two types of data sources that are used in the analysis of error-contaminated
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data.

Validation Subsample

Consider the main study data
{{

Yi, X∗i ,Zi

}
: i ∈ M

}
, where M denote the index set.

An internal validation subsample contains true measurements of the variable Xi in addition to{
Yi, X∗i ,Zi

}
for i ∈ V, whereV ⊂ M, i.e.,

{{
Yi, Xi, X∗i ,Zi

}
: i ∈ V

}
is available. In contrast an

external validation subsample often contain
{{

Xi, X∗i ,Zi

}
: i ∈ V

}
withV ∩M = ∅.

Repeated Measurements

In some settings, we observe repeated surrogate measurements for Xi. Such data are called

replicate data and have the form

{{
Yi, X∗i j,Zi)

}
: i = 1, · · · , n; j = 1, · · · , ni

}
,

where ni is the number of replicate surrogate measurements for the ith subject. Usually, one

would make replicate measurements of Xi if there were good reasons to believe that the average

of replicates is a better estimate of Xi than a single observation (Yi, 2017, Section 2.4).

1.5.4 Regression Calibration

Regression calibration (RC) (Carroll et al., 2006, Section 4.1) is a simple yet effective cor-

rection strategy applicable to almost any regression model with covariate mismeasurement.

Unlike the naive analysis where Xi is replaced with its observed surrogate X∗i , the primary idea

behind the RC approach is to replace the unobserved variable Xi by the conditional expectation

E(Xi | X∗i ,Zi), which can be estimated by regressing Xi on
{
X∗i ,Zi

}
if for example, validation

data are available. The RC method bears relevance to the EM algorithm and is regarded as a

special case of it, as discussed by Yi (2017, p.60).
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Suppose the mean of Xi given (X∗i ,Zi) can be described by

E(Xi | X∗i ,Zi) = mX(X∗i ,Zi; ζ),

where ζ indicates regression parameters. The RC algorithm consists of the following three

steps:

Step 1. Estimate mX(X∗i ,Zi; ζ) by validation subsample.

Step 2. Replace the unobserved Xi by its estimate mX(X∗i ,Zi; ζ̂), and run the standard analysis to

obtain point estimates of parameters of interest.

Step 3. Implement the bootstrap method to obtain the standard errors associated with the esti-

mated parameters in step 2.

1.6 COVID-19 Data

Our research is motivated by the emerging COVID-19 data. Here we outline some features of

COVID-19 that will be examined in this thesis.

1.6.1 COVID-19: Epidemiology

Estimating the incubation period is crucial for disease control. Having a sensible estimate of the

median incubation time helps the government and healthcare sector decide on a rationale quar-

antine time. With the aim of determining a reasonable quarantine time, Khadem Charvadeh

et al. (2022) examined some useful methods for modeling the distribution of the COVID-

19 incubation time. Estimating recovery times for infected patients is of great importance

for healthcare workers to effectively allocate the limited medical resources to cope with the

COVID-19 crisis. Moreover, understanding the relationships of demographic factors, such

as age and gender, with COVID-19 is essential as it helps healthcare professionals prioritize

treatment of patients with different characteristics. The Canada COVID-19 website (Liu et al.,

2020) examined and displayed some of the epidemiological characteristics of COVID-19 in

Canada. While various efforts have been made to study the behavior of SARS-CoV-2 since the
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outbreak of COVID-19, the understanding of COVID-19 has been constantly enhanced as more

COVID-19 data become available. Extensive evidence-based studies from multiple angles are

required to comprehensively unveil the clinical characteristics of COVID-19 by examining the

data coming from different sources as the pandemic evolves.

1.6.2 COVID-19: Case Fatality Rate and Prevention Strategies

The case fatality rate (CFR), defined as the proportion of deaths among those individuals in-

fected with the disease, is considered a key indicator for describing the severity of the disease.

To reduce the detrimental impact of COVID-19, including lowering the CFR, various pre-

ventive measures such as facial coverings, social distancing, lockdowns, testing, and contact

tracing were implemented by different countries. While clinical and epidemiological character-

istics of patients contribute to the CFR, the stringency of responses and containment measures

resulted in country-level variation in CFR (Liang et al., 2020). For instance, as of October

13, 2021, the CFR of COVID-19 in Yemen was reported to be as high as 18.95%, whereas in

Singapore, it was reported to be 0.14% (Our World in Data, 2021).

Since the COVID-19 pandemic started, estimation of the CFR and identifying the associ-

ated factors have attracted extensive research. Some studies focused on exploring patient-level

risk factors. For example, Zhou et al. (2020) conducted a retrospective cohort study of 191

adult COVID-19 patients and found that older age, higher sequential organ failure assessment

scores, and elevated d-dimer at admission were risk factors for death. Chen et al. (2020) exam-

ined the clinical characteristics and symptoms of 799 COVID-19 patients and found that the

median age of deceased patients was significantly older than recovered patients. Chronic hy-

pertension and other cardiovascular comorbidities were found to be associated with deceased

patients. Other studies explored the association of CFR with gender (Jin et al., 2020), obesity

(Klang et al., 2020), diabetes (Guo et al., 2020), and kidney diseases (Cheng et al., 2020).

Those studies indicated that, to some degree, the regional CFR may be partly explained by

the factors such as age and health status, including the presence of having diseases such as

coronary heart disease and hypertension.

However, national-level variation in CFR suggests the existence of other driving forces
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behind fatality risk. This gap in COVID-19 fatality rate has been investigated in several stud-

ies to help national health organizations lay the groundwork for protecting high-risk patients.

Some researchers investigated possible scenarios for the disparity in the risk of death from

COVID-19 and suggested that the healthcare system’s capacity, effectiveness of government

policies, people’s compliance, testing, and case detection capacities were effective in preven-

tion and attenuation of COVID-19 severity (Liang et al., 2020; Ji et al., 2020; Chaudhry et al.,

2020; Kayano and Nishiura, 2020). Nevertheless, to the best of our knowledge, there has been

no research evaluating the consequences of different strictness of policies taken by different

countries, which typically change over time.

In Chapter 3, we cast the problem into the Q-learning framework, which basically aims

to determine optimal preventive policies using regression models. Q-learning is a useful re-

inforcement learning scheme to select optimal policies sequentially for an agent in a given

environment. While it is commonly implemented to estimate the value of a single action that

maximizes the expected cumulative reward, in Chapter 3, we apply the Q-learning approach

to a setting where two actions need to be optimized. We use the Q-learning method and data

from open-access databases to explore how country-specific preventive measures may possibly

lower the CFR. Our study sheds light on the association among government actions, socioeco-

nomic factors, and the CFR.

1.6.3 COVID-19: Health and Economic Costs

During the COVID-19 pandemic, many countries imposed unprecedented containment restric-

tions to curb the spread of the disease, and the strictness of such restrictions changed from

country to country and from time to time, with some countries imposing long total lock-

downs of economic and social activities and others trading off deaths against the economy.

Those countries seeking to merely minimize the health costs of COVID-19 pandemic made

use of epidemiology models developed for the spread of infectious diseases. Many new or

refined versions of epidemiology models have been proposed during COVID-19. For exam-

ple, Okhuese (2020) used differential equations and modified the SEIR model to evaluate the

probability of reinfection in the recovered class and found that the rate of reinfection by the
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recovered population will decline to zero over time as the virus is cleared clinically. Higazy

(2020) modeled COVID-19 pandemic by fractional order SIDARTHE model. The proposed

mathematical model predicts the evolution of COVID-19 pandemic and helps understand the

impact of different preventive measures with different values of the fractional order. In a study

conducted by Pribylová and Hajnova (2020), they proposed a generalization of the SEIR model

by accommodating asymptomatic infectious cohort in understanding the epidemic dynamics of

COVID-19, and demonstrated that the asymptomatic cohort plays a crucial role in the spread

of the COVID-19. These models, however, have limited applicability in policy analysis for

they have economic consequences for not taking the trade-off between health and economic

outcomes into account. This suggests the need for developing models to minimize economic

losses as well as health costs simultaneously.

Some researchers investigated the trade-off between the COVID-19 outbreak and economic

activities. For example, Kano et al. (2021) proposed an abstract agent-based model of the

COVID-19 outbreak that accounts for economic activities. Lasaulce et al. (2021) proposed a

simple yet practical model to study the fundamental trade-off between economic and health

aspects of the COVID-19 pandemic. However, these studies implicitly assume that the covari-

ates are error-free. In practice, this assumption often does not hold, necessitating the need for

correction strategies when dealing with data that involve misclassified discrete covariates and

mismeasured continuous covariates. Therefore, the objective of Chapter 5 is to introduce ap-

propriate correction strategies to address this issue within the framework of weighted dynamic

programming.

1.7 Thesis Organizations

In this thesis, we employ survival analysis and reinforcement learning techniques to examine

COVID-19 data. While the literature on DTRs and mismeasurement is vast, to the best of

our knowledge, there has been little work on optimizing DTRs with misclassified covariates

or mixed measurement error and misclassification in covariates. In this thesis, we present

correction strategies to ameliorate the effects of covariate mismeasurement in developing DTRs

with the Q-learning method.
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The remainder of this thesis is organized as follows. In Chapter 2, we employ semiparamet-

ric and nonparametric survival models as well as text mining and data visualization techniques

to examine the clinical manifestations and epidemiological features of COVID-19 in the early

pandemic by studying a dataset from January 22, 2020 to March 29, 2020. The results of

this chapter have been published by The Journal of Data Science (Khadem Charvadeh and Yi,

2020). Khadem Charvadeh led this project and conducted data analysis.

In Chapter 3, we use Q-learning for tailoring the strictness of preventive policies to country-

specific characteristics and evolving situation to leverage the salutary effects of prevention

strategies with an objective of lowering the CFR. The results of this chapter have been pub-

lished online by Statistics in Biosciences (Khadem Charvadeh and Yi, 2023b).

In Chapter 4, we study how Q-learning may be affected by covariate misclassification, and

we present correction strategies to reduce or eliminate the bias induced by covariate misclas-

sification. The results of this chapter have been wrapped up as a paper and submitted for

publication (Khadem Charvadeh and Yi, 2023a).

In Chapter 5, we study the impact of the mix misclassified discrete covariates and mis-

measured continuous covariates in Q-learning with a compound outcome. The chapter also

demonstrates the practical application of Q-learning with a compound outcome in analyzing

the trade-off between health and economic costs associated with the COVID-19 pandemic,

with specific attention given to the presence of mixed measurement error and misclassification

in covariates.



Chapter 2

Data Visualization and Descriptive

Analysis for Understanding

Epidemiological Characteristics of

COVID-19

2.1 Introduction

COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). The disease was reported to spread in people in December 2019, and it was important

to understand epidemiological features of COVID-19, including answering urgent questions

such as: (1) What was the average time of symptom onset? (2) How long did it take for

infected patients to recover? (3) Was there any age or gender difference in the recovery of

infected patients? (4) What were the common symptoms of infected patients?

While each of these questions warranted in-depth research when more data about COVID-

19 became available, in the beginning of the pandemic, we conducted a prompt exploratory

analysis of the clinical manifestations and epidemiological features of COVID-19. The re-

search reported in this chapter was conducted right after the COVID-19 pandemic was de-

clared by the WHO. The goal was to provide a timely examination of available COVID-19

30
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data to offer intuitive insights into further in-depth research. With the available Kaggle novel

coronavirus dataset of 3397 patients dated from January 22, 2020 to March 29, 2020, we ana-

lyzed the data using semiparametric and nonparametric survival models as well as text mining

and data visualization techniques.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the data

and examine different features of COVID-19 by data visualization. In Section 2.3, we employ

survival analysis techniques to estimate the distribution of recovery times for infected patients.

In Section 2.4, we estimate the average time of symptom onset. We conclude the manuscript

with discussions in the last section.

2.2 Data Visualization

2.2.1 Data Description

In this study, we use the Kaggle novel coronavirus dataset from January 22, 2020 to March

29, 2020. The dataset, available as a Google spreadsheet at https://www.kaggle.com/

datasets/sudalairajkumar/novel-corona-virus-2019-dataset, has been updated au-

tomatically every five minutes based on Johns Hopkins Center for System Science and En-

gineering (CSSE) data (https://github.com/CSSEGISandData/COVID-19). The dataset

consists of measurements of 3397 people with the novel virus from 39 countries including

those in Europe, Asia, and Africa. There are 14 variables representing the summary, location,

country, gender, age, symptom onset, hospital visit date, exposure start, exposure end, visiting

Wuhan, from Wuhan, death, recovery status, and symptoms of the infected cases. Using the

information given in the summary, exposure start, exposure end, symptom onset, and recov-

ery status, we further extract more specific information from the original dataset, including

infection source, travel history, time gap between exposure to symptom onset, and time gap be-

tween symptom onset to recovery. A copy of the dataset is available at https://github.com/

YasinKhc/Covid-19. Among 3397 patients, only 1449 of them have the information of age

which ranges from 3 months to 96 years. In Table 2.1, we present the age distribution of

infected cases separately for females and males.

https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
https://github.com/CSSEGISandData/COVID-19
https://github.com/YasinKhc/Covid-19
https://github.com/YasinKhc/Covid-19
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2.2.2 Descriptive Analysis

Among the 3397 patients, we found that older people have a higher fatality rate compared to

younger people. The mean and median of age for deceased cases were found to be 71.5 and

73.5, respectively. The left graph in Figure 2.1 displays the side-by-side barplots for the counts

of deceased cases for males and females divided into six age groups, and the right graph in

Figure 2.1 records the fatality rate for men and women in the six different age groups, where

the fatality rate is calculated as the ratio of the number of deaths in an age group with a given

gender to the number of infected cases in that group. It is clear that the fatality rate increases

with age, and the fatality rate for men in each age group appears higher than that for women.

These results are consistent with those reported by Jin et al. (2020).

We further perform the Chi-square test of independence (Pearson, 1900) to determine

whether there is a statistically significant association between age/gender and fatality. For

the null hypothesis that the fatality rate is identical for all the age groups, we obtain the p-value

of the Chi-square test to be 0.0005. For the null hypothesis that the fatality rate is identical for

males and females, we obtain the p-value of the Chi-square test to be 0.0748.

The left plot in Figure 2.2 shows that around 28% of the infected people had a recent travel

history. The right plot in Figure 2.2 reports that 13% of the cases had a close contact with other

infected people, and the source for the rest large portion (87%) of infections remains unknown,

which is very likely due to undetected community transmissions. Among those people with

unknown infection sources, about 30% of them had a recent travel history.

To understand what symptoms are most related to infected cases with COVID-19, we per-

form a text analysis using a word cloud (Viégas and Wattenberg, 2008), which typically vi-

sualizes word frequencies by using different sizes of the words. The more common a term

appears in a text dataset, the larger and bolder it appears in the word cloud. Word clouds are

an intuitive tool for visualizing and highlighting words with greater prominence. To generate

a word cloud for symptoms of COVID-19, we first collapse the summary into a single text

document and extract the terms and words describing the symptoms of infected patients, and

then store them in a new text document. Thereafter, different medical words and terms that

represent a specific symptom are summarized into a single unique word or term. For exam-
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ple, in the summary, besides difficulty breathing, three other terms were alternatively used to

describe the same symptom related to breathing: shortness of breath, dyspnea, and respiratory

distress. In our text analysis here, we classify them as the same description for the symptom

of breathing and then unify them with the term “difficulty breathing”. Next, using the obtained

text document and the word cloud generator in the package wordcloud in R, we summarize

the symptoms for 652 COVID-19 infected patients in Figure 2.3. It is clearly seen that fever,

cough, and pneumonia are the most frequent symptoms reported by those patients.

2.3 Examination of Recovery Time

To help the government and health authorities prepare for major spikes in the number of new

COVID-19 infected cases, it is important to understand the times for infected patients to re-

cover. In this section, we use survival analysis techniques to study the recovery times of in-

fected patients. Here the recovery time of an infected patient, denoted as T , is taken as the time-

to-event, or survival time, using the terminology in survival analysis (e.g., Lawless, 2003). In

other words, the event is defined to be recovered, and hence, patients who die from COVID-19

are treated as censored.

First, we use the distribution-free Kaplan-Meier approach to examine the survivor function

S (t) = P(T > t) for the recovery times, where t ∈ [0, 45] with [0, 45] representing the study

period of 45 days, and 0 is defined as the time of symptom onset for an infected patient.

We examine the recovery times from three angles. First, we do not distinguish infected

cases; secondly, we classify the infected cases into two groups by gender; thirdly, we divide

the infected cases into three age groups: (0, 40], (40, 60], and (60, 96]. The corresponding

Kaplan-Meier estimates are reported in Figure 2.4. The top panel of Figure 2.4 illustrates

the Kaplan-Meier time-to-recovery survival curve for all the infected cases, where the red

curve represents the estimated probabilities, the red shaded areas stand for the 95% confidence

region, and patients who are censored are marked with + signs. The dashed dark lines indicate

the survivor probability at the median recovery time, saying that with 50% of the probability, an

infected patient takes more than 20 days to recover (if they would recover). A 95% confidence

interval for the median recovery time is (19, 21).
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The middle panel of Figure 2.4 shows the Kaplan-Meier survival curves of recovery times

for men and women, which are not considerably different. Furthermore, applying the log-

rank test (Harrington, 2005) to assess whether or not the difference between the two curves is

statistically significant, we obtain that the p-value is 0.5, clearly showing no evidence that the

recovery time differs for men and women. Table 2.2 gives the median recovery times and their

corresponding 95% confidence intervals for men and women.

The bottom panel of Figure 2.4 displays the Kaplan-Meier survival curves for the three

different age groups. It can be visually concluded that people of older age are more likely to

have longer recovery times. The corresponding log-rank test yields the p-value to be 10−4,

supporting that the differences in recovery times for different age groups are statistically sig-

nificant. Median recovery times and their corresponding 95% confidence intervals for the three

age groups are summarized in Table 2.3.

Next, we quantify how the recovery time is associated with age and gender. We employ the

semiparametric AFT model:

log T = β0 + β1 × gender + β2 × age + ϵ,

where β0 is the intercept, β1 and β2 are regression parameters, and ϵ is the error term with mean

zero and an unspecified probability distribution. For ease of interpretation, we use ten years

as the unit of age, as suggested by the editor. Estimation of the parameters can be obtained

using the generalized least squares approach (e.g., Chiou et al., 2014); the results are reported

in Table 2.4.

The analysis results show no evidence that recovery times differ in women and men. Age

is found to be significantly related to the recovery time. Older infected patients need a longer

time to recover from COVID-19. Exponentiating the estimate of β2, we quantify the age effect

on the recovery time. With the gender effect adjusted, ten years older in age would extend the

recovery time by 9.9%.
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2.4 Gap Time Between Exposure and Symptom Onset

One of the major concerns that healthcare workers and the government have been trying to ad-

dress is on stealthy transmissions of COVID-19. Researchers at Columbia University’s Mail-

man School of Public Health used a computer model to show how undetected cases may boost

the spread of the COVID-19 outbreak in China. They showed that the virus spread was rapid

and its containment was challenging (Li et al., 2020). Understanding the average gap time

between the time of exposure to the virus and symptom onset for infected patients is useful for

healthcare workers and the government to make effective measures to curb the spread of the

virus.

Among the 3397 infected people, 207 reported both the time for exposure and the symptom

onset time. The time of exposure is taken as an approximate time a patient contracted the virus

by having a close contact with someone who was already infected or traveling to infected areas.

The symptom onset date is based on the time when an infected patient experienced flu-like

symptoms such as fever, sore throat, and in more severe cases, difficulty breathing. Eighty-

five patients reported a time interval for exposure spanning from 1 to 27 days. We treat those

exposure intervals with a length of less than one day as a single time point. To understand the

underlying incubation times for infected cases who reported different types of information on

infection, we estimate the median and average incubation times for the cohort of 3397 infected

patients using the following three methods:

• Method 1: the time period between the start time of exposure and symptom onset.

• Method 2: the time period between the end time of exposure and symptom onset.

• Method 3: we use the middle point of the time interval to approximate the exposure time,

and take the time period between the approximated exposure time and symptom onset.

For 140 patients who reported only a single time point for exposure, these three methods will

yield the same values for them. For the cohort of 3397 infected cases, Method 1 yields that the

mean and median incubation times to be 8.4 and 6 days, respectively; Method 2 outputs a lot

smaller mean and median incubation times which are respectively 3.3 and 2 days; and Method 3

gives that the mean and median of the incubation period are 5.8 and 5 days, respectively. The
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estimates of Method 3 are similar to those reported by Lauer et al. (2020) and Men et al.

(2020). Lauer et al. (2020), by conducting a pooled analysis of 181 infections reported between

January 4, 2020 and February 24, 2020, found that median incubation period to be 5.1 days.

Men et al. (2020) used a chain-of-infection data collected from 10 regions in China to estimate

the median incubation period. They employed different statistical approaches, such as Monte-

Carlo simulations as well as non-parametric methods, and estimated that the mean and median

of incubation times are 5.8 and 5 days, respectively.

To show how incubation times may differ between females and males, in the left panel

of Figure 2.5 we report the boxplots of the incubation times obtained from Method 3 for 31

females and 49 males. To see possible age effects, in the right panel of Figure 2.5, we graph

the incubation times for three age groups, where 21, 30, and 25 patients are included in the age

groups of 0-34, 35-54, and 55-96, respectively. The median incubation period for patients aged

within 35-54 is the largest, and the median incubation period for patients over 55 years of age

is slightly longer than that of the age 0-34 group. However, incubation times for older patients

have more variability than those for younger infected cases.

2.5 Discussion

In this chapter, we explore the epidemiological characteristics of COVID-19 by studying a

Kaggle novel coronavirus dataset, dated from January 22, 2020 to March 29, 2020, which in-

cludes 3397 infected cases and 83 deaths from COVID-19. We find that the median incubation

time of COVID-19 is about 5 days, and older people are more likely to have a longer incuba-

tion period. Our text analysis shows that the most dominant symptoms of COVID-19 are fever,

cough, and pneumonia. The non-parametric Kaplan-Meier method yields a median recovery

time of 20 days for infected patients who are not stratified by their characteristics. Our findings

further suggest that the recovery time increases as the age increases, and there is no significant

gender-difference in recovery times.

As discussed by He et al. (2020), while many studies examined epidemiological charac-

teristics of COVID-19, those studies do not necessarily reveal the same findings or similar

estimates of the same measure. For instance, regarding the estimate of the average incuba-
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tion times, He et al. (2020) reviewed five studies conducted between December 31, 2019 and

February 24, 2020, and those studies reported varying average incubation time, ranging from

4.9 days to 6.4 days. In addition, we note that our estimate of the median incubation time dif-

fers from the estimate 8.1 days provided by Qin et al. (2020). The discrepancies in estimating

the same quantity are primarily attributed to the heterogeneity in different studies, including the

differences in the time window, the study subjects, the study design, the model assumptions,

and the measures of controlling the virus spread by different regions.

We point out that the validity of the analysis results here relies on the quality of the Kag-

gle data we use. In our analysis, we ignore missing observations, which is basically driven

by the perception that missingness arises completely at random. However, when such an as-

sumption is not feasible, proper adjustments of missingness effects are generally expected. On

the other hand, as commented by a referee, reporting bias and recall bias should be aware of

when analyzing the COVID-19 data. If the degree of such biases is not mild, then proper de-

biasing adjustments should be introduced in inferential procedures to yield valid or nearly valid

analysis results. Methods of addressing effects of error-in-variables can be employed for this

purpose. For details, see Carroll et al. (2006), Yi (2017), and Yi et al. (2021).

Finally, we note that our analysis results are obtained from using the reported informa-

tion for those patients who were assessed by medical personnel. The information for infected

patients with mild symptoms or asymptomatic infections was often not available for being in-

cluded in the dataset because those patients did not go to hospital for assessment. As a result,

when interpreting the results, care is needed for the target population.
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Table 2.1: Age distribution of infected cases by gender: The entries display the number and
the percentage (in parentheses) for each cohort

Age range
(in year) 0-19 20-39 40-59 60-79 80-96 Total

Male 28 (3%) 193 (24%) 313 (38%) 242 (30%) 41 (5%) 817
Female 25 (4%) 168 (27%) 212 (34%) 186 (29%) 41 (6%) 632

Table 2.2: Median recovery time for male and female

Gender
The number of
infected patients

The number (percentage)
of recovery Median 95% Confidence interval

Female 52 43 (83%) 20 (17, 21)
Male 89 58 (65%) 20 (19, 23)

Table 2.3: Median recovery time (in day) for different age groups

Age group
The number of
infected patients

The number (percentage)
of recovery Median 95% Confidence interval

0-40 47 45 (96%) 18 (16, 20)
41-60 50 45 (90%) 20 (17, 22)
61-96 43 10 (23%) 26 (21, 30)

Table 2.4: Analysis results of recovery times under the semiparametric AFT model

Parameters estimate standard error 95% Confidence interval

Intercept (β0) 2.498 0.119 (2.265, 2.731)
gender (β1) 0.066 0.069 (-0.069, 0.201)

age (β2) 0.094 0.022 (0.051, 0.137)
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Chapter 3

Understanding Effective Virus Control

Policies for COVID-19 with the

Q-Learning Method

3.1 Introduction

The CFR of COVID-19 is a useful measure to describe the disease severity, which, however,

changes considerably from country to country and from time to time. To reduce the detrimental

impact of COVID-19, it is imperative to understand how different mitigation policies adopted

by different countries may help lower the COVID-19 CFR. Using data from 175 countries from

January 13 of 2020 to March 9 of 2021, we investigate possible factors associated with the CFR

and use the Q-learning algorithm to assess optimal preventive policies adopted by individual

countries to reduce their COVID-19 CFR.

The chapter is structured as follows. In Section 3.2, we describe the Q-learning imple-

mentation procedure. Section 3.3 describes the data sources and the variables of interest. In

Section 3.4, we apply the procedure in Section 3.2 to analyze the data described in Section

3.3. Sensitivity analyses are further conducted in Section 3.5. We conclude the chapter with

discussions in Section 3.6.
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3.2 Q-Learning Implementation with Observational Data

3.2.1 Notation and Framework

In this section, we describe the Q-learning algorithm for K pre-determined stages which may

involve both stage-invariant and stage-specific covariates. For example, considering the PRO-

motion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al., 2001), a randomized trial

with an interest in assessing the impact of a breastfeeding promotion intervention on children’s

cognitive development, Moodie et al. (2012) employed the Q-learning method by framing the

study period as two stages, with stage 1 covering the period from the birth of study subjects

to 3 months and stage 2 spanning from 3 to 6 months of age. The treatment of interest is

breastfeeding, measured in each of the stages, and the outcome is taken as the verbal cognitive

ability score. Here, covariates include stage-specific variables such as the birthweight of the

infant and the infant’s 3-month weight, as well as stage-invariant variables or baseline covari-

ates such as geographical location, mother’s education, mother’s smoking status, mother’s age,

and children’s gender.

We use boldface to denote vectors or spaces, and let capital letters denote random variables

and lower case letters denote their realizations. For k = 1, · · · ,K, let Yk denote the outcome at

the end of stage k, and assume a smaller Yk is more desirable. Let Ak = {Ak,1, · · · , Ak,r} ∈ A

denote the vector of r discrete actions taken at stage k, where A is the action space. Let

C j = {C j,1, · · · ,C j,q j} ∈ C j denote the stage-invariant features for action Ak, j for j = 1, · · · , r,

and let Ok = {Ok,1, · · · ,Ok,pk} ∈ Ok denote the vector of stage k specific features, where C j and

Ok are their corresponding spaces. Let Hk :=
{
C1, · · · ,Cr,O1, · · · ,Ok,A1, · · · ,Ak−1

}
denote

the collection of covariates at stage k for k = 1, · · · ,K. The type of covariates in Ok and C j

can be differentiated by whether or not the covariates interact with actions; those variables

interacting with actions are called tailoring or prescriptive variables (Chakraborty and Moodie,

2013, Section 3.4.1).

A K stage policy consists of K decision rules, denoted dk for k = 1, · · · ,K, which map the

domain of Hk to an action choice in A. To construct a sequence of optimal decision rules, we

assume a smaller cumulative outcome is more desirable, and then define the Q-functions for
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stage K and stage k with k = K − 1, · · · , 1:

QK(HK ,AK) = E
[
YK | HK ,AK

]
;

Qk(Hk,Ak) = E
[
Yk +min

ak+1
Qk+1(Hk+1, ak+1) | Hk,Ak

]
.

(3.1)

In the case where the true Q-functions are known, optimal decision rules are determined

by:

dopt
k (hk) ≜ arg min

ak
Qk(hk, ak) for k = K, · · · , 1. (3.2)

In applications, the Q-functions are typically unknown and need to be modeled. As the

Q-functions basically represent conditional expectations, it is natural to delineate them using

regression modeling techniques such as linear regression. For k = 1, · · · ,K, consider the linear

regression model

Qk(Hk,Ak) = βT
k Hk0 +

r∑
j=1

(ψT
k, jHk1, j)Ak, j, (3.3)

where Hk is divided into Hk0 and {Hk1, j : j = 1, · · · , r}, with βk and {ψk, j : j = 1, · · · , r}

representing the associated regression coefficients. Here Hk0 contains the variables having a

predictive effect on the outcome, and Hk1, j denotes the prescriptive components of Hk that

interact with the action, Ak, j. Let ψk = (ψT
k,1, · · · , ψ

T
k,r)

T for k = 1, · · · ,K.

3.2.2 Estimation Procedure

The determination of (3.2) hinges on the evaluation of the Q-functions that are modeled by

(3.3). To estimate the model parameters in the Q-functions, we use the data in a random sample

of i.i.d. observations for multiple study units, say n units. We now add i to the symbols Yk, Hk

and Ak as a subscript to show the corresponding variables for study unit i, where i = 1, · · · , n.

Define QK+1 ≜ 0, and by moving backward through stages, the estimation of the regression
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coefficients for each stage can be formed as a minimization problem:

(β̂k, ψ̂k) = arg min
βk ,ψk

1
n

n∑
i=1

[{
Yk,i +min

ak+1
Qk+1(Hk+1,i, ak+1,i; β̂k+1, ψ̂k+1)

}
− Qk(Hk,i,Ak,i; βk, ψk)

]2
(3.4)

for k = K, · · · , 1.

(3.4) can be implemented using the lm function in R. Variance estimates of the least squares

estimators can be obtained from the lm summary in R, and W-type CIs for regression parame-

ters can be obtained using confint function in R.

Substituting the resultant estimates from (3.4) into (3.3), we estimate the optimal action

d̂opt
k (hk) = arg min

ak
Qk(hk, ak; β̂k, ψ̂k) for k = K, · · · , 1. (3.5)

With the linear model (3.3) for the Q-functions, the minimums in (3.5) occur at the minimum

or maximum of Ak, j, depending on the sign of the coefficient of Ak, j, ψT
k, jHk1, j in (3.3).

3.3 Data Sources and Extraction

3.3.1 Data Descriptions

We extract publicly available COVID-19 data across 175 countries for a period of about ten

months with the beginning marked by the date of the first confirmed COVID-19 case in each

country; calendar times may vary from country to country because of different times for iden-

tifying the first confirmed cases in different countries. The data include information about

containment and closure policies, facial covering policy, diagnostic testing policy, contact trac-

ing policy, protection of elderly people policy, the total number of COVID-19 cases per million

people, the total number of COVID-19 deaths, care system quality score, obesity prevalence,

smoking prevalence, socioeconomic factors, and substance use prevalence. Here, substance use

prevalence indicates the age-standardized prevalence of adults with a substance use disorder,

including alcohol, opioid, cocaine, amphetamine, cannabis, and other drug use.

Information about various policies, including those of containment and closure, facial cov-
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ering, diagnostic testing, contact tracing, and protection of elderly people, is collected from the

Oxford COVID-19 Government Response Tracker (OxCGRT) (Hale et al., 2021). The policies

are recorded as scores which are aggregated into a suite of policy indices. Since January 1,

2020, policy responses covering more than 180 countries are tracked and updated on a daily

basis; they are coded as 23 variables with 0 indicating no enforcement.

From the 23 variables, we opt to focus on eight policies: school closures, workplace clo-

sures, restrictions on gatherings, international travel controls, facial covering, diagnostic test-

ing, contact tracing, and protection of elderly people policies. Each of these eight policies is

described by two time-varying variables: an ordinal variable of the policy type and a strict-

ness variable showing the implementation level of the policy. For example, for the workplace

closures policy, its ordinal variable takes on a value from 0 to 3, with 0 for “no measures”, 1

for “recommend closing (or work at home) or all businesses open with alterations resulting in

significant differences compared to non-COVID-19 operation”, 2 for “require closing (or work

at home) for some sectors or categories of workers”, and 3 for “require closing (or work at

home) for all but essential workplaces (e.g., grocery stores, doctors)”; and its strictness vari-

able, summarized as a single score, takes a value ranging from 0 to 100 with a higher value

representing a stricter implementation of the policy.

To be specific, for policy j = 1, · · · ,M with M = 8, let v j,t denote the ordinal variable

for policy j on day t, with N j representing its maximum ordinal value; and let I j,t denote the

strictness score of implementing the jth policy on day t. Further, let F j denote a binary value

from {0, 1} to indicate whether the jth policy has a time-dependent flag variable, denoted f j,t,

for a geographic scope, with 1 representing “yes” and 0 otherwise; and f j,t is the binary flag

variable for the jth policy on day t, taking value 0 if the policy is “geographically targeted”

(i.e., being applied only to a sub-region of a jurisdiction) or 1 if the policy is “general” (i.e.,

being applied throughout that jurisdiction). Among those eight chosen policies, five policies,

including school closures, workplace closures, restrictions on gatherings, facial coverings, and

protection of elderly people, have a binary flag for geographic scope, whereas three other

policies, including international travel controls, diagnostic testing, and contact tracing, do not

have a binary flag for geographic scope. For policies without a binary flag for the geographic

scope, F j = 0, and consequently f j,t = 0. To calculate the strictness score, Hale et al. (2021)
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suggested the following formula:

I j,t = 100
{v j,t − 0.5(F j − f j,t)

N j

}
.

To provide an overall measure for the preventive policies of the similar nature, we calculate

the average of strictness scores for the policies grouped by nature. Considering policies for

containment and closure, we put school closures, workplace closures, restrictions on gather-

ings, and international travel controls in the same group, and let E1 denote the set of labels

for those policies. Considering policies related to health system policies of testing and tracing,

we use two ways to combine the policies with protection of elderly people included or not

included; specifically, let E2 denote the index set for diagnostic testing, contact tracing, and

protection of elderly people, and let E3 denote the set for diagnostic testing and contact tracing.

Then, for l = 1, 2, 3, define Indexl on day t to be

Indexlt =
1
|El|

∑
j∈El

I j,t.

Basically, a higher value of Indexlt indicates a stricter combined policy at time t for l = 1, 2, 3.

3.3.2 Analysis Objective

Data on the total number of COVID-19 cases per million people and the total number of

COVID-19 deaths are extracted from the website Ourworldindata (Ritchie et al., 2020). Care

system quality score, obesity prevalence, smoking prevalence, and substance use prevalence

for 2019 are obtained from the Legatum Institute (The Legatum Institute, 2019), and we use

“care-score”, “obesity-prev”, “smoking-prev”, and “substance-prev”, respectively to represent

them for short. In our analyses, we include the following socioeconomic factors: the most

recent population weighted geometric mean density (“popu-density” for short) (Edwards et al.,

2021), the population proportion of people aged 65 and above for 2019 (“senior-prop” for

short) (The World Bank, 2019a), gross domestic product per capita based on purchasing power

parity for 2019 (“GDP” for short) (The Global Economy, 2019), government effectiveness

score for 2019 (“government-eff” for short) (The World Bank, 2019b), and civic and social
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participation score for 2019 (“civic-score” for short) (The Legatum Institute, 2019).

The inclusion of these factors is driven by the following considerations. The “care-score”

assesses the ability of a health system to treat and cure diseases and illnesses in the population.

It is measured based on a number of indicators, including healthcare coverage, health facilities,

health practitioners and staff, satisfaction with healthcare, etc., and takes values from 0 (worst)

to 100 (best). As most people and economic agents live much more concentrated in space, the

“popu-density” is regarded as a more meaningful measure than the simple population density.

The “GDP” is the most commonly used measure of economic activity and represents the total

monetary value of the produced goods and services in a country during a specific period. A

country with a larger “GDP” tends to have a higher standard of living. The “government-eff”

measures perceptions of the quality of public and civil services, the quality of policy formula-

tion and implementation, and the credibility of the government’s commitment to such policies.

Its value ranges from -2.5 to 2.5, with a higher value indicating better governance. The “civic-

score” ranges from 0 to 100, with a higher value indicating a better community involvement and

participation; it serves as a proxy for the degree of people’s collaborative effort in controlling

the spread of the virus.

To protect individuals from contracting the SARS-CoV-2 virus, facial covering, diagnostic

testing, contact tracing, protection of elderly people, school closures, workplace closures, re-

strictions on gatherings and international travel controls have been recommended as effective

preventive measures, and they become mandates in many countries or regions. For example,

research suggested that universal masking reduced the risk of infection (e.g., Chu et al., 2020).

Population testing is another strategy proved to have a significant impact on the mortality rate

(e.g., Terriau et al., 2021). While these preventive policies have been widely adopted, the strict-

ness of executing them varies from place to place and from time to time. It is interesting to

investigate how the strictness of such policies can be prioritized to effectively reduce COVID-

19 deaths, which is the objective of this study here. Using a value in the range [0, 100] to reflect

the strictness of the policies with higher values suggesting more stringent policies, we take the

outcome variable as the number of COVID-19 deaths per hundred COVID-19 cases, denoted

CFR, and examine how different combinations of the policies may be more effective to lower

CFR at different stages. The details are provided in the following sections.
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3.4 Statistical Analysis

3.4.1 Data Preparation

The ten-month-period is divided into two parts with the first part containing the first three

months and the second part regarded as the study period, where the data extracted from the first

part supply the baseline information, which helps accommodate the initial severity of COVID-

19 in each country into the analysis. The study period is divided into two stages (i.e., K = 2),

with stage 1 starting from the first day of the fourth month to the last day of the sixth month,

and stage 2 starting from the first day of the seventh month to the last day of the ninth month.

We consider two stage-specific features: (1) CFR, assessed at the start of each stage, and (2)

the total number of infectious COVID-19 cases per million entering each stage, determined by

the CDC guideline that people remain infectious for about 5 days after symptom onset (CDC,

2022).

While it is challenging to obtain the accurate values for CFR, stringency score of preventive

policies, and the total number of infectious COVID-19 cases for each stage, we aim to accom-

modate the incubation time and the duration from symptom onset to death in the calculations.

Figure 3.1 shows the timeline used to determine the relevant quantities. The total number of

confirmed COVID-19 cases is obtained for the period marked as TW2, and the total number

of deaths from COVID-19 is counted for the period marked as TW3. The stringency score is

calculated for the period marked as TW1. To obtain the total number of infectious COVID-19

cases entering a specific stage, we include the total number of confirmed COVID-19 cases a

few days prior to the start of the stage as well as those individuals who contracted the coro-

navirus before the start of the stage but showed symptoms afterward. Consequently, the total

number of infectious COVID-19 cases is evaluated over the period marked as TW4.

To calculate the COVID-19 CFR, we set the incubation time to be 6 days, an estimated

average incubation time (Weng and Yi, 2022); to obtain the total number of infectious COVID-

19 cases entering a stage, we take 5 days as the infectious period after the symptom onset

(CDC, 2022), and thus TW4 timeline has a length of 11 days. In addition, we take 18 days as

the duration from symptom onset to death (Verity et al., 2020). For k = 1, 2 and i = 1, · · · , nk,

let Tki and Fki denote the cumulative number of COVID-19 cases and cumulative number of
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COVID-19 deaths for country i at stage k, respectively. Then, the CFR per hundred COVID-19

cases is given by Fki×100
Tki

. Here, study unit i represents the ith country.

To remove the nonnegativity constraint of CFR, we apply the log-transformation to the CFR

at each stage, which also helps improve the feasibility of using linear regression models (3.3).

To be specific, for k = 1, 2 and i = 1, · · · , nk, we let Yki = log
(

Fki×100
Tki

)
denote the outcome

for country i at stage k. In both stages 1 and 2, countries with zero CFR (i.e., Yki = −∞)

or having missing values in covariates are removed from the analysis. First, examining the

stage 2 data, we remove those 12 countries having zero CFR and 19 countries having missing

covariates values, and then we examine the data at stage 1, which further yields the removal of

4 countries with zero CFR. This gives us that n2 = 144 and n1 = 140, where nk represents the

number of the countries retained for stage k in the analysis with k = 1, 2.

To investigate undue effects due to extreme values, we conduct two types of analyses with

or without removing those extreme values which may appear in the outcome, predictors, or

both of them. The Cook’s distance measure with the thresholds 4/n2 and 4/(n1 − I2) is used

to decide a data point to be “extreme” for the stages 2 and 1 data, respectively, where I2 is the

total number of extreme values in stage 2. With extreme values removed, the sample sizes in

stages 2 and 1 are 131 and 118, respectively.

As the effectiveness of implementing a policy depends on the effort from both the gov-

ernments and individuals, here we are interested in assessing (1) how the effectiveness of the

policy related to individual behavior may differ from that associated with government-level

policies, and (2) how different combinations of government-level policies may differ in the

effectiveness at different stages.

For each stage, we consider two actions, named Action1 and Action2, which are reflected by

two binary action variables, Ak, j for stage k = 1, 2 and j = 1, 2. To be specific, let facial-coverk

denote the average strictness score for the facial covering policy over the period of stage k; this

is a measure reflecting individual behavior. For l = 1, 2, 3 and k = 1, 2, let average-Indexl(k)

represent the average of the Indexlt with t indexing the days in the period of stage k. Action1

measures the preference of imposing more stringent facial covering policy to diagnostic test-

ing and contact tracing together, and Action2 compares the effectiveness of imposing strict

restriction policies, such as school closure, workplace closure, restrictions on gatherings, and
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international travel control lumped together, to implementing other steps, such as diagnostic

testing, contact tracing, and protection of elders lumped together. Let Ak,1 = 1 if facial-coverk is

greater than average-Index3(k) and Ak,1 = 0 otherwise; let Ak,2 = 1 if average-Index1(k) is greater

than average-Index2(k) and Ak,2 = 0 otherwise. Let “cases-enterk” represent the total number

of infectious COVID-19 cases per million people entering the stage k, and let “CFR-enterk”

represent the recorded CFR at the start of the stage k.

Table 3.1 reports descriptive statistics for those variables over stages 1 and 2. The average

of the Yki over all the countries indexed by i decreases from stage 1 to stage 2, probably indicat-

ing the potential effectiveness of preventive measures overall. The comparison of the average

CFR over different countries at the start of stages 2 and 1 shows a more severe overall CFR

in the beginning than the end of stage 1. The average number of infectious COVID-19 cases

per million people across countries increases from stage 1 to stage 2, indicating the surge of

COVID-19 infections over the study period.

In the following analyses, the covariates senior-prop, GDP, government-eff, obesity-prev,

smoking-prev, substance-prev, popu-density, care-score are taken as confounders, and governm-

ent-eff, popu-density and civic-score, together with cases-enter and CFR-enter, are regarded as

prescriptive variables for Ak,1, while government-eff and popu-density, together with cases-

enter and CFR-enter, are considered as prescriptive variables for Ak,2. This is driven by the

fact that most preventive policies are made in light of the observed numbers of cases or deaths

in the past. Consequently, Hk1, j in (3.3) is set as
{
cases-enterk, CFR-enterk, government-eff,

popu-density, civic-score
}

and
{
cases-enterk, CFR-enterk, government-eff, popu-density

}
, re-

spectively for j = 1, 2. For sensible comparisons, we rescale all the non-binary covariates by

dividing them by their standard deviations.

3.4.2 Data Analysis

We now apply the methodology in Section 3.2 to analyze the data described in Section 3.4.1,

where K is 2, the log of CFR is taken as the outcome, and the Q-functions (3.3) are specified

as
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Q2(H2, A2) = β20 + β21 × senior-prop + β22 × GDP + β23 × government-eff

+ β24 × obesity-prev + β25 × smoking-prev + β26 × substance-prev

+ β27 × popu-density + β28 × care-score

+ (ψ20,1 + ψ21,1 × cases-enter2 + ψ22,1 × CFR-enter2

+ ψ23,1 × government-eff + ψ24,1 × popu-density

+ ψ25,1 × civic-score)A2,1 + (ψ20,2 + ψ21,2 × cases-enter2

+ ψ22,2 × CFR-enter2 + ψ23,2 × government-eff

+ ψ24,2 × popu-density)A2,2; (3.6)

Q1(H1, A1) = β10 + β11 × senior-prop + β12 × GDP + β13 × government-eff

+ β14 × obesity-prev + β15 × smoking-prev + β16 × substance-prev

+ β17 × popu-density + β18 × care-score

+ (ψ10,1 + ψ11,1 × cases-enter1 + ψ12,1 × CFR-enter1

+ ψ13,1 × government-eff + ψ14,1 × popu-density

+ ψ15,1 × civic-score)A1,1 + (ψ10,2 + ψ11,2 × cases-enter1

+ ψ12,2 × CFR-enter1 + ψ13,2 × government-eff

+ ψ14,2 × popu-density)A1,2, (3.7)

where β jr, ψ js,1, and ψ jt,2 are parameters for j = 1, 2; r = 0, 1, · · · , 8; s = 0, 1, · · · , 5; and

t = 0, 1, · · · , 4.

As discussed for (3.5), the minimizers of the Q-functions or the optimal value of Ak, j are

determined by the coefficients of Ak, j for k = 1, 2 and j = 1, 2. That is, for k = 1, 2, the optimal

value of Ak,1, Aopt
k,1 , is set as Aopt

k,1 = 0 if
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(ψk0,1 + ψk1,1 × cases-enterk + ψk2,1 × CFR-enterk + ψk3,1 × government-eff

+ ψk4,1 × popu-density + ψk5,1 × civic-score) > 0, (3.8)

and Aopt
k,1 = 1 otherwise; similarly, the optimal value of Ak,2, Aopt

k,2 , is set as Aopt
k,2 = 0 if

(ψk0,2 + ψk1,2 × cases-enterk + ψk2,2 × CFR-enterk + ψk3,2 × government-eff

+ ψk4,2 × popu-density) > 0, (3.9)

and Aopt
k,2 = 1 otherwise.

We now conduct two analyses with and without removing extreme values, and call them

Analysis 1 and Analysis 2, respectively. The DB CIs are based on 1000 first-stage and 1000

second-stage bootstrap iterations.

Analysis of Data with Extreme Values Removed

The left panel of Table 3.2 reports on the estimates and 95% CIs of the model parameters

obtained from Analysis 1, i.e., analyzing the data with extreme values removed, where both W-

type and DB CIs are reported for stage 1 model parameters to address potential non-regularity

issues, whereas only W-type CIs are reported for stage 2 model parameters as non-regularity

issues do not occur.

At the significance level 5%, the significant covariates shared by both stages include “senior-

prop” (β21 and β11), “obesity-prev” (β24 and β14), “substance-prev” (β26 and β16), “care-score”

(β28 and β18), and the interaction term Action2 × “CFR-enter” (ψ22,2 and ψ12,2). The covariates

that are significant for stage 2 but not for stage 1 include three interaction terms: Action1 ×

“government-eff” (ψ23,1), Action1 × “popu-density” (ψ24,1), and Action1 × “civic-score” (ψ25,1).

The covariates that are significant for stage 1 but not for stage 2 include “GDP” (β12) and

Action1 (ψ10,1). The significance of those interaction terms suggests the necessity of com-

bining the strictness of implementing preventive policies with the characteristics of individual

countries. Interestingly, while W-type CIs and DB CIs reveal the same significance or insignifi-
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cance for almost all covariates for stage 1 estimation, the interaction of Action1 × “civic-score”

(ψ15,1) is found to be statistically significant based on the W-type CI, but insignificant based on

the DB CI.

Analysis of Data with Extreme Values

In contrast to Analysis 1, we conduct Analysis 2 by retaining those extreme values, and report

in the right panel of Table 3.2 the results in the same manner as for Analysis 1. Clearly, at the

significance level 5%, the two analyses do not reveal identical findings.

Regarding stage 2, both analyses indicate that the “senior-prop” and “care-score” are signif-

icant predictors of the COVID-19 CFR, and that the interaction term Action1 × “government-

eff” is statistically significant, suggesting the importance of the efficacy of governmental mea-

sures. In addition, the interaction term Action1 × “popu-density” is statistically significant,

highlighting the dependence of the COVID-19 CFR on the population density. Conversely, the

significance of the following predictors is differently revealed by the two analyses: “obesity-

prev”, “substance-prev”, the interaction term Action2 × “CFR-enter”, and the interaction term

Action1 × “civic-score”.

In terms of the analysis results for stage 1, both analyses reveal that “senior-prop”, “GDP”,

and “obesity-prev” are significant predictors, irrespective of the type of CI employed. However,

other covariates, including “substance-prev”, “care-score”, Action1, Action2 × “CFR-enter”,

and Action1 × “civic-score”, are not found to be significant from Analysis 2. Additionally,

Analysis 2 suggests opposite evidence for the significance of “popu-density” by the W-type

and DB CIs; this predictor is, however, found to be insignificant from Analysis 1.

Estimated Optimal Actions

Analyses 1 and 2 do not yield the same findings, demonstrating the significant influence of

including/excluding extreme values on the analysis results. These two analyses, however, do

reveal a common message that for countries characterized by high population density and low

government effectiveness scores, it is beneficial to prioritize facial covering policies over diag-

nostic testing and contact tracing policies for stage 2.
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Regarding the determination of estimated optimal actions for a country, we employ (3.8)

and (3.9) in conjunction with the estimates in Table 3.2. For illustrations, in Table 3.3 we

report the estimated optimal actions at stages 1 and 2 derived from both Analyses 1 and 2 for

some selected countries which reflect across-world diversity, including geographic location,

population size, governmental structure, and healthcare infrastructure.

Including or excluding extreme values may or may not change the estimated optimal ac-

tions, as shown in Table 3.3, which divides the reported countries into three groups according

to the differences in the results of Analyses 1 and 2. We comment that countries having the

same estimated optimal actions in Table 3.3 do not necessarily share the same descriptions for

the priority of policies because of their dependence on the estimates of the coefficients and

the values of the prescriptive variables in (3.8) and (3.9). As examples, here we particularly

examine several countries from the three groups.

In the first group with identical estimated optimal actions from the two analyses, consider

France as an example. For both stages 1 and 2, diagnostic testing and contact tracing policies

should take priority over facial covering policy, and health system policies should be prioritized

over containment and closure policies.

In the second group containing estimated optimal actions that differ in only one value from

the two analyses, we consider three countries: the United States, Canada, and the United King-

dom. For the United States, both Analyses 1 and 2 suggest that the facial covering policy

should take precedence over diagnostic testing and contact tracing policies during stage 1, and

the opposite prioritization is for stage 2. While both analyses reveal that for stage 1, health

system policies should be prioritized over containment and closure policies, the uncoverings

for stage 2 are different. Analysis 1 suggests prioritization of containment and closure policies

over health system policies, while Analysis 2 shows the opposite suggestion.

For Canada, both Analyses 1 and 2 recommend prioritizing diagnostic testing and contact

tracing policies over facial covering policies during stage 1. However, for stage 2, Analysis

1 suggests the opposite prioritization, while Analysis 2 recommends the same prioritization.

Furthermore, both Analyses 1 and 2 recommend prioritizing health system policies over con-

tainment and closure policies for both stages.

Concerning the United Kingdom, both Analyses 1 and 2 suggest prioritizing health system
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policies over containment and closure policies for both stages, and both analyses concur in

recommending the prioritization of facial covering policies over diagnostic testing and contact

tracing policies for stage 2. Regarding facial covering for stage 1, the two analyses make

different recommendations. Analysis 1 recommends to give priority to facial covering policies

over diagnostic testing and contact tracing policies, whereas Analysis 2 suggests the opposite

prioritization.

Finally, consider Israel in the third group which has two different values for the estimated

optimal actions from Analyses 1 and 2. Both analyses suggest that facial covering policy

should be prioritized over diagnostic testing and contact tracing policies for stage 2, and that

containment and closure policies should be prioritized over health system policies during stage

1. In terms of differences, Analysis 1 suggests that during stage 1, diagnostic testing and

contact tracing policies should be given priority over facial covering policy, and that during

stage 2, containment and closure policies should take precedence over health system policies.

Analysis 2 recommends the opposite prioritization for the two stages.

3.5 Sensitivity Analyses

Section 3.4.2 presents analyses of the data described in Section 3.4.1 by utilizing linear models

for the Q-functions with K set as 2, where the outcome variable is taken as the continuous

variable, log CFR. To help understand the associated uncertainty, we further conduct sensi-

tivity analyses for two scenarios. First, we assess the impact of the stage determination by

extending the two-stage setting in Section 3.4.2 to a three-stage setting (i.e., set K = 3), and

report the results in Section 3.5.1. Secondly, we evaluate the impact of different modeling of

the Q-functions and report the results in Section 3.5.2. Same as in Analyses 1 and 2, the DB

CIs are based on 1000 first-stage and 1000 second-stage bootstrap iterations.

3.5.1 Continuous Outcome with Three Stages

We now repeat Analyses 1 and 2 in Section 3.4.2 by differently dividing the study period into

three stages, where each stage spans two months instead of three months as in Section 3.4.2,

and we call them Analysis 3 (without extreme values and K = 3) and Analysis 4 (with extreme
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values and K = 3), respectively.

Table 3.4 presents the results in the same manner as for Table 3.2. Similar to those in

Section 3.4.2, including or excluding extreme values in the analysis does have a noticeable

impact on the results. These two analyses, however, do uncover some common findings, as

reported below.

For stage 3, both Analyses 3 and 4 indicate that “senior-prop”, “care-score”, and the interac-

tion term Action1 × “popu-density” are significant predictors. In terms of differences between

the two analyses, we find that the interaction term Action1 × “government-eff” is suggested to

be significant by Analysis 3 but not by Analysis 4.

Regarding the results for stage 2 with DB CI considered, both Analyses 3 and 4 find that

“senior-prop”, “GDP”, “obesity-prev”, and “care-score” are significant predictors. The two

analyses unveil different findings as well. “Substance-prev” and Action1 × “civic-score” are

identified as significant predictors by Analysis 3 but not by Analysis 4, whereas Action1 ×

“CFR-enter” is identified as significant by Analysis 4 but not by Analysis 3.

Finally, using the DB CIs, for stage 1, we see that both Analyses 3 and 4 suggest the

statistical significance for “senior-prop”, “GDP”, “obesity-prev”, and “care-score”, together

with the interaction term Action2 × “CFR-enter”. In terms of differences, Analysis 3 reveals

that “substance-prev” and the interaction term Action1 × “government-eff” are statistically

significant, yet Analysis 4 suggests the interaction term Action2 × “government-eff” to be

statistically significant.

3.5.2 Discrete Outcome with Nonlinear Q-Functions

To assess the effect of different modeling for the Q-functions, we employ a Negative Binomial

model with the logarithm link to analyze the data described in Section 3.4.1, for which the

outcome variable log CFR is now replaced by the cumulative number of COVID-19 deaths

measured at the end of stage 1 or 2. Let Tk denote the total number of COVID-19 cases at

stage k for a country, and take log Tk as the offset when modeling the Q-functions for k = 1, 2.

Specifically, we modify (3.6) and (3.7) by replacing their left-hand-side with log Q2(H2, A2) −

log T2 and log Q1(H1, A1) − log T1, respectively, where Qk(Hk, Ak) is defined as in (3.1) for
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k = 1, 2, with Yk representing the cumulative death number at stage k. We call the analysis for

the data with the extreme values excluded or included as Analysis 5 or 6.

Table 3.5 presents the results in the same manner as for Table 3.2. The statistical signifi-

cance of each predictor in stages 2 and 1 is assessed using the W-type CIs and DB CIs at the

significance level 5%, respectively. In what follows, we compare the results with those in Table

3.2.

First, we consider stage 2. It is evident that Analysis 1 and Analysis 5 both identify the

following covariates to be statistically significant: “senior-prop”, “substance-prev”, and “care-

score”, as well as the interaction terms Action2 × “CFR-enter”, Action1 × “government-eff”,

Action1 × “popu-density”, and Action1 × “civic-score”. These findings suggest that countries

characterized by a low government effectiveness score, a high population-weighted geometric

mean density, and a high civic and social participation score may wish to prioritize facial

covering policy over diagnostic testing and contact tracing policies. Countries with a high

CFR value at the start of stage 2 may be advised to accord higher precedence to health system

policies as opposed to containment and closure policies.

The comparison of Analysis 6 to Analysis 2 shows the commonly identified significant

predictors, including “senior-prop” and the interaction terms Action1 × “government-eff” and

Action1 × “popu-density”. These findings highlight that countries characterized by a low gov-

ernment effectiveness score and a high population-weighted geometric mean density may ben-

efit from prioritization of facial covering policy over diagnostic testing and contact tracing

policies.

Next, we compare the results for stage 1 using the DB CIs. Both Analyses 5 and 1 find

“senior-prop”, “GDP”, “obesity-prev”, “care-score”, Action1, and Action2 × “CFR-enter” to

be statistically significant. Therefore, countries characterized by a high CFR value at the start

of the stage may consider prioritizing health system policies over containment and closure

policies. Both Analyses 6 and 2 find “GDP” to be statistically significant.



59

3.6 Discussion

In this chapter, we use the Q-learning method to explore how different COVID-19 preven-

tive policies may be prioritized to lower the CFR. Our data analyses suggest that the strict-

ness of preventive policies be tailored to social- and government-related factors to lower CFR.

Country-level characteristics such as government effectiveness score, population weighted ge-

ometric mean density, and civic and social participation score interact with the preventive poli-

cies and hence are useful in determining the optimal actions. The determination of the optimal

actions also depends on the observed number of deaths at the baseline.

Although the current study provides insight into understanding the effectiveness of differ-

ent preventive policies, this research has limitations and some issues that warrant further study.

The choice of prescriptive variables for implementing the Q-learning method here is dictated

by the availability of data. In the analyses here, we consider two actions, Action1 and Action2,

defined in Section 3.4.1. It is noted that other action variables may be introduced to reflect

the availability of other mitigation measures and their combined effects. With different ac-

tions introduced, care needs to be taken to interpret the recommended actions, even though the

implementation of the Q-learning algorithm can be carried out in the same manner.

As the data size is small with only 175 countries taken as independent study units, we are

restricted to explore analyses with more flexible models. If a richer source of data becomes

available, it would be interesting to conduct additional in-depth analyses, such as, by including

separate actions for each type of policies as well as their interactions.

In our analysis, we take the data collected in the first three months as the baseline mea-

surements for running the Q-learning algorithm. Introducing baseline measurements intends

to differentiate different levels of severity of the outbreak for different countries, in addition to

assessing their effects on influencing countries to take active steps to curb the virus spread. It is

interesting to further evaluate how sensitive the analysis results would be if a shorter or longer

time than three months is used to reflect the baseline data.

Although the Q-learning method provides a convenient framework to study the effects of

country-specific policies, the validity of the method hinges on the feasibility of the associ-

ated assumptions. For example, the no unmeasured confounders (NUC) assumption is asso-
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ciated with Q-learning, which says that for k = 1, · · · ,K and j = 1, · · · , r, conditional on the

observed history Hk, the treatment Ak, j is independent of any future covariates or outcomes{
Ok+1, · · · ,OK ,Yk(Hk,Ak,Ok+1)

}
(Chakraborty and Moodie, 2013). Despite that we hope to let

Hk0 in (3.3) contain all confounding variables, it is cautioned that the violation of the NUC

assumption very likely yields erroneous parameter estimates, and thus, invalidating the de-

termination of the optimal actions. The stable unit treatment value assumption (SUTVA) is

another important assumption, which states that the potential outcome of a subject does not

depend on the treatment assigned to other subjects (Chakraborty and Moodie, 2013). Ensur-

ing the SUTVA to hold basically requires preventive measures in a country to not affect the

outcome in the neighboring countries. While the implementation of stringent border-closure,

travel restriction policies, and mandatory testing at international borders makes the assump-

tion fairly reasonable, departure from SUTVA can yield the identified optimal actions to be

suboptimal.

As Q-functions in (3.1) facilitate the stage-dependent conditional expected outcomes, given

the history of actions and associated covariates, it is natural to employ regression models to

characterize the Q-functions. While linear regression models are commonly used due to their

simplicity, such models yield biased results if the linearity assumption is not appropriate. In the

analysis in Section 3.4 we impose the log transformation to the outcome variable to help make

the linearity assumption approximately true. Alternatively, one may explore more flexible yet

more sophisticated models to describe the Q-functions, such as nonlinear models or deep neural

networks.

The analysis here tacitly treats each country as an independent study unit without consid-

ering possibly mutual influence in taking action to curb the virus spread, which is basically

driven by the lack of repeated measurements that can be collected independently. It is impor-

tant to recognize that the analysis results offer only an approximate picture about the truth by

incorporating country-specific characteristics but not inter-countries influential factors.
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Table 3.3: Estimated optimal actions for selected countries from Analyses 1 and 2 in Section
3.4.2. Bold entries for Analysis 2 indicate deviations from the corresponding outcomes from
Analysis 1

Analysis 1: without extreme values Analysis 2: with extreme values

Country

Action1 Action2 Action1 Action2

Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Âopt
1,1 Âopt

2,1 Âopt
1,2 Âopt

2,2 Âopt
1,1 Âopt

2,1 Âopt
1,2 Âopt

2,2

Ghana 1 1 1 0 1 1 1 0
India 0 1 0 0 0 1 0 0
Belgium 0 0 0 0 0 0 0 0
France 0 0 0 0 0 0 0 0
Argentina 0 0 0 0 0 0 0 0

Cameroon 1 1 0 0 0 1 0 0
Senegal 0 1 1 0 0 0 1 0
Bangladesh 1 1 1 0 1 1 0 0
Canada 0 1 0 0 0 0 0 0
Denmark 0 0 1 1 1 0 1 1
South Korea 0 1 1 0 1 1 1 0
United Kingdom 1 1 0 0 0 1 0 0
United Arab Emirates 0 0 1 1 1 0 1 1
United States 1 0 0 1 1 0 0 0
Philippines 1 1 0 0 0 1 0 0
Brazil 1 1 0 0 0 1 0 0
Norway 0 0 1 1 1 0 1 1

Germany 0 1 1 0 1 0 1 0
Israel 0 1 1 1 1 1 1 0
Oman 1 0 0 1 1 1 1 1
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Chapter 4

Accommodating Misclassification Effects

on Optimizing Dynamic Treatment

Regimes with Q-Learning

4.1 Introduction

While both direct and indirect modeling strategies have been broadly employed in the area

of personalized medicine, those methods are vulnerable to the violation of the critical condi-

tion that variables must be precisely measured. This assumption is, however, often not true in

the applications, as discussed extensively in the literature, including monographs Carroll et al.

(2006), Yi (2017), Yi et al. (2021), and the references therein. Mismeasurement or measure-

ment error is commonly encountered in applications.

Although extensive research has been conducted for regression models with mismeasured

variables, there has been limited work on DTRs with error-contaminated data, except for

Spicker and Wallace (2020) who investigated the consequences of ignoring covariate measure-

ment error in the context of DTRs. In this chapter, we consider the problem of misclassification

in binary covariates with Q-learning.

To highlight the idea, we consider settings where a binary variable is subject to misclassi-

fication. This research is partially motivated by the nature of data arising from a multi-level

67
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randomized controlled study of human major depressive disorder (MDD) (Chakraborty et al.,

2013), which was designed to evaluate the effectiveness of different treatment regimes on MDD

that had 4 levels. In each level, patients were treated by one or a combination of different

treatment options for depression. Severity of depression was evaluated using the clinician-

rated and self-report versions of the Quick Inventory of Depressive Symptomatology (QIDS)

scores. Receipt of a specific treatment option at levels 2, 3, and 4 was driven by the doctor’s

recommendation as well as the patient’s opinion, reflected by the variable termed patient’s

preference to switch or augment his/her previous treatment option. However, it is difficult to

precisely record the true value of this variable because of its dependence on the doctor’s ex-

perience, the level of the patient’s trust in the doctor’s recommendation, the effectiveness of

the communication between the doctor and the patient, and the patient’s own knowledge, etc.

Challenges in measuring patient’s preference in medical contexts have been previously dis-

cussed (e.g., Mühlbacher et al., 2016; Soekhai et al., 2019; Janssens et al., 2019). While it is of

common interest to develop optimal DTR for patients with MDD (Chakraborty and Moodie,

2013; Chakraborty et al., 2013), ignoring misclassification feature in patient’s preference may

yield seriously biased results in determining the optimal treatment.

Research about misclassification effects has been studied for various settings, including re-

gression analysis models (e.g., Akazawa et al., 1998; Küchenhoff et al., 2006), survival analysis

(e.g., Bang et al., 2013; Yi et al., 2018; Zucker and Spiegelman, 2004), and causal inference

(e.g., Greenland, 1988; Kleinbaum et al., 1991; Rothman and Greenland, 1998). However,

there has been little work on estimating optimal treatment regimes in the presence of covariate

misclassification. Correcting misclassification effects can be more complicated than available

work due to the stage interconnectivity in Q-learning.

In this chapter, we investigate how Q-learning may be impacted by misclassified variables

in randomized treatment settings, and we present two procedures to ameliorate the bias in-

duced by covariate misclassification. Our research differs from Spicker and Wallace (2020)

who considered continuous covariates subject to measurement error in DTRs. While the goal

of studying the mismeasurement effects is the same for both error-prone continuous covariates

and misclassification-contaminated binary covariates, the inherent differences between contin-

uous and discrete variables make the technical development distinct. Capitalizing on the unique
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feature of binary variables, we develop a new method based on using estimating function the-

ory to account for the misclassification effects, in addition to exploring the use of regression

calibration explored by Spicker and Wallace (2020) within the dWOLS framework. The for-

mer method has the appeal of yielding consistent estimators for parameters involved with the

last stage model, yet the latter approach does not possess this property. Unlike that Spicker

and Wallace (2020) considered the setting with instrumental data, we examine instances in the

presence of validation data to characterize the misclassification process.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the

setting with covariate misclassification and conduct simulation studies to demonstrate misclas-

sification effects on Q-learning. In Sections 4.3 and 4.4, we present two correction methods

for debiasing misclassification effects. In Section 4.5, we apply the procedures described in

Sections 4.3 and 4.4 to simulated data as well as real data. In Section 4.6, we provide some

concluding remarks.

4.2 Misclassification and Naive Analysis

4.2.1 Misclassification and Assumptions

The validity of the Q-learning procedure hinges on the requirement of precisely measured

variables as well as the associated conditions such as the SUTVA and the NUC assumption.

The SUTVA posits that an individual’s outcome is unaffected by the treatment allocation for

other individuals, and the NUC assumption says that for k = 1, · · · ,K, conditional on the

observed history
{
Ak−1, Xk,Zk

}
, the treatment Ak is independent of any future covariates or

outcomes
{
Xk+1, · · · , XK; Zk+1, · · · ,ZK; Yk

}
(Chakraborty and Moodie, 2013). In the presence

of error-contaminated data, directly applying the Q-learning algorithm to the observed data,

called the naive method, may yield seriously biased results.

To demonstrate this, we consider a simple but illustrative case with only the binary covariate

Xk subject to misclassification and other variables being precisely measured. For k = 1, · · · ,K,

let X∗k denote the observed version of the true covariate Xk, and let X
∗

k =
{
X∗1, · · · , X

∗
k

}
. While

the SUTVA may not be affected by the presence of error-prone covariates, the NUC assump-



70

tion does not necessarily hold for the observed surrogate measurements. That is, conditional on{
Ak−1, X

∗

k,Zk
}
, Ak is not necessarily independent of future variables

{
X∗k+1, · · · , X

∗
K; Zk+1, · · · ,ZK;

Yk
}
. Consequently, the naive method may yield biased results.

In the presence of X∗k , inference about the relationship between
{
Yk : k = 1, · · · ,K

}
and{{

Ak, Xk+1,Zk+1
}

: k = 1, · · · ,K
}
, described by (1.5), becomes more complicated, as it roots in

the joint distribution for
{
Yk : k = 1, · · · ,K

}
and

{{
Ak, Xk,Zk, X∗k

}
: k = 1, · · · ,K

}
, which is

proportional to

{ K∏
k=1

h(Yk | Yk−1, AK , XK ,ZK , X
∗

K)
}
h(X

∗

K , XK , AK ,ZK)

∝
{ K∏

k=1

h(Yk | Yk−1, AK , XK ,ZK , X
∗

K)
}
·
{ K∏

k=1

h(X∗k | X
∗

k−1, XK , AK ,ZK)
} (4.1)

with X
∗

0 being null, where h(Y1 | AK , XK ,ZK , X
∗

K) and h(X∗1 | XK , AK ,ZK) are omitted. In (4.1),

Yk−1 =
{
Y1, · · · ,Yk−1

}
for k = 1, · · · ,K with Y0 being null; h(· | ·) represents the conditional

probability density or mass function for the random variables indicated by the corresponding

arguments. Here for ease of exposition, we use upper case letters to represent both random

variables and their realized values.

To link (4.1) to the framework (1.4) together with (1.5), we assume that for k = K, · · · , 1,

h(Yk | Yk−1, AK , XK ,ZK , X
∗

K) = h(Yk | Ak, Xk+1,Zk+1), (4.2)

which says that at each stage k, the conditional distribution of Yk, given the history of outcomes

Yk−1 and the information AK ∪ XK ∪ ZK ∪ X
∗

K for the entire course, depends only on the his-

tory Ak ∪ Xk ∪ Zk at stage k as well as the covariates Xk+1 and Zk+1 at the next stage. This

assumption is in line with that for the Q-learning method in the misclassification-free context,

and it allows us to use the framework (1.5) to study stage-dependent outcome characterized by

(1.3). Assumption (4.2) implies that the surrogates X
∗

K carry no additional information for con-

ducting inference about the response Yk if the true covariates Xk are given. This independence

assumption is similar to the nondifferential misclassification mechanism (Yi, 2017, p.50) that

is commonly made in the literature of measurement error models with a univariate outcome. It
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allows us to conduct inference about the true variables using their surrogate measurements.

4.2.2 Naive Q-Learning Procedure

In the circumstances where the true value of Xk is not observed but only its surrogate value X∗k is

available, it is tempting to still use the naive method by simply repeating the implementation of

the Q-learning procedure in Section (1.2.2) with the feature of misclassification in Xk ignored,

i.e., replacing Xk with X∗k . In doing so, we may respectively define the naive Q-functions for

stages K and k with k = K − 1, · · · , 1 as

Q∗K(AK , X
∗

K ,ZK) = E(YK | AK , X
∗

K ,ZK);

Q∗k(Ak, X
∗

k,Zk) = E
{
Ŷ∗k | Ak, X

∗

k,Zk
}
;

where Ŷ∗k ≜ Yk + max
ak+1

Q∗k+1(Ak, X
∗

k+1,Zk+1, ak+1) is taken as a naive pseudo-outcome at stage

k. Then we may naively use a counterpart regression model of (1.9) to characterize the

Q∗k(Ak, X
∗

k,Zk) as:

Q∗k(Ak, X
∗

k,Zk) = β∗k
TH∗k0 + (ψ∗k

TH∗k1)Ak for k = K, · · · , 1, (4.3)

where H∗k0 and H∗k1 are, respectively, the counterparts of Hk0 and Hk1 with Xk replaced by X∗k ,

and θ∗k ≜ (β∗Tk , ψ
∗T
k )T is the vector of the associated regression coefficients which may differ

from θk in model (1.9).

Consequently, the naive Q-learning algorithm may now be carried out to the observed data,

D∗ ≜
{{

Aki, X∗ki,Zki,Yki
}

: k = 1, · · · ,K; i = 1, · · · , n
}
, which differs from D in Section (1.2.2)

in the availability of Xki, where X∗ki is the observed version of Xk for subject i. First, regression

coefficients for each stage are estimated backward by

θ̂∗k = arg min
θ∗k

1
n

n∑
i=1

[
Ŷ∗ki − Q∗k(Aki, X

∗

ki,Zki; θ∗k)
]2

for k = K, · · · , 1, where Ŷ∗Ki = YKi; and for k = K − 1, · · · , 1, Ŷ∗ki = Yki +max
ak+1

Q∗k+1(Aki, X
∗

(k+1)i,

Z(k+1)i, ak+1; θ̂∗k+1). Then using the naive estimates, we estimate the optimal treatment naively
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by

d̂∗k = arg max
ak

Q∗k(Ak−1, X
∗

k,Zk, ak; θ̂∗k) for k = K, · · · , 1,

where Q∗k(Ak−1, X
∗

k,Zk, ak; θ̂∗k) is determined by (4.3) with θ∗k replaced by θ̂∗k.

4.2.3 Simulation Studies

Here we conduct numerical studies to illustrate the misclassification effects on determining

optimal DTR under a randomized treatment setting, where we set K = 2.

First, the binary treatments A1 and A2 are generated independently from the Bernoulli

distribution, Bernoulli(0.5). Error-free covariates Z1 and Z2 are independently generated by

Z1 ∼ Bernoulli(0.5) and Z2 ∼ Bernoulli(0.5). Error-prone binary covariate X1 is independently

generated by X1 ∼ Bernoulli(0.5), and error-prone binary covariate X2 is generated from the

conditional distribution X2 | A1,Z1 ∼ Bernoulli
( exp(δ1A1+δ2Z1)

1+exp(δ1A1+δ2Z1)

)
, where δ1 = δ2 = 0.01.

The responses Y2 and Y1 are respectively generated from

Y2 = µ2 + ϵ2 and Y1 = µ1 + ϵ1, (4.4)

where

µ2 = η0 + η1Z2 + η2A1 + η3A2 + η4X2A2 + η5A1A2,

µ1 = γ0 + γ1Z1 + γ2X1 + γ3A1 + γ4X1A1,

and ϵ2 and ϵ1 are independently generated from N(0, 1).

We consider three parameter settings to reflect possible occurrence of non-regular and weak

non-regular issues, in addition to a regular case. If the issues noted at the end of Section 1.2.2

are present, the occurrence of non-regularity or weak non-regularity is pertinent to the deter-

mination of the optimal treatment for the second stage, given the setup considered here. With

reference to the present generative model µ2, the optimal treatment determination in the second

stage hinges on the coefficient of A2, i.e., the linear combination η3 + η4X2 + η5A1. Depending

on the values of X2 and A1, the linear combination assumes a value of η3 + η4 + η5, η3 + η4,
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η3 + η5, and η3, each with a positive probability. Therefore, setting different values of the co-

efficients
{
η3, η4, η5

}
in the model for µ2, we enable the linear combination η3 + η4X2 + η5A1 to

take on value 0 or a value near zero with positive probabilities, thus leading to non-regularity

or weak non-regularity issues. Specifically, we consider the following settings. Setting 1 sets

(η0, η1, η2, η3, η4, η5)T = (0, 0, 0.85, 4,−5, 0.05)T, with (γ0, γ1, γ2, γ3, γ4)T = (0, 0, 0,−1, 0.8)T;

Setting 2 takes (η0, η1, η2, η3, η4, η5)T = (1.5, 0.8, 0.3,−2, 2.3, 0.5)T, with (γ0, γ1, γ2, γ3, γ4)T =

(0.5, 0.5,−0.75,−1.8, 1.4)T; and Setting 3 specifies (η0, η1, η2, η3, η4, η5)T = (1.5, 0.8, 0.3,−2, 2,

1)T, with (γ0, γ1, γ2, γ3, γ4)T = (0.5, 0.5,−0.75,−1.8, 1.4)T. Setting 1 ensures η3 + η4X2 +

η5A1 , 0, with a positive probability, yielding a regular setting. In contrast, in Setting 3,

η3 + η4X2 + η5A1 = 0 with a positive probability, rendering it a non-regular scenario; and in

Setting 2, η3 + η4X2 + η5A1 assumes values relatively close to zero with a non-negligible prob-

ability, showing a weak non-regular scenario. We refer to Settings 1-3 as “regular”, “weak

non-regular”, and “non-regular”, respectively.

When employing the Q-learning procedure in Section 1.2.2, model (1.9) is now specified

as

Q2(X2,Z2, A2) = β02 + β12Z2 + β22A1 + (ψ02 + ψ12X2 + ψ22A1)A2, (4.5)

and

Q1(X1,Z1, A1) = β01 + β11Z1 + β21X1 + (ψ01 + ψ11X1)A1, (4.6)

where βk2, βk1, and ψk2 are regression parameters for k = 0, 1, 2, together with ψk1 for k = 0, 1.

The optimal DTR is given by the decision rules:

d2 = sign(ψ02 + ψ12X2 + ψ22A1); d1 = sign(ψ01 + ψ11X1), (4.7)

where sign(t) = 1 if t > 0, and 0 otherwise.

Next, we consider misclassification probabilities. To simplify the exposition of the devel-
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opment, assume that

h(X∗k | X
∗

k−1, AK , XK ,ZK) = h(X∗k | Xk) for k = 1, · · · ,K,

which enables us to directly use a common misclassification matrix, say,

Π =

1 − π10 π01

π10 1 − π01

 (4.8)

to facilitate the misclassification degree for different stages with k = 1, · · · ,K, where π jl =

P(X∗k = j | Xk = l) for j = 0, 1, and l = 1 − j. This misclassification is commonly con-

sidered in applications (e.g., Yi, 2017; Yi et al., 2018; Akazawa et al., 1998). We use the

misclass function provided in the simex package in R to generate surrogate values X∗k of Xk

with k = 1, 2. We consider eight settings for misclassification probabilities, with (π10, π01)T =

(0, 0.15)T, (0, 0.3)T, (0.15, 0)T, (0.15, 0.15)T, (0.15, 0.3)T, (0.3, 0)T, (0.3, 0.15)T, or (0.3, 0.3)T.

To run simulations, we use the proceeding models to generate data of size n = 1000, and

we repeat 1000 simulations for each parameter configuration. We implement the Q-learning

algorithm in Section 4.2.2 to the observed data {Z1, X∗1, A1,Y1,Z2, X∗2, A2,Y2}, called the “naive

method”, as opposed to the Q-learning procedure in Section 1.2.2 to the true measurements

{Z1, X1, A1,Y1,Z2, X2, A2,Y2}, called the “error-free least squares” (EFLS) method.

To evaluate the impacts of misclassification on stage 1 parameter estimation, we define the

true values of the population-level parameters in θ1 = (β01, β11, β21, ψ01, ψ11)T for the first stage

Q-function (4.6) as

arg min
θ1

E
[{

Y1 +max
a2

Q2(A1, X2,Z2, a2; θ2) − Q1(X1,Z1, A1; θ1)
}2
]
, (4.9)

with θ2 = (β02, β12, β22, ψ02, ψ12, ψ22)T in (4.5) kept as the true values for data generation, where

the expectation is taken with respect to the distribution of {Z1, X1, A1,Y1,Z2, X2} (Laber et al.,
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2014). In particular, by (1.5) and (4.4), at the end stage (i.e., stage 2),

Q2(X2,Z2, A2) = E(Y2 | X2,Z2, A2)

= E(µ2 + ϵ | X2,Z2, A2)

= µ2,

showing that the true value of θ2 equals that of (η0, η1, η2, η3, η4, η5)T, specified for each of

Settings 1-3 described in Section 4.2.3. Solutions to (4.9) can then be obtained using numerical

methods, which allow us to calculate the bias, MSE, and CR estimators for the first stage Q-

function parameters described below.

In Tables 4.1-4.2, we report the estimation results for the parameters in the stage 1 model

(4.6) and stage 2 model (4.5), respectively. In the tables, “Bias” stands for the difference

between the true parameter values and the average of their estimates over 1000 simulations

obtained from the EFLS or naive methods, with the true parameter values for the stage 1

model (4.6) determined by (4.9), and with the true parameter values for the stage 2 model

(4.5) set as those used in generating data in Section 4.2.3; “SE” represents the average of

model-based standard errors (i.e., the standard errors of the least squares parameter estimators

over 1000 simulations); “ESE” shows the empirical standard error of the estimates, calculated

by
√

1
999

∑1000
k=1 (Est.k − Est.)2 with Est.k representing the estimate for the kth simulation and

Est. = 1000−1 ∑1000
k=1 Est.k; “MSE” displays the mean squared error of the estimates given by

Bias2 + SE2; “WTCR” represents the CR of 95% W-type CIs with the model-based standard

errors used; “PBCR” represents the CR of 95% PB CIs; and “DBCR” represents the CR of

95% DB CIs. The PB CIs are created based on 1000 bootstrap iterations, and the DB CIs are

derived from using 1000 first-stage and 100 second-stage bootstrap iterations, with a reduced

number of iterations for the second stage to ease the computational burden.

The results in Table 4.1 suggest that the EFLS method performs well under the regular

setting, with small finite sample biases and MSEs as well as reasonable CRs of 95% CIs for

both stages 1 and 2; however, under the weak non-regular and non-regular settings, the stage

1 parameter estimates obtained from the EFLS method may incur large biases and poor CRs,

except for those derived from double bootstrapping. The W-type CIs (not reported here) incur
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severe under-coverage for weak non-regular and non-regular settings.

The results demonstrate the poor performance of the naive method for both stages, reflected

by those considerable biases, high MSEs, and unacceptably low CRs. Notably, the induced bias

from the covariate misclassification intensifies as the misclassification probabilities increase,

and the estimates associated with misclassified covariates suffer a greater impact than those

for error-free covariates. These findings emphasize the importance of addressing misclassifi-

cation effects and developing appropriate correction methods to enhance the accuracy of the

estimations.

4.3 Addressing Misclassification Effects: Regression Calibra-

tion

Section 4.2.3 demonstrates numerically that in the presence of misclassification, biased results

can be produced if the Q-learning procedure is naively implemented with misclassification

effects ignored. In this and the next sections, we explore two methods to mitigate the bias due

to misclassification in covariates. The goal is basically to optimize the treatment allocation by

addressing the misclassification effects on estimating regression coefficients in Q-function at

each stage.

We first describe the calibrated Q-learning algorithm by applying the regression calibration

method which was initiated by Prentice (1982) for survival analysis with mismeasurement in

covariates, where the nondifferential measurement error mechanism is assumed. The basic

idea is to employ the usual Q-learning algorithm in Section 1.2.2 with the unobserved true

measurement Xk replaced by its conditional expectation, given its surrogate and other variables.

With the observed data D∗, let X∗∗ki = E(Xki | A(k−1)i, X
∗

ki,Zki) for k = 1, · · · ,K. The cali-

brated Q-learning algorithm consists of the following two steps:

Step 1: Repeat the Q-learning algorithm described in Section 1.2.2, with Xki replaced by X∗∗ki or

its estimate to obtain point estimates of the regression parameters for each stage.

Step 2: Implement the bootstrap method to obtain standard errors associated with the estimates

of the parameters for each stage.
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The implementation of the calibrated Q-learning algorithm requires the determination of

X∗∗ki for i = 1, · · · , n, which essentially roots in the delineation of the conditional probabili-

ties P(Xki = 1 | A(k−1)i, X
∗

ki,Zki) for k = 1, · · · ,K. A parametric model, such as the logistic

regression model, may be employed for this purpose. To be specific, let π(k)
i = P(Xki = 1 |

A(k−1)i, X
∗

ki,Zki), and we consider the regression model

logit π(k)
i = mk(A(k−1)i, X

∗

ki,Zki; ζk) for k = 1, · · · ,K, (4.10)

where mk(·) is a specified function, and ζk is the associated parameter vector.

With the availability of internal validation data, denoted DV =
{{

Aki, Xki, X∗ki,Zki,Yki
}

: k =

1, · · · ,K; i ∈ V
}
, in addition to the main study data, D∗, where V is a subset of M ≜

{1, · · · , n}, we may apply the validation data DV to model (4.10) to obtain estimates, denoted

ζ̂k, of the model parameter ζk, and hence, obtaining the estimate, denoted X̂∗∗ki , of X∗∗ki for

i ∈ M \V. In this case, the implementation of the calibrated Q-learning algorithm can be

modified using the measurements of Xki for i ∈ V as well as X̂∗∗ki for i ∈ M \V.

Let θ̂kRC = (β̂T
kRC, ψ̂

T
kRC)T denote the resulting estimate of θk for k = 1, · · · ,K. Consequently,

for k = K, · · · , 1, the optimal treatment is determined by modifying (1.12) with θ̂k replaced by

θ̂kRC for subject i ∈ V, and by,

d̂kRC = arg max
ak

QkRC(ak; θ̂kRC) (4.11)

for subject i ∈ M \V, where QkRC(ak; θ) is defined to be Qk(Ak−1, Xk,Zk, ak; θ) in (1.12) with

Xk replaced by X̂∗∗ki for i ∈ M \V.

In the case where no additional data are available to quantify misclassification degrees or to

estimate the parameter ζk in model (4.10), we often invoke sensitivity analyses to evaluate the

impact of misclassification on the Q-learning outcome. Basically, we consider a set of possibly

representative values specified for ζk; then use model (4.10) to estimate X∗∗ki for i = 1, · · · , n;

finally, we repeat the calibrated Q-learning algorithm to assess how the results may change

relative to differently specified misclassification scenarios. Such a study helps us understand

the sensitivity of the Q-learning results to the different misclassification degrees.
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4.4 Addressing Misclassification Effects: Estimating Equa-

tion Approach

Examining the least squares method for (1.10) from the estimation equation perspective, here

we develop an estimation equation approach to address misclassification effects. In line with

the backward procedure of Q-learning, we proceed with the development stage by stage back-

ward from stage K to stage 1, where the formulation for stage K is separated from that for

stage k with k = K −1, · · · , 1, reflecting the differences between the observed outcome at stage

K and unobserved pseudo-outcomes for other stages. The following two sections differ in the

treatment of the misclassification probabilities in (4.8).

4.4.1 Corrected Estimation Functions with Known Misclassification Prob-

abilities

To highlight the idea, we start with the case where the misclassification probabilities are known.

In what follows, we first describe estimation for stage K where the outcome measurements{
YKi : i = 1, · · · , n

}
are used, and then describe estimation for stage k with k = K − 1, · · · , 1

where pseudo-outcomes in (1.11) are used with modifications to accommodate misclassifica-

tion effects.

Estimation Related to Stage K

For stage K, set ℓKi =
{
YKi − QK(AKi, XKi,ZKi; θK)

}2, where QK(AKi, XKi,ZKi; θK) is determined

by (1.9) with the dependence on parameter θK spelled out. Define

S K(θK; YKi, AKi, XKi,ZKi) =
(
∂ℓKi

∂βT
K

,
∂ℓKi

∂ψT
K

)T

≜
(
S T

Kβ(θK; YKi, AKi, XKi,ZKi), S T
Kψ(θK; YKi, AKi, XKi,ZKi)

)T
,

where

S Kβ(θK; YKi, AKi, XKi,ZKi) =
{
YKi − QK(AKi, XKi,ZKi; θK)

}∂QK(AKi, XKi,ZKi; θK)
∂βK

(4.12)
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and

S Kψ(θK; YKi, AKi, XKi,ZKi) =
{
YKi − QK(AKi, XKi,ZKi; θK)

}∂QK(AKi, XKi,ZKi; θK)
∂ψK

. (4.13)

By (1.5) and (1.9), it is readily seen that S Kβ(θK; YKi, AKi, XKi,ZKi) and S Kψ(θK; YKi, AKi, XKi,

ZKi) are unbiased estimating functions, that is, their expectations are zero. Therefore, solving

the estimating equations

n∑
i=1

S K(θK; YKi, AKi, XKi,ZKi) = 0 (4.14)

for θK yields consistent estimator of θK , provided regularity conditions. Here and elsewhere, 0

is used to represent a vector, a matrix, or a real-valued zero without differentiation.

While a consistent estimator of θK can be obtained using (4.14), the applicability of (4.14)

relies on the availability of precise measurements for Xki with k = 1, · · · ,K and i = 1, · · · , n.

When measurements of Xki are unavailable but surrogates X∗ki are collected, i.e., in the absence

of D, we cannot apply (4.14) to the observed data D∗ with Xki replaced by X∗ki; otherwise,

incorrect results may be produced.

To address the misclassification effects induced by X∗ki, we construct an unbiased estimating

function, say S Kc(θK; YKi, AKi, X
∗

Ki,ZKi), using the observed surrogates X∗ki together with other

observed variables. The main idea is to find S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) such that its condi-

tional expectation recovers the original unbiased estimating function S K(θK; yKi, AKi, XKi,ZKi)

in (4.14). That is, as long as

E{S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) | YKi, AKi, XKi,ZKi} = S K(θK; YKi, AKi, XKi,ZKi), (4.15)

solving
n∑

i=1

S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) = 0

for θK produces a consistent estimator for θK , under certain regularity conditions (Yi, 2017,

Section 2.5).
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By the linear regression model (1.9):

QK(AKi, XKi,ZKi; θK) = βT
KHK0 + (ψT

KHK1)AK ,

we simplify (4.12) and (4.13) to be

S Kβ(θK; YKi, AKi, XKi,ZKi) =
{
YKi − QK(AKi, XKi,ZKi; θK)

}
HK0 (4.16)

and

S Kψ(θK; YKi, AKi, XKi,ZKi) =
{
YKi − QK(AKi, XKi,ZKi; θK)

}
HK1AK . (4.17)

Because XKi is a binary variable taking value 0 or 1, any polynomials of XKi equals XKi itself,

thus, the dependence of (4.16) and (4.17) on Xki is merely reflected by Xki.

To find S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) to meet (4.15), it suffices to find functions of X∗ki, say

U(X∗ki), which may also involve model parameters, such that

E
{
U(X∗ki) | YKi, AKi, XKi,ZKi

}
= Xki for k = K, · · · , 1. (4.18)

It is easily shown that setting

U(X∗ki) =
X∗ki − πk10

1 − πk10 − πk01
(4.19)

makes (4.18) hold (Yi, 2017, Problem 2.10). Consequently, S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) in (4.15)

can be defined as S K(θK; YKi, AKi, XKi,ZKi) with Xki replaced by U(X∗ki).

Consequently, with the observed dataD∗, we solve

n∑
i=1

S Kc(θK; YKi, AKi, X
∗

Ki,ZKi) = 0 (4.20)

for θK , and let θ̂Kc = (β̂T
Kc, ψ̂

T
Kc)

T denote the resultant estimator of θK . Under regularity condi-

tions (Yi, 2017, Section 1.3),

√
n
(
θ̂Kc − θK

) d
−−→ N

(
0,Σ(θK)

)
as n→ ∞, (4.21)
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where Σ(θK) =
{
I(θK)

}−1
J(θK)

{
I(θK)

}−1T
, with

I(θK) = E
{∂S Kc(θK; YK , AK , X

∗

K ,ZK)
∂θK

}
and

J(θK) = E
[
S Kc(θK; YK , AK , X

∗

K ,ZK)
{
S Kc(θK; YK , AK , X

∗

K ,ZK)
}T

]
.

Estimation Related to Stage k < K

First, we consider (1.10) for k = K−1, · · · , 1 for the error-free setting. Similar to the definitions

of ℓKi and S K(θK; YKi, AKi, XKi,ZKi) introduced earlier, let

ℓ̂ki =
{
Ŷki − Qk(Aki, Xki,Zki; θk)

}2

and

Ŝ k(θk; Ŷki, Aki, Xki,Zki) =
(
∂ℓ̂ki

∂βT
k

,
∂ℓ̂ki

∂ψT
k

)T

,

where Ŷki is the stage k pseudo-outcome for subject i, given by (1.11). For k = K − 1, · · · , 1,

finding the minimizer in (1.10) may be alternatively viewed as solving the equation

n∑
i=1

Ŝ k(θk; Ŷki, Aki, Xki,Zki) = 0 (4.22)

for θk.

The implementation of (4.22) requires the availability of precise measurements for Xki for

k = 1, · · · ,K − 1 and i = 1, · · · , n. However, precise measurements in D are unavailable,

and we have only the surrogate dataset D∗. Then similar to the consideration for stage K, we

modify the function Ŝ k(θk; Ŷki, Aki, Xki,Zki) in (4.22) by replacing Xki with U(X∗ki) in (4.18), and

let Ŝ kc(θk; Ŷ∗ki, Aki, X
∗

ki,Zki) denote the resulting function, where the inclusion of symbols Ŷ∗ki and

X∗ki in the function Ŝ kc(θk; Ŷ∗ki, Aki, X
∗

ki,Zki) stresses its involvement of the observed surrogate

measurements X∗ki, with Ŷ∗ki defined by (1.11) with Xki replaced by X∗ki. Then for k = K −
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1, · · · , 1, we solve
n∑

i=1

Ŝ kc(θk; Ŷ∗ki, Aki, X
∗

ki,Zki) = 0 (4.23)

for θk, and let θ̂kc = (β̂T
kc, ψ̂

T
kc)

T denote the resulting estimator of θk.

Consequently, with estimators θ̂Kc and θ̂kc for k = K − 1, · · · , 1, the optimal treatment is

estimated by modifying (1.12) with θ̂k replaced by θ̂kc and Xk replaced by U(X∗k ), i.e.,

d̂kc = arg max
ak

Qkc(Ak−1, X
∗

k,Zk, ak; θ̂kc) for k = K, · · · , 1, (4.24)

where Qkc(Ak−1, X
∗

k,Zk, ak; θ) is identical to Qk(Ak−1, Xk,Zk, ak; θ) defined in (1.12) except that

Xk is replaced by U(X∗k ).

We conclude this subsection with a comment. In contrast to the consistency of θ̂Kc indi-

cated by (4.21), θ̂kc derived from (4.23) is not necessarily consistent for θkc for k = K−1, · · · , 1,

because the modified estimation function Ŝ kc(θk; Ŷ∗ki, Aki, X
∗

ki,Zki) in (4.23) is not necessarily un-

biased. In fact, it is difficult to find an unbiased estimating function for θk if k < K due to the

lack of an analytic form of the associated pseudo-outcome Ŷki or Ŷ∗ki. By the similarity in form-

ing (4.23) to that of (4.20), we anticipate implementing (4.23) would yield better estimation

results than directly using (4.22) with Xki replaced by X∗ki.

4.4.2 Corrected Estimation Functions with Unknown Misclassification

Probabilities

In some applications, the misclassification probabilities are unknown and need to be estimated

from an additional data source, such as a validation sample. In this subsection, we modify the

method in Section 4.4.1 to incorporate this feature. Consider the main study sample, D∗, and

the internal validation subsample DV described in Section 4.3, where V contain m subjects

with m ≤ n.
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Estimation of Misclassification Probabilities

For i ∈ M and k = 1, · · · ,K, let

πki01 = P(X∗ki = 0 | Xki = 1, A(k−1)i ∪ X(k−1)i ∪ Zki)

and

πki10 = P(X∗ki = 1 | Xki = 0, A(k−1)i ∪ X(k−1)i ∪ Zki)

be the misclassification probabilities for the error-prone binary covariate Xki, which may de-

pend on the error-free covariates in A(k−1)i ∪ X(k−1)i ∪ Zki.

To describe the dependence of misclassification probabilities on the covariates, we consider

the logistic regression models

logit πki10 = α
T
k0Wki0;

logit πki01 = α
T
k1Wki1,

(4.25)

where αkl denotes the vector of regression coefficients andWkil may include 1 and a subset of

covariates
{
Xki = l, A(k−1)i ∪ X(k−1)i ∪ Zki

}
that reflects different misclassification mechanisms

for l = 0, 1. Having 1 in Wkil allows the inclusion of the intercept in (4.25), and Wkil may

contain the entire covariate vector {Xki = l, A(k−1)i ∪ X(k−1)i ∪ Zki} or just constant 1 alone,

where the latter case corresponds to homogeneous misclassification across all subjects. Let

αk = (αT
k0, α

T
k1)T denote the parameter vector for k = 1, · · · ,K.

For i = 1, · · · , n and k = 1, · · · ,K, let

Lki(αk) = P(X∗ki = x∗ki | Xki = xki, A(k−1)i ∪ X(k−1)i ∪ Zki),

which equals
{
π

x∗ki
ki10(1 − πki10)1−x∗ki

}1−xki ·
{
π

1−x∗ki
ki01 (1 − πki01)x∗ki

}xki for xki, x∗ki = 0, 1. Let α =

(αT
1 , · · · , α

T
K)T and ϑ = (βT

K , ψ
T
K , α

T)T. Let S ki(αk) = ∂ log Lki(αk)/∂αk and let

S i(α) =
(
S T

1i(α1), · · · , S T
Ki(αK)

)T
.
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With internal validation data, solving

∑
i∈V

S i(α) = 0

for α yields the maximum likelihood estimate, denoted α̂ = (α̂T
1 , · · · , α̂

T
K)T, of α.

Estimation for the Parameters of Q-Functions

For stage K, we estimate θK by solving

∑
i∈M\V

S Kci(θK , α̂) +
∑
i∈V

S Ki(θK) = 0

for θK , and let θ̂K denote the resultant estimator of θK , where with the dependence on the out-

come and covariates suppressed in the notation for simplicity, S Kci(θK , α) is S Kc(θK; YKi, AKi, X
∗

Ki,

ZKi) in (4.20) with the dependence on α spelled out, and S Ki(θK) is S K(θK; YKi, AKi, XKi,ZKi) in

(4.14).

Let ϑ̂ = (θ̂T
K , α̂

T)T. Adapting the proof of Yi et al. (2018), we show the following theorem.

Theorem 4.4.1 Under regularity conditions and that the ratio m/n approaches a positive con-

stant, say ρ, as n→ ∞, the following results hold:

(a). ϑ̂ is a consistent estimator of ϑ;

(b).
√

n(ϑ̂ − ϑ)
d
−−→ N(0,ΣV) as n→ ∞,

where ΣV = A−1
V BV A−1T

V , with

AV = −(1 − ρ)

E
(∂S Kci(θK ,α)

∂θK

)
E
(∂S Kci(θK ,α)

∂α

)
0 0

 − ρ
E

(∂S Ki(θK )
∂θK

)
0

0 E
(S i(α)
∂α

)
 and

BV = (1 − ρ)

E
{
S Kci(θK , α)S T

Kci(θK , α)
}

0

0 0

 + ρ
E

{
S Ki(θK)S T

Ki(θK)
}

0

0 E
{
S i(α)S T

i (α)
}
 .
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Finally, for k = K − 1, · · · , 1, an estimate of θk can be obtained by solving (4.23), where

πk10 and πk01 in (4.19) are determined by (4.25) with α replaced by α̂.

4.5 Numerical Studies

4.5.1 Simulation Study

In this subsection, we conduct simulation studies to assess the finite sample performance of

the methods described in Sections 4.3 and 4.4. We use the same settings as in Section 4.2.3 to

generate the main study data D∗ =
{{

Zki, X∗ki, Aki,Yki
}

: k = 1, · · · ,K; i ∈ M
}

with |M|= n =

1000. Further, we generate an internal validation subsample by randomly selecting 30% of

study subjects fromM, and record their accurate measurements of {Xki : k = 1, · · · ,K; i ∈ V}

to form the validation subsampleDV =
{{

Aki, Xki, X∗ki,Zki,Yki
}

: k = 1, · · · ,K; i ∈ V
}
.

We consider three methods to analyze the data. The first method, called “RC”, applies the

method described in Section 4.3 to bothD∗ andDV . The second method, called “EE-known”,

uses the method in Section 4.4.1 to dataD∗, where the misclassification probabilities are taken

as known. The third method, called “EE-estimated”, applies the method in Section 4.4.2 to

both D∗ and DV , where the misclassification probabilities are estimated using DV following

the procedure described in Section 4.4.2.

The results for stages 1 and 2 are reported differently due to the difference in knowing

the information about these two stages. Table 4.3 reports the results for stage 1 over 1000

simulations for the regular, weak non-regular, and non-regular settings, where “Bias”, “ESE”,

“PBCR”, and “DBCR” are the same as in Section 4.2.3, but “SE” and “MSE” may be slightly

different, depending on the method used. When the RC method is considered, “SE” represents

the average of standard errors obtained from the bootstrap method with 1000 bootstrap samples,

and “MSE” represents the mean squared error of the estimates obtained using the bootstrap SE;

when the EE-known or EE-estimated method is used, “SE” and “MSE” are the same as in Sec-

tion 4.2.3. The RC and EE methods exhibit good performance by outputting estimators with

fairly small bias, indicating their efficacy in rectifying the effects of misclassification; notably,

the RC method’s capacity to reduce bias for weak non-regular and non-regular settings deteri-



86

orates more rapidly than that of the two EE methods as misclassification probabilities increase.

As expected, there is a consistent trend of increased variability in parameter estimation for all

the three methods as misclassification probabilities increase across all the three settings; such

an increase is more pronounced in the two EE methods compared to the RC method; and the

EE-estimated method tends to yield more varied estimates than the EE-known method does.

PB 95% CIs of the RC and EE methods tend to be over-covered for the regular and weak non-

regular settings, yet they may be considerably under-covered for the non-regular setting. On

the contrary, DB 95% CIs of the RC and EE methods exhibit under-coverage, regardless of

the regularity condition of parameters, and moreover, the severity of under-coverage tends to

increase as the misclassification probabilities increase.

The results for stage 2 over 1000 simulations are reported in Tables 4.4-4.6, respectively, for

regular, weak non-regular, and non-regular settings, where “Bias”, “ESE”, “SE”, and “MSE”

are the same as for Table 4.3, yet “WTCR” represents the CR of 95% CIs obtained using the

bootstrap SE for the RC method or model-based SE obtained from the asymptotic result in

Section 4.4.1 or 4.4.2 for the EE methods. Similar to the findings for stage 1, the RC and

EE-known approaches demonstrate a fairly commendable performance in stage 2. The RC and

EE-known methods tend to outperform the EE-estimated method, though the results produced

by the EE-estimated method still appear to be fairly satisfactory. The variability of parameter

estimation tends to increase as misclassification probabilities increase, and such variability is

more noticeable for the EE methods than the RC method. Our limited numerical explorations

(not reported here) indicate that the performance of the EE-known and EE-estimated methods

can be further improved by increasing the sample size.

4.5.2 Future Treatment Predictions

Here we assess the influence of ignoring misclassification on determining optimal treatments

for patients as well as the performance of the proposed methods in terms of prediction. To this

end, we first use the procedure in Section 4.5.1 to generate training data for 1000 individuals

to estimate model parameters that will be used to do prediction. Next, we simulate a popula-

tion of 5000 patients for whom we wish to predict optimal treatment regimes; we report the



87

prediction performance for the proposed methods, applied to the observed surrogate measure-

ments, as opposed to the naive method of ignoring misclassification. Specifically, we employ

the following steps:

Step 1: Data generation for prediction:

• First, using the procedure in Section 4.2.3, we generate the true measurements,

DT P ≜
{{

Aki, Xki,Zki
}

: i ∈ MP

}
with |MP|= 5000, for the covariates

{
Z1, X1, A1,Z2,

X2, A2
}

for 5000 patients independently.

• Secondly, we generate corresponding surrogate values,
{
X∗ki : k = 1, 2; i ∈ MP

}
, of

X1i and X2i using the same procedure and misclassification probabilities considered

in Section 4.2.3 for Settings 1-3, and obtain observed measurements of covariates

and treatments for the main study,D∗P =
{{

Aki, X∗ki,Zki
}

: i ∈ MP

}
.

• Finally, using the procedure described in Section 4.5.1, we generate measurements

of covariates and treatments for an internal validation subsample,DVP =
{{

Aki, Xki, X∗ki,

Zki
}

: k = 1, 2; i ∈ VP

}
, with |VP|= 30%|MP|.

Step 2: Parameter estimation from different methods:

• For the naive and EE-known methods, we apply the measurements inD∗ in Section

4.5.1 to estimate the parameters for the stage 1 model (4.6) and the stage 2 model

(4.5), where the parameters for the misclassification model (4.8) are taken as the

true values in generatingD∗.

• For the RC and EE-estimated methods, we use the main study data D∗ and the

validation dataDV in Section 4.5.1 to estimate the parameters for the stage 1 model

(4.6) and the stage 2 model (4.5).

Step 3: Prediction:

As a comparison, we introduce the “true” method, which uses the true parameter

values θ1 and θ2 as well as the true measurements in DT P to obtain true optimal

treatment regimes. That is, using the true values for θ1 and θ2 specified in Settings

1-3 in Section 4.2.3 and the true measurements inDT P for (4.7), we obtain the true
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optimal treatments in stages 1 and 2 for 5000 patients, and take these results as

reference values. We now examine the following two scenarios, which differ in the

use of the true or surrogate covariate measurements.

• Scenario 1: With parameters replaced with their estimates obtained from each

method described in Step 2, we predict the corresponding optimal treatments in

stages 1 and 2 for 5000 patients using (4.7) in Section 4.2.3, whereDT P is used.

• Scenario 2: With the estimated parameters for each method described in Step 2,

we predict the corresponding optimal treatments in stages 1 and 2 for 5000 patients

using (4.11) and (4.24) for the RC and EE methods, respectively, where DVP and

D∗P are respectively used for the RC and EE methods.

Step 4: Summarizing results:

• Comparing the results from Step 3, we count the number, denoted M, of patients

for whom the predicted optimal treatments of each method in Step 2 match the

reference values. Then calculate the proportion of correctly specified optimal treat-

ments, denoted PCOT, by dividing M by the number of patients, 5000.

To alleviate Monte Carlo variations, we repeat Steps 1 to 4 for 1000 times, and calculate the

average of the proportions obtained in Step 4 across the 1000 repetitions. This average propor-

tion, denoted APCOT, represents an estimated proportion of optimally treated future patients

for each method: a larger APCOT indicates better performance of the respective method. In

Table 4.7, we report APCOT values under Scenarios 1 and 2 for the four methods described in

Step 2. It is evident that the performance of the methods exhibits variation with the change of

π01 and π10, as well as the regularity condition of the parameters.

Examining the left panel of Table 4.7 (i.e., Scenario 1), we see that for stage 1 optimal

treatment prediction, the three proposed methods generally outperform the naive method, ex-

cept for some settings with π10 = 0 or π10 = 0 for the EE-known method, such as the weak

non-regular setting with π10 = 0 and π01 = 0.3, and the regular settings with π10 = 0.15 or

0.3 when π01 = 0. The results produced by the three proposed methods are fairly comparable,

and the RC method tends to perform the best, though in some cases, the EE-known or EE-
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estimated method outperforms the RC method. Unsurprisingly, as the misclassification degree

increases, the performance of the three proposed methods tends to decay, yet this trend does

not exhibit for the naive method. For stage 2 optimal treatment prediction, we observe that the

three proposed methods outperform the naive method, except for the weak non-regular setting

with π10 = 0 and π01 = 0.3. Interestingly, under the non-regular setting with most misclassifica-

tion probabilities, APCOT values produced by the naive method are larger than those obtained

from the three proposed methods and are close to 1. This finding does not necessarily support

the good performance of the naive method, but instead, it shows unreliable optimal treatment

prediction under the non-regular setting: ignoring the feature of misclassification yields results

similar to those produced from using precisely measured data.

Examining the right panel of Table 4.7 (i.e., Scenario 2), we observe that regarding stage

1 optimal treatment prediction, the three proposed methods exhibit superior performance to

the naive method. The two EE methods tend to perform better than the RC method, and the

EE-estimated method performs the best. Similarly, for stage 2 optimal treatment prediction,

the three proposed methods outperform the naive method in both the regular and weak non-

regular settings. In the non-regular setting, the naive method outputs the largest APCOT values

than the three proposed methods which account for the misclassification effects. However, this

does not necessarily indicate the best performance of the naive method, as explained earlier for

Scenario 1.

4.5.3 Data Analysis

Sequenced Treatment Alternatives to Relieve Depression (STAR∗D) was a multi-site, multi-

level randomized clinical trial enrolling 4041 patients with nonpsychotic MDD (Rush et al.,

2004; Fava et al., 2003). The objective of this study was to assess the comparative effective-

ness of different treatment options for patients. The trial involved four examination levels, each

level consisting of a 12-week period of treatment, with scheduled clinic visits at weeks 0, 2, 4,

6, 9, and 12. The primary outcome of the trial is the severity of depression at any clinic visit

assessed using the clinician-rated and self-report versions of the Quick Inventory of Depressive

Symptomatology (QIDS) scores (Rush et al., 2004). Larger values of the QIDS score corre-
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spond to higher severity of depression and thus represent a worse outcome, where 5 is taken

as a benchmark for a total 12-week clinician-rated QIDS score of a patient. Specifically, at the

end of each level, patients with a QIDS score ≤ 5 did not move on to the next examination (i.e.,

patients achieved clinical remission), whereas a QIDS score > 5 for a patient indicated that he

or she did not have an adequate response.

At level 1, all patients were treated with citalopram (CIT). Those without an adequate re-

sponse at level 1 were eligible to receive one of seven treatment options available at level 2,

depending on their preference to switch or augment their level 1 treatment. Level 2 consists

of four switch options (venlafaxine (VEN), sertraline (SER), bupropion (BUP), and cognitive

therapy (CT)) and three augment options (CIT+CT, CIT+BUP or buspirone (BUS)+CIT). Pa-

tients assigned to cognitive therapy (alone or augmented with citalopram) were eligible, in

the case of inadequate response, to move to a supplementary level 2A and be randomized to

switch to BUP or VEN. Patients showing unsatisfactory responses would continue to level 3 to

receive one of the two available switch options (mirtazapine (MIRT) and nortriptyline (NTP))

or to augment their previous treatment with lithium (Li) or thyroid hormone (THY). Patients

without a satisfactory response at level 3 continued to level 4 treatments, which included two

options: tranylcypromine (TCP) and MIRT +VEN. For a schematic of the STAR∗D study de-

sign see Chakraborty and Moodie (2013), and for a complete description see Rush et al. (2004).

Similar to Chakraborty and Moodie (2013), here we consider levels 2, 2A, and 3 and cast

the problem into the framework of Section 4.2.3. Specifically, we take level 2 (including 2A,

if applicable) as stage 1 and let level 3 be stage 2 for the Q-learning framework described in

Section 4.2.3 with K = 2. We classify treatments at stage 1 into two categories: (i) treatment

with either SER or CIT plus one of BUP, BUS and CT, and (ii) treatment with at least one of

the options from BUP, CT, and VEN. Treatment options at stage 2 are also classified into two

categories: (i) treatment with an augmentation of SER or CIT-containing level 2 treatment with

either Li or THY, and (ii) treatment with MIRT or NTP, or augmentation of at least one of the

options VEN, BUP, or CT with either Li or THY. For any patient, let Ak denote the treatment

status at stage k, which is coded as 1 for category (i) and 0 for category (ii).

Two covariates are included in this analysis. The first covariate, denoted Zk, is continuous

and represents QIDS score measured at the beginning of the level, while the second covariate,
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denoted Xk, is binary and indicates the patient’s preference for switch (Xk = 1) or augmentation

(Xk = 0).

Some patients without a satisfactory response in stage 1 dropped out of the study without

continuing to stage 2. Removing those patients, we analyze a data subset that includes 1396

patients for stage 1 among whom 922 were eligible to move on to stage 2; however, only 369

patients among those 922 patients were present at stage 2 and the rest dropped out. Because of

the trial design, at stage 2 we have the outcome data only for the non-remitters from stage 1,

therefore, Chakraborty et al. (2013) considered the following overall primary outcome, which

is also employed here:

Y = I1R1 + (1 − I1)
(R1 + R2

2

)
,

where R1 and R2 denote the total QIDS scores at the end of stages 1 and 2, respectively; and I1

is the remission indicator at the end of stage 1, taking 1 for remitters and 0 for non-remitters.

That is, using the notation in Section 1.2.2, for each study subject, we take Y1 ≡ 0 and Y2 = Y ,

where K = 2. We employ the following models for Q-functions in (1.9):

Q2(H2, A2) = β02 + β12Z2 + β22X2 + β32A1 + (ψ02 + ψ12Z2 + ψ22X2)A2;

Q1(H1, A1) = β01 + β11Z1 + β21X1 + (ψ01 + ψ11Z1 + ψ21X1)A1,

where for k = 1, 2, β0k, β1k, β2k, ψ0k, ψ1k, ψ2k, and β32 are regression coefficients. As mentioned

previously, some patients who were eligible to continue to stage 2 dropped out of the study,

making the computation of the pseudo-outcomes for them impossible as covariates Z2 and X2

are missing for them. To get around this problem, following Chakraborty and Moodie (2013),

the value of Z2 was imputed by the last observed QIDS score in stage 1, and the missing values

of the binary variable X2 were imputed using k nearest neighbor (k-NN) classification with k

taken as 5.

We conduct three analyses here. In Analysis 1, we treat both Zk and Xk as if they were

error-free and implement the procedure in Section 1.2.2, and report the estimation results for

the model parameters in the first row of Table 4.8 for stages 1 and 2. In the next two anal-

yses, we evaluate the effects of possibly misclassified covariate Xk on parameter estimation

with Zk treated as error-free. As there is no additional data such as a validation subsam-
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ple to characterize the degree of misclassification in the STAR∗D data, we carry out sen-

sitivity analyses using the two correction methods described in Sections 4.4.1 and 4.3, and

respectively call them Analysis 2 and Analysis 3. To reflect possibly different scenarios of

misclassification in Xk, in Analysis 2, we consider four sets of misclassification probabil-

ities (π10, π01)T = (0.01, 0.01)T, (0.03, 0.03)T, (0.07, 0.07)T, or (0.10, 0.10)T; and in Analy-

sis 3, we consider model (4.10) with m1(H∗1i; ζ1) = ζ01 + ζ11X1 + ζ21Z1 and m2(H∗2i; ζ2) =

ζ02 + ζ12X2 + ζ22Z2 + ζ32A1 + ζ42Z1 + ζ52X1, where four sets of values, listed in Table 4.9, for

the model parameters ζ1 =
(
ζ01, ζ11, ζ21

)T and ζ2 =
(
ζ02, ζ12, ζ22, ζ32, ζ42, ζ52

)T are examined.

Numerical results of Analyses 2 and 3 are respectively reported in Tables 4.8 and 4.10.

Unsurprisingly, numerical results reveal varying estimates of the model parameters for both

stages among the three analyses. All the three analyses suggest that stage 1 parameter ψ11 and

the three stage 2 parameters ψ01, ψ12 and ψ22 are all statistically insignificant. However, the

significance for stage 1 parameters ψ01 and ψ21 are differently revealed with different degrees

of misclassification considered. Without considering possible presence of misclassification,

Analysis 1 finds evidence of suggesting statistical significance for ψ01 but not ψ21. Analyses

2 and 3, addressing the misclassification effects for varying scenarios uncovers different na-

ture of ψ01 and ψ21, whose significance is unveiled differently, driven by different amounts of

misclassification.

While the specification of misclassification probabilities does not need to be restricted to

what is considered here, the sensitivity analyses demonstrate that ignoring misclassification

can output results deviating significantly from the ground truth if the issue of misclassification

is serious. Although the underlying truth is never known, examining data from different angles

helps us reveal a more comprehensive picture to enhance the understanding than conducting a

single analysis with data treated as if being error-free.

Finally, the models we consider here differ from those examined by Spicker and Wallace

(2020). Unlike Spicker and Wallace (2020), the slope of the QIDS score is not included in the

Q-functions here. On the other hand, the interaction term X2A2 is included in our second stage

Q-function but was not considered by Spicker and Wallace (2020). The study here focuses

on investigating the effects stemming from misclassification in discrete covariates, whereas

Spicker and Wallace (2020) examined the effects of measurement error in continuous covari-
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ates.

4.6 Summary

While careful designs are helpful in collecting good quality data, measurement error and mis-

classification are still inevitable and they arise ubiquitously in applications. In this chapter, we

examine DTRs with misclassification in covariates. Focusing on the Q-learning procedure, we

demonstrate biased estimation results through simulation studies. It is necessary to introduce

de-biasing adjustments to account for mismeasurement effects in inferential procedures. Here

we present two correction methods for Q-learning based on regression calibration and unbiased

estimation equation approaches. Results from extensive simulation studies confirm the satis-

factory performance of the correction methods in reducing or eliminating bias in parameter

estimates.
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Table 4.1: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stage 1. Entries in bold are obtained from the setting without
misclassification

regular weak non-regular non-regular

π01 Method ψ01 ψ11 ψ01 ψ11 ψ01 ψ11

π10 = 0

0 EFLS

Bias 0.001 0.002 0.010 0.012 0.016 0.002
SE 0.202 0.285 0.100 0.142 0.102 0.144
ESE 0.212 0.283 0.117 0.144 0.128 0.142
MSE 0.041 0.081 0.010 0.020 0.011 0.021
PBCR 0.947 0.949 0.948 0.938 0.934 0.944
DBCR 0.955 0.956 0.952 0.950 0.943 0.953

0.15 Naive

Bias 0.110 0.095 0.157 0.185 0.092 0.179
SE 0.163 0.250 0.095 0.145 0.096 0.147
ESE 0.199 0.256 0.117 0.146 0.125 0.149
MSE 0.039 0.072 0.034 0.055 0.018 0.054
PBCR 0.918 0.978 0.744 0.792 0.895 0.816
DBCR 0.852 0.842 0.713 0.678 0.858 0.687

0.3 Naive

Bias 0.198 0.194 0.242 0.314 0.162 0.330
SE 0.134 0.227 0.090 0.152 0.091 0.153
ESE 0.179 0.228 0.110 0.154 0.124 0.151
MSE 0.057 0.089 0.067 0.122 0.034 0.132
PBCR 0.846 0.963 0.439 0.430 0.741 0.392
DBCR 0.747 0.625 0.437 0.296 0.673 0.250

π10 = 0.15

0 Naive

Bias 0.003 0.102 0.011 0.184 0.075 0.184
SE 0.217 0.286 0.108 0.142 0.109 0.144
ESE 0.236 0.286 0.131 0.143 0.140 0.141
MSE 0.047 0.092 0.012 0.054 0.018 0.055
PBCR 0.976 0.984 0.961 0.772 0.926 0.794
DBCR 0.907 0.850 0.935 0.668 0.896 0.659

0.15 Naive

Bias 0.121 0.241 0.179 0.422 0.057 0.424
SE 0.173 0.244 0.100 0.142 0.102 0.144
ESE 0.204 0.239 0.133 0.144 0.130 0.142
MSE 0.044 0.118 0.042 0.198 0.014 0.200
PBCR 0.949 0.968 0.761 0.075 0.953 0.065
DBCR 0.858 0.543 0.630 0.095 0.902 0.095

0.3 Naive

Bias 0.216 0.350 0.285 0.612 0.142 0.614
SE 0.140 0.215 0.094 0.145 0.095 0.146
ESE 0.209 0.215 0.122 0.148 0.133 0.141
MSE 0.066 0.169 0.090 0.395 0.029 0.398
PBCR 0.846 0.788 0.381 0.000 0.837 0.000
DBCR 0.769 0.232 0.322 0.006 0.737 0.006

π10 = 0.3

0 Naive

Bias 0.024 0.178 0.071 0.327 0.145 0.323
SE 0.225 0.279 0.119 0.147 0.120 0.149
ESE 0.264 0.271 0.139 0.140 0.145 0.147
MSE 0.051 0.109 0.019 0.129 0.035 0.126
PBCR 0.990 0.986 0.958 0.362 0.864 0.350
DBCR 0.895 0.663 0.889 0.237 0.789 0.270

0.15 Naive

Bias 0.165 0.360 0.120 0.613 0.023 0.612
SE 0.168 0.221 0.109 0.144 0.110 0.145
ESE 0.268 0.220 0.143 0.145 0.147 0.140
MSE 0.055 0.179 0.026 0.396 0.013 0.396
PBCR 0.936 0.805 0.911 0.000 0.969 0.000
DBCR 0.839 0.237 0.790 0.002 0.889 0.004

0.3 Naive

Bias 0.268 0.482 0.225 0.836 0.123 0.839
SE 0.129 0.183 0.101 0.143 0.102 0.144
ESE 0.257 0.184 0.132 0.141 0.136 0.146
MSE 0.089 0.266 0.061 0.719 0.025 0.725
PBCR 0.834 0.009 0.579 0.000 0.887 0.000
DBCR 0.787 0.046 0.528 0.000 0.771 0.000
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Table 4.2: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stage 2. Entries in bold are obtained from the setting without
misclassification

regular weak non-regular non-regular

π01 Method ψ02 ψ12 ψ22 ψ02 ψ12 ψ22 ψ02 ψ12 ψ22

π10 = 0

0 EFLS

Bias 0.003 0.001 0.005 0.004 0.002 0.006 0.004 0.002 0.005
SE 0.100 0.090 0.127 0.100 0.090 0.127 0.100 0.090 0.127
ESE 0.101 0.087 0.123 0.100 0.092 0.127 0.105 0.089 0.127
MSE 0.010 0.008 0.016 0.010 0.008 0.016 0.010 0.008 0.016
WTCR 0.952 0.954 0.946 0.951 0.947 0.960 0.939 0.952 0.947

0.15 Naive

Bias 0.655 0.649 0.004 0.292 0.297 0.003 0.250 0.261 0.012
SE 0.132 0.122 0.171 0.106 0.098 0.137 0.104 0.096 0.135
ESE 0.153 0.137 0.173 0.112 0.100 0.139 0.110 0.096 0.139
MSE 0.446 0.436 0.029 0.096 0.098 0.019 0.073 0.077 0.018
WTCR 0.004 0.000 0.944 0.230 0.142 0.944 0.327 0.236 0.943

0.3 Naive

Bias 1.157 1.163 0.009 0.536 0.537 0.002 0.460 0.467 0.007
SE 0.149 0.147 0.198 0.109 0.107 0.145 0.106 0.104 0.141
ESE 0.173 0.152 0.198 0.114 0.109 0.146 0.117 0.102 0.142
MSE 1.361 1.374 0.039 0.299 0.300 0.021 0.223 0.229 0.020
WTCR 0.000 0.000 0.950 0.007 0.002 0.954 0.016 0.009 0.944

π10 = 0.15

0 Naive

Bias 0.000 0.641 0.001 0.002 0.292 0.001 0.001 0.262 0.003
SE 0.139 0.122 0.170 0.112 0.098 0.137 0.110 0.097 0.135
ESE 0.119 0.136 0.166 0.110 0.097 0.138 0.105 0.100 0.133
MSE 0.019 0.426 0.029 0.013 0.095 0.019 0.012 0.078 0.018
WTCR 0.977 0.000 0.954 0.948 0.147 0.943 0.961 0.244 0.954

0.15 Naive

Bias 0.748 1.503 0.010 0.349 0.694 0.000 0.301 0.597 0.007
SE 0.161 0.144 0.204 0.116 0.104 0.146 0.112 0.101 0.142
ESE 0.171 0.189 0.207 0.120 0.120 0.146 0.116 0.109 0.140
MSE 0.586 2.280 0.042 0.135 0.492 0.021 0.103 0.367 0.020
WTCR 0.006 0.000 0.950 0.150 0.000 0.956 0.237 0.000 0.957

0.3 Naive

Bias 1.321 2.195 0.002 0.600 0.999 0.001 0.523 0.873 0.004
SE 0.173 0.161 0.225 0.118 0.109 0.153 0.113 0.105 0.147
ESE 0.193 0.207 0.227 0.123 0.125 0.155 0.116 0.118 0.147
MSE 1.775 4.844 0.051 0.374 1.010 0.023 0.286 0.773 0.022
WTCR 0.000 0.000 0.959 0.000 0.000 0.953 0.002 0.000 0.951

π10 = 0.3

0 Naive

Bias 0.001 1.143 0.002 0.001 0.531 0.008 0.003 0.462 0.007
SE 0.169 0.147 0.198 0.124 0.107 0.145 0.120 0.104 0.141
ESE 0.131 0.153 0.198 0.114 0.111 0.143 0.112 0.106 0.138
MSE 0.029 1.328 0.039 0.015 0.294 0.021 0.015 0.224 0.020
WTCR 0.988 0.000 0.956 0.963 0.000 0.950 0.965 0.009 0.954

0.15 Naive

Bias 0.885 2.189 0.009 0.410 0.999 0.002 0.350 0.868 0.007
SE 0.184 0.161 0.225 0.125 0.110 0.153 0.120 0.105 0.147
ESE 0.195 0.208 0.227 0.129 0.124 0.157 0.121 0.112 0.145
MSE 0.817 4.818 0.051 0.184 1.010 0.023 0.137 0.764 0.022
WTCR 0.004 0.000 0.949 0.101 0.000 0.941 0.168 0.000 0.946

0.3 Naive

Bias 1.500 2.998 0.009 0.687 1.385 0.010 0.595 1.202 0.012
SE 0.190 0.171 0.241 0.125 0.112 0.158 0.119 0.107 0.151
ESE 0.210 0.221 0.244 0.130 0.136 0.154 0.122 0.120 0.147
MSE 2.286 9.017 0.058 0.488 1.931 0.025 0.368 1.456 0.023
WTCR 0.000 0.000 0.946 0.000 0.000 0.952 0.002 0.000 0.955
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Table 4.3: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 1

regular weak non-regular non-regular

π10 = 0 RC EE-known EE-estimated RC EE-known EE-estimated RC EE-known EE-estimated

ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11 ψ01 ψ11

π01 = 0.15

Bias 0.004 0.006 0.003 0.013 0.010 0.006 0.014 0.006 0.026 0.003 0.025 0.008 0.072 0.005 0.072 0.007 0.062 0.008
SE 0.225 0.291 0.218 0.329 0.314 0.456 0.131 0.160 0.118 0.176 0.162 0.234 0.134 0.162 0.118 0.176 0.163 0.235
ESE 0.236 0.291 0.240 0.339 0.223 0.318 0.130 0.160 0.136 0.178 0.133 0.172 0.138 0.162 0.139 0.177 0.136 0.174
MSE 0.051 0.085 0.047 0.109 0.099 0.208 0.017 0.026 0.015 0.031 0.027 0.055 0.023 0.026 0.019 0.031 0.030 0.056
PBCR 0.961 0.981 0.973 0.992 0.968 0.983 0.975 0.973 0.973 0.984 0.952 0.969 0.934 0.969 0.936 0.973 0.921 0.954
DBCR 0.919 0.912 0.884 0.858 0.910 0.900 0.930 0.920 0.928 0.893 0.930 0.911 0.894 0.914 0.890 0.912 0.895 0.909

π01 = 0.3

Bias 0.011 0.007 0.017 0.016 0.004 0.001 0.061 0.007 0.084 0.012 0.053 0.005 0.118 0.008 0.144 0.006 0.111 0.005
SE 0.238 0.303 0.236 0.377 0.328 0.490 0.139 0.176 0.147 0.230 0.181 0.272 0.142 0.178 0.144 0.225 0.180 0.269
ESE 0.236 0.300 0.251 0.381 0.252 0.370 0.137 0.180 0.156 0.233 0.160 0.223 0.146 0.176 0.157 0.221 0.159 0.218
MSE 0.057 0.092 0.056 0.143 0.108 0.240 0.023 0.031 0.029 0.053 0.036 0.074 0.034 0.032 0.041 0.051 0.045 0.072
PBCR 0.974 0.990 0.997 0.998 0.992 0.993 0.957 0.984 0.961 0.996 0.954 0.988 0.870 0.985 0.887 0.995 0.915 0.985
DBCR 0.918 0.856 0.823 0.745 0.849 0.813 0.873 0.882 0.842 0.817 0.856 0.816 0.823 0.884 0.745 0.835 0.807 0.826

π10 = 0.15

π01 = 0

Bias 0.002 0.002 0.005 0.003 0.021 0.033 0.002 0.002 0.034 0.001 0.032 0.005 0.060 0.002 0.049 0.001 0.027 0.004
SE 0.223 0.312 0.254 0.387 0.334 0.490 0.127 0.158 0.109 0.167 0.156 0.228 0.132 0.160 0.110 0.169 0.158 0.231
ESE 0.228 0.315 0.262 0.388 0.236 0.361 0.128 0.159 0.130 0.169 0.125 0.164 0.134 0.158 0.136 0.168 0.127 0.167
MSE 0.050 0.097 0.065 0.150 0.112 0.241 0.016 0.025 0.013 0.028 0.025 0.052 0.021 0.026 0.014 0.029 0.026 0.054
PBCR 0.976 0.991 0.983 0.995 0.983 0.981 0.957 0.974 0.964 0.979 0.958 0.974 0.924 0.975 0.960 0.977 0.954 0.962
DBCR 0.914 0.903 0.901 0.868 0.936 0.884 0.940 0.921 0.921 0.901 0.939 0.923 0.914 0.928 0.905 0.911 0.929 0.916

π01 = 0.15

Bias 0.002 0.006 0.001 0.000 0.011 0.015 0.023 0.002 0.007 0.002 0.001 0.003 0.118 0.003 0.008 0.000 0.003 0.002
SE 0.236 0.330 0.305 0.499 0.373 0.575 0.139 0.183 0.137 0.223 0.174 0.267 0.143 0.185 0.137 0.222 0.175 0.268
ESE 0.231 0.329 0.298 0.490 0.285 0.459 0.139 0.180 0.161 0.229 0.152 0.211 0.142 0.188 0.150 0.221 0.153 0.213
MSE 0.056 0.109 0.093 0.249 0.139 0.331 0.020 0.034 0.019 0.050 0.030 0.071 0.034 0.034 0.019 0.049 0.031 0.072
PBCR 0.978 0.995 1.000 1.000 0.987 0.998 0.956 0.994 0.987 1.000 0.975 0.995 0.914 0.990 0.991 0.997 0.966 0.981
DBCR 0.890 0.830 0.808 0.714 0.838 0.768 0.905 0.879 0.867 0.793 0.879 0.851 0.832 0.858 0.885 0.810 0.881 0.824

π01 = 0.3

Bias 0.004 0.013 0.001 0.004 0.018 0.018 0.057 0.002 0.038 0.017 0.036 0.011 0.162 0.010 0.079 0.005 0.073 0.029
SE 0.256 0.357 0.378 0.657 0.435 0.707 0.149 0.206 0.194 0.332 0.220 0.356 0.152 0.207 0.188 0.320 0.214 0.347
ESE 0.255 0.354 0.374 0.648 0.364 0.607 0.145 0.201 0.207 0.335 0.208 0.319 0.153 0.201 0.196 0.307 0.197 0.315
MSE 0.066 0.128 0.143 0.432 0.189 0.501 0.025 0.042 0.039 0.111 0.050 0.127 0.049 0.043 0.041 0.103 0.051 0.121
PBCR 0.982 1.000 1.000 1.000 1.000 1.000 0.983 0.997 0.999 1.000 0.985 1.000 0.852 0.995 0.991 1.000 0.980 0.999
DBCR 0.886 0.793 0.642 0.543 0.704 0.590 0.890 0.830 0.761 0.636 0.774 0.680 0.733 0.832 0.765 0.676 0.780 0.673

π10 = 0.3

π01 = 0

Bias 0.017 0.004 0.006 0.012 0.033 0.047 0.048 0.005 0.077 0.002 0.053 0.014 0.107 0.008 0.115 0.006 0.077 0.002
SE 0.244 0.331 0.333 0.539 0.388 0.602 0.135 0.175 0.120 0.198 0.162 0.248 0.139 0.176 0.121 0.200 0.165 0.251
ESE 0.236 0.325 0.316 0.526 0.305 0.479 0.127 0.168 0.139 0.190 0.138 0.193 0.139 0.180 0.144 0.199 0.140 0.196
MSE 0.060 0.109 0.111 0.290 0.151 0.364 0.021 0.031 0.020 0.039 0.029 0.062 0.031 0.031 0.028 0.040 0.033 0.063
PBCR 0.984 0.994 0.997 1.000 0.985 0.998 0.964 0.986 0.969 0.995 0.967 0.979 0.890 0.990 0.936 0.997 0.952 0.986
DBCR 0.920 0.863 0.850 0.753 0.844 0.778 0.922 0.900 0.859 0.859 0.870 0.849 0.863 0.878 0.786 0.847 0.849 0.840

π01 = 0.15

Bias 0.013 0.000 0.005 0.019 0.032 0.035 0.089 0.002 0.031 0.009 0.026 0.016 0.164 0.008 0.067 0.013 0.037 0.030
SE 0.266 0.361 0.460 0.805 0.492 0.826 0.148 0.206 0.168 0.292 0.198 0.324 0.151 0.207 0.166 0.289 0.198 0.323
ESE 0.274 0.366 0.455 0.810 0.397 0.707 0.151 0.204 0.190 0.292 0.186 0.284 0.157 0.198 0.189 0.281 0.179 0.279
MSE 0.071 0.130 0.211 0.648 0.243 0.684 0.030 0.042 0.029 0.085 0.040 0.105 0.050 0.043 0.032 0.084 0.041 0.105
PBCR 0.976 0.999 1.000 1.000 1.000 1.000 0.935 0.991 0.993 1.000 0.989 0.997 0.832 0.994 0.991 1.000 0.983 0.997
DBCR 0.885 0.789 0.609 0.508 0.707 0.574 0.837 0.824 0.781 0.671 0.794 0.710 0.732 0.842 0.768 0.690 0.800 0.713

π01 = 0.3

Bias 0.027 0.013 0.000 0.014 0.035 0.054 0.125 0.020 0.023 0.045 0.019 0.043 0.210 0.016 0.010 0.025 0.037 0.048
SE 0.291 0.407 0.717 1.322 0.764 1.379 0.158 0.230 0.289 0.526 0.322 0.573 0.161 0.230 0.275 0.499 0.309 0.548
ESE 0.299 0.408 0.718 1.353 0.677 1.269 0.156 0.230 0.298 0.532 0.316 0.540 0.158 0.223 0.296 0.496 0.296 0.513
MSE 0.085 0.165 0.514 1.748 0.585 1.905 0.041 0.053 0.084 0.278 0.104 0.330 0.070 0.053 0.076 0.250 0.097 0.303
PBCR 0.984 1.000 1.000 1.000 1.000 1.000 0.944 0.998 1.000 1.000 1.000 1.000 0.781 1.000 1.000 1.000 0.999 1.000
DBCR 0.874 0.743 0.401 0.322 0.500 0.366 0.756 0.766 0.600 0.453 0.608 0.458 0.604 0.790 0.602 0.480 0.656 0.522
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Table 4.4: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 2 and regular case

π10 = 0 RC EE-known EE-estimated

ψ02 ψ12 ψ22 ψ02 ψ12 ψ22 ψ02 ψ12 ψ22

π01 = 0.15

Bias 0.001 0.002 0.005 0.009 0.018 0.006 0.014 0.020 0.005
SE 0.184 0.162 0.192 0.182 0.170 0.184 0.206 0.190 0.226
ESE 0.180 0.158 0.193 0.181 0.173 0.187 0.206 0.198 0.170
MSE 0.034 0.026 0.037 0.033 0.029 0.034 0.043 0.037 0.051
WTCR 0.955 0.954 0.945 0.948 0.951 0.942 0.955 0.940 0.990

π01 = 0.3

Bias 0.019 0.033 0.005 0.024 0.024 0.008 0.042 0.045 0.004
SE 0.219 0.187 0.227 0.259 0.246 0.245 0.270 0.254 0.272
ESE 0.223 0.185 0.237 0.270 0.249 0.242 0.306 0.299 0.223
MSE 0.048 0.036 0.052 0.068 0.061 0.060 0.075 0.066 0.074
WTCR 0.943 0.934 0.924 0.947 0.956 0.958 0.925 0.916 0.981

π10 = 0.15

π01 = 0

Bias 0.010 0.006 0.004 0.002 0.021 0.002 0.002 0.010 0.000
SE 0.127 0.160 0.191 0.123 0.169 0.183 0.164 0.188 0.226
ESE 0.129 0.155 0.190 0.124 0.171 0.182 0.113 0.192 0.161
MSE 0.016 0.026 0.037 0.015 0.029 0.034 0.027 0.035 0.051
WTCR 0.954 0.956 0.949 0.943 0.952 0.951 0.993 0.946 0.992

π01 = 0.15

Bias 0.009 0.016 0.006 0.018 0.022 0.006 0.034 0.053 0.010
SE 0.205 0.240 0.237 0.228 0.264 0.263 0.242 0.266 0.285
ESE 0.206 0.245 0.239 0.226 0.272 0.267 0.259 0.315 0.230
MSE 0.042 0.058 0.056 0.052 0.070 0.069 0.060 0.074 0.082
WTCR 0.952 0.940 0.948 0.955 0.942 0.948 0.945 0.901 0.986

π01 = 0.3

Bias 0.023 0.035 0.009 0.004 0.044 0.020 0.057 0.074 0.020
SE 0.238 0.269 0.264 0.340 0.381 0.365 0.342 0.373 0.370
ESE 0.234 0.273 0.259 0.341 0.376 0.366 0.394 0.455 0.321
MSE 0.057 0.074 0.070 0.116 0.147 0.133 0.120 0.144 0.137
WTCR 0.951 0.946 0.955 0.947 0.950 0.962 0.939 0.902 0.983

π10 = 0.3

π01 = 0

Bias 0.018 0.022 0.004 0.002 0.024 0.010 0.004 0.042 0.004
SE 0.145 0.186 0.228 0.151 0.243 0.244 0.183 0.250 0.271
ESE 0.144 0.185 0.232 0.150 0.248 0.242 0.136 0.298 0.218
MSE 0.021 0.035 0.052 0.023 0.059 0.060 0.033 0.064 0.073
WTCR 0.949 0.945 0.946 0.951 0.939 0.940 0.994 0.915 0.988

π01 = 0.15

Bias 0.018 0.045 0.003 0.028 0.047 0.004 0.029 0.057 0.005
SE 0.222 0.270 0.264 0.297 0.380 0.364 0.300 0.373 0.370
ESE 0.217 0.266 0.261 0.304 0.385 0.367 0.325 0.451 0.325
MSE 0.050 0.075 0.070 0.089 0.147 0.133 0.091 0.142 0.137
WTCR 0.954 0.949 0.951 0.940 0.942 0.958 0.931 0.904 0.981

π01 = 0.3

Bias 0.023 0.058 0.007 0.066 0.141 0.020 0.099 0.215 0.014
SE 0.246 0.284 0.284 0.489 0.598 0.558 0.502 0.618 0.563
ESE 0.252 0.287 0.293 0.497 0.577 0.553 0.596 0.792 0.515
MSE 0.061 0.084 0.080 0.244 0.378 0.311 0.261 0.428 0.317
WTCR 0.940 0.942 0.943 0.952 0.949 0.967 0.944 0.914 0.992
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Table 4.5: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 2 and weak non-regular case

π10 = 0 RC EE-known EE-estimated

ψ02 ψ12 ψ22 ψ02 ψ12 ψ22 ψ02 ψ12 ψ22

π01 = 0.15

Bias 0.007 0.001 0.002 0.012 0.010 0.001 0.011 0.013 0.000
SE 0.124 0.115 0.143 0.124 0.121 0.141 0.165 0.155 0.199
ESE 0.125 0.113 0.143 0.126 0.119 0.143 0.128 0.128 0.140
MSE 0.015 0.013 0.020 0.016 0.015 0.020 0.027 0.024 0.039
WTCR 0.949 0.956 0.954 0.948 0.957 0.947 0.985 0.986 0.990

π01 = 0.3

Bias 0.007 0.014 0.005 0.004 0.008 0.007 0.008 0.016 0.009
SE 0.138 0.130 0.154 0.153 0.157 0.159 0.186 0.180 0.210
ESE 0.139 0.131 0.153 0.153 0.161 0.160 0.171 0.174 0.151
MSE 0.019 0.017 0.024 0.024 0.025 0.025 0.035 0.033 0.044
WTCR 0.946 0.949 0.943 0.947 0.952 0.947 0.971 0.964 0.990

π10 = 0.15

π01 = 0

Bias 0.003 0.004 0.000 0.003 0.010 0.001 0.001 0.005 0.001
SE 0.108 0.115 0.143 0.108 0.121 0.141 0.155 0.154 0.199
ESE 0.109 0.113 0.143 0.111 0.116 0.143 0.108 0.126 0.138
MSE 0.012 0.013 0.020 0.012 0.015 0.020 0.024 0.024 0.040
WTCR 0.945 0.954 0.945 0.937 0.959 0.939 0.997 0.988 0.996

π01 = 0.15

Bias 0.004 0.010 0.006 0.005 0.007 0.000 0.013 0.013 0.004
SE 0.134 0.149 0.157 0.143 0.167 0.165 0.178 0.187 0.214
ESE 0.131 0.150 0.152 0.148 0.172 0.167 0.141 0.178 0.147
MSE 0.018 0.022 0.025 0.021 0.028 0.027 0.032 0.035 0.046
WTCR 0.954 0.948 0.957 0.945 0.942 0.941 0.984 0.963 0.992

π01 = 0.3

Bias 0.005 0.001 0.007 0.022 0.040 0.001 0.018 0.042 0.003
SE 0.147 0.166 0.166 0.192 0.227 0.203 0.216 0.239 0.242
ESE 0.150 0.170 0.168 0.195 0.230 0.206 0.209 0.258 0.184
MSE 0.022 0.028 0.028 0.037 0.053 0.041 0.047 0.059 0.059
WTCR 0.934 0.948 0.948 0.939 0.941 0.947 0.974 0.942 0.995

π10 = 0.3

π01 = 0

Bias 0.007 0.014 0.005 0.001 0.007 0.003 0.002 0.014 0.004
SE 0.115 0.129 0.154 0.118 0.156 0.159 0.162 0.179 0.210
ESE 0.113 0.129 0.151 0.117 0.158 0.155 0.113 0.172 0.154
MSE 0.013 0.017 0.024 0.014 0.024 0.025 0.026 0.032 0.044
WTCR 0.956 0.955 0.956 0.950 0.949 0.958 0.997 0.957 0.993

π01 = 0.15

Bias 0.004 0.001 0.008 0.009 0.036 0.013 0.008 0.040 0.003
SE 0.141 0.167 0.166 0.173 0.227 0.203 0.202 0.239 0.242
ESE 0.144 0.169 0.172 0.177 0.226 0.203 0.183 0.257 0.189
MSE 0.020 0.028 0.028 0.030 0.053 0.041 0.041 0.059 0.059
WTCR 0.942 0.952 0.942 0.945 0.947 0.951 0.969 0.938 0.989

π01 = 0.3

Bias 0.008 0.019 0.002 0.028 0.051 0.004 0.052 0.126 0.005
SE 0.152 0.180 0.173 0.260 0.343 0.280 0.291 0.365 0.317
ESE 0.156 0.182 0.170 0.271 0.354 0.286 0.329 0.427 0.273
MSE 0.023 0.033 0.030 0.068 0.120 0.079 0.087 0.149 0.101
WTCR 0.938 0.948 0.952 0.946 0.946 0.957 0.962 0.923 0.990
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Table 4.6: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 2 and non-regular case

π10 = 0 RC EE-known EE-estimated

ψ02 ψ12 ψ22 ψ02 ψ12 ψ22 ψ02 ψ12 ψ22

π01 = 0.15

Bias 0.007 0.005 0.008 0.014 0.006 0.010 0.008 0.011 0.001
SE 0.119 0.111 0.139 0.119 0.117 0.137 0.163 0.152 0.197
ESE 0.122 0.108 0.142 0.121 0.113 0.140 0.126 0.121 0.134
MSE 0.014 0.012 0.019 0.014 0.014 0.019 0.026 0.023 0.039
WTCR 0.939 0.959 0.937 0.936 0.958 0.950 0.988 0.985 0.998

π01 = 0.3

Bias 0.003 0.012 0.010 0.008 0.005 0.006 0.007 0.010 0.001
SE 0.130 0.125 0.148 0.144 0.149 0.152 0.179 0.175 0.206
ESE 0.137 0.124 0.147 0.146 0.145 0.154 0.160 0.160 0.148
MSE 0.017 0.016 0.022 0.021 0.022 0.023 0.032 0.031 0.042
WTCR 0.937 0.955 0.954 0.943 0.962 0.950 0.967 0.973 0.992

π10 = 0.15

π01 = 0

Bias 0.004 0.012 0.001 0.002 0.001 0.003 0.001 0.006 0.000
SE 0.107 0.111 0.139 0.107 0.117 0.137 0.155 0.152 0.197
ESE 0.105 0.111 0.135 0.106 0.118 0.137 0.103 0.120 0.135
MSE 0.011 0.012 0.019 0.011 0.014 0.019 0.024 0.023 0.039
WTCR 0.954 0.945 0.952 0.950 0.947 0.949 0.996 0.985 0.996

π01 = 0.15

Bias 0.006 0.004 0.010 0.005 0.015 0.013 0.014 0.026 0.004
SE 0.127 0.141 0.150 0.136 0.158 0.157 0.173 0.181 0.209
ESE 0.126 0.140 0.150 0.136 0.156 0.155 0.137 0.167 0.145
MSE 0.016 0.020 0.023 0.019 0.025 0.025 0.030 0.033 0.044
WTCR 0.959 0.943 0.957 0.951 0.956 0.950 0.986 0.962 0.997

π01 = 0.3

Bias 0.006 0.010 0.001 0.019 0.029 0.002 0.024 0.037 0.003
SE 0.138 0.158 0.157 0.177 0.213 0.187 0.205 0.227 0.231
ESE 0.142 0.161 0.157 0.175 0.216 0.183 0.187 0.225 0.173
MSE 0.019 0.025 0.025 0.032 0.046 0.035 0.042 0.053 0.053
WTCR 0.942 0.937 0.949 0.961 0.945 0.958 0.978 0.956 0.992

π10 = 0.3

π01 = 0

Bias 0.009 0.013 0.005 0.001 0.006 0.005 0.002 0.011 0.002
SE 0.112 0.124 0.148 0.116 0.148 0.152 0.161 0.174 0.206
ESE 0.111 0.123 0.145 0.116 0.152 0.150 0.116 0.160 0.146
MSE 0.013 0.016 0.022 0.014 0.022 0.023 0.026 0.030 0.042
WTCR 0.947 0.954 0.958 0.949 0.947 0.960 0.993 0.976 0.997

π01 = 0.15

Bias 0.002 0.006 0.004 0.013 0.032 0.003 0.017 0.041 0.003
SE 0.134 0.157 0.157 0.162 0.212 0.187 0.193 0.227 0.231
ESE 0.139 0.159 0.158 0.158 0.206 0.184 0.171 0.233 0.175
MSE 0.018 0.025 0.025 0.026 0.046 0.035 0.038 0.053 0.053
WTCR 0.935 0.951 0.947 0.947 0.952 0.956 0.977 0.954 0.992

π01 = 0.3

Bias 0.000 0.021 0.012 0.029 0.050 0.001 0.055 0.110 0.001
SE 0.143 0.171 0.162 0.237 0.319 0.252 0.265 0.337 0.290
ESE 0.148 0.177 0.160 0.236 0.310 0.246 0.272 0.377 0.231
MSE 0.021 0.030 0.027 0.057 0.104 0.064 0.073 0.126 0.084
WTCR 0.941 0.937 0.951 0.963 0.956 0.967 0.971 0.941 0.996
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Table 4.9: Regression parameter values that are set for Analysis 3 in Section 4.5.3

Stage 1 parameters Stage 2 parameters

ζ01 ζ11 ζ21 ζ02 ζ12 ζ22 ζ32 ζ42 ζ52

Set 1 -4.61 4.03 0.09 -3.66 4.24 0.11 0.08 -0.06 0.11
Set 2 -3.81 2.47 0.09 -2.78 2.55 0.11 0.17 -0.06 0.06
Set 3 -3.37 1.52 0.09 -2.32 1.57 0.11 0.16 -0.06 0.05
Set 4 -3.01 0.80 0.09 -1.97 0.84 0.11 0.19 -0.06 0.02
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Chapter 5

Q-Learning with Compound Outcome

and Mixed Misclassification and

Measurement Error in Covariates

5.1 Introduction

In Chapter 4, we investigate the detrimental impact of covariate misclassification on Q-learning

with a univariate outcome, and propose two correction strategies to reduce the bias. Although

most studies on covariate measurement error and misclassification investigate these issues sep-

arately, it is not uncommon to see real-world data with both covariate measurement error and

misclassification. Correcting mixed measurement error and misclassification in covariates have

been discussed under some regression models (Yi et al., 2015; Spiegelman et al., 2000; Zhang

and Yi, 2023). However, no research on such issues is available for developing optimal DTRs

via Q-learning. Unlike the setup in Chapter 4 which considers Q-learning with a univariate out-

come, this chapter deals with Q-learning with bivariate outcomes, and we propose correction

strategies to account for the potential bias induced by mixed misclassification and measurement

error in covariates.

The remainder of the chapter is organized as follows. In Section 5.2, we establish the basic

notation and outline the implementation procedure of Q-learning for bivariate outcomes in an
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ideal scenario without covariate mismeasurement. In Section 5.3, we introduce a setting with

covariate mismeasurement and conduct simulation studies to illustrate the impact of ignoring

mismeasurement on the Q-learning estimation process. In Sections 5.4 and 5.5, we respectively

present two correction methods for mitigating the bias caused by mismeasurement. In Section

5.6, we assess the performance of the proposed methods through simulation studies. In Section

5.7, the proposed methods are applied to real data to demonstrate their utility. In Section 5.8,

we conclude the chapter with discussions.

5.2 Q-Learning with Bivariate Loss/Reward Functions

Most DTR applications focus on univariate outcomes. However, in some DTR applications, a

single outcome is not adequate to fully represent the aspects of the problem. In what follows,

we describe the Q-learning approach with bivariate outcomes. Suppose that the study has K

stages. For k = 1, · · · ,K, let Ak denote the binary action taken at stage k, and let Xk and Ck

respectively denote error-prone binary and continuous covariates, which are both scalar, where

Xk takes on value 0 or 1. Let Zk denote the vector of precisely measured covariates. Covariates

associated with each stage are measured prior to the receipt of the treatment at that stage.

Similar to the notations of univariate Q-learning introduced in Section 1.2.2, for k = 1, · · · ,K,

let Xk =
{
X1, · · · , Xk

}
, Ck =

{
C1, · · · ,Ck

}
, Zk =

{
Z1, · · · ,Zk

}
, and Ak =

{
A1, · · · , Ak

}
.

For k = 1, · · · ,K, let the first and second outcomes at the end of stage k be denoted by Yk1

and Yk2, respectively, and assume larger cumulative outcomes are more desirable. The first and

second outcomes can be represented as a function, say g j(·) with j = 1, 2, of the history of the

treatment, Ak−1, together with the current treatment Ak, and the history of the covariates, Xk, Ck

and Zk, as well as the covariates Xk+1, Ck+1 and Zk+1 in the next stage. That is,

Yk j = g j(Ak, Xk+1,Ck+1,Zk+1) (5.1)

for j = 1, 2 and k = 1, · · · ,K, where Xk+1, Ck+1 and Zk+1 are null when k = K.
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5.2.1 Composite Q-Function

To construct a sequence of optimal decision rules, we first define the Q-functions for the first

and second outcomes for K stages separately for j = 1, 2:

Q j
K(AK , XK ,CK ,ZK) = E(YK j | AK , XK ,CK ,ZK);

Q j
k(Ak, Xk,Ck,Zk) = E

{
Yk j +max

ak+1
E(Y(k+1) j | Ak, Xk+1,Ck+1,Zk+1, ak+1)

∣∣∣ Ak, Xk,Ck,Zk

}
for k = K − 1, · · · , 1.

(5.2)

To delineate these conditional expectations, we can employ regression approaches, such as

linear regression models. For j = 1, 2, consider the regression model

Q j
k(Ak, Xk,Ck,Zk) = βT

k jHk0 + (ψT
k jHk1)Ak for k = K, · · · , 1, (5.3)

where we rewrite Ak−1 ∪ Xk ∪ Ck ∪ Zk as {Hk0,Hk1}, with Hk0 representing the covariates that

have a predictive effect on the outcome, and Hk1 standing for the covariates that interact with

the treatment; Hk0 and Hk1 may include a constant, or intercept, term, and they may include the

same covariates. For j = 1, 2 and k = 1, · · · ,K, βk j and ψk j are the regression coefficients, and

we write θk1 = (βT
k1, ψ

T
k1)T and θk2 = (βT

k2, ψ
T
k2)T.

When interest lies in finding an optimal treatment in response to either the first outcome

or the second outcome separately, we may invoke optimal decision rules to the Q-functions

in (5.3) separately for j = 1, 2, with k = K, · · · , 1. That is, for j = 1, 2, consider d jk =

arg max
ak

Q j
k(Ak−1, Xk,Ck,Zk, ak), which we call them marginally optimal decision rules. It is

noted that the optimal treatment for the first outcome is not necessarily optimal for the second

outcome, and vice versa. That is, considering

d̂k+1 = arg max
ak+1

Q1
k+1(Ak, Xk+1,Ck+1,Zk+1, ak+1; θ̂(k+1)1)

Q2
k+1(Ak, Xk+1,Ck+1,Zk+1, ak+1; θ̂(k+1)2)

 for k = K − 1, · · · , 0,

may turn out to be fruitless because there may not exist a single decision rule that maximizes

both objective functions simultaneously. To get around this problem, we aim to identify an
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optimal treatment in maximizing both first and second outcomes in a combined format.

To take into account both outcomes simultaneously, we introduce a pre-specified weight

parameter δ, taking a value between 0 and 1, and define the composite Q-function as:

Qk(Ak, Xk,Ck,Zk, δ) = δQ1
k(Ak, Xk,Ck,Zk) + (1 − δ)Q2

k(Ak, Xk,Ck,Zk)

for k = K, · · · , 1,
(5.4)

where Q j
k(Ak, Xk,Ck,Zk) is determined by (5.2) for j = 1, 2 and k = K, · · · , 1.

The weight parameter δ allows us to adjust the relative importance of each outcome in the

composite Q-function. When δ is close to 1, the composite Q-function puts more emphasis

on the Q-function for the first outcome, whereas setting δ close to 0 gives more weight to the

Q-function for the second outcome. By combining the Q-functions using a weight parameter

δ, we find a way to balance the two objectives in order to choose a decision rule that is “good

enough” with respect to both Q1
k+1(·) and Q2

k+1(·). By adjusting the value of δ, we can prioritize

one objective over the other, or find a trade-off between the two.

Consequently, for any given δ, combined optimal decision rules, denoted dk, are determined

by

dk = arg max
ak

Qk(Ak−1, Xk,Ck,Zk, ak, δ) for k = K, · · · , 1. (5.5)

The implementation of (5.5) hinges on the knowledge of the Q-functions for the first and second

outcomes, Q j
k(Ak, Xk,Ck,Zk) with j = 1, 2 and k = K, · · · , 1, which can be typically modeled

by regression models, such as (5.3). That is, the composite Q-function (5.4) for k = K, · · · , 1,

can be modeled as

Qk(Ak, Xk,Ck,Zk, δ) = δ
{
βT

k1Hk0 + (ψT
k1Hk1)Ak

}
+ (1 − δ)

{
βT

k2Hk0 + (ψT
k2Hk1)Ak

}
. (5.6)

Parameter Determination

To estimate an optimal DTR, we first estimate the model parameters in the composite Q-

functions in (5.4), which can be achieved by separately estimating parameters associated with

(5.3) using a dataset consisting of n i.i.d. trajectories, each of the form
{
Aki, Xki,Cki,Zki,Yk1i,Yk2i

}
,
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where i = 1, · · · , n. Let D ≜
{{

Aki, Xki,Cki,Zki,Yk1i,Yk2i
}

: k = 1, · · · ,K; i = 1, · · · , n
}
.

To be specific, for δ = 1 and δ = 0, we respectively solve

θ̂k1 = arg min
θk1

1
n

n∑
i=1

[
Ŷk1i − Q1

k(Aki, Xki,Cki,Zki; θk1)
]2

(5.7)

θ̂k2 = arg min
θk2

1
n

n∑
i=1

[
Ŷk2i − Q2

k(Aki, Xki,Cki,Zki; θk2)
]2
, (5.8)

where for stage K, ŶK1i = YK1i, ŶK2i = YK2i; and for k = K − 1, · · · , 1,

Ŷk1i = Yk1i + Q1
k+1(Aki, X(k+1)i,C(k+1)i,Z(k+1)i, d̂(k+1)i; θ̂(k+1)1) (5.9)

and

Ŷk2i = Yk2i + Q2
k+1(Aki, X(k+1)i,C(k+1)i,Z(k+1)i, d̂(k+1)i; θ̂(k+1)2) (5.10)

represent stage k pseudo-outcomes for subject i, and the d̂(k+1)i are obtained by solving

d̂k+1 = arg max
ak+1

{
δQ1

k+1(Ak, Xk+1,Ck+1,Zk+1, ak+1; θ̂(k+1)1)

+ (1 − δ)Q2
k+1(Ak, Xk+1,Ck+1,Zk+1, ak+1; θ̂(k+1)2)

}
for k = K − 1, · · · , 0, (5.11)

which attains at either 0 or 1.

5.2.2 Estimation Equation Method

Alternatively, model parameters in the Q-functions can be estimated using the estimating equa-

tion approach. In what follows, we first discuss the estimation for stage K, utilizing the out-

come measurements
{
YK ji : j = 1, 2; i = 1, · · · , n

}
, and then using the pseudo-outcomes (5.9)

and (5.10), we explain the estimation process for stage k where k = K − 1, · · · , 1.
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For stage K and j = 1, 2, set ℓK ji =
{
YK ji − Q j

K(AKi, XKi,CKi,ZKi; θK j)
}2. Define

S K j(θK j; YK ji, AKi, XKi,CKi,ZKi) =
(
∂ℓK ji

∂βT
K j

,
∂ℓK ji

∂ψT
K j

)T

≜

(
S T

KβK j
(θK j; YK ji, AKi, XKi,CKi,ZKi), S T

KψK j
(θK j; YK ji, AKi, XKi,CKi,ZKi)

)T
,

where

S KβK j(θK j; YK ji, AKi, XKi,CKi,ZKi) ={
YK ji − Q j

K(AKi, XKi,CKi,ZKi; θK j)
}∂Q j

K(AKi, XKi,CKi,ZKi; θK j)
∂βK j

(5.12)

and

S KψK j(θK j; YKi, AKi, XKi,CKi,ZKi) ={
YK ji − Q j

K(AKi, XKi,CKi,ZKi; θK j)
}∂Q j

K(AKi, XKi,CKi,ZKi; θK j)
∂ψK j

. (5.13)

With (5.3) employed, (5.12) and (5.13) are simplified as

S KβK j(θK j; YK ji, AKi, XKi,CKi,ZKi) =
[
YK ji −

{
βT

K jHK0 + (ψT
K jHK1)AK)

}]
HK0 (5.14)

and

S KψK j(θK j; YKi, AKi, XKi,CKi,ZKi) =
[
YK ji −

{
βT

K jHK0 + (ψT
K jHK1)AK)

}]
HK1AK . (5.15)

Both S KβK j(θK j; YK ji, AKi, XKi,CKi,ZKi) and S KψK j(θK j; YK ji, AKi, XKi,CKi,ZKi) are unbiased es-

timating functions, and thus, solving the estimating equations

n∑
i=1

S K j(θK j; YKi, AKi, XKi,CKi,ZKi) = 0 (5.16)

for θK j yields consistent estimator of θK j, provided regularity conditions.
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Similarly, for stage k with k = K − 1, · · · , 1, and j = 1, 2, let

ℓ̂k ji =
{
Ŷk ji − Q j

k(Aki, Xki,Cki,Zki; θk j)
}2

and define

Ŝ k j(θk j; Ŷk ji, Aki, Xki,Cki,Zki) =
(
∂ℓ̂k ji

∂βT
k j

,
∂ℓ̂k ji

∂ψT
k j

)T

.

Then, an estimator of θk j, denoted θ̂k j, is obtained by solving

n∑
i=1

Ŝ k j(θk j; Ŷk ji, Aki, Xki,Cki,Zki) = 0 (5.17)

for θk j.

5.3 Mismeasurement and Naive Analysis

In this section, we consider the case where Xk and Ck are subject to mismeasurement for

k = 1, · · · ,K. We examine numerically the impact of naively implementing the Q-learning

procedure in Section 5.2, with the mismeasurement effects ignored.

5.3.1 Measurement Error and Misclassification Models

For k = 1, · · · ,K, let X∗k and C∗k , respectively, denote the observed versions of the true covari-

ates Xk and Ck, and let X
∗

k =
{
X∗1, · · · , X

∗
k

}
and C

∗

k =
{
C∗1, · · · ,C

∗
k

}
.

For j = 0, 1 and l = 1 − j, let π jl,i = P(X∗ki = j | Aki, X
∗

(k−1)i, X(k−1)i, Xki = l,C
∗

ki,Cki,Zki)

denote the misclassification probabilities that may depend on either the true or mismeasured

covariates or both. To model the misclassification probabilities, one may employ regression

models for binary data, such as logistic regression models. For the misclassification process, it

is convenient to assume that P(X∗ki = j | Aki, X
∗

(k−1)i, X(k−1)i, Xki = l,C
∗

ki,Cki,Zki) = P(X∗ki = j |

Xki = l), enabling us to express misclassification probabilities as

Π =

1 − π10 π01

π10 1 − π01

 , (5.18)



111

which corresponds to homogeneous misclassification across all subjects.

Now, we describe the measurement error process for the continuous covariates. Let h(C∗ki |

Aki,C
∗

(k−1)i,Cki, X
∗

ki, Xki,Zki) denote the conditional probability density function of C∗ki, given

Aki ∪C
∗

(k−1)i ∪Cki ∪ X
∗

ki ∪ Xki ∪ Zki. Similar to the misclassification case, one may assume that

h(C∗ki | Aki,C
∗

(k−1)i,Cki, X
∗

ki, Xki,Zki) = h(C∗ki | Cki) for simplicity. We can then use a parametric

model, say f (C∗ki | Cki;α) with parameter α, to modulate h(C∗ki | Cki). For example, we consider

the regression model

C∗ki = ξ0 + ξ1Cki + eki,

where the error terms eki have mean 0 and variance σ2
k , ξ0 is the intercept, and ξ1 is the coeffi-

cient. In this instance, α included ξ0, ξ1 and σ2
k for k = 1, · · · ,K. Setting ξ0 to be a zero vector

and ξ1 to be the identity matrix gives a classical additive model of the form

C∗ki = Cki + eki. (5.19)

Similar to the development in Section 4.2.1, we assume that for k = 1, · · · ,K and j = 1, 2,

h(Yk j | Y (k−1) j, AK , XK ,CK ,ZK , X
∗

K ,C
∗

K) = h(Yk j | Ak, Xk+1,Ck+1,Zk+1). (5.20)

Assumption (5.20) says that at stage k, given the history of outcomes Y (k−1) j and the information

AK ∪XK ∪CK ∪ZK ∪X
∗

K ∪C
∗

K over the entire course, the conditional distribution of Yk j depends

only on the history Ak ∪ Xk ∪Ck ∪ Zk at stage k as well as the covariates Xk+1, Ck+1 and Zk+1 at

the next stage.

5.3.2 Naive Q-Learning Procedure

Ignoring mismeasurement, one may naively use X∗k and C∗k to replace the unobserved true

covariates Xk and Ck to repeat the Q-learning procedure in Section 5.2, with naive Q-functions

defined as
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Q j∗
K (AK , X

∗

K ,C
∗

K ,ZK) = E(YK j | AK , X
∗

K ,C
∗

K ,ZK);

Q j∗
k (Ak, X

∗

k,C
∗

k,Zk) = E
{
Yk j +max

ak+1
E(Y(k+1) j | Ak, X

∗

k+1,C
∗

k+1,Zk+1, ak+1)
∣∣∣ Ak, X

∗

k,C
∗

k,Zk

}
for k = K − 1, · · · , 1, and j = 1, 2.

(5.21)

We then use the naive counterpart regression model of (5.3) to characterize Q j∗
k (Ak, X

∗

k,C
∗

k,Zk)

as

Q j∗
k (Ak, X

∗

k,C
∗

k,Zk) = β∗Tk j H∗k0 + (ψ∗Tk j H∗k1)Ak, (5.22)

where {H∗k0,H
∗
k1} are counterparts of Hk0 and Hk1 with Xk and Ck replaced by X∗k and C∗k , re-

spectively. Let θ∗k1 = (β∗Tk1 , ψ
∗T
k1 )T and θ∗k2 = (β∗Tk2 , ψ

∗T
k2 )T denote the regression coefficients for the

naive Q-functions associated with the first and second outcomes, respectively. Then the naive

composite Q-function is constructed as:

Q∗k(Ak, X
∗

k,C
∗

k,Zk, δ) = δQ1∗
k (Ak, X

∗

k,C
∗

k,Zk) + (1 − δ)Q2∗
k (Ak, X

∗

k,C
∗

k,Zk)

for k = K, · · · , 1
(5.23)

and subsequently yielding

Q∗k(Ak, X
∗

k,C
∗

k,Zk, δ) = δ
{
β∗ T

k1 H∗k0 + (ψ∗ T
k1 H∗k1)Ak

}
+ (1 − δ)

{
β∗ T

k2 H∗k0 + (ψ∗ T
k2 H∗k1)Ak

}
, (5.24)

for k = K, · · · , 1.

Suppose we have measurements of a random sample with size n,D∗ =
{{

Aki, X∗ki,C
∗
ki,Zki,Yk1i,

Yk2i
}

: k = 1, · · · ,K; i = 1, · · · , n
}
. Then the regression coefficients at each stage in (5.2) are

naively estimated by repeating (5.7) and (5.8) with Xki and Cki replaced by X∗ki and C∗ki, i.e.,

θ̂∗k1 = arg min
θ∗k1

1
n

n∑
i=1

[{
Ŷ∗k1i − Q1∗

k (Aki, X
∗

ki,C
∗

ki,Zki; θ∗k1)
]2

(5.25)
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and

θ̂∗k2 = arg min
θk2

1
n

n∑
i=1

[{
Ŷ∗k2i − Q2∗

k (Aki, X
∗

ki,C
∗

ki,Zki; θ∗k2)
]2
, (5.26)

where for k = K, Ŷ∗K1i = YK1i and Ŷ∗K2i = YK2i, and for k = K − 1, · · · , 1,

Ŷ∗k1i = Yk1i + Q1∗
k+1(Aki, X

∗

(k+1)i,C
∗

(k+1)i,Z(k+1)i, d̂∗(k+1)i; θ̂
∗
(k+1)1)

and

Ŷ∗k2i = Yk2i + Q2∗
k+1(Aki, X

∗

(k+1)i,C
∗

(k+1)i,Z(k+1)i, d̂∗(k+1)i; θ̂
∗
(k+1)2),

Consequently, the naive optimal decision rules, denoted d̂∗(k+1)i, are determined by (5.11) with

θk j replaced by θ̂∗k j for j = 1, 2 and
{
Xki,Cki

}
replaced by

{
X∗ki,C

∗
ki

}
. That is,

d̂∗k+1 = arg max
ak+1

{
δQ1∗

k+1(Ak, X
∗

k+1,C
∗

k+1,Zk+1, ak+1; θ̂∗(k+1)1)

+ (1 − δ)Q2∗
k+1(Ak, X

∗

k+1,C
∗

k+1,Zk+1, ak+1; θ̂∗(k+1)2)
}

for k = K − 1, · · · , 0. (5.27)

5.3.3 Simulation Studies

In this subsection, we conduct a simulation study to investigate the performance of the naive

Q-learning procedure described in Section 5.3.2 in the presence of mixed misclassification and

measurement error. We consider a randomized treatment setting and set K = 2.

For j = 1, 2, let µY2 j = E(Y2 j | X2, A1, A2,C2,Z2) and let µY1 j = E(Y1 j | X1, A1,C1,Z1). Then,

for j = 1, 2 consider models

Y2 j = µY2 j + ϵ2 j and Y1 j = µY1 j + ϵ1 j,

where

µY2 j = η0 j + η1 jZ2 + η2 jX2 + η3 jA1 + η4 jA2 + η5 jX2A2 + η6 jC2A2,

µY1 j = γ0 j + γ1 jZ1 + γ2 jX1 + γ3 jA1 + γ4 jX1A1 + γ5 jC1A1,
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and ϵ2 j and ϵ1 j are the error terms independently generated from N(0, 1) for j = 1, 2.

Two binary treatments A1 and A2, taking values 0 and 1, are generated independently from

the Bernoulli distribution, Bernoulli(0.5). Error-free covariates Z1 and Z2 are independently

generated by Z1 ∼ Bernoulli(0.5) and Z2 ∼ Bernoulli(0.5). Error-prone binary covariate X1

is independently generated by X1 ∼ Bernoulli(0.5), and error-prone binary covariate X2 is

generated from the conditional distribution X2 | A1 ∼ Bernoulli
(

exp(νA1)
1+exp(νA1)

)
, with ν set as 0.45.

Error-prone continuous covariates are independently generated by C1 ∼ N(0, 1) and C2 ∼

N(0, 1).

Similar to the parameter settings considered in Section 4.2.3, we consider three settings for

the model parameters in the Q-functions, including regular, weak non-regular, and non-regular

settings. In the regular setting, the parameter values are set as (η01, η11, η21, η31, η41, η51, η61)T =

(1.5, 0.25, 0.8,−0.25,−2, 1.5, 1.75)T, (η02, η12, η22, η32, η42, η52, η62)T = (0.5, 0.75, 1.5,−0.15,

− 1.2, 0.95, 1.1)T, (γ01, γ11, γ21, γ31, γ41, γ51)T = (0.5, 0.15, 0.5,−1.5, 1.25, 0.95)T, and (γ02, γ12,

γ22, γ32, γ42, γ52)T = (0.75, 0.2, 0.85,−1.85, 0.85, 1.45)T. In the weak non-regular setting, we

take (η01, η11, η21, η31, η41, η51, η61)T = (1.5, 0.25, 0.8,−0.25,−2, 2.02, 0)T, (η02, η12, η22, η32, η42,

η52, η62)T = (0.5, 0.75, 1.5,−0.15,−1.2, 1.22, 0)T, (γ01, γ11, γ21, γ31, γ41, γ51)T = (0.5, 0.15, 0.5,

− 1.5, 1.25, 0.95)T, and (γ02, γ12, γ22, γ32, γ42, γ52)T = (0.75, 0.2, 0.85,−1.85, 0.85, 1.45)T. In

the non-regular setting, the parameter values are specified as (η01, η11, η21, η31, η41, η51, η61)T =

(1.5, 0.25, 0.8,−0.25,−0.2, 0.2, 0)T, (η02, η12, η22, η32, η42, η52, η62)T = (0.5, 0.75, 1.5,−0.15,−0.1,

0.1, 0)T, (γ01, γ11, γ21, γ31, γ41, γ51)T = (0.5, 0.15, 0.5,−1.5, 1.25, 0.95)T, and (γ02, γ12, γ22, γ32, γ42,

γ52)T = (0.75, 0.2, 0.85,−1.85, 0.85, 1.45)T.

The Q-functions for the two stages are specified as

Q j
2(A1, X2,C2,Z2, A2) = β02 j + β12 jZ2 + β22 jX2 + β32 jA1 + (ψ02 j + ψ12 jX2 + ψ22 jC2)A2, (5.28)

and

Q j
1(X1,C1,Z1, A1) = β01 j + β11 jZ1 + β21 jX1 + (ψ01 j + ψ11 jX1 + ψ21 jC1)A1, (5.29)

where for j = 1, 2, βk2 j (with k = 0, 1, 2, 3), βk1 j (with k = 0, 1, 2), ψk2 j (with k = 0, 1, 2), and

ψk1 j (with k = 0, 1, 2) are regression parameters. Based on the coefficients of A2 and A1, the
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optimal DTR is given by the decision rules:

d2 = sign
{
δ(ψ021 + ψ121X2 + ψ221C2) + (1 − δ)(ψ022 + ψ122X2 + ψ222C2)

}
;

d1 = sign
{
δ(ψ011 + ψ111X1 + ψ211C1) + (1 − δ)(ψ012 + ψ112X1 + ψ212C1)

}
,

where sign(t) = 1 if t > 0, and 0 otherwise.

With the misclassification matrix (5.18) and classical additive model (5.19), we gener-

ate surrogate values X∗k of Xk and C∗k of Ck with k = 1, 2. We consider three different set-

tings for misclassification probabilities and measurement error degree, with (π10, π01, σ
2
k)T =

(0.1, 0.1, 1)T, (0.2, 0.2, 1.5)T, or (0.3, 0.3, 2)T.

To run simulations, we use the proceeding models to generate data of size n = 1000, and

we repeat 1000 simulations for each parameter configuration. We implement the Q-learning

algorithm in Section 5.3.2 to the observed data {Z1, X∗1,C
∗
1, A1,Y11,Y12,Z2, X∗2,C

∗
2, A2,Y21,Y22},

called the “naive method”, as opposed to the Q-learning procedure in Section 5.2.1 to the

true data {Z1, X1,C1, A1,Y11,Y12,Z2, X2,C2, A2,Y21,Y22}, called the “error-free least squares”

(EFLS) method.

In Table 5.1, we report the numerical results for stages 1 and 2 over 1000 simulations for

the regular, weak non-regular, and non-regular settings, where “Bias”, “SE”, “ESE”, “MSE”,

“WTCR”, “PBCR”, and “DBCR” are defined in the same way as those defined in Section 4.2.3.

Same as in Section 4.2.3, we use 1000 bootstrap iterations to calculate the PB CIs and the DB

CIs which are based on 1000 first-stage and 100 second-stage bootstrap iterations. We assign

the weight parameter δ as 0.9. The results are presented in Table 5.1, which demonstrate the

favorable performance of the EFLS method in the regular setting, characterized by minimal

biases and MSEs, as well as satisfactory CRs of 95% CIs for both stages 1 and 2. However, for

the weak non-regular setting, the stage 1 parameter estimates derived from the EFLS method

may exhibit certain levels of bias, particularly notable in the case of ψ0kδ and ψ1kδ. Noticeably,

the CRs of 95% PB CIs indicate satisfactory performance overall, except for ψ0kδ in the non-

regular setting. We also examine W-type CIs for weak non-regular and non-regular settings in

stage 1 (results are not reported here) and observe poor coverage.

The results obtained from the naive method for both stages 1 and 2 reveal suboptimal per-
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formance characterized by significant biases, high MSEs, and unacceptably low CRs. The

extent of biases due to covariate mismeasurement intensifies as the degrees of mismeasure-

ment increase. These findings underscore the significance of addressing the impact of mis-

measurement and introducing suitable correction methodologies to enhance the accuracy of

estimations.

5.4 Mismeasurement Correction: Regression Calibration

Here we describe the application of the RC method for the case where an additional set of

measurements, known as validation data, is available in addition to the main study data with

surrogate measurements together with measurements for other variables. The validation data

can be used to estimate the magnitude of the mismeasurements associated with the covari-

ates X j and C j. To employ the RC approach, we construct approximate measures for these

error-prone covariates, which are subsequently used in the Q-learning method as outlined in

Section 5.2. This involves replacing the error-prone covariates X j and C j with their respective

approximated measures, enabling a more accurate estimation process.

Assume internal validation dataDV =
{{

Aki, Xki, X∗ki,Cki,C∗ki,Zki,Yk1i,Yk2i
}

: k = 1, · · · ,K;

i ∈ V
}

are available, whereV is a subset ofM ≜ {1, · · · , n}. With the observed dataD∗, let

X∗∗ki = E(Xki | A(k−1)i, X
∗

ki,C
∗

ki,Zki) and C∗∗ki = E(Cki | A(k−1)i, X
∗

ki,C
∗

ki,Zki)

for k = 1, · · · ,K.

Following the same idea given in Section 4.3, we make use of regression modeling tech-

niques to determine X∗∗ki and C∗∗ki for i = 1, · · · , n. Regarding the determination of X∗∗ki , let

π(k)
i = P(Xki = 1 | A(k−1)i, X

∗

ki,C
∗

ki,Zki) for k = 1, · · · ,K to express X∗∗ki , because Xki is the binary

covariate taking value 0 or 1. Then, we consider a logistic regression model to delineate π(k)
i :

logit π(k)
i = mXk(A(k−1)i, X

∗

ki,C
∗

ki,Zki; ζXk
), (5.30)

where mXk(·) is a specified function, and ζXk
is the associated parameter.
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To delineate C∗∗ki , we employ a linear regression model

C∗∗ki = mCk(A(k−1)i, X
∗

ki,C
∗

ki,Zki; ζCk
), (5.31)

where mCk(·) is a specified function, and ζCk
is the associated parameter.

Next, regression models (5.30) and (5.31) are fitted using the validation dataDV , resulting

in the estimation of ζXk
and ζCk

, denoted as ζ̂Xk
and ζ̂Ck

, respectively. These estimates are then

used to determine estimates of X∗∗ki and C∗∗ki . The implementation of the calibrated Q-learning

algorithm can be modified in stages K to 1 with different treatments of Xki and Cki, where

measurements for Xki and Cki are used for i ∈ V, and X̂∗∗ki and Ĉ∗∗ki are used to replace Xki and

Cki for i ∈ M \V.

5.5 Mismeasurement Correction: Estimating Equation Ap-

proach

While regression calibration provides a simple approach to addressing mismeasurement in co-

variates, this method does not always ensure the consistency for the model parameter estima-

tion. In this section, we develop an alternative approach by employing estimating function

theory, and present criteria for developing unbiased estimating functions. We first describe the

unbiased estimating function approach for stage K, and then extend it to other stages to create

working estimating functions along the lines in Section 4.4.

5.5.1 Corrected Estimation Functions with Known Misclassification Prob-

abilities and Measurement Error Degree

Assume that the misclassification probabilities in (5.18) and the variance of eki in (5.19) are

known. In what follows, we first describe how to correct for mismeasurement-induced bias in

stage K, and then we discuss estimation pertinent to stage k for k = K − 1, · · · , 1.
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Estimation Related to Stage K

If the true covariates Xki and Cki for k = 1, · · · ,K and i = 1, · · · , n are not available, but

surrogate values X∗ki and C∗ki are instead collected, then directly using (5.16) with Xki and Cki

replaced by X∗ki and C∗ki may result in inconsistent estimators.

Similar to the idea discussed in Section 4.4.1, our goal here is to construct an unbiased es-

timating function, say S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi), such that its conditional expectation re-

covers the unbiased estimating function, i.e., S K j(θK j; YK ji, AKi, XKi,CKi,ZKi) constructed from

using the true covariates together with
{
YK ji, AKi,ZKi

}
,

E{S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) | YK ji, AKi, XKi,CKi,ZKi} = S K j(θK j; YK ji, AKi, XKi,CKi,ZKi).

(5.32)

For ease of referral, we call S K j(θK j; YK ji, AKi, XKi,CKi,ZKi) a “true” estimating function, and

S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) a “corrected” estimating function. With (5.32), it is immediate

that S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) is an unbiased estimating function due to that

E{S K j(θK j; YK ji, AKi, XKi,CKi,ZKi)} = 0.

Then estimating function theory shows that solving

n∑
i=1

S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) = 0

for θK j yields consistent estimator for θK j, provided regularity conditions (Yi, 2017, Section

2.5).

Since the dependence of (5.14) and (5.15) on Xk and Ck is reflected respectively by
{
Xk, XkXT

k

}
and

{
Ck,C2

k

}
for k = 1, · · · ,K, to find S ∗K j(θK j; YK ji, AKi, X

∗

Ki,C
∗

Ki,ZKi) to meet (5.32), it suffices

to find unbiased surrogates for
{
Xk, XkXT

k

}
and

{
Ck,C2

k

}
in the following sense. To be specific,

we aim to find functions of X∗k , say X∗∗k and X∗∗∗k , and functions of C∗k , say C∗∗k and C∗∗∗k , such

that

E
{
X∗∗k | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
= Xk; E

{
X∗∗∗k | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
= XkXT

k ; (5.33)



119

and

E
{
C∗∗k | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
= Ck; E

{
C∗∗∗k | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
= C2

k . (5.34)

To construct X∗∗k and X∗∗∗k , we apply the technique of Akazawa et al. (1998). For t = 1, 2,

let et denote a 2× 1 vector with 1 in the t position and zero elsewhere. We now express the two

values, 0 and 1, for the binary variable Xk (or X∗k ) as two 2 × 1 vectors. If Xk = 1, then a 2 × 1

vector with the first element set as 0 and the second element set as 1; if Xk = 0, then we create

a 2 × 1 vector with the first element set to be 1 and the second element set to be 0. That is,

Xk = 1 and Xk = 0 can be represented by e2 and e1, respectively. Similarly, X∗k = 1 and X∗k = 0

are represented by e2 and e1, respectively.

Theorem 5.5.1 Define

X∗∗k = Π
−1X∗k and X∗∗∗k =

2∑
t=1

{
X∗∗Tk et

}
eteT

t .

Then (5.33) holds.

Proof First, for l = 0, 1 we have that

E
{
X∗ki | Xki = l

}
=

π0l

π1l

 and Π−1

π0l

π1l

 = el+1.

Consequently,

E
{
X∗∗ki | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
= E

{
Π−1X∗ki | Yk1i,Yk2i, Aki, X(k−1)i, Xki = l,Cki,Zki

}
= Π−1E

{
X∗ki | Yk1i,Yk2i, Aki, X(k−1)i, Xki = l,Cki,Zki

}
= Π−1

π0l

π1l

 = el+1 = Xki,

(5.35)

where the associated assumptions are made.



120

Similarly, using (5.35), we have that

E
{
X∗∗∗ki | Yk1i,Yk2i, Aki, Xki,Cki,Zki

}
=E

{ 2∑
t=1

{
X∗∗Tki et

}
eteT

t

∣∣∣ Yk1i,Yk2i, Aki, X(k−1)i, Xki = l,Cki,Zki

}

=

{ 2∑
t=1

{
XT

kiet

}
eteT

t

}
=XkiXT

ki.

□

The construction of C∗∗k and C∗∗∗k is straightforward by the classical additive error model

(5.19). Setting C∗∗k = C∗k and C∗∗∗k = C∗2k − σ
2
k makes (5.34) hold.

Consequently, we define S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) to be S K j(θK j; YK ji, AKi, XKi,CKi,ZKi)

with
{
Xki, XkiXT

ki

}
and

{
Cki,C2

ki

}
replaced by their unbiased surrogates

{
X∗∗ki , X

∗∗∗
ki

}
and

{
C∗∗ki ,C

∗∗∗
ki

}
,

respectively. Let θ̂K jc = (β̂T
K jc, ψ̂

T
K jc)

T denote the resultant estimator of θK j by solving

n∑
i=1

S ∗K j(θK j; YK ji, AKi, X
∗

Ki,C
∗

Ki,ZKi) = 0 (5.36)

for θK j. Under regularity conditions,
√

n
(
θ̂K jc − θK j

) d
−−→ N

(
0,Σ(θK j)

)
as n → ∞, where

Σ(θK j) =
{
I(θK j)

}−1
J(θK j)

{
I(θK j)

}−1T
, with

I(θK j) = E
{∂S ∗K j(θK j; YK ji, AKi, X

∗

Ki,C
∗

Ki,ZKi)

∂θK j

}
and

J(θK j) = E
[
S ∗K j(θK j; YK ji, AKi, X

∗

Ki,C
∗

Ki,ZKi)
{
S ∗K j(θK j; YK ji, AKi, X

∗

Ki,C
∗

Ki,ZKi)
}T

]
(Yi, 2017, Section 1.3).
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Estimation Related to Stage k < K

In the error-free setting, estimation in stage k can be carried out by solving (5.17). However,

in the case where accurate measurements of Xki and Cki are not available, (5.17) may produce

unreliable results if directly replacing Xki and Cki with their observed surrogate measurements

X∗ki and C∗ki. Similar to the consideration for stage K, we modify Ŝ k j(θk j; Ŷk ji, Aki, Xki,Cki,Zki)

in (5.17) by replacing
{
Xki, XkiXT

ki

}
and

{
Cki,C2

ki

}
with their respective unbiased surrogates,{

X∗∗k , X
∗∗∗
k

}
and

{
C∗∗k ,C

∗∗∗
k

}
. Additionally, the pseudo-outcome Ŷk ji depends on Xki and Cki, and

therefore, it needs to be modified accordingly by replacing Xki and Cki with their unbiased sur-

rogates. Let Ŝ ∗k j(θk j; Ŷ∗k ji, Aki, X
∗

ki,C
∗

ki,Zki) denote the modified estimating function. Then, for

k = K − 1, · · · , 1, we solve

n∑
i=1

Ŝ ∗k j(θk j; Ŷ∗k ji, Aki, X
∗

ki,C
∗

ki,Zki) = 0 (5.37)

for θk j, and let θ̂k jc denote the resulting estimator of θk j.

5.5.2 Corrected Estimation Functions with Unknown Misclassification

Probabilities and Measurement Error Degree

The implementation of the correction procedure described in Section 5.5.1 is contingent upon

the availability of prior knowledge regarding the misclassification and measurement error mech-

anisms. However, in many applications, such prior information is often unavailable, necessitat-

ing the estimation of misclassification probabilities and measurement error degree. To this end,

using a validation subsample can be instrumental in addressing this challenge. In this section,

we propose an adaptation of the estimation equation method proposed in Section 5.5.1, which

accounts for the unknown mismeasurement degrees. Our analytical procedure is based on two

sets of data, namely, the main study sampleD∗ and the internal validation subsampleDV . The

validation sample, which comprises a smaller group of m individuals, is drawn from the main

study sample, where m ≤ n.
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Estimation of Misclassification Probabilities and Measurement Error Degree

First, we present the process for estimating misclassification probabilities, which is analogous

to the procedure discussed in Section 4.4.2, albeit with minor notational modifications.

We start by defining the misclassification probabilities for the error-prone binary covariate

Xki as follows: for i ∈ M and k = 1, · · · ,K,

πki01 = P(X∗ki = 0 | Xki = 1, A(k−1)i ∪ Xki ∪Cki ∪ Zki \ Xki)

and

πki10 = P(X∗ki = 1 | Xki = 0, A(k−1)i ∪ Xki ∪Cki ∪ Zki \ Xki).

To describe how misclassification probabilities are associated with covariates, we employ

logistic regression models

logit πki10 = α
T
k0Wki0;

logit πki01 = α
T
k1Wki1,

(5.38)

where αkl denotes the vector of regression coefficients and Wkil may include 1 and a subset

of covariates
{
Xki = l

}
∪ A(k−1)i ∪ Xki ∪ Cki ∪ Zki \ Xki that reflects different misclassification

mechanisms for l = 0, 1. Having 1 inWkil allows the inclusion of the intercept in (5.38), and

Wkil may contain the entire covariate vector {Xki = l
}
∪ A(k−1)i ∪ Xki ∪ Cki ∪ Zki \ Xki or just

constant 1 alone, where the latter case corresponds to homogeneous misclassification across

all subjects. Let αk = (αT
k0, α

T
k1)T denote the parameter vector for k = 1, · · · ,K.

For i = 1, · · · , n and k = 1, · · · ,K, let

Lki(αk) = P(X∗ki = x∗ki | Xki = xki, A(k−1)i ∪ Xki ∪Cki ∪ Zki \ Xki)

which equals
{
π

x∗ki
ki10(1 − πki10)1−x∗ki

}1−xki ·
{
π

1−x∗ki
ki01 (1 − πki01)x∗ki

}xki for xki, x∗ki = 0, 1. Write α =

(αT
1 , · · · , α

T
K)T. Let S ki(αk) = ∂ log Lki(αk)/∂αk and let

S i(α) =
(
S T

1i(α1), · · · , S T
Ki(αK)

)T
.
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With internal validation data, solving

∑
i∈V

S i(α) = 0

for α yields the maximum likelihood estimate, denoted α̂ = (α̂T
1 , · · · , α̂

T
K)T, of α.

Next, we present the procedure for estimating the measurement error degree for the error-

prone covariate Cki. Consider the classical additive model (5.19). With a validation sample

available, it is possible to estimate the parameters associated with (5.19), regardless of the

distribution form of eki. Here for illustrations, we assume that eki follows a normal distribution

with mean 0 and unknown variance σ2
k . Our goal is to estimate the unknown parameter σ2

k so

as to construct the unbiased surrogate C∗∗∗k .

For i ∈ V and k = 1, · · · ,K, let

Lki

(
σ2

k

)
=

(
2πσ2

k

)−1/2
exp

−
(
c∗ki − cki

)2

2σ2
k

 (5.39)

denote the probability density function of C∗ki −Cki and let ℓki(σ2
k) = ∂ log Lki(σ2

k; eki)/∂σ2
k . Let

σ2 =
(
σ2

1, · · · , σ
2
K

)T
and define ℓi(σ2) =

(
L1i(σ2

1), · · · , LKi(σ2
K)

)T
.

We then estimate σ2 by solving

∑
i∈V

ℓi(σ2) = 0, (5.40)

and let σ̂2 =
(
σ̂2

1, · · · , σ̂
2
K

)T
denote the resultant estimator of σ2.

Estimation for the Parameters of Q-Functions

For notational simplicity, let S ∗K ji(θK j, α, σ
2) represent S ∗K j

(
θK j, α, σ

2; YK ji, ĀKi, X̄∗Ki, C̄
∗
Ki, Z̄Ki

)
in

(5.36) with the dependence on α and σ2 spelled out, and let S K ji(θK j) represent S K j ( θK j; YK ji,

ĀKi, X̄Ki, C̄Ki, Z̄Ki ) in (5.16). For stage K, we then estimate θK j by solving

∑
i∈M\V

S ∗K ji(θK j, α̂, σ̂
2) +

∑
i∈V

S K ji(θK j) = 0
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for θK j, and let θ̂K j denote the resultant estimator of θK j.

For j = 1, 2, let ϑ j = (βT
K j, ψ

T
K j, α

T, σ2T)T and let ϑ̂ j = (θ̂T
K j, α̂

T, σ̂2T)T. Under regularity

conditions and that the ratio m/n approaches a positive constant, say ρ, as n → ∞, ϑ̂ j is a

consistent estimator of ϑ j, and

√
n(ϑ̂ j − ϑ j)

d
−−→ N(0,ΣV j) as n→ ∞

where ΣV j = A−1
V jBV jA−1T

V j , with

AV j = −(1 − ρ)

E
(∂S ∗K ji(θK j,α,σ

2)

∂θK j

)
E
(∂S ∗K ji(θK j,α,σ

2)

∂α
E
(∂S ∗K ji(θK j,α,σ

2)

∂σ2

)
0 0 0


− ρ


E
(∂S K ji(θK j)

∂θK j

)
0 0

0 E
(S i(α)
∂α

)
0

0 0 E
( ℓi(σ2)
∂σ2

)
 , (5.41)

and

BV = (1 − ρ)

E
{
S ∗K ji(θK j, α, σ

2)S ∗TK ji(θK j, α, σ
2)
}

0 0

0 0 0


+ ρ


E
{
S K ji(θK j)S T

K ji(θK j)
}

0 0

0 E
{
S i(α)S T

i (α)
}

0

0 0 E
{
ℓi(σ2)ℓT

i (σ2)
}
 . (5.42)

Finally, for k = K − 1, · · · , 1, estimator of θk j can be obtained by solving (5.37), where πk10

and πk01 are determined by (5.38) with α replaced by α̂, and σ2
k is replaced with its estimate

determined by (5.40).

5.6 Simulation Study

In this section, we conduct simulation studies to evaluate the finite sample performance of the

methods described in Sections 5.4 and 5.5. To accomplish this, we employ the same configura-
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tion and parameter settings as in Section 5.3.3 to generate the main study data
{{

Aki, X∗ki,C
∗
ki,Zki,

Yk1i,Yk2i
}

: k = 1, · · · ,K; i ∈ M
}
. Additionally, we create an internal validation subsample by

randomly selecting 30% of the study subjects fromM and record their precise measurements of

{Xki,Cki : k = 1, · · · ,K; i ∈ V} to form the validation subsampleDV =
{{

Aki, Xki, X∗ki,Cki,C∗ki,Zki,

Yk1i,Yk2i
}

: k = 1, · · · ,K; i ∈ V
}
.

We examine the data using three methods. The first method, referred to as “RC”, applies

the approach outlined in Section 5.4 to both D∗ and DV . The second method, termed as “EE-

known”, applies the method described in Section 5.5.1 to the data in D∗, assuming that the

misclassification probabilities and measurement error degrees are known. Lastly, the third

method, named “EE-estimated”, employs the procedure described in Section 5.5.2 to both D∗

andDV , where the misclassification probabilities and measurement error degrees are estimated

usingDV .

Tables 5.2-5.4 present the numerical results pertaining to stages 1 and 2 for the proposed

methods across regular, weak non-regular, and non-regular settings. The definitions of “Bias”,

“SE”, “ESE”, “MSE”, “WTCR”, “PBCR”, and “DBCR” correspond to those elucidated in

Section 4.5. It is evident that both the RC and EE methods yield satisfactory results in terms

of bias, with the RC method exhibiting relatively lower levels of bias compared to the EE

methods. Moreover, it is observed that the EE methods yield high SEs, consequently leading

to higher MSEs, which tend to escalate as the degrees of mismeasurement increase. Unsur-

prisingly, the performance of the correction methods deteriorates as mismeasurement degrees

increase. Regardless of the regularity condition of the parameters, the PB 95% CIs associated

with the RC and EE methods exhibit over-coverage. Conversely, the DB 95% CIs derived from

the RC and EE methods display under-coverage, regardless of the regularity condition of the

parameters. The W-type 95% CIs for the RC method have reasonable coverage, while for the

EE methods, they may have over-coverage.

Following the methodology described in Section 4.5.2, we present the proportion of opti-

mally treated future patients in Table 5.5, where in Scenario 1, the true covariate measurements

are treated as available, and in Scenario 2, the true error-prone binary and continuous covariate

measurements are unavailable but their surrogate measurements are available. The results ob-

tained from Scenario 1 reveal that, in stage 1, both the RC and EE methods surpass the naive
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method. In stage 2, it is evident that both the RC and EE methods outperform the naive method

in regular and weak non-regular settings. However, in the non-regular setting, the naive method

yields larger APCOT values than the RC and EE methods.

Turning our attention to Scenario 2, the findings demonstrate that the RC method yields

superior results for stage 1 estimation compared to the naive method. Furthermore, when the

mismeasurement degree is set to be (0.1, 0.1, 1), the EE-estimated method outperforms the

naive method. However, for other mismeasurement degrees, the naive method consistently

yields larger values of APCOT compared to the EE-estimated method. The comparison of

the EE-known method and the naive method shows that the naive method consistently yields

larger APCOT values, regardless of the mismeasurement degree. For stage 2, in both regular

and weak non-regular settings, both the RC and EE-estimated methods outperform the naive

method. However, in the non-regular setting, the naive method results in larger APCOT values

compared to both the RC and EE-estimated methods. The EE-known method exhibits superior

performance to the naive method only for the weak non-regular setting.

5.7 Data Analysis

We collect publicly available COVID-19 data on 164 countries for a period of about ten months

with time windows beginning from the date of the first confirmed COVID-19 case in each

country; and the study periods of all those 164 countries span from April 1, 2020 to September

30, 2020. The data contain the information about containment and closure policies including

workplace closure and international travel control, as well as health system policies including

testing and contact tracing policies. In addition, the data include the information at the country

level over the study period concerning the number of COVID-19 cases per million people,

the total number of COVID-19 deaths, the economic growth percent change in quarterly real

gross domestic product, the care system quality score, obesity prevalence, smoking prevalence,

substance use prevalence, and socioeconomic factors.

Information regarding containment and closure policies as well as health system policies

is collected from the OxCGRT (Hale et al., 2021). As in Section 3.3.1, the strictness score of
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implementing each of the preventive policies on day t, denoted I j,t, is calculated by:

I j,t = 100
{v j,t − 0.5(F j − f j,t)

N j

}
j = 1, · · · , 7,

where v j,t, F j, f j,t, and N j are defined in the same manner as in Section 3.3.1. Let E1 denote the

set of labels for workplace closure and international travel control policies, and let E2 denote

the set of labels for testing and contact tracing policies. Then the overall strictness score for

policies of the same nature on a given day, denoted Indexlt, is calculated by:

Indexlt =
1
|El|

∑
j∈El

I j,t,

where l = 1, 2.

Data on the total number of COVID-19 cases per million people and the total number of

COVID-19 deaths are extracted from the website Ourworldindata (Ritchie et al., 2020). Data

on economic growth percent change in the quarterly real gross domestic product, denoted eco-

growth, are extracted from the website “The Global Economy” (The Global Economy, 2020).

Care system quality score (care-score), obesity prevalence (obesity-prev), smoking prevalence

(smoking-prev), and substance use prevalence (substance-prev) for 2019 are obtained from the

Legatum Institute (The Legatum Institute, 2019).

We consider the following socioeconomic factors: the most recent population weighted

geometric mean density (popu-density) (Edwards et al., 2021), the population proportion of

people aged 65 and above (senior-prop) for 2019 (The World Bank, 2019a), gross domestic

product per capita based on purchasing power parity (GDP) for 2019 (The Global Economy,

2019), government effectiveness score (government-eff) for 2019 (The World Bank, 2019b),

and infrastructure and market access score (infra-market) for 2019 (The Legatum Institute,

2019). The inclusion of the infra-market stems from acknowledging its role in measuring

the quality of the infrastructure that enables trade and distortions in the market for goods and

services. Its value ranges from 0 (worst) to 100 (best).

Although strict mitigation policies, such as international travel control policy, have been

successful in slowing the spread of the virus (Wells et al., 2020), their inevitable impacts on
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economic performance have been immense (Ozili and Arun, 2023). To examine the trade-off

between the economic fallout and health costs of the pandemic, we can use the Q-learning

approach with bivariate outcomes. This approach allows us to model the interdependence be-

tween economic and health outcomes and estimate the optimal policy decisions that minimize

the overall costs. Since mismeasurement is ubiquitous in applications, it is interesting to in-

vestigate how mismeasurement in covariates can affect estimation results. Now we take the

first outcome as the number of COVID-19 deaths per hundred COVID-19 cases, denoted CFR,

and the second outcome as the negative of eco-growth, denoted −eco-growth, which we want

to minimize. We examine how different degrees of covariate mismeasurement can affect the

parameter estimates associated with policy decisions.

Since the information on the eco-growth is only available on a quarterly basis, the study

period is six months long, starting from April 1, 2020 to September 30, 2020, we equally

divide it into two stages with K = 2, with stage 1 starting from April 1, 2020 to June 30,

2020, and stage 2 starting from July 1, 2020 to September 30, 2020. The information about

the total number of COVID-19 cases per million people, COVID-19 CFR, and the first quarter

eco-growth of 2020 gathered at the end of March, 2020 is taken as the baseline features.

Following the same procedure in Section 3.4.1, we obtain CFR and stringency score of

preventive policies for each stage. Furthermore, we log-transform the CFR at each stage to

remove the nonnegativity constraint of CFR. The eco-growth for stages 1 and 2 represents the

percent change in the real gross domestic product in the second and third quarters of 2020

compared to the second and third quarters of 2019, respectively.

For k = 1, 2, let Ak denote a binary action at stage k, which is defined as follows. For l = 1, 2

and k = 1, 2, let average-Indexl(k) represent the average of the Indexlt with t indexing the days

in the period of stage k. Let Ak = 1 if average-Index1(k) is greater than average-Index2(k) and

Ak = 0 otherwise. Let “cases-enterk” represent the total number of COVID-19 cases per million

people at the start of stage k, let “CFR-enterk” represent the recorded CFR at the start of the

stage k, and let “eco-growth-enterk” represent the recorded eco-growth at the start of the stage

k. As the government-eff value ranges from -2.5 to 2.5, we convert it into a binary variable,

taking value 1 or 0, corresponding to “high government effectiveness” if its original value is no

smaller than the threshold value 0, and “low government effectiveness” otherwise.
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In the following analyses, for sensible comparisons, we normalize all the non-binary co-

variates by subtracting their means from the values and dividing them by their standard devi-

ations. For the first outcome, CFR, we take the covariates senior-prop, GDP, government-eff,

obesity-prev, smoking-prev, substance-prev, popu-density, and care-score as confounders, and

treat GDP, government-eff, and popu-density, together with CFR-enter as prescriptive vari-

ables; for the second outcome, −eco-growth, we take GDP, government-eff, infra-market, and

cases-enter as confounders, and consider GDP, government-eff, infra-market, together with

eco-growth-enterk as prescriptive variables.

We employ linear regression models to describe the Q-functions for k = 1, 2:

Q2(H2, A2, δ) = δ
{
β02,1 + β12,1 × senior-prop + β22,1 × GDP + β32,1 × government-eff

+ β42,1 × obesity-prev + β52,1 × smoking-prev + β62,1 × substance-prev

+ β72,1 × popu-density + β82,1 × care-score + (ψ02,1 + ψ12,1 × GDP

+ ψ22,1 × government-eff + ψ32,1 × popu-density + ψ42,1CFR-enter2)A2

}
+ (1 − δ)

{
β02,2 + β12,2 × GDP + β22,2 × government-eff + β32,2 × infra-market

+ β42,2 × cases-enter2 + (ψ02,2 + ψ12,2 × GDP + ψ22,2 × government-eff

+ ψ32,2 × infra-market + ψ42,2 × eco-growth-enter2)A2

}
,

and

Q1(H1, A1, δ) = δ
{
β01,1 + β11,1 × senior-prop + β21,1 × GDP + β31,1 × government-eff

+ β41,1 × obesity-prev + β51,1 × smoking-prev + β61,1 × substance-prev

+ β71,1 × popu-density + β81,1 × care-score + (ψ01,1 + ψ11,1 × GDP

+ ψ21,1 × government-eff + ψ31,1 × popu-density + ψ41,1CFR-enter1)A1

}
+ (1 − δ)

{
β01,2 + β11,2 × GDP + β21,2 × government-eff + β31,2 × infra-market

+ β41,2 × cases-enter1 + (ψ01,2 + ψ11,2 × GDP + ψ21,2 × government-eff

+ ψ31,2 × infra-market + ψ41,2 × eco-growth-enter1)A1

}
.

We conduct three analyses here by setting δ = 0.9 or δ = 0.1. In Analysis 1, we treat all the
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variables to be error-free and implement the procedure in Section 5.2.1. The estimation results

for the model parameters are reported in Tables 5.6-5.7 under the heading
(
π10, π01, σ

2
)
=

(0, 0, 0) for stages 1 and 2, respectively.

The next two analyses are to assess the effects of possibly mismeasured covariates on

each stage parameter estimates. In particular, for the first and second outcomes, we take the

government-eff as an error-prone binary covariate. We further take the popu-density as an error-

prone continuous covariate for the first outcome, and the infra-market as the error-prone contin-

uous covariate for the second outcome. We carry out sensitivity analyses using the two correc-

tion methods described in Sections 5.4 and 5.5, and respectively call them Analysis 2 and Anal-

ysis 3. For Analysis 2, we consider three sets of misclassification probabilities as well as mea-

surement error degrees
(
π10, π01, σ

2
)T
= (0.02, 0.02, 0.02)T, (0.03, 0.03, 0.05)T, (0.04, 0.04, 0.07)T.

For Analysis 3, we consider models (5.30) and (5.31) with

m
(
government-eff; ζ

)
= ζ0 + ζ1 × government-eff,

m
(
popu-density; ξ1

)
= ξ10 + ξ11 × popu-density,

and

m (infra-market; ξ2) = ξ20 + ξ21 × infra-market,

where we consider three sets of values for the model parameters ζ = (ζ0, ζ1)T, ξ1 = (ξ10, ξ11)T,

and ξ2 = (ξ20, ξ21)T that are listed in Table 5.8. Numerical results of Analysis 2 and Analysis 3

are respectively reported in Tables 5.6-5.7 and 5.9-5.10.

The numerical results of Analyses 1 and 2 reveal different evidence for the significance of

some parameters. Consider the case when δ = 0.9. For stage 1 and when the mismeasurement

degree is set to be (0, 0, 0), (0.02, 0.02, 0.02), or (0.04, 0.04, 0.07), there is no evidence to sup-

port the significance of ψ21,1. In contrast, if the mismeasurement degree is (0.03, 0.03, 0.05),

ψ21,1 is statistically significant. When δ = 0.1 and the mismeasurement degree is set to be

(0, 0, 0), there exists no evidence suggesting the significance of ψ21,1, ψ01,2, and ψ21,2, while

for all the other mismeasurement degrees, ψ21,1, ψ01,2, and ψ21,2 are found to be statistically

significant. These findings suggest that if the government-eff is subject to misclassification
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with sensitivity and specificity of 0.98, 0.97, or 0.96, naively estimating parameters may lower

statistical power.

On the other hand, the three analyses do find some common evidence. Analyses 1, 2, and 3

collectively underscore the substantive importance of covariates associated with ψ41,1 and ψ41,2,

regardless of δ being 0.9 or 0.1, and the extent of mismeasurement considered here. All the

three analyses find the evidence to support that ψ41,1 and ψ41,2 are statistically significant.

Like the case for stage 1, Analyses 1 and 2 reveal different findings for stage 2. In partic-

ular, when the mismeasurement degree is set to be (0, 0, 0), ψ42,1 is statistically insignificant,

while for all the other mismeasurement degrees, ψ42,1 is significantly different from zero. Fur-

thermore, ψ42,2 is statistically significant when the mismeasurement degree is set to be (0, 0, 0),

while for all the other mismeasurement degrees, ψ42,2 is statistically insignificant. Regarding

Analysis 3, it is evident that ψ12,1, ψ42,1, and ψ42,2 are statistically significant for all three sets

of mismeasurement degrees.

In Tables 5.11-5.12, we report the estimated optimal actions at stages 1 and 2 derived from

Analyses 1-3 for some selected countries with δ set to be 0.9 or 0.1, respectively. The countries

included in Tables 5.11-5.12 are divided into two groups based on the disparities observed in

Analyses 1-3. We consider Italy and the UK from the first group and the UAE, the USA, and

Canada from the second group.

Examining Italy and the UK within the first group, it is evident that all conducted analyses

support the precedence of health system policies over containment and closure policies in both

stage 1 and stage 2. This holds true irrespective of the weight parameter δ = 0.9 or 0.1. These

findings underscore the significance of affording greater prominence to health system policies

compared to containment and closure measures when prioritizing health outcomes. Moreover,

even when accentuating economic considerations, the preeminence of health system policies

over containment and closure strategies remains the same.

Now we consider the UAE within the second group. If reducing the first outcome CFR is

more important than reducing the second outcome −eco-growth (i.e., when δ = 0.9), Analysis

1 indicates the advantage of emphasizing containment and closure policies over health system

policies in both stages 1 and 2; Analysis 2 mirrors these findings, except for the scenario

with the most pronounced degree of mismeasurement, where the recommendation deviates by
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suggesting a prioritization of health system policies in stage 1 and the opposite priority in stage

2. Conversely, the implications of Analysis 3 point toward the precedence of containment and

closure policies in stage 1, which flips in favor of health system policies in stage 2. Shifting

the perspective to δ = 0.1, Analyses 1 and 2 both advocate for the prioritization of containment

and closure policies in stage 1, followed by a shift in favor of health system policies in stage 2.

This consensus remains true for Analysis 3 except with the highest degree of mismeasurement,

which recommends a focus on health system policies across both stages 1 and 2.

Regarding the USA, Analyses 1 and 2 suggest giving precedence to health system policies

in stage 1, and favoring containment and closure policies in stage 2 when δ = 0.9. However,

Analysis 3 suggests the opposite. When we change our perspective to δ = 0.1, both Analyses

1 and 2 reach a common recommendation: prioritizing containment and closure policies in

both stages 1 and 2. This consensus is robust, with the exception of Analysis 2 with the

highest mismeasurement degree. In this specific case, the counsel pivots towards favoring

health system policies in stage 1, and containment and closure policies in stage 2. Analysis 3

maintains its stance irrespective of the shift in δ, advocating the same prioritization strategy as

in the scenario where δ = 0.9.

Regarding Canada with δ set as 0.9, all three analyses imply a preference for prioritizing

health system policies over containment and closure measures in both stages 1 and 2. This

unanimity holds true except for Analysis 3 with the highest degree of mismeasurement, which

recommends to prioritize health system policies over containment and closure measures solely

in stage 1. As the parameter δ is adjusted to δ = 0.1, Analyses 1 and 2 retain their alignment

by suggesting precedence of health system policies for both stages 1 and 2. However, Analysis

3 introduces a nuanced perspective. When the mismeasurement degree is specified by Set 1, it

maintains the stance of prioritizing health system policies over containment and closure mea-

sures. Yet, when the mismeasurement degree is specified by Set 2 or 3, a distinctive strategy

emerges: favoring containment and closure policies over health system policies in stage 1 and

vice versa in stage 2.

The variations in the results obtained from different analyses underscore the substantial

adverse consequences stemming from covariate mismeasurement. These discrepancies high-

light the potential implications of erroneous measurement of relevant factors in determining
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optimal strategies. With the uncertainty of quantifying the potential influence of covariate mis-

measurement, it is crucial to recognize the associated uncertainties and limitations in policy

recommendations derived from such analyses.

5.8 Discussion

In this chapter, we demonstrate the substantially adverse effects of mixed misclassification and

measurement error in covariates on parameter estimates using the Q-learning procedure with

a composite outcome. We describe two methods for correcting the mismeasurement effects,

namely regression calibration and unbiased estimation equation approaches. These proposed

methods exhibit favorable performance by effectively reducing bias compared to the naive

method.

Here, we consider the case with the availability of an internal validation subsample to

characterize the mismeasurement degrees. In situations without additional data to quantify

mismeasurement degrees or estimate the parameters ζXk
and ζCk

in models (5.30) and (5.31),

sensitivity analyses are often employed to assess the impact of mismeasurement on the out-

comes of the Q-learning algorithm. This involves selecting a set of representative values for

ζXk
and ζCk

, and then using models (5.30) and (5.31) to estimate X∗∗ki and C∗∗ki for i = 1, · · · , n.

Finally, the calibrated Q-learning algorithm is repeated to evaluate how the results may vary

with different mismeasurement scenarios.



134

Table 5.1: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stages 1-2. Entries in bold are obtained from the setting without
mismeasurements

regular weak non-regular non-regular

(π10, π01, σ2
k) Method ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ

Stage 1 (k = 1)

(0,0,0) EFLS

Bias 0.009 0.008 0.002 0.012 0.014 0.002 0.001 0.003 0.000
SE 0.110 0.155 0.055 0.089 0.126 0.045 0.089 0.126 0.045
ESE 0.125 0.158 0.058 0.105 0.126 0.045 0.117 0.132 0.044
MSE 0.012 0.024 0.003 0.008 0.016 0.002 0.008 0.016 0.002
PBCR 0.952 0.932 0.938 0.946 0.954 0.958 0.928 0.940 0.958
DBCR 0.962 0.948 0.952 0.962 0.960 0.968 0.940 0.952 0.966

(0.1,0.1,1) Naive

Bias 0.129 0.235 0.504 0.152 0.242 0.505 0.134 0.249 0.501
SE 0.107 0.151 0.038 0.100 0.141 0.035 0.100 0.141 0.035
ESE 0.148 0.155 0.046 0.123 0.142 0.040 0.123 0.146 0.041
MSE 0.028 0.078 0.255 0.033 0.078 0.256 0.028 0.082 0.252
PBCR 0.872 0.748 0.000 0.788 0.664 0.000 0.840 0.690 0.000
DBCR 0.758 0.488 0.000 0.690 0.432 0.000 0.726 0.412 0.000

(0.2,0.2,1.5) Naive

Bias 0.268 0.487 0.691 0.303 0.489 0.695 0.255 0.492 0.691
SE 0.108 0.152 0.030 0.105 0.148 0.029 0.105 0.148 0.029
ESE 0.148 0.158 0.038 0.132 0.155 0.035 0.132 0.156 0.035
MSE 0.083 0.260 0.478 0.103 0.261 0.484 0.076 0.264 0.478
PBCR 0.608 0.020 0.000 0.388 0.034 0.000 0.496 0.014 0.000
DBCR 0.448 0.046 0.000 0.286 0.052 0.000 0.398 0.050 0.000

(0.3,0.3,2) Naive

Bias 0.386 0.724 0.799 0.446 0.718 0.799 0.365 0.726 0.800
SE 0.077 0.108 0.017 0.076 0.108 0.017 0.076 0.108 0.017
ESE 0.103 0.114 0.021 0.099 0.115 0.021 0.098 0.117 0.022
MSE 0.155 0.536 0.639 0.205 0.527 0.639 0.139 0.539 0.640
PBCR 0.018 0.000 0.000 0.002 0.000 0.000 0.004 0.000 0.000
DBCR 0.052 0.000 0.000 0.008 0.000 0.000 0.034 0.000 0.000

Stage 2 (k = 2)

(0,0,0) EFLS

Bias 0.002 0.005 0.001 0.001 0.001 0.003 0.009 0.003 0.003
SE 0.086 0.116 0.041 0.086 0.116 0.041 0.086 0.116 0.041
ESE 0.090 0.118 0.041 0.086 0.118 0.041 0.088 0.117 0.043
MSE 0.007 0.013 0.002 0.007 0.013 0.002 0.007 0.013 0.002
WTCR 0.948 0.948 0.948 0.954 0.942 0.944 0.936 0.964 0.930

(0.1,0.1,1) Naive

Bias 0.170 0.284 0.843 0.238 0.394 0.001 0.013 0.035 0.001
SE 0.121 0.164 0.041 0.100 0.136 0.034 0.088 0.120 0.030
ESE 0.129 0.174 0.053 0.102 0.135 0.041 0.089 0.119 0.032
MSE 0.044 0.108 0.712 0.067 0.174 0.001 0.008 0.016 0.001
WTCR 0.720 0.568 0.000 0.314 0.160 0.902 0.948 0.948 0.926

(0.2,0.2,1.5) Naive

Bias 0.346 0.595 1.167 0.449 0.778 0.003 0.046 0.073 0.002
SE 0.134 0.183 0.036 0.109 0.149 0.029 0.089 0.122 0.024
ESE 0.141 0.190 0.048 0.121 0.156 0.037 0.097 0.131 0.025
MSE 0.138 0.388 1.363 0.213 0.628 0.001 0.010 0.020 0.001
WTCR 0.286 0.100 0.000 0.020 0.004 0.874 0.898 0.894 0.946

(0.3,0.3,2) Naive

Bias 0.499 0.870 1.347 0.676 1.169 0.001 0.066 0.110 0.001
SE 0.099 0.137 0.022 0.081 0.112 0.018 0.063 0.088 0.014
ESE 0.102 0.139 0.029 0.090 0.119 0.022 0.065 0.094 0.015
MSE 0.259 0.776 1.815 0.463 1.379 0.000 0.008 0.020 0.000
WTCR 0.004 0.000 0.000 0.000 0.000 0.888 0.828 0.728 0.940
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Table 5.2: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stages 1-2 and regular case

RC EE-known EE-estimated

(π10, π01, σ2
k) ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ

Stage 1 (k = 1)

(0.1,0.1,1)

Bias 0.010 0.012 0.001 0.010 0.010 0.008 0.008 0.024 0.011
SE 0.150 0.190 0.083 0.175 0.271 0.130 0.208 0.265 0.224
ESE 0.152 0.187 0.083 0.199 0.287 0.142 0.181 0.247 0.140
MSE 0.023 0.036 0.007 0.031 0.074 0.017 0.043 0.071 0.050
PBCR 0.984 0.996 1.000 0.994 1.000 1.000 0.994 1.000 0.994
DBCR 0.896 0.862 0.780 0.808 0.738 0.618 0.844 0.808 0.632

(0.2,0.2,1.5)

Bias 0.011 0.003 0.004 0.035 0.018 0.059 0.013 0.009 0.064
SE 0.168 0.226 0.095 0.296 0.504 0.269 0.319 0.492 0.434
ESE 0.164 0.225 0.090 0.316 0.542 0.29 0.291 0.476 0.312
MSE 0.028 0.051 0.009 0.089 0.254 0.076 0.102 0.242 0.192
PBCR 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994
DBCR 0.880 0.784 0.754 0.612 0.490 0.402 0.646 0.518 0.402

(0.3,0.3,2)

Bias 0.019 0.005 0.005 0.013 0.059 0.097 0.010 0.060 0.111
SE 0.129 0.184 0.072 0.415 0.766 0.382 0.417 0.740 0.488
ESE 0.124 0.180 0.071 0.436 0.808 0.390 0.398 0.711 0.413
MSE 0.017 0.034 0.005 0.172 0.590 0.155 0.174 0.551 0.250
PBCR 0.994 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DBCR 0.844 0.740 0.714 0.392 0.290 0.270 0.394 0.346 0.248

Stage 2 (k = 2)

(0.1,0.1,1)

Bias 0.004 0.001 0.000 0.004 0.020 0.022 0.008 0.004 0.036
SE 0.138 0.179 0.093 0.170 0.246 0.150 0.188 0.236 0.200
ESE 0.136 0.175 0.095 0.176 0.249 0.162 0.163 0.227 0.170
MSE 0.019 0.032 0.009 0.029 0.061 0.023 0.035 0.056 0.041
WTCR 0.954 0.954 0.934 0.940 0.936 0.934 0.976 0.958 0.990

(0.2,0.2,1.5)

Bias 0.005 0.012 0.002 0.028 0.041 0.108 0.030 0.039 0.118
SE 0.163 0.217 0.108 0.312 0.483 0.357 0.394 0.562 0.573
ESE 0.158 0.212 0.106 0.328 0.508 0.359 0.293 0.444 0.399
MSE 0.027 0.047 0.012 0.098 0.235 0.139 0.156 0.317 0.342
WTCR 0.960 0.942 0.958 0.954 0.966 0.966 0.984 0.978 0.966

(0.3,0.3,2)

Bias 0.001 0.002 0.004 0.074 0.122 0.151 0.043 0.085 0.104
SE 0.123 0.165 0.079 0.433 0.715 0.540 0.428 0.710 0.554
ESE 0.113 0.154 0.078 0.410 0.671 0.514 0.354 0.590 0.464
MSE 0.015 0.027 0.006 0.193 0.526 0.314 0.185 0.511 0.318
WTCR 0.974 0.972 0.948 0.976 0.992 0.958 0.992 0.994 0.920
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Table 5.3: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stages 1-2 and weak non-regular case

RC EE-known EE-estimated

(π10, π01, σ2
k) ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ

Stage 1 (k = 1)

(0.1,0.1,1)

Bias 0.007 0.000 0.005 0.014 0.005 0.007 0.026 0.010 0.004
SE 0.133 0.168 0.074 0.134 0.208 0.107 0.162 0.204 0.181
ESE 0.130 0.159 0.074 0.156 0.222 0.112 0.146 0.199 0.113
MSE 0.018 0.028 0.006 0.018 0.043 0.011 0.027 0.042 0.033
PBCR 0.996 0.988 0.998 0.998 1.000 1.000 0.986 1.000 0.990
DBCR 0.896 0.892 0.792 0.834 0.766 0.638 0.860 0.810 0.620

(0.2,0.2,1.5)

Bias 0.008 0.004 0.002 0.040 0.005 0.040 0.036 0.013 0.054
SE 0.150 0.200 0.086 0.220 0.375 0.228 0.242 0.373 0.301
ESE 0.147 0.198 0.087 0.243 0.405 0.231 0.231 0.372 0.261
MSE 0.023 0.040 0.007 0.050 0.141 0.054 0.060 0.139 0.094
PBCR 0.984 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.996
DBCR 0.868 0.822 0.708 0.674 0.550 0.422 0.676 0.580 0.376

(0.3,0.3,2)

Bias 0.003 0.003 0.003 0.011 0.138 0.132 0.017 0.036 0.098
SE 0.114 0.158 0.064 0.340 0.624 0.373 0.342 0.598 0.418
ESE 0.115 0.156 0.061 0.359 0.662 0.394 0.307 0.555 0.346
MSE 0.013 0.025 0.004 0.116 0.408 0.157 0.117 0.359 0.184
PBCR 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992
DBCR 0.847 0.746 0.732 0.419 0.352 0.237 0.450 0.358 0.268

Stage 2 (k = 2)

(0.1,0.1,1)

Bias 0.004 0.003 0.001 0.005 0.013 0.000 0.007 0.009 0.002
SE 0.117 0.160 0.061 0.125 0.173 0.085 0.154 0.172 0.160
ESE 0.113 0.157 0.065 0.123 0.168 0.096 0.133 0.174 0.077
MSE 0.014 0.026 0.004 0.016 0.030 0.007 0.024 0.030 0.026
WTCR 0.956 0.954 0.944 0.960 0.968 0.934 0.986 0.958 1.000

(0.2,0.2,1.5)

Bias 0.009 0.000 0.001 0.048 0.065 0.002 0.031 0.052 0.005
SE 0.138 0.195 0.073 0.191 0.271 0.178 0.222 0.287 0.293
ESE 0.140 0.202 0.072 0.198 0.276 0.193 0.200 0.270 0.173
MSE 0.019 0.038 0.005 0.039 0.078 0.032 0.050 0.085 0.086
WTCR 0.958 0.950 0.946 0.938 0.942 0.956 0.974 0.944 0.994

(0.3,0.3,2)

Bias 0.005 0.006 0.000 0.061 0.114 0.016 0.060 0.100 0.009
SE 0.105 0.152 0.056 0.257 0.414 0.398 0.268 0.381 0.348
ESE 0.109 0.154 0.057 0.238 0.341 0.308 0.244 0.332 0.225
MSE 0.011 0.023 0.003 0.070 0.184 0.159 0.075 0.155 0.121
WTCR 0.941 0.951 0.939 0.963 0.963 0.996 0.959 0.959 0.996
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Table 5.4: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stages 1-2 and non-regular case

RC EE-known EE-estimated

(π10, π01, σ2
k) ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ ψ0kδ ψ1kδ ψ2kδ

Stage 1 (k = 1)

(0.1,0.1,1)

Bias 0.005 0.003 0.001 0.007 0.004 0.019 0.005 0.009 0.018
SE 0.129 0.167 0.074 0.130 0.201 0.106 0.160 0.198 0.181
ESE 0.131 0.167 0.072 0.150 0.211 0.114 0.149 0.193 0.120
MSE 0.017 0.028 0.005 0.017 0.040 0.012 0.026 0.039 0.033
PBCR 0.980 0.986 1.000 0.996 0.994 1.000 0.978 0.994 0.996
DBCR 0.894 0.872 0.806 0.844 0.788 0.652 0.854 0.820 0.590

(0.2,0.2,1.5)

Bias 0.001 0.000 0.003 0.007 0.020 0.060 0.002 0.018 0.034
SE 0.144 0.198 0.085 0.207 0.349 0.224 0.222 0.340 0.294
ESE 0.150 0.201 0.083 0.222 0.363 0.247 0.209 0.343 0.245
MSE 0.021 0.039 0.007 0.043 0.122 0.054 0.049 0.116 0.088
PBCR 0.984 0.994 0.998 1.000 1.000 1.000 1.000 1.000 0.988
DBCR 0.862 0.784 0.712 0.686 0.576 0.332 0.714 0.622 0.362

(0.3,0.3,2)

Bias 0.005 0.004 0.002 0.037 0.064 0.091 0.017 0.026 0.082
SE 0.109 0.157 0.064 0.285 0.515 0.352 0.293 0.521 0.404
ESE 0.108 0.152 0.061 0.306 0.545 0.359 0.271 0.480 0.323
MSE 0.012 0.025 0.004 0.083 0.269 0.132 0.086 0.272 0.170
PBCR 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
DBCR 0.837 0.757 0.712 0.424 0.310 0.245 0.502 0.357 0.255

Stage 2 (k = 2)

(0.1,0.1,1)

Bias 0.010 0.001 0.001 0.013 0.008 0.000 0.002 0.008 0.003
SE 0.097 0.138 0.053 0.104 0.151 0.064 0.141 0.154 0.150
ESE 0.098 0.136 0.054 0.102 0.146 0.068 0.101 0.142 0.058
MSE 0.010 0.019 0.003 0.011 0.023 0.004 0.020 0.024 0.023
WTCR 0.932 0.948 0.936 0.946 0.960 0.934 0.992 0.962 1.000

(0.2,0.2,1.5)

Bias 0.008 0.016 0.001 0.009 0.021 0.004 0.001 0.005 0.007
SE 0.109 0.161 0.059 0.139 0.212 0.098 0.173 0.220 0.260
ESE 0.113 0.164 0.060 0.149 0.222 0.099 0.131 0.195 0.093
MSE 0.012 0.026 0.003 0.019 0.045 0.010 0.030 0.048 0.068
WTCR 0.944 0.956 0.958 0.930 0.942 0.956 0.994 0.974 1.000

(0.3,0.3,2)

Bias 0.002 0.004 0.005 0.024 0.045 0.007 0.010 0.020 0.002
SE 0.085 0.130 0.045 0.152 0.241 0.121 0.183 0.271 0.252
ESE 0.078 0.124 0.046 0.151 0.243 0.115 0.132 0.204 0.116
MSE 0.007 0.017 0.002 0.024 0.060 0.015 0.034 0.074 0.064
WTCR 0.965 0.971 0.951 0.955 0.937 0.982 0.982 0.980 1.000
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Table 5.5: Proportions of optimally treated individuals

Scenario 1

(π10, π01, σ2
k)

Stage 1 Stage 2

Setting Naive RC EE-known EE-estimated Naive RC EE-known EE-estimated

(0.1,0.1,1)
Regular 0.880 0.979 0.970 0.973 0.870 0.986 0.981 0.983
Weak non-regular 0.886 0.981 0.976 0.978 0.460 0.768 0.770 0.774
Non-regular 0.878 0.982 0.978 0.979 0.784 0.721 0.717 0.716

(0.2,0.2,1.5)
Regular 0.820 0.976 0.949 0.954 0.775 0.983 0.968 0.969
Weak non-regular 0.829 0.978 0.960 0.963 0.445 0.771 0.767 0.772
Non-regular 0.824 0.980 0.962 0.965 0.813 0.711 0.690 0.697

(0.3,0.3,2)
Regular 0.808 0.973 0.908 0.915 0.732 0.983 0.944 0.947
Weak non-regular 0.817 0.977 0.924 0.928 0.445 0.768 0.768 0.766
Non-regular 0.816 0.979 0.934 0.939 0.865 0.712 0.662 0.677

Scenario 2

(0.1,0.1,1)
Regular 0.850 0.888 0.812 0.861 0.806 0.860 0.783 0.843
Weak non-regular 0.855 0.893 0.814 0.864 0.461 0.556 0.891 0.860
Non-regular 0.855 0.893 0.816 0.865 0.780 0.769 0.663 0.676

(0.2,0.2,1.5)
Regular 0.820 0.867 0.738 0.804 0.763 0.829 0.714 0.790
Weak non-regular 0.827 0.873 0.741 0.808 0.445 0.543 0.796 0.790
Non-regular 0.828 0.873 0.745 0.811 0.832 0.810 0.606 0.636

(0.3,0.3,2)
Regular 0.810 0.859 0.671 0.744 0.742 0.814 0.662 0.747
Weak non-regular 0.818 0.866 0.674 0.751 0.444 0.534 0.696 0.714
Non-regular 0.818 0.866 0.680 0.757 0.851 0.839 0.558 0.591
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Table 5.8: Values of regression parameters of calibration functions for Analysis 3

ζ0 ζ1 ξ10 ξ11 ξ20 ξ21

Set 1 0.05 0.95 0.05 -0.85 0.05 -0.85
Set 2 0.05 0.85 0.05 -0.75 0.05 -0.75
Set 3 0.05 0.75 0.05 -0.65 0.05 -0.65
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Â
op

t
2

Â
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Chapter 6

Summary and Future Work

This thesis explores several statistical methods to make sense of COVID-19 data. We, in par-

ticular, use a reinforcement learning algorithm, Q-learning, to develop sensible mitigation and

suppression strategies when either health outcome or both health and economic outcomes are

of primary importance. We further investigate data-related complications that arise in the im-

plementation of Q-learning. In particular, we explore the performance of Q-learning when

covariates are subject to misclassification or measurement error. Our analytical and simulation

results demonstrate that ignoring this feature can lead to substantial degrees of bias, and that

correction strategies are needed for valid inference.

Chapter 2 analyzed the Kaggle novel coronavirus dataset, dated from January 22, 2020 to

March 29, 2020, which includes 3397 infected cases and 83 deaths from 39 countries includ-

ing those in Europe, Asia, and Africa. This chapter summarizes our timely explorations of

epidemiological characteristics of COVID-19 in the early stage of the pandemic. We find that

prior to March 29, 2020, the median incubation time of COVID-19 is about 5 days, and older

people are more likely to have a longer incubation period. Our text analysis shows that the

most dominant symptoms of COVID-19 are fever, cough, and pneumonia. The non-parametric

Kaplan-Meier method yields a median recovery time of 20 days for infected patients who are

not stratified by any of their characteristics. Our findings further suggest that the recovery time

increases as the age increases, and there is no significant gender difference in recovery times.

In Chapter 3, we use the Q-learning method to explore how different COVID-19 preventive

policies may be prioritized to lower the CFR. Our data analysis suggests that in addition to
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addressing traditional risk factors to alleviate the risk of death from COVID-19, policymakers

should tailor the strictness of preventive policies to country-specific characteristics (e.g., gov-

ernment effectiveness score, population weighted geometric mean density, and civic and social

participation score) and evolving situation (e.g., the observed number of deaths) to leverage the

salutary effects of prevention strategies. As a future work, it is interesting to explore the appli-

cation of other regression-based methods such as G-estimation and dynamic weighted ordinary

least squares, and then compare the results to help uncover the underlying truth. Furthermore,

the analytical approach employed in our analyses assumes that the SUTVA holds. If preven-

tive measures in a country affect the outcome in the neighboring countries, one may employ

network-based methods to estimate optimal policies while accounting for the interdependen-

cies among countries. With the availability of inpatient medical records, Q-learning can be

used to investigate optimal dosage or order of COVID-19 treatments.

Chapter 4 is partially motivated by the STAR∗D study, which is a multi-level randomized

controlled study of human MDD. This study was designed to evaluate the effectiveness of dif-

ferent treatment regimes on MDD, and it had 4 levels. In each level, patients were treated

by one or a combination of different treatment options for depression. Receipt of a specific

treatment option at levels 2, 3 and 4 is driven by the doctor’s recommendation as well as the

patient’s opinion, and it is reflected by the variable termed patient’s preference to switch or

augment his/her previous treatment option. However, it is difficult to precisely record the true

value of this variable because of its dependence on the doctor’s experience, the level of the pa-

tient’s trust in the doctor’s recommendation, the effectiveness of the communication between

the doctor and the patient, and the patient’s own knowledge, etc. This suggests that, while

careful designs are helpful in collecting good quality data, measurement error and misclas-

sification are still inevitable and they arise ubiquitously in applications. In this chapter, we

examine DTRs with misclassification in covariates. Focusing on the Q-learning procedure, we

demonstrate how ignoring misclassification in covariates can impact the determination of op-

timal decision rules, and demonstrate its deleterious effects on Q-learning through empirical

studies. Although strategies for handling mismeasurement vary from problem to problem, we

present two correction methods for Q-learning based on regression calibration and unbiased

estimation equation approaches. Numerical studies reveal that misclassification in covariates
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induces non-negligible estimation bias and that the correction methods successfully ameliorate

bias in parameter estimation.

Our development in Chapter 4 is directed to the Q-learning approach, which is mainly

driven by its widespread applications under DTRs. Other methods such as G-estimation and

A-learning are also useful for DTRs. It is interesting to develop de-biasing schemes for those

methods to handle error-prone data. While the proposed correction strategies are directed to

correct misclassification effects for binary covariates, the estimating equation approach devel-

oped in Section 4.4 can be generalized to account for the measurement error effects induced

from continuous covariates, where moment identities, as considered by Yi and Lawless (2007),

can be used to construct U(X∗ki) to satisfy (4.20). In contrast to covariate mismeasurement con-

sidered here, we may face data with measurement error in responses, and it is useful to study

problems of mismeasured responses under DTRs.

Another interesting extension to the current development is to incorporate possible drop-

out of the study subjects, which may potentially introduce bias and affect the validity of the

estimated DTRs. When the drop-out happens completely at random, applying the developed

methods to the observed data can still output reasonable results, because those data can still be

regarded as forming a random sample. However, if the drop-out is not missing at random, then

the missing measurements cannot be generally ignored due to their inherent association with

the outcome process. It is useful to develop valid Q-learning to account for the drop-out effects

in such scenarios.

Chapter 5 delves into the examination of mixed misclassification and measurement error in

covariates within the framework of DTRs that involve multiple outcome variables. Our analy-

ses reveal that the presence of mixed misclassification and measurement error in covariates can

introduce substantial bias, emphasizing the necessity for developing effective correction meth-

ods. To mitigate the bias caused by covariate mismeasurement, we propose two correction

strategies. It is interesting to apply the development in Chapter 5 to handle more real-world

problems which concern two competing outcomes, where it is useful to provide a guideline for

properly choosing a value of δ in the formulation of (5.4).

Finally, it is useful to develop software packages, such as R functions, to implement the

methods developed in Chapters 4 and 5.
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https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts

-final.pdf

8. Investigating Misclassification Effects on Estimating Optimal Dynamic Treatment Regimes

Using Q-Learning. Statistical Society of Canada 2021 Annual Meeting.

https://ssc.ca/sites/default/files/imce/ssc2022-program-with-abstracts.pdf
https://ssc.ca/sites/default/files/imce/ssc2022-program-with-abstracts.pdf
https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
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https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts

-final.pdf

9. The Use of Propensity Score Matching Methods for Estimating Treatment Effects in Re-

current Events. Statistical Society of Canada 2019 Annual Meeting.

https://ssc.ca/sites/default/files/meetings/ssc 2019 program with abstracts

0.pdf

10. Khadem Charvadeh, Y., Pasha, M. A., Moghadam, M. B. and Fani, S. Economic and

Economic Statistical Design of X-bar Control Charts Under a Bathtub-shaped Shock

Model. Second Seminar on Reliability Theory and its Applications, Department of

Statistics, School of Mathematics, Statistics and Computer Science, University of Tehran,

Tehran, Iran, 18-19 May, 2016.

http://www.sid.ir/en/seminar/ViewPaper.aspx?FID=543e20160202

11. Pasha, M. A., Yousefi, A. and Khadem Charvadeh, Y. Nonlinear Fractional Program-

ming in Optimal Design of X-bar Control Charts Under a Heavy-tailed Shock Model. 9th

International Iranian Operation Research conference, Shiraz University of Technology,

Iran, 2016.

Personal Projects:

• Investigating the Association Between COVID-19 Cases/Deaths and Fine Particulate

Matter Exposure During the 2020 Wildfires in the United States

– In this R project, I use a publicly available data set to explore the potential ad-

verse effects of wildfires on COVID-19 cases and fatalities across 92 counties in

the western region of the United States. Given the excessive zero values in daily

COVID-19 cases/deaths, a Hurdle mixed-effects model is employed to establish a

cause-and-effect relationship. The numerical results suggest a significant statistical

association between short-term exposure to Particulate Matter < 2.5 (PM2.5) and

COVID-19 cases/deaths.

• Deep Learning for Time Series: Predicting Hourly Electricity Demand in Ontario

https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
https://ssc.ca/sites/default/files/meetings/ssc_2019_program_with_abstracts_0.pdf
https://ssc.ca/sites/default/files/meetings/ssc_2019_program_with_abstracts_0.pdf
http://www.sid.ir/en/seminar/ViewPaper.aspx?FID=543e20160202


164

– The investigation of historical events is imperative for making informed strategic

decisions in the future. Time series analysis is a valuable tool for organizations to

effectively prepare for upcoming challenges. The Canada Energy Regulator (CER)

agency is accountable for ensuring that energy production aligns with energy re-

quirements. To achieve this aim, a robust model of hourly demand is indispensable.

In this R project, publicly accessible hourly electricity demand and annual electric-

ity demand information for Ontario are used to forecast hourly electricity demand

in the residential sector. Gated Recurrent Unit Networks are employed to address

the challenge of hourly electricity demand prediction.

• Predicting Continuous Outcome with Image and Text Using the Keras Functional API

– In this R project, I leverage the Keras functional API to construct a model that

predicts the average ratings of horror movies based on both their descriptions and

posters. The data set used is sourced from the TidyTuesday Github repository and

comprises numerous variables that depict diverse aspects of horror movies.

• Screening Multiple Models for Predicting Volcanic Explosivity Index (VEI)

– In this R project, I use a data set on volcano eruptions to screen a number of models

with the aim of finding the model with the best predictive capabilities.

• Sentiment and User Network Analysis Using YouTube Comments

– In this R project, I use data collected from two YouTube videos to perform senti-

ment analysis and network analysis.

• Image Classification Using Keras in R: Classification of COVID-19 positive/negative

cases

– In this R project, I use publicly available chest X-ray images from a Kaggle reposi-

tory to build binary/multi-class image classification models that help identify COVID-

19 positive cases.

• Predicting Popularity of Spotify Songs
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– In this R project, I use a TidyTuesday data set on Spotify songs to build a machine

learning classification model that predicts the popularity of a given Spotify song.

Additionally, I showcase the application of partial dependence plots, individual

conditional expectation (ICE), and the LIME package to facilitate both global and

local interpretations of the machine learning model.

• Predicting Coffee Ratings with Beta Regression and Neural Networks

– This R project centers around constructing a Beta regression model and Neural

Network model to predict coffee ratings, utilizing the Coffee Quality Database data

set available on the TidyTuesday Github page. As the data set comprises variables

with missing values, the project also showcases the implementation of the tidymod-

els approach to perform missing-data imputation.

• Text Analysis with tidymodels: Predicting Number of Seasons for Netflix shows

– In this R project, I use a TidyTuesday data set containing information about TV

shows available on Netflix to develop a penalized logistic regression model that

predicts whether a given TV show will have only one season or more. To build the

model, I utilize a range of predictors such as the summary description of the TV

show, title of the TV show, genre, and several others. The main objective of this

project is to showcase how we can conduct rudimentary text analysis.

• Predicting Bee Colony Losses

– In this R project, I analyze a TidyTuesday data set on honey bee colonies to examine

the factors that contribute to bee colony losses in the United States. The primary

objective of this project is to optimize the hyperparameters of an XGBoost model,

and subsequently leverage the most optimal XGBoost model to predict the rate of

colony losses.

• Interactive COVID-19 dashboard

– This dynamic web app is created using Flexdashboard + Shiny in R, and automati-

cally updates every 12 hours. Dashboard address: https://yasinkhc.shinyapps

https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://yasinkhc.shinyapps.io/Shiny-COVID-19/
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.io/Shiny-COVID-19/ (Please note that it may take up to 80 seconds for the pro-

gram to generate the map)

Statistical Practice:

1. I am a core member for developing the Canada COVID-19 website. Website address:

https://covid-19-canada.uwo.ca/en/about.html

2. I led the SSC Biostatistics COVID-19 case study. The motive for organizing this case

study was to allow students to demonstrate initiatives and creativity in contributing to the

ongoing needs for data-driven decision making. The work by my team was selected to

be featured on the SSC website.

3. Team leader of SSC 2021 case study in data analysis. Case study title: What geographical

factors are associated with pipeline incidents that involve spills?

4. Team leader of SSC 2020 case study in data analysis (the meeting was canceled due to

the COVID-19 pandemic).

Training and Workshops Attended

• Attended the workshop on “Scientific Analysis of Networks Using Graph Neural Net-

works” by Prof. Marı́a Óskarsdóttir, University of Western Ontario, May 9th to May

11th, 2023.

https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://covid-19-canada.uwo.ca/en/about.html
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