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Abstract

Much of everyday life depends on making informed decisions. The process of decision-making
depends heavily on gathering pertinent information which comes from quality data. To obtain
such relevant information, one needs appropriate tools for collecting and analyzing data. Sta-
tistical methods are an essential and vital tool for collecting and turning data into useful infor-
mation. The role of statistics in decision-making became more apparent with the emergence
of COVID-19 as a global pandemic which drew significant attention to using data as a funda-
mental component of evidence-based decision-making. With the involvement of COVID-19 in
many areas, such as medicine, epidemiology, and economy, many researchers from different
branches of science conducted research on COVID-19-related problems from various angles.
In this thesis, we employ statistical modeling and methods to examine COVID-19 data, and we
develop new methods to address new issues that invalidate some standard methods.

The first project examines the clinical manifestations and epidemiological features of COVID-
19 pertinent to the early pandemic stage. We employ semiparametric and nonparametric sur-
vival models as well as text mining and data visualization techniques to shed light on COVID-
19 incubation and recovery times. Using a dataset from January 22, 2020 to March 29, 2020,
we explore some of the risk factors associated with the severity of the disease. Our analysis
shows that the median incubation time is about 5 days, and older people tend to have a longer
incubation period. The median time for infected people to recover is about 20 days, and the
recovery time is significantly associated with age but not gender.

The second project uses a data-driven approach to explore optimal preventive measures
with the goal of lowering the COVID-19 case fatality rate. In this study, using a reinforce-
ment learning algorithm to characterize the evolving situation and country-specific features,
we study the effectiveness of country-level preventive actions. Our analytical results suggest
that country-specific characteristics and the baseline information of COVID-19 determine opti-
mal preventive policies. Furthermore, our study reveals that the factors significantly associated
with the COVID-19 case fatality rate include the population proportion of elders ages 65 and
over, gross domestic product per capita, obesity prevalence, substance use prevalence, popula-
tion density, and health system quality.

The framework of the second project is cast under dynamic treatment regimes, which has
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attracted lots of interest among statisticians and quantitative researchers. Dynamic treatment
regimes require a special class of designs, called sequential multiple assignment randomized
trial (SMART) designs, for the validity of the results derived from them. However, similar to
randomized controlled designs, SMART designs are prone to the violation of the condition that
all variables must be precisely measured. Misclassification in categorical variables as well as
measurement error in continuous variables are among common problems in the applications.
In the next two projects, we explore correction strategies to overcome the effects induced by
such erroneous data.

The third project examines Q-learning with covariates subject to misclassification. We
present two correction methods, namely regression calibration and corrected estimation equa-
tions, where we consider the main study/validation study setup. We assess the performances of
the proposed methods by conducting extensive simulation studies as well as real data analysis.
Numerical results confirm the satisfactory performance of the proposed methods in reducing
or eliminating the bias induced by covariate misclassification in parameter estimates.

In the fourth project, we aim to expand upon the developments made in the third project by
considering the scenario of compound outcome in conjunction with mixed measurement error
and misclassification in covariates. The effectiveness of the correction strategies proposed in
this study is evaluated through comprehensive simulation studies and real-world data analysis.
The numerical findings indicate that the suggested methods exhibit satisfactory performance

by reducing or removing the bias resulting from covariate mismeasurement.

Keywords: Case fatality rate, COVID-19 data, COVID-19 risk factors, dynamic treatment
regimes, estimating function, incubation time, measurement error, misclassification, optimal
preventive policy, precision medicine, Q-learning, regression calibration, regression models,

recovery time, survival analysis, text mining, validation data.
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Summary for Lay Audience

This thesis explores various statistical and reinforcement learning methods to gain insights
into epidemiological characteristics and effective containment measures related to COVID-19.
However, caution must be exercised when interpreting the results from such analyses due to
the use of error-contaminated data. Consequently, as a complementary remedy, we develop
procedures for addressing such complications.

In the first study, we use a dataset, dated from January 22, 2020 to March 29, 2020, to
examine epidemiological characteristics of COVID-19. We use survival analysis techniques to
quantify how the recovery time may be associated with age and gender. Using data visualiza-
tion and text mining tools, we study incubation times, fatality rate, as well as most common
symptoms. Based on our numerical results, the median incubation time is about 5 days, and
the elders are more likely to have longer incubation periods. Furthermore, we find that the
median recovery time for infected patients is about 20 days, and there is no gender difference
in recovery times.

In the second study, we use data from 175 countries from January 13 of 2020 to March
9 of 2021, and investigate possible factors associated with the case fatality rate of COVID-
19. The Q-learning algorithm is employed to assess optimal preventive policies adopted by
individual countries to reduce their COVID-19 case fatality rates. The data analysis suggests
that, in addition to addressing traditional risk factors, policymakers should tailor the strictness
of preventive policies to country-specific characteristics and evolving situation to alleviate the
risk of death from COVID-19.

The third study investigates the effects of misclassified covariates in developing dynamic
treatment regimes with the Q-learning approach. We present two procedures to account for the
bias induced by covariate misclassification. The satisfactory performance of these procedures
is demonstrated through extensive simulation studies.

The fourth study deals with mixed measurement error and misclassification in covariates
within the context of Q-learning with compound outcome. We demonstrate that the presence
of such measurement inaccuracies can pose significant challenges to the accurate estimation
process in Q-learning. To address this issue, we propose effective correction strategies that

successfully alleviate the impact of mismeasurement.
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Chapter 1

Introduction and Literature Review

SARS-CoV-2 (Lai et al., 2020) is a member of the coronaviruses family, which causes a trans-
mittable infectious respiratory disease known as COVID-19. The novel virus was first reported
in December 2019 in the city of Wuhan, China (Zhang et al., 2020). On March 11, 2020, the
World Health Organization (WHO) upgraded the status of the COVID-19 outbreak from epi-
demic to a global pandemic, and now almost all countries have reported confirmed cases, with
the USA and India having the highest numbers of confirmed cases (Worldometers, 2022). As
of November 17, 2022, the WHO reported 633,263,617 confirmed cases with 6,594,491 deaths
(WHO, 2022).

This research is motivated by data on public health, social and economic aspects of COVID-
19. Analysis of different aspects of COVID-19-related issues requires subject-specific statis-
tical methods. Therefore, the aim of this chapter is to provide brief descriptions of some

statistical methods employed in the proceeding chapters.

1.1 Survival Analysis

Survival analysis is a collection of statistical methods primarily concerned with the modeling
of survival time (lifetime) or the length of time until the occurrence of some specific event.
Such data arise in many areas, including epidemiological, social, engineering, and reliability
studies. There are basically three requirements for time-to-event data: (A) a well-defined origin

of measure to the occurrence of the event of interest, (B) a scale for the measurement, and (C)



a precise definition of the occurrence of the event of interest (Lawless, 2003).

1.1.1 Notation and Notion

Let T be a non-negative random variable representing the time to a specific event occurrence
associated with individuals in the population, and let the small letter # denote any realization
for the variable 7. Let f(¢) denote the probability density function of 7" and let F(¢) denote the

cumulative distribution function, defined as

F@)=P(T <1) = f f(x)dx for t>0.
0

The survivor function, denoted S (¢), gives the probability of an individual surviving beyond
time ¢, given by

St)=1-F(@)=P(T >1).

The hazard function, denoted A(?), gives the instantaneous rate of failure or death at time ¢,

given that the individual has survived up to time ¢. That is, in notation

Pet<T<t+At|T >t t
ho) = Tim PEST<t+8UT 20 _ f@©)
At=0 At S(?)

where At denotes a small time magnitude. It is clear that the values of the hazard function

range from zero to infinity.

Censoring

A common feature in survival analysis is censoring. Censoring is said to occur when there is
some information about an individual event time, but the exact event time cannot be observed.
Ignoring censored observations or treating them as if they were uncensored measurements
can lead to a considerable degree of bias in results. Censoring can be due to termination of
follow-up, death, withdrawal, migration, etc. There are different types of censoring, such as

“right censoring”, “left censoring”, and “interval censoring” among which right censoring has

received the most attention in the literature (Lawless, 2003).



Right censoring occurs when the survival time is “incomplete” at the right side of the
follow-up period. Suppose that C is a censoring time for an individual (e.g., the end time
of the study). If T > C, then we say the subject is right censored. Often, we introduce the
censoring indicator, 6 = I(T > C), to indicate whether the observed time for a study subject is
censoring time or survival time, where /(-) is the indicator function.

A lifetime is said to be left-censored at time C if the exact event time is not observed but
is known to be less than time C. For example, if the event of interest has already happened
before the individual is enrolled in the study and the exact event time is unknown, then the
enrollment time is the left censoring time (i.e., C). In the case of left censoring, the observed
time is t = max (7, C).

Interval censoring occurs when the event of interest is known to occur within a known time
interval of non-zero length. That is, the observed data consists of (L, U] with the information
that L < T < U. Interval censoring can be thought of as a generalization of left and right
censoring. To be specific, interval censoring yields left-censoring if L = 0 and U is a known
upper bound on the true survival time. On the other hand, interval censoring gives right-

censoring if L is a known lower bound on the true survival time and U = oo.

Truncation

Truncation is defined as a condition that excludes individuals from the study population if
their event times are smaller or larger than certain values. There are two types of truncation,
namely “left truncation” and “right truncation”. Left truncation, also called delayed entry, oc-
curs if individuals survive past a certain time u, say, the entry of the study. This means that
individual event time ¢ > u. In the presence of left truncation, the observed data for an indi-
vidual consists of {u, ¢, 6}, where ¢t > u and ¢ is an event time or censoring time. On the other
hand, time-to-event data are right-truncated if only individuals who have experienced the event

of interest by a certain time can be included in the study.



Incubation Period

The incubation period is the time elapsed between exposure to a disease-causing organism
and symptom onset (Wagner et al., 2006). Let S denote the symptom onset time, and let £,
and Ey denote the lower and upper time points for the exposure period, respectively, where the
exposure period pertains to the duration within which an individual comes into contact with a
pathogen. Define 7, £ S _—Eyandty £ S — E;. Then the incubation time is between #; and 7./,
shown in Figure 1.1. A good understanding of the incubation period of an infectious disease is
critical because it can provide information about when infected individuals will be symptomatic
and, therefore, infectious. The incubation period also offers insights into the decision-making

process around the control of infectious diseases (e.g., by determining a sensible quarantine

time).
P tU >y
1
: exposure to .
- virus > t >
1 1 1
[l [ [
] L] L]
EL EU S
exposure exposure symptoms
starts ends appear

Figure 1.1: Visualization of the incubation period. E;: Lower time
point of exposure period; Ey: Upper time point of exposure period; S :
Symptoms onset; t; =S — Ey;ty =S — E|.

1.1.2 Useful Methods and Models

Kaplan-Meier Method

The Kaplan-Meier (KM) method is a nonparametric method used to estimate survival func-

tion from data that are censored or truncated. In what follows, we describe the procedure for



computing KM probabilities of survival, given survival time and censoring status. Let n repre-
sent the size of a random sample, and let i denote the index for a subject in the sample. Suppose
we have the observed data {{ti, o):i=1,-- ,n}, where ¢; is the censoring indicator for subject
i with 6; = 1 (or §; = 0) indicating the observed value ¢, to be the event (or censoring) time. We
order distinct event times to be #; <1, < --- < f;, where k < n.

For j=1,--- ,kletd; = Xi_ I(t; = t;.,(ii = 1) represent the number of events occurring
at time t;., andletn; = X7 I(t; > t}) denote the number of individuals at risk prior to time t;..
Then, the KM estimator (Lawless, 2003), also known as the product limit estimator, of S () is

expressed as

Sw=[]Ar>61T20)= ]—["’n;d’
J

J: t}.<l J: l;.<t
Cox Proportional Hazards Model
The Cox proportional hazards (PH) model (Cox, 1972) is a semi-parametric model used

to study relationships between time-to-event outcomes and risk factors or exposures. The Cox

PH regression model is usually written in terms of the hazard function:

)4
h(t, X) = hy(t) exp{Z,Bij}, (1.1)
J=1
where X 2 (X, - - - ,Xp)T is a p-dimensional vector of explanatory variables, h(¢) is the base-

line hazard function, and the §3; are regression coeflicients associated with X;. Here the ex-
planatory variables X;’s are time-independent. With time-dependent explanatory variables, the
Cox PH model form can still be used and is called the extended Cox model.

The Cox PH model is popular because of its attractive characteristics. Estimation of the
covariate effects 8; may be performed by leaving the baseline hazard function, h(?), unspeci-
fied, and thus, gaining robust estimation results. To be specific, let 5 = (B, - , ,BP)T denote the
vector of parameters. Estimation of 5 can be performed by maximizing the partial likelihood
(Lawless, 2003).

Suppose we have observations {;, 5;, X;} fori = 1,--- , n, and suppose there is no tie at each

event time. The partial likelihood, denoted £(B), for the Cox PH model is given by



n (- ho(n)exp (B7X;)

£ =]

i | Sjer, ho (1) exp (B7X,)
[l _oel™) |
B i=1 | 2jer, €XP (ﬁTXj)

where R; = {l : T; > t;} denotes the risk set.

Accelerated Failure Time Model

The accelerated failure time (AFT) model is a parametric regression model commonly used
in survival analysis. The AFT model assumes that the effect of a covariate is to accelerate or
decelerate the life course of a disease by some constant. Unlike its counterpart, the Cox PH

model, it allows us to directly model the relationship between log 7" and covariates, given by

logT =u+p"X +e, (1.2)

where u is the intercept term, S is the vector of regression coefficients, X is a vector of covari-
ates, and e is the error term that is independent of X and has a given distribution.

The AFT model (1.2) describes a general class of models where the distribution of € can
assume different forms. The AFT model facilitates survival times directly and thus enables
us to describe survival curves. The AFT model is transparent in the interpretation of survival
curves that can be used to construct confidence intervals, either for survival times or parameters.
Goodness-of-fit may be performed under the AFT model with the use of different forms of
residuals (Balakrishnan et al., 2013).

Further, assuming zero mean for the error term in (1.2) but leaving its distribution unspeci-

fied, one may develop a semi-parametric AFT model (e.g., Jin et al., 2006; He and Yi, 2020).



1.2 Dynamic Treatment Regimes

1.2.1 A Literature Review

Precision medicine, also referred to as personalized medicine, is an emerging practice of
medicine that helps produce targeted therapies for patients with chronic diseases and reduces
the cost of healthcare by reducing the quantity, duration, frequency, or scope of unnecessary
treatments. The primary motivation for this practice stems from the concerns that the previ-
ously widely regarded acute inpatient care model with “one-size-fits-all” or static treatment
strategy, which does not take into account the heterogeneities and time-varying conditions of
patients. Personalized medicine for chronic diseases, however, follows the concept of chronic
care model (CCM) developed by Wagner et al. (2001) to improve chronic illness care programs.
Some of the key features of CCM are “embedding evidence-based guidelines into daily clinical
practice”, “individualizing the treatment type, dosage and timing based on patient’s ongoing
conditions”, and “using individual patient’s case history to change therapeutical strategies in
a sequential manner” (Wagner et al., 2001). The latter feature is known as dynamic treatment
and highlights the heterogeneity of patients’ responses to treatments.

In the context of personalized medicine, changing therapeutical interventions in a sequen-
tial manner requires personalizing interventions over multiple stages of a patient’s recovery tra-
jectory. The implementation of such practice can be done through dynamic treatment regimes
(DTRs) (Murphy et al., 2001; Murphy, 2003; Robins, 2004). DTRs, aka adaptive interven-
tions, have become increasingly important in medical studies. Casting the problem under a
dynamic framework, the objective of a DTR is to optimize the long-term clinical outcome of
an individual with his or her characteristics and medical history taken into account. DTRs
allow individualization of treatments, and thus are mostly beneficial for patients with chronic
illnesses who need long-term medication. In contrast to the acute inpatient care model, where
clinicians recommend a one-size-fits-all treatment strategy based on a priori empirical popula-
tion information, DTRs are an evidence-based strategy to implement subject-specific treatment
or intervention. This highly customized strategy is regarded as a key element of the CCM
(Wagner et al., 2001).

Basically, a DTR is a set of decision rules over a sequence of time-intervals or stages, and



each decision rule recommends an effective treatment for an interval based on a patient’s indi-
vidual characteristics and treatments histories (Murphy, 2003,0). DTRs facilitate therapeutic
intervention that evolves over time, which is mainly dedicated by the patient’s characteristics
and other relevant information. They can be particularly useful for accounting for patients’
heterogeneities and time-varying needs. In the development of the optimal DTR, the objective
of each decision rule is not to optimize the outcome of a patient in any specific stage, but to
optimize the patient’s long-term outcome.

Many methods have been developed for estimating the optimal DTRs. These methods can
be broadly classified as either direct or indirect estimation methods. Direct estimation meth-
ods, also known as policy search methods, establish the optimal sequence of treatment rules by
optimizing the expected outcome over a set of candidate treatments. Popular methods under
this category include inverse probability of treatment weighting (IPTW) approaches, marginal
structural models, and classification-based methods (Chakraborty and Moodie, 2013). In con-
trast, indirect methods use approximate dynamic programming to describe models for the
stage-specific conditional mean outcome, and then optimize the resulting approximate con-
ditional mean outcome to find the optimal DTRs. Popular indirect methods are Q-learning
(Murphy, 2005b; Chakraborty and Moodie, 2013), A-learning (Robins, 2004, pp.189-326),

and G-estimation for structural nested models (Robins, 1997, pp.69-117).

1.2.2 Estimating Treatment Rules by Q-Learning

Q-learning, originating from the computer science community (Watkins, 1989), is a well-
known method for constructing optimal DTRs. The implementation of the Q-learning method
relies on the specification of a function called the Q-function. In the context of DTRs, Q-
functions represent the expected cumulative rewards (e.g., clinical effectiveness or patient
health) obtained by following specific treatment regimes (policy) in a sequential decision-
making problem. The implementation of the Q-learning method is simple, which typically
involves two steps: (1) estimate the stage-specific Q-functions, and (2) recommend the ac-
tions that optimize the estimated Q-functions (Qian et al., 2012, pp.127-148). These steps

basically hinge on the specification of the Q-functions, which can be modeled parametrically,



semi-parametrically, or nonparametrically (Zhao et al., 2009).

In this section, we present the basic notation and necessary steps for constructing optimal
treatment regimes using the Q-learning algorithm in a mismeasurement-free context. Consider
the setting with K stages of decision rules, where K is a positive integer greater than 1.

Fork =1,---,K, let A; denote the binary treatment indicator received at the kth stage for
a subject, taking value O or 1. Let X; denote an error-prone binary covariate taking value O or
1, and let Z; denote a vector of precisely measured covariates where X and Z; are measured
prior to the treatment receipt at the beginning of the kth stage. For k = 1,--- K, let X; =
(X1 X} Ze= {21, . 2}, and A, = {4, A

For k = 1,--- ,K, let Y; denote the observed outcome at the end of stages k, which is
assumed “‘the bigger the better” and is regarded as a function, say g(-), of the history of the
treatment, Zk_l , together with the current treatment A, and the history of the covariates, ?k

and Z,, as well as the covariates X;,; and Z,,; at the next stage. That is,
Yi = g(Ar, Xis15 Zis1) (1.3)

fork=1,---, K (Chakraborty and Moodie, 2013, p.35), where Xk, and Zg,; are null.

The objective is to find a sequence of optimal treatments by retrospectively maximizing the
expected value of the outcome for each stage in a backward manner (i.e., from stage K back
to stage 1), with the impacts of the history of treatments and the covariates incorporated. This
idea is realized by the Q-learning method, which is rooted in the use of Q-functions defined for
K stages (Chakraborty and Moodie, 2013, Section 3.4.1).

To be specific, set Qg1 = 0. Define

Ox(Ag, Xk, Zg) = E(Yg | A, Xk, Zk), (1.4)

and for stage k with k = K — 1,--- , 1, define the stage k Q-function recursively in a backward

direction:

Oi(Ar, X1, Z1) = E{Yk + max Qi1 (At Xis1s Zis 1, Aks1) ‘Zk,)_(kazk}, (1.5)
Afe+ 1
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where Zk+l in Qk+1(Zk+1 ,)_(k+1 ,Zk+1) in the right-hand side of (1.5) is written as Zk U {ax+1} so

that the future treatment a;. for stage k can be evaluated to find the optimal one.

In other words, fork=K —-1,---,1, let
Vi £ Y+ max Qui1 (A, Xiv1, Zis 1, Gis1) (1.6)

Af+1

denote the stage k pseudo-outcome constructed in a way that assumes the subject is given the
best treatment at the subsequent stage. The additive structure between Y; and the maximized
value of Qk+1(Zk,Yk+1,zk+1,ak+1), related to the Bellman equation (Bellman, 2010), reflects
the belief that the treatments over the multiple stages affect the outcomes cumulatively in an

additive manner. Then the stage k Q-function is defined as
QAL X Zy) = E(Vi | Ao X, Zi),  for k=K1, 1, (1.7)

together with (1.4).
To find optimal treatments, a natural approach is to use a backward procedure by examining
the Qk(Zk, Yk, Zk) functions for k = K, - - - , 1. In the case where the true Q-functions are known,

optimal treatments, denoted d, are determined by:
dk = arg max Qk(Zk_l,)_(k,Zk, ak) for k= K, e, 1. (18)
ak

When the true Q-functions are unknown, as is often the case in applications, we employ
regression models, especially linear regression models, to delineate them as they represent

conditional expectations. To be specific, for k = K, - - - , 1, consider the linear regression model

Ov(Ar, Xx, Zy) = Bt Hio + (¥ Hi)Ax, (1.9)

where we separate the treatment effects from those of covariates and express Al U X, U Zy
as {Hyo, Hy,}, with Hy, representing the covariates that have a predictive effect on the outcome,
and with H;, standing for the covariates that interact with treatment; H;y and Hj; may include

a constant, or intercept, term, and they may include the same covariates. Here §; and i are
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the associated regression coeflicients (Chakraborty and Moodie, 2013, p.40), and we write
0= BLy) fork=1,--- K.

Suppose we have a random sample D £ {{Aki,in,Zki, Vil i k=1,--- ,K; i=1,-- ,n}
with the {Ay, Xi, Zii, Yii} for i = 1,--- ,n being independent and identically distributed (i.i.d.)
following the same distribution of {A;, X, Z, Yi}. In the following development, index i is
added to X, Zi, and A, in a similar manner.

Now we describe a procedure for finding optimal treatments, called the Q-learning algo-
rithm, using the data in the random sample. The algorithm is basically a backward recursion
process that aims to minimize the mean squared error between the (pseudo-) outcome and its
conditional expectation at each stage, starting from the last stage backward to the first stage. At
the last stage K, the minimization is essentially the least squares method which minimizes the
squared difference between the observed outcome Y and its conditional expectation (1.4); for
stage k withk = K —1,---, 1, the least squares method is individually applied to conceptually
minimize the squared difference between the pseudo-outcome Y, in (1.6) and its conditional
expectation (1.7).

To be specific, with Qg £ 0, we estimate the regression coeflicients for each stage via

the least squares approach:

R I - — 2
b = arg min~ Zl |7 — QA Xii. Zui: 60)] (1.10)

fork:K,---,1,wheref’K,~:YK,-;fork:K—l,---,1,

Vi = Yig + max Qpe1(Apis Xes 1yis Ziks 1yis Qs 1 Orcs 1) (1.11)

Af+1

representing stage k pseudo-outcome for subject i; and Qk(Zki,fk,-,Z{,-; ;) is determined by
regression model such as (1.9).

Substituting the estimates of (1.10) into (1.8), we estimate the optimal treatment by
dy = argmax Qu(As-1, Xp, Zi, a0 for k=K. 1, (1.12)
ag

where Qk(Zk_l s Xe Zi, ay; 0) is determined by (1.9) with 6, replaced by its estimate 0y, deter-
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mined by (1.10).

For K = 2, the implementation of (1.10) under model (1.9) can be carried out using the
R package gLearn. The R package, DTRreg, initially developed for the G-estimation and
dWOLS methods, can also be used for Q-learning with any K.

We conclude this section with comments on inference about the model parameters using the
estimators derived from (1.10). While the least squares method is applied to all k = K, --- , 1 in
(1.10), the interpretation of the resulting estimators differ for k = K and k < K. When k = K,
the resulting estimator Oy is the least squares estimator of 8, and thus inference about f¢ can
be carried out in a usual way. For instance, coverage rates (CRs) of confidence intervals (Cls)
for the Kth stage estimators in (1.10) can be calculated using either Wald-type (W-type) Cls
or percentile bootstrap (PB) Cls. However, caution should be exercised when obtaining Cls
for the estimators in stage k with k < K, as those estimators 91< withk =K —-1,---,1 are not
the least squares estimators of the ; due to the unobservable feature of pseudo-outcomes Y.
Fork = K —1,---,1, the pseudo-outcome, f/k,-, may be a non-smooth function of 9k+1, which

creates the non-regularity or weak non-regularity issue to be discussed in Section 1.2.3.

1.2.3 Inference in the Presence of Non-regularity

In implementing (1.12), the non-regularity issue for estimators may arise when optimal treat-
ments at subsequent stages are not unique for a portion of subjects in the population; this
happens when the coefficient of the treatment is equal to zero with a positive probability. Fur-
thermore, weak non-regularity occurs if the coefficient of the treatment assumes values near
zero (Robins, 2004). Non-regularity or weak non-regularity often distorts usual inferential
procedures that root in the asymptotic normal distribution. In applications, it is generally ad-
vised to examine analysis results for any severe non-regularity issue. A few approaches have
been proposed to address the non-regularity or weak non-regularity problem. One strategy to
circumvent non-regularity is to employ the soft-thresholding or hard-thresholding approach to
modify the pseudo-outcome in the Q-learning algorithm to regularise the non-regular estima-
tors (Chakraborty et al., 2010).

An alternative remedy is to report double bootstrap (DB) or m-out-of-n bootstrap Cls
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(Chakraborty and Moodie, 2013, Chapter 8) when doing inference about the model param-
eters. DB Cls are of particular interest in cases where asymptotically pivotal statistics are not
available (Nankervis, 2005). To be specific, let ¢ denote a parameter of interest, and let ¢ de-
note its least squares estimate. For 0 < @ < 1, we construct a (1 — @)100% DB CI for ¢ by

running the following steps, with M, and M, being given positive integers:

1. Draw M, first-stage bootstrap samples from the original data. Forb = 1,--- , My, use the

bth bootstrap sample, denoted S ,, to obtain an estimate of ¢, denoted éb*b.

2. Forb = 1,---,M,, draw M, second-stage bootstrap samples from the first-stage boot-
strap sample S,. Form = 1,---, M, use the mth bootstrap sample, denoted S, to

obtain an estimate of ¢ denoted by ¢,

3. Forb = 1,---,M,, calculate u™® = M% SM 1™ < ¢}, where 1(-) is the indicator
function.
4. Let uz‘g) and uz‘l_g) denote the (%)-percentile and (1 — 5)-percentile of {u*” b =
2 2
L, M 1}, respectively. Find the uzkg)—percentile and uz‘l_g)—percentﬂe of {@*b b=
2 2

1, ,Ml}, denoted (]3:;(

a

and g?ﬁj; , respectively. Then a (1 — @)100% DB CI for ¢ is
) -9

a

2

given by ((/)Z N )
& Ta-9

While larger M, and M, are expected to give better results, the choice of M; and M, is usually

driven by the trade-off of the computational burden and accuracy of the results.

1.3 Optimization Procedures

1.3.1 Constrained Optimization

Optimization problems are generally categorized into two broad categories: convex and non-
convex optimization. Convex optimization is further categorized into linear and nonlinear pro-
gramming, while nonconvex optimization is categorized into discrete and continuous optimiza-
tion (e.g., Lin et al., 2012). The review in this section is kept general in nature. To start with,

we present the following optimization problem:
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minimize f(x)

subjectto fi(x)<b;, i=1,---,m,

(1.13)
hix)y=c¢;, j=1,---,p,
Xp<xi<xy i=1,---,n,
where the vector x = (x,--- ,x,)" € R”, with coordinate x; bounded by given constants x;; and
xiy fori =1,--- n, called the design variables; f : R" — R is the objective (or goal) function;
fi : R" — R is an inequality constraint function for i = 1,---,m; h; : R" — R is an equality
constraint function for j = 1,---, p; b; is a given constant for i = 1,--- ,m; and c; is a given

constant for j=1,---, p.

Optimization techniques are used to find the optimal vector, denoted x*, that has the small-
est objective value among all vectors that satisfy the constraints in (1.13). That is, for any z
with fi(z) < by, -+, fu(2) < by and hy(z) = ¢y, -+, hy(z) = ¢,, we have f(z) > f(x*).

If the objective and constraint functions in the optimization problem (1.13) are all linear
functions, the optimization problem (1.13) is called a linear programming, and otherwise, a
nonlinear programming.

If the equality constraints are affine, and the objective function, as well as inequality con-

straint functions, are convex, i.e., they respectively satisfy the inequalities

Jlax +By) < af(x) +Bf(y)

and

filax +By) < afi(x) +Bfi(y) with i=1,---,m,

forall x,ye R"and all @, € Rwitha+8 =1, @ > 0, 8 > 0, the optimization problem (1.13)
is called convex optimization problem.

It is noted that the variables x in (1.13) can also be of discrete or integer nature. Op-
timization problems with discrete variables are referred to as discrete optimization problems.
Discrete optimization problems are generally approached using global optimization algorithms
rather than local optimization algorithms. In what follows, we briefly review some local and

global optimization algorithms.
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1.3.2 Nature of Optimization Algorithms

Local Optimization Algorithms

Local optimization algorithms are mostly gradient-based, and they result in a locally op-
timal solution in the vicinity of which we cannot find other feasible solutions with better ob-
jective function values. In convex optimization problems, a locally optimal solution is also
globally optimal. That is, for linear programming problems, quadratic programming problems
with a positive or negative definite objective function, and nonlinear programming problems
with convex or concave objective and constraint functions, a locally optimal solution is also

globally optimal (Boyd and Vandenberghe, 2004).

Global Optimization Algorithms

An objective function may have multiple optima, and an optimization problem with such an
objective function is referred to as a multimodal optimization problem. Some of the solutions to
a multimodal optimization problem can be globally optimal solutions having identical objective
function value, and some can be locally optimal solutions having different objective function
value. Although one can still use local optimization algorithms in conjunction with a multi-
start approach to deal with such problems, it is more practical to employ global optimization
algorithms that focus on finding the best possible solution in the entire search space. Global
optimization algorithms generally require more time, but they are more likely to result in more

reliable solutions (Horst and Tuy, 2013).

1.3.3 Useful Optimization Algorithms

Newton Raphson Algorithm

The Newton Raphson algorithm (Avriel, 2003) is an iterative gradient-based optimization

algorithm without constraints, i.e., no constraints in (1.13). The Newton Raphson algorithm
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basically consists of two general steps:

e Step 1: Use the second-order Taylor series expansion to construct a quadratic approxi-

mation of the objective function around some initial design point x°.
e Step 2: Adjust the design point to that which maximizes the quadratic approximation.

Iterate through these steps until the design point stabilizes. To clarify, consider the following

second-order Taylor series expansion of the objective function f(x)
F00 > £ () 4 95 () (v ) 5 (6= 2) B () (- 29), (1.14)

where Vf (xo) is the gradient, and H (xo) is the Hessian matrix. Differentiating (1.14) with
respect to x and setting the result equal to zero results in the following update formula for the
current design point:

x=x"- H(xo)_1 Vf (xo).

One of the downsides to the Newton Raphson algorithm is that calculating both the Hessian
matrix and its inversion is computationally expensive, especially when dimensions get large.
To overcome this issue, other optimization methods are available, as indicated by the following

methods.

BFGS Method

The Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm (Shanno, 1970) is a second-
order optimization algorithm and is usually referred to as the most popular quasi-Newton algo-
rithm. It is known as a quasi-Newton method since it approximates the inverse of the Hessian
matrix using the gradient. This means that, unlike the Newton Raphson method, which re-
quires the calculation of the inverse of the Hessian matrix, the BFGS method does not need the
Hessian and its inverse to be available or calculated precisely for each step of the algorithm.
The approximation to the inverse of the Hessian matrix is updated at each iteration using the

first-order gradient information from that iteration.
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Nelder-Mead Method

The Nelder-Mead method (Nelder and Mead, 1965), also known as the Simplex search
method, is a heuristic multidimensional unconstrained optimization. The algorithm does not
require the availability of the gradient and therefore is suitable for problems with non-smooth
functions. It basically navigates through the search space stochastically to find the best optimal
point it encounters during the search. The Nelder-Mead algorithm uses a geometrical shape
called a simplex to search over the domain of the optimization problem. The algorithm starts
with a randomly-generated simplex and evolves by moving and/or reshaping the simplex at

every iteration until a desired bound is obtained to result in the most optimal objective value.

Genetic Algorithm

The genetic algorithm (De Jong, 1988) is a stochastic search that uses the concept of sur-
vival of the fittest to approximate the solutions for a problem. The algorithm is suitable for
solving various optimization problems, including problems in which the objective function is
nonlinear, discontinuous, or non-differentiable. The genetic algorithm starts with a population
of all possible solutions, called “generation zero”. The next step is to score the population by
evaluating how good each solution in the generation zero population is. Based on the result-
ing scores, some solutions are selected for reproduction (also called parents). Crossover rules
combine two parents to form new solutions for the next generation. This process continues

until the score of the best solution stabilizes and does not change for many generations.

1.4 Estimation Equations Approach

Suppose {Yy,---,Y,} consists of i.i.d. random variables, and let {y;,--- ,y,} be their realized
values. Suppose the i.i.d. random variables are drawn from the density f(y; ), where the
finite vector = (6y,---,6,)" € R?. When interest lies in learning about the unknown 6,
one may make use of a parametric model with the full specification of the joint distribution

f(v;0). In such a case, inference is basically done using the maximum likelihood method,
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which is a centerpiece of statistical inference (e.g., Lehmann and Casella, 2006). Given the

data {y,-- -, y,}, the likelihood function is defined as

Lo = | r0:0).
i=1

With the given data, maximizing L(¢) with respect to 6 gives the maximum likelihood estimator
of 6.

Formulating a likelihood function requires correct specification of the distribution form,
which may not always be possible in applications. To get around this problem, we can employ
estimation function (Godambe, 1991) approaches as an alternative to estimate 6.

The estimating function approach starts with specifying a p X 1 vector of functions which
involves both the unknown parameter 6 and y;. Let S (6;y;) denote such a vector-valued func-
tion.

An estimate for 6, denoted 6, can be obtained by solving the equations
D 8@y =0. (1.15)
i=1

Here S(6;y;) is called an estimating function for 6, and (1.15) is referred to as estimating
equations. To ensure the resulting estimator @ to be consistent and asymptotically normal, we

need to impose certain conditions on S (6; y;). Typically, S (8;y;) is required to satisfy
E{S(@;Y)} =0 (1.16)

together with other conditions. A function satisfying (1.16) is called an unbiased estimating
function.

Define
95 (6;Y))

90T }’ J(0) = E[S (6; Y){S (6; Yi)}T], (1.17)

1) = E{

and

50) = {160)) J@[10)

where the expectations are taken with respect to f(y;; #) and the inverse matrices are assumed
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to exist. Under the regularity conditions, 7(f — 6) is asymptotically normal with mean zero
and asymptotic covariance matrix X(0) (Yi, 2017, Section 1.3).

The estimating equation method outlined here has been commonly used to conduct infer-
ence about model parameter 6. The usefulness of this approach is mainly pertinent to its nice
feature of not requiring the full distribution of the associated variables, yet yielding consistent
estimators which have asymptotic normal distributions as long as certain regularity conditions
are satisfied. In applications, different sets of regularity conditions may be imposed when using
the estimating equation method to handle different problems, and those regularity conditions
are usually only sufficient but not necessary conditions to ensure consistency of § and asymp-
totic normality of v/n(@ — 6).

For example, assuming 6 is a scalar, the following regularity conditions were considered

by Godambe (1960):

(1) E[S 0;y)] = f S ;) f(y;i; Ody; = 0 for all 8 € O, where O is the parameter space that

is open;

(i1) % exists for all 6 € ®;

(ii1) f S(6;y,)f(y;; O)dy; is differentiable under the sign of integration,

(iv) E[B%0)° > 0 for all 6 € ©;

together with the assumptions for f(y;;d). More discussions of regularity conditions can be

found in Yi (2017, Section 1.3) and the references therein.

1.5 Measurement Error and Misclassification

A variable is said to be subject to measurement error or misclassification when a difference
exists between the true value of the measurement and the observed measurement. The term
[13 29 3 : : : (13 :
measurement error’”’ is mostly used for continuous error-prone variables, while the term “mis-
classification” is used for error-prone discrete variables. In this thesis, we use the term “mis-

measurement” to refer to any setting where a measured quantity and its true value may be
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different. Mismeasurement can be classified as “random error” and “systematic error”. Ran-
dom errors are regarded as a chance difference between a measured quantity and its true value.
These types of errors are often described with a distribution, whereas systematic errors are
referred to those that are featured by a constant, thus removable by calibrating the measuring
instruments or procedures.

In the following sections, we briefly touch on some of the most important mismeasurement
models and mechanisms. To this end, fori = 1, - -- , n, let ¥; denote the error-free response vari-
able, let X; denote an error-prone explanatory variable whose imprecisely measured surrogate

is denoted by X7, and let Z; denote an error-free explanatory variable.

1.5.1 Measurement Error and Misclassification Models

Measurement error and misclassification models are used to uncover the underlying relation-
ship between the observed variables and true variables. We begin by describing one of the most

widely used measurement error models, called the classical additive error model.

Classical Additive Error Model

A classical additive error model has the following form

Xl* =X; +e, (118)

where the error term e; is independent of the true variable X; as well as Z;, and has mean zero.

Berkson Model

The Berkson model is of the form

X,' :Xl* + e,

where e; is independent of X as well as Z;, and has mean zero.
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The classical additive error model and the Berkson model differ in the perspective of view-
ing the relationship between X! and X;, where one is treated as a dependent variable, and the

other is regarded as an independent variable.

Misclassification Model

In settings where X; is not continuous but discrete, the relationship between X; and X} can be
studied in two ways through modeling: (1) the conditional probability P(X = x} | X; = x;,7Z;)
or (2) the conditional probability P(X; = x; | X = x!,Z;). The probabilities P(X] = x] |
Xi = x;,Z) and P(X; = x; | X! = x[,Z;) are known as misclassification probabilities and

reclassification probabilities, respectively (Yi, 2017, p.70).

1.5.2 Impacts of Covariate Measurement Error or Misclassification

Consider a random sample of n observations {y;, x;} of i.i.d. random variables {Y;, X;}. Suppose

the relationship between Y; and X; is delineated by a simple linear regression of the form
Yi=po+BXi+e  for i=1,---,n, (1.19)

where ) and 3, are regression parameters, and ¢; is independent of X; with mean zero and
variance o~%. Suppose that X; is not observed, but its surrogate version X is available.
If applying the least squares method with X; in (1.19) replaced by X}, then the resultant

estimator of 3, is given by:

B - S = X)) - F)
D S

and it can be shown that as n — oo,

.. » Cov(X:,Y)

e (1.20)

We now consider two cases. In the first case, we assume that X; is continuous and linked
with X by the model
Xl* = Xi + e;,
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where error ¢; has mean zero and variance 0'5, and is independent of X; and €. In this case,
(1.20) becomes

PO
B, — W B asn — oo,

where % = %, and 0')26 is the variance of X; (Fuller, 1987; Yi, 2017, Section 2.2). Since
# < 1, the measurement error in X; has caused an attenuation bias in using 3* to estimate f3,.

Now, we consider the second case where X; is not a continuous random variable. Let X; be
a binary random variable taking 0 or 1, with 7 = P(X; = 1). Suppose that X and X; are linked
by the misclassification matrix

Tt TT
0. = 00 01 (121)

J s
o 711

where 1y = P(X; = k| X; =) fork = 0,1 and [ = 0, 1, and X is assumed to be independent
of Y; given X;.

To calculate Cov(X?,Y;), we first obtain the expected value of X'

E(X}) = E[E(X] | X))
= E{nnX,- + (1 = moo)(1 - Xi)}

=+ (1 —meo)(1 — 7).

Let p 2 w1 + (1 = meo)(1 — 7). By the conditional independence of X and Y;, given X;,

we obtain the expected value of X''Y;:

E(X;Y) =E{E(X;Y, | X))

{
E{E(X;" | X)E(Y; | Xi)}

E{ECX; | X)(Bo +B.XD)

=E[{m1X; + (1 = 7o0)(1 = X))o + B.X))|

=E{miBoXi + (1 = mo0)(1 = X)Bo} + E{mnB.X7 + (1 = mo0)B.(X; - X))

=pPBo + nB 71,

where the last step is due to X? = X;.
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Finally, we have

Cov(X;,Y) EX;Y;)—EX))E(Y;)

Var(X)) Var(X;)
_ (pBo + mBm11) — p(Bo + Bim)
B p(1 - p)
_ a(l = m)(moo + 711 — l)ﬁ
p(1—=p) "

where we use Var(X}) = p(1 - p).
Shieh (2009, p.41) showed that % < 1, and thus, (1.20) suggests that covariate
misclassification has an attenuated effect on the estimation of covariate effect §,.

1.5.3 Model Identifiability

Identifiability is a fundamental requirement in statistical modeling. It means that different
parameter values give rise to different probability distributions. Conversely, if two sets of
parameter values generate identical distributions of the data, the model is not identifiable. Let ®
denote parameter space, and let S y denote the sample space of data. A model, {F(y;6) : 6 € B},
is called identifiable if for all 6,,6, € ® and for all y € Sy:

F(y;0y) = F(y;0,) if and only if 6y, = 6,

where F(y;-) is a probability distribution (Guillaume et al., 2019).

Nonidentifiability occurs when a model is poorly specified or when the parameter space is
“too large”. For example, when the number of the model parameters exceeds the number of
observations in the data, the model is nonidentifiable. In the presence of error-prone data, we
usually need additional modeling of mismeasurement and/or covariate processes in addition to
modeling the response process. This, in particular, results in the parameter space expansion,
which typically generates model nonidentifiability issues. One strategy to overcome model
nonidentifiability is to collect additional data to help characterize the mismeasurement process.

Now, we describe two types of data sources that are used in the analysis of error-contaminated
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data.

Validation Subsample

Consider the main study data {{Yi,X;‘,Zi} 1€ M}, where M denote the index set.
An internal validation subsample contains true measurements of the variable X; in addition to

Y, X!, Z;} fori € V, where V c M, ie., {{Y,-,X,-,X;‘,Z,-} i€ V} is available. In contrast an

external validation subsample often contain {{X, X7, Zi} ieV } with VN M = 0.

Repeated Measurements

In some settings, we observe repeated surrogate measurements for X;. Such data are called

replicate data and have the form
{{YI’XI*PZI)} : l: 17 , 15 ]: 1’ ’ni}?

where n; is the number of replicate surrogate measurements for the ith subject. Usually, one
would make replicate measurements of X if there were good reasons to believe that the average

of replicates is a better estimate of X; than a single observation (Yi, 2017, Section 2.4).

1.5.4 Regression Calibration

Regression calibration (RC) (Carroll et al., 2006, Section 4.1) is a simple yet effective cor-
rection strategy applicable to almost any regression model with covariate mismeasurement.
Unlike the naive analysis where X is replaced with its observed surrogate X, the primary idea
behind the RC approach is to replace the unobserved variable X; by the conditional expectation
E(X; | X;,Z;), which can be estimated by regressing X; on {X},Z;} if for example, validation
data are available. The RC method bears relevance to the EM algorithm and is regarded as a

special case of it, as discussed by Yi (2017, p.60).
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Suppose the mean of X; given (X, Z;) can be described by
EX; | Xi,Z) = mx(X;, Z;; 0),

where  indicates regression parameters. The RC algorithm consists of the following three

steps:
Step 1. Estimate mx(X?, Z;; {) by validation subsample.

Step 2. Replace the unobserved X; by its estimate mx (X}, Z;; £), and run the standard analysis to

obtain point estimates of parameters of interest.

Step 3. Implement the bootstrap method to obtain the standard errors associated with the esti-

mated parameters in step 2.

1.6 COVID-19 Data

Our research is motivated by the emerging COVID-19 data. Here we outline some features of

COVID-19 that will be examined in this thesis.

1.6.1 COVID-19: Epidemiology

Estimating the incubation period is crucial for disease control. Having a sensible estimate of the
median incubation time helps the government and healthcare sector decide on a rationale quar-
antine time. With the aim of determining a reasonable quarantine time, Khadem Charvadeh
et al. (2022) examined some useful methods for modeling the distribution of the COVID-
19 incubation time. Estimating recovery times for infected patients is of great importance
for healthcare workers to effectively allocate the limited medical resources to cope with the
COVID-19 crisis. Moreover, understanding the relationships of demographic factors, such
as age and gender, with COVID-19 is essential as it helps healthcare professionals prioritize
treatment of patients with different characteristics. The Canada COVID-19 website (Liu et al.,
2020) examined and displayed some of the epidemiological characteristics of COVID-19 in

Canada. While various efforts have been made to study the behavior of SARS-CoV-2 since the
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outbreak of COVID-19, the understanding of COVID-19 has been constantly enhanced as more
COVID-19 data become available. Extensive evidence-based studies from multiple angles are
required to comprehensively unveil the clinical characteristics of COVID-19 by examining the

data coming from different sources as the pandemic evolves.

1.6.2 COVID-19: Case Fatality Rate and Prevention Strategies

The case fatality rate (CFR), defined as the proportion of deaths among those individuals in-
fected with the disease, is considered a key indicator for describing the severity of the disease.
To reduce the detrimental impact of COVID-19, including lowering the CFR, various pre-
ventive measures such as facial coverings, social distancing, lockdowns, testing, and contact
tracing were implemented by different countries. While clinical and epidemiological character-
istics of patients contribute to the CFR, the stringency of responses and containment measures
resulted in country-level variation in CFR (Liang et al., 2020). For instance, as of October
13, 2021, the CFR of COVID-19 in Yemen was reported to be as high as 18.95%, whereas in
Singapore, it was reported to be 0.14% (Our World in Data, 2021).

Since the COVID-19 pandemic started, estimation of the CFR and identifying the associ-
ated factors have attracted extensive research. Some studies focused on exploring patient-level
risk factors. For example, Zhou et al. (2020) conducted a retrospective cohort study of 191
adult COVID-19 patients and found that older age, higher sequential organ failure assessment
scores, and elevated d-dimer at admission were risk factors for death. Chen et al. (2020) exam-
ined the clinical characteristics and symptoms of 799 COVID-19 patients and found that the
median age of deceased patients was significantly older than recovered patients. Chronic hy-
pertension and other cardiovascular comorbidities were found to be associated with deceased
patients. Other studies explored the association of CFR with gender (Jin et al., 2020), obesity
(Klang et al., 2020), diabetes (Guo et al., 2020), and kidney diseases (Cheng et al., 2020).
Those studies indicated that, to some degree, the regional CFR may be partly explained by
the factors such as age and health status, including the presence of having diseases such as
coronary heart disease and hypertension.

However, national-level variation in CFR suggests the existence of other driving forces
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behind fatality risk. This gap in COVID-19 fatality rate has been investigated in several stud-
ies to help national health organizations lay the groundwork for protecting high-risk patients.
Some researchers investigated possible scenarios for the disparity in the risk of death from
COVID-19 and suggested that the healthcare system’s capacity, effectiveness of government
policies, people’s compliance, testing, and case detection capacities were effective in preven-
tion and attenuation of COVID-19 severity (Liang et al., 2020; Ji et al., 2020; Chaudhry et al.,
2020; Kayano and Nishiura, 2020). Nevertheless, to the best of our knowledge, there has been
no research evaluating the consequences of different strictness of policies taken by different
countries, which typically change over time.

In Chapter 3, we cast the problem into the Q-learning framework, which basically aims
to determine optimal preventive policies using regression models. Q-learning is a useful re-
inforcement learning scheme to select optimal policies sequentially for an agent in a given
environment. While it is commonly implemented to estimate the value of a single action that
maximizes the expected cumulative reward, in Chapter 3, we apply the Q-learning approach
to a setting where two actions need to be optimized. We use the Q-learning method and data
from open-access databases to explore how country-specific preventive measures may possibly
lower the CFR. Our study sheds light on the association among government actions, socioeco-

nomic factors, and the CFR.

1.6.3 COVID-19: Health and Economic Costs

During the COVID-19 pandemic, many countries imposed unprecedented containment restric-
tions to curb the spread of the disease, and the strictness of such restrictions changed from
country to country and from time to time, with some countries imposing long total lock-
downs of economic and social activities and others trading off deaths against the economy.
Those countries seeking to merely minimize the health costs of COVID-19 pandemic made
use of epidemiology models developed for the spread of infectious diseases. Many new or
refined versions of epidemiology models have been proposed during COVID-19. For exam-
ple, Okhuese (2020) used differential equations and modified the SEIR model to evaluate the

probability of reinfection in the recovered class and found that the rate of reinfection by the
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recovered population will decline to zero over time as the virus is cleared clinically. Higazy
(2020) modeled COVID-19 pandemic by fractional order SIDARTHE model. The proposed
mathematical model predicts the evolution of COVID-19 pandemic and helps understand the
impact of different preventive measures with different values of the fractional order. In a study
conducted by Pribylova and Hajnova (2020), they proposed a generalization of the SEIR model
by accommodating asymptomatic infectious cohort in understanding the epidemic dynamics of
COVID-19, and demonstrated that the asymptomatic cohort plays a crucial role in the spread
of the COVID-19. These models, however, have limited applicability in policy analysis for
they have economic consequences for not taking the trade-off between health and economic
outcomes into account. This suggests the need for developing models to minimize economic
losses as well as health costs simultaneously.

Some researchers investigated the trade-off between the COVID-19 outbreak and economic
activities. For example, Kano et al. (2021) proposed an abstract agent-based model of the
COVID-19 outbreak that accounts for economic activities. Lasaulce et al. (2021) proposed a
simple yet practical model to study the fundamental trade-off between economic and health
aspects of the COVID-19 pandemic. However, these studies implicitly assume that the covari-
ates are error-free. In practice, this assumption often does not hold, necessitating the need for
correction strategies when dealing with data that involve misclassified discrete covariates and
mismeasured continuous covariates. Therefore, the objective of Chapter 5 is to introduce ap-
propriate correction strategies to address this issue within the framework of weighted dynamic

programming.

1.7 Thesis Organizations

In this thesis, we employ survival analysis and reinforcement learning techniques to examine
COVID-19 data. While the literature on DTRs and mismeasurement is vast, to the best of
our knowledge, there has been little work on optimizing DTRs with misclassified covariates
or mixed measurement error and misclassification in covariates. In this thesis, we present
correction strategies to ameliorate the effects of covariate mismeasurement in developing DTRs

with the Q-learning method.
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The remainder of this thesis is organized as follows. In Chapter 2, we employ semiparamet-
ric and nonparametric survival models as well as text mining and data visualization techniques
to examine the clinical manifestations and epidemiological features of COVID-19 in the early
pandemic by studying a dataset from January 22, 2020 to March 29, 2020. The results of
this chapter have been published by The Journal of Data Science (Khadem Charvadeh and Yi,
2020). Khadem Charvadeh led this project and conducted data analysis.

In Chapter 3, we use Q-learning for tailoring the strictness of preventive policies to country-
specific characteristics and evolving situation to leverage the salutary effects of prevention
strategies with an objective of lowering the CFR. The results of this chapter have been pub-
lished online by Statistics in Biosciences (Khadem Charvadeh and Yi, 2023b).

In Chapter 4, we study how Q-learning may be affected by covariate misclassification, and
we present correction strategies to reduce or eliminate the bias induced by covariate misclas-
sification. The results of this chapter have been wrapped up as a paper and submitted for
publication (Khadem Charvadeh and Yi, 2023a).

In Chapter 5, we study the impact of the mix misclassified discrete covariates and mis-
measured continuous covariates in Q-learning with a compound outcome. The chapter also
demonstrates the practical application of Q-learning with a compound outcome in analyzing
the trade-off between health and economic costs associated with the COVID-19 pandemic,
with specific attention given to the presence of mixed measurement error and misclassification

1n covariates.



Chapter 2

Data Visualization and Descriptive
Analysis for Understanding

Epidemiological Characteristics of

COVID-19

2.1 Introduction

COVID-19 is a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The disease was reported to spread in people in December 2019, and it was important
to understand epidemiological features of COVID-19, including answering urgent questions
such as: (1) What was the average time of symptom onset? (2) How long did it take for
infected patients to recover? (3) Was there any age or gender difference in the recovery of
infected patients? (4) What were the common symptoms of infected patients?

While each of these questions warranted in-depth research when more data about COVID-
19 became available, in the beginning of the pandemic, we conducted a prompt exploratory
analysis of the clinical manifestations and epidemiological features of COVID-19. The re-
search reported in this chapter was conducted right after the COVID-19 pandemic was de-

clared by the WHO. The goal was to provide a timely examination of available COVID-19

30
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data to offer intuitive insights into further in-depth research. With the available Kaggle novel
coronavirus dataset of 3397 patients dated from January 22, 2020 to March 29, 2020, we ana-
lyzed the data using semiparametric and nonparametric survival models as well as text mining
and data visualization techniques.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the data
and examine different features of COVID-19 by data visualization. In Section 2.3, we employ
survival analysis techniques to estimate the distribution of recovery times for infected patients.
In Section 2.4, we estimate the average time of symptom onset. We conclude the manuscript

with discussions in the last section.

2.2 Data Visualization

2.2.1 Data Description

In this study, we use the Kaggle novel coronavirus dataset from January 22, 2020 to March
29, 2020. The dataset, available as a Google spreadsheet at https://www.kaggle.com/
datasets/sudalairajkumar/novel-corona-virus-2019-dataset, has been updated au-
tomatically every five minutes based on Johns Hopkins Center for System Science and En-
gineering (CSSE) data (https://github.com/CSSEGISandData/COVID-19). The dataset
consists of measurements of 3397 people with the novel virus from 39 countries including
those in Europe, Asia, and Africa. There are 14 variables representing the summary, location,
country, gender, age, symptom onset, hospital visit date, exposure start, exposure end, visiting
Wuhan, from Wuhan, death, recovery status, and symptoms of the infected cases. Using the
information given in the summary, exposure start, exposure end, symptom onset, and recov-
ery status, we further extract more specific information from the original dataset, including
infection source, travel history, time gap between exposure to symptom onset, and time gap be-
tween symptom onset to recovery. A copy of the dataset is available athttps://github.com/
YasinKhc/Covid-19. Among 3397 patients, only 1449 of them have the information of age
which ranges from 3 months to 96 years. In Table 2.1, we present the age distribution of

infected cases separately for females and males.


https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/datasets/sudalairajkumar/novel-corona-virus-2019-dataset
https://github.com/CSSEGISandData/COVID-19
https://github.com/YasinKhc/Covid-19
https://github.com/YasinKhc/Covid-19
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2.2.2 Descriptive Analysis

Among the 3397 patients, we found that older people have a higher fatality rate compared to
younger people. The mean and median of age for deceased cases were found to be 71.5 and
73.5, respectively. The left graph in Figure 2.1 displays the side-by-side barplots for the counts
of deceased cases for males and females divided into six age groups, and the right graph in
Figure 2.1 records the fatality rate for men and women in the six different age groups, where
the fatality rate is calculated as the ratio of the number of deaths in an age group with a given
gender to the number of infected cases in that group. It is clear that the fatality rate increases
with age, and the fatality rate for men in each age group appears higher than that for women.
These results are consistent with those reported by Jin et al. (2020).

We further perform the Chi-square test of independence (Pearson, 1900) to determine
whether there is a statistically significant association between age/gender and fatality. For
the null hypothesis that the fatality rate is identical for all the age groups, we obtain the p-value
of the Chi-square test to be 0.0005. For the null hypothesis that the fatality rate is identical for
males and females, we obtain the p-value of the Chi-square test to be 0.0748.

The left plot in Figure 2.2 shows that around 28% of the infected people had a recent travel
history. The right plot in Figure 2.2 reports that 13% of the cases had a close contact with other
infected people, and the source for the rest large portion (87%) of infections remains unknown,
which is very likely due to undetected community transmissions. Among those people with
unknown infection sources, about 30% of them had a recent travel history.

To understand what symptoms are most related to infected cases with COVID-19, we per-
form a text analysis using a word cloud (Viégas and Wattenberg, 2008), which typically vi-
sualizes word frequencies by using different sizes of the words. The more common a term
appears in a text dataset, the larger and bolder it appears in the word cloud. Word clouds are
an intuitive tool for visualizing and highlighting words with greater prominence. To generate
a word cloud for symptoms of COVID-19, we first collapse the summary into a single text
document and extract the terms and words describing the symptoms of infected patients, and
then store them in a new text document. Thereafter, different medical words and terms that

represent a specific symptom are summarized into a single unique word or term. For exam-
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ple, in the summary, besides difficulty breathing, three other terms were alternatively used to
describe the same symptom related to breathing: shortness of breath, dyspnea, and respiratory
distress. In our text analysis here, we classify them as the same description for the symptom
of breathing and then unify them with the term “difficulty breathing”. Next, using the obtained
text document and the word cloud generator in the package wordcloud in R, we summarize
the symptoms for 652 COVID-19 infected patients in Figure 2.3. It is clearly seen that fever,

cough, and pneumonia are the most frequent symptoms reported by those patients.

2.3 Examination of Recovery Time

To help the government and health authorities prepare for major spikes in the number of new
COVID-19 infected cases, it is important to understand the times for infected patients to re-
cover. In this section, we use survival analysis techniques to study the recovery times of in-
fected patients. Here the recovery time of an infected patient, denoted as 7', is taken as the time-
to-event, or survival time, using the terminology in survival analysis (e.g., Lawless, 2003). In
other words, the event is defined to be recovered, and hence, patients who die from COVID-19
are treated as censored.

First, we use the distribution-free Kaplan-Meier approach to examine the survivor function
S(t) = P(T > 1) for the recovery times, where ¢ € [0,45] with [0,45] representing the study
period of 45 days, and 0 is defined as the time of symptom onset for an infected patient.

We examine the recovery times from three angles. First, we do not distinguish infected
cases; secondly, we classify the infected cases into two groups by gender; thirdly, we divide
the infected cases into three age groups: (0, 40], (40, 60], and (60, 96]. The corresponding
Kaplan-Meier estimates are reported in Figure 2.4. The top panel of Figure 2.4 illustrates
the Kaplan-Meier time-to-recovery survival curve for all the infected cases, where the red
curve represents the estimated probabilities, the red shaded areas stand for the 95% confidence
region, and patients who are censored are marked with + signs. The dashed dark lines indicate
the survivor probability at the median recovery time, saying that with 50% of the probability, an
infected patient takes more than 20 days to recover (if they would recover). A 95% confidence

interval for the median recovery time is (19, 21).
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The middle panel of Figure 2.4 shows the Kaplan-Meier survival curves of recovery times
for men and women, which are not considerably different. Furthermore, applying the log-
rank test (Harrington, 2005) to assess whether or not the difference between the two curves is
statistically significant, we obtain that the p-value is 0.5, clearly showing no evidence that the
recovery time differs for men and women. Table 2.2 gives the median recovery times and their
corresponding 95% confidence intervals for men and women.

The bottom panel of Figure 2.4 displays the Kaplan-Meier survival curves for the three
different age groups. It can be visually concluded that people of older age are more likely to
have longer recovery times. The corresponding log-rank test yields the p-value to be 107,
supporting that the differences in recovery times for different age groups are statistically sig-
nificant. Median recovery times and their corresponding 95% confidence intervals for the three
age groups are summarized in Table 2.3.

Next, we quantify how the recovery time is associated with age and gender. We employ the

semiparametric AFT model:

log T = By + B X gender + B, X age + €,

where 3, is the intercept, 5; and 3, are regression parameters, and € is the error term with mean
zero and an unspecified probability distribution. For ease of interpretation, we use ten years
as the unit of age, as suggested by the editor. Estimation of the parameters can be obtained
using the generalized least squares approach (e.g., Chiou et al., 2014); the results are reported
in Table 2.4.

The analysis results show no evidence that recovery times differ in women and men. Age
is found to be significantly related to the recovery time. Older infected patients need a longer
time to recover from COVID-19. Exponentiating the estimate of 8,, we quantify the age effect
on the recovery time. With the gender effect adjusted, ten years older in age would extend the

recovery time by 9.9%.
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2.4 Gap Time Between Exposure and Symptom Onset

One of the major concerns that healthcare workers and the government have been trying to ad-
dress is on stealthy transmissions of COVID-19. Researchers at Columbia University’s Mail-
man School of Public Health used a computer model to show how undetected cases may boost
the spread of the COVID-19 outbreak in China. They showed that the virus spread was rapid
and its containment was challenging (Li et al., 2020). Understanding the average gap time
between the time of exposure to the virus and symptom onset for infected patients is useful for
healthcare workers and the government to make effective measures to curb the spread of the
virus.

Among the 3397 infected people, 207 reported both the time for exposure and the symptom
onset time. The time of exposure is taken as an approximate time a patient contracted the virus
by having a close contact with someone who was already infected or traveling to infected areas.
The symptom onset date is based on the time when an infected patient experienced flu-like
symptoms such as fever, sore throat, and in more severe cases, difficulty breathing. Eighty-
five patients reported a time interval for exposure spanning from 1 to 27 days. We treat those
exposure intervals with a length of less than one day as a single time point. To understand the
underlying incubation times for infected cases who reported different types of information on
infection, we estimate the median and average incubation times for the cohort of 3397 infected

patients using the following three methods:
e Method 1: the time period between the start time of exposure and symptom onset.
e Method 2: the time period between the end time of exposure and symptom onset.

e Method 3: we use the middle point of the time interval to approximate the exposure time,

and take the time period between the approximated exposure time and symptom onset.

For 140 patients who reported only a single time point for exposure, these three methods will
yield the same values for them. For the cohort of 3397 infected cases, Method 1 yields that the
mean and median incubation times to be 8.4 and 6 days, respectively; Method 2 outputs a lot
smaller mean and median incubation times which are respectively 3.3 and 2 days; and Method 3

gives that the mean and median of the incubation period are 5.8 and 5 days, respectively. The
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estimates of Method 3 are similar to those reported by Lauer et al. (2020) and Men et al.
(2020). Lauer et al. (2020), by conducting a pooled analysis of 181 infections reported between
January 4, 2020 and February 24, 2020, found that median incubation period to be 5.1 days.
Men et al. (2020) used a chain-of-infection data collected from 10 regions in China to estimate
the median incubation period. They employed different statistical approaches, such as Monte-
Carlo simulations as well as non-parametric methods, and estimated that the mean and median
of incubation times are 5.8 and 5 days, respectively.

To show how incubation times may differ between females and males, in the left panel
of Figure 2.5 we report the boxplots of the incubation times obtained from Method 3 for 31
females and 49 males. To see possible age effects, in the right panel of Figure 2.5, we graph
the incubation times for three age groups, where 21, 30, and 25 patients are included in the age
groups of 0-34, 35-54, and 55-96, respectively. The median incubation period for patients aged
within 35-54 is the largest, and the median incubation period for patients over 55 years of age
is slightly longer than that of the age 0-34 group. However, incubation times for older patients

have more variability than those for younger infected cases.

2.5 Discussion

In this chapter, we explore the epidemiological characteristics of COVID-19 by studying a
Kaggle novel coronavirus dataset, dated from January 22, 2020 to March 29, 2020, which in-
cludes 3397 infected cases and 83 deaths from COVID-19. We find that the median incubation
time of COVID-19 is about 5 days, and older people are more likely to have a longer incuba-
tion period. Our text analysis shows that the most dominant symptoms of COVID-19 are fever,
cough, and pneumonia. The non-parametric Kaplan-Meier method yields a median recovery
time of 20 days for infected patients who are not stratified by their characteristics. Our findings
further suggest that the recovery time increases as the age increases, and there is no significant
gender-difference in recovery times.

As discussed by He et al. (2020), while many studies examined epidemiological charac-
teristics of COVID-19, those studies do not necessarily reveal the same findings or similar

estimates of the same measure. For instance, regarding the estimate of the average incuba-
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tion times, He et al. (2020) reviewed five studies conducted between December 31, 2019 and
February 24, 2020, and those studies reported varying average incubation time, ranging from
4.9 days to 6.4 days. In addition, we note that our estimate of the median incubation time dif-
fers from the estimate 8.1 days provided by Qin et al. (2020). The discrepancies in estimating
the same quantity are primarily attributed to the heterogeneity in different studies, including the
differences in the time window, the study subjects, the study design, the model assumptions,
and the measures of controlling the virus spread by different regions.

We point out that the validity of the analysis results here relies on the quality of the Kag-
gle data we use. In our analysis, we ignore missing observations, which is basically driven
by the perception that missingness arises completely at random. However, when such an as-
sumption is not feasible, proper adjustments of missingness effects are generally expected. On
the other hand, as commented by a referee, reporting bias and recall bias should be aware of
when analyzing the COVID-19 data. If the degree of such biases is not mild, then proper de-
biasing adjustments should be introduced in inferential procedures to yield valid or nearly valid
analysis results. Methods of addressing effects of error-in-variables can be employed for this
purpose. For details, see Carroll et al. (2006), Yi (2017), and Yi et al. (2021).

Finally, we note that our analysis results are obtained from using the reported informa-
tion for those patients who were assessed by medical personnel. The information for infected
patients with mild symptoms or asymptomatic infections was often not available for being in-
cluded in the dataset because those patients did not go to hospital for assessment. As a result,

when interpreting the results, care is needed for the target population.
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Table 2.1: Age distribution of infected cases by gender: The entries display the number and
the percentage (in parentheses) for each cohort

Age range
(in year) 0-19 20-39 40-59 60-79 80-96  Total

Male 28 (3%) 193 (24%) 313 (38%) 242 (30%) 41(5%) 817
Female 25 (4%) 168 (27%) 212 (34%) 186 (29%) 41 (6%) 632

Table 2.2: Median recovery time for male and female

Gender The number of  The number (percentage)

. . Median  95% Confidence interval
infected patients of recovery
Female 52 43 (83%) 20 (17,21)
Male 89 58 (65%) 20 (19, 23)

Table 2.3: Median recovery time (in day) for different age groups

The number of  The number (percentage)

Age group infected patients of recovery Median  95% Confidence interval
0-40 47 45 (96%) 18 (16, 20)
41-60 50 45 (90%) 20 (17, 22)
61-96 43 10 (23%) 26 (21, 30)

Table 2.4: Analysis results of recovery times under the semiparametric AFT model

Parameters estimate  standard error  95% Confidence interval

Intercept (5y) 2.498 0.119 (2.265,2.731)
gender (83) 0.066 0.069 (-0.069, 0.201)
age (8») 0.094 0.022 (0.051, 0.137)
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Figure 2.1: Barplots for the number of deceased cases and fatality rate
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Figure 2.2: Barplots for the recent travel history and infection source
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Chapter 3

Understanding Effective Virus Control
Policies for COVID-19 with the
Q-Learning Method

3.1 Introduction

The CFR of COVID-19 is a useful measure to describe the disease severity, which, however,
changes considerably from country to country and from time to time. To reduce the detrimental
impact of COVID-19, it is imperative to understand how different mitigation policies adopted
by different countries may help lower the COVID-19 CFR. Using data from 175 countries from
January 13 of 2020 to March 9 of 2021, we investigate possible factors associated with the CFR
and use the Q-learning algorithm to assess optimal preventive policies adopted by individual
countries to reduce their COVID-19 CFR.

The chapter is structured as follows. In Section 3.2, we describe the Q-learning imple-
mentation procedure. Section 3.3 describes the data sources and the variables of interest. In
Section 3.4, we apply the procedure in Section 3.2 to analyze the data described in Section
3.3. Sensitivity analyses are further conducted in Section 3.5. We conclude the chapter with

discussions in Section 3.6.
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3.2 Q-Learning Implementation with Observational Data

3.2.1 Notation and Framework

In this section, we describe the Q-learning algorithm for K pre-determined stages which may
involve both stage-invariant and stage-specific covariates. For example, considering the PRO-
motion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al., 2001), a randomized trial
with an interest in assessing the impact of a breastfeeding promotion intervention on children’s
cognitive development, Moodie et al. (2012) employed the Q-learning method by framing the
study period as two stages, with stage 1 covering the period from the birth of study subjects
to 3 months and stage 2 spanning from 3 to 6 months of age. The treatment of interest is
breastfeeding, measured in each of the stages, and the outcome is taken as the verbal cognitive
ability score. Here, covariates include stage-specific variables such as the birthweight of the
infant and the infant’s 3-month weight, as well as stage-invariant variables or baseline covari-
ates such as geographical location, mother’s education, mother’s smoking status, mother’s age,
and children’s gender.

We use boldface to denote vectors or spaces, and let capital letters denote random variables
and lower case letters denote their realizations. For k = 1,--- , K, let Y}, denote the outcome at
the end of stage k, and assume a smaller Y} is more desirable. Let A; = {A;1, -, A} € A
denote the vector of r discrete actions taken at stage k, where A is the action space. Let
C,=1{Cj, - ,C j’qj} € C; denote the stage-invariant features for action Ay j for j = 1,---,r,
and let Ox = {Oy1,- -+ , Ok, } € Oy denote the vector of stage k specific features, where C; and
O, are their corresponding spaces. Let H; := {Cl, -, Cl0y, - O A - ,Ak_l} denote
the collection of covariates at stage k for k = 1,--- , K. The type of covariates in Oy and C;
can be differentiated by whether or not the covariates interact with actions; those variables
interacting with actions are called tailoring or prescriptive variables (Chakraborty and Moodie,
2013, Section 3.4.1).

A K stage policy consists of K decision rules, denoted d; for k = 1,--- , K, which map the
domain of H; to an action choice in .A. To construct a sequence of optimal decision rules, we

assume a smaller cumulative outcome is more desirable, and then define the Q-functions for
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stage K and stage k withk =K - 1,--- ,1:

Ok(Hg,Ag) = E[YK | HK,AK];
(3.1
Ox(Hy, Ay) = E[Yy + min Qg1 (His1, ax1) | Hi, Ak

A+ 1

In the case where the true Q-functions are known, optimal decision rules are determined

by:
d" () = arg min Oy (fy, ay) fork=K,---,1. (3.2)
ag

In applications, the Q-functions are typically unknown and need to be modeled. As the
Q-functions basically represent conditional expectations, it is natural to delineate them using
regression modeling techniques such as linear regression. For k = 1, --- , K, consider the linear

regression model

Ou(Hy, Ay) = i Hio + > (Wi Hir Av (3.3)

j=1
where Hj is divided into Hyg and {Hyyj : j = 1,---,r}, with By and {¢; : j = 1,---,r}
representing the associated regression coefficients. Here Hy contains the variables having a
predictive effect on the outcome, and Hj,; ; denotes the prescriptive components of H that

interact with the action, A ;. Let gy = (Y} ,,--- ¢ ) fork=1,--- K.

3.2.2 Estimation Procedure

The determination of (3.2) hinges on the evaluation of the Q-functions that are modeled by
(3.3). To estimate the model parameters in the Q-functions, we use the data in a random sample
of i.i.d. observations for multiple study units, say n units. We now add i to the symbols Y;, H;
and Ay as a subscript to show the corresponding variables for study unit i, where i = 1,--- , n.

Define Qk.; = 0, and by moving backward through stages, the estimation of the regression
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coeflicients for each stage can be formed as a minimization problem:

n

A 1 . ~ n
(Bk, ¥i) = arg min— Z [{Yk,i + min Qpy1 (Hir14s Qe i3 Bt Yar1)}
Bk N =1 A+ 1 (34)

— Qu(Huss Ars: B )|

fork=K,---,1.

(3.4) can be implemented using the Im function in R. Variance estimates of the least squares
estimators can be obtained from the Im summary in R, and W-type CIs for regression parame-
ters can be obtained using confint function in R.

Substituting the resultant estimates from (3.4) into (3.3), we estimate the optimal action
4" () = argmin Qu(hy, ag; B, ¥y)  fork =K, -+, 1. (3.5)
a

With the linear model (3.3) for the Q-functions, the minimums in (3.5) occur at the minimum

or maximum of A; ;, depending on the sign of the coefficient of Ay ;, 1&{ Hij in (3.3).

3.3 Data Sources and Extraction

3.3.1 Data Descriptions

We extract publicly available COVID-19 data across 175 countries for a period of about ten
months with the beginning marked by the date of the first confirmed COVID-19 case in each
country; calendar times may vary from country to country because of different times for iden-
tifying the first confirmed cases in different countries. The data include information about
containment and closure policies, facial covering policy, diagnostic testing policy, contact trac-
ing policy, protection of elderly people policy, the total number of COVID-19 cases per million
people, the total number of COVID-19 deaths, care system quality score, obesity prevalence,
smoking prevalence, socioeconomic factors, and substance use prevalence. Here, substance use
prevalence indicates the age-standardized prevalence of adults with a substance use disorder,
including alcohol, opioid, cocaine, amphetamine, cannabis, and other drug use.

Information about various policies, including those of containment and closure, facial cov-
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ering, diagnostic testing, contact tracing, and protection of elderly people, is collected from the
Oxford COVID-19 Government Response Tracker (OxCGRT) (Hale et al., 2021). The policies
are recorded as scores which are aggregated into a suite of policy indices. Since January 1,
2020, policy responses covering more than 180 countries are tracked and updated on a daily
basis; they are coded as 23 variables with 0 indicating no enforcement.

From the 23 variables, we opt to focus on eight policies: school closures, workplace clo-
sures, restrictions on gatherings, international travel controls, facial covering, diagnostic test-
ing, contact tracing, and protection of elderly people policies. Each of these eight policies is
described by two time-varying variables: an ordinal variable of the policy type and a strict-
ness variable showing the implementation level of the policy. For example, for the workplace
closures policy, its ordinal variable takes on a value from O to 3, with 0 for “no measures”, 1
for “recommend closing (or work at home) or all businesses open with alterations resulting in
significant differences compared to non-COVID-19 operation”, 2 for “require closing (or work
at home) for some sectors or categories of workers”, and 3 for “require closing (or work at
home) for all but essential workplaces (e.g., grocery stores, doctors)”’; and its strictness vari-
able, summarized as a single score, takes a value ranging from 0 to 100 with a higher value
representing a stricter implementation of the policy.

To be specific, for policy j = 1,---, M with M = 8, let v;, denote the ordinal variable
for policy j on day ¢, with N; representing its maximum ordinal value; and let /;, denote the
strictness score of implementing the jth policy on day ¢. Further, let F'; denote a binary value
from {0, 1} to indicate whether the jth policy has a time-dependent flag variable, denoted f;,
for a geographic scope, with 1 representing “yes” and O otherwise; and f;, is the binary flag
variable for the jth policy on day ¢, taking value O if the policy is “geographically targeted”
(i.e., being applied only to a sub-region of a jurisdiction) or 1 if the policy is “general” (i.e.,
being applied throughout that jurisdiction). Among those eight chosen policies, five policies,
including school closures, workplace closures, restrictions on gatherings, facial coverings, and
protection of elderly people, have a binary flag for geographic scope, whereas three other
policies, including international travel controls, diagnostic testing, and contact tracing, do not
have a binary flag for geographic scope. For policies without a binary flag for the geographic

scope, F'; = 0, and consequently fj, = 0. To calculate the strictness score, Hale et al. (2021)
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suggested the following formula:

Vj,t - OS(F] - fj,t)}

I, = 100{ %

To provide an overall measure for the preventive policies of the similar nature, we calculate
the average of strictness scores for the policies grouped by nature. Considering policies for
containment and closure, we put school closures, workplace closures, restrictions on gather-
ings, and international travel controls in the same group, and let &; denote the set of labels
for those policies. Considering policies related to health system policies of testing and tracing,
we use two ways to combine the policies with protection of elderly people included or not
included; specifically, let &, denote the index set for diagnostic testing, contact tracing, and
protection of elderly people, and let E; denote the set for diagnostic testing and contact tracing.

Then, for [ = 1,2, 3, define Index; on day ¢ to be

1
Indexh = ﬁ Z Ij,t-
)

J€G

Basically, a higher value of Index;, indicates a stricter combined policy at time ¢ for / = 1,2, 3.

3.3.2 Analysis Objective

Data on the total number of COVID-19 cases per million people and the total number of
COVID-19 deaths are extracted from the website Ourworldindata (Ritchie et al., 2020). Care
system quality score, obesity prevalence, smoking prevalence, and substance use prevalence
for 2019 are obtained from the Legatum Institute (The Legatum Institute, 2019), and we use
“care-score”, “obesity-prev”, “smoking-prev”, and “substance-prev”, respectively to represent
them for short. In our analyses, we include the following socioeconomic factors: the most
recent population weighted geometric mean density (‘“popu-density” for short) (Edwards et al.,
2021), the population proportion of people aged 65 and above for 2019 (‘“senior-prop” for
short) (The World Bank, 2019a), gross domestic product per capita based on purchasing power
parity for 2019 (“GDP” for short) (The Global Economy, 2019), government effectiveness

score for 2019 (“government-eff” for short) (The World Bank, 2019b), and civic and social
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participation score for 2019 (“civic-score” for short) (The Legatum Institute, 2019).

The inclusion of these factors is driven by the following considerations. The “care-score”
assesses the ability of a health system to treat and cure diseases and illnesses in the population.
It is measured based on a number of indicators, including healthcare coverage, health facilities,
health practitioners and staff, satisfaction with healthcare, etc., and takes values from O (worst)
to 100 (best). As most people and economic agents live much more concentrated in space, the
“popu-density” is regarded as a more meaningful measure than the simple population density.
The “GDP” is the most commonly used measure of economic activity and represents the total
monetary value of the produced goods and services in a country during a specific period. A
country with a larger “GDP” tends to have a higher standard of living. The “government-eft”
measures perceptions of the quality of public and civil services, the quality of policy formula-
tion and implementation, and the credibility of the government’s commitment to such policies.
Its value ranges from -2.5 to 2.5, with a higher value indicating better governance. The “civic-
score” ranges from 0 to 100, with a higher value indicating a better community involvement and
participation; it serves as a proxy for the degree of people’s collaborative effort in controlling
the spread of the virus.

To protect individuals from contracting the SARS-CoV-2 virus, facial covering, diagnostic
testing, contact tracing, protection of elderly people, school closures, workplace closures, re-
strictions on gatherings and international travel controls have been recommended as effective
preventive measures, and they become mandates in many countries or regions. For example,
research suggested that universal masking reduced the risk of infection (e.g., Chu et al., 2020).
Population testing is another strategy proved to have a significant impact on the mortality rate
(e.g., Terriau et al., 2021). While these preventive policies have been widely adopted, the strict-
ness of executing them varies from place to place and from time to time. It is interesting to
investigate how the strictness of such policies can be prioritized to effectively reduce COVID-
19 deaths, which is the objective of this study here. Using a value in the range [0, 100] to reflect
the strictness of the policies with higher values suggesting more stringent policies, we take the
outcome variable as the number of COVID-19 deaths per hundred COVID-19 cases, denoted
CFR, and examine how different combinations of the policies may be more effective to lower

CFR at different stages. The details are provided in the following sections.
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3.4 Statistical Analysis

3.4.1 Data Preparation

The ten-month-period is divided into two parts with the first part containing the first three
months and the second part regarded as the study period, where the data extracted from the first
part supply the baseline information, which helps accommodate the initial severity of COVID-
19 in each country into the analysis. The study period is divided into two stages (i.e., K = 2),
with stage 1 starting from the first day of the fourth month to the last day of the sixth month,
and stage 2 starting from the first day of the seventh month to the last day of the ninth month.
We consider two stage-specific features: (1) CFR, assessed at the start of each stage, and (2)
the total number of infectious COVID-19 cases per million entering each stage, determined by
the CDC guideline that people remain infectious for about 5 days after symptom onset (CDC,
2022).

While it is challenging to obtain the accurate values for CFR, stringency score of preventive
policies, and the total number of infectious COVID-19 cases for each stage, we aim to accom-
modate the incubation time and the duration from symptom onset to death in the calculations.
Figure 3.1 shows the timeline used to determine the relevant quantities. The total number of
confirmed COVID-19 cases is obtained for the period marked as TW2, and the total number
of deaths from COVID-19 is counted for the period marked as TW3. The stringency score is
calculated for the period marked as TW1. To obtain the total number of infectious COVID-19
cases entering a specific stage, we include the total number of confirmed COVID-19 cases a
few days prior to the start of the stage as well as those individuals who contracted the coro-
navirus before the start of the stage but showed symptoms afterward. Consequently, the total
number of infectious COVID-19 cases is evaluated over the period marked as TW4.

To calculate the COVID-19 CFR, we set the incubation time to be 6 days, an estimated
average incubation time (Weng and Y1, 2022); to obtain the total number of infectious COVID-
19 cases entering a stage, we take 5 days as the infectious period after the symptom onset
(CDC, 2022), and thus TW4 timeline has a length of 11 days. In addition, we take 18 days as
the duration from symptom onset to death (Verity et al., 2020). Fork = 1,2 andi =1, -- ,ny,

let T}; and F; denote the cumulative number of COVID-19 cases and cumulative number of
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COVID-19 deaths for country i at stage k, respectively. Then, the CFR per hundred COVID-19

cases is given by F"%;OO. Here, study unit i represents the ith country.

To remove the nonnegativity constraint of CFR, we apply the log-transformation to the CFR

at each stage, which also helps improve the feasibility of using linear regression models (3.3).

To be specific, for k = 1,2 and i = 1,--- ,n, we let ¥}; = log (F";—kloo) denote the outcome
for country i at stage k. In both stages 1 and 2, countries with zero CFR (i.e., Y;; = —0)

or having missing values in covariates are removed from the analysis. First, examining the
stage 2 data, we remove those 12 countries having zero CFR and 19 countries having missing
covariates values, and then we examine the data at stage 1, which further yields the removal of
4 countries with zero CFR. This gives us that n, = 144 and n; = 140, where n; represents the
number of the countries retained for stage & in the analysis with k = 1, 2.

To investigate undue effects due to extreme values, we conduct two types of analyses with
or without removing those extreme values which may appear in the outcome, predictors, or
both of them. The Cook’s distance measure with the thresholds 4/n, and 4/(n; — I») is used
to decide a data point to be “extreme” for the stages 2 and 1 data, respectively, where I, is the
total number of extreme values in stage 2. With extreme values removed, the sample sizes in
stages 2 and 1 are 131 and 118, respectively.

As the effectiveness of implementing a policy depends on the effort from both the gov-
ernments and individuals, here we are interested in assessing (1) how the effectiveness of the
policy related to individual behavior may differ from that associated with government-level
policies, and (2) how different combinations of government-level policies may differ in the
effectiveness at different stages.

For each stage, we consider two actions, named Action; and Action,, which are reflected by
two binary action variables, A, ; for stage k = 1,2 and j = 1, 2. To be specific, let facial-cover;
denote the average strictness score for the facial covering policy over the period of stage k; this
is a measure reflecting individual behavior. For [ = 1,2,3 and k = 1,2, let average—Indexl(k)
represent the average of the Index; with 7 indexing the days in the period of stage k. Action;
measures the preference of imposing more stringent facial covering policy to diagnostic test-
ing and contact tracing together, and Action, compares the effectiveness of imposing strict

restriction policies, such as school closure, workplace closure, restrictions on gatherings, and
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international travel control lumped together, to implementing other steps, such as diagnostic
testing, contact tracing, and protection of elders lumped together. Let Ay ; = 1 if facial-covery is
greater than average-Index,, and A = 0 otherwise; let Ay, = 1 if average-Index;, is greater
than average-Index,, and A;» = 0 otherwise. Let “cases-enter,” represent the total number
of infectious COVID-19 cases per million people entering the stage k, and let “CFR-enter;”
represent the recorded CFR at the start of the stage k.

Table 3.1 reports descriptive statistics for those variables over stages 1 and 2. The average
of the Y}; over all the countries indexed by i decreases from stage 1 to stage 2, probably indicat-
ing the potential effectiveness of preventive measures overall. The comparison of the average
CFR over different countries at the start of stages 2 and 1 shows a more severe overall CFR
in the beginning than the end of stage 1. The average number of infectious COVID-19 cases
per million people across countries increases from stage 1 to stage 2, indicating the surge of
COVID-19 infections over the study period.

In the following analyses, the covariates senior-prop, GDP, government-eff, obesity-prev,
smoking-prev, substance-prev, popu-density, care-score are taken as confounders, and governm-
ent-eff, popu-density and civic-score, together with cases-enter and CFR-enter, are regarded as
prescriptive variables for A;;, while government-eff and popu-density, together with cases-
enter and CFR-enter, are considered as prescriptive variables for A;,. This is driven by the
fact that most preventive policies are made in light of the observed numbers of cases or deaths
in the past. Consequently, Hy; ; in (3.3) is set as {cases-enterk, CFR-entery, government-eff,
popu-density, civic—score} and {cases—enterk, CFR-entery, government-eff, popu—density}, re-
spectively for j = 1,2. For sensible comparisons, we rescale all the non-binary covariates by

dividing them by their standard deviations.

3.4.2 Data Analysis

We now apply the methodology in Section 3.2 to analyze the data described in Section 3.4.1,
where K is 2, the log of CFR is taken as the outcome, and the Q-functions (3.3) are specified

as
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0,(H3,Az) = Bao + P21 X senior-prop + B2 X GDP + B3 X government-eff
+ B4 X Obesity-prev + S5 X smoking-prev + 3,4 X substance-prev
+ 27 X popu-density + [,g X care-score
+ (Y201 + Y211 X cases-enter, + ¥y X CFR-enter,
+ 23,1 X government-eff + 541 X popu-density
+ 5.1 X civic-score)As | + (Yaon + Yo12 X cases-enter;
+ Yo X CFR-enter; + Y3, X government-eff

+ Y242 X popu-density)A; ; 3.6)

Q1(Hy,Ay) = Bro + P11 X senior-prop + B1, X GDP + B3 X government-eff
+ B14 X obesity-prev + 315 X smoking-prev + 314 X substance-prev
+ 17 X popu-density + ;g X care-score
+ (Y101 + Y111 X cases-enter; + 1o X CFR-enter
+ 13,1 X government-eff + 141 X popu-density
+ 15,1 X civic-score)A ;| + (Yoo + Y112 X cases-enter;
+ Y120 X CFR-enter; + Y13, X government-eff

+ Y142 X popu-density)A| o, 3.7

where B, Y51, and ¢, are parameters for j = 1,2; r = 0,1,---,8; s = 0,1,---,5; and
t=0,1,---,4.

As discussed for (3.5), the minimizers of the Q-functions or the optimal value of A ; are
determined by the coefficients of A, j fork = 1,2 and j = 1,2. That s, for k = 1, 2, the optimal

t
value of Ay, A}

. t .
o issetas AN = 0if



53

(Yro.1 + Y11 X cases-entery + Yo X CFR-entery + Y3, X government-eff

+ Yra1 X popu-density + s X civic-score) > 0, (3.8)

and AZplt = 1 otherwise; similarly, the optimal value of A;,, A"

. t .
o, is setas AY = 0 if

(Yro2 + Y12 X cases-entery + Yo, X CFR-entery + Y3, X government-eff

+ Y42 X popu-density) > 0, (3.9)

and A", = 1 otherwise.
We now conduct two analyses with and without removing extreme values, and call them
Analysis 1 and Analysis 2, respectively. The DB ClIs are based on 1000 first-stage and 1000

second-stage bootstrap iterations.

Analysis of Data with Extreme Values Removed

The left panel of Table 3.2 reports on the estimates and 95% Cls of the model parameters
obtained from Analysis 1, i.e., analyzing the data with extreme values removed, where both W-
type and DB ClIs are reported for stage 1 model parameters to address potential non-regularity
issues, whereas only W-type Cls are reported for stage 2 model parameters as non-regularity
issues do not occur.

At the significance level 5%, the significant covariates shared by both stages include “senior-
prop” (B> and (3;1), “obesity-prev”’ (824 and B14), “substance-prev” (5,4 and S;¢), “care-score”
(B2 and B,g), and the interaction term Action, X “CFR-enter” (Y22, and ¥15,). The covariates
that are significant for stage 2 but not for stage 1 include three interaction terms: Action; X
“government-efl” (¥23.1), Action; X “popu-density” (/24,1), and Action; X “civic-score” (Y5 1).
The covariates that are significant for stage 1 but not for stage 2 include “GDP” (81,) and
Action; (191). The significance of those interaction terms suggests the necessity of com-
bining the strictness of implementing preventive policies with the characteristics of individual

countries. Interestingly, while W-type CIs and DB CIs reveal the same significance or insignifi-
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cance for almost all covariates for stage 1 estimation, the interaction of Action; X “civic-score”
(¥15.1) 1s found to be statistically significant based on the W-type CI, but insignificant based on
the DB CI.

Analysis of Data with Extreme Values

In contrast to Analysis 1, we conduct Analysis 2 by retaining those extreme values, and report
in the right panel of Table 3.2 the results in the same manner as for Analysis 1. Clearly, at the
significance level 5%, the two analyses do not reveal identical findings.

Regarding stage 2, both analyses indicate that the “senior-prop” and “care-score” are signif-
icant predictors of the COVID-19 CFR, and that the interaction term Action; X “government-
eff” is statistically significant, suggesting the importance of the efficacy of governmental mea-
sures. In addition, the interaction term Action; X “popu-density” is statistically significant,
highlighting the dependence of the COVID-19 CFR on the population density. Conversely, the
significance of the following predictors is differently revealed by the two analyses: “obesity-
prev”, “substance-prev”, the interaction term Action, X “CFR-enter”, and the interaction term
Action; X “civic-score”.

In terms of the analysis results for stage 1, both analyses reveal that “senior-prop”, “GDP”,
and “obesity-prev” are significant predictors, irrespective of the type of CI employed. However,
other covariates, including “substance-prev”, “care-score”, Action;, Action, X “CFR-enter”,
and Action; X “civic-score”, are not found to be significant from Analysis 2. Additionally,

Analysis 2 suggests opposite evidence for the significance of “popu-density” by the W-type

and DB ClIs; this predictor is, however, found to be insignificant from Analysis 1.

Estimated Optimal Actions

Analyses 1 and 2 do not yield the same findings, demonstrating the significant influence of
including/excluding extreme values on the analysis results. These two analyses, however, do
reveal a common message that for countries characterized by high population density and low
government effectiveness scores, it is beneficial to prioritize facial covering policies over diag-

nostic testing and contact tracing policies for stage 2.
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Regarding the determination of estimated optimal actions for a country, we employ (3.8)
and (3.9) in conjunction with the estimates in Table 3.2. For illustrations, in Table 3.3 we
report the estimated optimal actions at stages 1 and 2 derived from both Analyses 1 and 2 for
some selected countries which reflect across-world diversity, including geographic location,
population size, governmental structure, and healthcare infrastructure.

Including or excluding extreme values may or may not change the estimated optimal ac-
tions, as shown in Table 3.3, which divides the reported countries into three groups according
to the differences in the results of Analyses 1 and 2. We comment that countries having the
same estimated optimal actions in Table 3.3 do not necessarily share the same descriptions for
the priority of policies because of their dependence on the estimates of the coefficients and
the values of the prescriptive variables in (3.8) and (3.9). As examples, here we particularly
examine several countries from the three groups.

In the first group with identical estimated optimal actions from the two analyses, consider
France as an example. For both stages 1 and 2, diagnostic testing and contact tracing policies
should take priority over facial covering policy, and health system policies should be prioritized
over containment and closure policies.

In the second group containing estimated optimal actions that differ in only one value from
the two analyses, we consider three countries: the United States, Canada, and the United King-
dom. For the United States, both Analyses 1 and 2 suggest that the facial covering policy
should take precedence over diagnostic testing and contact tracing policies during stage 1, and
the opposite prioritization is for stage 2. While both analyses reveal that for stage 1, health
system policies should be prioritized over containment and closure policies, the uncoverings
for stage 2 are different. Analysis 1 suggests prioritization of containment and closure policies
over health system policies, while Analysis 2 shows the opposite suggestion.

For Canada, both Analyses 1 and 2 recommend prioritizing diagnostic testing and contact
tracing policies over facial covering policies during stage 1. However, for stage 2, Analysis
1 suggests the opposite prioritization, while Analysis 2 recommends the same prioritization.
Furthermore, both Analyses 1 and 2 recommend prioritizing health system policies over con-
tainment and closure policies for both stages.

Concerning the United Kingdom, both Analyses 1 and 2 suggest prioritizing health system
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policies over containment and closure policies for both stages, and both analyses concur in
recommending the prioritization of facial covering policies over diagnostic testing and contact
tracing policies for stage 2. Regarding facial covering for stage 1, the two analyses make
different recommendations. Analysis 1 recommends to give priority to facial covering policies
over diagnostic testing and contact tracing policies, whereas Analysis 2 suggests the opposite
prioritization.

Finally, consider Israel in the third group which has two different values for the estimated
optimal actions from Analyses 1 and 2. Both analyses suggest that facial covering policy
should be prioritized over diagnostic testing and contact tracing policies for stage 2, and that
containment and closure policies should be prioritized over health system policies during stage
1. In terms of differences, Analysis 1 suggests that during stage 1, diagnostic testing and
contact tracing policies should be given priority over facial covering policy, and that during
stage 2, containment and closure policies should take precedence over health system policies.

Analysis 2 recommends the opposite prioritization for the two stages.

3.5 Sensitivity Analyses

Section 3.4.2 presents analyses of the data described in Section 3.4.1 by utilizing linear models
for the Q-functions with K set as 2, where the outcome variable is taken as the continuous
variable, log CFR. To help understand the associated uncertainty, we further conduct sensi-
tivity analyses for two scenarios. First, we assess the impact of the stage determination by
extending the two-stage setting in Section 3.4.2 to a three-stage setting (i.e., set K = 3), and
report the results in Section 3.5.1. Secondly, we evaluate the impact of different modeling of
the Q-functions and report the results in Section 3.5.2. Same as in Analyses 1 and 2, the DB

CIs are based on 1000 first-stage and 1000 second-stage bootstrap iterations.

3.5.1 Continuous Outcome with Three Stages

We now repeat Analyses 1 and 2 in Section 3.4.2 by differently dividing the study period into
three stages, where each stage spans two months instead of three months as in Section 3.4.2,

and we call them Analysis 3 (without extreme values and K = 3) and Analysis 4 (with extreme
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values and K = 3), respectively.

Table 3.4 presents the results in the same manner as for Table 3.2. Similar to those in
Section 3.4.2, including or excluding extreme values in the analysis does have a noticeable
impact on the results. These two analyses, however, do uncover some common findings, as
reported below.

For stage 3, both Analyses 3 and 4 indicate that “senior-prop”, “care-score”, and the interac-
tion term Action; X “popu-density” are significant predictors. In terms of differences between
the two analyses, we find that the interaction term Action; X “government-eff” is suggested to
be significant by Analysis 3 but not by Analysis 4.

Regarding the results for stage 2 with DB CI considered, both Analyses 3 and 4 find that
“senior-prop”, “GDP”, “obesity-prev”’, and “care-score” are significant predictors. The two
analyses unveil different findings as well. “Substance-prev”’ and Action; X ‘“civic-score” are
identified as significant predictors by Analysis 3 but not by Analysis 4, whereas Action; X
“CFR-enter” is identified as significant by Analysis 4 but not by Analysis 3.

Finally, using the DB ClIs, for stage 1, we see that both Analyses 3 and 4 suggest the
statistical significance for “senior-prop”, “GDP”, “obesity-prev”, and “care-score”, together
with the interaction term Action, X “CFR-enter”. In terms of differences, Analysis 3 reveals
that “substance-prev”’ and the interaction term Action; X “government-eff” are statistically
significant, yet Analysis 4 suggests the interaction term Action, X “government-eff” to be

statistically significant.

3.5.2 Discrete Outcome with Nonlinear Q-Functions

To assess the effect of different modeling for the Q-functions, we employ a Negative Binomial
model with the logarithm link to analyze the data described in Section 3.4.1, for which the
outcome variable log CFR is now replaced by the cumulative number of COVID-19 deaths
measured at the end of stage 1 or 2. Let T denote the total number of COVID-19 cases at
stage k for a country, and take log T as the offset when modeling the Q-functions for k = 1, 2.
Specifically, we modify (3.6) and (3.7) by replacing their left-hand-side with log Q,(H>, A,) —
log T, and log Qi(H;,A) — log Ty, respectively, where Qi(Hy,Ay) is defined as in (3.1) for
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k = 1,2, with Y, representing the cumulative death number at stage k. We call the analysis for
the data with the extreme values excluded or included as Analysis 5 or 6.

Table 3.5 presents the results in the same manner as for Table 3.2. The statistical signifi-
cance of each predictor in stages 2 and 1 is assessed using the W-type Cls and DB Cls at the
significance level 5%, respectively. In what follows, we compare the results with those in Table
3.2.

First, we consider stage 2. It is evident that Analysis 1 and Analysis 5 both identify the
following covariates to be statistically significant: “senior-prop”, “substance-prev”, and “care-
score”, as well as the interaction terms Action, X “CFR-enter”, Action; X “government-eff”,
Action; X “popu-density”, and Action; X “civic-score”. These findings suggest that countries
characterized by a low government effectiveness score, a high population-weighted geometric
mean density, and a high civic and social participation score may wish to prioritize facial
covering policy over diagnostic testing and contact tracing policies. Countries with a high
CFR value at the start of stage 2 may be advised to accord higher precedence to health system
policies as opposed to containment and closure policies.

The comparison of Analysis 6 to Analysis 2 shows the commonly identified significant
predictors, including “senior-prop” and the interaction terms Action; X “government-eff” and
Action; X “popu-density”. These findings highlight that countries characterized by a low gov-
ernment effectiveness score and a high population-weighted geometric mean density may ben-
efit from prioritization of facial covering policy over diagnostic testing and contact tracing
policies.

Next, we compare the results for stage 1 using the DB CIs. Both Analyses 5 and 1 find
“senior-prop”, “GDP”, “obesity-prev”’, “care-score”, Action;, and Action, X “CFR-enter” to
be statistically significant. Therefore, countries characterized by a high CFR value at the start

of the stage may consider prioritizing health system policies over containment and closure

policies. Both Analyses 6 and 2 find “GDP” to be statistically significant.
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3.6 Discussion

In this chapter, we use the Q-learning method to explore how different COVID-19 preven-
tive policies may be prioritized to lower the CFR. Our data analyses suggest that the strict-
ness of preventive policies be tailored to social- and government-related factors to lower CFR.
Country-level characteristics such as government effectiveness score, population weighted ge-
ometric mean density, and civic and social participation score interact with the preventive poli-
cies and hence are useful in determining the optimal actions. The determination of the optimal
actions also depends on the observed number of deaths at the baseline.

Although the current study provides insight into understanding the effectiveness of differ-
ent preventive policies, this research has limitations and some issues that warrant further study.
The choice of prescriptive variables for implementing the Q-learning method here is dictated
by the availability of data. In the analyses here, we consider two actions, Action; and Action,,
defined in Section 3.4.1. It is noted that other action variables may be introduced to reflect
the availability of other mitigation measures and their combined effects. With different ac-
tions introduced, care needs to be taken to interpret the recommended actions, even though the
implementation of the Q-learning algorithm can be carried out in the same manner.

As the data size is small with only 175 countries taken as independent study units, we are
restricted to explore analyses with more flexible models. If a richer source of data becomes
available, it would be interesting to conduct additional in-depth analyses, such as, by including
separate actions for each type of policies as well as their interactions.

In our analysis, we take the data collected in the first three months as the baseline mea-
surements for running the Q-learning algorithm. Introducing baseline measurements intends
to differentiate different levels of severity of the outbreak for different countries, in addition to
assessing their effects on influencing countries to take active steps to curb the virus spread. It is
interesting to further evaluate how sensitive the analysis results would be if a shorter or longer
time than three months is used to reflect the baseline data.

Although the Q-learning method provides a convenient framework to study the effects of
country-specific policies, the validity of the method hinges on the feasibility of the associ-

ated assumptions. For example, the no unmeasured confounders (NUC) assumption is asso-
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ciated with Q-learning, which says that fork = 1,--- ,K and j = 1,--- , r, conditional on the
observed history H, the treatment A; ; is independent of any future covariates or outcomes
{Oks1,- -+ » Ok, Yi(Hy, Ay, Ori1)} (Chakraborty and Moodie, 2013). Despite that we hope to let
Hyo in (3.3) contain all confounding variables, it is cautioned that the violation of the NUC
assumption very likely yields erroneous parameter estimates, and thus, invalidating the de-
termination of the optimal actions. The stable unit treatment value assumption (SUTVA) is
another important assumption, which states that the potential outcome of a subject does not
depend on the treatment assigned to other subjects (Chakraborty and Moodie, 2013). Ensur-
ing the SUTVA to hold basically requires preventive measures in a country to not affect the
outcome in the neighboring countries. While the implementation of stringent border-closure,
travel restriction policies, and mandatory testing at international borders makes the assump-
tion fairly reasonable, departure from SUTVA can yield the identified optimal actions to be
suboptimal.

As Q-functions in (3.1) facilitate the stage-dependent conditional expected outcomes, given
the history of actions and associated covariates, it is natural to employ regression models to
characterize the Q-functions. While linear regression models are commonly used due to their
simplicity, such models yield biased results if the linearity assumption is not appropriate. In the
analysis in Section 3.4 we impose the log transformation to the outcome variable to help make
the linearity assumption approximately true. Alternatively, one may explore more flexible yet
more sophisticated models to describe the Q-functions, such as nonlinear models or deep neural
networks.

The analysis here tacitly treats each country as an independent study unit without consid-
ering possibly mutual influence in taking action to curb the virus spread, which is basically
driven by the lack of repeated measurements that can be collected independently. It is impor-
tant to recognize that the analysis results offer only an approximate picture about the truth by

incorporating country-specific characteristics but not inter-countries influential factors.
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Table 3.3: Estimated optimal actions for selected countries from Analyses 1 and 2 in Section
3.4.2. Bold entries for Analysis 2 indicate deviations from the corresponding outcomes from
Analysis 1

Analysis 1: without extreme values Analysis 2: with extreme values
Action; Action, Action; Action,
Country Stage 1 Stage2 Stagel Stage2 Stagel Stage2 Stagel Stage?2
AW AV AL AL AW AT AL A
Ghana 1 1 1 0 1 1 1 0
India 0 1 0 0 0 1 0 0
Belgium 0 0 0 0 0 0 0 0
France 0 0 0 0 0 0 0 0
Argentina 0 0 0 0 0 0 0 0
Cameroon 1 1 0 0 0 1 0 0
Senegal 0 1 1 0 0 0 1 0
Bangladesh 1 1 1 0 1 1 0 0
Canada 0 1 0 0 0 0 0 0
Denmark 0 0 1 1 1 0 1 1
South Korea 0 1 1 0 1 1 1 0
United Kingdom 1 1 0 0 0 1 0 0
United Arab Emirates 0 0 1 1 1 0 1 1
United States 1 0 0 1 1 0 0 0
Philippines 1 1 0 0 0 1 0 0
Brazil 1 1 0 0 0 1 0 0
Norway 0 0 1 1 1 0 1 1
Germany 0 1 1 0 1 0 1 0
Israel 0 1 1 1 1 1 1 0
Oman 1 0 0 1 1 1 1 1
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Figure 3.1: The timeline for the determination of the relevant quantities



Chapter 4

Accommodating Misclassification Effects
on Optimizing Dynamic Treatment

Regimes with Q-Learning

4.1 Introduction

While both direct and indirect modeling strategies have been broadly employed in the area
of personalized medicine, those methods are vulnerable to the violation of the critical condi-
tion that variables must be precisely measured. This assumption is, however, often not true in
the applications, as discussed extensively in the literature, including monographs Carroll et al.
(2006), Yi (2017), Yi et al. (2021), and the references therein. Mismeasurement or measure-
ment error is commonly encountered in applications.

Although extensive research has been conducted for regression models with mismeasured
variables, there has been limited work on DTRs with error-contaminated data, except for
Spicker and Wallace (2020) who investigated the consequences of ignoring covariate measure-
ment error in the context of DTRs. In this chapter, we consider the problem of misclassification
in binary covariates with Q-learning.

To highlight the idea, we consider settings where a binary variable is subject to misclassi-

fication. This research is partially motivated by the nature of data arising from a multi-level

67



68

randomized controlled study of human major depressive disorder (MDD) (Chakraborty et al.,
2013), which was designed to evaluate the effectiveness of different treatment regimes on MDD
that had 4 levels. In each level, patients were treated by one or a combination of different
treatment options for depression. Severity of depression was evaluated using the clinician-
rated and self-report versions of the Quick Inventory of Depressive Symptomatology (QIDS)
scores. Receipt of a specific treatment option at levels 2, 3, and 4 was driven by the doctor’s
recommendation as well as the patient’s opinion, reflected by the variable termed patient’s
preference to switch or augment his/her previous treatment option. However, it is difficult to
precisely record the true value of this variable because of its dependence on the doctor’s ex-
perience, the level of the patient’s trust in the doctor’s recommendation, the effectiveness of
the communication between the doctor and the patient, and the patient’s own knowledge, etc.
Challenges in measuring patient’s preference in medical contexts have been previously dis-
cussed (e.g., Miihlbacher et al., 2016; Soekhai et al., 2019; Janssens et al., 2019). While it is of
common interest to develop optimal DTR for patients with MDD (Chakraborty and Moodie,
2013; Chakraborty et al., 2013), ignoring misclassification feature in patient’s preference may
yield seriously biased results in determining the optimal treatment.

Research about misclassification effects has been studied for various settings, including re-
gression analysis models (e.g., Akazawa et al., 1998; Kiichenhoff et al., 2006), survival analysis
(e.g., Bang et al., 2013; Yi et al., 2018; Zucker and Spiegelman, 2004), and causal inference
(e.g., Greenland, 1988; Kleinbaum et al., 1991; Rothman and Greenland, 1998). However,
there has been little work on estimating optimal treatment regimes in the presence of covariate
misclassification. Correcting misclassification effects can be more complicated than available
work due to the stage interconnectivity in Q-learning.

In this chapter, we investigate how Q-learning may be impacted by misclassified variables
in randomized treatment settings, and we present two procedures to ameliorate the bias in-
duced by covariate misclassification. Our research differs from Spicker and Wallace (2020)
who considered continuous covariates subject to measurement error in DTRs. While the goal
of studying the mismeasurement effects is the same for both error-prone continuous covariates
and misclassification-contaminated binary covariates, the inherent differences between contin-

uous and discrete variables make the technical development distinct. Capitalizing on the unique
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feature of binary variables, we develop a new method based on using estimating function the-
ory to account for the misclassification effects, in addition to exploring the use of regression
calibration explored by Spicker and Wallace (2020) within the dWOLS framework. The for-
mer method has the appeal of yielding consistent estimators for parameters involved with the
last stage model, yet the latter approach does not possess this property. Unlike that Spicker
and Wallace (2020) considered the setting with instrumental data, we examine instances in the
presence of validation data to characterize the misclassification process.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce the
setting with covariate misclassification and conduct simulation studies to demonstrate misclas-
sification effects on Q-learning. In Sections 4.3 and 4.4, we present two correction methods
for debiasing misclassification effects. In Section 4.5, we apply the procedures described in
Sections 4.3 and 4.4 to simulated data as well as real data. In Section 4.6, we provide some

concluding remarks.

4.2 Misclassification and Naive Analysis

4.2.1 Misclassification and Assumptions

The validity of the Q-learning procedure hinges on the requirement of precisely measured
variables as well as the associated conditions such as the SUTVA and the NUC assumption.
The SUTVA posits that an individual’s outcome is unaffected by the treatment allocation for
other individuals, and the NUC assumption says that for k = 1,---, K, conditional on the
observed history {Zk_ I,Yk,zk}, the treatment A; is independent of any future covariates or
outcomes { X1, » Xx; Zis1, -+ » Zx; Yi} (Chakraborty and Moodie, 2013). In the presence
of error-contaminated data, directly applying the Q-learning algorithm to the observed data,
called the naive method, may yield seriously biased results.

To demonstrate this, we consider a simple but illustrative case with only the binary covariate
X subject to misclassification and other variables being precisely measured. Fork = 1,--- , K,
let X; denote the observed version of the true covariate X, and let Y,ﬁ = {XT, ‘e ,X,j}. While

the SUTVA may not be affected by the presence of error-prone covariates, the NUC assump-
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tion does not necessarily hold for the observed surrogate measurements. That is, conditional on
Ay, YZ, Zi), Ax is not necessarily independent of future variables X X5 Zirs -+, Zxs
Y:}. Consequently, the naive method may yield biased results.

In the presence of X}, inference about the relationship between {Y, : k = 1,---, K} and
{{Zk, ykﬂ , Zm} k=1,--- K }, described by (1.5), becomes more complicated, as it roots in
the joint distribution for {¥; : k = 1,---,K} and {{Ak,Xk,Zk,XZ} k=1, ,K}, which is

proportional to

K
{ n h(Yk | Yk_],ZK,)_([(,ZK, Y*[()}h(y*[(a )_(K’ AK,ZK)
k=1

K K (4.1)
o { l_[ h(Yy | ?k—l,ZK’YK’ZK7)_(;{)} : { l—[ h(XZ | )_(Z_l,YK,ZK,ZK)}

k=1 k=1

with Y; being null, where A(Y; | ZK,XK,Z(,Y;) and h(X7 | XK,ZK,ZK) are omitted. In (4.1),
Y1 = {Y1,---, Y ) fork = 1,--- , K with Y,, being null; A(- | -) represents the conditional
probability density or mass function for the random variables indicated by the corresponding
arguments. Here for ease of exposition, we use upper case letters to represent both random
variables and their realized values.

To link (4.1) to the framework (1.4) together with (1.5), we assume that fork = K, --- , 1,
h(Yy | ?k—l»ZK,XK’ZK’)_(;() = h(Yy | Zk’ykﬂ,zkﬂ)’ 4.2)

which says that at each stage k, the conditional distribution of Y}, given the history of outcomes
1_/k_1 and the information Ax U Xx U Zx U )_(; for the entire course, depends only on the his-
tory A U X, U Z; at stage k as well as the covariates X;,; and Z;,; at the next stage. This
assumption is in line with that for the Q-learning method in the misclassification-free context,
and it allows us to use the framework (1.5) to study stage-dependent outcome characterized by
(1.3). Assumption (4.2) implies that the surrogates Y,Z carry no additional information for con-
ducting inference about the response Y if the true covariates X, are given. This independence
assumption is similar to the nondifferential misclassification mechanism (Y1, 2017, p.50) that

is commonly made in the literature of measurement error models with a univariate outcome. It
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allows us to conduct inference about the true variables using their surrogate measurements.

4.2.2 Naive Q-Learning Procedure

In the circumstances where the true value of X is not observed but only its surrogate value X; is
available, it is tempting to still use the naive method by simply repeating the implementation of
the Q-learning procedure in Section (1.2.2) with the feature of misclassification in X; ignored,
i.e., replacing X; with X;. In doing so, we may respectively define the naive Q-functions for

stages K and k withk =K —1,---,1 as

Q;{(ZK,Y;aiK) = E(Yk | ZK,Y;@ZK);

Q;Z(Zk’ YZ9Z/€) = E{?]j | Zk’ YZ9Zk}’

where IA/; £y, + rglkalx 0; +1(Zk,z: +1,Zk+1,ak+1) is taken as a naive pseudo-outcome at stage
k. Then we may naively use a counterpart regression model of (1.9) to characterize the

0 (Ar, Xy, Zy) as:
Q1AL X, Z) = BT HYy + Wi TH DA, for  k=K,--- 1, (4.3)

where H;,, and H}, are, respectively, the counterparts of Hy and Hy; with X; replaced by X;,
and 6; = (BT, y;")T is the vector of the associated regression coefficients which may differ
from 6; in model (1.9).

Consequently, the naive Q-learning algorithm may now be carried out to the observed data,
DA {{Ak,-,X;;.,Zki, Vil :k=1,--- ,K;i=1,--- ,n}, which differs from 9 in Section (1.2.2)
in the availability of X;;, where X, is the observed version of X; for subject i. First, regression

coeflicients for each stage are estimated backward by

N . 1 < &% T —_—% — " 2
0 = arg min- Z] |7 - Q1@ Xy Zui: 6))
fork=K,---,1, where IA/I*Q. =Ygi;andfork=K-1,---,1, f/,fl. = Y + max QZ+1(Zki’Y:k+l)i’
Afe 1

Zk+1)i’ Aryt; 9,*( .1)- Then using the naive estimates, we estimate the optimal treatment naively
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A

d; = argmax Q{(Ai_1, Xy Zinais6))  for k=K, 1,
ak

where QZ(Zk_l , )_(z, Zy, i @Z) is determined by (4.3) with 6, replaced by 9}:.

4.2.3 Simulation Studies

Here we conduct numerical studies to illustrate the misclassification effects on determining
optimal DTR under a randomized treatment setting, where we set K = 2.

First, the binary treatments A; and A, are generated independently from the Bernoulli
distribution, Bernoulli(0.5). Error-free covariates Z; and Z, are independently generated by
Z, ~ Bernoulli(0.5) and Z, ~ Bernoulli(0.5). Error-prone binary covariate X, is independently
generated by X; ~ Bernoulli(0.5), and error-prone binary covariate X, is generated from the
conditional distribution X, | Ay, Z; ~ Bernoulli( 7t 22205), where 8) = 6, = 0.01.

The responses Y, and Y, are respectively generated from
Y, = U+ € and Y| = M1+ €, (44)

where

M2 = No + MZy + 1AL + 3As + N3XoAr + 15A1A,
M1 =70 +Y1Z1 + 72 X1 +Yy3A1 + 4 X Ay,

and €, and ¢ are independently generated from N(0, 1).

We consider three parameter settings to reflect possible occurrence of non-regular and weak
non-regular issues, in addition to a regular case. If the issues noted at the end of Section 1.2.2
are present, the occurrence of non-regularity or weak non-regularity is pertinent to the deter-
mination of the optimal treatment for the second stage, given the setup considered here. With
reference to the present generative model u,, the optimal treatment determination in the second
stage hinges on the coefficient of A,, i.e., the linear combination n; + 74X, + 175A,. Depending

on the values of X, and A, the linear combination assumes a value of 13 + 14 + 175, 13 + 14,
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13 + 15, and 173, each with a positive probability. Therefore, setting different values of the co-
efficients {n3, 4, s} in the model for u,, we enable the linear combination 3 + 74X, + 175A; to
take on value O or a value near zero with positive probabilities, thus leading to non-regularity
or weak non-regularity issues. Specifically, we consider the following settings. Setting 1 sets
(0, 151025 13,114, m5)" = (0,0,0.85,4,-5,0.05)T, with (yo, ¥1,¥2,¥3, )" = (0,0,0,-1,0.8)";
Setting 2 takes (170, 71, 172,73, N4, 05)" = (1.5,0.8,0.3,-2,2.3,0.5)T, with (yo,¥1, 72, ¥3,¥4)" =
(0.5,0.5,-0.75,-1.8,1.4)T; and Setting 3 specifies (179, 71, 72, 73, N4, 175)T =(1.5,0.8,0.3,-2,2,
DT, with (y0,1,¥2,¥3,¥4)T = (0.5,0.5,-0.75,—1.8,1.4)T. Setting 1 ensures 73 + n4X, +
nsA; # 0, with a positive probability, yielding a regular setting. In contrast, in Setting 3,
13 + mX, + 17sA; = 0 with a positive probability, rendering it a non-regular scenario; and in
Setting 2, 3 + 14X, + 175A assumes values relatively close to zero with a non-negligible prob-
ability, showing a weak non-regular scenario. We refer to Settings 1-3 as “regular”, “weak
non-regular”’, and “non-regular”, respectively.

When employing the Q-learning procedure in Section 1.2.2, model (1.9) is now specified

as

0:(X2,Z5,A2) = Boy + B1aZs + A1 + Won + Y12 Xs + YmA)A,, 4.5)

and

O01(X1,Z1, A1) = Bor +BuiZi + BuXi + Wor + Y11 X1)Ay, (4.6)

where B, Bri, and Yy, are regression parameters for k = 0, 1, 2, together with ¥, for k =0, 1.

The optimal DTR is given by the decision rules:

dy = sign(Yox + Y12 Xo + YnAy); di = sign(Wor + ¢¥11X)), 4.7)

where sign(¢) = 1 if # > 0, and 0 otherwise.

Next, we consider misclassification probabilities. To simplify the exposition of the devel-
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opment, assume that
WX | Xy Ak X Zi) = h(X; | X fork = 1,--- K,
which enables us to directly use a common misclassification matrix, say,

mo|' "M o (4.8)
10 1 — 7o
to facilitate the misclassification degree for different stages with k = 1,--- , K, where mj; =
PX; = j| Xy =D forj=0,1,and /[ = 1 — j. This misclassification is commonly con-
sidered in applications (e.g., Yi, 2017; Yi et al., 2018; Akazawa et al., 1998). We use the
misclass function provided in the simex package in R to generate surrogate values X; of X;
with k = 1,2. We consider eight settings for misclassification probabilities, with (719, 7o;)" =
(0,0.15)T,(0,0.3)T, (0.15,0)7, (0.15,0.15)T, (0.15,0.3)", (0.3, 0)T, (0.3, 0.15)", or (0.3,0.3)".
To run simulations, we use the proceeding models to generate data of size n = 1000, and
we repeat 1000 simulations for each parameter configuration. We implement the Q-learning
algorithm in Section 4.2.2 to the observed data {Z;, X, A, Y1, Z,, X3, A;, >}, called the “naive
method”, as opposed to the Q-learning procedure in Section 1.2.2 to the true measurements
{Z1,X1,A1,Y1,2,, X5, A, Y5}, called the “error-free least squares” (EFLS) method.
To evaluate the impacts of misclassification on stage 1 parameter estimation, we define the
true values of the population-level parameters in 6, = (Bo1, B11. 821, Yo1, ¥11)" for the first stage

Q-function (4.6) as
arg rr;in E[{Yl +max Q»(A, X2, 25, a2;6,) — Ql(Xl,Zl,Al;Ql)}z], (4.9)
1 az

with 6, = (Boa, B12. B2, Yoz, W12, W22)T in (4.5) kept as the true values for data generation, where

the expectation is taken with respect to the distribution of {Z;, X, A1, Y1, 2, X»} (Laber et al.,
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2014). In particular, by (1.5) and (4.4), at the end stage (i.e., stage 2),

0:(X2,Z5,Ay) = E(Ys | X2,Z2,Ay)
= E(uy + €| X2,Z5,A5)

= M2,

showing that the true value of 6, equals that of (170, 71,7, 13,14, 5)T, specified for each of
Settings 1-3 described in Section 4.2.3. Solutions to (4.9) can then be obtained using numerical
methods, which allow us to calculate the bias, MSE, and CR estimators for the first stage Q-
function parameters described below.

In Tables 4.1-4.2, we report the estimation results for the parameters in the stage 1 model
(4.6) and stage 2 model (4.5), respectively. In the tables, “Bias” stands for the difference
between the true parameter values and the average of their estimates over 1000 simulations
obtained from the EFLS or naive methods, with the true parameter values for the stage 1
model (4.6) determined by (4.9), and with the true parameter values for the stage 2 model
(4.5) set as those used in generating data in Section 4.2.3; “SE” represents the average of
model-based standard errors (i.e., the standard errors of the least squares parameter estimators

over 1000 simulations); “ESE” shows the empirical standard error of the estimates, calculated

by \/ ﬁ Z,ig?o(Est.k - ﬁ_)z with Est.; representing the estimate for the kth simulation and
Est. = 10007' 3 ,12?0 Est..; “MSE” displays the mean squared error of the estimates given by
Bias® + SE*; “WTCR” represents the CR of 95% W-type CIs with the model-based standard
errors used; “PBCR” represents the CR of 95% PB ClIs; and “DBCR” represents the CR of
95% DB Cls. The PB CIs are created based on 1000 bootstrap iterations, and the DB CIs are
derived from using 1000 first-stage and 100 second-stage bootstrap iterations, with a reduced
number of iterations for the second stage to ease the computational burden.

The results in Table 4.1 suggest that the EFLS method performs well under the regular
setting, with small finite sample biases and MSEs as well as reasonable CRs of 95% ClIs for
both stages 1 and 2; however, under the weak non-regular and non-regular settings, the stage
1 parameter estimates obtained from the EFLS method may incur large biases and poor CRs,

except for those derived from double bootstrapping. The W-type Cls (not reported here) incur
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severe under-coverage for weak non-regular and non-regular settings.

The results demonstrate the poor performance of the naive method for both stages, reflected
by those considerable biases, high MSEs, and unacceptably low CRs. Notably, the induced bias
from the covariate misclassification intensifies as the misclassification probabilities increase,
and the estimates associated with misclassified covariates suffer a greater impact than those
for error-free covariates. These findings emphasize the importance of addressing misclassifi-
cation effects and developing appropriate correction methods to enhance the accuracy of the

estimations.

4.3 Addressing Misclassification Effects: Regression Calibra-
tion

Section 4.2.3 demonstrates numerically that in the presence of misclassification, biased results
can be produced if the Q-learning procedure is naively implemented with misclassification
effects ignored. In this and the next sections, we explore two methods to mitigate the bias due
to misclassification in covariates. The goal is basically to optimize the treatment allocation by
addressing the misclassification effects on estimating regression coefficients in Q-function at
each stage.

We first describe the calibrated Q-learning algorithm by applying the regression calibration
method which was initiated by Prentice (1982) for survival analysis with mismeasurement in
covariates, where the nondifferential measurement error mechanism is assumed. The basic
idea is to employ the usual Q-learning algorithm in Section 1.2.2 with the unobserved true
measurement X; replaced by its conditional expectation, given its surrogate and other variables.

With the observed data O, let X7 = E(Xy; | Ag-1y> Xg» Zia) for k = 1,--- K. The cali-

brated Q-learning algorithm consists of the following two steps:

Step 1: Repeat the Q-learning algorithm described in Section 1.2.2, with X;; replaced by X or

its estimate to obtain point estimates of the regression parameters for each stage.

Step 2: Implement the bootstrap method to obtain standard errors associated with the estimates

of the parameters for each stage.
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The implementation of the calibrated Q-learning algorithm requires the determination of
X;r fori = 1,---,n, which essentially roots in the delineation of the conditional probabili-
ties P(Xy; = 1 | Auciyi Xy Zsi) for k = 1,--- K. A parametric model, such as the logistic
regression model, may be employed for this purpose. To be specific, let ngk) = PXy; = 1]

Z(k_l)i, )_(Zi, Z::), and we consider the regression model
logit7® = my(Ag_ni Xpio Zis &) for  k=1,--- K, (4.10)

where my(-) is a specified function, and ¢, is the associated parameter vector.

With the availability of internal validation data, denoted Dy = {{Aki, Xui» X,

Zii» Y} 1 k=
1,--- ,K; i € (V}, in addition to the main study data, 9*, where V is a subset of M S
{1,---,n}, we may apply the validation data 9y to model (4.10) to obtain estimates, denoted
Z’ w» of the model parameter ¢, and hence, obtaining the estimate, denoted X*j‘, of X;* for
i € M\ V. In this case, the implementation of the calibrated Q-learning algorithm can be
modified using the measurements of X;; for i € V as well as )A(Zl* forie M\ V.

Let Oirc = (BERC, Yo" denote the resulting estimate of 6 fork = 1,--- , K. Consequently,

for k = K, --- , 1, the optimal treatment is determined by modifying (1.12) with 6, replaced by

@ch for subject i € V, and by,
C?ch = arg max Qgre(a; 9ch) (4.11)
ay

for subject i € M\ V, where Qgrc(ax; 6) is defined to be Qx(Ax_1, Xx, Zg, ax; ) in (1.12) with
X replaced by )A(,’c“f forie M\ V.

In the case where no additional data are available to quantify misclassification degrees or to
estimate the parameter ¢, in model (4.10), we often invoke sensitivity analyses to evaluate the
impact of misclassification on the Q-learning outcome. Basically, we consider a set of possibly
representative values specified for {;; then use model (4.10) to estimate X" fori = 1,--- ,n;
finally, we repeat the calibrated Q-learning algorithm to assess how the results may change
relative to differently specified misclassification scenarios. Such a study helps us understand

the sensitivity of the Q-learning results to the different misclassification degrees.
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4.4 Addressing Misclassification Effects: Estimating Equa-
tion Approach

Examining the least squares method for (1.10) from the estimation equation perspective, here
we develop an estimation equation approach to address misclassification effects. In line with
the backward procedure of Q-learning, we proceed with the development stage by stage back-
ward from stage K to stage 1, where the formulation for stage K is separated from that for
stage k with k = K—1,--- , 1, reflecting the differences between the observed outcome at stage
K and unobserved pseudo-outcomes for other stages. The following two sections differ in the

treatment of the misclassification probabilities in (4.8).

4.4.1 Corrected Estimation Functions with Known Misclassification Prob-
abilities

To highlight the idea, we start with the case where the misclassification probabilities are known.

In what follows, we first describe estimation for stage K where the outcome measurements

{Yg; : i = 1,--- ,n} are used, and then describe estimation for stage k with k = K —1,--- |1

where pseudo-outcomes in (1.11) are used with modifications to accommodate misclassifica-

tion effects.

Estimation Related to Stage K

For stage K, set {x; = {Yxi — Ox(Axi, Xxi» Zi GK)}Z, where Qx(Axi, Xki, Zxi: Ox) is determined

by (1.9) with the dependence on parameter 0k spelled out. Define

O Oty )T
By MWk
= (S ;;;(91(; Yi, ZKI" )_(Ki, Zki), S;,/,(QK; Yki, ZKi, )_(Ki, ZKi))Ta

S k(Ok; Yki, ZK:” )_(Kia ZKi) = (

where

- = = - = = 0 Zia)_(i,ii;e
S k(O Yis Akir Xki» Zki) = {Yki — Ox(Axi» Xkir Zxi3 0x)} Ox(Ax aﬁK xi Or) 4.12)
K
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and

aQK(ZKl" XK[’ zKi; Ox)

Slqp(ek; YKbZKia)_(KiaZKi) = {YKi - QK(ZKi’yKi’ZKi; 9[()} o
K

4.13)
By (1.5) and (1.9), it is readily seen that S xg(fx; Yk, Akis Xki» Zki) and S gy (0x; Yii, Axis Xxis
ZK,») are unbiased estimating functions, that is, their expectations are zero. Therefore, solving

the estimating equations

n
Z S k(Ok; YKi,ZKi,YKi’ ZKi) =0 (4.14)
i=1

for 6 yields consistent estimator of fg, provided regularity conditions. Here and elsewhere, 0

is used to represent a vector, a matrix, or a real-valued zero without differentiation.

While a consistent estimator of 6 can be obtained using (4.14), the applicability of (4.14)
relies on the availability of precise measurements for X;; withk = 1,--- ,Kandi=1,--- ,n.
When measurements of Xj; are unavailable but surrogates X;; are collected, i.e., in the absence
of O, we cannot apply (4.14) to the observed data D" with X;; replaced by X};; otherwise,
incorrect results may be produced.

To address the misclassification effects induced by X};, we construct an unbiased estimating
function, say S x.(0k; YKI-,Z K,-,Y;i, ZK,-), using the observed surrogates X;, together with other
observed variables. The main idea is to find S x.(0k; Y K,-,ZK,-,)_(ZI.EK[) such that its condi-
tional expectation recovers the original unbiased estimating function S x(6x; Vi, Ai, Xi» Zxi)

in (4.14). That is, as long as
E{S kc(Ok; YKi,ZKi,)_(zi,zm) | Yis Ais Xkis Zxi} = S k(0 Yiis Ak, Xxis Zki)s (4.15)

solving
n . .
Z S ke(Ok; Yki, Akis Xgis Zki) = 0
i=1
for Ok produces a consistent estimator for g, under certain regularity conditions (Yi, 2017,

Section 2.5).
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By the linear regression model (1.9):
Ox(Axi Xkir Zkis 0x) = BixHgo + g Hy)Ag,
we simplify (4.12) and (4.13) to be
SKﬁ(HK; YKiaZKia)_(Ki,ZKi) = {YKi - QK(ZKia)_(Ki’ZKi; HK)}HKO (4.16)
and
SKw(QK; YKi,ZKiaYKi’ZKi) = {YKi - QK(ZKi,)_(Ki,Zﬁ; HK)}HKIAK- 4.17)

Because Xk; 1s a binary variable taking value O or 1, any polynomials of Xk; equals Xk; itself,
thus, the dependence of (4.16) and (4.17) on X}, is merely reflected by Xj;.
To find S x.(Ok; YK,.,ZK,-,)_(;.,ZKI-) to meet (4.15), it suffices to find functions of X;., say

U(X};), which may also involve model parameters, such that
E{UX;) | Yki» Aki» Xki Zxi} = Xui for k=K,---,1. (4.18)

It is easily shown that setting
X}; = TTk10

UlXx,,) = (4.19)

I = 70 — Mo
makes (4.18) hold (Yi, 2017, Problem 2.10). Consequently, S x.(0x; Yk, Axi» X xi» Zx;) in (4.15)
can be defined as S x(0x; Yxi, ZK,-, XK,-, ZKl-) with Xj; replaced by U(X;)).

Consequently, with the observed data 9", we solve

Z S ke(Ok; Yki, ZKi, )_(j(,-, zKi) =0 (4.20)

i=1

for O, and let Ok, = (BL., ¥ )T denote the resultant estimator of 6. Under regularity condi-

tions (Y1, 2017, Section 1.3),

Vi(Oxe — 0x) —5 N(0,2(0x)) as n — oo, 4.21)
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-1 —-1T
where Z(0) = {I(HK)} J(QK){I(HK)} , with

0S kc(Ok; Yk, ZK, Y; ZK)}

and

J(bk) = E[S ke(Ok; Yk, ZK, Yj(, zk){S kc(Ok; Yk, ZK, Y;, ZK)}T]-

Estimation Related to Stage k < K

First, we consider (1.10) fork = K—1, - - - , 1 for the error-free setting. Similar to the definitions

of {x; and S x(0k; Yxi, Axi, X ki, ZK,-) introduced earlier, let

. N - — — 2
Ui = {Yki - Qk(Aki,in,Zki;Qk)}

and A L
5 S = = S ot 0ly;
S k(6 Yiis Aris Xiis Zii) = (—, —) ,
By O
where IA/k,- is the stage k pseudo-outcome for subject i, given by (1.11). Fork = K - 1,---,1,

finding the minimizer in (1.10) may be alternatively viewed as solving the equation

Z S Ok; Yiir Awis Xiis Zii) = 0 (4.22)
i=1
for 6,.

The implementation of (4.22) requires the availability of precise measurements for X;; for
k=1,---,K—-1andi = 1,--- ,n. However, precise measurements in 9 are unavailable,
and we have only the surrogate dataset D*. Then similar to the consideration for stage K, we
modify the function S e Yii, Zki, )_(ki, Zd) in (4.22) by replacing X;; with U(X},) in (4.18), and
let S ke (Ok; )4 s A, )_(Z,., Zd) denote the resulting function, where the inclusion of symbols g . and
X;, in the function S ke (Ors ¥ ;l.,Zk,-,Y;,Zki) stresses its involvement of the observed surrogate

measurements X, with f/,;"i defined by (1.11) with Xj; replaced by X;,. Then for k = K —

ki’
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1,---,1, we solve

S (O Vi, Ais X s Zi) = 0 (4.23)
i=1

for 6y, and let 6. = (BT, T )T denote the resulting estimator of 6.
Consequently, with estimators 9[@ and 9kc fork = K —1,---,1, the optimal treatment is

estimated by modifying (1.12) with 0, replaced by 0y and X, replaced by U(X)), i.e.,

A J—

die = argmax Qi (A1, X, Zioas0he)  for  k=K,--- 1, (4.24)
ag

where QkC(Zk_l, YZ, Z, ai: 0) is identical to Qk(Zk_l . Xt, Zy, ag; 0) defined in (1.12) except that
Xi 1s replaced by U(X)).

We conclude this subsection with a comment. In contrast to the consistency of O, indi-
cated by (4.21), 0y derived from (4.23) is not necessarily consistent for ;. fork = K—-1,---,1,
because the modified estimation function $ ke (Os ¥ s Aui, )_(;;-, Za») in (4.23) is not necessarily un-
biased. In fact, it is difficult to find an unbiased estimating function for 6, if k < K due to the
lack of an analytic form of the associated pseudo-outcome ¥;; or f/,jl.. By the similarity in form-
ing (4.23) to that of (4.20), we anticipate implementing (4.23) would yield better estimation

results than directly using (4.22) with X;; replaced by X;..

4.4.2 Corrected Estimation Functions with Unknown Misclassification

Probabilities

In some applications, the misclassification probabilities are unknown and need to be estimated
from an additional data source, such as a validation sample. In this subsection, we modify the
method in Section 4.4.1 to incorporate this feature. Consider the main study sample, ", and
the internal validation subsample 9y described in Section 4.3, where V' contain m subjects

with m < n.
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Estimation of Misclassification Probabilities

Forie Mandk=1,--- K, let
Tior = POX; = 0| Xii = 1, Agry U Xy U Zi)

and

Mo = POX; = 1 X4 = 0, Ag1y U Xgonyi U Zi)

be the misclassification probabilities for the error-prone binary covariate Xj;, which may de-
pend on the error-free covariates in Z(k_ i U Y(k_ ni U Zii.
To describe the dependence of misclassification probabilities on the covariates, we consider
the logistic regression models
IOgit Tkilo — QZO(W]“‘Q;

4.25)
logit 01 = Q’z] Wi,

where «; denotes the vector of regression coefficients and “W;; may include 1 and a subset of
covariates {X;; = I, Z(k_l),» U )_((k_l)i U Za-} that reflects different misclassification mechanisms
for [ = 0,1. Having 1 in “W;; allows the inclusion of the intercept in (4.25), and W}, may
contain the entire covariate vector {X;;, = [, Z(k—l)i U Y(k_l),- U Zy} or just constant 1 alone,
where the latter case corresponds to homogeneous misclassification across all subjects. Let
ar = (@), ;)" denote the parameter vector fork = 1,--- , K.

Fori=1,---,nandk=1,--- K, let
Lii(ay) = P(X}; = x5, | Xui = %> A1y YU Xeenyi U Zi),

. . 3y 1—xps 1-xF. * .
which equals {r,“ (1 — Tito) 5} % Mol (1 = mao) ™ for xy,x;, = 0,1. Let @ =

(af, - ,ap) " and 9 = (B, Yg, "), Let S i(ay) = dlog Lii(ax)/ 0y and let

T

Si@) = (STan), -+, Ski(ax))
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With internal validation data, solving

Zs (@) =

for « yields the maximum likelihood estimate, denoted & = (&1, - , &), of .

Estimation for the Parameters of Q-Functions

For stage K, we estimate 8 by solving

D Skalbk, @)+ > Ski(x) =0
iEM\V icV
for Ok, and let x denote the resultant estimator of fx, where with the dependence on the out-
come and covariates suppressed in the notation for simplicity, S g.i(6x, @) 18 S k. (0k; Yki, A Kis )_(Zi,
ZQ-) in (4.20) with the dependence on a spelled out, and S x;(fx) is S x(6k; Yk, Axi, Xk, ZK,-) in
(4.14).
Let & = (A%, a")". Adapting the proof of Yi et al. (2018), we show the following theorem.

Theorem 4.4.1 Under regularity conditions and that the ratio m/n approaches a positive con-
stant, say p, as n — oo, the following results hold:
(a). 9 is a consistent estimator of ¥,
(b).
Vi@d - 19) -5 N(,Zy) as n— oo,

where Ty = A, ByA,'T, with

08 kci(Ok @) IS ki (61( Q) a8 Kz (91<)
E E 0
V——(l—p)[( w ) )] p[( ) ] and
0

0 0 E(342)

{S Ku(HKa Q)S KC,(GK’ CZ)} 0 {S Kz(QK)S (HK)} 0
=1 -p) +p :
0 0 0 E{S(a)S ()}
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Finally, for k = K — 1,---, 1, an estimate of 6; can be obtained by solving (4.23), where

10 and mio; in (4.19) are determined by (4.25) with « replaced by @&.

4.5 Numerical Studies

4.5.1 Simulation Study

In this subsection, we conduct simulation studies to assess the finite sample performance of
the methods described in Sections 4.3 and 4.4. We use the same settings as in Section 4.2.3 to
generate the main study data D* = {{Zki,X,’(‘i,Aki, Yl :k=1,--- ,K;i € M} with [M|=n =
1000. Further, we generate an internal validation subsample by randomly selecting 30% of
study subjects from M, and record their accurate measurements of {X;; : k = 1,--- ,K;i € V}
to form the validation subsample Dy = {{Aki,in,X,’;,Zki, Yil:k=1,--- ,K;i€ (V}.

We consider three methods to analyze the data. The first method, called “RC”, applies the
method described in Section 4.3 to both D* and Dy. The second method, called “EE-known”,
uses the method in Section 4.4.1 to data 9", where the misclassification probabilities are taken
as known. The third method, called “EE-estimated”, applies the method in Section 4.4.2 to
both D" and Dy, where the misclassification probabilities are estimated using Dy following
the procedure described in Section 4.4.2.

The results for stages 1 and 2 are reported differently due to the difference in knowing
the information about these two stages. Table 4.3 reports the results for stage 1 over 1000
simulations for the regular, weak non-regular, and non-regular settings, where “Bias”, “ESE”,
“PBCR”, and “DBCR” are the same as in Section 4.2.3, but “SE” and “MSE” may be slightly
different, depending on the method used. When the RC method is considered, “SE” represents
the average of standard errors obtained from the bootstrap method with 1000 bootstrap samples,
and “MSE” represents the mean squared error of the estimates obtained using the bootstrap SE;
when the EE-known or EE-estimated method is used, “SE” and “MSE” are the same as in Sec-
tion 4.2.3. The RC and EE methods exhibit good performance by outputting estimators with
fairly small bias, indicating their efficacy in rectifying the effects of misclassification; notably,

the RC method’s capacity to reduce bias for weak non-regular and non-regular settings deteri-
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orates more rapidly than that of the two EE methods as misclassification probabilities increase.
As expected, there is a consistent trend of increased variability in parameter estimation for all
the three methods as misclassification probabilities increase across all the three settings; such
an increase is more pronounced in the two EE methods compared to the RC method; and the
EE-estimated method tends to yield more varied estimates than the EE-known method does.
PB 95% ClIs of the RC and EE methods tend to be over-covered for the regular and weak non-
regular settings, yet they may be considerably under-covered for the non-regular setting. On
the contrary, DB 95% CIs of the RC and EE methods exhibit under-coverage, regardless of
the regularity condition of parameters, and moreover, the severity of under-coverage tends to
increase as the misclassification probabilities increase.

The results for stage 2 over 1000 simulations are reported in Tables 4.4-4.6, respectively, for
regular, weak non-regular, and non-regular settings, where “Bias”, “ESE”, “SE”, and “MSE”
are the same as for Table 4.3, yet “WTCR” represents the CR of 95% ClIs obtained using the
bootstrap SE for the RC method or model-based SE obtained from the asymptotic result in
Section 4.4.1 or 4.4.2 for the EE methods. Similar to the findings for stage 1, the RC and
EE-known approaches demonstrate a fairly commendable performance in stage 2. The RC and
EE-known methods tend to outperform the EE-estimated method, though the results produced
by the EE-estimated method still appear to be fairly satisfactory. The variability of parameter
estimation tends to increase as misclassification probabilities increase, and such variability is
more noticeable for the EE methods than the RC method. Our limited numerical explorations
(not reported here) indicate that the performance of the EE-known and EE-estimated methods

can be further improved by increasing the sample size.

4.5.2 Future Treatment Predictions

Here we assess the influence of ignoring misclassification on determining optimal treatments
for patients as well as the performance of the proposed methods in terms of prediction. To this
end, we first use the procedure in Section 4.5.1 to generate training data for 1000 individuals
to estimate model parameters that will be used to do prediction. Next, we simulate a popula-

tion of 5000 patients for whom we wish to predict optimal treatment regimes; we report the



87

prediction performance for the proposed methods, applied to the observed surrogate measure-
ments, as opposed to the naive method of ignoring misclassification. Specifically, we employ

the following steps:
Step 1: Data generation for prediction:

e First, using the procedure in Section 4.2.3, we generate the true measurements,
Drp 2 {{Ak,-,Xk,-,Zkl-} (i€ Mp} with [ Mp|= 5000, for the covariates {Z;, X, A}, Z,,
X,, A} for 5000 patients independently.

e Secondly, we generate corresponding surrogate values, {XZZ. tk=1,2i€ Mp}, of
X; and X»; using the same procedure and misclassification probabilities considered
in Section 4.2.3 for Settings 1-3, and obtain observed measurements of covariates

and treatments for the main study, O, = {{Ak,-, X Z} i€ Mp}.

o Finally, using the procedure described in Section 4.5.1, we generate measurements
of covariates and treatments for an internal validation subsample, Dyp = {{Ak,-, Xui» X,

Zi) k= 1,2:i € Vpl, with [Vpl= 30%|Mp|.
Step 2: Parameter estimation from different methods:

e For the naive and EE-known methods, we apply the measurements in 9 in Section
4.5.1 to estimate the parameters for the stage 1 model (4.6) and the stage 2 model
(4.5), where the parameters for the misclassification model (4.8) are taken as the

true values in generating O".

e For the RC and EE-estimated methods, we use the main study data 9" and the

validation data Dy in Section 4.5.1 to estimate the parameters for the stage 1 model

(4.6) and the stage 2 model (4.5).
Step 3: Prediction:

As a comparison, we introduce the “true” method, which uses the true parameter
values 6, and 6, as well as the true measurements in Dyzp to obtain true optimal
treatment regimes. That is, using the true values for 8, and 6, specified in Settings

1-3 in Section 4.2.3 and the true measurements in Dzp for (4.7), we obtain the true
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optimal treatments in stages 1 and 2 for 5000 patients, and take these results as
reference values. We now examine the following two scenarios, which differ in the

use of the true or surrogate covariate measurements.

e Scenario 1: With parameters replaced with their estimates obtained from each
method described in Step 2, we predict the corresponding optimal treatments in

stages 1 and 2 for 5000 patients using (4.7) in Section 4.2.3, where Drp is used.

e Scenario 2: With the estimated parameters for each method described in Step 2,
we predict the corresponding optimal treatments in stages 1 and 2 for 5000 patients
using (4.11) and (4.24) for the RC and EE methods, respectively, where Dy p and

D, are respectively used for the RC and EE methods.
Step 4: Summarizing results:

e Comparing the results from Step 3, we count the number, denoted M, of patients
for whom the predicted optimal treatments of each method in Step 2 match the
reference values. Then calculate the proportion of correctly specified optimal treat-

ments, denoted PCOT, by dividing M by the number of patients, 5000.

To alleviate Monte Carlo variations, we repeat Steps 1 to 4 for 1000 times, and calculate the
average of the proportions obtained in Step 4 across the 1000 repetitions. This average propor-
tion, denoted APCOT, represents an estimated proportion of optimally treated future patients
for each method: a larger APCOT indicates better performance of the respective method. In
Table 4.7, we report APCOT values under Scenarios 1 and 2 for the four methods described in
Step 2. It is evident that the performance of the methods exhibits variation with the change of
mo1 and 7y, as well as the regularity condition of the parameters.

Examining the left panel of Table 4.7 (i.e., Scenario 1), we see that for stage 1 optimal
treatment prediction, the three proposed methods generally outperform the naive method, ex-
cept for some settings with 19 = 0 or myy = O for the EE-known method, such as the weak
non-regular setting with m;p = 0 and my; = 0.3, and the regular settings with 7y = 0.15 or
0.3 when my; = 0. The results produced by the three proposed methods are fairly comparable,

and the RC method tends to perform the best, though in some cases, the EE-known or EE-
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estimated method outperforms the RC method. Unsurprisingly, as the misclassification degree
increases, the performance of the three proposed methods tends to decay, yet this trend does
not exhibit for the naive method. For stage 2 optimal treatment prediction, we observe that the
three proposed methods outperform the naive method, except for the weak non-regular setting
with ;o = 0 and mp; = 0.3. Interestingly, under the non-regular setting with most misclassifica-
tion probabilities, APCOT values produced by the naive method are larger than those obtained
from the three proposed methods and are close to 1. This finding does not necessarily support
the good performance of the naive method, but instead, it shows unreliable optimal treatment
prediction under the non-regular setting: ignoring the feature of misclassification yields results
similar to those produced from using precisely measured data.

Examining the right panel of Table 4.7 (i.e., Scenario 2), we observe that regarding stage
1 optimal treatment prediction, the three proposed methods exhibit superior performance to
the naive method. The two EE methods tend to perform better than the RC method, and the
EE-estimated method performs the best. Similarly, for stage 2 optimal treatment prediction,
the three proposed methods outperform the naive method in both the regular and weak non-
regular settings. In the non-regular setting, the naive method outputs the largest APCOT values
than the three proposed methods which account for the misclassification effects. However, this
does not necessarily indicate the best performance of the naive method, as explained earlier for

Scenario 1.

4.5.3 Data Analysis

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a multi-site, multi-
level randomized clinical trial enrolling 4041 patients with nonpsychotic MDD (Rush et al.,
2004; Fava et al., 2003). The objective of this study was to assess the comparative effective-
ness of different treatment options for patients. The trial involved four examination levels, each
level consisting of a 12-week period of treatment, with scheduled clinic visits at weeks 0, 2, 4,
6, 9, and 12. The primary outcome of the trial is the severity of depression at any clinic visit
assessed using the clinician-rated and self-report versions of the Quick Inventory of Depressive

Symptomatology (QIDS) scores (Rush et al., 2004). Larger values of the QIDS score corre-
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spond to higher severity of depression and thus represent a worse outcome, where 5 is taken
as a benchmark for a total 12-week clinician-rated QIDS score of a patient. Specifically, at the
end of each level, patients with a QIDS score < 5 did not move on to the next examination (i.e.,
patients achieved clinical remission), whereas a QIDS score > 5 for a patient indicated that he
or she did not have an adequate response.

At level 1, all patients were treated with citalopram (CIT). Those without an adequate re-
sponse at level 1 were eligible to receive one of seven treatment options available at level 2,
depending on their preference to switch or augment their level 1 treatment. Level 2 consists
of four switch options (venlafaxine (VEN), sertraline (SER), bupropion (BUP), and cognitive
therapy (CT)) and three augment options (CIT+CT, CIT+BUP or buspirone (BUS)+CIT). Pa-
tients assigned to cognitive therapy (alone or augmented with citalopram) were eligible, in
the case of inadequate response, to move to a supplementary level 2A and be randomized to
switch to BUP or VEN. Patients showing unsatisfactory responses would continue to level 3 to
receive one of the two available switch options (mirtazapine (MIRT) and nortriptyline (NTP))
or to augment their previous treatment with lithium (Li) or thyroid hormone (THY). Patients
without a satisfactory response at level 3 continued to level 4 treatments, which included two
options: tranylcypromine (TCP) and MIRT +VEN. For a schematic of the STAR*D study de-
sign see Chakraborty and Moodie (2013), and for a complete description see Rush et al. (2004).

Similar to Chakraborty and Moodie (2013), here we consider levels 2, 2A, and 3 and cast
the problem into the framework of Section 4.2.3. Specifically, we take level 2 (including 2A,
if applicable) as stage 1 and let level 3 be stage 2 for the Q-learning framework described in
Section 4.2.3 with K = 2. We classify treatments at stage 1 into two categories: (i) treatment
with either SER or CIT plus one of BUP, BUS and CT, and (ii) treatment with at least one of
the options from BUP, CT, and VEN. Treatment options at stage 2 are also classified into two
categories: (1) treatment with an augmentation of SER or CIT-containing level 2 treatment with
either Li or THY, and (ii) treatment with MIRT or NTP, or augmentation of at least one of the
options VEN, BUP, or CT with either Li or THY. For any patient, let A; denote the treatment
status at stage k, which is coded as 1 for category (i) and O for category (ii).

Two covariates are included in this analysis. The first covariate, denoted Z, is continuous

and represents QIDS score measured at the beginning of the level, while the second covariate,
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denoted X, is binary and indicates the patient’s preference for switch (X; = 1) or augmentation
Xk =0).

Some patients without a satisfactory response in stage 1 dropped out of the study without
continuing to stage 2. Removing those patients, we analyze a data subset that includes 1396
patients for stage 1 among whom 922 were eligible to move on to stage 2; however, only 369
patients among those 922 patients were present at stage 2 and the rest dropped out. Because of
the trial design, at stage 2 we have the outcome data only for the non-remitters from stage 1,
therefore, Chakraborty et al. (2013) considered the following overall primary outcome, which

is also employed here:

R, +R
Y=11R1+<1—11)( ! 2),

2

where R, and R, denote the total QIDS scores at the end of stages 1 and 2, respectively; and I
is the remission indicator at the end of stage 1, taking 1 for remitters and O for non-remitters.
That is, using the notation in Section 1.2.2, for each study subject, we take Y; =0and ¥, =Y,

where K = 2. We employ the following models for Q-functions in (1.9):

0>(H>,A) = Bor + B12Zs + 22 X5 + BAr + (Yoo + Y122y + Y X)As;

O1(H1, A1) = Lo + 112 + BuXi + Wor +¥nZy + Y XAy,

where for k = 1,2, Bok, Biks Baks Yok, Y1k, Yor, and B3, are regression coeflficients. As mentioned
previously, some patients who were eligible to continue to stage 2 dropped out of the study,
making the computation of the pseudo-outcomes for them impossible as covariates Z, and X,
are missing for them. To get around this problem, following Chakraborty and Moodie (2013),
the value of Z, was imputed by the last observed QIDS score in stage 1, and the missing values
of the binary variable X, were imputed using k nearest neighbor (k-NN) classification with k
taken as 5.

We conduct three analyses here. In Analysis 1, we treat both Z; and X, as if they were
error-free and implement the procedure in Section 1.2.2, and report the estimation results for
the model parameters in the first row of Table 4.8 for stages 1 and 2. In the next two anal-
yses, we evaluate the effects of possibly misclassified covariate X; on parameter estimation

with Z, treated as error-free. As there is no additional data such as a validation subsam-
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ple to characterize the degree of misclassification in the STAR*D data, we carry out sen-
sitivity analyses using the two correction methods described in Sections 4.4.1 and 4.3, and
respectively call them Analysis 2 and Analysis 3. To reflect possibly different scenarios of
misclassification in Xj, in Analysis 2, we consider four sets of misclassification probabil-
ities (10, mo1)T = (0.01,0.01)T,(0.03,0.03)T, (0.07,0.07)T, or (0.10,0.10)T; and in Analy-
sis 3, we consider model (4.10) with m,(H};;{,) = {o + {uXy + {2y and my(H;54,) =
Coo + (10 Xo + 02y + (30AL + {nZy + (52X, where four sets of values, listed in Table 4.9, for
the model parameters ¢, = ({o1,{11,¢21)" and &, = ({o2, 12 &2, &32, {an &s2) ' are examined.
Numerical results of Analyses 2 and 3 are respectively reported in Tables 4.8 and 4.10.

Unsurprisingly, numerical results reveal varying estimates of the model parameters for both
stages among the three analyses. All the three analyses suggest that stage 1 parameter ¢;; and
the three stage 2 parameters ¥, ¥ 1> and ¥, are all statistically insignificant. However, the
significance for stage 1 parameters i and y,; are differently revealed with different degrees
of misclassification considered. Without considering possible presence of misclassification,
Analysis 1 finds evidence of suggesting statistical significance for ¢y, but not ¥,;. Analyses
2 and 3, addressing the misclassification effects for varying scenarios uncovers different na-
ture of Y, and y,;, whose significance is unveiled differently, driven by different amounts of
misclassification.

While the specification of misclassification probabilities does not need to be restricted to
what is considered here, the sensitivity analyses demonstrate that ignoring misclassification
can output results deviating significantly from the ground truth if the issue of misclassification
is serious. Although the underlying truth is never known, examining data from different angles
helps us reveal a more comprehensive picture to enhance the understanding than conducting a
single analysis with data treated as if being error-free.

Finally, the models we consider here differ from those examined by Spicker and Wallace
(2020). Unlike Spicker and Wallace (2020), the slope of the QIDS score is not included in the
Q-functions here. On the other hand, the interaction term X,A, is included in our second stage
Q-function but was not considered by Spicker and Wallace (2020). The study here focuses
on investigating the effects stemming from misclassification in discrete covariates, whereas

Spicker and Wallace (2020) examined the effects of measurement error in continuous covari-
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ates.

4.6 Summary

While careful designs are helpful in collecting good quality data, measurement error and mis-
classification are still inevitable and they arise ubiquitously in applications. In this chapter, we
examine DTRs with misclassification in covariates. Focusing on the Q-learning procedure, we
demonstrate biased estimation results through simulation studies. It is necessary to introduce
de-biasing adjustments to account for mismeasurement effects in inferential procedures. Here
we present two correction methods for Q-learning based on regression calibration and unbiased
estimation equation approaches. Results from extensive simulation studies confirm the satis-
factory performance of the correction methods in reducing or eliminating bias in parameter

estimates.
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Table 4.1: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stage 1. Entries in bold are obtained from the setting without
misclassification

regular weak non-regular  non-regular

mor  Method Yoi Y Yoi Y Yoi Y

Bias 0.001 0.002 0.010 0.012  0.016 0.002
SE 0.202 0.285 0.100 0.142  0.102 0.144
ESE 0.212 0.283 0.117 0.144  0.128 0.142

O EFLS  VISE  0.041 0081 0010 0020 0011 0.021
PBCR 0947 0949 0948 0938 0934 0.944
DBCR 0955 0956 0952 0950 0.943 0.953
Bias 0110 0095 0157 0185 0092 0.179
SE 0163 0250 0095 0145 0096 0.147
015 Newe ESE 0199 0256 0117 0146 0125 0.149
MSE 0039 0072 0034 0055 0018 0054
PBCR 0918 0978 0744 0792 0895 0816
2 DBCR 0852 0842 0713 0678 0858 0.687
Bias  0.198 0194 0242 0314 0.162 0330
SE 0134 0227 009 0152 0091 0.153
03 Newe FSE 0179 0228 0110 015 0124 0151
MSE 0057 0089 0067 0122 0034 0.132
PBCR 0.846 0963 0439 0430 0741 0.392
DBCR 0747 0625 0437 0296 0673 0250
Bias 0003 0102 0011 0184 0075 0.84
SE 0217 0286 0108 0142 0109 0.144
. BSE 0236 0286 0131 0143 0140 0.141
0 Naive

MSE  0.047 0.092 0.012 0.054 0.018 0.055
PBCR 0.976 0.984 0.961 0.772  0.926 0.794
DBCR 0.907 0.850 0.935 0.668 0.896 0.659
Bias 0.121 0.241 0.179 0422  0.057 0.424
SE 0.173 0.244 0.100  0.142  0.102 0.144
ESE 0.204 0239 0.133  0.144  0.130 0.142
MSE  0.044 0.118 0.042 0.198  0.014 0.200
PBCR 0.949 0.968 0.761 0.075  0.953 0.065
DBCR 0.858 0.543 0.630  0.095 0.902 0.095
Bias 0.216 0.350 0285 0612 0.142 0.614
SE 0.140 0.215 0.094  0.145  0.095 0.146
ESE 0209 0215 0.122  0.148  0.133 0.141

mo =0.15 0.15 Naive

03 Naive  ViSE 0066 0169 009 0395 0029 0398
PBCR 0.846 0.788 0381 0000 0.837 0.000
DBCR 0.769 0232 0322 0006 0.737 0.006
Bias 0024 0.178 0071 0327 0.145 0323
SE 0225 0279 0.119  0.147  0.120 0.149
. ESE 0264 0271 0139 0.140 0.145 0.147
0 Naive

MSE  0.051 0.109 0.019 0.129 0.035 0.126
PBCR 0990 0986 0.958 0362 0.864 0.350
DBCR 0.895 0.663 0.889 0237  0.789 0.270
Bias 0.165 0360 0.120 0.613  0.023 0.612
SE 0.168 0.221 0.109 0.144  0.110 0.145
ESE 0.268 0.220 0.143  0.145  0.147 0.140
MSE  0.055 0.179 0.026 0396  0.013 0.396
PBCR 0936 0.805 0.911 0.000  0.969 0.000
DBCR 0.839 0.237 0.790 0.002  0.889 0.004
Bias 0.268 0482 0225 0836  0.123 0.839
SE 0.129 0.183 0.101 0.143  0.102 0.144
ESE 0.257 0.184 0.132  0.141 0.136 0.146
MSE  0.089 0.266 0.061 0.719  0.025 0.725
PBCR 0.834 0.009 0.579  0.000  0.887 0.000
DBCR 0.787 0.046 0.528  0.000  0.771 0.000

mo=03 0.15 Naive

0.3  Naive
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Table 4.2: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stage 2. Entries in bold are obtained from the setting without
misclassification

regular weak non-regular non-regular

o1 Method Yoo Vi Y2 Yoz Vi Y2 Yoz Vi Y2
Bias 0.003 0.001 0.005 0.004 0.002 0.006 0.004 0.002 0.005
SE 0.100 0.090 0.127 0.100 0.090 0.127 0.100 0.090 0.127
0 EFLS ESE 0.101 0.087 0.123 0.100 0.092 0.127 0.105 0.089 0.127
MSE 0.010 0.008 0.016 0.010 0.008 0.016 0.010 0.008 0.016
WTCR 0952 0954 0946 0951 0947 0960 0.939 0952 0.947
Bias 0.655 0.649 0.004 0.292 0.297 0.003 0.250 0.261 0.012
SE 0.132 0.122 0.171 0.106 0.098 0.137 0.104 0.096 0.135
015 Naive ESE 0.153 0.137 0.173 0.112 0.100 0.139 0.110 0.096 0.139
MSE 0.446 0.436 0.029 0.096 0.098 0.019 0.073 0.077 0.018
— WTCR 0.004 0.000 0.944 0.230 0.142 0.944 0.327 0.236 0.943
Bias 1.157 1.163 0.009 0.536 0.537 0.002 0.460 0.467 0.007
SE 0.149 0.147 0.198 0.109 0.107 0.145 0.106 0.104 0.141
03  Naive ESE 0.173 0.152 0.198 0.114 0.109 0.146 0.117 0.102 0.142
MSE 1.361 1.374 0.039 0.299 0.300 0.021 0.223 0.229 0.020
WTCR 0.000 0.000 0.950 0.007 0.002 0.954 0.016 0.009 0.944
Bias 0.000 0.641 0.001 0.002 0.292 0.001 0.001 0.262 0.003
SE 0.139 0.122 0.170 0.112 0.098 0.137 0.110 0.097 0.135
0 Naive ESE 0.119 0.136 0.166 0.110 0.097 0.138 0.105 0.100 0.133

MSE 0.019 0426 0.029 0.013 0.095 0.019 0.012 0.078 0.018
WTCR 0977 0.000 0.954 0.948 0.147 0943 0961 0.244 0.954
Bias 0.748 1.503 0.010 0.349 0.694 0.000 0.301 0.597 0.007
SE 0.161 0.144 0.204 0.116 0.104 0.146 0.112 0.101 0.142
ESE 0.171 0.189 0.207 0.120 0.120 0.146 0.116 0.109 0.140
MSE 0.586 2.280 0.042 0.135 0.492 0.021 0.103 0.367 0.020
WTCR 0.006 0.000 0.950 0.150 0.000 0.956 0.237 0.000 0.957
Bias 1.321 2.195 0.002 0.600 0.999 0.001 0.523 0.873 0.004
SE 0.173 0.161 0.225 0.118 0.109 0.153 0.113 0.105 0.147
ESE 0.193 0.207 0.227 0.123 0.125 0.155 0.116 0.118 0.147

mo =0.15 0.15 Naive

0.3 Naive  \Viop 1775 4844 0051 0374 1010 0023 0286 0773 0022
WTCR 0.000 0.000 0.959 0.000 0.000 0953 0.02 0.000 0.951
Bias  0.001 1.143 0.002 0001 0.531 0.008 0.003 0.462 0.007
SE 0.169 0.147 0.198 0.124 0.107 0.145 0.120 0.104 0.141
0 Nave FESE 0131 0153 0198 0114 0111 0.143 0112 0106 0.138

MSE 0.029 1.328 0.039 0.015 0.294 0.021 0.015 0.224 0.020
WTCR 0.988 0.000 0.956 0.963 0.000 0.950 0.965 0.009 0.954
Bias 0.885 2.189 0.009 0.410 0.999 0.002 0.350 0.868 0.007
SE 0.184 0.161 0.225 0.125 0.110 0.153 0.120 0.105 0.147
ESE 0.195 0208 0.227 0.129 0.124 0.157 0.121 0.112 0.145
MSE 0.817 4.818 0.051 0.184 1.010 0.023 0.137 0.764 0.022
WTCR 0.004 0.000 0.949 0.101 0.000 0.941 0.168 0.000 0.946
Bias 1.500 2.998 0.009 0.687 1.385 0.010 0.595 1.202 0.012
SE 0.190 0.171 0.241 0.125 0.112 0.158 0.119 0.107 0.151
ESE 0.210 0.221 0.244 0.130 0.136 0.154 0.122 0.120 0.147
MSE 2286 9.017 0.058 0.488 1931 0.025 0368 1.456 0.023
WTCR 0.000 0.000 0.946 0.000 0.000 0.952 0.002 0.000 0.955

mo=03 0.15 Naive

0.3  Naive




96

Table 4.3: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 1

regular weak non-regular non-regular
=0 RC EE-known EE-estimated RC EE-known EE-estimated RC EE-known EE-estimated
Yo Y Yo Y Yo Y Yor Yn Yo Ui Yo Y Yo Y Yo Yn Yo Y
Bias 0.004 0.006 0.003 0.013 0.010 0.006 0.014 0.006 0.026 0.003 0.025 0.008 0.072 0.005 0.072 0.007 0.062 0.008
SE 0.225 0.291 0.218 0.329 0.314 0456 0.131 0.160 0.118 0.176 0.162 0.234 0.134 0.162 0.118 0.176 0.163 0.235
70 = 0.15 ESE 0.236  0.291 0.240 0.339 0.223 0.318 0.130 0.160 0.136 0.178 0.133 0.172 0.138 0.162 0.139 0.177 0.136 0.174
MSE  0.051 0.085 0.047 0.109 0.099 0.208 0.017 0.026 0.015 0.031 0.027 0.055 0.023 0.026 0.019 0.031 0.030 0.056
PBCR 0.961 0.981 0.973 0.992 0968 0.983 0.975 0.973 0.973 0.984 0.952 0.969 0.934 0.969 0.936 0.973 0.921 0.954
DBCR 0919 0912 0.884 0.858 0.910 0.900 0.930 0.920 0.928 0.893 0.930 0911 0.894 0.914 0.890 0912 0.895 0.909
Bias 0.011 0.007 0.017 0.016 0.004 0.001 0.061 0.007 0.084 0.012 0.053 0.005 0.118 0.008 0.144 0.006 0.111 0.005
SE 0.238 0.303 0.236 0.377 0.328 0.490 0.139 0.176 0.147 0.230 0.181 0.272 0.142 0.178 0.144 0.225 0.180 0.269
70 =03 ESE 0.236  0.300 0.251 0.381 0.252 0.370 0.137 0.180 0.156 0.233 0.160 0.223 0.146 0.176 0.157 0.221 0.159 0.218
MSE  0.057 0.092 0.056 0.143 0.108 0.240 0.023 0.031 0.029 0.053 0.036 0.074 0.034 0.032 0.041 0.051 0.045 0.072
PBCR 0.974 0.990 0.997 0.998 0.992 0.993 0.957 0.984 0.961 0.996 0.954 0988 0.870 0.985 0.887 0.995 0.915 0.985
DBCR 0918 0.856 0.823 0.745 0.849 0.813 0.873 0.882 0.842 0.817 0.856 0.816 0.823 0.884 0.745 0.835 0.807 0.826
0 = 0.15
Bias 0.002 0.002 0.005 0.003 0.021 0.033 0.002 0.002 0.034 0.001 0.032 0.005 0.060 0.002 0.049 0.001 0.027 0.004
SE 0223 0.312 0.254 0387 0.334 0490 0.127 0.158 0.109 0.167 0.156 0.228 0.132 0.160 0.110 0.169 0.158 0.231
701 =0 ESE 0228 0.315 0.262 0.388 0.236 0.361 0.128 0.159 0.130 0.169 0.125 0.164 0.134 0.158 0.136 0.168 0.127 0.167
MSE  0.050 0.097 0.065 0.150 0.112 0.241 0.016 0.025 0.013 0.028 0.025 0.052 0.021 0.026 0.014 0.029 0.026 0.054
PBCR 0.976 0.991 0.983 0.995 0.983 0.981 0.957 0974 0.964 0979 0.958 0.974 0924 0.975 0.960 0.977 0.954 0.962
DBCR 0.914 0.903 0901 0.868 0.936 0.884 0.940 0.921 0.921 0.901 0.939 0.923 0914 0.928 0.905 0911 0.929 0916
Bias 0.002 0.006 0.001 0.000 0.011 0.015 0.023 0.002 0.007 0.002 0.001 0.003 0.118 0.003 0.008 0.000 0.003 0.002
SE 0.236  0.330 0.305 0.499 0.373 0.575 0.139 0.183 0.137 0.223 0.174 0267 0.143 0.185 0.137 0.222 0.175 0.268
7o =0.15 ESE 0231 0.329 0.298 0.490 0.285 0.459 0.139 0.180 0.161 0.229 0.152 0211 0.142 0.188 0.150 0.221 0.153 0.213
MSE  0.056 0.109 0.093 0.249 0.139 0.331 0.020 0.034 0.019 0.050 0.030 0.071 0.034 0.034 0.019 0.049 0.031 0.072
PBCR 0.978 0.995 1.000 1.000 0.987 0.998 0.956 0.994 0.987 1.000 0.975 0.995 0914 0.990 0.991 0.997 0.966 0.981
DBCR 0.890 0.830 0.808 0.714 0.838 0.768 0.905 0.879 0.867 0.793 0.879 0.851 0.832 0.858 0.885 0.810 0.881 0.824
Bias 0.004 0.013 0.001 0.004 0.018 0.018 0.057 0.002 0.038 0.017 0.036 0.011 0.162 0.010 0.079 0.005 0.073 0.029
SE 0.256 0.357 0.378 0.657 0.435 0.707 0.149 0.206 0.194 0.332 0.220 0.356 0.152 0.207 0.188 0.320 0214 0.347
7 =03 ESE 0255 0.354 0.374 0.648 0.364 0.607 0.145 0.201 0207 0.335 0.208 0.319 0.153 0.201 0.196 0.307 0.197 0.315
MSE  0.066 0.128 0.143 0.432 0.189 0.501 0.025 0.042 0.039 0.111 0.050 0.127 0.049 0.043 0.041 0.103 0.051 0.121
PBCR 0982 1.000 1.000 1.000 1.000 1.000 0.983 0.997 0.999 1.000 0.985 1.000 0.852 0.995 0.991 1.000 0.980 0.999
DBCR 0.886 0.793 0.642 0.543 0.704 0.590 0.890 0.830 0.761 0.636 0.774 0.680 0.733 0.832 0.765 0.676 0.780 0.673
mo=0.3
Bias 0.017 0.004 0.006 0.012 0.033 0.047 0.048 0.005 0.077 0.002 0.053 0.014 0.107 0.008 0.115 0.006 0.077 0.002
SE 0.244 0.331 0.333 0.539 0.388 0.602 0.135 0.175 0.120 0.198 0.162 0.248 0.139 0.176 0.121 0.200 0.165 0.251
71 =0 ESE 0.236 0.325 0.316 0.526 0.305 0.479 0.127 0.168 0.139 0.190 0.138 0.193 0.139 0.180 0.144 0.199 0.140 0.196
MSE 0.060 0.109 0.111 0290 0.151 0.364 0.021 0.031 0.020 0.039 0.029 0.062 0.031 0.031 0.028 0.040 0.033 0.063
PBCR 0984 0.994 0.997 1.000 0.985 0.998 0.964 0.986 0.969 0.995 0.967 0.979 0.890 0.990 0.936 0.997 0.952 0.986
DBCR 0.920 0.863 0.850 0.753 0.844 0.778 0.922 0.900 0.859 0.859 0.870 0.849 0.863 0.878 0.786 0.847 0.849 0.840
Bias 0.013 0.000 0.005 0.019 0.032 0.035 0.089 0.002 0.031 0.009 0.026 0.016 0.164 0.008 0.067 0.013 0.037 0.030
SE 0.266 0.361 0.460 0.805 0.492 0.826 0.148 0.206 0.168 0.292 0.198 0.324 0.151 0.207 0.166 0.289 0.198 0.323
70 = 0.15 ESE 0.274 0.366 0.455 0.810 0.397 0.707 0.151 0.204 0.190 0.292 0.186 0.284 0.157 0.198 0.189 0.281 0.179 0.279
MSE  0.071 0.130 0.211 0.648 0.243 0.684 0.030 0.042 0.029 0.085 0.040 0.105 0.050 0.043 0.032 0.084 0.041 0.105
PBCR 0976 0.999 1.000 1.000 1.000 1.000 0.935 0.991 0.993 1.000 0.989 0.997 0.832 0.994 0.991 1.000 0.983 0.997
DBCR 0.885 0.789 0.609 0.508 0.707 0.574 0.837 0.824 0.781 0.671 0.794 0.710 0.732 0.842 0.768 0.690 0.800 0.713
Bias 0.027 0.013 0.000 0.014 0.035 0.054 0.125 0.020 0.023 0.045 0.019 0.043 0.210 0.016 0.010 0.025 0.037 0.048
SE 0291 0407 0.717 1.322 0.764 1379 0.158 0.230 0.289 0.526 0.322 0.573 0.161 0.230 0.275 0.499 0.309 0.548
7 =03 ESE 0299 0.408 0.718 1.353 0.677 1.269 0.156 0.230 0.298 0.532 0.316 0.540 0.158 0.223 0.296 0.496 0.296 0.513
MSE  0.085 0.165 0.514 1.748 0.585 1.905 0.041 0.053 0.084 0.278 0.104 0.330 0.070 0.053 0.076 0.250 0.097 0.303
PBCR 0.984 1.000 1.000 1.000 1.000 1.000 0.944 0.998 1.000 1.000 1.000 1.000 0.781 1.000 1.000 1.000 0.999 1.000
DBCR 0.874 0.743 0.401 0.322 0.500 0.366 0.756 0.766 0.600 0.453 0.608 0.458 0.604 0.790 0.602 0.480 0.656 0.522
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Table 4.4: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 2 and regular case

mo=0 RC EE-known EE-estimated
Vo2 3%} V553 Vo2 Y2 U Yoz 1383 V253
Bias 0.001 0.002 0.005 0.009 0.018 0.006 0.014 0.020 0.005
SE 0.184 0.162 0.192 0.182 0.170 0.184 0.206 0.190 0.226
w01 = 0.15 ESE 0.180 0.158 0.193 0.181 0.173 0.187 0.206 0.198 0.170
MSE 0.034 0.026 0.037 0.033 0.029 0.034 0.043 0.037 0.051
WTCR 0955 0954 0945 0948 0.951 0.942 0.955 0.940 0.990
Bias 0.019 0.033 0.005 0.024 0.024 0.008 0.042 0.045 0.004
SE 0.219 0.187 0.227 0.259 0.246 0.245 0270 0.254 0.272
701 =0.3 ESE 0.223 0.185 0.237 0.270 0.249 0.242 0.306 0.299 0.223
MSE 0.048 0.036 0.052 0.068 0.061 0.060 0.075 0.066 0.074
WTCR 0943 0934 0924 0947 0956 0.958 0.925 0.916 0.981
o = 0.15
Bias 0.010 0.006 0.004 0.002 0.021 0.002 0.002 0.010 0.000
SE 0.127 0.160 0.191 0.123 0.169 0.183 0.164 0.188 0.226
w1 =0 ESE 0.129 0.155 0.190 0.124 0.171 0.182 0.113 0.192 0.161
MSE 0.016 0.026 0.037 0.015 0.029 0.034 0.027 0.035 0.051
WTCR 0.954 0.956 0.949 0.943 0.952 0.951 0.993 0.946 0.992
Bias 0.009 0.016 0.006 0.018 0.022 0.006 0.034 0.053 0.010
SE 0.205 0.240 0.237 0.228 0.264 0.263 0.242 0.266 0.285
no = 0.15 ESE 0.206 0.245 0.239 0.226 0.272 0.267 0.259 0.315 0.230
MSE 0.042 0.058 0.056 0.052 0.070 0.069 0.060 0.074 0.082
WTCR 0.952 0.940 0.948 0.955 0.942 0.948 0.945 0.901 0.986
Bias 0.023 0.035 0.009 0.004 0.044 0.020 0.057 0.074 0.020
SE 0.238 0.269 0.264 0.340 0.381 0.365 0.342 0.373 0.370
no1 = 0.3 ESE 0.234 0.273 0.259 0.341 0376 0366 0.394 0455 0.321
MSE 0.057 0.074 0.070 0.116 0.147 0.133 0.120 0.144 0.137
WTCR 0.951 0.946 0.955 0.947 0.950 0.962 0.939 0.902 0.983
o = 0.3
Bias 0.018 0.022 0.004 0.002 0.024 0.010 0.004 0.042 0.004
SE 0.145 0.186 0.228 0.151 0.243 0.244 0.183 0.250 0.271
7 =0 ESE 0.144 0.185 0.232 0.150 0.248 0.242 0.136 0.298 0.218
MSE 0.021 0.035 0.052 0.023 0.059 0.060 0.033 0.064 0.073
WTCR 0.949 0.945 0946 0951 0939 0940 0994 0915 0.988
Bias 0.018 0.045 0.003 0.028 0.047 0.004 0.029 0.057 0.005
SE 0.222 0.270 0.264 0.297 0380 0.364 0.300 0.373 0.370
ng = 0.15 ESE 0.217 0.266 0.261 0.304 0.385 0.367 0.325 0451 0.325
MSE 0.050 0.075 0.070 0.089 0.147 0.133 0.091 0.142 0.137
WTCR 0.954 0.949 0.951 0940 0942 0958 0931 0904 0.981
Bias 0.023 0.058 0.007 0.066 0.141 0.020 0.099 0.215 0.014
SE 0.246 0.284 0.284 0.489 0.598 0.558 0.502 0.618 0.563
n = 0.3 ESE 0.252 0.287 0.293 0497 0.577 0.553 0596 0.792 0.515
MSE 0.061 0.084 0.080 0.244 0378 0311 0.261 0428 0.317
WTCR 0.940 0.942 0.943 0.952 0.949 0.967 0.944 0.914 0.992
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Table 4.5: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stage 2 and weak non-regular case

mo=0 RC EE-known EE-estimated

Yoz V12 V53] Yoz Y12 W2 Yoz V12 V53]

Bias 0.007 0.001 0.002 0.012 0.010 0.001 0.011 0.013 0.000
SE 0.124 0.115 0.143 0.124 0.121 0.141 0.165 0.155 0.199
mor = 0.15 ESE 0.125 0.113 0.143 0.126 0.119 0.143 0.128 0.128 0.140
MSE 0.015 0.013 0.020 0.016 0.015 0.020 0.027 0.024 0.039
WTCR 0949 0956 0.954 0.948 0.957 0.947 0.985 0.986 0.990

Bias 0.007 0.014 0.005 0.004 0.008 0.007 0.008 0.016 0.009
SE 0.138 0.130 0.154 0.153 0.157 0.159 0.186 0.180 0.210
mn =03 ESE 0.139 0.131 0.153 0.153 0.161 0.160 0.171 0.174 0.151
MSE 0.019 0.017 0.024 0.024 0.025 0.025 0.035 0.033 0.044
WTCR 0946 0949 0943 0.947 0.952 0.947 0971 0.964 0.990

o = 0.15

Bias 0.003 0.004 0.000 0.003 0.010 0.001 0.001 0.005 0.001
SE 0.108 0.115 0.143 0.108 0.121 0.141 0.155 0.154 0.199
=0 ESE 0.109 0.113 0.143 0.111 0.116 0.143 0.108 0.126 0.138
MSE 0.012 0.013 0.020 0.012 0.015 0.020 0.024 0.024 0.040
WTCR 0945 0.954 0.945 0937 0959 0.939 0.997 0.988 0.996

Bias 0.004 0.010 0.006 0.005 0.007 0.000 0.013 0.013 0.004
SE 0.134 0.149 0.157 0.143 0.167 0.165 0.178 0.187 0.214
o1 =0.15 ESE 0.131 0.150 0.152 0.148 0.172 0.167 0.141 0.178 0.147
MSE 0.018 0.022 0.025 0.021 0.028 0.027 0.032 0.035 0.046
WTCR 0.954 0.948 0.957 0945 0942 0941 0.984 0.963 0.992

Bias 0.005 0.001 0.007 0.022 0.040 0.001 0.018 0.042 0.003
SE 0.147 0.166 0.166 0.192 0.227 0.203 0.216 0.239 0.242
m =03 ESE 0.150 0.170 0.168 0.195 0.230 0.206 0.209 0.258 0.184
MSE 0.022 0.028 0.028 0.037 0.053 0.041 0.047 0.059 0.059
WTCR 0.934 0.948 0.948 0939 0941 0.947 0.974 0942 0.995

o = 0.3

Bias 0.007 0.014 0.005 0.001 0.007 0.003 0.002 0.014 0.004
SE 0.115 0.129 0.154 0.118 0.156 0.159 0.162 0.179 0.210
Mo =0 ESE 0.113 0.129 0.151 0.117 0.158 0.155 0.113 0.172 0.154
MSE 0.013 0.017 0.024 0.014 0.024 0.025 0.026 0.032 0.044
WTCR 0956 0955 0956 0950 0.949 0.958 0.997 0.957 0.993

Bias 0.004 0.001 0.008 0.009 0.036 0.013 0.008 0.040 0.003
SE 0.141 0.167 0.166 0.173 0.227 0.203 0.202 0.239 0.242
o =0.15 ESE 0.144 0.169 0.172 0.177 0.226 0.203 0.183 0.257 0.189
MSE 0.020 0.028 0.028 0.030 0.053 0.041 0.041 0.059 0.059
WTCR 0942 0952 0942 0945 0947 0.951 0.969 0.938 0.989

Bias 0.008 0.019 0.002 0.028 0.051 0.004 0.052 0.126 0.005
SE 0.152 0.180 0.173 0.260 0.343 0.280 0.291 0.365 0.317
mo1 =03 ESE 0.156 0.182 0.170 0.271 0.354 0.286 0.329 0.427 0.273
MSE 0.023 0.033 0.030 0.068 0.120 0.079 0.087 0.149 0.101
WTCR 0.938 0.948 0.952 0946 0946 0.957 0.962 0.923 0.990
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Table 4.6: Simulation studies for assessing the performance of the RC, EE-known, and EE-

estimated methods: stage 2 and non-regular case

mo=0 RC EE-known EE-estimated
Vo2 3%} V553 Vo2 Y2 U Yoz 1383 V253
Bias 0.007 0.005 0.008 0.014 0.006 0.010 0.008 0.011 0.001
SE 0.119 0.111 0.139 0.119 0.117 0.137 0.163 0.152 0.197
w01 = 0.15 ESE 0.122 0.108 0.142 0.121 0.113 0.140 0.126 0.121 0.134
MSE 0.014 0.012 0.019 0.014 0.014 0.019 0.026 0.023 0.039
WTCR 0.939 0.959 0.937 0936 0958 0950 0.988 0.985 0.998
Bias 0.003 0.012 0.010 0.008 0.005 0.006 0.007 0.010 0.001
SE 0.130 0.125 0.148 0.144 0.149 0.152 0.179 0.175 0.206
701 =0.3 ESE 0.137 0.124 0.147 0.146 0.145 0.154 0.160 0.160 0.148
MSE 0.017 0.016 0.022 0.021 0.022 0.023 0.032 0.031 0.042
WTCR 0.937 0.955 0954 0943 0962 0950 0967 0.973 0.992
o = 0.15
Bias 0.004 0.012 0.001 0.002 0.001 0.003 0.001 0.006 0.000
SE 0.107 0.111 0.139 0.107 0.117 0.137 0.155 0.152 0.197
w1 =0 ESE 0.105 0.111 0.135 0.106 0.118 0.137 0.103 0.120 0.135
MSE 0.011 0.012 0.019 0.011 0.014 0.019 0.024 0.023 0.039
WTCR 0.954 0.945 0.952 0.950 0.947 0.949 0.996 0.985 0.996
Bias 0.006 0.004 0.010 0.005 0.015 0.013 0.014 0.026 0.004
SE 0.127 0.141 0.150 0.136 0.158 0.157 0.173 0.181 0.209
o1 = 0.15 ESE 0.126 0.140 0.150 0.136 0.156 0.155 0.137 0.167 0.145
MSE 0.016 0.020 0.023 0.019 0.025 0.025 0.030 0.033 0.044
WTCR 0.959 0.943 0.957 0.951 0.956 0.950 0.986 0.962 0.997
Bias 0.006 0.010 0.001 0.019 0.029 0.002 0.024 0.037 0.003
SE 0.138 0.158 0.157 0.177 0.213 0.187 0.205 0.227 0.231
no1 = 0.3 ESE 0.142 0.161 0.157 0.175 0.216 0.183 0.187 0.225 0.173
MSE 0.019 0.025 0.025 0.032 0.046 0.035 0.042 0.053 0.053
WTCR 0942 0.937 0.949 0.961 0.945 0.958 0.978 0.956 0.992
o = 0.3
Bias 0.009 0.013 0.005 0.001 0.006 0.005 0.002 0.011 0.002
SE 0.112 0.124 0.148 0.116 0.148 0.152 0.161 0.174 0.206
7 =0 ESE 0.111 0.123 0.145 0.116 0.152 0.150 0.116 0.160 0.146
MSE 0.013 0.016 0.022 0.014 0.022 0.023 0.026 0.030 0.042
WTCR 0.947 0.954 0958 0949 0947 0960 0993 0.976 0.997
Bias 0.002 0.006 0.004 0.013 0.032 0.003 0.017 0.041 0.003
SE 0.134 0.157 0.157 0.162 0.212 0.187 0.193 0.227 0.231
ng = 0.15 ESE 0.139 0.159 0.158 0.158 0.206 0.184 0.171 0.233 0.175
MSE 0.018 0.025 0.025 0.026 0.046 0.035 0.038 0.053 0.053
WTCR 0.935 0.951 0.947 0947 0952 00956 0977 0.954 0.992
Bias 0.000 0.021 0.012 0.029 0.050 0.001 0.055 0.110 0.001
SE 0.143 0.171 0.162 0.237 0.319 0.252 0.265 0.337 0.290
n = 0.3 ESE 0.148 0.177 0.160 0.236 0.310 0.246 0.272 0.377 0.231
MSE 0.021 0.030 0.027 0.057 0.104 0.064 0.073 0.126 0.084
WTCR 0941 0.937 0.951 0.963 0.956 0.967 0971 0941 0.996




8L9°0 6650 6580 0580 6LL0 L69°0 LEY'0 €050 8980 8980 6L8°0 6660 1L60 LS60 0¥6'0  S0S°0 Te[ngai-uoN

€8L°0 00L°0 10L°0 08<°0 IvL'0 2690 £€86°0 0050 LL6'0 6L6'0 £66'0 S0L'0 098°0 $$8°0 L9L°0 00S0 TenSar-uouyeapn €0
68L°0 00L°0 1§9°0 667'0 9€9'0 685°0 £€9'0 9650 966'0 L66°0 0001 10S°0 LEL'O LOL0 9780 6790 Ten3oy
890 109°0 G880 8880 w80 SLL'O SL90 8IS0 698°0 8L8°0 8L8°0 0001 666'0 000°1 1L6'0  9¢S°0 Te[ngaI-uoN
0¥8°0 SLL'O 6€L°0 1€9°0 6180 1LLO 65’0 10S°0 L86°0 1660 ¥66°0 8€L'0 6160 €060 6180 €050 MmSaruoudeam S0 €0 =0
w80 SLL'O §99°0 11s°0 LTL'O 0690 8890 ¥19°0 0001 000°1 0001 12¢°0 08L°0 L9L°0 0€8°0  €0L0 Te[n3oy
88L°0 °sL0 0160 976'0 §68°0 0580 8¥YL'0 TI90 L98°0 798°0 €L8°0 0001 666'0 000'T 1660 1590 Te[n3aI-uoN
0680 L¥80 SLLO LL90 6580 €280 €290 0150 ¥66'0 7660 9660 Lo 8560 960 9L8°0 SISO Ie[nSOI-UOU Yeop 0
968°0 168°0 S0L0 9560 €080 ¥8L°0 YLL'O 8ELO 0001 0001 0001 €LS°0 Ly8°0 €280 168°0  S78°0 Ten3oy
YEL'0 ¥L9°0 G880 988°0 0180 SLL'O 0€L'0 1850 °L8°0 698°0 6L8°0 666°0 686°0 SL6'0 9960 L¥9°0 Te[ngaI-uoN
0¥8°0 SLL'O 9L0 ¥99°0 908°0 €LLO LT90  1TS0 1660 266'0 $66°0 S6L°0 1880 §98°0 ¥98°0 LPS0 TemSor-uou e €0
w80 YLL'O €LL'O L89°0 9¢L’0 8690 8990 7650 0001 000°1 0001 8680 €080 YLL'O 80 ¥99°0 Te[n3oy
9¢L’0 SL90 606°0 ¥26'0 ¥68°0 0580 9780 €TL0 9L8°0 SL80 £88°0 666'0 666'0 866°0 0660 6180 Te[n3a1-uoN
680 0580 L1880 8¢L0 9L80 8780 2690 9850 L66'0 9660 8660 080 §26°0 60 0160 0790 Jem3aruouyeom g0 SI0=0
$68°0 0880 868°0 0280 88L°0 €9L°0 LELO  8L90 0001 000°1 0001 196°0 ¥¥8°0 6¢8°0 098°0  89L°0 Ten3oy
6C8°0 L18°0 ¥€6'0 096'0 8¥6'0 §26'0 CI6'0  L98°0 698°0 ¥L8°0 CL8'0 866'0 000'T 000'T 666'0 €60 Te[n3aI-uoN
9¥6'0 ¥26'0 SL80 ¥28°0 16’0 §68°0 ¥9L°'0  T0L°0 L66°0 L66°0 L66°0 8L8°0 196°0 §96'0 ¥P6'0  9I1L°0 TenSor-uou yeop 0
8¥6°0 §76°0 0£6'0 L16°0 €680 L¥8°0 1280 0180 0001 0001 0001 ¥66'0 LS80 L¥8°0 6S8°0 LS80 Tensoy
G8L°0 6¥L°0 s8°0 9¢8°0 £68°0 6¥8°0 L88°0 1€8°0 CL8°0 ¥L8°0 6L8°0 9L8°0 766'0 186°0 0660 LL60 Te[n3a1-uoN
¥68°0 6¥8°0 ¥68°0 8780 9¢8°0 0580 S6L'0 6VL0 866°0 866°0 8660 666°0 9L8°0 ¥¥8°0 ¥88°0 8780 IemSor-uoudyeIM €0
¥68°0 6¥8°0 ¥68°0 6¥8°0 1LLO 8€L°0 10L°0 6290 0001 000°1 0001 0001 7980 G680 7980 8690 Te[n3oy
= 0ly
68L°0 6¥L'0 1L8°0 §98°0 LY6'0 §26'0 960 1760 CL8°0 ¥L8°0 SL80 €L8°0 L66'0 L66'0 966'0 S66'0 Te[n3aI-uoN 0
LY6'0 §76'0 9¥6'0 ¥26'0 126°0 0260 9L8°0 TS80 0001 0001 0001 0001 976'0 L06°0 ¥26'0 9060 Tendor-uou yeam  SI°0
LY6'0 §26°0 LY6'0 §76'0 80 £08°0 69L°0 0€L0 000°T 000°T 000°T 000°T 980 7980 8680 CTLLO Tegsoy
pajewnsa-gyg  umouy-gg DY QATEN pajewnsa-gg  umouy-gg DY QAlRN pajewnse-gg umowy-gd Oy QATEN pajewnsa-gg  umouy-gg DY  QAlRN Sumes  0x
7 93e1s 1 98e1s 7 93e1s 1 98e1s
Z OLIBUAOS | OLIBUQDS

100

srenpIArput pajean; Ajjewndo jo suontodoid :spoyiow pajewnso-g pue ‘umou-g4 ‘O ‘@Areu ay) Jo aouewiofrad uonoIpald 1/ 9[qeL



101

(20T°0‘09CC) (TS1°0°860°0-) (0TH'1 °089°1-) (09%'1 “08L°1-) (L6T'0‘€0€0-) (0TS0 ‘0¥TS) 1D %S6
8290 #90°0 06L°0 L8L0 €600 LYS'T ds (10°1°0)

820'1- LT0°0 8210 TS1°0- S81°0 LYS'T-  orewnsyg

(981°0°080°C-) (LPT'0°001°0-) (OI+'T1°089°1-) (9661 “L98°0) (€2T°0‘801°0-) (+00°¢- ‘TSI'+-)  ID %S6
8LS°0 €900 L8L0 1601 0600 68L'1 4SS (L0°0°L0°0)

Ly6'0- ¥20°0 LETO PEY'l 0£1°0 00t'¢-  deuwnsy

(891°0°088°T-) (€¥T°0°TOT'0-) (06€°T 069 1-) (SI8T ‘180°0-) (0LT0°STO0-) (4TI'T- 49T+~ 1D %S6
€S0 7900 98L°0 I¥€'S P10 L09°€ as  (€0°0°€0°0)

LS80~ 120°0 0S1°0- 19L°0 991°0 OvT e~ Seuwmnsg

(191°0°008°T-)  (I¥1°0°T0T°0-) (08€'T‘00L°T1-) (ILTT‘861°0) (69770 °800°0-) (109°C-‘€€S€-) ID %S6
00S°0 7900 $8L°0 L6T'T 101°0 €0T'1 as (100 ‘10°0)

61870 6100 951°0- ¥L9°0 ILT0 LTTE- orewnsyg
AS.RNE.S
7 SIsA[euy

(€LT0‘PLLT-) (€€T°0°S60°07) (96%'1 ‘SIS T-) (0¥9°C ‘LOET) (69€°0 ‘TH0'0-) (S86°0- ‘91S'S-) 1D %S6
L6¥°0 850°0 S¥8°0 SS6'T 001°0 L60°C dS [ siskfeuy

108°0- 6100 6S1°0- $99°0 TLT0 GTT e~ orewnsyg

NNS N_% No$ Sﬂ :$ S%
7 93e1§ I 93e1s

s1oowrered g a3e)s 10J
payodar are s|D 9,66 2dA1-pA\ pue siojowresed | 98e1s 10§ papn[oul a1k S| %S6 G BIeP (LA VLS 10J SI[NSAI 7 pue | SasA[euy :§'4 9[qel



102

Table 4.9: Regression parameter values that are set for Analysis 3 in Section 4.5.3

Stage 1 parameters Stage 2 parameters

o1 ST TR 4 G 0o {n e {5

Set1 -4.61 4.03 0.09 -3.66 424 0.11 008 -0.06 0.11
Set2 -3.81 247 0.09 -2.78 255 0.11 0.17 -0.06 0.06
Set3 -3.37 152 0.09 -232 157 0.11 0.16 -0.06 0.05
Set4 -3.01 0.80 0.09 -197 084 0.11 0.19 -0.06 0.02
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Chapter 5

Q-Learning with Compound Outcome
and Mixed Misclassification and

Measurement Error in Covariates

5.1 Introduction

In Chapter 4, we investigate the detrimental impact of covariate misclassification on Q-learning
with a univariate outcome, and propose two correction strategies to reduce the bias. Although
most studies on covariate measurement error and misclassification investigate these issues sep-
arately, it is not uncommon to see real-world data with both covariate measurement error and
misclassification. Correcting mixed measurement error and misclassification in covariates have
been discussed under some regression models (Yi et al., 2015; Spiegelman et al., 2000; Zhang
and Yi, 2023). However, no research on such issues is available for developing optimal DTRs
via Q-learning. Unlike the setup in Chapter 4 which considers Q-learning with a univariate out-
come, this chapter deals with Q-learning with bivariate outcomes, and we propose correction
strategies to account for the potential bias induced by mixed misclassification and measurement
error in covariates.

The remainder of the chapter is organized as follows. In Section 5.2, we establish the basic

notation and outline the implementation procedure of Q-learning for bivariate outcomes in an
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ideal scenario without covariate mismeasurement. In Section 5.3, we introduce a setting with
covariate mismeasurement and conduct simulation studies to illustrate the impact of ignoring
mismeasurement on the Q-learning estimation process. In Sections 5.4 and 5.5, we respectively
present two correction methods for mitigating the bias caused by mismeasurement. In Section
5.6, we assess the performance of the proposed methods through simulation studies. In Section
5.7, the proposed methods are applied to real data to demonstrate their utility. In Section 5.8,

we conclude the chapter with discussions.

5.2 Q-Learning with Bivariate Loss/Reward Functions

Most DTR applications focus on univariate outcomes. However, in some DTR applications, a
single outcome is not adequate to fully represent the aspects of the problem. In what follows,
we describe the Q-learning approach with bivariate outcomes. Suppose that the study has K
stages. For k = 1,---, K, let A; denote the binary action taken at stage k, and let X; and C;
respectively denote error-prone binary and continuous covariates, which are both scalar, where
X, takes on value O or 1. Let Z; denote the vector of precisely measured covariates. Covariates
associated with each stage are measured prior to the receipt of the treatment at that stage.
Similar to the notations of univariate Q-learning introduced in Section 1.2.2, fork = 1,--- , K,
let X, = {Xl, e ,Xk}, Ci = {cl, e ,Ck}, 7 = {zl,--- ,zk}, and A, = {Al, e ,Ak}.

Fork =1,---, K, let the first and second outcomes at the end of stage k be denoted by Y},
and Y,, respectively, and assume larger cumulative outcomes are more desirable. The first and
second outcomes can be represented as a function, say g;(-) with j = 1,2, of the history of the
treatment, A;_j, together with the current treatment A, and the history of the covariates, X, C;

and Z,, as well as the covariates X;.1, Crs; and Z;,; in the next stage. That is,
Yij = 8i(Ak, Xis1, Crstr Zis1) (5.1)

forj=1,2and k=1, .-, K, where X;,, Ci; and Z;,; are null when k = K.
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5.2.1 Composite Q-Function

To construct a sequence of optimal decision rules, we first define the Q-functions for the first

and second outcomes for K stages separately for j = 1,2:

Q(ZK,YK,GK,ZK) = E(ij | ZK,YK,EK,ZK);
Qi(zkaykazk’ik) = E{ij + max E(Y(k+1)j | Zk»yk+1’6k+l,zk+l»ak+l) | Zk,yk,ak,zk}
Afe+ 1

fork=K-1,---,1.
5.2)

To delineate these conditional expectations, we can employ regression approaches, such as

linear regression models. For j = 1,2, consider the regression model
0i(A X, Ci. Zi) = B Hio + (W HA, for k=K, 1, (5.3)

where we rewrite A;,_; U X; U Ci U Z; as {Hy, Hy )}, with Hyg representing the covariates that
have a predictive effect on the outcome, and Hj; standing for the covariates that interact with
the treatment; H;y and H;; may include a constant, or intercept, term, and they may include the
same covariates. For j = 1,2and k = 1,--- , K, B; and y; are the regression coeflicients, and
we write 6 = (8}, ¥;,)" and 6 = (B, ¥,

When interest lies in finding an optimal treatment in response to either the first outcome
or the second outcome separately, we may invoke optimal decision rules to the Q-functions
in (5.3) separately for j = 1,2, with k = K,---,1. That is, for j = 1,2, consider dj =
arg nzax Q,{(Zk_l,)_(k,fk,zk, a;), which we call them marginally optimal decision rules. It is
notedkthat the optimal treatment for the first outcome is not necessarily optimal for the second

outcome, and vice versa. That is, considering

1 (A % .7 7 B
A 1Ak Xis 15 Cres1s Zir1> Qi Br 1)
di+1 = arg max

L ) for k=K-1,---,0,
et QiH(Ak,an,Ck+1,Zk+1,ak+1;9(k+1)z)

may turn out to be fruitless because there may not exist a single decision rule that maximizes

both objective functions simultaneously. To get around this problem, we aim to identify an
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optimal treatment in maximizing both first and second outcomes in a combined format.
To take into account both outcomes simultaneously, we introduce a pre-specified weight

parameter ¢, taking a value between O and 1, and define the composite Q-function as:

Ox(Ai, Xi» Cir Zi, 6) = 6Q4(Ar, X1 Cr Z1) + (1 = 8)Q3(Ay, Xy, Crr Z1) 54
fork=K,---,1,

where Qi(Xk,)_(k,Ek,Z{) is determined by (5.2) for j=1,2and k=K, ---, 1.

The weight parameter ¢ allows us to adjust the relative importance of each outcome in the
composite Q-function. When ¢ is close to 1, the composite Q-function puts more emphasis
on the Q-function for the first outcome, whereas setting ¢ close to 0 gives more weight to the
Q-function for the second outcome. By combining the Q-functions using a weight parameter
0, we find a way to balance the two objectives in order to choose a decision rule that is “good
enough” with respect to both Q,‘< .1()and Qi .1(). By adjusting the value of 6, we can prioritize
one objective over the other, or find a trade-off between the two.

Consequently, for any given J, combined optimal decision rules, denoted d;, are determined

by
di = argmax Qu(Ay_1, Xy, C, Zy, ag,6)  for k=K, -, 1. (5.5)
ak

The implementation of (5.5) hinges on the knowledge of the Q-functions for the first and second
outcomes, Qi(Zk,Yk,fk,Z() with j = 1,2 and k = K, ---, 1, which can be typically modeled
by regression models, such as (5.3). That is, the composite Q-function (5.4) fork = K,---, 1,

can be modeled as

QA Xy, Cio Z1 0) = 6 {Bly Hio + Wiy Hi)Ar) + (1 = 8) {Bl Hao + WpHi)A} . (5.6)

Parameter Determination

To estimate an optimal DTR, we first estimate the model parameters in the composite Q-
functions in (5.4), which can be achieved by separately estimating parameters associated with

(5.3) using a dataset consisting of n i.i.d. trajectories, each of the form {Ay;, Xii, Ciis Zii» Yi1ir Yi2i}s
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where i = 1, , n. Let D = {{Aki’in’Cki,Zkia Ykli, Yk2i} k= 1, ,K;i = 1, ,I/L}.

To be specific, for 6 = 1 and 6 = 0, we respectively solve

n

A 1 A - - — — 2
O = arg min— Z [qu — Oy (Auis Xui Cris Ziis 9k1)] (5.7)

n

O = arg ngizn% Z [f/kzi — Q(Awi» Xui» Cris Ziis 9k2)]2, (5.8)
where for stage K, f/m,- = Yxi, f/mi =Yxi;andfork=K-1,---,1,
Yiai = Yiai + Oy Asis Xt yis Cat1yis Zag yis s i O 1yt) (5.9)
and
Yior = Yioi + Qg1 (Asis X 1yis Ceryis Zaer 1yis s )i O 112) (5.10)

represent stage k pseudo-outcomes for subject i, and the c?(kﬂ)i are obtained by solving

R Lo = = = .
dis1 = argmax {6Q;, (A, Xks1, Crrts Zir1, Arrts O 1y1)

Ak+1

+(1 =802, (At Xis 15 Cri1> Zis 15 Qi3 Os1)) for k=K —1,---,0, (5.11)

which attains at either O or 1.

5.2.2 Estimation Equation Method

Alternatively, model parameters in the Q-functions can be estimated using the estimating equa-
tion approach. In what follows, we first discuss the estimation for stage K, utilizing the out-
come measurements {Yx it j=120i=1,--- ,n}, and then using the pseudo-outcomes (5.9)

and (5.10), we explain the estimation process for stage k where k = K — 1,--- , 1.



109
For Stage K andj = 1, 2, set €Kji = {YKji - Q;.((ZKi,)_(Kival(i,ZKi; 01(1')}2. Define
ki Ol )T N

By, MWk,
(S %;;Kj(ng; YKji, ZKi, )_(Ki, 61(1', ZKi)» S;,ij(QKj; YKji’ ZK;', )_(Ki, EKi, ZKi))T,

SKj(GKj; YKjiaZKi’ )_(KiaaKi’ZKi) = (

where

S kpy;(Okjs Yk jis Axi, Xxi» Cris Zyi) =
GQQ(ZM, Xki» Cris Ziis Ok ;)

{Ykji — Qé(zm,ymaam,im; Ok))} (5.12)

9Bk,

and
S k(O Yki» Akis Xki» Cir Zii) =
i~ = = 5 A0 (Axi, Xki» Cris Ziis Ok )

{Ykji — Q% (Aki, Xi» Cris Ziis Ok )} — . (5.13)

Wk

With (5.3) employed, (5.12) and (5.13) are simplified as

S ki, Ok Yijis Akis Xxi» Crin Zii) = | Yicji = |Bk;Hro + Wi HkDA | Heo - (5.14)

and
S kO j3 Yiir Axin Xki» Crin Zki) = | Yii = {BkjHio + Wi HeDAR HaAk. (5.15)

Both § g, (0k ;s Yk ji» Axis Xkis Cki» Zki) and S k(O Yk ji» Axi» Xki» Cki» Z:) are unbiased es-

timating functions, and thus, solving the estimating equations

Z Skj(Okjs Ykis Zm, )_(Ki, 61{;', zm) =0 (5.16)

i=1

for O yields consistent estimator of f;, provided regularity conditions.
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Similarly, for stage k withk = K —-1,---,1,and j = 1,2, let
A N i = = = 2
lji = {iji - 0, (Aki, X CkiaZki;ekj)}

and define . -
8O P K Ko Con Zi) (‘%kﬁ a""f"’)
kj\Okjs Lijis Akis Xkis Chislki) =\ — > — | -

Then, an estimator of 6 ;, denoted 0, j» 1s obtained by solving

ZSkj(ekj; Yijis Aki» Xii» Cris Z1i) = 0 (5.17)
i=1

for 6y;.

5.3 Mismeasurement and Naive Analysis

In this section, we consider the case where X; and C; are subject to mismeasurement for
k = 1,---,K. We examine numerically the impact of naively implementing the Q-learning

procedure in Section 5.2, with the mismeasurement effects ignored.

5.3.1 Measurement Error and Misclassification Models

Fork =1,---,K, let X; and C}, respectively, denote the observed versions of the true covari-
ates X; and Cy, and let XZ = {X}‘, e ,XZ} and EZ = {CT, cee C;}

For j = 0,1and ! = 1-j,letm;; = P(X;; = j | Auis Xy Xtkotyis Xei = L C Ciis Zt)
denote the misclassification probabilities that may depend on either the true or mismeasured
covariates or both. To model the misclassification probabilities, one may employ regression
models for binary data, such as logistic regression models. For the misclassification process, it
is convenient to assume that P(X;; = j | Zki,yrk_l)i,f(k_l)i,)(ki =1, E,ﬁ,.,ad,zd) =PX;, =]
X = 1), enabling us to express misclassification probabilities as

l—mo 7o

IT= , (5.18)

mo 11—
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which corresponds to homogeneous misclassification across all subjects.

Now, we describe the measurement error process for the continuous covariates. Let A(C;; |
Zk,-,Efk_l),.,fk,j;,iki,zk,.) denote the conditional probability density function of C;,, given
A U Erk_ i Y Cu U )_(;; U X;; U Zy;. Similar to the misclassification case, one may assume that
h(C}; | Zk,-,E;‘k_l),., 6ki,)_(zl-, Xii, Zd) = h(C;; | Cy) for simplicity. We can then use a parametric
model, say f(C;; | Ci; @) with parameter a, to modulate £(C}; | Cy;). For example, we consider
the regression model

Cri =&+ &Cy + eps

where the error terms ¢;; have mean 0 and variance 0']%, & 1s the intercept, and & is the coeffi-
cient. In this instance, « included &, £, and o’i fork=1,---, K. Setting & to be a zero vector

and &; to be the identity matrix gives a classical additive model of the form

CZi = Cy + ey. (519)
Similar to the development in Section 4.2.1, we assume that fork =1,--- ,K and j = 1,2,
h(Yy; |?(k—l)j,ZK,yK,GK,ZK,)_(Z,GZ) = h(Yi; | Av, Xis1, Crsrr Zisr)- (5.20)

Assumption (5.20) says that at stage k, given the history of outcomes ?(k—l) ;j and the information
AxUXxUCrUZgU Y; U E; over the entire course, the conditional distribution of Y} ; depends
only on the history AUX, UC,UZ; at stage k as well as the covariates X;., Cy+1 and Z;,; at

the next stage.

5.3.2 Naive Q-Learning Procedure

Ignoring mismeasurement, one may naively use X; and C; to replace the unobserved true
covariates X; and C; to repeat the Q-learning procedure in Section 5.2, with naive Q-functions

defined as
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?(Zl(’)_(;(’ E*K’ ZK) = E(YK] |ZK’ )_(*K’a*K’ZK);

Qf(Ak,Xk, Ci.Zy) = E{ij + max E(Y(k+1)j | ZkaXZ+1’EZ+1azk+la pr1) | Zk,)_(z,a:,zk}
Afe+ 1

fork=K-1,---,1,and j = 1,2.
5.21)

We then use the naive counterpart regression model of (5.3) to characterize Q‘,f* (A, YZ, 5}:, Zy)
as

L e — —

O/ (A X, Cou Z1) = B Hiy + WTH DAL, (5.22)

where {H}, H},} are counterparts of Hy and Hj, with X; and C; replaced by X; and C}, re-
spectively. Let 6;, = (8;],¢;;)" and 6}, = (B, y;;)" denote the regression coeflicients for the
naive Q-functions associated with the first and second outcomes, respectively. Then the naive
composite Q-function is constructed as:
014k, Xy, C Zir ) = Q)" (A, Xy, O Za) + (1 = )0 (A, X, Cp Zo) 523)
fork=K,---,1 .

and subsequently yielding

Qi(A1. X, Cp Z1 8) = 6 By Hyy + Wi "Hy DA + (1 = 8) {81, Hi + Wi HiDA) . (5.24)

fork=K,---,1.

Suppose we have measurements of a random sample with size n, D* = {{Aki, X, Crs Ziis Yiais
Yoi} i k=1,--- K;i=1,--- ,n}. Then the regression coefficients at each stage in (5.2) are
naively estimated by repeating (5.7) and (5.8) with X;; and Cy; replaced by X}, and C},, i.e.,

n

A o1 o o~ = = = 2
b, = argmin— D %% - OF A X, Cuio Zuai 63| (5.25)

KT =
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and

n

A

1 A e — —
o, = in— Vi — 07 (Au, X, Criy Ziis
k2 argmng[{ K2i i (Akis Xpj» Cris Zic k2)]

Ok2

2
) (5.26)

where for k = K, Y3, = Yxi;and Y5, = Yo, and fork =K — 1,--- , 1,
Sk _ 1% —_ —_—k —_—k —_ A . .
Ykli =Y + Qk+1(Aki’X(k+1)i’ C(k+1)nZ(k+l>i’ d(k+1)i’ 9(k+1)1)

and

O 2« A v * = g . DE
Yk2i = Yo + Qk+1(Aki’X(k+l)i’ C(k+l)i’Z(k+1)i’ d(k+1)i’ 0(k+1)2)’

Consequently, the naive optimal decision rules, denoted d* are determined by (5.11) with

(lex D2
6k replaced by @),’;j for j = 1,2 and {Xy, Ci;} replaced by {X;;, C;.}. That is,

A 1 = o* — — e
diyy = argmax {60, (Axs Xpo1s Cror> Zir1s it 9(k+1)1)

Ak+1

+ (1= ) 0% (A, X1 Corts Ziots @it Oyr)) for k=K —1,---,0. (5.27)

5.3.3 Simulation Studies

In this subsection, we conduct a simulation study to investigate the performance of the naive
Q-learning procedure described in Section 5.3.2 in the presence of mixed misclassification and
measurement error. We consider a randomized treatment setting and set K = 2.

For j=1,2, let,uyzj = E(Y,; | X5,A1,A5,C5,2Z;) and let,uylj =E(Yy;| X,,A,,Cy,Z;). Then,

for j = 1,2 consider models
Y2j = My, + €; and Ylj = My + €1,
where

Hyy; = Moj + N1jZa + N2Xo + n3jA1 + NajAr + 115 X040 + 116,C2As,

Hy,; = Yo + Y121 + v2; X1 + v35A1 + va; X1Ar +y5;C1AL
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and &; and ¢ are the error terms independently generated from N(0, 1) for j = 1,2.

Two binary treatments A, and A,, taking values O and 1, are generated independently from
the Bernoulli distribution, Bernoulli(0.5). Error-free covariates Z; and Z, are independently
generated by Z; ~ Bernoulli(0.5) and Z, ~ Bernoulli(0.5). Error-prone binary covariate X,

is independently generated by X; ~ Bernoulli(0.5), and error-prone binary covariate X, is

generated from the conditional distribution X, | A} ~ Bernoulli( 1223(?;\)1))’ with v set as 0.45.
Error-prone continuous covariates are independently generated by C; ~ N(0,1) and C, ~
N, 1).

Similar to the parameter settings considered in Section 4.2.3, we consider three settings for
the model parameters in the Q-functions, including regular, weak non-regular, and non-regular
settings. In the regular setting, the parameter values are set as (o1, 7711, 721 731> a1 51> 1) T =
(1.5,0.25,0.8,-0.25, -2, 1.5, 1.75)%, (o2, 125 122, 132, Na2> M52, Ne2) " = (0.5,0.75,1.5,-0.15,

- 1.2,0.95, 1., (o1, Y11, Y21, Y31, Ya1, ¥51)' = (0.5,0.15,0.5,-1.5,1.25,0.95)T, and (y¢2, ¥12,
Y22, Y32, Var, ¥52)T = (0.75,0.2,0.85,—-1.85,0.85,1.45)T. In the weak non-regular setting, we
take (101, 7711, 721, 131, a1 51, 1) = (1.5,0.25,0.8,-0.25,-2,2.02,0)", (02, 712, 722, 132 142
N52,Ms2)" = (0.5,0.75,1.5,-0.15,-1.2,1.22,0)%, (yo1, Y11 Y21, V31, Y41, ¥s51)* = (0.5,0.15,0.5,

- 1.5,1.25,0.95)", and (02,12, Y22, Y32, Y42, ¥52)" = (0.75,0.2,0.85,-1.85,0.85,1.45)". In
the non-regular setting, the parameter values are specified as (o1, 7711, 721, 731, 41> 51, 1) . =
(1.5,0.25,0.8,-0.25,-0.2,0.2,0)%, (1702, 712> M22> W32, N2> 525 Ms2)* = (0.5,0.75,1.5,-0.15, —0.1,
0.1,0)", (Yor, Y115 Y21, Y31, Y1, ¥s1)" = (0.5,0.15,0.5,-1.5,1.25,0.95), and (Y02, 12 Y22, ¥32, Va2,
¥s2)T = (0.75,0.2,0.85, -1.85,0.85, 1.45)".

The Q-functions for the two stages are specified as
Qé(Al,Xz, C2,25,A2) = Buj + P12jlo + B22jXs + B32jA1 + Wooj + Y12; X5 + Y0 ;Cr)As, (5.28)
and
Q{(Xl, C1,Z1,A1) = Borj + BiijZy + Bor1jXi + Worj + 11Xy +21;CAL (5.29)

where for j = 1,2, Bio; (with k = 0, 1,2, 3), Bi; (with k = 0, 1,2), Yo (with k = 0,1,2), and

Yiij (with k = 0, 1,2) are regression parameters. Based on the coefficients of A, and A, the
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optimal DTR is given by the decision rules:

dr = Sign{5(l//ozl + Y101 Xo + Y01Cr) + (1 = 0)(Woon + Yo Xo + 'ﬁzzzcz)};

dy = Sign{5(lﬁ011 + Xy + ¥ Cr) + (1 = 0)Wor2 + Xy + lﬂzlzcl)},

where sign(¢) = 1 if ¢t > 0, and O otherwise.

With the misclassification matrix (5.18) and classical additive model (5.19), we gener-
ate surrogate values X; of X and C; of C; with k = 1,2. We consider three different set-
tings for misclassification probabilities and measurement error degree, with (719, 791, 03)" =
(0.1,0.1,1)7,(0.2,0.2,1.5)", or (0.3,0.3,2)".

To run simulations, we use the proceeding models to generate data of size n = 1000, and
we repeat 1000 simulations for each parameter configuration. We implement the Q-learning
algorithm in Section 5.3.2 to the observed data {Z;, X}, C}, A1, Y11, Y12, 25, X5, C}, Ay, Yoy, Yo},
called the “naive method”, as opposed to the Q-learning procedure in Section 5.2.1 to the
true data {Z,, X1,C1, Ay, Y11, Y12, 25, X3, Ca, Az, Yoy, Yoo}, called the “error-free least squares”
(EFLS) method.

In Table 5.1, we report the numerical results for stages 1 and 2 over 1000 simulations for
the regular, weak non-regular, and non-regular settings, where “Bias”, “SE”, “ESE”, “MSE”,
“WTCR”, “PBCR”, and “DBCR” are defined in the same way as those defined in Section 4.2.3.
Same as in Section 4.2.3, we use 1000 bootstrap iterations to calculate the PB Cls and the DB
CIs which are based on 1000 first-stage and 100 second-stage bootstrap iterations. We assign
the weight parameter ¢ as 0.9. The results are presented in Table 5.1, which demonstrate the
favorable performance of the EFLS method in the regular setting, characterized by minimal
biases and MSEs, as well as satisfactory CRs of 95% Cls for both stages 1 and 2. However, for
the weak non-regular setting, the stage 1 parameter estimates derived from the EFLS method
may exhibit certain levels of bias, particularly notable in the case of s and ¥15. Noticeably,
the CRs of 95% PB Cls indicate satisfactory performance overall, except for ys in the non-
regular setting. We also examine W-type ClIs for weak non-regular and non-regular settings in
stage 1 (results are not reported here) and observe poor coverage.

The results obtained from the naive method for both stages 1 and 2 reveal suboptimal per-
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formance characterized by significant biases, high MSEs, and unacceptably low CRs. The
extent of biases due to covariate mismeasurement intensifies as the degrees of mismeasure-
ment increase. These findings underscore the significance of addressing the impact of mis-
measurement and introducing suitable correction methodologies to enhance the accuracy of

estimations.

5.4 Mismeasurement Correction: Regression Calibration

Here we describe the application of the RC method for the case where an additional set of
measurements, known as validation data, is available in addition to the main study data with
surrogate measurements together with measurements for other variables. The validation data
can be used to estimate the magnitude of the mismeasurements associated with the covari-
ates X; and C;. To employ the RC approach, we construct approximate measures for these
error-prone covariates, which are subsequently used in the Q-learning method as outlined in
Section 5.2. This involves replacing the error-prone covariates X; and C; with their respective
approximated measures, enabling a more accurate estimation process.
Assume internal validation data Dy = {{Aki, Xis Xiis Cris Cris Ziis Yiais Yioi} c k=1, | K;

i€ ‘V} are available, where <V is a subset of M = {1, --- , n}. With the observed data D*, let
X = E(X;; | Z(k—l)i,)_(zi,fzi,zki) and C;; = E(Cy; | Z(k—l)i,)_(ziaé;,zki)

fork=1,--- K.

Following the same idea given in Section 4.3, we make use of regression modeling tech-
niques to determine X;* and C;’ for i = 1,---,n. Regarding the determination of X7, let
nl(.k) =PX, =1| Z(k_l)i,)_(zi,fzi, Zw)fork=1,--- K to express X, because Xj; is the binary

covariate taking value O or 1. Then, we consider a logistic regression model to delineate ﬂfk):

lOglt ﬂfk) = ka(Z(k—l)ia )_(;:ia azp zki; {Xk)’ (530)

where my, () is a specified function, and £, is the associated parameter.
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To delineate C;, we employ a linear regression model

C;(k* = ka(Z(k—l)i,Y;:i,EZi, Zki; {C/\,)7 (531)

1

where mc,(-) is a specified function, and ., is the associated parameter.

Next, regression models (5.30) and (5.31) are fitted using the validation data Dy, resulting
in the estimation of {y, and {,, denoted as Ve x, and l c,» respectively. These estimates are then
used to determine estimates of X and C;’. The implementation of the calibrated Q-learning
algorithm can be modified in stages K to 1 with different treatments of Xj; and Cy;, where
measurements for X;; and Cy; are used for i € V, and )A(,’:;‘ and C‘;;‘ are used to replace X;; and

Cyiforie M\ V.

5.5 Mismeasurement Correction: Estimating Equation Ap-

proach

While regression calibration provides a simple approach to addressing mismeasurement in co-
variates, this method does not always ensure the consistency for the model parameter estima-
tion. In this section, we develop an alternative approach by employing estimating function
theory, and present criteria for developing unbiased estimating functions. We first describe the
unbiased estimating function approach for stage K, and then extend it to other stages to create

working estimating functions along the lines in Section 4.4.

5.5.1 Corrected Estimation Functions with Known Misclassification Prob-
abilities and Measurement Error Degree
Assume that the misclassification probabilities in (5.18) and the variance of ¢;; in (5.19) are

known. In what follows, we first describe how to correct for mismeasurement-induced bias in

stage K, and then we discuss estimation pertinent to stage k fork = K —1,---, 1.
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Estimation Related to Stage K

If the true covariates X;; and Cy; for k = 1,--- ,K and i = 1,---,n are not available, but
surrogate values X;. and Cj; are instead collected, then directly using (5.16) with X}; and Cy;
replaced by X;; and C;; may result in inconsistent estimators.

Similar to the idea discussed in Section 4.4.1, our goal here is to construct an unbiased es-
timating function, say S} j(91< i Yjis A Kis Y;ﬁ, 6;, ZK,»), such that its conditional expectation re-
covers the unbiased estimating function, i.e., S xj(0xj; Yk i, Axi, Xxi, Cxis Zg) constructed from

using the true covariates together with {Y j;, Axi, Zﬁ},

E{SZJ(QKJ'; YKji» ZKia )_(j(i’ 6*[(,', ZKi) | YKjis ZKh XKI" EKi’ ZKi} = SKj(HKj; YKji’ ZKI" YKia EKi’ ZKi)'

(5.32)
For ease of referral, we call S x;(0k;; Yk j,-,ZKi, Xm,ag,zg) a “true” estimating function, and
Sk (Ok;s Y Axi, ?Zi, E;-, Zx;) a “corrected” estimating function. With (5.32), it is immediate

that S j(91< i Ykjis Axi, )_(;., E;, ZKi) is an unbiased estimating function due to that
E{S k(O ;s YKji’ZKi’)_(Ki,EKi,ZKi)} = 0.
Then estimating function theory shows that solving

Z S;(j(el(j; YKji,ZKi, Y;-, E*K,-, Zﬁ) =0

i=1
for Ok ; yields consistent estimator for ;, provided regularity conditions (Yi, 2017, Section
2.5).

Since the dependence of (5.14) and (5.15) on X and Cy is reflected respectively by {Xi, X, X'}
and {C, C,f} fork=1,---,K, tofind S} (6k;; YK]-,-,ZK,»,)_(;.,G;.,ZK,-) to meet (5.32), it suffices
to find unbiased surrogates for {X;, X, X[} and {C, C#} in the following sense. To be specific,
we aim to find functions of X}, say X;* and X;™*, and functions of C;, say C;” and C;*, such

that

E{X;" | Yiui» Yo Atis Xui» Cair Zii) = X E{X™ | Yai, Yiais Atio Xeio Cui» Zia) = XiXy; (5.33)
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and
E{CZ* | Yeii Yk2iaZki’)_(kiaEkiazki} =Cy; E{CZ** | Yetis YkZi,Zki,)_(ki,aki,Zki} =C;. (534

To construct X;* and X;™, we apply the technique of Akazawa et al. (1998). For ¢ = 1,2,
let e, denote a 2 X 1 vector with 1 in the ¢ position and zero elsewhere. We now express the two
values, 0 and 1, for the binary variable X; (or X}) as two 2 X 1 vectors. If X; = 1, thena 2 x 1
vector with the first element set as 0 and the second element set as 1; if X; = 0, then we create
a 2 X 1 vector with the first element set to be 1 and the second element set to be 0. That is,
Xi = 1 and X; = O can be represented by e, and e, respectively. Similarly, X; = 1 and X; =0

are represented by e, and ey, respectively.

Theorem 5.5.1 Define
2
X' =T'X; and X, = ) {X;Tef ]

Then (5.33) holds.

Proof First, for / = 0, 1 we have that

. o1 _1 | ot
E{in I X = l} = and I1 = €41-
Ty Ty

Consequently,

E {XZL* | Yetis Yk2i’Zki’)_(ki’Eki’Zki} =E {HleZi | Yeii, Yk2i,Kki’)_((k—l)i’in =1, aa"zki}

=T'E{X;; | Yaris Vaois Aki» Xoeo1yi Xui = L, Cir Zi
X b } (5.35)

ol
_ 17! _ _
=11 = e = Xuis
Ty

where the associated assumptions are made.
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Similarly, using (5.35), we have that
E{X; | Yiai, Yioi Avis Xuis Cris Zii)

2
=E Z {XZ;"Te,} el | Yiair Yiar, Asis X-tyis Xui = 1, aci,zki}

O

The construction of C;* and C;™ is straightforward by the classical additive error model
(5.19). Setting C;* = C; and C;** = C;* — o7 makes (5.34) hold.

Consequently, we define S }j(ij; Ykiis ZK,-, Y;, Ezi, Zﬁ) tobe S ki(Okj; Ykji» ZKl-, )_(Ki, 61(1-, Zm)
with {X;, X, X} and {Cy;, C,fl.} replaced by their unbiased surrogates {X;*, X;**} and {C}, C;*},

respectively. Let O . = A%j.c, @;jc)T denote the resultant estimator of 0 ; by solving

Z Sk (Okj; YKji,ZKi, Y;, E;,-, Zk) =0 (5.36)

i=1

for ;. Under regularity conditions, \/ﬁ(@ch — 0k;) <, N(0,%(0k;)) as n — oo, where
-1 T
2(0k)) = {10k} JOH{IOky} , with

as ;(j(eKj; Ykji, Axi, )_(;i, 6;, Zg)}

1(0x) = E
) { 00y

and
J(Ok)) = E[S ;{j(HKj; Ykji, Aki, YI;,-, E;{,-, zKi){S },-(91(1'; Ykji, Aki, )_(;([’ 625, zKi)}T]

(Yi, 2017, Section 1.3).
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Estimation Related to Stage k < K

In the error-free setting, estimation in stage k can be carried out by solving (5.17). However,
in the case where accurate measurements of X;; and Cy; are not available, (5.17) may produce
unreliable results if directly replacing X;; and Cy; with their observed surrogate measurements
X, and C;.. Similar to the consideration for stage K, we modify St (ks ¥, ji,Zki,Yki,Zki,Zki)
in (5.17) by replacing {Xy, X, X} and {Cy;, C;;} with their respective unbiased surrogates,
{X:*, X} and {C;*, C;™*}. Additionally, the pseudo-outcome ¥;;; depends on X;; and Cy;, and
therefore, it needs to be modified accordingly by replacing X;; and Cy; with their unbiased sur-
rogates. Let S ;;j(ek " ?;ﬁ,Zkl-,)_(;,E;,Zki) denote the modified estimating function. Then, for

k=K-1,---,1, we solve

WS f/;ji’zki’ylti’al*ci’zki) =0 (5.37)

i=1

for 6, and let 0, jc denote the resulting estimator of 6;.

5.5.2 Corrected Estimation Functions with Unknown Misclassification

Probabilities and Measurement Error Degree

The implementation of the correction procedure described in Section 5.5.1 is contingent upon
the availability of prior knowledge regarding the misclassification and measurement error mech-
anisms. However, in many applications, such prior information is often unavailable, necessitat-
ing the estimation of misclassification probabilities and measurement error degree. To this end,
using a validation subsample can be instrumental in addressing this challenge. In this section,
we propose an adaptation of the estimation equation method proposed in Section 5.5.1, which
accounts for the unknown mismeasurement degrees. Our analytical procedure is based on two
sets of data, namely, the main study sample 9" and the internal validation subsample Dy. The
validation sample, which comprises a smaller group of m individuals, is drawn from the main

study sample, where m < n.
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Estimation of Misclassification Probabilities and Measurement Error Degree

First, we present the process for estimating misclassification probabilities, which is analogous
to the procedure discussed in Section 4.4.2, albeit with minor notational modifications.
We start by defining the misclassification probabilities for the error-prone binary covariate

X,; as follows: forie Mandk=1,--- K,
mrior = P(X; = 0| X = LZ(k—l)i UXiUCuUZ\ Xu)

and

Tito = PO = 1 Xii = 0,Ag1y U X U Cii U Zy \ Xio).

To describe how misclassification probabilities are associated with covariates, we employ
logistic regression models
logit M0 = @iy Wio;
OgItTii10 = Q" Wkios

(5.38)
logit 701 = aZI(Wkil ,

where @, denotes the vector of regression coefficients and W;; may include 1 and a subset
of covariates {X;; = [} U Z(k_l),- U Xy U Ci U Zy \ Xy that reflects different misclassification
mechanisms for [ = 0, 1. Having 1 in “W;;; allows the inclusion of the intercept in (5.38), and
‘W, may contain the entire covariate vector {X;; = [} U Z(k, i U X, UCy U Z \ Xj; or just
constant 1 alone, where the latter case corresponds to homogeneous misclassification across
all subjects. Let ay = (a;,, @;,)" denote the parameter vector for k = 1,--- , K.

Fori=1,---,nandk=1,--- K, let

L) = P(X}; = x5 | Xii = Xpir Aty U X U Cri U Zig \ Xii)

which equals {ﬂgio(l — Tgino) ) T {ﬂ,i;)?t"(l — o)} for x,x;, = 0,1. Write @ =
(QT, ey, Cl’%)T. Let Sk,-(a/k) = 010g Lki(ak)/écyk and let

T

Si@) = (ST, . Ski(ax))
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With internal validation data, solving

ZS,-(&) =0

for « yields the maximum likelihood estimate, denoted & = (&1, -- , &), of .

Next, we present the procedure for estimating the measurement error degree for the error-
prone covariate Cy;. Consider the classical additive model (5.19). With a validation sample
available, it is possible to estimate the parameters associated with (5.19), regardless of the
distribution form of ¢;;. Here for illustrations, we assume that ¢;; follows a normal distribution
with mean 0 and unknown variance 0. Our goal is to estimate the unknown parameter o; so
as to construct the unbiased surrogate C;™.

Forie Vandk=1, --- K, let

. 2
(Cki - Cki)

2
20'k

12

Lii(02) = (2702) " exp| - (5.39)

denote the probability density function of Cy, — Cy; and let £(0;) = dlog Lii(07; ei) /0. Let
2 2 2 T 2 2 2 T

o = (0%, ,0%) and define £i(0?) = (LioD), -, Lxi(03)) -

We then estimate o by solving

Dt =0, (5.40)
eV
T
and let 62 = (é’% oo, &f() denote the resultant estimator of o-2.

Estimation for the Parameters of Q-Functions

For notational simplicity, let S ; ,(6k;, @, o%) represent S ; (QK 7@, 0% Yjis Axis X1 Creis

ZKi) in
(5.36) with the dependence on a and o spelled out, and let S i(Ok ;) represent S k; (g Ykjis

Ak, Xki, Cki, Z: ) in (5.16). For stage K, we then estimate 6k, by solving

Z S;{ji(eKj7&7 5'2) + ZSKji(HKj) =0

ieEM\V 154
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for Ok, and let O ; denote the resultant estimator of ;.
For j = 1,2, let ; = K],://Kj,a o*HT and let 19 = (9} &', 62T, Under regularity
conditions and that the ratio m/n approaches a positive constant, say p, as n — oo, ﬁj is a

consistent estimator of };, and

V@ - 9) <5 NO.Zy) as  n— oo

where 2y, = A}, BVJA IT with

08y ;1O j-a.%) 08y ;1O j-a.0?) Sy Ok %)
Ay;=—(1-p) ( 90 ) E( da E( 902 )
J 0 O 0
E(PHED) 00
-p 0 EG@y o |, (541
0 0 E(4D)
and
By = (1 p) { KJI(QK]’ a, O-Z)SKJI(HKpa, o )} 00
v=(1-
0 00
E{S k;i(0k)S KJ,(QKJ')} 0 0
+p 0 E{S ,-(a)Sl.T(a/)} 0 . (5.42)
0 0 E{t(o)E] (o)}
Finally, for k = K —1,--- , 1, estimator of 6;; can be obtained by solving (5.37), where 7o

and mo; are determined by (5.38) with a replaced by &, and 0'% is replaced with its estimate

determined by (5.40).

5.6 Simulation Study

In this section, we conduct simulation studies to evaluate the finite sample performance of the

methods described in Sections 5.4 and 5.5. To accomplish this, we employ the same configura-
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tion and parameter settings as in Section 5.3.3 to generate the main study data {{Ak,-, X

C; Zi
YiiYiil :k=1,--- ,K;i € M} Additionally, we create an internal validation subsample by
randomly selecting 30% of the study subjects from M and record their precise measurements of
{Xii»Cri +k=1,---,K;i € V}to form the validation subsample Dy = {{Aki’in’XZi’ Cii» Cris Ziis
Yii, Vioif :k=1,--- ,K; i € (V}.

We examine the data using three methods. The first method, referred to as “RC”, applies
the approach outlined in Section 5.4 to both D" and Dy. The second method, termed as “EE-
known”, applies the method described in Section 5.5.1 to the data in ©*, assuming that the
misclassification probabilities and measurement error degrees are known. Lastly, the third
method, named “EE-estimated”, employs the procedure described in Section 5.5.2 to both D*
and Dy, where the misclassification probabilities and measurement error degrees are estimated
using Dy .

Tables 5.2-5.4 present the numerical results pertaining to stages 1 and 2 for the proposed
methods across regular, weak non-regular, and non-regular settings. The definitions of “Bias”,
“SE”, “ESE”, “MSE”, “WTCR”, “PBCR”, and “DBCR” correspond to those elucidated in
Section 4.5. It is evident that both the RC and EE methods yield satisfactory results in terms
of bias, with the RC method exhibiting relatively lower levels of bias compared to the EE
methods. Moreover, it is observed that the EE methods yield high SEs, consequently leading
to higher MSEs, which tend to escalate as the degrees of mismeasurement increase. Unsur-
prisingly, the performance of the correction methods deteriorates as mismeasurement degrees
increase. Regardless of the regularity condition of the parameters, the PB 95% Cls associated
with the RC and EE methods exhibit over-coverage. Conversely, the DB 95% Cls derived from
the RC and EE methods display under-coverage, regardless of the regularity condition of the
parameters. The W-type 95% Cls for the RC method have reasonable coverage, while for the
EE methods, they may have over-coverage.

Following the methodology described in Section 4.5.2, we present the proportion of opti-
mally treated future patients in Table 5.5, where in Scenario 1, the true covariate measurements
are treated as available, and in Scenario 2, the true error-prone binary and continuous covariate
measurements are unavailable but their surrogate measurements are available. The results ob-

tained from Scenario 1 reveal that, in stage 1, both the RC and EE methods surpass the naive
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method. In stage 2, it is evident that both the RC and EE methods outperform the naive method
in regular and weak non-regular settings. However, in the non-regular setting, the naive method
yields larger APCOT values than the RC and EE methods.

Turning our attention to Scenario 2, the findings demonstrate that the RC method yields
superior results for stage 1 estimation compared to the naive method. Furthermore, when the
mismeasurement degree is set to be (0.1,0.1, 1), the EE-estimated method outperforms the
naive method. However, for other mismeasurement degrees, the naive method consistently
yields larger values of APCOT compared to the EE-estimated method. The comparison of
the EE-known method and the naive method shows that the naive method consistently yields
larger APCOT values, regardless of the mismeasurement degree. For stage 2, in both regular
and weak non-regular settings, both the RC and EE-estimated methods outperform the naive
method. However, in the non-regular setting, the naive method results in larger APCOT values
compared to both the RC and EE-estimated methods. The EE-known method exhibits superior

performance to the naive method only for the weak non-regular setting.

5.7 Data Analysis

We collect publicly available COVID-19 data on 164 countries for a period of about ten months
with time windows beginning from the date of the first confirmed COVID-19 case in each
country; and the study periods of all those 164 countries span from April 1, 2020 to September
30, 2020. The data contain the information about containment and closure policies including
workplace closure and international travel control, as well as health system policies including
testing and contact tracing policies. In addition, the data include the information at the country
level over the study period concerning the number of COVID-19 cases per million people,
the total number of COVID-19 deaths, the economic growth percent change in quarterly real
gross domestic product, the care system quality score, obesity prevalence, smoking prevalence,
substance use prevalence, and socioeconomic factors.

Information regarding containment and closure policies as well as health system policies

is collected from the OxCGRT (Hale et al., 2021). As in Section 3.3.1, the strictness score of
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implementing each of the preventive policies on day 7, denoted /;,, is calculated by:

vie—0.5(F; - fj’,)}

I, = 100{ %

where v, F'j, fi;, and N; are defined in the same manner as in Section 3.3.1. Let &, denote the
set of labels for workplace closure and international travel control policies, and let &, denote
the set of labels for testing and contact tracing policies. Then the overall strictness score for

policies of the same nature on a given day, denoted Index, is calculated by:

1
Index;, = &l Z I,
/

j€&

where [ = 1, 2.

Data on the total number of COVID-19 cases per million people and the total number of
COVID-19 deaths are extracted from the website Ourworldindata (Ritchie et al., 2020). Data
on economic growth percent change in the quarterly real gross domestic product, denoted eco-
growth, are extracted from the website “The Global Economy” (The Global Economy, 2020).
Care system quality score (care-score), obesity prevalence (obesity-prev), smoking prevalence
(smoking-prev), and substance use prevalence (substance-prev) for 2019 are obtained from the
Legatum Institute (The Legatum Institute, 2019).

We consider the following socioeconomic factors: the most recent population weighted
geometric mean density (popu-density) (Edwards et al., 2021), the population proportion of
people aged 65 and above (senior-prop) for 2019 (The World Bank, 2019a), gross domestic
product per capita based on purchasing power parity (GDP) for 2019 (The Global Economy,
2019), government effectiveness score (government-eff) for 2019 (The World Bank, 2019b),
and infrastructure and market access score (infra-market) for 2019 (The Legatum Institute,
2019). The inclusion of the infra-market stems from acknowledging its role in measuring
the quality of the infrastructure that enables trade and distortions in the market for goods and
services. Its value ranges from O (worst) to 100 (best).

Although strict mitigation policies, such as international travel control policy, have been

successful in slowing the spread of the virus (Wells et al., 2020), their inevitable impacts on
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economic performance have been immense (Ozili and Arun, 2023). To examine the trade-off
between the economic fallout and health costs of the pandemic, we can use the Q-learning
approach with bivariate outcomes. This approach allows us to model the interdependence be-
tween economic and health outcomes and estimate the optimal policy decisions that minimize
the overall costs. Since mismeasurement is ubiquitous in applications, it is interesting to in-
vestigate how mismeasurement in covariates can affect estimation results. Now we take the
first outcome as the number of COVID-19 deaths per hundred COVID-19 cases, denoted CFR,
and the second outcome as the negative of eco-growth, denoted —eco-growth, which we want
to minimize. We examine how different degrees of covariate mismeasurement can affect the
parameter estimates associated with policy decisions.

Since the information on the eco-growth is only available on a quarterly basis, the study
period is six months long, starting from April 1, 2020 to September 30, 2020, we equally
divide it into two stages with K = 2, with stage 1 starting from April 1, 2020 to June 30,
2020, and stage 2 starting from July 1, 2020 to September 30, 2020. The information about
the total number of COVID-19 cases per million people, COVID-19 CFR, and the first quarter
eco-growth of 2020 gathered at the end of March, 2020 is taken as the baseline features.

Following the same procedure in Section 3.4.1, we obtain CFR and stringency score of
preventive policies for each stage. Furthermore, we log-transform the CFR at each stage to
remove the nonnegativity constraint of CFR. The eco-growth for stages 1 and 2 represents the
percent change in the real gross domestic product in the second and third quarters of 2020
compared to the second and third quarters of 2019, respectively.

Fork = 1,2, let A, denote a binary action at stage k, which is defined as follows. For/ = 1,2
and k = 1,2, let average-Index, represent the average of the Index;, with 7 indexing the days
in the period of stage k. Let Ay = 1 if average-Index,, is greater than average-Index,, and
Ay = 0 otherwise. Let “cases-enter;” represent the total number of COVID-19 cases per million
people at the start of stage k, let “CFR-enter;” represent the recorded CFR at the start of the
stage k, and let “eco-growth-enter,” represent the recorded eco-growth at the start of the stage
k. As the government-eff value ranges from -2.5 to 2.5, we convert it into a binary variable,
taking value 1 or O, corresponding to “high government effectiveness” if its original value is no

smaller than the threshold value 0, and “low government effectiveness” otherwise.
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In the following analyses, for sensible comparisons, we normalize all the non-binary co-

variates by subtracting their means from the values and dividing them by their standard devi-

ations. For the first outcome, CFR, we take the covariates senior-prop, GDP, government-eff,

obesity-prev, smoking-prev, substance-prev, popu-density, and care-score as confounders, and

treat GDP, government-eff, and popu-density, together with CFR-enter as prescriptive vari-

ables; for the second outcome, —eco-growth, we take GDP, government-eff, infra-market, and

cases-enter as confounders, and consider GDP, government-eff, infra-market, together with

eco-growth-entery as prescriptive variables.

We employ linear regression models to describe the Q-functions for k = 1,2:

0O>(H,,A,,0) = 6{ﬁ02,1 + B12.1 X senior-prop + B X GDP + B3, X government-eff

and

+ B42.1 X obesity-prev + s, | X smoking-prev + B¢, X substance-prev

+ B72.1 X popu-density + sy | X care-score + (Y21 + Y121 X GDP

+ Y01 X government-eff + ¢35 1 X popu-density + 42 1 CFR-enterz)Az}

+ (1 - 5){,6’02,2 + B122 X GDP + ;> X government-eff + 3, , X infra-market
+ Bino X cases-enter, + (Yopo + Y122 X GDP + Y5 X government-eff

+ Y30 X infra-market + Y4p, X eco—growth—enterz)Az},

0O.(H,A,0) = 6{ﬁ01,1 + Bi1.1 X senior-prop + 211 X GDP + B3, X government-eff

+ B41.1 X obesity-prev + Bs; 1 X smoking-prev + ¢ 1 X substance-prev

+ B71.1 X popu-density + g1 | X care-score + (Yo + 11,1 X GDP

+ 21,1 X government-eff + 3;; X popu-density + 4 CFR—enterl)Al}

+(1 - 6){ﬁ01,2 + B112 X GDP + 551, X government-eff + 31, X infra-market
+ B412 X cases-enter; + (Y12 + Y112 X GDP + ¢ 5 X government-eff

+ Y312 X infra-market + 4y 5 X eco—growth—enterl)Al}.

We conduct three analyses here by setting 6 = 0.9 or 6 = 0.1. In Analysis 1, we treat all the
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variables to be error-free and implement the procedure in Section 5.2.1. The estimation results
for the model parameters are reported in Tables 5.6-5.7 under the heading (7T10,7T01,O'2) =
(0,0,0) for stages 1 and 2, respectively.

The next two analyses are to assess the effects of possibly mismeasured covariates on
each stage parameter estimates. In particular, for the first and second outcomes, we take the
government-eff as an error-prone binary covariate. We further take the popu-density as an error-
prone continuous covariate for the first outcome, and the infra-market as the error-prone contin-
uous covariate for the second outcome. We carry out sensitivity analyses using the two correc-
tion methods described in Sections 5.4 and 5.5, and respectively call them Analysis 2 and Anal-
ysis 3. For Analysis 2, we consider three sets of misclassification probabilities as well as mea-
surement error degrees (7T10, o1, 0'2)T = (0.02,0.02,0.02)", (0.03,0.03, 0.05)7, (0.04, 0.04, 0.07)".
For Analysis 3, we consider models (5.30) and (5.31) with

m (government-eff; ) = ¢y + £ X government-eff,

m (popu-density; &) = &0 + &1 X popu-density,

and

m (infra-market; &) = & + &1 X infra-market,

where we consider three sets of values for the model parameters ¢ = ({y, {; )T, & = (flo,fn)T,
and & = (&2, &1)" that are listed in Table 5.8. Numerical results of Analysis 2 and Analysis 3
are respectively reported in Tables 5.6-5.7 and 5.9-5.10.

The numerical results of Analyses 1 and 2 reveal different evidence for the significance of
some parameters. Consider the case when ¢ = 0.9. For stage 1 and when the mismeasurement
degree is set to be (0,0, 0), (0.02,0.02,0.02), or (0.04,0.04,0.07), there is no evidence to sup-
port the significance of ¢, ;. In contrast, if the mismeasurement degree is (0.03,0.03,0.05),
Yo1, 1s statistically significant. When 6 = 0.1 and the mismeasurement degree is set to be
(0,0,0), there exists no evidence suggesting the significance of ¥, 1, Y012, and ¥, while
for all the other mismeasurement degrees, ¥ 1, Y012, and ¥, are found to be statistically

significant. These findings suggest that if the government-eff is subject to misclassification
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with sensitivity and specificity of 0.98, 0.97, or 0.96, naively estimating parameters may lower
statistical power.

On the other hand, the three analyses do find some common evidence. Analyses 1, 2, and 3
collectively underscore the substantive importance of covariates associated with 4, ; and ¥4 »,
regardless of ¢ being 0.9 or 0.1, and the extent of mismeasurement considered here. All the
three analyses find the evidence to support that 4 ; and ¥4, » are statistically significant.

Like the case for stage 1, Analyses 1 and 2 reveal different findings for stage 2. In partic-
ular, when the mismeasurement degree is set to be (0,0, 0), ¥4y is statistically insignificant,
while for all the other mismeasurement degrees, ¥4, ; is significantly different from zero. Fur-
thermore, Y4, , is statistically significant when the mismeasurement degree is set to be (0, 0, 0),
while for all the other mismeasurement degrees, ¥4 is statistically insignificant. Regarding
Analysis 3, it is evident that 151, Y421, and Y4, are statistically significant for all three sets
of mismeasurement degrees.

In Tables 5.11-5.12, we report the estimated optimal actions at stages 1 and 2 derived from
Analyses 1-3 for some selected countries with ¢ set to be 0.9 or 0.1, respectively. The countries
included in Tables 5.11-5.12 are divided into two groups based on the disparities observed in
Analyses 1-3. We consider Italy and the UK from the first group and the UAE, the USA, and
Canada from the second group.

Examining Italy and the UK within the first group, it is evident that all conducted analyses
support the precedence of health system policies over containment and closure policies in both
stage 1 and stage 2. This holds true irrespective of the weight parameter 6 = 0.9 or 0.1. These
findings underscore the significance of affording greater prominence to health system policies
compared to containment and closure measures when prioritizing health outcomes. Moreover,
even when accentuating economic considerations, the preeminence of health system policies
over containment and closure strategies remains the same.

Now we consider the UAE within the second group. If reducing the first outcome CFR is
more important than reducing the second outcome —eco-growth (i.e., when ¢ = 0.9), Analysis
1 indicates the advantage of emphasizing containment and closure policies over health system
policies in both stages 1 and 2; Analysis 2 mirrors these findings, except for the scenario

with the most pronounced degree of mismeasurement, where the recommendation deviates by
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suggesting a prioritization of health system policies in stage 1 and the opposite priority in stage
2. Conversely, the implications of Analysis 3 point toward the precedence of containment and
closure policies in stage 1, which flips in favor of health system policies in stage 2. Shifting
the perspective to 6 = 0.1, Analyses 1 and 2 both advocate for the prioritization of containment
and closure policies in stage 1, followed by a shift in favor of health system policies in stage 2.
This consensus remains true for Analysis 3 except with the highest degree of mismeasurement,
which recommends a focus on health system policies across both stages 1 and 2.

Regarding the USA, Analyses 1 and 2 suggest giving precedence to health system policies
in stage 1, and favoring containment and closure policies in stage 2 when ¢ = 0.9. However,
Analysis 3 suggests the opposite. When we change our perspective to ¢ = 0.1, both Analyses
1 and 2 reach a common recommendation: prioritizing containment and closure policies in
both stages 1 and 2. This consensus is robust, with the exception of Analysis 2 with the
highest mismeasurement degree. In this specific case, the counsel pivots towards favoring
health system policies in stage 1, and containment and closure policies in stage 2. Analysis 3
maintains its stance irrespective of the shift in ¢, advocating the same prioritization strategy as
in the scenario where ¢ = 0.9.

Regarding Canada with ¢ set as 0.9, all three analyses imply a preference for prioritizing
health system policies over containment and closure measures in both stages 1 and 2. This
unanimity holds true except for Analysis 3 with the highest degree of mismeasurement, which
recommends to prioritize health system policies over containment and closure measures solely
in stage 1. As the parameter ¢ is adjusted to 6 = 0.1, Analyses 1 and 2 retain their alignment
by suggesting precedence of health system policies for both stages 1 and 2. However, Analysis
3 introduces a nuanced perspective. When the mismeasurement degree is specified by Set 1, it
maintains the stance of prioritizing health system policies over containment and closure mea-
sures. Yet, when the mismeasurement degree is specified by Set 2 or 3, a distinctive strategy
emerges: favoring containment and closure policies over health system policies in stage 1 and
vice versa in stage 2.

The variations in the results obtained from different analyses underscore the substantial
adverse consequences stemming from covariate mismeasurement. These discrepancies high-

light the potential implications of erroneous measurement of relevant factors in determining
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optimal strategies. With the uncertainty of quantifying the potential influence of covariate mis-
measurement, it is crucial to recognize the associated uncertainties and limitations in policy

recommendations derived from such analyses.

5.8 Discussion

In this chapter, we demonstrate the substantially adverse effects of mixed misclassification and
measurement error in covariates on parameter estimates using the Q-learning procedure with
a composite outcome. We describe two methods for correcting the mismeasurement effects,
namely regression calibration and unbiased estimation equation approaches. These proposed
methods exhibit favorable performance by effectively reducing bias compared to the naive
method.

Here, we consider the case with the availability of an internal validation subsample to
characterize the mismeasurement degrees. In situations without additional data to quantify
mismeasurement degrees or estimate the parameters ¢y, and ¢, in models (5.30) and (5.31),
sensitivity analyses are often employed to assess the impact of mismeasurement on the out-
comes of the Q-learning algorithm. This involves selecting a set of representative values for
{x, and ¢, and then using models (5.30) and (5.31) to estimate X and C;; fori = 1,--- ,n.
Finally, the calibrated Q-learning algorithm is repeated to evaluate how the results may vary

with different mismeasurement scenarios.
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Table 5.1: Simulation studies for demonstrating biased estimation of the naive method in con-
trast to the EFLS method: stages 1-2. Entries in bold are obtained from the setting without
mismeasurements

regular weak non-regular non-regular

(710, o1, 07)  Method Yos  Yus  Yous Yos Vs Yus  Yos  Yus  Yus
Stage 1 (k=1)
Bias 0.009 0.008 0.002 0.012 0.014 0.002 0.001 0.003 0.000
SE 0.110 0.155 0.055 0.089 0.126 0.045 0.089 0.126 0.045
ESE 0.125 0.158 0.058 0.105 0.126 0.045 0.117 0.132 0.044
MSE 0.012 0.024 0.003 0.008 0.016 0.002 0.008 0.016 0.002
PBCR 0.952 0.932 0.938 0.946 0.954 0.958 0.928 0.940 0.958
DBCR 0.962 0.948 0.952 0.962 0.960 0.968 0.940 0.952 0.966
Bias 0.129 0.235 0.504 0.152 0.242 0.505 0.134 0.249 0.501
SE 0.107 0.151 0.038 0.100 0.141 0.035 0.100 0.141 0.035
ESE 0.148 0.155 0.046 0.123 0.142 0.040 0.123 0.146 0.041
MSE 0.028 0.078 0.255 0.033 0.078 0.256 0.028 0.082 0.252
PBCR 0.872 0.748 0.000 0.788 0.664 0.000 0.840 0.690 0.000
DBCR 0.758 0.488 0.000 0.690 0.432 0.000 0.726 0.412 0.000
Bias 0.268 0.487 0.691 0.303 0.489 0.695 0.255 0.492 0.691
SE 0.108 0.152 0.030 0.105 0.148 0.029 0.105 0.148 0.029
ESE 0.148 0.158 0.038 0.132 0.155 0.035 0.132 0.156 0.035
MSE 0.083 0.260 0.478 0.103 0.261 0.484 0.076 0.264 0.478
PBCR 0.608 0.020 0.000 0.388 0.034 0.000 0.496 0.014 0.000
DBCR 0.448 0.046 0.000 0.286 0.052 0.000 0.398 0.050 0.000
Bias 0.386 0.724 0.799 0.446 0.718 0.799 0.365 0.726 0.800
SE 0.077 0.108 0.017 0.076 0.108 0.017 0.076 0.108 0.017
ESE 0.103 0.114 0.021 0.099 0.115 0.021 0.098 0.117 0.022
MSE 0.155 0.536 0.639 0.205 0.527 0.639 0.139 0.539 0.640
PBCR 0.018 0.000 0.000 0.002 0.000 0.000 0.004 0.000 0.000
DBCR 0.052 0.000 0.000 0.008 0.000 0.000 0.034 0.000 0.000
Stage 2 (k = 2)
Bias 0.002 0.005 0.001 0.001 0.001 0.003 0.009 0.003 0.003
SE 0.086 0.116 0.041 0.086 0.116 0.041 0.086 0.116 0.041
(0,0,0) EFLS ESE 0.090 0.118 0.041 0.086 0.118 0.041 0.088 0.117 0.043
MSE 0.007 0.013 0.002 0.007 0.013 0.002 0.007 0.013 0.002
WTCR 0.948 0.948 0.948 0.954 0.942 0.944 0.936 0.964 0.930
Bias 0.170 0.284 0.843 0.238 0.394 0.001 0.013 0.035 0.001
SE 0.121 0.164 0.041 0.100 0.136 0.034 0.088 0.120 0.030
(0.1,0.1,1) Naive ESE 0.129 0.174 0.053 0.102 0.135 0.041 0.089 0.119 0.032
MSE 0.044 0.108 0.712 0.067 0.174 0.001 0.008 0.016 0.001
WTCR 0.720 0.568 0.000 0.314 0.160 0.902 0.948 0.948 0.926
Bias 0.346 0.595 1.167 0.449 0.778 0.003 0.046 0.073 0.002
SE 0.134 0.183 0.036 0.109 0.149 0.029 0.089 0.122 0.024
(0.2,0.2,1.5) Naive ESE 0.141 0.190 0.048 0.121 0.156 0.037 0.097 0.131 0.025
MSE 0.138 0.388 1.363 0.213 0.628 0.001 0.010 0.020 0.001
WTCR 0.286 0.100 0.000 0.020 0.004 0.874 0.898 0.894 0.946
Bias 0.499 0.870 1.347 0.676 1.169 0.001 0.066 0.110 0.001
SE 0.099 0.137 0.022 0.081 0.112 0.018 0.063 0.088 0.014
(0.3,0.3,2) Naive ESE 0.102 0.139 0.029 0.090 0.119 0.022 0.065 0.094 0.015
MSE 0.259 0.776 1.815 0.463 1.379 0.000 0.008 0.020 0.000
WTCR 0.004 0.000 0.000 0.000 0.000 0.888 0.828 0.728 0.940

(0,0,0) EFLS

(0.1,0.1,1)  Naive

(0.2,0.2,1.5) Naive

(0.3,0.3,2) Naive
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Table 5.2: Simulation studies for assessing the performance of the RC, EE-known, and EE-

estimated methods: stages 1-2 and regular case

RC EE-known EE-estimated
(710, o1, 0F) Yos Vs VYous  VYos Vs Wous  Wows  Wus Wus
Stage 1 (k=1)
Bias 0.010 0.012 0.001 0.010 0.010 0.008 0.008 0.024 0.011
SE 0.150 0.190 0.083 0.175 0.271 0.130 0.208 0.265 0.224
(0.1.0.1.1) ESE 0.152 0.187 0.083 0.199 0.287 0.142 0.181 0.247 0.140
B MSE 0.023 0.036 0.007 0.031 0.074 0.017 0.043 0.071 0.050
PBCR 0984 0.996 1.000 0.994 1.000 1.000 0.994 1.000 0.994
DBCR 0.896 0.862 0.780 0.808 0.738 0.618 0.844 0.808 0.632
Bias 0.011 0.003 0.004 0.035 0.018 0.059 0.013 0.009 0.064
SE 0.168 0.226 0.095 0.296 0.504 0.269 0.319 0492 0434
(02.02.1.5) ESE 0.164 0.225 0.090 0316 0.542 0.29 0.291 0476 0.312
S MSE 0.028 0.051 0.009 0.089 0.254 0.076 0.102 0.242 0.192
PBCR 0994 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994
DBCR 0.880 0.784 0.754 0.612 0.490 0.402 0.646 0.518 0.402
Bias 0.019 0.005 0.005 0.013 0.059 0.097 0.010 0.060 0.111
SE 0.129 0.184 0.072 0.415 0.766 0.382 0.417 0.740 0.488
03.032) ESE 0.124 0.180 0.071 0.436 0.808 0.390 0.398 0.711 0413
B MSE 0.017 0.034 0.005 0.172 0.590 0.155 0.174 0.551 0.250
PBCR 0994 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DBCR 0.844 0.740 0.714 0.392 0.290 0.270 0.394 0.346 0.248
Stage 2 (k = 2)

Bias 0.004 0.001 0.000 0.004 0.020 0.022 0.008 0.004 0.036
SE 0.138 0.179 0.093 0.170 0.246 0.150 0.188 0.236 0.200
(0.1,0.1,1) ESE 0.136 0.175 0.095 0.176 0.249 0.162 0.163 0.227 0.170
MSE 0.019 0.032 0.009 0.029 0.061 0.023 0.035 0.056 0.041
WTCR 0.954 0.954 0.934 0.940 0.936 0.934 0.976 0.958 0.990
Bias 0.005 0.012 0.002 0.028 0.041 0.108 0.030 0.039 0.118
SE 0.163 0.217 0.108 0.312 0.483 0.357 0.394 0.562 0.573
(0.2,0.2,1.5) ESE 0.158 0.212 0.106 0.328 0.508 0.359 0.293 0444 0.399
MSE 0.027 0.047 0.012 0.098 0.235 0.139 0.156 0.317 0.342
WTCR 0960 0.942 0.958 0.954 0966 0966 0984 0978 0.966
Bias 0.001 0.002 0.004 0.074 0.122 0.151 0.043 0.085 0.104
SE 0.123 0.165 0.079 0.433 0.715 0.540 0.428 0.710 0.554
(0.3,0.3,2) ESE 0.113 0.154 0.078 0.410 0.671 0.514 0.354 0.590 0.464
MSE 0.015 0.027 0.006 0.193 0.526 0.314 0.185 0.511 0.318
WTCR 0.974 0.972 0.948 0.976 0.992 0.958 0.992 0.994 0.920
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Table 5.3: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stages 1-2 and weak non-regular case

RC EE-known EE-estimated

(710, o1, 07) Yos Vs VYous  VYos Vs Wous  Wows  Wus Wus
Stage 1 (k=1)
Bias 0.007 0.000 0.005 0.014 0.005 0.007 0.026 0.010 0.004
SE 0.133 0.168 0.074 0.134 0.208 0.107 0.162 0.204 0.181
ESE 0.130 0.159 0.074 0.156 0.222 0.112 0.146 0.199 0.113

©.10.L.1) MSE 0.018 0.028 0.006 0.018 0.043 0.011 0.027 0.042 0.033
PBCR 0996 0.988 0.998 0.998 1.000 1.000 0.986 1.000 0.990

DBCR 0.896 0.892 0.792 0.834 0.766 0.638 0.860 0.810 0.620

Bias 0.008 0.004 0.002 0.040 0.005 0.040 0.036 0.013 0.054

SE 0.150 0.200 0.086 0.220 0.375 0.228 0.242 0.373 0.301

(02.02.1.5) ESE 0.147 0.198 0.087 0.243 0.405 0.231 0.231 0.372 0.261
T MSE 0.023 0.040 0.007 0.050 0.141 0.054 0.060 0.139 0.094
PBCR 0984 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.996

DBCR 0.868 0.822 0.708 0.674 0.550 0422 0.676 0.580 0.376

Bias 0.003 0.003 0.003 0.011 0.138 0.132 0.017 0.036 0.098

SE 0.114 0.158 0.064 0.340 0.624 0.373 0.342 0.598 0.418

03.032) ESE 0.115 0.156 0.061 0359 0.662 0.394 0.307 0.555 0.346

MSE 0.013 0.025 0.004 0.116 0.408 0.157 0.117 0.359 0.184
PBCR 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.992
DBCR 0.847 0.746 0.732 0.419 0.352 0.237 0.450 0.358 0.268
Stage 2 (k = 2)
Bias 0.004 0.003 0.001 0.005 0.013 0.000 0.007 0.009 0.002
SE 0.117 0.160 0.061 0.125 0.173 0.085 0.154 0.172 0.160
(0.1,0.1,1) ESE 0.113 0.157 0.065 0.123 0.168 0.096 0.133 0.174 0.077
MSE 0.014 0.026 0.004 0.016 0.030 0.007 0.024 0.030 0.026
WTCR 0.956 0954 0.944 0.960 0968 0.934 0.986 0.958 1.000

Bias 0.009 0.000 0.001 0.048 0.065 0.002 0.031 0.052 0.005
SE 0.138 0.195 0.073 0.191 0.271 0.178 0.222 0.287 0.293
(0.2,0.2,1.5) ESE 0.140 0.202 0.072 0.198 0.276 0.193 0.200 0.270 0.173
MSE 0.019 0.038 0.005 0.039 0.078 0.032 0.050 0.085 0.086
WTCR 0958 0.950 0.946 0.938 0.942 0956 0974 0944 0.994

Bias 0.005 0.006 0.000 0.061 0.114 0.016 0.060 0.100 0.009
SE 0.105 0.152 0.056 0.257 0414 0.398 0.268 0.381 0.348
(0.3,0.3,2) ESE 0.109 0.154 0.057 0.238 0.341 0.308 0.244 0.332 0.225
MSE 0.011 0.023 0.003 0.070 0.184 0.159 0.075 0.155 0.121
WTCR 0941 0.951 0939 0963 0.963 0.996 0.959 0.959 0.996
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Table 5.4: Simulation studies for assessing the performance of the RC, EE-known, and EE-
estimated methods: stages 1-2 and non-regular case

RC EE-known EE-estimated
(710, o1, 0F) Yos Vs VYous  VYos Vs Wous  Wows  Wus Wus
Stage 1 (k=1)
Bias 0.005 0.003 0.001 0.007 0.004 0.019 0.005 0.009 0.018
SE 0.129 0.167 0.074 0.130 0.201 0.106 0.160 0.198 0.181
0.1.0.1.1) ESE 0.131 0.167 0.072 0.150 0.211 0.114 0.149 0.193 0.120
B MSE 0.017 0.028 0.005 0.017 0.040 0.012 0.026 0.039 0.033
PBCR 0980 0.986 1.000 0.996 0.994 1.000 0978 0.994 0.996
DBCR 0.894 0.872 0.806 0.844 0.788 0.652 0.854 0.820 0.590
Bias 0.001 0.000 0.003 0.007 0.020 0.060 0.002 0.018 0.034
SE 0.144 0.198 0.085 0.207 0.349 0.224 0.222 0.340 0.294
(02.02.1.5) ESE 0.150 0.201 0.083 0.222 0.363 0.247 0.209 0.343 0.245
S MSE 0.021 0.039 0.007 0.043 0.122 0.054 0.049 0.116 0.088
PBCR 0984 0.994 0.998 1.000 1.000 1.000 1.000 1.000 0.988
DBCR 0.862 0.784 0.712 0.686 0.576 0.332 0.714 0.622 0.362
Bias 0.005 0.004 0.002 0.037 0.064 0.091 0.017 0.026 0.082
SE 0.109 0.157 0.064 0.285 0.515 0.352 0.293 0.521 0.404
03.032) ESE 0.108 0.152 0.061 0306 0.545 0.359 0.271 0480 0.323
B MSE 0.012 0.025 0.004 0.083 0.269 0.132 0.086 0.272 0.170
PBCR 0990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990
DBCR 0.837 0.757 0.712 0424 0.310 0.245 0.502 0.357 0.255
Stage 2 (k = 2)

Bias 0.010 0.001 0.001 0.013 0.008 0.000 0.002 0.008 0.003
SE 0.097 0.138 0.053 0.104 0.151 0.064 0.141 0.154 0.150
(0.1,0.1,1) ESE 0.098 0.136 0.054 0.102 0.146 0.068 0.101 0.142 0.058
MSE 0.010 0.019 0.003 0.011 0.023 0.004 0.020 0.024 0.023
WTCR 0.932 0.948 0.936 0.946 0.960 0.934 0.992 0.962 1.000
Bias 0.008 0.016 0.001 0.009 0.021 0.004 0.001 0.005 0.007
SE 0.109 0.161 0.059 0.139 0.212 0.098 0.173 0.220 0.260
(0.2,0.2,1.5) ESE 0.113 0.164 0.060 0.149 0.222 0.099 0.131 0.195 0.093
MSE 0.012 0.026 0.003 0.019 0.045 0.010 0.030 0.048 0.068
WTCR 0944 0.956 0.958 0.930 0.942 0956 0994 0974 1.000
Bias 0.002 0.004 0.005 0.024 0.045 0.007 0.010 0.020 0.002
SE 0.085 0.130 0.045 0.152 0.241 0.121 0.183 0.271 0.252
(0.3,0.3,2) ESE 0.078 0.124 0.046 0.151 0.243 0.115 0.132 0.204 0.116
MSE 0.007 0.017 0.002 0.024 0.060 0.015 0.034 0.074 0.064
WTCR 0.965 0.971 0.951 0.955 0.937 0.982 0.982 0.980 1.000
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Table 5.5: Proportions of optimally treated individuals

Scenario 1
Stage 1 Stage 2
(710, 7o1, 0'%) Setting Naive RC  EE-known EE-estimated Naive RC EE-known EE-estimated
Regular 0.880 0.979 0.970 0.973 0.870 0.986 0.981 0.983
(0.1,0.1,1) Weak non-regular 0.886 0.981 0.976 0.978 0.460 0.768 0.770 0.774
Non-regular 0.878 0.982 0.978 0.979 0.784 0.721 0.717 0.716
Regular 0.820 0.976 0.949 0.954 0.775 0.983 0.968 0.969
(0.2,0.2,1.5) Weak non-regular 0.829 0.978 0.960 0.963 0.445 0.771 0.767 0.772
Non-regular 0.824 0.980 0.962 0.965 0.813 0.711 0.690 0.697
Regular 0.808 0.973 0.908 0.915 0.732 0.983 0.944 0.947
(0.3,0.3,2) Weak non-regular 0.817 0.977 0.924 0.928 0.445 0.768 0.768 0.766
Non-regular 0.816 0.979 0.934 0.939 0.865 0.712 0.662 0.677
Scenario 2
Regular 0.850 0.888 0.812 0.861 0.806 0.860 0.783 0.843
(0.1,0.1,1) Weak non-regular  0.855 0.893 0.814 0.864 0.461 0.556 0.891 0.860
Non-regular 0.855 0.893 0.816 0.865 0.780 0.769 0.663 0.676
Regular 0.820 0.867 0.738 0.804 0.763 0.829 0.714 0.790
(0.2,0.2,1.5) Weak non-regular 0.827 0.873 0.741 0.808 0.445 0.543 0.796 0.790
Non-regular 0.828 0.873 0.745 0.811 0.832 0.810 0.606 0.636
Regular 0.810 0.859 0.671 0.744 0.742 0.814 0.662 0.747
(0.3,0.3,2) Weak non-regular 0.818 0.866 0.674 0.751 0.444 0.534 0.696 0.714

Non-regular 0.818 0.866 0.680 0.757 0.851 0.839 0.558 0.591
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Table 5.8: Values of regression parameters of calibration functions for Analysis 3

Set 1
Set 2
Set 3

%o {1 o €n &o &

0.05 095 0.05 -0.85 0.05 -0.85
0.05 0.85 0.05 -0.75 0.05 -0.75
0.05 0.75 005 -0.65 0.05 -0.65
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Chapter 6

Summary and Future Work

This thesis explores several statistical methods to make sense of COVID-19 data. We, in par-
ticular, use a reinforcement learning algorithm, Q-learning, to develop sensible mitigation and
suppression strategies when either health outcome or both health and economic outcomes are
of primary importance. We further investigate data-related complications that arise in the im-
plementation of Q-learning. In particular, we explore the performance of Q-learning when
covariates are subject to misclassification or measurement error. Our analytical and simulation
results demonstrate that ignoring this feature can lead to substantial degrees of bias, and that
correction strategies are needed for valid inference.

Chapter 2 analyzed the Kaggle novel coronavirus dataset, dated from January 22, 2020 to
March 29, 2020, which includes 3397 infected cases and 83 deaths from 39 countries includ-
ing those in Europe, Asia, and Africa. This chapter summarizes our timely explorations of
epidemiological characteristics of COVID-19 in the early stage of the pandemic. We find that
prior to March 29, 2020, the median incubation time of COVID-19 is about 5 days, and older
people are more likely to have a longer incubation period. Our text analysis shows that the
most dominant symptoms of COVID-19 are fever, cough, and pneumonia. The non-parametric
Kaplan-Meier method yields a median recovery time of 20 days for infected patients who are
not stratified by any of their characteristics. Our findings further suggest that the recovery time
increases as the age increases, and there is no significant gender difference in recovery times.

In Chapter 3, we use the Q-learning method to explore how different COVID-19 preventive

policies may be prioritized to lower the CFR. Our data analysis suggests that in addition to
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addressing traditional risk factors to alleviate the risk of death from COVID-19, policymakers
should tailor the strictness of preventive policies to country-specific characteristics (e.g., gov-
ernment effectiveness score, population weighted geometric mean density, and civic and social
participation score) and evolving situation (e.g., the observed number of deaths) to leverage the
salutary effects of prevention strategies. As a future work, it is interesting to explore the appli-
cation of other regression-based methods such as G-estimation and dynamic weighted ordinary
least squares, and then compare the results to help uncover the underlying truth. Furthermore,
the analytical approach employed in our analyses assumes that the SUTVA holds. If preven-
tive measures in a country affect the outcome in the neighboring countries, one may employ
network-based methods to estimate optimal policies while accounting for the interdependen-
cies among countries. With the availability of inpatient medical records, Q-learning can be
used to investigate optimal dosage or order of COVID-19 treatments.

Chapter 4 is partially motivated by the STAR*D study, which is a multi-level randomized
controlled study of human MDD. This study was designed to evaluate the effectiveness of dif-
ferent treatment regimes on MDD, and it had 4 levels. In each level, patients were treated
by one or a combination of different treatment options for depression. Receipt of a specific
treatment option at levels 2, 3 and 4 is driven by the doctor’s recommendation as well as the
patient’s opinion, and it is reflected by the variable termed patient’s preference to switch or
augment his/her previous treatment option. However, it is difficult to precisely record the true
value of this variable because of its dependence on the doctor’s experience, the level of the pa-
tient’s trust in the doctor’s recommendation, the effectiveness of the communication between
the doctor and the patient, and the patient’s own knowledge, etc. This suggests that, while
careful designs are helpful in collecting good quality data, measurement error and misclas-
sification are still inevitable and they arise ubiquitously in applications. In this chapter, we
examine DTRs with misclassification in covariates. Focusing on the Q-learning procedure, we
demonstrate how ignoring misclassification in covariates can impact the determination of op-
timal decision rules, and demonstrate its deleterious effects on Q-learning through empirical
studies. Although strategies for handling mismeasurement vary from problem to problem, we
present two correction methods for Q-learning based on regression calibration and unbiased

estimation equation approaches. Numerical studies reveal that misclassification in covariates
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induces non-negligible estimation bias and that the correction methods successfully ameliorate
bias in parameter estimation.

Our development in Chapter 4 is directed to the Q-learning approach, which is mainly
driven by its widespread applications under DTRs. Other methods such as G-estimation and
A-learning are also useful for DTRs. It is interesting to develop de-biasing schemes for those
methods to handle error-prone data. While the proposed correction strategies are directed to
correct misclassification effects for binary covariates, the estimating equation approach devel-
oped in Section 4.4 can be generalized to account for the measurement error effects induced
from continuous covariates, where moment identities, as considered by Yi and Lawless (2007),
can be used to construct U(X;,) to satisfy (4.20). In contrast to covariate mismeasurement con-
sidered here, we may face data with measurement error in responses, and it is useful to study
problems of mismeasured responses under DTRs.

Another interesting extension to the current development is to incorporate possible drop-
out of the study subjects, which may potentially introduce bias and affect the validity of the
estimated DTRs. When the drop-out happens completely at random, applying the developed
methods to the observed data can still output reasonable results, because those data can still be
regarded as forming a random sample. However, if the drop-out is not missing at random, then
the missing measurements cannot be generally ignored due to their inherent association with
the outcome process. It is useful to develop valid Q-learning to account for the drop-out effects
in such scenarios.

Chapter 5 delves into the examination of mixed misclassification and measurement error in
covariates within the framework of DTRs that involve multiple outcome variables. Our analy-
ses reveal that the presence of mixed misclassification and measurement error in covariates can
introduce substantial bias, emphasizing the necessity for developing effective correction meth-
ods. To mitigate the bias caused by covariate mismeasurement, we propose two correction
strategies. It is interesting to apply the development in Chapter 5 to handle more real-world
problems which concern two competing outcomes, where it is useful to provide a guideline for
properly choosing a value of ¢ in the formulation of (5.4).

Finally, it is useful to develop software packages, such as R functions, to implement the

methods developed in Chapters 4 and 5.
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10. Khadem Charvadeh, Y., Pasha, M. A., Moghadam, M. B. and Fani, S. Economic and
Economic Statistical Design of X-bar Control Charts Under a Bathtub-shaped Shock
Model. Second Seminar on Reliability Theory and its Applications, Department of
Statistics, School of Mathematics, Statistics and Computer Science, University of Tehran,
Tehran, Iran, 18-19 May, 2016.
http://www.sid.ir/en/seminar/ViewPaper.aspx?FID=543e20160202

11. Pasha, M. A., Yousefi, A. and Khadem Charvadeh, Y. Nonlinear Fractional Program-
ming in Optimal Design of X-bar Control Charts Under a Heavy-tailed Shock Model. 9th

International Iranian Operation Research conference, Shiraz University of Technology,

Iran, 2016.

Personal Projects:

e Investigating the Association Between COVID-19 Cases/Deaths and Fine Particulate
Matter Exposure During the 2020 Wildfires in the United States

— In this R project, I use a publicly available data set to explore the potential ad-
verse effects of wildfires on COVID-19 cases and fatalities across 92 counties in
the western region of the United States. Given the excessive zero values in daily
COVID-19 cases/deaths, a Hurdle mixed-effects model is employed to establish a
cause-and-effect relationship. The numerical results suggest a significant statistical
association between short-term exposure to Particulate Matter < 2.5 (PM,5) and

COVID-19 cases/deaths.

e Deep Learning for Time Series: Predicting Hourly Electricity Demand in Ontario


https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
https://ssc.ca/sites/default/files/imce/ssc2021-program-with-abstracts-final.pdf
https://ssc.ca/sites/default/files/meetings/ssc_2019_program_with_abstracts_0.pdf
https://ssc.ca/sites/default/files/meetings/ssc_2019_program_with_abstracts_0.pdf
http://www.sid.ir/en/seminar/ViewPaper.aspx?FID=543e20160202
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— The investigation of historical events is imperative for making informed strategic
decisions in the future. Time series analysis is a valuable tool for organizations to
effectively prepare for upcoming challenges. The Canada Energy Regulator (CER)
agency is accountable for ensuring that energy production aligns with energy re-
quirements. To achieve this aim, a robust model of hourly demand is indispensable.
In this R project, publicly accessible hourly electricity demand and annual electric-
ity demand information for Ontario are used to forecast hourly electricity demand
in the residential sector. Gated Recurrent Unit Networks are employed to address

the challenge of hourly electricity demand prediction.
e Predicting Continuous Outcome with Image and Text Using the Keras Functional API

— In this R project, I leverage the Keras functional API to construct a model that
predicts the average ratings of horror movies based on both their descriptions and
posters. The data set used is sourced from the TidyTuesday Github repository and

comprises numerous variables that depict diverse aspects of horror movies.
e Screening Multiple Models for Predicting Volcanic Explosivity Index (VEI)

— In this R project, [ use a data set on volcano eruptions to screen a number of models

with the aim of finding the model with the best predictive capabilities.
e Sentiment and User Network Analysis Using YouTube Comments

— In this R project, I use data collected from two YouTube videos to perform senti-

ment analysis and network analysis.

e Image Classification Using Keras in R: Classification of COVID-19 positive/negative

cases

— In this R project, I use publicly available chest X-ray images from a Kaggle reposi-
tory to build binary/multi-class image classification models that help identify COVID-

19 positive cases.

e Predicting Popularity of Spotify Songs
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— In this R project, I use a TidyTuesday data set on Spotify songs to build a machine
learning classification model that predicts the popularity of a given Spotify song.
Additionally, I showcase the application of partial dependence plots, individual
conditional expectation (ICE), and the LIME package to facilitate both global and

local interpretations of the machine learning model.
e Predicting Coffee Ratings with Beta Regression and Neural Networks

— This R project centers around constructing a Beta regression model and Neural
Network model to predict coffee ratings, utilizing the Coffee Quality Database data
set available on the TidyTuesday Github page. As the data set comprises variables
with missing values, the project also showcases the implementation of the tidymod-

els approach to perform missing-data imputation.
e Text Analysis with tidymodels: Predicting Number of Seasons for Netflix shows

— In this R project, I use a TidyTuesday data set containing information about TV
shows available on Netflix to develop a penalized logistic regression model that
predicts whether a given TV show will have only one season or more. To build the
model, I utilize a range of predictors such as the summary description of the TV
show, title of the TV show, genre, and several others. The main objective of this

project is to showcase how we can conduct rudimentary text analysis.
e Predicting Bee Colony Losses

— Inthis R project, I analyze a TidyTuesday data set on honey bee colonies to examine
the factors that contribute to bee colony losses in the United States. The primary
objective of this project is to optimize the hyperparameters of an XGBoost model,
and subsequently leverage the most optimal XGBoost model to predict the rate of

colony losses.
e Interactive COVID-19 dashboard

— This dynamic web app is created using Flexdashboard + Shiny in R, and automati-

cally updates every 12 hours. Dashboard address: https://yasinkhc.shinyapps


https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://yasinkhc.shinyapps.io/Shiny-COVID-19/
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.10/Shiny-COVID-19/ (Please note that it may take up to 80 seconds for the pro-

gram to generate the map)

Statistical Practice:

1. I am a core member for developing the Canada COVID-19 website. Website address:

https://covid-19-canada.uwo.ca/en/about.html

2. I led the SSC Biostatistics COVID-19 case study. The motive for organizing this case
study was to allow students to demonstrate initiatives and creativity in contributing to the
ongoing needs for data-driven decision making. The work by my team was selected to

be featured on the SSC website.

3. Team leader of SSC 2021 case study in data analysis. Case study title: What geographical

factors are associated with pipeline incidents that involve spills?

4. Team leader of SSC 2020 case study in data analysis (the meeting was canceled due to

the COVID-19 pandemic).

Training and Workshops Attended

o Attended the workshop on “Scientific Analysis of Networks Using Graph Neural Net-
works” by Prof. Marfa Oskarsdéttir, University of Western Ontario, May 9th to May
11th, 2023.


https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://yasinkhc.shinyapps.io/Shiny-COVID-19/
https://covid-19-canada.uwo.ca/en/about.html
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