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Abstract

Brain parcellation studies are fundamental for neuroscience as they serve as a bridge

between anatomy and function, helping researchers interpret how functions are dis-

tributed across different brain regions. However, two substantial challenges exist in

current imaging-based brain parcellation studies: large variations in the functional or-

ganization across individuals and the intrinsic spatial dependence which causes nearby

brain locations to have a similar function. This thesis presents a series of projects aimed

to tackle these challenges from different perspectives by using advanced machine learning

techniques.

To handle the challenge of individual variability in building precise individual parcel-

lations, Chapter 3 introduces a novel hierarchical Bayesian brain parcellation framework.

This framework learns a brain probabilistic parcellation by integrating across diverse

datasets. For single individuals, the framework optimally combines the limited individ-

ual data with the group probability map, resulting in improved individual maps. We

found that the resultant individual parcellation based on only 10 minutes of imaging

scans can achieve an equivalent performance to the ones using 100 minutes of data alone.

These improved individual parcellations are essential to accurately capture functional

variations across studied populations.

The intrinsic spatial dependence between brain locations poses a significant chal-

lenge in both evaluating and generating brain parcellations. To address this, Chapter

2 presents a bias-free method for evaluating different brain parcellations, the distance-

controlled boundary coefficient (DCBC). Compared to existing evaluation metrics that

bias toward finer and spatial contiguous parcellations due to spatial smoothness, DCBC

provides a fair evaluation by controlling the distance of brain location pairs, ensuring a

direct comparison of parcellations in different resolutions. To address the intrinsic spa-

tial dependence when learning parcellations, I propose a new model in Chapter 4, the

multinomial restricted Boltzmann machine (m-RBM), that can be incorporated into the

learning framework in Chapter 3. This model captures spatial structure between brain

locations in its architecture. While simulations showed the utility of this type of model in

estimating individual parcellations, we could not demonstrate better performance using

real imaging data.

Together, this thesis significantly advances the technical toolkit for deriving brain

parcellations from functional imaging data. The developments open up new avenues for

future research into human brain organization.

Keywords: Brain functional parcellations, Computational Neuroscience, Machine
Learning
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Summary for Lay Audience

Understanding how the human brain is organized and how different parts of the brain

interact with each other is a critical part of neuroscience research. Just like we usually

use maps when exploring a new city, brain parcellation subdivides the brain into different

regions based on their functional or structural properties, helping scientists make sense

of this intricate organ. But, this is not an easy task. Two main challenges stand in

the way by the nature of the brain: the fact (1) that every person’s brain has a slightly

different organization and (2) that brain locations close to each other tend to function

more similarly.

This thesis uses advanced machine learning techniques to tackle these issues. Just

like how no two cities are alike, no two brains are identical, so it is important that brain

parcellations reflect that. To address the first challenge, we developed a hierarchical

Bayesian framework that learns the probability that a brain location belongs to a specific

map, rather than learning a fixed map. This enables the model to produce individual

brain parcellations by combining the group probability map with data from an individual

following the Bayes rule, resulting in a more accurate personalized brain map. The

framework is also able to learn combined knowledge from different datasets, thereby

making full use of different experiments, each studying a different aspect of brain function.

The thesis also addresses the issue of intrinsic smoothness of the brain, the fact that

spatially-nearby brain locations have higher functional similarity than the far-away pairs.

This biological characteristic is an important consideration, not only when generating but

also when evaluating brain parcellations. Without taking it into account, the boundaries

between different functional regions in the trained brain maps might be noisy and difficult

to identify, or the evaluation methods could unfairly favor those parcellations that are

finer-grained and spatially continuous. To solve these problems, we designed a new

computational model based on restricted Boltzmann machines (RBM) that explicitly

models the spatial smoothness in the brain. The resultant maps capture the spatial

structures between brain locations, helping in a more precise mapping of brain functions

to individual brain regions. In addition, we also developed a new way of evaluating these

brain maps, which reduces the bias in existing evaluation methods caused by the intrinsic

spatial smoothness of the brain, making it a bias-free evaluation approach.

In essence, this thesis presents a series of projects to advance the methodological

toolkit for producing brain parcellation maps. The tools may lay the foundation for

clinical applications in personalized medicine, and be useful for future studies that address

fundamental neuroscience questions.

iii



Co-Authorship Statement

This thesis is presented in an integrated article format that contains two published papers

and one manuscript in preparation. I would like to acknowledge all co-authors.

Chapter 2: Zhi, D., King, M., Hernandez-Castillo, C. R., Diedrichsen, J. (2022).

Evaluating brain parcellations using the distance-controlled boundary coefficient. Human

Brain Mapping, 43(12), 3706–3720. https://doi.org/10.1002/hbm.25878

• Da Zhi: Project conceptualization, software development, experiment analyses,

manuscript drafting, and revision of the manuscript

• Maedbh King: Data collection, and revision of the manuscript

• Carlos R. Hernandez-Castillo: Data collection, and revision of the manuscript

• Jörn Diedrichsen: Project conceptualization, software development, and revision of

the manuscript

Chapter 3: Zhi, D., Shahshahani, L., Nettekoven, C., Pinho, A. L., Bzdok, D.,

Diedrichsen, J. (2023). A hierarchical Bayesian brain parcellation framework for fusion

of functional imaging datasets. bioRxiv, 2023-05. https://doi.org/10.1101/2023.05.

24.542121

• Da Zhi: Project conceptualization, computational modeling, data pre-processing,

manuscript drafting, and revision of the manuscript

• Ladan Shahshahani: Data pre-processing, and revision of the manuscript

• Caroline Nettekoven: Data pre-processing, and revision of the manuscript
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Chapter 1

General Introduction

1.1 Human Brain Organization

The study of human brain organization is an important part of neuroscience research.

It addresses the fundamental question of how different regions of the brain interact and

collaborate to produce a broad range of cognitive and behavioral outcomes. A common

approach to understanding brain organization involves subdividing the brain into struc-

turally or functionally distinct regions (Felleman and Van Essen, 1991; Eickhoff et al.,

2018), a process known as brain parcellation. Early atlases of the human brain were

based on the cytoarchitectonic organization of the neocortex (Brodmann, 1909; Zilles

et al., 2002; Talairach, 1988a). These anatomical parcellations laid the groundwork for

our understanding of the complex structure and functions of the brain and are still con-

tributing to today’s neuroscience studies.

In recent years, the advent of neuroimaging technologies, such as functional magnetic

resonance imaging (fMRI), offers an alternative approach by acquiring non-invasive brain

functional images in large samples of subjects, As a result, a number of fMRI-based brain

parcellations based on functional properties have been proposed in recent years (Yeo et al.,

2011; Buckner et al., 2011; Gordon et al., 2016; Schaefer et al., 2018; King et al., 2019).

These functional parcellations delineate regions of the brain according to the similarity

of their functional connectivity patterns, using resting-state or task-based fMRI data

(Arslan et al., 2018; Eickhoff et al., 2018). In addition, multi-modal parcellations have

1



2 Chapter 1

recently emerged by integrating various types of data, such as structural, functional, and

cytoarchitectonic information, providing a more comprehensive understanding of brain

organization (Glasser and Van Essen, 2011; Fan et al., 2016).

Functional parcellations play an important practical role in the study of brain organi-

zation. The primary usage of a parcellation is to reduce the complexity of the statistical

analysis, from tens of thousands of measurement units (vertices or voxels) to a much

smaller set of individual regions. For example, parcellations are commonly used to define

regions of interest (ROIs) to summarize functional and anatomical data, or to define the

vertices for subsequent connectivity analysis (Sporns, 2011). A widely-accepted parcella-

tion map allows for direct comparison between studies (Arslan et al., 2018). Universally,

any parcellation should aim to define regions such that the characterization (whether

anatomical measures, connectivity patterns, or task activation) of neural populations

within the same region should be maximally similar to each other. In contrast, neu-

ral populations assigned to different parcels should be maximally different. Therefore,

brain parcellation can be viewed as a clustering problem. As a result, standard machine

learning methods can be applied to brain parcellation.

In the rest of this Chapter, I will review the background for the thesis, including

the necessary details concerning the fMRI data, especially the difference between task-

based and resting-state fMRI. I will then describe computational approaches for deriving

brain parcellations and review how they are used in the current state-of-the-art projects.

Lastly, I will come to the major challenges for brain organization followed by the thesis

objectives.

1.2 Background

1.2.1 Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique

that allows researchers to investigate the functions of the human brain. By utilizing the

blood oxygenation level-dependent (BOLD) contrast (Ogawa et al., 1990), fMRI measures
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changes in blood flow and oxygenation levels in response to neural activity. The BOLD

signal arises from the coupling between neural activity and local changes in blood flow,

allowing researchers to infer which brain regions are engaged during specific cognitive

tasks or resting-state conditions. This technique has revolutionized the field of cognitive

neuroscience by providing valuable insights into the functional organization of the brain

and its role in various cognitive processes (Logothetis, 2003).

The BOLD signal (or BOLD contrast) in fMRI is based on the principle that when

neurons are active, they require more oxygenated blood to meet the metabolic demand

compared to when they are inactive. As a result, the brain’s vasculature responds by

increasing blood flow to the active regions, supplying the necessary oxygen and nutrients.

The increased blood flow leads to changes in the ratio of oxygenated to de-oxygenated

hemoglobin, causing alterations in the magnetic properties of the blood. These magnetic

changes can be detected using specialized MRI techniques (Ogawa et al., 1990), enabling

researchers to map brain activity with high spatial resolution. By analyzing the spa-

tiotemporal patterns of the BOLD signal, researchers can identify brain regions involved

in specific tasks and gain insights into the neural networks underlying various cognitive

functions (Norman et al., 2006).

The BOLD fMRI technique has become an important tool in neuroimaging research.

However, it is also crucial to note that fMRI is an indirect measure of neural activity and

has certain limitations, preventing direct analysis use. For example, the measurement

noise from the scanner, head or body motion during the scanning, and the brain segmen-

tation for the region of interest. Therefore, an fMRI data pre-processing step is often

required for subsequent analyses and statistical modeling, including brain segmentation,

realignment and registration of functional images, normalization, etc.

The preprocessing of fMRI data is essential for the following neuroimaging studies.

The aim of preprocessing is to transform the raw data into a format suitable for sta-

tistical analysis. The first stage of preprocessing usually involves the segmentation of

the anatomical image into white matter, gray matter, cerebrospinal fluid (CSF), etc,

by masking each of these structures. It is because we are only interested in the neural

activities within the gray matter, and other structures are masked out as noise. Then
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the functional data undergoes motion correction since subjects could move their heads

during the scanning, introducing spatial variation in the data that is not related to any

neural activity. Therefore, a reference image is selected and all the other functional im-

ages are then aligned to this reference image, estimating the movement of each image

with respect to the baseline (Friston et al., 1995; Jenkinson et al., 2002). If an image

shows a large movement, then it can be excluded from the subsequent steps. After that,

the mean functional images need to be co-registered with the segregated anatomical im-

age, aligning the lower-resolution functional image with the underlying higher-resolution

anatomical image. Lastly, spatial normalization is another key step, which involves warp-

ing the subject’s data to match a standard anatomical template, such as the Talairach

(Talairach, 1988b), MNI152 (Fonov et al., 2011), or Freesurfer’s fsaverage surface space

(Fischl, 2012), depending on specific usage. This process ensures that equivalent regions

across subjects are compared, allowing for group-level analysis.

1.2.2 Task-based and resting-state fMRI

Traditionally, fMRI was utilized to measure changes in brain activity when participants

are performing specific behavioral tasks (Fox and Raichle, 2007; Logothetis, 2008; Raichle

and Mintun, 2006). Task-based fMRI is commonly used in early fMRI studies to identify

brain functional regions that are active for a specific behavioral task. For example, during

a finger-tapping task, the neurons in the motor cortex will be activated and the blood

will flow in to deliver more oxygen to this region, resulting in a change in the ratio of

oxygenated to deoxygenated blood (Ogawa et al., 1990). Therefore, the motor network

associated with finger movement tasks can be located. More typically, task-based fMRI

studies compare a task of interest to a well-matched control task to isolate activity due

to a specific mental process of interest.

The processed task fMRI data is typically modeled using a general linear model

(GLM) framework as a first-level anaylysis. The GLM is a statistical model that allows

researchers to estimate the contribution of different experimental conditions or tasks to

the measured fMRI signal. The model includes a set of predictors, representing the

expected neural response for each condition, convolved with a canonical hemodynamic
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response function (HRF) (Friston et al., 1998a,b) that captures the delayed and pro-

longed nature of the hemodynamic response. The raw fMRI data is then fit to this GLM

using regression analysis, resulting in beta weights that represent the strength of the

relationship between each condition and the measured fMRI signal at each voxel. To

obtain the beta weights, various estimation methods can be employed, such as ordinary

least squares (OLS) or weighted least squares (WLS) (Diedrichsen and Shadmehr, 2005).

These methods aim to find the best-fitting parameters that minimize the difference be-

tween the predicted response based on the GLM and the actual fMRI signal. These

resultant beta weights can then be further analyzed, such as by conducting statistical

tests to assess the significance of the observed effects and making inferences about the

underlying neural processes involved in the task (Friston et al., 1995).

In contrast, resting-state fMRI (rs-fMRI) measures the BOLD signal when partic-

ipants are ‘resting” in the scanner without a specific task (Biswal et al., 1995). The

BOLD signal in different brain regions captures the spontaneous fluctuations in neural

activity that occur in that state. It has been shown that regions that have high anatom-

ical connectivity with others and are also usually co-activated for specific tasks, tend to

show highly correlated fluctuations. Therefore the correlations between the time series

of different regions can be used as an estimate of the intrinsic functional connectivity of

the brain (Greicius et al., 2003; Fox and Greicius, 2010; Uddin et al., 2010).

Unlike the GLMs for task-based fMRI, the rs-fMRI does not have an independent

manipulation that can be used to build a model because there is no task design to pro-

vide a regressor for a first-level analysis. Therefore, resting-state functional connectivity

(rs-FC) is often used to reflect this synchronized neuronal activity in rs-fMRI by measur-

ing the statistical dependence between BOLD signal time courses in spatially distributed

brain regions directly. One common method for analyzing rs-fMRI data is seed-based

connectivity analysis (Biswal et al., 1995). In this method, a region of interest (ROI

or ’seed’) is defined, and the BOLD signal time course within this ROI is correlated

with the time courses from all other brain voxels to create a connectivity map. This

map represents how functionally connected the rest of the brain is with the seed region.

Another similar approach derived from the seed-based connectivity analysis is the ROI-



6 Chapter 1

to-ROI-based functional connectivity analysis. However, rather than correlating the time

series from one seed region to every other voxel in the brain, in ROI-to-ROI analysis, the

average time series of each ROI is correlated with the average time series of every other

ROI. This method provides a broader view of the functional relationships between all

pairs of selected regions, giving a more holistic picture of brain network interactions. An

alternative to the seed-based approaches is based on graph theoretical analysis (Power

et al., 2011), where the brain is modeled as a graph network. The voxels or ROIs can

be represented as vertices and the correlations between the vertices are the connectiv-

ity weights of the edges. One advantage of this approach is to capture and quantify

the topological properties of brain networks in the graph, providing a more comprehen-

sive understanding of brain organization compared to conventional seed-based methods.

Other data-driven approaches attempt to define the underlying brain regions for rs-FC

analyses rely on Independent Component Analysis (ICA), to decompose rs-fMRI data

into spatially independent components (Beckmann et al., 2005), or clustering methods,

to group voxels into regions based on their similarity measure (Salvador et al., 2005).

A detailed survey of methods for measuring resting-state functional connectivity in the

literature can be found elsewhere (Lee et al., 2013).

Depending on what goal is in mind, care needs to be taken when we study brain

organizations based on which type of functional profile, rs-FC or task activation weights,

as they have their own advantages and disadvantages. The former does not require

subjects to perform specific tasks, allowing researchers to study even babies or clinical

populations that cannot perform a task reliably anymore. It can be acquired relatively

quickly and easily, making it suitable for large-scale studies and clinical applications

(Lee et al., 2013). On the other hand, task-based fMRI investigates specific cognitive

processes by designing tasks, enabling hypothesis-driven investigations to identify brain

regions associated with specific functions in task performance. In the context of brain

parcellation, this advantage is sometimes also considered a disadvantage: the parcellation

will likely depend substantially on the task set that was chosen during fMRI acquisition,

as different tasks will activate different brain regions in different patterns. In contrast,

the resting state is often considered a “neutral” baseline state that reveals the intrinsic
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connectivity of the brain. I will return to this claim and the debate surrounding it in

Chapter 5.

1.2.3 Computational approaches to Brain parcellation

Theoretically, functional brain parcellations aim to subdivide the brain into distinct

regions based on functional data with higher within-parcel homogeneity, while keeping

brain locations with lower similarity in different regions. This goal can be achieved by two

different concepts: global similarity (not spatially informed) and local gradient (spatially

informed) approaches (Schaefer et al., 2018; Eickhoff et al., 2018). The global similarity

approaches seek to group brain-wide voxels or vertices with similar connectivity patterns,

the resulting parcels might be highly functionally homogeneous, suggesting that they

can better represent the whole brain networks and benefits the further dimensionality

reduction analysis. On the other hand, the local gradient approaches seek to identify

boundaries between functional areas by capturing sharp changes in connectivity patterns

across neighbouring brain locations. These methods, being spatially informed, inherently

respect the underlying spatial organization of the brain, capturing local variations and

individual differences in brain organization. While both global and local approaches offer

valuable insights into brain organization, the choice between them often depends on the

specific research questions being addressed.

Among global similarity approaches, the commonly used techniques are based on

clustering algorithms from a machine learning perspective. Initial clustering methods for

brain parcellation projects utilized the k-means algorithm (Lloyd, 1982) to assign each

voxel to a cluster based on the distance measure to its cluster centroid. This algorithm

is generally fast and easy to implement but it is sensitive to the initial choice of centroids

and biased towards equal-size clusters (Tan et al., 2016). Therefore, several variants of the

method have been proposed to deal with these drawbacks of k-means algorithms for brain

parcellation problems (Lee et al., 2012; Thirion et al., 2014). Another group of clustering

methods for brain parcellations was based on hierarchical-clustering algorithm (Bellec

et al., 2010; Mumford et al., 2010) to subdivide the cortex with a bottom-up process,

where boundaries derived from the lower resolutions are propagated to higher levels. By
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joining parcellated regions at different levels of the hierarchical clustering tree, the global

similarity or homogeneity is increased. In contrast, more recent hierarchical clustering-

based approaches (Blumensath et al., 2013; Arslan and Rueckert, 2015; Honnorat et al.,

2015) improved the resultant parcellations by applying additional (or multiple) clustering

layers or combined with other approaches.

Clustering can also be achieved via probabilistic mixture models, which can be con-

sidered as “soft k-means”. The statistical modeling assumes the data of voxels or vertices

within a functional region follow some statistical distributions, hence, different regions

can be clustered by using different parameterized models. In the context of statistical-

based clustering approaches, general mixture models are the most popular family for

brain parcellation tasks. One basic type of brain functional parcellations was estimated

using the Gaussian Mixture model (GMM) (Golland et al., 2007). GMM assumes that

the observed fMRI data is generated from a mixture of a finite number of Gaussian dis-

tributions, each characterized by its own mean and variance parameters. This model

has the advantage of managing complex data distributions and high-dimensional data,

enabling simultaneous consideration of diverse and rich signals from fMRI. Recently, the

von Mises-Fisher (vMF) mixture model (Banerjee et al., 2005) has emerged as a promis-

ing approach for this task as it is particularly well-suited for capturing directional data

distributions, such as the rs-FC profile which usually ignores the signal amplitude by the

data standardization in brain imaging. Several studies have demonstrated the utility of

a mixture of vMF-based approaches in accurately delineating functional brain networks

and capturing subtle variations in connectivity patterns (Yeo et al., 2011; Schaefer et al.,

2018; Kong et al., 2019). These statistical approaches aim to estimate the parameters of

the model, focusing on the generation of each voxel’s functional profile that is assumed

to follow a parametric model with unknown parameter values.

Another type of global similarity approach is based on matrix decomposition (fac-

torization) methods, which are tightly correlated to clustering (Ding et al., 2005). The

key idea of these methods is that the high-dimensional fMRI data matrix Y of brain

voxels with their functional profiles can be decomposed as the product of different lower-

dimensional components V and W that carry specific interpretations, such as Y = VW.
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In the context of brain parcellation, the matrix V might represent functional connec-

tivity patterns of the identified parcels, while W can be viewed as a parcellation of the

brain into different regions. The most commonly used matrix decomposition methods

for brain parcellation projects are Principal Component Analysis (PCA) and Indepen-

dent Component Analysis (ICA). A similar algorithm, non-negative matrix factorization

(NMF) (Ding et al., 2005), has been frequently used to solve brain parcellation problems

(Varikuti et al., 2018; King et al., 2019), which constrains the decomposed components

to be strictly non-negative. It enables the division of the brain into localized components

that reflect actual brain regions (Sotiras et al., 2015). Recently, spectral clustering (Ng

et al., 2001), another matrix decomposition algorithm, based on spectral graph theory

(Von Luxburg, 2007) quickly emerged for brain parcellation tasks (Craddock et al., 2012;

Shen et al., 2013). This algorithm performs matrix factorization based on the eigenvec-

tors of the matrix of similarity (such as connectivity) between brain locations (voxels or

vertices). It keeps the spatial integrity of the parcellations since only vertices sharing

the same cluster membership can be connected in the adjacency matrix. But, spectral

clustering approaches tend to create similarly sized parcels and impose spatial constraints

in order to yield spatially contiguous parcels (Parisot et al., 2016; Arslan et al., 2015).

While these global similarity methods hold great promise for advancing our under-

standing of brain organization, however, they usually neglect the spatial distance of

different brain locations, resulting in some parcels that are spatially disconnected or the

neighboring brain locations having different parcellation labels (Honnorat et al., 2015).

In contrast, the local gradient approaches delineate functional boundaries in the brain

based on the fact that the functional profiles can abruptly change from one spatially con-

tiguous region to a nearby region. This sharp change can be detected by computing the

local gradient in functional patterns. The most commonly-used techniques from previous

work for delineating such cortical regions include edge detection and boundary mapping

(Hirose et al., 2012; Wig et al., 2014). Pioneering work (Cohen et al., 2008) found that

rs-fMRI patterns show sharp transitions in correlation patterns and that these putative

areal boundaries can be reliably detected in both individual and group data. Other works

further utilized boundary mapping approaches for identifying sub-regions in the lateral
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parietal cortex (Nelson et al., 2010) and the basal ganglia (Barnes et al., 2010). Fur-

thermore, (Gordon et al., 2016) described a technique for using resting-state functional

connectivity to define parcels that represent putative cortical areas by a region-growing

algorithm. In general, the local gradient approaches implicitly constrain parcels to be

spatially connected, reflecting the nature of spatial smoothness.

To address the limitations that appeared in both approaches, Recent studies have

proposed to impose spatial prior from Markov Random Field (MRF) model to the sta-

tistical models, which integrated both local gradient and global similarity approaches

with resting-state functional connectivity data (Ryali et al., 2013; Schaefer et al., 2018;

Kong et al., 2019). The resultant brain parcellation outperformed both pure local and

global approaches in terms of the homogeneity of the functional signal within the derived

regions. Thus, combining local boundary detection with global clustering is a promising

direction for future computational models of brain parcellation.

1.2.4 Evaluating brain parcellations

Using different methods, a large number of competing brain parcellations have been pro-

posed over recent years. In the absence of knowing a ground truth, the question arises of

how to evaluate these parcellations. The consistency and reliability between two brain

parcellations can be assessed with the Dice coefficient (Dice, 1945) or Adjusted Rand

Index (ARI) (Hubert and Arabie, 1985). However, these metrics do not tell us how good

a parcellation is, which only provides a measure of how similar a brain parcellation is

with regard to another parcellation. On the other hand, assessing the quality and validity

of brain parcellations presents an inherent challenge, primarily due to the absence of a

universally-accepted parcellation for direct comparison. Thus, the best we can do is to

check how well a given parcellation captures functional boundaries by testing it against

independent datasets. These data sets can be a broad spectrum of anatomical informa-

tion, functional resting-state, or task-based fMRI data, depending on what evaluation

goal is in mind. For example, if one wants to assess how well a brain parcellation is when

predicting task-relevant functional boundaries, then a task-based fMRI dataset should

be chosen as the test set as it gives us insights into how brain regions activate in response
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to specific tasks.

One popular assessment of the validity of a parcellation is the Silhouette coefficient

(Rousseeuw, 1987), which compares the average dissimilarity from one vertex to all other

vertices in the same parcel, to the average dissimilarity from the same vertex to all

the vertices that assigned to neighboring parcels. Similarly, inter/intra-cluster distance

(Bzdok et al., 2015) compares the Euclidean distance between the cluster centers to the

distance between the elements within each cluster. Such criteria describe the goal of brain

parcellation to form groups such that brain locations within a group show higher similar

connectivity, while the connectivity is different between groups. Another commonly-used

evaluation method is global homogeneity (Craddock et al., 2012; Gordon et al., 2016).

Homogeneity is defined as the average similarity across all pairs of vertices within a parcel,

where the similarity measure of two vertices is usually defined as Pearson’s correlation

between functional profiles. The global Homogeneity is then simply calculated as the

average with-parcel correlation across all parcels, with higher homogeneity suggesting a

better parcellation.

1.2.5 State-of-the-art brain parcellation

In this section, I will summarize the state-of-the-art brain parcellations for the human

neocortex and cerebellum, ranging from anatomical, functional resting-state or task-

based, and multi-modal. The goal of this section was to give an overview of the current

status of brain parcellations as important to the topic of this thesis - interested readers

will find a more detailed review elsewhere (Arslan et al., 2018; Eickhoff et al., 2018).

The study of brain parcellation has a long tradition, tracing back to the 19th and

early 20th centuries. Early studies focused on the spatial distribution of cell types in

different layers of the neocortex, a feature discernible after tissue staining. Observations

highlighted that these distributions varied significantly across the brain, revealing regions

of uniform cytoarchitecture and abrupt changes between regions. An influential subdi-

vision of the brain into discrete areas based on the cellular architecture of the neocortex

was provided by Brodmann (Brodmann, 1909). Later work considered different local

properties, in particular myeloarchitecture, to define brain areas (Klatzo, 2002). Other
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anatomical-based parcellations enriched the field by delineating maps using cortical sulci

and gyri (Desikan et al., 2006; Fischl et al., 2004). However, the main drawback of these

anatomical brain mapping studies is that they subdivide the brain into parcels based on

anatomical landmarks, which cannot reflect the true functional boundaries (King et al.,

2019).

Recently, a number of fMRI-based brain parcellations have been proposed in the last

decades for the human neocortex and cerebellum. In this category, the vast majority of

the studies proposed functional parcellations based on resting-state functional connectiv-

ity profiles. For the cerebral cortex, one commonly-used group resting-state parcellation

is proposed by Yeo et al. (2011) in 2011 to separate the neocortex into 7 and 17 networks

using data from 1000 subjects, each network containing multiple spatial distributed com-

ponents. Later work built finer-grained group (Schaefer et al., 2018) or individual (Kong

et al., 2021) resting-state parcellations aligned to the Yeo 7 and Yeo 17 networks with

higher resolution (up to 1,000 parcels) in surface representation. Other cortical parcel-

lations include Craddock 2012 (Craddock et al., 2012) with 10 to 1000 parcels, Gordon

2016 (Gordon et al., 2016) with 333 parcels, Bellec 2010 (Bellec et al., 2010) with mul-

tiple resolutions from 7 to 444 parcels, Power 2011 (Power et al., 2011) of 130 networks,

and Shen 2013 (Shen et al., 2013) with 200 parcels covering the whole cortex. In con-

trast, few recent parcellations highlighted the individual variability in brain organization

by proposing individual-specific resting-state parcellations, such as Wang 2015 (Wang

et al., 2015) of 18 networks and Gordon 2017 (Gordon et al., 2017b) with subject-specific

resolutions.

While most previous work concerns the organization of the neocortex, few studies

exclusively focused on the cerebellum. For the cerebellar functional organization, one

pioneering work of resting-state group parcellations proposed by Buckner et al. (2011)

subdivided the cerebellum into 7 and 17 regions from 1000 subjects. In 2013, the release

of the Human Connectome Project (HCP) (Van Essen et al., 2013), which is a milestone

of resting-state parcellation studies, has made a significant contribution to the field. With

an increasing amount of evidence suggesting that the human cerebellum involves many

cognitive tasks, cerebellar functional organization studies have become important. Ji
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et al. (2019) presented a parcellation of subcortical structures with 10 networks based

on its correlation to their cortical networks using the resting state data from HCP S900

release (Van Essen et al., 2013). Later on, Xue et al. (2021) developed two individual

parcellations with 10 parcels based on resting-state data from 31 sessions for each.

Compared to resting-state, task-based fMRI data has been used less for deriving brain

parcellations. One reason for this is that brain parcellations depend strongly on the tasks

used. Therefore, early task-based approaches used a large number of task-contrast maps

assembled over different studies. For example, Yeo 2015 (Yeo et al., 2015) derived a

parcellation using 10,449 contrast maps across 83 behavioral tasks using a hierarchical

Bayesian model. Only recently, a number of research groups have conducted task-based

fMRI studies that include a broad range of tasks covering multiple domains in the same

subject (Van Essen et al., 2013; Pinho et al., 2018; Nakai and Nishimoto, 2020; King

et al., 2019). This allows the community to reveal a comprehensive brain functional

organization by utilizing task-based parcellations.

For the cerebellum, this has led to a new task-based functional parcellation using

a multi-domain task battery (MDTB, King et al. (2019)), containing a wide range of

social and cognitive tasks, resulting in a task-based parcellation with 10 regions for the

cerebellum (King et al., 2019). In general, task-based parcellation studies are relatively

new, it is partially due to the lack of a large and homogeneous task-based dataset across

multiple task domains with enough subjects. Even if the task set is deliberatively chosen

to be broad, each task set will still have some cognitive domains that are not fully

covered, potentially resulting in biases in the parcellation. Therefore, a principled way of

combining or fusing the knowledge of different task-based datasets would be an important

step forward.

In addition, several multi-modal parcellations were proposed using the features from

anatomical, resting-state, and task-based fMRI data. Such parcellation combines the

strength from different modalities and finds the maximum agreement across all features.

For example, a multi-modal group parcellation, Glasser 2016, based on rs-FC and cy-

toarchitectonic information (eg. Brodmann areas and myelin content) from 210 HCP

subjects was proposed in Glasser et al. (2016), or Fan 2016 parcellation was proposed in
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Fan et al. (2016) using rs-FC and anatomical information (see Table 2.1 for more details).

1.2.6 Group and Individual brain parcellations

Group-level parcellations aim to create a common template or atlas that represents the

average organization of the brain across a group of individuals. These parcellations are

constructed by aggregating data from multiple subjects to identify consistent patterns of

connectivity or anatomical boundaries. Group parcellations provide a standard reference

for comparing brain regions across individuals and can help establish common frameworks

for studying brain function and structure in the studied population. These group-level

maps have proven invaluable for characterizing the brain’s general functional organization

(Buckner et al., 2013) and for comparing different populations, such as healthy controls

and patients with a particular neurological disorder (Wang et al., 2007; Barthel et al.,

2011). Techniques for group-level parcellation generally involve pooling neuroimaging

data from a large number of individuals, then identifying common patterns of connectivity

using computational approaches. For example, the “Yeo 2011” parcellation in Figure 2.4

was estimated from the concatenated resting-state fMRI time series across 1000 healthy

subjects (Yeo et al., 2011).

In contrast, individual-level parcellations aim to capture the unique structural and

functional organization of each person’s brain, as recent studies have shown that inter-

individual difference exists for both brain structure and the function (Braga and Buckner,

2017; Gordon et al., 2017a; Kong et al., 2021). These parcellations acknowledge the reality

of individual variability in brain organization, which can arise due to a variety of factors,

including age, gender, genetics, and experiences. Individual parcellations have been

found to provide a more accurate mapping of functional regions for any given individual,

which can be especially useful in a clinical context where precision is important. They

can have significant implications for understanding individual differences in cognition,

behavior, and susceptibility to neurological or psychiatric disorders. The generation

of individual parcellations relies on high-quality individual functional profiles, however,

creating reliable individual parcellations can be challenging (see 1.3). A key focus in

this area is developing methods that can reliably generate individual parcellations from
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a limited amount of data.

1.3 Challenges of recent human brain organization

studies

In the field of human brain organization research, one of the major challenges is manag-

ing the inter-individual variability that characterizes brain organization (Eickhoff et al.,

2018; Bijsterbosch et al., 2020). Since human brains are uniquely complex and exhibit

substantial variation across different individuals, inter-individual variability challenges

brain organization studies in both the generation and evaluation of brain parcellations.

In practice, individual parcellations are often desired as individual functional localizers

for clinical diagnosis and subsequent analyses. A common way to obtain such individual

functional localizers in previous studies is to run a few minutes of individual scans for

additional tasks before the main study (Kanwisher et al., 1997; Berman et al., 2010;

Lafer-Sousa et al., 2016). However, the resultant individual parcellations are generally

poor-quality since a reliable functional localizer usually requires a relatively large amount

of individual data. But the acquisition of large amounts of individual data is often pro-

hibitive in current neuroimaging studies (Marek et al., 2018), limiting the usage of related

applications. Therefore, how to improve the quality of individual parcellation based on

limited data becomes a recent research direction in the field.

The inter-individual variability of human brain organization can also significantly

impact the evaluation of brain functional parcellations. With the unique structural and

functional differences across individuals, the resultant individual parcellations often show

divergent patterns, resulting in any attempt to evaluate brain functional parcellations

without considering inter-individual variability that could potentially be biased and in-

accurate interpretations. For example, each individual parcellation obtained from one

study will get a different evaluation score even using the same evaluation methods.

A second challenge lies in accounting for the intrinsic spatial dependence of brain

locations. Recent studies have shown that brain regions possess inherent heterogeneity
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to some extent (Van Den Heuvel and Pol, 2010; Van Essen and Glasser, 2018), where the

neighboring brain locations exhibit higher functional similarity compared to the spatially

far-away locations. This spatial smoothness, or the inherent homogeneity within brain

regions, has implications for the way when we parcel brain functional regions (Yeo et al.,

2011; Eickhoff et al., 2018). Previous work proposed parcellations using global clustering-

based approaches, without considering the spatial connections between brain regions.

This disadvantage is more pronounced in individual parcellations compared to group

parcellations that have a level of smoothness across subjects. Therefore, it is crucial to

have a principled way of generating individual parcellations that combine both spatial

proximity and functional similarity.

The intrinsic smoothness also impacts the evaluation of brain parcellations. This

can be observed by evaluating brain parcellations using homogeneity-based methods

(Rousseeuw, 1987; Craddock et al., 2012; Gordon et al., 2016), where a finer-grained,

or even random but spatially contiguous, parcellation can achieve a relatively higher

evaluation score. This bias, caused by intrinsic spatial smoothness, makes a direct com-

parison between parcellations in different resolutions difficult. Therefore, the issue of

brain intrinsic smoothness necessitates the exploration of alternative brain parcellation

representations and evaluations.

1.4 Thesis Objectives

The primary objective of this thesis is to address some of the challenges reviewed in the

previous section. The overarching goal of this research aims to enhance our understand-

ing of brain organization and improve the accuracy and reliability of brain parcellation

techniques. The specific objectives of each chapter are described as follows.

Chapter 2 proposes an unbiased criterion to evaluate discrete brain parcellations,

called Distance Controlled Boundary Coefficient (DCBC). In contrast to existing eval-

uation methods, the DCBC takes into account the spatial arrangement of the parcels,

thereby correcting biases that arise from the intrinsic smoothness of brain data. We

employ DCBC to evaluate existing parcellations of the human neocortex in predicting
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functional boundaries for task-based or resting-state fMRI datasets.

In Chapter 3, I then propose a hierarchical Bayesian framework to learn brain

probabilistic parcellation. This framework addresses an important limitation for human

brain parcellation studies: the missing of a large and homogeneous task-based imaging

dataset. Instead, the framework allows the fusion of insights across a diverse set of task-

based and resting-state datasets, resulting in the trained parcellations having a combined

strength. Additionally, the framework also allows the user to derive individual brain

parcellations using only 10 minutes of individual data to outperform the performance of

group atlases.

Chapter 4 introduces an extension of the framework introduced in Chapter 3. The

brain parcellations possess intrinsic spatial dependence, where the nearby brain locations

exhibit a higher functional correlation compared to faraway locations. Therefore, a good

computational model should account for the spatial structure of brain locations when

learning brain parcellations. To this end, I propose a novel computational architecture

to model the spatial dependencies between brain locations, called m-RBM. I then use

this new model to train individual parcellations in both synthetic and empirical data.



Chapter 2

Evaluating brain parcellations using

the distance-controlled boundary

coefficient

2.1 Introduction

Neuroscience has a long history of subdividing the human brain into different regions

based on differences in histology (Brodmann, 1909). It is commonly understood that

brain function arises through the interactions of regions that are structurally and/or

functionally distinct (Felleman and Van Essen, 1991; Eickhoff et al., 2018). While early

parcellations of the human brain were based on the cytoarchitectonic organisation of

the neocortex (Brodmann, 1909; Zilles et al., 2002; Talairach, 1988a), the advent of

neuroimaging allowed an in-vivo assessment of brain organisation. In recent years, many

parcellations based on task-evoked (Yeo et al., 2015) and resting functional magnetic

imaging resonance (fMRI) data (Eickhoff et al., 2015; Arslan et al., 2018; Eickhoff et al.,

2018) have been published, along with multi-modal parcellations that also incorporate

structural and cytoarchitectonic information (Glasser and Van Essen, 2011; Fan et al.,

2016).

In the empirical study of brain function, parcellations play an important practical

18
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role. They are commonly used to define the regions of interest (ROIs) to summarize

functional and anatomical data, or to define the nodes for subsequent connectivity anal-

ysis (Sporns, 2011). The main function of parcellation is to reduce complexity of the

statistical analysis, as the brain-wide data can be summarized with a smaller number of

values, each reflecting measurements from a region with high homogeneity. Additionally,

widely-accepted parcellations aid the direct comparison between studies (Arslan et al.,

2018).

Despite the importance of brain parcellations in human neuroscience research, there

is no commonly accepted evaluation criterion to compare different parcellations. The

obvious reason for this is that different parcellations are generated with different goals in

mind. Specially, some parcellations aim to define regions that have a common anatomical

characteristic (Desikan et al., 2006; Fischl et al., 2004), a shared connectivity fingerprint

(Yeo et al., 2011; Gordon et al., 2016; Power et al., 2011), or a homogeneous task-

activation profile (Yeo et al., 2015). As such, brain parcellations can be evaluated based

on different types of data (Arslan et al., 2018).

Universally, however, any parcellation should aim to define regions such that the func-

tional profiles (whether anatomical measures, connectivity patterns, or task activation)

of two brain locations in the same region should be maximally similar to each other,

whereas two brain locations in different regions should be maximally different. Thus,

brain parcellation can be viewed as a clustering problem. As a result, standard machine

learning methods to evaluate clustering solutions have been applied to brain parcella-

tion. Two such examples are the measure of global Homogeneity (Gordon et al., 2016;

Craddock et al., 2012) and the Silhouette coefficient (Rousseeuw, 1987).

However, these two evaluation criteria have the common problem in that they do not

account for the spatial nature of the underlying data. In the case of the human neo-

cortex, the functional correlation between two nodes on the cortical surface depends on

their distance, with nearby nodes showing a higher similarity compared to far away ones.

This causes even random, but spatially contiguous, parcellations to achieve relatively

high global Homogeneity or Silhouette coefficient. To establish whether a parcellation

identifies any real functional boundaries at all, Monte-Carlo simulations using random



20 Chapter 2

parcellations are therefore necessary (Arslan et al., 2018). To complicate matters further,

both global Homogeneity and Silhouette coefficient tend to be higher for finer parcella-

tions. This makes it difficult to compare between two parcellations with different spatial

resolutions.

In this paper, we address this problem by proposing a novel evaluation criterion, the

Distance-Controlled Boundary Coefficient (DCBC). As the Silhouette coefficient, it com-

pares within-parcel and between-parcel correlations of the functional profiles. However,

the DCBC takes into account the spatial smoothness of the data by only comparing pairs

of locations with the same distance on the cortical surface. As we will show, the expected

value of the DCBC for a random parcellation is zero. Thus, no simulations with random

parcellations are necessary to establish a baseline measurement; we can directly test the

DCBC against zero. We also show that this baseline value is invariant to the number of

parcels in the random parcellation. This enables us to use the DCBC to directly compare

parcellations of different spatial scales.

We then use the DCBC to evaluate a set of common parcellations of the human

neocortex (Yeo et al., 2011, 2015; Gordon et al., 2016; Power et al., 2011; Glasser et al.,

2016; Schaefer et al., 2018; Fan et al., 2016; Baldassano et al., 2015; Shen et al., 2013;

Arslan et al., 2015; Tzourio-Mazoyer et al., 2002; Desikan et al., 2006; Fischl et al.,

2004). We performed this evaluation using both a task-based and a resting-state fMRI

data set. For the task-based data set, we used the comprehensive Multi-Domain Task

Battery (MDTB) (King et al., 2019), which contains functional contrasts across many

cognitive domains measured in the same participants. A python toolbox for the efficient

computation of the DCBC, as well as a surface-based version of the MDTB data set are

publicly available to download.
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2.2 Methods

2.2.1 Overview

The DCBC compares the correlation between two brain locations within a parcel to the

correlation between two brain locations across a boundary between parcels. Importantly,

this comparison is only performed for pairs of brain locations that are separated by the

same spatial distance. The calculation of the DCBC proceeds in four steps. First, we

require a data set that provides a rich characterization of each brain location. This data

set defines the functional profile for each brain location. While the DCBC can be applied

to any high-dimensional data, such as multi-modal anatomical data, we focus here on

task-based fMRI data (the MDTB data set (King et al., 2019), which provides 34 activity

estimates across a range of motor, cognitive and social tasks) and resting-state fMRI data

(acquired in the Human Connectome Project, HCP, (Van Essen et al., 2013)). Secondly,

we need a measure of spatial distance between two brain locations, either defined on the

cortical surface, or for subcortical structures, in the volume. Based on these distances, all

location pairs are subdivided into a set of spatial bins. The within-parcel and between-

parcel correlation is then computed for each spatial bin separately. In the last step,

the results are integrated across spatial bins, using an adaptive weighting scheme. To

validate the method, we employed random parcellations of the human neocortex using a

range of spatial resolutions, as well as sets of smooth artificial functional data sets.

2.2.2 Evaluation Data

2.2.2.1 Task-based dataset (MDTB)

To define the functional profiles for the evaluation, we first used the publicly available

MDTB data set (King et al., 2019), which contains a wide range of tasks, quantifying

processes required for motor, cognitive, and social function. Each of the 24 participants

(16 females, 8 males, mean age=23.8) was scanned four times for 80-minutes, while

performing either task set A or B (17 tasks for each, 9 tasks in common). Task set A
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was performed in the first two sessions, task set B in the last two sessions. A total of

approximately 5.3 h of functional data per participant was collected.

In each imaging run, every task was performed once for 35 s, starting with a 5

s instruction period, followed by a 30 s period of continuous task performance. The

task battery included motor (finger tapping, sequence production), working memory (2-

back task, math), language (verb generation, reading), social (theory of mind, action

observation), executive control (no-go, stroop), attention (visual search), emotion (facial

expression, pleasant/ unpleasant pictures), spatial (mental rotations), introspection tasks

(spatial and motor imagery), movie-based tasks (cartoon, nature, landscapes), and rest

(fixation) (King et al., 2019).

All fMRI data were acquired on a 3T Siemens Prisma at Western University. The

imaging parameters were as follows: repetition time = 1 s; field-of-view = 20.8 cm; phase

encoding direction P to A; 48 slices; 3 mm thickness; in-plane resolution 2.5× 2.5 mm2.

For anatomical localization and normalization, a 5 min high-resolution scan of the whole

brain was acquired (see King et al. (2019) for more details).

Data pre-processing was carried out using tools from SPM12 (www.fil.ion.ucl.

ac.uk/spm/doc/spm12_manual.pdf), as well as custom-written scripts written in MAT-

LAB. For all participants, an anatomical image (T1-weighted MPRAGE, 1mm isotropic

resolution) was acquired in the first scanning session. Functional data were realigned for

head motion within each session, and for different head positions across sessions using

the six-parameter rigid body transformation. The mean functional image was then co-

registered to the anatomical image and this transformation was applied to all functional

images. No smoothing or group normalization was applied.

The anatomical image of each of the 24 subjects was processed by standard recon-all

pipeline of the freesurfer software (version 5.0) (Fischl, 2012), including brain extrac-

tion, white and pial surfaces generation, inflation, and spherical alignment to the new

symmetric fsLR-32K template (Van Essen et al., 2012). Individual surfaces were then

re-sampled into this standard grid. This resampling led to surfaces with 32,492 vertices

that are shared both across participants and across left and right hemisphere.

A General Linear Model (GLM) was fitted to the time series data of each voxel for

www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf
www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf
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each imaging run. Each task was modeled as a 30s regressor and all the preceding 5s

instructions were modeled as separate regressors. The regression weights (betas) were

estimated for each run independently and then averaged across the 16 runs for each task

set.

To combine the activity estimates across the two task sets, we used the mean of the

shared tasks as a common reference point. We subtracted this pattern from the average

beta estimates for each task set separately, and then concatenated the two vectors of

activity estimates. The average beta weights were then divided by the square root of the

average mean-square-residual from the first-level GLM to obtain z-scores for each voxel.

The resulting functional profiles consisted of 34 pre-whitened activity estimates (set A =

17; set B = 17) for each voxel. Finally, we subtracted the overall mean across all tasks

from the functional profile of each voxel.

The functional profiles were then mapped to each individual cortical surface by av-

eraging the value from voxels along the connecting line between the pial and white-gray

matter surface, using 5 equally spaced locations between the two surfaces.

2.2.2.2 Resting-state dataset (HCP)

The second data set used in this study was the resting-state fMRI (rs-fMRI) data from the

“unrelated 100” subjects (54 female, 46 male adults, aged from 22 to 35), which was made

publicly available in the Human Connectome Project (HCP) S1200 release (Van Essen

et al., 2013). The rs-fMRI scans for each subject were collected in two sessions held on

different days, including a total four runs of approximately 15 minutes each. During the

scans, the subjects were asked to fixate a white cross-hair on a dark background.

The HCP resting-state fMRI time series were acquired using 3T Siemens “Connectome

Skyra” scanner with 2 × 2 × 2 mm spatial resolution and a TR of approximately 0.7 s.

For more details of the data acquisition parameters, see Smith et al. (2013), and Uğurbil

et al. (2013).

All data were pre-processed using the HCP minimal processing pipeline (Glasser et al.,

2013), including structural registration, correction for spatial distortion, head motion,

cortical surface mapping, and functional artefact removal (Smith et al., 2013; Glasser
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et al., 2013). For each rs-fMRI run, this resulted in 1200 time points for each of the 32k

vertices of the standard fsLR-32K template (Van Essen et al., 2012) per hemisphere. To

generate the functional profiles for the HCP data set, we concatenated all 4 runs after

mean-centering.

2.2.3 Existing evaluation criteria for brain parcellations

Given that brain parcellation can be viewed as a clustering problem, two common meth-

ods used to evaluate the resultant parcels are the global Homogeneity (Craddock et al.,

2012; Gordon et al., 2016), and the Silhouette coefficient (Rousseeuw, 1987). Homogene-

ity is defined as the average similarity across all pairs of vertices within a parcel. As

the similarity measure of two vertices, we used the Pearson’s correlation between func-

tional profiles. The global Homogeneity is then simply the average with-parcel correlation

across all parcels, with higher homogeneity suggesting a better parcellation.

Another popular evaluation metric for brain parcellations is the Silhouette coefficient

(Rousseeuw, 1987), which compares the average dissimilarity (defined as 1-R, where R

represents Pearson’s correlation between functional profiles) from one vertex to all other

vertices in the same parcel (wi), to the average dissimilarity from the same vertex to all

the vertices that assigned to neighbouring parcels (bi) (Yeo et al., 2011; Arslan et al.,

2018). For a given a parcellation {P1,P2,...,Pk}, wi and bi can be defined as:

wi =
1

mk − 1

∑
j∈Pk,i ̸=j

1−R(vi, vj), (2.1)

bi =
1

N

∑
j∈nb(Pk)

1−R(vi, vj) (2.2)

where mk indicates the number of vertices that within the parcel Pk. N is the total

number of vertices in all neighbouring parcels and nb(Pk) represents all neighbouring

parcels of Pk.

For each cortical vertex vi, the Silhouette coefficient is defined as:

Si =
bi − wi

max(wi, bi)
(2.3)
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Based on this definition, the Silhouette coefficient for each vertex ranges from -1 to 1, 1

indicates that there is a perfect correlation within each parcel (r = 1) and on average,

not correlations across parcels (r = 0). As we will see, both of these measures are biased

by the intrinsic smoothness of the functional profiles on the cortical surface.

2.2.4 Measuring spatial distance

To account for the intrinsic smoothness of the data, we require a measure of spatial

distance between any pair of brain locations. For subcortical structures, we have used

the Euclidean distance between pairs of voxels (King et al., 2019). For the neocortex,

however, we ideally would like to use the geodesic distance between vertices on the cortical

surface. As an approximation to this distance, we used Dijkstra’s algorithm (Dijkstra

et al., 1959) to estimate the shortest paths between each pair of vertices on each individual

cortical surface. For this computation we used the mid-cortical layer which is the average

of the pial and white-gray matter surface. For computational and memory efficiency we

only considered distances up to maximum of 50mm. Inter-vertex distances were then

averaged across individuals and hemispheres. This resulted in a matrix that indicates

the average cortical distance between nearby brain locations for the atlas brain surface.

2.2.5 Distance Controlled Boundary Coefficient (DCBC)

2.2.5.1 The problem of spatial smoothness

The problem with global Homogeneity and Silhouette coefficient is that they do not

take into account that function tends to vary in a smooth fashion across the cortical

surface. For instance, if we compute the correlation of vertex pairs across the cortex

using task-evoked functional profiles (King et al., 2019) for an individual participant, we

can clearly see that the correlation falls off with the spatial distance between vertices

(See Figure 2.1a). Note that this smoothness is not an artifact of the data processing;

except for motion realignment and mapping onto the surface, no smoothing was applied

to the data. Thus, the dependence on spatial distance reflects the intrinsic smoothness

of functional specialization on the cortex.
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Figure 2.1: Distance controlled boundary coefficient. (a) Correlation between task-
evoked functional profiles (see methods) of pairs of surface vertices as a function of their
spatial distance; (b) Histogram of the number of within and between vertex pairs as a
function of spatial distance for a random Icosahedron 162 parcellation. (c) Weighting
factor across different bins for the Icosahedron 162 parcellation and binning shown in
b. (d) The correlations for within- (black) and between-region (red) vertex pairs as a
function of the spatial distance (for Yeo 17 parcellation). The DCBC is defined by the
weighted average distance between the two curves.

For the global Homogeneity measure, this property favors parcellations with small

parcels, as only close-by vertex pairs will be within the same parcel. Similarly, the spatial

smoothness also biases the Silhouette coefficient, as the spatial distance for within-parcel

pairs is on average smaller than that for between-parcel pairs. For example in random

parcellation Icosahedron 162 (Fig. 2.1b), the average spatial distance of within-parcel

pairs is 14.5 mm. Even if we limit the comparison to vertex pairs from spatially adjacent

parcels, as is common practice in the evaluation of brain parcellations, the between-parcel
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pairs have a substantially larger average distance (25.5mm). This discrepancy results in

a higher average correlation of functional profiles for within-parcel pairs compared to

between-parcel pairs.

We therefore propose to only compare vertex pairs with a similar spatial distance. For

this purpose, the DCBC method bins all vertex pairs according to their spatial distance,

and then compares the correlation for within- and between-pairs within each bin. One

important practical decision is the choice of bin size, a question that we address in the

results section. For our neocortical data, a bin size of 1 mm appears to be adequate.

2.2.5.2 Averaging across bins

Parcellations can be compared by investigating the difference in within- and between-

parcels as a function of the spatial distance (see King et al. (2019), Fig. 3,4). However, for

many applications we would like a single evaluation criterion for each parcellation, which

necessitates the averaging across a range of spatial distances. This raises the question

of what range of spatial distances to consider, and how to weight the distances within

that range. A rational solution to this problem is to find the weighting that, for any

given parcellation, provides us with the best estimate of the average difference between

within- and between-parcel correlations, assuming that this differences is constant across

the desired range of distances. The variance of the estimate of the correlation difference

(di) for bin i can be approximated by assuming the independence of the different vertex

pairs. In this case, the variance of the estimate depends on the number of within- (nw,i)

and between-parcel vertex pairs (nb,i) in each spatial bin:

var(di) =
1

nw,i

+
1

nb,i

=
nw,i + nb,i

nw,inb,i

(2.4)

For averaging, we define a weight that is proportional to the precision (inverse of the

variance) of each estimator:

wi =
nw,inb,i

nw,i + nb,i

/
∑
j

nw,jnb,j

nw,j + nb,j

(2.5)
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For example, figure 2.1c shows the weighting factor for each spatial bin of Icosahedron

162 random parcellation using a 1 mm bin width. The DCBC is then the weighted

average of the correlation difference across bins.

2.2.6 Random Parcellations

Icosahedron-42 Icosahedron-162 Icosahedron-362 Icosahedron-642 Icosahedron-1002

Figure 2.2: Random cortical parcellations with different number of parcels.

To evaluate the DCBC for parcellations that on average do not align with real func-

tional boundaries, we generated a set of random parcellations. If our method successfully

controls for the spatial smoothness of the functional profiles, the average DCBC for such

random parcellations should be zero, i.e there should be no difference between within-

and between-parcel correlations. To test this claim for parcellations at different spatial

scales, we used a regular hexagonal parcellations of a sphere (Icosahedron) with 42, 162,

362, 642, and 1002 parcels. To generate random alignment of this parcellation with the

data, we rotated each map randomly around the x, y, and z axis. We repeated this

process 100 times to obtain 100 random parcellations for each spatial scale.

2.2.7 Random Functional Maps

Real data may have functional boundaries that are correlated across participants. As

a consequence, some random parcellations will still by chance align with these bound-

aries and yield systematically positive DCBC values; and other random parcellations

will misalign with the real functional boundaries and yield systematically negative val-

ues. To test the DCBC on functional maps without a systematic boundary structure

across participants, we also randomly generated 100 cortical functional maps with 34

task conditions. These maps then were used in the analysis shown in Fig. 2.3. We drew

independent normally distributed values for every condition and vertex for the fsLR-32k
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template (Van Essen et al., 2012), and then smoothed these maps on the cortical surface

using -metric-smooth function provided by Connectome Workbench software (Marcus

et al., 2011). The smoothing kernel was set to 12 centimeters, yielding a similar spatial

autocorrelation function as in our real data.

2.2.8 Evaluation of commonly-used group parcellations

We then evaluated a set of commonly used group parcellations of the human neocortex

(Table 2.1). The majority of the parcellations considered here are based on resting-state

functional connectivity (rs-FC) data. The fMRI data is recorded at rest, and the covari-

ance or correlations between the time series of different brain locations is submitted to

a clustering or dimensionality reduction approach. Parcellations can also be based on

task-evoked activation maps. For example Yeo et al. (2015) derived a parcellation from

10,449 experiment contrasts across 83 behavioural tasks. The anatomical parcellations

considered here are based on the macro-anatomical folding structure of the human neo-

cortex, following the major sulci and gyri of the human brain. Finally, we also considered

2 multi-modal parcellations, which combined rs-FC and anatomical criteria.

Within each of these categories, parcellations also differ in the approach used for gen-

eration. For instance, several parcellations were obtained based on a two-level approach,

where subject-level parcellations are derived in a first step, and then integrated across

subjects in a second step using clustering or majority voting. Other parcellations are

directly derived by clustering group-averaged data (Arslan et al., 2018).

Because the DCBC evaluation considers only vertex pairs up to a specific spatial

distance on the cortical surface, the evaluation is conducted separately for the left and

right hemisphere. For many parcellations, the parcels are separated for the two hemi-

spheres. For example, Gordon et al. (2016) used 161 and 172 distinct regions for the

left and right hemisphere respectively, totaling 333 regions. Other parcellations use bi-

hemispheric parcels. As a consequence the 7 and 17 regions in Yeo et al. (2011), were

effectively evaluated as 14 and 34 parcels.

Note that three group-level parcellations (Fan et al., 2016; Shen et al., 2013; Tzourio-

Mazoyer et al., 2002) were only available in volume space. These parcellations were
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mapped to HCP standard fsLR-32k cortical surface using the volume-to-surface pipeline

described in Van Essen et al. (2012) and Arslan et al. (2018). All parcellations in this

study are available as a collection in fsLR-32k surface space at (Zhi and Diedrichsen,

2021).

2.2.9 Parcellation based on the evaluation data

To estimate how well a group parcellation could theoretically subdivide the neocortex

into functionally distinct regions, we derived a parcellation from the MDTB dataset.

We estimated 12 cortical parcellations with 14 to 1000 parcels, using group-averaged

MTDB functional profiles. For evaluation on the MDTB data, this parcellation has the

unfair advantage that the individuals used in the evaluation is also contained within the

training set, providing an upper-bound estimate of the noise ceiling (Nili et al., 2014).

To estimate a lower bound of the noise ceiling, we used a leave-one-out cross validation

approach: We derived a group parcellation from the averaged data from 23 participants,

and then evaluated it on the remaining subject. We then averaged the DCBC across the

24 different parcellations.

To derive the MDTB group parcellation we used spectral clustering. We first down-

sampled the surface data from 32K vertices to 4002 vertices. Then we performed spectral

clustering on the affinity matrix between the vertices of the down-sampled map. After

clustering, we then restored the map to the original resolution of the surface. The lower

resolution ensured that the resulting parcellations were spatially contiguous. We consider

the MDTB group parcellation as a potential lower bound (see Results 3.4 and Discussion)

of how well a group parcellation can perform on the MDTB data set.
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Figure 2.3: Evaluation results on random parcellations. (a) Results of four eval-
uation methods for the random functional maps simulation in different resolutions: Ho-
mogeneity, Silhouette Coefficient, the un-binned average correlation difference (ACD) of
within-parcel and between-parcel, and the binned (bin width = 2.5 mm) ACD of within-
parcel and between-parcel; (b) The weighted and un-weighted DCBC evaluation results
for 100 random functional maps in different bin widths of random parcellations Icosahe-
dron 642.

2.3 Results

2.3.1 Binning reduces the bias introduced by spatial smooth-

ness

Existing evaluation methods for brain parcellations have the problem of being biased by

the natural smoothness of functional brain maps. To demonstrate this effect, we first

tested various evaluation methods using random functional maps and random parcel-

lations of different spatial scales. As can be seen in Fig. 2.3a, both the Homogeneity

and Silhouette coefficient show highly significant positive values, even for these random

maps. Furthermore, the values for both methods increase when the parcellation increases

in spatial resolution (i.e. have more and smaller parcels). This makes direct comparisons

of different parcellations in different spatial scales difficult, and necessitates the use of

randomisation analyses for each parcellation to determine the baseline value expected by
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random chance (Arslan et al., 2018).

A similar problem can also be seen when using the difference between the correlations

of within- and between-parcel pairs of vertices (un-binned average correlation difference,

ACD). This is caused by the tendency that vertices that are closer together show higher

functional correlations (Fig. 2.1a), combined with the fact that within-parcel vertex

pairs are on average closer to each other than between-parcel pairs (Fig. 2.1b). To

remove this bias, the DCBC calculation involves the binning of vertex pairs according to

their spatial distance. We then calculate the difference between the average correlation

between within- and between-parcel pairs within each spatial bin, thereby only comparing

vertex pairs of matched spatial distance.

To ascertain that this approach provides an approximately unbiased and stable evalu-

ation criterion, we first applied the suggested technique on the simulated functional data.

As can be seen (Fig. 2.3a, binned ACD), even using a relatively coarse spatial binning

of 2.5 mm, this approach nearly removes all bias caused by the spatial smoothness. For

the finest parcellation, an Icosahedron with 1002 regions, the binned difference between

correlations (0.009) was approximately 60 times lower than the mean of the difference cal-

culated in each bin (0.544). This shows that the binning approach dramatically reduces

the bias caused by spatial smoothness.

2.3.2 Adaptive weighted averaging reduces variance and bias

After binning, we often want to integrate the results across bins to arrive at a single

evaluation criterion. This can be done by simply averaging the differences in correlation

across bins. However, this approach leads to a summary measure with high variability

(Fig. 2.3b). This is caused by the fact all bins have equal influence on the average,

even though some bins contain very few vertex pairs. This can be addressed by taking

the number of within- and between-parcel pairs in each bin into account in an adaptive

weighting scheme (see methods). Indeed, the standard deviation of the weighted DCBC

in the simulation is 2.8 times lower than for the un-weighted version for 1 mm bins, and

8.1 times lower for the 2.5 mm bins. Furthermore, the weighted DCBC also shows smaller

residual bias than the unweighted DCBC.
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2.3.3 Choosing an appropriate bin width

An important practical issue in the DCBC calculation is to choose a specific bin width.

This choice is subject to a fundamental trade-off. If the bin width is too wide, the

DCBC may still be biased as a result of the spatial smoothness of the functional profiles.

This is because within each bin, the average spatial distance for within-parcel pairs is

still slightly smaller than for the between-parcel pairs, inducing a systematic difference

between the correlations within each spatial bin. Even though this bias is small, it can

remain highly significant when tested across the 100 simulations presented in Fig. 2.3b

for a bin width of 2.5mm. Choosing a smaller bin width reduces this bias. For bins of

size 0.1 mm and 0.2 mm, the same 100 simulated data sets no longer show a significant

difference against zero (p = 0.327 and 0.202, respectively).

Choosing a very small bin width, however, also comes with some disadvantages. First,

the computational cost of the DCBC calculation increases linearly with the increasing

number of bins. More importantly, if a very small bin is chosen, it can result in noisier

DCBC estimate, as very few vertex pairs will fall within each bin. In the extreme case,

there would either be no within- or between- vertex pair in a bin, such that the bin could

not be used for the difference calculation. For neocortical data projected to the fsLR-32k

template (Van Essen et al., 2012) a bin width of 1mm appears to offer a good balance

between bias, accuracy and computational speed.

2.3.4 DCBC evaluation for real data

Using a task-based data set (MDTB) and a resting-state data set (HCP), we evaluated

15 commonly used group-level cortical parcellations (Fig. 2.4a, Table 2.1). These par-

cellations relied either on anatomical criteria (cortical folding), task-evoked activation,

or functional resting-state connectivity. Two multi-modal parcellations (Glasser et al.,

2016) relied on a combination of anatomical and functional features. Each of the par-

cellations was evaluated per hemisphere and the global DCBC of a subject was then

averaged across hemispheres.

For the MDTB data set, the difference between the within-parcel and between-parcel
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Figure 2.4: Evaluation on the real data sets. (a) The left hemisphere of 15 com-
monly used cortical parcellations and the MDTB cortical parcellation with 7 regions;
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to 35mm; (c) the correlation difference as a function of the spatial distance for selected
parcellations evaluated on the task-based data set; (d) the correlation for within- and
between-parcel vertex pairs as a function of the spatial distance (for Yeo 17 parcellation)
evaluated on the resting-state dataset; (e) the average correlation difference as a function
of the spatial distances for selected parcellations evaluated on the resting-state data set.

correlations across range of spatial distances (0-35mm) is shown in Fig. 2.4c. While the

difference increased with increasing distance, the relative ordering of the parcellations was

relatively consistent: Independent of the exact spatial distance considered, the Power and
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the MDTB correlation appear to outperform the other parcellations.

For the HCP data set (Fig. 2.4e), the difference between the within- and between-

parcel correlation was substantially smaller. This is mostly caused by the fact that the

raw Pearson’s correlation of the time series (Fig. 2.4d) were lower than the correlations

for the MDTB data set (Fig. 2.1a,d). The correlations for the rs-fMRI data also fell

off more rapidly with increasing distance, reaching values of r < 0.1 for distances over

8mm (Fig. 2.4d). The lower DCBC values for this data set, therefore, are partly due the

fact that correlations between full fMRI time series are usually lower than correlations

between task-based activity estimates. For the HCP data set the difference in correlations

were relatively stable across the range of spatial distances considered (< 35mm).

To obtain a minimum-variance estimate of the correlation difference when averaging

across spatial distances, we weighted the difference curves with the parcellation-specific

weighting function (Fig. 2.4b). This procedure is certainly justified if the differences

between correlation curves is stable across spatial distances. For parcellation where the

differences between within- and between-parcel correlations vary with distance, small

biases may arise. For example we may expect for the MDTB data set could give a small

advantage to coarser parcellations. We will return to this issue in the discussion.

2.3.5 Resting-state group parcellations predict task-based func-

tional boundaries

We then calculated the averaged weighted DCBC across all parcellation (Fig. 2.5). The

first insight is that the nine parcellations that are based solely on functional resting

state data (Yeo et al., 2011; Power et al., 2011; Gordon et al., 2016; Arslan et al., 2015;

Baldassano et al., 2015; Shen et al., 2013; Schaefer et al., 2018; Smith et al., 2014)

predicted the functional boundaries in the task-based data set substantially better than

chance (Fig. 2.5a). For example, the within- and between-parcel correlations for the Yeo

17 parcellation (Fig. 2.1d) differed by approximately 0.1 across spatial bins, reflected in

an average DCBC value of 0.1020 (SE=0.0053) across the 24 subjects. Other resting-

state parcellations also showed clear differences between the within- and between-parcel
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correlations, especially Power 2011 (DCBC=0.1334, SE=0.0085), Yeo 7 (DCBC =0.1271,

SE=0.0073), and Gordon 2016 (DCBC=0.0876, SE=0.0047). This finding confirms that

resting-state group parcellations generally predict task-relevant functional boundaries

significantly better than chance (Tavor et al., 2016).

When evaluating these resting-state parcellations on resting state data (see Fig. 2.5b),

we obtain consistent results. Even though the overall DCBC was substantially lower

than for the task-based data, the best-performing parcellations were based on resting-

state data, including the Yeo 7 (DCBC=0.0213, SE=0.0021), Power (DCBC=0.0261,

SE=0.0025), and Gordon (DCBC=0.0236, SE=0.0018) parcellations.

2.3.6 Comparison to parcellations derived from the evaluation

data set

How well do these group-based resting-state parcellations predict task-based functional

boundaries, relative to what would be possible? Given the inter-individual variability of

boundaries, and the fact that even individual boundaries are not perfectly sharp, there

is an upper limit to the highest achievable DCBC on our evaluation data set. To obtain

an idea of this “noise ceiling” (Nili et al., 2014), we derived a set of clustering solutions

from the MDTB data itself (see methods, Fig. 2.4a), spanning the range from 14 to 1000

parcels.

While we cannot determine the noise ceiling directly, we can obtain a lower and

upper performance estimate. For the lower estimate, we derived the parcellation on 23 of

the participants, and evaluated it on the remaining, left-out participant. For the upper

estimate, we over-fitted the data by deriving and evaluating the parcellation on all 24

participants. The gap between these two performance curves indicates how much of

the performance advantage of the MDTB parcellation is due to the over-fitting to the

particular set of subjects.

As expected, the MDTB-based parcellations (gray area in Fig. 2.5a) generally out-

performed other group parcellations on this data set. Nonetheless, some existing resting-

state parcellations showed performance very close or even slightly higher than the MDTB



2.3. Results 39

parcellation (Yeo et al., 2011; Power et al., 2011).

When evaluated the task-based MDTB parcellations on the resting-state data (Fig.

2.5b), it performed remarkably well, and was only outperformed by 3 resting-state par-

cellations. This again demonstrates the consistency of functional boundaries across task-

and resting-state data.

2.3.7 Anatomical parcellations do not predict task-based func-

tional boundaries

We then evaluated 3 commonly used anatomical group parcellations of the human neo-

cortex: The Desikan parcellation (Desikan et al., 2006) , the Dextrieux atlas (Fischl et al.,

2004), and the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al.,

2002). On the task-based data (Fig. 2.5a), the averaged correlation between any vertex

pairs within a predefined anatomical parcel was not much greater than the correlation

between vertex pairs across anatomical boundaries, resulting in very low DCBC values

(Dextrieux: DCBC=0.0112, SE=0.0022; AAL: DCBC=-0.0066, SE=0.002). The Desikan

parcellation (DCBC=-0.0215, SE=0.0028) even showed significantly negative DCBC val-

ues across the 24 subjects. These parcellations, based on the macroanatomical folding

structure of the neocortex, therefore define boundaries that are systematically misaligned

with the functional subdivisions in task-evoked activity profiles.

A similar pattern emerged when anatomical parcellation were evaluated on resting-

state data. All anatomical parcellations showed relatively low performance (average

DCBC = 0.0066). In contrast to the task-based evaluation, the DCBC of all three

parcellations was significantly positive, when tested against zero (all t23 > 9.4466, p <

2.21×10−9), implying that they aligned with the boundaries of the resting-state networks

slightly better than chance.



40 Chapter 2

2.3.8 Multi-modal parcellations do not perform better than

resting-state parcellations

We also applied DCBC evaluation to two multi-modal parcellations (Glasser et al.,

2016; Fan et al., 2016) to determine whether combining anatomical and functional data

is superior to unimodal parcellations. The Glasser parcellation had a higher DCBC

score (DCBC=0.0483, SE=0.0038) as compared to the Fan parcellation (DCBC=0.0275,

SE=0.0019). However, both were lower than the average DCBC across the resting-state

parcellations (0.0766). It therefore appears that the combination of multiple modalities

does not systematically lead to a better prediction of task-relevant function boundaries

than parcellations that are derived on resting-state data alone.

2.3.9 Comparison across different spatial resolutions

For simulated random functional maps, we have shown that the expected value of the

DCBC is zero, no matter how fine the parcellation (Fig. 2.3b). In contrast, the value of

the global Homogeneity and Silhouette coefficient increases for finer parcellations even

for random maps (Fig. 2.3a).

This bias can also be observed for real parcellations. The value of the global Ho-

mogeneity (Fig. 2.5c) and Silhouette coefficient (Fig. 2.5d) when calculated on the

task-based evaluation data set clearly increases for finer parcellations, whereas there is

no strong relationship between the DCBC and the number of parcels (Fig. 2.5a and b).

In this context, the set of Schaefer 2018 parcellations (Schaefer et al., 2018) is espe-

cially interesting, as it provides a nested set of subdivisions with an increasing number

of parcels, all aligned with Yeo 7 or 17 networks (we use the one aligned with Yeo 7

networks in the experiment). To statistically evaluate the change in evaluation met-

ric with parcel size, we conducted a repeated-measures analysis of variance (ANOVA)

across the 10 Schaefer parcellations, ranging from 100 to 1000 parcels. As expected,

both the Homogeneity (F9,207 = 1730.6, p = 1.55× 10−189) and the Silhouette coefficient

(F9,207 = 667.6, p = 1.11 × 10−147) clearly showed significant increases for an increas-

ing number of parcels. Given that such increases were also found for random functional
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maps and parcellations, it is not clear whether the finer parcellations identified functional

boundaries better, the same, or worse than coarser parcellations.

In contrast, the unbiased DCBC shows that the Schaefer parcellation reaches the

best performance around 200 parcels, and then slowly declines for finer parcellations

(Fig. 2.5a). The ANOVA showed a significant change with number of parcels (F9,207 =

189.4576, p = 8.19×10−95). Indeed, for the finest parcellation (1000 parcels), performance

did not differ significantly from chance (t23 = 1.0253, p = 0.3159). One possible reason

for this is that when defining more than 200 functional parcels, the new boundaries do

not consistently predict discontinuities in the functional organisation at the group level

anymore.

In summary, the application of the novel DCBC criterion to known cortical parcella-

tions allowed for the following conclusions: (1) anatomical parcellations based on cortical

folding do not align with functional boundaries in the neocortex; (2) resting-state parcel-

lations predict task-relevant functional boundaries, outperforming other types of cortical

parcellations; (3) multi-modal parcellations did not improve performance as compared to

pure resting-state parcellations.

2.3.10 Open-source toolbox/data support evaluation

The code for DCBC evaluation is published as an open-source toolbox written in Python

at (Zhi and Diedrichsen, 2021). The package also contains the pre-processed contrast

maps for all task conditions of the MDTB data set (n=24 subjects), sampled to the

standard fsLR-32k template.

2.4 Discussion

In this study, we introduce a novel evaluation criterion for brain parcellations, the Dis-

tance Controlled Boundary Coefficient (DCBC). The method takes into account the

spatial smoothness of the data by controlling the distance of the vertex pairs when com-

paring within- and between-parcel correlations. We used an earlier form of this approach

for volume-based data (using the Euclidean distance instead of a surface-based distance)
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to evaluate cerebellar parcellations (King et al., 2019). Here, we further improve the ap-

proach by adaptively weighting over the spatial distance bins, resulting in a global mea-

sure with low bias and variance. Our evaluation on simulated smooth data shows that

the new criterion overcomes the size- and shape-dependent bias of other homogeneity-

type evaluation criteria (Craddock et al., 2012; Rousseeuw, 1987). The advantage of the

DCBC is twofold: 1) it enables a direct comparison between group brain parcellations

that have different spatial resolutions, and 2) it provides a direct test of how well a

parcellation subdivides the brain into homogeneous regions than expected by chance.

One important caveat is that DCBC only removes the bias completely if the difference

between within- and between correlations is stable across spatial distances. This is be-

cause different parcellations use different weighting across spatial distances (Fig. 2.4b).

There are a number of practical solutions to ameliorate this problem. First, by choosing

a maximal distance for vertex distances (here 35mm) the evaluation is constrained to

be relatively local in all cases. While future users of the method may want to choose a

different range of spatial distances, we believe that 35mm provides a good compromise

for cortical parcellations. Secondly, it is always useful to plot the DCBC as a function

of the spatial distance before averaging (see King et al. (2019), Fig. 4c,e) to investigate

whether different parcellations may behave differently across the distances considered.

Finally, if the DCBC varies substantially across spatial distances, one could use a com-

mon, averaged weighting for all parcellations, or simply decide on a more specific set

of spatial distances. Nonetheless, the biases from differential weighting were relatively

small for our evaluation data sets - and the DCBC successfully removed the main biasing

influence of parcel size (Fig. 2.5a vs. c,d).

We used the DCBC to evaluate a range of existing cortical surface-based parcellations

in their ability to predict functional boundaries on task-based and resting-state data.

We found that the parcellations derived from resting-state fMRI data largely succeed in

predicting task-evoked activity boundaries, replicating earlier work (Tavor et al., 2016;

King et al., 2019). These results demonstrate again the practical utility of resting state

data in identifying brain networks that work together during active task performance.

Even though the correlation structure across the cortex does clearly change in a task-
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dependent fashion (Hasson et al., 2009a; Salehi et al., 2020a,b), our results emphasize

the existence of a basic scaffold that determines functional specialization across a wide

range of tasks, as well as during rest. In the opposite direction, parcellations derived

from a rich task-based battery (MDTB) also achieved relatively high DCBC values when

evaluated on rs-fMRI data, further confirming that structure of neural fluctuations during

rest aligns with co-activation across tasks.

In contrast, anatomical parcellations (Desikan et al., 2006; Fischl et al., 2004; Tzourio-

Mazoyer et al., 2002) did not perform better than chance to predict functional boundaries

in the task-based data, and only slightly better than random for rs-fMRI data. The

Desikan parcellation even showed a negative DCBC score on the MDTB dataset. This

finding corroborates previous work that shows a misalignment between macroanatomical

folding structure and functional boundaries in the neocortex (Arslan et al., 2018) and

the cerebellum (King et al., 2019). An inspection of the differences between functional

and anatomical parcellations (Fig. 2.4a) suggest an explanation of why this may be the

case. Cortical motor areas, for example, are subdivided in all anatomical parcellations

along the central sulcus, which separates the primary motor cortex (M1) from primary

somatosensory cortex (S1). In this case, the macro-anatomical folding roughly aligns with

the cyto-architectonic boundaries between the two regions (Brodmann, 1909; Amunts and

Zilles, 2015; Fischl et al., 2008). In contrast, functional parcellations typically separate

the motor regions along a ventral-dorsal axis, that is, into foot, hand and mouth regions.

Within each body zone, these parcellations leave M1, S1, and premotor regions in the

same parcel, likely reflecting the high functional correlations between regions responsible

for the control of a body part. Similar observations can be made in the visual system

- with functional parcellations separating areas associated with foveal and peripheral

vision, rather than subdividing known cytoarchitectonic regions (V1, V2, V3). This

anti-correlation of functional and anatomical boundaries partly explains why the Desikan

atlas showed a significantly negative DCBC.

It is therefore also unsurprising that multi-modal parcellations that combine func-

tional and anatomical criteria did not outperform the pure resting-state parcellations.

For example, Glasser et al. (2016) used resting-state connectivity, intra-cortical myelin
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signal, and cortical folding, thereby improving alignment with cytoarchitectonically de-

fined areas. The inclusion of anatomical information likely also led to the division of

functionally correlated brain regions. This does not imply that cytoarchitectonic parcel-

lations of the neocortex are of lesser value. Instead, our finding simply illustrates that

the goal of isolating anatomically consistently organised regions is unrelated to, and in

some cases conflicts with, the goal of defining brain regions with homogeneous functional

profiles.

Therefore, the evaluation results in our study would have a different look if we used

anatomical data rather than task-evoked activity profiles as an evaluation data set. It

is worth stressing, however, that the DCBC as a method to control for the influence

of spatial smoothness can be used with any suitable data set. For instance, anatomical

data, such as myelin measures (Tozer et al., 2005) or anatomical connectivity fingerprints

derived from diffusion data (Behrens et al., 2003; Johansen-Berg et al., 2004) could be

used to evaluate how well parcellations isolate anatomically homogeneous regions.

In the current study we focused on task-evoked and resting-state fMRI data as evalu-

ation targets. While the two datasets led to a similar pattern of results when comparing

parcellations, the overall DCBC values for rs-fMRI data were substantially lower that the

DCBC values for task-based fMRI data. This is likely due to the lower signal-to-noise

level for fMRI time-series, as compared to task activity estimates, which are averaged

over 16 runs. Note that the high correlation for vertex pairs with small spatial distances

(<5mm) are likely driven by the interpolation across neighboring voxels (motion realign-

ment, surface mapping, minimal smoothing) inherent in both pre-processing pipelines.

One advantage of evaluating parcellations on task-activity data is the obvious face va-

lidity of the results: If the goal of the the brain parcellation is to define regions with

a homogeneous response across a wide range of tasks and mental states, then it should

be best to evaluate the parcellation that way, rather than relying on the possibly more

restricted mental states during rest.

A possible extension of the current work is to develop a parcellation algorithm that

explicitly optimizes the DCBC. Given the nature of the DCBC, such an algorithm would

have to be a local, rather than a global parcellation algorithm (Schaefer et al., 2018), such
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as a region-growing algorithm proposed in Gordon et al. (2016) or Salehi et al. (2020a).

The algorithm to be proposed would very likely improve the DCBC beyond what was

achieved by spectral clustering, which does not consider the spatial arrangement of the

vertices.

Even more substantial improvement in the quality of the parcellations can be expected

when moving from a group to an individual parcellation. Recent results have shown that

the inter-individual differences in the exact spatial location of functional boundaries are

substantial (Salehi et al., 2020b; King et al., 2019). Of course, individual parcellations

can suffer from having too little individual data to reliably establish the parcellation.

Optimal ways of fusing group and individual-level data (Buckner et al., 2013; Kong

et al., 2019), which also makes parcels comparable across subjects (Salehi et al., 2020a)

clearly provides a promising future addition to the neuroimaging toolkit. In these efforts,

the DCBC can provide a bias-free and reliable evaluation criterion that can be calculated

without computationally expensive simulation studies.

When developing, using, and evaluating brain parcellations, it is of course important

to consider the much more fundamental issue of whether this form of representation

(Bijsterbosch et al., 2020) is a valid description of brain organisation. In our mind, it

remains an open question to what degree segmenting the brain into discrete regions with

hard boundaries (Van Essen and Glasser, 2018) is a useful description at all, or to what

degree this functional organisation is better explained through a set of smooth gradients

(Tononi et al., 1994; Dohmatob et al., 2021; Huntenburg et al., 2018; Guell et al., 2018).

Either way, we believe that the DCBC evaluation provides an useful tool to advance this

debate. If brain functions only varied in smooth gradients across the cortical surface,

the DCBC should not be systematically above zero, at least not when evaluated on a

novel set of tasks. However, most resting-state parcellations identified boundaries that

also aligned with more rapid changes in the active functional response. Thus, as for the

human cerebellum (King et al., 2019), this demonstrates the existence of task-invariant

functional boundaries on the cortical surface. On the other hand, not all boundaries

are equally strong, and not all boundaries are equally stable across tasks. The ability

of DCBC to evaluate individual boundaries, as done in King et al. (2019), therefore
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provides an important tool to evaluate both functional segregation, as well as continuous

functional integration (Eickhoff et al., 2018) in a region-specific way.

A Python-based software toolbox for the evaluation of surface-based parcellations

on the MDTB activity maps is made publicly available at (Zhi and Diedrichsen, 2021).

The toolbox is also designed to allow users to evaluate parcellations on other types of

data. We hope that the new evaluation criterion will support and facilitate researchers

in understanding the functional compartmentalization of the human brain.
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A hierarchical Bayesian brain

parcellation framework for fusion of

functional imaging datasets

3.1 Introduction

The application of machine learning to functional Magnetic Resonance Imaging (fMRI)

data promises better models of brain organization. Brain parcellations, which subdivide

the brain into a discrete set of functionally distinct regions, are one important type of

model with many practical applications. A number of such parcellation schemes have

been derived from large resting-state fMRI datasets (Yeo et al., 2011; Buckner et al.,

2011; Power et al., 2011; Schaefer et al., 2018; Ji et al., 2019). Previous studies have

shown that functional boundaries detected during resting-state are indeed predictive of

functional boundaries during task performance (Cole et al., 2014; Laumann et al., 2015;

Tavor et al., 2016). However, there is also increasing evidence for systematic differences

in the functional organization measured during the task and rest setting (Hasson et al.,

2009b; Cole et al., 2014; Greene et al., 2020). It is therefore important to consider

task-based datasets in deriving brain parcellations (King et al., 2019), foreshadowing a

comprehensive understanding of the dynamic nature of the brain’s functional organiza-

47
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tion.

In recent years, an increasing number of high-quality task-based fMRI datasets that

sample a broad range of tasks have become available (King et al., 2019; Nakai and

Nishimoto, 2020; Pinho et al., 2018, 2020). Nonetheless, compared to the large and

homogeneous resting-state datasets (Van Essen et al., 2013), task-based datasets usually

only contain a small to medium number of individuals and are always limited in the

tasks that they cover. It would be therefore highly desirable to have a principled way of

combining evidence across many datasets into a single model. This is especially important

as functional brain organization may not only differ between task and rest, but also

between different task sets.

A second important practical problem is that functional brain organization shows

considerable inter-individual variations even after anatomical variability is accounted for

(Mueller et al., 2013), limiting the usefulness of functional group atlases. This problem

could be potentially addressed by including individual resting-state (Wang et al., 2015)

or task-based data (King et al., 2019; Pinho et al., 2018, 2020) as a functional localizer

to derive individual brain parcellation maps. But a reliable characterization of brain

organization requires an extensive amount of individual functional data (Marek et al.,

2018), which in practice is often too costly to acquire.

In this paper, we addressed both of these problems by developing a hierarchical

Bayesian parcellation framework (Fig. 3.1), which could be efficiently trained on a range

of fMRI datasets, Ys,n, recorded in different sessions (n) from different subjects (s). The

model assigns each of the possible brain locations in each individual to one ofK functional

regions (here referred to as parcels). The parcel assignments are collected in the matrices

Us, with Us
k,i = 1 if the ith brain location is assigned to the kth parcel. The model esti-

mates the expected value of these latent variables, ⟨Us⟩, which provides a probabilistic

parcellation for that individual (see Methods 3.4.1.1 for details). The model consists of

a spatial arrangement model, p(Us|θA), the probability of how likely a parcel assignment

is within the studied population, and a collection of dataset-specific emission models,

p(Ys,n|Us;θEn), the probability of each observed dataset given the individual brain par-

cellation. This distributed structure allows the parameters of the model, (θA,θE1, ..) to
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Figure 3.1: A hierarchical Bayesian parcellation framework for data fusion.
Three datasets are shown. Data from each participant are indicated as a gray box.
The height of the box indicates the amount of data per participant. Dataset 2 contains
two sessions from the same set of participants (s ∈ S2), and the subject-specific data
likelihood is integrated across the two sessions for each subject. The central quantity of
the model is the estimated individual brain organization Us. The spatial arrangement
model provides the population-wide probability of observing a specific brain organization.

be estimated using a message-passing algorithm between the different model components

(Methods 3.4.1.4).

We applied the new framework to a collection of seven task-based fMRI datasets (Ta-

ble 3.1), with four of them containing a wide range of task conditions and three others re-

lated to specific functional domains, including executive function and motor movements.

Starting within a single dataset, we show that our framework optimally integrates data

from a single individual subject with the group-based arrangement model, resulting in

substantially improved individual brain parcellations. Then, we compare different ap-

proaches to estimate a unified group-based arrangement model across datasets, using

both simulations and real data. We show that both group and individual parcellations
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learned by datasets fusion using our proposed framework outperform the parcellations

trained on each single dataset alone.

3.2 Results

3.2.1 Individual parcellations in the scarce data setting

Given the substantial inter-individual functional variability, it is often desirable to derive

parcellations for single subjects. An important limitation, however, is that obtaining

a reliable individual parcellation requires a substantial amount of data (Marek et al.,

2018). A central feature of our model is that we do not only obtain a parcellation

based on the individual data, p(Us|Ys), and a parcellation based on the learned group

parameters, p(Us|θA), but also an optimal integration of individual and the group-level

probability map (Methods 3.4.1.5). We first sought to determine how much improvement

this integrated individual parcellation offers. For this purpose, we first trained a group

parcellation (17 parcels) on the first task set of the multi-domain task battery dataset

(MDTB, (King et al., 2019)). Individual parcellations were derived using between 1-16

imaging runs (10-160 min) of individual training data only. We compared the perfor-

mance of these ”data-only” parcellations with the group parcellation, and with individual

parcellations learned in our framework by Bayesian integration of individual data and

group map. All probabilistic parcellations were first converted into hard parcellations

using a winner-take-all approach. We then evaluated how well the parcel boundaries

corresponded to functional boundaries on the second task set (also 16 runs) acquired on

the same subject. For this, we computed the distance-controlled boundary coefficient

(DCBC, Zhi et al. (2022), the difference of the within-parcel and the between-parcel

correlation of the functional profiles for each spatial distance (see Methods 3.4.5).

The individual parcellations based on 10 min of imaging data (without using the

group probability map, Fig. 3.2a) performed generally poorly, with an average DCBC of

0.088 (Standard Error of the Mean, SEM = 0.009). Indeed, the individual parcellation

performed worse than the group map t23 = −7.786, p = 6.815× 10−8 (Fig. 3.2d, dashed
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Figure 3.2: Individual parcellations from the parcellation framework outper-
form group map. (a) An estimated individual parcellation based on 10 min (1 run) of
imaging data, using only the individual data. (b) An estimated individual parcellation
of the same subject based on 160 min (16 runs), using only the individual data. (c) The
estimated individual parcellation using 10 min of individual data and the group proba-
bility map learned by the arrangement model. (d) The group probability map from the
arrangement model. (e) The DCBC value (higher = better) of the parcellations tested
on the independent second session of the MDTB data set. Each individual parcellation
was estimated using only the individual data (blue curve) or using the individual data
and the learned group probability map (red curve). The x-axis indicates the length of
the imaging time series (10 min = 1 run) used to estimate the individual parcellations.
The error bars represent the standard error of the mean across all 24 subjects.

line in Fig. 3.2e). The individual parcellation improved continuously when using more

data (Fig. 3.2b), reaching an average DCBC value of 0.175 (SEM = 0.016) for 160 min

of data, ultimately outperforming the group map (t23 = 3.286, p = 0.003). This indicates

that there are replicable differences in brain organization across individuals. Individ-

ual parcellations can capture these differences, leading to significantly better prediction

performance than a group probability map on independent test data.

Although individual parcellations were superior to the group map using more data

(blue line in Fig. 3.2e), our results suggest that more than 110 min of individual imaging
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data is required to obtain a brain parcellation that is significantly better than the group

probability map (t23 = 2.190, p = 0.039). At 60 min of imaging, an individual parcella-

tion map is only just about as predictive as the group probability map. Acquiring this

amount of individual data for functional localization is rarely feasible in basic and clinical

functional imaging studies.

Our framework, however, automatically integrates the individual data with the group

probability map, leading to dramatically improved performance of individual parcella-

tions. For only 10 min of individual data, the DCBC was now significantly higher than

the group probability map alone (t23 = 3.123, p = 0.005). Using 10 min of imaging data

and our model led to individual parcellation performance that was roughly equivalent to

using 100 min of individual imaging data without the model.

The resultant individual parcellation map (Fig. 3.2c) constitutes an optimal fusion of

the individual data and the knowledge learned from the entire group. Even when there

was a large amount of individual data available, such as 160 minutes, the integration

with the group map led to a significant improvement relative to using only the individual

data (t23 = 5.562, p = 1.171× 10−5). Another advantage of the integration of group and

individual data is that it naturally deals with missing individual brain data. For brain

locations (voxels) where the individual data is missing, the group probability map will

dictate the parcel assignment.

3.2.2 Dataset-specific emission models optimally capture dif-

ferences in measurement noise

Different imaging datasets, or even sessions within a single dataset, often show different

signal-to-noise ratios. For instance, two different imaging sessions of the IBC data set

(Fig. 3.3a, Methods 3.4.2) show quite different levels of within-subject reliability, indica-

tive of different levels of measurement noise. A simple approach to modeling different

sessions from a single individual is to concatenate the data and model the two sessions

with a single emission model (Type 1 model, Fig. 3.3b). In this scenario, however, it

is possible that the second, noisier session will make the integrated model worse than
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Figure 3.3: Simulations of data fusion using two synthetic imaging sessions
with similar task activation. (a) The reliability map of two imaging sessions from
the IBC dataset with similar task sets (hcp1 and archi). (b) Type 1 model: sessions are
concatenated and will be learned in a single emission model. (c) Type 2 model: sessions
are separated and modeled using two separate emission models. (d) Reconstruction of
the true parcellation map using synthetic data, using Session 1 or 2 alone vs. the fusion
of both sessions using either model type 1 or 2. (e) The mean DCBC value of the group
map (using model type 1 or type 2) learned from Session 1 or 2 alone or from the fusion of
both sessions. (f) The mean DCBC value of individual parcellations. Error bars indicate
SEM (standard error of the mean) across 100 simulations.

the first session alone. Therefore, in a different version of the model (Type 2), each

imaging session was modeled with a separate emission model. This allows differences

in variability to be captured by a session-specific concentration parameter (e.g. κ1 for

session 1 and κ2 for session 2 in Fig. 3.3c). As long as the κs are estimated accurately,

the subsequent Bayesian integration will ensure the optimal weighting across the differ-

ent sessions. Therefore, even the addition of a low-quality dataset should never lead to

decreases in the quality of the integrated model.

To test for this behavior of the dataset-specific (Type 2) model, we generated two

synthetic datasets (sessions) sampled from the same set of subjects with similar task

activation but different overall noise variances, σ2
k (Methods 3.4.4). The measurement

noise was set to σ2
k = 0.5 for synthetic session 1 and to σ2

k = 0.8 for session 2. We then

learned group and individual parcellations using Type 1 or Type 2 models, either using
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each session alone or fusing both sessions. We tested the performance of all models on

an independent simulated test set (Methods 3.4.4), repeating the simulation 100 times.

The visual inspection of the group parcellations (Fig. 3.3d) suggests that the group

map trained on session 1 alone approximates the true map more accurately than using

session 2. The fusion of both sessions improved the group reconstruction, especially when

using separate emission models (Type 2). We evaluated the parcellation performances

quantitatively using the DCBC measure on the test set (Fig. 3.3e, 3.3f). Indeed, both

group and individual maps learned from session 1 (DCBC group=0.029, DCBC indi-

vidual=0.064) showed better performance averaged across 100 simulations than the one

using session 2 (DCBC group=0.016, DCBC individual=0.054). When we evaluated the

fusion parcellations, the DCBC value of the group and individual map learned by the

Type 1 fusion model improved by 0.004 (SD=3.752×10−3) and 0.005 (SD=3.781×10−3)

compared to dataset 1 alone, respectively. The parcellation performance of Type 2 fusion

further improves compared to Type 1 by 0.005 (SD=4.006× 10−3) for the group DCBC

and 0.004 (SD=4.666× 10−3) for the individual DCBC. These simulations demonstrate

that session-specific emission models allow for better fusion when the signal-to-noise level

differs across sessions or datasets.

3.2.3 Region-specific concentration parameters further improve

fusion parcellation

In empirically observed task-based fMRI data, the signal-to-noise level does not only

differ between sessions or datasets, but also between different regions within the same

session or dataset. Some sessions or datasets provide a better signal-to-noise ratio for

some functional regions and a lower signal-to-noise ratio for others. For example (Fig.

3.4a), the “Preference” session of the IBC dataset provided high within-subject reliability

in the motor areas, whereas the perspective taking “TOM ” session had high reliability

in language-related areas. Ideally, a probabilistic framework should account for these

differences and optimally combine the region-specific strengths of each dataset. To this

end, we introduced a third variant of our emission model (Type 3), which has a separate
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concentration parameter for each region and session (e.g. κ11,2,...,k for session 1 and κ21,2,...,k

for session 2 in Fig. 3.4b).

To test the ability of this model to pool information across distinct datasets with

different types of information, we conducted a second simulation by randomly dividing

all functional regions into two groups. Instead of a common signal-to-noise level for all

regions, we first created synthetic data in which one session had good signal-to-noise in

the first group and poorer signal-to-noise in the other (Methods 3.4.4). We reversed the

assignment for the second synthetic session. When we trained the model on Session 1 or

2 alone, there was high uncertainty of the cluster assignment in the area with low signal-

to-noise level (Fig. 3.4c – Individual training). This is no surprise, as the activation here

was too weak to detect the boundaries reliably.

Importantly, when combining the two sessions, the functional boundaries that were
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not detected based on single sessions became visible (Fig. 3.4c – Fusion). However,

both Type 1 and Type 2 models needed to compromise: when using session 1 to achieve

parcellation of the lower right corner, the same weighting was applied to the upper left

regions, decreasing the quality of the parcellation here. In contrast, model Type 3 allowed

different weightings in different parcels, using mostly information from session 1 for the

lower right parcels and mostly information from session 2 for the upper left regions. The

quantitative evaluation (Fig. 3.4d, 3.4e) suggests a clear advantage of model Type 3 for

both the group (improved 0.002, SD=3.324×10−3) and individual parcellation (improved

0.004, SD=3.831× 10−3). We also verified the Type 3 model did not perform worse than

Type 2 when two sessions had the same signal-to-noise level across all functional regions

(see Supplementary Fig. A.3). Overall, the model with region-specific concentration

parameters showed clear advantages when aggregating across sessions that differ not

only in their overall signal-to-noise level, but also in what regions they specifically provide

information for.

3.2.4 Model performance on real data and the choice of atlas

resolution K

We then attempted to validate the performance of the models on real imaging data.

Here, we first used the IBC dataset. This dataset is ideal to test the integration of data

from different sessions across the same participants, as it consists of 14 sessions some

of which have similar tasks while others do not (Pinho et al., 2018, 2020). We tested

the different model types, each time fusing two IBC sessions (C2
14 = 91 combinations) to

learn a probabilistic parcellation model with 17 parcels. The learned models were then

evaluated on the six other functional task-based fMRI datasets (see Tabel 3.1) in terms of

their group and individual parcellations. To evaluate the ability of the model to provide

individual parcellations, we split each evaluation dataset into two halves. The first half

was used to infer the individual parcellations Us for the participants of the test set. The

other half was used to calculate the DCBC value. We then reversed the role of the two

halves and averaged performance across the two cross-validation folds.
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We first confirmed that our probabilistic parcellation framework optimally learns

group parcellation across sessions when comparing the performance to the parcellation

learned from a single session. Specifically, all fusion parcellations showed substantial

improvement (Fig. 3.5a) over the best one learned on a single session (Type 1: t98 =

12.282, p = 1.513 × 10−21, Type 2: t98 = 18.749, p = 3.485 × 10−34, Type 3: t98 =

15.594, p = 2.698× 10−28). This improvement also held for individual parcellations (Fig.

3.5b, Type 1: t98 = 15.283, p = 1.100 × 10−27, Type 2: t98 = 14.198, p = 1.624 ×
10−25, Type 3: t98 = 9.353, p = 3.079 × 10−15). Additionally, we found the group

parcellations learned using session-specific emission models (Type 2) showed significantly

better performance than the ones learned by concatenating the data (Type 1) (t98 =

13.287, p = 1.196× 10−23).

Against our expectations, however, model Type 3 performed substantially worse on

real data when compared to model Type 2 for both group (t98 = −16.765, p = 1.521 ×
10−30) and individual (t98 = −6.269, p = 9.807 × 10−9) parcellations. This behavior

differed markedly from our simulation results (Fig. 3.4), where model Type 3 performed

consistently better. Further simulations suggested that this behavior can be explained
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by the choice of the number of parcels (K): when K was close to or higher than the

true number of parcels, model Type 3 outperformed model Type 2. If, however, K was

chosen to be smaller than the true K, model Type 3 started to yield inferior performance

(Supplementary Fig. A.4). In such cases, one parcel in model Type 3 typically had a very

low concentration parameter, effectively capturing all voxels that are unexplained by the

model. Model Type 2 constrains all functional regions to have the same concentration

parameter, preventing the model from developing a “residual” parcel.

This idea suggests that model Type 3 should improve or even outperform model Type

2 when K increases and approaches the true number of parcels. Unlike the simulation,

the true number of parcels in real data is unknown. We therefore estimated the fusion

models on every pair of two IBC sessions using K = (10, 17, 20, 34, 40, 68, 100). The

evaluation results (Fig. 3.5c,d) indicated that the performance of the model Type 3

indeed improved with increasing K. This improvement was also clearly observed in

individual parcellations (Fig. 3.5d), where the DCBC evaluation of the model Type 3

became as good as model Type 2 around K = 60 and showed a significant advantage

at K = 100 (t98 = 4.115, p = 8.059 × 10−5). A similar pattern exists in the group

map evaluation where the averaged DCBC value of 100 parcels substantially improved

compared to the ones with only 10 parcels (t98 = 28.191, p = 8.215 × 10−49). For up to

100 parcels, the fusion parcellation from model Type 3 did not appear to be superior to

the one from model Type 2 in group evaluation, however, we found this to be the case

when considering more datasets (see Fig. 3.6e).

Overall, across analysis scenarios, we confirm that estimating separate concentration

parameters for each session (Type 2) leads to better data fusion on real fMRI data. Addi-

tionally allowing a region-specific concentration parameter (Type 3) has both advantages

and disadvantages: If the model assumes a large number of parcels, parcellations can im-

prove. If, however, the assumed number of parcels is low, performance appears to be

better when constraining the concentration parameter to be the same across regions.
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Finally, we trained our fusion model on 6 of the 7 task-based fMRI datasets (Table

3.1). We reserved the MDTB dataset as a test set. The resultant group maps of both

models Type 2 and 3 showed the combined strength of the maps trained on individual

datasets. For example, only the group map derived from the Somatotopic dataset delin-

eated the foot region of the cerebellum (hemispheric lobule IV), while the ones derived
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from other datasets did not. The Fusion maps (Fig. 3.6a,b) veridically retained this

region. In contrast, the parcellation based on the Somatotopic dataset did not show a

good parcellation of lobules Crus I and II, but here the fusion map used information from

other datasets.

To evaluate the parcellations quantitatively, we calculated the DCBC on the left-

out MDTB dataset (Fig. 3.6c,d). Averaged across all Ks, all parcellations showed

positive DCBC values, which means that the functional boundaries learned from any of

the datasets generalized to some degree to the MDTB dataset. The best DCBC among

parcellations trained on a single dataset was for the WMFS dataset for model Type 2 and

for the Demand dataset for model Type 3. When we evaluated the fusion parcellations,

we found considerable improvements for both models Type 2 and 3 compared to the

best individual parcellation. For the fused parcellation using the model Type 2, both the

group DCBC (t23 = 2.339, p = 2.840× 10−2) and the individual DCBC (t23 = 3.173, p =

4.248 × 10−3) were considerably better than for WMFS. Similar improvement could be

observed for model Type 3, where the fused parcellation significantly outperformed the

best single-dataset parcellation (Demand) both in terms of the group (t23 = 7.049, p =

3.503× 10−7) and individual (t23 = 3.219, p = 3.800× 10−3) DCBC value.

Finally, we compared the fusion across the six task-based fMRI datasets directly

between models Type 2 and 3. For K = 10, both averaged group and individual DCBC

(Fig. 3.6e,f) were higher for model Type 2 than for model Type 3 (group: t23 = 0.726, p =

0.475; individual: t23 = 1.842, p = 0.078). But when K increased to 100, the fusion

parcellation for model Type 3 became substantially better than model Type 2 (group:

t23 = 4.551, p = 1.426 × 10−4; individual: t23 = 2.468, p = 2.144 × 10−2). The cross-

over occurred somewhere around K = 34, where models performed equivalently (group:

t23 = 0.210, p = 0.835; individual: t23 = −0.009, p = 0.993).
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3.2.6 Integrating resting-state data into the task-based parcel-

lation

Lastly, we investigated the fusion of resting-state and task-based data into a single par-

cellation atlas. To do so, we used the cortical connectivity profile for each cerebellar voxel

derived for 50 participants from the HCPUnrelated 100 dataset (see Method 3.4.2). As

we wanted to evaluate performance on a large range of task-based datasets, we trained

the model on 6 out of 7 task datasets and evaluated the performance on the left-out

task dataset. We then repeated this scheme for all 7 task datasets. The combined and

resting-state parcellations were also trained and evaluated in a similar approach (for the

resting-state parcellation, no dataset had to be left out).

Averaging the DCBC evaluations across models Type 2 and 3, the models trained on

the combination of resting-state and task-based datasets outperformed the ones trained

on resting-state or task-based datasets alone. For the group parcellation (Fig. 3.7a), the

combined model was significantly better than the one trained on resting-state (t110 =
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6.349, p = 4.983 × 10−9), and task-based datasets (t110 = 3.886, p = 1.745 × 10−4).

Similar results were found for individual parcellations (Fig. 3.7b, vs. resting state alone:

t110 = 7.625, p = 9.287× 10−12, vs. task-based alone t110 = 7.254, p = 6.027× 10−11).

3.3 Discussion

We developed a hierarchical Bayesian framework to learn probabilistic brain parcellation

by fusing data from both functional task-based and resting-state fMRI datasets. Our

work introduces two main innovations: First, by dividing the problem into a common

spatial arrangement model and a set of dataset-specific emission models, we are able

to optimally integrate information across many, quite heterogeneous, datasets. Second,

because the framework directly models individual differences in brain organization, it

provides not only a probabilistic group atlas, but also allows the user to obtain an optimal

estimate of brain organization for new individuals.

Learning functional brain parcellations across datasets. While most of the

current brain parcellations are generated using functional resting-state fMRI data, a

number of studies (King et al., 2019; Cole et al., 2014) suggest that boundaries derived

using resting-state data can differ systematically from those measured during task per-

formance. One possible interpretation of this finding is that the boundaries of functional

regions truly shift depending on the task the person performs (Salehi et al., 2020a).

However, given that there is a basic common organization that is stable across rest and

different tasks (King et al., 2019; Tavor et al., 2016), an alternative interpretation is that

the boundaries stay the same, but are more or less visible depending on the task sets or

mental states (such as rest) during which they are measured. This is obviously true for

task sets that emphasize one specific aspect of mental function (See Fig. 3.4a), but also

applies to resting-state data. For example, in resting-state data, the left and right-hand

regions are usually highly correlated and often end up in the same parcel. However, when

using a task set that contains both left and right unimanual movements, the two regions

are readily dissociated (King et al., 2019). Therefore, the integration of data from a large

array of tasks promises a more representative map of brain organization.
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Because there is no single, large task-based dataset that would cover all of the mental

functions, we developed here a framework that allows us to fuse data from a growing

number of deep-phenotyping task-based datasets with fewer participants (King et al.,

2019; Pinho et al., 2018, 2020; Nakai and Nishimoto, 2020; Assem et al., 2022). To make

data fusion feasible in a Bayesian framework, we deployed a series of emission models,

each one learns the specific characteristics of the corresponding dataset, including the

expected response for each brain region and their variability. The integration across

datasets is achieved through a common spatial arrangement model, which characterizes

the variability of the functional organization across individuals. As shown in the sim-

ulations (Results 3.2.2 and 3.2.3), this allows us to integrate the strength of different

datasets without inheriting their weaknesses. We can now deploy this framework to an

increasing number of real datasets, namely the “wide” datasets with many participants

(King et al., 2019), and “deep” datasets with only a few participants but a detailed char-

acterization of each studied individual (Nakai and Nishimoto, 2020; Pinho et al., 2018,

2020). Given the message-passing algorithm (Methods 3.4.1.4), the individual datasets

do not necessarily need to be hosted on the same server, but each dataset and emission

model can be housed separately. This architecture will promote the scaling of the ap-

proach as it allows for distributed computing across many sites, which will be necessary

to finally approach a “big-data” regime for learning complex models of functional brain

organization. The distributed nature of data storage also makes the framework more

suitable for clinical data, which for data privacy reasons often needs to remain within a

dedicated server infrastructure.

Individual vs. group parcellation maps. Group parcellation maps identify pat-

terns of functional organizations that are common and consistent across individuals.

Group parcellations are in common use, as they provide a consistent framework to ana-

lyze and report functional imaging data, and can be applied using only the anatomical

image from the individual. However, the boundaries between functional regions vary

substantially across individual brains (Braga and Buckner, 2017; Gordon et al., 2017a;

Kong et al., 2021), possibly biasing subsequent analysis (Bijsterbosch et al., 2018, 2019).

Recent studies suggest that the inter-individual difference may be even more pronounced
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in the human cerebellum (Marek et al., 2018). Therefore, using individual brain parcel-

lations has the potential to improve the precision and quality of subsequent analyses. A

major limitation, however, is that a substantial amount of individual data is necessary to

derive an individualized map of sufficient quality (Marek et al., 2018). In our study, we

found that 60 minutes of individual data were required to reach the same performance as

the group map, and more than 110 minutes were necessary to substantially outperform

it (see Results 3.2.1). For most studies, acquiring this amount of data for an individual

functional localizer would be prohibitive, explaining the persistent popularity of group

maps.

Different from previous approaches to leverage the group and individual parcellations

(Salehi et al., 2018; Zhang et al., 2021), our approach performs the combination in a

principled (Bayesian) way, weighting each part according to the respective uncertainty.

Even when using a very short functional localizer (10min), the resultant individual par-

cellation outperforms the group map. Relative to parcellation built on individual data

only, we found that the integrated estimate had a performance equivalent to using 100

min. Finally, the Bayesian approach also automatically deals with missing data from

individuals due to lack of coverage or signal dropout.

While we derived and tested the individual parcellations for participants included

in our training set, the model can also be used to derive individual parcellations on

completely new participants. This would only require researchers to estimate a new

emission model for the specific task set used for the functional localization data. In this

process, the parameters of the arrangement model, which was trained across datasets,

can be frozen. Therefore, an efficient estimation can be achieved even for small groups

of participants, and results can be interpreted in the framework of established atlases.

This approach makes individual functional localization in larger studies feasible, which

is important for practical and clinical applications.

Comparing dataset-specific and regions-specific uncertainty parameters.

The concentration parameter (κ) in each emission model dictates how strongly the re-

spective dataset is weighted, both when learning to determine the group parcellation

map, and when deriving an individual parcellation. In this paper, we tested three ways
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of estimating this concentration parameter: (a) we simply concatenated all sessions for

each subject, giving the entire dataset a single concentration parameter (Type 1); (b)

we used a separate emission model and, therefore, a separate concentration parameter

for each session (Type 2); and (c) we used a separate concentration parameter for each

session and region (Type 3).

We first showed that the model Type 2 performed better than model Type 1 in

capturing different levels of measurement noise from different sessions in both simulation

and real data (Results 3.2.2, 3.2.4). However, when we compared Type 2 (dataset-

specific) and Type 3 (region-specific) models, we found that each had specific advantages,

which is also dependent on the choice K, the number of parcels (Results 3.2.4). When

allowing separate concentration parameters for each session and region (Type 3), we can

account for the fact that some sessions may contain tasks that provide signals in some

areas, while other sessions may highlight other areas. This example clearly the case in the

IBC dataset (Fig. 3.4a). While in simulation, model Type 3 led to superior performance,

on real data it often performed worse than model Type 2. In model Type 3, we found

that when the assumed number of parcels (K) was smaller than the true number of

parcels, one region would be estimated to have a very low concentration parameter, such

that it could model all the residual, non-explained regions. Such a residual region led

to a more fragmented group parcellation (Fig. 3.6b) and an impaired evaluation of the

independent data.

However, the constraint of equal concentration parameters across all regions (model

Type 2) prevented this from happening. This led to compact clusters regardless of the

choice of K (Fig. 3.6a). Nonetheless, for large K, model Type 3 could outperform model

Type 2. The choice of emission model (Type 2 or Type 3) therefore will depend on

desired granularity of the parcellation and likely also the amount and quality of data

available. Our framework offers both implementations, allowing the user to choose the

correct algorithm in a context-specific manner.

Choice of datasets: task-based vs. resting-state fMRI. Our evaluation of

task-based and resting-state parcellations (Fig. 3.6) shows that both can predict the

functional boundaries measured in a left-out task set well above chance. A visual inspec-
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tion of the two parcellations (Supplementary Fig. A.5a,b), however, also reveals some

systematic differences (King et al., 2019; Cole et al., 2014). One important decision when

applying our framework is therefore which datasets to include. Our Bayesian framework

weights each dataset according to its reliability. Because different datasets will emphasize

different sets of functional boundaries, and because the true number of functional regions

is likely larger than the number of assumed parcels, each dataset will bias the final par-

cellation in a specific direction. A single large dataset could dominate the group map,

possibly reducing the predictive performance of other datasets. It is therefore important

to achieve a good balance between resting-state and task-based datasets highlighting dif-

ferent cognitive domains (Salehi et al., 2020a). Where this balance lies, or whether it is

preferable to have different brain parcellations for different functional states, remains a

research question that demands further attention.

Limitations and further developments. Being able to leverage an increasing

number of datasets will hopefully also allow the development of models that can learn

regularities in the spatial arrangement of functional regions in the human brain. In

this paper, we have used only the independent spatial arrangement model, which in

essence learns a probabilistic group atlas. In our framework, however, we can also use

models that make assumptions about the intrinsic smoothness of individual functional

parcellations, such as a Markov Random Field (MRF) spatial prior (Ryali et al., 2013;

Schaefer et al., 2018; Kong et al., 2019) with coupling parameters. As a further extension,

deep generative models, such as a deep Boltzmann machine (Salakhutdinov and Hinton,

2009), provide a promising avenue to actually learn the complex short- and long-range

dependencies in functional brain organization. While the emission models would remain

the same, both the E-step and M-step for the spatial arrangement model would rely on

an approximation through sampling. Training such models will require a large amount of

data, and our framework takes a critical step in this direction by enabling the integration

of a wide range of varied datasets.

Another direction for possible improvements is to explore other forms of emission

models. Here, we used a mixture of vMF distributions (Methods 3.4.1.2), which for

both resting-state and task-based data has been shown to perform considerably better
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than a mixture of multivariate Gaussians (Røge et al. (2017), Supplementary Fig. A.1).

In contrast to resting-state data, task-based data provide not only a direction of the

functional profile, but also a signal amplitude, as the experimental paradigm allows for

separate estimation of signal and noise. The signal amplitude could be potentially used

to distinguish between reliable and noisy brain locations: we found that the functional

profile at brain locations with larger signal magnitudes tended to be closer to the mean

response vector for that region. Nonetheless, the vMF model ignores this information

as each profile is standardized to unit length. During the development of the model, we

therefore experimented with weighted vMF models, in which the emission log-likelihood

from each brain location was weighted by its respective signal-to-noise level. In practice,

however, we found the final performance of the model did not improve enough to outweigh

the possible instabilities in the estimation of the weights. We then decided to stay

with the standard vMF mixture model for this paper. But, an emission model with

voxel-, region-, and subject-specific signal-to-noise parameters might be useful for certain

applications.

Conclusion. This article designs and evaluates a hierarchical Bayesian parcellation

framework for data fusion across heterogeneous data sources. In conjunction with a

collection of task-based and resting-state datasets which were preprocessed and stored

in a consistent manner, the framework enables optimal estimation of functional brain

organization across a range of diverse datasets. Here, we have applied the framework to

derive new functional maps of the human cerebellum - however, the same process could

be repeated nearly effortlessly for any other brain structure.

We anticipate that this framework will be useful for two reasons. First, the model

can provide individual functional parcellations for new subjects using very limited in-

dividual data. While normally individual parcellations require an extensive amount of

data (Marek et al., 2018), our framework makes it feasible to derive an individual region

definition of considerably better quality than a group map with 10 min of functional

localizer data. Secondly, the framework allows the optimal fusion of functional insights

using a range of different task-based datasets, thereby overcoming the limitation that

current task-based datasets are restricted both in terms of the breadth of their task
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battery and the number of subjects. The framework accurately quantifies the different

signal-to-noise levels across sessions and datasets, thereby providing an optimal weight-

ing for each. The resultant maps possess a combined strength in detecting the detailed

functional boundaries, outperforming the parcellations trained by single datasets.

3.4 Methods

3.4.1 A hierarchical Bayesian parcellation framework for data

fusion

We introduce here a hierarchical Bayesian framework that can be used to learn a prob-

abilistic brain parcellation across multiple fMRI datasets. The framework (Fig. 3.1)

consists of a group-based brain parcellation model (the spatial arrangement model), and

a series of dataset-specific emission models. The two parts of the framework are connected

by a message-passing and collaborative-learning process, making learning and inference

computationally efficient.

The framework is able to learn parcellations from a collection of data Ys,n recorded

from different subjects (s) during different experiments or sessions (n). Sn is the set of

subjects for the n-th experiment or session, and S := {S1 ∪ S2 ∪ ...∪ Sn} is the entire set
of unique subjects. The parcellation model assigns each of the P possible brain locations

in each individual s to one of K functional regions (here referred to as parcels). The

parcel assignment for the i-th brain location is denoted in the one-hot encoded vector

us
i , and collected into the K × P matrix Us. This individual brain organization is the

central latent variable in the model. The model estimates the expected value, ⟨Us⟩,
which provides a probabilistic parcellation for that individual - specifically ⟨us

i,k⟩ is the

probability that brain location i is part of the functional region k. Note that we use ⟨·⟩
to denote the expected value throughout.

The arrangement model provides a probabilistic group model of how likely a certain

parcel assignment to brain locations is across individuals, p(U;θA). This probability

depends on a set of (to-be-estimated) parameters of arrangement model (θA). In this
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paper, we use a spatial arrangement model that estimates these probabilities for each

brain location independently (Methods 3.4.1.3), and therefore effectively learns a group-

based probabilistic brain atlas (see discussion for further extensions).

Each emission model specifies the likelihood of observed data given the individual

brain parcellation, p(Ys,n|Us;θE). For each dataset/session, we introduce a separate

emission model with a separate set of emission-model parameters (θE). This allows

us to model the different task sets with different signal-to-noise levels inherent in each

experiment/session.

3.4.1.1 EM algorithm for Probabilistic parcellation with data fusion

We used an Expectation Maximization (EM) algorithm to optimize the parameters (θ) of

the hierarchical Bayesian model. For such models, the computation of the log-likelihood

of the data, log p(Ys;θ), is unfeasible given a large number of latent variables in the

model (here, these are the individual brain parcellations Us).

The key idea in EM is to introduce a proposal distribution over the latent variables

q(U), and then to optimize the Evidence Lower Bound (ELBO) of the model (Wainwright

et al., 2008; Blei et al., 2017). The ELBO provides a lower bound to the full likelihood

(over all datasets and subjects) that we want to optimize:

∑
s,n

log p(Ys,n;θ) ⩾
∑
s,n

⟨log p(Ys,n,Us;θ)⟩q − ⟨log q(Us)⟩q (3.1)

The first term of the ELBO is the expected complete log-likelihood L. Given the model

structure, this quantity can be further split into the expected emission log-likelihoods

LEn for each experiment or session and the expected arrangement log-likelihood LA as:

L =
∑
s,n

⟨log p(Ys,n,Us;θ)⟩q =
∑
s∈S1

⟨log p(Ys,1|Us;θE1)⟩q +
∑
s∈S2

⟨log p(Ys,2|Us;θE2)⟩q

+ ...+
∑
s

⟨log p(Us;θA)⟩q ≜ LE1 + LE2 + ...+ LA (3.2)

where the parameters are subdivided into those for the arrangement model, θA, and

those for each of the emission models {θE1,θE2, ...}. This division makes the parameter
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updates that can be performed independently for the arrangement and emission models.

In the expectation step, the ELBO is increased by updating the proposal distribution

q(Us) to the approximate posterior distribution, given the current set of parameters as

q(Us) = p(Us|Ys,1,Ys,2, ...;θ)

∝ p(Ys,1|Us;θE1)× p(Ys,2|Us;θE2)× ...× p(Us;θA). (3.3)

This step also allows us to calculate the expectation of the latent variables, resulting

in an estimate of the individual brain parcellations ⟨Us⟩q. In the maximization step, we

update these parameters using these estimated individual brain parcellations.

3.4.1.2 Dataset-specific emission models

One commonly-used choice for a model of fMRI data across regions is the Gaussian

Mixture Model (GMM) (Golland et al., 2008). However, the amplitude of fMRI brain

signals yi (whether or not they are normalized by the measurement noise) vary greatly

between datasets, participants, and brain locations. That is, two voxels in the same

region may have highly correlated signals, but the amplitude of one may be twice as

large as the other. Therefore, an increasing number of modeling approaches for resting-

state fMRI data use a mixture of von Mises-Fisher (vMF) distributions (Banerjee et al.,

2005; Ryali et al., 2013; Schaefer et al., 2018; Lashkari et al., 2010; Yeo et al., 2011).

It has been demonstrated that such a directional distribution outperforms the GMM in

modeling resting-state fMRI data (Røge et al., 2017). Here, we confirmed this is also

the case for task-based fMRI data: the vMF mixture model performed better in model

evaluation than the GMM (Supplementary Fig. A.1). We thus used the vMF mixture

as our primary emission model.

The probability density function of a N -dimensional (N ⩾ 2) vMF distribution for a

data point yi (∥yi∥ = 1) is defined as:

pN(yi|v, κ) = cN(κ) · exp(κv⊺yi) (3.4)
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where v denotes the mean direction (∥v∥ = 1), κ indicates the concentration parameter

(κ ⩾ 0). The normalizing constant cN(κ) is given by:

cN(κ) =
κ

N
2
−1

(2π)
N
2 IN

2
−1(κ)

(3.5)

where Ir(·) refers to the modified Bessel function of the r order. In a k-classes vMF

mixture, each of the 1 ⩽ k ⩽ K parcels is specified with the parameters {vk, κk},
where κk is the concentration parameter and vk is the mean direction vector. Because

any spatial dependency in the data is modeled through the arrangement model, these

emission log-likelihoods can be computed separately for each brain location i. For each

subject s and emission model n, we can calculate the data log-likelihood for each i brain

location as:

ℓs,ni,k = log p(ys,n
i |us

i (k) = 1;θEn) = log cN(κk) + κkvk
⊺ys

i (3.6)

We explored three variants of this model: (a) Type 1 model assumes that all ses-

sions of a single subject are concatenated and modeled with a single emission model;

(b) Type 2 model uses different emission models for different sessions from the same

participant (Fig. 3.1, Dataset 2). Evidence from different sessions of the same subject

is combined during the message passing (eq. 3.3). Different sessions have different con-

centration parameters κ, providing the possibility of adaptive weighting across sessions.

The concentration parameter, however, is assumed to be the same across all parcels; (c)

Type 3 model is identical to the Type 2 model, but employs a different concentration

parameter, κk, for each of the parcels. In the maximization step, the emission model pa-

rameters θE := {vk, κk} are updated by maximizing the expected emission log-likelihood

LE (Supplementary materials A.2).

3.4.1.3 The spatial arrangement model

The arrangement model aims to provide a (possibly not normalized, see discussion) prob-

ability measure p(U;θA) for each unique individual s (s ∈ S) in the studied population
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over a set of latent variables us
i , which indicates the affiliation of a certain brain location

i to a specific functional region k. We considered here the most basic architecture for

the spatial arrangement model, namely the independent arrangement model, where

different brain locations are considered to be mutually independent. In this case, the

spatial arrangement model learns the group probability at each location i across all sub-

jects belonging to a parcel k, denoted as p(ui(k)). We parameterize this model using a

group log-probability parameter ηi,k for each brain location i and parcel k:

p(ui(k)) =
exp(ηi,k)∑
j exp(ηi,j)

(3.7)

This arrangement model can be estimated using the EM algorithm for inference. In

the E-step, we calculate the posterior ⟨us
i (k)⟩q for each individual by integrating the log

evidence from the data and the group probability map ηi,k:

⟨us
i (k)⟩q = p(us

i = k|ys
i ;θA,θE)

=
exp(log p(ys

i |us
i = k;θE) + ηi,k)∑

j exp(log p(y
s
i |us

i = j;θE) + ηi,j)
. (3.8)

The arrangement model parameters θA := {ηi,k} are then updated in the M-step (Sup-

plementary materials A.6).

3.4.1.4 Message passing and collaborative learning

Since the full model breaks into different parts (Fig. 3.1), the learning algorithm can

be partitioned into separate E-steps and M-steps for arrangement and emission models

(Algorithm 1). The two parts then communicate through a message-passing process.

Specifically, if there are multiple emission models in the framework, each of the n emission

models calculates ℓs,ni,k (eq. 3.6) for each individual s.

During message-passing, the evidence for a single subject s is integrated across any

experiment/session that is available for this subject (e.g. Dataset 2 in Fig. 3.1),

ℓsi,k =
∑
n

ℓs,ni,k . (3.9)
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Algorithm 1: EM algorithm of the fusion framework
Input: K, fMRI data for subject s and experiment/session n {Ys,n, ...}, initial

emission model parameters θE
(0), initial arrangement model parameters

η
(0)
i,k

Output: the final estimated parameters η
(t)
i,k and ⟨us

i (k)⟩
(t)
q

1 Initialize: t = 0, tmax = 200, ∆ = 0.01

2 while t ⩽ tmax do

3 calculate emission log-likelihoods eq.3.6 for each experiment/session:

4 for n = 1 to N do

5 emission E-step for each available subject s in Ys,n using eq.A.2:

6 ℓs,ni,k
(t)

= log p(ys,n
i |us

i (k) = 1;θ
(t)
En)

7 end

8 sum emission log-likelihoods across experiments/session for each subject:

9 ℓsi,k
(t)

=
∑

n ℓ
s,n
i,k

(t)

10 arrangement E-step using Supplementary eq.A.4:

11 ⟨us
i (k)⟩(t)q =

exp(ℓsi,k
(t)

+ η
(t)
i,k)∑

j exp(ℓ
s
i,j

(t)
+ η

(t)
i,j )

12 calculate expected complete log-likelihood by summing up eq.3.10 and

eq.3.11:

13 L(t) = L(t)
A +

∑
n

L(t)
En

=
∑
s∈S

∑
i

∑
k

⟨us
i (k)⟩q(t) · ηi,k(t) +

∑
n

∑
s∈Sn

∑
i

∑
k

⟨us
i (k)⟩q(t) · ℓs,ni,k

(t)

14 check converge criterion:

15 if t ⩾ 1 and L(t) − L(t−1) < ∆ then

16 return η(t), ⟨us
i (k)⟩

(t)
q

17 end

18 arrangement M-step using Supplementary eq.A.6:

19 ηi,k
(t+1) ← log

∑
s

⟨us
i (k)⟩(t)q

20 for n = 1 to N do

21 emission M-step by eq.A.7, and eq.A.8 (Type 1, 2) or A.10 (Type 3)

22 θ
(t+1)
En ← argmaxθEn

L(t)
En(θEn)

23 end

24 t← t+ 1

25 end
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These combined emission log-likelihoods ℓsi,k are then collected and passed to the ar-

rangement model. The arrangement model then computes the posterior expectation

⟨us
i (k)⟩q (eq. 3.8) of the parcel assignment in each subject s, which are collected into

a K × P matrix ⟨Us⟩q. These quantities are then used to calculate the expected emis-

sion log-likelihoods LEn and the expected arrangement log-likelihood LA. In case of

an independent arrangement model, the expected arrangement log-likelihood LA can be

computed in closed form:

LA =
∑
s∈S
⟨log p(Us;θA)⟩q =

∑
s∈S

∑
i

∑
k

⟨us
i (k)⟩q · ηi,k. (3.10)

Similarly, the expected emission log-likelihood is calculated by multiplying the data log-

likelihood in eq. 3.6 with the posterior expectation (eq. 3.8) and summing these quanti-

ties over subjects, brain locations, and parcels:

LEn =
∑
s∈Sn

⟨log p(Ys,n|Us;θEn)⟩q =
∑
s∈Sn

∑
i

∑
k

⟨us
i (k)⟩q · ℓs,ni,k . (3.11)

The sum of these expected log-likelihoods L (in eq. 3.2) is then used as an objective

function to check the convergence.

In the implementation, the algorithm takes inputs of the fMRI datasets Ys,n (n =

1, 2, ..., N and s ∈ S) with the initial arrangement and emission model parameters, η
(0)
i,k

and θ
(0)
E . The parameters η

(0)
i,k were initiated randomly from a normal distribution. For

the initial emission model parameters, the mean direction vectors v
(0)
k were also drawn

from a normal distribution and normalized to be unit vectors. The initial concentration

parameters κ
(0)
k were randomly drawn from a uniform distribution between 10 to 150, as

we wanted to start with a “medium-sized” directional variance. After convergence, the

algorithm returns the estimated group parameters for arrangement and emission models,

as well as the posterior expectation ⟨us
i (k)⟩(t)q from the last iteration (t).
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3.4.1.5 Individual and group parcellations

Once the model is trained, the group probability map can be derived from the estimated

parameters of the spatial arrangement model. For the independent arrangement model,

the k-long vector of probabilities at each brain location is ⟨ui⟩ = softmax(η
(t)
i ). To

obtain a hard parcellation for later evaluation (Methods 3.4.5), we applied a winner-takes-

all approach assigning each brain location i to the parcel with the highest probability

(argmaxk⟨ui(k)⟩).
Individual parcellations can be obtained even for the individuals that were not part

of the model training by applying a single E-step, using the trained parameters and

their data. This procedure effectively integrates the individual data likelihood with the

group probability map. Since we assume an independent spatial arrangement model, the

posterior expectation for a location i of subject s can be exactly computed as,

⟨us
i ⟩ = softmax(log p(ys

i |us
i ;θE) + ηi). (3.12)

Similarly, a hard individual parcellation was then again obtained by assigning i to the

region with the highest probability, argmaxk⟨us
i (k)⟩. For the comparison reported in

Results 3.2.1, we also derived a parcellation only based on data likelihood without taking

the group probability into account:

⟨us
i ⟩ = softmax(log p(ys

i |us
i ;θE)). (3.13)

3.4.1.6 Initialization and convergence

As for most other complex non-convex optimization problems, local minima and slow

convergence also constitute a problem during learning in our framework. While each

emission model quickly learns a set of mean vectors vk that reasonably approximates the

respective dataset, the different parcels are not necessarily aligned across the datasets.

This is especially the case when the emission models are randomly and independently

initialized. As the arrangement model receives conflicting information from different

emission models, it can take a long time to bring the different emission models into
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alignment.

To solve this problem, it is sufficient to start the algorithm with a single down-pass of

information from the (randomly initialized) arrangement model to all emission models.

That is, during the first iteration of the loop, we skipped the calculation of the emission

log-likelihood (line 3-9) of the Algorithm 1, setting all ℓsi,k to zeros. This “pre-training”

helps to align the corresponding parcel assignments across all datasets.

A further technique to address the slow convergence is to initialize the model from

many different random starting points, and only perform a few learning iterations. After

this initial phase of learning, we picked the model with the highest expected log-likelihood,

and only completed the training until the likelihood increased less than (∆ = 0.01) in a

single step. We used 50 initializations, each trained for an initial 30 steps.

Finally, we repeated this entire process a minimum number of 50 times and then

continued until the solution with the highest likelihood was found at least 10 times in

independent learning runs. This increased our confidence that we indeed had found a

solution that could constitute a global maximum.

3.4.2 fMRI Datasets

In this project, we considered seven task-based and one resting-state fMRI datasets (see

Table 3.1). The task-fMRI datasets refer to: (1) theMulti-Domain Task Battery (MDTB,

King et al. (2019)); (2) a high-resolution version of the MDTB (High-res MDTB ; not

yet published); (3) the Nakai & Nishimoto dataset (Nakai and Nishimoto, 2020); (4) a

subset of the Individual Brain Charting (IBC) dataset (Pinho et al., 2018, 2020); (5) the

Shahshahni dataset (Shahshahani et al., 2023); (6) the Multi-Demand dataset (Assem

et al., 2022); and (7) the Somatotopic dataset (Saadon-Grosman et al., 2022). The first

four datasets of the list include a broad range of task conditions from the perceptual,

cognitive, motor, and social domains. In the first three datasets, tasks were randomly

intermixed in each imaging session. In the IBC dataset, individual runs comprised only

one task or a few tasks pertaining to a specific cognitive domain. The three last datasets of

the list probe a more circumscribed array of functions: the Shahshahni dataset includes

verbal working memory tasks (with forward and backward recall) and finger tapping
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Name Subjects
Unique
task con-
ditions

Functional
scan time
(min/subject)

Voxel
size
(mm)

Description DOI Reference

MDTB 24 62 240
3T,
3mm

Cognitive, motor,
perceptual, social

10.18112/openneuro.

ds002105.v1.1.0

King et al.
(2019)

Highres-
MDTB

7 9 120
7T,

1.5mm
Cognitive, motor,
perceptual, social

N/A N/A

Nishimoto 6 103 162
3T,
2mm

Cognitive, motor,
perceptual, social

10.18112/openneuro.

ds002306.v1.0.3

Nakai and
Nishimoto
(2020)

IBC 12 208 822
3T,

1.5mm
Cognitive, motor,
perceptual, social

10.18112/openneuro.

ds002685.v1.3.1

Pinho et al.
(2018);

Pinho et al.
(2020)

WMFS 16 17 65
3T,
3mm

Motor and
working memory

task
N/A

Shahshahani
et al. (2023)

Multi-
Demand

37 12 100
3T,
2mm

Executive Tasks N/A
Assem

et al. (2022)

Somatotopic 8 6 96
3T,

1.8/2.4mm
Motor N/A

Saadon-
Grosman

et al. (2022)

HCP-
Unrelated

100
100 none 60

3T,
2mm

Resting-state

https://www.

humanconnectome.

org/study/

hcp-young-adult/

data-releases

(Van Essen
et al., 2013)

Table 3.1: FMRI datasets used for the functional fusion. All datasets but the last
one are task-based, all of them together covering a wide range of psychological domains.
The last dataset is a subset of the HCP resting-state data.

tasks; the Multi-Demand dataset includes three executive function tasks (n-back, task-

switch, a no-go); and the Somatotopic dataset probes foot, hand, glutes, and tongue

movements. Lastly, as a resting-state fMRI dataset, we used the Unrelated 100 subjects,

which made publicly available in the Human Connectome Project (HCP) S1200 release

(Van Essen et al., 2013).

The task-based datasets were pre-processed using either the SPM12 software pack-

age (Wellcome Department of Imaging Neuroscience, London, UK) or the FSL library

(Analysis Group, FMRIB, Oxford, UK). For every participant, an anatomical MRI image

(T1-weighted MPRAGE, 1mm isotropic resolution) was acquired in one scanning session.

FMRI data (time series acquired with Echo-Planar Imaging, T2*-weighted sequence us-

https://www.doi.org/10.18112/openneuro.ds002105.v1.1.0
https://www.doi.org/10.18112/openneuro.ds002105.v1.1.0
https://doi.org/10.18112/openneuro.ds002306.v1.0.3
https://doi.org/10.18112/openneuro.ds002306.v1.0.3
https://doi.org/10.18112/openneuro.ds002685.v1.3.1
https://doi.org/10.18112/openneuro.ds002685.v1.3.1
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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ing Blood-Oxygenation-Level-Dependent contrast) were realigned for head motion within

each session, and for different head positions across sessions using the six-parameter rigid

body transformation (Friston et al., 1995; Jenkinson et al., 2002). The mean functional

image was then co-registered onto the anatomical image and this transformation was

applied to all functional images (Ashburner and Friston, 1997; Greve and Fischl, 2009).

No smoothing or group normalization was applied.

In parallel, the individual anatomical volumes were segmented into different tissue

types (Ashburner and Friston, 2005), and the whole-brain plus gray-matter masks were

derived from this segmentation. Each anatomical image was submitted to the standard

recon-all pipeline from the FreeSurfer software (Fischl, 2012) to obtain a reconstruction

of the individual cortical surfaces. Similarly, each anatomical image was processed using

SUIT (Diedrichsen, 2006), which provided cerebellar segmentation and normalization.

The cerebellar mask was derived from this segmentation and hand-corrected, whenever

necessary, to ensure that voxels from occipital and inferior temporal cortices were not

included.

A mass-univariate General Linear Model (GLM) was then fitted to the realigned

functional data to estimate brain activation per imaging run. Each task condition was

modeled as a boxcar function according to the onsets and duration of the given task

condition. The corresponding boxcar function was then convolved with the canonical

Hemodynamic Response Function (HRF) (Friston et al., 1998a,b). The whole-brain mask

was applied to the realigned functional volumes to restrict the GLM to voxels inside the

brain. Coefficients of the GLM were divided by the root-mean-square error (RMSE) for

each voxel, resulting in individual volume-based maps of normalized activity estimates.

These functional derivatives, obtained for each task condition and imaging run served as

input to the fMRI dataset integration framework (see Section 3.4.3).

The resting-state data were pre-processed using the HCP minimal processing pipeline

(Glasser et al., 2013), including structural registration, correction for spatial distortion,

head motion, cortical surface mapping, and functional artifact removal (Smith et al.,

2013; Glasser et al., 2013). For each imaging run, this resulted in 1200 time points of

processed time series for each voxel of the standard MNI152 template (Van Essen et al.,
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2012) in the cerebellum. To generate the resting-state functional connectivity (rs-FC)

fingerprint of the cerebellar voxels from the HCP data set, a group Independent Compo-

nent Analysis (ICA) was applied. We first concatenated the preprocessed functional data

temporally across subjects, sessions, and runs to create a single matrix. Then we used

the group-ICA implemented in FSL’s MELODIC (Jenkinson et al., 2012) with automatic

dimensionality estimation, resulting in 1072 group-level components. Sixty-nine signal

components were identified from the first 300 ICA components as resting-state networks.

Lastly, we regressed the 69 group network spatial maps into the subject-and-run-specific

cortical time series, resulting in 69 cortical network time courses. The cerebellar rs-FC

fingerprints were calculated as Pearson’s correlations of the cerebellar voxel time series

with each cortical network time course.

3.4.3 Data structure and anatomical normalization

One important barrier to integrating task contrasts across different fMRI datasets is that

these derivative measures are often stored in different atlas spaces (e.g. MNI, fsLR) and

with different naming conventions, requiring specialized code for each dataset. To address

this problem, we specified a data structure for fMRI derivatives using BIDS-derivative

naming convention and file standards (Gorgolewski et al., 2016). For each dataset, we

imported the task contrasts (estimates) for each subject, run, and condition that were

estimated from minimally pre-processed, non-normalized, and un-smoothed, fMRI data

(see Method 3.4.2). We then developed a toolbox that allowed the automatic and fast

extraction of this data in any desired atlas space (surface- or volume-based), at any

desired level of smoothing and aggregation across runs.

After extraction the resulting functional files are stored using the CIFTI format, re-

sulting in fast and efficient loading times. For the current project, we extracted the

cerebellar data in 3mm resolution, aligned to the MNI152NLin2009cSym template (Ciric

et al., 2022), resulting in 5446 voxel locations in group space. The sampled functional data

of all datasets were smoothed using a Gaussian kernel of 2mm standard deviation, except

the Somatotopic dataset that used a 3mm smoothing kernel. The proposed file structure

and code are available in a public repository (https://github.com/DiedrichsenLab/

https://github.com/DiedrichsenLab/Functional_Fusion
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Functional_Fusion). The parcellations were visualized using a surface-based represen-

tation of the cerebellum (Diedrichsen and Zotow, 2015).

3.4.4 Synthetic datasets for simulation

To validate the proposed framework, we ran several simulations (Results 3.2.2, 3.2.3)

on synthetic datasets. To generate individual brain organization maps (Us), we used a

Markov random field of rectangular 50× 50 grid with a 4-neighbor connectivity scheme.

Each grid point represented a brain location and could take one of K values (a.k.a Potts

Model (Wu, 1982)). We first generated an artificial smooth group probability map (Fig.

A.2a) by selecting K centroids µk at random locations, and assigning the bias parameters

of the spatial arrangement model ηi,k for the node a location xi to be:

ηi,k = −
|xi − µk|22

2σ2
µ

(3.14)

where σ2
µ controls the smoothness of the group map (see Supplementary Fig. A.2b).

The individual maps Us were then sampled from the Potts model where the local

probability ψi,j between two vertices i and j was set to

ψi,j = exp(θw · u⊺
iuj · wi,j), where u⊺

iuj =

1; if ui = uj

0; otherwise.

(3.15)

The pairwise weight of two vertices wi,j (wi,j = wj,i) indicates whether i and j are neigh-

bouring vertices (wi,j = 1 if i and j are neighbours; wi,j = 0 otherwise). The temperature

parameter θw controls how strong the spatial co-dependence between neighbouring ver-

tices is. A higher θw encourages that the two neighbouring nodes are more likely to be

assigned to the same parcel, enforcing the overall local smoothness of the map (Supple-

mentary Fig. A.2c). Ultimately, the individual maps were generated using vertex-wise

Gibbs sampling after a burn-in of 20 iterations across all vertices.

We then generated synthetic functional data Ys for each participant based on their

individual parcellation maps. Rather than using a von Mises-Fisher distribution, we

https://github.com/DiedrichsenLab/Functional_Fusion
https://github.com/DiedrichsenLab/Functional_Fusion
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wanted to generate data that had both an amplitude and direction. Additionally to the

region-specific mean direction of the response vk, we therefore introduced a non-negative

region-specific signal strength parameter, λk. The data for each voxel was generated

from:

yp = λkvk + ϵ (3.16)

where ϵ was a normal random vector with variance I ·σ2
k. These parameters allowed us to

control the signal and noise levels in each region separately. After normalization of the

data to unit length, the generated data conformed approximately to a von Mises-Fisher

distribution with mean vk and concentration κk = λ2k/σ
2
k. Ultimately, a synthetic dataset

consisting of N task observations was generated for P brain locations and S subjects.

For the simulation in Results 3.2.2 and 3.2.3, the bias terms for the Potts model were

generated with σ2
µ = 120, while the true number of parcels in the group map and fitting

model were both set to K = 20. Then, we sampled 10 individual maps Us from the group

map with local connection weights wi,j = 1.5. These individual maps are further used to

sample synthetic data from two sessions Ys,1 (session 1, N = 40 tasks), Ys,2 (session 2,

N = 20 tasks) and a test set Ys
test (N = 120 tasks) with equal signal strength λk = 1.1

for all functional regions. The λk might be changed depending on specific simulations

(see Results 3.2.2 and 3.2.3).

3.4.5 Evaluation measures for probabilistic atlas

The distance-controlled boundary coefficient (DCBC, Zhi et al. (2022)) is an unbiased

evaluation criterion for brain parcellation, which allows the direct comparison of brain

maps generated from different modalities (i.e resting-state, task-based, and anatomical)

and different number of parcels. The coefficient controls for the intrinsic smoothness of

brain data, which is biased in other evaluation metrics (Gordon et al., 2016; Rousseeuw,

1987). The DCBC method solves this problem by binning all vertex pairs based on their

spatial distance and only comparing the Pearson’s correlation for within-parcel pairs

and between-parcel pairs for the same distance. Then, the DCBC value is calculated as
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the average correlation differences, weighted by reliability across distances. The spatial

distance is calculated as the Euclidean distance between the center of each voxel pair in

the atlas volume space. The underlying functional profiles for calculating the correlations

of voxel pairs are the associated betas weights in a task-based dataset. A higher DCBC

value of a parcellation indicates that this parcellation predicts the functional boundaries

well on the tasks of the dataset being used.

3.4.6 Computational setup

Model training and evaluations were performed on either an NVIDIA 1080Ti GPU with

Python 3, CUDA 11.3, and PyTorch 1.10.2 or on NVIDIA GRID A100-10C GPU with

Python 3, CUDA 11.6, and PyTorch 1.13.1. For the fMRI datasets, all data were pre-

processed and extracted on an Intel i7-8700 CPU with NumPy 1.24.0, NiBabel 4.0.2,

neuroimagingtools 0.5.0. Other detailed requirements and parameters used for the data

processing pipeline are available in the respective repositories (see Code availability).

3.5 Data availability

The raw data for the fMRI studies used in this project are publicly available on https:

//openneuro.org/ for the studies listed in Table 3.1.

3.6 Code availability

The code for the hierarchical Bayesian parcellation framework is publicly available as the

GitHub repository https://github.com/DiedrichsenLab/HierarchBayesParcel. The

organization, file system, and code for managing the diverse set of datasets is available

in a separate repository https://github.com/DiedrichsenLab/Functional_Fusion.

The paper-specific code for generating the functional probabilistic parcellations for the

cerebellum, as well as running the simulation presented in this paper is available at

https://github.com/DiedrichsenLab/FusionModel.

https://openneuro.org/
https://openneuro.org/
https://github.com/DiedrichsenLab/HierarchBayesParcel
https://github.com/DiedrichsenLab/Functional_Fusion
https://github.com/DiedrichsenLab/FusionModel


Chapter 4

Spatially-informed models for

individual brain parcellations

4.1 Introduction

Traditional parcellation approaches primarily rely on group-level analyses (Yeo et al.,

2011; Shen et al., 2013; Glasser et al., 2016), which emphasize shared patterns across

individuals. These approaches, however, obscure the significant individual variations in

functional organization (Eickhoff et al., 2018; Bijsterbosch et al., 2020). These differ-

ences, echoing an individual’s unique functional pattern, are critical for understanding

the spectrum of individual cognitive functioning. However, the individual neuroimag-

ing data is often insufficient and compounded by inherent measurement noise. These

limitations frequently restrict our ability to obtain a reliable and accurate individual

parcellation, capturing the unique variability at the individual level. As a result, un-

derstanding and exploring individual variability becomes a significant challenge in brain

parcellation studies.

Another challenge for individual brain organization study is intrinsic spatial depen-

dence (Laumann et al., 2015; Glasser et al., 2016; Kong et al., 2019). The intrinsic spatial

dependence or smoothness of the functional organization arises because nearby brain lo-

cations are more likely connected to each other than far-away brain locations. This is

due to the fact that short-range neuronal connections are metabolically and developmen-
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tally much cheaper than long-range connections, and are therefore much more frequent

in the human brain. As a consequence, the neighboring brain locations tend to exhibit a

higher functional similarity compared to far-away pairs (Zhi et al., 2022). However, the

influence of this intrinsic smoothness is not adequately accounted for in most parcellation

methods, which leads to a generally poor and noisy reconstruction of individual parcel-

lations. Therefore, a comprehensive approach to individual brain parcellation should not

only account for the unique functional patterns of variability across individuals but also

appropriately incorporate the spatially smoothed nature of the functional organization.

Y1 Yi

h1 hj

u1 ui

Data Inputs Y

Parcellation layer U

Hidden layer H

Figure 4.1: The multinomial-restricted Boltzmann machine (m-RBM) spatial
arrangement model.

In Chapter 3, I have presented a Bayesian framework that results in improved in-

dividual parcellations (Zhi et al., 2023). The improvement is achieved by a Bayesian

integration of the (noisy and limited) individual data and a spatial group map. Here in

Chapter 4, I extend this framework to account for the spatial co-dependency between

brain locations. For this, I will replace the independent spatial arrangement model

in the hierarchical Bayesian framework with a novel computational architecture: the

multinomial-restricted Boltzmann machine (m-RBM) (Fig. 4.1). This structure captures

the intrinsic spatial dependence between brain locations. The m-RBM is a multinomial

extension of the deep restricted Boltzmann machine (RBM, Methods 4.4.1). Instead of
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binary units, the latent nodes used to simulate brain locations (voxels) are designed to be

multinomial variables to account for a probabilistic measure. Compared to previous work

model spatial dependencies through a Markov Random Field model (Ryali et al., 2013;

Schaefer et al., 2018), the m-RBM model has an advantage in computational speed, as we

can use layer-wise Gibbs sampling and variational approximation. This advantage arises

from the fact that the nodes are conditionally independent within a layer (Discussion

4.3).

Then, we first validated the m-RBM model through an exhaustive simulation and

found a significant advantage of the m-RBMmodel compared to the independent model in

estimating individual parcellations with intrinsic spatial dependencies. We also show that

the performance of predicted individual parcellations cannot be improved by imposing

smoothness directly on the data. Lastly, we tested the ability of the m-RBM model to

improve the quality of individual parcellations on the neocortical data from the openly

available fMRI dataset.

4.2 Results

4.2.1 m-RBM model captures spatial smoothness better than

the independent model when estimating individual par-

cellations

To demonstrate the characteristics of the model, we first sampled brain organization maps

from an independent arrangement model and from the new m-RBM (Fig. 4.2a). Both

used a smooth group probability map with 5 regions. The samples from the independent

arrangement model were - despite the smooth group map - spatially highly fragmented

(Fig. 4.2a, Independent). In contrast, samples from the m-RBM model showed contigu-

ous regions (Fig. 4.2a, m-RBM ). Note that in this simulation, the marginal probability

between the two models was matched (Fig. 4.2a,Marginal probabilities). In the next step,

we sought to determine whether the m-RBM model outperforms the independent model

in improving the performance of individual parcellations when the data is generated from
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the spatially dependent (m-RBM) model.

To this end, we performed a simulation on the synthetic training and test dataset sam-

pled from the same set of subjects by a modified restricted Boltzmann Machine (RBM)

(Methods 4.4.5). We first trained the learning framework using the independent model

(Zhi et al., 2023) with the ground truth emission model on the synthetic dataset (Methods

4.4.5). During the learning, we froze the emission model to only provide the true data

log-likelihood for each training iteration to avoid introducing unnecessary uncertainty.

We then calculated the individual parcellations from the proposed m-RBM model with

true parameters using the same routine. Lastly, we evaluated the performance of recon-

structed individual parcellations estimated by different models on an independent test

set for comparison. The evaluation metric for this simulation includes DCBC (Meth-

ods 4.4.6.1), the mean prediction error between the true and reconstructed parcellations

ϵ̄|U−Û| (Methods 4.4.6.2), and mean adjusted expected cosine error ϵ̄Acosine (Methods

4.4.6.3). We repeated this simulation 100 times.

The simulation first confirmed our results in Chapter 3 (Results 3.2.1): the predicted

individual parcellations estimated by the independent model are substantially better

than the ones based on data only. This can be seen in a visual inspection of a recon-

structed individual map derived from the independent model (Fig. 4.2b, Independent +

unsmoothed data) compared to using data only (Fig. 4.2b, Data only), where the former

map shows more clear reconstruction to the true map (Fig. 4.2b, True). The evaluation

of the mean expected prediction error (Fig. 4.2c) for the individual parcellations also

shows a significantly lower value than the “data only” parcellation when compared to

the true map (t99 = −1734.161, p = 1.039× 10−223).

Importantly, however, the parcellations are further improved using the m-RBMmodel.

When visually comparing a reconstructed parcellation derived from the m-RBM model

(Fig. 4.2b, m-RBM + unsmoothed data) to the one derived from the independent model

(Fig. 4.2b, Independent + unsmoothed data), we can see not only a better estimation

to the true map, but its associated probability map also shows less uncertainty between

the boundaries. Quantitatively (Fig. 4.2c), the estimated individual parcellations from

the m-RBM model show significantly lower prediction error compared to the ones from
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reference the performance of the data only (black dotted) and the noise floor (gray solid
line) are shown. The error bar indicates the SEM across 100 simulations.
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the independent model (t99 = −316.112, p = 1.519 × 10−150). This advantage over the

independent model is also confirmed by the other two evaluation methods (Fig. 4.2d,e),

the mean adjusted expected cosine error (t99 = −298.376, p = 4.589 × 10−148) and the

DCBC (t99 = 220.495, p = 4.439× 10−135), respectively.

Data smoothing is a commonly-used strategy to deal with the problem of lower quality

of individual parcellation by enhancing the signal-to-noise ratio of the data to reveal the

underlying patterns. Therefore, we trained the independent model on different levels of

smoothed synthetic data (Methods 4.4.5), and then estimated the individual parcellations

using the same data. While the reconstruction accuracy of the individual maps was

improved by using smoothed data, the peak performance was still lower than the one

estimated by the m-RBM model using un-smoothed data. In simulation results (Fig.

4.2c), we found that a light smoothing of data improved the performance of individual

parcellations derived from the independent model and reached its best performance at

around σ = 0.5, which was significantly better than using un-smoothed data (⟨ϵ̄|U−Û|⟩q:
t99 = −255.688, p = 1.956 × 10−141). However, the estimated individual parcellations

from the m-RBM model with un-smoothed data still substantially outperformed this best

performance of the independent model (⟨ϵ̄|U−Û|⟩q: t99 = −163.642, p = 2.708 × 10−122).

A similar pattern can be observed in both mean adjusted expected cosine error (ϵ̄Acosine:

t99 = −171.720, p = 2.335 × 10−124) and DCBC ( t99 = −96.923, p = 6.422 × 10−100)

evaluations (Fig. 4.2d,e).

When we increase the smoothing level of the data, the reconstructed accuracy of the

parcellations by the independent model continuously decreased and becomes even worse

than the ones using un-smoothed data at around σ = 1.5 (⟨ϵ̄|U−Û|⟩q: t99 = 31.583, p =

1.688 × 10−53; ϵ̄Acosine: t99 = 62.525, p = 2.216 × 10−81; DCBC: t99 = −64.926, p =

5.796 × 10−83) (Fig. 4.2c,d,e). Overall, this simulation shows a systematic advantage

of the m-RBM model over the independent arrangement model in predicting individual

parcellations when the data has an intrinsic spatial structure. A moderate smoothing

of data can enhance the performance of maps derived from the independent model, but

the outcomes are still substantially behind those achieved using the m-RBM model.

Moreover, overly-smoothed data can lead to opposite results, producing parcellations
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that are even worse than those derived from un-smoothed data.

4.2.2 Convergence problems when training the m-RBM model

In the previous simulation, we fixed the parameters of the m-RBM model to the ground

truth to demonstrate that it can outperform the independent model in the best-case sce-

nario. However, in the real fMRI data, we do not have the luxury of knowing the ground

true model parameters. Thus, the convergence of model training has to be validated

through the simulation. Here, we relaxed the two parameters of the m-RBM model,

θm-RBM := {ηk, θw}, can be freely estimated during each learning epoch, and compared

the estimated parameters whether converge to the ground truth. To this end, we repeated

the simulation 10 times with the parameters ηk and θw learned from random initializa-

tion, where ηk were initialized from the normal distribution with a zero mean and θw was

uniformly generated between 0 to 5, respectively.

Surprisingly, the simulation shows that the 10 learning epochs converged to very

different values (Fig. 4.3a,b). Additionally the mean θ̂ws overestimates the the true θw.

However, when we monitored the model marginals, the estimated marginal probabilities

converged to the true value across all learning epochs, indicating the m-RBM model

has successfully learned the underlying data distribution. This can be validated by

calculating their L2 norms during the learning, which converged to a place close to zero

with an expected bias (Fig. 4.3c). The irreducible bias is caused by the noise in the data

observations since the inputs to the model are the synthetic functional data sampled

from emission models instead of the true individual parcellations. We then compared the

estimated marginals to the ones learned by the independent model using the same data

(Fig. 4.3c, red dotted line), and found that the marginals converge to the same place.

Therefore, this learning behavior in the simulation revealed a convergence issue of

the m-RBM model training. This is a common issue when training complex deep neural

networks based on contrastive divergence (Sutskever and Tieleman, 2010) and can be

illustrated by a flat curve of the objective function (Fig. 4.3d, solid line). The learn-

ing process will then converge to multiple combinations of parameters θw and η, each

corresponding to a different local minimum of the error surface (Fig. 4.3d, red dots).
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Figure 4.3: Simulation of the convergence issue when training m-RBM model.
(a) The estimated model parameter θ̂w for all 10 simulations learned from random ini-
tializations compared to the ground truth θw = 1.2 (black dotted line). (b) The L2 norm
between the estimated group probability parameter η̂ for all 10 simulations learned from
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probabilities of the 10 simulations to the true marginal probability. (d) The illustration
of the convergence issue, where each estimated θ̂w has a corresponding ηk on the learning
curve. (e) The DCBC evaluation of the estimated individual parcellations from all 10
simulations with different estimated θ̂w on an independent test set. The true θw = 1.2
(black dotted line). The red dotted line is the averaged DCBC value of individual par-
cellations estimated from the m-RBM with the ground-truth parameters. The error bars
indicate the standard error of the mean (SEM) across 30 individuals.

We then investigated to what extent this model convergence issue influences the per-

formance of the estimated individual parcellations, especially the overestimation of the

overall connection strength θw. To this end, we calculated the DCBC values of the esti-

mated individual parcellations across all 10 simulations with “freely learned” parameters

to the ones learned from the model with fixed true parameters on the independent test
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set (Methods 4.4.5). The result (Fig. 4.3e) suggested that there are no significant dif-

ferences in performance between the two if the estimated θ̂w is close to the true one

(t29 = 0.209, p = 0.836, in case of θ̂w = 1.3). In contrast, this performance of individual

parcellations experienced a consistent decrease with an overestimated θ̂w and became

significant starting around θ̂w = 2.15 (t29 = 2.697, p = 1.154×10−2) and further dropped

with larger estimation. Together in this simulation, the training of the m-RBM model

is subject to a convergence issue. Therefore, we decided to fix the parameter θw by a

pre-defined range of linear search to make the training of the m-RBM model successful

on the empirical fMRI data (Results 4.2.3).

4.2.3 Smoothing does not improve the estimation of individual

functional boundaries on real fMRI data

With the validation in the previous simulation, we sought to estimate individual parcel-

lations using the m-RBM model on the real fMRI data to determine whether we can get

improvement compared to the ones derived from the independent model. Here we used

the MDTB (King et al., 2019) task-based fMRI dataset (Methods 4.4.4), which contains

two independent task sets, and deployed the hierarchical Bayesian framework (Zhi et al.,

2023). We first obtained the individual parcellations on the first task test using the

m-RBM model by fixing the parameter θw within a range of 0.1 to 4 to find the best

training performance (Methods 4.4.3). Then, we estimated the individual parcellations

of the same task set using the independent model on the un-smoothed or smoothed data

with different smoothing levels (Methods 4.4.4). Lastly, we tested the performance of

these estimated individual parcellations in predicting the functional boundaries of the

same subjects in the second independent task set of the MDTB dataset by calculating

its DCBC evaluation metric. We then reversed the role of the two task sets and averaged

performance across the two cross-validation folds.

We first confirmed that the performance of individual parcellations derived from the

independent model using the real fMRI data (MDTB dataset) constantly decreased by

increasing the data smoothing level (Fig. 4.4b, blue line). To statistically evaluate the
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Figure 4.4: Comparison of individual parcellations estimated by the m-RBM
vs. independent model using MDTB dataset. (a) The DCBC evaluation of
individual parcellations derived from the m-RBM model using different temperature pa-
rameters θw from 0.1 to 4. (b) The DCBC evaluation of individual parcellations derived
from the independent model using data with different levels of smoothing, ranging from
0 to σ = 7. (c) The visualization of the estimated individual parcellations where two
neighbouring functional regions are colored. The error bars in (a) and (b) indicate the
SEM of DCBC across the 24 evaluation subjects.

decreasing parcellations performance with respect to the smooth levels, we conducted a

repeated-measures analysis of variance (ANOVA) across the 8 smoothing levels, ranging

from un-smoothed σ = 0 to σ = 7 (Methods 4.4.4). Similar to what we observed in

the simulation, the DCBC values of the 24 individual parcellations show a significant

decrease for the larger data smoothing levels (F 7
161 = 447.55, p = 4.861 × 10−102). A

visual inspection of the estimated functional boundaries between two example regions

(Fig. 4.4c, blue and yellow parcels) also shows that the boundaries tend to get smoothed

and shifted with larger data smoothing level. Although this experiment did not observe a

performance boost due to light smoothing, as has been shown in the previous simulation,

we sought a possible explanation that could relate to pre-processing steps for the surface-

based cortical data. These steps have already applied a significant amount of smoothing

for the MDTB dataset. As a result, the processed un-smoothed data has likely reached

or passed its peak performance. This could explain why additional light smoothing does

not enhance the performance further (Discussion 4.3).

In contrast, we sought to determine whether the advantage of the m-RBM model
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shown in the simulation can be replicated when training individual parcellations using

real data. To this end, we tended to find the best m-RBM training model with the

highest performance of their estimated individual parcellation. Since the model train-

ing is subject to a convergence issue (Result 4.2.2), we fixed the parameter θw to a set

of values during the training. Within the range of θw = 0.1 to 4, we found that the

performance of individual parcellations derived from the m-RBM model continuously

decreased with a larger temperature parameter θw (Fig. 4.4a). The peak performance

of the estimated individual parcellations is at the minimum value θw = 0.1 with a mean

DCBC of 0.290 (SEM=0.008). However, when comparing this peak performance of in-

dividual parcellations from the m-RBM model (Fig. 4.4b, red dotted line) to the ones

estimated by the independent model using un-smoothed data (Fig. 4.4b, blue error-

bar at σ = 0), we found the performance of individual parcellations were not improved

(t23 = −5.065, p = 3.972× 10−5). Therefore, we did not observe the expected advantage

of the m-RBM model when training individual parcellations over the independent model,

using the pre-processed MDTB cortical data.

4.3 Discussion

In this project, we developed a novel computational architecture, namely the m-RBM ar-

rangement model, based on a restricted Boltzmann machine to estimate individual brain

functional parcellations. Importantly, this architecture models the spatial co-dependence

between neighboring brain locations by between-layer connection, rather than imposing

smoothness directly to the functional data. We confirmed the advantage of using the

m-RBM model for learning accurate individual parcellations compared to the previous

model that assumes brain locations are spatially independent through a simulation. Our

experiment results on both simulation and empirical data also suggested that the per-

formance of individual parcellations cannot be improved by learning largely-smoothed

data.

Studying intrinsic spatial dependence in the neocortex using surface rep-

resentation. Intrinsic spatial dependence The intrinsic spatial dependence between
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brain locations reflects the biological nature of the brain, primarily shaped during neural

connectivity development. Throughout this process, spatially nearby neurons typically

establish more robust communication pathways with each other, contributing to a higher

degree of functional similarity compared to far-away neuron pairs. However, this phe-

nomenon can manifest differently when examining the brain using fMRI imaging. For

instance, voxel pairs that are spatially close to other but separated by structures could

show a low functional correlation, such as one voxel in the neocortex and another one

belonging to the cerebellum. Therefore, in the exploration of the brain’s intrinsic smooth-

ness, it’s important to take into account different brain structures.

Among all brain structures, the neocortex is the largest part of the human cerebral

cortex with billions of neurons, handling most of the functions in the brain. When we

look at the cortical anatomy, the gray matters (neurons) live in a highly folded surface

structure. Notably, compared to the gray matter in the cerebellum forms thin and tightly

folded layers, the cortical neurons are organized into a thick and convoluted sheet between

the pial and white surface. By unfolding this cortical sheet, we can map the neurons

of the cortex to a surface, resulting in surface-based representations that have been

developed to benefit the subsequent analyses (e.g. fsaverage cortical mesh, Fischl (2012)).

Compared to the volumetric image, the surface-based representation measures the spatial

dependencies of cortical neurons more precisely. For example, two spatially nearby voxels

between cortical sulci are expected to show higher functional connectivity. But they could

exhibit lower similarity because, in fact, they have relatively large distances along the

cortical sheet. Together, these form our motivation and the importance of studying

the spatial dependence of the neocortex using an unfolded and smoothed surface-based

representation.

Considering spatial smoothness for estimating individual parcellations. By

considering spatial dependencies, we can identify spatially contiguous functional regions,

leading to a more meaningful brain subdivision (Schaefer et al., 2018). This is especially

important for estimating individual-specific networks due to individual variations. Pre-

vious studies have reached a consensus that a practically-useful brain parcellation should

be spatially contiguous (Kaas, 1987; Amunts and Zilles, 2015), while recent works (Yeo
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et al., 2011; King et al., 2019; Zhi et al., 2022) also show that neighboring brain regions

often share similar functions or contribute to the same cognitive processes. But if the

estimated individual parcellations only emphasize functionally similar regions without

showing intrinsic smoothness, it may lead to fragmented and discontinuous parcels that

undermine the interpretability and overlook the spatial continuity of neuronal circuits.

Hence, the individual variability in brain functional organization, which is a key feature

of the human brain, might not be properly captured. Therefore, when estimating indi-

vidual parcellations, it is important to take into account the spatial proximity of regions

to capture their functional relationships accurately.

To this end, a computational architecture to estimate individual parcellations that

incorporates the spatial dependence of the brain locations helps for accounting for inter-

individual variability (Bijsterbosch et al., 2018; Cachia et al., 2018; Kong et al., 2019).

Unlike the group parcellation is able to inherit the spatial smoothness across the stud-

ies population, the individual parcellation methods usually suffer from limited individ-

ual data to reconstruct an accurate functional localizer (Marek et al., 2018; Zhi et al.,

2023). Some pioneering works (Kong et al., 2021; Zhi et al., 2023) improved individual

parcellation by imposing spatial arrangement information as a prior within a hierarchi-

cal Bayesian framework, resulting in better performance and behavioral prediction as

an individual functional localizer. However, these imposed spatial priors are usually

pre-computed (Schaefer et al., 2018) or learned across subjects by assuming the brain

locations are spatially independent (Zhi et al., 2023), prohibiting adaptive learning of

the spatial arrangement topography to benefit the individual parcellation improvements.

Therefore, a novel computational model that simultaneously addresses intrinsic spatial

dependence and individual variability demands further development.

Computational efficiency of the m-RBM model. Our proposed m-RBM model

was developed from an RBM architecture so that it inherits the advantage of RBMs in

computational speed. This advantage is pronounced when compared to other computa-

tional architectures in brain parcellation tasks, such as Markov Random Field (MRF)

Ryali et al. (2013); Schaefer et al. (2018). Although we did not run a direct speed com-

parison in this project, the m-RBM indeed takes much less time than the MRF in training
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the same dataset from a theoretical point of view. Traditional RBMs are energy-based

models with a bipartite structure (Hinton et al., 2006), comprising a visible layer and a

hidden layer, where no intra-layer connections are allowed. In the m-RBM model, these

two layers have all become hidden layers without intra-layer relations. The intrinsic spa-

tial dependencies are incorporated through the connectivity weights and modeling using

the latent variables. This architecture enables efficient layer-wise Gibbs sampling, where

all nodes within a layer can be updated simultaneously. This makes sampling in RBMs

highly parallelizable, which can considerably speed up the computation when leveraging

modern hardware architectures, such as GPUs.

In contrast, MRF (Kindermann and Snell, 1980) is a single-layer architecture that in-

tegrates local spatial structures by modeling the dependency between neighboring modes,

aligning with the inherent characteristics of brain organization. But, it often necessitates

a more computationally intensive node-wise sampling approach. In MRFs, each node is

directly influenced by its neighboring nodes, requiring the consideration of the overall

network state when updating each node and preventing parallelization. Consequently,

MRFs typically involve a higher computational cost and longer convergence times. This

makes RBMs more suited for large-scale and high-dimensional problems, such as brain

parcellation tasks, where computational efficiency and scalability are of utmost impor-

tance.

The m-RBM model does not improve the individual parcellations using

MDTB dataset. In the simulation (Results 4.2.1), we showed that a “lightweight” data

smoothing helps in improving the performance of the estimated individual parcellations.

This is a simple and commonly-used approach to increase the signal-to-noise level in

the limited amount of individual data, especially useful when the model for training

parcellations is not equipped with spatial dependence. However, we think this strategy

is only effective for higher-resolution fMRI imaging data, and less pronounced or even

invalid for a lower data resolution. For example, the synthetic data in the simulation was

generated from a Markov random field of 50 × 50 grid, in which each point on the grid

simulates a most basic brain location unit (or even can be treated as a single neuron).

Therefore, applying a small level of smoothness to the sampled synthetic functional data
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indeed improves the signal-to-noise from the sampling noise. However, this does not hold

in the real fMRI data, where the recorded signals are already averaged within each of

the voxels containing many neurons. For example in our case, the MDTB data were

acquired on a 3T scanner with 3 × 3 × 3 mm3 in-plane resolution (voxel size). This

assumption can be proved by comparing the results of the real data experiments (Results

4.2.3) with simulation (Results 4.2.1), where we did not observe a performance increase

but a continuous decrease with a larger smoothing level on the MDTB data (Fig. 4.4b).

A relatively coarse fMRI resolution not only makes the efforts of data smoothing

trivial, but also diminishes the performance of the individual parcellations derived from

the m-RBM model. This can be seen in the performance comparison of the individual

parcellations, where the maps derived from the m-RBM model have significantly lower

performance than the ones by the independent model using un-smoothed data (Fig.

4.4b). It is because applying such a model equipped with spatial dependence structures

in the learning is equivalent to adding another layer of smoothness to the data, mak-

ing the performance of the estimated individual parcellations decrease. Therefore, when

estimating individual parcellations from the fMRI data of a 3 mm2 voxel size level, an

independent model that assumes brain locations are spatially independent might be the

optimal choice. Another potential reason that causes this unexpected m-RBM model

performance is the excessive amount of training data (160 mins imaging scans per sub-

ject), making the effects of spatial smoothness less pronounced. Further investigations

are needed to determine which factor is more significant.

Limitations and further development. In this paper, we have developed an m-

RBM model to estimate individual brain parcellations, which is essential to understand

the spatial dependence between brain locations. We demonstrated several advantages

and the importance of using such a model to deal with intrinsic smoothness and indi-

vidual variability in individualized brain organization studies. However, like any energy-

based model, m-RBM suffers from the intractable partition function problem, which

prohibits the obtaining of true posterior calculation. In this project, we applied a per-

sistent contrastive divergence (p-CD) (Tieleman, 2008) algorithm to approximate the

posterior expectation, which relies on mean-field approximation in the positive phase.
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The mean-filed approximation for energy-based model (Welling and Hinton, 2002) as-

sumes each node is treated as being influenced by an “average” of the other variables,

rather than considering the specific influence of each node, resulting in the proposal

distribution q is factorized (eq. 4.1). However, this approach can lead to an oversimpli-

fication and inaccurate approximation of the probability of the whole model given the

data. With the recent development of learning algorithms that more accurately approx-

imate the partition function, such as Score Matching (Hyvärinen and Dayan, 2005) and

Noise Contrastive Estimation (Gutmann and Hyvärinen, 2010), we seek an improvement

in the training of the m-RBM model.

4.4 Methods

In this work, we used the hierarchical Bayesian parcellation framework to learn individual

brain organization (Chapter 3, Zhi et al. (2023)). The framework and the emission model

remain the same as presented in Chapter 3 (Methods 3.4.1.1, 3.4.1.2), but instead of using

an independent spatial arrangement model (Methods 3.4.1.3), we use a newly designed

arrangement model which models the spatial dependency between brain locations, called

m-RBM model. Due to the intractability of the m-RBM model, we used the stochastic

maximum likelihood instead of EM to train the model 4.4.2.

Another difference in the implementation here is that we only study individual par-

cellations using a single fMRI dataset rather than a number of different datasets for

simplicity. It is because the main goal of this project is to compare the performance of

different spatial arrangement models. Other mathematical notations remain the same as

we explained in Chapter 3 (Methods 3.4) for consistency and would not repeat in the

following sections unless new notations are introduced.

4.4.1 The m-RBM spatial arrangement model

As a spatial arrangement model, the m-RBM (multinomial-restricted Boltzmann ma-

chine) model provides a group probability measure p(U;θA) for each unique individual s

over a set of latent variables us
i (Methods 3.4.1.3). These latent variables us

i quantify how
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likely a brain location i is assigned to a functional region k. Compared to the independent

arrangement model that assumes different brain locations are spatially independent, the

m-RBM model imposes a spatial dependence structure on the group probability measure.

This spatial structure was modeled through a modified three-layer restricted Boltzmann

machine (RBM) (Fig. 4.1). In contrast to traditional RBMs, the hidden units in the m-

RBM model are now multinomial variables rather than binary states from the Bernoulli

distribution.

In contrast to the binary units in traditional RBMs, the latent variables us
i for each

node in the parcellation layer is now a multinomial vector with a length of K, which is

the reason we named this model “m-RBM”. We use U to represent a collection of these

one-hot encoded latent variables into a K ×P matrix. In this layer, the latent nodes are

also associated with a group probability parameter ηi,k (bias term) for each location i

and parcel assignment k. From a traditional two-layer RBMs viewpoint, this parcellation

layer U should observe the training data (visible layer), however in the m-RBM model,

the data is now modeled as the data layer Y (Fig. 4.1 shaded area). Then, the data

layer is connected to the parcellation layer by one-to-one mapping, which calculates the

location-specific data likelihood and passed them to the corresponding brain locations in

U.

The hidden layer H consists of J multinomial latent nodes hj, which are connected

to the parcellation layer U with connectivity weights wi,j (Fig. 4.1). The pairwise

connectivity weights wi,j (wi,j = wj,i) are used to model the spatial dependencies between

neighbouring brain locations i and j (wi,j = 1 if i and j are neighbours; wi,j = 0

otherwise). In practice, we also introduced a non-negative temperature parameter θw

to control the strength of the pairwise connection. Hence, with J hidden nodes, H is

a K × J matrix with one-hot encoded states of the hidden variables. The connectivity

weights wi,j were then collected into a J × P matrix W.
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4.4.2 Training m-RBM model using stochastic maximum like-

lihood

This model architecture permits inference using variational methods and stochastic max-

imum likelihood in the model training (Salakhutdinov and Hinton, 2012). For updat-

ing parameters, we applied contrastive divergence (CD) (Hinton et al., 2006) algorithm

to calculate the gradients of the un-normalized expected arrangement model likelihood

(Methods 4.4.2) with respect to each model parameter. Therefore, in the positive phase

(see Methods 4.4.2.1), the data distribution q is now approximated using a mean-filed

approximation:

q(Us,Hs|Ys) ≈
∏
i

p(us
i |Ys)

∏
j

p(hs
j|Us) (4.1)

In the negative learning phase, we alternate sampling from the distributions p(Ys|Us),

p(Hs|Us), and p(Us|Hs,Ys) (Methods 4.4.2.2). The m-RBM model parameters θA :=

{η, θw} are then updated in the parameters update phase (Methods 4.4.2.3).

Since the m-RBM model cannot provide a close-formed posterior expectation, the

previous integrated EM algorithm for training the model is not appropriate. Here, we

applied a stochastic maximum likelihood algorithm with mini-batch learning (Algorithm

2) to replace the line 10 to 19 in Algorithm 1 for training the m-RBM model in the

message-passing and collaborative learning process (Methods 3.4.1.4), so that the E- and

M-steps for the emission model remain unchanged. The term n that represents different

experiments or sessions will be dropped in the algorithm pseudocode for simplicity since

we used a single dataset in this project. Here, we define softmax(·) as the activation

function for each multinomial node, where the softmax operation will be applied along

the dimension of nodes vector if it takes matrix input.

The stochastic process takes the input of subject-specific data log-likelihoods of all

subjects in S. After the full learning, the approximated posterior expectation ⟨us
i (k)⟩q

(or ⟨Us⟩+ in this case) for each subject was calculated from the model, the unnormalized
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Algorithm 2: The stochastic maximum likelihood algorithm as the optimization

procedure for training the m-RBM model. This is to replace lines 10-19 in

Algorithm 1.

Input: a collection of S subjects’ data likelihood L = {ℓ1i,k
(t)
, ..., ℓsi,k

(t)}, s ∈ S, S

Gibbs chains for negative phase Ũs(0)

Output: ⟨Us⟩(t)+ , a matrix of estimated posterior values of ⟨us
i (k)⟩

(t)
q ; Ũs(n)

, the

updated Gibbs chains from negative phase

1 Set learning rate α to a small positive value. Mini-batch size B, m = 5 times

of mean-field approximation in the positive phase, n = 10 of Gibbs steps in

the negative phase.

2 Initialize counter= 1, two empty S ×K × P tensors Ỹ and H̃ for recording samples

in the negative phase, ⟨H⟩(0)+ = 0 for positive phase, if no persistent sampling

chains for the negative phase are given, sample S Ũ(0) from softmax(η(t))

3 while counter ⩽ ⌈S/B⌉ do
4 Randomly sample a minibatch of B from L without replicates. Remove B from L.

5 (1) positive phase for m times mean-field approximation by eq.4.4 and 4.5:

6 for a = 0 to m− 1 do

7 ∀s ∈ B, ⟨Us⟩(a)+ = softmax(ℓs
(t)

+ η(t) + ⟨Hs⟩(a)+ W · θ(t)w )

8 ∀s ∈ B, ⟨Hs⟩(a+1)
+ = softmax(⟨Us⟩(a)+ W⊺ · θ(t)w )

9 end

10 ⟨Us⟩(t)+ ← ⟨Us⟩(m−1)
+ (s ∈ B), ⟨Hs⟩(t)+ ← ⟨Hs⟩(m)

+ (s ∈ B)

11 (2) negative phase for n Gibbs mixing steps using eq.4.7 and 4.6:

12 for b = 0 to n− 1 do

13 ∀s ∈ B, Ỹs(b)sampled from p(Ys|Ũs(b) ;θ
(t)
E )

14 ∀s ∈ B, H̃s(b)sampled from softmax(Ũs(b)W⊺ · θ(t)w )

15 ∀s ∈ B, Ũs(b+1)

sampled from softmax(ℓ̃s
(b)

+ η(t) + H̃s(b)W · θ(t)w )

16 end

17 ⟨Us⟩(t)− ← Ũs(n)

(s ∈ B), ⟨Hs⟩(t)− ← H̃s(n−1)

(s ∈ B)

18 Ũs(0) ← ⟨Us⟩(t)− (s ∈ B) // Reset Ũs(0) for persistent-CD in next iteration

19 (3) Parameters update phase using eq.4.10 and 4.11:

20 θ(t)w = θ(t)w + α · 1
B
W

∑
s∈B

(⟨Hs⟩(t)+

⊺
⟨Us⟩(t)+ − ⟨Hs⟩(t)−

⊺
⟨Us⟩(t)− )

21 η(t+1) = η(t) + α · 1
B

∑
s∈B

(⟨Us⟩(t)+ − ⟨Us⟩(t)− )

22 counter ← counter +1

23 end

24 return ⟨U⟩(t)+ , Ũ(0)
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expected arrangement log-likelihood L̃A of the m-RBM model can be represented as:

L̃A =
∑
s∈S
⟨log p̃(Us;θA)⟩q

=
∑
s∈S

∑
i,k

⟨us
i (k)⟩q · ηi,k +

∑
s∈S

∑
i,j,k

θw · wi,j⟨us
i (k)⟩q⟨hs

j(k)⟩q (4.2)

Then, the learning of the m-RBM model follows the gradient of L̃A with respect to each

of the parameters of θA. To approximate the gradients, we applied persistent contrastive

divergence (PCD, or PCD-k to indicate the use of k Gibbs steps per update) (Tieleman,

2008) and split the learning into a positive phase (Methods 4.4.2.1) and negative phase

(Methods 4.4.2.2). The parameters of θA were then updated in the parameters update

phase (Methods 4.4.2.3).

4.4.2.1 Positive phase: expectation given the data

In the positive step, the proposal data distribution was calculated by the mean-field

approximation (eq. 4.1). Here for consistency, we use ⟨·⟩+ to indicate the expected value

with respect to data distribution in the positive phase.

At the t learning iteration, the posterior expectation ⟨us
i (k)⟩+ for a brain location i

of individual s given the data is calculated as:

⟨us
i (k)⟩(m)

+ = p(us
i = k|ys

i ;θ
(t)
A ,θ

(t)
E ) (4.3)

=
exp(⟨log p(ys

i |us
i = k;θ

(t)
E )⟩+ + ηi,k

(t) + ⟨Hs
k,·⟩(m)

+ W·,i · θ(t)w )∑
l exp(⟨log p(ys

i |us
i = l;θ

(t)
E )⟩+ + ηi,l(t) + ⟨Hs

l,·⟩
(m)
+ W·,i · θ(t)w )

(4.4)

where m indicates the number of mean-field inference loop and the ⟨Hs⟩(m)
+ represent

the expected value of hidden nodes at the mth mean-field iteration. For the beginning

of the mean-field calculation, we initialize the values in hidden layer ⟨Hs⟩(0)+ = 0. Then

the expected values ⟨hs
j(k)⟩+ in ⟨Hs⟩+ can be updated for the next iteration given the
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values of ⟨us
i (k)⟩(m)

+ as:

⟨hs
j(k)⟩(m+1)

+ = p(hs
j = k|⟨Us⟩+,θ(t)

A ) =
exp(⟨Us

k,·⟩(m)
+ W⊺

j,· · θ(t)w )∑
l exp(⟨Us

l,·⟩
(m)
+ W⊺

j,· · θ(t)w )
(4.5)

where ⟨Us⟩+ is the matrix representation of ⟨us
i (k)⟩+. We then alternatively update

⟨Us⟩+ and ⟨Hs⟩+ through m times mean-field approximation. After the calculation is

finished, the ⟨Us⟩(m)
+ and ⟨Hs⟩(m+1)

+ from the last update iteration will be the estimated

posterior expectation at the t learning epoch for positive phase. We then record them as

sufficient statistics, ⟨Us⟩(t)+ = ⟨Us⟩(m)
+ and ⟨Hs⟩(t)+ = ⟨Hs⟩(m+1)

+ , for the gradient calcula-

tion.

4.4.2.2 Negative phase: expectation given the model

In the negative phase of the learning, we approximate the posterior expectations under

the model distribution by n steps of Gibbs sampling. To distinguish from the positive

phase, here we use ⟨·⟩− to indicate the expected value under the model distribution p.

For simplicity, we use the matrix notation in the calculation. At the t learning epoch, the

mixing of the samples Ũs and H̃s for a subject s between the two layers was started by

employing a persistent multinomial Markov chain (Tieleman, 2008) for the parcellation

layer. If no Markov chain was given to the model, we initialize Ũs(0) by sampling from

the group probability map η(t).

Then in the nth step of Gibbs updates, the full mixing process includes three steps:

(1) The data Ỹs(n)
was first sampled from p(Ys|Ũs(n)

;θ
(t)
E ), and its associated data log-

likelihoods ℓ̃s
(n)

will be calculated by the emission model (see eq. 3.6). (2) H̃s(n)
can be

sampled by only conditioning on the U layer due to the RBM structure, as:

H̃s(n) ∼ p(Hs|Ũs(n)

;θ
(t)
A ) = softmax(Ũs(n)

W⊺ · θ(t)w ) (4.6)

where softmax(Ũs(n)
W⊺ · θ(t)w ) (K×J matrix) is a collection of multinomial distributions

for each hidden node. The expected value for each node h̃s
j

(n)
was then sampled from

the corresponding distribution independently and collected into H̃s(n)
. (3) Lastly, we
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sample the expected value Ũs(n+1)
of the parcellation layer based on data and hidden

nodes sampled in (1) and (2) for the next Gibbs sampling step, as:

Ũs(n) ∼ p(Us|Ỹs(n)

, H̃s(n)

;θ
(t)
A ) = softmax(ℓ̃s

(n)

+ η(t) + H̃s(n)

W · θ(t)w ) (4.7)

Similarly softmax(ℓ̃s
(n)

+ η(t) + H̃s(n)
W · θ(t)w ) is a K ×P matrix of multinomial distribu-

tions for each parcellation node, and their expected value ũs
i

(n)
were sampled from these

distributions independently.

In the last Gibbs sampling update, we use the probability instead of sampling a

multinomial value for both Ũs(n+1)
and H̃s(n)

to avoid unnecessary sampling noise (Hinton,

2012). We then record the two expected values as sufficient statistics at the t learning

epoch of the negative phase for the calculation of the gradient in the update phase, where

⟨Us⟩(t)− = Ũs(n+1)
and ⟨Hs⟩(t)− = H̃s(n)

. The sampled Ũs(n+1)
will be stored for the next

(t+ 1) learning epoch for persistent contrastive divergence (Tieleman, 2008).

4.4.2.3 Update phase: parameter estimation using gradients

The m-RBM model parameters are updated in its update phase following the gradients of

the un-normalized expected arrangement log-likelihood in eq. 4.2. Given the expectation

of the hidden and latent variable for the positive and negative phase calculated in Methods

4.4.2.1 and 4.4.2.2, the gradients with respect to the parameters θA := {ηi,k, θw} at the
(t) learning iteration are:

∇θ(t)w =
1

S
W

∑
s

(⟨Hs⟩(t)+

⊺⟨Us⟩(t)+ − ⟨Hs⟩(t)−
⊺⟨Us⟩(t)− ) (4.8)

∇η(t) = 1

S

∑
s

(⟨Us⟩(t)+ − ⟨Us⟩(t)− ) (4.9)

Therefore, the two parameters are updated for the t+ 1 iteration by:

θ(t+1)
w = θ(t)w + α · ∇θ(t)w (4.10)

η(t+1) = η(t) + α · ∇η(t) (4.11)
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where α is the learning rate that is set to a small positive value.

4.4.3 Algorithm implementation and convergence properties

Since the m-RBM model was developed from the RBM family, it inherits the limitations

in the training using a contrastive divergence procedure (Hinton, 2002). Therefore, a

certain amount of implementation settings and practical experience are required to suc-

cessfully train the model. In this section, we want to explicit details about the algorithm

implementation and several techniques that we used to improve the training performance

of the m-RBM model.

The first choice we made about the general training framework is to use stochastic

maximum likelihood (SML), a.k.a persistent contrastive divergence (p-CD) (Tieleman,

2008), equipped with mini-batch learning. One big advantage of SML is its training

efficiency compared to standard contrastive divergence (CD) when dealing with more

complex models. It continuously updates Markov chain throughout the learning process,

rather than regenerating at each gradient step in CD, leading to faster and better con-

vergence by exploring more possible space of model configurations (Tieleman, 2008). By

integrating the mini-batches, the learning inherits stochasticity from choosing different

training subsets to help the model escape from shallow local minima, aiding the opti-

mization process. Another benefit of mini-batches is the computation can be performed

much faster with less memory requirement since the gradients are computed over a subset

of the entire dataset. This advantage is especially important in our project when dealing

with large amounts of imaging data using GPU matrix multiplication acceleration.

We also applied several commonly-used technical settings (Hinton, 2012) for improved

m-RBM training, including batch size, learning rate, number of learning epochs, momen-

tum, and Gibbs sampling. In practice, the batch size, learning rate, and number of epochs

are highly related and influenced by each other. Due to the limited GPU memory, we

first sought to determine the optimal loadable batch size B by finding the maximum

divisor of the total training subjects, and repeatedly finding the second maximum if the

batch samples cannot be loaded in GPU. At the beginning of a learning epoch, the algo-

rithm randomly sampled B subjects and extracted their data likelihood for the following
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computation. When all computations are finished for the current batch, the algorithm

returns the subject-specific sufficient statistics to the corresponding subject index. The

sampled subjects will be excluded from the next batch sampling, making all subject’s

data have been used in a single learning epoch. The total number of training epochs was

set to t = 200 and used as the only stopping criteria for the training due to the lack of a

reliable convergence property (see below paragraph). The base learning rate was set to

a relatively small value α = 0.01 to avoid learning to potentially pass the optima, but

as a trade-off, the learning speed may significantly be decreased. Therefore, in the im-

plementation, we used the momentum method (Sutskever et al., 2013) for increasing the

learning speed when the objective function contains long, narrow, and straight ravines.

Specifically, the momentum method updates the model parameters by a velocity term v

learned from the last learning iteration, resulting in the update rule in eq. 4.10 and eq.

4.11 to be changed as:

θ
(t+1)
A = θ

(t)
A + v(t+1), where v(t+1) = γv(t) − α · ∇θ(t)

A (4.12)

where γ represents the momentum coefficient that controls how quickly the previous

gradients decayed in contributing to the current update, which was set to γ = 0.9.

Lastly, we set the number of mean-field approximation for the positive phase to m = 5

and n = 10 Gibbs sampling updates for the negative phase respectively (Methods 4.4.2.1,

4.4.2.2) to obtain enough burn-in iterations for reaching an equilibrium.

To monitor the learning progress of the full model, we exclusively built a function J ,
which was printed out during the learning. Since the m-RBM model cannot provide a

closed-form posterior, the function J summed up expected emission log-likelihood LE

with a negative cross-entropy measure H(·) between ⟨U⟩(t)+ and ⟨U⟩(t)− . For a single

dataset or session, the J is calculated as:

J (t) = −
∑
s∈S
H(⟨Us⟩(t)+ , ⟨Us⟩(t)− ) +

∑
s∈S
⟨log p(Ys|Us(t);θE

(t))⟩q (4.13)

where the first term is used to penalize the reconstructed latent variables ⟨Us⟩− that
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have a larger difference to the ⟨Us⟩+. If ⟨Us⟩+ and ⟨Us⟩− is perfectly matched, the value

of the first term will become zero, and J restores as LE. Overall, an increasing trend of

J (t) during the learning progress indicates the gradients are likely updated on the right

track.

In addition, the training of the m-RBM model is subject to a convergence issue, which

leads to multiple parameter estimations (Methods 4.2.2). To avoid this problem in the

learning of real fMRI data, we fixed the temperature parameter θw to a set of positive

values within a linearly spaced range from 0.1 to 4, and estimated group probability η

only. To further improve the training efficiency, we also froze the learning of the vMF

emission model with pre-trained parameters θE trained by the EM algorithm (Methods

1). Besides, we repeated the entire learning process a minimum number of 10 times with

each containing 200 epochs. We then picked the estimated parcellations from the trained

models with the highest DCBC evaluation score as our final results. By doing all these

steps, we have a higher confidence that the resultant parcellations are valid and model

training converged to the correct place with a higher probability.

4.4.4 fMRI dataset

In this project, we only considered a single openly available task-based fMRI dataset,

MDTB (King et al., 2019), as our main purpose is to investigate the intrinsic smoothness

of individual brain organization but not the dataset fusion. The MDTB dataset covers a

broad range of task conditions from the perceptual, cognitive, motor, and social domains.

A total of approximately 240 minutes of functional scans were collected for each of the 24

participants (16 females, 8 males, mean age=23.8) while performing task set A and B (17

tasks for each, 9 tasks in common). Details of data acquisition parameters, anatomical

image registration, and functional data preprocessing can be found elsewhere in King

et al. (2019). For the functional profiles, we combined the activity estimates (betas

weights) across two task sets and used the mean of the shared tasks as a common baseline.

Then the functional profiles were then mapped to each individual cortical surface by

averaging the value from voxels along the connecting line between the pial and white-

gray matter surface, using 5 equally spaced locations between the two surfaces (Zhi et al.,
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2022). No smoothing or group normalization was applied.

To test the performance of the estimated individual parcellations derived from the

independent model using smoothed data (Results 4.2.3), we smoothed the cortical func-

tional profiles using -cifti-smoothing function provided by Connectome Workbench

software (Marcus et al., 2011). Specifically, we gave multiple smoothing levels using a

Gaussian kernel from 1 mm to 7 mm standard deviation (σ = 1, 2, 3, 4, 5, 6, 7). The

cortical vertices where the individual data is missing were filled with zeros before the

smoothing to prevent the NaN values spread out to the neighboring vertices. After data

smoothing, these “missing data” vertices are mapped back to NaN values for the subse-

quent model training since the framework dealt with missing data naturally (Zhi et al.,

2023).

4.4.5 Synthetic datasets for simulation

To validate the proposed spatial arrangement model, we ran several simulations (Results

4.2.1, 4.2.2) on the synthetic datasets. Here, we mainly carried out using the synthetic

dataset generation process described in Zhi et al. (2023) with some changes to adapt

this project. A four-neighbor schemed Markov Random Field of 50 × 50 grid is applied

to generate the ground-truth individual brain parcellation. Each vertex on the grid

represents a brain location that can be assigned to one of the K parcel assignments. In

this project, we fixed the K = 5 throughout.

Firstly, we generated the artificial group probability map from five centroids µk (k =

1, 2, ..., 5) at four corners and one central location on the MRF grid (Appendix B, Fig.

B.1a). Then the group probability parameters associated with each vertex for the kth

parcel will be represented as the bias term ηi,k at a location xi as:

ηi,k = −
|xi − µk|22

2σ2
µ

(4.14)

where σ2
µ controls the smoothness strength of the group map (Appendix B, Fig. B.1b).

Therefore, the group probability p(ui) at each location i is then normalized using softmax

function over the k-long vector, softmax(ηi), as a discrete multinomial distribution.
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The parcel assignment for each vertex was then sampled from the group probability

p(ui) and concatenated as initial individual maps Us. Then, this initial Us will be

passed in a modified RBM model to perform layer-wise Gibb sampling, resulting in

the final individual maps after burn-in of m iterations. Specifically, the RBM model

contains a visible layer and a hidden layer with the same number of nodes (the total

number of vertices on the MRF grid), which are linked by pairwise connection weights

wi,j. The weights wi,j (wi,j = wj,i) indicates whether i and j are neighbouring vertices

(wi,j = 1 if i and j are neighbours; wi,j = 0 otherwise). In practice, wi,j is multiplied

by an overall temperature parameter θw to control how strong the spatial co-dependence

between neighbouring vertices is. A higher θw encourages that the two neighbouring

nodes to be assigned to the same parcel, enforcing the overall local smoothness of the

map (Appendix B, Fig. B.1c). The bias term for both visible and hidden layers is

dropped for simplicity in the synthetic data generation. Ultimately, the final stable

individual maps were then sampled alternatively between visible and hidden layers after

m iterations (Appendix B, Fig. B.1b).

We then generated synthetic functional data Ys for each participant based on their

individual parcellation maps (Appendix B, Fig. B.1d). Here, we used a standard N -

dimensional GMM with normalized mean vk (∥vk∥ = 1) of the kth component. The data

for each vertex i was generated from:

yi = vk + ϵ (4.15)

where ϵ was a normal random vector with variance I ·σ2
k. Ultimately, a synthetic dataset

consisting of N task observations was generated for P brain locations and S subjects.

For the simulation in Results 4.2.1, we smoothed the synthetic functional data in

different smoothing levels using a 5×5 Gaussian kernel with different standard deviation

σ to convolve the data on the MRF grid. The temperature parameter that controls the

overall strength of spatial connection for neighbouring vertices was set to θw = 1.2. The

bias terms ηi,k for the group probability were generated with σ2
µ = 240, while the true

number of parcels in the group map and fitting model were both set to K = 5. Then,
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we sampled 30 individual maps Us from the group map with local connection weights

θwẇi,j after m = 10 burn-in iterations. The individual maps are further used to sample

synthetic training dataset Ys (N = 10 tasks), and an independent test set Ys
test (N = 10

tasks).

4.4.6 Evaluation measures for probabilistic atlas and simulation

4.4.6.1 DCBC

The distance-controlled boundary coefficient (DCBC, Zhi et al. (2022)) is an unbiased

evaluation criterion for brain parcellation, which allows the direct comparison of brain

maps generated from different modalities or in different resolutions. This coefficient

controls for the intrinsic smoothness of brain data, which is biased in other evaluation

metrics (Gordon et al., 2016; Rousseeuw, 1987). The DCBC method solves this problem

by binning all brain location pairs based on their spatial distance and only compar-

ing Pearson’s correlation for within-parcel pairs and between-parcel pairs for the same

distance. Then, the DCBC value is calculated as the average correlation differences,

weighted by reliability across distances.

In this project, the spatial distance between each pair of brain locations is calculated

as the geodesic distance between vertices on the cortical surface under the standard

fsLR-32k template (Van Essen et al., 2012) mesh. This distance metric computation was

carried out using the -surface-geodesic-distance function provided by Connectome

Workbench command (Marcus et al., 2011) up to 50 mm distance. The underlying

functional profiles for calculating the correlations of vertex pairs are the associated betas

weights in a task-based dataset. A higher DCBC value of a parcellation indicates that this

parcellation predicts the functional boundaries well on the tasks of the test dataset being

used. A zero value of DCBC indicates the given parcellation is a random parcellation,

while a negative DCBC value represents that the given parcellation predicts the functional

boundaries even worse than chance.
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4.4.6.2 Mean expected prediction error

With the ground-truth sampled individual parcellation, a second evaluation metric for

the simulation is to calculate the absolute error between the true parcellation U and the

predicted Û which is inferred from the training data. It is defined as:

⟨ϵ̄|U−Û|⟩q =
1

PS

S∑
s

P∑
i

|us
i − ⟨us

i ⟩q| (4.16)

where the us
i represents the true parcel assignment label of location i in subject s and

⟨us
i ⟩q is the expected parcel assignment under the expectation q. Both are multinomial

encoded vectors. In practice, this calculation of the mean expected prediction error is not

subject to the permutation of the parcellation since the parcel assignment vector ⟨us
i ⟩q is

aligned with the true assignment us
i . Therefore, looping over all possible permutations

and finding the minimum error is not applied.

4.4.6.3 Mean adjusted expected cosine error

A third method to evaluate the simulation results is the mean adjusted expected cosine

error. Because the data is generated or modeled using a directional statistical model (e.g.

vMF or normalized GMM), the averaged cosine error ϵ̄cosine becomes a natural choice of

evaluation measure between the reconstructed data ŷi to the true data yi. In the simplest

version, one possibility is to use for each brain location the most likely predicted mean

direction,

ϵ̄cosine =
1

P

P∑
i=1

(
1− vargmax

k

⊺ yi

∥yi∥

)
(4.17)

where ∥yi∥ is the length of the data at brain location i, and vargmax
k

represents the vk

with the maximum expectation for that location. We then compute the mean cosine

distance across all P brain locations for a single subject.

However, we can also compute the mean expected cosine error for a subject based

on the difference between the observed activity profiles yi of a location i from the inde-
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pendent test set Ytest and the predicted mean directions from the model vk, under the

expectation of a brain location belongs to which parcel ⟨ui⟩q, which defined as below:

⟨ϵ̄cosine⟩q =
1

P

P∑
i

∑
k

⟨ui(k)⟩q(1− vk
⊺ yi

∥yi∥
) (4.18)

where ⟨ui(k)⟩q is the inferred expectation on the training data using the fitted model.

But a possible problem with the cosine error is that brain locations that have very

weak signal-to-noise count as much as the ones with strong signal strength due to the

normalization. To make it a fair evaluation, we adjusted each expected cosine error in

eq. 4.18 by the squared length of the data vector, calculated as ⟨ϵ̄Acosine⟩q:

⟨ϵ̄Acosine⟩q =
1∑P

i ∥yi∥2
∑
i

∑
k

⟨ui(k)⟩q(∥yi∥2 − vk
Tyi∥yi∥) (4.19)

We then compute the mean adjusted cosine distance across all P brain locations for a

single subject as our third evaluation metric for the simulation. The full mathematical

derivations of the mean adjusted expected cosine error ⟨ϵ̄Acosine⟩q (eq. 4.19) and the proof

of its equivalent to calculating 1−R2 can be found in Appendix B.

Conceptually, the general idea of mean adjusted expected cosine error is to split the

individual data into training Ytrain and test set Ytest. Then it makes a prediction of test

data Ŷtest and determines how well this prediction reconstructs the true test data by

calculating the cosine distance between Ŷtest and Ytest. This prediction is calculated by

combining the estimated parcellation from individual training data with the estimated

mean task response for K brain regions (eq. 4.19). By doing so, ⟨ϵ̄Acosine⟩q is able

to provide a measure of how good a region of the estimated individual parcellation in

responding to the tasks from the test set of the same subject. If Ŷtest is close to the true

test data Ytest, a lower ⟨ϵ̄Acosine⟩q, it means the estimated individual parcellation and its

associated mean task response vector align well with the task in the test.



4.5. Data availability 113

4.4.7 Computational setup

Model training and evaluations were performed on either an NVIDIA 1080Ti GPU with

Python 3, CUDA 11.3, and PyTorch 1.10.2 or on an NVIDIA 4080 GPU with Python 3,

CUDA 11.6, and PyTorch 2.0.1. For the fMRI datasets, all data were preprocessed and

extracted on an Intel i7-8700 CPU with NumPy 1.24.0, NiBabel 4.0.2, neuroimagingtools

1.0.0. Other detailed requirements and parameters used for the data processing pipeline

are available in the respective repositories (see Code availability).

4.5 Data availability

The raw MDTB data for the fMRI studies used in this project are publicly available on

https://openneuro.org/datasets/ds002105/versions/1.1.0.

4.6 Code availability

The code for the hierarchical Bayesian parcellation framework is publicly available as the

GitHub repository https://github.com/DiedrichsenLab/HierarchBayesParcel. The

organization, file system, and code for managing the diverse set of datasets is available

in a separate repository https://github.com/DiedrichsenLab/Functional_Fusion.

The paper-specific code for generating the functional probabilistic parcellations for the

neocortex, as well as running the simulation presented in this paper is available at

https://github.com/DiedrichsenLab/FusionModel.

https://openneuro.org/datasets/ds002105/versions/1.1.0
https://github.com/DiedrichsenLab/HierarchBayesParcel
https://github.com/DiedrichsenLab/Functional_Fusion
https://github.com/DiedrichsenLab/FusionModel
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General Discussion

5.1 Summary of the thesis

The overarching goal of my thesis is to enhance our understanding of brain functional

organization through machine learning techniques. One important approach to human

brain mapping is brain parcellation - the definition of a set of distinct regions that can

be linked to unique functions. In this thesis, I present a sequence of research projects

that addresses some of the challenges and open questions in the context of human brain

parcellation.

In Chapter 2, we proposed an unbiased criterion to evaluate discrete brain parcel-

lations, called Distance Controlled Boundary Coefficient (DCBC). Recently, numerous

brain parcellations have been proposed, using structural, or functional Magnetic Reso-

nance Imaging (fMRI) data. However, the intrinsic smoothness of brain data poses a

problem for current methods seeking to compare different parcellations. For example,

criteria that simply compare within-parcel to between-parcel similarity provide even ran-

dom parcellations with a high value. Furthermore, the evaluation is biased by the spatial

scale of the parcellation. To address these problems, the proposed DCBC method takes

into account spatial smoothness by only comparing pairs of brain locations with the

same distance. We then employed this new criterion to evaluate existing parcellations

of the human neocortex in their power to predict functional boundaries for an fMRI

data set with many different tasks, as well as for resting-state data. Using this improved

114
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criterion, we found that common anatomical parcellations do not perform better than

chance, suggesting that task-based functional boundaries do not align well with sulcal

landmarks. In contrast, the parcellations based on resting-state fMRI data perform well.

Finally, multi-modal parcellations that combine functional and anatomical data perform

substantially worse than those based on functional data alone, indicating that function-

ally homogeneous regions often span major anatomical landmarks. Overall, the DCBC

advances the field of functional brain mapping by providing an unbiased metric that di-

rectly compares the performance of different brain parcellations to define brain regions

that are functionally maximally distinct.

In Chapter 3, we addressed one important barrier in the development of complex

models of human brain organization: the lack of a large and comprehensive task-based

neuroimaging dataset. Because of this limitation, atlases of functional brain organization

are currently mainly based on single resting-state datasets. To address this limitation,

we proposed a hierarchical Bayesian framework that can learn a probabilistically de-

fined brain parcellation across numerous task-based and resting-state datasets, exploit-

ing their combined strengths. The framework is partitioned into a spatial arrangement

model that defines the probability of a specific individual brain parcellation, and a set of

dataset-specific emission models that defines the probability of the observed data given

the individual brain organization. We showed that the framework optimally combines

information from different datasets to achieve a new population-based atlas of the human

cerebellum. Furthermore, we demonstrated that, using only 10 min of individual data,

the framework is able to generate individual brain parcellations that outperform group

atlases.

In Chapter 4, we introduced an important extension for the hierarchical Bayesian

framework described in Chapter 3. Since the brain organizations are intrinsically smoothed,

where nearby regions show higher functional similarity, we sought to further improve the

performance of individual parcellations by taking spatial dependence into account. To

achieve this goal, we proposed a novel computational architecture called the multinomial-

restricted Boltzmann machine (m-RBM), designed to capture the intrinsic spatial de-

pendence between brain locations while accounting for individual variations. We then
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integrated the m-RBM model into the hierarchical Bayesian parcellation framework in

Chapter 3 to estimate individual parcellations. The simulation results showed the m-

RBM model has significant advantages in estimating individual parcellations in the pres-

ence of spatial dependencies. On our available dataset, however, we could not find an

improvement in brain parcellations over what was achieved with the model from Chap-

ter 3. Nonetheless, further refinements of the m-RBM model could result in improved

individual brain parcellations.

Taken together, this series of projects addresses two major challenges in current

imaging-based brain parcellation studies, namely individual variability and intrinsic spa-

tial dependence. To account for the individual differences when estimating brain par-

cellations, Chapters 3 and 4 adopted a hierarchical Bayesian perspective, in which the

individual variability is explicitly represented in the model. The advantage of this ar-

chitecture comes in two folds: (1) individual differences are explicitly taken into account

during the learning process, where the individual parcellations are estimated from the

subject-specific data rather than average or concatenate all subject’s data. (2) When

estimating individual parcellations the framework optimally combines the data from an

individual subject with the group probability map, thereby improving the quality of

individual parcellations. The second advantage is especially important when there is

little individual training data, or when it is of poor quality. In this situation, the group

probability, derived from the fusion of datasets, plays a critical role in refining uncertain

regions, consequently enhancing the quality of individual brain parcellations. Hence,

the individual functional differences became more pronounced and comparable across

the studied population. For evaluating individual parcellations, the DCBC evaluation

method (Chapter 2) quantifies how well a parcellation performs when it is used to pre-

dict the functional boundaries in an independent test set. These subject-specific DCBC

values provide a measure of how individual functional boundaries vary across different

tasks, effectively capturing the differences across studied populations.

Second, to account for the problem of intrinsic spatial dependence between brain lo-

cations when evaluating parcellations, the DCBC in Chapter 2 also provides an unbiased

evaluation. The DCBC largely reduced the impact of spatial smoothness in the data by
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binning brain location pairs based on their spatial distances, and only comparing the

within- and between-parcel correlations within each bin. Compared to existing evalu-

ation methods that are biased toward finer and spatially contiguous parcellations, the

DCBC provides an unbiased evaluation, making a direct comparison between parcella-

tions in different resolutions possible. To deal with intrinsic spatial dependence from

generating perspective, Chapter 4 extended the learning framework in Chapter 3 with

the m-RBM spatial arrangement model. This model is designed to handle the spatial

structure between brain locations by its computational architecture, resulting in im-

proved performance of the estimated individual parcellations in a simulation. Although

we did not observe the expected advantage of the individual parcellations estimated by

the m-RBM model on real fMRI data, it is possible that it may still perform better on

higher-resolution data. Overall, this set of studies emphasizes the importance of taking

into account individual variability and spatial dependence across brain locations to better

understand the functional boundaries of brain regions.

5.2 Using atlases: individual functional localizer

In personalized brain studies, one important usage of individual parcellations is to localize

a certain functional region in an individual’s brain, namely individual functional localizer

(Friston et al., 2006). Traditional brain organization studies rely on the group-averaged

atlas to localize functional regions (or ROIs) for individuals. But, recent studies suggest

the group-based parcellations may not align well with the functionally unique regions

in individual brains or adequately capture the individual variability, which can cause

inconsistencies and inaccuracies when individual ROIs are being used (Harrison et al.,

2015; Glasser et al., 2016; Kong et al., 2019). Therefore, when we want to localize

individual functional regions, we should use individual parcellations. But, the obtaining

of reliable individual localizers is often limited by the insufficient amount of individual

data, resulting in these individual parcellations being generally noisy and cannot be used

for delineating individual ROIs.

To address this problem, the learning framework detailed in Chapter 3 offers a novel
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approach to improve the precision of individual parcellations based on individual func-

tional localizing data. This quality improvement in estimated individual parcellations

is achieved by combining individual data with a group probability map. It results in

the estimated individual parcellation based on only 10 min data to have an equivalent

performance of using 100 min data alone. Our evaluation results also consistently showed

an improvement when the group probability map is combined with different amounts of

individual functional localizing data (Chapter 3, Fig. 3.2).

To estimate the individual parcellations using the framework, we need a pre-trained

emission model and a group probability map (see eq. 3.12). The former provides a func-

tional response for each region and will be used to infer the subject-specific data likelihood

from the individual functional localizing data. Then, these individual data likelihoods

are integrated with the group map to infer the individual parcellation. Therefore, the

quality of these parcellations to localize the individual ROIs will be subject to the choice

of the group map and individual data. For instance, if there is a constraint that allows

only 10 minutes of imaging data to be collected for a specific subject, and the goal is to

derive a reliable functional localizer for this subject based on the limited data using our

framework, what would be the optimal data to acquire?

Several options exist for acquiring this limited amount of individual localizing data,

encompassing a spectrum of tasks such as motor, language, and cognitive activities, or

even a ten-minute resting scan. However, the optimal choice of data collection should

depend on the specific goal of the users since the estimated individual parcellations can

vary substantially based on the type of data being used (Salehi et al., 2020a). Therefore,

a careful selection of the behavioral paradigm for the functional localizer becomes impor-

tant. For example, a few minutes of motor-related task data is preferred if the goal is to

study the individual motor region, or language-related tasks should be used in an indi-

vidual language ROI study. Although individual ROIs can be detected by using limited

data, the precision in accurately identifying the functional locations as compared to using

larger datasets still remains uncertain. Therefore, it is equally important to choose an

appropriate group probability map, as it ensures the estimated individual parcellations

can be used as reliable functional localizers. Such a group map should provide useful



5.3. Building atlases: the choice between task-based and resting-state fMRI 119

information for those uncertain areas, resulting in improved performance of individual

functional localizers.

Overall, individual parcellation offers a personalized approach to studying brain orga-

nization. However, depending on the specific goal, the effectiveness of individual parcel-

lations lies in balancing the acquisition of individual data with the utilization of a group

probability map. This combined approach promises a robust and reliable identification

of ROIs and, ultimately, a more accurate understanding of individual brain organization.

5.3 Building atlases: the choice between task-based

and resting-state fMRI

Recent brain parcellation studies primarily rely on resting-state functional connectivity

(Yeo et al., 2011; Gordon et al., 2016; Schaefer et al., 2018), which captures the intrinsic

network pattern based on spontaneous fluctuations of neuronal activity across multiple

regions. However, such an approach does not consider the systematic differences observed

in the functional organization during various tasks and at rest (Hasson et al., 2009b; Cole

et al., 2014; Greene et al., 2020). For example, the hand motor regions are considered as

a single parcel in resting-state cerebellar parcellations (Buckner et al., 2011). In contrast,

using a task-based parcellation, the left- and right-hand regions can be separated, be-

cause some of the tasks involved unimanual left-hand responses and other tasks involved

unimanual right-hand responses (King et al., 2019).

On the other hand, traditional task-based fMRI studies usually focus on one type

of task, resulting in the data only characterizing a few functional regions well, hence,

preventing a comprehensive comparison between task and resting-state brain organiza-

tions in different regions. Recently, a number of “deep-phenotyping” task-based fMRI

datasets have become openly available (Pinho et al., 2018; Nakai and Nishimoto, 2020),

which offers the opportunity to systematically study the brain organization during tasks,

revealing functional boundaries across multiple task domains (King et al., 2019). There-

fore, it is important to consider task-based datasets in deriving brain parcellations (King



120 Chapter 5

et al., 2019), leveraging the strength across different datasets.

This systematic difference in the brain functional organization leads to an open ques-

tion: what type of data to use for building brain functional atlases, task-based or resting-

state fMRI? In Chapter 3, we addressed this question by comparing the parcellations

based only on task-based data with parcellations based only on resting-state fMRI data.

We found that both types of parcellation can predict functional boundaries across other

task-based datasets, however, we still observed some systematic differences between the

two (Appendix A, Fig. A.5). This is because different datasets will emphasize different

sets of functional boundaries. On the other hand, task-based and resting-state parcel-

lations do retain some common patterns, as seen in the superior performance of the

resulting fused parcellation compared to those created exclusively from either task-based

or resting-state data (Chapter 3, Fig. 3.7). This finding implies that integrating both

task-based and resting-state fMRI data can lead to better brain parcellations.

When integrating different types of data, we also need to decide how much data to

use from each source. What is the optimal balance between task-based and resting-state

data usage? This is an important decision to make when using our fusion framework

because a large dataset could dominate the group map, possibly reducing the predictive

performance of other datasets. In Chapter 3, we demonstrated that the fused parcella-

tions have better performance when integrating 50 subjects’ resting-state data with the

task-based data of 110 subjects. But, it remains uncertain whether this advantage in

the fused parcellation would persist when we use different amounts of data from each

modality. If changing the balance between task and resting data results in a reduction in

the performance of the fused parcellation, it could suggest that creating different brain

parcellations is better to use different data modalities. Therefore, finding an optimal

balance between task-based and resting-state data usage forms a research question that

demands further investigation.
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5.4 Evaluating atlases: aligning functions to brain

regions

Evaluation methods for assessing brain parcellation can be categorized into consistency

and validity measures (Chapter 1, 1.2.4). The former measures the similarity between

parcellations, while the latter aims to evaluate the ability of a parcellation to segregate

brain locations into functionally homogeneous regions. In Chapter 2, we introduced the

DCBC as a method in the second category. This criterion evaluates how well a brain

parcellation predicts the local functional boundaries in an independent test set. However,

there is a common issue with these methods: the evaluation is blind to parcel assignments,

which means the evaluation score will remain the same if the functional profiles are

flipped between two regions. Therefore, the DCBC evaluation provides a good measure

of how well a parcellation is for matching functional boundaries, but if parcellations

are estimated with a functional response for each parcel (functional localizer), the DCBC

cannot determine how well the functional response in a parcel is consistent across subjects.

To address this limitation, our proposed mean adjusted expected cosine error (Chap-

ter 4, 4.4.6.3) could be used for evaluating individual parcellation as a supplementary

measure to the DCBC. First, this measure is suited to assess predictions of brain func-

tional responses, where the profiles are learned from subjects other than the one being

examined. This aspect is critical to gain insights into the differences across individual

brains and how the brain’s response patterns differ from one person to another. Second,

the mean adjusted expected cosine error only yields lower values if the brain responses

in a specific region are consistent across subjects. Lastly, by employing the expected

value, this method allows for the evaluation of probabilistic (soft) brain parcellations,

largely expanding the applicability of brain parcellations in different types. Therefore,

an individual parcellation, that simultaneously possesses a higher DCBC value and lower

value of mean adjusted expected cosine error, detects the functional boundaries well and

predicts the functional profiles of parcels more consistently across individuals at the same

time. Overall, the mean adjusted expected cosine error provides an alternative view of
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evaluating brain parcellations for future studies and advancements in brain parcellation.

5.5 Interpreting brain organizations as gradient or

parcellation

There is an ongoing debate in recent functional brain organization studies: should the

brain be interpreted as soft, smoothed gradients or a hard, discrete parcellation (Tononi

et al., 1994; Friston, 2011; Bijsterbosch et al., 2020)? While the segmentation of the brain

into discrete regions is the most common approach to describe its functional organization,

some studies have interpreted brain organization as a functional gradient (Cohen et al.,

2008; Margulies et al., 2016; Haak et al., 2018; Tian et al., 2020): the gradual transitions

along a functional spectrum. This gradient perspective is based on the observation that

many functional regions are not separated by an abrupt functional boundary, but that

the transition between them occurs smoothly. The functional gradient perspective em-

braces the idea that cognitive functions result from the integrated activity of networks,

emphasizing no brain region is sufficient to perform a particular function by itself.

Although this thesis work was built upon the concept of functional parcellation, Chap-

ter 2 addressed this open debate from an evaluation perspective. If the brain functions

are assumed to be solely varied in smooth gradients across the cortical surface, the ex-

pected DCBC value when tested on a novel task set should be around zero, which means

no boundaries are aligned. However, in our study, we observed systematic positive DCBC

values for functional parcellations (Chapter 2, Fig. 2.5). This demonstrates clearly that

there are functional boundaries in the human brain, where the functional specialization

changes abruptly across tasks. On the other hand, these predicted functional boundaries

are not equally strong, as can be seen in the noisy or uncertain areas in the estimated

parcellation (Appendix A, Fig. A.5), or as evidenced in boundary-wise evaluation pre-

sented in King et al. (2019). With boundaries of decreasing importance, the true number

of functionally distinct parcels, denoted as K, is not clearly defined. This can be seen in

our evaluation results with the performance not peaking at a specific value for K, but
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slowly reaching an asymptote (Chapter 3, Fig. 3.6f). If we use a different set of tasks to

evaluate the parcellations, some boundaries are not stable and may shift across different

tasks. This suggests some parts of the brain are better explained by a gradual transition

from one function to the other. Overall, our results argue that the two descriptions,

discrete parcellation vs. continuous gradients, both capture important aspects of the un-

derlying brain organization, revealing that the two interpretations may not be mutually

exclusive.

These together raise interesting further methodological questions of whether we can

find a way to integrate the two interpretations into a common framework. To this end, fur-

ther development can build brain parcellations that simultaneously possess hard bound-

aries and the feature of smooth gradients, such as probabilistic brain parcellations. In

such parcellations, the parcel assignment of a brain location is defined through a prob-

ability distribution over all possible K regions, resulting in a flexible version between

the two concepts. For instance, in regions where the function transitions gradually, the

probability distribution would be more evenly spread across multiple parcels. In contrast,

in regions with sharp functional boundaries, the distribution would be heavily skewed

towards a single parcel. This kind of approach could help bridge the gap between the

gradients and parcellations, offering a better understanding of the complex functional

organization.

5.6 Extensions of current work

In previous discussions, I have dissected this thesis work from three common scenarios

for brain organization studies, such as when using (Discussion 5.2), building (Discussion

5.3), and evaluating (Discussion 5.4) brain atlases. Within each scenario, I also discussed

the implications or potential research directions from a broader view. Here in this section,

I will address some useful extensions that can be applied to my work in the near future

from a computational modeling perspective.
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5.6.1 The optimal number of parcels

The number of parcels in a brain parcellation is a critical factor, influencing both the res-

olution and performance of the resultant brain maps. Without knowing the ground-truth

number of parcels K, most brain parcellation methods use a fixed number throughout or

a predefined range to learn a set of parcellations in different resolutions. This is also the

case in our fusion framework, where K was defined from 10 to 100 for estimating cere-

bellar parcellations. However, this strategy has certain limitations as the true number of

parcels vary across different training dataset or subject. Even using the same dataset, the

performance of the derived parcellations can significantly vary depending on the choice

of K (Chapter 3, Fig. 3.6). Hence, it is important to develop a parcellation learning

algorithm capable of adaptively determining the optimal number of regions or parcels.

To adaptively estimate the number of parcels K in our learning framework (Chapter

3), one potential solution is to leverage the idea from Bayesian model selection methods,

such as Bayesian information criterion (BIC) (Schwarz, 1978). It provides a measure of

the trade-off between the likelihood of a model given the data and the complexity of

the model (complexity increases with K rising), helping to avoid over-fitting. In this

case, we can add an outer loop to iteratively decrease K from a relatively larger number

and incorporate a term related to BIC into the model likelihood calculation for each

iteration, effectively balancing model complexity (K) and goodness of fit during the

learning process. This would allow the algorithm to “decide” on an optimal number of

parcels during the learning process rather than having to specify it beforehand.

5.6.2 Hierarchical structure of brain parcellation

Another interesting and practically useful extension to our framework is to build a hier-

archical version of brain parcellation. The resulting parcellation can be represented as

a hierarchical tree, where on top of the tree contains the information of a coarse parcel-

lation. This coarse parcellation separates the brain into a few large regions by strong

and stable functional boundaries, emphasizing the parcellation perspective of brain or-

ganization. On the other hand, users have the flexibility to “cut” this hierarchical tree
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from a relatively bottom position, resulting in a finer resolution parcellation. In this

finer parcellation, the smaller size parcels are nested inside the coarse parcels separated

by weak boundaries. The instability of the boundaries for these small regions can be

detected by the shifting when K changes, reflecting the gradient perspective of the brain

organization.

This hierarchical structure of brain parcellation addresses the open debate between

functional gradient and parcellation. Hierarchical parcellation, by its nature, would cap-

ture both the fine-grained and coarser elements of brain organization, thus bridging the

gap between functional gradient and parcellation views. When building such parcellation

under our fusion framework in Chapter 3, we can start the learning algorithm with a very

fine resolution (high K) and keep merging the neighboring parcels bottom-up, until the

algorithm meets the converge criterion or reaches a desired lower resolution. In this case,

the development of such convergence properties has become important for addressing

both interpretations of brain organization and remained a practical question for further

investigation.

5.6.3 Deep generative architecture for improved spatial arrange-

ment model

In Chapter 4, we proposed an m-RBM model to estimate individual brain parcella-

tions, which is essential to model the spatial structure between brain locations. The

m-RBM model showed several advantages in modeling intrinsic smoothness but it still

suffers from the intractability of the partition function like any energy-based model.

Although advanced training algorithms for energy-based models exist and have better

performance and convergence compared to traditional contrastive divergence (Song and

Kingma, 2021), they are still subject to certain limitations. These limitations may in-

clude computational efficiency, susceptibility to local minima, sensitivity to hyperparam-

eter choices, and their ability to effectively learn complex, high-dimensional distributions,

which is particularly important when dealing with neuroimaging data.

Thus, future extensions for improved spatial arrangement models could explore the
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utilization of deep generative models, such as variational autoencoders (Kingma and

Welling, 2013), generative adversarial networks (Goodfellow et al., 2020), or normalizing

flow (Rezende and Mohamed, 2015) that have shown great promise in handling com-

plex and high-dimensional data. These models could offer a more efficient and stable

training process, and they also provide an explicit model of the data distribution, which

is advantageous for understanding and visualizing the estimated individual brain par-

cellations. Furthermore, the latent space learned by these models could offer a rich,

lower-dimensional representation of the complex spatial arrangement of brain regions,

enabling more precise mapping of individual brain functions.

5.7 Conclusion

In this thesis, I have developed a number of methodological innovations that address

important challenges in the field of brain parcellation. These developments have allowed

us to create better models that capture the intrinsic spatial dependence and individual

variability present in human brain structures, thus pushing our knowledge of personalized

brain studies forward. This progress doesn’t only improve our understanding of brain

functions but also carries significant implications for clinical neuroscience. Improved

individual parcellations, as produced by the methods presented in this thesis, could pave

the way for enhanced clinical studies and open new doors in personalized medicine.

By providing more accurate mapping of individual brain functions, these advancements

can also potentially facilitate more precise diagnoses and more targeted treatments for

neurological disorders. The journey to fully comprehend the human brain complexity is

far from over, but with the help of machine learning, we are one step closer to unraveling

its mysteries.
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Appendix A

Supplementary Materials and

Figures for Chapter 3

Parameter estimation of full model

In this section, we provide details of model parameter estimation for the full EM algo-

rithm. The complete expected log-likelihood
∑

s⟨log p(Ys,Us;θ)⟩q can be decomposed

into expected emission log-likelihood LE and expected arrangement log-likelihood LA,

where ⟨·⟩q denotes the expectation with respect to distribution q. Similarly, the model

parameter θ can be subdivided into θE and θA and can be estimated within their cor-

responding models (Methods 3.4.1). This unique model structure yields the following

learning EM process:

Emission model E step. Suppose for a single dataset Yn is a S×N ×P tensor for

S subjects (S is the number of subjects in S) of N data observations across P voxels. The

brain activation of a voxel for a single subject ys
i is a N -long vector. If the task design

has repeated measurements of the same M conditions (e.g. in a single imaging run), the

user can specify this over a N ×M design matrix X (M is the number of unique task

conditions). To account for the situation that ys
i consists of multiple partitions, which

could be imaging sessions or runs, we used an N -dimensional partition vector to divide

N observation into J independent partitions. Therefore, if we combine the data across

repeated measurements and different partitions, the resultant data ỹs
i would be a sum of
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normalized data in each partition j as,

ỹs
i =

J∑
j

∥(X⊤
j Xj)

−1X⊤
j y

s
i,j∥ (A.1)

However, we can also treat the different repetitions as independent observations, mean-

ing that the resultant data is normalized to length 1 across J independent partitions.

This is also the case with the Type 1 model, in which the imaging sessions are simply

concatenated. Hence, the expected emission likelihood LE of a mixture of k-classes vMF

distribution in eq. 3.11 is modified and updated at (t+ 1) iteration by:

LE
(t+1) = SPJ

∑
k

log cM(κ
(t)
k ) +

∑
s∈S

P∑
i

K∑
k

⟨us
i (k)⟩(t)q κ

(t)
k v

(t)
k

⊤
ỹs
i (A.2)

As a sufficient statistic, it should be noticed that the resultant summed vectors ỹs
i become

a M -dimensional vector but its magnitude is not 1 anymore. Therefore, the normalizing

constant will be computed in M -dimensional correspondingly, denoted as log cM(κk).

Arrangement model E step. Expanding eq. 3.10 and 3.7, the expected posterior

under the proposal distribution q at (t+ 1) iteration are updated as,

⟨us
i (k)⟩(t+1)

q = p(us
i = k|ys

i ; θ
(t)
A , θ

(t)
E ) (A.3)

=
exp(⟨log p(ys

i |us
i = k; θ

(t)
E )⟩q + ηki

(t)
)∑

j exp(⟨log p(ys
i |us

i = j; θ
(t)
E )⟩q + ηji

(t)
)

(A.4)

where ηki is defined in Methods.

Arrangement model M step. Expanding the expected arrangement log-likelihood

in eq.3.10, we obtain the derivatives with respect to the parameters θA := {ηi,k}:

∂LA

∂ηi,k
=
∂
∑

s

∑
i⟨us

i (k)⟩q · ηi,k
∂ηi,k

(A.5)
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By setting this derivative to zero, we can obtain the following parameter updates:

ηi,k
(t+1) = log

∑
s

⟨us
i
(k)⟩(t)q (A.6)

Emission model M step. To update the parameters θE of the vMF mixture in

the M-step, we need to maximize LE in respect to the parameters in vMF mixture

θk = {vk, κk}. First, we update the mean direction vk, where we get the intuitive update

:

v
(t+1)
k =

ṽk

rk
, where ṽk =

∑
s

∑
i

⟨us
i
(k)⟩(t)q · ỹs

i ; rk = ||ṽk|| (A.7)

The updates of the concentration parameters κk are more difficult in particular for high

dimensional problems, since it involves the inverting ratio of two Bessel functions. There-

fore, we here use an approximate solution suggested by Banerjee et al. (2005) and Hornik

and Grün (2014). In our specific case, we want to integrate the evidence across s = 1, ..., S

subjects and i = 1, ..., P voxels, with each subject and voxel may have Js
i partitions. Un-

der this assumption, we can (1) learn a common κ across classes by restricting κk to be

equal, as:

κ(t+1) ≈ r̄M − r̄3
1− r̄2 (A.8)

r̄ =

∑K
k ∥

∑S
s

∑P
i ⟨us

i
(k)⟩(t)q · ỹs

i∥∑S
s

∑P
i J

s
i

(A.9)

which is used in Type 1 and Type 2 model learning.

Alternatively, we can (2) learn k-class specific kappa κk by relaxing the constraint

as:

κ
(t+1)
k ≈ r̄kM − r̄3k

1− r̄2k
(A.10)
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r̄k =
∥∑S

s

∑P
i ⟨us

i
(k)⟩(t)q · ỹs

i∥∑S
s

∑P
i ⟨us

i
(k)⟩(t)q · Js

i

(A.11)

which will be used as the parameter estimates for the Type 3 regions-specific emission

model.
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Figure A.1: Performance comparison between the parcellations derived from
Gaussian Mixture Model (GMM) and von Mises-Fisher Mixture model
(VMF). (a) The averaged DCBC value of the group parcellation maps trained by GMM
or VMF mixture model across subjects in the test dataset. (b) The averaged DCBC value
of the individual parcellation maps trained by GMM or VMF mixture model across sub-
jects in the test dataset.
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Figure A.2: The synthetic dataset. (a) The random true group map with 5 parcels.
(b) The group prior controlled by smoothing kernel at different levels for all 5 classes.
(c) The example individual parcellation maps generated by different parameters
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Figure A.3: Simulation on two synthetic sessions fusion with similar task ac-
tivation using Type 1, 2, and 3 emission models. (a) The comparison of model
reconstruction performance of group parcellations learned on synthetic session 1 or 2
standalone vs. the ones learned fusion using type 1, 2, or 3 models. (b) The mean
DCBC value of the group map learned from session 1 or 2 only or learned by fusion
using type 1, 2, or 3 models. (c) The mean DCBC value of individual maps across all
participants when learned from session 1 or 2 only or learned by fusion using type 1, 2,
or 3 models. Error bars indicate SEM across 100 times simulation.
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Figure A.4: Comparing the performance of Type 2 and 3 models when the
number of parcels K used for fitting is different from the true K in the simu-
lation. (a) The difference of the mean DCBC value between the group map trained on
a synthetic dataset using Type 2 and Type 3 models with different fitting K and ground
true K, which tested on an independent synthetic test set. A positive value on the grid
indicates the Type 2 model outperforms the Type 3 model, while negative values mean
the opposite. (b) The difference of the mean DCBC value between the individual maps.
(c) The mean DCBC value for the group map learned from individual synthetic datasets
only or learned by fusion using the Type 2 or 3 models for K = 5 to K = 40 when the
true K = 20. The error shade indicates the standard error across 100 simulations. (d)
The mean DCBC value for the individual maps.
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Figure A.5: The visualization of the learned group maps (K = 34). (a) The maps
were trained on a pure resting-state dataset HCP-Unrelated 100 using the Type 2 or 3
fusion model. (b) The maps were purely trained on task-based datasets using the Type
2 or 3 fusion model. The task datasets are MDTB, Highres-MDTB, Nakai&Nishimoto,
IBC, WMFS, Demand, Somatotopic. (c) The maps were trained on the combination
of resting-state and all task-based datasets. The colors for the parcels are aligned in
each type of model, where two similar colors in RGB space indicate the two parcels have
similar task activation responses on average.
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Supplementary Materials and

Figures for Chapter 4

Proof of the expected weighted cosine error is equiv-

alent to 1−R2

Weighting the error by the length of the vector effectively calculates the squared error

between yi and the prediction scaled to the amplitude of the data (vk∥yi∥). For simplicity,

we use vk to represent the most likely predicted mean direction vargmax
k

for each voxel in

the following proof. 1−R2 between yi and the prediction scaled to the amplitude of the

data (vk∥yi∥) is defined as:

1−R2 =
RSS

TSS

=
1∑

i ∥yi∥2
∑
i

(yi − vk∥yi∥)2

=
1∑

i ∥yi∥2
∑
i

(y⊺
i yi − 2y⊺

i vk∥yi∥+ v⊺
kvk∥yi∥2)

=
1∑

i ∥yi∥2
∑
i

(∥yi∥2 − 2y⊺
i vk∥yi∥+ ∥yi∥2)

=
2∑

i ∥yi∥2
∑
i

(∥yi∥2 − y⊺
i vk∥yi∥) (B.1)
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By equation 4.19, we can see that 1−R2 = 2ϵ̄Acosine, and similarly we can easily proof

below equation:

⟨ϵ̄MSE⟩q =
1∑

i ∥yi∥2
∑
i

∑
k

⟨û(k)
i ⟩(yi − vk||yi||)2 = 2⟨ϵ̄Acosine⟩q (B.2)

where ⟨û(k)
i ⟩ is the inferred expectation on the training data using the fitted model.
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Figure B.1: The synthetic dataset. (a) The group probability prior is controlled
by smoothing kernel at different levels for all 5 parcels. (b) The burn-in process for
generating the individual parcellation. (c) The example individual parcellation maps
generated by different parameters
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