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Abstract

Brain parcellation studies are fundamental for neuroscience as they serve as a bridge

between anatomy and function, helping researchers interpret how functions are dis-

tributed across different brain regions. However, two substantial challenges exist in

current imaging-based brain parcellation studies: large variations in the functional or-

ganization across individuals and the intrinsic spatial dependence which causes nearby

brain locations to have a similar function. This thesis presents a series of projects aimed

to tackle these challenges from different perspectives by using advanced machine learning

techniques.

To handle the challenge of individual variability in building precise individual parcel-

lations, Chapter 3 introduces a novel hierarchical Bayesian brain parcellation framework.

This framework learns a brain probabilistic parcellation by integrating across diverse

datasets. For single individuals, the framework optimally combines the limited individ-

ual data with the group probability map, resulting in improved individual maps. We

found that the resultant individual parcellation based on only 10 minutes of imaging

scans can achieve an equivalent performance to the ones using 100 minutes of data alone.

These improved individual parcellations are essential to accurately capture functional

variations across studied populations.

The intrinsic spatial dependence between brain locations poses a significant chal-

lenge in both evaluating and generating brain parcellations. To address this, Chapter

2 presents a bias-free method for evaluating different brain parcellations, the distance-

controlled boundary coefficient (DCBC). Compared to existing evaluation metrics that

bias toward finer and spatial contiguous parcellations due to spatial smoothness, DCBC

provides a fair evaluation by controlling the distance of brain location pairs, ensuring a

direct comparison of parcellations in different resolutions. To address the intrinsic spa-

tial dependence when learning parcellations, I propose a new model in Chapter 4, the

multinomial restricted Boltzmann machine (m-RBM), that can be incorporated into the

learning framework in Chapter 3. This model captures spatial structure between brain

locations in its architecture. While simulations showed the utility of this type of model in

estimating individual parcellations, we could not demonstrate better performance using

real imaging data.

Together, this thesis significantly advances the technical toolkit for deriving brain

parcellations from functional imaging data. The developments open up new avenues for

future research into human brain organization.

Keywords: Brain functional parcellations, Computational Neuroscience, Machine
Learning
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Summary for Lay Audience

Understanding how the human brain is organized and how different parts of the brain

interact with each other is a critical part of neuroscience research. Just like we usually

use maps when exploring a new city, brain parcellation subdivides the brain into different

regions based on their functional or structural properties, helping scientists make sense

of this intricate organ. But, this is not an easy task. Two main challenges stand in

the way by the nature of the brain: the fact (1) that every person’s brain has a slightly

different organization and (2) that brain locations close to each other tend to function

more similarly.

This thesis uses advanced machine learning techniques to tackle these issues. Just

like how no two cities are alike, no two brains are identical, so it is important that brain

parcellations reflect that. To address the first challenge, we developed a hierarchical

Bayesian framework that learns the probability that a brain location belongs to a specific

map, rather than learning a fixed map. This enables the model to produce individual

brain parcellations by combining the group probability map with data from an individual

following the Bayes rule, resulting in a more accurate personalized brain map. The

framework is also able to learn combined knowledge from different datasets, thereby

making full use of different experiments, each studying a different aspect of brain function.

The thesis also addresses the issue of intrinsic smoothness of the brain, the fact that

spatially-nearby brain locations have higher functional similarity than the far-away pairs.

This biological characteristic is an important consideration, not only when generating but

also when evaluating brain parcellations. Without taking it into account, the boundaries

between different functional regions in the trained brain maps might be noisy and difficult

to identify, or the evaluation methods could unfairly favor those parcellations that are

finer-grained and spatially continuous. To solve these problems, we designed a new

computational model based on restricted Boltzmann machines (RBM) that explicitly

models the spatial smoothness in the brain. The resultant maps capture the spatial

structures between brain locations, helping in a more precise mapping of brain functions

to individual brain regions. In addition, we also developed a new way of evaluating these

brain maps, which reduces the bias in existing evaluation methods caused by the intrinsic

spatial smoothness of the brain, making it a bias-free evaluation approach.

In essence, this thesis presents a series of projects to advance the methodological

toolkit for producing brain parcellation maps. The tools may lay the foundation for

clinical applications in personalized medicine, and be useful for future studies that address

fundamental neuroscience questions.
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• Ana Lúısa Pinho: Data pre-processing, and revision of the manuscript

• Danilo Bzdok: Revision of the manuscript

• Jörn Diedrichsen: Project conceptualization, computational modeling, data pre-

processing, and revision of the manuscript

Chapter 4: Zhi, D. and Diedrichsen, J. Spatially-informed models for individual brain

parcellations. (In preparation)

• Da Zhi: Project conceptualization, computational modeling, manuscript drafting,

and revision of the manuscript

• Jörn Diedrichsen: Project conceptualization, and computational modeling

iv

https://doi.org/10.1002/hbm.25878
https://doi.org/10.1101/2023.05.24.542121
https://doi.org/10.1101/2023.05.24.542121


Acknowlegements

I would like to express my most profound gratitude to my supervisor, Dr. Jörn Diedrich-

sen, for his full support and encouragement, insightful advice, and expert guidance

throughout my Ph.D. studies and research. Without his incredible knowledge, patience,

and counsel, this research would not have been possible.

I wish to say many thanks to all the members of the Diedrichsen Lab (past and

present), and more broadly the Sensorimotor Superlab, for being wonderful colleagues and

friends, for providing valuable feedback over the years, and for their company throughout

my Ph.D. years. I would like to express my special thanks to Ladan Shahshahani for

teaching me the key fMRI analysis paradigm and enriching me with the related neuro-

science background.

Thanks to Carlos R. Hernandez-Castillo, Maedbh King, Ladan Shahshahani, Caroline
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Chapter 1

General Introduction

1.1 Human Brain Organization

The study of human brain organization is an important part of neuroscience research.

It addresses the fundamental question of how different regions of the brain interact and

collaborate to produce a broad range of cognitive and behavioral outcomes. A common

approach to understanding brain organization involves subdividing the brain into struc-

turally or functionally distinct regions (Felleman and Van Essen, 1991; Eickhoff et al.,

2018), a process known as brain parcellation. Early atlases of the human brain were

based on the cytoarchitectonic organization of the neocortex (Brodmann, 1909; Zilles

et al., 2002; Talairach, 1988a). These anatomical parcellations laid the groundwork for

our understanding of the complex structure and functions of the brain and are still con-

tributing to today’s neuroscience studies.

In recent years, the advent of neuroimaging technologies, such as functional magnetic

resonance imaging (fMRI), offers an alternative approach by acquiring non-invasive brain

functional images in large samples of subjects, As a result, a number of fMRI-based brain

parcellations based on functional properties have been proposed in recent years (Yeo et al.,

2011; Buckner et al., 2011; Gordon et al., 2016; Schaefer et al., 2018; King et al., 2019).

These functional parcellations delineate regions of the brain according to the similarity

of their functional connectivity patterns, using resting-state or task-based fMRI data

(Arslan et al., 2018; Eickhoff et al., 2018). In addition, multi-modal parcellations have

1



2 Chapter 1

recently emerged by integrating various types of data, such as structural, functional, and

cytoarchitectonic information, providing a more comprehensive understanding of brain

organization (Glasser and Van Essen, 2011; Fan et al., 2016).

Functional parcellations play an important practical role in the study of brain organi-

zation. The primary usage of a parcellation is to reduce the complexity of the statistical

analysis, from tens of thousands of measurement units (vertices or voxels) to a much

smaller set of individual regions. For example, parcellations are commonly used to define

regions of interest (ROIs) to summarize functional and anatomical data, or to define the

vertices for subsequent connectivity analysis (Sporns, 2011). A widely-accepted parcella-

tion map allows for direct comparison between studies (Arslan et al., 2018). Universally,

any parcellation should aim to define regions such that the characterization (whether

anatomical measures, connectivity patterns, or task activation) of neural populations

within the same region should be maximally similar to each other. In contrast, neu-

ral populations assigned to different parcels should be maximally different. Therefore,

brain parcellation can be viewed as a clustering problem. As a result, standard machine

learning methods can be applied to brain parcellation.

In the rest of this Chapter, I will review the background for the thesis, including

the necessary details concerning the fMRI data, especially the difference between task-

based and resting-state fMRI. I will then describe computational approaches for deriving

brain parcellations and review how they are used in the current state-of-the-art projects.

Lastly, I will come to the major challenges for brain organization followed by the thesis

objectives.

1.2 Background

1.2.1 Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique

that allows researchers to investigate the functions of the human brain. By utilizing the

blood oxygenation level-dependent (BOLD) contrast (Ogawa et al., 1990), fMRI measures
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changes in blood flow and oxygenation levels in response to neural activity. The BOLD

signal arises from the coupling between neural activity and local changes in blood flow,

allowing researchers to infer which brain regions are engaged during specific cognitive

tasks or resting-state conditions. This technique has revolutionized the field of cognitive

neuroscience by providing valuable insights into the functional organization of the brain

and its role in various cognitive processes (Logothetis, 2003).

The BOLD signal (or BOLD contrast) in fMRI is based on the principle that when

neurons are active, they require more oxygenated blood to meet the metabolic demand

compared to when they are inactive. As a result, the brain’s vasculature responds by

increasing blood flow to the active regions, supplying the necessary oxygen and nutrients.

The increased blood flow leads to changes in the ratio of oxygenated to de-oxygenated

hemoglobin, causing alterations in the magnetic properties of the blood. These magnetic

changes can be detected using specialized MRI techniques (Ogawa et al., 1990), enabling

researchers to map brain activity with high spatial resolution. By analyzing the spa-

tiotemporal patterns of the BOLD signal, researchers can identify brain regions involved

in specific tasks and gain insights into the neural networks underlying various cognitive

functions (Norman et al., 2006).

The BOLD fMRI technique has become an important tool in neuroimaging research.

However, it is also crucial to note that fMRI is an indirect measure of neural activity and

has certain limitations, preventing direct analysis use. For example, the measurement

noise from the scanner, head or body motion during the scanning, and the brain segmen-

tation for the region of interest. Therefore, an fMRI data pre-processing step is often

required for subsequent analyses and statistical modeling, including brain segmentation,

realignment and registration of functional images, normalization, etc.

The preprocessing of fMRI data is essential for the following neuroimaging studies.

The aim of preprocessing is to transform the raw data into a format suitable for sta-

tistical analysis. The first stage of preprocessing usually involves the segmentation of

the anatomical image into white matter, gray matter, cerebrospinal fluid (CSF), etc,

by masking each of these structures. It is because we are only interested in the neural

activities within the gray matter, and other structures are masked out as noise. Then
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the functional data undergoes motion correction since subjects could move their heads

during the scanning, introducing spatial variation in the data that is not related to any

neural activity. Therefore, a reference image is selected and all the other functional im-

ages are then aligned to this reference image, estimating the movement of each image

with respect to the baseline (Friston et al., 1995; Jenkinson et al., 2002). If an image

shows a large movement, then it can be excluded from the subsequent steps. After that,

the mean functional images need to be co-registered with the segregated anatomical im-

age, aligning the lower-resolution functional image with the underlying higher-resolution

anatomical image. Lastly, spatial normalization is another key step, which involves warp-

ing the subject’s data to match a standard anatomical template, such as the Talairach

(Talairach, 1988b), MNI152 (Fonov et al., 2011), or Freesurfer’s fsaverage surface space

(Fischl, 2012), depending on specific usage. This process ensures that equivalent regions

across subjects are compared, allowing for group-level analysis.

1.2.2 Task-based and resting-state fMRI

Traditionally, fMRI was utilized to measure changes in brain activity when participants

are performing specific behavioral tasks (Fox and Raichle, 2007; Logothetis, 2008; Raichle

and Mintun, 2006). Task-based fMRI is commonly used in early fMRI studies to identify

brain functional regions that are active for a specific behavioral task. For example, during

a finger-tapping task, the neurons in the motor cortex will be activated and the blood

will flow in to deliver more oxygen to this region, resulting in a change in the ratio of

oxygenated to deoxygenated blood (Ogawa et al., 1990). Therefore, the motor network

associated with finger movement tasks can be located. More typically, task-based fMRI

studies compare a task of interest to a well-matched control task to isolate activity due

to a specific mental process of interest.

The processed task fMRI data is typically modeled using a general linear model

(GLM) framework as a first-level anaylysis. The GLM is a statistical model that allows

researchers to estimate the contribution of different experimental conditions or tasks to

the measured fMRI signal. The model includes a set of predictors, representing the

expected neural response for each condition, convolved with a canonical hemodynamic
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response function (HRF) (Friston et al., 1998a,b) that captures the delayed and pro-

longed nature of the hemodynamic response. The raw fMRI data is then fit to this GLM

using regression analysis, resulting in beta weights that represent the strength of the

relationship between each condition and the measured fMRI signal at each voxel. To

obtain the beta weights, various estimation methods can be employed, such as ordinary

least squares (OLS) or weighted least squares (WLS) (Diedrichsen and Shadmehr, 2005).

These methods aim to find the best-fitting parameters that minimize the difference be-

tween the predicted response based on the GLM and the actual fMRI signal. These

resultant beta weights can then be further analyzed, such as by conducting statistical

tests to assess the significance of the observed effects and making inferences about the

underlying neural processes involved in the task (Friston et al., 1995).

In contrast, resting-state fMRI (rs-fMRI) measures the BOLD signal when partic-

ipants are ‘resting” in the scanner without a specific task (Biswal et al., 1995). The

BOLD signal in different brain regions captures the spontaneous fluctuations in neural

activity that occur in that state. It has been shown that regions that have high anatom-

ical connectivity with others and are also usually co-activated for specific tasks, tend to

show highly correlated fluctuations. Therefore the correlations between the time series

of different regions can be used as an estimate of the intrinsic functional connectivity of

the brain (Greicius et al., 2003; Fox and Greicius, 2010; Uddin et al., 2010).

Unlike the GLMs for task-based fMRI, the rs-fMRI does not have an independent

manipulation that can be used to build a model because there is no task design to pro-

vide a regressor for a first-level analysis. Therefore, resting-state functional connectivity

(rs-FC) is often used to reflect this synchronized neuronal activity in rs-fMRI by measur-

ing the statistical dependence between BOLD signal time courses in spatially distributed

brain regions directly. One common method for analyzing rs-fMRI data is seed-based

connectivity analysis (Biswal et al., 1995). In this method, a region of interest (ROI

or ’seed’) is defined, and the BOLD signal time course within this ROI is correlated

with the time courses from all other brain voxels to create a connectivity map. This

map represents how functionally connected the rest of the brain is with the seed region.

Another similar approach derived from the seed-based connectivity analysis is the ROI-
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to-ROI-based functional connectivity analysis. However, rather than correlating the time

series from one seed region to every other voxel in the brain, in ROI-to-ROI analysis, the

average time series of each ROI is correlated with the average time series of every other

ROI. This method provides a broader view of the functional relationships between all

pairs of selected regions, giving a more holistic picture of brain network interactions. An

alternative to the seed-based approaches is based on graph theoretical analysis (Power

et al., 2011), where the brain is modeled as a graph network. The voxels or ROIs can

be represented as vertices and the correlations between the vertices are the connectiv-

ity weights of the edges. One advantage of this approach is to capture and quantify

the topological properties of brain networks in the graph, providing a more comprehen-

sive understanding of brain organization compared to conventional seed-based methods.

Other data-driven approaches attempt to define the underlying brain regions for rs-FC

analyses rely on Independent Component Analysis (ICA), to decompose rs-fMRI data

into spatially independent components (Beckmann et al., 2005), or clustering methods,

to group voxels into regions based on their similarity measure (Salvador et al., 2005).

A detailed survey of methods for measuring resting-state functional connectivity in the

literature can be found elsewhere (Lee et al., 2013).

Depending on what goal is in mind, care needs to be taken when we study brain

organizations based on which type of functional profile, rs-FC or task activation weights,

as they have their own advantages and disadvantages. The former does not require

subjects to perform specific tasks, allowing researchers to study even babies or clinical

populations that cannot perform a task reliably anymore. It can be acquired relatively

quickly and easily, making it suitable for large-scale studies and clinical applications

(Lee et al., 2013). On the other hand, task-based fMRI investigates specific cognitive

processes by designing tasks, enabling hypothesis-driven investigations to identify brain

regions associated with specific functions in task performance. In the context of brain

parcellation, this advantage is sometimes also considered a disadvantage: the parcellation

will likely depend substantially on the task set that was chosen during fMRI acquisition,

as different tasks will activate different brain regions in different patterns. In contrast,

the resting state is often considered a “neutral” baseline state that reveals the intrinsic
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connectivity of the brain. I will return to this claim and the debate surrounding it in

Chapter 5.

1.2.3 Computational approaches to Brain parcellation

Theoretically, functional brain parcellations aim to subdivide the brain into distinct

regions based on functional data with higher within-parcel homogeneity, while keeping

brain locations with lower similarity in different regions. This goal can be achieved by two

different concepts: global similarity (not spatially informed) and local gradient (spatially

informed) approaches (Schaefer et al., 2018; Eickhoff et al., 2018). The global similarity

approaches seek to group brain-wide voxels or vertices with similar connectivity patterns,

the resulting parcels might be highly functionally homogeneous, suggesting that they

can better represent the whole brain networks and benefits the further dimensionality

reduction analysis. On the other hand, the local gradient approaches seek to identify

boundaries between functional areas by capturing sharp changes in connectivity patterns

across neighbouring brain locations. These methods, being spatially informed, inherently

respect the underlying spatial organization of the brain, capturing local variations and

individual differences in brain organization. While both global and local approaches offer

valuable insights into brain organization, the choice between them often depends on the

specific research questions being addressed.

Among global similarity approaches, the commonly used techniques are based on

clustering algorithms from a machine learning perspective. Initial clustering methods for

brain parcellation projects utilized the k-means algorithm (Lloyd, 1982) to assign each

voxel to a cluster based on the distance measure to its cluster centroid. This algorithm

is generally fast and easy to implement but it is sensitive to the initial choice of centroids

and biased towards equal-size clusters (Tan et al., 2016). Therefore, several variants of the

method have been proposed to deal with these drawbacks of k-means algorithms for brain

parcellation problems (Lee et al., 2012; Thirion et al., 2014). Another group of clustering

methods for brain parcellations was based on hierarchical-clustering algorithm (Bellec

et al., 2010; Mumford et al., 2010) to subdivide the cortex with a bottom-up process,

where boundaries derived from the lower resolutions are propagated to higher levels. By
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joining parcellated regions at different levels of the hierarchical clustering tree, the global

similarity or homogeneity is increased. In contrast, more recent hierarchical clustering-

based approaches (Blumensath et al., 2013; Arslan and Rueckert, 2015; Honnorat et al.,

2015) improved the resultant parcellations by applying additional (or multiple) clustering

layers or combined with other approaches.

Clustering can also be achieved via probabilistic mixture models, which can be con-

sidered as “soft k-means”. The statistical modeling assumes the data of voxels or vertices

within a functional region follow some statistical distributions, hence, different regions

can be clustered by using different parameterized models. In the context of statistical-

based clustering approaches, general mixture models are the most popular family for

brain parcellation tasks. One basic type of brain functional parcellations was estimated

using the Gaussian Mixture model (GMM) (Golland et al., 2007). GMM assumes that

the observed fMRI data is generated from a mixture of a finite number of Gaussian dis-

tributions, each characterized by its own mean and variance parameters. This model

has the advantage of managing complex data distributions and high-dimensional data,

enabling simultaneous consideration of diverse and rich signals from fMRI. Recently, the

von Mises-Fisher (vMF) mixture model (Banerjee et al., 2005) has emerged as a promis-

ing approach for this task as it is particularly well-suited for capturing directional data

distributions, such as the rs-FC profile which usually ignores the signal amplitude by the

data standardization in brain imaging. Several studies have demonstrated the utility of

a mixture of vMF-based approaches in accurately delineating functional brain networks

and capturing subtle variations in connectivity patterns (Yeo et al., 2011; Schaefer et al.,

2018; Kong et al., 2019). These statistical approaches aim to estimate the parameters of

the model, focusing on the generation of each voxel’s functional profile that is assumed

to follow a parametric model with unknown parameter values.

Another type of global similarity approach is based on matrix decomposition (fac-

torization) methods, which are tightly correlated to clustering (Ding et al., 2005). The

key idea of these methods is that the high-dimensional fMRI data matrix Y of brain

voxels with their functional profiles can be decomposed as the product of different lower-

dimensional components V and W that carry specific interpretations, such as Y = VW.
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In the context of brain parcellation, the matrix V might represent functional connec-

tivity patterns of the identified parcels, while W can be viewed as a parcellation of the

brain into different regions. The most commonly used matrix decomposition methods

for brain parcellation projects are Principal Component Analysis (PCA) and Indepen-

dent Component Analysis (ICA). A similar algorithm, non-negative matrix factorization

(NMF) (Ding et al., 2005), has been frequently used to solve brain parcellation problems

(Varikuti et al., 2018; King et al., 2019), which constrains the decomposed components

to be strictly non-negative. It enables the division of the brain into localized components

that reflect actual brain regions (Sotiras et al., 2015). Recently, spectral clustering (Ng

et al., 2001), another matrix decomposition algorithm, based on spectral graph theory

(Von Luxburg, 2007) quickly emerged for brain parcellation tasks (Craddock et al., 2012;

Shen et al., 2013). This algorithm performs matrix factorization based on the eigenvec-

tors of the matrix of similarity (such as connectivity) between brain locations (voxels or

vertices). It keeps the spatial integrity of the parcellations since only vertices sharing

the same cluster membership can be connected in the adjacency matrix. But, spectral

clustering approaches tend to create similarly sized parcels and impose spatial constraints

in order to yield spatially contiguous parcels (Parisot et al., 2016; Arslan et al., 2015).

While these global similarity methods hold great promise for advancing our under-

standing of brain organization, however, they usually neglect the spatial distance of

different brain locations, resulting in some parcels that are spatially disconnected or the

neighboring brain locations having different parcellation labels (Honnorat et al., 2015).

In contrast, the local gradient approaches delineate functional boundaries in the brain

based on the fact that the functional profiles can abruptly change from one spatially con-

tiguous region to a nearby region. This sharp change can be detected by computing the

local gradient in functional patterns. The most commonly-used techniques from previous

work for delineating such cortical regions include edge detection and boundary mapping

(Hirose et al., 2012; Wig et al., 2014). Pioneering work (Cohen et al., 2008) found that

rs-fMRI patterns show sharp transitions in correlation patterns and that these putative

areal boundaries can be reliably detected in both individual and group data. Other works

further utilized boundary mapping approaches for identifying sub-regions in the lateral
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parietal cortex (Nelson et al., 2010) and the basal ganglia (Barnes et al., 2010). Fur-

thermore, (Gordon et al., 2016) described a technique for using resting-state functional

connectivity to define parcels that represent putative cortical areas by a region-growing

algorithm. In general, the local gradient approaches implicitly constrain parcels to be

spatially connected, reflecting the nature of spatial smoothness.

To address the limitations that appeared in both approaches, Recent studies have

proposed to impose spatial prior from Markov Random Field (MRF) model to the sta-

tistical models, which integrated both local gradient and global similarity approaches

with resting-state functional connectivity data (Ryali et al., 2013; Schaefer et al., 2018;

Kong et al., 2019). The resultant brain parcellation outperformed both pure local and

global approaches in terms of the homogeneity of the functional signal within the derived

regions. Thus, combining local boundary detection with global clustering is a promising

direction for future computational models of brain parcellation.

1.2.4 Evaluating brain parcellations

Using different methods, a large number of competing brain parcellations have been pro-

posed over recent years. In the absence of knowing a ground truth, the question arises of

how to evaluate these parcellations. The consistency and reliability between two brain

parcellations can be assessed with the Dice coefficient (Dice, 1945) or Adjusted Rand

Index (ARI) (Hubert and Arabie, 1985). However, these metrics do not tell us how good

a parcellation is, which only provides a measure of how similar a brain parcellation is

with regard to another parcellation. On the other hand, assessing the quality and validity

of brain parcellations presents an inherent challenge, primarily due to the absence of a

universally-accepted parcellation for direct comparison. Thus, the best we can do is to

check how well a given parcellation captures functional boundaries by testing it against

independent datasets. These data sets can be a broad spectrum of anatomical informa-

tion, functional resting-state, or task-based fMRI data, depending on what evaluation

goal is in mind. For example, if one wants to assess how well a brain parcellation is when

predicting task-relevant functional boundaries, then a task-based fMRI dataset should

be chosen as the test set as it gives us insights into how brain regions activate in response
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to specific tasks.

One popular assessment of the validity of a parcellation is the Silhouette coefficient

(Rousseeuw, 1987), which compares the average dissimilarity from one vertex to all other

vertices in the same parcel, to the average dissimilarity from the same vertex to all

the vertices that assigned to neighboring parcels. Similarly, inter/intra-cluster distance

(Bzdok et al., 2015) compares the Euclidean distance between the cluster centers to the

distance between the elements within each cluster. Such criteria describe the goal of brain

parcellation to form groups such that brain locations within a group show higher similar

connectivity, while the connectivity is different between groups. Another commonly-used

evaluation method is global homogeneity (Craddock et al., 2012; Gordon et al., 2016).

Homogeneity is defined as the average similarity across all pairs of vertices within a parcel,

where the similarity measure of two vertices is usually defined as Pearson’s correlation

between functional profiles. The global Homogeneity is then simply calculated as the

average with-parcel correlation across all parcels, with higher homogeneity suggesting a

better parcellation.

1.2.5 State-of-the-art brain parcellation

In this section, I will summarize the state-of-the-art brain parcellations for the human

neocortex and cerebellum, ranging from anatomical, functional resting-state or task-

based, and multi-modal. The goal of this section was to give an overview of the current

status of brain parcellations as important to the topic of this thesis - interested readers

will find a more detailed review elsewhere (Arslan et al., 2018; Eickhoff et al., 2018).

The study of brain parcellation has a long tradition, tracing back to the 19th and

early 20th centuries. Early studies focused on the spatial distribution of cell types in

different layers of the neocortex, a feature discernible after tissue staining. Observations

highlighted that these distributions varied significantly across the brain, revealing regions

of uniform cytoarchitecture and abrupt changes between regions. An influential subdi-

vision of the brain into discrete areas based on the cellular architecture of the neocortex

was provided by Brodmann (Brodmann, 1909). Later work considered different local

properties, in particular myeloarchitecture, to define brain areas (Klatzo, 2002). Other
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anatomical-based parcellations enriched the field by delineating maps using cortical sulci

and gyri (Desikan et al., 2006; Fischl et al., 2004). However, the main drawback of these

anatomical brain mapping studies is that they subdivide the brain into parcels based on

anatomical landmarks, which cannot reflect the true functional boundaries (King et al.,

2019).

Recently, a number of fMRI-based brain parcellations have been proposed in the last

decades for the human neocortex and cerebellum. In this category, the vast majority of

the studies proposed functional parcellations based on resting-state functional connectiv-

ity profiles. For the cerebral cortex, one commonly-used group resting-state parcellation

is proposed by Yeo et al. (2011) in 2011 to separate the neocortex into 7 and 17 networks

using data from 1000 subjects, each network containing multiple spatial distributed com-

ponents. Later work built finer-grained group (Schaefer et al., 2018) or individual (Kong

et al., 2021) resting-state parcellations aligned to the Yeo 7 and Yeo 17 networks with

higher resolution (up to 1,000 parcels) in surface representation. Other cortical parcel-

lations include Craddock 2012 (Craddock et al., 2012) with 10 to 1000 parcels, Gordon

2016 (Gordon et al., 2016) with 333 parcels, Bellec 2010 (Bellec et al., 2010) with mul-

tiple resolutions from 7 to 444 parcels, Power 2011 (Power et al., 2011) of 130 networks,

and Shen 2013 (Shen et al., 2013) with 200 parcels covering the whole cortex. In con-

trast, few recent parcellations highlighted the individual variability in brain organization

by proposing individual-specific resting-state parcellations, such as Wang 2015 (Wang

et al., 2015) of 18 networks and Gordon 2017 (Gordon et al., 2017b) with subject-specific

resolutions.

While most previous work concerns the organization of the neocortex, few studies

exclusively focused on the cerebellum. For the cerebellar functional organization, one

pioneering work of resting-state group parcellations proposed by Buckner et al. (2011)

subdivided the cerebellum into 7 and 17 regions from 1000 subjects. In 2013, the release

of the Human Connectome Project (HCP) (Van Essen et al., 2013), which is a milestone

of resting-state parcellation studies, has made a significant contribution to the field. With

an increasing amount of evidence suggesting that the human cerebellum involves many

cognitive tasks, cerebellar functional organization studies have become important. Ji
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et al. (2019) presented a parcellation of subcortical structures with 10 networks based

on its correlation to their cortical networks using the resting state data from HCP S900

release (Van Essen et al., 2013). Later on, Xue et al. (2021) developed two individual

parcellations with 10 parcels based on resting-state data from 31 sessions for each.

Compared to resting-state, task-based fMRI data has been used less for deriving brain

parcellations. One reason for this is that brain parcellations depend strongly on the tasks

used. Therefore, early task-based approaches used a large number of task-contrast maps

assembled over different studies. For example, Yeo 2015 (Yeo et al., 2015) derived a

parcellation using 10,449 contrast maps across 83 behavioral tasks using a hierarchical

Bayesian model. Only recently, a number of research groups have conducted task-based

fMRI studies that include a broad range of tasks covering multiple domains in the same

subject (Van Essen et al., 2013; Pinho et al., 2018; Nakai and Nishimoto, 2020; King

et al., 2019). This allows the community to reveal a comprehensive brain functional

organization by utilizing task-based parcellations.

For the cerebellum, this has led to a new task-based functional parcellation using

a multi-domain task battery (MDTB, King et al. (2019)), containing a wide range of

social and cognitive tasks, resulting in a task-based parcellation with 10 regions for the

cerebellum (King et al., 2019). In general, task-based parcellation studies are relatively

new, it is partially due to the lack of a large and homogeneous task-based dataset across

multiple task domains with enough subjects. Even if the task set is deliberatively chosen

to be broad, each task set will still have some cognitive domains that are not fully

covered, potentially resulting in biases in the parcellation. Therefore, a principled way of

combining or fusing the knowledge of different task-based datasets would be an important

step forward.

In addition, several multi-modal parcellations were proposed using the features from

anatomical, resting-state, and task-based fMRI data. Such parcellation combines the

strength from different modalities and finds the maximum agreement across all features.

For example, a multi-modal group parcellation, Glasser 2016, based on rs-FC and cy-

toarchitectonic information (eg. Brodmann areas and myelin content) from 210 HCP

subjects was proposed in Glasser et al. (2016), or Fan 2016 parcellation was proposed in
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Fan et al. (2016) using rs-FC and anatomical information (see Table 2.1 for more details).

1.2.6 Group and Individual brain parcellations

Group-level parcellations aim to create a common template or atlas that represents the

average organization of the brain across a group of individuals. These parcellations are

constructed by aggregating data from multiple subjects to identify consistent patterns of

connectivity or anatomical boundaries. Group parcellations provide a standard reference

for comparing brain regions across individuals and can help establish common frameworks

for studying brain function and structure in the studied population. These group-level

maps have proven invaluable for characterizing the brain’s general functional organization

(Buckner et al., 2013) and for comparing different populations, such as healthy controls

and patients with a particular neurological disorder (Wang et al., 2007; Barthel et al.,

2011). Techniques for group-level parcellation generally involve pooling neuroimaging

data from a large number of individuals, then identifying common patterns of connectivity

using computational approaches. For example, the “Yeo 2011” parcellation in Figure 2.4

was estimated from the concatenated resting-state fMRI time series across 1000 healthy

subjects (Yeo et al., 2011).

In contrast, individual-level parcellations aim to capture the unique structural and

functional organization of each person’s brain, as recent studies have shown that inter-

individual difference exists for both brain structure and the function (Braga and Buckner,

2017; Gordon et al., 2017a; Kong et al., 2021). These parcellations acknowledge the reality

of individual variability in brain organization, which can arise due to a variety of factors,

including age, gender, genetics, and experiences. Individual parcellations have been

found to provide a more accurate mapping of functional regions for any given individual,

which can be especially useful in a clinical context where precision is important. They

can have significant implications for understanding individual differences in cognition,

behavior, and susceptibility to neurological or psychiatric disorders. The generation

of individual parcellations relies on high-quality individual functional profiles, however,

creating reliable individual parcellations can be challenging (see 1.3). A key focus in

this area is developing methods that can reliably generate individual parcellations from
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a limited amount of data.

1.3 Challenges of recent human brain organization

studies

In the field of human brain organization research, one of the major challenges is manag-

ing the inter-individual variability that characterizes brain organization (Eickhoff et al.,

2018; Bijsterbosch et al., 2020). Since human brains are uniquely complex and exhibit

substantial variation across different individuals, inter-individual variability challenges

brain organization studies in both the generation and evaluation of brain parcellations.

In practice, individual parcellations are often desired as individual functional localizers

for clinical diagnosis and subsequent analyses. A common way to obtain such individual

functional localizers in previous studies is to run a few minutes of individual scans for

additional tasks before the main study (Kanwisher et al., 1997; Berman et al., 2010;

Lafer-Sousa et al., 2016). However, the resultant individual parcellations are generally

poor-quality since a reliable functional localizer usually requires a relatively large amount

of individual data. But the acquisition of large amounts of individual data is often pro-

hibitive in current neuroimaging studies (Marek et al., 2018), limiting the usage of related

applications. Therefore, how to improve the quality of individual parcellation based on

limited data becomes a recent research direction in the field.

The inter-individual variability of human brain organization can also significantly

impact the evaluation of brain functional parcellations. With the unique structural and

functional differences across individuals, the resultant individual parcellations often show

divergent patterns, resulting in any attempt to evaluate brain functional parcellations

without considering inter-individual variability that could potentially be biased and in-

accurate interpretations. For example, each individual parcellation obtained from one

study will get a different evaluation score even using the same evaluation methods.

A second challenge lies in accounting for the intrinsic spatial dependence of brain

locations. Recent studies have shown that brain regions possess inherent heterogeneity
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to some extent (Van Den Heuvel and Pol, 2010; Van Essen and Glasser, 2018), where the

neighboring brain locations exhibit higher functional similarity compared to the spatially

far-away locations. This spatial smoothness, or the inherent homogeneity within brain

regions, has implications for the way when we parcel brain functional regions (Yeo et al.,

2011; Eickhoff et al., 2018). Previous work proposed parcellations using global clustering-

based approaches, without considering the spatial connections between brain regions.

This disadvantage is more pronounced in individual parcellations compared to group

parcellations that have a level of smoothness across subjects. Therefore, it is crucial to

have a principled way of generating individual parcellations that combine both spatial

proximity and functional similarity.

The intrinsic smoothness also impacts the evaluation of brain parcellations. This

can be observed by evaluating brain parcellations using homogeneity-based methods

(Rousseeuw, 1987; Craddock et al., 2012; Gordon et al., 2016), where a finer-grained,

or even random but spatially contiguous, parcellation can achieve a relatively higher

evaluation score. This bias, caused by intrinsic spatial smoothness, makes a direct com-

parison between parcellations in different resolutions difficult. Therefore, the issue of

brain intrinsic smoothness necessitates the exploration of alternative brain parcellation

representations and evaluations.

1.4 Thesis Objectives

The primary objective of this thesis is to address some of the challenges reviewed in the

previous section. The overarching goal of this research aims to enhance our understand-

ing of brain organization and improve the accuracy and reliability of brain parcellation

techniques. The specific objectives of each chapter are described as follows.

Chapter 2 proposes an unbiased criterion to evaluate discrete brain parcellations,

called Distance Controlled Boundary Coefficient (DCBC). In contrast to existing eval-

uation methods, the DCBC takes into account the spatial arrangement of the parcels,

thereby correcting biases that arise from the intrinsic smoothness of brain data. We

employ DCBC to evaluate existing parcellations of the human neocortex in predicting
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functional boundaries for task-based or resting-state fMRI datasets.

In Chapter 3, I then propose a hierarchical Bayesian framework to learn brain

probabilistic parcellation. This framework addresses an important limitation for human

brain parcellation studies: the missing of a large and homogeneous task-based imaging

dataset. Instead, the framework allows the fusion of insights across a diverse set of task-

based and resting-state datasets, resulting in the trained parcellations having a combined

strength. Additionally, the framework also allows the user to derive individual brain

parcellations using only 10 minutes of individual data to outperform the performance of

group atlases.

Chapter 4 introduces an extension of the framework introduced in Chapter 3. The

brain parcellations possess intrinsic spatial dependence, where the nearby brain locations

exhibit a higher functional correlation compared to faraway locations. Therefore, a good

computational model should account for the spatial structure of brain locations when

learning brain parcellations. To this end, I propose a novel computational architecture

to model the spatial dependencies between brain locations, called m-RBM. I then use

this new model to train individual parcellations in both synthetic and empirical data.



Chapter 2

Evaluating brain parcellations using

the distance-controlled boundary

coefficient

2.1 Introduction

Neuroscience has a long history of subdividing the human brain into different regions

based on differences in histology (Brodmann, 1909). It is commonly understood that

brain function arises through the interactions of regions that are structurally and/or

functionally distinct (Felleman and Van Essen, 1991; Eickhoff et al., 2018). While early

parcellations of the human brain were based on the cytoarchitectonic organisation of

the neocortex (Brodmann, 1909; Zilles et al., 2002; Talairach, 1988a), the advent of

neuroimaging allowed an in-vivo assessment of brain organisation. In recent years, many

parcellations based on task-evoked (Yeo et al., 2015) and resting functional magnetic

imaging resonance (fMRI) data (Eickhoff et al., 2015; Arslan et al., 2018; Eickhoff et al.,

2018) have been published, along with multi-modal parcellations that also incorporate

structural and cytoarchitectonic information (Glasser and Van Essen, 2011; Fan et al.,

2016).

In the empirical study of brain function, parcellations play an important practical

18
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role. They are commonly used to define the regions of interest (ROIs) to summarize

functional and anatomical data, or to define the nodes for subsequent connectivity anal-

ysis (Sporns, 2011). The main function of parcellation is to reduce complexity of the

statistical analysis, as the brain-wide data can be summarized with a smaller number of

values, each reflecting measurements from a region with high homogeneity. Additionally,

widely-accepted parcellations aid the direct comparison between studies (Arslan et al.,

2018).

Despite the importance of brain parcellations in human neuroscience research, there

is no commonly accepted evaluation criterion to compare different parcellations. The

obvious reason for this is that different parcellations are generated with different goals in

mind. Specially, some parcellations aim to define regions that have a common anatomical

characteristic (Desikan et al., 2006; Fischl et al., 2004), a shared connectivity fingerprint

(Yeo et al., 2011; Gordon et al., 2016; Power et al., 2011), or a homogeneous task-

activation profile (Yeo et al., 2015). As such, brain parcellations can be evaluated based

on different types of data (Arslan et al., 2018).

Universally, however, any parcellation should aim to define regions such that the func-

tional profiles (whether anatomical measures, connectivity patterns, or task activation)

of two brain locations in the same region should be maximally similar to each other,

whereas two brain locations in different regions should be maximally different. Thus,

brain parcellation can be viewed as a clustering problem. As a result, standard machine

learning methods to evaluate clustering solutions have been applied to brain parcella-

tion. Two such examples are the measure of global Homogeneity (Gordon et al., 2016;

Craddock et al., 2012) and the Silhouette coefficient (Rousseeuw, 1987).

However, these two evaluation criteria have the common problem in that they do not

account for the spatial nature of the underlying data. In the case of the human neo-

cortex, the functional correlation between two nodes on the cortical surface depends on

their distance, with nearby nodes showing a higher similarity compared to far away ones.

This causes even random, but spatially contiguous, parcellations to achieve relatively

high global Homogeneity or Silhouette coefficient. To establish whether a parcellation

identifies any real functional boundaries at all, Monte-Carlo simulations using random
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parcellations are therefore necessary (Arslan et al., 2018). To complicate matters further,

both global Homogeneity and Silhouette coefficient tend to be higher for finer parcella-

tions. This makes it difficult to compare between two parcellations with different spatial

resolutions.

In this paper, we address this problem by proposing a novel evaluation criterion, the

Distance-Controlled Boundary Coefficient (DCBC). As the Silhouette coefficient, it com-

pares within-parcel and between-parcel correlations of the functional profiles. However,

the DCBC takes into account the spatial smoothness of the data by only comparing pairs

of locations with the same distance on the cortical surface. As we will show, the expected

value of the DCBC for a random parcellation is zero. Thus, no simulations with random

parcellations are necessary to establish a baseline measurement; we can directly test the

DCBC against zero. We also show that this baseline value is invariant to the number of

parcels in the random parcellation. This enables us to use the DCBC to directly compare

parcellations of different spatial scales.

We then use the DCBC to evaluate a set of common parcellations of the human

neocortex (Yeo et al., 2011, 2015; Gordon et al., 2016; Power et al., 2011; Glasser et al.,

2016; Schaefer et al., 2018; Fan et al., 2016; Baldassano et al., 2015; Shen et al., 2013;

Arslan et al., 2015; Tzourio-Mazoyer et al., 2002; Desikan et al., 2006; Fischl et al.,

2004). We performed this evaluation using both a task-based and a resting-state fMRI

data set. For the task-based data set, we used the comprehensive Multi-Domain Task

Battery (MDTB) (King et al., 2019), which contains functional contrasts across many

cognitive domains measured in the same participants. A python toolbox for the efficient

computation of the DCBC, as well as a surface-based version of the MDTB data set are

publicly available to download.
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2.2 Methods

2.2.1 Overview

The DCBC compares the correlation between two brain locations within a parcel to the

correlation between two brain locations across a boundary between parcels. Importantly,

this comparison is only performed for pairs of brain locations that are separated by the

same spatial distance. The calculation of the DCBC proceeds in four steps. First, we

require a data set that provides a rich characterization of each brain location. This data

set defines the functional profile for each brain location. While the DCBC can be applied

to any high-dimensional data, such as multi-modal anatomical data, we focus here on

task-based fMRI data (the MDTB data set (King et al., 2019), which provides 34 activity

estimates across a range of motor, cognitive and social tasks) and resting-state fMRI data

(acquired in the Human Connectome Project, HCP, (Van Essen et al., 2013)). Secondly,

we need a measure of spatial distance between two brain locations, either defined on the

cortical surface, or for subcortical structures, in the volume. Based on these distances, all

location pairs are subdivided into a set of spatial bins. The within-parcel and between-

parcel correlation is then computed for each spatial bin separately. In the last step,

the results are integrated across spatial bins, using an adaptive weighting scheme. To

validate the method, we employed random parcellations of the human neocortex using a

range of spatial resolutions, as well as sets of smooth artificial functional data sets.

2.2.2 Evaluation Data

2.2.2.1 Task-based dataset (MDTB)

To define the functional profiles for the evaluation, we first used the publicly available

MDTB data set (King et al., 2019), which contains a wide range of tasks, quantifying

processes required for motor, cognitive, and social function. Each of the 24 participants

(16 females, 8 males, mean age=23.8) was scanned four times for 80-minutes, while

performing either task set A or B (17 tasks for each, 9 tasks in common). Task set A
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was performed in the first two sessions, task set B in the last two sessions. A total of

approximately 5.3 h of functional data per participant was collected.

In each imaging run, every task was performed once for 35 s, starting with a 5

s instruction period, followed by a 30 s period of continuous task performance. The

task battery included motor (finger tapping, sequence production), working memory (2-

back task, math), language (verb generation, reading), social (theory of mind, action

observation), executive control (no-go, stroop), attention (visual search), emotion (facial

expression, pleasant/ unpleasant pictures), spatial (mental rotations), introspection tasks

(spatial and motor imagery), movie-based tasks (cartoon, nature, landscapes), and rest

(fixation) (King et al., 2019).

All fMRI data were acquired on a 3T Siemens Prisma at Western University. The

imaging parameters were as follows: repetition time = 1 s; field-of-view = 20.8 cm; phase

encoding direction P to A; 48 slices; 3 mm thickness; in-plane resolution 2.5× 2.5 mm2.

For anatomical localization and normalization, a 5 min high-resolution scan of the whole

brain was acquired (see King et al. (2019) for more details).

Data pre-processing was carried out using tools from SPM12 (www.fil.ion.ucl.

ac.uk/spm/doc/spm12_manual.pdf), as well as custom-written scripts written in MAT-

LAB. For all participants, an anatomical image (T1-weighted MPRAGE, 1mm isotropic

resolution) was acquired in the first scanning session. Functional data were realigned for

head motion within each session, and for different head positions across sessions using

the six-parameter rigid body transformation. The mean functional image was then co-

registered to the anatomical image and this transformation was applied to all functional

images. No smoothing or group normalization was applied.

The anatomical image of each of the 24 subjects was processed by standard recon-all

pipeline of the freesurfer software (version 5.0) (Fischl, 2012), including brain extrac-

tion, white and pial surfaces generation, inflation, and spherical alignment to the new

symmetric fsLR-32K template (Van Essen et al., 2012). Individual surfaces were then

re-sampled into this standard grid. This resampling led to surfaces with 32,492 vertices

that are shared both across participants and across left and right hemisphere.

A General Linear Model (GLM) was fitted to the time series data of each voxel for

www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf
www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf
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each imaging run. Each task was modeled as a 30s regressor and all the preceding 5s

instructions were modeled as separate regressors. The regression weights (betas) were

estimated for each run independently and then averaged across the 16 runs for each task

set.

To combine the activity estimates across the two task sets, we used the mean of the

shared tasks as a common reference point. We subtracted this pattern from the average

beta estimates for each task set separately, and then concatenated the two vectors of

activity estimates. The average beta weights were then divided by the square root of the

average mean-square-residual from the first-level GLM to obtain z-scores for each voxel.

The resulting functional profiles consisted of 34 pre-whitened activity estimates (set A =

17; set B = 17) for each voxel. Finally, we subtracted the overall mean across all tasks

from the functional profile of each voxel.

The functional profiles were then mapped to each individual cortical surface by av-

eraging the value from voxels along the connecting line between the pial and white-gray

matter surface, using 5 equally spaced locations between the two surfaces.

2.2.2.2 Resting-state dataset (HCP)

The second data set used in this study was the resting-state fMRI (rs-fMRI) data from the

“unrelated 100” subjects (54 female, 46 male adults, aged from 22 to 35), which was made

publicly available in the Human Connectome Project (HCP) S1200 release (Van Essen

et al., 2013). The rs-fMRI scans for each subject were collected in two sessions held on

different days, including a total four runs of approximately 15 minutes each. During the

scans, the subjects were asked to fixate a white cross-hair on a dark background.

The HCP resting-state fMRI time series were acquired using 3T Siemens “Connectome

Skyra” scanner with 2 × 2 × 2 mm spatial resolution and a TR of approximately 0.7 s.

For more details of the data acquisition parameters, see Smith et al. (2013), and Uğurbil

et al. (2013).

All data were pre-processed using the HCP minimal processing pipeline (Glasser et al.,

2013), including structural registration, correction for spatial distortion, head motion,

cortical surface mapping, and functional artefact removal (Smith et al., 2013; Glasser
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et al., 2013). For each rs-fMRI run, this resulted in 1200 time points for each of the 32k

vertices of the standard fsLR-32K template (Van Essen et al., 2012) per hemisphere. To

generate the functional profiles for the HCP data set, we concatenated all 4 runs after

mean-centering.

2.2.3 Existing evaluation criteria for brain parcellations

Given that brain parcellation can be viewed as a clustering problem, two common meth-

ods used to evaluate the resultant parcels are the global Homogeneity (Craddock et al.,

2012; Gordon et al., 2016), and the Silhouette coefficient (Rousseeuw, 1987). Homogene-

ity is defined as the average similarity across all pairs of vertices within a parcel. As

the similarity measure of two vertices, we used the Pearson’s correlation between func-

tional profiles. The global Homogeneity is then simply the average with-parcel correlation

across all parcels, with higher homogeneity suggesting a better parcellation.

Another popular evaluation metric for brain parcellations is the Silhouette coefficient

(Rousseeuw, 1987), which compares the average dissimilarity (defined as 1-R, where R

represents Pearson’s correlation between functional profiles) from one vertex to all other

vertices in the same parcel (wi), to the average dissimilarity from the same vertex to all

the vertices that assigned to neighbouring parcels (bi) (Yeo et al., 2011; Arslan et al.,

2018). For a given a parcellation {P1,P2,...,Pk}, wi and bi can be defined as:

wi =
1

mk − 1

∑
j∈Pk,i ̸=j

1−R(vi, vj), (2.1)

bi =
1

N

∑
j∈nb(Pk)

1−R(vi, vj) (2.2)

where mk indicates the number of vertices that within the parcel Pk. N is the total

number of vertices in all neighbouring parcels and nb(Pk) represents all neighbouring

parcels of Pk.

For each cortical vertex vi, the Silhouette coefficient is defined as:

Si =
bi − wi

max(wi, bi)
(2.3)
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Based on this definition, the Silhouette coefficient for each vertex ranges from -1 to 1, 1

indicates that there is a perfect correlation within each parcel (r = 1) and on average,

not correlations across parcels (r = 0). As we will see, both of these measures are biased

by the intrinsic smoothness of the functional profiles on the cortical surface.

2.2.4 Measuring spatial distance

To account for the intrinsic smoothness of the data, we require a measure of spatial

distance between any pair of brain locations. For subcortical structures, we have used

the Euclidean distance between pairs of voxels (King et al., 2019). For the neocortex,

however, we ideally would like to use the geodesic distance between vertices on the cortical

surface. As an approximation to this distance, we used Dijkstra’s algorithm (Dijkstra

et al., 1959) to estimate the shortest paths between each pair of vertices on each individual

cortical surface. For this computation we used the mid-cortical layer which is the average

of the pial and white-gray matter surface. For computational and memory efficiency we

only considered distances up to maximum of 50mm. Inter-vertex distances were then

averaged across individuals and hemispheres. This resulted in a matrix that indicates

the average cortical distance between nearby brain locations for the atlas brain surface.

2.2.5 Distance Controlled Boundary Coefficient (DCBC)

2.2.5.1 The problem of spatial smoothness

The problem with global Homogeneity and Silhouette coefficient is that they do not

take into account that function tends to vary in a smooth fashion across the cortical

surface. For instance, if we compute the correlation of vertex pairs across the cortex

using task-evoked functional profiles (King et al., 2019) for an individual participant, we

can clearly see that the correlation falls off with the spatial distance between vertices

(See Figure 2.1a). Note that this smoothness is not an artifact of the data processing;

except for motion realignment and mapping onto the surface, no smoothing was applied

to the data. Thus, the dependence on spatial distance reflects the intrinsic smoothness

of functional specialization on the cortex.
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Figure 2.1: Distance controlled boundary coefficient. (a) Correlation between task-
evoked functional profiles (see methods) of pairs of surface vertices as a function of their
spatial distance; (b) Histogram of the number of within and between vertex pairs as a
function of spatial distance for a random Icosahedron 162 parcellation. (c) Weighting
factor across different bins for the Icosahedron 162 parcellation and binning shown in
b. (d) The correlations for within- (black) and between-region (red) vertex pairs as a
function of the spatial distance (for Yeo 17 parcellation). The DCBC is defined by the
weighted average distance between the two curves.

For the global Homogeneity measure, this property favors parcellations with small

parcels, as only close-by vertex pairs will be within the same parcel. Similarly, the spatial

smoothness also biases the Silhouette coefficient, as the spatial distance for within-parcel

pairs is on average smaller than that for between-parcel pairs. For example in random

parcellation Icosahedron 162 (Fig. 2.1b), the average spatial distance of within-parcel

pairs is 14.5 mm. Even if we limit the comparison to vertex pairs from spatially adjacent

parcels, as is common practice in the evaluation of brain parcellations, the between-parcel
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pairs have a substantially larger average distance (25.5mm). This discrepancy results in

a higher average correlation of functional profiles for within-parcel pairs compared to

between-parcel pairs.

We therefore propose to only compare vertex pairs with a similar spatial distance. For

this purpose, the DCBC method bins all vertex pairs according to their spatial distance,

and then compares the correlation for within- and between-pairs within each bin. One

important practical decision is the choice of bin size, a question that we address in the

results section. For our neocortical data, a bin size of 1 mm appears to be adequate.

2.2.5.2 Averaging across bins

Parcellations can be compared by investigating the difference in within- and between-

parcels as a function of the spatial distance (see King et al. (2019), Fig. 3,4). However, for

many applications we would like a single evaluation criterion for each parcellation, which

necessitates the averaging across a range of spatial distances. This raises the question

of what range of spatial distances to consider, and how to weight the distances within

that range. A rational solution to this problem is to find the weighting that, for any

given parcellation, provides us with the best estimate of the average difference between

within- and between-parcel correlations, assuming that this differences is constant across

the desired range of distances. The variance of the estimate of the correlation difference

(di) for bin i can be approximated by assuming the independence of the different vertex

pairs. In this case, the variance of the estimate depends on the number of within- (nw,i)

and between-parcel vertex pairs (nb,i) in each spatial bin:

var(di) =
1

nw,i

+
1

nb,i

=
nw,i + nb,i

nw,inb,i

(2.4)

For averaging, we define a weight that is proportional to the precision (inverse of the

variance) of each estimator:

wi =
nw,inb,i

nw,i + nb,i

/
∑
j

nw,jnb,j

nw,j + nb,j

(2.5)
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By equation 4.19, we can see that 1−R2 = 2ϵ̄Acosine, and similarly we can easily proof

below equation:

⟨ϵ̄MSE⟩q =
1∑

i ∥yi∥2
∑
i

∑
k

⟨û(k)
i ⟩(yi − vk||yi||)2 = 2⟨ϵ̄Acosine⟩q (B.2)

where ⟨û(k)
i ⟩ is the inferred expectation on the training data using the fitted model.

Supplementary Figures
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Figure B.1: The synthetic dataset. (a) The group probability prior is controlled
by smoothing kernel at different levels for all 5 parcels. (b) The burn-in process for
generating the individual parcellation. (c) The example individual parcellation maps
generated by different parameters
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